

T. Parkitrsoir. $\partial^{2} \approx($

A MAN NUAL

B
 O

 Y
 INCLUDING THE •

STRUCTURE, CLASSIFICATION, PROPERTIES, USES, AND FUNOTIONS OF PLANTS.

BY

Robert bentley, F.L.S., M.R.C.S. Eng:

FELGOT OF KIXA'S COELTGE, LONDON: HONORARY MENEFR OF TIE PYARMAOEUTTCAL SOGFLTY QF GRFAT IBRITAIS : HONORARY MEMBER OF THF AMERICAN PIIAIMAOEU'SOAG ASSOCIATJON: HOXOIEARY MEMBER OF TIF FHILADELPIEA COLLEGE OF PMARMAOY; NJ:DEAS. ASBOCIATE UF KING'S LOLLEGE, LONDON ; PROFESGOR OF HOTANY IN KiSG'S COLIFGE. LOSDON ; PROFESSOR OF BOTANY AND MATERLA MEHICA TO TIE PIARJACEDTICAL SOUIETY OF GREAT BRITAIN: PROFESGOR: OF BOTANY IN THE I.ONVON INSTITUTIOS; ONE OF THE, TIIREE EDITORS OF THE 'BRITISH PILARMACOPLEIA' ISS.)

FIFTH EDITION
LONDON
J. \& A. C H U R C H I L I.

11 N゙にW RURLINGTON STREET

EO

HEXRY BOTMLAN BRADY, F.R.S., F.L.S., F.G.S., \&e.

A FORMER PUPIL,
WHO HAS HIGHLY DISTINGUISHED HIMSELF
BY HIS RESEARCHES
ESPECIALLY ON THE FORAMINIFERA
せGis BSorf is Dedicafed

WITH EVERY FEELING OF REGARD AND ESTELM

AND IN GRATEFUL REMEIERANCE OF AN UNBROKEN FRIENDSHIP - THROUGH A LONG SERIES OF YEARS

```
HY HIS VERY SINCERE FRIEND
```


Digitized by the Internet Archive in 2014

PREFACE

TO

THE FIFTH EDITION.

Is the Preface to the First Edition of this Manual, the author fully explained the objects he had more especially in view in its preparation, and the principal sources from whence he had derived the materials necessary for its compilation. That such a work was needecl, is proved in a marked degrec by the salc of four very large editions; and in issuing this Fifth Edition, the Author camot but express the gratification he fecls at the satisfactory results which have attended his labours, and he also takes this opportunity of again returning his sincere thanks to many kind friends and corrcspondents for the assistance they have rendered him, by their suggestions, and by the communication of many valuable facts.

In the last edition attention was especially dirceted to the fact that, in consequence of the very great arlvances made within the last few years in the science of Botiny on the Continent of Europe, and mure especially in Germany, the work haul been very carcfully revised throughout, and in the subjects of Histology, Physiology, and the Reproductive Organs of the Cryptogemia, almost rewritten. The great and continued advances in these subjects since the last edition have again rendered it necessary to make numerous changes and alterations in these portions, and to add several new woodents; and in so doing the author has to express his obligations to Mr. J. W. Groves, Curator of the Anatomical Museum, and

Demonstrator of Practical Biology in King's College, London, for the valuable assistance he has rendered generally, but more especially for, in a great degree, revising the Third Book on Physiology. In this edition, so far as the above suljects are concerned, the standard works of Sachs, De Bary, Eichler, Strasburger, Van Tieghem, Luerssen, Vines, and Bower have been more particularly consulted, besides a large number of original memoirs published in this country and elsewhere.

In the part treating of the properties and uses of plants, many alterations have been also rendered necessary by the progress of science, and the recent issue of a new edition of the 'British Pharmacopoin.' The very large number of plants te be here noticed has compelled the author to be very brief in his descriptions of them individually ; but so far as the principal plants employed in medicine are concerned, those readers who, requirc more detailed information are referred to Bentley and Trimen's 'Medicinal Plants,' where coloured figures, botanical descriptions, and other full particulars may be found ; and to Fliuckiger and Hanbury's 'Pharmacographia.'

While the work in all the above particulars has thus been very carefully revised, the most marked change that will be noticed is in the part relating to the Classification of Plants, which, so far as the Phanerogamia are concerned, has been very materially modified, and in some parts rewritten, in order to adapt it in all essential particulars to the arrangement adopted in the great work on that subject, the 'Genera Plantarum' of Bentham and Hooker, which has been published in a complete form since the last edition of this Manual was issued ; aud which cannot fail to be the standard work on the subject for many years. Tmportant changes have also been made in the Classification of the Cryptogamia, but, so far as these plants are concerned, their arrangement at present must be regarded as transitional ; and hence, as their full description is beyond the scope of this Manual, advanced students must refer to special treatises for detailed notices of the arrangement and characters of the several groups of the Cryptogamia, and more especially of the Thallophytes,

The prosent edition having been thus carefully revised in all its parts, adapted, as far as possible, to the present state of botimical science, and supplemented by very copions and carefully prepared indexes, which have been kindly prepared for
him by a friend, the author confidently believes that it will, even better than the preceding editions, serve as a eonvenient, intelligible, and eorreet as well as comprehensive Manual for students; and will also be very useful as a work of reference to those engaged in commercial pursuits, who, having constantly to make use of substances derived from the Vegetable Kingdom, require aecurate and condensed information on the Properties and Uses of Plants.

Lospos: : Junuary, 185 ī.

PREFACE

ro

THE FIRST EDITION.

The principal design of the author in the preparation of the present volumc was, to furnish a comprehensive, and at the same time a practical, guide to the Propertics and Uses of Plants, a part of Botany whieh in the majority of manuals is but very bricfly alluded to. He hopes that in this respect the present Manual may serve as an introduction to works devoted particularly to Materia Mcdiea and Economic Botany; and thus form a text-book of especial value to medical and pharmaceutical students; as well as a work of reference generally for those engaged in commercial pursuits who have daily to make usc of substances derived from the Vcgetable Kingdom.

Another prominent motive of the author was, to furnish the pupils attending his lcctures with a class-book, in whieh the subjects treated of should be arranged, as far as possible, in the same order as followed by him in the lectures themselves. It may be noticed that this order differs in several respects from that commonly followed, but long experience as a teacher has comvinced him that it is the most desirable one for the student. Great pains have becn taken in all departments to bring the clifferent subjects treated of down to the present state of scienee ; and much carc has been exercised in condensing the very mmerous details bearing upon each department, and in arranging them for systematic study.

The author makes no clams for this work to be regarded as a complete treatise on the different departments of Botany ; it is only intended as a guide to larger and more comprehensive
works ; but he trusts, at the same time, that it will be found to eontain everything which the student of Botany really requires, whether he is pursuing it as a braneh of professional or general cducation, or for pleasure and recreation.

The vast number of faets, observations, and terms necessarily treated of, in the departments of Struetural, Morphological, and Systematic Botany, have compelled the author to give but a brief aecount of the Physiology of Plants; he hopes, however, that, even here, all the more important subjects bearing upon the education of the medieal practitioner and pharmaeist will be found suffieiently eomprehensive. Those who require a more complete knowledge of this department, he would refer to the Second Part of Balfou's's Class-Book of Botany,' in which valuable work full details upon Physiological Botany will be found.

The author had a great desire, also, to inclucle in the present rolume an Appendix upon Descriptive Botany, and a Glossary of Botanical Terms ; but the Manual having already exceeded the limits desired, he is unable to do so. The Index itself will, however, serve as a glossary by referring to the pages in which the different terms are defined and explained ; and with regard to Deseriptive Botany, the author would especially recommend every reader of this work to obtain a small but very valuable work on that subject which has been recently published by Dr. Lindley.

In compiling this volume the author has been necessarily compelled to refer to many works and original memoirs on botanical science, and he hopes that in all eases he has given full credit to the different authors for the assistance they have afforded him. If he has omitted to do so in any instance, it has arisen from inadvertenee, and not from design. To the valuable works of Mohl, Jussieu, Sehleiden, Mulder, Hofmeister, Asa Gray, and Schacht, among foreign botanists ; and to those of Lindley, Balfour, Henfrey, Hooker, Berkeley, Pereira, and Royle, among British botanists, he begs to express his obligations. To his friend, Daniel Hanbury, he is also indebted for much valuable information communicated during the progress of the work. To Lindlcy's 'Vegetable Kingdom,' Pereira's 'Materia Medica,' and to the many valuable articles upon the Anatomy of Plants in Griffith and Henfrey's 'Micrographic Dictionary ' by the lamented Henfrey, the author is more especially indebted.

The last three works will always bear ample testimony to the great research and abilities of their respective authors.

The author has further to express his obligations to his spirited publisher, for the numerous woodcuts which he lias liberally allowed him, and to Mr. Bagg for the great skill he has shown in their execution. A large number of these woodcuts have been taken from Le Maout's 'Atlas élémentaire de Botanique,' several from Jussieu's 'Cours élémentaire de Botanique ; ' others have been derived from the works of Schleiden, Mohl, Hofmeister, Lindley, Henfrey, Balfour, \&c. ; and many are from original sources. By the judicious use of these woodcuts in the text of the volume, it is believed that the value of the work as a Class-book of Botanical Science has been materially increased.

London : May 1, 1861.

CONTENTS

「Acie
General Introduction 1.
Departuents of Botani 1
Distinctions betweey Anhals, Plints, and Minerals 2
BOOK I.MURPHOLOGICAL AND STRUCTURAL BOTANY.
CHAPTER 1.
General Morphology of the Plant 6
Cryptogamous Plants or Cryptogams 11
Phanerogamous Plants or Phancrogams 1.1 1.1

1. Organs of Nutrition 1.4
a. The Root 14
b. The Stem or Caulome 14
c. The Leaf or Phyllome 15
2. Organs of Reproduction 15
a. The Flower Stalk or Peduncle 15
b. 'The Flower' 17
c. The Fruit and Secd 20
CHAPTER 2.
Elemestary Structure of Plants, on Vegetable Histolngy. 21
Section 1.
OF THE CELL AS AN LNDIVIUCAL 21
3. Nature of the Cell and its Contents 22
4. The Cell-wall 2.2
2, The Protoplasm 2.4
5. The Nucleus 27
6. The Cell-Sap 27
Chlorophyll and Chhorophyll Cranules 28
a. Chlorophyll 28
b. Chlorophyll Ciranules $2!1$
Starch n: 29
Development of Starch 31
Composition and Chemical Characteristics of Starel :3:
Raphides 33
Alemrone Grains, Crystalloids, and Globoids $3 ;$
7. Forms and Sizes of Cells 37
8. Forms of Cells :37
9. Sizes of Cells 41
10. General Properties and Structure of the Cell-wall 12
Pitted or Dotted Cells 42
Cells with Bordered Pits or Disc-bearing Wood-cells 43
Fibrous Cells 11
Section 2.
OF THE KINDS OR CELLS AND THEIR CONNEXION WITH ONE ANOTHER 46
11. Parenchyma 47
a. Round or Elliptical Parenchyma 47
b. Stellate or Spongiform Parenchyma 17
c. Regular or Polyhedral Parenchyma 45
d. Elongated Parenchyma 45
e. Tabular Parenchyma 15
12. Prosenclyma 19
a. Woody Tissue 50
b. Disc-bearing Woody Tissue 50
c. Woody Tissue of the Liber or Bast Tissue 50
13. Vessels $\overline{5} 1$
a. Pitted or Dotted Vessels 51
b. Spiral Vessels 5
c. Annular Vessels 53
d. Reticulated Vessels 55
c. Scalariform Vessels 5
f. Sieve-tubes or Sieve-vessels 55
g. Laticiferous Vessels 5
h. Vesicular or Utricular Vessels 57
14. Epidermal Tissue 57
a. Epidermis 5
b. Cuticle (i)
c. Stomata or Stomates. $1 i 1$
15. Appendages of the Epidermis (i3)
16. Hairs or Trichomes (i.)
17. Glands (is
a. External Glands is
b. Internal Glands 70
(i. Intercellular System 71
Intercellular Passages or Canals and Intercellular Spaces 71
Air Cavitics 72 72
Receptacles of Secretion 72
Intercellular Substance 73
CHAPTER 3.
ran
Organs of Nutmition or Vegetation 73
Section 1.
THE STEDL OR CAULOME 73
18. Internal Structure of the Stem in general 74
A. Exogenous or Dicotyledonous Stem 78
19. Pith or Medulla 80
20. The Medullary Sheath 81
21. The Wood or Xylem 81
Duramen and Alburnum 85
Age of Dicotyledonous Trees $8 \stackrel{3}{3}$
Size of Dicotyledonous Trees 87
22. Cambium-layer or Cambium 87
23. Medullary Rays 84
24. The Bark or Cortex $8!$
a. The Liber, Inner Bark, or Phloëm 90
b. The Cellular Envelope, Green Laycr, or Phelloderm 91
Corky or Suberous Layer 91
Growth of the Bark 32
B. Endogenous or Monocotyledonous Stem 94
Internal Structure ! 5
Origin and Growth of the Fibro-vascular Bundles 95
Growth by Terminal Buds ??
Anomalous Structure of Monocotyledonous Stems 99
Age of Monocotyledonous Trces 101
C. Acrogenous Stem, or the Stem of Cormophytes 101
Internal Structure of Fern Stems 102
Growth by Terminal Buds 102
25. Buds and Ramification 103
A. Leaf-buds or Buds 103
B. Ramification or Branching 108
26. Non-development of the Regrular Buts 110)
27. Adventitious Buds 111
Embryo Buds 112
28. Accessory Buds 112
29. Of the Forms and Kinds of Stems and Branches 113
Herbs, Shrubs, and Trecs 115
Kinds of Stems and Branches 116
30. Aerial Modifications of Stems and Branclics 117
a. The Runncr or Flagellum 117
b. The Offset 117
c. The Stolon 118
d. The Sucker 118
c. 'I'he Rhizome or Rootstock 118
31. Subterranean Modifications of the Stem and Branches. $11!$
a. The Creeping Stem 11!)
Harf.
b. The Tuber 120
c. The Bulb 122
d. The Corm 123
Section 2.
THE ROOT OR DESCENDING AXIS 125
32. True or Primary Root 125
Distinetive Charaeters of Stems and Roots 128
33. Adventitious or Seeondary Root $1 \because 8$
Aerial Roots 130
Epiphytes or Air Plants 1.31
Parasites $1: 3$
Duration of Roots 133
34. Annual Roots $13: 3$
35. Biennial Roots $13: 3$
36. Perennial Roots $13:$
Roots of Dieotyledons, Monocotyledons, and Aerogens 1:1
37. The Root of Dieotyledons $1: 4$
38. The Root of Monocotyledons 1:3
39. The Root of Cormophytes or Aerogens $13: 5$
Forms of Roots $1: 36$
Section 3.
THE LEAF OR PHYLLOME 140
40. General Deseription and Parts of the Leaf 140
Duration and Fall of the Leaf 141
Parts of the Leaf 141
41. The Internal Structure of Leaves 1.2
42. Aerial Leaves $1+2$
A. The Petiole 143
B. The Lamina 143
43. Fibro-vaseular System 143 143
44. Parenehyma or Mesophyll 114
45. Submersed Leaves 1.15
46. Insertion and Arrangement of Leaves 146 146
47. Insertion $1+4 i$ $1+4 i$
48. Arrangement of Leaves on the Stem, or Phyllotaxy $1 \cdot 16$ $1 \cdot 16$
Alternate Leaves 1:5
Opposite and Whorled Leaves 153 153
Phyllotaxis in different Natural Orders, \&e.
Phyllotaxis in different Natural Orders, \&e. 154 154
49. Arrangement of the Leaves in the Bud, or Vermation 155 155
50. Lamina or Blade 1.57 1.57
Venation or Nervation
Venation or Nervation 157 157
51. Varieties of Retieulated or Netted Venation $15!$
A. Feather-veined or Pimately-veined 159) 159)
B. Radiated or Palmately-veined 110 110
52. Varieties of Parallel Venation 160
Venation of the Jeares of Cormophytes. 161 161
Pativ
Composition 1 (i)
53. Simple Leaves $16: 3$
54. Margins 16;3
55. Incision 165 165
56. Apex 169
57. General Outline or Figure 169
58. Form 173
59. Compound Leaves 174
60. Pinnately-veined Compound Leaves 174
61. Palmately-veined Compound Leaves $17!$
62. Petiole or Leaf-stalk $17!$
Forms of the Petiole 181 181
63. Stipules 182
Kinds of Stipules 183
64. Anomalous Forms of Leaves 185 185
Spines of Leaves 185
Tendrils of Leaves 186
Phyllodes or Phyllodia 187
Ascidia or Pitchers 188
65. General View of the Leaves of Dicotyledons, Monocotyledons, and Cormophytes 189
66. Leaves of Dicotyledons 189 189
67. Leaves of Monocotyledons 189
68. Leaves of Cormophytes 110
CHAPTER 4.
Orgais of Reproduction un the Phanerogamia 190
Section 1.
1NFLORESCENCE OR ANTHOTASIS 191
69. The Bract $1!11$
Arrangement and Duration of Bracts 193
Varieties of Bracts 193
70. The Peduncle or Flower-stalk $1!17$
Kinds of Peduncle $1: 17$
Forms of Peduncle 198
Insertion $19!$
Duration 200
71. Kinds of Inflorescence 200
72. Indefinite, Indeterminate, or Axillary Inflorescence 201
73. Kinds of Indefinite or Indcterminate Inflorescence with an Elongated Primary Axis 203
r. The Spike 202
b. The Anentum or Catkin 202
c. 'The Sparlix 203
d. The Locusta or Spikelet 203
c. The Cone 20:3
f. The Strobile 20.1
par;
g. The Raceme 204
h. The Corymb 205
i. The Panicle 206
74. Kinds of Indefinite or Indeterminate Inflorescence with a Shortened or Dilated Primary Axis 207
a. The Capitulum, Anthodium, or Head 207
b. The Umbel 208
75. Definite, Determinate, or Terminal Inflorescence 209
Kinds of Definite or Determinate Inflorescence 210
a. The Cyme 210
b. Helicoid or Scorpioid Cyme 213
c. The Fascicle or Contracted Cyme 216
d. The Glomerule 216
c. The Verticillaster 216
76. Mixed Inflorescence 217
Section 2.
OF THE PARTS OF THE ELOWER; AND THEIN APRANGEMENT IN THE FLOWER-BUD 218
77. Parts of the Flower 21.5
78. Estivation or Prefloration 218
79. Varieties of Circular Aestivation 219
80. Varieties of Imbricated or Spiral ※stivation 220
Section 3.
THE FLORAL ENYELOPES 222
81. The Calyx 2.2
82. Polysepalous, Polyphyllous, or Dialysepalous Calyx $22: 5$ $22: 5$
83. Monosepalous or Gamosepalous Calyx 225 22ふ
Appendages of the Calyx .
Appendages of the Calyx .
Duration of the Calyx 229
84. The Corolla: 2:0
85. Polypetalous or Dialypetalous Corolla
86. Polypetalous or Dialypetalous Corolla 232 232
A. Regular Polypetalous Corollas
A. Regular Polypetalous Corollas 233 233
87. Cruciform or Cruciate 233
88. Caryophyllaceous 2:3
89. Rosaceous 2:3: 2:3:
B. Irregular Polypetalous Corollas 23:
The Papilionaceous -23:; -23:;
90. Monopetalous or Gamopetalous Corollas 23:3
A. Regular Monopetalons Corollas $23: 3$
91. Tubular 23:3 23:3
92. Campanulate or Bell-shaped $2: 1$
93. Infundibuliform or Funnel-shaped 28.4
94. Hypocrateriform or Salver-shaped $2: 1$
95. Rotate or Whecl-shaped
96. Rotate or Whecl-shaped 23.5 23.5
97. Urceolate or Uro-shaped 28.5
2:3
2:3
B. Irregular Monopetalous Corollas
1PAGE:
98. Labiate, Bilabiate, or Lipped 235
99. Personate or Masked 236
100. Ligulate or Strap-shaped 236
101. Appendages of the Corolla 237
Duration of the Corolla 240 240
SECtion 4.
THE ESSENTIAL ORGANS OF REPROUUCTION 240
102. The Androcium 2 ± 1
103. The Filament 242
Form 242
Length, Colour, and Direction 242
Duration 244
104. The Anther 244
Its Parts 244
Its Development and Structure 246
Attachment of the Filament to the Anther 248
Connective 248
Form of the Anther-lobes and of the Anther 249
Colour of the Anther 251
Dehiscence of the Anther 251
105. Longitudinal or Sutural 251
106. Transverse 251
107. Porous or Apical 252
108. Valvular or Opercular 253
The Stamens generally, or the Andrucium 253
109. Number 253
110. Insertion ol Position 253
111. Union or Cohesion 255
112. Relative Length 256
The Pollen 258
Formation of the Pollen 258
Structure of the Pollen 260
113. Wall or Coats of the Pollen-cell 260
114. Contents of the Pollen-cell 263
115. Forms and Sizes of the Pollen-ccll 263
116. The Disk 265
\%. The Gyncecium or Pistil 266
The Carpel. 267
Nature of the Carpel 268
Structure of the Carpel 269
The (fynæecium or Pistil 272
117. Apocarpous Pistil 273
118. Syncarpous Pistil 274
Compound Ovary 275
119. The Ovary $27!$
Placentation 281
120. Kinds of Placentation 282
121. Origin of the Placenta 284
1'Al: E
122. The Style $281 ;$
Form and Surface of the Style 28!)
123. The Stigma 290
124. The Thalamus 292
Section 5.
THEFRUIT 295
Nature of the Fruit 295
Changes produced in the Ovary in the Course of its Development 296
General Characters of the Fruit 297
Composition of the Fruit 298
Pericarp 290
Sutures 300 300
Dehiscence 301
125. Valvular Dehiscence 302
A. Septicidal Dehiscence 303
B. Loculicidal Dehiscence 303
C. Sêptifragal Dehiscence 305
126. Transverse or Circumscissile Dehiscence 307
127. Porous Dehiscence 308
Kinds of Fruit 309
128. Fruits formed by a Single Flower 309
a. Simple Fruits 309
129. Legume or Pod 310 310
130. Lomentum 311
131. Drupe 311
132. Utricle 312
b. Apocarpous Fruits 312
133. The Follicle 312
134. The Achrenium or Achene 313
135. The Etærio 313
c. Syncarpous Fruits 314
136. Superior Syncarpous liruits 314
a. With a Dry Indehiscent Pericarp 314
137. The Caryopsis 314
138. The Samara 315
139. The Carcorule 315
140. The Amphisarca 315
b. With a Dry Dchiscent Pericarp 316
141. The Capsule 316
142. The Siliqua 317
143. The Silicula 317
c. With a Fleshy Indehiscent Pericarp 318
144. The Hesperiditum 318
145. The Tryma :318
146. The Nuculanium 318
147. Inferior Syncarpous Fruits 319
a. With a Dry Indehiseent Pericarp
a. With a Dry Indehiseent Pericarp 319 319
148. The Cremocarp 319
pagre
149. The Cypsela 319
150. The Glans or Nut 319 319
b. With a Dry Dehiscent Pericarp 319
Diplotegia 319
c. With a Fleshy Indehiscent Pericarp 320 320
151. The Bacca or Berry 320 320
152. The Pepo 320
153. The Pome 321 321
154. The Balausta 321
155. Fruits formed by the Combination of Several Flowers 321
156. The Cone 322 322
157. The Galbulus 322
158. The Strobilus or Strobile 323
159. The Sorosis 323 323
160. The Syconus 324
Section 6.
THE OVULE AND SEED 324
161. The Ovule 32.
Number and Position of the Ovules 325
a. Number 325 325
b. Position 326
Development and Structure of the Ovule 327
Relation of the Hilum, Chalaza, and Micropyle to each other 330
162. The Seed 333
Nature and General Characters of the Seed as compared with the Ovule 333
Forms of Seeds 334 334
Structure of the Seed 334 334
163. The Integuments or Coats 385
a. Testa, Episperm, or Outer Coat 335 335
Colour, Texture, and Surface of the Testa 335
b. Tegmen, Endopleura, or Internal Coat 337
Arillus 337 337
Caruncules or Strophioles 338
164. The Nucleus or Kernel 339
a Albumen, Endosperm, Perisperin 341
b. The Embryo 341
a. The Monocotyledonous Embryo 342
b. The Dicotyledonous Embryo 343
Relation of the Embryo to the other Parts of the Sced, and to the Fruit. 316
Section 7.
Section 8 .
['A(il:35:3
165. The Changes due to Union or Adhesion of Parts 854
a. Coaleseence 350
b. Adnation or Adhesion 350
166. Addition or Multiplieation of Parts $3: 14$
a. Augmentation 356
b. Chorisis or Deduplication 357
167. Suppression or Abortion $3(0)$
a. Suppression or Abortion of one or more Whorls 360
b. Suppression of one or more Organs of a Whorl 3131
168. Irregularity 362
a. Unequal Growth, and Unequal Degree of Union of the Members of a Whorl $3(0)$
b. Abnormal Development of the Thalamus or Axis of the Flower 316:3
CHAPTER 5.
Reproductive Organs of the Cisptogama or Flowerless Plants $36 ; 3$
Section 1.
KEPRODUCTIVE ORGANS OF CORMOPHITES 364
169. Filices or Ferns 367
170. Equisetacer or Horsetails 317
171. Lycopodiacere or Club-mosses 36
172. Selaginellacere or Selaginellas $36!$
173. Marsileacer or Pepperworts 370
(i. Musci or Mosses 372
174. Hepaticacee or Liverworts 37.5
Section 2.
REPRODUCTIVE ORGANS OF THALAOHIYTY' 378
175. Fungi or Mushrooms 375
176. Phycomycetes 378
177. Hypodermix. 380
178. Basidiomyeetes :3sl
179. Ascomycetes 38:3
Bacteria 386
180. Lichenes or Lichens ssis
181. Characer or Charas 3311
182. Algre or Seawceds 392
Nostoc 392
Spirogyra 3!:3
Vaucheria $3!4$
Fucus $391 ;$
(Edogonium $3!1 \times$

BOOK II.

SISTEMATIC BOTANY, OR THE CLASSIFICATION OF PLAYTS.

CHAPTER 1.

PAGE 400

Section 1.

SPECIES, GENERA, ORDERS, AND CLASSES.

1. Species 400
Varieties or Sub-species 401
Races 401
2. Genera 403
3. Orders or Natural Orders 403
4. Classes 404
Section 2.
CHARACTETS, NOMENCLITURE, ABBREVIATIONS, AND SYMBOLS 405
5. Characters 405
-2. Nomenclature 406
a. Species 406
b. Genera 407
c. Orders 407
d. Classes 408
c. Sub-kingdoms, Divisions, むc. 408
6. Abbreviations and Symbols 408
a. Abbreviations 408
b. Symbols 409
CHAPTER 2.
Systems of Classification 410
Section 1.
ABTIFICIAL SXSTEMS OF ULASSIFICATION 411
Linusan System 414
Tabular View of the Linnæan System 412
Slection 2.
NATURAL SYSTEAS OF CLASSIFICAIION 214
Natural Systems 416
Ray's Natural Systom 416
Jussicu's Natural System 417
PAC:
De Candolle's Natural System 417
Endlicher's Natural System 419
Lindley's Natural System 421
Bentham and Hooker's System 422
Natural System adopted in this Manual 42:
CHAPTER 3.
Arrangement, Characters, Distribution, Properties, and Uses of the Natural Ordelis 429
Sub-kingdom 1.-Phanerogamia 429
Division 1.-Angiospermia 429
Class 1.-Dicotyledones 429
Sub-class 1.-Polypetalre 429
Series 1.-Thalamiflore 429
Cohort 1. Ranales 429
Order IPAfE
7. Ranumeulaceæ 429
8. Dillenincer 433
9. Calyenthnceæ 433
10. Maguoliacere $43 \pm$
11. Schizandraeeæ 435
12. Anonaceæ 436
13. Menispermacere 437
14. Berberidacere 438
15. Lardizabalacca 440
16. Cabombacer 411
17. Nymphæacere 441
Cohort 2. Parictales 443
18. Sarraceniacere 443
19. Violacere 455
20. Papareracere 44
21. Fumariacere 446
22. Crueifere 447
23. Cappridace:e 452
24. Resedacers 453
25. Cistacce 454 454
26. Nelumbiacere 442
Cohort 3. Polygalinca 459
27. Polygalacere 459
28. Voely ysiaeere 462
Cohort 4. Caryophyllinece.463
29. Caryophyllneex 463
30. Paronychiacce 465
31. Scleranthacere
32. Scleranthacere 466 466
Cohort 5. Guttiferales 467
33. Elntinacere 467
34. Ityperieneere 468
35. Remmurincere 468 469
36. Guttifere or Clusiacue
37. Guttifere or Clusiacue
38. Ternstromincere or Camellincer 471
39. Sauvagesiacea 456 456
40. Cmiellaceæ 457
41. Bixacere 451
42. Pittosporneere 158
43. Tremandracer 459 475
44. Malvncere
45. Sterculincere
46. Maregrazincere 473
47. Rhizoholacere 473
474 473
474
48. Dipternces
49. Chlenatere 175
Cohort 6. Mulvales
Cohort 6. Mulvales 475 475 179 179
466
50. Portn!nencer
51. Portn!nencer 466
52. Tamaricacere
462
53. Frankeniacere
Artificial Analysis of the Orders in theScries Thalamiflore48.)
PAGR
PAGR
Series 2.-Disciflorze
Series 2.-Disciflorze 488 488
Cohort 1. Geraniales 488°
Order PAGE
54. Linncere
Order
55. Oxnlidacere 497
56. Malpighiacese 491
Humiliacere 492
57. Zygophyllacea 492
58. Geraniacea 49.4
59. Balsaminacere 495
60. Vivinniacea 496 496
61. Tropæolaceæ
62. Tropæolaceæ
63. Limuanthacere $+97$
64. Rutaceæ 498
65. Simarubncere 504
66. Ochnacer 505
67. Burseraceæ or Amyridacere 506
68. Mcliaceæ 508
69. Cedrelaceæ 509
70. Chailletiacere 510
Cohort 2. Olacales 510
71. Olacacese 510
72. Icacinacea 510
73. Cyrillacere 511
Cohort 3. Celastrales 512
74. Celastracere 512
75. Hippocrateacere 513
76. Stackhousinceae 514
Patis
Cohort 4. Ficoidales あt! !

Order

1. Cnctacew

PAGE Order
569
2. Mesembryanthacea or Fienidacere571
Cohort 5. Umbellales 571

1. Umbelliferæ 57 I
2. Garyaceat 5792. Alalinceæ • 577
3. Cornmeeæ 578Artificial Analysis of the Orders in the
Series Calyciflore . . .580
Sub-class 2.-Gamopetalre or Corolliflore 583
Series 1.—Infere or Epigyne 583
Cohort 1. Pubiales 583
4. Caprifoliaceæ 583 2. Rubinecæ 585
Cohort 2. Asterales 589
5. Valeriauncer 589
6. Calyccracca 591
7. Dipsaceæ 590
8. Composita 592
Cohort 3. Campanales 600
9. Stylidincere 600 3. Cmmpanulueer 6101
?. (ioodenincer 600
10. Lobeliaceæ 601
Series 2. - Superat 602
Cohort 1. Ericales 602
11. Vncciniacce 602
12. Monotropaceæ 605
13. Eriencex 603 4. Epacridacere 605
Cohort 2. Primulales f06
14. Plumbaginacca 606
15. Primulaceæ 607
16. Myrsinneea 6(1)
Cohort 3. Ebenales $60!$
17. Sapotacea 609 3. Styracea 611
18. Ebenacea 610
Serjes 3.-Dicarpis or Bicarpellatr 612
Cohort 1. Gentianales 612
19. Olenceas 612
20. Aselepialicerat bili
?. Salvadorncere 614
21. Lugranince:
22. Lugranince: 614 614
23. Apoeynacew
24. Gentinname 620
Cohort 2. Polenomiales 62.2
25. Polemoninecre 622
26. Diapensincere 622
27. Stilbacere (i29
28. 1 frilropliyllacese 622
ร. Jornginacer 02361.4
29. Ehretiacers 621
30. Cordincese fiol
31. Nolnnmere 62:
32. Convolvilucera $6: 5$
33. Solmunerie $6: 7$
patic
Cohort 3. Persmales 632
order.
. Orobanchacere 634 634
34. Scrophulariacer
35. Scrophulariacer 63.3 63.3
36. Lentibulariaceæ 635
37. Columelliacea 635635
๖. Gesmeracce 638
omber
38. Crescentincca 636
39. Bignoninceas 636
40. Pedaliaceæ 637
41. Acanthacer 638

Cohort 4. Lamiales

Cohort 4. Lamiales

Cohort 4. Lamiales

Cohort 4. Lamiales

1. Selaginacere
2. Selaginacere
3. Selaginacere 038 038 038 038
4. Terbenacez
5. Terbenacez
6. Terbenacez 639 639 639
7. Муорогасеп
8. Муорогасеп
9. Муорогасеп 6 ± 0 6 ± 0 6 ± 0
6
6
6
640
640
10. Labiatat
11. Labiatat 643
12. PlautnginaceæArtificial Analysis of the Orders in theSub-class Gamopetalu or Corolliflore644
Sub-class 3.-Monochlamyder or Incompletre 648
Series 1.-Superæ 645
Cohort 1. Chenopoditules 648
13. Nyctaginacere 648 648
14. Phytolaccaceæ 651
15. Petiveriacce 652 649
16. Antarantacere
17. Antarantacere
18. Chenopodiacere 6457. Polygonacce652
19. Basellaceæ
Orders of Dubious Affinities 654
20. Batidacere 651
21. Polostemaccic 654
Cohort 2. Laurales 654
22. Monimiaceæ 654
23. Atherospermacea 055
24. Myristicacce 655
25. Lauracere 656
Cohort 3. Daphuales 659
26. Thymelacere 659
27. Aquilariaceie 600
28. Eleagnaccac 661
29. Proteacere 661
Cohort 4. Uriticales 661
,
,
30. Urticacea 662
31. Mornceæ 663 663 665
32. Artocarpacere
33. Camabinacea 664
Cohort 5. Amentales 668
34. Casuarinacce
35. Casuarinacce 670 670
668
668
36. Betulaceæ 669
37. Plntanaceæ
669
669
Cohort 6. Euphorbiales 671
38. Euphorbiacest 672
39. Scepacer 676 676
40. Empetracea: 676
41. Salicacce 670
666
666
42. Uimaccie
43. Uimaccie

-

Cohort 7. I'iperales
671
4. Stilaginaceæ
677
677
5. Penæacce
678
6. Lacistcnacca678

1. Piperacee 678
2. Saururacere 679 081 680
Cohort 8. Nepenthales 681
3. Scpenthace: 681
1A!;
Series 2.-Inferæ or Epigynæ 681
Cohort 1. Asarales 681
Order. PAGE
4. Aristoloeluaceæ 681
0)rider
5. Raffiesineere . . . C83 C836822. CytinaceæCohort 2. Quemales683
6. Juglandacere 68.1
7. Corylacea or Cupuliferae 685
Jug
Cohort 3. Santalales 687
8. Loranthneere 687
9. Santalaceæ 688,
Artificial Analysis of the Orders in the Sub-class Monochlamydeæ or Incom- pletæ 689
Class 2.-Monocotyledones 692
Sub-class 1.-Petaloidex 692
Series 1.-Inferæ or Epigynæ 692
Cohort 1. Hydrales 692
10. Hydroehณridaeeæ 693
Cohort 2. Amomales 693
11. Zingiberacex or Seitaminacee . 693 3. Mus:leme 695
12. Marnutaees or Cannaces 695
13. Bromeli:ucet 696
Cohort 3. Orchidales 697
14. Orehiltaeere 697
15. Apostasincera 700
Cohort 4. Taccales 700
16. Burmannineeæ 700 - 2. Taccacere 700
Cohort 5. Narcissales 701
17. Irilacere 705
18. Amaryllidace:e 703
Cohort 6. Dioscorales 706
19. Dioscoreateex 706
Series 2.-Supera 707
Sub-scries 1.-Apocarpre 707
Cohort 1. Triurales 707
20. Triuridnceas 07
Cohort 2. Potamales 707
21. Butomncer 707
22. Jnacaginamera 708
23. Alismmeers 708
 $7(09$
PAGT:
Sub-series 2.-Syncarpr 710
Cohort 1. Palmales 710
(1)riler. 710
24. Paimacere 714
Cohort 2. Arales
order.
25. Panlanacere 3. Aloidacere 715
26. Typhaceæ 4. Lemnnceae 717
Cohort 3. Liliales 718
27. Liliacere 4. Roxburghiacere 725 722
28. Philesiacer 725
29. Colchicaceæ or Melanthacere
30. Colchicaceæ or Melanthacere
31. Smilacere 6. Juncacere 725
Cohort 4. Pontederales 726
32. Pontedcraceæ 727 | 2. Philydracere 727
Cohort 5. Commelynales 727
33. Commelynacer 727
34. Xyritaceæ 728
35. Мауасеæ 728
Cohort 6. Restiales 728
36. Eriocaulacese 729
37. Desvanxiaceæ 729
38. Restiacere 729
Sub-class 2.- Glumacer 730
Cohort 1. Glumales 730
39. Cyperacere $730 \mid$ 2. Gramiunece 732
Artificial Analysis of the Orders in the Class Monocotyledones 739
Division 2.-Gymnospermia 741
40. Coniferze or Pinaeere 741
41. (fnetreere 745
42. Taxacer 744 4. Cyentacete 746
Artificial Analysis of the Orders in the Gymnospermia 746
Sub-kingdom 2.-Cryptogamia 747
Division 1.-Cormophyta 747
Class 1. - Vasculares 747
Sub-class 1.-Isosporia 747
43. Filiees | 717 | 3. Lycoporliaceæ |
| :--- | :--- | 750
44. Equisctacea 749
Sub-class 2.-Hetcrosporia 752
45. Selaginellaceae 752 | 2. Masilencer or Rhiznempere 752
Class 2.-Muscinex 753
46. Musci 753 | 2. Hepraticncer $75 \cdot 1$
Division 2.-Thallophyta 756
47. Fungi $75 B$
48. Churasere 763
49. Lichenes 761
50. Algie 761

BOOK III.

PHISIOLOGY OF PLANTS, OR PIISSIOLOGICAL BOTAJY.

CHAPTER 1.

PAGE
Special Physiologi of the Elementary Structlres and
of que Organs of Nutrition . . 770

Section 1.

PHYSIOLOGY OF THE ELEMENTARY STRUCTURES . . 771

1. Functions of Parenchymatous Cells 771
2. Formation of Cells 771
A. Free Cell-formation 772
a. Free Cell-formation from a nucleus . . . 772
b. Free Cell-formation without a previous nucleus 772
B. Cell-division 774
a. Cell-division without absorption of the walls of
the parent cell
774
b. Cell-division with absorption of the walls of the
parent cell $\quad . \quad . \quad . \quad . \quad .76$
c. Rejuvenescence 777
d. Conjugation . . . 777
e. Indirect Division of the Nuelei of Cells . . 778

Rapidity of Cell-production 779
2. Absorption and Transmission of Fluids 781
3. Movements in the Contents of Cells 783
4. Elaboration of the Cell-contents 784
2. Functions of Prosenchymatous Cells 785
3. Functions of Yessels 785

Functions of Laticiferous Vessels 785
4. Functions of Epidermal Tissue 786

Origin and Development of Stomata 788
i. Funetions of the Appendages of the Epidermis . . . 789
(i. Functions of the Intercellular System 789

Section 2.

PHYSSLOLOGY OF 'lHE OLGANS OJ NUTLITLOX 790

1. Of the Root or Descending Axis 790
Absorption by the Root 790 790
Sclection of Food by Roots 791
Excretion by Roots 792
Storing of Nutriment by Roots 792
Development of Roots 79.2 79.2
2. Of the Stem or Caulome 793 793
A. Special Functions of the Different Parts of the Stem 79.1
a. The Mcdulla or Pith 79.4
b. The Wood or Xylem 791
PAGE
Formation of Wood 794
c. The Medullary Rays 795
d. The Bark 795
B. Development of the Stem 795
3. Of the Leares or Phyllomes 796
4. Exhalation of Watery Yapour by Leaves $7!6$
5. Absorption of Fluids by Leaves 799
6. Absorption and Exhalation of Gases by Leaves 799
7. Formation of Organic Compounds by Leaves 804
8. Effects of Gases generally upon Leaves 805
Wardian Cases 806
9. Colour of Leaves 807
10. Defoliation, or the Fall of the Leaf 810
11. Development of Leaves 811
CHAPTER 2.
Gexeral Physiology, or Life of the Whole Plant 812
Section 1.
FOOD OF PLANTS AND ITS SOURCES 813
12. The Organic or Volatile Constitueuts, and their Sources 814
13. The Inorganic Constituents or Ash, and their Sourees 816
Rotation of Crops 817
Section 2.
LIFE OF THE WHOLE PLANT, OK THE PLANT IN ACTION 818
14. Absorption 81s
15. Distribution of Fluid Matters through the Plant, and their Alteration in the Leaves 819
A. Ascent of the Sap 820
B. Changes of the Crude Sap in the Leaves 822
C. Deseent of the Sap $82:$
CHAPTER 3.
PHISIOLOGY OF THE ORGANS OF REPRODUCTION. 826
16. Funetions of Bracts and Floral Envelopes 826
Colour of Flowers 828
Development of the Floral Envelopes 828
17. Funetions of the Essential Organs of Reproduction $82!1$
Sexuality of Plants 829
18. Reproduetion of the Cryptogamia 8e! !
A. Reproduction of Thallophytes 829
19. Reproduction of Algæ 830
a. Conjugation 830
b. Impregnation of Naked Spores or (ierm Corpuseles by Ciliated Antherozoids 830
20. Reproduction of Characere 8.31
page
B. Reproduction of Cormophytes 831
1 Hepaticacere 832 832
21. Musci 832 832
22. Marsileaceæ or Rhizocarpce 832 832 833 833
23. Selaginellacer
24. Selaginellacer
25. Lycopodiaces
26. Lycopodiaces 834 834 834 834
27. Equisetaceæ
28. Equisetaceæ
29. Filices 834
30. Reproduction of the Phanerogamia 836
B. Reproduction of the Angiospermia
B. Reproduction of the Angiospermia 839 839
A. Reproduction of the Gymnospermia
A. Reproduction of the Gymnospermia 836 836
Hybridisation or Hybridation 844 844
846
846
31. Of the Fruit 847
Chemical Constitution of Fruits
849
849
Ripening of Fruits 850
32. Of the Seed
850
850
Vitality of Seeds 851 852
Preservation and Transportation of Seeds
Preservation and Transportation of Seeds
Germination
852
852
Length of Time required for Germination
Length of Time required for Germination
852
852
Conditions requisite for Germination
Conditions requisite for Germination
853
853
Process of Germination
854
854
Direction of Plumule and Radicle
Direction of Plumule and Radicle
8 อั 4
8 อั 4
and Monocotyledonous Seeds
and Monocotyledonous Seeds
854
854
33. Monocotyledonous Germination
34. Monocotyledonous Germination 855
35. Dicotyledonous Germination
CHAPTER 4.
SPECLAL PHENOMENA IN THE LIEE OF THE PLANT. 855
36. Development of Heat by Plants 855 858
37. Luminosity of Plants
38. Luminosity of Plants 858
39. Electricity of Plants .
40. Electricity of Plants . Effect of the Electric Light on the Growth of Plants and 858
Production of Chlorophyll 859
41. Movements of Plants 860
42. Movements depending on External Influences 860
a. Periodical 862
b. Not Pcriodical 863
Irritability.-Carnivorous Plants 2. Movements independent, at least to some extent, of 864
External Influenses 864
a. Periodical 865
b. Not Periodical 865
43. Odours of Plants
General and Glossarial Index to Mormioloaical, Stmecterall,and Physiological Botany867880

CORRECTIONS AND ADDITIONS.

Page 189 , line 24 from the top, before leaves, add geveral view of the:
., 282 , line 5 from the top, after marginal, add or sutural, 368 , line 6 from the bottom, before cone, crasc scale,
" 424 , line 6 from the top, aftcr series, add in the Monochlamy dex and Monocotyledones (see pages 648 and 692)
490, line 10 from the bottom, after eye, add and teeth, dec.
". 537, between ParFinsonia and Poinciana, insert-
Piscidia Erythrina, Jamaica Dogwood.-The bark of the root is employed in the West Indies to catch fish. It is said to be a powerful narcotic like opium, and especially useful in neuralgic affections.
, 608 , bottom line, for Algiccra. read Agiceras.
," 616, between Roupellia and Tabenmenontana, insert--
Strophanthus.-The seeds of one or more species of this genus from Equatorial and Western Africa, have been lately introduced into medical practice. Strophanthus exerts a much more powerful action upon the heart, and a less energetic action tupon the blood-vessels, than digitalis. It is also a good diuretic. The seeds of S. hispidus are also said by Fraser to be the active constituents of the Kombé arrow poison.
" (676, line 15 from the bottom, after which, add as hore defined. 752 , line 16 from the top, for $100, \operatorname{rad} 350$.

MANUAL OF BOTANY.

GENERAL INTRODUCTION.

The various bodies which are situated on the surface of the earth, or combined so as to form its substance, are naturally arranged, both by the common observer and scientific investigator, in three great divisions, called, respectively, the Animal, Vegetable, and Mineral Kingdoms; and as those comprised. in the two former are possessed of life, they form the Organic creation ; while those of the latter, not being endowed with life, constitute the Inorganic creation. It is our province in this work to treat of the lower members of the organic world, called Plants or Vegetables. The science which has this for its object is termed Botany, from the Greek word β otáu signifying an herb or grass.

Departuents of Botany.-Botany in its extended sense embraces everything that has reference to plants either in a living or fossil state. It investigates their nature ; their internal structure ; their outward forms; the laws by which they are enabled to grow and propagate themsclves; and their relations to one another, and to the other bodies by which they are surrounded. As a science, therefore, it is of vast extent, and one which requires for its successful prosecution the most careful and systematic study. It may be divided into the following departments :-1. Morphalogical Botany, or the Comparative Anatomy of Plants : this comprises everything which relates to the outward forms of plants and their various parts or organs. 2. Structural Botany: this treats of plants and their organs in reference to their internal structurc, including the description of elementary structure, or Vegetable Histology. 3. Physiological Butany : this comprises the study of plants, and their organs, in a state of life or action. 4. Systematic Botany : this considers plants in their relations to one another, and comprehends a knowledge of the principles upon which they arc described, and of their arrangement and classification. 5. (feographical Botany is that department which explains the laws
which regulate the distribution of plants over the surfaee of the earth at the present time. And 6, Palrontoloyical or Fossil Botany is that which describes the nature and distribution of the plants which are found in a fossil state in the different strata of which the earth is eomposed. The first four departments are those only that come within the scope of the present work; the two latter being of too special and extensive a nature to be treated of in this Manual. There are also several departments of what may be callcd Applied Botany, which are founded on a knowledge of the above departments, such as Descriptive Botany, Vegetable Materia Medica, Agricultural, Horticultural, and Economic Botany. To these special works are commonly devoted; but, so far as the Properties and Uses of Plants are concerned, they will be particularly referred to in this work under Systematic Botany.

Distinctions between Animals, Plants, and Minerals. Botany being the science which treats of plants, it would naturally be expected that we should commence our subject by defining a plant. No absolute definition of a plant can, however, be given in the present state of our knowledge of the organic world, neither is it probable that, as our knowledge increases, such will ever be the case; for hitherto the progress of inquiry has shown that there is no distinct line of demarcation between plants and animals, the one passing gradually and imperceptibly into the other. Indeed, until quite rccently, it was believed by many that there existed certain organisms which were plants at one period of their lives and animals at another. Thus De Bary, in the year 1859, described the germinating spores of Athalium as producing naked, motile, protoplasmic bodies, which eventually coalesced to form amreboid masses of protoplasm (plasmodium), which were destitutc of a cell-wall, were able to creep over the surface of the substance upon which they were growing, and to take into their interior and digest solid matters, after the fashion of a truc Amaba, of the animal nature of which there can be no doubt; and so while in this stage he regarded Wethalium as an animal. After a time, however, the plasmodium becomes quiescent, divides into an immense number of small portions, each of which elothes itself with a wall of cellulose, and becomes a spore ; and in this later stage he regarded Rethalium as a plant. But as the more recent rescarchcs of De Bary and others show that this amoeboid condition is of frequent recurrence in certain stages of many organisms, of the plant nature of whiel there ean be no possible question, Althalinm is now relegated to the Vegetable Kingdom alone. Nevertheless, even if the belief in the double nature (plant and animal) of certain organisms does not now cxist, naturalists are far from agreeing is to what in all cases shall be regarded as a plant or as an animal. Thus, while Stein looks upon such a eomplex structure as

Volvox as undoubtedly animal, other authors of equal repute acknowledge it as a plant.

There are, indecd, even some naturalists who believe that there is no line of demarcation between plants and mmerals, but that simple organisms can be, and are, formed out of inorganic matter ; but, notwithstanding the ability and ingenuity with which these views lave been supported, we hold such notions to be purely speculative, and continue to maintain that the possession of individual life and power of reproduction in the former, constitute at once, without further investigation, a broad and well-marked line of demarcation from the latter. Even when we compare plants with animals, so long as we confine our researches to the higher members of the two kingdoms, the distinctions are evident enough ; difficulties only occur when we look deeply into the subject and compare together those bodies which are placed lowest in the scale of creatiou, and stand as it were on the confines of the two kingdoms. It is then that we find the impossibility of laying down any certain characteristics by which all the nembers of the two kingdoms may be absolutely distinguished. We shall at present, therefore, confine our attention to those characters by which plants may as a general rule be distinguished from animals, but to which exccptions may be found when we compare particular individuals, leaving the more extended investigation of the subject to the future pages of this volume.

In the first place, we find that plants hold an intermediate position between minerals and animals, and derive their nourishment from the earth and the air or water by which they are surrounded, and that they alone have the power of converting this inorganic or mineral matter into organic. Animals, on the contrary, live on organic matter, and rcconvert it into inorganic. In other words, plants produce organic matter, and aniuials consume it.

Secondly, plants are generally fixed to the soil, or to the substance upon which they grow, and derive their food immediately by absorption through their external surface: while animals, being possessed of sensation and power of voluntary motion, can wander about in search of the food that has been prepared for them by plants and by other animals, and which they receive into an internal cavity or stomach. Plants are, thercforc, to be regarded as destitute of sensation and power of voluntary motion, and as being nourished from without; while animals are possessed of such attributes, and are nourished from within.

Thirdly, the action of plauts and animals on the atmospherc is different. Thus, during the process of what has been called assimilation, plants decompose thic carbon-dioxide of the air or watcr in which they arc growing, and, uniting the carbon, which is obtaince from this decomposition, with the clements of water, to form starch or some other carbohydrate, restore
the oxygen to the atmosphere or water. Animals, on the contrary, during the process of respiration take into their tissues free oxygen, and return, in its place, to the surrounding medium in which they live, carbon-dioxide, the result of the combination of the superfluous carbon in the animal system with the oxygen which has been inhaled. Plants, therefore, in assimilation absorb carbon-dioxidc and eliminate oxygen; while animals in respiration absorb oxygen and eliminate carbondioxide.

Fourthly, while all plants and animals are made up of cells, those of the latter do not develop upon their extcrior any substance materially differing from the more internal protoplasm ; but the whole substance of the cell is more or less homogeneous, and consists throughout of matter which is essentially composed of the four elements, Carbon, Oxygen, Hydrogen, and Nitrogen, together with some Sulphur and Phosphorus. The protoplasmic mass of the cells of plants, which is also essentially composed of the same constituents, on the other hand, sooner or later, as a general rule, becomes changed on its outer surface, where a membranous covering is developed termed the cell-uall, consposed of cellulose, and therefore consisting entirely of the three elements, Carbon, Oxygen, and Hydrogen. Plants, then, are made up of cells, the protoplasm of which is enclosed in a cellwall of cellulose, while animals are made up of cells which have no such cell-wall.

Fifthly, the presence of starch was also formerly considered as a diagnostic character of plants; but it is now known that this substance, or at least one isomeric with, and presenting the same general appearances as it, is also to be found in the tissues of animals.

In reference to the above distinctive characters, therefore, it should be especially noticed that they are only general, namely, those derived from comparing together, as a whole, the members of the Animal and Vegetable Kingdoms ; and that to all such characters some exceptions may be found when we comparc particular individuals. We arrive accordingly at the conclusion that it is impossible to give a completc and perfect definition of a plant, or, in other words, to lay down any single character by which plants can in all cases be distinguished from animals. In determining, then, whether an organism under investigation be a plant or an animal, the naturalist must first take into his consideration, not any one character alone, but the sum of all the characters which it may cxlibit.

Since there are many organisms which it is very difficult to assign with any certainty either to the Vegetable or Animal Kingdom, as some of their characters indicate that they belong to the one and some to the other kingdom, Hacckel propuses that aill these should be grouped together into a third kingdom to be called 'Protista.'

BOOK 1.

MORPHOLOGICAL AND STRUCTURAL BOTANY.

The most superficial examination by the unassisted eye of any of the more highly developed plants cnables us to distinguish rarious parts or organs, as root, stem, leaves, and the parts of the flower. A similar examination of plants of lower organisation presents to our notice either the same organs, or organs of an analogous nature to those of the higher plants. By a more minute examination of these several organs by the microscope, it will be found that they are all made up of others of a simpler kind, in the form of little membranous closed sacs, called cells, and elongated tubular bodies, of various forms, sizes, and appearances, which are combined in various ways. Hence, in describing a plant we have two sets of organs to allude to, namely, the compound organs or those which are visible to the naked eye, and the elementary structures of which they are composed. A knowledge of these elementary structures or building materials of plants is absolutely essential to a complete and satisfactory acquaintance with the compound organs; but, previously to describing them, it will materially assist our investigations if we give a general sketch of the compound organs and of the plants which are formed by their union. According to the number of these compound organs, and the greater or less complexity which they exhibit, so, in a corresponding degree, do plants vary in such particulars. Hence we find plants exhibiting a great variety of forms ; that part of Botany which has for its object the study of those forms and their component organs is called Morphology; while that part which rclates to their internal structure, including the description of elementary structurc or Vegetable Histology, is commonly termed Structural Botany. These two parts together constitute what has been termed Organography. These parts are most conveniently studied together; we shall therefore, after describing the general morphology of the plant, and the elementary structures which are common to all parts of plants, proceed to consider separately the different organs which are made up of these elementary structures both with refcrence to their outward forms and internal stucture.

CHAPTER 1.

GENERAL MORPHOLOGY OF THE PLANT.

The simplest plants, such as the Red Snow (Protococcus), or Glococapsa, consist of a single membranous sac, or cell as it is termed, which in form is nore or less spherical or oval. In Protococcus ($f i g .1$) the cells separate almost as soon as formed, while in Gloocapsa they remain bound together by an environing capsule of gelatinous matter, formed from the cell-wall, for a

Fig. 1.
Fig. 2.

Fig. 1. Several Red Snow plants (Protococcus (Palmella) nivalis), magnified. Fig. 2. Two plants of Oscillatoria spiralis.
longer or shorter period. As, however, this matter absorbs more water, it is gradually dissolved away and the cells are set free. In plants immediately above these in point of complexity we find the cells still all alike, but instead of being separated and each forming a distinct plant, they are joined end to end and form a many-celled filament which is either straight or variously curved, as in Oscillatorica (fig. 2). All these plants-so far at least as is known-multiply by division of their cells ouly ; but a little higher in the scale we meet with plants in which certain of their cells perform the function of nutrition, whilc others are set apart for the purpose of reproduction. Thus, in the Moulds, sucli as Mucor (fig. 3), or Penicillium (fig. 4), the cells which serve as organs of nutrition are elongated simple or branched filaments, termed hyphiz (sce page 49), which lie upon the surface of the substance furnishing the plants with food; while those destined to reproduce the individual are developed in globular cavities (sporangiu), as in Mucor (fig. 3); or arc arranged in necklacc-like branches at the end of special filaments, as in Penicillium (fig. 4).

Yct a littlc higher in the scale of vegetable life we find the cells so combined as to form leaf-like expansions (fig. 5), or solid axes (f iy. 6), as well as spccial urgans of reproduction (fig. $5, t, t$).

But these cells are all more or less alike, so that no true distinction can be drawn between the often very different looking parts we meet with in such plants as a seiz-weed or a mushroom. Such a combination of similar cells, whatever the precise form may be, which presents no differentiation of leaf, stem, and root, is called a thallus or thallome, and every thallus-producing plant is therefore termed a Thallophyte or Thallogen. Under the head of Thallophytes we comprise all those simpler forms of plants which are commonly known as Algæ, Lichens, and Fungi.

Fig. 3.
Fig. 4.

Fig. 3. A speeies of Mou'd (Mucor'), with branelied mycelinm (hyphal tissue or hypha) below, from which two stalks are seen to arise, eaeh of which is terminated by a sae (sporangium or ascus), from whieh a number of minute bodics (spores) are escaping.-Fig. 4. Another Monld (Penicillium glaucum), with branched myeclium (hyphal tissue), and a stalk bearing several rows of cells, which are the germiuating spores (conidia).

Fig. 5.

Fig. 5. Thallus or thallome of the common Bladrler Scit-weed (f'ucus vesiculosus). t, t. The frnctification. v, v. Bladders of air.

Fig. 6.

Fig. 6. The common Mushroom (Agaricus compestris). There are thirec receptacles (fructificution), arising from the mycclium, $m y$, below : one young and ncarly globular, and two mature, a. Pileus. b. Lamella. c. Anmulns.

Again, as all Thallophytes are composed of cells which
approach more or less clusely to the spherical or oval form, or if elungated are thin-walled and commonly flexible, they are also

Fig. 8.

Fig. 9.
Fig. 10.

Fig.7. A portion of the flat thallus-like stem of Jarchanfin polymorpha, slowing an antheridial receptacle, r, stipported on a stalk. s.-Tiu, 8 . Jungernamia bidentutr. The stem is creeping, and bears numerons small imbricaterl leaves.-Fig. 9. Female plant of the Hnir-moss (Polyrichum commune), with its leaves. stem, aml fructification.- F'ig. 10. The male plant of the same, with its stem and leaves, nuld terminated by the male orgims (antheridia).
termed Cellular Plants, in contradistinction to those abore them in order of development, which are called Tascular Plants, on account of their commonly possessing, in addition to these
cells which are termed parenchymatous, elongated thick-walled cells, called prosenchymatous or wood-cells (see page 39) ; and also, in most cases, except in the intermediate orders of Liverworts and Mosses, variously formed tubular organs which are known under the name of ressels.

From the Thallophytes, by various intermediate stages, through an order of plants called Liverworts, we arrive at another order-the Mosses. In the lower forms of the Liverworts, e.g. Marchantict (fig. 7), we have a green flat thallus-like stem bearing upon its undersurface scale-like appendages, the first representatives of true leaves. In the higher forms, as Jungermannia (fg. 8), the stems and leaves are both more highly developed. In the Mosses, e.g. Polytrichum (figs. 9 and 10), the stems often contain elongated cells, which are to a certain extent thickened, and differ little from the true wood-cells met with in the more highly developed plants ; this tissue, too, is often prolonged into the leaf, when it forms a midrib. Correlated with this greater development of the organs of nutrition we find the reproductive apparatus similarly advanced in complexity of structure. The female element, or oosphere, consists of a mass of protoplasm, called the germ or embryouic cell, situated in the interior of a flask-shaped cellular organ, the archegonium, and this is fertilised by small spirally-wound filaments or antherozoids, which are developed in cells, termed sperm-cells (fig. 11, c), formed inside a cellular sac-like structure called the antheridium (fig. 11, a). The result of this fertilisation is what is commonly termed the fructification (fig. 9), which will be hereafter described.

The Liverworts and Mosses are, however, destitute of true roots and ressels, such as exist in the next and Fig. 11.

Fig. 12. Fig. 13.

Fig. 11. Antheridium, r, of the Hair-moss (Polytrichum), containing a number of cells, c, in cach of which there is a single "ntherozoid. p. Petrophosses, surrounting the antheridium.-Fig. 12. The common Clinb-moss (Lycopodium claratum).Fig. 13. Fructification of the Great Water Horsetail (Equisetum muximum), forming a cone-like mass at the end of the stem. all the ligher groups of plants.

Still ascending, we find in the Club-mosses (fig. 12), Selaginellas, Pepperworts, Horsetails (fig. 13), and Ferns (fig. 14),
a continued advancement in complexity of structure, vesscls of different kinds make their appearance for the first time, and the stems are frequently of considerable size and height. Cala-

Fig. 14. The Mnle Fern (Aspidium Filiz-mats).——Fig. 15. A Tree-fern, showing a tuft of leaves (fronds) at the apex of a cylindrical stem, which is enlarged at its base, w, by the development of a mass of nerial adventitious roots.
mites, an order of plants nearly allied to the Horsetails, and which were extremely abundant during the formation of our coal measures, would appear to have reached the height of our loftiest
trees; while at the present day in the tropics and warmer parts of the earth Ferns will frequently attain the height of twenty feet (fig. 15), and sometimes even as much as forty feet, bearing on their summit a large tuft of leaves, or, as they are commonly called, fronds, a terin applied to leaves which, like those of Ferns, bear their fructification or organs of reproduction. In these plants true roots first also appear, but they are generally broken up into numerous small fibres and never become en-. larged as in the tap-roots (fig. 20, r), of the higher flowering plants.

Cryptogamous Plants or Cryptogams. -In all the plants above mentioned we have no evident flowers as in the higher plants, hence they are called Flowerless; but their organs of reproduction are very small and inconspicuous, and therefore they are also termed Cryptogamous, that is to say, plants with concealed or invisible reproductive organs. These Cryptogamous plants, or Cryptogams as they are commonly termed, are again divided into two groups, called Cormophytes and Thallophytes; the latter comprising the simpler. forms of plants, which, as previously noticed, are commonly known as Algæ, Fungi, and Lichens, and which present no distinction of root, stem, and leaf (figs. 5 and 6) ; and the former group those plants, such as the Liverworts (figs. 7 and 8), Mosses (figs. 9 and 10), Club-mosses (fig. 12), Selaginellas, Pepperworts, Horsetails (fig. 13), and Ferns (figs. 14 and 15), which present us with an evidentstem, bearing leaves, and also, except in the Liverworts and Mosses, true roots and vessels of different kinds.

Phanerogamous Plants or Phanerogams.-All plants above the Cryptogams, from possessing evident flowers or reproductive organs, are termed Phaneroyamous, Phanerogams, or Flowering. These latter plants are also reproduced by true seeds instead of spores, as is the case in all Cryptogams which possess reproductive organs; a seed being essentially distinguished from a spore, from containing within itself in a rudimentary condition all the essential parts of the future plant in the form of an embryo (fig. 16); while a spore mcrely consists of a single cell, or of two or more united, and never exhibits any distinction of parts until it begins to develop in the ordinary process of vegetation, and then only in certain cases.

These Phanerogams also present two well-marked divisions, called respectively the Augiospermia and Gymnospermia: the former including those plants in which the ovulcs are enclosed in a case called an ovary ($\mathrm{fig} .33,0,0$) ; and the latter, such plants as the Fir and Larch, in which the ovules arc naked ($\mathrm{fig} .17, o v$) or not enclosed in an ovary. In the Phanerogams we have the highest and most perfect condition of vegetation, and it is to these that our attention will be more cspecially directed in the following pages. But before proceeding to describe in detail the elcmentiry structures of these and other
plants and the diffcrent parts or organs which they form by their combination, it will be necessary for us to give a general sketch of the nature and characters of these compound organs, and to explain the neaning of the various technical terms whieh are employed for their description.

We have already stated that a seed eontains an cmbryo, in which the essential parts or organs of the future plant are present in a rudimentary state. The embryo of the common Pea may be taken for the purpose of illustration (fig. 16). Here we find a distinct eentral axis, t, which is sometimes termed the tigellum or tigelle, the lower part of which is called the radicle, $i \cdot$; and its upper extremity, which is terminated by two or more rudimentary leaves, is termed the plumule or gemmule, n. This axis is united to two fleshy lobes, c, c, whose office is of a temporary nature, and to which the name of cotyledons has been given. But some seeds only contain one eotyledon in

Fig. 16. Dicotyledonous embryo of the Pca, laid open (magnified). r. The radicle. t. The axis (tigellum), terminated by the plumule, $n . c, c$. The cotylerlons.-Fig. 17. Bract or carpellary leaf, sc, of a species of Pimes, bcaring two naked ovules, ov, at its base. mic. The micropyle or foramen.
their embryo, (fig. 19, c), instead of two as just described in the Pea ($\hat{\pi} g .16, c, c$) ; and hence we divide the Phanerogams, or those plants which are reproduced by seeds, into two great classes, called, respectively, Dicotyledones (two cotyledons), and Monocotyledones (one cotyledon). The two great clivisions of plants are, therefore, the Cryptogamia and the Phanerogamia; the former being again subdivided into the Thallophyta and Cormophyta ; and the latter into Angiospermia and Gymmospermia, if reference be made to the position of their orules, or into Monocotyledones and Dicotyledones, if we regard the number of cotyledons.

When a seed is placed under favourable circumstances (which will be treated of hereafter in speaking of the proeess of germination), its embryo begins at once to develop (figs. 18 and 19); the lower part of its axis, t, or radicle, or one or more brunches from it, growing in a downward direction,
while the upper par't elongates upwards, carrying the plumule with it, and at the same time the cotyledonary portion becomes developed and forms the first leafy organs. This development of the embryo is termed germination; the office of the cotyledonary portion is, however, only of a temporary nature, being simply designed to afford nutriment to the rudimentary parts of the future plant in the early stages of their growth; but by the development of the central axis in two opposite directions we have formed a lower portion which is called the descending axis or root ($f(y .18, r$), and an upper part termed the ascending axis or stem. Upon this ascending axis or its

Fig. 18.

Fig. 19.

Fig. 18. Germination of the Harleotor French Bean, a Dicotyledonous plant, r. The roots, springing from the lower end of the axis, t (figellum). c, c. The cotyledons. d, d. The leaves.-Fig.L 9. Germination of Maize, a Monocotyledonous plant. t. The axis, giving off roots from its lower extremity. c. The cotyledon. g. The leares and joung stalk.
divisions all the future organs of the plant are arranged ; thosc which immediately succeed the cotyledons, c, c, constitute the first true leaves of the plant, d, d; and all which succeed the leaves in the order of devclopment, such as the flower and its parts, are merely modifications designed for special purposes of those organs which have preceded them. Hence these three organs, namely, root, stem, and leaves, which originally exist in the cmbryo in a rudimentary state, or are developed as soon as germination commences, form the fundumental organs of the plant. They are commonly called organs of nutrition, because they have for their object the nutrition and growth of the plant to which they belong; while the Hower and its parts,
having assigned to them the office of reproducing the plant by the formation of seeds, are termed organs of reproduction.

In like manner, a spore in the course of its growth either simply develops parts which, as we have seen, perform equally both nutritive and reproductive functions ; or a certain special apparatus is designed for the latter purpose, as is the case in by far the larger number of Cryptogams. We have here, therefore, as in Phanerogams, two manifestly distinct series of organs, one adapted for nutrition, and another for reproduction. Hence in treating of the different organs of plants, both in reference to their structure and functions, we arrange them in two divisions, namely : 1. Organs of Nutrition; and 2. Organs of Tieproduction. But before proceeding to describe these in detail, it is necessary that we should briefly define them, and explain the terms used in describing their principal modifications.

1. Organs of Nutritron. a. The Root.-The root (fig. 20, r) is that part of a plant which at its first development in the

Fig. 20.

Fig. 20. Lower part of the stem and root of the common Stock. ri. The root with its brinches. t. The stem. f, f. Leaves. b, b. Leaf-buds. embryo takes a downward direction, and is hence called the descending axis, avoiding the light and air, and fixing the plant to the earth or to the substance upon which it grows ; or it is suspended in the water when the plant is placed upon the surface of, or in, that medium. The divisions of a root, which are given off irregularly and without any symmetrical arrangement, are termed branches ($f g .20, r$).
b. The Stem or Caulome.-The stem (fig. 20, t) is that organ which at its first development passes upwards, and is hence termed the ascending axis, seeking the light and air, and bearing on its surface leaves, f, f, and other leafy appendages. The leaves are always developed at regular points upon the surface of the stem, which are called nodes, and in the axil of every leaf (that is, in the angle produced by the junction of the base of the upper surface of the leaf with the stem) we find, under ordinary circumstances, a little conical body called a leaf-lned (figs. 20, b, b, and 22, b). From these leaf-buds the branclies are subsequently produced, and hence, in the stem, these are symmetrically irranged, and not irregularly, as in the root, where there is no such special provision for their formation. It is in the presence of leaves and leaf-buds that we find the essential characteristics of a stem, as botlo these organs are absent in the root.
c. The Leaf or Phyllome. - The leaf is commonly a more or less flattened expansion of the stem or branch (figs. 21 and 22). As already stated, the point from which it ariscs is called a node; and the space between two nodes is therefore termed an internode. In its highest state of development the leaf consists of three parts; namely, of an cxpanded portion, which is usually more or less flattened (f igs. 21, l, and $22, l$), called the lamina or blade; of a narrower portion, by which the lamina is comnected with the stem, termed the petiole or leaf-stalk (figs. $21, p$, and $22, p$) ; and of a third portion at its base, which either exists in the form of a sheath (fig. 21, d) encircling the stem, or as two little leaf-like appendages on each side, which are called stipules (fig. 22, s,s). These three portions are by no

$$
\text { Fig. } 21 .
$$

Fig. 22.

Fig. 21. Leaf and piece of stem of Polygonum Hydroniper. l. Lamina or blade. p. Petiole. d. Sheath or stipular portion. - Fig. 22. Leaf ant portion of a branch of Sulix aurifa. r. Branch. b. Leaf-bud. l. Lamina with the upper portion removed, and attached by a petiole, p, to the stem. s, s. Caulinary stipules.
means always present, for it frequently happens that one or two of them are ahsent; and in such cases, when the petiole is absent, the leaf is said to be sessile, and if the stipulate portion is wanting the leaf is described as exstipulate. When a leaf becomes thick and fleshy, instead of presenting its ordinary flattened arpearance, it is termed succulent.
2. Organs of Reproduction.-As already noticed, the parts of a flower are only leaves in a modified condition adapted ${ }^{\circ}$ for special purposes; and hence a flower-bud is analogous to a leaf-bucl, and the flower itself to a branch the internodes of which arc but sTightly developed, so that all its parts are situated in nearly the same plane.
a. The Flower-stalk or Perlunele. -The stalk which bears a solitary flower, as in the Tulip, or several sessile flowers (fig. 23, $f l$-that is, flowers without individual stalks-is called the flower
stalk or peduncle (fiy. $23, p$) ; or if the stalk branches and each branch bears a flower, the main axis is still called a peduncle, and the stalk of each Hower a perdicel (fig. 24, ped, ped) ; or if the axis be still further subdivided, the general name of peduncle is applied

Fiq. 23. Inflorescence of a species of Broom-rnpe (O robanche). p. Teduncle. b, b. Bracts. f. Flower. The flowers are sessile on the pedunele, and form that kind of inflorescence which is termed Ω spikc.-Fig. 24. Intloresconee of Rampion (Campamula Ropunculus). p. Pedunclic. ped, ped. Pedicels. b, b. Bracts. - Fig. 25. Flower of thic common Walifiower (Cheirenthus Cheiri). c. Calyx, composed of parts called scpals. p, p. Petals of which there are four arranged in a cruciform maner, the whole forming the corolla. e. Summit of the stamens, which cnclose the pistil.
to the whole, with the exception of the stalks immediately supporting the flowers, which are in all cases called pedicels. The leaves which are placed upon the flower-stalk, and from the axils of which the flower-buds arise, are termed bracts (figs. 23 and 24 ,
$b, b)$. In some cases these bracts are of a green colour, and in other respects resemble the ordinary foliage leaves, but usually they are distinguished from the leaves of a branch by differences of colour, outline, and other peculiarities. The flowers are variously arranged upon the peduncle, and to each mode of arrangement a special name is applied; the term inflorescence being used in a general sense to include all such modifications.
b. The Flower. - A flower in its most complete state of development (fig. 25) consists of four clistinct serjes of organs, that is, of two internal or essential oryans of reproduction (fig. 26), enclosed in two particular envelopes, which are especially designed for their protection, termed floral envelopes ($f i g .25$). The essential organs are called the Androecium (fig. 26, ec, ec), and Gyncecium (figs. 26, sti, and 32,o, sti) ; and the floral envelopes are termed Calyx (fig. 25, c), and Corolla, p, p. The extremity of the peduncle or pedicel upon which the parts of the flower are placed, is called the Thalcumus or Receptacle (figs. $26, r$, and $31, r$) ; but the latter term is more properly applied in a special sense, as will be explained hereafter when treating of the Peduncle in detail. The four series of organs thus forming the flower are arranged as four circles, or whorls as they are commonly termed, in the following order, from without inwards:-1. Calyx, 2. Corolla, 3. Androecium, 4. Gynœeium.

The Calyx (fig. 25, c) is the whorl or circle of leaf-like organs forming the outer envelope of the flower. Its parts are called sepals, and these are generally green, and of a less delicate texture than those constituting the corolla. In texture, appearance, and other characters they bear commonly a great resemblance to the true or foliage leaves.

The Corolla (fig. 25, p, p), is the whorl or whorls of flattened organs situated within the calyx, and forming the inner envelope of the flower. Its parts, which are called petals, are frequently decorated with the richest colours ; by which character, and by their more clelicate nature, they may be usually known from those of the calyx.

The calyx and corolla are sometimes spoken of collectively under the name of Perianth. This term is more particularly applied to the flowers of Monocotylcdons wherc the floral envelopes generally resemble each other, and are usually of other colours than green, i.e. petaloid in their nature (fig .28). The Tulip, the Iris, and the Crocus may be taken as familiar examples.

The floral envelopes are also called the non-essential organs of the flower, because their presence is not absolutely nccessary for the production of the seed. Sometimes there is only one floral envelope, as in the Goosefoot (fig. 29); this is then properly considercd as the calyx, whatever be its colour or other peculiarity, and the flower is described as apetalous, or it is tcchnically said to be Monochlamydeous. Some botanists, however, usc the term perianth in this casc, as will be described
hereafter in treating of the Calyx in detail. At other times, as in the Ash ($f i g .30$), and Willow (figs. 34 and 35), both the floral envelopes are absent, when the flower is termed auked or

Fig. 20.

Fig. $2 \overline{7}$.

Fig. 28.

Fig.26. Flower of the Wallfower with the calyx and corolla removed, in order to show the essential organs of reprodnction. r. Thalamus. gl. Glands. $e c, e c$. Stamens, of which there are six, four long and two short, the whole forming the androcinm. sti. Stigma, the summit of the gynoeciam or pistil-Fig. 27. One of the stamens of the Wallflower. f. Filament. a. Anther. p. Pollen, which is being discharged through a slit in the anther. -Fiy. 28. Flower of a species of Squill (Seillu italica). The parts composing the floral envelopes here closely resemble one another, and form collectively the perianth.
Achlamydeous. When both floral envelopes are present the flower is said to be Dichlamydeous.

The Andrccium constitutes the whorl or whorls of organs
Fig. 30.
Fig. 29.

Fig. 29. Flower of Gooscfont (Chenopodium), with only one fioral envelope (monochlemydrous).-Fig. 30. Flower of the common Ash (Fraxinus), in which both floral envelopes are absent (achlumydeous).
situated on the inside of the eorolla (fig. 26, ec, cc). Its parts are enlled stamens. Each stamen consists essentially of a ease or bag, called the anther (fiy. 27, "), whieh contains in its inte-
rior a powdery, or more rarely waxy, substance, called the pollen, p. This pollen, the nature of which can only be seen when highly magnitied, is found to be formed of innumerable minute grains, or more properly cells, the pollen grains or pollen cells, each of which encloses a granular fluid protoplasm, the fovilla, which constitutes the male fertilising element. The pollen when ripe is discharged, as represented in the figure, through little slits or holes formed in the anther. The anther with its contained pollen is the only essential part of a stamen ; but it generally possesses in addition a little stalk, called the filament, f, which then supports the anther on its summit. When the filament is absent, the anther is said to be sessile. The staminal whorl is termed the Androecium, from its constituting the male system of Flowering Plants.

Fig. 31. Gynœcium of Colnmbine (Aquilegit vulgaris). p. Peduncle. r Thalamns. c. Carpels, each with an opary, o; style, sty; and stigma, stig. -Fig. 32. Gynceinm of Poppy (Papaver), with one stamen arising from below it. 0. United ovaries. sti. Stigmas, Fig. 33. Vertical scetion of the gynœcium of the Pansy (Viold (ricolor). c. Remains of the calys. d. Ovary. p. Placenta. 0,0 . Orules. s. Stigma on the summit of a short style.

The Gyncecium (or Pistil as it is also called) is the only remaining organ; it occupies the centre of the flower ($f i y .26$, sti), all the other organs being arranged around it when these are present. It is termed the gynoccium from its constituting the female system of Flowering Plants, and consists of one or more parts, called carpels, which are either distinct from each other (apocarpors), as in the Columbine (fig. 31, c), or combined into one body (syncurpous), as in the Poppy (fiy. 32). Each carpel consists of a hollow inferior part, called the ovary (fiys. 31,0 , and $33,(l)$, in which are placed one or more little bodies called ovules (fig. 33, o, o), attached to a part cailed the placentu, p, and which ultimately by fertilisation from the pollen bccome the seeds; and of a stigma, or space of variable size, which is either placed directly on the top of the ovary, as in the Poppy
($f(y .32$, sti), or it is situated on a stalk-like portion prolonged from the ovary, ealled the style ($f i g .31$, sty). The only essential parts of the earpel are the ovary and stigma; the style being 110 more neeessary to it than the filament is to the stamen.

The androeeium and gynoeeium are ealled essential organs beeause the aetion of both is necessary for the production of the seed. It frequently happens, however, that either the gynceeium or androeium is absent from a flower, as in the Willow (figs. 34 and 35), in which case the flower is termed unisexual; and it is then still further eharaeterised as staminate or male (fig. 34), or pistillate, carpellary, or female (fig. 35), aecording as it possesses one or the other of these organs.

Fig. 35.

Fig. 34. Staminate flowers of a species of Willow (Sitlir). - Rig. 35. Pistillate or carpellary flowers of the same.
e. The Fruit and Seed.-At a eertain period the anther opens (fig. 27, a), and discharges the pollen, p, which is then earried to the stigma by insects, or borne by the wind ; this is called pollination, and is the first step in the proeess whieh subsequently takes place, which is properly termed fertilisation, and whieh eonsists in the eommingling of the fovilla or male fertilising elcment of the pollen with the femalc clement of the ovule-the oosphere. After fertilisation has been effceted, important ehanges take plaee in the pistil and surrounding organs of the flower, the result being the formation of the fruit, which consists essentially of the mature ovary or ovarics, containing the impregnated or fertilised ovule or ovules, then terned seeds. But in some eases, besides the mature ovary or oraries, other parts of the flower, and even the pedunele, as will be explained hereafter when deseribing the fruit in detail, also beeome a part of the fruit. The fruit, when perfeetly formed, whaterer be its composition, eonsists of two parts: namely, the shell or
pericarp, and the seed or seeds eontained within it. At varying periods, but commonly when the fruit is ripe, the periearp opens so as to allow the seeds to eseape; or it remains elosed, and the seeds can only beeome free by its decay. In the former ease the fruit is said to be dehiscent ; in the latter, indehiscent:

The seed, as already noticed, is the fertilised ovule. It consists essentially of two parts; namely, of a nucleus or kernel (fig. 36, emb, alb), and integuments, int. There are usually two seed-coats or integuments, the external of which is commonly designated as the testa or episperm, and the inner as the tegmen or endopleura. The nueleus or kernel may either consist wholly of the embryo, whieh is alone essential to it (fig. 16), or of the embryo (fig. 36, emb), enclosed in nourishing matter, ealled the endospern or albumen, alb.

The parts of the embryo having been Fig. 36.

Fig. 36. Vertical section of the seed of a species of Poppy (Papaver). int. Integuments. emb. Embryo. alb. Albumen or endosperm. The parts within the integaments form what is commonly termed the nucleus of the seed. already described, we have now finished our general sketch of plants in different degrees of organisation, together with the compound organs whieh they respectively present, and are, therefore, now able to proeeed with the deseription in detail of the elementary structures of which they are composed.

CHAPTER 2.

ELEMENTARY STRUCTURE OF PLANTS, OR VEGETABLE HISTOLOGY.

Section 1. Of the Cell as an Individual.

The deseription of the elementary strueture of plants is termed Vegetable Histology.

All the lower kinds of plants, as we have seen (pp, 6-9), are made up of one or more membranous elosed saes ealled cells; and all other plants, however complieated in their appearance and structure, are also made up of these simple bodies, variously modified in form, size, and texture, and in their modes of combination, aecording to the different surrounding conditions in which they are plaeed, and the functions whieh they have to perform (see page 37). The eell is therefore the only elementary organ possessed by a plant, and henee neeessarily demands our first and particular attention. We shall begin,
then, by first describing the nature of the eell and its contents; and then pass on to a more detailed examination of its various forms, sizes, and strueture.
I. Nature of the Cell and its Contents.-In the vely earliest stage of a plant's existence-in, for example. the germinal vesicle (oosphere) of the higher plants-the cell consists only of a naked mass of a semifluid substance to which the name of protoplasm has been given. In a few cases the cell remains in this condition, and is then termed a primordial cell. But as a general rule this protoplasm very shortly surrounds itself on the outside with a thin transparent skin of cellulose-the cell walland in this condition three distinct parts can be observed in the cell ($f g .37$) : (1) the cell wall, $a ;(2)$ the internal protoplasm above mentioned, b; and (3) the nucleus, c, which is a rounded, denser portion lying in the midst of the protoplasm. At first the protoplasm completely fills the cavity, but as the cell grows larger, cavities (vacuoles) containing a clear watery fluid (which in the very young cells is generally diffused), called the cell-sap (figs. 38 and $39, s^{\prime}, s^{\prime}$), make their appearance in it, and the nucleus, k^{\prime}, is then suspended in the cell and connected to the protoplasm lining its inner wall by slender threads or bands of the same substance ($f \mathrm{fg} .39, p^{\prime}, p^{\prime}$). (De Vries has stated recently that these vacuoles are enclused by a distinct membrane, and he regards this vacuole membrane as a special organ to which he has given the name of tonoblast, and which has for its function the production of turgidity in the cell.) As the cell continues to enlarge, these vacuoles coalesce and form a single central sapcavity ($f g .39, s, s$), and the protoplasm is then confined to a thin layer lining the interior of the cell-wall-the primordial utricle, p, with the nucleus, k, k, showing as a denser mass in an enlargement of the protoplasm on one side. In this perfect cell, as it may be termed, we distinguish, (1) the cell-wall, (2) the protoplasm, (3) the nucleus, (4) the cell-sap. These structures may be well seen in Vallisneria.

Such is the nature of cells so long as they retain their active vital state, but after a time the protoplasm with its contained nucleus disappears, leaving the cell filled with air alone or water. Thuse cells only whieh contain protoplasm can grow, form chemieal combinations, and produce new cells; while all others, as the cells of the wood and bark, are of use only in virtue of their physical properties, as, for example, giving firmness, and acting as protecting envelopes to the living cells beneath, and in other ways. We must now describe the parts of the cell in the order as plaeed above. 1. The Celt-wall (figs. 37 , a, and 39,7). We have just
seen that the origimal cell, from the after divisions of whel future structure is built up, eonsists of protoplasm alone the in other words, it has no eell-wall. Yery shortly, however, this eondition of things disappears; for the protoplasm, laving
elaborated molecules of cellulose ($\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$), passes them to its outer surface, where they form a thin, colourless, transparent, continuous membrane. This membrane increases in thickness by the intussusception of new molecules between the older ones, and eventually there are generally developed upon it various markings, which may either be protuberances as in the case of some pollen-cells (fig. 73), and frequently of the cells forming the hairs on the surface of plants; or internal depressious, as may be seen in spiral, annular, reticulated, scalariform, and pitted cells (see pp. 42-46). Those cells which are isolated, or on the surface of the plant, have the various markings on their outer or free surface, while those that are united to form tissues have them on

Fig. 37.

Fig. 38.

Fig. 39.

Fig. 37. A cell from the root of the Lizard Orchis (Orchis hircina). a. The cell-wall. $\quad b$. The protoplasm contracted by alcohol. c. The uucleus with a nucleolys. After Thomé.- F'ig. 38. Ccll with nucleus and nucleolus and vacuoles. Fig. 39. Colls from the rout of Fritillavia imperiuls. h. Ccllwall. h^{\prime}. Nucleus. k, k. Nucleus with nucleoli. p. Primordial utricle. y^{\prime}, p^{\prime}. Protoplasmic thrcads. s, s. Cell-sap cavity. s^{\prime}, s^{\prime}. Vacuoles. After Sachs.
the internal surface of their cell-wall. The former is termed centrifugal thickening; the latter centripetal thickening.

This cellulose is insoluble both in cold and in boiling water, also in alcohol, ether, and dilute acids; but entirely soluble in an ammoniacal solution of oxide of copper. By the action of strong sulphuric acid at ordinary temperatures, the cellulose is disintegrated and converted into dextrin, and then, if water be added and the mixture boiled, the dextrin is converted into
glucose. When cellulose is steeped in dilute sulphuric acid, and then treated with a solution of iodine, or if it is acted upon by Schulze's solution of iodine in zinc chloride, it acquires a more or less blue colour. The cell-wall contains in addition to the molecules of cellulose a small quantity of mineral ash.

It rarely happens that cellulose can be found pure, as, in addition to the mineral ash above mentioned, it generally is rendered more or less impure by the protoplasm which remains after the death of the cell. That which is furnished by the cells of hairs, such as Cotton, is generally the most free from extraneous matters. The cell-wall is frequently hardened by the conversion of its cellulose into a substance called lignin. This lignification takes place where hardness or strength is requircd, as in the tissue forming the shell of nuts, or in the elongated cells of the die wood of trees. The outer walls of cells also, which lie on the auriet surface of plants, and are consequently exposed to more active chemical influences, usually become cuticularised (see page 59), as in the epidermis of leaves and in the cork cells of the bark; the cell-wall in such cases becomes thickened and impervious to moisture, and it is owing to this circumstance that delicate plants are enabled to withstand the scorching and withering heat of the hot sun; it is also this cuticularisation of the cork cells of the bark which protects the internal living parts of trees from the damaging influence of frost in winter:

Besides the above-mentioned changes which take place in the cell-wall, others occur which are the result of degradation. The mucilage of plants, as that of the Mallow, or the slimy substance given off by Seaweeds, or the gelatinous matrix of such organisms as Nostoc and Glococapsa, arc examples of this; gums and resins are also the products of the degradation of the cellwalls of special cells of the wood of the trees in which they occur.
2. The Prforlasm is the only part of the cell, and therefore of the whole plant, which is possessed of life ; and the differences in the form, size, and nature of cells is due to the vital energy which it is capable of exerting. If this energy is exerted equally in all directions, and there arc no other counterbalancing forces, such as pressure from neighbouring cells, the form which the cell will assume will be one approaching to a sphere (fig. 62). If, on the other hand, this energy is exerted in one direction only, the cell will assume an elongated form (fig. 70). If again in two directions, flattened or tabular cells will be the result (fiq. 68) (sec Forms of Cclls). This internal energy, which is peculiar to living protoplasm, is frequently spoken of as vital force.

The appearance of protoplasm is as varicd as is the form of the cells which it produces. It may be granular and somewhat opaque, or perfectly transparent ; it may be almost fluid, or of the consistency of dough ; or again it may be stiff or even brittle ; generally, however, it is of a light grey colour and more or less granular ; but it is never a true fluid. In those cases where
the protoplasm is granular it consists of an outer thin denser layer or film called the ectoplasm, which is transparent and free from granules; and of an inner portion known as the endoplasm, in which there are numerous minute particles or granules (microsomuta) and fibrille so arranged as to form a kind of network. According to Sachs, that matter only ought to be regarded as protoplasm which is perfectly transparent, and the granules where they occur are to be looked upon as 'probably finely divided, assimilated food-material.'

Fig. 40.

Fig. 41.

Fig. 40. Three cells of one of the hairs of the common Potato plant (Solamum (uberosum), showing the cirenlation of the contents of each cell in reticulated currents. In the central cell the direction of the currents is in part indicated by arrows. After Schleiden.-Fig. 41. Cells of the leal of Vullisuerit spiralis, showing rotation of the protoplasm. A, A. Cells in which some chlorophyll corpuscles are passing up one side of cach cell, neross, and down on the other side. The direction of the currents is indicated by the arrows. n, n, n, n. Nuelei. c, c. Chlorophyll corpuscles. After J. W. Groves.

The Movements of Protoplasm.-Doubtless during the whole time that the cells arc growing the protoplasm is in a constant state of motion, although in many cascs too slow to be observed; but in some cells, such as those forming the hairs of ccrtain plants-e.g. in those of the Potato (fig. 40), and those on the filaments of Trarlescantia; or again in the cells forming the leaves of inany water-plants, e.g. Vallisneric (fig. 41), Nitellu, dic.-this motion is readily observable. It would seem as though
these movements existed for the purpose of bringing every part of the living matter into constant communication with the nutriment-bearing sae.

In most cases the presenee of protoplasm may be rcadily deteeted by the use of reagents. Aleohol and weak aeids eause it to shrink from the eell-wall (figs. 37 and 42) ; a solution of iodine eolours it brown, while sugar and sulphuric aeid make it assume a pink colour. Protoplasm is extremely rich in albuminoids, which ehemically eon-

Fig. 42.

Fig. 42. Cell of the leaf of Jungermannia Taylori, showing the protoplasm coutracted by alcohol. After Mohl. sist ehiefly of earbon, hydrogen, oxygen, nitrogen, sulphur, and phosphorus, the most distinetive element being that of nitrogen. The gluten of Wheat is a good example of an albuminoid, and may be easily obtained by washing ordinary flour in a eoarse muslin bag till all the starch has been got rid of. It then appears as a pale, grey, stieky substanee, and when burnt gives off an offensive odour like that of burnt meat. Protoplasm also frequently contains globules of oil, granules of stareh, and other similar substances.

It has been reeently shown by Gardiner, Hillhouse, Russow, Bower, and others, that in many plants the protoplasm of one eell is in eommunieation with that of the eells around it, by means of threads of protoplasm whieh pass through the cell walls (fig. 43) ; and in many other instanees where the continuity has not yet been elearly demonstrated, threads are found to pass from the main mass of the eell protoplasm to adjacent parts of the adjoining walls ($f(y .44,1$), and this may occur where there are no pits nor pores as well as where sueh thin or pervious spots exist. 'To what extent the continuity of protoplasm may by-and-by be found to obtain, it is useless to speeulate, as at present it has only been proved in some parts of eertain plants; though these plants have widely different elassificatory value, some being Planerogams (fig. 44, 1, 2, 3), while others are so low as the Algæ (figs. 43 and 44, 4).

The Primordial Utricle (fig. 39, p), as has already bocn observed, is the thin layer of protoplasm whieh lines the cell-wall and forms the boundary of the central eavity filled with cell-sap. It is frequently so thin and transparent that it eanot be deteeted without the aid of reagents, which either colour it or cause it to scparate from the eell-wall as mentioned above (fig. 42). Whilst living the primordial utriele is always in organic comexion with the eell-wall, which latter indeed is only matter that has been manufactured by the protoplasm, and then deposited upon its outer surface. By some authors the primordial utriele
is differently charaeterised, and defined as the outer thin homogeneous layer or ectoplasm of the protoplasm. This is the sense in which it was essentially understood by Mohl.
3. The Nucleus, whieh exists in all the cells of the higher plants, and is absent from only a few of the lower forms, is differentiated from the surrounding protoplasm as a denser portion of the same substance (figs. 37, c, and 38). It appears to consist of a homogeneous matrix termed achromatin, in which a network of fibrille (chromatin) is contained. It usually presents a more or less rounded outline, and contains one (figs.

Fig. 43.

Fig. 44.

4

Fig. 43. Semi-dingrammatic longitudinal section of an old and stout portion of Ceramium rubrum, showing continuity between the protoplasmic contents of the axial or central cells, a, a, at their ends; and laterally with the cortical cells, b. by protoplasmic threads, and also that of the cortical cells inter se by thrends radiating from the central mass in cach cell. After T. Hick.-Fig. 44. 1. Endosperm cell of Strychos Ignatif, swollen up in water, showing threands of protoplasm (plasmolytic thircads) running to the cell-wall, p. 2. The lumen of two cndosperm cells of Sinychos Nux-Tomica, showing plasmolytic threads passing into intramural oncs, thus demonstrating continuity. 3. Plasmolytic threads from endosperm of S. Ignetiat. 4. Top of a branch of Cullithamion sn., showing cell junctions and continuity of protoplasm. Aftcr Le M. Moore.
$37, c$, and 38), or more ($f y .39, k^{\prime}, k^{\prime}$), mueh smaller bodies, called mucleoli. It is always situated in, and more or less enelosed by, the protoplasm, as we have already seen, and never lies loose in the eell eavity. It is, when present, the most vitally active part of the living substanee or protoplasm. (See also 'Formation of Cells,' in the Physiology of Plants.) terior of the cell : it eortains dissolved or suspended in it all those food materials which are neeessary for the life and growth
of the cell. In the early stages of the cell's life, as we have already seen (page 22), before any vacuoles have appeared, the cell-sap as a substance distinct from the protoplasm does not occur, but is diffused generally through it and the cell-wall, and it is only as the cell enlarges that it first appears in vacuoles in the protoplasm (fig. 38 and ${ }^{*} 39, s^{\prime}, s^{\prime}$), and which by ultimately coalescing form a single cavity filled with sap, s, s. Besides containing substances which are necessary to the life of the cell, it contains also many things which have been thrown out from the protoplasm as no longer serviceable. Of this nature are the crystals of calcium carbonate and calcium oxalate; hence the cell sap may be regarded from one point of view as the food upon which the protoplasm lives, and from another point of view as the reservoir into which it pours out certain of its waste products.

Beside the fluid cell-sap, there arc other important cell-contents, some of which, such as chlorophyll, starch, raphides, aleurone grains, and erystalloids, now require description.

Chlorophyll and Chlorophyll Granules. a. Chlorophyll. This is the colouring material which gives to leaves their well-known green appearance. Its chemical composition, owing to the great difficulty there is of obtaining it pure, is not positively known ; but there seems much reason to believe that it is closely allied to wax. It is not soluble in water, but is readily so in alcohol, ether, or benzole. By soaking leaves in any of these substances a beautiful green solution is obtained when viewed by transmitted light, but which is red when observed by reflected light. If a weak alcoholic solution of chlorophyll is shaken up with an excess of benzole, the mixture separates into two distinct layers, the upper one of benzole which is coloured bright green, and the lower one of alcohol which is coloured bright yellow; by which it would seem that chlorophyll is not a simple substance, but is a mixture made up of two or more colouring principles. Thus, according to Frémy, chlorophyll is composed of two colouring principles-one blue, ealled phyllocyanin, and the other yellow, termed phylloxanthin; while the more recent investigations of Michell, Stokes, Miiller, Pringsheim, and others, render it probable that chlorophyll is even a more complex substance, as will be described hereafter when treating of the Physiology of Plants.

In many fruits, such as the Cherry, Tomato, and common Arum, the chlorophyll of the pericarp becomes first changed to yellow and then red, as the fruit approaches maturity. In many plants, such as tho brown Seaweeds, cog. Fucus, the green chlorophyll is obscured by an olive-green pigment, melanophyll ; or again in the red Seaweeds, such as Ceraminm, by a red pigment, phycoerythrin. In these cases tho pigments are more readily soluble in alcohol than the chlorophyll, so that by steeping portions of the plants for a short time in spirit, the colouring matters which veiled the chlorophyll are dissolved out, and the
presence of chlorophyll made manifest. Again, in some of the lower plants, such as Oscillatoria and Nostoc, there exists a blue pigment, phycocyan; this may be obtained by soaking wellbruised specimens in cold water, to which it imparts a beautiful blue colour when viewed by transmitted light, and a beautiful red when seen by retlected light.
b. Chlorophyll Cramules. - It is not to be supposed that the chlorophyll exists indiscriminately in every part of the cell, for, on the contrary, it is confined to special portions of the protoplasm which have been differentiated from the general mass. These portions of protoplasm are the so-called chlorophyll granules or chlorophyll grains, or, as they are also termed, chlorophyll bodies and chloroployll corpuscles; hence these structures are granules of protoplasm coloured by chlorophyll. These granules appear as soft, doughy, more or less rounded masses, which are always enveloped by the surrounding protoplasm and never lie loose in the cell cavity. If a plant is grown in the dark or etiolated, these granules remain pale coloured ; but if it is exposed to sunlight, they speedily become coloured green by chlorophyll (hence light is necessary, with rare exceptions, for the formation of chlorophyll) ; and when so coloured they have the power of breaking up the carbon dioxide of the air or the water in which they are growing, and, returning the oxygen to the air, retain the carbon, which they arc able to mix with the elements of water in such proportions as to build up a molecule of starch, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, and some other carbohydrates. This process of building up starch and other carboliydrates out of the carbon dioxide of the air or water has been termed assinilation. (Soe 'Formation of Organic Compounds by Leaves,' in the Physiology of Plants.)

It has been said that chlorophyll is confined to the protoplasm forming the chlorophyll granules ; this is true in all the higher plants, but there are some plants amongst the lower nćders in which the green-coloured portions form plates or spiral bands, as in Stpirogyra; or the whole protoplasm, with the exception of the ectoplasm, may be capable of being coloured, as in Cilreccapsa and Oscillatoria.

Starch.--There is no substance containcd in the cells which has given rise to more discussion as to its origin and nature than starch. It is, with the exception of protoplasm, the most abundant and universally distributed of all the cell-contents, occurring as it does, more or less, in all parenchymatous cells ($f(y, 45$) except those of the epidermis. In its fully developed state it is, however, most abundant in the matured structures of plants, as the pith of stems, and in seeds, roots, and other intcrnal and subterranean organs which are removed from the influence of light. In these respects it presents a marked contrast to chlorophyll, which, as wc have seen, occurs only in young and vitally active structures placed near the surface of plants, and directly exposed to light.

Starch is not only widely distributed through the different parts of a plant, but it also occurs in varying quantity in all classes of plants with the exception of the Fungi. TVest Indian Arrow-root (fig. 46), Sago (fig. 47), Touss-les-mois (fyg. 48), and Potato starch (fy. 49) may be mentioned as familiar examples of starches derived from different plants. In all cases starch is a transitory product stored up for future usse, resembling in this respect the fat of animals. When thus required for the nutition of the plant, it is converted previously, as will be afterwards seen, into dextrin and sugar, which are soluble substances, and can therefore be at once applied to the purposes of nutrition, which is not the case with starch in its unaltered condition, as it is then insoluble.

When fully formed starch is found floating in the cell-sap ($f i g .4 \overline{5}$) in the form of colourless granules or grains, which are either clistinct from one another as is usually the case (fygs. 46 and 47), or more or less combined so as to form compound granules (fig. 50), as clescribed on page 33.

Fig. 45.
Fig. 46.
Fig. 47.

Fig. 45. Cell of the Potato containing starch granules.-Fig. 46. WestIndia Arrowroot ($\times 250$).—Fig. 47. Sago meal ($\times 250$).

In form the separate granules are always spherical or nearly so in their earliest condition. In some cases this form is nearly maintained in their mature state, as in Wheat starch (fig .51), but the granules frequently assume other forins, as ovate, elliptical, more or less irregular, club-shaped, or angular (figs. $46-49$ and 52). Such forms arise from the unequal development of the sides of the granules, or from mutual pressure-the same causes, indeed, as we shall see, which give rise in a great measure to the varying forms of the cells in which they are contained. Starch granules vary also extremely in size in clifferent plants, and even in the same cell of any particular plant. The largest granules known appear to be those of Cama starch, or, as it is commonly termed, 'Tous-les-mois,' where they are sometimes as much as the $\frac{1}{300}$ of an inch in length (fig. 48) ; while the smallest granules, among which may be mentioned those of Rice starch (fiy. 52), are frequently under $\frac{1}{5000}$ of an inch in length.

Derelopment of Starch.-Starch first makes its appearance as minute colourless gramules in the interior of the chlorophyll grains when exposed to sunlight, as previously noticed at page 29. These primary starch granules rarely grow to any considerable size, but are dissolved, chemically altered, and poured out into the sap, of which they then form a part. A part of this primary starch may be used by the protoplasm of the cell in which it is formed for the manufacture of its cell-wall, but by far the greater part is handed down from one cell to another

Fig. 48.

Fig. 49.

Fig. 48. Tous-les-mois ($\times 250$).——Fig. 49. Potato starch ($\times 250$).
till it arrives at particular parts of the plant, when it bccomes reorganised and stored up for future use. In this latter state starch assumes its more characteristic appearance. Thus in a well-developed Tous-les-mois or Potato granule (figs. 48 and 49), we may observe a roundish dark spot, which is termed the nucleus or hilum, situated near one end of the granule ; and

Fig. 50.

Fig. 51.

Fig. 52.

Fig. 50. Compound starch granules of West-India Arrowroot. After Schlei-den.-Fig. 51. Wheat starch ($\times 250$).-Fig. 52. Rice starch ($\times 250$).
surrounding this a variable number of faint lincs which alternate with other darker ones, so that the whole presents the appearancc of a series of more or less irregular concentric shells placed around a common point. The causc of these appearances has given rise to much discussion ; thus at first
sight it is almost impossible to help believing that the granule must hare becn built up in the same manner as a crystal, namely, by the deposition of fresh matter over the older, or, in other words, that the outer rings of the starch giannle have been deposited over those wlich are more internal, and that therefore they are the youngest portion of the granule. But the observations of Nägeli have proved this not to be the case, for he has shown that the appearance of stratification in the starch granule is really due to the difference in the quantity of water which exists in the different parts of the granule, and he has also proved that the outermost laycr, instead of eontaining the greatest amount of water, as it ought to do if it was the youngest part of the granule, eontains the least, while the nucleus on the other hand is the most watery of all. Nägeli coneluded from these observations that the growth of the starch granule was precisely the same as that of the cell-wall (sec page 42); namely, by intussuseeption of fresh particles of the starchcompound between those of an older date; and hence that the regular alternation of dense layers with more watery ones around a

Fig. 5 .

Fig. 53. Lnticiferous vessel from Euphorbia splentens; the latex contnins starch granules of a peculiar dunb-bell and somewhat roil and bone-like form. From Thomé. nucleus or hilum produces the peculiar appearanees of stareh granules. That the different layers rary in density may be at once proved by the action of polarised light, when each granule usually exhibits a black cross. Seeing then that the growth of the starch granule is by intussuseeption, it will be readily understood why it is that this growth cannot be carried on except so long as the granule is imbedded in the substance of the living protoplasm, and that as soon as the protoplasm of the eclls in whieh the stareh is being formed is used up or killed, all further development of starch becomes impossible.

In some eases, as for instanec in the Euphorbiacece, stareh gramules are found floating in the contents (latex) of the laticiferous ressels (fig. 53), and this would seem to be in contradiction to the above-mentioned law that starch granules can only be formed while enveloped in protoplasm, but the mode of formation of these granules has not been observed.

The starch granules of different plants vary very much in the character of their hilum and in the distinctness and general arrangement of their eoncentric lines, in the same way, as we
have seen, they rary much in form and sizc under the same circumstances ; those, however, which are derived from the same plant are more or less uniform in appearance, so that a practised observer may distinguish under the microscope the ditferent kinds of starch and refer them to the particular plants from whence they have been derived. Sometimes there is more than one hilum in a starch granule, and then as growth takes place round each, compound granules are formed, as mentioned on page 30 .

Composition and Chemical Characteristics of Starch, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$. -The starch granule consists of the true starch-compound and water. The starch-compound is again formed of two substances, which are intimately blended together, viz. granulose and cellulose. The granulose makes up by far the greater part of the starch-compound, being in the proportion of 95 to 5 of the cellulose. It is capable of being dissolved out of the cellulose by saliva and dilute acids, and it is to this granulose that the starch granule owes the violet-blue colour which it assumes when treated with a solution of iodine. The cellulose on the other hand, being not soluble, is left behind as a skeleton, and is not coloured blue by the iodine solution.

Starch is, therefore, composed chemically of carbon and the elements of water ; it never occurs, however, naturally in a perfectly pure condition, but always contains a very small quantity of mineral constituents, and also a certain proportion of the peculiar secretions of the plant from whence it has been derived. These impurities can never, under ordinary circumstances, be entirely removed, and from their varying amount in commercial starches arises in a great degree the differences in their value for food and other purposes.

Starch is insoluble in cold water, alcohol, ether, and oils. By the action of boiling water it swells up and forms a mucilage or paste; and if to this when cooled iodine be added, a deep blue colour is produced ; but this colour is at once destroyed again by the application of heat or alkalies. If starch be exposed to a temperature of about $320^{\circ} \mathrm{F}$. for a short timc, it is converted into a soluble gummy substance, called dextrin or British gum. A similar change is produced in starch by the action of diluted sulphuric acid, and also by diastase, a peculiar nitrogenous substance occurring in germinating seeds. Starch was formerly considered as peculiar to plants, and its presence thercfore was regarded as an absolute distinctive mark between them and animals. Of late years, however, as alrcady noticed (page 4), a substance prosenting the chemical reactions and general appearance of starch has been found in some animal tissues. Such a distinctive character, therefore, can be no longer absolutcly depended upon.
buote. Raphides. -This name is now more generally applied to all
inorganic crystals of whatever form which aro found in the cells
of plants, although the term raphides (which is the Greek for needles) was originally given to those only that liad the form of a needle (figs, 56 and 57). Raphides may be found more or less in nearly all orders of plants, and in all their organs; generally, however, they are most abundant in the stcms of herbaceous plants, in the bark of woody plants, and in leaves and roots. In some plants they occur in such enormous quantities that they exceed in weight the dried tissue in which they are deposited: this may be specially observed in some Cactaceæ; thus Edwin Quekett found in the dried tissue of the stem of the Old-man Cactus (Cereus senilis) as much as 80 per cent. of crystals. Professor Bailey also found in a square inch of Locust bark of the thickness of ordinary writing paper, more than a million and a half of these crystals. The dried root of that kind of Rhubarb now known as China Rhubarb, commonly contains from 35 to 40 per cent., and henee when chewed it is very

Fig. 54.

Fig. 55.

Fig. 56.

Fig. 54. Solitary crystals or raphides in the colls of the inner bark of the Locust tree. After Gray. - Fig. 55. Conglomerate raphides or spheraphides of the Beet.-Fiy. 56 . Acicular or true raphides of a spccies of Rumex. Two cells contain raphides, and three of them ch!orophyll granules.
gritty; and as this variety of Rhubarb usually contains a larger proportion of raphides than other kinds, this grittiness has been employed as onc means of distinguishing it from them. The raphides are usually contained in cclls, in which starch, chlorophyll, and other granular struetures arc abscnt (fg .56), although this is by no means necessarily the casc. These crystals are more commonly found in the cavities of the cells, but they also occur in their walls; in all cascs, however, they are mincral salts which have crystallised naturally out of the cell-sap. They may be especially found in the walls of cells in the Coniferee and Gnetacere.

The raphides occur either singly in the eclls, as in those of the inner bark of the Locust trce (fy.54); or far more eommonly there are a number of crystals in the same cell. In the latter case they are usually either placed side by side, as in the stem
of Rumex (fig. 56) ; or in groups radiating from a common point, and then assuming a clustered or conglomerate appearance, as in the stem of the common Beet (fig. 55). The former have been termed acicular raphides, and the latter conglomerate raphides.

In some interesting researches into the nature of raphides made several years since by Professor Gulliver, he has distinguished the acicular crystals (fig. 56), which he called true raphides, from those which occur cithcr singly (fig. 54 ; , or in more or less globular or conglomerate masses (fig. 55), which he has termed Spharaphides. He belicves that the presence or absence of the former or true raphides, and their comparative abundance, afford characters by which the species of certain orders may be distinguished at once from the allied species of neighbouring orders. He has instanced the plants of the Onagracer, especially, as being in this way readily distinguished from the plants of allied orders. Gulliver speaks very strongly upon this point as follows: 'No other single diagnosis for the orders in question is so simple, fundamental, and universal as this ; and the orclers to which it applies should be named raphis-bearing or raphidiferous.'

With regard to Sphreraphides, Gulliver believes that there are few, if any, orders among Phanerogams in which they do not exist; hence it is questionable how far their clistribution might be rendered available as a means of distinguishing plants from oue another. Their presence, however, he tinds universal in every species of the orders Caryophyllaceæ, Geraniaceæ, Paronychiacere, Lythracer, Saxifragacer, and Urticaceæ; hence he regards the presence of Sphreraphides as cspecially characteristic of these orders.

In the common Arum, where raphides are very abundant, and in some other Aracere, the cells which contain the raphides are filled with a thickened sap, so that when they are moistened with water endosmose take place, by which they are distended and caused ultimately to burst and discharge their crystals from an orifice at each end (fig. 57). Such cells were called Biforines by Turpin, who erroneously regarded them as organs of a special nature.

In many plants belonging to the families of the Urticacer, Moracese, and Acanthacere, there may be frequently observed just beneath the surfaces of the leaves, or sometimes more deeply situated, peculiar crystalline structures, to which the name of Cystoliths or Lithoeysts has been applied. These consist of an enlarged cell containing commonly a globular ($f \mathrm{fg} .58$), or somewhat club-shaped ($f y .59$) mass of crystals, suspended from the top by a kind of stalk formed by an ingrowth of the cell-wall, upon which the crystals are deposited as upon a nucleus.

Crystals of various composition have been described as occurring in different plants, but more accurate observations
show that all the crystals hitherto found are composed of calcium carbonate, as those in the cystoliths, and in some of the lower Fungi ; or of calcium oxalatc. The latter salt crystallises in two forms according to the proportion of water it contains. Thus in the one casc when the crystals contain six equivalents of water of crystallisation, they form octahedra (fig. 55), as in the conglomerate raphides or sphæraphides ; and, on the other hand, when there are only two equivalents of water of crystallisation, then bundles of acicular crystals or true raphides are produced (figs. 56 and 57).

Fig. 57. True or acieular raphides of an Arum being diseharged through endosmose under the influeuce of water.-Fiq. 58. Crstolith, from Pervetario officinalis.-Fig. 59. Cystolith, from the leaf of Ficus elastica. After Henfrey.
Aleurone Grains, Crystalloids, and Globoids.-Besides the inorganic crystals just described, it frequently happens that some of the protoplasmic matter in the cells, more generally in those of the albumen and cotyledons of ripe seeds-that is, in those cclls in which reserve food material is stored up-assumes a crystalline form and becomes cubical, octahedral, tetrahedral, rhomboid, \&c. (fig. 60). These are not however truc crystals, as is scen by their angles not being very clearly defined by the action of various reagents, such as dilute caustic potash, which causes them to swoll up and incrase very much in rolume. These crystalline masses are known as crystalloids or proteine crystals. They arc readily seen when a transvarse scction of the albumen of the Castor-oil sced is placed in dilute glyccrine and water ($f i g .60$).

In the cells again of the albumen and cotylcdons of ripe seeds we have, in addition to starch and oily matter, small roundish and colourless albuminous grains, which are tcrmed proteid or aleurone grains (fig. 61, a, a). They are especially abundant in oily seeds, as in those of the Castor-oil plant, where they appear to replace starch; but in those sceds where starch is abundant, these grains may be secn betwecn the starch-grains, as in the Pea (fig. 61, a, a), Bean, Sweet Chestnut, and Grasses. In these grains the crystalloids just described arc frequently found imbedded, and also peculiar small rounded bodics termed
yloboids (fg .60), which are composed of double phosphate of calcium and magnesium.

The aleurone grains and crystalloids are evidently reservoirs of protein, to be used when growth becomes active in the process of germination, in the same way as starch and oily matters are resercoirs of hydrocarbons for use in a like manner. Aleurone grains are insoluble in alcohol, ether, benzole, or chloroform, but soluble in water. They are coloured brown by iodine, and other re-agents show that they are of an albuminoid nature.

The experiments of Weyl and Sidney Vines indicate that the proteids exist in these grains is globulins, which hitherto have been known only to occur in animals, that is, as myosin-globulin and vitellin-globulin. Vines has also found in the aleurone grains of the Prony a large quantity of hemicllumose, a substance allied to the peptones.

Fig. 61.

Fig. 60. Cell from the endosperm or albumen of the seed of the Castor-oil plant (Ricinus communis) in dilute glyeerine, showing lorge transparent proteid or aleurone grains, with erysta loids and globoids imbedded in them. After Snehs.--Fig, 61. Cells of Ω very thin seetion through it eotyledon of the embryo in a ripe seed of the eommon Pea (1 isum stitum). a, a, Aleurone grains. st. Starch granules. i, i. Intercellniar spaces. After Sachs.
II. Foras and Sizes of Cells.-Having now described the nature of cells and their contents, we proceed to give a detailed account of the various forms and sizes which they are found to assume in different plants, and in various parts of the same plant.

1. Forms of Cells.-Cells are of various forms; thus, in the first place, as we have already partially seen on page 24 , when the grow th is uniform, or nearly so, on all parts of the cell-wall, we have a spherical or rounded cell (fiy. (62); but when it is greater at the two extremities than at the sides, the form is ovel or oblomy (fiy. G3). In tho above cases, also, the cells are
almost, or entirely, free from pressure. But, under other circumstances, in consequence of the mutual pressure of surrounding cells, they assume a polygonal form (figs. 64 and 65), the number of the angles depending upon the number and arrangement of the contiguous cells. Thus, in a perfectly regular arrangement, when the contiguous cells are of cqual size, we have dodecahedral cells, presenting, when cut transverscly, an hexagonal appearance (fig. 66). It is rarely, however, that we find

Fig. $62 . \quad$ Fig. 63.
Fig. 64.
Fig. 65.

Fig. 62. Rounded cells.-Fig. 63. Elliptie or oblong cell.-Figs. 64, 65. Polygonal cells in combination : those of the latter figure being pitted.
cells of this regular form, since, in consequence of the unequal size of the eontiguous cells, the polygons which result from their mutual pressure must be more or less irregular, and exhibit a variable number of sides (generally from three to eight).

Secondly, when the growth is nearly uniform on all sides of the cell-wall, but not equally so at all points of its surfacc, we have cells which maintain a rounded form in the centre, but laving rays projecting from them in various directions, by which they acquire a more or less star-like appearance (figs. 67 and

Fig. 66.

Fig. 67.

Fig. 66. Transverse section of regular polygonal eells.- Fig. 67. Stellate cells.
93) ; and henee such eells are callcd stellate. These rays mar be situated in one planc, or project from all sides of the cell. It is rarely the case that such cells have the rays at regular intervals, or all of one length, but various degrecs of irrogularity occur, which lead to corresponding irregular forms in such cells.

Thirdly, when the growth takes place chicfly in one direetion, we have eells whieln are elongated, either horizontally or verti-
cally. Among the forms resulting from an extension of the cell in an horizontal direction, we necd only mention tabular cells (fiys. 68 and 94), that is, six-sided flattentd cells, with the upper and lower surfaces parallel, or nearly so. Of those cells, which are extended in length or vertically, we have such forms as the cylindrical (fig. 69) and fusiform (fiy. 70), and which, by the mutual pressure of contiguous cells, often become prismatic. In the Fungi and Lichens again we have a very marked form. Thus the cells are here thin-walled and very long and threadlike, and either simple or branched (fig. 71). Such cells are sometimes termed fibrilliform, (see page 48).

The cells, when in combination with other cells so as to form a tissue, are generally bounded by more or less flattened (figs. (65. 66, 68, and 69) or rounded surfaces (figs. 62 and 72) ; but

Fif.68. Tabular cells.-Fig. 69. Cylindrical cells. The small rounded body iu the interior of three of these eells is the nucleus.-Fig. 70. Elongated fusiform cells. -Fig. 71. Fibrilliform cells (hyphoc).
when in combination also with the vessels of the plant, so as to form what are called the fibro-vascular budles, they are clongated, and have pointed extremitics (fig. 70). These variations in the condition of the cells lead to corresponding differcnces in their arrangement; thus, in the former case, thic cclls are placed one upon another (fig. 69), or sidc by side (fig. 68) ; while in the latter their tapering cxtremitics overlap cach other, and become interposed between the sidcs of the cells which arc placed above and below them (fig. 70). From this circumstance cells have been divided into parenchymatons and prosenchymatous; parchchymatous being the term applied to those cells which are placed end to end or side by side; and prosenchymatous to those which arc attenuated, and overlap
one another when combincd together to form a tissue. Anothcr distinction commonly observed betwcen parcnchymatous and prosenchymatous cells arises from the condition of their cellwalls; thus, those of parenchymatous cells are usually thin (fiys. 66 and 69), while those of prosenchymatous cells are more or less thickened (figs. 96 and 97). Thise latter cells are commonly termed fibres. The above distinctions between parenchymatous and prosenchymatous cells are evident enough in the extreme forms of the two divisions, but various transitional states occur which render it impossible to draw, in many cases, a distinct line of demarcation between them.

When cells are so placed as to be uncombined with other cells, or with the vessels of the plant, or but partially so, they

Fig. 72.

Fig. 72. A portion of the frond of Nitophyllum laceratum. a, a. Cell walle. b, b. Contents of the cells. After H. B. Brady.
are more or less unrestrained in their dcvelopment ; but cven in such circumstances, as in their combincd statc, their typical form is to be more or less rounded. This form is, howerer, rarely maintained as thcy grow oldcr, although instances of such occur in many of the lower Alga, as Protococcus (fig. 1) ; in pollen cells (jig. 73) ; and in sporcs; but more frequently, in such cases, the cclls assume a more or less clongated form and bccome oblong (fig.77), cylindrical (fig. 74), ©c. In such cells, again, we frequcntly find that certain points of the cell-wall acquirc a special development (sce page 23), and become elerated from its gencral surfacc as little papille (fig. 73), warty projections ($f i y .74$), or cilia (figs. 75,76 , and 77) ; or are prolonged into tubular processes, or branched in various ways (fig. 78). The hairs which arc produced on the surface of plants afford good
illustrations of cells which are more or less unrestrained in their development (figs. 137-143) ; other instances occur in the germination of most spores, and strikingly so in those of many Alga, as Butrydium (fig. 78) ; also when the pollen cells fall upon the stigma; and in numerous other cases.
2. Sizes of Cells.-The cells vary much in size in different plants, and in different parts of the same plant. The parenchymatous cells, on an average, vary from about $\frac{1}{250}$ to $\frac{1}{1200}$ of an inch iu diameter ; others again are not more than $\frac{1}{5000}$; while in some cases they are so large as to be visible to the naked eye, being as much as $\frac{1}{50}$ or even $\frac{1}{30}$ of an inch in diameter. The largest occur in the pith of plants, in succulent parts, and in water plants.

The dimensions of prosenchymatous cells generally afford a Fig. 73. Fig. 75. Fig. 76.

Fig. 73. Spherical pollen cell with small projections or papillæ on its outer surface.-Fig. 74. Cylindrical cell covered with warty projcetions.Figs. 75-77. Ciliated cells.-Fig. 78. Branched cell (Botrydium grunklatum).
striking contrast to those of the parenchymatous, for while we find that their transverse diameter is commonly much less, averaging about $\frac{1}{1 \overline{5} \bar{\sigma} \overline{0}}$ of an inch, and frequently not more than $\frac{1}{300 \overline{0}}$, they become much more extended longitudinally, some having been measured as much as $\frac{1}{4}$ of an inch or more long, and according to Schlciden, those of the inner bark are often four, five, or more inchics in length. The prosenchymatous cells of the wood and inner bark of trecs generally vary, however, from about the $\frac{1}{40}$ to the $\frac{1}{12}$ of an inch in length.

Those cells again which have an unrestrained devclopment are frequently also far more extended in length. Thus, the cell of which each filanent of cotton is formed ($f y .157$, u) is sometimes as much as one or two inches long; while in some of
the Cryptogamous water plants, as Chara, the cells are also much elongated.
III. General Properties and Structure of the Cell-wall.-As has been already stated (page 23), the cell-wall of young cells is very thin, colourless, transparent, smooth, and free from any openings or visible pores, so that each cell is a perfectly closed sac. The cell-wall, however, although free from visible pores, is readily permeable by fluids.

As the cell-wall increases in age, however, it becomes thickened by the intussusception or incorporation of new matter into its substance, and then alterations occur by which it becomes variously marked and sculptured on its inner surface. This increase in thickness may be specially observed in the prosenchymatous cells of the wood and inner bark, and in the hard cells of the stone of the Peach, Cherry, and other similar fruits. This thickening, however, of the cellwall is by no means confined to the prosenclymatous cells of the wood, or the other cases above mentioned, but it may be observed more or less in all cells where active changes are going on; thus it may be especially seen in those of the pith of Hoya carnosa (fg .79 . 79). A section of one of these cells gives an appearance as if the walls had been formed by concentric layers of cellulose with branching capillary tubes or canals stretching from the cavity of the cell to its periphery (f ig. 79). The irregular ringed appearance is due to the difference in the degree of hydration, such as was seen in the case of the starch granule (page 32); while the canals are true passages, which have been caused by the passage of the sap during the life of the cell proventing the deposition of cellulose. In these cells the membrane has been still further changed by the conversion of the cellulose into lignin. It is to these two conditions that the firmness of the wood of plants and the hardness of the stones of many fruits are due, and hence the name of Selerenchymatous (from a Greek word signifying hardness) has been given to such cells.

Pitted or Dotted Cells. -When the cell-wall hass thus become thickencd it commonly presents (instead of the smooth and homogeneous appearance as is the case, as we have seen, when it is in a young condition) a greater or less number of dots or slits of various kinds (figs. 80 and 81, e, e). These dots and slits were formerly considered as actual openings in the walls of the cells, and hence such cells were called porous cells; but, when carefully examined, it may be readily discovered that these markings are cansed by canals which run from the cavity of the cell to the inside of its wall, and are closed (always at least in
their young state) by the originally thin membrane of which it is at such points composed (figs. 79 and 81, a, a), and thus give to the parts of the cell-wall in which they are found, when viewed by transmitted light under the microscope, a more transparent appearance than that possessed by the thickened membrane surrounding them. Such cells are, therefore, improperly called porous, and hence are now correctly termed pitted or dotted cells. These canals thus terminating in the wall of one cell correspond exactly with the ends of those of the adjoining cells ; and thus the sap can readily pass through the intervening cell-wall notwithstanding the general thickening which the walls have otherwise undergone (fig. 81). It frequently happens that two or more canals unite together at varying distances from the wall of the cell, and thus form a common opening into its cavity (fig. 79).

Although, as thus shown, the dotted appearance is not caused by holes or perforations in the original walls of the cells, jet as the latter adrance in age, and lose their active vitality, they

Fig. 81.
Fig. 80.

Fig. 80. Pitted cells.-Fig.81. Thick-walled cells from the fruit of a Palm. a, a. Cell-walls. b. b. Concentric layers of thickening. c. Cauals extending from the central cavity to the inside of the wall of the ccll. d. Cavity of the cell. e, e. External dotted appearance. From Ungcr.
frequently become perforated, in consequence of their thin primary wall becoming more or less absorbed, or breaking away. Such perforations are well seen in the Sphaynum, where they are sufficiently large to allow of the passage through them of minute granular matters.

Cell.s with Bordered Pits or Disc-bearing Wood-cells. - In the cell-walls of the wool-cells of certain trees we find, in addition to the ordinary pits, large circular dises which encircle them so that each pit looks as if it had a ring surrounding it ($f i g .82$) ; hence such cells have been termed cells with bordered pits or disc-bearing wood-cells. This appearance is produced by circular patches of the cell-wall remaining thin after the general thickening has commenced and the rim growing obliquely inwards, leaving only a narrow orifice in the centre; or, in other words, the opening of the canal into the interior is narrow, while the
outer opening by the cell-wall is broad (fig. 83, a, b, c). As these thickenings occur always in twos, that is, one on each side of the cell-wall, they appear as two watch-glasscs would do if placed rim to rim, and separated by a thin shect of paper. To carry out the comparison, however, completely, the watch-glasses must be supposed to be perforated in their centres ($\mathrm{fig} .83, b$). The central lighter spot when examined by transmittcd light is caused by the light having to pass only through the thin unthickened cell-wall or membrane ($f i g .83, c, w$), while the darker colour of the border is caused by the light having to pass through the thicker substance of the rim. It frequently happens that this intervening membrane (f fg. $83, b$ and d) becomes absorbed, and then direct eommunieation takes place between the adjoining eells.

These bordered pits or discs occur cither in single rows ($f y$.
Fig. 82.

Fig. 83.

Fig. 82. Bordered pits of the wood-eells of the Pine, with a single row of dises on each cell.-Fig. 83. Bordered pits of the wood cells of the Pine (dingram). a. Young stage with unthiekened eell-wall or membrnue. b. Older stage where the intervening membrane has been absorbed. c. Semi-profile view, showing position of membrane, v. d. The same where the nembrane has been absorbed. After Snehs.
82), or in double (figs. 84 and 85), or triple rows (fig. 86). In those cascs wherc there is more than onc row of bordered pits, those in each row may be either on the same level, as is more eommonly the ease (fig. 84), or at different levels, and lience alternate to cach other, as in the Araucarias and allied trees (figs. 85 and 86).

Cells presenting such a characteristie apporanee are of universal occurrence in the wood of the Conifere and Taxacce, where they are also most distinetly observed. But somowhat similar bordercd pits of smaller size may also be found in many of the Phanerogamia.

Fibrous Cells.-It frequently happens that the thickening of the cell-wall (instead of taking place so as to give the appear-
ance of a perforated membrane, and thus giving rise to the pitted cells just described), forms delicate threads or bands of varying thickness ealled fibres, which assume a more or less spiral direction upon its inner surface (figs. 87-89), and thus give rise to what are called fibrons cells. Such cells oecur in various plants and parts of plants; thus in the leaves of Sphagnum, the hairs of many Cacti and other plants, in the integuments of some

Fig. 84.

Fig. 85.

Fif. 86.

Fig. 84. Cells with bordered pits or dise-bearing wood-cells of the Pinc, with a double row of dises, which are on the same level, or opposite to exeh other. After Nicol.-Fig. 85. Cells with bordered pits or disebearing wood-cells of Araucaria excelsa, with double rows of dises, which are alternate with each other.-Fig. 86. Cells with bordered pits or dise-bearing wood-eells of Araucaria, with double and triple rows of alternate dises. After Nicol.
seeds and fruits, as those of Salvia (fig. 152), Cobcea scandens, and Collomia, inthe spore-cases of certain Flowerless plants, in the inner lining of all anthers, in the root-sheath of the aerial roots of many Orchids, and in several other instances.

These fibrous eells also present some differences of appearance as regards the distribution of their fibres. Thus, in some cells the fibre forms an uninterrupted spiral from one end to the

Fig. 87. Fig. 88. Fig. 89. Fig. 90. Fig. 91.

Fig. 87. Spiral cell.-Fig. 88. Annular cell.-Fig. 89. Retieulated cells. -Fig. 90. Pitted and reticulated eell.-Fig.91. Wood-eclls of the Yew (Taxus baccita). After Mohl.
other (figs. 87 and 152) : such are termed spiral cells. In other cases the fibre is interrupted at various points, and assumes the form of rings upon the inner surface of the eell-wall (fig. 88), and honce such cells are called anmular. Instances also occur even more frequently, in whieh the fibres are so distributed as
to produee a branehed or netted appearanee ($f \mathrm{fg} .89$) ; in whieh ease the eells are termed reticulated. It is also by no means an uncommon circumstance to find in the same eell intermediate eonditions of all these forms.

The fibres in most eases are wound from left to right, although instances oceur where they have a contrary direetion. The turns of the fibre, or the rings, may be nearly in eontact, or more or less separated by intervals of eell-wall; this latter appearance is probably due to the growth of the cell-wall after the deposition of the fibre. The turns of the fibre, or of the rings, again, may be either intimately attached to the cell-wall, or but slightly adherent, or altogether free. As a general rule, the less the eell-wall grows after the cleposition of the fibre, the more firmly is it attaeled to it.

In some eases, again, as in the Yew (fig. 91), we find a spiral fibre or fibres developed in addition to the pits; such cells have been sometimes termed tracheides.

These different kinds of fibrous eells are eonneeted by a number of intermediate forms (fig. 90) with the pitted cells already treated of, but all are formed on the same plan. That is, by the living protoplasm seereting the eellulose out of its own substanee, and depositing it upon its external surfaee in different parts in varying thicknesses.

Seetion 2. Of the Kinds of Cells, and their Connexioń with one another.

We have already seen (page 39), that if the eells are of sueh forms that when combined together they merely come in contact with one another without pereeptibly overlapping, they are ealled parenchymatous ; but that when elongated and pointed at their ends, so that in combination they overlap one another, they are termed prosenchymatous. We have also seen that sueh extreme forms are eomnected by all sorts of transitional ones. But, besides these elongated prosenehymatous eells, other lengthened tubular organs are also found in plants, whieh are termed vessels (see Vessels, page 51). Formerly, all these elongated organs were supposed to have an entirely distinet origin from the ordinary parenehymatous eells, and were described under the names of Woody Fibres, and Vessels or Duets; but it is now known that they are all derived originally from such eells, and owe their peculiar appearanees cither to various modifieations in form, whieh the latter undergo in the eourse of growth, or to their eombination and union with one another. This common origin of the Woody Fibres of old anthors and of the Vessols with the parenehymatous eclls, is proved by the faet, that gradual transitional forms from the one to the other may be eommonly observed; and also by tracing their development,
when it will be found that all these organs, however modified in form and appearance, are derived originally from one or more of the ordinary cells. All the observations made previously, therefore, as to the chemical and general properties of ccll-membrand, as well as to its mode of growth and thickening, apply equally to the Vessels. We have already stated this to bc the case with regard to the Woody Fibres, which we have spoken of under the names of Prosenchymatous cells and Wo od-cells. By the combination of the different kinds of cells and vessels, we have various compound structures formed which are called Tissues ; the most important and the most abundant of them all is parenchyma, which must therefore be first alluded to.

1. Parenchyma. -This is composed of comparatively thinwalled cells, whose length commonly does not exceed their

Fig. 12.

Fig. 94.

Fig. 95.

Fig. 92. Round or oval parenelyma. In two of the cells a nueleus with a nucleolus may be seen. -Fig. 93. Stellate or spongiform parenchyma, composed of stellate cells with three-cornered intercellular spaces.- Fig. 94. Muriform parenchyma,--Fig. 95. Transverse section of the petiole of a species of Begonia. e. Epidermis with cuticle above and hypoderma below, the latter formed of collenchymatous eclls cl , cl , with thickened angles v, v. chi. Chlorophyll granules. p. General parenchyma, below hypoderma. After Sachs.
breadth, or in which the proportion of the two diameters does not vary to any remarkable extent. There are several varieties of parenchyma, depending chiefly upon the forms of the component cells, and their modes of combination ; the following are the more important:-
a. Round or Oval Parenchyma (figs. 62 and 92). -This is formed of rounded, or more or less oval cells, with sinall spaces between them. It commonly occurs in succulent plants, and also in those parts where the tissues are of a lax nature. It is connected by various transitional forms with-
b. Stellate or Spongiform Parenchyma, which consists of
stellate cells (figs. 67 and 93), or of cells with an irregnlar outline produced by projecting rays, and in contact only by the extremities of such rays, so as to leave large irregular spaces between them (fig. 124, e). This occurs cominonly in the tissue on the under surface of most leaves; and frequently in the airpassages of plants, particularly in the stcms and leaf-stalks of such as grow in water, or in marshy places, e.g. the Rush and Water-lily.
c. Regular or Polyhedral Parenchyma.-This is formed of polyhedral cells, the faces of which are frequently nearly equal (figs. 65 and 66), and so combined as to leave no interspaces. It is commonly found in the pith of plants.
d. Elongated Parenchyma.-This is composed of cells elongated in a longitudinal direction so as to become fusiform (fig. 70), cylindrical (fig .69), or prismatic, and closely compacted. It occurs frequently in the stems of Monocotyledonous plants.
e. Tabular Parenehyma is that which consists of tabular, closely adherent cells. It is found in the epidermis and other external parts of plants (figs. 68, 95, e, and 123-125). A variety of this kind of parenchyma is called muriform, because the cells of which it is composed resemble in their form and arrangement the courses of bricks in a wall (fg .94) ; this variety occurs in the medullary rays of the stems of Dicotyledons.

Such are the commoner varieties of parenchyma, all of which are connected in various ways by transitional forms; but other special kinds also occur. Thus, in the tissue which is placed below the epidermis of plants, which has been termed the hypoderma, we sometimes find the parenchyma composed of cells which are especially thickened at their angles (fig. 95, $e l$, el); and these thickened portions swell up considerably when such cells are placed in water. This kind of parenchyma is called eollenchyma; it never becomes lignified. Another variety of parenchyma is termed sclerenchyma; this consists of cells which have become much hardened by thickening layers and lignified, as in the stem of Palms (see page 95). When the parenchymatous cells become thickened so as to form pitted or fibrous cells, the tissues formed by their combination constitute respectively the Pitted Cellular Tissuc and Fibro-cellular Tissuc, of some authors.

In some of the lower orders of plants there is a kind of tissue present which is quite as distinct from pareuchyma as this is from prosenchyma and the tissues formed by the vessels of plants. To this the names of Tela contextu and Interlacing fibrilliform Tissue have been given. It oecurs in the Fungi (figs. 3 and 4), and Lichens (fig. T1), and consists of very long thread-like cells, or strings of cells, simple or branched, with either thin, soft, readily destructible walls, as in Fungi ; or dry and firm ones, as in Lichens; the whole inextricably interwoven or entangled with each other so as to form a loose filuril-
liform tissne (fig. 71). This tissue, which is usually known under the name of hyphre or hyphal tissue, constitutes, as a general rule, the regetative portion of all Fungi and Lichens; and in the larger Fungi this same tissue also forms a more compact structure at certain parts, as on their surface, where it is arranged as a kind of skin, and then constitutes what is termed pseudo-parenchyma. Hyphal tissue is also found in the thallus of some Algre.

The varieties of parenchyma as just described constitute the entire structure of the lower orders of plants, or Thallophytes, such as the Algæe, Fungi, and Lichens, which are hence frequently termed Cellular Plants; while all plants above them, which contain, commonly, vessels and prosenchymatous woodcells, in addition to parenchymatous cells, are called Vascular Plants (see page 8). In these higher orders of plants, parenchymatous cells constitute all the soft and pulpy parts ; and in cul-

tivating plants or parts of plants for culinary purposes and for food generally, the great object aimed at is to develop this kind of tissue as much as possible. Parenchyma is connected by various intermediate conditions with prosenchyma, which must now be described.
2. Prosenchyma. - The most perfect form of prosenchyma is that commonly tcrmed Woody Tissue or Woody Fibre. This tissuc consists of very fine cells, elongated and tapering to their extremitics, their walls being much thickened (fg .96), and when in contact with one anothcr overlapping by their pointed onds, so that they arc firmly compacted together and lave no
interspaces (fig. 98). The woody portions of all planis consist in a great part of this form of tissuc. It is also found in the liber or inner bark mixed with parenchyma and certain vessels, and in the veins of leaves and those of other appendages of the stem and its divisions.

Three kinds of prosenchymatous cells may be described which enter into the composition of Woody Tissues; namely, the ordinary Wood-cells, Disc-bearing Wood-cells or Cells with Bordered Pits, and Liber-eells; these form respectively, by their combination, ordinary Woody Tissue, Dise-bearing Woody Tissue, and Woody Tissue of the Liber.
a. Woody Tissue.-This, the ordinary kind of woody tissue, is composed of prosenchymatous cells or fibres of moderate length and lignified (.fig. 96). A transverse section of these cells shows the thickening matter of their walls to be arranged in concentric layers, which are often so numerous as to almost obliterate their cavities (fig. 97). This kind of tissue occurs in the wood of most trees, except that of the Coniferæ and most other Gymnospermous plants; and in the veins of some leaves, and those of certain parts of the flower. The peculiar manner in which these wood-cells are arranged with respect to one another, overlapping at their pointed extremities, and thus becoming firmly cemented, as it were, together, combined with the thickness of their walls, renders this tissue very strong and tough, and thus admirably adapted for those parts of plants in which it is found, and where such qualities are especially required.
b. Dise-bearing Woody T'ssue.-This tissue is composed of those wood-cells called cells with bordered pits, which have been already described on page 43 (figs. 82-86). This tissue constitutes generally nearly the whole of the wood of the Conifere and most other Gymnospermous plants, as well as a portion of the wood of some other plants (see pages 44 and 83). These discbearing wood-cells are much larger than the other kinds of woodcells, being often as much as $\frac{1}{300}$ or $\frac{1}{200}$ of an inch in diameter ; while the latter are frequently not more than $\frac{1}{3000}$, or on an average about $\frac{1}{1} \frac{1}{50}$ of an inch in diameter.
c. Woody Tissue of the Liber or Bast Tissue. - This consists of cells much longer than ordinary wood-cells (figs. 99 and 157 b), with very thick walls (fg . 101), and owing to their not being lignified, or but partially so, they are softer, tougher and more fiexible ; hence these are regarded as a peculiar lind of cell, and have received the distinctive name of Liber-cells, from their common occurrence in the inner bark or liber of Dicotyledonous stems. Such cells are also termed bast-fibres, and the tissue formed of them bast-tissue, becanse the inmer bark is also commonly termed bost. These cells are rarely branched (fig. 100). Besides the common occurrence of this tissue in the liber, it also occurs as a constitnent of the fibro-vaseular bundles of Monocotyledonous stems ; and of the fibrous coats of fruits. The reins which
form the framework of leaves are also in part composed of this kind of tissue.

These bast-fibres are called bast-tubes by some botanists, who regard them not as elongated cells, but as true vessels formed like them by the coalescence of rows of cells, the partition walls between them laving become absorbed, so that their cavities communicate and form a continuous canal. These liber-cells, bast-fibres, or bast-tubes, must not be confounded with sieveressels or sieve-tubes (see page 55), which are also frequently termed bast-vessels from their common occurrence in the liber.

From the peculiar qualities of the woody tissue of the liber it is admirably adapted for various manufacturing purposes ; thus Hemp, Flax, New Zealand Flax, Pita Flax, Sunn, Jute, China Grass, and many other fibres, are all composed of the liber tissue of diflerent plants, and will afford good illustrations of the value of such fibres as textile materials. This liber tissue also when macerated so as to separate the cells from one another is made into a mash from which the best kinds of paper are made. Inferior sorts of paper are prepared from the ordinary woody tissue of many plants, but they lack the toughness of papers made from the liber, and are brittle and tear more easily.

The different kinds of woody tissue are commonly associated with other organs, which are also of an elongated tubular character, but larger than the prosenchymatous cells of which the woody tissues are composed. These constitute the vessels of plants, and must now be described.
3. Vessels. - These have also been frequently termed duets by authors. The essential character of a vessel is that it is composed of several cells, which are united end to end, and the septa dividing them more or less completely absorbed. The component cells may be either very long and narrow, or they may be short and broad.

There are several varieties of these vessels, which are known as pitted, spiral, amular, reticulated, and sealariform, the eharacters of which depend upon the component cells out of which they have been formed, and which have already been described. They contain air or water.

But besides these vessels we have also other varieties, which are commonly distinguished under the names of sieve-tubes or sieve-ressels, laticiferons vessels, and vesicular or utricular ressels. These are clusely related to one another from the nature of their cuntents, their chief function being to act as reservoirs of nutrient fluids or secretions, and also as carriers of the nutrient fluids to those parts of plants where they are required.
a. Pitterd or Dotted Vessels.-A pitted vessel is formed from a row of cylindrical pitted cells placed end to cnd (fiy. 102), the intervening partitions of which have become more or less absorbed, so that their cavitics communicate and form a continuous canal (fig. 103). The arigin of pitted vessels from a row of cells
of a similar pitted nature is clearly shown in many instances by the contractions which their sides exhibit at various intervals, by which they acquire a beaded appearance ($\mathrm{fig} .10^{2}$) ; for these contractions evidently correspond to the
Fig. 103.

Fig. 102.

Fig. 102. Beaded pitted vessel.—Fig. 103. Pitted vessel terminating obliquely, and showing that the partition wall has been incompletely absorbed. points where the component cells come in contact, and in some cases even we find the intervening membrane not completely absorbed between the cavities, but remaining in the form of a nctwork or sievelike partition (fig. 103). Pitted vessels generally terminate obliquely (fig. 103), and when they combine with neigh bouring vessels, the oblique extremitics of the latter are so placed as accurately to correspond with the former. In some cases, however, where the pitted vessels are pointed at the ends, they overlap more or less by these points. Pitted vessels may be commonly found in the wood of Dicotyledons; they are mixed here with the ordinary wood-cells, but are much larger than these, as may be seen by making a transverse section of the wood of the Oak, Chestnut, and other trees, when the holes then visible to the naked eye are caused by their section (fig. 183, v, v,v). The pitted vessels are generally among the largest occurring in any tissue.

It sometimes happens that when a pitted or other vessel has lost its fluid contents, the neighbouring parenchymatous cells push bladder-like portions of their membrane through pores which are then formed in its wall, and then multiply by division and form a cellular mass which may completely fill it-to this intracellular tissue the name of tyloses or thyloses has been given. It may be well observed in the wood of the Oak, in that of Robinic Pseud-acacia, in Periploca, and in the stem of Cucumis sativus.
b. Spiral Vessels.-This name is applied to vessels with tapering extremities, having cither one continuous spiral fibre running from end to end, as is commonly the case (fig. 104), or two or more fibres (fig. 105) running parallel to one another. Those with only one spiral fibre are sometimes termed Simple Spiral Vessels; those with more than one, Compound Spiral Vessels. The latter kind are well seen in the stem of the Banana and other allied plants, in the young shoots of the Asparagus, and in the Pitcher Plant. The fibre contained within the spiral vessel is generally so elastic as to admit of being uncoiled when the vessel is pulled asunder, in which case the wall is ruptured between the coils. This appearance may be commonly seen by the naked eye by partially breaking the young shoots, flowerstalks, or leaf-stalks of almost any plant; or the leaves of the

Hyacinth, Banana, and others, and gently pulling asunder the two ends, when the uncoiled fibres appear like a fine cobweb. In most cases the coils of the fibre are close together, so that the enclosing membrane cannot be observed between them ; but in other instances they are more or less separated by portions of membrane (fig. 10t). The latter appearance is probably caused by the growth of the cell-wall after the thickening which forms the fibre has taken place, by which the coils become extended and separated from one another. The fibre is generally turned to the right as in the ordinary spiral cells, although instances occur in which it is wound in the opposite direction. When spiral vessels come in contact they overlap more or less at their ends (fig. 104), and frequently the membrane between their cavities then becomes absorbed so that they communicate with each other. Spiral vessels sometimes present a branched appearance; this is generally occasioned by the union of separate vessels in a more or less

$$
\text { Fig. 104. Fig. } 105 . \quad \text { Fig. } 106 . \quad \text { Fig. } 107 .
$$

Fig. 104. Simple spiral vessels.-Fig. 105. Compound spiral vessel, -_ Fig. 106. Branched spiral vessel.-Fig. 107. Union of spiral vessels in an oblique manner.
oblique manner (fig. 107), or occasionally, it is said, as in the Gourd and some other plants, by a division of the fibres of clistinct vessels (fig. 106).

Spiral vessels occur in the sheath surrounding the pith of Dicotyledons (figs. $179, s, s^{\prime}$, and $185 \mathrm{~B}, d$), in the fibro-vascular bundles of Monocotyledons ($f y .181, s v$), and in some of the Cormophytes, as the Lycopodiacee. They also exist in the petiole and veins of leaves, and in those of all other organs which are modifications of leaves, as bracts, sepals, petals, and other parts of the flower. They may be also frequently found in roots. In size they vary from the $\frac{1}{310}$ to $\frac{1}{3000}$ of an inch in diameter. The average size is about the $\frac{1}{1000}$. Spiral vessels are sometimes called Trachece or Trachenchyma, from their resemblance to the trachese or air-tubes of insects.
c. Annular Vessels.- In these vessels the fibre is arranged in the form of rings more or less regularly arranged upon their
inner surface (figs. 108, $r, 109$, and 110). Sometimes the wholc of the vessel presents this ringed appcarance (figs. 109 and 110), while in other vessels we find two rings conncetcd by onc or more turns of a spiral, the two forms irregularly alternating with

Fig. 108. Piece of an annular vessel from Zea Mays. h. The thin ccll-wall; r, the annular thickening of the cell-wall ; r^{\prime}, vertical section of one of the rings, showing, y, the inner substance, and, i, the denser laser over the inner side of the ring projecting into the cavity of the cell. After Sachs.-Figs. 109, 110. Annular vessels.-Fig. 111. Vesscl showing a combination of rings and spiral fibres.
each other (fig. 111). In size they vary from about $\frac{1}{400}$ to $\frac{1}{8} \frac{1}{0}$ of an inch in diameter. Annular vessels occur especially in the fibro-vascular bundles of the stems of soft, rapidly growing herbaceous plants among Dicotyledons, also in those of Mono-

Fig. 112. Reticulated vessel.-Fig. 113. Prismatic scalariform ressels of a Fern.-Fig. 114. Cylindrical scalariform vessels of the Fine.-Fig. 115. Vessel slowing a combluation of si iral and reticulated fibres, and scalariform markings.
cotylcdons, and in those of some Cormophytes. In the latter they exist especially, and of a rery regular character, in the Equisetacce (fig. 109).
d. Reticulated Vessels.-In these vessels the convolutions are more or less irregular, and connected in various ways by cross or oblique fibres, so as to produce a branched or netted appearance (fig. 112). These vessels are generally larger than the annular, and of much more frequent occurrence. They are found in similar situations.
e. S'calarifurm Vessels.-The peculiar appearance of these vessels is owing to their walls being marked by elongated transverse pits or lines, arranged over one another like the steps of a ladder, whence their name (figs. 113 and 114). They are sometimes cylindrical tubes like the other vessels, as in the Vine (fig. 114), and in many other Dicotyledons, in which condition they are apparently but slight modifications of reticulated vessels; but in their more perfect state, scalariform vessels assume a prismatic form, as in Ferns (fig. 113), of which they are then very characteristic, though sometimes they may be found elsewhere.

The ammelar, reticulated, and scalariform vessels constitute the spurions trachese of some authors. These vessels have commonly tapering points like the true spiral vessels; and thus overlap at their extremities when they come in contact (f g. 113). But in other instances they terminate more or less obliqucly, or by flattened ends, like most pitted vessels. We frequently find in the same vessel one or more of the above forms combined with the spiral (figs. 111 and 115), and thus forming intermediate states of each other.
f. Siere-tubes or Sieve-vessels.-These are vessels in which thickening of the cell-walls of their component cells docs not take place uniformly over their whole surface, but only at the ends of the cells, that is, where they are in contact with others of a similar nature. At these ends it forms a kind of network, sculptured in relief as it were on the wall (fg. 116, q) ; and when in such cases, the unthickened part of the walls of contiguous cells becomes absorbed so that their cavitics are continuous, we have formed what

Fig. 116. Young sievetubes or sieve-ressels from the lougitudinal seetion of the stem of Cucurbita Pepo. q. Transverse view of the sieve-like partition walls. si. Sieve-plate on the side-wall. x. Thinner parts of the sidewall. ps. Contracter protoplasmie contents, lifted off the trausverse septum at $s p$. After Snehs. are commonly known as sieve-tubes or sieve-vessels. Some hare also sieve-like openings through their side walls (fig. 116, si). These vesscls are very constantly prosent in the inner bark or
phloëm of Dicotyledons, and also in the fibro-vascular bundles of some Monocotyledons, and elsewherc. If the partition walls betwcen the component cells are not rcally perforatcd, but only thickened in a sieve-like manncr, the name of sieve, lattice, or clathrate, is applicd to the component cells.
g. Laticiferous Vessels.-These constitute the Mill-vessels of the old authors. They consist usually of long-branched tubcs lying in no definite position with regard to the other tissues (figs. 117 and 118), and anastomosing or uniting freely with one another like the veins of animals, from which peculiarity they may be at once distinguished from the other vessels of plants. When first formed these vessels are exceedingly minute and their walls are very thin; they become, however, large and

Fig. 119.

Fig. 117. Fig. 118.

Figs. 117, 118. Laticiferous vessels. _-Fig. 119. Laticiferous vessel from Euphorbia splendens: the latex contains starch granules of a peculiar form. After Thomé.

thick-sided as they.increase in age, but even then rarcly present any pits or spiral dcposits in their interior, as is the case in the thickened cells and vassels alrcady described. A common size is the $\frac{1}{1100}$ of an inch in diamctcr. They derive their name from containing a fluid called latex, which when exposed to the air becomes milky, and is cither whitc, as in the Dandelion, Spurge, Opium Poppy, Indiarubber, Lettuce, and many other plants ; or coloured, as is wcll seen in the Cclandinc, where it is yellow; or it may be of other colours. The latex has a number of granules or globules floating in it, which are composed of caoutchouc or analogous gum-resinous matters, \&e., and occasionally mixed with them may be obscrved peculiarshaped starch granules (page 32), as in Euphorbia splendens
(fig.119) ; or it may be mucilaginous, or gummy, or contain active secretions, \&c. Laticiferous vessels, from their containing some of the so-called secretions of the plant, are closely allied to the Receptacles of Secretion, and are frequently placed with them. (See page 72.) Laticiferous vessels occur especially in the imner bark of many Dicotyledons, in the pith, and in the petiole and veins of leaves; but they are also to be found in other plants.

They are formed, like other vessels, from rows of cells arranged in various directions with respect to one another, the partitions between their cavities being more or less absorbed so that they communicate freely together.

Besides the above more common characteristics of laticiferous vessels, there are numerous other varieties ; indeed, from the very great variety in structure, contents, and position of these vessels, and the many and various transitions between them and vesicular vessels, now to be described, Sachs has proposed that these laticiferous and vesicular vessels should be included under the common name of latex-sacs.
h. Vesicular or Utricular Vessels.-These resemble laticiferous ressels in one particular, as they contain latex (which, however, is clear or milky, but always contains true raphides) : while, on the other hand, they are unbranched and analogous to sievetubes in form, consisting as they do of long broad cells with siere-like septa. They were first noticed by Hanstein in the scales of the bulb of Allium, and have since been observed in the leaves and other parts of Monocotyledons, and in some Dicotyledons.

We have now described all the different kinds of cells, and the modifications they undergo, and the combinations of them which take place so as to form vessels. The different kinds of vessels and woody tissues are more or less combined together, and have always a tendency to develop and arrange themselves in longitudinal or vertical bundles in the parts of the plant where they are found, and thus they may be readily distinguished from the parenchyma in which they are placed, both in their form and mode of elongation. We thus find it convenient to speak of the tissue formed of these buncles under the collective name of Fibro-vascular Tissue, or the Fibro-vascular, Vertical, or Longitudinal System, to distinguish it from the ordinary cellular tissue, which constitutes the Parenchymatous, Cellular, or Horizontal System.
4. Epidermal Tissue.-In Cormophytes and in all Flowering plants, the cells situated on the surface of their young parts and organs (see page 60) which are exposed to the air, vary in form and in the nature of their contents from those placed beneath them, and are so arranged as to constitute a firm layer which may commonly be rcadily separated as a distinct membrane. To this layer the term Epilermal Tissue is given. It
is generally deseribed as eonsisting of two parts; namely, of an inner portion called the E'pidermis, and of an outer thin pelliele to which the name Cuticle has been given.
a. Epidermis.-This eonsists of one (figs. 95, e, and 123, a), two (fig. 124, a, a), three (fig. 125, a), or more layers of cells, firmly united together by their sides, and forming a eontinuous strueture, exeept at the points where it is perforated by the stomata, prescutly to be deseribed (figs. 131, s, and 132, s). These eells are generally of a flattened tabular eharacter (figs.

Fig. 120. Epidermal tissue from the leaf of the Iris (Iris germanica). p, p. Cuticle. s, s, s. Oval stomata, e, e. Epidermal eells. After Jussieu., Fig. 121. Epidermis of the Maize. a, a. Oval stomata. b, b. Zigzag retieulations formed by the sides of the eells.-Fig. 122. Sinuous epidermis with stomata, from the garden Balsam.

123-127), the sides of whieh vary mueh in their outline ; thus, in the epidermis of the Iris, and many other plants, they are elongated hexagons (f f. 120, e, c); in that of the Maize they are zigzag (f g. 121, b, b) ; while in the garden Balsann, Madder, and

Fig. 123.

Fig. 123. Vertieal section of the leaf of the Maize, showing the epidermis, n, a, formed of one row of eells, with projeeting lairs, g, g. the eommon Polypody, they are very irregular or sinuous (fig. 122) ; and in the epidermis of other plants we find them square, rhomboid, ©e.

Ordinarily in European plants and in those generally of cold and temperate elimates, the epidermis is formed of but one row of eells ; but in tropieal plants we frequently find two, three, or more rows of cells, by whieh provision suel plants are admirably adapted, as will be afterwards explained, for growth in loot dry elimates.

The upper walls of the epidermal eells are generally mueh thiekened and chemieally altered, or cuticularised as it is termed
(see Cuticle), by which the cell-walls are rendered impervious to moisture, and thus adapted to protect the more tender cells beneath from an undue loss of moisture from the scorching heat

Fig. 124.

Fig. 125.

Fig. 124. Tertical section through the leaf of a Banksia. a, a. Epidermis with two rows of cells. c. Spongiform parenchyma. b. Hairs which are contained in little depressions on the under surface of the leaf, and at whose base peculiar stomata are found. After Schleiden.-Fig. 125. Vertical section through the leaf of Olcander, showing the epidermis, f, composed of threc layers of thick-sided cells, and placed above a compact parenchyma of oblong cells. After Brougniart.
of the sun. This thickening of the upper walls of the epidermal cells may be especially observed in Jeaves of a leathery or hardened texture, as in those of the Oleander (f ig. 125, a), Aloes, Hoya (fig. 126, a), Box, and Holly, and in the succulent green stems of the Cactaceæ (fig. 127, a).

Fig. 126.

Fig. 127.

Fig. 126. Vertical section of the cpidermis of Iloyn carnose treated with caustic potash. a. The detached cuticle. b. The thickencd cuticularisel lnyers of the outcr walls of the cyidermal cells. After MLoll.- Fiq. 127. Vertical scetion throngh the epidermis of the stem of a Cactus. 1 . The thickened cuticularised upper walls of the epidermal cells.

The epidermal cells are generally colourless, but in some cases they contain colourcd fluids, and very rarely chlorophyll ; hence the green and other colours which leaves and other organs assume are duc to colouring matters of various
kinds which arc contained in the cavities of the subjacent parenchymatous cclls, and which show through the transparent epidermal cells. In the walls, however, of the epidermal eells of many plants, waxy matter is eontaincd; in those of Chara and Nitella; carbonate of lime; and in those of the species of Equisetum, and of the Grasses gencrally, silica is met with in sueh abundance that, if the organic matter be removed by the agency of heat or acids, a perfect skeleton of the structurc will be obtained.

The cpidermis covers all the young parts of plants whieh are directly exposed to the air, except the stigma in Flowering

Fig. 128.

Fig. 128. Pibrils or root-hairs on the surface of a young root. Plants, and it is in all cases absent from those which live under water. No true epidermis is to be found in Thallophytes. The epidermis which at first covers the young stem and branches of trees is replaced at a subsequent period by the corky layer of the bark.

The roots of plants arc invested by a modified epidermal tissue to which the term Epiblema has been given by Sthleiden; this name is, however, now but rarely used. It consists of cells with thin walls, without stomata, but possessing cellular hair-like prolongations termed fibrils or root-hairs (fig. 128).
b. Cuticle.-This consists generally of a thin transparent pellicle, which covers the entire surface of the epidermal cells (figs. 120, p, p, and $126, a$) with the exception of the openings called stomata (fig. 129) ; and it also forms a sheath over the hairs (fig. 129).

Not unfrequently the cuticle becomes of considcrable thickness, as in the epidcrmis of the upper surface of the leaf of Cycas (fig. $130, a)$. The cutielc is formed on the outer walls of those cells which are exposed to the chemical influences of air and light.

Fig. 129.

Fig. 130.

Fig. 129. Cutiole of the Cabbage, showing that it is nerforated by the stomata, and forms shenths over the hairs.-Fig. 130. Tertical section throngh the epinlermis, b, of Cyens revoluta, showing that it is covered by a thickened cuticle, a. Aiter Sehleiden.

The cell-wall in such a position becomes greatly thickened and altered in its texture ; so much so that the outcr part is clearly
defined from the inner cuticularised layers, and ean be stripper off as a distinct layer or euticle ($f i g .126, a$).
c. Stomata or Stomatcs.-These are orifiees situated between the sides of some of the epidermal cells, and opening into the intercellular eavities beneath, so as to allow a free communieation between the internal tissues and the external air (f igs. 132, s, and $133, s)$. The orifices are surrounded by eells with thinner walls and of a different form from those of the epidermis ; they also usually contain some chlorophyll grains. There are generally but two cells surrounding the orifiee, and these are commonly of a more or less semilunar form (fig. 120), so that the whole has some faint resemblanee to the lips and mouth of an animal, and hence the name of stoma applied to these structures, from $\sigma \tau о ́ \mu a$, a moutll. These bordering eells are ealled 'stomatal

Fig. 131.

Fig. 131. Vertical section of a portion of the frond of Marchantia polymorpha. g, I\% Stoma divided perpendicularly. h, h. Tiers of cells forming its walls. After Carpenter. cells,' 'pore - cells,' and 'guard-cells,' and have the power of opening or closing the orifice which they surround aecording to eircumstanees, as will be explained hereafter when treating of the funetions of stomata

Fig. 132.

Fig. $134 . \quad$ Fig. 135.

Fig. 133.
Fity. 132. Vertical section of the epidermis of Leucadendron decorum, showing, e, e, the epirlermal cells, with the stomatal cells, s, with elevatel margins, m, m - Fig. 133. Vertical "section of the cpircrmis of the Lris. s. The stoma. e, e. Epidermis. p. Parenchyma beneath the epidermis. l. Interceltular space into which the stoma opens.-Fig. 134. Epidermis of Rumex acefost, with rounded stomata, a.-Fig. 135. Square stoma, a, of Yueca gloriosu.
in the part devoted to the Physiology of Plants. Instead of two stomatal cclls, we sometimes, although buí rarely, find four, or even more; thus, in some of the Liverworts, the stomata are rounded apertures between the cpidermal cells, surrounded by
three or more tiers of stomatal cells, each tier being itself cumposed of four or five cells, the whole forming a kind of funnel or chimney (fig. 131).

Upon making a vertical section through a stomate we usually find that the stomatal cells are placed nearly or quite on a level with those of the epidermis. In other cases, however, and especially when situated upon leaves of a leathery or hardened texture, the stomatal cells are below the epidermal ones, while in some rare instances, again, they are above them.

The stomata vary in form and position in different plants, and in different parts of the same plant, but they are always the same in any particular part of a plant. The more common form is the oval

Fig. 136. Epidermis of the lenf of a species of Saxifraga, showing clustered stomata, s, with iutervening spaces, e, e, iu which they are absent. (figs. 120, s, s, and 121, a, a) ; but in other instances they are round (fig. $134, a)$; and in some cases square ($f g$. 135, a). They are either placed singly upon the epidermis, at regular (fig. 120) or irregular intervals (fig. 134) ; or in clusters, the intervening epidermis having none (fig. 136). The former is the more common arrangement. In the Banksia we find little cavities beneath the epidermis of the under surface of the leaves which contain a number of hairs (fig. 124, b), and between them, at their base, very small stomata.

The number of stomata also varies considerably. The following table will gire some idea of their abundance in leaves, and it will be observed that the number of stomata is usually greatest in those leaves where they are entirely absent from thcir upper surfacc.

Stomata in one square inch of surface.

	Upper surface	Lower surface
Mezereon	none	4,000
Preony	none	13,790
Vine	nonc	13,600
Olive	none	57,600
Holly	none	63,600
Laurustinus	none	90,000
Cherry-Laurel	none	90,000
Lilac	none	160,000
Hydıangea	none	160,000
Mistletoe	200	200
Tradescantia	2,000	2,000
House Leck	10,710	6,000
Garden Flag .	11,572	11,572

		Upper surface	Lower surface
Aloe	.	25,000	20,000
Yucca	.	40,000	40,000
Clove Pink	.	38,500	38,500

Stomata are not found upon all plants. Thus they are absent from all Thallophytes, but in the higher ordels of Cormopbytes, as the Ferns and their allies, they abound, while in the Liverworts and Mosses they are confined to certain parts. They exist more or less upon all Flowering Plants and their organs. But they are far more abundant upon those organs which are green; thus they are found especially upon leaves, as we have seen, but more particularly on their under surface. On the floating leaves of water plants, as in the Water-lily, however, we find them only on the upper surface ; while in vertical leares the stomata are equally distributed on the two surfaces. They nccur also on the young green stem and branches of plants ; and on the parts of the flower. In those plants which have no foliage leaves, as the Cactaceie, they abound upon the green succulent stems. They are commonly only found on those parts which are furnished with a true epidermis, and are accordingly absent, as a rule, from roots and all submersed parts of plants. Sachs and others have pointed out that there is a connexion between the distribution of stomata on leaves and their protection from wet by the wax-like coating commonly known as 'bloom;' and recently this has formed the subject of an interesting series of investigations by Francis Darwin (see Journ. Linu. Soc. (Bot.), vol. xxii. p. 99).
5. Appendages of the Epidermis.-Upon the surface of the epidermis, or in the sub-epidermal tissue, there are frequeutly to be found certain structures consisting of one or more cells of different forms, variously combined, and containing various substances. These are termed, collectively, Appendages of the Epidermis; and, as their name implies, they have no connexion with the fibro-vascular tissue of the leaves, branches, or stem. We shall treat of them under the two heads of Hair's and Glands ; althongh in many cases we can draw no distinct line of demarcation between these structures.
(1.) Hairs or Trichomes.-These are thread-like prolongations externally of the epidermal cells covered by cuticle (figs. $123, y, g$, and 129). They may either consist of a single cell, when they are called simple hairs (figs. 137-141), or of several cells, when they arc termed componnd (figs. 144 and 145). Simple luairs may be undivided (fig. 137), or forked (fig. 138), or branched (fig. 139). A beautiful form of simplo hair is that called stellate, as secn in Deutzia scabra, Alyssum, dc. (f igs. 140 and 141) ; this is formed by a cell dividing horizontally into a number of parts which are arranged in a star-like form.

Compound hair's may be also undivided, as is nore frcquently
the case (figs. 144 and 145), or branehed (figs. 142 and 143). The component cclls of compound hairs may be also variously arranged, and thus give a variety of forms to such hairs. Commonly their colls are placed end to end in a single row, so that the hairs assume a more or less cylindrical form ; but when the component cells are contracted at the points where they come in contact, they become moniliform or necklacc-shaped (.figs. 144 and 145). When the cells below are larger than thosc above, so that the hairs gradually taper upwards to a point, they become conical ; or when gradually larger from the base to the apex, the

Fig. 141.

Fig. 137. Simple unbranched hair of the common Cabbagc,-Fig. 133. Forked hair of Whitlow-grass (Draba). -Figs. 139, 140. Branched stcllate hairs of Alyssum.-Fig. 141. Stcllate hairs from Althaea officinalis.Fig. 142. Brauched hair of a species of Mfrrubium.-Fig. 143. Branched hair of Alternanthera axillaris. From Henfrey.
hairs are clavatc or club-shaped (fig. 146); or when suddenly enlarged at their apex into a rounded head, capitate (fig. 147). When the terminal cell of a hair is terminated by a look on one side pointing downwards, such hairs are termed uncinate or: hooked (fig. 148) ; or if ending in two or morc hooks at the apex, they are glochidiatc or barbod (fig. 149). Hairs, again, instead of bcing ercet, or placed obliquely upon the cpidermis, may develop horizontally in a more or less circular manner, and form stcllate hairs, as in the Ivy (fig. 150) ; or two of the eomponent cells may derelop in opposite dircctions from another
cell raised above the level of the epidermis, so as to produce what is termed a shield-like or peltate hair (fig. 151). Many of the above forms occur equally in simple hairs as in compound ones, and the figures are taken indifferently from cither kind. Many hairs have one or more spiral fibres in their interior, as those on the testa of the seeds of Acanthodium, and of the outer coat (epicarp) of the fruit of certain species of Salvia, as in that of Salvia Horminum (fig. 152).

When the divisions of stellate hairs are closely connected by cuticle or otherwise, they form scales or scurf; such epidcrmal appendages are, therefore, simply modifications of stellate hairs. A scale may be defined as a flattened membranous more or less rounded plate of parenchymatous tissue, attachcd by its centre,

Fig. 141.
Fig. 146. Fig. 147. Fig. 148.

Fis. 151.
Fig. 144. Moniliform hair of the Virginian Spiderwort (Tradescantio vir-ginica).-Fig. 145. Moniliform hair of the Marvel of Peru (Mirabilis Jalapa).-Fig. 146. Clavate hairs.-Fig. 147. Capitate lairs.-Fig. 148. Hooked hairs.-Fig. 149. Glochiliate or barbed hairs.-Fig. 150. Stellate hair from the Iry.-Fig. 151. Peltate hair from Malpighia urens.
and presenting a more or less irregular margin from the unequal prolongation of its component cells (fig. 153). These scalcs are particularly abundant on the surface of some plants, to which they communicate a scurfy or silvery appearance, as in the Elcougnns. Snch a surface is said to be lepidote, from lepis, the Greek term for a scule.

Other modifications of hairs which are allicd to the above, are the ramenta or ramentaceous hairs so frequently found upon the stem and petioles of Ferns. Thesc consist of a layer of cells (fig. 155) combined so as to form a brownish Hattened scale
attaehed by its base to the surface of the epidermis from whenee it grows (fig. 154).

When the hairs are eomposed of eells whieh are short, and have their internal walls thiekened so that they form stiffened proeesses, they are then called setce or bristles, and the surface is termed setose or setaceous. These, slightly modified, form prickles, whieh may be defined as large multieellular hairs springing

Fig. 152.

Fig. 154.

Fig. 153.
Fig. $15 \overline{5}$.

Fig. 156.

Fig. 152. Hairs, each having a spiral fibre in its interior, from the epicarp of the fruit of Salria Horminum._-Fig. 153. Scale of the Oleaster (Eleagnus).-Fig. 154. Ramenta from the petiole of a Fern.-Fig. 155. Ramentaceous lair, showing its componcnt cells. - lig. 150. Prickles on a Rose-branch.
from the epidermis and layer of cells beneath, the walls of whieh are hardened by the deposition of lignin, and whieh terminate in a sharp point (fig .156). They are especially abundant on the stems of the Rose and Bramble. Prickles and some other allied structures, as warts, de., whielr arise from the subepidermal tissue as well as the epidermis, have been termed Emergences. They should be carefully distinguished from spines, to be hereafter alluded to when speaking of branches. (See page 107.)

The ordinary hairs above described are either empty, or they contain tluid of a watery nature, which may be colourless or coloured. Such have been therefore termed by some botanists lymphatic hairs, to distinguish them from other hair-like appendages which are filled with special secretions, and hence lave been called glandular hairs. The latter will be again alluded to under glands, to which variety of epidermal appendage they properly belong.

Hairs occur upon various parts of plants, and, according to their abundance and nature, they give varying appearances to their surfaces, all of which are distinguished in practical Botany by special names. The more common position of hairs is upon

Fig. 157.
Fig. 158.

Fig. 159.

Fig. 157, a, Cotton. b. Flax fibres (libercells). Fig, 158. Pistil of the BellHower (Cempamula), with its style covered with collecting hairs.-Fiy. 159. Magnified representation of two of the collecting hairs of the Bell-flower. a. The hair in its normal position. b. The hair with the upper part partially drawn within its lower. From Sehleiden.
the leaves, stem, and young branches, but they may also bc found on the flower-stalks, bracts, parts of the flower, the fruit, and the seed. The substance called cowhage consists of the hairs covering the legumes of Mucuna pruriens; while cotton is the hair covering the seeds of the specics of Gossypium.

Cotton may be readily distinguished under the microscope from the liber-cells already described (page 50), from the cell of which it is formed, not possessing any stiff thickening layers, and thus collapsing when dry, so that it then resembles a more or less twisted band with thickened edges ($f(y .157, a$) ; while liber-cells, such as those forming flax fibres, from having thick walls, always maintain their original cylindrical form and tapering extremities (fig. 157, b).

On young roots we find also cells prolonged beyond the surface which are of the nature of lairs, and have therefore been termed root-hairs or fibrils (fig. 128) (see Roots). The hairs
which occur on the parts of the flower frequently serve an indirect part in the process of fertilisation by collecting the pollen which falls from the anthers; hence such are termed collecting hairs (fig. 158). The collecting hairs, which occur on the style of the species of Campanula ($f y$. $159, a$) are peculiar from their upper end, b, retracting within their lower, at the period of fertilisation.

Fig. 160. Fig. 161. Fig. 162.
Fig. 163.

Fig. 160. Stalked unicellular gland of Saltia.-Fig. 161. Stalked unicellular glands of Snapdragon (Antirrhinum maius).-Fig. 162. Stalked many-celled gland of Ailanthus glandulosa. From Meyen.-Fig. 163. Stalked many-cclled gland from Begonia platanifolia. From Meyen.
(2.) G'lands.-This name properly applies only to cells which secrete a peculiar matter, but it is also vaguely given to some other epidermal and sub-epidermal appendages. Glands have been variously arranged by authors ; thus, by some, into eater-

Fig. 164. Fig. 165. Tig. 166. Fig. 167.

Fi\%. 164. Stalked gland of Snapdragon, terminated at its summit by two secreting cells.-Fig. 165. Stalked ghand with four secreting cells at its apex. From Meycu.-Fig. 166. Sessile many-celled gland.-Fig. 167. One-celled sessile glunds, termed papule or papille.
nal and internal ; by others, into simple and compound; while others, again, have adopted different modes of arrangement. We divide them into external and internal.
a. External Glands.-These may be again divided into stalked, and sessile or not stallied. The stalled glands are those which are frequently called glandular hairs (sce page 67). They are cither formed of a single cell, dilated at its apex by the peculiar Huid
it secretes (figs. 160 and 161), or of two (fig. 164), or more (fg . 165) secreting cells placed at the end of a hair ; or they consist of a mass of secreting cells (fyys. 162 and 163).

Sessile Glends present various appearances, and consist, like the former, of either one secreting cell (f ig. 167), or of two, or more (fig. 166). Those with one secreting cell placed above the level of the epidermis are frequently termed papillce (fig. 167); and it is to their presence upon the surface of the Ice-plant (Mesembryanthemum crystallinum) that the peculiar crystalline appearance of that plant is due. When sessile glands are composed of cells containing solid secretions so that they form hardened spherical or other shaped appendages upon the surface of the epidermis, they are termed warts; these are now, however, commonly placed among the Emergences (see page 66).

When a sessile gland contains an irritating fluid, and is prolonged above into one or more lair-like processes, which are placed horizontally (fig. 168), or vertically (fyg. 169), we have a sting formed. Stings are sometimes arranged under the head of stalked glands; we place them here because their secreting apparatus is at the base, and not at the apex, as in stalked glands.

In the Nettle ($f i g .169$), the sting consists of a single cell, enlarged at its base, b, by the irritating fluid f, f, which it contains, and tapering upwards to near the apex, when it again expands into a rounded lead, s. The enlarged base is closely invested by a dense layer of epidermal cells, we, which forms a kind of case to it. In touching a nettle lightly, the knob-like head, s, is broken off, and the sharp point of the sting then left enters the skin, while the irritating fluid is pushed up at the same time into the wound by the pressure occasioned by the
elastic force of the surrounding epidermal cells, we. If a nettle, instead of being thus toueled lightly, be grasped firmly, the sting becomes crushed, and as it cannot then penetrate the skin, no irritation is produced.
b. Internal Glands.-These are cavities containing secretions situated below the epidermis, and surrounded by a compact layer of secreting cells (fig. 170, l, g). They are closely allied in their nature to receptacles of secretion (see page 72), from

Fig. 170.

Fig. 171.

Fig.170. Internal gland from the leaf of the common Rue (Rutn grateolens). g. Gland surrounding a cavity, l, and itself surrounded by the epidermis, e, and the ordinary cells of the leaf, we.-Fig. 171, r, r. Internal glands from the rind of the Orange.
which, in fact, in many cases, it is difficult to distinguish them, and amongst which, therefore, they are frequently placed. In some cases they are of small size, as those in the leaves of the Rue (fig. 170, g, l), Myrtle, Orange, and St. John's Wort. In these leaves they may be readily observed by holding them between the eye and the light, when they appear as little transparent spots; henee such leaves are termed dotted. This dotted
Fig. 172.
Fig. 175.
Fig. 174.

Fig. 172. Petal of a specics of Ronunculus witlı a mectary at its base, covered by a scale.-Fig. 173. Petal of Crown Imperial (Fritillaria impermitis), with a nectariferons ghan! at its base.-Fiy. 174. dir cavities from the stem of Limnocharis Plumieri.
transparent appearance is due to the oily matters they contain refracting the light in a different mamer to that of the other parts of the leaf. In other instances these glands are of large size (fig. $171, r, r$), and project more or less beyond the surface in the form of little excreseences, as those in the rind of the Orange, Lemon, and Citron. Internal glands aro
very common in many other plants besides those already mentioned: thus in all the Labiate Plants, as Mint, Marjoram, Thyme, Rosemary, Sage, $\mathbb{\& c}$. ; and it is to the presence of the secretions they contain that such plants owe their yalue as articles of domestic economy, or as perfumes, or medicinal agents.

Holding a sort of intermediate position between the internal and external glands as above described, are the true nectaries of flowers, which being strictly of a glandular nature will be most properly alluded to here undcr the name of nectariferous glands. They are well seen at the base of the petals of the species of Ramunculus (fig. 172) and in the Crown Imperial (fig. 173). These glands consist of a pore or depression into which a honey-like fluid or nectar is secreted, or rather excreted, by the surrounding cells. The tissue of the stigma of Flowering Plants is also covered by a viscid secretion or excretion at certain periods, and may be considered therefore as of a glandular nature. The surface of the ovary and other parts are also sometimes more or less covered by a similar saccharine fluid, and are then described as nectariferous.

When glands or other receptacles containing peculiar secretions arise from the separation of uninjured cells from one another, they are termed schizogenous; when from the absorption of a mass of tissue, lysigenous (f ig. 171, r, r).
6. Intercellular System. - Having now described the different kinds of cells, and the modifications which they undergo when combined so as to form the tissues, we have in the next place to allude to certain cavitics which are placed between their walls, or produced by the destruction of some of their component cells. These constitute the Intercellular System.
a. Intercellular Passages or Canals and Intercellular Spaces.The cells being, in the great majority of cases, bounded by rounded surfaces, or by more or less inregular outlines, it must necessarily happen that when they come in contact with one another they can only touch at certain points, and therefore interspaces will be left between them, the sizes of which will vary, according to the greatcr or less roundness or irregularity of their surfaces. When such spaces exist as small angular canals running round the edges of the cells and freely communicating with one another, as is cspecially evident in round or elliptical parenchyma (fig. 62), they are called intercellular passages or comuls; but when they are of large size, as in stellate or spongiform tissuc, they are termed intercellutar spaces (figs. 93 and $124, c$). In most cases these spaces and canals are filled with air, and when they occur in any organ exposce to the atmosphere in which stomata are found, they always communicate with thom ($f i y .132, l$), by which means a free passage is kept up between the atmosphere and the air they themselves contain.
b. Air Cavities. -In water-plants the interccllular spaces are frequently of large sizc, and bounded by a number of sinall cells regularly arranged (fig. 174), by which they are prevented from communicating with onc another, or with the external air; they are then commonly termed air cavities. In such plants these cavities fulfil the important services of cnabling them to float, and of supplying their interior with air. In other instances we find large air cavitics, as in the stems of Grasses and Umbelliferous plants, which have been formed by the destruction of their internal tissues by the more rapid growth of the outer portions; these large cavities are termed lacumi, and appear to have no special functions to perform.
c. Receptacles of Secretion.-In many plants, again, the intercellular canals or spaces act as receptacles for the peculiar secretions of the plant; in which case they are termed Receptacles of Secretion. In many instances these are closely allied to the internal glands (figs. 170 and 171) already described, and are frequently confounded with them; indeed, some regard them as highly developed forms of internal glands. Thesc receptacles vary much in form, but are usually more or less

Fig. 175.

Fig. 175. Fruit of Parsnip (Pastinaca satira). A. Dorsal surfnee. a, b, b. c, c. Primary ridges. $1,2,3,4$, Vitte. B. Horizontal section of the fruit. The letters nnd figures refer to the same parts as in A. In fig A, the vittre are rendily seeu by noticing that they are shorter than, and alteruate with, the ridges, $c(, b, b, c, c$.
elongated. They are formed by certain cells separating from each other as thcy are developed (schizogenows), by which means canals and spaces of various kinds are formed in the surrounding tissue. In the Conifere they contain turpentine, and have thereforc been termed tompentine vessels. In the plants of this order they occur especially in the wood ($f i g .186$, la) and bark: those in the wood forming clongater tubular passages. In the pericarp of the fruit of Umbelliferous Plants they form the receptacles of oil, which are commonly termed vitte (fig. 175, $1,2,3,4, A$ and B). The receptacles of secretion are found especially in certain orders of plants, to which from the nature of
their contents they communicate important properties. (See also Laticiferous Vessels, page 57).
d. Intercellular Substance.-A peculiar substance which was termed, from its position, intercellular substance, was formerly supposed to be universally distributed between the walls of the cells, glueing them together as it were ; and in some plants occurring in great abundance, as in many Alge, the horny albumen or endosperm of some seeds, and in the collenchymatous cells of the common Beet, Begonia ($\operatorname{fg} .95, \mathrm{cl}, \mathrm{cl}$), ©c. But in all these cases this appearance is due to alterations and changes which have taken place in the cellulose forming the cell-wall and in the contents of the cell. Thus, in the Sea Wrack, it is caused by the enormous imbibition of water, which makes the outer part of the cell-wall swell up, and eventually to be converted into mucilage. Hence this special intercellular substance does not exist in plants.

CHAPTER 3.

ORGANS OF NUTRITION.

Hating now considered the elementary structures of plants, we proceed to describe in detail the various compound organs which they form by their combination. These, as already noticed (page 13), are arranged in two divisions, namely: 1. Organs of Nutrition; and 2. Orgaus of Reproduction. The root, stem, and leaves form those of nutrition, and the flower and its parts those of reproduction. Upon the whole, it is most convenient to commence our notice of the organs of nutrition with the stem.

Section 1. The Stem or Caulone.

The stem may be defined as that part of the axis which at its first development in the embryo takes an opposite direction to the root, seeking the light and air, and hence termed the ascending axis, and bearing on its surface the leaves and other leafy appendages (fig. 20, t). This definition will, in numerous instances, only strictly apply to a stem at its carliest development, for it frequently happens that, soon after its first appearance, instead of continuing to take an upward dircetion into the air, it will grow along the ground, or even bury itsclf bencath the surface, and thus by withdrawing itself from the light and air it resembles, in such respects, the root, with which organ such stems are, thercfore, ordinarily confoundcd. In these cases, however, a stem is at once distinguished from a root by bearing
scales or cataphyllary leaves, each of which has also the power of forming a leaf-bud in its axil. The presence of leaves with leaf-buds in their axils is therefore the essential characteristic of a stem, in contradistinction to a root, in which such structures are always absent.

All Flowering plants, from the mode in which their axis is developed from the embryo in germination (page 13), must neeessarily have a stem, although such stem may be very short. Those which have this organ elearly evident are ealled cautescent, while those in whieh it is very short or ineonspicuous are termed acaulescent or stemless. In Flowerless plants the stem is not necessarily present; thus it is absent in all Thallophytes, as already noticed (page 7).

1. Internal Structure of the Stem in general.-A stem in its simplest eondition consists merely of parenchymatous cells, with oecasionally a eentral vertieal cord of slightly elongated, somewhat thickened cells. Examples of such a stem may be commonly seen in Mosses (figs. 9 and 10). Such a strueture lowever would be unsuited to plants except those of low organisation, and we aecordingly find, as a rule, that in all plants above the Mosses the stem is made up partly of parenchymatous cells, and partly of woody tissue and vessels of different kinds, by which the requisite strengtl and toughness are produced. In such stems therefore we distinguish two systems as already noticed (page 57), namely, a Parenchymatous or Cellular, and a Fibro-vascular ; and as the fibro-vascular tissue is arranged in longitudinal bundles in the midst of the parenchymatous, it has also been termed the Vertical or Longitudinal System, while the parenchymatous has been called the Horizontal system.

In their internal structure the stems of plants are subject to numerous modifications, all of whieh may be, howerer, in their essential particulars, reduced to three great divisions, two of which are found in the Phanerogamia, and one in the Cryptogamia. As illustrations of the two former, we may take an Oak and a Palm stem ; of the latter, that of a Treefern.

Upon making a transverse section of an Oak (fig. 176), we observe that the two systems of which the stem is composed are so arranged as to exhibit a distinct separation of parts. Thus we have a central one, m, called the pith; an external one, $c e$, or bark; an intermediate wood, r, arranged in concentrie lasers or annual rings ; and little rays, b, comeeting the pith and the bark, termed medullary rays. Such a stem grows essentially in diameter by amnual additions of new wood on the outside of the previous wood, and hence it is called Exogenous (from two Greek words signifying outside growers).

In a Palm stem no such distinction of parts can be noticed (fig. 177), but upon making a transverse seetion we observe a mass of parenchyma, m, distributed throughout it, and the
fibro-rascular system arranged vertically in this in the form of separate bundles, f, which have no tendency to form concentric

Fig. 17.

Fig. 176. Transverse section of an Oak-branch six years old. m. The medulla or pith. c, c. The bark. $r^{\text {. The wool, arrauged in concentric layers. }}$ b. Medullary rays. - Fig. 177. Transverse section of the stem of a Pahm. m. The parenchyma. f. The fibro-vascular bundles. b. The rind or false bark.
layers of wood ; the whole being covered externally by a fibrous and parenchymatous layer, b, which, as will be hereaftcr seen, is formed essentially by the ends of the fibro-vascular bundles, and which is termed the false bark or rind. This structure is called Endogenous (from two Greek words signifying inside grovers), as such stems grow by the addition of new fibro-vascular bundles which are at first directed towards their interior. These two structures, the Exogenous and Endogenous, are claracteristic of Flowering plants.

If we now turn our attention to the Cryptogamia, and make a transverse scction of a Tree-fern (fig. 178), we observe the centre, m. to be either hollow or filled with parenchyma, the fibro-vascular bundles being arranged in

Fig. 178.

Fif. 178. Transverse section of the stem of a Trec-fern. m. Parenchymatous eells, which are wanting in the centre. v, v, v, Fibro-vascular bundles. e. Rind. irregular sinuous plates around it, v, v, v, and forming a continuous or interrupted circle near the circumfcrence, which consists of a rind, e, inseparable from the wood beneath. This structure is termed Acrogenous (from two Greck words signifying summit growers), because the fibro-vascular bundles of such a stem grow oniy by additions to their apex.

The eharaeteristie peeuliarities thus found to exist in the internal appearance and growth of these three kinds of stem are due to corresponding differenees in their eomponent parts, or, as they are commonly ealled, their fibro-vascular or vascular bundles. Thus, the fibro-vascular bundle of an Exogenous stem (fig. 179) eonsists in the first year of growth of a layer of spiral vessels (s, s^{\prime}, and fig. 180, $s v$), surrounding the pith (p^{\prime}, and fig. 180, p); on the outside of this layer there are subsequently developed, in perennial plants, pitted vessels (p, p, and fig. 180, d) and woodcells (w^{\prime}, w, and fig. 180, w), which together form the wood. But in herbaceous plants annular and retieulated vessels are also found

Fig. 179.

Fig. 179. Radial vertical section though au indefinite fibro-vascular bundle from the stem of thic Sunflower. p^{\prime}. Pith, s, s^{\prime}. Spiral vessels. w^{\prime}, r. Woodcells. p, p. Pitted vessels. c. Cambium. st, st. Sicve tubes. $p h$. Libercells. n. Bundle-sheath. C^{\prime}. Cellular layers of the bark. After Prantl.
intermixed with the wood-cells. The wood is eovered externally by a layer of vitally aetive or generating cells (figs. 179, c, and $180, c$), ealled the cambium (see page 88), on the outside of whieh are the liber (figs. 179, st, $p h$, and 180, l), the cellular parts of the bark (figs. 179, C^{\prime}, and 180, c e), and the epidermis (fig. 180, e). The different kinds of tissue whieh are placed within the eambium, or cambium layer as it is frequently termed, form what has been called the xylem or woody portion of the bundle, and those outside the cambium forming the liber, that portion whieh has been termed the phloüm; so that the fibro-vaseular bundle has the pith (fiy. 180, p), on its imer surface, and is eovered extermally by the eellular layers, ce, of the bark. In the stem of some plants, as in the above, a single special layer of eells,
termed the bundle-sheath (fig. $179, n$), forms the innermost layer of the cellular portions of the bark, and thus investing the fibrovascular bunclle. In these bundles the growth of the different parts is progressive, the imner part of each being first formed, and growth gradually proceeding to the outside, and as they always contain a cambium layer they are capable of further growth, and thus form periodically new layers of xylem and phloëm, and are therefore called indefinite or open fibro-vascular bundles. It also necessarily follows from the cambium layer

Fig. 180.

Fig. 181.

Fig. 180. Transverse section of an indefinite fibro-vascular bundle of an Exogenous stem (Melon). p. Pith. sv. Spiral vessels. mr. Medullary ray. v. Wood-cells. d. Pitterl vessels. c. Cambium layer. l. Liber or phloëm. ce. Cellular portions of the bark. e. Eidermal tissue.-Fig. 181. Trausverse section of a definite fibro-vascular bundle of an Endogenous stem (Palm), the upper portion being dirceted to the centre. w. Woot-cells. so. Spiral vessels. c. Cambinm-like eells. d. Pitted vessels. p. Pareuehyma (ground tissue), surrounding the bundle. l. Liber-cells.
being placed between the xylem and the phloëm, that the layers of increasc to thesc parts of the bundle are in continuity with the previous ones.

In Endogenous stems the fibro-vascular bundles (fig. 181) consist internally of wood-cells, u, and spiral vessels, $s v$; on the outside of which other spiral vessels are formed, as well as pitterl, d, and other vessels; these are succceded by a number of delicatc parenchymatous cells, c, corresponding to cambium cells, which are gradually converted into thick-walled prosenchymatous cells, l, resembling those of the liber of Exogenous stems, together with some sicve-tubes; and the whole bundle is surrounded by parenchyma, p. In this case the development of the fibro-vascular bundles, like those of Exogenous stems, is
gradual, the inner part of eaeh being first formed, and growth proeeeding progressively to the outside: hence these also are progressive bundlcs; but, as such bundles have no special layer of generating cells resembling the cambium layer, no additions to them can be made in successive seasons, as is the case in the indefinite fibro-vascular bundles of Exogenous stems. Hence the new bundles arc not developed in continuity with the old, but remain distinct and of limited size, and are therefore named definite or closed fibro-vascular burdles.

In Acrogenous stems the filro-vascular bundles are chiefly made up of vessels of the scalariform, annular, or spiral type, according to the different orders of Cormophytes from whence they have been derived; these are surrounded by delicate tubular cells, and the whole is enclosed by a firm layer of parenchymatous cells the walls of which have undcrgone a thickening and hardening process, and to which the name of selerenchyma has been given, and forming what has been called the bundlc-sheath. Such bundles only grow by additions to their summit; and as these bundles, like those of Endogenous stems, have no special layer of cambium cells, they are also said to be closed or definite.

The distinctive appearances and modes of growth which we have thus scen to occur in the stems of the two Flowering Plants above noticed are also accompanied by certain differences in the structure of their embryo. Thus plants with Exogenous stems have an embryo with two eotyledons (figs. $16, e, e$, aud 18, c, c) ; those with Endogenous stems have but one cotyledon in their embryo (fig. 19, e). Hence Exogenous stems are also termed Dicotyledonous; and Endogenous stems Monocotyledonout. For reasons which we shall describe hereafter, the latter terms are in some cases to be preferred to the former. In the succeeding pages we shall use them indiscriminately. Acrogenous stems arc also sometimes termed Cryptogamous, because they are only found in Flowerless plants. With these general remarks on the internal structure of the three kinds of stems we now proceed to describe them respectively in detail.
A. Exogenous or Dicotyledonous Sten.-All the trees and large shrubs of this country, and with rare exceptions those of temperate and cold climates, are exogenous in their growth. In warm and tropical climates such plants occur associated with those possessing endogenous and acrogenous structure; but Dicotyledonous plants are far the most abundant even in these parts of the world.

In the embryo state, the Exogenous stem is entirely composed of parcnehyma. But as soon as growth commenees, some of its parenehymatous cells beeome developed into vessels and wood-eells, so as to form the indefinite fibro-vascular bundles which are charaeteristic of such a stem. These woody portions (fig. 182, t) are at first separated from each other by large
interrening spaces of parenchyma, but as growth proceeds they continut to enlarge, while at the same time new fibro-vascular elements are developed betwcen them, so that they ultimately form at the end of the first year's growth a ring of vessels and wood-cells round the central mass of parenchyma, m, interrupted only at certain points by projections of this parenchyma in the form of radiating lines, r. This ring is also surrounded by an external layer, b, of parenchymatous and liber tissues, which is connected with the central parenchyma by the radiating lines, r, already alluded to. The stem then presents the following parts (fig. 182) : 1. A central mass of parenchyma, m, which is called the Medulla or Pith; 2. An interrupted sheath of spiral vessels, t, called the Medullary sheath; 3 . An interrupted ring of woodcells and vessels, forming the Wood; 4. A layer of very delicate thin-

Fig. 182.

Fig. 182. Transverse scetion of the first year's stem of an Exogenous or Dieotyledonous stem. m. Pith. r. Medullary rays. t. Spiril vessels forming the medullary sheath on the outside of which are the other elements of the wood and the liher. b. Cellular layers of the bart. walled cells, the Cambium or Cambium layer; 5. Radiating lines, r, connecting the pith with the cambium layer and bark, the Medullary rays ; and 6. The Bark, b, a mass of parenchyma surrounding the whole stem,

Fig. 183.

Fig. 183. Transverse section from the centre to the cireumference of the stem of the Maple, three years old. m. Pith. t. Spiral vessels. v, v, v. Pitted vessels. f, f, f. Wood-cells. c. Cambium or cambium layer. s. Corky layer; within which may he observed the other cortical layers, marked $l p l, p l, p l$. mc. Newly forming bark. The figures $1,2,3$, refer to the three suecessive years' growth of the wood.
and containing in its interior liber-cells, \&cc., and invested on its outer surface by the Epidermis.

The stems of plants which live more than onc year, as those
of trees and shrubs, at first resemble those which are herbaceons or die yearly, except that the wood in such plants is generally firmer and in larger proportion. As growth proceeds in the second year, a new ring of wood is formed on the ontside of the one of the previous year (fig. 183, 2), while at the same time a new fibrous layer is added to the inside of the bark, l. These layers are developed out of the cells of the cambium layer, already alluded to as being situated betwecu the xylem and the phloem of the indefinite fibro-vascular bundles which form the stems of Exogenous plants (figs. 179, c, and 180, c). The medullary rays (fig. 185, A, i, i), at the same time increase by addition to their outside, and thus continue to keep up the conncxion between the pith and the bark. In succeeding years we have in like manner new layers of wood and liber, one of each, as a rule, for every year's growth (fig. 183, 3), while the medullary rays also continue to grow

Fig. 184.

Fig. 184. Young brinch of Walnut (Juglans regia) cut vertically to show the discoid pith.
 branch of walnut from within outwards. Each succeeding year's growth is therefore essentially a repetition of that of the first year, except as regards the pith and spiral vessels; the former of which does not increase in size after the first year, and the latter are never repeated, so that in old stems we have no more distinct regions than in those of the first year. We have consequently in all Exogenous stems the following parts, namely, pith, medullary shcath, wood, medullary rays, cambium layer, and bark-which we shall now diescribe in the order in which they are placed.

1. Pith or Medulla (figs. 182, m, and 185, B, a, a). -This consists essentially of parenchyma, and it forms a more or less cylindrical or angular column which is situated commonly at, or towards, the centre of the stem. As a general rule the pith is not continued into the root, but it is always in conncxion dircctly with the terminal bud of the stem, and also at first indirectly ly the medullary rays with all the latcral leafbuds; as the lattcr, however, continue to devclop, their connexion with the central pith is cut off, as will be explained hereafter in speaking of their structure and origin. The parenchyma of which the pith is composed is gencmally that kind which is known as regular (fig. 65), so that when a section is made of it, and examined microscopically, it presents an hexagonal (figs. 66 and 185, B, a, a) or polyhedial appearance.

In the earliest stages of the plant's existence the whole of it consists of parenchyma ; and out of this tissue, by the differentiation of special cells, the more elaborate spiral and other
vessels, and wood-cells are developed. As, however, these elements of the fibro-vascular bundles increase in number, they encroach upon the parenchyma, and thus circumscribing the central portion till it assumes the appearance of a central continuous column or pith (fiy. 182, m), filling the interior of the stem, and giving off the medullary rays, r, as flattened plate-like processes which connect the pith with the cellular layers of the bark, b. That portion of the parenchyma which thus remains, including the pith, medullary rays, and cellular layers of the bark, is called the fundamental or ground tissue.

Instead of continuing to form an uninterrupted column, the pith, in after years, owing to the external parts growing rapidly, becomes more or less broken up; and even in many herbaceous plants, such as the Hemlock and others, which grow with great rapidity, it is almost entirely destroyed, at an early period of the plant's life, merely remaining in the form of ragged portions attached to the interior of the stem; and thus large central aircavities or lacune are formed. In some plants, such as the Walnut ($f g .184$) and Jessamine, the pith is broken up regularly into horizontal cavities separated only by thin discs of its substance. It is then termed discuid.

The diameter of the pith varies much in different plants. Thus it is generally very small in hard-wooded plants, as in the Ebony and Guaiacum ; while in soft-wooded plants, as the Elder and Ricepaper Plant (Tetrapanaxi(Aralia) pap!rifera), it is large. The diameter not only varies in different plants, but also in different branches of the same plant; but when once the ring of wood of the first year is fully perfected, the pith which it surrounds can no longer increase, and it accordingly remains of the same diameter throughout the life of the plant.

The pith, as we have just seen, is essentially composed of parenchyma. It also frequently contains laticiferous vessels, as may be readily observed by breaking asunder a young branch of the Fig-tree, when a quantity of milky juice at once oozes out from their laceration.
2. The Medullary Sheath (fig. 185, B, d) consists of spiral vessels which are situated on the innermost part of the wedge of wood which forms the first year's growth. These vessels do not form a continuous sheath to the pith, but spaces are left be-tween them, through which the medullary rays pass outwards (fiy. 182, t). As the spiral vessels are never repeated after the first year's growth, the medullary sheath is consequently the only part of the stem in which they normally occur.
3. The Wood or Xylem. - This is situated between the pith on its inside, and the bark on its outer surface (fiy. 176, r), and it is separated into wedge-shaped bundles by the passage through it of the medullary rays, 4 . We have seen that in the first year's growth of an exogenous stem the wood is deposited
in the form of an interrupted ring immediately surrounding the pith (fig. 182, t). That portion of the ring which is first developed consists, as we have also seen, chiefly of spiral vcssels (figs. 182, t, $183, t$, and $185, \mathrm{~B}, d$), which form the medullary sheath.

On the outside of the medullary sheath, the ring of wood forming the first year's growth (fig. 185, B, 1) consists of woody tissue, c, among which are distributed, more or less abundantly, some vessels, b, chiefly of the kind called pitted in perennial plants; although in herbaceous plants we have also annular and

Fig. 185. Dingram showing the strueture of an Exogenous stem three rears old. A. Transverse section. B. Tertical section. The fgures 1, 2. 3. refer to the years of growth of the wood, and the letters mark similar parts in both sections. a, a. Medulla or pith. d. Spiral vessels. b, b, b. Pitted vessels. c, c, c. Wood-eells. e. Cambium layer. f. Inner layer of bark or liber (phloëm). g. Niddle layer of bark. h. Outer layer of bark. i, i. Medullary rays. After Carpenter.
other vessels. When the stem lasts more than one year a sceond ring of wood is formed, as we have seen, from the cells of the cambium layor which are placed out the outside of the first ring. This second ring ($f i g .185,2$) resembles in every respeet that of the first year, except that no medullary sheath is formed ; it eonsists therefore entircly of woody tissuc and pitted ressels, c, b. In the third year of growth mother zone of wond is produced preciscly rosembling the seeond (fig. 185, 3), and the same is the ease with eaeh succeeding annual ring as long as the
plant continues to live. It is in consequence of each succeeding layer of wood being thus deposited on the outside of those of the previous years, that these stems are called exogenons. In the stems of the Coniferee and most other Gymnosperms, as those of the Fir, Yew, and Cypress, the annual rings of wood which are well marked (fig. 186), instead of being formed of ordinary woody tissue, and pitted ressels, consist essentially of woodcells, with large bordered pits (see pages 44 and 50).

The pitted vessels, which as we have seen form an essential portion of the annual layers of the wood of all exogenous stems, except those of the Gymmospermia, as mentioned above, are so large in the Oak, Ash, and other plants, that they may readily be seen by the naked eye upon making a transverse section of the wood of such trees; and in all cases, upon examining under the microscope a transverse slice of any common exogenous stem, the pitted vessels may be at once distinguished from the

Fig. 186.

Fig. 186. Transverse section of the stem of a Fir three years old. The tigures 1, 2, 3, refer to the annual layers of wood. lu, la. Cavities containing oleo-resinous secretions (receplacles of secretion).
wood-cells by the larger size of their openings (figs. 183, v, v, v, and 185, A, b, b, b).

But in those Gymnosperms where the wood is made up, as just noticed, of disc-bearing woody tissue, or cells with large bordcred pits, though the openings of the cells are larger than those of ordinary woody tissue, they will be observed to be nearly of the same sizc, but at the same time those formed earlicst in the year in each ring are larger and have thinner walls than those which have been formed at the end of the year (fig. 186). The piited vessels in ordinary trees are also commonly more abundant on the inner part of each annual ring, the wood-cells forming a compact layer on the outside (fig. 185, A , c, c, c). In such cases the limits of each ring are accurately defined. In those trees which have the pitted vessels more or less diffused throughont the wood-cells or woody tissue, as in the Lime and Maple, the rings are by no means so evident, and can then
only be distinguished by the smaller size of the wood-cells on the outside of each, which appearancc is caused by their diminished growth towards the end of the scason.

The distinction between the annual rings is always most evident in trces growing in temperate and cold climates, where there is a more or less lengthened winter in which no growth takes place, followed by rapid vegctation afterwards in the spring and other seasons. In the trees of tropical climates the rings are not so clearly defined, because there is no complete season of repose in such regions, although to a certain extent the dry season here leads to a cessation of growth, but the alternation of the growing season and that of rest is not so well marked as in colder climates. As alternations of growth and seasons of repose may thas be shown to produce the appearance of annual rings, we can readily understand that if a plant were submitted to such influences several times in a single year it would produce a corresponding number of rings ; and this does really occur in some plants of temperate climates, particularly in those which are herbaceous, where growth is more rapid than in hard-wooded perennial plants, so that the influence of such alternations is more evident. In tropical climates the production of two or more rings in a year is probably even more frequent than in temperate regions. In other trees, again, we have only one ring produced as the growth of several years, as in the Cycas ; and lastly, there are instanees occurring in which no annual rings are formed, but the wood forms a uniform mass whatever be the age of the plant, as in certain species of Cacti. Such appearances as the two latter are, however, totally independent of climate, but are the eharacteristic peculiarities of certain plants, and even of entire natural orders.

The annual layers of different trees vary much in thickness, thus they are much broader in soft woods which grow rapidly, than in those which are harder and of slower growth. The influence of different seasons, again, will cause even the same tree to vary in this respect, the rings being broader in warm seasons than in cold ones, and hence we find the trees as we approach the poles have very narrow annual rings. The intluence of soil and other circumstances will also materially affect the thickness of the amnual rings in the same tree. We find also that the same ring will vary in diameter at different parts, so that the pith, instead of being in the centre of the wood, is more or less eecentrie, owing to the rings being thicker on one side than on the other. This irregular thickness of the different parts of the annual rings is owing to several causes, but the greater growth on one side is chiefly due to the fact of its being more exposed to light and air than the other.

The annual rings also vary in thickness in the same tree, according to the age of that tree. Thus when a tree is in full vigour it will form larger rings than when that period is past,
and it begins to get old. The age in which trees are in full rigour varies according to the species; thus the Oak, it is said, will form most timber from the age of twenty to thirty, and that after sixty years of age the amount formed will be much less considerable. Again, in the Larch, the vigour of grow th appears to diminish after it is forty years of age ; in the Elm after fifty years ; in the Beech after thirty years ; in the Spruce Fir after forty; and in the Yew after sixty years.

Duramen and Alburnum. - When the annual rings are first formed, the walls of their component wood-cells and vessels are pervious to fluids, and very thin, and their cavities gorged with sap, which they transmit upwards from the root to the leares. As they increase in age, however, their walls become so thickened by various deposits from the contained sap, that their carities are ultimately almost or entirely obliterated, and they are thus rendered nearly or entirely impervious to fluids. This change is especially evident in the wood of those trees in which the thickening layers are coloured, as in the Ebony, Mahogany, Rosewood, and Guaiacum. Such coloured deposits are generally most evident in tropical trees, although they also occur more or less in most of the trees of cold and temperate regions. In some of the latter, however, as the Poplar and the Willow, the whole of the wood is nearly colourless, and exhibits no difference in this respect in the appearance of the internal and external rings. The value of wood as timber depends chiefly upon the nature of this incrusting matter, and is commonly in proportion to its colour ; hence those woods, as Ebony, Ironwood, and Mahogany, which are deeply coloured, are far harder and more durable than white woods, such as the Poplar and the Willow.

From the above characters presented by the wood according to its age, we distinguish in it two parts : namely, an internal portion, in which the wood-cells and vessels have thickened walls, are impervious to fluids, hard in texture, of a dry nature, and commonly more or less coloured, which is called the Durctmen or Heart-uood; and an outer portion, in which the woodcells and ressels have thin sides, are pervious to, and full of sap, soft in texture, and pale or colourless, to which the name of Alhurnum or S'ap-wood is given.

Age of Dicotyledonous Trees.-As each ring of wood in an Exogenous stem is produced annually, it should follow that by counting the number of rings in a transverse section of a tree presenting this structure, we ought to be able to ascertain its agc, and this is true with a few exceptions, when such trees are natives of cold climates, because in these, as we have seen, the annual rings are usually distinctly marked. In Dicotyledonous trees, howcere, of warm climatcs it is generally difficult, and frequently impossible, to ascertain their age in this manner, in conseruence of several disturbing causes: thus, in the first
place, the rings are by no means so well defined ; secondly, more than one ling may be formed in a year; thirdly, some trees, as already noticed (page 84), such as Zamius and the species of Cycas, only produce one ring as the growth of several years; fourthly, some plants, as certain species of Cacti, never form annual rings, but the wood, whatever its age, only appears as a uniform mass; while lastly, in some, such as G'uaiacum, the rings are not only indistinct, but very irregular in their growth.

It is commonly stated that the age of a Dicotyledonous tree may not only be ascertained by counting the annual rings in a transverse section of its wood, but that the mere inspection of a fragment of the wood of such a tree of which the diameter is known, will also afford data by which the age may be ascertained. The manner of proceeding in such a case is as follows:-Divide half the diameter of the tree divested of its bark by the diameter of the fragment, and then, having ascertained the number of ring 3 in that fragment, multiply this number by the quotient previously obtained. Thus, suppose the diameter of the fragment to be two inches, and that of half the diameter of the wood twenty inches; then, if there are eight rings in the fragment, by multiplying this number by ten, the quotient resulting from the division of half the diameter of the tree by that of the fragment, we shall get eighty years as the supposed age. Now, if the thickness of the rings was the same on both sides of the tree, and the pith consequently central, such a result would be perfectly accurate, but it happens from various causes, as already noticed (page 84), that the rings are frequently much thicker on one side than on the other, and the taking therefore of a piece from either side indifferently would lead to very varying results. A better way therefore to calculate the age of a tree by the inspection of a fragment, is to make two notches, or remove two pieces from its two opposite sides, and then, having ascertained the number of rings in each, take the mean of that number, and proceed as in the former case. Thus, suppose two inches, as before, removed from the two opposite sides of a tree, and that in one we have eight rings, and in the other twelve; we have tell rings as the mean of the two. If we now divide, as before, half the diameter, twenty inches, by two, and multiply the quotient ten which results, by ten, the mean of the number of rings in the two notches, we get one hundred years as the age of the tree under consideration. Such a rule in many cases will no doubt furnish a result tolerably correct, but even this will frequently lead to error, from the varying thickness of the annual rings produced by a tree at different periods of its age.

It is probable that De Candolle and others, in calculating the ages of different trees, have been led into error by not sufficiently taking into account the variations in the growth of the annual rings at different periods of their age, and their varying thickness on the two sides of the tree; and, when we consider
that some trees were cstimated by De Candolle to be more than 5,000 years of age, we camnot but believe that such calculations give an exaggerated result. But, however erroneous they may have been, still there can be no doubt but that Dicotyledonous trees do live to a great age; in fact, when we consider that the new rings of wood are developed from the cambium cells which are placed on the outside of the previous rings, and that it is in these new annual rings that all the active functions of the plant are carried on, there can be, under ordinary circumstances, no real limit to their age. Mohl believes that there is a limit to the age of all such trees, arising from the increasing difficulty of conveying the proper amount of nourishment to the growing point, as the stem elongates from year to year. We cannot, however, attach much importance to this opinion, because some trees, as the Sequoia (Wellingtonia) gigantea, exist in California as much as 450 feet in height, and species of Eucaluptus may also be found in Australia which have reached nearly or quite the same height.

The following table is given by Lindley of the age of some trees, all of which, he states, can be proved historically :-

There can be no doubt, therefore, but that such trees will live beyond the above periods. Other trees, such as the Sequoia, Yer, and Olive, may be added to the above list; thus, it is probable that the former will live at least 3,000 years ; and it seems certain that the Yew will attain the age of 1,200 years, and the Olive at least 800 years.

Size of Dicotyledonous Trees.-As there is no assignable limit to the age of Dicotyledonous trees in consequence of their mode of growth, so in like manner the same circumstance leads, in many cases, to their attaining a great size. Thus the Sequoic gigantea has been measured 116 feet in circumference at the base; the Cliestnut tree (Castanea vesca) of Mount Etna is 180 feet in circumference; a Plane tree (Platanus oricntalis) near Constantinople is 150 feet in circumference ; the Ceiba tree (Bumbor pertandrum) is said to be sometimes so large that it takes fifteen men with their arms extended to embrace it ; even Oaks in this country have been known to measure more than 50 feet in circumference; and many other remarkable examples might be given of such trees attaining to an enormous size, which circumstance is of itself also an evidence of their great age.
4. Cambinm-layer or Cumbium (figs. 179, c, and 185, A, and B, e). -On the outside of cach annual ring of wood, as we have already
seen, a layer of vitally active cells is placed, to which the name of cambium-laycr or cambiun has been given. It is from these cambium cells that the new layers of wood and phloëm arc formed, and from the fact of the cambium-layer being situated between the xylem and the phloëm of the indcfinite fibro-vascular bundles of which Exogenons stems are composed, it follows that the layers of increase to these parts of the bundle are in continuity with the previous layers. The cells composing the cambium-layer are of a very delicate naturc, and consist of a thin wall of cellulose, containing a nucleus, protoplasm, and watery cell-sap; in fact, they contain all the substances which are prescnt in young growing cells. These cells, from their becoming changed into the matured woody tissues and phloëm, were called cambium-cells, hence the origin of the names cambiuin and cambium-layer applied to this portion of the stem. This layer is dormant during the winter, at which time the bark is firmly attached to the wood beneath, but it is in full activity in the spring, when it becomes charged with the materials necessary for the development of new structures, and then the bark may be readily separated from the wood beneath, but such separation can only be cffected by the rupture of the cells of which it is composed. The cambium layer is called a formative or generating tissue, or meristem, because its component cells are capable. of dividing and forming permanent tissue, or that in which the cells have ceased to dividé, and have assumed their definite form.
5. Mcdullary Rays.- We have already seen that at first the stem consists entirely of parenchyma, but that in a short time fibro-vascular portions are developed, so that at the end of the first year's growth, in consequence of the development of the wood and phloëm, this parenchyma becomes separated into two regions-an internal or pith, and an external forming the cellular layers of the bark; the separation, however, not being complete, but the two being connected by tissue of the same nature as themselves, to which the name of medullary rays has been applied (figs, 176, b, and 182, r).

The cells forming these medullary rays, like those of the pith, are part of the fundamental tissue of the stcm (page 81) ; but, unlike the cclls of the pith, which remain of a more or less rounded form, they differ from them in form, and become much flattencd in a radial direction (figs. 94, and $185, \mathrm{~B}, i, i$), owing to the pressure which the neighbouring wedges of the wood have exerted upon them. As new rings of wood are formed in successive years, fresh additions are made to the conds of the medullary rays from the cambium, so that, however large the space betwcen the pith and the cellular layers of the bark ultinately becomes, the two are always kept in connexion by their means. Besides the medullary rays which thus extend throughout the entire thickness of the wood, others are also commonly developed between them in each succeeding
ycar, which extend from the rings of those years respectively to the bark; these are called secondury medullury ruys. In the Cork-oak both kinds may be well seen in a transverse section (fig. 187, 1, ${ }^{2}, 3,4$).

The medullary rays are composed of flattened six-sided cells, which are placed one above the other in one or more rows, like the bricks in a wall, hence the tissue which they form is termed meriform parenchyma (figs. 185, B, i, i, and 94). It is a rariety of tabulur parenchyma, as already noticed (page 48). The tissue formed by the medullary rays is not continuous $\{$ from one end of the wood to the nther, but the rays are more or less interrupted by the passage between them of the fibro-vascular tissue forming the wood, so that they are

Fig. $18{ }^{7}$.

Fig. 188.

Fig. 189.

Fig. 187. Transverse seetion of a portion of the stem of the Cork-oak (Quercus Suber), four years old. m. Pith. 1. Medullary ray of the first year's growth. 2, 3, 4. Mednllary rays of successive years. pc. Liber and cellular envelope. s. Cork layers.-Fig. 188. Surface of the stem of a Dicotyledonous trec from which the bark has been removel.-Fig. 189. Vertical section of a bianch of the common Maple, perpendicular to the medullary rajs. A, f. Fibro-vascular tissue forming the wood. $r m, r m$. Medullary rays.
split up rertically into a number of distinct portions (figs. 188 and 189, rm). This arrangement may be observed by examining the surface of a sten from which the bark has been removed (fig. 188), or still better by making thin sections of the wood perpendicular to the rays,-that is, tangential to the circumference of the stem (fig. 189). In some stems, such as those of the species of Aristolochia, and also in many plants of the natural order Menispermacer, and in other orders, the medullary rays are very couspicuous, forming large plates between the wedges of wood. In other plants, such as the Yew and Birch, they are comparatively small. The medullary rays constitute the silver grain of cabinet-makers and carpenters, as it is to their presence that many woods, such as the Plane and Sycamore, owe their peculiar lustre.
6. The Batw or Cortex. - The bark is situated on the outside of the stem, surrounding the wood, to which it is
organieally connected by means of the medullary rays and cambium-layer ($f(y .176, c, c$). When the stem is first formed the bark is entirely composed, like the pith, of parcnehyma ; but as soon as the wood begins to be developed on the outside of the pith, certain cells which lie nearer the surface of the stem make their appearance, which develop into libercells and certain vessels (fig. 190, d). Externally to these lie other parenchymatous cells, the inner ones of which form the green layer of the bark, c, whilst the outer cells become developed into the cork tissue, b, and these again are invested by colourless cells forming the epidermis, a, so that the

Fig. 190.

Fig. 190. Transverse section of a portion of the bark of an Exogenous stem. A. Epidermis. b. Corky layer. c. Cellular envelope. d. Liber or Phloëm. bark, when fully formed, consists of two distinct systems ; namely, an internal or fibro-vascular, and an exterval or parenchymatons. Further, the parenchymatous system, as just noticed, also exhibits, in all plants which are destincd to live for any period, a separation into two portions ; and the whole is covered externally by the epidermis already described (fig. 190, a). The fully developed bark accordingly presents three distinct layers, in addition to the epidermis, which is common to it and the other external parts of plants. The three layers proper to the bark are called, procceding from within outwards:1. Liber, Inner Bark, or Phloëm (figs. 190, d, and 185, A, and B, f,f); 2. Cellular Envelope, Green Layer, or Phelloderm (figs. 190, c, and 185, g, g) ; and 3. Corly Layer, Suberous Layer, or Outer Bav\% (figs. 190, b, and 185, $h, h)$.
a. The Jiber, Inner Bark, or Phloëm (figs. 190, d, and 185, A , and B, f, f).-This is eomposed of true bast tissue, or, as it is also called, woody tissue of the liber, as it consists of narrow elongated cells witli thiekened and flexible walls; mixed with parenchymatous (cambiform) tissue and sieve-tubes filled with albuminous matters, and frequently laticiferous vessels. The phloëm therefore bclougs to the fibro-vascular system, and forms the portion of the indefinite fibro-vascular bundles outside the cambium (page 76). The portion formed of hast tissue is sometimes termed hard bast, and the cambiform parenchyma and sieve tubes together constitute what is then called the soft bast.

The liber-cells of which it is essentially composed are cither placed side by side in a parallel direction, and thus form by their union a continuous layer, as in the Horsechestnut trice; or far more frcquently they present a wavy outline, and only touch each other at certain points, so that numerous interspaces are left between their sides, in which the medullary rays connecting the cellular layers of bark and the pith may be observed. From this circumstance the inner bark when macerated in water commonly presents a netted appearance, as may be especially seen in that of the Lace-bark tree (Lagetta lintearic) of Jamaica, and of other plants belonging to the same natural order.
b. The Cellular Envelope, Green Layer, or Phelloderm (fig. 190, e, and 185, g, g). -This layer lies between the liber and corky layer, and hence the name middle layer which is also applied to it. It is connected on its inner surface with the medullary rays. It consists of thin-sided, usually angular or prismatic, parenchymatous cells (fig. 190, e), which arc loosely connected, and thus leave between their walls a number of interspaccs. The cells of which it is composed contain an abundance of chlorophyll, which gives the green colour to young bark, and hence the name of green layer, by which it is also commonly distinguished. It is also sometimes known under the name of phelloderm. This layer and the next bclong to the fundamental tissue, and form together the parenchymatous system of the bark.
c. Corky or Suberous Layer (figs. 190, b, and 185, h, h).This is the outer layer of the bark, and is invested by the epidermis (fig. 190, a). It has also received the name of periderm; this term is, however, sometimes used in a general sense to indicate the dead portion of the bark, or that which has ceased to perform any active part in the life of the plant ; which is commonly the case, as we shall presently sec, in a few years with the two outer layers (see page 92). In this sense the periderm may consist of the corky layer alone, or of phelloderm chiefly, or of portions of both, or even in some cases of a portion of the phloën also. Thosc botanists who adopt this nomenclature commonly apply the term derm to the inner living portion of the bark. Other botanists also use the term periderm to indicate the inner portion of the corky layer, and which consists of cells with thicker walls and less elastic than true cork cells.

The corky laycr consists of one or more layers of tabular cells (fig. 190, b), clon-

Fig. 191.

Fif. 191. Branch of a species of Willow1, l. Lenticels. c, c. Buds. gated more or less in a horizontal dircction, and which in most cases ultimatcly become dried up and filled with air, and form by their union a compact tissuc, or onc without inter-
spaces. It is this laycr which gives to the young bark of trees and shrubs their peculiar hues, which arc generally brownish or some colour approaching to this; or sometimes it posscsses more vivid tints. In some plants, as in the Cork-oak (fig. $187, s$), this layer becomes excessively developed and forms the substance called cork, and hence the name corky layer which is commouly applied to it. Large developments of cork also occur on some other trees, as various species of Elm.

On the young bark of most plants may be obscrved little circular or somewhat oval brownish or whitish specks, which have been called lenticels (f ig. 191, l, l). They are formed of looscly aggregated cork-cells, separated by intercellular spaces, and serving, like stomata, to admit air to the living cortical tissues beneath.

Growth of the Bark.--The bark, except the middle layer, develops in an opposite direction to that of the wood, for while the latter increases by additions to its outer surface, the former increases by additions to its inner. The bark is therefore strictly endogenous in its growth; while the wood is exogenous. Each layer of the bark also grows separately; thus the liber by the addition of new matter from the cambium-layer on its inside ; and the phelloderm and corky layer from a special meristem, which is termed the cork-cambium or phellogen. This phellogen is placed between the phelloderm and corky layer, so that it develops cork-cells on its outside and the cells of the phelloderm on its inner surface. The formation of cork-cells, howcver, is not always of the same character, and in some cases it is very complex. When the soft tissues of a plant are wounded, a cellus of cork-cells is also commonly produced, and thus forms a protection to the wounded tissues. But when wood is well developed, and the plant wounded so deep as the cambium, cork is not directly formed, but a callus of parenchymatous tissue is produced from all the living cells bordering on the wound.

The two outer layers which togcther constitute the parenchymatous or cellular system of the bark generally ccasc growing after a few years, and become dead structures on the surface of the tree ; but the imner bark continues to grow throughout the life of the individual, by the addition of a now layer amnally on its inner surface from the cambium. They are commonly so thin when separated that they appear like the lcaves of a book, and hence the supposcd origin of the term liber applied to the inner bark. The name liber is, howevcr, sonctimes considered to be derived from the inner bark of trecs having been formerly uscd for writing upon. In souc trecs, as in the Oak, thesc laycrs may be readily observed up to a certain age; but this distinction of the liber into layers is gencrally soon lost, in consequence of the pressure to which it is subjected from the growth of the wood bencath.

The outer cellular layers of the bark, after a certain period in
their lifc, which varies in differcntplants, generally become cracked in various directions in consequence of the pressure which is exerted upon them by the growth of the wood and liber beneatl, and thus assume a rugged appearance, as in the Elm and Cork-oak. In some trees, as the Beech, the bark, however, always retains its smoothness, which circumstance arises, partly from the small development of the parenchymatous layers, and partly from their great distensibility. Other smooth-barked stems, such as those of the Holly and Iry, owe their peculiarities in this respect to similar causes. When the bark has thus become cracked and rugged, it is commonly thrown off in large pieces, or in plates or layers of various sizes and appearance. The epidermis in all cases separates early, and is replaced by cork-cells. By this separation and peeling off of portions of the bark, its thickness is continually diminished. This decaying and falling away of the outer layers of the old bark does not in any way injure the tree; hence, it is evident that the old cellular layers of the bark, like the pith and inner rings of the wood, have nothing to do with its life and growth after a certain period. The new rings of wood, the cambium-layer, and the recently formed liber, are the parts of an exogenous stem which are alone concerned in its active development and life.

Having now described the different parts which enter into the structure of an Exogenous or Dicotyledonous stem, we will, in conclusion, recapitulate them, and place them in a tabular form :-

1. Pith or Medulla, belonging to the parenchymatous system.
2. Mechullary Sheath, consisting of spiral vessels.
3. Wood, composed of interrupted rings, one of which is developed annually on the outside of the previous rings, and consisting ordinarily in perennial plants of wood-cells and pitted vessels.

These belong to the fibro-vascular system, and together form the wood (xylem) properly so called.
4. Wedullary Rays, composed of muriform parenchyma connecting the pith and the parenchymatous layers of the bark.
5. Cambium-luyer, consisting of vitally active or generating cells containing protoplasm, \&c., from which additions are made annually to the wood and liber.
6. Thé Bark, composed of two systems-

1. Inner Bark, Phloëm, or Liber, formed cssentially of libercells and sieve-tubes, and thus belonging to the fibrovascular system; and increasing by the amual addition of a new laycr on its inner snliface.
2. Outer Bark, composed of parenchyma, and lience belonging to the parenchymatous system, and consisting of a. Cellular Envelope or Phelladerm, composed of more or less angular cells, with interspaces, and giving the green colour to bark.
b. Corky Layer or Suberous Layer, composed of tabular cells, forming a compact tissue, and giving the pecnliar hues to the young bark.
3. The Epidermis, investing the bark of young stems, and re. placed after a certain age by the corky layer.

$$
\text { Fig. } 192 .
$$

Fig. 192. Diagram of a Monocotyledonous stem. A. Transverse section. B. Vertical section. a, a. Parenchymatous tissue. b,b. Pitted vessels. c. Wood and liber cells. d, d. Spiral vessels. (The letters mark similar parts in both sections.) After Carpenter.
B. Endogenous or Monocotyledonous Stem.-In this country we have no indigenous trees or large shrubs whiel exhibit this mode of growth, although we have numerous herbaceous plants, such as Grasses, Rushes, and Sedges, which are illustrations of endogenous structure. In our gardens, again, we have various kinds of Lilies, Hyacinths, Tulips, and other bulbous plants, which are also endogenous in their growth. But it is in the warmer regions of the globe, and especially in the tropics, where we find the most striking and characteristic illustrations of such stems, and of all such the Palms are by far the most remarkable.

Intcmal Structure. -When we make a transverse section of a Palm stem, it presents, as we have seen (page 75), no such separation of parts into pith, wood, medullary rays, and bark, as we have described as existing in an exogenous stem ; but the fibro-vascular system is seen to consist of bundles (figs. 177, f, and $192, \mathrm{~A}, b, c, d$), which have no tendency to collect together so as to form rings of wood as in exogenous stems, but are arranged separately from one another in the mass of parenchymatous cells (figs. 177, m, and 192, A, a, a), of which the ground substance or fundamental tissue is composed. The whole is covered externally by a fibrous and parenchymatous layer, which is called the false bark or rind (fig. 177, b) ; because this is not a distinct and parallel formation to the wood, as is the case with the bark of exogenous stems, but is formed essentially by the ends of the fibro-vascular bundles, as will be presently noticed, and cannot therefore be separated from the mass beneath (see page 96).

In annual or herbaceous monocotyledonous stems the parenchyma between the fibro-vascular bundles is soft and delicate; but in trees which grow to any height, as Palms, the cell-walls become thickened and hardened, and thus form the tissue termed selerenchyma, which ultimately binds the original separate bundles into a solid hardened mass resembling wood.

Origin and Grouth 1 of the Fitro-vascular Bundles. - The structure of the fibro-vascular bundles thus distri-

Figs. 193 and 194. Diagrams showing the course of the fibro-vaseular bundles in a monoeotyledonous stem. u, b, c, d. Fibro-vaseular bundles. Fig. 193. Exhibits the eourse of the bundles ns formerly supposed. Fig. 194. According to Mohl's view, ns now proved to be correct. -Fig. 195. Vertical seetion of the stem of a $\mathrm{Pa}^{1} \mathrm{~m}$, showing ($f v$) the fibro-vasculno bundles intersecting each other as they pass downwards. buted in the parenchymatous system has been already referred to under the name of definite or closed (page 77) ; but we have still to clescribe their origin and direction through the stem. It was formerly supposed that these bundles, as they wore successively developed, were at first directed towards the centre of the stem, and continued their course in the same direction down to its base as seen
in fig. 193, a, b, c, d, the last-formed bundles being the most internal, and gradually pushing towards the circumference those which had previously been developed. Hence the origin of the name endogenous or inside growers, applied to these stems. The researches of Mohl first showed that the above mode of growth was not correct, but that the following is that which really takes place:-the fibro-vascular bundles have their origin in the punctum vegetationis of the stem, and are fully developed with its growth upwards and outwards into the leaves, and downwards and outwards towards the circumference of the stem. In other words, to render it more simple, the bundles may be traced to the leaves, from which organs they are at first directed towards the interior of the stem (f ig. 194, a, b, c, d), along which they descend generally for some distance, and then gradually curve outwards again and terminate close to the circumference, where they anastomose and thus form a network with the ends of other bundles. When we make a vertical section therefore of an endogenous stem, we find these fibrovascular bundles intersecting each other' in various ways as shown in fig. 195.

When the fibro-vascular bundles thus pass from the stem into the leaves at their upper ends, they are termed common bundles, namely, common to both leaf and stem-those portions coming from, or continuous with, the leaves, being called leaf-traces. The fibro-vascular bundles in their course down the stem generally become more attenuated, which circumstance arises from certain differences which take place in their structure as they descend. Thus when they first originate they consist, as we have seen (see page 77), of spiral, pitted, and other vessels, mixed with parenchymatous and woody tissues (fig. 192, B, $b, c, d)$. In their descent they gradually lose their spiral and other vessels, so that when they terminate close to the circumference they consist chiefly of a net-work of liber-cells bound together and covered by a more or less developed cortical parenchyma. The rind or false bark (fig. 177, b) of endogenous stems is thus chiefly formed of the ends of the fibro-vascular bundles which originate in the leaves, and hence we sce the principal reason why this rind camnot be separated, as the bark of exogenous stems, from the tissues beneath.

It follows from the mode of growth of the fibro-rascular bundles, as indicated above, that the term endogenous, commonly applied to such stems, is not altogether correct, as the bundles are only endogenous for a portion of their course, terminating as they do ultimately close to the circumference. On this account the name endogenous has been generally discarled of late years by botanists, who use instead that of monocotyledonous, a term, as already noticed (page 78), which is derived from the fact that the embryo of plants which possess such stems has but one cotyledon. In this rolume we have cmployed both terms, and so long as that
of endogenous is properly understood, it can lead to no confusion in its application.

As the fibro-vascular bundles of an endogenous stem, in the course of their successive development, are always directed at first towards the centre, it must necessarily follow that those previously formed will be gradually pushed outwards, for which reason the outer part of a transverse section will always exhibit a closer aggregation of bundles than the inside (figs. 177, f, and $192, A, b, c, d)$. In such stems, therefore, the hardest part is on the ontside, and the softest inside, directly the reverse of what occurs in those of exogenous growth. The lower portion of such stems also, in consequence of the descent of the fibrorascular bundles, the constituents of which become, moreover, more or less thickened in their interior, will be harder than the

Fig. 196.

Fig. 197. Fie. 198.

Fig. 196. The Dragon Tree of Teneriffe (Dracena Draco), now destroyed. -Fig. 197. Dicotyledonous stem, with a woody twining plant around it. ——ig. 198. Monocotyledonous stem encircled by a woody twiner.
upper. The rind in like manner, at the lower part, will become harder, from the greater number of liber-cells which terminate in it. As endogenous stems increase in diameter, partly by the formation of fibro-vascular bundles in their interior, and partly by the general development of the parenchymatous tissue in which they are placed, it follows that as soon as the rind has become thus hardened by the liber-cells and other canses, it is not capable of further distension, and the stem will consequently become at length choked up by the bundles which continue to descend, and further growth is then impossible. It is evident, therefore, that endogenous stems, unlike those of
cxogenous growlh, eannot increase in diameter beyond a ecrtain limit, and that from the samc eauses also they cannot live beyund a certain agc.

Although, as a general rule, the stcms of Palms and most other Monocotyledons are thus limited in sizc and lifc, there are some remarkable exceptions to this, as for instance in Yuccas, and the Dracanas or Dragon-trees (fyy. 196); in thesc the rind is always soft and capable of distension, and the fibro-vascular bundles, after having reached it, are continued downwards as fibrous layers between it and the original fibro - vascular hundles, and thus form a sort of wood beneath, in successive layers, somewhat after the manner that layers of wood are produced by the cambium layer of an exogenous stem. Such endogenous stems, like those of exogenous growth, hare necessarily no limit either to their size or age.

It is in conscquenec of the comparatively small increase in diawetcr which most endogenous stems undergo after they have arrived at a certain age, that twining plants which encirele then after that period has

Fig. 199. 1. Unbranched stem of the Coeon-nut Palm (Cocos nucifera), with a tnft of leaves at the snmmit. 2. Brancherd stem of P'andrmus odorut issimus, with \& number of aerial roots arising from its lower part, and each brauch terminated by a tuft of leaves. The figures are placed at the base to give some idea of the height of the trees. arrived, do them no injury, frequently not eren producing the slightest swelling on their surface; thus proving incontestably that sueh stems do not increase in dianctcr after a eertain agc. The effect of such twining plants is well seen in fig. 198. If we compare this figure with that of an exogenous stem (fig. 197), with a woody twiner eneireling it, we find a striking difference;
for here we observe extensive swellings produced, which show the increase in the diameter of the stem after the twiner has encircled it. Such a comparison shows, in a very striking and conclusive mamer, the characteristic peculiarities of the growth of exogenous and endogenous stems.

Grouth by Terminal Buds.-In Palms (fig. 199, 1), and most commonly in other Monocotyledons, there are no branches, the stems of such plants haring no power of forming lateral buds, from which branches can alone be produced (see page 106). These plants, which frequently rise to the height of 150 feet or more, therefore grow simply by the development of a terminal bud, which when it unfolds crowns the sumwit with a tuft of leaves, which are commonly of great size. Monocotyledonous stems are consequently exposed throughout their whole length to, as far as possible, the same influences as regards their increase in diameter, and we find accordingly, that, as a rule, such stems are almost uniformly cylindrical from below upwards, being of the same diameter throughout (fig. 199, 1), instead of conical, as in trees of exogenous growth. In such plants, therefore, the destruction of the terminal bud necessarily leads to their death, as they are then deprived of all further mode of increase. In some monocotyledonous trees, however, more than one bud is developed; thus in the Doum Palm of Egypt two buds are formed, so that the stem is forked above (fig. 200); each brauch again develops two other buds at its apex in like manner, and

Fiy. 200. The Doum Palm of Egypt
(Iyphene thebutict), showing forked
Fiy. 200. The Doum Palm of Egypt
(Iyphene thebutict), showing forked stem and branches. this mode of growth is contimued with the successive branches, which are therefore also forked (false dichotomy). In other Monocotyledons we have lateral buds formed as in those of Dicotyledons; this is the case in the Asparagus, the Screw Pine (fiy. 199, 2), and the Dracænas (fig. 196) ; and as the lower part of such stems receives more fibro-vascular bundles than the upper, they are necessarily larger in their diameter at their base, and thus these stems are conical or taper upwards like those of Dicotyledons.

Anomalous Structure of Monocotyledonous Stems.-Some monocotyledonous stems present an anomalous structure; thus, in most Crasses the stem is hollow (fiy. 201, (c), except
at the nodes, b, where the leaves arise, at whieh parts solid partitions are formed aeross the eavity, by whieh it is divided into a number of separate portions. Suel stems when examined at their first development present the usual endogenous strueture, but in eonsequenee of their growth in diameter taking plaee more rapidly than new matter ean be deposited in their interior, the eentral tissue beeomes ruptured, and they soon beeome hollow.

In the stems of some other Monoeotyledons we have a more striking deviation from the ordinary strueture. Thus the speeies of Sarsaparilla and some allied plants have aerial stems whieh are strictly endogenous in strueture, and underground stems whieh have the fibro-vaseular bundles arranged in a ring

Fig. 201.

Fig. 209.

Fig. 201. Transverse section of the stem of the common Reed. a. Cavity ciosed at the bottom by a partition. b. Aumular sear indicating the point (node) where the leaf was attached-Fig. 202. Jalf of a transversc scetion of the undergronnd stem of a species of Sarsaprrilin. a. Epidermai tissue. b, c, d. The eortical portion. e. Woody ring. f. Central parcuchyma.
($f g .202, e$), around a eentral parenchyma, f, like the wood about the pith of an exogenous stem : sueh fibro-vascular bundles lave, however, no eambium layer like that whieh forms the rings of wood of an exogenous stem, and have eonsequently no power of indefinite inerease like them.

Age of Monocotyledonous Trees.-There is nothing in the internal strueture of endogenous stems by which we ean aseertain the age of monoeotyledonous trees as in those of exogenous strueture. It is supposed that the age of a Palm tree is intieated by the ammular sears (fig. 199, 1) whieh are produeed on the extemal sumface of its stem by the fall of the terminal tufts of leaves; for, as one tuft only is commonly produced amnually, each ring marks a year's growth, and henee the number of amnular sears eorresponds to the number of years the tree has lived. Although it is true that in some few eases sueh a
rule may enable us to aseertain the age of a Palm, and probably alsn that of some other monocotyledonous trees, not the slightest dependence an be placed upon it in any partieular instance, for there are frequently several rings produced on the stems of monocotyledonous plants in one year, and these again often disappear after having existed for a eertain period. The best means of aseertaining the age of Palms is by noting their increase in height in any onc year's growth, and then, as sueh stems grow almost uniformly in suceessive years, by knowing their height we can determine their age. This mode, however, of ealculating their age is very liable to error, and can be moreover but of limited applieation from the absence of clata to work upon ; hence we must come to the conclusion that at present we possess no trustworthy means of determining the age of Monocotyledons.
C. Acrogenous Stem, or the Stem of Cormophytes.-The simplest form of stem presented by Cryptogamous plants is that seen in Liverworts ($f i g .8$), and in Mosses (figs. 9 and 10). In such a stem we have no vessels, but the whole is composed of ordinary parenehyma, with oeeasionally a central cord of slightly elongated cells with somewhat thiekened walls. In the stems of Club-mosses (Lycopodiacere) (fig. 12), Selaginellas (Selaginellacece), Pepperworts (Marsileacex), and Horsetails (Equisetacew) (fig.13), we have the simplest forms of aerogenous stems, and the composition of the fibro-vaseular bundles, of which they are eomposed, and their mode of growth, have been already described (see page 78). The vessels found in the fibro-vaseular bundles of the Lycopodiaeeæ are eommonly spiral, and in those of the Equisetaeere annular; and as these bundles grow by additions to their apex, the stems of Cormophytes are termed acrogenous.

In the Ferns (Filices) we have the acrogenous stcm in the highest state of development. The Ferns of this country are eomparatively but insignifieant specimens of sueh plants, for in them the stem merely runs along the surfaee of the ground, or burrows beneath it, sending up its leaves, or fronds as they are commonly ealled, into the air, whieh die down yearly (fig. 14). In warm regions, and more especially in the tropies, we find sueh plants mueh more highly developed. Here the stem rises into the air to the height of sometimes as mueh as forty feet (f fg. 15), and bears on its summit a tuft of fronds. In their general appearanee externally these Trec-ferns have great rescmblance to monoeotyledonous trees, not only in bearing their foliage like them at the summit, but also in produeing no lateral branehes, and being of uniform diameter from near their base to their apex. The outside of the stem of a Fcrn is marked with a number of scars, whielı lave a more or less rhomboidal outline (fig. 203). The surface of these scars presents little hardened projections, c, or darkcr-eoloured spots, which appearance is produced by the rupture of some of the elements of the fibro-
vascular bundles proceeding to the leaves, by the fall of which organs the scars have been produced.

Internal Structure of Fern Stems.-Upon making a transverse section of a Tree-fern it presents, as we have already briefly noticed (see page 75), the following parts :-Thus in the centre, when young, a parenchyma ($f i g .178, m$), the cells of which have thin walls; but in old stems this central parenchyma is destroyed, so that the stcm becomes hollow. Towards the outside of this parenchyma, and just within the rind, we find the so-called wood (fibro-vaseular bundles), arranged in the form of irregnlar, sinuous, or wavy plates, v, v, v. These masses of wood hare generally openings between them, by means of which the parenchyma boneath the rind and that of the centre of the stem communicate ; but in other cases these woody masses or plates touch cach other at their margins, and thus form a continuous circle within the rind. These masses, as already noticed, consist

Fig. 203.

Fig. 204.

Fig. 203. Rhizome of Male Fern (Asnidium Filir-mas), marked extcrnally by thomboidal scars, which present dærk-colonred projections, c. - Fig. 04. Vertical section of the dichotomous or forked stem of a Trec-fern.
of closed fibro-rascular bundles, the vessels of which are chiefly scalariform in their character ; these are situated in the centre of the bundles, where they may be readily distinguished by their pale colour (fig. 178, v, v, v). Extcrnal to them are usually a few layers of parenchymatous cells, which contain starch in the winter, and amongst which are situated some wide sieve or lattice-cclls. The whole is surrounded by a single laycr of cells, the walls of which are usually more or less lignified and dark-coloured, thus constituting the tissuc termed sclerenchyma, and forming what has becn called the brundle-shcath. The tissues external to the fibro-vascular bundles constitute collectively what has been termed the rind (fiq. 178, e).

Grouth by Terminal Buds.- Wo have already stated that Tree-ferns have no brauches (fig. 15). This absence of branches arises from their having, like Palms, no prorision for lateral buds: hence the cylindrical form of stem which is common to them as with the stems generally of Monocotyledons. For the
same reason, also, they are rarely of great diameter. Some Ferns, however, become forked at their apex (fig. 204) ; which forking is produced by the division of the terminal bud into two (true dichotomy), from each of which a branch is formed (see page 109). But such branches are very different from those of dicotyledonous stems, which are produced from lateral buds, for, as they arise simply from the splitting of one bud into two, the diameter of the two branches combined is only equal to that of the trunk, and in all cases where acrogenous stems branch, the diameter of the branches combined is only equal to that of the axis from whence they are derived. As acrogenous stems only grow by the development of a terminal bud, the destruction of that bud necessarily leads to their death (page 106). There is nothing in the internal structure or external appearance of such stems by which we can ascertain their age.
2. Buds and Ramification.-We have already stated (page 14) that the presence of leaves and leaf-buds is the essential characteristic by which a stem may be distinguished from a root. The leaves will be treated of hereafter, but we have now to allude to the parts of the stem from whence they arise, and to describe the nature of leaf-buds, and the mode in which branches are formed.

Leaves are always developed at regular points upon the surface of the stem, which are called nodes (fig. 208, c, c, c), and the intervals between them are termed internodes, d, d. Generally the arrangement of the tissue of the stem at the nodes is somewhat different to that in the internodes; thus at a node it exhibits a more or less contracted or interrupted appearance, which arises from a portion of its fibro-vascular tissue being given off to enter into the structure of the leaf. This appearance is most evident in those cases where the internodes are clearly developed and especially if under such circumstances the leaf or leaves which arise encircle the stem, as in the Bamboo and other Grasses; in such plants each leaf causes the formation of a hardened ring externally (fig. 201, b), and thus produces the appearance of a joint or articulation, and indeed, in some cases, the stem does readily separate into distinct portions at these joints, as in the common Pink, in which case it is said to be jointed or articulated.
A. Leaf-buds or Buds.-Under ordinary circumstances we have developed in the axil of every leaf a little more or less conical body called a leaf-bud, or simply a bud (fg . 205, a, a). In like manner, the apex of a stem, as well as of all its main branches and twigs which are capable of further elongation, is also terminated by a similar bud (fig. 207). In a Dicotyledonous plant cach bud, whether lateral or terminal, is produced by an elongation of the parenchymatous system of the stem or one of its divisions, and consists at first of a minute conical central parenchymatous mass (fig. 206,i), which is connected with the
pith, a; around this spinal and other vesscls and wood cells are soon developed, also in conncxion with similar parts of the wood, b, b; and on the outside of these, in a parcnchymatous mass which ultimatcly becomes the bark, we have little cellular projections devcloped, which are the rudimentary leaves. As growth proceeds thesc parts become more evident, and a little more or less conical body is ultimately produced at the apex of the stem or branch (fig. 207); or laterally in the axil of the lcaves, c, and the formation of the bud is completed. In like manner the buds of Monocotyledonous and Acrogenous plants are connected

Fig. 205.
Fig. 206.

Fig. 205. Branch of Oak with alternate leaves and leaf-buds in their axils. a, a. Buds. b, b. Leaves.-Fig. 206. Vertieal seetion through the end of atwig of the Horseehestnut (AEsculus Hippocastamum), before the bursting of the bud. After Sehleiden. a. The pith. b, b. The woorl. c, c. The bark. d, d. Sears of leaves of former jears. e, ε. The fibro-vaseular bnndles of those leares. f, f. The axillary buds of those leayes, with their seales and fibro-vaseular bundles. g. Terminal bud of the twig ending in a rudimentary flowering paniele. h, h. Sears formed by the falling off of the lowest scales of the bud, and above these may be seen the closed scales with their fibro-raseular bundles. i. Medullary mass leading from the pith, a, into the axillary bud, s, f, f.
with both the parcnehymatous and fibro-vascular systems of their stems; but in these plants, as we have secn, there are, as a gencral rule, no lateral buds.

The buds of temperate and cold climates, which remain dormant during the winter, and which are accordingly exposed to all its rigours, have generally cortain protective organs dcveloped on their outer surface in the form of modificd leares (cataphyllary), which are commonly called scales (page 140). These are usually of a lardened texture, and are sometimes
covered with a resinous secretion, as in the Horsechestnut and several species of Poplars; or with a dense coating of soft hairs or down, as in some Willows. Such scales, therefore, by interposing between the tender rudimentary leaves of the bud and the air a thick coating of matter which is a bad conductor of heat and insoluble in water, protect them from the influence of external circumstances, by which they would be otherwise injured, or even clestroyed. Bucls thus protected are sometimes termed scaly. In the buds of tropical regions, and those of herbaceons plants growing in temperate climates which are not thus exposed to the influence of a winter, such protective organs would be unnecessary, and are accordingly absent, and hence all

Fig. 207.

Fig. 208.
Fig. 209.

Fig. 207. A shoot one yenr old of the Horseehestnut, with terminnl bud. f. Sear produced by the falling off of the bud-seales of the previous year. b, b. Sears eauser by the falling off of the petioles of the leaves of the lresent year, with buds, c, in their axils. - Fig. 208. Diagram to illustrate the growth of the sboot from the bud. c, c, c. The nodes where tho leaves are situated. d, d. The internodes developed between then.Fig. 209. Shoot of the Lilae (Syringa vulgaris), showing suppression of the terminal bud, and two lateral buds in its place (false dichotomy).
the leares of these buds are nearly of the same character. Such buds are called noked. In a few instances we find even that the buds of perennial plants growing in cold climates, and which are exposed during the winter, arc naked like those of tropical and herbacenus plants. Such is the case, for instance, with the Alder Buckthorn (Rhammus Frangula), and those of some species of Viburnum.

These protective organs of the bud are commonly, as we have just mentioned, termed scales, but they have also received the name of tegmenta. That such scales are really only modified leaves adapted for a special purpose, is proved not only by their position with regard to the true leaves, but also from thic gradual transitional states, which may be frequently traced from them to the ordinary leaves of the bud. Thesc scalcs have only a
temporary duration, falling off as soon as the growth of the bud commences in the spring.

The bud thus contains all the elements of a stem or branch ; in fact it is really the first stage in the development of these parts, the axis being here so short that the rudimentary leaves arc closely packed together, and thus overlap one another. When growth commences in the spring, or whenever vegctation is reanimated, the internodes between the leaves become devcloped ($f i g .208, d, d, d$), and these therefore become separated from one another, c, c, c, and thus the stem or branch increases in length, or a new branch is formed. In other words, the leaves, which in a bud state overlap one another and surround a growing point or axis, by the elongation of the internodes of that axis become separated and clispersed over a branch or an elongation of the stem, much in the same way as the joints of a telescope bccome separated from one another by lengths of tube when it is drawn out. The branch, therefore, like the bud from which it is formed, necessarily contains the same parts as the axis upon which it is placed, and these parts are also continuous with that axis, with the exception of the pith, which, although originally continuous in the bud state, ultimately becomes separated by the development of tissue at the point where the branch springs from the axis. But when a branch becomes broken off close to the wood, and there are no buds upon it to continue its growth, it becomes ultimately enclosed by the successive annual layers of wood, and thus a knot is formed.

From the above circumstances it follows that a bud resembles in its functions the embryo from which growth first commenced, and it has accordingly been termed a fixed embryo. There is this difference, however, between them :-a bud continues the individual, while the embryo continues the species. A stem is therefore really made up of a number of similar parts or buds, called phytons, which are dcveloped in succession, one upon the summit of the other. Hence, by the development of a terminal bud, the stem incrcases in height; and by those situated laterally branches are produced. A tree may thus be considered is a compound body, formed of a series of individuals which mutually assist one another, and benefit the whole mass to which they belong. In Dicotyledonous trees, which form lateral or axillary buds, the destruction of a few branches is of no consequencc, as they are soon replaced; but in Palms, and most other monocotyledonous trees, and also in those of Cormophytes, which develop only from terminal buds, the destruction of these under ordinary circumstances, as we have seen (pages 99 and 103), leads to their death.

The buds or similar parts, of which a tree, or other Dicotyledonous plant, may thus be shown to be made up, boing thus distinct individuals, as it were, in themselves, are also capable
of being separated from their parents and attached to other indivictuals of the same, or even of nearly allied species; or a branch with one or more buds upon it may be bent down into the earth (fig. 230). The operations of Budding, Grafting, and Layering depend for their success upon this circumstance; and in some plants buds naturally separate from their parents, and produce new individuals. These operations are of great importance in horticulture, because all plants raised by such means propagate the individual peculiarities of their parents, which is not the case with those raised from seed, which have merely a specific identity.

It sometimes happens that a leaf-bud, instcad of developing as usual, so as to form a symmetrical leaf-bearing branch, bc-

Fig. 210.
Fig. 211.
Fig. 212.

Fiy. 210. Branching spine of the Honey Locust (Gleditschia).-Fig. 211. Spine of a species of Thorn.-Fig. 212. Leafy spines of the common Sloe.
comes arrested in its growth, and forms a hardened simple or branched projection terminating in a more or less acute point, and usually without leaves, as in Thorns (fig. 211), Gleditschia (fig. 210), and many other plants. Such an irregularlydeveloped branch is called a spine or thorn. That the spines are really modified branches is proved not only by their structure, which is exactly the same as the stem or branch upon which they are placod, but also by their position in the axil of leares ; by their sometimes bearing leaves, as in the Sloe (fig . 212) and Spiny Rest-harrow ; and by their being frequently changed into ordinarv leaf-bearing branchos by cultivation, as in the Apple and Pear. Spines are sometimes confounded with prickles, already described (page 66), but thcy arc readily distinguished from these by their structure and connexion with the intcrnal parts of the stem ; the prickles being merely
formed of hardened parenchyma, arising immediately from, and in eonnexion only with, the epidermal tissue and layer of eells beneath.

Another irregularly developed braneh is the tendril or cirThus : this term is applied to a thread-like leafless branel, which is twisted in a spiral direetion, as in the Passion-flower (fig. 213, $v, v)$. It is one of those contrivances of nature by means of which weak plants are enabled to rise into the air by attaching themselves to neighbouring bodies for support. Tendrils may be also observed in the Vine (fig. 214, v, v, v), where they are regarded by many botanists as the terminations of separate axes, or as transformed terminal buds.

Fig. 213.

Fig. 213. A portion of the stem of Passiffor(quadrangularis. v, v. Tendrils. -Fig. 214. Part of the stem of the Vine. v, v, v. Tendrils.

Both spines and tendrils are oceasionally produeed from leaves and some other organs of the plant; these peeuliarities will be referred to hereafter, in the deseription of those organs of whieh they are respeetively modifieations.
B. Ramification or Branching.--In the same way as branehes are produced from buds plaeed on the main axis or stem, so in like manner from the axils of the leaves of these branehes other buds and branehes are formed; these again will form a third series, to whieh will sueeeed a fourth, fifth, and so on. The main divisions of the stem are ealled branches, while the smaller divisions of these are commonly termed twigs. The general arrangement and modifications to whieh these are liable aro eommonly deseribed under the name of ramification or branching, whieh may bo defined as the lateral development
of similar parts. Thus the divisions of a stem or rout are branches ; but the lateral development from a stem or branch of leaves, or other dissimilar parts, such as hairs, is not branching. There are two principal types of branching, the monopodial and the dichotomous. Thus, when the axis continues to develop in an upward direction by a terminal bud or growing point, so as to form a common foot or podium for the branches, which are produced from below upwards, or acropetally from lateral buds (fig. 205, a, a), the branchings called monopoctial. This is, probably, the universal system of branching in the Angiospermia, although there are some apparent exceptions. But when the terminal bud or growing point bifurcates, and thus produces

Fig. 215.
Fig. 216.

Fig. 215. Diagram of normal or true dichotomous branching, showing the two branches equally developed in a forked manner, and each branch diFiling in succession in a similar way. -Fig. 216. Diagrams of sympodial dichotomous branching. A. Bostrycoid or Helicoid dichotomy. B. Cicinal or Scorpioid dichotomy. In A, the left-hand branches, l, l, l, of successive dichotomies are much more developed than the right, r, r, r, r. In B, the left-hand branches, l, l, and those of the right-hand, r, r, are alternately more vigorous in their growth. After Sachs.
two shoots, so that the foot or podium bears two branches arranged in a forked manner (fig. 215), the branching is termed dichotomous. This form is common in many of the Cryptogamia (fig. 204).

In dichotomous branching we have also two forms: one which is termed true or normal dichotomy, in which the two branches continue to develop equally in a forked manner-that is, each becomes the podium of a new dichotomy (fig. 215) ; and a second, in which one branch grows much more vigorously than the other, when it is called sympodial (fig. 216, A and B). In this latter case, owing to the unequal growth of the branches, the podia of successive bifurcations form an axis which is termed the pseud-axis or sympodium, on which the weaker fork-branches or bifurcations appear as lateral branches (fig. 216, A, r, r, r, r, and $B, r, l, r, l, r)$. This branching might at first sight be confounded with the monopodial form, where we have a continuous axis giving off lateral branches; but it differs in the
fact that here the apparent primary axis consists of a succession of secondary axes.

In sympodial branching, again, the sympodium mav be either formed of the fork-branches of the same side (left or right) of successive dichotomies ($f i y .216, \mathrm{~A}, l, l, l$) ; or it may consist alternately of the left and right fork-branches or bifureations (fig. 216, B, l, r, l, r). In the former case it is called luelicoid or bostrycoid dichotomy ; in the latter, scorpioid or cicinal dichotomy.

Of the monopodial branching there are also two forms, the racemose and the cymose. In the first the primary axis continues to develop upwards and gives off acropetally lateral branches from axillary buds; which also give off lateral branches in a similar manner; but in the second form the lateral axes at an early age develop much more vigorously than the primary axis and become more branched than it. It is in this way-that in some plants, by the suppression of the terminal bud, and the subsequent vigorous growth of the closely arranged lateral buds forming two shoots apparently radiating from a common point, as if caused by the division of the terminal bud, as in true dichotomous branching-an apparent but false dichotomy is produced, which is called a dichasium or false cyme. This suppression of the terminal bud may occur naturally, as in the Lilac (fig. 209), or accidentally from frost or other injury.

These modes of branching will be again alluded to under the head of Inflorescence, in which their more practical application arises.

All lateral or axillary buds are called regular or normal, and their arrangement in such cases is necessarily the same as that of the leaves. Again, as branches are formed from buds thus placed, it should follow that their arrangement should also correspond to that of the leaves. This corresponding symmetry, however, between the arrangement of the branches and that of the leaves is interfered with from various causes. Thus, in the first place, by many of the regular buds not being developed. Secondly, by the development of other buds which arise irregularly at various other points than the axils of leaves: these are called, from their abnormal origin, adventitious. And, thirdly, by the formation of accessory buds.

1. Non-development of the Regular Buds.-This frequently takes place irregularly, and is then altogether owing to local or special causes ; thus, want of light, too much crowding, or bad soil, may eause many buds to become abortive, or to perish after having acquired a slight development. In other instances, however, this non-development of the buds takes place in the most regular manner ; thins, in Firs, where the leaves are very elosely arranged in a spiral mamer, the branches, instead of presenting a similar arrangement, are placed in circles around the axis, at distant intervals. This arises from the non-dere-
lopment of many of the buds of the leaves forming a spire, which is followed by the development of the buds in the axils of other leaves successively ; and as such leaves are thickly placed, we are unable, after the development of the branchcs, to trace clearly the turns of the spire, so that they appear to grow in a circle.
2. Adventitimes Buds.-These have been found on various parts of the plant, as on the root, the woody part of the stem, the leares, and other organs. Thus, when a tree is pollarded, that is, when the main branches and the apex of the trunk are

Fig. 217.

Fig. 218.

Fig. 217. Lenf of Bryophyllum calycinum with buds on its margins.-Fig. 218. Eud of the leaf of 1fulaxis paludost, with buds, b, b, on its margins.
cut off, the latter becomes so gorged with sap that a multitude of adventitious buds are formed from which branches are developed. The branches thus produced by pollarding are, however, to a certain extent, also caused by the development of regular buds which had become latent from some cause having hithcrto interfered with their growth.

In every instance the adventitious buds, like the normal ones, take their origin from parenchymatous tissue. Thus, if produced on the stem or branches, they come from the ends of the medullary rays ; or when developed upon leaves, they may arise from their margins, as in Maluxis paludosa (fig. 218, b, b), and Bryophylhum calycinum (fig. 217); or from their surface, as in Omithogalum thyrsoiderm ($\mathrm{fu} .219, b, b, b$). Leaves thus bearing buds are called proliferous. Such buds are naturally formed on the leaves of the above-named plants, and occasionally on others ; but they may also be produced artificially on various leaves, such as those of species of Gesnera, Glowinia, and Achimenes, by the infliction of wounds, and then afterwards placing them in

Fig. 219.

Fig. 219. A portion of the leaf of Or nithogfelum thyrsoideum, showing buits, b, b, b, ou its surface. a moist soil, and exposing them to the other influences which arc favourable for the growth of buds. The buds developed on the leaves, in such cascs, ultimately form independent plants, and this process is thercforc constantly resorted to by gardeners as a means of propagation. These adventitious
buds differ from those commonly produced in the axils of leaves, or at least from those which remain dormant during the wintcr; in being smaller, and having no external protective organs or scales.

Embryo-Buds.-In some trees the adventitious buds, instead of being dercloped on the outsidc of the stcm or branch, are enclosed in the bark; such have becn called embryo-buds or embryo-nodules. They may be readily observed in the bark of certain trees, such as the Cork-oak, the Beech, and the Ccdar of Lebanon, in which they produce externally little swellings, which, when examined, are found to be owing to the presence of these nodules, which have a more or less irregular ovoid (fig. 220) or spheroidal form, and woody texture. Upon making a transversc or vertical section of one of them (fig. 221), we observe a central pith surrounded by a variable number of concentric rings of wood according to its age, as in the wood of ordinary trees, and traversed by medullary rays; in fact, it has all the structural parts found in the branch or trunk

Fig. 220.

Fig. 221.

Fig.220. Embryo-bud or embryo-nodule of the Cedar.-Fig. 221. A rertical seetion of the same surrounded by the bark.
of a Dicotyledonous tree. In the course of their developraent, these embryo-buds frequently reach the wood, with the growth of which they then become confounded, and thus form what are called lnobs. In other cases a number of nodules meeting together on the surface form an excrescence. That such nodules are analogous to buds is further proved by the fact of their sometimes producing a short branch from their summit, as in the Cedar of Lebanon and Olive. Those of the latter plant, under the name of Uovili, are really employed for its propagation.
3. Accessory Buds. -The third cause of irregularity in the distribution and appearance of branches arises from the multiplication of buds in the axils of leaves. Thus instead of one bud, we have in rare cases two, three, or more, thus situated (figs. 222-224) ; such are called accessory buds. These buds may be either placed one abore the otlicr, or side by side. Thus, in certain Willows, Poplars, and Maples, we have three buds placed side by side (fiy. 222, a), which frequently give rise
to a corresponding number of branches. In some Aristolochias, in Walnuts (fig. 223, b), in the Tartarian Honeysuckle (fig. $224, b$), and other plants, the accessory buds are arranged one above the other. Sometimes the uppermost bud alone develops (fig. $223, b$), as in the Walnut, and thus the branch which is formed arises above the axil of the leaf, in which caso it is said to be extra-axillary. In the Tartarian Honeysuckle (fig. 224, b), the axillary or lowest bud is that which forms the strongest branch, over which a number of smaller branches are placed, arising from the development of the accessory buds. In some trees, as the Larch, and Ash, and frequently in herbaceous plants, these accessory buds, instead of forming separate branches, become more or less united, and the branches thus

Fig. 222.
Fig. 223.
Fig. 224.

Fig. 222. Branch of a species of Maple with three buds, a, placed side by sidc.-Fig. 223. A piece of a branch of the Walnut-tree. p. The petiole having in its axil a number of buds placed one above the other, the uppermost, b, most developed.- Fig .224. A piece of a branch of the Tartarian Moneysuckle (Lonicera fartarict), bearing a leaf, f, with numerons buds, b, in its axil, placed above one another, the lowermost being the most developed.
produced then assume a more or less flattened or thickened appearance. Such abnormal branches are commonly called fasciated. These branches may, however, be produced by a single bud developing in an irregular manner.

Besides the above three principal sources of abnormal or irregular development of the branches, some minor ones also arise from the formation of extra-axillary branches in other ways than those just alluded to. Thus the stem may adhere to the lower part of the branch, which then appears to arise from above the axil of the leaf; or to the petiole, when it appears to arise from below it. Other irregularities also occur, but they are of little inportance compared with those already mentioned.
3. Ofthe Forms and Kinds of Stem and Branches.-In form the stem is usually more or less cylindrical, while in other
cases it becomes angular, and in some plants, particularly in those of certain natural ordcres, as the Cactaces, Orchidacex, Euphorbiaceæ, \&c., it assumes a variety of anomalous forms. Thus in many epiphytical Orchids it becomes more or less oval or rounded, and has received the name of Pseudobulb (fig. $256, b, b$) ; in the Melon-cactus it is globular ; and in other Cacti it is columnar, more or less flattened, or jointed. In the Tortoise or Elephant's-foot Plant (Testudinaria elephantipes), it forms a large rough irregular mass.

FIG. 225.

Filg. 225. Climbing stem of the Iry. a, a. Aerial roots,

Fig. 226.
Fig. 227.

Fig. 227. Twining stem of n species of Contolvulus.

Fig. 226. Twining stem of Honeysuckle.
In general, stems possess a firm texture, and can therefore readily sustain themselves in an upright position; but at other times they are too weak to support themselves, and then either trail along the ground, or attach themsclves to some other plant or neighbouring object. In such cases, if they trail on the ground, they are said to be procumbent or prostrate ; or if when thus reclining they riso towards their extremity, they are decumbent; or if they rise obliquely from near the base, ascending. But if, instead of resting on the ground, they take an crect position and cling to neighbouring plants or other objects for support, they are called climbing if they procecd in a more or less
rectilineal direction, as in the Passion-flower (fig. 213), where they adhere to other bodies by means of little twisted ramifications called tendrils, v, v; or in the Ivy, where they emit little aerial roots from their sides, by which they cling to neighbouring bodies (fig. 225, a, a). \dot{O}_{1} if such stems twist round other bodies in a spiral manner they are said to be twining.; and this twining may take place either from right to left, as in some Convolvuli (fig. 227), French Bean, and Dodder ; or from left to right, as in the Honeysuckle (fig. 226), Hop, and Black Bryony ; or first in one direction and then in another, irregularly, as in the White Bryony. The climbing and twining stems of cold and temperate regions are generally herbaceous or die annually, although we have exceptions in those of the Ivy, Clematis, and Honeysuckle, which are woody. In tropical climates these woody climbing and twining stems often occur ; these are called lianas or lianes, and they frequently ascend to the tops of the loftiest trees, and then either descend to the ground again, or pass to the branches of neighbouring trees.

The stem has received many names according to its nature. Thus it is called a caulis in plants which are herbaceous, or die down annually to the surface of the ground ; a trunk, as in trees, where it is woody and peremial ; a culm, as in most Grasses and Sedges, where it presents a jointed appearance ; and a caudex or stipe, as in Tree-ferns and Palms.

Herbs, Shrubs, and Trees.-From the nature, duration, and mode of branching of stems, plants have been arranged from the earliest periods in three divisions, called, respectively, Herbs, Shrubs, and Trees. Thus, those plants which have stems that die down annually to the surface of the ground are called herbs; while those with perennial aerial woody stems are denominated trees or shrubs according to circumstances, as described below. Herbs are also further characterised as annual, biennial, and perennicl. Thus they are annual when they only live through one season, that is, between the spring and winter ; biennial, when they spring from seed in one season, and die in the second, after producing flowers, fruit, and seed; and perennial, when they gerininate from seed in one season, and continue to live through a succession of years, and annually send up an herbaceous stem. The term tree is applied if the branches are peremial and arise from a trunk. When the branchcs are perennial and proceed directly from. or near to, the surface of the ground, without any trunk, or where this is very short, a shrub is formed; this when low and branched very much at the base, is denominated a bush. The term undershrub is also applied to a small shrub which is intermediate in its characters between an ordinary shrub and an herb; thus, when some of its branches generally perish annually, while others are more or less permancent. Ail the above kinds of stems are connected by intermediate links, so that in many cases they are by no mcans well defined.

If the terminal bud of a stem is continually devcloped, the axis upon which it is placed is prolonged upwards from the earth to its summit, giving off branches from its side, as in most Firs; such a stem has been termed excurrent. When the main stem is arrested in its growth by the process of flowering, or some other cause, and the lateral bnds become the more vigorously developed, so that the stem appears to divide into a number of irregular branches, it is said to be deliquescent. These different kinds of growth influence materially the general form of trees. Thus, those with excurrent stems are usually more or less conical or pyramidal ; while those with deliquescent stems are rounded or spreading. The general appearance of trees also depends upon the nature of the lateral branches, and upon the angle which they make with the stem from which they arise. Thus, if the branches are firm, and spring at an acute angle to the stem, as in the Cypress and Lombardy Poplar, they are erect, and the tree is more or less narrowed; if they come off at a right angle, the branches are spreading, as in the Oak and Cedar ; if the angle is very obtuse, or if the branches bend downwards from their origin, as in the Weeping Ash and Weeping Elm, they are termed weeping or pendulous; or in other cases this weeping appearance arises from the weakness and flexibility of the branches, as in the Weeping Willow and Weeping Birch. The relative length also of the upper and lower branches will give rise to corresponding differences in the general appearance of trees. Thus, if the lower branches are the longest and become shorter as they approach the top, the whole will take the form of a cone or pyramicl, as in the Spruce Fir; if the micldle branches are longer than those of the base and apex, the general appearance will be rounded or oval, as in the Horsechestnut ; if those of the top are the most cleveloped, the form will be umbrella-like, as in the Italian Pine.

Kinds of Stem and Branches.- We have seen that the stem (page 73), when first developed, always passes upwards, while the root at the same time passes clownwards. In many instances this original direction of the stem is continued more or less throughout its life, but in other plants the terminal bud either acquires an irregular development, and the stem rums along, or remains under, the surface of the ground ; or it perishes altogether at a very early period, and an axillary branch takes its place, which also, by developing laterally, will likewise continue near the surface of the ground, or burrow beneath it. From these peculiarities in the direction and growth of stems and branches, we have a number of modifications which we now proceed to describe. These are best treated of, in a practical point of view, under two heads, namely, those which are aerial, and those which are subterumean. We can, however, by $n o$ means draw a distinct line between the modifications of stcm which these two divisions respectively contain, as certain
forms occasionally pass from one into the other, thus being both subterranean and aerial at different points, or at different periods of their course.

1. Aerial Modifications of the Stem and Branches.-Of these the more important are the runner, the offset, the stolon, the sucker, and the thizome.
a. The Rumer or Flagellum. (fig. 228).-This is an elon-

$$
\text { Fic. } 228
$$

$$
\text { Fig. } 229 .
$$

Fig.228, A portion of the common Strawberry plant. a^{\prime}. All axis producing a tuft of leaves at its extremity, the upper of which, r, are well developed and green. and the lower rudimentary. From the axil of one of the latter a second axis or runner, $\prime^{\prime \prime}$, arises, bearing a rudimentary leaf, f^{\prime}, near the middle, and a cluster of leaves, r, at its end. $a^{\prime \prime \prime}$. A third axis produced in a similar manner to the former. f, f. Roots or rootlets - F^{\prime} ig. 220. Offset of Sempervirm.-Fiy. 230 . Tlant showing the process of layering.
gated, slender, prostrate branch, a^{\prime}, sent off from the base of the stem, and giving off at its extremity leaves, r, and roots, f, and thus producing a new plant, which extends itself in a similar manner. This is well seen in the common Strawberry.
b. The Offset (fig. 229). -This is a short, prostrate, more or
less thickened braneh, whieh produces at its apex small roots and a tuft of leaves, and thus forms an independent plant, which is eapable of produeing other offisets in a like manner. It is well seen in the Houseleek. This differs very little from the ordinary runner, exeept in being shorter, some what thieker, and its leaves distinetly tufted.
e. The Stolon. -This is a branch given off above the surfaee of the earth, but which eurves or proceeds downwards towards it, and when it reaches a moist spot it sends rootlets into the ground, and a stem upwards into the air, and being thus eapable of acquiring food independently of its parent, it ultimately forms a new individual. The Currant, Gooseherry, and Bras other plants, multiply in this way. All such plants are said tdememen be stoloniferous. Gardeners imitate this natural formation of new individuals when they lay down a braneh into the earth, from whieh a new plant is ultimately formed; this process is technieally ealled layering (fig. 230).

Fig. 231.

Figs. 231 and 232. Suckers of species of Mcntha.
d. The Sucker (figs. 231 and 232). -This is a branch which arises from the stem below the surface of the earth, and which, after proceeding in a horizontal direction for a certain distanee, and giving off little roots or rootlets in its eourse, turns upwards into the air, and ultimatcly forms an independent plant. Plants thus produeing suckers are said to be surculose. Good examples of this kind of stem are seen in the Rose, the Raspberry, and the Mint. The sueker ean scarcely be said to differ in any essential partieulars from the stolon, cxeept that it is originally subterranean, and ultimately aerial; whereas the stolon is first aerial, and then subterranean.
e. The Rhizome or Rootstock (figs. 233 and 234). -This is a prostrate thiekened stem or braneli rumning along the surface of the ground, or more generally partly beneath it, and giving off small roots or rootlets from its lower side, and leaves and buds
from its upper. These stems sometimes creep for a long distance in this way, and have their upper surface then marked by scars (fig. $234, c, c$), which are caused by the falling off of former leaves, or of aerial herbaceous branches orflower-stalks, by which character they may be commonly distinguished, even when in a dried state, from true roots. Such stems are found in the Iris, Sweet-flag, Ginger, Turmeric, Solomon's Seal, Fern, and many other plants. In some cases these rhizomes are placed in a vertical direction in the earth (erect rhizomes), and they then bear a great resemblance to roots, as in the Devil's-bit Scabious (Scabiosa succisa), where such a rhizome is commonly known as a premorse root (fig.272). The rhizome being generally, as we have seen, partly beneath the surface of the ground, forms therefore a natural transition to the description of subterranean stems.

Fig. 233.

Fiy. 233. Aportion of the rhizome of a species of Iris.-Fig. 234. A portion of the rhizome of the Solomon's Seal (Polygonatum multiforum). b. Remains of the flowering stem of the present year. b^{\prime}. Terminal bud. c, c. Scars produced by the decay of the flowering stems of the two preceding jears. r, r. Rootlets.
2. Subterranean Modifications of the Stem and Branches.-All these modifications of the stem and branches were formerly confounded with roots, and they are still thus designated in common language. They are distinguished, however, from roots, either by the presence of buds, or by scales (catcuphyllary leaves), or by the presence of scars on their surface which are produced by the falling off of former leaves or buds. The different kinds of aerial stems described ahove, when partially subterranean, may be also distinguished in a similar manner from roots.
a. The Creeping Stem (fig. 235).-This kind of stem is called in common language a creeping root. It is a slender branch which runs along beneath the surface of the carth, emitting small roots from its lower side, and buds from its upper, in the same manner as the rhizome, and it is considered by many botanists as a varicty of that stem. The only differences existing between the creeping stem as defined above and the rhizome, are its
more slender form, its commonly greater length, and its entirely subterranean coursc. The Sand Sedge (Carex arenaria) (fig. 235), and the Couch Grass (Triticum repens), afford good examples of this stem. In some instances such stems serve important purposes in nature ; thus those of the Sand Sedge or Carex, by spreading through the sand of the seashore, and in this way binding it together, prevent it from being washed away by the receding waves. Others, like those of the Couch Grass, are the pest of the agriculturist, who finds it very difficult to destroy such stems by cutting them into pieces, for as every node is capable of developing a leaf-bud and roots, each of the pieces into which they will then be divided may become an independent individual ; and therefore such a

Fig. 235.

Fiy. 235. Creeping stem of the Sand Carex (Carex arenaria). 1. Terminal bud by which the stem continues to elongate. 2, 3, 4. Shoots produced from former buds.
process, instead of destroying sueh plants, only serves the purpose of still further multiplying them by placing the separated parts under more favourable circumstances for development.
b. The Tuber (figs. 236 and 237).-This is a subterranean stem or branch, arrested in its growth, and excessively enlarged by the deposition of starch or other nutritious substance in its tissue. It has upon its surface a variable number of little buds, or eyes as they are sometimes called, from which new plants arc ultimately formed. The prescnce of these buds indicates its nature as a kind of stem. This stem-like nature of the tuber is also clearly proved by the practice commonly adopted for propagating putatoes, the tuber being cut into picces, each piecc containing one or more buds. Then thesc pieces are placed under favourable circumstanees for derelopment, the buds are at first nourished by the matter which surrounds them, and are thus enabled to put forth roots and
obtain nourishment for themselves, and in this manner to form independent plants. The Potato (f ig. 236), and Jerusalem Artichoke (fig. 237), are good illustrations of tubers. A case was reported in the G'ardener's Chronicle of a Potato plant in which the buds in the axils of the true leaves above ground

Fig. 236.

Fig. 236. Tubcrs of the common Potato (Solanum tuberosum).
showed a tendency to form tubers ($f i g, 238$), by which their analogy to stems was also clearly indicated. The stem-like nature of the tuber is likewise corroborated by the common experience of gardeners, who, by surrounding the lower part

$$
\text { Fig. } 237 .
$$

Fig. 238.

Fig. 237. Tubers of the Jerusalem Artichoke (Ifelimenthus fuberosns). -
Fig. 238. A monstrons brauch or bud of the common Fotato. From the Giirdener's Chronicle.
of the aerial stems of the Potato with earth, convert the buried buds (which under usual circumstances would lave produced ordinary branches) into tubers, and thus increase their number.

The tubercules of certain terrestrial Orchids and other plants
(figs. 261-263), whieh are described by us as enlarged roots, are eonsidered by some botanists as tubers. The tuber, however, as defined above, is well eharaeterised, and, in practice at least, should be distinguished from them.
e. The Bulb.-This is a shortened, usually subterranean stem or braneh, generally in the form of a rounded or flattened plate or dise (figs. 239-241, a), which bears on its surface a number of fleshy seales or eataphyllary leaves; or it may be eonsidered as a subterranean bud of a scaly nature which sends off roots or rootlets from below (fig. 241, b), and a flowering stem upwards (fig. 239, p, and figs. 240 and 241, d). The seates are generally more or less thiekened by deposition of nutritive matters ; these, therefore, serve as reservoirs of nutriment for the future use of the plant, just as in other cases the enlarged stems and roots serve a similar purpuse. The true bulb is only

Fig. $239 . \quad$ Fig. 240.

Fig. 241.

Fig. 239. Vertical section of the scaly bulb of the Lily. a. Shortened axisor stem. b. Lateral bulb or clove. p. Flowering stem. c. Scales. - Fig. 240. Vertical section of the scaly bulb of the Lily.-Fig. 241. Scaly bulb of the Lily. a. Shortened axis or stem. b. Fibrons roots. c. Schles, d. Flowering stem. The letters refer to the same parts in the two latter figures.
found in Monoeotyledons, as in the Lily (figs. 240 and 241), Onion (fig. 242), and Tulip. The seales of a bulb, like the leaves of a braneh, have the power of developing in their axils now bulbs (fig. 239, b); 'these are called by gardeners cloves, and their presenee is an additional proof of the analogy of a bulb to a braneh or bud.

There are two kinds of bulbs eommonly distinguished by botanists, namely, the turnicated (fig. 242), and the scaly (figs. 240 and 241). The tumicated bulb is well seen in the Onion (fig. 242) and Squill. In this kind of bulb the inner scales, which are thick and fleshy, enelose each other in a eoneentric manner, and are covered externally by thin and membramous ones, whieh form a eovering or tuic to them, and henee the namo tundicated or coated, whieh is applied to it. In the scelly, or naked bulb, as it is also called (figs. 240 and 241), there are no outer
dry scales ; but it is entircly composed of thick, fleshy, more or less flattened ones, which simply overlap one another.

The young bulbs (cloves) (fig. 239, b), which are developed in the axils of the scales of bulbs, either remain attached to their parent, which they then commonly destroy by absorbing all its stored-up nutriment ; or more commonly they become separated in the course of growth, and form independent plants.

In the axils of the leaves of certain plants, such as some species of Lily (fig. 243, a, a), the Coralwort (Dentaria bulbifera), and Pilewort (Rammenius Ficaria), small conical or rounded Heshy bodies are procluced, which are of the nature of bulbs, and are hence called curial ballbs from their position, or from their smaller size bulbils or bulblets. They differ from ordinary buds in their fleshy nature, and by spontaneously separating

Fig. 242. Fig. 243.

Fig. 242. Tunicated bulb of the Onion.-Fig. 243. Stem of a species of Lily (Lilium bulbiferum) bearing bulbils or bulblets, a, a, in the axvils of its leares.
from their parent, and producing new individuals when placed under favourable circumstances; and from true bulbs from their small size and aerial position. These aerial bulbs are not confined, as is the case with true bulbs, to Monocotyledons, as nay be seen by the examples given.
d. The Corm.-This form of stem, like the true bulb, is only found in Monocotyledons, as, for example, the Colchicum (fiy. 246), and Crocus (figs. 244 and 245). It is an enlarged solid subterranean stem, of a more or less rounded or oval tigure, and commonly covered externally by a few thin membranous scales or cataphyllary leaves. By some botanists it is considered as a kind of bulb, in which the stem is much enlarged, and the scales reduced to thin membranes. Practically a corm may
be distinguished from a bulb by its solid nature ($\mathrm{fig} .245, a, b$), the bulb being formed of flattened imbricated or concentrically

Fig. 244.

Fig. 245.

Fig. 244. Corms of Crocus smiturs. a, b. The new corms, arising from c, the apex of the old or parent corm.-Fig. 245. Vertieal seetion of the former. The letters refer to the same parts.
arranged scales. The corm is known to be a kind of stem by producing from its surface one or more buds, in the form of

Fig. 246.

Fig. 246. Colehieum. r. Roots or rootlets. f. Leaf. a. Shrivelled remains of last year's eorm. $a^{\prime \prime}$. Corm of the present year. $a^{\prime \prime \prime}$. Commeneement of the enrm of next year. young corms, as in the Crocus (f ig. 244, a, b), where they proceed from the apex, c. and ultimately destroy their parent by feeding upon its accumulated nutriment. These new corms, in a future year, also produce others near their apex, and these by developing at the expense of their parents also destroy them in like manner, and these again form other corms by which they are themselves destroyed. In this manner the new corms, as they are successively developed from the apex of the old corms, come gradually nearer ind nearer to the surface of the earth.

In the Colchicum (fig. 246), the new corm $a^{\prime \prime \prime}$ is developed on one side of the old corm near its base, instead of from the apex, as in the Crocus. This also feeds upon its parent, and ultimately destroys it, and is in like manner destroyed the next ycar by its own progeny. Thus, in taking up such a corm carcfully, we find (fiy. 246), a, the shrivelled corm of last year ; and $a^{\prime \prime}$, that of the present scason, which, if cut vertically, shows $a^{\prime \prime \prime}$, the corm in a young condition for the next year. All corms, like bulbs, contain starch or other nutritious matters, which are stored up for the future use of their offspring.

Section 2. The Root or Descending Axis.

The root is defined as that part of the axis which at its first development in the embryo takes an opposite direction to the stem, avoiding the light and air, and hence called the descending axis, and fixing the plant to the soil or to the substance upon which it grows, or suspended in the water when the plant is placed on the surface of, or in, that medium. That part of the root which joins the stem is called the base, and the opposite extremity the apex.

We distinguish two varieties of roots, namely, the True or Primary, and the Adventitious or Secondary.

Fig. 247.

Fig. 247. Root apex (Polygonum Fagopyrum), median longitudinal section. e. Rudiment of a vessel. pc. Pericambium-the outside boundary of the plerome or procambium. e. Dermatogen, between which and $p c$ is the periblem. h. Root-cap or pileorhiza. a. Apical cells. After De Mary.

1. The or Primary Root. -The true root, which, except in rare cases, can only exist in Dicotyledons (page 134), is formed at first by additions made within the extremity of the radicle ($f y .248, a$) of the embryo ; and the mode in which it takes place may be thus stated:-Growth commences by the multiplication of cells by division just within the apex of the radicle; the mass of cells thus formed becomes gradually differentiated into three layers, an outer, inner, and intermediate. From the inner layer,
whieh is termed the plerome or prorambium (fig. 247), is subsequently developed the fibro-vaseular portion of the root, r, the eortieal layers being formed from the intermediute layer or periblem, whilst the outer single layer of eells, known as the dermatogen, e, in addition to giving rise to the epidermis, forms the eap-shaped mass of tissue ealled the root-cup or pileorhiza, h, by which the growing apex of the root is always elothed. All roots (fig. 248, a) and the branehes of a root grow in length in a similar manner to the radiele as above described; henee roots do not grow throughout their entire length like stems, but only within their extremities, whieh are continually pushed forward and renewed. Thus the apex of the root is always elothed by a layer of denser tissue whieh is eommonly known

Fig. 248.

Fig: 248.

Fig. 248. Young root of the Maple, magnifled. त. The part where growth is taking place. b. The orlginal cxtrenity. c, c. Fibrils or root-hairs. After Gray.--Fig. 249. Highly magnified vertical section of an Orehis root. $s p$. The so-called sponglolc. c, c. Parenchymatous cells. $f v$. Woodcells and vessels.
as the root-eap (fig. 248, b). All the branehes of a root are likewise terminated by a similar cap (fg. 250, h, h). This cap forms in faet a sort of protecting shield to the young extremities of the root; and its external eells are commonly thrown off as new eells are formed within them. (See also Development of Roots, in Physiologieal Botany.) These eap-like eoverings at the extremities of the root were formerly regarded as speeial organs, and ealled spongioles or spongelets (fiy. $249, s p$), under the idea that they absorbed fluid for the use of the plint, in the same mamer as a sponge sueks up water. But it will be seen from the abore deseription of the growth of roots that suel struetures have no existenee. Roots inerease in diameter by the formation of amual layers of wood, mueh in the same mamer as stems.

At first the elongating growing extremities of the root eon-
sist entirely of parenchymatous cells (figs. 248, a, and 249, c) ; wood-cells and ressels (f ig. 249, $f v$), however, soon make their appearance, and are constantly added to below by the new tissue formed as the root continues to lengthen. When the root is fully developed, these vessels and wood-cells generally form a central mass of wood (figs. $249, f v$, and $250, f$), in which there is commonly no pith, and no medullary sheath, but the medullary rays exist as in the stem. Roots, however, differ from stems in the arrangement of the parts of their fibro-vascular bundles. Thus in roots, the phloëm or liber portions alternate with the xylem or woody portions, instead of being placed external to them as in stems ; and some other minor differences also occur. Externally there is a true bark or cortex (fig. 250, r, r), which is also covered when young by a modified epidermis without stomata (fig. 128), and which, as we have seen, is sometimes called epiblema (page 60). This epidermis is also furnished with hairlike prolongations, which are termed root-hairs or fibrils (figs. 128 , and $248, c, c$). The latter are especially evident upon young growing roots, and as these advance in age they perish, while the tissue from which they were prolonged becomes at the same time harder and firmer, and is converted gradually into corktissue.

Roots have no leaves, and normally no buds, hence they have no provision for regular ramification ; but they appear to divide and subdivide according to circumstances without any definite order; hence while the branches of the stem have a more or less symmetrical arrangement, as already described, those of the root are unsymmetrical. The branches of the root are also always developed endogenously ($f i g .250, n, n$), that is, they are deep-seated, being derived from the pericambium ($f i g$. $247, p c$) or outer layer of the plerome or procambium. As they

Fig. 250. Longitudinal section of the root of the common Bean (Fuba rulg(tris), magnified five times. $r, 1$. Cortex of the main root. f. Fibrovaseular bundles. n, n, n, u. Lateral roots in different stages, developing from the porieambium and ultimately bursting through the cortex, h, h. Root-cap, or pilcorhiza, of the lnteral roots. After Prontl. increase in length they ultimately push through the tissues which are superficial to them, namely, the cortical layers and epidermis of the main root, which are therefore not continuous with the similar tissues of the branches (fig. $250, r, r$). The branches are thus merely repetitions of the original axis from which they are developed, and grow,
as already noticed, in a similar manner, and, like it, have commonly neither buds nor leaves. To this latter character, however, there are many exceptions, for although the root has no power of forming regular buds, yet adventitious buds may be developed, in the same manner as we have seen that under certain circumstances they may be produced from any parenchymatous tissue (page 111). The power which the root thus possesses of producing adventitious buds may be observed in the Plum-tree, the Moutan Proony, the Japan Anemone, and many other plants. The latter plant especially exhibits this tendency in a remarkable degree.

Distinctive Characters of Stems and Roots.-From the above general clescription which has been given of the growth, structure, and characteristics of the true or primary root, we find that the chief distinctive characters between it and the stem in Dicotyledons may be summed up as follows:-1st. The tendency of the root at its first formation to develop in an opposite direction to the stem, and thus withdraw from the light and air. 2 nd . By not growing throughout the entire length of its newly formed parts like a stem, but only by additions just within its apex, which is covered by a root-cap or pileorhiza. 3rd. The root under ordinary circumstances, when fully developed, has no pith or medullary sheath. 4th. It has no true epidermis with stomata, but in place of this an integument composed of cells without stomata, to which the name of epiblema has been given. 5th. It has no foliage leaves, or scales (cataphyllary leaves). 6th. It has no regular buds, and has consequently no provision for a regular ramification.
2. Adventitious or Secondary Roots.-This name is applied to all roots which are not produced by the direct elongation of the radicle of the embryo; because such roots, instead of proceeding from a definite point as is the case with the true or primary root, are, to a certain extent at least, accidental in their origin, and dependent upon favourable external circumstances for their development. All branches of a true root, except those originally produced from its apex, are of this nature, as are also those of the different modifications of the stem, such as the rhizome, runner, sucker, stolon, corm, bulb, $\mathbb{A c}$. ; those of slips and cuttings of plants, \&c.; and those of nearly all Monocotyledons and of Acrogens or Cormophytes. In some plants roots are also developed from the stem or branches of plants in the air, and are hence called Aerial Roots. Such roots are likewise necessarily of an adventitious nature.

The adventitious roots of Monocotyledons make their first appearance as little more or less conical bodies formed by division and subsequent growth of the cells constituting the pericambium or outer layer of the plerome or procambium ; these soon break through the tissuc which cnvelops them, and appear extcrnally, at first as parenchymatons elongations, but
ultimately having a similar structure to that of a monocotyledonous stem. Where they break through they are surrounded at the base by a kind of sheath or collar called a coleorhiza (fig. 251, co). They also grow by additions within their extremities like true roots, and are terminated like them by a root-cap or pileorhiza. In the adventitious aerial roots of the Screw-pine (fig. 199, 2), and some other plants, the pileorhiza may be well seen in the form of a cap-like covering at the extremity of each root or branch of a root. The pileorhiza of a monocotyledonous root, like that of a true root, is commonly thrown off as development takes place behind it; but in certain aquatic plants, as in the Duckweed (f ig. 252), it is persistent, and appears in the form of a long sheath over the end of the root; and is continually pushed on wards by the development of the cells within the apex.

Fig. 251.
Fig. 2 ã2.
Fig. 253.

Fig. 251. Germinating embryo of the Oat. r. Rootlets, each with a sheath (coleorhiza), co, at its base. c. Cotyledon. g. Young stem.-Fig. 252. Magnified plants of the Lesser Duekweed (Lemna minor), with the roots covered by a long root-cap (ynleorhiza).——Fig. 253. Lower part of the stem and root of the common Stock. r. The tap-root with its branches. c. The base of the root or point of union between the stem anl root which was formerly termerl the neek. t. The stem. f, f. Leaves. b, b. Buds in process of development into branches.

The adventitious roots of Dicotyledons arise in a somewhat similar manner to those of Monocotyledons, making their first appearance as little conical bodies formed from the substance of the pericambium, and ultimately breaking through the bark and appearing on the surface. They also grow by additions within their extremities, and each is protected by a pilcorhiza, and has at its base a coleorhiza. They have under ordinary circumstances a similar structure to that of truc roots.

Adventitious roots generally, like true roots, have no leaves or buds, and when subterrancan have no epidermis furnished with stomata; hence when derived from Dicotylcdons, they are distinguished from the stem by the same characters as that of the true root. The adventitious roots of Monocotyledons and of Cormophytes have a similar structure to their respective stems, as will be afterwards noticed. Aerial roots are, howcver, from their exceptional position, frequently furnished with a true epidermis and stomata, and are sometimes of a green colour; but in other respects they rosemble ordinary adventitious roots.

The true or primary root, from its being formed by direct clongation from the radicle, by additions made within its extremity, generally continues to grow downwards for some

Fig. 254. The Bauyan-tree (Ficus indica).
time at least, and hence forms a main trunk or axis from which the branches are given off (fig. 253, r). Such a root is tcrmed a tap-root, and may be commonly observed in Dicotyledons. On the contrary, the roots of Monocotyledons and Comophytcs, which are adventitions, arc usually of nearly equal size, and given off in variable numbers from the radicle (fig. 251, r). Some adventitious roots, such as those called acrial, require a morc particular noticc.

Aerial Roots.-The simplest forms of acrial roots arc seen in the Ivy (fig. 225, a, a), and some other climbing plants. In these plants they arc essentially intended for mechanical support, and not to obtain food : this they obtain by their ordinary roots fixed in the soil. It is probable, however, that in the Iry and other climbing plants some food may be taken up by these roots. In many other plants the acrial roots which are given off by the
stem or branches descend to the ground, and fixing themselves there, not only act as mechanical supports, but also assist the true root in obtaining food. Such roots are well seen in the Screw-pine (fig. 199, 2), in the Banyan or Indian Fig-tree (fig. 254), and in the Man-grove-tree (fig. 2055). In the latter tree these aerial roots frequently form the entire support of the stem, both mechanically and otherwise, in consequence of this decaying at its lower part.

Epiphytes or Air-plants.In these plants none but aerial roots are produced (fig. 256, $a, a)$, and as these never reach the soil they cannot obtain any food from it, but must draw their food entirely from the air in which they are developed; hence the name of air-plants which is applied to them. They arc also called epiphytes, because they commonly grow upon other plants. Most Or-

Fig. 255.

Fig. 255. The Mangrove-trce (Rhizophora Mangle). chids (fig. 256) and Tillandsias afford us illustrations of epiphytical plants. The roots of such plants are commonly green, and possess a true epidermis and stomata ; in which particulars, thicre-

Fig. 256. Orchidnceous plants, to show their mode of growth. a, a. Aerial roots. b, b. Pseudobuibs.
fore, thesc aerial roots present exceptions, as already noticcd, to what is commonly observed in other roots. The aerial roots of Orchids have also a layer of usually very delicate fibrous cells
(page 45), plaeed over the true epidermis, to whieh the name of root-sheath (velamen rudicum) has been applied by Schleiden, who also calls such roots coatcd roots.

Besides these epiphytes, there is another very interesting class of plants which are called parasites: thesc we must now notice.

Parasites.-These are plants which not only grow upon others, but which, instead of sending their ronts into the air and deriving their food from it, as is the casc with the epiphytes, send them into the tissues of the plants upon which they grow, and obtain nutriment from them. The plant whieh they thus penetrate and feed upon is termed their host; and their sucking roots are termed haustoria. The Mistletoe (Viscum album), Broom-rapes (Orobanche), Dodders (Cuscuta) (fig.

Fig. 257.

Fig. 258.

Fig. 257. Cuscuts or Dodder-plant. of Pig. 258. Flower and fower-bud of Sumatra.
257), and Raffesia Arnoldi (fig.258), may be cited as examples of such plants. These parasites are of various natures: thus some have green foliage, as the Mistletoe; while many others are pale, or brownish, or possess other tints than green, as the Broom-rapes and Rafflesia. The latter plant is especially interesting from its producing the largest flowers of any known plant : thus the first flower which was discovered measured nine feet in circnmference, and weighed fifteen pounds.

Parasitical plants also vary in the degree of their parasitism ; thus the Mistletoc and the greater number of parasites are, so far as their roots are concerned, entirely dependent upon the plants on which they grow for their food. Others, as the Dolders, obtain their food at first, like other plants, by means of the ordinary roots contained in the soil; but after having arrived at a certain age, these perish, and they then derive their food entircly from roots which penetrate the plants upon whiel
they grow ; others, again, continue throughout their life to derive a portion of their food by means of roots imbedded in the soil.

It will thus be seen that parasites differ from other plants in the fact that they do not live like them entirely on inorganic matters, but derive at least some of their food in an assimilated state from the plants on which they grow. Thus, when green like the Mistletoe, they obtain a portion of their food, like ordinary plants, from the air ; but if of other colours than green, all their food is derived by their roots from the plants on which they grow. It must also necessarily happen that parasites, by living partially or entirely upon those plants on which they are placed, frequently injure, and even destroy them, and in this way great damage is done to Clover, Flax, and other crops in this country and elsewhere.

Besides the parasites just described, there is also another class of plants called saprophytes, which, whilst agreeing with ordinary parasites in deriving their food from already formed organic material, differ from this latter class in growing on dead organic substances, and therefore assimilating such matter which is in a state of decomposition or decay. Such plants as Monotropa Hypopithys, Corallorhiza innata, Epipogium Gmelini, and Neottic Nichus-avis, together with the greater number of Fungi, are examples of Saprophytes.

Duration of Roots.--Haring now described the general characters and structure of the true or primary root, and of the adrentitious or secondary root, we have in the next place to allude to certain differences which roots present depending upon their duration. Roots are thus divided into annnal, biennial, and perennial.

1. Annual Roots.-These are produced by plants which grow from seed, flower, and die the same year in which they are developed. In such plants the roots are always of small size, and either all spring from a common point as in annual Grasses (fig. 259), or the true root is small, and gives off from its sides a number of small branches. Such plants, in the process of flowering and ripening their fruits and seeds, exhaust all the nutriment they contain, and thus necessarily perish.
2. Biennial Roots.-Thesc are produccd by plants which spring from seed one year, but which do not flower and ripen their seeds till the second year, when they perish. Such roots are commonly enlarged in various ways at the close of the first season, in consequence of their tissues bccoming gorged with nutritious matters stored up for the support of the plant during its flowering and fruiting the succeeding scason. The Carrot (fig. 267), and Turnip (fig. 269), aftord us good examples of biennial roots.
3. Perenuial Roots.-These are the roots of plants which live for many years. In some such plants, as the Dahlia (fig. 263), and Orchis (figs. 261 and 262), the roots are the only portions.
of the plant which are thus perennial, their stems dying down to the ground yearly. Perennial roots are either of woody consistence, or more or less fleshy as in those of biennial plants. In the case of fleshy roots such as the Dahlia and Orchis, the individual roots are not in themselves perennial, but usually perish annually ; but before doing so, they produce other roots from some point or points of thcir substance; lence, while the root as a whole is peremial, any particular portion may perish. Woody roots are commonly perennial in themselves, and are not renewed.

Roots of Digotyledons, Monocotyledons, and Acro-gens.-We have already seen that the stem of Dicotyledons, Monoeotyledons, and Cormophytes, possesses certain characteristic differenees in its internal structure. The roots of such plants in like manner possess similar distinctive structural characters, and also some others, which, although generally referred to previously, had better be briefly summed up here.

1. The Root of Dicotyledons.- The root of these plants is formed, as we have seen (page 125), by the direct elongation of the radicle of the embryo from the formation of new tissue just within its apex. Such a mode of root-development has been called exorhizal, and a root thus formed is called a true root.

It follows from this mode of development that Dicotyledons have generally a tap-root (page 130) or descending axis (fiy. $2 \overline{5} 3$, r), from which branches are given off in various directions, in the same manner as such plants have also an ascending axis or stem, t, from which its branches arise. These tap-roots do not, however, commonly descend far into the ground, but their branches become much developed laterally ; in some cases even more so than those of the stem ; while in others, as in plants of the Gourd tribe, and commonly in suceulent plants, to a less extent.

In its internal structure the fully developed root essentially resembles the stem, except that, as already noticed (page 127), it has no pith or medullary sheath: hence the fibro-vascular tissue forms a central axis. This absence of pith and medullary sheath is general in herbaeeous Dicotyledons; but there are some trecs, as, for instance, the Walnut and Horsechestnut, where the pith is prolonged downwards for some distanee into the root.
2. The Root of Monocotyledons. - In these plants the radiele does not itself, except in rare cases, become prolonged to form the root, but it generally gives off above its base one or more branches of equal size, which separately pieree the radicular extremity of the embryo, and become the roots (fig. 251, r) ; and eaeh of these roots is surrounded at its base, where it pierces the integuments, with a kind of eellular collar, termed
the coleorhiza, co. Sueh a mode of root-development has been termed endorhizal. The roots of Monocotyledons are therefore to be regarded as adventitious or secondary.

From their mode of development it rarely happens that the plants of this elass have tap-roots, but they have instead a variable number of roots of nearly equal size (fig. 259), which are aecordingly often termed compound. There are, however, exceptions to this, as for instanee in the Dragon-tree (fig. 196), which has a desceuding axis resembling the ordinary tap-root of Dieotyledons.

Aerial roots are much more common in Monoeotyledons than in Dieotyledons. We have already referred to them in the Serew-pine (fig. 199, 2), and other plants of this elass. In many Palms they are developed in great abundanee towards the base of the stem, by whieh this portion assumes a conieal appearance, which is at once evident by the contrast it presents to the otherwise cylindrical stem of sueh trees. In its internal strue-

Fig. 259.

Fig. 259. Fibrous roots of a Grass.-Fig. 260. Coralline root.
ture the root of a Monoeotyledon corresponds to that of the stem in the same elass of plants.
3. The Root of Cormophytes or Acrogens.-Such plants, as we have seen (page 11), have no true seeds containing an embryo, but are propagated by spores, from which roots are developed in a very irregular manner ; and henee this mode of root-development has been called heterorhizal. Sueh roots are therefore all adventitious; and resemble those of Monocotyledons in being compourd. When the stem has become developed it soon also gives origin to other aerial adventitious roots, by whieh such plants are often chiefly supported. Henee aerial roots are very common in Acrogenous plants, as they are in Monocotyledons; indeed, in Tree-ferns, as in many Palms, these roots are so abundant at the base of the stem, that they sometimes double, triple, or still further increase its normal thickness (fig. 15, ra), and hence give to the lower part of such stems a conieal form.

The internal structure of the root of Acrogenous plants in all essential characters resembles that of the stem in the same class of plants.

Forms of Roots.-When a root divides at once into a
Fig. 262.
Fig. 261.

Fig. 261. Tubercular roots of an Orchis.-Fig. 262. Palmated tubereuies of an Orchis.

Fig. 263.

Fig. 264.

Fig.263. Faseiculated roots of the Dahlin,--Fig. 26t. Nodulose root of the common Dropwort (Spiraa Filipendula).
number of slender branches or rootlets, or if the primary root is but little enlarged, and gives off from its sides a multitude of similar branches, it is called fibrous. Such roots occur commonly
in anmual plants, and may be well scen in annual Grasses ($f i g$. 259), and in bulbons plants (figs. 241 and 242). Coralline Root.-This name is applied to a root which consists of a number of succulent branches of nearly equal size, and arranged like a piece of coral (fig. 260), as in Corallorhiza innata. Thberculated Root.-When some of the divisions of a root become enlarged so as to form more or less rounded, oval, or ovoid expansions (fig. 261), the root is said to be tuberculated, and each enlargement is called a tubercule. Such a root occurs in various terrestrial Orchids, the Jalap plant, \&c. These tubercules should not be confounded with tubers (page 120), which have been already described as subterranean modifi-

Fig. 265.
Fig. 266.
Fig. 267.

Fig. 265. Moniliform or beaded root.-Fig. 266. Annulated root of Ipecacuanha (Cephaëlis Ipecucu(нha).-Fig. 267. Conical root of the common Carrot (Duucus C'avota).

cations of the stem. The presence of buds on the latter at once distinguishes them. In many Orchids, as for instance Orchis maculata, the tubercules are divided at their extremities, so that the whole somewhat rescmbles the human hand ($f i g$. 262); they are then said to be palmated, and the root is also thus termed. Or when a number of tubercules arise from a common point, as in the Dahlia (fig. 263), and Bird's-nest Orchis (Neottia Nidus-avis), the root is said to be fasciculated or tufterd.

Wher the branches of a root are expanded only at ccrtain
points, other terms are applied. Thus, when the branches are enlarged irregularly towards the ends, as in the Common Dropwort, the root is nodulose (fig. 264); when the branches have alternate contractions and expansions, so as to prosent a beaded appearance, as in Pelargonium triste, the root is moniliform, necklace-slaped, or beaded (fig. 265) ; and when the root has a number of ring-like expansions on its surface, as in Ipecacuanha, it is annulated (f ig. 266).

The above forms of roots, with few exceptions, are those which are commonly observed in plants which have no true taproot. Those which have now to be described owe their special forms to modifications of the latter kind of root.

Fig. 268.

Conical Root.-When a tap-root is broad at its base, and tapers towards the apex, it is termed comical. The roots of Monkshood (Aconitum Napellus), Parsnip (Pastinaca sativa), and Carrot (Daucus Carota) (fig. 267), are familiar examples of this form of root. Fusiform Root.-This term is applied to a taproot which swells out a little below its base, and then tapers upwards and downwards (fig. 268). The common Radish, and Bect (Beta vulgaris), may be taken as examples. Napiform Root.-This name is given to a root which is much swollen at its base, and tapers below into a long point, the upper part being of a somewhat globular form (fig. 269). It occurs in
a variety of the common Radish-which is hence called the Turnip-radish, in the common Turnip, and in some other plants. When what would be otherwise a napiform root becomes compressed both at its base and apex so that it has no tapering extremity, it is sometimes termed placentiform (fig. 270). It occurs in the Sow-bread (Cyclamen вuroprum).

Some botanists regard the roots of the Radish, the Turnip, the Cyclamen, and others, as really enlarged stems. We have, however, placed them here, in accordance with the more commonly accepted views of their mature, and on account of their importance in Practical Botany. The two next described forms of roots are also more properly rhizomes, but it is convenient to notice them here, and so long as their nature is understood no confusion can arise.

Fig. 27.

Fig. 272.

Fig. 271. Contorted root or rhizome of Bistort (Polygonum Bisforf(1).Fig. 272. Præmorsc root or vertical rhizome of the Devil's-bit Scabious (Scabiose succisa).

Contorted or Twisted Root. - When a tap-rnot, instead of proceeding in a more or less straight direction, becomes twisted, as in the Bistort (fig. 271), the root is said to be contonted or twisted. Præmorse Poot.-When the main root ends abruptly, so as to present the appearance of having been bitten off, it is called abrupt, truncated, or promorse (fig. 272). We have a good example of this form of root in the Devil's-bit Scabious, which plant has received its common name from a superstitious opinion connected with this peculiar bitten-off appearance of its root.

Section 3. The Leaf or Phyllome.

1. GENERAL DESCRIPTION AND PARTS OF THE LEAF.

The leaf may be defined as a lateral development of the stcm or branch. In the lowest leaf-bearing plants, as Mosses, it consists cntirely of parenchyma; but in the higher classes of plants the leaf usually contains, in addition to the parenchyma, a framework or skeleton, consisting of wood-cells or liber-cells, or both, and vessels of different kinds, all of which structures are in direct connexion with similar parts of the stem or branch. We distinguish therefore, in such leaves, as in the stem and branch, both a parenchymatous and a fibrovascular system-the former constituting the soft parts, and the latter the hard parts, which act as a mechanical support to the leaf, and, by their ramification, form what are called veins or nerves. The leaf is therefore an appendicular organ of the stem, but it differs from the latter organ in the order of its development; for while in the stem or branch the apex is the youngest part, the reverse is the case in the leaf, where the apex is first formed and consequently the oldest, and is gradually pushed outwards by the formation of the other parts between it and the stem.

The leaves are usually of a green colour and of a more or less flattened nature ; but in the Stonecrop, Aloes, and many other plants, they are thick and fleshy, when they are said to be succulent. In other cases, as in the scales of the bud, the thin membranous coverings of tunicated bulbs and corms, the fleshy scales of bulbs, and the leaves of Broom-rapes, dc., they are colourless, or of a yellowish or brownish colour, and of simple structure; they are then termed scales or cataphyllary learcs, the ordinary leaves bcing called foliage learcs.

The part of the stem or branch from which a leaf arises is called a rode, and the spacc betwecn two nodes an intcrnode. The portion of the leaf next the stem is termed its basc, the opposite cxtremity the apex, and the lines comnecting the base and apex the mirgins. The leaf being commonly of a flattened nature, has only two surfaces; but when succulcut it has frequently morc than two surfaces. The terms upper and lower are applied to the two surfaces of ordinary leaves, because in by far the greater number of plants such leaves are placed horizontally, so that one surface is turned upwards, and the other downwards. There are certain lcaves, however, which are placed vertically, as those of some species of Acacia and Eucalyptus, in which casc the margins are turned upwards and downwards instead of the surfaces. The angle formed by the union of the upper surface of the leaf with the stem is called the axil, and everything which arises unt of that point is said to be
axillary to the leaf; or, if from the stcm above, or below the axil, it is extru-axillary; or, as more generally doscribed when above, supra-cxillary; if below, infra-axillary.

Duration and Fall of the Leaf.-The leaf varies as regards its duration, and receives different names accordingly. Thus, when it falls off soon after its appearance, it is said to be fugacious or caducous; if it lasts throughout the season in which it is dereloped, it is deciduous or annual; or if beyond a single season, or until new leaves are developed, so that the plant is never without leaves, it is persistent, evergreen, or perennial.

When a leaf separates from the stem or branch, it either does so by decaying upon it, when it is said to be non-articulated; or by an articulation, in which case it is articulated. The remains of a non-articulated leaf, as they decay upon the stem, or branch, are

Fig. 273.

Fig. 274.

Fig. 273. Leaf and piece of the stem of Polygonum Hydropiper: 7. Lamina or blade. p. Petiole. d. Sheath.-Fig. 274. Leaf and portion of a branch of Salix aurita. \because. Branch. b. Bud. l. Lamina with the upper portion removed, and attached by a petiole, p, to the stem. s, s. Caulinary stipules.
sometimes called reliquix or induvix, and the stem or branch is said to be induviate. When a lcaf separates by an articulation, it leaves a scar or cicatrix (fig. 207, b, b).

Parts of the Leuf. - The leaf in the highest state of development consists of three distinct parts ; namely, of an expanded portion, which is usually more or less flattened (figs. 273 and $274, l$), called the lamina, or blade; of a narrower portion, by which the lamina is connected with the stem, termed the petiole or leaf-stalk (p); and of a third or stipular portion, which is situated at the base of the petiolc, and which either exists in the form of a sheath (fig. $273, d$), encircling the stem, or as two little leaf-like appendages on cach sidc, which arc called stipules (fig. 274, s, s).

These three portions are by no means always present, though
such is frequently the ease. Thus, the leaves of the Water Pepper (fig. 273), and of the Trailing Sallow (fig. 274), may be taken as illustrations of the most highly developed leaves,

Fig. 275.

Fig. 275. Componnd leaf of Robinia Pseud-ucacirt, with spiny stipules at its base. namely, those in which all the parts are found ; but in many plants one of these parts is absent, and in some two, so that the leaf is in such cases reduced to but two, or one of its portions only. The petiole and.the sheath or stipules are those parts which are more commonly absent. When the petiole is absent, the leaf is said to be sessile ($f i g .286$); when the stipules are absent, it is exstipulate (fig. 290). The lamina or blade is that part which is most generally present. The leaf is called simple if there is but one blade (figs. 273 and 274), or compound if this is divided into two or more separate parts (fig. 275). The lamina of the leaf is usually that part alsn which is most developed, which performs the most important functions of the leaf, and which is also in ordinary language known under the name of leaf. It is the part, therefore, which will come more particularly under our notice ; but before we proceed to describe it and the other parts of the leaf separately, it will be necessary for us to treat of the internal structure of leaves, and of their insertion and arrangement.

2. THE INTERNAL STRUCTURE OF LEAVES.

Lcaves with reference to their structure are divided into aerial and submersed; by the former is to be understood those that are developed and live entirely or partially in the air ; by the latter, those that are formed and dwell wholly immersed in water.

1. Aerial Leaves.-In the lowest leaf-bearing plants, such as Mosses, the laves consist, as we have seen, simply of parenehymatous tissue, formed by the growing outwards of the parenchyma of the circumference of the stem or branch ; while in the majority of the higher plants they contain, in addition to this parenchyma, a framework or skeleton forwed of woodeells or liber-eells, or of both, and vessels of different kinds, all of whieh are in direet connexion with corresponding parts of the fibro-vaseular system of the stem or branch. We distinguish therefore, in such leares, as in the stem and branch, both a parenchymatous and a fibro-vascular system, the former constituting the soft parts or the parenchyma of the leaf; the latter
the hard parts, which by their ramification form what arc called the veins or nerves.
A. The Petiole.-This when present consists of fibro-vascular tissue (fig. 276), surrounded by parenchyma, and the whole covered by epidermis, which commonly contains a variable number of stomata, and is frequently furnished with hairs and other epidermal appendages. The parenchyma immediately below the epidermis is sometimes specially modified and forms the tissue known as collenchyma ($f(y .95$), which is one form of what has been termed the hypoderma (see pages 48 and 145). The fibro-vascular tissue varies in its nature in the leaves of the different classes of plants, being merely prolongations of that of the three kinds of stems already fully described. Thus in Dicotyledons the fibro-vascular tissue (fig. 276) commonly consists of spiral, and pitted, annular, or some other vessels, and also of sieve-tubes, and wood and liber-cells, that is, of the same elements essentially as the wood and liber-the spiral vessels and the other structures belonging to the xylem being placed above those of the phloëm or liber.
B. The Lamina.-The whole of the lamina is covered by the epidermis, which is furnished with stomata in the manner already described. The stomata are, however, almost confined to that portion of the epidcrmis which corresponds to the parenchyma of the leaf. The epidermis is also frequently furnished with various appendages, as Hairs, Glands, and their several modifications. The epidermis with its stomata and appendages having been already fully described under their respective heads, it now remains only to allude to the fibro-vascular and parenchymatous systems of the lamina which are situated between the epidermis of its

Fig. 276.

Fig. 276. Fibro-vascular tissue passing from a branch, b, of nu herbnccous Dicotylcdon into the pctiole, p, surrounded by parenchyma. a. Articulation between the petiole and the branch from which it arises. t, t. Spiral and aunular vesscls. fi,f. Wood-cells. l, l. Liber cells. upper and lower surfaces.

1. Fibro-vascular System. - This is in direct connexion with that of the stem or branch in the three great divisions of plants respectively. We shall direct our attention morc espccially to that of the leaves of Dicotyledons. The fibro-vascular system of such plants in by far the majority of cases consists of an upper layer which is in comnexion with the fibro-vascular system of the wood and petiole when present (fig. $276, t, f$); and of a lower which is continuous with the liber (l). The upper layer
therefore corresponds in its strueture to the wood, and the lower to the liber; henee the former is composed of spiral and pitted vessels in perennial plants, and of spiral and annular or some other vessels in herbaceous plants ($f i y .276, t, t$), and also in all eases, of wood-eells, f, besides the above-named vessels; while the latter eonsists essentially of liber-eclls, l, l, and sieve-tubes. The ramifieations of the fibro-vaseular elements in the lamina of the leaf form the veins or nerves, and will be deseribed presently under the head of venation (see page 157). The number and size of the elements of the bundle diminish however as they eontinue to ramify, so that the ultimate degrees of ramifieation eommonly consist of spiral vessels alone. The two layers of the fibro-vaseular system are usually readily seen in what are ealled skeleton leaves. Thus the leaves lying in a damp ditch in the winter will afford us good illustrations of these, and those whieh have been artifieially prepared by maeeration for a sufficient time in acidulated water, or in other ways.

Fig. 277.

Fig. 278.

Fig. 277. Vertienl section of a leaf of the Melon, highly magnified. es. Epidermal tissue of the upper surface furnished with hairs, p, and stomata, sf. ei. Epidermal tissne of the lower surfaee, with the hairs arising from it. ps. Three layers of parenchymatons cells below the epidermis of the upper surface. $p i$. Parenehymatons eells below the epidermal tissue of the lower surface. $f v, f v$. Fibro-vasenlar tissue forming the reins. m, m. Cavities comneeted with the stomatn. 1, 1. Cavities between the loose spongiform parenehyma.-Fig. 278. Vertical seetion of a leaf of the White Lily highly magnified, showing the epidermis of both the npper and lower surfaces, with the intervening prrenchyma.
2. Parenchyma or Mesophyll.-By this we understand the parenehymatous tissue whieh is situated between the epidermis of the upper and lower surfaees of the lamina ($f(g .27 \overline{7}, p s, p i$), and whieh surrounds the ramifieation of the fibro-raseular system or veins, $f v, f v$. The parenelymntous tissue whieh is
immediately beneath the epidermis of the upper surface of the leaf is sometimes specially modified, as in the leaves of the Conifer:e, where its cells become elongated and scler enchymatous, when it constitutes a form of the hypoderma (see pages 48 and 143). The parenchyma varies in amount in different leaves; thus, in ordinary leaves it is moderately developed, and the leaves are then thin and Hattened; while in other leaves it is formed in large quantities, when they become thick and fleshy, and are termed succulent. In ordinary flat leaves all the cells composing the parenchyma are commonly green from containing chlorophyll granules; but in succulent leaves the cells in the centre of the parenchyma are usually colourless.

The parenchyma also varies in the form and arrangement of its component cells in different parts of the same leaf : thus in ordinary flat leaves we find beneath the epidermis of the upper surface one (f ig. 278), two, or three layers of closely packed oblong or somewhat elongated cells (f ig. 277, ps), and forming the tissue which has been termed polisade parenchyma. The form and arrangement of the cells beneath the epidermis of the lower surface are commonly entirely different; thus, here the cells (fig. 278) are loosely connected and have nnmerous large spaces between them ; they are also frequently very irregular in form, presenting commonly two or more projecting rays, which become united with similar projections of the cells next them, and thus leave numerous interspaces which communicate freely with each other, and form a spongiform parenchyma (fig. 124, c). These interspaces are also connected with the stomata, which, as we have already scen, are generally most abundant on the epidermis of the lower surface, and thus a free communication is kept up between the interior of the leaf and the extermal air, which is essential to the due performance of its functions.

Such is the general arrangement of the parenchyma in the blades of aerial leaves, but it is subject to various modifications in those of different plants. Thus in blades which have their margins turned upwards and downwards instead of their surfaces, the arrangement of the parenchyma is similar beneath the epidermis of both the surfaces; while in succulent blades the parenchyma is composed of cells which are usually larger than those in the blades of ordinary leaves, and closely compacted, or with but few interspaces. In the floating leaves of aquatic plants, again, the spongiform parenchyma is beneath the epidermis of the upper surface of the blades, and the compactly arranged cells next that of the under surface, the position of the parts being here therefore completely reversed.
2. Submersen Leaves.--The petiole when present in these leares is solely formed of parenclymatous cells, which are, however, frequently elongated ; and the blades are therefore also necessarily entirely formed of parenchyma, the so-called
veins being eomposed simply of more or less elongated parencliymatous cells. The blades of sueh leaves are generally very thin, only containing two or threc layers of cells, so that all the cells are nearly in contact with the water in which they are placed. The cells are disposed very regularly and have no interspaces, but all contain chlorophyll granules. In subinersed leaves, however, which are thickened, we find large cavities

Fig. 279. Vertical section of a leaf of a Potamogeton, highly magnified. i. Air cavities. r. Parenchymatous cells containing chlorophyll granules.
which are very regular in their form and arrangement (fig. 279 , i, i) ; these contain air, by which the specific gravity of the leaf is diminished, and it is thus enabled to float in the water. Submersed leaves have no true epidermal layer, and no stomata, both of which would be useless from their being always exposed to similar hygrometric eonditions.

3. INSERTION AND ARRANGEMENT OF LEAVES.

1. Insertion--The point by which a leaf is attached to the stem or branch is called its insertion. Leaves are inserted on various parts of the stem and branehes, and receive different names accordingly. Thus the first leaves which are developed are called cotyledons ($f y .18, r, c$) or nussing leaves. The cotyledons are usually very different in their appearance from the ordinary leaves which sueceed them. The first leaves which appear after the cotyledons are termed primordial ($\mathrm{fig} .18, l, d$); these, and the cotyledons, generally perish as soon as, or shortly after, the development of the other ordinary leaves. Leaves are called radical when they arise at, or below, the surfaee of the ground, and thus apparently from the root, but really from a shortened stem, or crown of the root as it is commonly called. Leaves are thus situated in what are termed acaulescent plants, such as the Dandelion and Primrose. Thi leaves which arise from the main stem are called cantine; those from the branches ramal ; and the modified leaves arising from the base of, or upon the flower-stalks, bracts or hypsophyllary_learcs (figs. 23 and $24, b, b$).

When a leaf arises from the stem by means of a petiole it is said to be stalked or petiolate (fig. 274, p) ; when the blade of a
leaf is fixed to the petiole by a point more or less within its margins, as in the Indian Cress (fig. 280), and Castor-oil plant (fiy. 332), the leaf is termed peltute; when the petiole is absent,

Fig. 280.

Fig. 280. Peltate leaf of
the Indian Cress (T_{1} ro-
p(colum). Fig. 281 .
Amplexiean! petiole of
Fig. 280. Peltate leaf of
the Indian Cress (Tro-
puolum). Fig. 281 .
Amplexiean! petiole of
Fig. 280. Peltate leaf of
the Indian Cress (Tro-
puolum). Fig. 281 .
Amplexiean! petiole of
Fig. 280. Peltate leaf of
the Indian Cress (Tro-
puolum). Fig. 281 .
Amplexiean! petiole of Angelicr.

Fic. 281.
so that the blade arises directly from the stem, it is said to be sessile (fig. 286) ; when a leaf is enlarged at its base and clasps the stem from which it springs, it is amplexicanl, clasping, or em-

Thistles, it is decurrent (fig. 283); when the two sides of the base of a leaf project beyond the stem, and unite, as in the Hare's-ear (fig. 284), it is said to be perfoliate, because the stem then appears to pass through the blade; or when two leaves placed at the same level on opposite sides of the stem unite more or less by their bases, they are said to be compate, as in the Teasels and some species of Honeysuckle (fig .285).
2. Arraygeuent of Leaves on the Stem or Phyllotaxis. - The term phyllotaxis is used in a general sense to indicate the various modes in which leaves are arranged on the stem or branches. The following are the more important varieties. Thus, when only one leaf arises from a node, the leaves as they succeed each other are placed alternately on different sides of the stem, and are then said to be alternate (fig. 289). When two leaves are produced at a node, they are usually situated on opposite sides of the stem, in which case

Fig. 286.

$$
\text { Fig. } 287 .
$$

Fig. 286. Whorled leaves of a species of Galium.-Fig. 287. Decussate leaves of Pimelea decussuta.
they are described as opposite (fig. 287) ; or when three or more leaves arise from the stem so as to be arranged around it at the same level in the form of a circle, they are called verticillate or R_{3} whorled (fig. 286), and each circle is termed a verticil or whorl. When leaves are opposite, the pairs as they succeed each other usually cross at right angles, in which case they are said to Latiata decussute (fiy. 287), and the arrangement is called decussation. a: vioves radmalles. hapn different whorls succeed each other it also frequently leaves of one whorl correspond to the intervals of the whorl below it. There are, howevcr, commonly great irregularities in this respect, and in some cases the number of leaves in the successive whorls vary, by which their arrangement becomes still more complicated. 'This is the case, for instance, in Lysimachia vilyaris.

Only one leaf can arise from the same point, but it sometimes happens that, by the non-development of the internodes of an axillary branch, all the leaves of that branch are brought close together, in which case they form a tuft or fuscicle (fig. Conifera ≥ 88), and the leaves are then said to be tufted or fascicled. Such an arrangement is well seen in the Barberry and Larch. That fascicled leaves are thus produced is rendered evident by the fact that in the young branches of the Larch the internodes become elongated and the leaves are then separated from each other.

The laws which regulate the arrangement of leaves upon the stem have of late years been carefully investigated; and when we consider that all the organs of the plant which succeed the leaves are formed on the same plan, and follow similar laws, the determination of these laws must be considered to be a matter of much importance. It has been supposed by some that the

Fig. 288.

Fig. 288. Fascicled or tufted lenves of the Larch.-Fig. 289. A portion of a branch of the Cherry-tree with six lcaves, the sixth of which is placed vertically over the first. The right-hand figure is the same branch magnified, the leaves having been removed, and numbers placed to indicate the points of their

Fig. 289.
 insertion.
arrangement of the leaves varies in the different classes of plants : thus, that in Dicotyledons where the cotyledons or first leaves which are developed are opposite, the regular arrangements of the leaves in such plants is to be opposite or whorled also ; and that when they become alternate, this ariscs from the prolongation or extension of the nodes; while in Monocotyledons, on the contrary, which have normally but one cotyledon, that the regular position of the leaves is alternate, and that when they become opposite or whorled, this arises from the non-development or shortening of the successive internodes. The investigations, however, of Bonnet, nearly a century ago, tended to prove that all leaves and their modifications have normally a spiral arrangement on the stem; and he was led to this bclief by observing that if a line be drawn from the bottom to the top of a stem or branch, so as to touch in succession the basc of the different leaves upon its surface, it would describe a spiral
around it. He found also, that the relation of the leares to one another was constant, each being scparated from the other by an cqual distance, so that if we startcd with any particular lcaf and waited until another leaf was reached which corresponded vertically with it, and then proceeded to the leaf beyond this, we should find that this would also correspond vertically with the one next above that which we started from, and so on, each successive leaf would be placed vertically over one of the leaves below, but that in all cases in the samc plant, the number of leaves between the one started from, and that which corresponded vertically with it, would be always the same. Thus if we take a branch of the Apple or Cherry-tree (fig. 289), and commence with any particular leaf which we will mark 1, and then proceed upwards, connecting in our course the base of each succeeding leaf by a linc or piece of string, we shall find that we shall pass the leaves marked $2,3,4$, and 5 , but that when we rcach the one marked 6 , that this will correspond vertically with the 1st; and then proceeding further, that the 7 th will be directly over the 2nd, the 8th over the 3rd, the 9th over the 4 th, the 10th over the 5th, and the 11th over the 6th and 1st; so that in all cases when the sixth leaf is reached, including the one started from, a straight line might be drawn from below upwards to it, and that consequently there were five leaves thus necessary to complcte the arrangement. Bonnet also discovered other more complicated arrangements in which more leaves were necessary for the purpose. His ideas were little attcnded to at the time; but of late years by the researches of Schimper, Braun, Bravais, and others, his views have bcen confirmed and considerably extended, and it has been shown that the spiral arrangement is not only universal, but that the laws which regulate it may be reduced to mathematical precision, the formulæ representing the relative position of leaves in different plants varying, although always constant for the same spccies. The examination of these laws further than to show that the rcgular arrangement of learcs and their modifications is in the form of a spiral around the stem, laring at present no very practical bearing in Botany, however interesting they may be in a mathematical point of view, would be out of place here ; we shall confine oursclycs to the general discussion of the subject, and as alternatc leaves are those which will enable us to do so with most facility, we shall allude to them first.

1. Alternate Leaves.-If we refer again to the arrangement of the leaves in the Cherry or Apple, we shall find that before we arrive at the sixth leaf (fig. 289), which is orer the first, the string or line used to connect the basc of the leaves will have passed twice round the circumfercuce of the branch. The point where a lcaf is thus found, which is placed in a straight line, or perpendicularly over the first, shows the completion of a serics
or cycle, and thus in the Cherry and Apple the cycle consists of five leares. As the tive leaves are equidistant from each other, and as the line which comects them passes twice round the stem, the distance of one leaf from the other will be $\frac{2}{5}$ of its circumforence. The fraction $\frac{2}{5}$, therefore, is the angular divergence, or size of the are interposed between the insertion of two successive leaves, or their distance from each other cxpressed in parts of the circumference of the circle, that is $\frac{2}{5}$ of $360^{\circ}=144^{\circ}$; the numerator indicates the number of turns made in completing the cycle, and the denominator the number of leaves contained in it. The successive leares as they are produced on the stem, as we have seen, are also arranged in similar cycles. This arrange-

Fig. 291.

Fig. 290. Portion of a branch of the Lime-tree, with four lenves arranged in a distichous or two-ranked unanner.-Fig. 291. Portion of a branch with the brse of the leaves of a species of Corer, showing the tristichous or thrceranked arrangemeut. The uumbers indicate the successive bases of the leaves.
ment in cycles of five is by far the most common in Dicotyledons. It is termed the quincuncial, pentastichous, or five-ramlied arrangement.

A second variety of arrangement in alternate leaves is that which is called distichous or two-venked. Here the second leaf is above and directly opposite to the first (fig. 290), and the third being in like manner opposite to the sccond, it is placed rertically over the first, and thus completes the cycle, which here consists of but two leaves; the fourth leaf again is over the second, and the fifth over the third and first, thus completing a second cycle; and so on with the successive leaves. Hore one turn completes the spiral, so that the angular divergence is $\frac{1}{?}$ the circumference of a circle, or $\frac{1}{2}$ of $360^{\circ}=180^{\circ}$. This arrangement is the normal one in all Grasses, and many other Monceotyledons ; and the Lime-tree (fig. 290), and other Dicotyledons. exhibit a similar arrangement.

A third variety of arrangement in alternate leaves is the tristichons or threc-ranked (fig. 291). Thus, if we start with any leaf, and mark it No. 1, and then pass to 2, 3, and 4, we shall find that we shall make one tuin round the stem, and that the fourth leaf is vertically over the first, and thus completes a cycle composed of three leaves. In like manner, the fifth leaf will be over the second, the sixth over the third, and the seventh over the fourth and tirst, thus completing a second cycle ; and so on with the succeeding leaves. Here the angular divergence is $\frac{1}{3}$, or one turn and three leaves, that is, $\frac{1}{3}$ of $360^{\circ}=120^{\circ}$. This arrangement is by far the more common one among Monocotyledons, and may be considered as the most characteristic of that class of plants, just as the pentastichous arrangement is of Dicotyledons.

Fig. 292.

Fig. 293.

Fig. 292. Pineapple fruit (Sorosis), surmounted by a crown of empty bracts, Fig. 293, Cone or fruit of the Scotch Fir.
A fourth variety of Phyllotaxis in alternate leaves is the nctastichous or eight-ranked. Examples of this variety occur in the Holly and Aconite. In this the ninth leaf is over the first, the tenth over the second, the elcventh over the third, and so on; thus taking eight leaves to complete the cycle: and, as the spiral line here makes three turns round the stem, the angular divergence will be $\frac{3}{8}$ of the circumference, that is, $\frac{3}{8}$ of $360^{\circ}=135^{\circ}$.

The above are the more common varieties of Phyllotaxis : but a number of others also frequently occur, as $\frac{5}{13}, \frac{5}{2}, \frac{13}{3}, \frac{21}{5}$, dc. Other varieties met with are $\frac{1}{1}, \frac{1}{5}, \frac{2}{11}, \frac{2}{15}, \frac{5}{23}, \frac{3}{37}$, , ©c. ; also $\frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}, \frac{13}{21}, d . d$. ; as also others of a rarer occurrence.

These become more complicated as the number of leaves, \&e., in the spire is increased; hut in those eases where the leaves, \&c., are so numerous as to be close to each other, as in the Screw-pine, the Pineapple (fig. 292), and in the fruit of Coniferous plants ($f y .293$), the spiral arrangement is at once evident.

By placing the fractions representing the angular divergence in the different varieties of Phyllotaxis side by side in a line, thus: $-\frac{1}{2}, \frac{1}{3}, \frac{2}{5}, \frac{3}{5}, \frac{5}{13}, \frac{5}{21}, \frac{13}{3} \frac{21}{4}, \frac{21}{5} 5$, de. $; \frac{1}{4}, \frac{1}{5}, \frac{2}{9}, \frac{3}{14}, \frac{5}{23}, \frac{8}{31}, \mathcal{\& c}$., we see at once that a certain relation exists between them; for the numerator of each fraction is composed of the sum of the numerators, and the denominator of the sum of the denominators of the two preceding fractions; also in the first series, that the numerator of each fraction is the denominator of the next but one preceding. By applying this simple law therefore we may continue the series of fractions representing the angular divergence, $\mathbb{d e}$., thus : $\frac{34}{8}, \frac{5 \overline{5}}{1+4}, \frac{89}{235}, \mathbb{d c}$. It should be mentioned with respect to the laws of Phyllotaxy, that they are frequently interfered with by accidental causes which produce corresponding interruptions of grow th, so that it is then difficult, or altogether impossible, to discover the regnlar condition.

All the above varieties of Phyllotaxis in which the angular divergence is such that by it we may divide the circumference into an exact number of equal parts, so that the leaves completing the cycles must be necessarily directly over those commencing them, are called rectiserial; while those in which the divergence is such that the circumference cannot be divided by it into an exact number of equal parts, and thus no leaf can be placed precisely in a straight line over any preceding leaf, bat disposed in an infinite curve, are termed curviserial. The first forms of arrangement are looked upon as the normal ones; the latter will show the impossibility of bringing organic forms and arrangements, in all cases, under exact mathematical laws.

We have thus endeavourcd to show that when leaves are alternate, the successive leaves form a spiral round the axis. The spire may either turn from right to left, or from left to right. In the majority of cases, the direction in both the stem and branches is the same, and it is then said to be homodromons; but instances also occasionally occur in which the direction is different, when it is called heterodromows.
2. Opposite and Whorled Leares.-We have already obscrved with regard to these modifications of arrangement, that the successive pairs, or whorls, of leaves, as they succecd each other (page 148), are not commonly inserted immediately over the preceding, but that the second pair (fig. 287), or whor, is placed over the intervals of the first, the third over those of the second, and so on. Here, therefore, the third pair of lcaves will be directly over the first, the fourth over the scond, the fifth over
the third, and so on. This arrangement occurs in plants of the Labiate and Olive ordcrs, and is called decussation, as previously noticed. In some cases the succeeding pairs, or whorls, are not thus placed directly over the intcrvals of those below, but a little on one side, so that we shall have to pass to some higher pair or whorl than the third, before we arrive at one which is placed directly over the first. Such arrangements, therefore, clearly show that the successive pairs and whorls of leaves are arrauged in a spiral manner with regard to each other. Opposite lcaves may be thus looked upon as produced by two spirals proceeding up the stem simultaneously in two opposite directions; and the whorl as formed of as many spirals as there are component leaves.
3. Phyllotaxis in different Natural Orders, de.-The alternation or opposition of leaves is generally constant in the same species, and even in some cases throughout entire natural orders. Thus, the Borage order (Boraginacex) have alternate leaves; the Pink order (Caryophyllacex), opposite ; the Labiate order (Labiatx), opposite and decussate ; the Leguminous order (Leguminosx), alternate ; the Rose order (Rosacex), alternate, ©c. While the opposition or alternation of leaves may be thus shown to be constant throughout entire natural orders, yet the change from one arrangement to another may be sometimes seen upon the same stcm, as in the common Myrtle and Snapdragon. Other opposite-leaved plants also often exhibit an alternate arrangement at the extremities of their young branches when these grow very rapidly. In other cases alternate leaves may become opposite, or whorled, by the non-development of the successive internodes by interruptions of growth; or, if the whole of the internodes of a branch become non-developed, the leaves become tufted or fascicled (fig. 288), as already noticed. Gicnerally, however, the relative position of leaves is so constant in the same specics that it forms one of its characteristic distinctions.

The arrangement of leaves probably infinences, in some degree at least, the form of the stem and branches. Thus, a certain amount of alternation commonly leads to a rounded form of stem or branch; an opposite or whorled arrangement, to an angular stem or branch: for instance, the Labiate order of plants, in which the lcaves are opposite and decussate, have commonly square stems and branches; in the Nerium Olcander, where the leaves on the young brauches are placed in whorls of three, the stem has three angles; and in the species of Gulium and Rubia, which have whorled leaves, the stems and branclies are always angular. M. Cagnat and others lave also endearoured to show that the arrangement of the leaves has a direct influence upon the forms of the wood, bark, and pith ; either upon one of these parts only, or sometimes upon them all ; but, although some curious relations have been found to exist between the arrange-
ment of the leaves and the form of certain parts of the stem, yet it is not possible at present to deduce any general laws regulating the relations between them.
3. Arrangement of the Leaves in the Bud, or Verna-mos.-Haring now described the general arrangement of leaves when in a fully formed and expanded state upon the stem or branch, we have in the next place to allude to the different modes in which they are disposed while in a rudimentary and unexpanded condition in the bud. To these modifications the general name of Vernation (the spring state), or Prefoliation has been applied. Under this head we include :-1st, The modes in which each of the leaves considered independently of the others is disposed ; and, 2nd, The relation of the several leaves of the same bud taken as a whole to one another. In the first place we shall consider the modes in which each of the leaves considered separately is disposed. We arrange these again in two divi-

Fig 294. Fig. 295. Fig. 296. Fig. 297.

Fig. 298.

Fig. 299.

Fig. 294. Tertical section of a reclinate leaf.-Fig. 295. Trausverse scetion of a conduplieate leaf.-Fig. 296. Transverse section of a plaited or plieate leaf.-Fig. 297. Vertieal section of a cireinate leaf.--Mig. 298. Transverse section of a convolute leaf.-Fig. 299. Transverse seetion of a revolnte leaf.-Fig. 300. Trimsperse section of an involute leaf.
sions : -1st, Those in which the leaf is simply bent or folderl ; and 2nd, Those where it is rolled. Of the first modification we have three varieties :-Thus, 1st, the upper half of the leaf may be bent upon the lower, so that the apex approaches the base (fig. 294), as in the Tulip-tree, it is then said to be reclinate or inflexed; 2nd, the right half may be folded upon the left, the ends and midrib or axis of the leaf remaining immovable (fig. 295), as in the Oak and Magnolia, when it is called conduplicate; or, 3rd, each leaf may be folded up a number of times like a fan (fig. 296), as in the Sycamore, Currant, and Vine, when it is plaited or plicate. Of the sccond modification we have four varieties:-1st, the apcx may be rolled up on the axis of the leaf towards the base, like a crosier (f ig. 297), as in the Sundew and Ferns, when it is circinate; 2nd, the whole leaf may be
rolled up from one margin into a single coil, with the other margin exterior (fig. 298), as in the Aprieot and Banana, in whieh ease it is convolutc ; 3rd, the two margins of the leaf may both be rolled inwards on the upper surface of the leaf, towards the midrib, whieh remains immovable (fig. 300), as in the Violet and Water-lily, when it is involute; or, 4th, the two margins may be rolled outwards or towards the midrib on the lower surface of the leaf (fig. 299), as in the Doek and Azalea, in whieh ease it is revolute.

We pass now to consider, secondly, the relation of the several leaves of the same bud taken as a whole to one another. Of this we have several varieties which may also be treated of in two divisions:-1st, those in whieh the eomponent leaves are flat or slightly convex ; and 2nd, where they are bent or rolled. Of the first division we shall deseribe three varieties :-1st, that

Fig. 301.

Fig. 302.

Fig. 303.

Fig. 301. Transverse section of a bud to show the leaves arranged in a valrate manner.-Fig. 302. Transverse section of a bud to slow imbricate vernation. - Fig. 303. Transverse section of a bud to slow twistel or spiral vernation. --Fig. 304. Transverse section of a bud to show induplicate vemation.-Fiy. 305 . Transverse section of a bul showing eqnitant vernation.-Fig, 306 Transverse section of a budshowing obvolnte vernation.-Fig. 307. Transverse section of a bud showing supervolute veruation.
in which the leaves are placed wearly in a circle or at the same level, and in eontaet by their margins only, without overlapping each other (f ig. 301), when they are valvatc; 2nd, that in which the leaves are plaeed at different levels, and the outer sueeessively overlap the imner to a greater or less extent by their margins (fig. 302), as in the Lilae, and in the outer scales of the Syeanore, when they are said to be imbricatc ; and 3rd, if when leaves are placed as in imbricate vernation, the margin of one leaf overlaps that of another, while it, in its turn, is overlapped by a third (fig. 303), the remation is ticisted or spiral. Of the seeond division, viz. where the componcut leaves of the bud are
bent or rolled, we shall describe four varieties:-1st, when involute leares are applied together in a circle without overlapping (fig. 304), they are said to be induplicate; 2nd, if the leaves are conduplicate, and the outer successively embrace and sit astricle of those next within them as if on a saddle (fig. 305), as in the Privet, and the leaves of the Iris at their base, they are equitant; 3rd, if the half of one conduplicate leaf receives in its fold the half of another folded in the same manner ($f \mathrm{fg}$. 306), as in the Sage, the vernation is half-equitant or obvolute; and 4 th, when a convolute leaf encloses another which is rolled up in a like manner (fig. 307), as in the Apricot, the vernation is supervolute.

The terms thus used in describing the different kinds of vernation are also applied in like manner to the component parts of the flower-bud, that is, so far as the floral envelopes are concerned, under the collective name of rstivation or prafluration. We shall have therefore to refer to some of them again, together with others, not found in the leaf-bud, when speaking of the flower-bud.

4. LAMINA OR BLADE.

We have already seen that the leaf (figs. 273 and 274) in its most highly developed state consists of threc parts; namely, of a lamina or blade, a petiole or stalk, and of a stipular portion. We have now to describe each of these portions in detail, commencing with the lamina or Ulade.

Venation or Nervation.-The term venation is applied generally to indicate the various modes in which the veins are distributed throughout the lamina. These veins have also been called nerves, and their distribution nervation; but the latter terms, by indicating an analogy which cloes not exist between them and the nerves of animals, are better avoided; hence wo shall in future always use the terms veins and venation.

In some plants, as Mosses, and those living under water, \&c., the leaves have no fibro-vascular skeleton, and consequently no true veins, and are hence said to be veinless; while in succulent plants the veins are hidden more or less from view, in consequence of the great development of parenchyma, in which case the leaves are termed hidden-vzined.

In those leaves where the veins are wcll marked, they are subject to various modifications of arrangement, the more important of which need only be mentioned herc. Thus, when there is but one large central vein, proceeding from the base to the apex of the lamina, and from which all the other veins proceed, such a vein is called the midrib or costa (fig. 308); or when therc are thrce or more large veins, which thus procced from the base to the apex (fig. 309), or to the margins (fig. 310), of the lamina, the separate veins are then termed ribs. The
divisions or primary branches of the midrib, or of the separate ribs, are comnonly called reins; and their smaller ramifications veinlets.

There are two marked modifications of venation. In the

Fig. 308.

Fig. 200.

Fig. 308. Lefaf of the Cherry with lamina petiole, and stiputes. The 1 mmina has serrate margins, and a large ecntral vein or midrib is seen to proceed from the petiole to the apex of the leaf, and to give off from its sides the other veins (vinnatelu-veined).-Fig. 309. Ribbed leaf of Cinnamon with entire margins.-Fig. 310. Leaf of the Melon with dentate margins. The venation is sid to be radiated or palmately-veined. - Fig. 311, a, Prallel venation of a grass ; this varicty of vemation is commonly called straight-veined. b. A variety of parallel venation sometimes termed curve-veined, as seen in the Banama.
first modification the fibro-vascular tissue as it enters the lamina is either continued as the midrib (fiy. 308), or it divides iuto two or more ribs (figs, 309 and 310); and from this midrib or ribs other veins are given off; and from them, in like manner,
smaller ramifications or veinlets arise, which unite with one another so as to form a kind of network. Or, in the seeond modification, the fibro-vascular tissue is either continued as a midrib from the base to the apex of the lamina, giving off from its sides other veins, which run parallel to the margins, and which are simply connected by unbranched veinlets (figs. 311, b, and 318) ; or it dirides at once into several veins or ribs, which proceed from the base to the apex (fig. 316), or margins (fig. 317) of the blade, more or less parallel to one another, and are in like manner connected only by simple parallel unbranched reinlets (f fg. 311, u). The leaves which exhibit the first modi-1 fication of venation are called retieulated or netted-veined leaves, | and occur universally in Dicotyledons ; and those which present the second modification are termed parallel-veined leaves, and are characteristic with some few exceptions of Monocotyledons.

These two modifications are also subject to certain variations, some of which must now be noticed.

1. Varieties of Reticulated or Netted Venation.

There are two principal varieties of this kind of venation, namely, the feather-veined or pinnately-veined, and the radiated or palmutely-reined.

Fig. 312.
Fig. 313.
Fig. 314.
Fig. 315.

Fil. 319. Feather-veinerl leaf of the Spanish Chestnut._Fig. 313. Featherveined leaf of the Oak. Its lobes are arranged in a pinnatifid mamer.Fig.314. Leaf of the Deal-nettle. The venation is the true netted, and its margins are serrate.-Fig. 315, a. Linear leaf, b. Triple-ribbed lenf of the common Sunflower.
A. Feather-veined or Pinnately-veined.-In this variety the midrib either gives off lateral veins which proceed at once to
the margins (fiqs. 312 and 313), and are connected by numerous branching veinlets, as in the leaves of the Beach, Spanish Chestnut, Holly, Oak; or the midrib gives off branches from its sides, which procced at first towards the margins, and then curve towards the apex, tcrminating finally within the margins, with which they are connected by small veins, as in the Deadnettle (fig. 314), and Lilac. The latter modification of arrangement is sometimes termed true netted renation.
B. Radiated or Palmately-veined. - This name is applicd to a leaf which possesses two or more ribs that arisc from at or ncar the base of the lamina, and diverge from one another towards its margins, and are comnected by branching veins, as in the Melon (fig. 310) and Castor-oil plant (fig. 332). The ribberd venation, as seen in the Cinnamon (fig. 309), is but a modification of this variety, in which the ribs, instead of diverging from one another, run in a curved mamer from at or ncar the base of the blade to the apex, towards which they converge, such ribs being connected together by branching veins. If a ribbed leaf has three ribs proceeding from the base, it is said to be three-ribbed or tricostate; if five, fire-ribbed or quinquecostate; if more than five, many-ribbed or multicostate. If the midrib of such a leaf gives off on each side, a little above its base, another rib, it is said to be triple-ribbed or triplicostate, as in the common Sunflower (fig. 315, b) ; or if two such ribs arise on cach side of the midrib, it is termed quintuple-ribbed or quintuplicostate. These ribbed leavers have frequently a great rescmblance to parallelveined leaves, from which, however, they may be at once distinguished by their ribs being connceted by branching reins.

2. Varieties of Parallel Venation.

The term parallel-veined is not strictly applicable in all cases, for it frequently happens that the veins arc radiated; but from the difficulty of finding a name which will comprise all the modifications to which such leaves are liable, it must be understood that we apply the tcrm parallel-veined to all leaves in which the main veins of the lamina are more or less parallel and only connected by unbranched parallel veinlets.

There are certain characteristic variations of parallel remation. Thus, the main veins may either proced in a somewhat parallel dircetion from the base to the apex of the lamina, to which point they converge morc or less (fig. 316), as in the ordinary ribbed variety of reticulated leaves already noticed, and are connected by simple unbranclied transyerse reinlets; or they diverge from one another towards the circumference of the blade (fiy. 317), as in the radiated-veined varicty of reticulated leaves, and are likewise united by cross-veinlets. The leaves of Grasses, Lilies, and the common Flag, may be taken
as examples of the first variety ; and those of many Palms (fig. 317) of the second.

Or, the leaves may have a prominent midrib, as in the feather-reined variety of reticulated renation, giving off from its sides along its whole length other veins, which proceed parallel to each other in a straight or curved direction towards, and lose themselves in, the margins (figs. 318 and $311, b$); and are connected, as in the last variety, by unbranched veinlets.

Fig. 316. Leaf showing the variety of parallel venation usmally ealled straight-veined; the margins ære entire.-Fiq. 317. Straight-veined variety of parallel venation, as seen in the leaf of the Fon Palm (Chame-rops).-Fig. 318. Curve-veined variety of parallel venation, as seen in the Banana. - Fig. 319. Forked venation of a Fern leaf (frond); the margins are crenate.

The Banana, the Plantain, and allied plants, furnish us with examples of this variety. This latter variety is sometimes distinguished as the curve-rcined, the former being commonly known as the straight-reined or parallel-veined.

Venation of the Leaves of Cormophytes.-Besides the above varieties of retieulated and parallel venation as found in Dieotyledons and Monoeotyledons, the leares (fronds) of Ferns, and those of other Cormophytes which have veins, present us with a third variety; thus, in these the primary venation may be featherveined or radiated-veined, but the whole of their prineipal veins
either divide afterwards in a forked manner (fy. 319), or their* terminal ramifieations are thus divided. Sueh a variety of venation has therefore been ealled Furcate or forked.

The leaves of these three great divisions of plants present us, therefore, with three different varieties of venation: thus, those of Dieotyledonsare reticulated; those of Monoeotyledons parallel; and those of Cormophytes forked. But the venation of Cormophytes is not so generally eharaeteristic as that of Dieotyledons and Monocotyledons.

Composimion.-Leaves are divided into simple and compound. Thus a leaf is ealled simple if it has only one blade (firs. 308 and 309), however mueh this may be divided, so that the divisions do not extend to the midrib (fig. 325), or petiole (fiys. 331 and 332) ; or in some eases the divisions may even extend to the midrib, or petiole, but the leaf is still ealled simple when the parts into whieh the lamina is divided are attached by a broad base, as in fig. 326. (See Ineision, page 165.) A leaf is termed compound, when the petiole divides so as to separate the blade into two or more portions, eaeh of which bears the same relation to the petiole as the petiole itself does to the stem or braneh from whenee it arises (fig. 275). The separated portions of a compound leaf are then ealled leaflets or

Fig. 320.

Fig. 320. Leaf of Orange (Citrus Aurantium). $\quad p$. Winged petiole artieulated to the lamina, l. folioles; and these may be either sessile (figs. $364-366$), or have stalks ($f \mathrm{fi} .378$), eaeh of whieh is then termed a petiolule, stalkilet, or partial petiole, and the main axis whieh supports them, the rachis or common petiole.

The leaflets of a compound leaf may be generally at onee distinguished from the separate leaves of a braneh, from the faet of their being all situated in the same plane; there are, however, to this eharaeter many exeeptions. Another mode of distinguishing a simple from a compound leaf arises from the faet that a simple leaf has never more than one artieulation, whieh is plaeed at the point where it joins the stem ; but a eompound leaf frequently presents two or more artieulations: thus, besides the common articulation to the stem, eaeh of the separate leaflets may be also articulated to the cominon petiole. (See also page 180.) This charaeter frequently forms a good mark of distinetion between simple and eompound leaves, for although it is quite true that many eompound leaves only present one artieulation, and can then only be distinguished from those simple leaves whieh are divided to their midribs or petioles by the greater breadtlo of attaehment of the divisions in the latter instanees; yet, if such leaflets are rateinatated to the eommon petiole, their compound nature is articulaled
at once evident. The presence of more than one articulation is, therefore, positive proof as to the compound nature of a leaf, but the absence of such articulation does not necessarily prove it to be simple, as is sometimes stated. We thus look upon the leaf of the common Orange, which consists of only a single blade ($f i g .320, l$), as compound, because its petiole, p, is not only articulated to the stem, but the blade is also articulated to the petiole. There are, however, mumerous instances of leaves in a transitional state between simple and compound, so that it is impossible in all cases to draw a distinct line of demarcation between them. We shall now treat in detail of simple and compound leaves.

1. Sinple Leaves.-The modifications which simple leaves present as regards their margins, figure or shape, form, and other variations of their blades, are extremely numerous; hence we require a corresponding number of terms to define them. These terms are also applied in a similar sense to describe like modifications of the other compound organs of the plant which possess a definite figure and form, as the parts of the calyx, corolla, \&c. ; and also to those of the stipules, and the leaflets of a compound leaf. It is absolutely necessary therefore that the student should become thoroughly acquainted at once with the more important modifications to which the blades of leaves are subject. It was thought by De Candolle that the figure of the lamina depended upon the distribution and length of the veins, and the extent of parenchyma which is developed between them; the general outline or figure being determined by the former, and the condition of the margins by the latter. But although these views have been proved to be incorrect in a scientific point of view, still, if this be borne in mind, it is convenient, to say the least, to study the almost infinite modifications of the lamina of leaves with reference to his views, as it is always found that there is a mutual adaptation between the venation of the leaf and its general outline. We shall therefore describe the various modifications of the lamina to some extent after this manner, and in doing so we shall divide our subject into five heads as follows :-1. Margins ; 2. Incision; 3. Apex ; 4. General Outline ; 5. Form.
2. Margins.-We have already stated that the condition of the margins is dependent upon the extent to which the parenchyma is developed between the veins of the lamina. Thus, if the parenchyma completely fills up the interstices between the veins, so that the margins are perfectly even, or free from every kind of irregularity, the leaf is entire (figs. 316 and 320), as in those of the Orchis order. But when the parenchyma does not reach the margins, but terminates at a short distance within thenı, so that the margins are uneven, we have several modifications, which are distinguished by characteristic terms. Thus, if the margins present sharp indentations like the teeth of a saw, and
all point to the apex, the leaf is serrate (figs. 314 and 348), as in the common Dead-nettle; or, if similar teeth point towards the base, the leaf is described as retroserrate; if these teeth are themselves serrate, it is biserrate (figs. 321, b, and 337), as in the Elm, and Nettle-leaved Bellflower ; or when the margins are minutely serrate they are termed serrulate, as in Barosma serra-

$$
\text { FIG. } 321 .
$$

a

b

c

Fig. 321. Diagram of the margins of leaves. a. Bicrenate. b. Biserrate. c. Duplicato-dentate.
tifolia. When the teeth are sharp, but do not point in any particular direction, and are separated by eoneavities, the leaf is dentate or toothed (figs. 310 and 343), as in the Melon, and the lower leaves of the Corn Bluebottle ; or when the teeth are themselves divided in a similar manner, it is duplicato-dentate (fig. 321, c). When the teeth are rounded (figs. 319 and 349) the leaf is crenate, as in the Horseradish, and Ground Ivy ; or if these teeth are themselves crenate it is bicrenute ($f g .321, a$) ; or when the leaf is minutely crenate it is said to be crenulated. When the margins present alternately deep concavities and eonverities it is simulated, as in some Oaks (fig. 322). This kind of leaf is sometimes placed under the head of Incision ; it may

Fig. 322.

Fig. 323.

Fig. 322. Sinnated leaf of the Ork.-Fig. 323. Spiny leaf of the Holly (Hex dquijolium), with wavy margins.
be regarded as an intermediate condition between a toothed leaf and one that is pinnatifid (fig. 313). When the margins are slightly sinuous or wavy, as in the Holly (fig. 323), they are said to be wavy or undulated; or when the margins are very irregular, being twisted and curled, as in the Garden Endive, Curled

Dock, and Curled Mint, they are called crisped or curled (fig. 324).
2. Incision.-This term is employed when the margins of the blades are more deeply divided than in the above instances, so that the parenchyma only extends about midway or a less distance between them and the midrib, or petiole. The divisions are then commonly called lobes. It is usual, however, to give different names to these lobes, according to the depth of the incisions by which they are produced; thus, if they reach to about midway between the margins and midrib (f f. 313), or petiole (fig. 331), they are properly called lobes, and the inter-

Fig. 325.

Fig. 326.

Fit. 324. Crisped or curled leaf of a species of Mallow (Malef).-Fig. 325. Pinnatipartite leaf of a species of Valerian (Valeriont dioict).-Fig. 326. Pinnatisected leaf of a species of Poppy (Papeter Argemone).
rals between them fissures, or in composition the term -fid is used, and the leaf is also said to be -cleft : if nearly to the base, or midrib (fig. 325), they are termed partitions, and the leaf is -partite; if quite down to the base, or midrib, they are called segments (fig. 326), and the leaf is dissected, or in composition -sected. The segments of the latter differ from the leaflets of compound leaves, as already noticed (see page 162), in not being articulated ; and also in being united to the midrib, or petiole, by a broad base.

In describing the above incised leaves we say that they are bifid or two-cleft, trifid or three-cleft, quinquefid or five-cleft, septemfid or seven-cleft, and multifid or many-eleft, according to the number of their fissures; or two-lobed, three-lobed, fourloberl, \&c., from the number of their lobes. Or, a leaf is also said to be tripurtite or trisected, \&c., in the same manner,
according to the number of partitions, or segments. The above terms are more especially used with palnately-veined simple leaves.

The divisions of the lamina are, however, always arranged in the direction of the principal veins. Thus, those of fatherveined or pimately-veined leaves are directed towards the midrib (figs. 313, 325, and 326) ; while those of palmately or radiated-veined leaves are directed towards the base of the lamina (figs. 331 and 332). Hence, instead of using terms indicating the number of lobes, partitions, and segments of the lamina, others are generally employed that define the leaf more

Fig. 327.

Fig. 330.

Fig. 328.
Fig 329.

Fig. 327. Pectinate or comb-shaped leaf.-Fiy. 328. Lyrate leaf of the common Turnip (Brassica Rapa).-Fig. 329. Runcinate leaf of the Dandelion (Taraxacum officinale). - Fig. 330. Fiddle-shaped leaf of Rumen pulcher:
aceurately, which are derived from the mode of venation combined with that of incision. Thus, if the lamina is featherveined, and the divisions consequently arranged in that manner. the leaf is said to be pinnatifid (fig. 313), as in the common Oak; or pinnatipartite (fig. 325), as in Valerians dioica; or pinnatisected (fig. 326), as in Papaver Argemone, according to their depth, as already described. If the divisions are themselves incised in a similar manner to the original divisions of the lamina itself, the leaf is said to be bipinnatitid, bipinnatepartite, or bipinnutisected. Or, if the subdivisions of these
are again divided in a similar manner, tripimatifd, tripinnatipertite, or tripimatisected. Or, if the lamina is still further divided, the leaf is said to be decomposed or laciniated.

Certain modifications of these varieties have also received special names; thus, when a pimately-veined leaf is deeply divided, and the divisions are very close and narrow like the teeth of a comb (fig. 327), it is said to be pectinate, as in the Water Milfoil ; when the terminal lobe of a pimnately-veined leaf is large and rounded, and the lateral lobes which are also more or less rounded become gradually smaller towards the base, it is lyrate or lyre-shaped, as in the common Turnip (fig. 328) ; when the terminal lobe is triangular, and the other lobes which are also more or less of the same shape have their points directed downwards towards the base of the lamina, as in the

Fig. 331.

Fig. 331. Palmate leaf of a species of Passion-liower (Passiffora). Fig. 332. Palmatifid leaf of the Castor-oil Plant (Ricinus commmis).

Dandelion (fig. 329), the leaf is said to be runcinate; or when is lyrate leaf has but one deep recess on each side, so that it resembles a violin in shape, it is termed panduriform or fiddleshaped, as in the Fiddle Dock (fig. 330).

The above terms are those which are employed to define incised feather-veined leaves; but when the blades are palmatelyveined and incised, other terms are used according to the degree of division. In describing such leaves, the terms bificl, trifid, quinquefid, $^{\mathbb{E} .,}$ bipartite, tripartite, \&e., bisected, trisected, \&c., are employed according to the number of their lobes, partitions, or segments, as already noticed; or the terms palmatifid, pulmatipartite, palmatisected, derived from the direction of the veins, combined with that of incision, are used. Special names are also applied to certain modifications of these palmatelyveined leaves as with those which are pimnately-reined. Thus, when the blade of such a leaf has five spreading lobes united at
their base hy a more or less broad expansion of parenclyyma, so that the whole has a resemblance to the palm of the hand with spreading fingers, the leaf is termed palmate, as in some species: of Passion-flower (fig. 331) ; or when there are more than five lobes, the leaf is deseribed as palmatifid or palmately-cleft, as in the Castor-oil Plant (fig. 332). Some writers, however, use

Fig. 333.

Fig. 383. Dissected lenf of the Water Crowfoot (Renunculus aquatilis).
the terms palmate and palmatifid indifferently to describe either of the above modifications of incised leaves, but the sense in which they are defined above is more preeise, and should alone be used. When the lobes are less spreading, narrower, and somewhat deeper than in a true palmate leaf, the leaf is digitate; or when there are more than fire lobes of

Fig. 334.

Fig. 334. Pedntipartite leaf. a similar character, as in the Bitter Cassava, it is sometimes termed diuitipartite, or even digitate (though improperly so), by some authors. When the lamina is divided nearly to its base into numerous narrow thread-like divisions, as in the submersed leaves of the Water Crowfoot (fiy. 333), the leaf is said to be dissected. When the lateral lohes, partitions, or segments, of what would be otherwise a palmate leaf are themselves divided into two or more divisions (fiy. 334), as in the Stinking Hellebore and Sauromatum guttatum, so that the whole bears some resemblance to a bird's foot, the leaf is termed pedatific, pedatipartite, or pedutisected, according to the depth of the divisions. The term pedate is by some botanists applied generally to these modifications of the palmate leaf, but
such a term ought properly to be reserved for a compound leaf when the leaflets are arranged in a pedate manner (page 178).

Besides the above modifications of palmately-veined leaves, other rariations also occur, in consequence of the lobes, partitions, or segments of the lamina becoming themselves divided, either in a pimnately-veined or palmately-veined manner, and terms are used accordingly, the application of which will be at once evident from what has been already stated.
3. Apex. - This varies much in the blades of different leaves. Thus the apex is obtuse or blunt, when it is rounded (figs. 344 and 346), as in the Primrose ; it is retuse when it is obtuse, with a broad shallow notch in the middle, as in the Red Whortleberry (Vaccinium Vitis-idxa) and the leaflets of Logrood ; or when under the same circumstances the notch is shairp, or nearly triangular, it is emargincute, as in some species

Fig. 335. Leaflet of a speeies of Cassia. It is obovate in figure or outline, somewhat oblique at the base, and emargiunte at its apex. - Fig. 336. Branch of the Tulip-tree (Liriodendron hulipifera) with flower and leaves. The latter terminate abruptly, heace they are said to be truncate.
of Cassia (fig. 335), and in the common Box (Buxus sempervirens). When the lamina terminates very abruptly, as if it had been cut across in a straight line, the apex is truncate, as in the leaf of the Tulip-tree ($f \mathrm{fg} .336$) ; or if uncler the same circumstances the termination is ragged and irregular, as if it had been bitten off, it is pramorse, as in the leaf of Caryota urcns. When the apex is sharp, so that the two margins form an acute angle with each other (figs. 338 and 345), it is ccute or sharp-pointed; when the point is very long, and tapering (fig. 343), it is acuminate or taper-pointed, as in the leaf of the White Willow and common Reed; or when it tapers gradually into a rigid point, it is cuspidatc, as in many kubi. When the apex, which is then commonly rouncled, has a short hard or softened point standing on it, it is mucromate (fig. 342), as in the leaf of Statice nucronata and Lathyrus pratensis.
4. General Outline or Figure.-Dy the general outline or
shape of the lamina we mean the superficial aspect or figure which is described by its margins. The development of veins and parenchyma is usually nearly equal on the two sides of the midrib or petiole, so that the lamina of the leaf is in most instances nearly symmetrical and of some regular figure; in which case the leaf is said to be equal (figs. $343-346$). When,

$$
\text { Fig. } 337 .
$$

Fig. 338.
Fig. 339.
Fig. 340.

Fig. 343.

 342.1

Fig. 345.

Fig. 346.

Fig. 337. Lenf of Elm, with its margins bisermen, and the 1amina unequal at its base.-Fig. 338. Unequal or oblique leaf of a species of Begomiu. Fig. 339. Linear leaf of Goose-grass (Galium Aparine).-FFig. 340. Tanceolate lenf.-Fig. 341. Aeerose or needle-shaped leaves of Juniper (J/miperus communis).-Fig. 342. A enneate and jumeronate-pointed leaf.Fig. 343. Cordate and neuminate lenf, with its margins dentate.-Fiq. 344. Oblong leaf of Bladder-Senna (Colttea arborescens).-Fig. 345. Ovate leaf, with its unrgins serrate.-Fig. 346. Obovate leaf.
as occasionally happens, the lamina of the leaf is more developect on one side than on the other, the leaf is termed mequal or oblique (figs. 335 and 337); this is remarkably the case in the species of Begonia (fig. 338). Gonerally speaking, the leaves with ribbed, parillel, or feather-reined venation, are longer than broad; while those which are radiated or
palmately-reined are more or less romded, or broader than long.

When the lamina of a leaf is nearly of the same breadth at the base as near the apex, narrow, and with the two margins parallel (figs. 315, a, and 339), the leaf is called linear, as in the Marsh Gentian (Gentiana Pneumonanthe) and most Grasses; when a linear leaf terminates in a sharp rigid point like a needle, as in the common Juniper (fig. 341), and many of our Firs and Larches, it is acerose or needle-shaped. When the blade of a leaf is rery narrow and tapers from the base to a very fine point, so that it resembles an awl in shape, as in the common Furze (Ulex europres), the leaf is subulate or awlshaped. When the blade of a leaf is broadest at the centre, three or more times as long as broad, and tapers perceptibly

Fig. 347.

FIG. 348.

Fig. 347. Spathulate leaf.-Fig. 348. Oral or elliptieal leaf of Pear-tree (I yrus communis), with serrate margins.-Fig. 349. Reniform leaf of Ground Ivy (Nepeta Glechomn), with crenate margins.-Fig. 350. Trifoliate leaf with obeordate leaflets.
from the centre to both base and apex, as in the White Willow (Salix alba), the leaf is lanceolate (fig. 340); when it is lunger than broad, of about the same breadth at its base and apex, and slightly acute at these points, it is oval or elliptical (fig. 348), as in the Lily of the Valley (Convallaria majalis) ; or if under the same circumstances it is obtuse or rounded at each end (fiy. 344), it is oblong. By many botanists, however, the term oval is applied to a leaf which is only two or three times, and oblong, to one which is four or more times, as long as broad; and in both cascs either rounded or acute at the two extromities. If the lamina of a leaf is more or less romnded at the base and broader at this part than at the apex, so that the whole is of the shape of an egg cut lengthwise, the leaf is ovate or ery-shoped ($f i g .345$), as in the Lilac; or if of the same figure,
but with the apex broader than the base ($f y y .346$), it is obovate or inversely egg-shoped. When the lamina is broad at the apex, and abrupt-pointed, and tapers towards the base (fiy. 342), as in some Saxifrages, the leaf is cuncate or wedge-stanued; or if

Fiq. 351. Lunate or ereseent-shaped lenf,-Fig. 352. Sagittate leaf.Fig. 353. Hastate leaf.-Fig. 354. A portion of the stem of the Woody Nightshade (Solunum Dulcomare), benring flowering stalk and an nuriculate lenf.-Fig. 355. A sub-rotund or rounded leaf, with entire margins. -Fig. 356. Orbieular peltate leaf.
the apex is broad and rounded, and tapers down to the base (fig. 347), it is spathulate, as in the Daisy. When the lamina is broad and hollowed out at its base into two rounded lobes, and
more or less pointed at the apex, so that it somewhat resembles in shape the heart in a pack of cards, the leaf is cordate or heart-shuped (fig. 343), as in the Black Bryony (Tamus communis) ; or if of the same shape, but with the apex broader than the base, and hollowed out into two rounded lobes, it is obcordate or inversely heart-shaped (fig. 350). When a leaf resembles a cordate one generally in shape, but with its apex rounded, and the whole blade usually shorter and broader (fig. 349), it is reniform or kidney-shaped, as in the Asarabacca (Asarum europerm) ; when a leaf is reniform but with the lohes at the base of the lamina pointed, so that it resembles the form of a crescent ($f i g .351$), it is lunate or crescent-shapcd, as in Passiflora lunata. When the blade is broad and hollowed out at its base into two acute lobes, and pointed at the apex, so that it resembles the head of an arrow (fig. 352), the leaf is sagittate or arrow-shaped, as in the Arrowhead (Sagittaria sagittifoiia) ; when the lobes of such a leaf are placed horizontally, instead of passing downwards, it is luastate or halbertshaped (fig. 353), as in Sheep's Sorrel (Rumex Acetosella); or when the lobes are entirely separated from the blade, as in the upper leaves of the Woody Nightshade (Solanum Dulcamara), it is auriculate or hastate-auricled (fig. 354). When the blade is perfectly round, the leaf is orbicular (fig .356), a figure which is scarcely or ever found ; but when it approaches to orbicular, as in Pyrola rotundifolia, the leaf is subrotund or rounded (fig .35 5).

It frequently happens, that a leaf does not distinctly present any of the above-described figures, but exhibits a combination of two of them, in which case we use such terms as ovatc-lanceolate, linear-lanceolate, cordate-ovate, cordate-lanceolate, ellipticolarceolate, roundish-ovate, \&c., the application of which will be at once evident.

In many cases we find leaves of different figures on the samc plant; under which circumstance the plant is said to be heteropluyllous. Thus, in the Hairbell (Campanula rotundifolia), the radical leaves are cordate or reniform, and the cauline leaves linear ; and this difference of outline between the radical and stem leaves is by no means uncommon. In water plants, again, where some of the leaves arc submersed, while others float on the water, or rise above it into the air, as in the Water Crowfoot (Rannonculus aqieatilis), and Arrowhcad (Sagittaria sagittifolica), the leaves thus differently situated frequently vary in shape.
5. Form.-By this term we understand the solid configuration of the lamina, that is, including its length, breadth, and thickness. The torms used in defining the various forms are therefore especially applicable to thick or succulent leaves-namely, those which are produced when the veins arc comnected by a large development of parenchyma. Such leaves either assume
some regular geometrieal forms, as cylindrical, pyramidul, conical, prismatic, de., and receive eorresponding manes; or they approaeh in form to some well-known objeets, and are henee termed acicular, ensiform, acinuciform, dolabriform, clavate, linguiform, \&e. The above terms need no further deseription. In other instanees, the lamina, instead of having its veins entirely eonneeted by parenehyma, is more or less hollowed out in its eentre, when the leaf is said to be tubular, hood-shaped, urn-shaped, \&e. Various other singular forms are also found, some of whieh will be hereafter alluded to under the head of Anomalous Forms of Leaves (page 185).

Besides the above deseribed modifieations whieh the blades of leaves present in referenee to their Maryins, Incision, Aper, Outline, and Form, they also present numerous other variations as regards their surface, texture, colour, \&e. For an explanation of these we must refer to the eontents generally of this Manual ; and more espeeially to that part whieh treats of the Appendages of the Epidermis.
2. Compound Leaves. - We liave already defined a compound leaf (page 162). Its separate leaflets are subjeet to similar modifieations of their margins, ineision, apex, outline, form, texture, surfaee, eolour, \&e., as the blades of simple leaves, and the same terms are accordingly used in deseribing

Fig. $3: 8$.

Fig. 357. Imparipinuate or uncqually pinnate leaf of Rotiniu, with spiny stipules.-- Fig. 358. Equally or abruptly pinate leaf.
them. We have therefore only now to speak of eompound leaves as a whole, and the terms whiel are employed in describing their special modifications. We divide them into two heads, namely: 1. Pimately or feather-veined Compound Leares; and 2. Palmately or radiuted-veined Compormd Leates.

1. Pirmately-veined Componul Leaves.-When a leaf present-
ing this kind of venation is separated into distinct portions or leaflets, it is termed pimate (figs. 357-360) ; and the leaflets are then termed pimx. The leatlets are arranged either in an opposite or alternate manner along the sides of the rachis or

Fig. 359.

Fig. 361.

Fig. 360.

Fig. 362.

Fig. 359. Interruptedly pinnate leaf of the Potato (Sotonum tuberosum).—— Fig. 360. Lyrately ninnate leaf.-Fig. 361. Bipinnate leaf of a species of Glerlirschiu.- P'ig. 362. A tripinnate leaf. Some of the leaflets are, however, only bipinnate.
common petiole in pairs, and according to their number the leaf is said to be unijugate or one-paired, as in several species of Lathyrus (fig. 385); bijugate or two-paired; trijugate or three-
paired; and multijngate or many-paired (fig. 357). Several kinds of pinnate leaves have also been distinguished by speeial names. Thus, when a pinnate leaf ends in a solitary leaflet (fig. 357), as in the Rose and Elder, it is imparipinnate or un-

Fig. 363.

Fig. 363. A decompound leaf.
 equally-pinnate, or pinnate with an odd leaflet ; it is equally or abruptly pinnate, or paripinnate, when it ends in a pair of leaflets or pinnæ (fig. 358), as in some species of Cassia, the Mastich plant (Pistacia Lentiscus), Logwood (Hxmatoxylon campechia$m \mathrm{~m}$), and Orobus tuberosus ; and it is intermiptedly pinnate (fig. 359) when the leaflets are of different sizes, so that small pinnæ are regularly or irrcgularly intermised with larger ones, as in the Potato (Solanum tuberosum) and Silver Weed (Potentilla anserina). Or, when the terminal leaffct of a pinnate leaf is the largest, and the rest gradually smaller as they approach the base ($f g .360$), it is lyrately pinnute, as in the common Turnip. This leaf and the true lyrate (page 167 and $f i g .328$) are frequently eonfounded together by botanists, and the two kinds often run into one another, so that it is by no means uncommon to find both varieties of leaf on the same plant, as in the common Turnip and Yellow Rocket.

When the leaflets of a pinnate leaf become themselyes pinnate, or, in other words, when the partial petioles which are arranged on the conmon petiole exhibit the characters of an ordinary pinnate leaf, it is said to be bipinnate (fig. 361) ; the leaflets borne by the partial or secondary petioles are then commonly termed pinnules. When the pinnules of a bipinnate leaf become themselves pinnate, it is tripinnate (fg . 362), as in the Meadow Rue (Thalietrum minus), and the common Parsley ; it commonly happens, however, that in these leares the upper leaflets are less divided, as in fig. 362. If the division extends beyond this, the leaf is decomponnd (fiy. 363), as in many Umbelliferous plants.
2. Palmately-veined Compound Leares. - Such a leaf is formed when the ribs of a palmately-veined leaf bear separate leaflets; and henee these leaves are readily distinguished from those of the pinnate kind by their leaflets eoming off from the same point, instead of, as in them, along the sides of a common petiole. We distinguish several kinds of such leares; thus, is leaf is said to be linute, bifoliate, or umijugate, if it eonsists of only two leatlets springing from a eommon point (fig. 304), as
in Zygophylhun ; it is ternate or trifoliate if it consists of three leaflets arranged in a similar manner (figs. 350 and 365), as in the genus Trifolium, which receives its name from this circumstance ; it is quadrinate or quadrifoliate if there are four leaflets

FiG. 366.
Fig. 364.

Fig. 367.

Fig. 369.

Fig. 368.

Fig. 370.

F'if. 364. A binate or bifolinte leaf.-Fiq. 365. Ternate or trifolinte leaf. -Fif. 366. Quadrifoliate leaf of Marsilcu quadrifoliu.--Fig. 367. Quinate or quinquefoliate leaf.- rig. 368. Septenate leaf of the Horseeliestנut (EAsculus IIippoctsstamm).-Fig. 369. Multifoliate leaf of a Lupin. ——ig. 370. A bitermate leaf.
(fig. 366) ; it is quinate or quinquefolicte if there are five (fig. 367), as in Potentilla aryentec and P. allos ; it is septenate or septemfoliate, if there are seven (fig. 368), as in the Horse-
chestnut and some Potentillas ; and it is multifoliate if there are more than seven ($f i g .369$), as in many species of the Lupin. The term digitate is sometimes employed to characterise a compound leaf of five leaflets, but this name should be confined to a simple leaf, and used in the sense already noticed (page 168). In speaking of palmately-veined compound leaves in a general

Fig. 371. Triternate leaf of Baneberry (Actora).
sense, they are also commonly, although improperly, termed palmate or digitate; but when the leaflets of a palmately-veined leaf are arranged in a pedate manner, the leaf is properly termed pedate (page 168).

Palmately-veined compound leaves may become still more divided. Thus, if the common petiole divides at its apex into three partial ones, each of which bears three leaflets (fig. 370), as in the Masterwort (Imperatoria Ostruthium), the leaf is termed bitcructe; or when the common petiole divides at its apex into three partial ones, and these again divide into three others, each of which bear's threc leaflets, as in the Yellow Fumitory (Corydalis luten) and Epimedium, the leaf is tritemate (fig. 371) ; or when such a leaf is still further divided, it is said to be decompound.

5. Petiole or leaf-stalk.

The petiole or leaf-stalk is that part which connects the blade of the leaf with the stem or branch ($f i g s .273, p$, and $274, p$). It is frequently absent, and the leaf is then said to be sessile (fig. 236). It consists, as already described (page 143), of fibrovascular tissue ($f i g .372, f v$), surrounded by parenchmya $p c$, and the whole covered by epidermis, which contains a variable number of stomata, and is frequently furnished with hairs and other epidermal appendages. The fibro-vascular tissue varies in its nature in the leaves of Dicotyledons, Monocotyledons, and Cormophytes, being in structure essentially the same in each case as that of the

Fig. 374.
Fig. 372.

Fig. 373.

Fig. 372. Vertical section of a portion of the stem and the base of a leaf, showing the passage of the fibro-vaseular tissue, $f v$, in to the petiole. $p c, p c$. Parenehymatous tissue of the stem and petiole. c. Pulvinus. f. Articulation between the leaf and stem. b. Leaf-bud in the axil of the petiole. m. Pith.-Fig. 373. A portion of a branch and leaf of the Seusitive Plant, showing pulvinus at the base of the petiole.-.Fig. 374. A portiou of the stem of a Grass with a leaf attaehed. l. Blade. g. Sheathing petiole. lig. Ligule.
three kinds of stem already fully described; thus, in Dicotyledons, the fibro-vascular tissue (fig. 276), consists of spiral, pitted, annular, or some other vessels (see page 143), and sieve tubes, and wood and liber cells, that is, of the same elements essentially as the wood and liber. The distribution of this fibrovascular tissue in the lamina forms the veins, which have been already described under the head of Venation (page 157).

The petiole is cither simple or undivided, as in all simple
leaves, and in those of a compound character in which the leaflets are sessile; or it is compound, as in the Rose, when it divides into two or more portions, each of which bears a leaflet (fig. 378), or it is still more compound when the blade is further divided. The branches of the petiole or the stalks of the leaflets are then called petiolules, stalllets, or partial petioles; while the main petiole is termed the rachis or common petiole.

The petiole is frequently more or less contracted at the base where it joins the stem owing to the presence of an articulation or joint (f fig. 372, f). Leaves thus furnished with an articulated petiole fall away from the stem after they have performed their functions ; and in doing so they leave a scar or cicutrix (fig. 207, b, b). This cicatrix commonly exhibits on its surface several little points, which are produced by the rupture of the fibrovascular tissue of the petiole. The outline of the cicatrix and the arrangement of its ruptured fibro-vascular tissue vary much in different species of plants, and thus frequently form characters by which we may distinguish one plant from another after the leaves have fallen; thus the varying appearance of these scars may be well seen by comparing a branch of the Ash with that of the Horsechestnut.

In compound leaves the petiole is not only generally articulated to the stem, but the partial petioles are also frequently jointed to the common petiole, so that each leaflet becomes detached separately when the leaf begins to decay, as in the Sensitive Plant. By many botanists, indeed, no leaf is considered truly compound unless it presents this characteristic; consequently all leaves however much divided, and apparently compound, but which have not their separate portions articulated, are considered simple. Such a distinctive character cannot, however, be well carried out in practice, and when we consider that the presence of an articulation is by no means constant even in simple leaves, we can see no sufficient grounds for insisting upon this character in the separate portions of a leaf as evidence of its compound nature. The distinctive characters of simple and compound leaves as adopted in this Manual have been already fully treated of under the head of Composition of Leares. (See page 162.)

The presence of anticulation is to some extent a character of distinction between the three great divisions of plants. Thus the leaves of Dicotyledons are in the majority of instances articulated; while those of Monocotyledons and of Cormophytes are non-articulated. Hence the leaves of the two latter, when they have performed their functions, instead of falling away and leaving a cicatrix as the former, decay gradually upon their respective plants, to the stems and branches of which they thus give a ragged appearance. There are many instances, however, in which the leaves of Dicotyledons are not articulated, as in the Oak. In such cases, the leaves, although dead, remain attached to their
respective plants frequently for months, which thus form a striking contrast in their appearance to the surrounding trees, which have lost their leaves in consequence of these being articulated.

On the lower surface of the petiole at its base, the parenchyma commonly forms a more or less evident swelling (figs. 372, c, and 373), to which the name of pulvinus has been given. A somewhat similar swelling may be also seen in many compound leaves at the base of each partial petiole ; each of which is then termed a struma. The compound pimnate leaves of the Sensitive Plant afford a good illustration of the presence of both pulvinus and strumæ.

Forms of the Petiole. -The form of the petiole varies in different leaves. It is usually rounded below, and flattened, or more or less grooved above; but in other cases it is cylindrical,

Fig. 376.

Fig. 375.

Fij. 375. A portion of the stem with some leaves of Venus's Fly-trap (Dionea muscipult). 1. Lamina fringed with hairs, and hence said to be eiliated. ρ. Winged petiole.-Fig. 376. Decurrent leaves of the Comfrey (Symphytum officinale).
especially in the leaves of Monocotyledons; while in other plants of the same class, as in Grasses, it becomes widened at its base, and surrounds the stem in the form of a sheath (fig. $3 \overline{6} 4, g$). This sheath in all true Grasses terminates above in a membranous appendage (fig. 374, lig), which is entire, or divided into two symmetrical portions, or incised in various ways ; to this the name of ligule has been given, and is now supposed by most authorities to be analogous to the stipules. In the Aspen (Populus tremula), the petiole is flattened in at line at right angles to the blade, and is thus one of the causes of the peculiar mobility of such leaves; while in other plants it is flattened in a horizontal direction. In Water Plants the petiole is frequently more or less dilated from the presence of a number
of air cavities, as in Pontederit; such petioles by diminishing the specific gravity of the plants in which they are found, enable them to float readily in the water. At other times the petiole becomes flattened at its base, and embraees the stem, in which casc the leaf is said to be amplexicand or clasping (fig. 281) ; this commonly occurs in Umbellifcrous Plants. Frequently the petiole presents at its two edges a leaf-like border called a winy, when it is said to be winged ; as in the Orange (fig. 320, p), Venus's Elytrap (f ig. $375, p$), Sweet Pea (fig. 385), and many other plants. In some plants the winged expansion does not terminate at the base of the petiole, but it is continued downwards along the stem; in which case the stem is also termed winged, and the leaf is said to be decurrent (fiys. 283 and 376). Besides the above forms

Fig. 377.

Fig. 377. A portion of the flowering stem of the commou Pea, with a pinnate lenf terminated by a tendril, and having two large stinules at its base, the lower margins of which are dentate. of petiole, others still more remarkable occur, which will be alluded to hereafter, under the head of Anomalous Forms of Leaves (page 185):

Generally speaking, the petiole is less developed than the lamina; it is also commonly shorter than it, and is of sufficient thickness to support it without bending. When the petiole is very long or thin, or when the lamina is very heavy, and in other cases, it becomes more or less bent downwards towards the earth, and no longer supports the blade in a horizontal direction.

6. stipules.

Stipules are small leafy bodies situated at the base, and usually on each side of the petiole of simple (fiy. 274, s, s), or compound (fig. 377), leaves. They have the same structure as the blades of leaves, and are liable to similar modifications as regards venation, apes, incision, outline, margins, surface, de. The stipulcs are often wanting, and the leaves are then said to be exstipulate; when present the leaves arc stipulate. They are often overlooked from their small size; while in other cases they are very large, as in the Pansy ($f y .379$), and in the common

Pea (fig. 377). In the leaves of Lathyrus Aphact, again (fig. 386), there are no true blades, or leaflets, but the stipules, s, s, are here very large and perform all their functions. It sometimes happens that the leaflets of a compound leaf possess little stipules of their own, as in the Bean and Bladder Nut; to these the name of stipels has been given, and the leaf is then termed stipellate.

Stipules either remain attached as long as the lamina, when they are said to be persistent; or they fall off soon after its expansion, in which case they are decidruous. In the Beech, the Fig, the Magnolia, \&c., they form the tegmenta or protective coverings of the buds, and fall off as these open (page 105).

Fig. 379.
Fig. 378.

Fig. 378. A portion of a branch, r, of the eommon Rose (Rose canina). a. A prickle. b. Bud in the axil of a compound leaf, f, with strulked leaflets, n. Petiole. s,'s. Adnate or arlherent stipules.-Fig. 379. Petiolate leaf of Pansy (Viola tricolor) with large caulinary stipules at its base.

Kinds of Stipules.-The stipules vary in their position with regard to the petiole and to each other, and have received different names accordingly. Thus, when they adhere to each side of the base of the petiole, as in the Rose (fig. 378, s,s), they are said to be adnate, adherent, or petiolar. When they remain as little leafy expansions on each side of the base of the petiole, but quite distinct from it, as in many Willows ($f y .274$, s, s), and the Pansy (fig. 379), they arc called comlinary. When the stipules are large, it sometimes happens that they meet on the oppositc side of the stem or branch from which the leaf grows, and become united more or less by their outer margins, and thus
form one stipule, as in the Astragalus, they are then said to be synochreate or opposite (fig. 380, s) ; if under similar cireumstanecs they cohere by their inner margins, as in Melianthus annuus and Houttuynia corduta (fig. 381, s), they form a solitary stipule which is placed in the axil of the leaf, and is accordingly termed axillary; and if such stipules cohere by both outer and inner.

Fig. 380. A portion of the stem, r, and leaf, f, of the Astragalus Onobrychis. s. Synochreate or opposite stipule.-Fig. 381. A portion of the stem, r, and leaf, f, of Houtuynia cordata. s. Axillary stipule.
margins so as to form a sheath which encircles the stem abore the insertion of the leaf ($f i g .273, d$), as in the Rhubarb, and most other plants of the order Polygonacem, they form what s termed an ochrea or intrafoliaceous stipule.

All the above kinds of stipules occur in plants with alternate leaves, in which such appendages are far more common than in

Fig. 382.

Fig. 382. A portion of a branch, r, with two oppositc leares, f, f, of Cephatanthus occidentalis. s. Interpetiolar stipule.
those with opposite leaves. When the latter plants have stipules thesc are generally situated in the intcrvals between the petioles on caeh side, and are hence termed interpetiolar. In suel cases, it frequently happens that the opposing stipules of each leaf cohere more or less completely by their outer margins so as to form but one interpetiolar stipule on each side of the stem (fig. 382, s), as is the case in the Cinchonas, the Coffce, and most other plants of the natural order Rubiaece to which they belong.

Stipules, as we have already noticed, are not always present in plants, but their presence or absence in any particular plant is always constant, and although the appearance and arrangement of them also vary in different plants, they are always uniform in those of the same species, and even, in some cases, throughout entire natural orders, and thus they frequently supply important distinctive characters in such plants and orders. Thus the plants of the Loganiaceee are distinguished from those of the allied order Apocynaceæ by possessing interpetiolar stipules; and the plants of the Polygonaceæ usually from those of allied orders by intrafoliaceous stipules.

Stipules are very rare in Monocotyledons, except the ligule is to be considered as analogous to them. The only orders of Monocotyledons in which they undoubtedly occur are the Naiadacere and Araceæ. They are altogether absent in Cormophytes.

7. anomalous forms of leaves.

We hare already seen that the branches of a stem sometimes acquire an irregular development, and take the form of Spines or Tendrils (pages 107 and 108). In the same manner the parts of a leaf may assume similar modifications, as well as some others still more remarkable, which we now proceed to describe.

Fig. 383.

Fig. 384.

Fig. 383. A portion of a braneh of the Barberry (Berberis vulgaris), bearing spiny leaves. The upper leaf is composed entirely of hardened veins, without any parenchyma between them. Fig. 384. A portion of a braneh of the Gooseberry (Ribes Grossularia). f, f. Sears of former leaves, with buds in their axils. c. Spine produeed from the pulvinus.

Spines of Leaves.-Any part of the leaf may exhibit a spiny character owing to the non-development or diminution of parenchyma, and the hardening of the veins. Thus, - 1 st, in the Holly (fig. 323) and many Thistlcs (fig. 283), the veins project
beyond the blacle, and bocome hard and spiny ; in some species of Solanum the spines are situated on the surfacc of the lamina; while in the Barberry (fig. 383) the blade has little or no parenchyma produced betwecn its veins, which are of a spiny cliaracter, so that the whole lamina becomes spinous. Spines of leaves may be readily distinguishod from those alrcady described (page 107), which arc modified branches, because in the latter case they always arise from the axil of the leaf, instead of from the leaf itself. Spines may be also readily distinguished from prickles by their intcrnal structure and the other characters alluded to when spaking of the spines of branches (p. 107). 2nd. The petiole may assume a spiny character, either at its apex, as in some species of Astragalus ; or at its base from the pulvinus (fig . 384, c), as in the Gooseberry. And, 3rd. The stipules may become transformed into spines, as in Robinia Pserd-acacia (fig. 275).

Tendrils of Leaves.-Any part of the leaf may also become
Fig. 385.

Fig. 387.

Fig. 386.
Fig. 385. Leaf of a species of Lathyrus, showing a winged petio!e, with two half-sagittate stipules at its lase, and terminated by a tendril. -Fig. 386. A portion of the stem of Lathyrus A phaca, with stipules, s, s, and cirrhose petiole, v. - Fig. 387. A portion of the stem of Smifar, bearing a petiolate leaf, and two tendrils in place of stipules.
cirrhose or transformed into a tendril. Thus, -1 st. The midrib of the blade of a simple leaf may project beyond the apex, and form a tendril, as in Gloriosa superbec ; or some of the leaflets of a compound leaf may become transformed into branched tendrils (figs. 377 and 385), as in certain specics of Lathyrus, and many other Leguminose. 2nd. The petiole may become cirrhose, as in Lathyrus Aphaca (fig. 386, v), and numerous nther plants of the Leguminosie. And, 3rd. The stipules may assume the form of
tendrils ; thus in many species of Smilax there are two tendrils, one on each side of the base of the petiole (fig. 387), in place of the ordinary stipules.

Phyllodes or Phyllodit. - In the leaves of certain plants, as in : some Australian Acacias (figs. 388 and 389), certain species of Eucctyptus, and of other plants, the parts forming the fibroivascular tissue of the petiole, instead of remaining till they reach the blade before separating, begin to diverge as soon as they leave the stem or branch and become connected by paren-

Fig. 388.

Fiq. 388. A phyllode of an Austrajian Acacia.-Fig. 389. Leaf of an Acacia (Accucia heterophylla), the petiole of which assumes the character of a phyllode, and is terminated by a bipinnate lamina. The venation of the phyllode may be seen to he parallel.

khyma as in the ordinary blade of a leaf; the petiole thus assumes the appearance of a lamina and then performs all its iunctions. To such a petiole the name of phyllode has bees irpplied. In some cases, as in Acacia hetcrophylia, the phylode is terminated by a true compound blade (fig . 389), and its mature is thus clearly ascertained, but in most instances no uch blade is produced (fig. 388). These phyllodes may be Histinguished from true blades, not only by the occasional production of a lamina as just mentioned, but also by other
circumstances. Thus,-1st. By their venation, which is more or less parallel (figs. 388 and 389) instead of reticulated, as is the case generally in Dicotyledons, in which class of plants they alone occur. 2nd. By their being placed nearly or quite in a vertical direction-that is, turning their margins upwards and downwards instead of their surfaces. And 3rd. By their two surfaces resembling each other, whereas in true blades a manifest difference is commonly observable between their upper and lower surfaces.

Besides the true phyllodes thus described, there are some others, as in certain species of Ranumculus, which do not present such well-marked distinctive characters. In these phyllodes the direction of the surfaces is horizontal as in true blades, and in some other respects they resemble them; they have, howcver, more or less parallel venation instead of reticulated, and, belonging to Dicotyledons, this character will suffice to distinguish them, as it is now become the rule with most botanists to consider all organs occupying the place of leaves among Dicotylcdons, which are not reticulated, as phyllodes.

Ascidia or Pitchers. - These are the most remarkable of all the anomalous forms presented by leaves. They may be seen

Fig. 390.
 Fig. 391.

Fig. 390. Piteher of a species of Piteher Plant (Nepenthes distillatoria). $p_{\text {. }}$ Piteher closed by the lid, l. - Fig. 391. Pitcher of the Side-sadde Plant (Surrucenia purpurea) .-Fig. 392. Pitehers of Ifeliamphora.
in the species of Nepenthes or Pitcher Plants (fig. 390), in the species of Sarracenia or Side-saddle Plants (fig. 391), and in many othcrs. Thesc curious organs may be either formed from the petiolc, or the blade of the leaf. Thus in the Sarracenia (fig. 391), the pitcher appears to be produced by the folding
inwards of the two margins of a phyllode, which unite below, and form a hollow body or pitcher ; but they are still separate nabove, and thus indicate its origin. The origin of the pitcher from the phyllode is, however, probably best seen in a species cof Heliamphora (fig. 392), in which the union of the margins of the phyllode is even less evident than in the Sarracenia. In the Nepenthes (fig. 390) again, the petiole first expands into a phyllode, then assumes the appearance of a tendril, and ultimately forms a pitcher, p; this is closed above by a lid, l, ccalled an operculum, which is united to it by an articulation. TThe lid is here commonly regarded as a remarkable transformaation of the blarde; but some consider that the pitcher is fformed out of the lamina, and that the operculum is the terminal lobe. This kind of pitcher is also looked upon by others as a modification of such leaves as the Orange (fig. 320), and Venus's Fly-trap ($f i g .375$), in which the petiole, p, is articulated to the blacle; thus, if we suppose the winged petiole of such plants to fold inwards and unite by its margins, ia pitcher would be formed resembling that of Nepenthes, and the jointed blade would then be seen to be clearly analogous to the operculum or lid of that plant. In another of these plants, the Dischidia, the pitchers are considered to be formed by the ffolding inwards and union of the margins of the blades.

Gezeral View of the

8. leaves of dicotyledons, monocotyledons, and CORMOPHYTES.
We have already seen, in describing the structure and general characters of stems and roots, that these organs present wellmarked distinctive characters in the above divisions of plants.
The leaves of plants in the corresponding divisions, as we have noticed generally in their description, also present certain marked differences, which may be summed up as follows :-
9. Leaves of Dicotyledons.-In these the venation is reticulated in consequence of the veins branching in various directions and the divisions becoming united with one another, so as to form a more or less angular network (fig. 314). But in some plants, as Remunculus Lingua and R. Flammula, the so-called blades have parallel veins, and have been therefore considered by some botanists as representing exceptions to the ordinary reticulated venation of Dicotyledons; but these, as we have just seen (page 188), are not usually regarded as true blades, but as phyllodes or transformed petioles, from which they only essentially differ in bcing placed horizontally.

The leaves of Dicotyledons are also very commonly articulated to the stem or branch, often compound, and variously indented or incised at their margins. Stipules are also frequently present.
2. Leaves of Monocotyledons.-In these the venation is
commonly more or less parallel : either from base to apex (fig. 311, a) ; or they present one large central vein from which veins are given off on each sidc, which proceed in a parallel direction to the margins, as in the Banana (figs. 311, b, and 318). But the leaves generally of plants of the Natural Orders Smilaceæ (fig. 387), Dioscoreaceæ, Trilliaceæ, Roxburghiaceæ, and Philesiacer, as well as some in the order Araceæ, present exceptions to this character, for in them the veins branch in various directions and form a network, as in the leaves of Dicotyledons. Some of these plants, as the Smilaceæ and allied orders, were therefore separated from other Monocotyledons by Lindley, and placed in a class by themselves, called Dictyogens, from the Greek word signifying a net. But this class has not been accepted by botanists, and is not therefore adopted in this Manual. We have already noticed (page 100) that such plants also present certain differences in the structure of their subterranean stems from those of other Monocotyledons.

In Monocotyledons the leaves are also commonly not articulated; and the margins of their blades are usually entire or free from toothings and incisions of every kind. They are also commonly simple, often sheathing at the base, and seldom have stipules, unless the ligule (page 181) is to be considered as the analogue of these organs.
3. Leaves of Cormophytes.--In these plants, when the leaves have veins, these may bc arranged, at first, in a pimate or palmate manner, but the whole of their principal veins either divide afterwards in a forked manner, or their terminal ramitications are thus divided (fig. 319). The leaves of Ferns are usually called fronds; this term being commonly applied to leaves or leaf-like structures which, like those of Ferns, bear the fructification.

Such leaves are usually not articulated; either sessile or stalked; frequently toothed or incised in various ways; often highly compound ; but never have stipules.

CHAPTER 4.

ORGANS OF REPRODUCTION IN THE PIIANEROGAMIA.

Under the head of Organs of Rcproduction we include the Flower and its Appendages. They are called reproductive orgaus because they have for their office the reproduction of plants by the formation of seed. Plants with conspicuous organs of reproduction, as alrcady noticed (pagc 11), are called Phancroyamous or Flowering; while those in which thesc parts are concealed or obscure, are termed Cryptogamous or Flowerless.

The parts of a flower (as will be particularly shown hereafter), are only leaves in a modified condition, or rather the analogues of these organs, or, more properly, homologous formations adapted for special purposes ; and hence a flower-bud is analogous to a leaf-bud, and the flower itself to a branch the internodes of which are but slightly developed, so that all its parts are situated in nearly the same plane. As flower-buds are thus analugous to leaf-buds, they are subject to similar laws of arrangement and development.

Section 1. Inflorescence or Anthotaxis.

The term inflorescence or anthotaxis is applied generally to indicate the floral axis and its ramification, or the arrangement of the flowers upon that axis. Under this head we have to ex-amine-1st, the Leaf from the axil of which the flower-bud arises; 2nd, the Stalk upon which the flower or flowers are situited ; and 3rd, the Kinds of Inflorescence.

Fig. 393. Flowering stalk of the White Dead-nettle (Lamium album), with leafy bracts and verticillasters in their axils.

> 1. tile bract.

We have just stated that flower-buds are analogous to leafbuds; and this analogy is still further proved by their occupying similar situations to them; thus they are placed either at the
apex of the floral axis or branch, or laterally, and then commonly in the axil of modified leaves. Flower-buds, therefore, like leafbuds, are terminal or axillary. In the latter case the modified leaves from which they arise are called bracts or hypsophyllary leaves. In strict language the term bract should be only applied to the leaf from the axil of which a solitary flower or a floral axis arises ; while all other leafy structures which are found upon that axis between the bract and the flower properly so called, should be termed bractlets or bracteoles (f f. 404, b, b). These

Fig. 394.
 two kinds of bracts are, however, but rarely distinguished in practice, the term bract being generally alone used for either variety, and in this sense we shall hereafter, as a general rule, apply it.

Bracts vary much in appearance, some of them leing large, of a green colour, and in other respects resembling the ordinary foliage leaves of the plant upon which they are placed, as in the

Fig. 395.
 Fig. 396.

Fig. 394. Flowering stalk of the Pimpernel (Anagallis arvensis). b, b. Solitary flowers arising from the axil of the leafy bracts, a, a. - Fig. 395. Calyx of the Marsh-mallow (Altheec officinalis) surrounded by an epicalyx or involucre.-Fig. 396. Flower of the Strawberry (F^{\prime} 'ragaria vesca), surrounded by an epicalyx or involucre.

White Dead-nettle (fig. 393) ; and in the Pimpernel (fig. 394, a, a); in which case they are called leafy bracts. Such bracts can only be distinguished from the true leaves by their position with regard to the flower-stalk or flower. In most cases, however, bracts, although very commonly of a greenish colour, are smaller than the foliage leaves; and in many plants they may be known from the ordinary leaves not only by their position, but also by differences of colour, outline, texture, and other peculiarities. Thus the bracts forming the cupule of the Oak are hard and woody; in the Hop they are membranous; in certain plants of the Araceæ and Euphorbiaceæ coloured; in the flower-heads of the Compositæ scaly ; and other modifications also occur.

Sometimes when the bracts are situated in a whorl immediately below the calyx, it is difficult to determine whether they should be considered as a part of the calyx or as true bracts; thus, in most flowers of the Mallow order (fig. 395), and many of the Pink (fig. 474, b) and Rose orders (fig. 396), we have a circle of leafy organs placed just below the calyx, to which the term of epicalyx has been given by many botanists, but which properly comes under the denomination of involucre (page 194).

Almost all inflorescences are furnished with bracts of some kind or other; it frequently happens, however, that some of the bracts do not develop axillary flower-buds, just in the same manner as it occasionally happens that the leaves do not produce leaf-buds in their axils. In some cases the non-development of flower-buds in the axil of bracts appears to arise simply from accidental causes; but in others it occurs as a regular law, thus in the Purple Clary (Salvia Horminum), and the common Pineapple (f ig. 292), there are a number of bracts without flowerbuds placed at the apex of the inflorescence. Such bracts are called empty. When bracts are absent altogether, as is usually the case in the plants of the natural order Cruciferæ, and those of the Boraginaceæ, such plants are termed ebracteated; when bracts are present the inflorescence is said to be bracteated.

Arrangement and Duration of Bracts.-Bracts follow the same laws of arrangement as true leaves, being opposite, alternate, or whorled, in different plants. The bracts of the Pineapple fruit (fig. 292), and those of Fir cones (figs. 293 and 420), show in a marked manner a spiral arrangement.

Bracts vary in their duration; thus when they fall immediately, or soon after the flower-bud expands, they are said to he deciduous; or when they remain long united to the floral axis, they are persistent. In some plants they persist and constitute a part of the fruit; thus, in the Hazel-nut and Filbert they form the husk (fig. 401), in the Acorn they constitute the cup (fig. 400), and in the Hop-fruit (fig. 421), in the Fir-cones (figs. 293 and 420), and Pineapple (fig. 292), they persist as membranous, woody, fleshy, or scaly appendages.

Varieties of Bracts.-Bracts have received special names according to their arrangement and other characters. Thus the bracts of that kind of inflorescence called an Amentum or Catkin (see page 202), as seen in the Willow (fig. 416), Oak, Hazel (fig. 397), Birch, and other plants, are usually of a scaly nature, and are termed squamæ or scales; or the bracts are described as squanous or scaly. The bracts of the pistillate flowers of the Hop (fig. 421) are of like character.

When a circle or whorl of bracts is placed around one flower, as in the Marsh Mallow (fig. 395) and Strawberry (fig. 396) ; or around a number of flowers, as in the Carrot (fig. 398) and most other Umbelliferous plants, they form what is termed an involacre. In some Umbelliferous plants, as for instance the Carrot,
(fig. 398), there are two involueres, one at the base of the primary divisions of the floral axis or general umbel, a; and another at

Fig. 398.

Fiy. 397. Staminate or male catkin of the Hazel (Corylus A tellana), showing a number of scaly bracts between the flowers.-Fig. 398. Compound umbel of the Carrot (Duucus Curota). a. General involucre. b, b. Partial involucres or involucels.

Fig. 399.

Fig. 399. Capitulnm of Marygold (Calendult), showing the flowers enclosed in an involucre.
the base of each of the partial umbels or umbellules, b, b; the former is then called the general involucre; and each of the latter an inrolucel or particl involucre (see page 208). In plants of the natural order Compositre, such as the Marigold (fig. 399), Artichoke, Chamomile, and Daisy; and of some of the allied orders, a somewhat similar arrangement of bracts takes place, and the name of involucre is also applied in these cases. In the involueres of the Compositre there are frequently two or three rows of bracts thus orerlapping one another ; the constitucnt bracts of these latter involucres lave been termed phyllaries. Sometimes the bracts of an involucre grow together at their bases, and form ultimately a sort of eup-shaped body surrounding the fruit, as the eup of the Acorn (fig. 4(0), and the husk of the

IFilbert or Hazel-nut (f fy. 401) ; they then form what is called a cupule.

Fig. 400 . Sweet the FIG. 401.

Fig. 400. Fruit of the Oak (Quercus Robur), surrounded by a cupule.Fig. 401. Fruit of the Hazel (Corylus A vellcenc), with a cupule at its base.

Fig. 402.

Fig. 403.

Fig. 402. Flower of the Spring Snowflake (Leucojum rernum), arising from
the axil of a spathacenus bract or spathe. -Fig. 103. Spadix of Cuckoopint (Arum muculutum) enclosed in a spathe, a portion of which has been removed to show the flowers within.

子้um ar Calla

When a bract is of large size and sheathing, and surrounds one, or a number of Howers, so as to completely enclose them when in a young state, as in the Iris, Narcissus, Snowflake (fig. 402), the common Arum or Cuckoo-pint (fig. 403), and Palms (fig. 417), it is called a spathe. The spathe is generally found surrounding the kind of inflorescence called a spadix (page 203), as in the Arum (fig. 402), and Palm (fig. 417) ; and it is also very common in other Monocotyledons. The spathe may be either green like an ordinary leaf, as in the Cuckoupint; or coloured, as in Richardia rthiopica. In some Palnis these spathes are of great length, sometimes even as mucli as twenty feet; and as many as 200,000 flowers have been counted in them. Sometimes the spadix of a Palm branches (fig. 417), and then we frequently find smaller spathes surrounding its divisions, which have been named spathellx. Many
 Fig. 405.

Fig. 401 . Receptacle of the Chnmomile (Anthemis nobilis), bearing tubu'ar Howers (forets), a, a, and bractcoles, b, b : the latter are sometimes tcrmed Pales. (The reccptrcle is herc drawn much too large at the apex, it should be conical in form,) Fig. 405. Locusta or spikelet of the Ont (Avena sativa). gl,gl. Glumes, $p s, p i$. Palece or Pales, a. Awn arising from the dorsum of the outer pale, ps. $j s$, An abortive flower.
botanists restrict the term spathe to the large enveloping bract of the spadix, and call the other bracts of a like character, which enclose only one or at most a few flowers, as frequently found in Monocotyledons, spathaccous bracts.

Besides the bracts which surround the head of flowers of the Composite and form an involucre, it frequently happens that the individual flowers or Glorets (fig. 404, u, a) are also provided with little bracts or bracteoles, b, b, which are then generally of a membranous nature, and colourless, as in the Chamomile. These have received the name of palce, but as this term is applied to certain special bracts found in Grasses (see below), they are better named scales, or by some other term which expresses their texture and character?

The only other bracts which have received special names are those found in plants of the Giass and Sedge orders. Thus
the partial inflorescence of a Grass, which is termed a locusta or spikelet (page 203), has at its base one or two bracts, which are called glumes (fig. $405, g l, g l$) ; while in the Cyperacere each flower arises from the axil of one or two similar bracts. In the Grasses we also find that each flower has two other bracts (fig. $405, p s, p i$), which are commonly called pales or palex; and also frequently at the base of the ovary there are two or more little scales, also of the nature of bracts, which are usually termed squamula, glumellules, or lodiculx (fig. 601, sp).

2. the peduncle or flower stalk.

The term peduncle is applied to the stalk of a solitary flower, whether axillary ($\mathrm{fig} .394, b, b$), or terminal (fig. 402), or to a Horal axis which bears a number of sessile flowers (figs. 413 and 414) ; or if the floral axis branches and each branch bears a flower (figs. 422 and 423), the main axis is still called a peduncle, and the stalk of each flower a pedicel ; or if the axis be still further subdivided, the general name of peduncle (fig. 424) is applied to the whole, with the exception of the stalks immediately supporting the flowers, which are in all cases called pedicels. When the floral axis is thus branched, it is better to speak of the main axis as the primary axis (fig. 424, a'), its divisions as the secondary axes a", and their divisions as the tertiary axes $a^{\prime \prime \prime}$, dic.

Kinds of Peduncle.-Under certain circumstances peduncles and pedicels have received special names. Thns, when a
.Fig. 406.

Fig. 406. Hypanthodium of the Fig (Ficus Carica), showing pear-shaped fleshy receptacle bearing flowers on its inner surface, - Fig. 407. Conanthium of a species of Dorstenia.

Fig. 407.

reduncle is clongated, and gives off from its sides scssile flowers (fiys. 413 and 414), or branches bearing flowers (figs. 422-424),
it is called the rachis or axis ; but if, instead of being elougated, it becomes more or less dilated, and usually bearing numerous flowers, it is termed the receptacle. This receptacle varies very much in form ; thus, it is flattened in the Cotton Thistle (fig. 427), conical in the Chamomile, concave and fleslyy in the Dorstenia (fig. 407), pear-shaped and hollowed out in the Fig ($\mathrm{fg}, 406$); or it assumes a variety of other intermediate forms. The peculiar receptacle of the Dorstenia is sometimes termed a conanthium; and that of the Fig a hypanthodium ; or both kinds are sometimes characterised by the latter name.

It should be observed, that the term receptacle is also applied by some botanists to the extremity of the peduncle or pedicel, upon which the parts of the flower are placed, whether enlarged or not, and whether bearing one or a number of flowers (see Thalamus).

When plants which have no aerial stem bear flowers, the peduncle necessarily arises at, or under, the ground, in which case it is called a scape or radical pedruncle (fig. 402), as in the Spring Snowflake, Tulip, Hyacinth, Primrose, and Cowslip. The scape may either bear one flower as in the Tulip, or sereral Howers as in the Hyacinth.

Forms of Peduncle.-In form the peduncle is generally more or less cylindrical, but besides the departure from this ordinary

Fig. 408. Female plant of Thllisnerir syivalis, with its flowers arranged on spiral peduncles.-Fig. 409. Portion of a branch of the Butcher's Broom (Ruscusaculeatus), with phylloid pedicels (cladodes), bearing flowers, a.
appearance as exhibited by the reeeptacle just deseribed, and its modifications, it frequently assumes other forms. Thus, it may become more or less compressed, or grooved in rarious ways, or exeessively enlarged during the ripening of the fruit, as in the Cashew-nut ; or it may assume a spiral character, as
in the Vallisneria (fig. 408) ; or become spiny, or transformed into a tendril ; or it may be hollowed out at its apex, so as to form a cup-shaped body, to which the lower part of the calyx is attached, as in Eschscholtzia; or other modifications may occur.

In some cases the peduncle or pedicel becomes flattened and assumes the form of a phyllode, in which case it is termed foliaceons or phylloid; or it is called a phylloclade or cladode. Examples of this occur in the Butcher's Broom (fig. 409), where the flowers arise from its surface ; and in Xylophylla, in which the flowers are attached to its margins. Sometimes the peduncle, or several peduncles united, assume an irregular flattened appearance, somewhat resembling the fasciated branch

Fig. 410.

F1g. 411.

Fig. 410. Peduncle of the Lime-tree (Tilio enfopata) nttached to the bract, b.-Fig.411. Branch of Woody Nightshade (Solanum Dulcamara), with extra-axillary peduncle, and auriculate leaf.
already described (page 113), and bear numernus flowers in a sort of crest at their extremities, as in the Cockscomb; and in the Cauliflower, where the united fleshy branches of the peduncle form a rounded mass bearing on its upper part abor. tive flowers.

Insertion.-In speaking of the branches of a stem, we found that in some cases, instead of arising in the axil of leaves, they became extra-axillary (page 113) in consequence of adhesions of various kinds taking place between them and the stem and othcr parts. In like namer the peduncle may become extruurillary by contracting adhesions. Thus, in the Lime-tree (fig. 410), the pcduncle adheres to the midrib of the bract, b, for
some distance, and then becomes free; while in many Solanaceæ, as in the Woody Nightshade (fig. 411), the peduncle also becomes extra-axillary by forming adhesions to the stem or branch in various ways.

Duration. - With respect to their duration the peduncle and pedicel vary. Thus they are said to be caducous, when they fall off soon after the opening of the flower, as in the staminate or male flowers of a catkin; they are deciduous, when they fall off after the fruit has ripened, as in the Cherry; they are persistent, if they remain after the ripening of the fruit and dispersion of the seed, as in the Dandelion; and they are said to be excrescent, if they enlarge or continue to grow during the ripening of the fruit, as in the Cashew-nut.

3. KINDS OF INFLORESCENCE.

The term inflorescence or anthotaxis is used in a general sense to indicate the arrangement of the flowers upon the floral axis or peduncle, in the same way as the term phyllotaxis is used in a general sense to indicate the various modes in which the leaves are arranged on the stem or branches, and that of vernation for the arrangement of the component rudimentary leaves of leaf-buds. As flowers are variously arranged upon the floral axis, we have a number of different kinds of inflorescence, and to each mode of arrangement a particular name is applied. These modifications are always the same for the same speeies of plant, and frequently for entire genera, and even natural orders, and hence their discrimination is of much practical importance. All the regular kinds may be arranged in two divisions : and if the general characters upon which they depend are understood, their several modifications will be readily intelligible. These two are usually called Indefinite or Indeterminatc, and Dcfinite or Determinatc Inforescence. The former is also sometimes termed Butryoid or Botryose ; and the latter I'crminal or Cymose Inforcscencc. In the former, the primary floral axis is terminated by a growing point, analogous to the terminal leaf-bud of a stem or branch ; hence such an axis has the power of either growing in an upward direetion, in the same namner as the terminal leaf-bud of a stem or branch has the power of elongating, and thus adding to its length; or of dilating more or less liorizontally. There is consequently no necessary limit to the growth of such an axis, and hence the name of Indeterminate or Indefinite which is applied to it. Such an axis as it continues to grow upwards develops on its sides other flower-buds, from which flowers are produced, and these, like the buds of a stem or branch, are commonly situated in the axil of leaves which are here called braets, as we have seen. All the flowers therefore of an Indefinite Inflorescence must be necessarily latcral or axillary, and henee this inflorescence is also termed axilhory. The generill eharacters
of Indefinite, Indeterminate, or Axillary Inflorescenee, depend therefore upon the indefinite growth of the primary axis ; while the secondary, tertiary, and other axes which are developed from it, are terminated by flower-buds. In the Definite or Determinate Inflorescence, on the contrary, the primary axis is terminated at an early period by the production of a flower-bud; such an axis has therefore a limit at once put to its growth in an upward direction, and hence the names of Definte, Determinate, or Terminal, applied to it. Each of these primary divisions presents us with several modifications, which we now proceed to describe.

1. Indefinite, Indeterininate, or Axillary Inflores-cence.-The simplest kind of inflorescence in this class is that presented by such plants as the Pimpernel (fig. 394), in which solitary flowers, b, b, are developed in the axils of what are commonly regarded as the ordinary foliage leaves of the plant, a, a, although properly leafy bracts, the primary axis continuing to elongate in an upward direction and bearing other leaves and flowers; the flowers are then said to be solitary and axillary. When such flowers are arranged in whorls round the stem, as in

$$
\text { Fig. } 412 .
$$

Fig. 412. Whorled leafy bracts and solitary axillnry flowers of Mare's Tail (Hippuris vulgaris). the common Mare's Tail, each flower being axillary to a leafy bract (fig. 412), they are said to be whorled.

When a number of flowers instead of a single one are developed nponan elongated, shortened, or dilated, peduncle placed at the extremity of a branch, or in the axil of a bract, a number of kinds of inflorescence arise. All these depend upon the extent to which the floral axis branches, the mode in which the branching takes place, the comparative lengths of the flower-stalks, and other subordinate circumstances. It will be convenient to describe these various modifications under two heads-1st, those kinds of Indefinite Inflorescence with an Elongated Primary Axis ; and 2nd, those with a Shortened or Dilated Primary Axis.

In all kinds of indefinite inflorescence it will be found that the flower-buds always open in succession from the base to the apex if the axis is elongated (figs. 414 and 422), hence these inflorescences have been also called acropetal or ascending ; or from the circumference towards the centre if the axis is shortened or dilated (fig. 428), therefore such forms are also called centripetal. This acropetal or centripetal order of expansion necessarily arises from the mode of development of such kinds of inflorescence ; thus, the flower-buds situated at the base of an
elongated axis are those that are first formed and consequently the oldest; for as the axis elongates upwards it is continually producing other flower-buds, the age of which continues to decrease as we approach the growing point or apex; and as flower-buds are necessarily most developed in the order of their age, it follows that those at the base will open first, and that the order of expansion will proceed gradually upwards towards the apex, or acropetally. In the same way the flower-buds situated

Fig. 413.
Fig. 414.

Fif. 413. Spike of a species of Rib-grass (Planago).-Fig. 414. Spike of Vervain (Verbena).
 at the circumference of a shortened or dilated axis are first formed, and those nearest the centre or growing point last, and therefore their expansion will proceed from the circumference to the centre, or centripetally.
A. Kinds of Indefinite or Indeterminate Inflorescence with an Elongated Primary Axis.-These are as follows:-
a. The Spike.-This is a kind of inflorescence in which the peduncle is elongated and bears sessile flowers, or flowers in which the pedicels are very short, so as not to be clearly distinguishable. Examples of it may be seen in the Rib-grass (fig. 413), and Verrain (fig. 414). In this kind of inflorescence it will be observed that the flowers at the lower part of the spike have passed into fruit (fig. 414), while those near the middle are in full flower, and those at the top are still undeveloped. Such an inflorescence exhibits therefore, in a inarked degree, the acropetal order of expansion.

There are five other kinds of indefinite inflorescence which are simply modifications of the spike. These are the Amentum or Cathin, the Spadix, the Locusta, the Cone, and the Strobile.
b. The Amentum or Catkin.-This is a kind of spike which usually bears barren flowers-that is, only staminate (fig. 415), or only pistillate (flg .416) ones. The flowers of an amentum are also usually separated from one another by scaly bracts, and the whole inflorescence (at least as regards the staminate catkins) conmonly falls off in one piece, soon after the process of flowering. The bracts liave sometimes one, or at other times several flowers in their axils. All plants with this kind of
inflorescence are called amentacenus or amentiferons. Our trees afford numerous examples, as the Oak, Willow, Birch, and Poplar.
c. The Spadix is a spike with a succulent peduncle, in which the individual flowers liave no special bracts, but the whole inflorescence enclosed in that variety of bract which is called a spathe. This is well seen in the Cuckoo-pint (fig. 403). Sometimes the spadix brauches, as in Palms (fig. 417), in which case it is called compound or branching. The term spadix is also usually applied to a succulent spike, whether enveloped in a spathe or not, as in the Sweet Flag (Acorus Calamus).

Fig. 415.

Fig. 416.

Fig.415. Staminate amentum or catkin of a species of Willow (Salix).——Fig. 416. Pistillate or carpellary amentum of a specics of Willow, with bracts betwecn the carpels.
d. The Locusta or Spikelet. -This name is given to the partial inflorescence of Grasses (fig. 405), and of plants of the Sedge Order. In grasses it is a spikc with a few flowers, and thesc destitute of a truc calyx and corolla, their platce being occupied by paler or pales (fig. 405, ps, pi), and the whole inflorescence surrounded at the basc by one or two empty bracts (glumes), $g l, g l$. These spikelets may be either arranged sessile on the elongated peduncle or rachis ($f g .418$), as in Wheat, or they may be placed on a more or less branched axis, as in the Oat (fig. 419). The spikelets of plants of the Sedge Order present certain peculiarities, but they are cssentially of the same nature as those of Grasses.
e. The Cone.-This is a kind of spike, found in plants of the order Coniferre, as the Larch, Pinc, and Fir (figs. 293 and 420). It is composed of a collection of imbricated scales or open carpels arising from the axils of bracts, and bearing two or more naked ovules at their base (fig. 17,ov).

The cone is sometimes regarded as the fruit or pseudocarp of a single flower, and not an infloreseenee or collection of flowers as here deseribed. Some, again, do not distinguish between a cone and a strobile, but put the two infloreseenees together under the common name of cone or strolitus, whieh they define as a colleetion of persistent woody or membranous seales or braets, eaeh of which bears a pistillate flower at its base.

Fig. 417.

Fig. 418.
Fig. 419.

Fig. 417. Branched spadix of a Paln (Chamarops), enveloped in a spathe. -Fig. 418. Inflorescence of Whent (Triticum vilgare), consisting of mumeronssersile spikelets arranged on an elongated peduncle (rachis).-(Arena sativa).
f. The Strobile.-This is a kind of spike formed of persistent mombranous braets or scales, eaeh of whieh bears at its base a p istillate flower. It is seen in the Hop (fig. 421).

All the kinds of indefinite infloreseenee at present deseribed owe their essential eharaeters to the flowers being sessile upon an elongated axis. We now pass to deseribe others, in whieh the axis is more or less branched, and the flowers consequently situated upon stalks. The simplest of those is the Raeeme.
g. The Raceme. -This name is applied to that form of inflorescence in which the elongated pedunele or raehis bears flowers
placed on perdicels of nearly equal length (fig. 422). It only differs from the spike in the flowers being distinctly stalked instead of sessile or nearly so. Examples occur in the Currant, Mignonette, Hyacinth, Laburnum, Barberry, and Fumitory.

Fig. 420.

Fig. 421.

Fip. 420. Cone of Hemlock Spruce (Pimus canadensis),-Fig. 421. Strobilc of the Hop (Humulus Lupulus).-Fig. 422. Raceme of a species of Cherry (Prunus Padus).
h. The Corymb.-When the pedicels, instead of being of nearly equal lengths on the rachis, as in the raceme, are of different lengths ($f y .423$), viz. those, $a^{\prime \prime} a^{\prime \prime}$, at the base of the primary axis, a^{\prime}, longer than those towards and at the apex, so that the whole form a level, or nearly level top, the inflorescence is termed a corymb. Examples may be seen in some species of Prumus (fig. 423). When the stalks or secondary axcs of a corymb (fig. 424, $a^{\prime \prime}$) instead of bearing flowers immediately, divide and form tertiary, $a^{\prime \prime \prime} a^{\prime \prime \prime}$, or other axes, upon which the flowers are then placed, it is termed compound or branching, as in some species of Pyrus. This may also be called a panicled rorymb (see Panicle), to distinguish it from the former or simple corymb, which is then termod a vacemose corymb. It sometimes happens that when the flowers are first developed they form a corymb, but as the primary axis elongates a raccme is produced; this may be seen in many Cruciferous plants.

In several species of Juncus and Luzula, the pedicels of the lower flowers are so long that they are elevated above the upper oncs, in which case the inflorescence is sometimes distinguished by the term anthela.
i. The Panicle.-This is a sort of compound raceme, that is to say, a raceme in which the secondary axes, instead of pro-

Fig. 423. Simple corymb of a species of Prunus (Cerasus), a'. Primary axis, bearing bracts, b, b, from the axis of which pedicels, $a^{\prime \prime}$, $a^{\prime \prime}$, arise. -Fig. 424. Compound or branching corsmb of the Wild Service tree (Pyinus torminalis). a^{\prime}. Primary axis. $a^{\prime \prime}, a^{\prime \prime}$. Sccondary axes. $a^{\prime \prime \prime}, a^{\prime \prime \prime}$. Tertiary axes, b, b, b. Bracts.

Fiig. 425. Panicle.
ducing flowers directly, branch, and form tertiary axes, ifc., the ultimate subdivisions of which bear the flowers (fig. 425). Exanples occur in the Yucen gloriose, and in the general arrange-
ment of the partial inflorescences of the Oat (fig. 419). When the panicle is much branched and the flowers placed on short pedicels, so that the whole inflorescence forms a compact cluster of a somewhat pyramidal form, as in the Lilac and Vine, it is sometimes termed a thirsus or thyrse (fig. 426).
B. Kinds of Indefinite Inflorescence with a Shortened or Dilated Primary Axis.-Of these we distinguish two varieties:- the Capitulum or Anthodium, and the Umbel.
a. The Capitubum, Anthodium, or Head.-This inflorescence was formerly called a Compound Flower ; and its involucre a Common Calyx. Its constituent flowers from their small size are commonly termed florets. This inflorescence is usually formed

Fig. 426.

Fig. 427.

- FiJ. 426. Thyrsus of Vine (Vitis vinifera).—Fig. 427. Capitulum of Cotton nuam it Miechestint Thistle (Onopordum Acanthium).
by a number of sessile florets crowded together on a receptacle, and the whole surrounded by an involucre (fig. 399) ; but in some cases the florets are but few in number, and in other capitula the involucre is absent. The receptacle, as we have seen (page 198), may be either flattened, as in the Cotton Thistle (fig. 427) ; or slightly convex, as in the Dandelion; or conical, as in the Chamomile; or globular, as in the American Button-bush; or elliptical, \&c., by which a variety of forms is given to the different capitula.

This kind of indefinite inflorescence, as well as all others in this division with shortened or dilated primary axes, also exhibit a centripetal order of expansion. This may be well seen in the capitulum of the Scabious (f f. 428), where the outer
florets are fully expanded, those within them less so, and those in the contre in an unexpanded condition. Here therefore the order of expansion is towards the centre-that is, centripetally. The capitulum is the universal form of inflorescence in plants of the natural orders Compositæ and Dipsacaceæ ; and is also found, more or less, in some orders allied to these. Capitula of a less marked character are also to be seen in other orders; as in the species of Clover (Trifolium), and many Proteaceous plants; in these, however, the involucre is always absent.

The arrangenient of the flowers in the Fig (fig. 406) and Dorstenia (fig. 407) also closely resembles that of an ordinary capitulum, and such arrangements arc sometimes regarded as special varieties of the capitulum; but the involucre is in these

Fig. 429.

Fig. 428. Capitulum of Scabious (Scabiosa). The outermost florets may be observed to be more expanded than the iuner.-Fig. 429. Simple umbel of a species of Alluum.
inflorescences always absent, and the flowers are developed centrifugally, as in the glomerule (page 216), to which kind of inflorescence they therefore more properly belong.
b. The Umbel. - When the primary axis is shortencd, and gives off from its apex a number of secondary axes or pedicels of nearly equal length, each bearing a flower, and the whole arranged like the ribs of anmbrella, an umbel is formed (fig. 429), as in the Onion and Cowslip. When the secondary axes themsclves divide, and form tertiary axes, which are also arranged in an unbellate manner, a componend umbel is produced. This is scen in the Carrot (fig. 398), the Fennel (fig. 430), and other allied plants, which are hence called nubelliferous, and give the name to the natural order Umbelliferie. In the compound numbel (fiy. 430), the primary umbel a is called the qcneral iombel, and the other umbels, b, b, b, formed by the divisions of this,
partial umbels or umbellules. When the base of the general umbel is surrounded by a whorl of bracts (fig. 398, a) they constitute a general involucre ; and if other bracts, b, b, are arranged in a similar manner around the partial umbels, each of these whorls of bracts forms an involucel or partial involucre. These varieties of arrangement have been already alluded to when speaking of bracts (page 195).

Fig. 430. Compound umbel of Fennel. a. General umbel. b, b, b. Partin umbels or umbellules.-Fig. 431. Portion of the floral axis of a species of Gentian (Gentiant acuulis), terminated by a solitary fower, below which are two bracts.
2. Definite, Determinate, or Terminal Inflorescence. In all kinds of definite inflorescence the primary axis, as we have seen, page 201, is arrested in its growth at an tarly agc by the development of a terminal flower-bud, and if the axis bears inn other flower this is called a solitary terminal flower, and is t the simplest form of this variety of inflorescence. Examples of this may be seen in the Stemless Gentian (f f. 431), and in the Wood Anemone (Anemone nemorosa). When other flowers are produced on such an axis, they must necessarily arise from axilllary flower-buds placed below the terminal flower-bud; and if these form secondary axes (fig. 432, $a^{\prime \prime}$), each axis will in like manner be arrested in its growth by a terminal flower-bud $f^{\prime \prime}$; sand if other axes $a^{\prime \prime \prime}$ are developed from the secondary ones, these also must be axillary, and will be arrested in a similar manner by flowers $f^{\prime \prime \prime}$, and these axes may also form other axcs of a like character, and so on. Hence this mode of inflorescence is definite, determinate, or terminal, in contradistinction to the iformer or indefinite mode of inflorescence alrcady described, where the primary axis elongates indefinitely unless stopped by some extraneous cause. Definite inflorescences are most common and cegular in plants with opposite or whorled leaves, but they also
occur in those which have alternatc leaves, as for instance in the specics of Ramuneulus (fig. 432). In definite inflorescences the flower-buds necessarily follow a different order of expansion from those of indefinite inflorescences, because in them the terminal

Fig. 432.

Fig. 432. A plant of Ranunculus bulbosus. u^{\prime}, a^{\prime}. Primary axis terminated by a fully cxpanded flower, f^{\prime} : $a^{\prime \prime}$. Secondary axis, whicb is also terminated by a flower, $f^{\prime \prime}$, not so fully developed as f^{\prime}. at'. Tertiary axis terminated by a flower-bud, $f^{\prime \prime \prime}$, which is less developed than f^{\prime} and $f^{\prime \prime \prime}$. flower is the first developed and consequently the oldest (fig. $432, f^{\prime}$), and other flower-buds arc produced in succession from the apex to the base, if the axis be elongated, $f^{\prime \prime} f^{\prime \prime \prime}$; or if shortened or dilated, from the centre to the circumference. The uppermost flowerbud of the elongated primary axis (fig. $432, f^{\prime}$), and the central one of the shortened or dilated axis will accordingly open first ; and the expansion of the other flowerbuds will proceed insuccession downwàrds, or towards the circumference, according to the character of the primary axis. Such an order of expansion is called eentrifugal or regressive. Hence while the indefinite kinds of inflorescences are characterised by an acropetal, progressice, or centripetal order of expansion ; those of definite inflorescences are regressive or centrifugal.

Kinds of Definite or Determinate Inforescenee. - The kinds of definite inflorescence are also termed eymose, as the gcneral name of cyme is applied to all such inflorescences. But some are also distinguished by special names :-
a. The Cyme.-This term is applied generally to a definite inflorescence which is more or less branched, the whole being developed in a corymbose or somewhat umbellate manncr, so as to assume either a flattened head, as in the Laurustinus (fig. 433), Dogwood, and Elder ; or a rounded onc, as in the Hydrangea; or more or less spreading, as in the Chickweed (fig. 434) and Centaury (fiy. 435). In the more perfect and compact form of cyme, as found in tho Laurustinus and Elder, the flowerbuds are all nearly perfect before any of them open, and then the flowering takes place rapidly, commencing in the centre of the
cyme, and then in the centre of each of its divisions, and thence proceeding in an outward direction ; and as the central flower of

Fig. 433.

Fig. 433. Cyme of Laurnstinus (Viburnum Timus).

Fig. 434. Dichasial cyme or Dichasium of a specics of Chickweed (Cerastium). u^{\prime}. Prinary axis terminated by a flower. $a^{\prime \prime}$, $u^{\prime \prime}$. Secondary nxes, two in nnmber, arising from the axils of opposite braets, b, b, and terminated also by fiowers. $a^{\prime \prime \prime}, a^{\prime \prime \prime}, a^{\prime \prime \prime}, a^{\prime \prime \prime}$. Tertiary axes, four in number, arising from bracts, b, and bearing other bracts, b, from which the quaternary axes, eight in number, arise, $i^{\prime \prime \prime \prime}, u^{\prime \prime \prime \prime}, a^{\prime \prime \prime \prime}$. The flowers are more developed on the prinary axis than on the other axes; thus the one terminating that axis is in the state of fruit : the flowers of the axes of $a^{\prime \prime}$ and $u^{\prime \prime \prime}$ are also in fruit, but less reveloped than that of ${ }^{\prime} \prime$, while in the axes a'"' the Howers only are expanded.-Fig. 435. Dichasial cyne or Dichasium of the Centaury (Ery/hrea Cenluurium). $u^{\prime}, t^{\prime \prime}, a^{\prime \prime \prime}, a^{\prime \prime \prime \prime}$. Floral axes. $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$, $f^{\prime \prime \prime \prime}$. Flowers terninating those nxes respectively. The flowers will be observed to be most developed in proportion to their age; thus f^{\prime} is in the state of fruit, $f^{\prime \prime}, f^{\prime \prime}$, expanded, $f^{\prime \prime \prime}, f^{\prime \prime \prime}, f^{\prime \prime \prime}$, and the others still in burl.
each cluster corresponds to the apex of a branch, the expansion of the whole is centrifugal. By attention to this ordcr of expansion such cymes may be always distinguished from indefinite kinds of inflorescence, such as the umbel or corymb, to which otherwise they bear in many cases a great resemblancc. In the Chickweed (fig. 434), and many other plants, thc formation of the secondary, tertiary, and other axes $a^{\prime \prime}, a^{\prime \prime \prime}, a^{\prime \prime \prime \prime}$, goes on throughout the growing season, and in such cymes, which are usually of a morc or less spreading nature, the centrifugal order of expansion may be well observed.

Fig. 436. Spiked cyme of Sedum. This is regarded by Sachs as a form of monochasial, uniparous, or unilateral cyme.-Fig. 437. Racemose cyme of a species of Campanula. a^{\prime}. Primary axis terminated by $几$ Hower, f^{\prime}, which is already withcring. $a^{\prime \prime}, a^{\prime \prime}, u^{\prime \prime}$. Secondary axes, each onding in a flower, $f^{\prime \prime}, f^{\prime \prime}, f^{\prime \prime}$.
The above cymes are sometimes claracterised according to the number of their branches: thus they are dichotomous, as in the common Centaury (fig. 435), when the primary axis a^{\prime} is terminated by a flower f^{\prime}, at the base of which are two bracts, each of which develops in its axil secondary axes $a^{\prime \prime}$, $a^{\prime \prime}$, ending in single flowers, $f^{\prime \prime}, f^{\prime \prime}$; and at the base of cach of these flowers there are also two other bracts, from which tertiary axes $a^{\prime \prime \prime}, a^{\prime \prime \prime}$, are devcloped, also terminated by flowers $f^{\prime \prime \prime}, f^{\prime \prime \prime \prime}$, and so on, and as the division in this case always takes place into two branches, the cyme is said to be dichotomuns. The cyme of the Chickwed (fig. 434) is also dichotomon.s. The dichotomous cyme is also called a biparous cyme or dichetsium. This is not a true dichotomous branching (sce page
110), but only apparently so, in consequence of the greater derelopment of the lateral branches as compared with that of the terminal one.

Such cymes are also frequently characterised as corymbose, or umbellate, from their resemblance, except in the order of the expansion of their flowers, to the true corymb, or umbel ; or as globose, linear, \&c., according to their general form.

Again, when a definite inflorescence does not assume a more or less corymbose or umbellate form, as in the ordinary cyme just described, it is also best characterised by terms derived from the kind of indefinite inflorescence to which it bears a resemblance. Thus, when a cyme has sessile flowers, or nearly so, as in the Sechum (fig. 436), it may be described as a spiked cyme ; when it has its flowers on perlicels of nearly equal length, as in the Campanula (fig. 437), as a racemose cyme; or when it assumes the form of a panicle, as in the Privet (fig. 438), as a panicled cyme. These latter terms, however, although in many cases very characteristic, are but little employed. These forms of cymes are readily distinguished from the true racemes and other kinds of indefinite inflorescence, by the terminal flowers opening first, and the others expanding in succession towards the base, or in a centrifugal manner : while in the true raceme, and the other kinds of indefinite inflorescence, the flowers open first at the base and last at the apex, or centripetally.

Besides the ordinary cyme and its varieties now mentioned, other kinds of cymose inflorescences have also received particular names, as the Helicoid or S'corpioid Cyme, the Fascicle, the Glomerule, and the Verticillaster: these we must now briefly clescribe.
b. Helicoid or Scorpioid Cyme.-This is a kind of cyme in which the flowers are only developed on one side, and in which the upper extremity is more or less coiled up in a circinate manner, so as frequently to resemble a snail, or the tail of a scorpion ; hence the names helicoid and scorpioid by which such a cyme is distinguished. This kind of cyme is especially developed in plants of the Boraginacer, as the Forget-me-not (fig. 439), and the Comfrey (fig. 440). In these plants the bracts are alternate ; but such a cyme may also occur in plants with opposite bracts, and the manner in which it is most commonly believed to be formed in the two cases, is as follows:-Thus, in plants in which the bracts are opposite, it arises by the regular non-development of the axes on one side, while those on the other side are as regularly produced. This will be readily explained by a reference to the diagram (fig. 441). Here a represents the flower which terminates the primary axis; at the base of this flower are two bracts, only one of which develops a secondary axis b, which is in like mamner terminated by a flower, at the base of which are also two ibracts, only one of which, (i.c. that on the same side with the
first) produces a tertiary axis c, also terminated by a flower with two bracts at its base, one of which gives origin to another

Fig. 440.

Fig. 440. Helicoid cyme of Comfrey (Symphytum oficinale).
axis, d, placed in a similar manner, and so on. The place of the axis which is undeveloped at each ramification is indicated by a dotted line. In consequence of this one-sided (or as it is called secund) manner in which the successive axes are produced, the direction of the inflorescence is constantly drawn to one side at the formation of each axis, and that in proportion to the size of the angle formed by it with the axis from which it springs, and thus when the angle is large, and many flowers are produced in succession, the upper extremity becomes completely coiled up in a circinate manner (fig. 441). In plants with alternate bracts, the helicoid cyme arises from the primary axis (fig. 442, 1) being terminated by a flower, and giving off below it from the uppermost bract a secondary axis 2, which

Fig. 441.

Fig. 441. Diagram to illustrate the formation of a helicoid or scorpioid cyme in a plant with opposite bracts. a. Flower terminating the primary axis. b. Secondary axis. c. Tertiary axis. d. Quaternary axis, Each axis is terminated by a flower. The dotted lines represent the position of the undeveloped axes. -Fig. 442. Diagram to illustrate the formation of a helicoid or scorpioid cyme in a plant with alternate bracts. The figures represent the respective axes, and the dotted lines below the flowers the position of the bracts.
also terminates in a flower, and gives off below it in like manner from the same side as the former a third axis 3 , which likewise terminates in a flower, and so on as seen by the figures. The place of the bracts is indicated by the dotted lines below the flowers.

The terms helicoid and scorpioid are thus used by us indifferently to indicate the same form of unilateral, monochasial, or miparous cyme. This is the sense in which we have emplayed them in previous editions of this Manual, and in which we follow De Candolle, Le Maout, Decaisne, Hooker, and many other botanists. We are still induced to do so, because their nature is at present by no moans well defined, and from the synonymy being best understood and practically exemplified in Descriptive Botany, at least in this country. But many Contimental botanists distinguish two kinds of uniparous cymes,
under the respective names of helicoid cyme or bostryx, and scorpion cyme or cicinmus. Thus in what is termed the helicoid cyme, the successive lateral branches always arise from the same side, -that is, either right or left of the main axis (see page 110, and fig. 216, A), as in Hemerocallis; while in the scorpioid cyme the successive lateral axes are developed alternately right and left of the main axis (see page 110, and fig. 216, B), as in the Rock Rose (Helianthernum), and Sundew (Drosera).

Both helicoid and scorpioid cymes have been commonly regarded as sympodial inflorescences ; and to consist of a series of single-flowered axes, all of which are developed on one side as in the former, or alternately on opposite sides as in the latter. The investigations, however, in recent years of Kraus, George Henslow, Goebel, and other botanists, seem to prove that the scorpioid cyme is not a sympodial development, but a monopodial or indefinite kind of inflorescence, or, in other words, a unilateral raceme.

Practically, the helicoid or scorpioid cyme, in the sense as defined by us above, may be distinguished from the ordinary raceme, at least when the bracts are developed, as follows :- thus, in the raceme, the flowers always arise from the axil of the bracts, while in the cyme they are placed opposite to the bracts (fig. 442), or, at all events, more or less extra-axillary. But in those cases where the bracts are abortive, as in most plants of the Boraginacee, its discrimination from the raceme is often difficult, or even impossible, and its nature can only be ascertained by comparison with allied plants.

Other views of the nature of these cymes have been also entertained by botanists ; thus, Kaufman and Warming believe that bracteate scorpioid cymes arise from repeated dichotomy of the apex of an axillary bud. The further discussion of this subject, however, would be ont of place in an elementary manual, and therefore for more detailed particulars we must refer our readers to Sachs's 'Text-Book of Botany,' and to an article in 'Trimen's Journal of Botany,' for January 1881, on 'The History of the Scorpioid Cyme,' by Sydney H. Tines.
c. The Fascicle or Contracted Cyme. -This name is applied to a cyme which is rather crowded with flowers placed on short pedicels of nearly equal length, and arising from about the same point, so that the whole forms a flattened top, as in the Sweet William and some other plants of the Pink order to which it belongs.
a def mate d. The Glomerule. -This is a cyme which consists of a few sessile flowers, or of those where the pedicels are very short, collected into a rounded head or short spike. Examples may be seen in many Labiate plants, in species of Nettle, and in the $B(x$ (fig. 443).
e. The Verticillaster.-This kind of cyme is seen in the an amellory

White Dead-nettle (fig. 393), and commonly in other plants of the Labiate order to which it belongs. In it the flowers appear at first sight to be arranged in whorls around the axis, but upon examination it will be seen that in each apparent whorl there are two clusters or glomerules axillary to two leafy bracts, the central flowers of which open first, and hence the mocle of expansion is centrifugal. To these false whorls, thus formed of two axillary glomerules, the term verticillaster is frequently applied ; but this variety of inflorescence is sometimes regarded as a contracted form of the dichasium.

We have now finished our description of the different kinds of regular inflorescence, and from what we have already stated,

it may be readily understood that they may be situated either at the apex of the stem, or at the extremities of branches, or in the axil of bracts. But besides the above regular kinds of inflorescence, all of which are comprehended under the two divisions of indefinite and definite as now clescribed, there is a third division, which consists in a combination of these two forms, to which the term mixed inflorescence has been accordingly given. - 3. Mixei Inflorescence. -This kind of inflorescence is by no means uncommon. It is usually formed by the general inflorescence developing in one way, and the partial or individual inflorescences in another. Thus in plants of the natual order Compositie (fig. 444), the terminal capitulum is the first to exipand, and the capitula, as a whole, are thereforc developed in
a centrifugal manner ; while the individual capitula open, as we have seen (page 208), their florets from the circumference to the centre, or centripetally; hence, here the general inflorescence is definite, and each partial inflorescence indefinite. In Labiate plants we have a directly reverse arrangement, for here the individual verticillasters open their flowers centrifugally (fig. 393), but the general inflorescence is centripetal ; hence the general inflorescence is here indefinite, while each partial inflorescence is definite.

Section 2. Of the Parts of the Flower; and their Arrangement in the Flower-bud.

In common language, the idea of a flower is restricted to that portion in which its bright colours reside ; but botanically, we understand by the flower, the union of all the organs which contribute to the formation of the seed. We have already stated that the parts of the flower are only leaves in a modified condition, or rather, the aualogues of those organs, or more properly homologous formations adapted for special purposes; and that hence a flower-bud is to be considered as the analogue of a leafbud, and the flower itself of a branch the internodes of which are but slightly developed, so that all its parts are placed in nearly the same plane. The detailed examination of this theoretical notion of a flower will be rescrved till we have finished the description of its different parts or organs, when we shall be better able to understand it, as well as other matters connected with its symmetry, and the various modifications to which it is liable. (See General Morphulogy.)

1. parts of the flower.

The parts of a flower have been alrcady treated of in a general manner. (See page 17.) But before describing them in detail we must treat of their arrangement in the flower-bud-that is, of cestivation.

2. estivation or pretloration.

As the general arrangement of the rudimentary leaves of the leaf-bud is called vernation (the spring state), or prefoliation, so the mode in which the different parts of the flower are disposed in the flower-bud is termed their cestivation (the summer state), or praftoration. The various modifications of astivation are generally the same as those of vernation, and the terms employed in describing them are therefore similar: but the former present some peculiaritics, which renders it necessary for us brictly to refer to their different arrangements. The terms used in estivation especially refer to the relative positions of the com-
ponent parts of the calyx and corolla, because the stamens and carpels, from their peculiar forms, can give us no such arrangements of their parts as are exhibited by the more or less flattened floral envelopes.

In describing the modifications of æstivation, we have, as in the case of vernation, to include : 1st, the disposition of each of the component parts of the floral envelopes, considered indepeudently of the others; and 2nd, the relation of the several members of either of the floral envelopes taken as a whole in respect to one another. With regard to the disposition of each of the component parts of the floral envelopes considered independently of the others, the same terms are used as in similar modifications of vernation (page 156), with the addition of the crumpled or corrugated form, which is not found in the parts of the leaf-bud. This latter variety may be seen in the petals of the Poppy (Papaver), and Rock Rose (Helianthemum); and it derives its name from the parts being irregularly contracted into wrinkled folds.

With respect to the relation of the several members of either of the floral envelopes taken as a whole to one another, various

Fig. 445. Diagram to illustrate valvate æstivation.--Fig. 446. Diagram to illustrate induplicate æstivation.-Fig. 447. Diagram to illustrate reduplicate æstivation.-Fig.448. Dingram to illustrate contorted or twisted æstivation.
modifications occur, all of which may be arranged in two divisions: namely, the Circular, and the Imbricated or Spiral Alstivation. The former includes all those varieties in which the component parts of the whorl are placed in a circle, and in nearly the same plane : and the latter those where they are placed at slightly different levels in a more or less spiral manner, and overlap one another.

1. Varieties of Circular Atstivation.-We distinguish three well-marked varieties of circular æstivation, i.e. the valrate, induplicate, and redrplicate. The valuate (fig. 445) may be seen in the calyx of the Lime, and in that of Guazuma ulmifolia; in this variety the component parts are flat or nearly so, and in contact by their margins throughout their whole length without any overlapping. This variety of restivation may be generally distinguished, cven when the flowers are expanded, by the margins
of its eomponent parts being slightly thiekened, or at all events not thinner than the rest of the organ: whereas in all varieties of imbrieated or spiral æstivation, the overlapping margins are usually thinner, as may be well seen in the sepals of the specics of Geranium. When the component sepals, or petals, instead of being flattened, are folded inwards at the points where they come in contact ($f i g .446$), the restivation is induplicate, as in the petals of Gucazuma ulmifotia, and in the sepals of some species of Clematis. When the margins are turned outwards under the same eireumstances (fig. 447), the restivation is reduplicate, as in the sepals of the Hollyhoek (Altheec rosea), and some other Malvaceous plants; and in the petals of the Potato.

When the parts of a whorl are placed at the same height, or apparently so, as in the ordinary forms of eircular eestivation, and one margin of eaeh part is directed obliquely inwards, and is overlapped by the part adjacent on that side, while the other margin eovers the corresponding margin of the adjoining part on the other side, so that the whole presents a more or less twisted appearance (fig. 448), the restivation is contorted or twisted. It oceurs very frequently in the corolla, but is very rare in the calyx. Examples may be seen in the eorolla of the Hollyhock and other Malvaceous plants ; in that of the common Flax (Linum usitatissimum), and generally in the order Linaecæ; in the St. John's Wort (Hypericum) ; in the Periwinkle (Vinca), and in many other plants of the order Apoeynaceæ, to which this plant belongs. Twisted restivation may be regarded as intermediate between the eireular and imbrieated forms. When in this variety of restivation the component organs become united, they may be variously plaited or plicate, as in the corolla of the common Bindweed and of other Convolvulaceæ, in which ease the restivation is usually termed plicatc or plaited.
2. Varieties of Imbricated or Spiral Astivation.- We distinguish five varieties of this kind of restivation, i.e., the imbrlcatc, convolute or enveloping, quincurial, cochlear, and vexillary. The true imbricate restivation, as seen for instanee in the ealy x of Camellia japonica (fig. 449), is formed by the component parts being placed at different levels, and overlapping eaeh other more or less by their margins like the tiles on the roof of a house, the whole forming a spiral arrangement; this is a very common varicty. When the parts, instead of mercly overlapping, completely envelope each other, as in those of the ealyx of Magnolia grandiflora, and in those of the eorolla of Camellia juponica, the estivation is termed conrolute by some botanists; but this tcrm is now more frequently applied to the contorted varicty of restivation, when the parts overlap to a considerable degree, as in the Wallflower. When the parts of a floral whorl are five in number, and these arranged in sueh a manner that there are two parts placed on the outside, two inside, and the fifth orer-
lapping one of the internal by one margin, while it is itself overlapped on its other margin by one of the cxternal parts, the restivation is said to be quincuncial (fig. 450). Familiar examples of this form are afforded by the eorolla of the Rose, and the ealyx of the Bindweed (Calystegia sepium). In this kind of restivation the spiral arrangement of the parts is well seen, and is indicated in the diagram (fig. 450) by a dotted line. The spiral eyele thus formed, which is the normal one in pentamerous or quinary flowers (those with the parts in fives), and whieh oceurs in the majority of Dicotyledons, eorresponds to the $\frac{2}{5}$, pentastichous, or five-ranked arrangement of leaves. When in a quineuncial arrangement the second part of the cyele becomes wholly internal instead of being external, the regularity of the quincunx is interrupted, and a variety of exstivation oeeurs to whieh the name cochlear has been given

Fig. 449. Diagram to illustrate imbricate æstivation. The figures i, 2, 3, 4, 5 , show that the successive parts are arranged in a spiral mauner. Fig. 450. Diagram to illustrate quincuncial æstivatiou. 1 aud 2 arc external, 4 and 5 internal, and 3 is partly external and partly internal.- Fig. 451 , Diagram to illustrate cochlear æstivatior. The part marked 2 in the preceding diagram is here wholly internal instead of exterual as in the quincuncial arrangement. The dotted line marked 2 indicatcs itsnormal position in the truequincuncial variety of restivation.-Fig. 452. Diagram to illustrate vexillary restivation. 1 and 2 form the alæ or wings, 3 and 5 the carina or keel, 4 the vexillum. (See Papilionuceous Corollit.)
(fg .451). Familiar examples of this are afforded by the Snapdragon (Antirrhinum majus), and other allied plants. Another marked modification of imbricated æstivation occurs in the corolla of the Pea and other allied plants, where the superior petal 4, which is generally the largest, and called the vexillum, is folded over the others which are arranged face to faee (fig. 452). This kind of æestivation is eommonly termed vexillary.

It frequently happens that the ealyx and corolla exhibit different kinds of æestivation. Thus, in Guazuma ulmifolia the calyx is valcate; and the corolla indroplicate. In Malvaeeous plants the ealyx is valvate or some form of circular æestivation ; and the eorolla twisted. In these two examples the different varieties of estivation, as exhibited by the two floral envelopes, may be considered to belong to the samc class of restivation, i.e. the circular. But instances also frequently oceur where the calyx and corolla present different modifications, and whieh belong to both elasses ; thus, in the Corn Coekle (Githago segetum),
the species of St. John's Wort (Hypericum), the Geranium, and in many other plants, the calyx is quincuncial or imbricate; and the corolla twisted.

The kinds of æstivation above described are always eonstant in the stme individual, and frequently throughout entire genera, and even natural orders; hence they are of great importance in Systematic Botany. For a similar reason they are also of much value in Structural Botany, by the assistance they commonly afford in enabling us to ascertain the relative succession and position of the parts of the fluwer on the axis.

The term anthesis is sometimes used to indicate the period at which the flower-bud opens.

Besides the definite and constant relations which the parts of the floral envelopes have to one another in the flower-bud, they have also a definite and constant relation in the same plant to the axis upon which they are placed. In describing these positions we use the terms anterior or inferior, superior or posterior, and latercl. Thus, we call that organ posterior or superior, which is turned towards the axis; and that next the bract from the axil of whieh it arises, inferior or anterior. When there are four organs in a whorl, one will be superior, one inferior, and two lateral, as in the petals of the Wallifower ($f \mathrm{fg} .25, p, p$). If there are five we have two arrangements. Thus, in the calyx of the order Leguminosx, two sepals are superior, two lateral, and one inferior; while in the corolla one petal is superior, two inferior, and two lateral (figs. 452 and 477). But in plants of the order Rosacea we have a precisely reverse position exhibited by the parts of the two floral envelopes; thus, here we have two sepals inferior, two lateral, and one superior; while in the corolla there are two petals superior, two lateral, and one inferior (fig. 476).

The same definite relation with respect to the axis also holds good in many cases in the staminal and carpellary whorls, by which important distinctive characters are frequently obtained, as will be seen afterwards when treating of Systematic Botany.

Section 3. The Floral Envelopes.

1. the calyx.

We have ahready stated that the calyx is the outermost envelope of the flower, and that it is composed of one or more leafy organs called sepells. These sepals are usually green like the foliage leaves, by which charaeter, as well as by their position and more delicate texture, they may, in most cases, be distinguished from the petals. There are numerous instances, however, especially when the number of petals is nuth increased, in which there is a gradual transition from the sepals to the petals,
so that it is difficult or almost impossible to say, in many cases, where the calyx ends and the corolla begins. The White Water-lily (fig. 453) affords a familiar and good illustration of this. In some plants, again, the green colour disappears, and the calyx becomes coloured with the same tints as the corolla, or with some other bright hues. In such cases it is said to be petaloid, and the chief distinctive character between it and the corolla is then afforded by its position on the outside of the latter organ. The Fuchsia, Indian Cress, Columbine, Larkspur, and Monkshood may be mentioned as affording familiar examples of a petaloid calyx amongst Dicotyledons. In Monocotyledons generally, as in the Lily, Iris, Tulip, Crocus, and Squill (fig. 28), as we have mentioned (page 17), the

$$
\text { Fig. } 453 .
$$

Fig. 453. Flower of the White Waterlily (Nymphaea elbe) reduced in size. After Jussieu, c, c, c, c. The four sepals. p, p, p, p. Petals. e. Stamens. The parts on the right show the gradual transition from the calyx, c, to the petals, p, and from these organs to the stamens, e. The stamens from 1 to 5 are gradually more distinctive.
two floral envelopes are usually coloured, although rarely green, and in other respects so closely resemble each other, that we then use the collective name of perianth to indicate the two whorls taken together. When there is but one whorl of floral envelopes, as in the Goosefoot (fig. 29), it is customary with some botanists to call this the calyx, whether it is coloured or green; it is so termed in this volume. Other botanists, however, under such circumstances, call the whorl that is !present a perianth. Those, again, who use the term perianth in this sense also sometimes apply it, in all cases, to flowers whether of Monocotyledons or Dicotyledons, when the true floral envelopes are all coloured as in the Lily, or all green as in the Dock. The term is also sometimes employed in a general sense as synonymous with the force envelopes.

In their structure, venation, and characters generally, the sepals resemble the foliage leaves, and are covered like them with :description should be reversed as the flower is an rimple of the stamens pacing into petals t
epidermis; this is also frequently furnished on the lower or outer surface with stomata, and also occasionally with hairs, glands, or other appendages. From the duration of the sepals being usually more transitory than that of the foliage leaves, the veins which form their skeleton chiefly consist of spiral vessels, and are commonly arranged like those of the leaves in the two elasses of plants respectively-that is, reticulated in Dicotyledons, and parallel in Monocotyledons.

The sepals also exhibit various characters as regards their figure, margins, apəx, \&c., although they are by no means so

Fig. 454.

Fic. 157.

Fic. 455.

Fig. 454. Vertieal section of the flower of the Rose. r, r. Coneave thalamus, upon whieh are placed several earpels, $o, 0$, each of whiels is furnished with a style and stigua, s. e, e. Stamens. ct. Tube of the ealyx. cf, cf. Free portions of the calyx divided at their margins. -Fig. 455. Calyx of Numex uncritus, after Jussieu. ce, Outer divisions of the ealyx which are entire. ci. Inner divisions with hooked teeth at their margins. g. Swelling ou one of the inner dirisious, Fig. 456. Fower of Strawberry (Fragaria) with a regular polysepalous ealyx surrounded by a whorl of leafy organs, to which the name of epicalyx or iuvoluere is applied.--Fig. 457. Flower of Moukshood (Aconutum Napellus), with an irregular polysepalous ealyx. The upper sepal is petaloid, aud hooded or helmet-shaped.
liable to the numerous variations in these particulars as the blades of foliage leaves exhibit. The terms used in defining these modifications are applied in the same sense as with the blades of leaves.

Sepals are almost without exception destitute of a stalk, or, in other words, they are sessile upon the thalamus. They are also generally entire at their margins, although exceptions to this latter character occasionally occur : thus, in the Prony and Rose (figs. 454, of, and 476, cf), the sepals are incised; in many species of Dock they are toothed (fig. $4 \overline{5} 5, c i$) ; in Chamatancium
plumosum each sepal is divided into five deep lobes or partitions ; and in Passiflora feetida the sepals are first pinnatiseeted, and then each segment pinnatificl.

In their direction, the sepals are either erect or turned upmards : comireut or turned inwards ; divergent or patulous, when spreading outwards ; or reflexed, when their extremities are turned downwards.

The sepals may be either distinet from each other, as in the Poppy, Buttercup, Walltlower, and Strawberry (fig. 456) ; or more or less united into one body (figs. 458-60), as in the Pimpernel ($f y .458$), Campion ($f i g .459$), and Henbane ($f i g$. 461). In the former case, the calyx is usually termed polysepalous, polyptyplons, or dialysepalous; in the latter it is commonly called monosepalous. But this latter term is incorreet, as it indicates literally one sepal ; and henee many botanists use instead the more correct term of gamosepalous ealyx, which simply implies that the sepals are united. The terms polysepalous and monosepalous, however, from being in more general use, will be ordinarily employed in this volume.

1. Polysepalous, Polyphyllous, or Dialysepalous Calyx. A polysepalous calyx may consist of two or more parts, the number being indieated by the prefix of Greek numerals; as disepalous for a ealyx composed of two distinet sepals, trisepalous for one with three, tetrasepalous if it have four, pentasepalous if five, hexasepalous if six, leeptasepalous if seven, and so on.

A polysepalous ealyx is ealled regutar.if it consist of sepals of equal size and like figure or form, and arranged in a symmetrical manner, as in the speeies of Ranunculus (fig. 432), and Strawberry (fig. 456) ; and it is said to be irremular when these conditions are not complied with, as in the Monkshood ($f y .457$).
2. Monosepalous or Gamosepalous Calyx.-When the sepals are united so as to form a monosepalous calyx, various terms are used to indieate the clifferent degrees of union. Thus, the union may only take place near the base, as in the Pimpernel (fig. 458), when the calyx is said to he partite; or it may take place to about the middle, as in the Centaury (fiq. 459), when it is eleft or fissured; or the sepals may be united almost to the top, as in the Campion (fig. 460), when it is toothed; or if the union is quite eomplete, it is entire. The number of partitions, Ifissures, or teeth, is indicated by the same prefixes as those previously referred to as being used in describing aualogous divisions in the lamina of a leaf; thus a monosepalous calyx 'where the divisions are five, would be described as five-partite or guinguepurtite, five-cleft or quinquefid, five-toothed or quinquedentate, aceording to the depth of the divisions. In like manmer the tcrms tripartite, trifid, or tridentate would indicate that such a ealyx was three-partite, three-cleft, or three-toothed, and
so on. The number of divisions in the majority of eases corresponds to that of the component sepals of which the ealyx is formed; although exeeptions to this rule sometimes occur, as for instance in those cases where the divisions are themselves

Fig. 458. Partite inferior ealyx of the Pimpernel (Anagallis).-Fig. 459. Cleft or fissured calyx of the Centaury (Erythraa).-Fig. 460. Dentate or toothed calyx of Campior (Lychnis).
divided into others. A little eare in the examination will, however, generally enable the observer to recognise the primary from the secondary divisions. When a monosepalous ealyx is entire, the number of sepals can then be ascertained by the

Fig. 461.

Fig. 462.

Fig. 463.

Fig. 461. Urecolate calya of the Henbanc (IIyo-scyomus).-Fig. 462. Bilabiate calyx of the Dead-nettle (Lamium). -Fi!. 463. Tertical seetion of the flower of the Nyrtle (Mymus communis). cal. Thube of the calyx adherent to the ovary, o. s. Stamens.
venation, as the prineipal veins from which the others diverge generally correspond to the midribs of the eomponent sepals. In a monosepalous ealyx in whieh the union exists in a marked degree, the part where the sepals are united is ealled the tube, the free portion the limb, and the orifice of the tube the throut or faux (figs. 460-462).

If the union between the sepals is unequal, or the parts are of different sizes, or of irregular figures or forms, the calyx is said to be irregular (fig. 462) ; if, on the contrary, the parts are alike in tigure and form, of the same size, and united so as to form a symmetrical body, it is requitar (fig. 461). Some varieties of the irregular and also of the regular calyx have received special names. Thus in the Dead-ıettle (fig. 462), the irregular calyx is said to be labiate, bilabiate, or lipped, because the five sepals of which it is composed are united in such a manner as to form two lips. Of the regular forms of the monosepalous calyx a number are distinguished under the names of tubular; bell-shaped or campanulute, urceolate (fg . 461), conical, globose, ©c. The application of these terms will be also shown when speaking of the corolla, in which similar forms occur, and in which they are usually more evident.

The tube of a monosepalous calyx, or of that of a perianth (the parts of which, like the sepals, are frequently mited to a varying extent), sometimes adheres more or less to the ovary, as in the Iris, Gooseberry, Currant, Myrtle (fig. $463, c a l$), in all the plants of the order Compositie, and in those allied to it (figs. 464-466), and in numerous other plants. When this takes place, the calyx is said to be adherent, or, bccause it appears to arise from the summit of the ovary, it is termed superior; the ovary in such a case is then described as inferior. When the calyx is free, or quite distinct from the walls of the orary, as in the Pimpornel (fig. 458), Wallflower, Poppy, and Buttcrcup, it is said to be free, non-adherent, or iniferior ; and the ovary is then termed superior.

Fig. 46t. Fig. 465. Fig. 466.

Fig.464. Calys of the Madder (Rubia), ardherent to the ovary, with its limb remuced to n mere rim. Fig. 465. One of the tubular florets of the Ox-eye (Chysinthemum). The ealyx is completely united to the ovary and presents no appearance of Ω limb.-Fig. 460. One of the tubular florets of the Suntlower (Helianthus). The limb of the wherent calyx is membranous.

When the calyx or perianth is thus adherent to the ovary, iits limb presents various modifications: thus in the Iris, Grocus, and Orchids, it is petaloid ; in the Quince, foliaceous ' fig. 473) ; in the Sunflower (f fy. 466), and Chamomile, it is nembranous; in the Madder (f iy. 464), it cxists only in the form of a circular rim; while in the Ox-eye it is altogether absent fig. 465). In the two latter cases the calyx is commonly lescribed as obsolete. In many plants of the order Compositio and the allied orders Dipsacacese and Valcrianacere, the limb
of the calyx is only developed in the form of a circle or tuft of bristles, hairs, or feathery processes, to which the name of pappus is given, and the calyx under such circumstances is said to be pappose. The pappus is further described as feathery m ${ }^{\circ}$

Fict. 467.
Fig. 168.

Fig. 467. Fruit of the Valerian snrmounted by a feathery sessile propus. - Fig.468. Fruit of Scabious surmounted by a stalked pilose pappus.
plumose, and simple or pilose ; thus it is feathery, as in the Valcrian (fig. 467), when each of its divisions is covered on the sides by little hair-like projections arranged like the barbs of a feather : and pilose, when the divisions have no marked projectionsfrom their sides, as in the Dandelion and Scabious (fig. 468). The pappus is also described as sessile when it arises immediately from the tube of the adherent calyx, and thus apparently from the top of the ovary or fruit, as in the Valerian (fig. 467) ; and stalked or stipitcte, if it is raised above the ovary or frnit, on a stalk, as in the Dandelion and Scabious (fig. 468).

Appendages of the Calyx.-The calyx, whether monosepalous or polysepalous, is subject to various other irregu-

Fig. 470.

Fit. 409. Flower of the Indian Cress (Trowe olum). r. spurred calys. - Fiq. ATO . Ca1yx of Mbischs surromuted by m epricalys or involucre.
larities bosides those already alluder to, which arise from the expansion or growing outwards of one or more of the sepals or the tube of a monosepalous calya into appendages or processes of diflerent kinds. Thus in the Monkshood (f iy. 457),
the superior sepal is prolonged upwards into a sort of hood or helmet-shaped process, in which case it is said to be hooded, helmet-shapech, or guleute. In the Wallflower (fig. 25, c), and other plants of the Crucifere, the two lateral sepals are expanded on one side at the base into little sacs, when they are termed gibbous or saccate. If the calyx has one or more tubular prolongations downwards, it is said to be spurred. cole a.e. Only one spur may be prescnt, as in the Indian Cress (fig. $469, c)$, where the spur is formed by thrce sepals; or in the Larkspur, where it is formed by one; or each of the sepals may be spurred. In the Pelargonium, the spur instead of being free from the pedicel, as in the above instances, is united to it.

On the outside of the calyx of some flowers, as in those of many plants of the Mallow (fig. 470), Pink (f f. 474, b), and Rose orders (fig. 456), there is placed a whorl of lcaf-like organs which is considered by some botanists as an outer calyx, and to which the name of epicalyx or calyculus has been accordingly given ; but this outer whorl is evidently of the same nature as the iwoolucre already noticed (see page 193), and has been so described in this volume.

Duration of the Calyx. - The duration of the calyx varies in clifferent flowers. Thus it is caducous or fugecious, when it

Fig. 471. Flower of the Poppy, showing a earlueous ealyx.-Fig.472. Aecrescent ealyx of the Winter Cherry (Physulis Alhehengi).-Fig.473. Vertical section of the fruit of the Quince (Pyrus Cydonia), showing the tube of the calyx adherent to the matured carpels, and forming a part of the periearp; the free portion or limb being foliaceous.
falls off as the flower expands, as in the Poppy ($f i g .471$). In the Eschscholtzia the calyx, which is caducous, scparates from the hollow thalamus to which it is articulated, in the form of a funnel, or the extinguisher of a candle. A somewhat similar separation of the calyx occurs in the Eucclyptus, except that
here the part whiel is left behind after the separation of the upper portion evidently belongs to the calyx, instead of to the thalamus, as in the former instanee. In these two latter eases the ealyx is said to be calyptrate or operculate. When the ealyx falls off about the same time as the eorolla, as in the Crowfoot or Buttercup, it is then ealled deciduous. In other eases the ealyx remains after the flowering is over, as in the Henbane (fig. 461), and Mallow; when it is deseribed as persistent. When the ealyx is adherent or superior it is neeessarily persistent, and forms a part of the fruit, as in the Quinee (fig. 473), Apple, Pear, Gooseberry, Melon, and Cueumber. When it is persistent and assumes a slrivelled or withered appearanee, as in the speeies of Campanela, it is marcescent; or, if it is persistent, and eontinues to grow after the flowering, so as to form a bladdery expansion round the fruit, as in the Winter Cherry, and other speeies of Physalis (fig. 472), it is termed accrescent.

2. the corolla.

The eorolla is the inner envelope of the flower. It eonsists of one or more whorls of leafy organs, ealled petals. In a eomplete flower (fig. 25, p), jt is situated between the calyx and androeium, and is generally to be distinguished from the former, as we have already seen, by its eoloured nature and more delieate strueture. When there is but one whorl of floral envelopes, as we have also before notieed (page 17), this is to be ennsidered as the ealyx, and the flower is then termed apetcloid or monochlamydeous. The eorolla is usually the most showy and eonspieuous part of the flower, and what in common language is termed the flower. In some rare eases, however, it is green like the ealyx, as in eertain Cobras and some Asclepiadaecous plants. The eorolla is also, in the majority of flowers whien possess odoriferous properties, the seat of those odours. Sometimes, as we have seen, there is a gradual transition from the sepals to the petals, as in the White Water-lily (fig. 453); and in the same plant there is also a similar transition from the petals to the stamens.

In strueture the petals resemble the sepals and leaves, being eomposed of parenehyma, supported by veius whieh are ehiefly formed of spiral vessels; the venation is usually retieulated. The whole petal is invested by epidermis, whieh is eommonly destitute of stomati, but these organs may be sometimes fomil on the lower surfaee. The eorolla is generally smooth, althongh hatirs oeasionally oeeur, as in the Bombex ; when they exist they are usually eoloured, as in the Buekbean, and on the inner whorl of the periantly of the lris, whieh eorresponds in position to the eorolla. Petals are frequently narrowed below into a stalk-like portion, whiel is analogous to the petiole of a leaf, as in the

Wallflower and Pink (fig. 475) ; the narrow portion is then termed the unguis or claw, o, and the expanded portion the limb, l, and the petal is said to be unguiculate or claved. In this particular, petals must be considered to resemble the leaves more than the sepals do, as the latter organs are almost without exception sessile, or destitute of claws.

The outline of the petals, like those of the sepals and leaves, is subject to great variation. Thus, they may be linear, oblong, lanceolate, elliptic, ovate, cordate, \&c. The application of these terms haring been already fully explained when speaking of leares, need not be further alluded to. The condition of their margins also, the mode in which they are divided, and their

Fig. 474. The flower of a species of Pink (Dionthus). b. Bracts, forming an epicalyx or involuere. c. Calyn. p, p. Petals, the limbs of whieh are fringed at their margins. e. Stamens. - Fig. 475. One of the petals of the same flower. o. Claw or unguis. l. Limb, whiek is fringed at the margins.
terminations, are alsn indicated by the same terms as thosc previously described under similar heads in our chapter on Leaves. Thus the petals may be dentate, serratc ; cleft, partite, sected; acute, cmarginate, dsc. The petals are not however liable to any further division than that of the primary one; thus, although sometimes pinnatifid, or pinnatipartite, dc., they are never bipinnatifid, or bipinnatipartite. One term is occasionally used in describing the condition of the margins which has not been alluded to when speaking of the leaves; thus the petals are said to be fimbriated or fringed, as in some species of Dianthus ($f i g s .474$ and $475, l$), when they present long thread-like processes at their margins.

Again, the petals may be either flat, as is usually the case, or comrave, tulpular, beat-shaperl, \&c. Thesc terms sufficiently explain their meaning ; but a few anomalous forms of petals
will be described hereafter (page 237). In texture the petals are eommonly soft and delicate, but they sometimes differ widely from this, and beeome thick and fleshy, as in the Stupelias; ar dry and membranous, as in the Heaths; or stiff and hard, as in Xylopic.

In deseribing their direetion, we use the terms erect, connivent, divergent, patulous, or reflexed, in the same sense as already deseribed when speaking of similar eonditions of the sepals (page 225).

The petals also, like the sepals, may be either distinct or more or less united into one body. In the former case, the eorolla is said to be polypetalous or cialypetalous (figs. 474-477) ; in the latter monopetalous or gamopetalous (figs. 478-495). The same objection applies to the use of the term monopetalous as to that of monosepalous already mentioned (page 225), but we shall eontinue to employ it from its being the one wore eommonly in use.

1. Polypetalous or Dialypetalous Corolla. -The number of petals which enter into the eomposition of the corolla is indi-

Fig. 477.

Fig. 476. Flower of the Rose. b. Bract. ct. Tube of the calyx. cf. ef, cf. ef, cf. Divisions of the calyx. p, p, p, p, p. Petals.-Fit, \&i7. The tlow r of the Sweet Pea (Lathyrus odoratus). c. Calyx, v. Texillum. u. Alæ ur wings. car. Carina or keel.
cated, as in the ease of the polysepalous ealyx, by the prefix of the Greek numerals. Thus a corolla of two petals is said to be dipetalous; of three, tripetalous; of four, tetrapetalus; of five, pentapetalous; of six, hexapetalous ; of seven, heptapetalous; of eight, octapetclors; and so on.

When the petals are all of the same size, and of like figure or form, and arranged in a symmetrieal mamer, the eorolla is termed regular, as in Rosaceous flowers (figs. 450 and 476); but when the petals vary in these partieulars, as in the Pea and allied plants (fiys. 452 and 477), it is said to be irregular. Some varieties of polypetalous eorollas have received special names which wo
will now proeeed to describe under the two divisions of regular and ivregutur.
A. Keguldar Polypetalous Corollas.-Of these we may mention three forms, viz. the cruciform or cruciate; the caryoplyyllaceous; and the rosaccous.

1. Cruciform or Cruciate.-This eorolla gives the name to the ratural order Crucifere ; but it also occurs elsewhere. It eonsists of four petals, usually with claws, as in the Wallfower (fig . $2 \overline{0}, p$), and Stock ; but sometimes without claws, as in the Celandine, and the whole arranged in the form of a eross.
2. Caryophyllaceors.- This consists of five petals, with long claws enclosed in the tube of the calyx, and with their limbs commonly placed at rightangles to the claws, as in the Campion, Single Pink (figs. 474 and 475), and Carnation.
3. Posccceous.-This is composed of five petals, without, or with very short claws, and spreading in a regular manner, as in the Strawberry ($f i g .456$), and Single Rose ($f i g .476$).
B. Irrcgntar Polypetalous Corollas.-There are many anomalous forms of irregular polypetalous eorollas to which no particular names are applied. There is one form, however, whieh is of much importanee, namely, the Papilionctceous.

This derives its name from the fancied resemblanee which it bears to a butterfly. It is composed of five petals ($f i g .452$), one of which is superior or posterior, and eommonly larger than the others, and termed the vexillum or standard (fig. 477, v) ; two inferior or anterior, which are usually more or lcss united and form a somewhat boat-shaped eavity, car, called the keel or carimu; and two lateral, a, called the wings or alx.
2. Monopetalous or Gamopetalous Corolla.-When the petals unite so as to form a monopetalous corolla, various terms are used as in the case of the monosepalous calyx. to indicate the degrees of adhesion ; thus the corolla may be partitc, clcft, toothed, or entirc, the terms being employed in the same sense as with the ealyx (see page 220). The part also where union has taken plaee is in like manner called the tubc, t, the frec portion, the limó, l, and the orifiee of the tube, the throat or furx (fig. 478).

The monopetalous corolla, like the monosepalous calyx, is reguter when its parts are of the same size, and of like tigure or form, and united so as to form a symmetrical body (figs. 478-483) ; or if these eonditions are not complied with it is irregular (figs. 484-495). Some varieties of both regular and irregular monopetalous corollas have reccived special names, as follows :-
A. Regular Monopetalous Corollas.-Of thicse we may deseribe the following :-

1. Tubular, where the form is nearly cylindrical throughout, the limb not spreading; as in Spigeliu (fiy. 478), and in the
central florets of many Composite, as the Ox-eye (Chrysanthemum), and Sunflower (Helianthus) (fig. 466).
2. Campanulate or bell-shaped, when the corolla is rounded at the base, and gradually enlarged upwards to the summit, so as to resemble a bell in form, as in the Harebell (fig. 479).

Fig. 478.

Fig. 479.

Fig. 478. Flower of Spigelia marylandica c. Calyx. t. Tubular corolla. 1. Limb of the corolla. s. Summit of the stylc and stigmas.-Fig. 479. Flower of the Harebell (Campanula rotundifolict), showing a campanulate corolla.-Fig. 480. Flower of the Tobacco Plaut (Nicoliana Tabacum), with iufundibuliform corolla.

Fig. 480.

3. Infundibuliform or funnel-shaped, where the form of the corolla is that of an inverted eone, like a fumnel, as in the Tobaeeo (fig. 480).

Tig. 481.

Fig. 482.

Fig. 481. Flower of a specics of Primula. c. Calrx, within which is secu a hypoerateriform corolli, p. t. Tube of the corolla. 1. Timb.-Fi!r. 4\$2. Flower of the Torget-me-not (Jyosotis palustris). p. Iotate corolla. r. Scales projecting from its throat.
4. Hypocrateriform or salver-shaped (fig. 481), when the tube is long and narrow, and the limb plaeed at right angles to it, as in the Primrose.
5. Rotate or wheel-shaped, when the tube is short, and the limb at right angles to it, as in the Forget-me-not (fig. 482) and Bittersweet (Solanum Dulcamara).
6. Ureolute or urn-shaped, when the corolla is swollen in the middle, and contracted at both the base and apex, as in the Purple Heath (fig. 483), and Bilberry (Vaccinium Myrtullus).

Fig 483.

Fig. 484.

Fig. 485.

Fig. 483. Flower of a species of Heath (Erica). c. Calyx, within which is an ureeolate corolla, t, l._Fig. 484. Ringent or gaping eorolla of the Dead-nettle (Lamium album), showing the entire upper lip.--Fig. 485. Baek view of the flower of a speeies of Teucrium, showing the bifid upper lip of the corolla.
B. Irregular Monopetalous Corollas.-Of these we shall describe the following :-

1. Labiate, bitabiate, or lipped.- When the parts of a corolla are so united that the limb is divided into two portions whieh are placed superiorly and inferiorly, the upper portion overhang-

Fig. 486. Flower of the Rosemary (Rosmarinus) with upper lip dividen.Fig. 487. Front view of the labiate corolia of Galeobdolon, with trifid lower lip.
ing the lower, and each portion so arranged as not to elose the orifiee of the tube, thus resembling in some degree the lips and open mouth of an animal (figs. 484-487), the corolla is termed labiate, bilabiate, or lipped. The upper lip is composed of two petals, which are either completely united, as in the White Dead-nettle (fig. 484), or more or less divided, as in the

Rosemary (fig. 486) and Germander (Teucrium) (fig. 485) ; and the lower lip of three petals, which are also, either entire as in the Roscmary ($f y, 486$), or bifid as in some species of Lamium, or trifid as in Geleobdolon (fig. 487). When a labiate corolla has its upper lip much arched, as in the White Dcad-nettle (fiy. 484), it is frequently termed ringent or gaping. The labiate corolla gives the name to the natural order Labiate, in the plants belonging to which it is of almost universal occurrence. It is found also in certain plants belonging to some other orders.
2. Personate or Masked. -This form of corolla resembles the labiate in being divided into two lips, but it is distinguished by the lower lip being approximated to the upper, so as to close the orifice of the tube or throat. This closing of the throat is caused by a projection of the lower lip called the palate (fig. 488, l). Examples occur in the Snapdragon (fig. 488), and the Toadflax (fig. 489). In the species of Calcoluria the two lips become hollowed out in the form of a slipper, hence such at corolla, which is but a slight modifieation of the personate, is sometimes termed calceolate.

Fig. 488. Personnte corolin of the Sunpirngon (Amirhinum), $l_{\text {. Lower lip. } u \text {. Upper lip. b. Gibbous }}$ base,-Fiy. 489. Personate eorolla of the Toadflax (Linuriti), spurred at its brse.-Miy, 490. Ligulate corolln of a Composite flower, with five teeth at its npex.

Fig. 490.

3. Ligulate or Strap-shaped.- If what would otherwise be a tubular corolla is partly split open on onc side, so as to become flattened like a strap above (fiys. 490 and 491), it is called lipulate or strup-shaped. This kind of corolla frequently oceurs in the florets of the Composite, either in the whole of those constituting the capitulum, as in the Dandelion (Leontodon); or only in some of them, as in the outcr Horets of the Ox-eye (fiy, 491). The apex of a ligulate eorolla has frequently five teeth indicating the number of its component petals (fig. 490).

Besides the above described forms of regular and irregular monopetalous corollas, others also occur, some of which are but slight modifications of these, and arise from irregularities that are produced in certain parts in the progress of their clevelopment. Thus in the Foxglove (fig. 492), the general appearance of the corolla is somewhat bell-shaped, but it is longer than this form,

Fig. 491.
Fig. 492

Fic. 493.

Fig. 491. Ligulate corolla of the Ox-eye (Chrysanthemum).-Fig. 492. Digitaliform or glove-shaped corolla of the Foxglove (Digitrlis purpuren) .-Fig. 493. Irregular rotate corolla of Speedwell (Veronici).
and slightly irregular, and as it has been supposed to resemble the finger of a glove, it has received the name of digitaliform or glove-shaped. In the Speedwell (fig. 493), the corolla is nearly rotate, but the divisions are of unequal size and shape, hence it may be described as irregularly rotate; and in the Red Valerian the corolla is irregularly salver-shaped (fig. 495).

Appendages of the Corolla. - The corolla, like the calyx, whether polypetalous or monopetalous, is subject to various irregularities, arising from the expansion or growing outwards of one or more of the petals, or the tube of a monopetalous corolla, into processes or appendages of clifferent kinds. Thus in the Snapdragon (f ig. 488, b) and Valerian (f ig. 494), the lower part of the tube of the corolla becomes dilated on one side, so as to form a littlc bag or sac ; it is then termed saccate or gibbous, this term being used in the same sense as previously described (see page 229) when speaking of the calyx. At other times, one or more of the petals, or the tube of a monopetalous corolla, becomes prolonged downwards and forms a spur, in which case the petal or corolla is described as spurred or calcarate. Examples of spurred petals or corollas may be seen in the Heartsease, Columbinc (fig .497), Toadflax (fiy. 489), and Red Valerian
(fig. 495). Only one spur may be present, as in the Heartsease, or each of the petals may be spurred, as in the Columbine (fiy. 497). The Yellow Toadtlax, which usually only produces one

Fig. 494.

FIG. 495.

Fig. 494. Flower of a species of Valerian (V'tleritua). c. Calyx, artherent to the ovary. l. Limb of the calyx rolled inwards. The corolla las a projection towards its base, and is lence said to be gibbous. -Fig. 495. Flower of the Red Valerian (Centranthus). The corolla is irregularly salver-slaped and spurred at its base.
spur, in rare instances is found with five. Such a variety was termed by Limmus Peloria, a name which is now frequently applied by botanists to all flowers which thus pass from irregularity to regularity. In the Monkshood (fig. 490), the two

Fig. 496.

Fig. 496. A portion of the flower of the Monkshood (Acomifum), with unmerous stamens below, and two stalked somewhat horm-shaped petals above,-F'ig. 497. Flower of the Columbine (Aquilegia tulyaris) with eneli of its petals spurred.
petals which are situated under the helmet-formed sepals already noticed ($f y .457$) are each shaped somewhat like an irregularly curved horn placed on a long chamelled stalk.

The corolla is usually eomposed of but one whorl of petals, and it is then termed simple; but in some flowers there are two or more whorls, as in the White Water-lily (fig. $453, p$), in which ease it is ealled multiple. When the corolla is composed of but

Fig. 500.

Fig. 498.

Fig. 499.

Fig. 498. Petal of a Crowfoot with a neetariferous senle at its base.-Fig. 499. One of the petals of Mignonette (Resedu).--Fig. 500. A petal of the Grass of Parnassus (Parnassit putustris) bearing a fringed seale at its base.
one whorl, its parts in a regular arrangement alternate with the sepals, although cases sometimes occur in whieh they are opposite to them. The eause of these different arrangements will be explained hereafter, under the head of the Symmetry of the Flower.

Fig. 501.

Fig. 502.

Fi!. 501. A petal of a species of Lychmis. o. Claw. l. Limb. a. Sealy ap-pendages.-Fig. 502. Flower of the Dafforlil (Nurcissus Pseudo-ut cissus). The cup or bell-shaped proeess townrds the centre is termed n corona.

On the inner surface of the petals of many flowers we may frequently obscrve appendages of clifferent kinds in the form of seales or hair-like processes of various natures. These are com-
monly situated at the junction of the claw and limb (fiy. 501, a) ; or at the base of the petals (figs. 498 and 500). Such appendages may be well seen in the Mignonette (fig .499), Crowfoot (fig . 498), Lyehnis (fig. 501, a), and Grass of Parnassus (fig. 500). Similar scales may be also frequently noticed in monopetalous corollas near the throat, as in many Boraginaccous plants, for instance, the Comfrey, Borage, Forget-me-not (fig. 482, r) ; and also in the Dodder, and many other plants. Sometimes these scales become more or less united and form a eup-shaped process, as in the perianth of the Daffodil (fig. 502) and other species of Narcissus; to this the term corona is eommonly applied, and the eorolla is then said to be crowned. By many botanists, however, this latter term is applied whenever the scales or appendages are arranged in the form of. a ring on the inside of the corolla, whether united or distinct. The beautiful fringes on the corolla of the Passion-flower are of a similar nature.

The origin of these scales is by no means elearly ascertained ; by some botanists they are supposed to be derived from the petals, by others to be abortive stamens; but they are now more commonly regarded as ligules (see page 182) developed on the petals. Formerly many of these appendages were deseribed under the name of nectaries, although but few of them possess the power of secreting the honey-like matter or nectar from which they derived their names; they were therefore improperly so termed. The nature of the so-called nectaries has been already described under the head of Glands (see page 71).

Duration of the Corolla.-The duration of the corolla varies like that of the calyx, but it is almost always more fugitive than it. It is cuducous if it falls as the flower opens, as in the Grape-vine ; commonly it is deciduous, or falls off soon after the opening of the flower. In rare instances it is persistent, in which case it usually becomes dry and shrivelled, as in Heaths and the species of Campanula (fig. 437), when it is said to be marcesent.

Section 4. The Essential Organs of Repronuction.

The essential organs of reproduction are the andrecium and gynoecium. and these together form the two inner whorls of the flower. They are called the essential organs beeause the action of both is neeessary for the production of perfect seed.

Flowers which possess both these organs are ealled hermapherodite or bisexual (fig. 518) ; when only one is present, they are unisexual or diclinors, as in the species of Carex (.fig. 5(13), and Sali. (figs. 415 and 416). The flower is also then further described as staminate or staminiferous (figs. 415 and 503) when it contains only a stamen or stamens ; and carpellary, pistillate, or pistilliferous, when it has only a carpel or carpels (fig. 416). When a
flower possesses neither andrœcium nor gynœeium, as is sometimes the case with the outer florets of the capitula of the Composite, it is said to be neuter. When the flowers are unisexual both staminate and pistillate flowers may be borne upon the same plant, as in the Hazel, Oak, Cuekoo-pint (fg. 403), and the species of Carex, in which case the plant is - stated to be monacious ${ }^{*}$ or upon different plants of the same species, as in the Willows (figs. 415 and 416), when the plant is said to
$0-$ be dicecious. ${ }^{*-}$ In some cases; as in many Palms and in the Pellitory (Parietaria), staminate, pistillate, and hermaphrodite flowers are situated uipon the same individual, and then the plant is called polygamous. ash

Like the sepals and petals, the stamens and carpels are considered as homologous with leaves, but they generally present much less resemblance to these organs than the component parts of the floral envelopes. Their true nature is shown, however, by their occasional conversion into leaves, and by other eircumstances, which will be described hereafter when treating of the General Morphology of the Flower.

1. THE ANDRECIUM.

The androcium, or male system of

Fig. 503. Unisexual staminate flowers of Ω species of Corea: The filaments are long and capillary, anil the anthers pendulous and innate. Flowering Plants, is the whorl or whorls of organs which, in a complete flower, is situated between the corolla (fig.522) or perianth (fig. 28) on the outside. and the gynocium on the inside ; or it is placed betwcen the calyx and gynœcium when the corolla is absent (f g. 29), as in monochlamydeous flowers; or in achlamydeous flowers, it is either outside the gynocium (fig. 30) when those flowers are hisexual, or it stands alone (fig. 34) when the flowers arc unisexual and staminate. It is composed of one or more parts termed Stamens. Each stamen eonsists generally of a threadlike portion or stalk, called the filament ($f i g .27, f$), which is analogous to the petiole of the leaf; and of a little bag or casc, a, which is the representative of the blade, called the anther, and which contains a powdery, or morc rarely waxy, matter, termed the pollen, p. The only essential part of the stamen, however, is the anther with its contained pollen ; but in rare cases the pollen is absent, and as the stamen camot then perform its special functions, it is said to be abortive or sterile (fig. $517,1 s$) ; in other eascs it is termed fertile. It not unfrequently happens that flowers contain sterile filaments, that is, filaments
without anthers, in whieh casc these structures are termed staminodes. Thesc commonly preserve a flattcned appearanee, as in the flowers of the speeies of Cama. When, as is rarely the case, the filament is absent, as in the Cuckoo-pint (fig .504), the anther is described as scssile.

1. The Fllament.-In its structure the filament consists, 1st, of a central usually unbranehed bundle of spiral vessels;

Fig. 504.

Fiy. 504. Stamen of the Cuckoopint (drum maculctum), consisting simply of an anther which is sessile upon the thalamus. and 2 nd , of parenchymatous tissue which surrounds the bundle of spiral vessels, and which is itself covered by thin epidermal tissue. The epidermis occasionally presents stomata and hairs ; and these hairs are sometimes coloured, as in the Spiderwort and Dark Mullein. The strueture of the filament is thus seen to be strictly analogous to that of the petiole of a leaf, whieh prescnts a similar disposition of its component parts.

The filament varies in form, length, colour, and other partieulars; a few of the more important modifications of which will be now alluded to.

Form.-As its name implies, the filament is usually found in the form of a little thread-like or cylindrical prolongation whieh generally tapers in an almost imperceptible manner from the base to the apex, when it is deseribed as filiform, as in the Rose; or if it is vcry slender, as in most Sedges and Grasses, it is capillary (figs. 503 and 505). In the latter case the filament, instead of supporting the anther in the erect position as it usually does, beeomes bent, and the anther is then pendulous (figs. 503 and 505). At other times the filament becomes enlarged, or it is flattened in various ways. Thus in some cases, it is dilated gradually from below upwards like a club, when it is clavate or club-shaper, as in Thalictrum; or it is slightly enlarged at the base, and tapers upwards to a point like an awl, as in the Flowering Rush (Butomus umbellutus); in other cases it is flattened at the base, the rest of the filament assuming its ordinary rounded form, as in Tamarix gallica. (fig. 506), and species of Cempannta (fig. 507) ; or the whole of the filament is fiattened, and then it frequently assumes the appearance of a petal, when it is described as petaloid, as in the Water-lily (fiys. 453, c, and 522), and in Came and alliecl plants.

Sometimes, again, the filament is toothed as in Allium (fiy. 508), or forked as in Crambe (fig. 509); or furnished with various appendages as in the Borage (fig. 510, a), in which case it is said to be appcudiculutc. E \mathbf{G} Vrolet \& Pars.

Length, Colour, and Direction. - The length of the filament varies much. Thus, in the Borage (fig. 510, f), and plants generally of the order Boraginaces (f ig. 511), the filaments are
very short; in the Primrose (fig. 543), and commonly in the Primulacer, a similar condition also occurs. In the Fuchsia, Lily, Grasses (fig. 505), and Sedges (fiy. 503), the filaments are usually very long.

In colour the filaments are generally white, but at other times they assume vivid tints like the corolla or perianth; thus in the; Spiderwort they are blue, in various species of Ranunculus and of Enothera yellow, in some Poppies black, in Fuchsia red, ©

In diecction the filaments, and consequently the stamens, are either erect, incurvel, recurved, pendulous, \&c. ; thesc terms being used in their ordinary acceptation. When the filaments are all turned towards one side of the Hower, as in the Horsechest-

Fiy. 505. A loeustr of Whent (Trilicm sativum), eousisting of several flowers, the stamens of whieh have very long eapillary filaments, and versatile pendulons authers. The anthers are notehefor forked at each extremity, and thins resemble somewhat the letter x inform. - Fig. 506 . Three of the stamens of Tamurix gallice, with their filaments flattened at the base and united with each other.-Fig. 507. Pistil of a speeies of Cumpanulu, with a solitary stamen arising from the summit of the ovary. The filament is flattened.-Fig. 508. Dilated toothed tilament of a species of Allium.
nut and Amaryllis, they aro said to be Reninate. Generally speaking, their direction is nearly the same from one end of the filament to the other, but in some cases the original direction is departed from in a remarkable manner, and the upper part of the filament forms an angle more or less obtuse with the lower, in which case it is torned genieulute, as in Muhernica. This appearance sometimes arises from the presence of an articulation at the point where the angle is produced, as in Euphorbiu (fiy. 512, a). In such a case, or whenever an articulation exists on ! the apparent filament, this is not to be considered as a true filament, but to consist in reality of a flower-stalk supporting al single stamen. The flower here, therefore, is reduced to it single stamen, all the parts except it being abortive. This is
proved by the occasional production in some allied plants of one or more whorls of the floral envelopes at the point where the joint is situatcd. In the Pcllitory (Parictarict), the filament assumes a spiral direction.

Duration.-The filament usually falls off from the thalamus after the influence of the pollen has been communicated to the

Fig. 509.

Fig. 512.

Fif. 511.

Fig. 513.

Fig. 509. Gynœeinm and antrœeinm of Crambe. The longer filaments are forked.-Fig. 510. A stamen of the Bornge (Borago officiunlis). f. Filament. a. Curved appendage to the filmment. I. Anther.- Fig. 511. Corolla of Myosotis or Forget-me-not, laid open. There are fire stamens with very short filaments attached to the corolla aud inemdel within its tube.-Fig. 512. Male flower of Euphorbia. consisting of a solitary stamen, b, withont any foral envelopes surr unding it, henee it is said to be naked or aehlamydeons. The anther is twoloberl, and the conneetive very small. a. Articulation, indieating the point of union of the true filament nud pedumele, p. - Fig. 513. Transverse section of a yonng anther of Neottia piche. From Schleden. A. Back of the anther to which the comeetive is attached. ภ. 1s. The two lobes of the anther. w. Vaseular bundle of the eonnective. b. lipidermal layer or exotheeinm, c. Layer of fibrons eells which is commonly termed the endotheeinm, aud which is the mesothecinm of the nuther in an earlier stage of development. d, d, d, d. The font loculi or eells of the anther. Gach lobe is seen to be diviled into two locnli by a septum or partition.
earpel, or is deciduous; but in rare cases, as in the species of Campanula, the filament is persistent, and remains attached to the ovary in a withered condition.
2. Time Antmer. - Its. Parts.- The different parts of which the anther is composed may be best scen by making a transverse section as shown in fiy. 513. Thus here we observe two parallel lobes, $\mathrm{B}, \mathrm{B}, \mathrm{sc}$ parated by a portion, A, u, ealled the comnective, to which the filament is attached. Each lobe is divided
into two cavities, d, d, d, d, by a septum which passes from the connective to the walls of the anther. The cavities thus formed in the lobes of the anther are called cells or loculi. All anthers in an early stage of development possess four loculi, and this

Fig. 518.

Fig. 519.

Fig. 514. Fonr-eelled anther of the Flowering Rush (Butomus umbelletus). a. Filament bearing an entire auther. b. Seetion of the anther with its foureells. - Fig. 515. Andrœeium of Milkwort (Polygulu), with eight onecelled anthers dehiseing at their apex.--Fig.516. One of the stamens of the Lady's Mantle (Alchemilla). The anther is one-eelled, and dehisees transversely.-Fig. 517. Stamen of the Sage (Srlvia). f. Filament. c. Conneetive bearing at one end a eell, $l f$, containing polien, when it is said to be fertile; and at the other end a eell, $l s$, without pollen, in whieh ease it is sterile. Fig. 518. The Essential Organs of Reproduetion of the Vine (Vitis viniferrt). a. Anther. c. Furrow in its face whieh is turned towards the pistil or gynceinm. b. Suture or line of dehiseence. The anther is introrse.-Fig. 519. The perianth cut open, showing the stamens, of the Meadow Safion (Colchicum, chutummete), with the faces of their anthers tiumed towards the floral euvelopes, and henee termed extrorse.
is considered the normal state. When a fully-developed antlier exhibits a similar structure, as in the Flowering Rush, it is fourcelled or quadriloculcter (fiys. $514, b$, and $537, l$) ; or when, as is far
more eommonly the case, the partitions separating the two loeuli of each anther-lobe beeome absorbed, it is two-celled or bilocultar (fig. 536). In rare eases, the anther is unilocular or one-celled, as in the Mallow (f ig. 535), Milkwort (f ig. 515), and Lady's Mantle (fig .516) : this arises either from the abortion of one lobe of the anther, and the absorption of the septum between the two eells of the lobe that is left; or by the destruction of the partition wall of the two lobes as well as of the septa between the cells of eaeh lobe. In some plants, again, as in many speeies of Solvic, the conneetive beeomes elongated into a kind of stalk, each end of whieh bears an anther lobe (fig. 517), in whieh ease there appear to be two miloeular or one-celled anthers. When this oeeurs one lobe only, $l f$, contains pollen; the other, $l s$, is sterile.

That surfaee of the anther to which the eomneetive is attaehed is called the baek (fig. 513, A), and the opposite surface, в, в, is the face. The latter always presents a more or less grooved appearance (figs. 513 and 518, e), indieating the point of junetion of the two lobes. Each lobe also eommonly presents a more or less evident furrow (fig. $518, b$), indicating the point at whieh the mature anther will open to discharge the pollen; this furrow is termed the suture. By these furrows the faee of the anther may be generally distinguished from the baek, whieh is commonly smooth ($\mathrm{fig} .513, \mathrm{~A}$), and has moreover the filament attaehed to it. The faee is generally turned towards the gynœecium or eentre of the flower, as in the Water-lily (fig .522), Vine (fig. 518), and Tulip (fig. 523), in which ease the anther is ealled introrse; but in some instanees, as in the Iris, and Meadow Saffron (fig. 519), the face is direeted towards the petals or eireumference of the flower, when the anther is said to be extrorse.

Its Development and Structure.- When first formed the anther eonsists of parenchymatous eells of about the same size and form ; but ultimately each lobe presents two eentral masses of eells whieh are termed parent or mother-eells, from being devoted to the formation of the pollen ($\mathrm{fig} .520, \mathrm{~cm}$), and over whieh we have three distinet layers of eells. The inner one, cl, -that is the layer immediately enelosing each eentral mass, is ealled the endothecium or tapetum ; it is formed of but a single row of delieate cells, whieh appear to eontain nitrogenous matter, and supposed to be eoneerned in the nourishment of the pollen-cells in their early growth. This layer commonly disappears as the pollen beeomes matured, but it is persistent in those anthers whiel have porous dehiscenee. The layer, ci, immediately outside the endotheeium, is termed the mesthecirm. It is a permanont layer, and eonsists of one or more rows of eells, some of whieh, except in the ease of anthers opening hy pores, eontain spiral, retieulated, or amularly arranged fibres. The third or external layer, ce, is of an epidermal nature, with a well-marked enticle, and is ealled the exothecium, and upon whieh stonata are frequently found.

The anther in its mature form presents therefore, in nearly all cases, but two coats, as shown in figs. 513 and 521, that is, an evothecum (fig. 521, ce), or outer coat; and an endothecium, cf, or inner coat, which corresponds in structure to the mesothecium of the immature anther. The connective, as a general rnle, has a similar structure to the filament. Each lobe of the anther, as already noticed, is divided at an early age into two cavities, by the septum (fig .513), which extends from the conncetive to the suture. This septum, which forms the placentoid of Chatin, is usually more or less destroyed when the pollen is matured, but generally traces of it may be seen in the form of cellular projections from the connective, by which each cell of the anther is

Fig. 521.

Hig. 520. Vertical section of a loculus or cell of a joung anther of the Melon. ce Epidermal layer constituting the exothecium or outer eovering of the anther. ci. The parenchymatous cells forming the mesothecium. cm, cm. The two eential masses of cells which are plaeed in eaclı half or lobe of the anther, in which the pollen is formed, and heuce they are termed parent or mother cells. These cells are surrounded by a speeial layer of eells, cl , forming the endothecinm or tapetum. From Le Maout. Fig. 521. Horizontal section of a portion of the wall of a mature anther of Cobara scandens at the time of dehisecnce. It is eomposed of an external epidermal layer, ce, forming the exothecium, and an internal lityer of fibrons cells, $c f$, which is eommonly termed the endothceium, and whieh is the mesotheeium of the immature anther.
partly subdivided. To these processes the name of placentoids was given by M. Chatin, under the impression that they assisted in the nourishment of the pollen.

We have already slown that the floral envelopes arc homologons with leaves, representing them as they do in all their essential characters (pages 224 and 230). We have now to examine the stamen with the view of ascortaining whether its parts have in like manner any rescmblance to those of the lcaf. Wc have no difficulty in recognising the filamont as the homologue of the petiole, as in its form, position, and structure it is essentially the same (page 242). The conncctive of the antlier, again, is clearly analogous to the midrib of the blade, and hence we
readily see that the two lobes of the anther corrcspond to the two halves of the lamina folded upon themsclves; in fact, if we take the blade of a leaf and fold it in the above mamer, and then make a transverse scetion, it will present a great resemblance to the section of the anther already described (fig. 513). We may therefore conclude : that the anther corresponds generally to the lamina of the leaf, the connective to the midrib, the outer surface to the epidermis of its lower side, and the septa to the epidermis of the two halves of the upper surface of the lamina united and considerably thickened. The pollen corresponds to the parenchyma situated between the epidermis of the upper and lower surfaces of the lamina of the leaf.

Fig. 022.

Fig. 623.

Fig. 522. A portion of the flower of the White Water-lity (Nympher alba), consistiug of a gynceinm invested by a large fleshy disk which is prolonged from the thalamns. The pistil is surrounded by some stamens which have petaloid filaments and aduate introrse anthers; and by tro petals. -Fig. 523. Gynæcium and andræcium of the Tulip. The stamens ϵi and $c e$ have introrse anthers, which dehisee longitudinally.

Attachment of the Filament to the Anther.-The mode in which the anther is attached to the filament varies in different plants, but it is always constant in the same individual, and frequently throughout entire natural orders, and hence the characters afforded by such differences are important in practical botany. There are three modes of attachment which are distinguished by speeial names. Thus: 1st, the anther is said to be alnate or dorsifixed when its back is attached throughout its whole length to the filament, or to its continuation called the comnective, as in the Magnolia (fig. 526), and Water-lily (fig. 522) ; 2nd, it is innate or basifixed when the filament is only attached to its base, and firmly adherent, as in the species of Carex (fig. 503); and 3rd, it is versatile, when the filament is only attaelied by a point to about the middle of the baek of the connective, so that the anther swings upon it, as in Grasses generally (fig. 505), and in the Lily, Evening Primrose, and Meadow Saffron.

Connectice.-The relations of the anther to the filanent, as well as its lobes to eaeh other, are mueh influenced by the ap-
pearance and size of the connective. Thus in all adnate anthers the comective is large, and the lobes gencrally more or less parallel to each other throughout their whole length (f ig. 526). In other cases the connective is very small, or altogether wanting, as in species of Euphorbia (fig. 524), so that the lobes of the anther are then immediately in contact at their base. In the Lime the connective completely separates the two lobes of the anther ($f i g .525$). In the Sage ($f i g .517$) and other species of Salvia, the connective forms a long stall-like body placed horizontally on the top of the tilament, one end of which bears

Fig. 524.
Fig. 525.
Fig. 526.
Fig. 527.
Fig. 528.

Fig. 524. A male naked flower of a species of Euphorbit, showing the two lohes of the anther, and the almost total absence of the connective- Fig. 525. A stamen of the Lime (Tilia), showing the large connective separating the lobes of the anther.-Fig. 526. An inside view of a stamen of Magnolit glauca, showing the alnate anther and prolonged comnective.-Fig. 527. Two stamens of the Heartsease (Violt iricolor). The connective of one of them is prolonged downwards in the form of a spur.--Fig. 528. Sagitate anther lobes of the Oleander (Nerium Oleander), and the prolonged feathery comective.
an anther lobe, $l f$, containing pollen, the other merely a petaloid plate or abortive anther lobe, $l s$; it'is then said to be distractile. Sometimes the connective is prolonged beyond the lobes of the anther; either as a little rounded or tapering expansion, as in the Magnolia ($f i g .526$), or as a long feathery process, as in the Oleander (fig. 528), or in various other ways. At other times, again, it is prolonged downwards and backwards as a kind of spur, as in the Heartscase (fig. 527). Anthers with such appendages are termed appendiculate.

Forms of the Anther Lobes and of the Anther. -The lobes of tho arther assume a variety of forms. Thus in Mercuralis amиuce ($f y .530$), they are somewhat rounded; very frequently they are more or less oval, as in the Almond and Lime ($f \mathrm{fg} .525$) ; in the Acalypha they are linear (fig. 529) ; in the Gourd tribe (fiy. 531) ${ }^{3}$ linear and simuous; in the Solcomm (fig. 539) four-sided ; and at other times pointed, or prolonged in various ways. These
and other forms whieh they assume, combined with those of the comeetive, determine that of the anther, whieh may be ovel, oblong, de. ; or bifurcate or forked as in Vaccinium uliginosum

Fig. 529. A stamen of a speeies of Acalypha in a young state. f. Filament. l. Linear auther lobes.-Fig. 530. A stamen of Mercurinlis amuu. f. Filament. c. Conneetive. 1, I. Ronuded anther lobes dehiseing longitn-dinally.- Fig. 531. The linear and sinuons anther lobes, l, attached to the flament, f, of the eommon Bryouy (Bryonia dioica). The above figures are from Jussieu.
(fig .533), or quadrifureate (fig. 534) as in Gualtheria mrocumbens. or sagittate (fig .528) as in the Oleander, or cordate-sagittate as in the eommon Wallflower (f figs. 26 and 27). In the Grasses the

Fig. 532. Appendienlate anther attaeled to filament, f, of the Fine-leared Heath (Brict cineref). a. Appendage. l. Lobes. $\%$. Lateral short slit where dehisecnce takes plaee- \quad 'ig. 533. Bifureate anther of Inceinum uliginosum attached to filmment.f. l. Anther lobes. a. Appendages. $p_{\text {- }}$ Joints of the anther lobes where dehiscence takes place-- Nim. 531. Quadrifureate anther of funtheria proctmbens, attached to filament, f. 1. Anther lobes. The above figures are from Jussien.
anthers are forked at eaels extremity ($f i g .505$), so as to resemble somewhat the letter x in form.

The lobes of the anther also, like the comneetive. frequently present appendages of various kinds. THus in the Erica cinerea
they lave a flattened leafy body at their base (fig. 532, a) ; at other times the surface of the anther presents projections in the form of pointed bodies (fig. 533, a) , as in Vaccinium uliginosum, or warts, ©c. Such anthers, like those which present appendages from the connective, are termed appendiculate.

Colour of the Anther.-The anther when young is of a greenish hue, but when fully matured it is generally yellow. There are howerer many exceptions to this: thus it is dark purple or black in many Poppies, orange in Eschscholtzia, purple in the Tulip, red in the Peach, \&c.

Dehiscence of the Anther. - When the anthers are perfectly ripe they open and discharge their contained pollen (figs. 27; a, and 535) ; this act is called the dehiscence of the anther. Dehiscence commonly takes place in the line of the sutures ($f i g .518, b$), and at the period when the flower is fully expanded, and the pistil consequently sufficiently developed to receive the influence of the pollen : at other times, however, the anthers burst before the flower opens and while the pistil is still in an imperfect state. All the anthers may open at the same period, or in succession ; and in the latter case the dchiscence may either commence with the outer stamens, as is usually the case, or rarely with the inner.

Dehiscence is produced, partly by the development and growth of the pollen in the lobes of the anther pressing upon their coats and causing an absorption of their tissue ; and partly by the special action of the fibrous cells which form the lining of the anther ($f i g .521, c f$) ; and it takes place commonly at the sutures, because at these parts the endothccium is altogether wanting, and the exothecium is also usually very thin, so that they are the weakest points of the anther-walls.

The dehiscence of the anther may take place in four different ways, which are respectively called: 1. Longitudinal ; 2. Trans: verse; 3. T Mentis j4. Valvular:. sarbam

1. Longlituandur or Sutural.-This, the usual mode of dehiscence, consists in the opening of each anther-lobe from the basc to the apex in a longitudinal direction along the line of suture, as in the Vine (f ig. 518, b), the Wallflower (f ig. 27, a), and Tulip (fig. 523).
2. Transverse.-This kind of dehiscence mostly occurs in unilocular anthers, as in those of Alchemilla ($f \mathrm{ig} .516$), Lemna, and Larandula. It consists in the splitting open of the anther transversely or in a horizontal dircetion, that is, from the connective to the side. It sometimes lappens that by the enlargement of the connective the loculus of a one-celled anther is placed horizontally instead of vertically, in which case the dehiscence when it takes place in the line of the suture would be apparently transverse, although really longitudinal. An example of this kind of dehiscence is afforded by the Mallow (fig. 535), and other plants belonging to the natural order Malvacce. In
praetieal botany sueh anthers, like the former, are said to dehisee transversely.
3. Porous or Apical.-This is a mere modifieation of longitudinal dehiseenee. It is formed by the splitting down of the

Fig. 535.

Fig. 536. Fig. 537. Fig. 538. Fic. 539.

Fig. 535. Stameu of the Mallow (Malea), the anther of which has an apparently transverse dehiscence.-Fig.ö36. Two-cclled anther of the Pyrola rotundifolia, suspended from the filameut, f. l. Loculi, each opening by a pore, p.-Fig. 537. Quadrilocular auther of Poranthera, attached to filament, f. l. Loculi, cach opening by a pore, p.-Fig. 538 . Anther of Tetrutheca juncea, opening by a single pore at the apex. These figures are from Jussieu. Fig. 539. Anther lobes of a species of Solunum, cach opeuing by a pore at the apex.
anther lobes being arrested at an early period so as only to produce pores or short slits. In sueh anthers there is commonly no traee of the sutures to be seen externally. The pores or slits

Fig. 540. Anther of Barberry (Berberis rulyaris), opening by two Falres.Fig. 541. Stamen of aspecies of Laurus. f. Filancut, with two glands, g, !, at its basc. l, l. Loculi, of which there arc four. r. Falres.
may be either situated at the apex, as in the speeies of Solanum (fig. 539) and Milkwort (fiy. 515) ; or laterally, as in the Heaths (fig. 532, r). There may be cither two pores, as is
usually the case (fig. 536, p), or four as in Poranthera (fig. 537, p), or many as in the Mistletoe, or only onc as in Tetratheca juncea (fig. 53S).
4. Valvular or Opercular:-This name is applied when the whole or portions of the face of the anther open like trap-doors, which are attached at the top and turn back as if on a hinge. In the Barberry ($f i g .540$) there are but two such valves or lids; While in plants belonging to the Laurel order there are two or four such lids ($f i g .541, v$), according as the anthers have two or four cells.

The Stamens generally, or the Andreeciun.-Before describing the pollen which is contained within the anther, it will be better to take a general view of the stamens as regards their relations to one another, and to the other whorls of the flower. We shall consider this part of our subject under four hoads, namely :-1. Number ; 2. Insertion or Position ; 3. Union ; 4. Relative Length.

1. Number.-The number of stamens is subject to great variation, and screral terms are in common use to indicate such modifications. In the first place, certain names are applied to define the number of the stamens when compared in this respect with the component parts of the floral envelopes. Thus when the stamens are equal in number to the sepals and petals, the flower is said to be isostemenous, as in the Primrose ; and if they are unequal, as in the Valerians (figs. 494 and 495), the flower is anisostemenous. Or, when greatcr accuracy is rcquired, in the latter case, we say diplostemenous, if the stamens are double the number, as in the Stonccrop; meiostemenous, if fewer in number, as in the Lilac ; and polystemenous, if morc than double, as in the Rose.

Secondly, the flower receives different names according to the actual number of stamens it contains, without rcfcrence to the number of parts in the outer whorls. This number is indicated by the Greek numerals prefixed to the word audrous, which means male, in reference to the function of the stamen. Thus, a flower having one stamen is monandrous, two diandrous, three triandrons, four tetrandrous, and so on. We shall have to refer to these terms again when treating of the Linnæan system of classification, as many of the classes in that system are determined by the number of stamens contained in the flower.
2. Insertion or Position. - When the stamens are free from the calyx and pistil, and arise from the thalamus below the latter organ, as in the Poppy (f g. 32) and Crowfoot (fig. 542), they are said to loc hyporymons, which significs under the female or pistil ; this is the normal position of the stamens. When the stamens are attached to the corolla, as in the Primrose (fiy. 54.3), they are opipetalous. When the stamens adhere to the calyx more or less, so that their position becomes somewhat
lateral to the pistil instead of below it, as in the Cherry (fiy. 544), they, as well as the eorolla, are said to be perigynous. When the ealyx is adherent to the ovary so that it appears to

Fig. 543.

Fig. 544.

Fig. 542. Apoearpous pistil of the Crowfoot (Rammculus), with two stamens arising from the thalamus below it, or hypogynons. Fig. 543. Vertical sectiou of a flower of the Primrose (Primula), showing epipetalous stamens. The pistil in the centre has an ovary with a free central placenta, one style, and a capitate stigma.- Fig. 541. Vertical scetion of the flower of the Cherry, showing the perigynous stamens surrounding the pistil.
rise from its apex, the intermediate stamens and petals or corolla are also neeessarily plaeed on the summit, and are said to be epigynous, as in the speeies of Campanula (fig . 545), and Ivy.

Fig. 545.

Fig. 546.

Fig. 547.

Fig. 545. Vertical seetion of the flower of a specics of Campamula, with epigynous stamens.-Fig. 546. Flower of orchis mascult. The colum in the centre is formed by the nuion of the stimens and stylc.- $F i \%$. $54 \overline{\%}$. The pistil inn stmmens of Birthwort (Afsiolochin). The uvary is seell below, and the stamens abore united into a colnmm with the style.

It sometimes lappens that the stimens not only adhere to the ovary or lower part of the pistil, as in the epigynous form of insertion, but the upper part of the stamen or stamens and
pistil become completely united also, and thus form a column in the centre of the flower, as in the Orchis (fig. 546), and Birthwort ($f i g . \overline{\mathrm{b}} 47$) ; this column is then termed the gynostemium, and the flowers are said to be gynandrous.
3. Union or Cohesion.-When the stamens are perfectly free and separate from each other, as in the Vine ($f i g .518$), they are said to be free or distinct ; when united, as in the Mallow (fig. 549), they are coherent or connate.

When the stamens cohere, the union may take place either by their anthers, or by their filaments, or by both anthers and filaments. When the anthers unite, the stamens are termed symgenesious or synantherous (fg .548). This union occurs in. Fig: $548 . \quad$ Fig. $549 . \quad$ Fig. 550.

Fig. 548. Syngenesions anthers of a species of Thistle (Carduus).——Fiy, 549. Momatelphous stamens of a species of Mallow (M/alua).-Fig.550. Mnadelphous stamens of Wood Sorrel (Orulis), forming a tube round the pistil. -Fiv. 551. Male flower of Jatropher Curcts. c. Calyx. p. Corolla.e. Stamens nnited by their filaments into a tube, u, which occupies the centre of the flower, as there is no pistil.
all the Compositr, the Lobelia, and in some other plants. When the anthers thus unite the filaments are commonly, though not always, distinct. When union occurs between the stamens, however, it is more common to see the filaments united, and the anthers frce. This union by the filaments may take place in one or more bundles, the number being indicated by a Greek numeral prefixed to the word adelphous, which signifies brotherhood. Thus, when all the filaments unite together and form one bundle, as in the Mallow (f ig. 549), and Wood Sorrel (fig. 550), the stamens are said to be monculelphous. When such a union takes place in a complete flower, the coherent filaments nccessarily form a tube or ring round the pistil placed in their centre, as in the Wood Sorrel (fy. 550); but when the pistil is absent, and the flower thercfore incomplete, the united filaments form a more or less central column, as in Jatrophet Curcas (fig. $551, a$). When the filaments unite so as to form
two bundles, the stamens are termed diudelphous, as in the Pen (fig .552), Milkwort (fig. 515), and Fumitory ; in whieh ease the number of filaments in eaeh bundle may be equal as in the Milkwort ($f i g .515$) and Fumitory ; or unequal as in the Sweet Pea (f ig. 552), where there are ten stamens, the filaments of nine of them being united to form one bundle, while the other filament remains free. When the stamens are united by their filaments into three bundles, they are triadelphous, as in most speeies of St. John's Wort (fig. 554) ; and when in more than three, polyadelphous, as in the Orange (fig .553). The term polyadelphous is applied by many botanists, in all eases, where there are more than two bundles of stamens; it was used in this latter sense by Limnrus.

The union of the filaments in the above eases may either take place more or less eompletely, and thus form a tube of rarying heights, as in the Mallow (fig. 549) and Wood Sorrel

Fig. 553.

Fig. 5.52.

Fig. 552. Diadelphous stamens of the Sweet Pea (Lathyrus odoratus), surrounding the simplepistil. There are ten stamens, nine of which are united and one free.-Fig. 553. Flower of the Orange divested of its corolla, to show the polyadelphous stamens.
(fig. 550) ; or the union may only take place at the base, as in the Tamarix, gallica (fig. 506). The bundle or bundles, again, may be either unbranehed, as in the Mallow (fig. 549); or branehed, as in the Milkwort (fig. 515) and Castor-oil Plant (fig. 555). When the union takes plaee so as to form a tube or column, the term androphore has been applied to sueh a eolumn, as in the Mallow ($f i g .549$) and Wood Sorrel ($f i y, 550$).
4. Relative Length. -There are two separate sulbjeets to be treated of here, namely. 1st, the relative length of the stamens with respeet to the eorolla; and 2nd, their length with respeet to eaell other. In the first place, when the stamens are shorter than the tube of the eorolla so as to be enelosed within it, as in the Forget-me-not (fig. 511), they are said to be included: and when the stamens are longer than the tube of the enrolla so as to extend beyond it, as in the Valerians (figs. 495 and 5566°), they are exserted or protruding.

Secondly, the relative length of the stamens with respect to each other presents several peculiarities, some of which are important in Descriptive Botany. Thus, sometimes all the stamens

Fig. 554. The pistil, a, of Hypericum cegyptiacum, surrounded by the stamens, e, e, which are united by their flaments, f, f, into three bundles.- Fig. 555. One of the branched bundles of stamens of the Castor-oil Plant (Ricinus communis). f. United filmments.-Fig. 556. Flower of a species of Valerian (Valeriana), showing the stamens molonged beyond the tube of the corolla, or exserted. The corolla is gibbous at the base.
of the flower are nearly of the same length; while at other times they are very unequal. This inequality may be altogether ir-

Fig. 557. One of the bundles of strmeus of Juhea pumiculata, the imner stamens on the right are longer than the others und are provided with anthers: the shorter stamens are generally sterile-_Tig. 558. Tetradymamons stamens of the Wallhower (Cheiranthus Cheiri).—Fig. 559. Didynamous stamens of the Foxglove (Digitalis purpura).
regular again, following no definite rule, or takc place in a definite and regular mamer ; thus, when the flowers are polystemenous, the stamens nearest the centre may be longer than those
at the circumference, as in Lnhea paniculata (f fy. 557) ; or the reverse may be the case, as in many of the Rosaccie. In the case of diplostemenous flowers, as with the Willow Herb (Epilobium), the stamens alternating with the petals arc alnost always longer than those opposite to them. When the stamens are of unequal length in the same flower, or in difficrent flowers of the same species, as in the Primrose, they are said to be dimorphic, and will be afterwards alluded to in speaking of fertilisation.

When there is a definite relation existing between the long and short stamens with respect to number, certain names are applied to indieate such forms of regularity. Thus in the Wallflower (figs. 26 and 558), and Cruciferous plants generally, there are six stamens to the flower, of which four are long and arranged in pairs opposite to each other, and alternating with two solitary shorter ones; to such an arrangement we apply the term tetradynamous. When there are but four stamens, of which two are long and two short, as in Labiate plants generally (figs. 485 and 487), and in the Foxglove (fig. 559), and most other Scrophulariaceous plants, they are said to be didynamous.

The Pollex. - The pollen consists of mieroscopic cells, whieh correspond to the microspores of the higher Cryptogams. It has also been stated, that the pollen was formed in certain cells developed originally in the centre of the parenchyma of the lobes of the young anther (fig .520 cm) ; also that these cells were enclosed in a special eovering of their own, $c l$, and that in the course of growth they pressed upon the coats of the anther, so as to cause their more or less complete absorption, and finally assisted in promoting the dehiscence of the anther (page 251). We have now more particularly to describe the mode of formation and the structure of the pollen.

Formation of the Pollen. - The formation of the pollen may be described as follows:-The large cells ($\mathrm{fg} .520, \mathrm{~cm}$), which are developed in the parenchyna of the young anther, and which are destined for its formation, are callcd parent or mother cells ; these are surrounded in the earlier stagcs of development by a single stratum of thin-walled cells forming an internal epithelial layer or tapetum, cl, which, however, becomes subsequently pressed upon and absorbed. Usually these parent cells remain conneeted to one another, but in some instances, and morc cspeeially in Monocotyledons, they bccome isolated and float frec in a more or less viseid material occupying the cavity of the anther. As development procceds the nucleus of cach parent cell disappears, and in its place four new nuclei are ultimatcly formed (fiy. 560, a). (See 'Karyokincsis' in Plyssiology.) 'Then follows an infolding of the protoplasm, or, according to Mohl, of the primordial utricle, a, b, r, by which the mother-cell is cither divided at once into four parts; or first into two, and subsequently, each of these again divided into two others. The four cells thus formed become each surrounded by a cellulose mem-
brane which is in direct connexion with the cellulose coat of the mother-cell ; and thus constitute what are known as the 'special mother-cells.' Finally, each protoplasmic mass of the special mother-cells separates from the cell-wall and secretes around itself a membrane, so that ultimately we have four perfect cells, d, which constitute the true pollen-cells, formed in each parent cell.

As these pollen-cells progress in development, and increase in size, they distend the wall of the mother-cell, and ultimately cause its absorption; and subsequently, by their continued growth, the walls of the special mother-cells are generally absorbed also, by which the pollen-cells are set free in the cells of the anther. Sometimes the membrane of the special mother-

Fia. 560. Formation of the pollen in the Hollyhoek (Althoen rasea). After Mohl and Heufrey. a shows fonr nuclei in the parent cell, and four septa commeneing to be formed. The primordial utricle and cell-coutents are eontracted by the action of alcolnol. b. The develnpment of the septa more advancerl. c. The primordial utricle removed from the pareut or mother cell, but not yet completely divided into four parts. d. The division of the parent or mother cell into four parts complcted, and each part containing one pollen-cell.- Fig. 561. Polleu of Inga anomala.-Fig. 562. Pollen of Periploct grepea. After Jussieu,-Fiy. 563. Mass of spherieal pollen-cells from a species of Acacit.
cells is not completely absorbed, in which case the pollen-cells of the mother-cell are more or less comnected, and form a compound body consisting of four pollen-cells, as in Periploca graca (fig. $5(\mathrm{~S} 2$) ; or if the membranes of two or more united mothercells are also incompletely absorbed, we may have a mass consisting of cight pollen-cells, as in Inga anomala ($f i g .561$) ; or of some multiple of four, as in many specics of Acacia (f ig. 563). In the Onagracere, the pollen-cells are loosely connceted by long viscid filaments or threads, which seem in this case to be wholly derived from a secretion left by the imperfect solution of the mother-cells; while in the Orchidacese the pollen-cells coherc in a remarkable degree and form pollen-masses which are com-
monly of a waxy nature, to which the name of pollinia has bcen given ($f i g .564, p$). In the Asclepiadaceæ somewhat similar masses occur (fig. $565, p$, and b); but in the lattcr, the whole surface of each pollen-mass is invested by a special cellular covering. By a careful examination of these pollinia we find that they are formed of compound masses agglutinated together, and when separated, each of these masses is found to consist of four pollen-cells. In the pollinia of the Orchidacese we also find other peculiarities; thus each is prolonged downwards in the form of a stalk callcd the caudicle (fig. 564, c), which adheres commonly at the period of dehiscence to one or two little glandular masses called retinucula (figs. 566, u, and $564, r, r$),

Fig. 564. Pollinia, p, of a species of Orchis with their caudicles, c, adhering to the retinacnla, r, r.-Fig. 565 . Pistil of a species of Asclepias, with the pollinia, p, adhering to the stigma, $s . \quad b$. Pollen-masses separated. -Fig. 566. Upper part of the flower of an Orchis, showing the pollinia adhering to the stigma by the retinacula, a.
which are placed on the upper surface of a little projection of the stigma or style, called the rostellum, which is situated at the base of the anther.

Structure of the Pollen.-We must now more particularly describe the structure of the pollen-cell, or pollen-grain as it is more frequently called. We shall treat of it under three heads, viz. :-1. Its Wall or Coats ; 2. Its Contents ; and 3. Its Form and Size.

1. Wall or Couts of the Pollert-Cell.-When mature the wall of the pollen-cell gencrally consists of two membranes : an internal or intine, and an external or catine In rare cases the outer coat appears to consist of two, or even three layers; while in Zosterce, Zannichellia, and some other submersed aquatic plants. there is but one membrane, which is of a similar nature to the intine.

The intine is the first formed layer, and appears to be of the same nature and appearance in all pollen-cells. It is usually smooth, very delicate, and transparent, and is composed of pure cellulose. It is generally applied so as to form a complete lining to the extine, except perhaps in those cases where the latter presents various processes, as in Enothera, when Henfrey believes that the intine does not extend into them in the mature pollen.

The extine is a hard thick resisting layer, forming a kind of cuticle over the intine or proper cell-coat. While the intine usually presents a similar appearance in the pollen of different plants, the extine is liable to great variation ; thus it is sometimes smooth, at others marked with little granular processes ($f i g .73$), or spiny protuberances (fig. 567), or reticulations ($f i g$. 571). The nature of these markings is always the same for the pollen of any particular species or variety of plant, but varies much in that of different plants. The extine is generally Fig. $567 . \quad$ Fig. 568. Fig. $569 . \quad$ Fig. 570.

Fig. 567. Pollen of Hollyhock (Allhea rosen).--Fig. 568. Elliptical pollen of Milkwort (Polygala). e. Extine, f. Slits.-- Fig. 569. The same pollen viewed from above.—Fig. 570. Pollen-cell of Dactylis glomerata. After Jussieu.
covered by a viscid or oily secretion, which is commonly supposed to be derived from matter remaining from the solution or absorption of the walls of the parent-cells. The colour of pollen-cells also resides in the extine. In by far the majority of cases the pollen-cells are yellow, but various other colours are also occasionally found; thus they are red in species of Verbascum, blue in some species of Epilobium, black in the Tulip, rarely grcen, and occasionally of a whitish tint.

Besides the various markings just described as existing on the extine, we find also eithcr pores (f fi. 570), or slits (figs. 568, f, and $569, f$), or both pores and slits, and which vary in number and arrangement in different plants. At the spots where these slits or pores are found, it is generally considered that the extinc is absent; but some botanists believe that the outcr mombrane always exists, but that it is much thinner at these points than elsewhere. In the greater number of Monocotyledons therc is but one slit; while three is a common number in Dicotyledons. Somctines there are six, rarely four, still more rarely two, and
in some cases we find twelve or more slits. These slits are gencrally straight ($f i g .568, f$), but in Mimulus moschatus they are curved; and other still more complex arrangements occasionally vecur.

The pores, like the slits, also vary as to their number. Thus we commonly find one in Monocotyledons, as in the Grasses;

Fig. 571. Pollen of the Passion-flower (Pussiflora), beforc bursting. $0,0,0$. Lid-like processes.-Fig. 572. Pollen of the Gourd, at the period of bursting. o, o, Lid-like processes of the extine protruded by the projections, t, t, of the intine. From Jussien.-Fig. 573. Trigonal polleu of the Evening Priwrose (Enothera biennis).
and three in Dicotylcdons. Sometimes again the pores are very numerous, in which case they are either irregularly distributed, or arranged in a more or less

Fig. 5it.

Fig. 574. Pollen of Sprnce Fir (linus ercelsa), consisting of a central cell and two latcral cells, $b l$, which arc simply vesicular protrusions of the extinc, e. i. Intine. y. The apieal cell which forms the pollentube. q. Lowermost cell (or fissure, according to Strasburger), of the male prothallium in contact with the intinc. After Schacht. regular manner. The pores, also, may be either simple, or provided with little lid-like processes, as in the Passionflower (fig. 571, $0,0,0$), and Gourd (fig. 572). These processes (fig. 572, o, u) are pushed olf by corresponding projections of the intine, t, t, when the pollen bursts, or when it falls upon tho stigma for the purpose of fertilising the ovules; hence such pollen-cells have been termed operculate.

The pollen of all Angiosperms is usually regarded as a simple cell as above described, but in Gymnosperms the pollen is not a simple cell, but it contains other small eclls, which adhere to the inside of its internal mombrane close to the point where the external membrane presents a slit. These minute colls are termed drughter-cells. The recent investigations of Elfring have also shown that in some cases, at least, the pollen-eell of Angiosperms is not unicellular as gencrally regarded, but that before it escapes from thic anther there is formed in it a mass of very small cells, which appear to be functionless, while
the large cell produces the pollen-tube. (Sce 'Reproduction of Gymnospermia,' in Physiological Botany.)
2. Contents of the Pollen-cells.-The matter contained within the coat or coats of the pollen-cell is called the fovilla. This consists of a dense, coarsely-granular protoplasm, in which are suspended very small starch granules, and what appear to be oil globules. As the pollen-cell approaches to maturity, the fovilla becomes more concentrated, and contains less fluid matter, and more granules. Some of these granules are not more than about $\frac{1}{300} \overline{0} 0$ of an inch in diameter, while the largest are about $\frac{1}{40 \bar{n} \overline{0}}$ or $\frac{1}{\overline{1} \overline{0} \overline{0}}$ of an inch. They vary also in form, some being spherical, others oblong, and others more or less cylindrical with somewhat tapering extremities. When water is applied to the granular contents they become opaque. When viewed under a high magnifying power, the starch granules at certain periods (especially at the period of the dehiscence of the pollen), exhibit a very active tremulous motion, moving to and fro in various directions and appearing as if repelled by each other. This is simply molecular motion, analogous to that of all other very minute particles when suspended in a liquid. The fovilla is withont doubt the essential part of the pollen-cell, but the office it performs will be explained hereafter.
3. Forms and Sizes of Pollen-cells.-Pollen-cells are found of various forms. The most common forms appear to be the spherical (figs. 73 and 567), and oval (fig. 568) ; in other cases they are polyhedral, as in Chicory (Cichorium Intybus) and Sonchus palustris, or triangular with the angles rounded and enlarged (trigonal), as in the Evening Primrose (Enotherca biennis) and plants commonly of the order Onagraceæ (fig. 573), or cubical as in Basella alba, or cylindrical as in Tradescantia virginica, while in Zostera they are threadlike or of the form of a lengthened tube or cylinder, and other forms also occur. It should also be noticed that the form of the pollen is materially influenced according as it is dry or moist. Thus the pollencells of the Purple Loosestrife (Lythrum Salicaria) and some species of Passion-flower are oval when dry, but when placed in water they swoll and become nearly globular : this arises from osmotic action taking place between the thickened fovilla and the water, by which some of the latter is absorbed, and the pollencells consequently distended. Again, when splerical pollen-cells are exposed to the air for some time they frequently assume a more or less oval form. In size, pollen-cells vary from about $\frac{1}{2} \frac{1}{0} \overline{0}$ to $\frac{1}{100}$ of an inch in diameter ; their size, however, like their form, is liable to vary according as they are examined in a dry state or in water.

We have already stated that when the pollen-cells are placed in water they become distended in consequence of osmotic action taking place betwcen their thickened contents and the surrounding fluid. If this action be continued by allowing the
pollen-eells to remain in the liquid, they must neeessarily burst at some point or other, and allow their contents to cseape. Under these eircumstances, as the intine is very extensiblc, while the extine is firm and resisting, it will be found that the former will form little projeetions through the pores or slits of the latter, so as to produee little blister-like swellings on its surface (f fig. 575). Ultimately, however, as absorption of fluid by endosinose still goes on, the intine will itself burst and diseharge the eontents of the pollen-eell in the form of a jet (fig. 575). These ehanges will take plaee more rapidly if a little sulphurie or nitrie aeid be first added to the water.

When the pollen is thrown upon the stigma in the proeess of pollination (fig. 577 , stig), the above deseribed action beeomes materially modified. In this ease the pollen-cell does not

$$
\text { Fig. } 577 .
$$

Fig. 575.

Fig. 575. Pollen of the Cherry diseharging its fovilla througla an opening in the intine.-Fiy. 576 . Trigonal pollen of Enohera with a polleu-tube. _-Fig. 577. Vertical section of the stigma and part of the style of Antivhimum mujus. stig. Stigma, ou which two pollen-eells have fallen, each of whiel is provided with a pollen-tube, $t p$, whielh is passing through the tissue of the style, styl.
burst, but its intine protrudes through one or more of the pores or slits of the extine in the form of a delieate tube (figs. 576 and $577, t p$), which is filled with the fovilla, and ealled the pollen-tube; this penetrates, as will be afterwards deseribed, through the tissue of the stigma (and style ($f i g .577$, styl) also, when this is present), to the placenta and ovules. This tube is frequently some inehes in length, and its formation is a true growth, eaused by the mourishment it derives from the stigmi and eondueting tissue of the style in its passage downwards to the interior of the ovary. (See page 271.)

Professor Dunean has proved that the pollen-tube is not, (in all eases at least,) as formerly supposed, a continuous tube, that is, having but one eavity ; but that in Tigridia conchiflora and other Monoeotyledons with long styles which he examined,
'transserse inflexions of the tubular cell-wall of the pollentube exist every now and then ;' so that then ' the pollen-tube is really a tube formed by elongated cells'; and hence having as many cavities as cells. In Dicotyledons, however, the pollentube appears to be in all cases unicellular, and, therefore, to have one continuous cavity.

2. THE DISK.

The term disk is variously understood by botanists: thus, by some it is used as synonymous with thalcmus, receptacle, or torus (see page 292) ; by others, it is understood to include all abnormal or irregular bodies of whatever form or character which are situated on the thalams between the androcium and gynœcium ; by others, again, it is defined as that part of the thalamus which is situated between the calyx and the gynocium, and which forms a support to the corolla and androecium; while others, again, define the disk as the portion of the thalamus situated between the calyx and gynoecium, when that part assumes an enlarged or irregular appearance; and lastly, the term disk is understood to include all bodies of whatever form which are situated on the thalamus between the calyx and gynoecium, or upon or in connexion with either of these organs, but which cannot be properly referred to them. It is applied in the latter sense in this volume.

Although the disk is not an essential organ of the flower, it is best treated of in this place, as it is most commonly placed between the androeium and gyncecium, and therefore comes next in order as we proceed with our examination of the parts of the flower. The disk seems, in many cases at least, to be merely a modification of the androcium ; this appears to be proved not only from its parts occasionally alternating with the stamens, as in Gesnera, but also from the circumstance of portions of it when highly developed becoming occasionally changed into them. It is frequently of a nectariferous nature, and hence was treatect of by Linnaus and many succeeding botanists under the head of Nectaries. We have already referred to nectaries under Glands (page 71) and Corolla (page 240).

The disk is developed in a variety of forms; thus, in the Orange and Rive (fig. 579), it forms a fleshy ring surrounding the base of the pistil ; in the Tree Prony (fig. 580), it occurs as a dark red cup-shaped expansion covering nearly the whole. of the pistil except the stigmas; in the Rose and Cherry (fig. 544), it forms a sort of waxy lining to the tube of the calyx; and in Umbelliferous plants the disk constitutes a swelling on the top of the ovaries adhering to the styles (fig. $578, d$) ; this latter form of disk has been termed the stulopodizum. In other cases the disk is reduced to little separate glandular bodies, as in Cruciferous plants ($f i g .26, g l$) ; or to scales, as in the Stone-
crop (fig. 581), and Vinc (fig. 518); or to various petaloid expansions, as in the Columbine.

When the disk is situated under the ovary, as in the Orange

Fig. 578.

Fig. 579.

Fig. 578. Flower of the Feunel (Feniculum capillaceum). The ovary is surmounted by a disk, d.-Fig. 579. Flower of the Rue (Ruta gruteolens). The pistil is surrounded by a disk in the form of a fleshy hypogynous riug, on the outside of which the stamens are inserted.
and Rue (fig. 579), it is termed hypogynous; when it is attached to the calyx, as in the Rose and Cherry (fig. 544), it is perigynous ; or when on the summit of the ovary, as in Umbelliferous plants

Fig. 581.

Fig. 580. Pistil of the Tree Prony (Fcomit Mouttu or Moutan officinalis) iuvested by a large enp-shaped expmsion or disk.-Fiy. 581. Pistil of Stonecrop (Scdum), consistiug of five distinet carpels, ou the ontside of each of which at the base a small scaly body may be notieed. The pistil is compound and apoearpons.
($\mathrm{fig} .578, d$), epigynous; these terms being used in the sensc already described when treating of the insertion of the stamens under the head of the Androcium.

3. the gyniecium or pistil.

We now arrive at the considcration of the last organ of the flower, namely, the gynoecium or female system. The gyncecium, or pistil as it is frequently called, occupics the centre of the Hower, the androcium and Horal envelopes being arranged around it when they are present ($\mathrm{f}(\mathrm{y} .26$) ; the floral enrolopes
alone in the ordinary pistillate flower ; or it stands alone when the flower is pistillate and naked (fig. 35). The gynnecium consists of one or more modified leaves called carpels which are either distinct from each other, as in the Stonecrop (fig. 581); or combined into one body, as in the Primrose (fig. 582) and Tobacco (fig. 584). When there is but one carpel as in the Pea (fig. 603), Broom (fig. 583), and Leguminous plants generally, the pistil is said to be simple; when there is more than one, whether distinct from each other, as in the Stonecrop (fig. 581), or combined into one body, as in the Tobacco (fig. 584), and Primrose (fig. 582), it is described as compound. Before proceeding to examine the gynœcium or pistil generally, it is necessary to describe the parts, nature, and structure of the carpel, of one or more of which organs it is composed.

The Carpel.-This name is derived from a Greek word signifying the fruit, because the pistil forms, as will be afterwards explained, the essential part of that organ. Each carpel, as we have already noticed (page 19), consists, 1st, of a hollow inferior part arising from the thalamus, called the ovary ($\mathrm{fy} .585,0$), containing in its interior one or more little somewhat roundish or oval bodies called ovules, ov, and which are attached to a projection on the walls termed the placenta, p. 2 nd , of a stigma or space of variable size, composed of loose parenchymatous tissue withont epidermis; this stigma is either placed directly on the ovary, in which case it is said to be sessile, as in the Parberry (fig. 585, st) ; or it is elevated on a stalk prolonged from the ovary, called the style, as in the Broom (fig. 583, s). The only essential parts of the carpel, therefore, are the ovary and stigma, the style being no more necessary to it than the filament is to the stamen.

F1g. 582.

Fig. 582. Pistil of Primrose (Primulu vulyuris), composed of several united carpols, and honce termed compound and syncarpous. There is but one style, which is surmounted by a capitate stigma. Fig. 583. Simple pistil of Broom. o. Ovary.s. StyIe. t. Stigma.Fig. 584. Compound syncarpons pistil of Tobacco (Nicolirme Titbисит). 1. Thalamus. o. Ovary. s. Style. g. Capitate stigma. The terms ovary, style, and stigma are applied in precisely the same sense when speaking of a compound pistil in which the parts are completely united (figs. 32, 582, and 584), as with the simple carpel. The simple ovary (page 279) has two sutures, one of which corresponds to the union of
the margins of the lamina of the carpellary leaf out of which it is formed, and which is turned towards the axis of the plant ; and another, which corresponds to the midrib of the lamina, is directed towards the floral envelopes or to the circumference of the flower ; the former is called the ventral suture (fig. $586, v s$), the latter the dorsal, $d s$. (See also page 300).

Fig. 585.

Fig. 585. Vertieal section of the ovary of the Barberry (Berberis rulgaris), on the outside of whieh are seen a stamen dehiseing by two valves and a petal. O. Orary. ov. Ovules attached to a projection called the plaeenta, p. st. Sessile stigma.-Fiy. 586. Vertieal seetion of the flower of the Pæony (Pconit). ds. Dorsal suture of the ovary. 2s. Ventral suture.

Nature of the Carpel.-That the carpel is analogous to the leaf is proved in various ways, some of which will be more particularly mentioned hereafter, when treating of the General Morphology of the Flower ; we shall here only allude to the proofs of its nature which are afforded by the appearance it sometimes presents in double or cultivated Howers ; and by tracing its development. Thus, in a double flower of the Cherry the carpels do not present a distinct ovary, style, and stigma, as is the normal condition of the solitary carpel in the single flower ($f y .590$) ; but they either become flattened into green expansions, each of which rescmbles the blade of a leaf (fig .587), or into organs intermediate in their nature betwcen carpels and leaves as represented by the figures 588 and 589 . Here the lower portion (fig. $589, l$), representing the blade of the leaf, is clearly analogous to the ovary of a complete carpel, and the prolonged portion, s, to the style and stigma. The carpel of the single-flowering Cherry being thus convertible into al leaf, affords at oncc conclusive evidence of its being an analugous structure.

A second proof of the nature of the carpels is afforded by tracing their development. Thus when first examined they appear on the thalamus as littlo slightly concave bodies of a green colour like young leaves (fig. 591 , cur), in a short time they become morc and more concave (fig. 592), and ultimately the two margins of the concavity in each unite (fig. 593), mud thus form
a hollow portion or ovary, in which the ovules soon make their appearance. This gradual transition of little leafy organs into carpels may be well seen in the Flowering Rush.

Fig. 589. Fig. 590.

Fig. 587. Fig. 588.

figs. 587-589. Carpellary leaves from the clouble fiowers of the Cherry-tree in different stages of development. l. Lamina. p. Midrib. s. Prolongerl portion corresponding to the style and stigma of a perfeetly formed carpel, - Fig. 590. Carpel from the single flower of the Cherry. o. Ovary. t. Style. s. Stigma.

We have thus in the first place shown that carpels become sometimes transformed into leaves, or into organs intermediate in their characters between carpels and leaves, in the flowers of cultivated plants; and secondly, that they make their first

Fig. 591. Fifi. 592. Fig. 593.

$$
\text { P16: } 192 .
$$

In

Fif. 591. Young flower-bur of the Flowering Rush (Butomus umbellitus). The carpels, cur, are still concave on the inside, and resemble small leaves. - Fig. 592. The earpels in a more advanced state, but the folded margins still separated by a slit.-Fig. 593. The same corpels in a perfect comdition.
appearance in the form of little organs resembling leaves; and in both ways, thereforc, we have proofs afforded us of their leaflike nature.

Structure of the C'arpel. - The ovary being the homologue of the blade of the leaf, it presents, as might have been expected,
an analogous structurc. Thus it eonsists of parenelyyma, which is often much developed, and through which the vascular bundles composed of spiral and other vessels ramify, and cither converge towards the base of the style, or terminate at the upper part of the ovary when the style is absent. The wholc is covered ex-

Fig. 594.

which is similarly placed. which is similarly placed. Where the margins of the blade of the earpellary leaf meet and unite at the ventral suture ($f g$. $586, v s)$, a layer of parenchymatous tissue is developed, which forms a more or less projecting line in the cavity of the orary, called the placenta ($f i g .585, p$), to which the ovule or ovnles are attached ($\mathrm{fig} .628, \mu l$). This placenta is essentially double, the two halves being developed from the two contiguous margins of the blade of the carpellary leaf.

The style has been considered by some botanists as a prolongation of the midrib of the blade ($f g .589, p, s$), but from the arrangement of its tissue it is to be regarded rather as a prolongation of its apex, the margins of which have been rolled inwards and united. It consists of a eylindrical process of parenchyma, traversed by vascular tissue, which is so arranged as to form a sort of sheath at its circumference ($f i g .596, v, r, v$), and is a continuation of that of the ovary ; it proceeds upwards without branching towards the apex of the style, but always terminates bclow that point. The style is invested by epidermis continuous with that of the ovary, and furnished occasionally, like it, with stomata and hairs.

Upon making a transverse (fig. 596), or vertical seetion (fig. 594), of the style, we find it is not a solid body as we might have supposed, but that it is rarely traversed by a very narrow canal (fiys. $594 t c$, and $596, p$), which communicates below with the cavity of the ovary, and above with the stigma. This canal is cither always entirely open, or more or less obstructed, as in Orclids (fig. 095 , can), or far more commonly filled up by a
number of variously formed very loosely aggregated cells (fig. $596, p$). The walls of the canal also, in all cases, are formed of a loose papillose parenchyma. This canal may be considered as a prolongation of the cavity of the ovary, in an upward direction, consequently the loose tissue by which it is surrounded is to be regarded as corresponding to the epidermis of the upper surface of the lamina of the leaf, merely modified to adapt itself to the peculiar conditions under which it is placed. At the period of fertilisation, these cells, as well as those of the stigma, and canal of the style generally, secrete a peculiar viscid saccharine fluid, which is sometimes called the stigmatic fluid (see Nectariferous Glands, page 71). Hence at this period the centre of the style is filled with very loose humid tissue, to which the

Fig. 595.

Fig. 596.

Fig. 595. Vertical section of the flower of Epipactis latifolia. a. Onc of the divisions of the perianth. c. Stamen, e. Ovules. x. Stigma. can. Canal leading from the stigma to the interior of the ovary. From Schleiden.Fig. 596. Transverse section of the stylc of the Crown Imperial (Fritilluria imperialis). p. Canal in its centre lined by projccting papilre. v, v, v. Vascular bundles corresponding to the three styles of which this compound style is composed. From Jussieu.
name of conducting tissue has been given, because from its loose nature and nourishing properties it serves to conduct (as it were) the pollen-tubes (page 264) down the style ($f g .577, t p$) to the placenta and ovules, as will be explained hereafter in Physiological Botany.

The Stigma.-The tissue of the stigma is analogous to that found in the interior of the style, and just described under the name of conducting tissue ; in fact, it seems to be nothing more than an expansion of this tissue externally. It may be either on one side of the style (figs. 600 and 602), or at its apex ($f i g$. $597, s$), or on both sides ($\mathrm{fig} .598, s s$), the position depending upon the point or points where the conducting tissue or canal terminates. Its tissue is usually elongated into papillie ($\mathrm{fig} .597, \mathrm{~s}$), laair-like (f ig. $599, s$), or feathery processes (f fo. (601). It is never covered by epidermis. By means of the corresponding conducting tissue of the style it is in direct continuity with the placenta. At the period of fertilisation, as just noticed, it becomes moistened by a viscid fluid which renders the surface
more or less sticky, and thus admirably adapted to retain the pollen, which is thrown upon it in various ways in the process of pollination (page 20).
Fig. 597. Fig. 598. Fig. 599.

$$
\text { Fig. } 600 . \quad \text { Fig. } 601 .
$$

Fig. 597. A portion of the pistil of Daphne Laureola. ${ }^{0}$. Summit of the ovary. \mathcal{A}. Style terminated by a stigma, s.-Fig. 598. A portion of the pistil of Plantago saxatilis. 0 . Summit of the ovary. t. Style. s, s. Bilaternl stigma. The above figures are from Jussien.- Fig. 599 . Pistil of the Periwinkle (Vinca). 0. Ovary. 1. Style. s. Hairy stignm. d. Disk. Fig. 600. Ventral view of the pistil of /sopyrum biternatum, showing the donble stigma.-Fig. 601. Pistil of Wheat (Triticum saticum) surrounded by three stamens, and two squamule, $s p$. Two feathery styles or stigmas arise from the top of the ovary.
The Gyncecium or Pistil.-Having now described the parts, nature, and structure of the carpel, we are in a position to examine in a comprehensive manner the gynocium or pistil generally, which is made up of one or more of such carpels.

When the gyncecium is formed of but one carpel, as in the Broom (fig. 583) and Pea (fig. 603), it is, as we lave already seen, called simple (page 267), and the terms gynocium or pistil and carpel are then synonymons; when there is more than one carpel, the pistil or gyncecium is termed compound (figs. 581 and 582). In a compound pistil, again, the carpels may be either separate from earh other, as in the Stoncerop (fig. 581), and Pheasant's-eye (fiy. 607) ; or united into one body, as in the Primrose (fig. 582), Carnation (fig. 602), and Tobacco (fig. 584): in the former case the pistil is satid to be apocurpous, in the latter syncarpous.

When the pistil is apocarpous, the number of carpels of which it is composed is indicated by a Greek numeral pretixed to the termination gymia, which means woman or female, in reference
to the funetion it performs in the proeess of fertilisation ; and the flower reeeives corresponding names aeeordingly. In a syncarpous pistil, the number of the styles, or of the stigmas if the styles are absent, is also defined in a similar way. Thus, a flower with one earpel, style, or stigma, is monogynous, with two digynous, with three trigynous, and so on. These terms will be more particularly referred to when we treat of the Linnæan System of Classifieation, as most of the Orders of that arrangement are determined by the number of earpels, styles, or stigmas, in the flower.

Fig. 602.

Fig. 608.

Fig. 602. Pistil of Dianthus Camophyllus on a stalk, g, called the gynophore, below which is the pedunele. On the top of the ovary are two styles, the faee of each of which is traversed by a continuous stigmatie snrfaee. Fig. 603. Pistil of Lathyrus odoratus. o. Ovary. c. Persistent ealyx. On the top of the ovary is the style aud stigma, s/ig.

1. Apocarpous Pistil.-An apocarpous pistil may eonsist of two or more carpels, and they are variously arranged aceordingly. Thus, when there are but two, they are always placed opposite to eaeh other; when there are more than two, and the number coincides with the sepals or petals, they are opposite or alternate with them ; it is rare, however, to find the earpels corresponding in number to the sepals or petals, they are generally fewer, or more numerous. The carpels may be either arranged in one whorl, as in the Stonecrop (fig. 581); or in several whorls alternating with each other, and then either at about the same level, or, as is more generally the case, at different heights upon the thalamus so as to form a more or less spiral arrangement. When an apocarpous pistil is thus found with several rows of carpels, the thalamus, instead of being a nearly flattened top, as is usually the ease when the number of carpels is small, frequently assumes other forms ; thus, in the Maynolia and Tuliptree, it beeomes cylindrical (fig. (604); in the Raspberry (fig. 606, l), and Rammentus (fig. 542), conical ; in the Strawberry ($f i g .605$), hemispherical ; while in the Rose ($f i g .454, r, r$), it becomes hollowed out like a eup, or urn, and has the carpels
arranged upon its inner surface. These modifications of the thalamus, together with some others, will be more particularly

Fig. 604.
FIG. G05. Fig. 600.

Fig. 604. Central part of the flower of the Tulip-tree (Liriodendron tulinfera). The thalamus, a, is more or less eylindrical. c, c. Carpels. e, e. Stamens. Fig. 605. Seetion of the flower of the Strawberry. The thalamus is nearly hemispherieal, and bears \AA number of separate carpels on its upper por-tion.-Fig. 606 . Seetiou of the ripe pistil of the Raspberry, showing the conical thalamus, l.
referred to hereafter under the head of Thalamus (page 292). These varying conditions of the thalamus necessarily
Fig. 607. lead to corresponding alterations in the mutual

Fig. 607. Apocarpous pistil of the Phensant's - eye (Adlonis). relation of the different whorls of carpels which compose an apocarpous pistil, and modify very materially the appearance of different flowers.
2. Syncarpons Pistil.-We have already seen, in spcaking of the floral envelopes and androcium, that the different parts of which these whorls are respectively composed may be distinct from each other, or more or less united. From the position of the carpels with respect to one another, and from their nature, they are more frequently united than any other parts of the Hower. This union may take place either partially, or entirely, and it may commence at the summit, or at the base of the (fig. 608) Thus in the former case, as in Xanthowlon fraxineum tamun Frue carpels are united by their stigmas only; in Dicunited ; while in the Labiatic (fig. 609, s), and most Boragin (fig. $610, d$), the whole of the styles are united. In all the above cases the ovaries are distinct ; and in many Boraginacene, the stigmas also ; but in all Labiatie the stigmas are distinct. These examples aro to be considered, therefore, as transitional states between apocarpous and syncarpous pistils.

It is far more common to find the carpels united by their lower portions or ovaries, and this union may also take place to
various extents. Thus, in the Rue (fig. 611, ov), the union only takes place at the base of the ovaries, the upper parts remaining distinct, in which case the ovary is commonly described as lobed. In Dianthus (fig. 602) the ovaries arc completely united, the styles being distinct; while in the Primrose (fig. 582), the ovaries, styles, and stigmas are all united. When two or more ovaries are thus completely united so as to form one body, the organ resulting from their union is called a compound overy.

Fig. 608.
Fig. $609 . \quad$ Fig. 610.

Fig. 608. Pistil of Xanthorylon fraxineum supported on a gynophore, g. The ovaries, a, and styles are distinct, but the stigmas, s, are nnited.Fig. 609. Pistil of Horehound (Mfurvoium vuly(tre), a Labiate plant. Its ovaries, ov, are distinct, the styles, s, being united, and the stigmas distinct.-Fiy. 610. Pistil of Myosotis, 』 Boraginaceous Plant. ov. Distinct ovaries. d. Styles united.—Fig. 611. Flower of the Rue (Rutu gruceolens), showing the ovaries, ov, united at their bases.

Compound Ovary.-The compound ovary formed as just stated may either have as many cavities separated by partitions as there are component ovaries; or it may only havc one cavity. These differences have an important influence upon the attachment of the ovules, as will be afterwards seen when speaking of placentation. It is necessary for us, therefore, to explain at once the causes which lead to thesc differences. Thus if we have three carpels placed side by side (fig. 612, a), each of these possesses a single cavity corrcsponding to its ovary, so that if we make a transversc section of the whole, b, we necessarily have three cavitics, each of which is separated from those adjoining by two walls, one being formed by the side of its own ovary, and the other by that of the one next to it. But if these three carpels, instead of being distinct, are united by their ovaries ($f i y .613, a$), so as to form a compound ovary, the latter must necessarily also have as many cavities as therc are component carpels, l, and cach cavity must be separated from those adjoining by a wall which is called a disscpiment or partition. Each dissepiment must be also composed of the united
sides of the two adjoining ovarics, and is consequently double, one half being formed by onc of the sides of its own ovary, the other ly that of the adjoining ovary.

In the norinal arrangement of the parts of the ovary, it must neeessarily happen that the styles, (when they are dis-

Fig. $612 . \quad$ Fig. 613.

Fig. 612. a. Diagram of three earpels plaeed side by side, but not united. b. A transverse seetion of the ovaries of the same.-Fig. 613. a. Diagram of three earpels united by their ovaries, the styles and stigmas being free. b. A transverse section of the ovaries of the same. tinet), must alternate with the dissepiments, for as the former are prolongations of the apiccs of the blades of the carpellary leaves, while the latter are formed by the union of their margins, the dissepiments must lave the same relation to the styles as the sides of the blade of a leaf have to its apex; that is, they must be placed right and left of them, or alternate.

The cavities of the compound ovary are called cells or loculi, and such an ovary as that just described would be therefore termed thrce-eelled or trilocular, as it is formed of three united, ovaries ; or if formed of the united ovaries of two, four, five, or many carpels, it would be dcscribed respectively as two-celled or biloeular, four-celled or quadrilocular, five-celled or quinquelocular, and many-celled or multilocular. As all dissepiments arc spurious or false which are not formed by the united walls of adjoining ovaries, it must neeessarily follow that a simple carpel can have no true dissepiment, and is hence, under ordinary and normal eircumstances, unilocular or one-callcd.

From the preceding observations it must also follow that when ovarics which are placed side by side cohere, and form a compound ovary, the disscpiments must be rertical, and equal in number to the ovaries out of which that compound orary is formed. When a eompound ovary is composed, howerer, of several whorls of ovarics placed in suecession one orer the other, as in the Pomegramate, horizontal true dissepiments may be formed by the ovaries of one whorl uniting by their base to the apices of those plaed below them (fig. Fis).

We have just observed that all dissepiments are said to be spurious except those which are formed by the union of the walls of contiguous ovaries, and it occasionally happens that such spurious dissepiments are formed in the course of growth, by which the ovary acquires an irregular character. These
false dissepiments commonly arise from projections of the placentas inwards ; or by corresponding growths from some other parts of the walls of the ovaries. Some of these are horizontal, and are called phragmata, as in the Cassia Fistula (fig. 614), where the ovary, after fertilisation, is divided by a number of transverse dissepiments, which arc projections from its walls. Others are vertical, as in Cruciferous plants, where the dissepiment, called a rephom ($\mathrm{fg} .615, \mathrm{cl}$), is formed from the placentas. Also, in Datura Stramonium, where the ovary is formed of two carpels, and is hence normally twocelled; but instead of thus being bilocular, it is four-celled below (fig. 616) from the formation of a spurious vertical dissepiment, but towards the apex it is two-celled (fig. 617), the

Fig. 614. Fig 615.

Fig. 616.

Fig. 617.

Fig. 614. Vertienl scction of a portion of the mature ovary of Cassia Fistulta, showing a number of transFerse spurious dissopiments ($p h r$ ragmutu). - Fig. 615. Vertical section of the ovary of the Wallfower. ov. Ovulcs, eaeh attached by a stalk to the placenta, cn. cl. Vertical spurious dissepiment called the replum. - Fig. 616. Transverse section of the lower part of the oviry of the Thoru-apple (Datura Stramonium), showing that the orary is here four-celled. -Fig. 617. Transverse section of the same ovary at its upper part, showing that it is here two-celled.
dissepiment not being complete throughout, and thus the true nature of the ovary is there indicated. In the Gourd tribe (fig. 721), also, spurious dissepiments appear to be formed in the ovary in a vertical direction by projections from the placentas. In the Flax, again (fig. $618, b$), spurious incomplete vertical dissepiments are formed in the ovary by projections from the dorsal sutures. In the ovary of the Astragalus (fig. 619), a spurious dissepiment is also formed by a folding inwards of the clorsal suture ; while in O.cytropis and Phaca (fig. 620), a spurious incomplete clissepiment is produced in the ovary of each by a folding inwards of the ventral suture. Various other examples of the formation of spurious dissepiments might be quoted, but the above will be sufficient for our purpose. It should be noticed that in our description of spurious dissepiments, we
have not confined our attention to those of compound ovaries alone, but have also referred to those of simple ovarics, in which they may equally arisc. Thus the spurious dissepiments of Cassia Fistula, Astragalus, Phaca, and Oxytropis are all examples of such formations in simple ovaries.

Fig. 618.

Fig. 619.

Fig. 620.

Fig. 618. Transverse seetion of the ovary of the Fhax (Limum usitatissimum), shorring five complete and true dissepiments, a, und five incomplete spurious disscpiments, b.-Fig. 619. Transverse scction of the mature ovary of Astragalus, showing spurious dissepiment proceeding from the dorsal suture.-Fig. 620. Transverse section of the mature ovary of Phaca.
We have now to consider the formation of the compound ovary which presents but one cavity, instead of two or more, as in that just alluded to. Such an ovary is formed either by the union of the contiguous margins of the flattened open oraries

Fig. 621.

Fig. 62 g.

Fig. 623.
$p^{\text {pluc }}$

Fig. 621. Transverse section of the onc-celled ovnry of Mignonette (Reseda). c. The lower flattened portion or ovary of one of the three carpels of which it is formed. ph. One of the three parictal placentas.-Fig. 622. Transverse scetion of the-one-celled ovary of an Orchis. c. The lower portion or ovary of one of the threc earpels of whieh it is formed, slightly infoliled. pl. One of the three prietal placentas.- Fig. 623. Trunsverse section of the ovary of a specics of Poppy. or. Ovnics. plur, phec. Placentas, which in the yonge ovary ncarly mect in thic centre, and the the orary leconcs almost many-eelled, bnt as the ovary progresses in development it is only one-celled.
of the carpels of which it is composed, as in the Mignonettc (f ig. 621) and Cactus (f ig. 631) ; or by the union of carpels the ovarics of which arc only partially folded inwards, so that all their cavities communicate in the centre, and hence such is compound ovary is really unilocular, as in the Orehis (fig. (i22), and Poppy (fig. 623).

Haring now described the parts, nature, and structure of the carpel, and of the gynocium or pistil generally, we proceed in the next place to allude separately to the constituent parts of the carpel, both in a free and combined state, namely, the ovary, style, and stigma.

1. The Orary.-The ovary, as already mentioned (page 275) is called compound when it is composed of two or more ovaries combined together ; or, on the contrary, it is simple when it constitutes the lower part of a simple pistil ($\mathrm{fig} .583,0$), or of one of the carpels of an apocarpous pistil (fig. 581). It should be noticed, therefore, that the terms simple pistil and simple ovary are not in all cases synonymous terms; thus, a pistil is only said to be simple (figs. 583 and 603), when it is

FIG. 625.

Fig. 624. Pistil of Dictamnus Framinella. The ovary is supporteri on a gynoplore, g, and is superior.-Fig. 625. Vcretical section of the Hower of a Saxifrage, showing the ovary partially adherent to the calyx.--Fig. 626. Compound irregular mature ovary of Antir\%inum.
formed of but one carpel, the terms pistil and carpel being then mutually convertible ; but an ovary is simple, as just noticed, whether it forms part of a simple pistil, as in Leguminous plants generally (f g. 603), or of one of the carpels of an apocarpous pistil, as in the Stonecrop (fg .581). An ovary is also said to be monomerous when it is formed of only one carpel ; or dimerous, trimerous, tetramerous or polymerous when it is formed by the cohcrence of two, three, four, or many carpels.

Generally speaking, the ovary is sessile upon the thalamus, the carpellary leaves out of which it is formed having no stalks. In rare cases, however, the ovary is more or less elevated above the outer whorls, when it is said to be stallied or stipitate, as in the Dictamurs (fig. 624, g), and Diantlus (fiy. 602, g) ; this stalk has receivcd the name of gymophore. We shall refer to the gynophore again under the head of Thalamus (page 292).

The ovary, whether simple or compound, may be cither adherent to the calyx or free from it (sce page 227). In the former case, as in the Myrtle (fig. 463), it is inferior or adherent, and the calyx is superior ; in the latter, as in Dictammus (fig. 624), it is superior or free, and the calyx is inferior. In some flowers the ovary is but partially adherent to the calyx, as in the specics of Saxifrage ($f i g .625$), in which case it is sometimes termed half-adherent or half-inferior; and the calyx is then said to be half-superior; the latter terms arc, however, but rarely used, the ovary being commonly clescriberl as inferior, whether its adhesion to the calyx be complete, or only partially so, and vice versâ.

The student must be careful not to confound the inferior ovary, as now described, with the apparently inferior ovaries of such flowers as the Rose ($f y .454$), where the thalamus, r, r, is concave and attached to the tube of the calyx, ct, and bears a number of carpels, o, o, on its inner walls. A transverse section will at once show the difference; thus, in the Rose, we should then find a single cavity open at its summit, and its walls covered with distinct carpels ; whereas, on the contrary, a true adherent ovary would show, under the same condation, one or more cells containing ovules. The ovaries of the Rose are therefore superior or free.

Schleiden contends that the ovary is not always formed of carpels, but sometimes also of the stem, and at other times of the two combined. His views are not however generally received by botanists, and we need not therefore further allude to them. It is probable, however, that the thalamus by becoming hollowed out may, in some cases, form part of the ovary, in the same manncr as it occasionally, under similar circumstances, forms a part of the calyx, as alrcady noticed in Eschscholtzic. (See page 229.)

The ovary varies much in form and in the character of its surface: when simple it is generally more or less irregular in form; but when compound, it is commonly regular. Exceptions to the regularity of compound ovaries may be seen in the Antirrhinum (fig. 626), and in other instances. In form, the compound ovary is generally more or less spheroidal, or ovate. The outer surface may be either perfectly even or uniform, thus showing no trace of its internal divisions; or it may be marked by furrows extending from its base to the origin of the style and corresponding to the points of union of its constitucnt ovaries. When these furrows are decp, the ovary assumes a lobed appearance, and is described as one, two, three, four, five, or many-lobed, according to the number of its lobes. Sonctimes we find, in addition to the furrows which correspond to the points of union of the ovarics, others of a more superficial character which correspond to the dorsal sutures. At the latter points, however, it is more common to find slight projec-
tions, which then give a somewhat angular appearance to the ovary.

The epidermis covering the surface of the ovary may be either perfectly smooth, or furnished in various ways with different kinds of hairs; or it may assume a glandular appearance. In these cases the same terms are used as in describing similar conditions of the surface of the leaves, or of the other organs of the plant.

When the ovary is compound, the number of carpels of which it is composed may be ascertained in one or more of the following ways. Thus, when the styles ($f i g .464$), or stigmas ($f i g .32$), remain distinct, the number of these generally corresponds to the number of carpels. It does, however, occasionally happen, as in Euphorbia (fiy. 627), that the styles are themselves divided, in which case they would of course indicate a greater number of carpels than are actually present ; we must then resort to other modes of ascertaining this point, such, for instance, as the fur-

Fig. 627. Fig. 628.

Fig. 627. Pistillate flower of a species of Euphorbia, with three forked styles. -Fig. 628. Fertical section of the flower of the Stonccrop. pl. Placenta of one of the ovaries arising from the ventral suture.
rows or lobes on the external surface of the ovary; or the number of partitions or loculi which it contains, as these commonly correspond in number to the carpels of which that ovary is composed. The mode of venation may in some cases also form a guide in the determination; while in others the manner in which the ovules are attached must be taken into consideration. We now pass to the examination of the latter point.

Placentation.-The term placenta is commonly applied to the more or less marked projection occurring in the cavity of the ovary (fiys. 585, p, and $628, p l$), to which the ovule or ovules are attached. The placentas are variously distributed in the ovaries of different plants, but their arrangement is always the same for that of any particular species, and frequently throughout entire genera, or even natural orders ; hence their accurate discrimination is of great practical importance (see page 286). The term placentution is used to indicate the manner in which the placentas are distributed. The placenta is called by Schleiden the spermoplore.

1. Kinds of Placentation.-In the simple ovary the placenta is always situated at the ventral suture or that point which corresponds to the union of the two margins of the blade of the carpellary leaf (fiys. 585, 586, and 628), out of which it is formed; such a placenta is therefore usually termed marginal, or outu or sometimes axile from its being turned towards the axis of the plant. The latter term is better reserved for the placentation of certain compound ovaries, as described below.

In compound ovaries we have three kinds of placentation; namely, axile or central, parietal, and frec central. The axile or central occurs in all compound many-celled ovaries, because in these each of the ovaries of the component carpels is placed in a similar position to that of the simple ovary (fiys. 612 and 613), and hence the placentas situated at their ventral sutures will be arranged in the centre or axis, as in the Lily (fig. 629), and Campanula (fig. 630). By many botanists this mode of placen-

Fiy. 629. Transverse seetion of the eompound ovary of the Lily. The ovary is three-celled (triloeular). The plaeentas, $p l$, are axile or eentral. Fig. 630. Transverse section of the ovary of a species of Campanula. The ovary is five-eelled or quinqueloenhar; and the placentation, ${ }^{\prime \prime}$, axile or eentral.-Fig. 631. Transverse section of the ovary of a speeies of Cuctus. The orary is one-eelled and the plaeentation parietal.
tation is called central, and the term axile is restricted to the form of placentation where the placenta is supposed to be a prolongation of the axis. This will be afterwards alluded to (page 285).

In a compound one-celled ovary there are two forms of placentation, namely, the parietal, and the free-central. The placentation is termed parietal, when the ovules are attached to placentas either placed directly on the imner wall of the ovary, as in the Mignonette (fig. (621, pl), and Cactus (fig. 631); or upun incomplete dissepiments formed, as already noticed, by the partially infolded ovaries, as in the species of Urehis (fig. 622, pl) and Poppy (fiy. 623, plac). In parietal placentation, the number of placentas corresponds to the number of carpels of which the ovary is formed. When the placentas are not attached to the imner wall of the ovary, but are situated in the centre of the cavity and perfectly uncomected with the wall, they form what
is called a free central placenta, as in the Caryophyllacere (figs. 633, pl, and $634, p$), and the Primulacer ($\overline{\mathrm{fg} .635}, \mathrm{pl}$). Besides the regular kinds of placentation just described, it sometimes happens that the ovules are placed more or less

$$
\text { Fig. } 633 .
$$

Fig. 634.

Fig. 632.

Fig. 632. Transferse seetion of the joung ovary of Campion (Lychnis), showing five partitions proeeeding from the walls of the ovary to the plaeentas in the eentre; these partitions are destroyed by the growth of the ovary, so that the placentation is ultimately free.- Fig. 633. Vertical seetion of Cerastium hirsutum (Curyophyllacee). o. Ovary. p. Free eentral plaeenta. g. Ovules. s. Styles and stigmas.-Fig. 634. Trausverse seetion of the same with the two portions or scetions separated. o. Ovary. p. Plaeenta. g. Ovules. s. Styles and stigmas. From Jussien.
irregularly in the cavity of the ovary. Thus, in the Flowering Rush (fig. 636), they cover the whole inner surface of the ovary

Fig. 635.

Fig 636.

Fig, 635. Tertieal seetion of the pistil of Cyelamen (Primulacere). s. Sepals. μ. Free central plaeenta. st. Style. sfig. Stigmn.-Fif. 636. Yertical section of the flower of the Fiowering Rush (Butomus umbellatus), showing the inner surfnee of the ovaries covered all over with ovnles.
except the midrib; in which case the placentation is sometimes described as superficial* Other irregularities also occur: thus, in * fig the Nymphacu, they are attached all over the dissepiments; in

Cabomba, they arise from the dorsal suture ; and in the Broomrapes (Orobanche), from placentas placed within the margins of the ventral suture.
2. Origin of the Placenta.-It is generally believed that the placenta is, in most cases at least, a cellular growth developed from the confluent margins of the carpels, or, more strictly speaking, from the confluent margins of the blades of the carpellary leaves. In some cases the placenta extends along the whole line of union of the carpel ($f g .628, p l$), or it may be confined to its base or apex. Each placenta is therefore to be considered as composed of two halves, one half being formed by each margin of the carpel. Thus in simple ovaries the placenta is developed by a single carpel ; in compound many-celled ovaries the placentas are in like manner formed from the contiguous margins of each individual carpel of which it is composed; while in compound one-celled ovaries presenting parietal placentation, each placenta is formed from the contiguous margins of two carpels, and is hence produced by two adjoining carpels.

That the placentas are really developed in the above forms of placentation from the margins of the carpels seems to be proved in various ways. Thus, in the first place, the placentas always correspond in regular kinds of placentation to the points of union of the margins of the carpel or carpels, and hence would naturally be considered as formed from them; and secondly, we frequently find, that in monstrosities or almormal growths where the carpel is developed in a more or less flattened condition, a placenta bearing ovules is formed upon each of its margins. The productions of the ovules in these cases may be considered as analogous to the formation of buds on the margins of leaves, as in Bryophyllum calycinum (fig. 217), and Maluxis paludosa (fig. 218), already referred to. The formation of the placentas from the margins of the carpels in axile and parietal placentation may be considered, therefore, as capable of being proved by direct observation, and from analogy to what occurs in certain ordinary leaves.

But in reference to the origin of the free central placenta two different views are entertained. Thus it was formerly supposed that this also was a development from the margins of the carpels. It was thought that the carpels of which the compound ovary was formed originally met in the centre and developed placentas from their margins in the same mamer as in ordinary axile placentation, but that subsequently the walls of the ovary grew more rapidly than the dissepiments, so that the comnexion between them was soon destroyed; and that from this cause, and also from the great subsequent development of the placenta, the septa ultimately became almost or (quite broken up, so that the placenta was left free in the cavity of the ovary. This theory is strengthencd by the fact, that in soveral of the Caryophyllacere we often find dissepinents in the
young ovary (fig. 632) ; and even traces of these at the lower part of the mature ovary; hence it may be concluded that these are the remains of dissepiments which have becone ruptured on account of the unequal development of the parts of the ovary. In the Primrose, howcver, and many other plants, which have a free central placenta, no traces of dissepiments can be found at any period of the growth of the ovary. Duchartre, and others also, who have traced the development of the ovary in the Primulaceæ, state that the placenta is free in the centre from its earliest appearance ; that it is originally a little papilla on the apex of the thalamus, and that the walls of the future ovary grow up perfectly free, and ultimately enclose it. The formation of such a free central placenta cannot therefore be well explained upon the marginal theory, as the carpels have never had any connexion with it except at their bases. Hence this kind of placentation has been supposed by many botanists not to be formed from the carpels at all, but to be a prolongation of the axis, which bears ovulcs, instead of buds as is the case with branches. This theory explains very readily the formation of the free central placenta of Primula, and hence such a placenta has been denominated axile by some botanists ; but this name, as already noticed (page 282), having been already applied to another kind of placentation, the adoption of such a term cannot but lead to much confusion. The free central placenta of Primula can only be explained on the marginal or carpellary theory of the formation of placentas, by supposing, either that the placentas arc only produced at the base of the carpels, and subsequently elongate and enlarge ; or that they are formed by a whorl of placentas developed separately from the carpels by a process of chorisis (see Chorisis), and that these afterwards become united in the centre of the ovary.

Schleiden, indeed, and some other botanists regard the placenta in all cases as a development from the axis of the plant. The axile and free central placentation are readily to be explained by it, but the formation of the parietal placenta is by no means so clear. It is supposed in the latter case that the axis ramifies in the cavity of the ovary, and that the branches curve directly from their origin towards the side, and become blended with the margins of the two adjoining carpels on their inner side, and form parietal placentas bearing ovules as lateral buds. Schleiden thinks that the formation of the ovule in the Yew, where it terminates a branch, and is naked, is incompatible with the marginal theory. He also believes that the formation of the ovules generally in the Conifere supports his views of placentation. He regards the ovules in thesc plants as being given off from the axis of the cone, which he calls a placenta, and the scalcs, or bracts, which are situated between them, he maintains are open carpellary leaves. Schleiden also states, that no satisfactory cxplanation can be given by the
advocates of the marginal theory of placentation of the formation of the ovule and placenta in Armeria, in which the ovary composed of five carpels surrounds a single ovule, which rises from the bottom of the axis, supported on a stalk which curves duwnwards at its apex, and thus sus-

Fig. 637.

Fig. 637. Vertical section of the flower of Armeria. The ovary is seen to contrin only a single ovule suspended from a funiculus or stalk. The orule is here said to be reclinate. pends the ovule free in the centre of the cavity (fig. 637). He accordingly concludes, that the ovule and placenta are developments of the axis. Many other arguments in favour of the universal applicability of the axial theory in the formation of the placenta have been brought forward by Schleiden and other botanists, but their further discussion would be out of place here.

From all that has now been stated, we may draw the following cunclusions, namely:-that no one theory sufficiently accounts for the production of the placenta in all cases ; but that the axile and some forms of the free central placentation may be explained on both hypotheses ; that the parietal placentation is best explained upon the marginal theory; and that the formation of the free central placenta of the Primulacese, Santalaceæ, and some other plants, can only be satisfactorily explained by considering the placenta as a production of the axis.

In a practical point of view, the mode of production of the placenta is of little importance. The accurate discrimination of the different kinds is, however, of much value in Descriptive Botany, by affording us constant, and hence important characters for clistinguishing plants. Some natural orders exhibit more than one variety of placentation, and cannot be therefore distinguished by any particular lind; hence, in such orders, the placentation can only be applied in obtaining good characteristics of the genera. In the majority of instances, however, we find one kind of placentation occurring throughout all the plants of a particular natural order. Thus, the Scrophulariacere, Ericacea, and Campanulacere present us with axile placentation; the Papaveracer, Violacee, and Crucifere with parietal ; and the Caryophyllaces, Santalaceie, and Primulacee, with free central placentation.
2. The S'ryle. - We have already described (page 270) the general nature and structure of the style in speaking of the carpel. There are, however, certain other matters comected with it still to be alluded to.

The style usually arises from the geometrical summit of the ovary, of which it is a continuation in an upward direction,
as in the Primrose (fig. 582) : it is then termed apicilar or apical. In other cases, the apex of the ovary becomes inflected towards the side or base, from the carpel or carpels of which it is formed, being folded like ordinary leaves in reclinate vermation, the style then becomes lateral as in the Strawberry (fig. 638), or basilar as in Alchemilla (fig. 639). In the two latter cases, therefore, the geometrical and organic apices of the ovary do not correspond, as the point of origin of the style always determines the latter.

The style is generally directly continuous with the ovary, which gradually tapers upwards to it, as in Digitalis, in which case it is more or less persistent, and then it forms a more or less evident part of the fruit ; at other times, however, there is a kind of contraction or species of articulation at the point where the style springs from the ovary, as in S'cirpus, and then

Fig. 640.

Fig. 639.

Fig. 638. One of the carpels of the Strawberry with a lateral style.Fiy. 639. Carnel of dichemilla, with a basilar style. The stigma is eapitate. -Fig. 640. The earpophore, c, of a speeies of Geranium, with the rolledback carpels, ct t.
the style always falls off after the process of fertilisation is completed, in which case it is said to be deciduous, and has no connexion with the fruit.

When the style is basilar or lateral, and the ovary to which it is attached more or less imbedded in the thalamus, it frequently appears to spring from the latter part ; such an arrangement is called a gmobase, and the ovary is said to be gymobasic. Thus in the Labiatre (fig. 609), and Boraginacee (fiy. 610), the ovaries are frec, but the styles become connected and form a central column, which appears thercfore to be a prolongation of the thalamus.

Such an arrangenent must not be confoundod with that of
the ovaries and styles of the speeies of Geranium (fig. 640), and some other plants, where the axis is prolonged in the form of a beak-like process, to whieh the ovaries and styles beeome united, and from which they separate when the fruit is ripe. This prolongation of the thalamus is termed a $\frac{\text { carpophore. (See }}{\text { Lonbectitenc }}$ Thalamus, page 294.)

We have already stated (page 281), that when the styles of a synearpous pistil are distinet, they usually eorrespond to the number of carpels of whieh that pistil is eomposed. It sometimes happens, however, that the style of eaeh earpel bifureates or beeomes forked, as in some Euphorbiaeee, either onee (f igs. 627 and 642), or twiee (fig. 641); in which ease the apparent number of the styles above is then double or quadruple that of the earpels.

Fig. 641. Female flower of one of the Euphorbiacea. c. Calyx. p, p. Petals. 1. Membranous expansion round the ovary. o. Ovary with three styles, s, each of which is twice forked.- Fit. 642. Ovary of the Castor-oil Plant (Ricinus communis), belonging to the Euphorbiacere. The styles in this case are once-forked.

When two or more styles are united into one body, this is termed a compound style. This adhesion may take plaee either entirely as in the Primrose (fig. 582), when the style is improperly termed simple (undivided or entire would be a better term) ; or the union is more or less incomplete as we proeeed towards its apex, and eorresponding terms are used aeeordingly. These terms are similar to those previously mentioned in deseribing the degrees of division of the other parts of the phant: thus the style is said to be eleft, when the union between the componont styles extends to at least midway between their base and apex ; and the style is said to be bifid, trifid, quadrifid, quinquefid, or multiful, weeording as it is two, thee, foun, five or many-cleft. If the union between the eomponent styles cloes not extend to mid-
way between their base and apex, the style is partite, and is deseribed as bipartite, tripartite, quadripartite, \&c., according to the number of partitions.

Form and Surface of the Style.-In form the style is generally more or less cylindrical ; and either tapering from the base to the apex, as is more frequently the case, or becoming enlarged as it proceeds upwards. At other times the style is filiform, or more or less thiekened, or angular ; and rarcly thin, coloured, and flattened like a petal, as in the species of Carna and Iris (fig. 643), when it is said to be petaloid.

The surface of the style may be either smooth, or eovered in various ways with glands or hairs. These hairs when situated on the style frequently serve the purpose of collecting the pollen

Fig. 643.

Fig. 644.

Fig. 645.

Fig. 643. Pistil of a species of Iris. o. Ovary. sty. Petaloid styles. stig. Stigmas.-Fig. 644. Upper part of the style and stigma of Leschencullia formost. t. Style. s. Stigma. i. Indusium.-Fig. 645. Upper part of the style, f, of a Composite plant, divirling into two branches, which are covered above by collecting hairs, pc. s. True stigma.
as it is diseharged from the anther, and are hence termed collecting hairs. The eolleeting hairs on the style of the species of Camponula (figs. 158 and 159) arc retraetile; they have been already described under the head of Hairs (page 68). In the Composite the surface of the style is also more or less eovered with stiff colleeting hairs ($f i g .645, p c$), and as the style is developed later than the stamens, it is at first shortcr than these organs ; but as growth proceeds, it breaks through the adhering anthers, and thus the hairs on its surface eome in contaet with the pollen and beeome eovered witl it. In some of the allied orders to the Compositr, the hairs form a little ring below the
stigma ($f i y .644, i$), to which the term of indusium has been given
3. The Stigma.-The stigma has been already described (page 271), as being connected with the placenta by means of the conducting tissue of the style; hence it may be considered as a portion of the placenta prolonged upwards, but differing from it in not bearing ovules. If this be the proper view of the structure of the stigma, it must be rogarded, like the placenta, as double, one half being formed by each margin of the carpellary leaf, and honce each simple pistil or carpel has necessarily two stigmas, the normal positions of which are lateral. In many Rosacere, as in the Rose, the stigma is notched on the side corresponding to that from which the placenta arises, which is another proof of its double naturc.

The stigmas of a syncarpous pistil are generally opposite to the cells, and alternate with the dissepiments, but it sometimes happens, as in the Poppy ($f i g .32$, sti), that half the stigma of one carpel unites with a similar half of that of the adjoining carpel, and thus it becomes alternate with the cells, and opposite to the dissepiments, which are here, however, imperfect (fig. 623).

The term stigma is only properly applied to that portion of the style which is destitute of epidermis, and which secretes the stigmatic fluid (page 271) ; but it is often improperly given to mere divisions of the style. Thus in the species of Iris (fig. (643), the three petaloid portions of the style, sty, are by some botanists termed petaloid stigmas; whercas the stigma, stig, is properly confined to a little transverse space near the apex of each division. In many plants of the natural order Leguminosx, such as Lathyrus (fig. 603, stig), the hairy part towards the summit of the style has been termed a stigma, but the latter is confined to the apex of that organ. In Labiate plants, also, the style divides above into two branches (fig. 609), and these have been called stigmas; but the latter, as in the instances just alluded to, are confined to the apices of the divided portions of the style.

We have already scen that the stigma may be separated from the ovary by the style (figs. 582 to 584); or the latter organ may be absent, in which case the stigma is said to be sessile, as in the Barberry ($f i y .585, s t$) and Poppy ($f g .32$, sti). In Orchids the stigma is sessilc on the gynostcminm (f fo. $595, x$), and appears as a little cup-shaped viscid space just below the attachment of the pollen-masses.

In a syncarpous pistil the stigmas nuay be either united together as in the Primrose ($f y .582$), or distinct as in the Campumulu (fig. 507); in the latter case, instcad of looking upon these scparate parts as so many distinct stigmas, it is usual to describe them as if they were portions of but one; thus we speak of the stigma as bificl, triful, dic., or as bitobute, trilobute, ©c., accord: ing to the number and character of its divisions. Thus the
term lobe is usually applied when the divisions are thick, as in the Lily (fig. 646) and Melon (fig. 647) ; or when these are flattened and somewhat strap-shaped, as in the Composite (fig. 648), the stigma is fissured or cleft; or when flattened into

Fig. 646.

Fig. 647.

Fig. 646. Pistil of a Lily, with one style and a trilobate stigma.-Fig. 647. Lobed stigma of the Melon.-Fiy. 648. Pistil of a speeies of Chryscenthemum, with one style and a bifid stigma, the divisions with hairs at their extremities.

Fig. 648.

plates or bands they are termed lamellx, as in the Bignonia (fig. 649) and Mimulus. The number of these divisions in the majority of instances corresponds to the number of carpels of

Fig. 649.
 F1g. 650.

Fig. 649. Stigma, s, nttached to style, t, of Bignonia arboren. In the lefthand figure the lumpllee are separate, in the other applied closely to each other.-Fig. 650. Flower of a species of Rumed; showing fringed stigmas, μ.
which the pistil is composed ; and if the latter organ is manycelled, the number of cells will generally correspond also to the divisions of the stigma. Thus the five-cleft stigm of some Campanulas indicates that there are five cells to the ovary, and
that the pistil is formed of five carpels. In the Graminacer (fig. 601) and Compositre (figs. 645 and 648), however, we have a bifid stigma, and but one cell in the ovary; but this arises from the non-development in the ovary of one of the two carpels of which the pistil in the plants of these orders is formed.

The lobes assume different appearances : thus, they may be smooth, or thick and fleshy as in the Melon (fig. 647), or feathery as in many Grasses (fig. 601), or fringed or laciniate as in the Rumex (fig. 650, pl).

Fig. 651.
Fig. 652.
Fig. 653.

Fig. 651. s. Peltate or shield-shaped stigma surmounting the style, t, of a species of Arbutus.-Fig. 65. Pistil of Diphne. o. Ovary. st. Style. stig. Stigma.-Fig. 653. Pistil of Pansy (Viola tricolor). cal. Remains of calyx. ov. Ovary. sty. Style, surmounted by an irregular hooded stigma.

When the stigmas are united, the number of parts in the compound stigma is usually indicated by radiating furrows, or grooves. When the stigmas unite and form a compound body upon the top of the style, which is larger than it, this compound stigma or head is said to be capitate; and this head may be either globular as in Daphne (fig. 652, stig), or hemispherical as in the Primrose (fig .582), or polyhedral, or club-shaped, or peltate or shield-shaped as in the Arbutus (fig .651, s), and Poppy (fig. 32, sti). In the Violet (fig. 653), the stigma presents an irregular hooded appcarance.

4. the thalamus.

The extremity of the peduncle or pedicel, or any part of the axis upon which the parts of a solitary flower are arranged, has been variously distinguished by botanists as the thalamus, receptacle, and torus. The use of these names indifferently has often led to much confusion ; and the uncertainty is still further increased in conscquence of the terms receptacle and torus being also sometimes applicd in a different sense. Thns, that of receptacle is employed in a special mamer, as already mentioned (page 198), to indicate in more or less enlarged peduncle bearing usually a number of flowers; while the term torus is used by some botanists as symonymous witl disk (page
265). To prevent confusion, therefore, it would be far better to limit the terms receptacle and torus to their special applications; and to employ the term thalamus only as defined above, and as it is used in this work.

In the majority of plants the thalamus is a little flattened surface or point, and accordingly presents nothing remarkable;

Fic. 654.

Ftg. 656.

Fig. 655.

Fig. 654. thal. Thalamus of Nelumbium. carp, Carpels.-Fig. 655. Monstrous development of the flower of the Rose, showing the axis prolonged beyond the flower and bearing foliage leaves.--Fig. 650. Flower of a species of Crynumbropsis, belonging to the Capparidacere. cifl. Calyx. cor. Corolla. thul. Prolongel thalamus or gynophore, supporting the stameus, st, and ovary, ov.
but in other plants it becomes much cnlarged, and then assumes a variety of appearances, and thus modifics to a considerable extent the form of the flower. Most of these forms of the thalamus have been already referred to (page 273), when describing the apocarpous pistil, but it will be more convenient for reference, d.c., if we now spcak again of thesc and all other
essential modifications. In the species of Magnolia, Liriodendron, and plants of the order Magnoliacee gencrally, the thalamus is cylindrical (fig. 604, a) ; in plants also of the order Anonaceæ, it usually acquires a somewhat similar form; in the Raspberry (fig. 606, l), and species of Ranunculus (fig. 542) it is conical ; in the Strawberry (fig. 605) hemispherical; in Nelumbium (fig. 654 , thal) it is a large tabular expansion, in which there are a number of cavitics containing the separate carpels. In the Rose it forms a concavity upon which the carpels are placed (fig. 454, r, r).

In the Primulaceæ, Santalaceæ, and in all cases where the placenta is free from the wall of the ovary from its earliest appearance, the thalamus becomes prolonged into the cavity of the ovary and forms the placenta (fig. 635). At other times the thalamus becomes prolonged beyond the ovary, as in the Geraniaceæ and Umbclliferee ; this prolongation is termed a carpophore. In the species of Geranium (fig. 640, c), this carpophore forms a long beak-like process to which the carpels, car, are attached, and from which they separate when the fruit is ripe. In many cultivated flowers, as in the Rose, the thalamus will frequently acquire a monstrous development, and become extended beyond the flower into a branch bearing foliage leaves ($f i g .655$). To this prolongation of the axis beyond the Hower the term median prolification is usually applied.

In some plants the thalamus becomes prolonged beyond the calyx, and forms a stalk to the ovary, to which the term gynophore has been applied; and upon this stalk the stamens are also commonly placed, and in some cases the petals as well. Examples of this may be seen in some of the Capparidacere (fig. 656, thal) ; in the Pink (fig. 602, g), Dictammus (fig. (624, g), and Xanthoxylon (fig. $608, g$). This prolongation or stalk of the ovary is by some considered to be formed by the union of the petioles of the earpellary leaves of which that orary is composed.

Section 5. The Fruit.

We lave already seen that the ovary las in its interior one or more little oval or roundish bodies called ovules, which ultimately by fertilisation from the pollen beeome the seeds (page $19)$; their description, therefore, in a regular arrangement, should follow that of the ovary. It is, however, far more convenient to examine, in the first place, the mature and general characters of the fruit, as this is composed essentially of the mature ovary or oraries, and its description eomes therefore naturally at the present time, when the details comnected with the ovary are fresh in our memories. Such an arrangement has, also, the further advantage of enabling us to describe the seed
immediately after the ovule, as these two organs are, in like manner, only different conditions of one body.

Natcre of the Fruit.-After the process of fertilisation has been effected, important changes take place in the pistil and surrounding organs of the flower, the result of which is the formation of the fruit. The fruit consists essentially of the mature ovary or ovaries, containing the fertilised ovule or orules, which are then termed seeds. The styles and stigmas mostly disappear, but the remains of the style frequently exist in the form of a little point on the fruit, which is then commonly described as apicilar. Some traces indeed of the style may be usually observed, by which we are enabled to distinguish small fruits from seeds; thus the fruits of the species of Ranunculus, those of Labiate plants, the Boraginaceæ, Umbelliferee, and others, may be in this way commonly known from seeds. Generally speaking, however, the style forms but a very small portion of the fruit, the greater part of it, together with the stigma, dying away soon after the process of fertilisation has been effected; but in some cases the style is not only persistent but continues to grow, and it then forms a lengthened appendage to the fruit, as in the Traveller'sjoy (fig. 657), and in the Pasque-flower (fig. 700). The style in these two cases is also hairy, and hence the fruit is called candate or tailed.

Although the fruit may thus be described as consisting essentially of the mature ovary or ovaries, other parts of the

Fig. 057. Fruit of the Tra-veller's-joy (Clematis Vitalba). This fruit is called an Achronium; it is caudate or tailed. flower are also frequently present, and enter into its composition. Thus, in those cases where the calyx is adherent to the ovary, as in the Apple, Quince (fig. 473), Pear, Melon, and Gooseberry, it necessarily forms a part of the fruit; in the Rose the concave thalamus (fig. 454, r, r), which hears the carpels on its inner surface, and the adherent calyxtube, ct, become a portion of the fruit; in the Strawberry (fiy. 661), the fruit consists of the succulent hemispherical thalamus, bearing the carpels on its convex surface ; in the Acorn (fig. 400), Hazel-nut (fig. 401), and Filbert, it consists of pistil, calyx, and bracts, combined together ; while in the Pineapple (fig. 292), it is formed of the ovaries, floral envelopes, and bracts of several flowers; in the Fig also (fig. 406) we have a fruit produced by a number of separate flowers enclosed in a hollow fleshy receptacle. These examples, and a number of

- others might be alluded to, will show, that although the fruit consists essentially of the nature ovary or ovaries, enclosing the fertilised ovules or seeds, yct the term is also applied to whatever is combined with the ovary, so as to form a covering to the seed or seeds. All fruits which arc not formed entirely out of the fertilised pistil, but which consist in part of other portions of the flower, peduncle, or other parts, are now commonly termed spurious fruits or psendocarps. as Rasc Sivaluorre om

Changes produced in the Ovary in the course of its Developp-ment.-The fruit being essentially the ovary in a mature state, it should corrcspond with it in structure. This is the case generally, and we find the fruit therefore consisting of the same parts as the ovary, only in a modified condition; thus, the walls of the ovary commonly alter in tcxture, and either become dry, membranous, coriaceous, woody, \&c.; or, on the contrary, more or less pulpy, fleshy, \&c.

At other times more important changes take place during the ripening of the ovary, which disguise the real structure of the fruit. These changes either arise from the addition, abortion, or alteration of parts. Thus, 1st. The addition of parts is commonly produced by the formation of the spurious dissepiments already alluded to. In Datura Stramoninm, for instance, we have a two-celled ovary converted into an imperfectly four-celled fruit by the formation of a spurious vertical dissepiment (figs. 616 and 617) ; this dissepiment appears to be formed by the projection of the placcutas on the two sides which meet and become united to corresponding projections from the dorsal sutures. In Cassia Fistula, again (fig. 614), and some other fruits of a similar nature, we have a one-celled ovary converted into a many-celled fruit by the formation of a number of transverse dissepiments. In Pretrea zanguebarica, a one-celled orary is converted into a six-celled fruit (fig. 658), by an cxtension and doubling inwards of the placenta. In Tribulus terrestris the ovary is five-celled; but as it approaches to maturity, each cell (figs. 659 and 660) becomes divided into as many divisions as there are seeds contained within it, in consequence of a corresponding number of projections from its walls. Other examples of the formation of spurious dissepiments producing changes in theovary have been already mentioncd when speaking of these processcs (see pages 277 and 278).

2nd. Other alterations are produced by the abortion or obliteration of parts, as the ovary ripens. Thus the ovary of the Oak and Hazel consists of three cells, each of which contains two ovules, but the fruit has only one cell and one seed, so that in the course of development five ovules and one cell have become obliterated. In the Birch we have an ovary with two cells, containing one ovule in each, but the fruit is one-celled and one-secded, so that here one cell and one orule lave become obliterated. In the Ash, Horsechostnut, Elm, and many other
plants, similar changes are produced in the matured ovary by the. abortion or obliteration of certain parts.

3 rd. Other changes are caused in the ovary as it proceeds to maturity, in consequence of the alteration of parts, as, for instance, from a great development of succulent parenchyma. Thus, as already noticed, the thalamus of the Strawberry (f ig. 605) becomes enlarged and succulent, and forms what is commonly termed the fruit, but the real fruit consists of the small dry carpels which are scattered over its surface (fig. 661). The pulp of the Guara, Gooseberry, Tomato, and some other fruits, in which the seeds are imbedded, appears to be produced from the placentas ; and that of the Orange is of a similar nature.
Fig. 658.
Fig. 659.
Fig. 661.

Fit 660.

Fiy. 658. Transverse scetion of the fruit of the l'retrelf zunguebarica. From Lindley.- Fig. 659. A vertical section of n ccll of the ovary of Tribudus terrest is. $0,0,0$. Ovules. c. Projections from the wall which are eommencing to separate the ornies.-Fig. 660 . A vertical seetion of Ω cell of the mature ovary or fruit of the same, in which the partitions, c, completely separate the seeds, g.--Fig. 661. Fruit of the Strawberry.

From the above examples it will be cvident that, although the fruit consists essentially of the mature ovary or ovarics, yct that in the progress of the latter towards maturity it bccomes frequently much altered from its original structure, so that in order to have a clear idea of the nature of the fruit, it is important to examine that of the orary, and trace its development up to the fruit.

General Characters of the Fruit.-The structure of the fruit rescmbling in all important particulars that of the ovary, the modifications which it presents, as to composition, position, \&-c., are described by similar terms. Thus we may have simple and compound fruits, as also apocarpous and syncarpous ones. Simple fruits, like simple ovaries, arc normally one-celled or
unilocular ; while a compound fruit may have one or more cells, according as the dissepiments are absent or present, and the number of cells is indicated by similar terms to those used when speaking of the compound ovary (page $27(6)$.

The fruit, like the ovary, necessarily possesses a placenta, to which the seeds are attached; and the same terms are used in describing the different kinds of placentation, as with those of the ovary; these kinds are usually more evident in the fruit.

The fruit, again, is described as superior or inferior, in the same sense as these terms are used in speaking of the ovary. Thus a fruit is inferior, when it is formed from an inferior ovary, in which case the calyx necessarily enters into its composition, as in the Melon, Apple, Pear, and Quince (fig. 473); or it is superior, as in the Poppy ($f i g .32$) and Pea (f ($g .668$), when the ovary is superior, and the calyx non-adherent.

The base of the fruit is that point by which it is united to the thalamus; the apex is indicated by the attachment of the style, hence in those ovaries where the style is lateral or basilar, as in many Rosacee (figs. 638 and 639), Labiatre (fig. 609), and Boraginaceæ (fig. 610), the organic apex of the fruit will be also thus situated, so that the geometrical and organic apices will then be very different.

Conposition of the Fruit. -The fruit when perfectly formed consists of two parts; namely, the pericarp, and the seed or seeds contained within it. In the majority of cases the pericarp withers, and the fruit does not ripen, when the seeds are abortive. But there are many exceptions to this; thus, many Oranges and Grapes produce no seeds, but the pericarp is neverthelcss fully developed; and in the Bananas, Plantains, and Bread-fruit, the pericarps develop most extensively, and become best adapted for food, when the sceds are chiefly or entirely abortive. Gencrally speaking, however, the development of the seeds and pericarp proceeds together after the process of fertilisation has been cttected, and then only perfect fruit can bo formed; for although in common language we apply the term fruit in those instances where no seeds are produced, yet strictly speaking such are not fully formed fruits, but only enlarged and swollen pericarps.

Having now alluded to the sceds as a component part of the porfect fruit, we must leave their particular examination till we have become acquainted with the structurc of the ovules, and now procecd, thereforc, to the description of the pericarp.

Pericarp.-In the majority of fruits the pericarp consists simply of the walls of the ovary in a modified state; but, when the calyx is adherent, it necessarily presents a more complicated structure. The pericarp exhibits thre layers or regions (fig. 695), an external, called the epicarp or exocarp, ep ; a middle, the mesocarp, m; ; and an inner, the endocarp, en. The middle
layer, being frequently of a fleshy or succulent nature, is also then termed the sarcocarp; while the inner layer, from its hardness in some fruits, is likewise called the stone, putamen, or pyrene. When the pericarp consists simply of the matured walls of the ovary, its three parts correspond to the three parenchymatous layers of the lamina of the carpellary leaf: thus, the epicarp represents the epidermis of the under surface, or that on the outer surface of the ovary ; the mesocarp corresponds to the general parenchyma of the lamina, or of that of the ovary ; and the endocarp to the epidermis of the upper surface, or to the inner lining of the ovary. When the calyx is completely united to the ovary, the relation of parts must necessarily differ, and probably somewhat vary according to circumstances. Thus, in the Apple, which we may take as an illustration of an inferior fruit, the epicarp corresponds to the epidermis of the under surface of the calyx; the mesocarp to the rest of the calyx, and the whole of the ovary except the inner lining, which corresponds to the endocarp. The parenchyma of the fruit, like that of the ovary and the blade of a leaf, is traversed by fibro-vascular tissue.

Fig. 662. Foliaceous bladdery legume of the Bladder Senna (Colutea artorescens).

In some cases the pericarp clearly indicates its analogy to the blade by remaining in a condition not very dissimilar to that part of a leaf folded inwards and united by its margins, as in the Bladder Senna (fig. 662) ; such a fruit is described as foliuceopu or leafy. Generally speaking, however, one or more of the layers of the pericarp become more developed, by which its resemblance to the lamina of a leaf is rendered much less evident. The epicarp usually retains an epidermal appearance, suffering but little change, except in becoming slightly thickened. The endocarp is more liable to alteration, and frequently differs much in appearance from the corresponrling part of the blade of a leaf or ovary; tlius, its cells sometimes become hardened by thickening layers in its interior and form a stony shell surrounding the seed, which is commonly called the putamen. The mesocarp is however the layer which commonly presents the greatest development, and differs most in appearance and texture from the general parenchyma of the lamina of a leaf.

The above remarks will be rendered more intelligible by being illustrated by a fow examples taken from well-known
fruits. Thus in the Peach, Apricot, Cherry, Plum, and most other drupaceous fruits (page 311), the separable skin is the epicarp ; the pulpy part, which is eaten, the mesocarp or sarcocarp; and the stone enclosing the sced, the endocarp or putamen. In the Almond, the seed is enveloped by a thin woody shell, constituting the endocarp, which is itself surrounded by a thin green layer, formed of the combined mesocarp and epicarp. In the Apple and Pear, the skin is the epicarp ; the fleshy part, which is eaten, the mesocarp or sarcocarp ; and the core containing the seeds, the endocarp. A similar disposition of parts occurs in the Medlar, except that here the core becomes of a stony naturc. In the Date the outer brownish skin is the epicarp; the thin paper-like layer enclosing the seed is the endocarp ; and the intermediate pulpy part is the mesocarp or sarcocarp. In the Walnut, the woody shell enveloping the seed, which is commonly termed the nut, is the endocarp; and the green covering of this, ealled the husk, consists of the mesocarp and epicarp combined. In the Orange, the outer separable rind is composed of the mesocarp and epicarp ; and the thin membranous partitions which divide the pulp into separate portions form the endocarp; the edible pulp itself is a development of succulent parenchyma from the inner lining of the ovary, or probably from the placentas only. In the above fruits, and numerous others might be quoted, the different layers of the pericarp are more or less evident; but in some fruits, as in the Nut, these layers become so blended, that it is difficult, if not impossible, to distinguish them. The examples of fruits now mentioncd, together with those previously alluded to, will show in a striking manner the very varying nature and origin of the parts which are commonly eaten.

Sutures.-In describing the structure of the carpel, we found that the ovary presented two sutures (page 267) ; one of which ($\mathrm{fig} .586, v s$), called the ventral suture, corrcsponded to the union of the margins of the lamina of the carpellary leaf, and was consequently turncd towards the axis or centre of the flower ; and the other, $d s$, termed the clorsal suture, corresponding to the midrib of the lamina, which was directed towards its circumsference. The simple fruit bcing formed, in most cases, csscntially of the mature ovary, also presents two sutures, whieh are clistinguished by similar names. These, like those of the orary, may be frequently distinguished extcrually, cither by a more or less projecting line, or by a slight furrow ; thus in the Peach (fiy. 693), Cherry, Plum, and Apricot, the ventral suture is rery evident, although the dorsal suture has become nearly cfliced; while in the Bladder Semna (fiy. 662), Pca, and other fruits of the Leguminose, botly dorsal and ventral sutures are clearly visible externally.

In a compound ovary with two or more cells, in whieh the placentation is axile, it nust be cvident, of course, that the clorsal
sutures can alone be observed externally, as the ventral suturcs of the component ovaries are turned towards, and meet in the axis of the flower, and are hence removed from view ; it follows also that the number of dorsal sutures will necessarily correspond to the number of component ovaries of which such an ovary is formed. In a fruit presenting similar characters, mc find of course a similar disposition of the sutures. When an ovary, on the contrary, is formed of the blades of two or more carpellary leaves, the margins of which are not inflected, or only partially so, and therefore one-celled, and the placentation parietal or free central, both ventral and dorsal sutures may be observed externally alternating with each other. The fruit, which is formed in a similar manner, necessarily presents a similar alternation of the sutures on its external surface.

Dehiscence.-The pericarp at varying periods, but commonly when the fruit is ripe, either opens, so as to allow the seed or seeds to escape ; or it remains closed, and the seeds can then only become free by its rupture or decay. In the former case the fruit is said to be dehiscent ; in the latter, indehiscent. Those fruits, such as the Nut, Cherry, Apricot, Plum, and Date, which have very hard or fleshy pericarps, are usually indehiscent.

Dehiscent fruits open in various ways:-1st. By splitting longitudinally in the line of one or both of the sutures ; or at the junction of the component carpels only; or at these points as well as at the dorsal sutures. In all the above cases the pieces into which the fruit separates are called valves, and these valves, when the fruit is normal in its structure, are either equal in number to the cells, or component carpels, or they are twice as numerous. Thus in fruits formed of a single carpel, which only open by the ventral or clorsal suture, there will be only one valve (figs. 666 and 667), corresponding to the one carpel ; but if the carpels open by both sutures (fig. 668), there will be two valves. In fruits formed of compound ovaries composed of several cells, the valves will be equal in number to the component carpels, if the dehiscence only takes place by the dorsal suture (figs. $672-$ 674), or in the line of union of the component ovarics (figs. 669671) ; or they will be double the number, if the dehiscence takes place by both these parts. In compound one-celled fruits, the valres will be equal in number to the component carpcls, if the dehiscence occurs only by the ventral (fig. 680) or dorsal sutures 681) ; or clouble the number, if by both sutures. When there is a distinct axis left after the separation of the valves, this is called the columella (fig. 675, a). According to the number of valves, the fruit is described as onc-valved, two-valved, threcvalved, or many-valved.

2nd. Dehiscence, instead of taking place longitudinally, or in a valvular manner, sometimes occurs in a transverse direction, by which the upper part of the fruit scparates from the lower like the lid from a jar or box. And 3rd. It may take place in an
irregular manner by little pores. We have thus three kinds or classes of dehiscence, which are called respectively:-1. Valcular ; 2. Transuerse or Circumscissile ; and 3. Porous.

1. Valvular Dehiscence.-This may be either partial or complete; thus, in Dicnthus (fig. 664), Lychnis (fig. (i63), and many other Caryophyllaceous plants, the dchiscence only

Fig. 663.
Fig. 664.
Fig. 665.

Fig. 666.

Fig. 663. Fruit of Lychnis.-Fig. 664. Fruit of Dimthus,-Fig. 665. Fruit of Mignonette (Reseda).-Fiy. 666. Follicle of Columbine (Aquilcgia), dehiseing by ventral suture.-Fig. 667. Follicles of J/agnolia ghtuca, each dehiseing by its dorsal suture. The seeds me suspended from the fruits by long staiks or fnuiculi.- Fig. 668. Legume of the Pea whieh has opened by both dorsal and ventral sutures; hence it is two-valved. c. Calyx. ep, Epicarp, pl. Plaeenta, ov. Seeds attached to the placenta by a funieulus or stalk, f. en. Endocarp.
takes plaee at the upper part of the fruit, which then appears toothed, the number of teeth corresponding to that of the valves in complete dehiscence. A somewhat similar mode of partial dehiscence oecurs in ecrtain Saxifrages, and in the Mignonette (fig. 665); in the latter plant one large orifice may be observed at the summit of the fruit at an early stage of its growth, and long before the seeds are ripe. At other times the separation
of the fruit into ralves is more or less completc, so that the nature of the dehiscence is at once evident. There are various modifications of these complete forms of valvular dehiscence. Thus, in fruits which are formed of but one carpel, the dehiscence may take place by the ventral suture only, as in the Columbine (f ig. 666), and Aconite (fig. 698) ; or by the dorsal suture only, as in some Magnolias (fig. 667) ; or by both dorsal and rentral sutures, as in the Pea (fig. 668), Bean, and many other Leguminous plants. This form of dehiscence is commonly known as sutural.

In compound fruits having two or more cells, and therefore with axile or central placentation, there are three principal kinds of dehiscence, which are called respectively, septicidal, locnlicidal, and septifragal.
A. Septicidal Dehiscence.-In this the fruit is separated into its component oraries or carpels, by a division taking place

Fig. 670.

Fig. 671.

Fig. 669. Capsule of the Meadow Saffron (Colchicum (nuumale), showing scpticidal dehiscence. -Fig. 670. Diagram of septicidal dehiscence showing the placentas and seeds carried away with the valves.-Fig. 671. Dingram of septicidal dehiscence, showing the valves breaking away from a central column formed by the union of the placentas.
between the two halves of each dissepiment (figs. 669-671). Examples may be seen in Colchicnm and Rhododendron. Here each valve corresponds to a carpel, and the valves are said to have their margins turned inwards. In this clehiscence the placentas with the seeds attached are either carried away with the valves (fig. 6;0), as in Colchicnm; or the valves brcak away from the placentas, which remain united and form a central column (fiy. (;71).
13. Loculicidal Dehiscence.-This is said to occur when each carpel opens by its dorsal suture, or through the back of the cells, the dissepiments remaining undivided (figs. 672-674). Hore each valve is composed of the united halves of two adjoining carpels, and the valves are said to bear the dissepi-
ments in the middle. Examples may be seen in the Iris (fig. 712) and Hibiscus (fig. 672). As in septicidal dehiscence, the valves may either carry the placentas and seeds with them (fiy. 673), as in the Hibiscus and Iris; or they may break away from the placentas, and leave them united in the form of a central column (fig. 674) ; or each carpel may simply open at its dorsal suture, and the valves bearing the dissepiments may remain attached to the placentas.

In some forms of septicidal dehiscence the carpels separate without opening, as in Scrophularia, in which case they may

Fig. 672.

Fig. 673. Fig. 674.
Fig. 676.

Fig. 675.

Fiq. 672. Capsule of n specics of Hibiscus, deliscing loculicidally. r, r, r. Valves. c. Dissepiments. g. Sceds.-Fig. 673. Diagram of loculicidal dehiscence, in which the valves curry the placentas with them. - Fig. 674. Diagram of loculicidal dehiscence, in which the valves hare separated from the placentas which remain as a central colunn with the sceds nttached.-Fig. 675. Fruit of the Castor-oil Plant (Ricinus conmumis), dehiscing in a scpticidal manner. c, c, c. Carpels. a. Colnumella, sd. Dorsal suture where cacle carpel ultimately opens.-Fig. 676. Fruit of a specics of Geranum. c. Pcrsistent enlyx. a. Axis or carpophore from whieh the ovarics, o, o, with their styles, t, t, are scparating. s. Stigmas.
afterwards open by their dorsal sutures, that is, in a loculicidal manner. In other cases, the axis is prolonged in the form of a columella or carpophore, as in the Mallow and Castor-oil Plant ($\mathrm{fg} .675, a$), and in the Geraniacere ($\mathrm{fig} .67 \mathrm{~F}, \mathrm{a}$), and Umbellifere (fig.717), and the carpels which are united to it also separate without their ovaries opening. The ovarics of such carpels frequently open afterwards by their dorsal sutures (fig. $(675$, sd $)$. When such earpels scparate with a certain amomet of elasticity from the axis to which they are attached, as in some Euphorbiacee, they have been called cocci (fig. 6i5, c, c, c). Py some botanists, all carpels which thus separate from the axis
in a septicidal manner are termed cocci, and the fruit is described as ricoccous, tricoccous, \&c., according to their number. In certain fruits, such as those of the Linum catharticum, the ovaries open first by their clorsal suture, and then separate from each other in a septicidal manner.

Some botanists call all fruits, the carpels of which separate from each other without opening-schizocarps; and term their component carpels cocci if there are more than two, or if only two in number, as in the Umbellifere,-mericarps.
C. Septifragal Dehiscence.-In this form of dehiscence the carpels open by their clorsal sutures, as in loculicidal dehiscence, and at the same time the dissepiments separate from the walls

Fig. 677. Capsule of Cedrela angusifolia, showing septifragal dehiscence. x, v, v. Vaives. (f. Axis bearing the lissepiments, c, c, and seerls, q.Fiy. 678. Diagramillustrating septifragal dehiscence,-Fig. 679. Capsule of Datura Stramonium, showiug septifragal dehisceuce.
and remain united to each othcr and to the axis (figs. 677 and 678), which in this case is generally more or less prolonged. Here each valve is composed of the two halves of adjoining ovaries. This form of dehiscence may be seen in Datura Stramonium (fig. 679), and Cedrela (fig. (677). The placentas bearing the seeds are here attached to the axis, a, between the dissepiments, c, c.

In compound fruits with one cell having parietal or free central placentation, we have two forms of clehiscence; these are analogous to the ordinary septicidal and loculicidal kinds just described. Thus, in compound fruits with parietal pla-
centation, the dehiscence may take place either through tho confluent margins or sutures of the adjoining carpels, so that each placenta is divided into its two lamellre, as in the species of Gentian (f ig. 680), in which case the dehiscence is analogous to the septicidal form, and each valve, therefore, represents one of the component carpels of the fruit; or the dehiscence may take place through the dorsal sutures, as in the Heartscase (fig. (681), in which case it is analogous to the loculicidal form of dehiscence, and each valve is composed of the adjoining halves of two carpels. These forms may be readily distinguished by the varying attachment of the placentas and seeds in the two cases; thus, in the former instance, each valve will bear the placentas and seeds on its two margins (fig. 630), and the valves are said

Fig. 680.

Fig. 680. One-celled fruit of a species of Gentian dehiscing in a septicidal manner.-Fig. 681. One-celled fruit of Heartsease (Violn tricolor), dchiscing in a loculicilal manner.--Fig. 682. Fruit or siliqua of the Wallflower, showing the separation of two valves from the replum. Fig. 683. Fruit (ceratium) of Celandine (Cheidonium majus), with the valves separating from the placentas.

Frg. 682.

Fig. 683.

to be placentiferous at their borders; in the latter, the placenta and seeds will be attached to the centre of each valse (fig. 681), and the valves are then said to be placentiferous in their middle. It sometimes happens, as in the fruit of the Cheliclonium (fig. 683), and Wallfower (fig. 682), that the placentas bearing the seeds remain undivided, and the valves break away from them, so that they are left attached to a frame or replum (page 277).

In compound fruits with a free central placentation, the same forms of dehiscence occur as in those with parietal placentation, but here it is difficult in many cases to speak positivcly as to the maturc of the dehiscence from the absence of seeds or clisscpiments upon the valves. The means usually adopted in such cases is to count the number of the ralves and
compare their position with the sepals or divisions of the calyx. Thus, as the different whorls of the flower in a regular arrangement alternate with one another, the component carpels of the fruit slould alteruate with the divisions or sepals of the calyx. If the fruit therefore separates into as many portions as there are parts or sepals to the calyx, and if these valves are then placed alternate to them, they represent the component carpels, and the dehiscence is consequently analogous to the septicidal form ; if, on the contrary, the valves are equal and opposite to the sepals or divisions of the calyx, each valve is composed of the adjoining halves of two carpels, and the dehiscence is analogous to the loculicidal form. Sometimes the number of valres is double that of the calycine segments or sepals, in which case each valve is formed of half a carpel, the dehiscence of the fruit laving taken place both by its dorsal and ventral sutures.

In all the above varieties of valvular dehiscence, the separation may either take place from above downwards, which is by far the more usual form (figs. 669, 672, 677, and 679) ; or occasionally from below upwards, as in the Celandine (fig. 683), and universally in Cruciferous plants (fig. 682).
2. Transverse or Circunscissile Dehiscence. - In this kind of dehiscence the opening takes place by a transverse fissure through the pericarp across the sutures, so that the upper part is separated from the lower like the lid of a jar or box, as in Hyoscyamus (fig. 684) and Anagallis (fig. 709). Sometimes the dehiscence only takes place half round the fruit, as in Jeffersonic, in which case the lid remains attached to the pericarp on one side, as by a hinge. The fruits which present transverse dehiscence may be supposed to be formed either of carpellary leaves in which the lamine are articulated to the petioles, as in the Orange ($f i g$. 320), and which become separated at the

Fig. 684. Fruit of Henbane (Hyoscyftmus) with transverse dehiscence. This fruit is termed a pyxis (page $316)$. points of articulation, so that the united petioles form the lower part of the fruit, and the united lamine the upper ; or they may result from the prolongation and hollowing out of the thalamus, and the articulation of the carpellary leaves to its circumference, so that in the dehiscence the lower part of the fruit is formed by the concave thalamus, and the upper part by the carpellary leaves; thus resembling the separation of the calyx in Eschscholtzia (page 229) from the thalamus.

In the Monkey-pot ($f y .685$), the lower part of the ovary is adherent to the tube of the calyx, and the upper portion is free; and when deliscence takes place, it does so in a transverse manner and at the part where the upper free portion joins the
lower adherent one, so that it would appear as if the adherence of the ealyx had some effeet in this case in producing the transverse dehiscence. Sueh fruits are sometimes ealled operculate, a term whieh is also applied by other botanists to all

Fig. 685.
Fig. 686.

Fig. 685. Pyxis of the Monkcy-pot (Lecythis ollarie). -Fiy. 686. Lomentum of a species of Hedysfrum separating transversely into one-secded portions.
 forms of transverse dehiseener in whieh the upper portion of the periearp separates from the lower in the

BRAズ1L NUT. form of a lid or operculum.

Transverse dehiscence may also oceur in fruits whiel are formed by a single ovary or earpel, as well as in the eompound ones mentioned above. Thus, the legumes of Coronilla, Hedysarum (fig. 686), Ornithopus, \&e., separate when ripe into as many portions as there are seeds. The separation taking place in these eases has been supposed to be effeeted by a process ealled solubility. Some botanists regard such legumes as formed of folded pinnate earpellary lea ves analogous to the ordinary pinnate leaves of the same plants, the divisions taking plaee at the points of union of the different pairs of pinnæ.
3. Porous Defiscence. - This is an irregular kind of clehiseence, in which the fruits open by little pores or slits formed in

Fic. 687.

Fifi. 688.

F"ig. 687. Immature fruit of a species of Campanula. p. Pericarp. 1, t. Pores at the sitles. c, c. Persistent calyx united below to the wall of the fruit so as to form π prot of the pericarp.-Fig. 688. Fruit of a species of Campunula dehiscing by pores at its base.
their periearps by a proeess called rupturing. These openings may be either situated at the apex, side, or base of the fruit, hence they are deseribed aeeordingly, as apicular, lateral, or busilut. Examples of this kind of dehiseenee veeur in the

Poppy, in which a number of pores are placed beneath the peltate disc to which the stigmas are attached; in the Antirnhinum (fig. 626), where there are two or three orifices, one of which is situated near the summit of the upper cell or ovary, and the other (one or two) in the lower; and in various species of Campanula (figs. 687, t, t, and 688). In the latter the calyx is adherent to the ovary, and the pores, which have a very irregular appearance at their margins, penetrate through the walls of the pericarp formed by the adherent calyx and ovary ; these pores correspond to the number of cells in the ovary, and are either situated at the sides ($\operatorname{fig} .687, t, t$), or towards the base (fig. 688).

Kinds of Fruit.-A number of different kinds of fruit hare been distinguished and named, and several classifications of the same have been proposed at various times, but at present there is little accordance amongst botanists upon this subject. This is much to be regretted, as there can be no cloubt that a strictly definite phraseology of fruits, founded essentially upon the structure and position of the ovary, would be of great value in Descriptive Botany. The difficulties attending this subject have been also much increased by the same names having been given by authors to totally distinct kinds of fruits, and even to different classes of fruits. In a work like the present it would be impossible to describe all the kinds of fruits which have received names. At the same time, the subject is of too much importance to be hastily disposed of, and as much space as possible will be therefore devoted to its consideration. The classification here adopted is founded upon that given many years since in Lindley's Introduction to Botany, from which, however, it differs in some important particulars. We have taken the gynœcium as our guide, and have accordingly used the terms when applied to fruits in precisely the same sense as previously defined in its description.

The leading divisions of the classification here adopted are as follow :-

1. Fruits formed by a Single Flower. a. Simple Fruits. b. Apocarpous Fruits. c. Syncarpous Fruits.
2. Fruits formed by the combination of Several Flowers.

1. Fruits formed by a Single Flower.

a. Simple Fruits. - By a simple fruit, we man one which is formed of a single mature carpel or orary, and only one produced by a single flower. By some botanists this term is used to signify all fruits, of whatever nature, which are the produce of a single flower; thus including the simple, apocarpous, and syoucuroues fruits of our classification. We deseribe four kinds
of simple fruits :-namely, the Legume, the Lomentum, the Drupe, and the Utriele.

1. Legume or Pod.-This is a superior, one-eelled, one or many-seeded fruit, dehiseing by both ventral and dorsal sutures, so as to form two valves, and bearing its seed or seeds on the ventral suture. Examples oeeur in the Pea (fig. 668), Bean, Clover, and most plants of the order Leguminosse, whieh has derived its name from this cireumstanee. The legume assumes a variety of forms, but it is generally more or less convex on its two surfaees and nearly straight; at other times, however, it beeomes spirally eontorted so as to resemble a serew (fig. 691), or a snail twisted, as in some speeies of Medicago (fig. 690); or it is eoiled up like a eaterpillar, as in Scorpiurus sulcata (fig. 689) ;

Fig. 689. Coilerl-up legume of Scorpiurus sulctlt.-Fig. 690. Snail-like legume of Medicago orviculati.- Fig. 691. Suinal or screw-like leguule of Lucerne (Medicago).-Fig. 692. Lomentum of a species of Actacia.
or eurred like a worm, as in Casalpinia coriaria; or it assumes a number of other irregular forms. Certain deviations fron the ordinary strueture of a legume are met with in some plants; thus, in Astragalus (fig. 619), and Phaca (fig. 620), it. is two-eelled, in eonsequence of the formation of a spurious dissepiment, whiel in the first plant proeeeds from the dorsal suture, and in the latter from the ventral. (See page 277.) At. other times a number of spurious horizontal dissepiments are formed, by which the legume beeomes divided into as many eells as there are seeds, as in Cassia Fistula (fig. 614). Another irregularity also ooeurs in the latter plant, the legume being here indehiseent, but the two sutures are elearly marked externally. Other indehiseent legumes are also met with, as in Arach is and Pterocarpus, in whieh there is sometimes no evident mark of the sutures externally ; sueh legumes will, evident mark of the sutures externaly, frequently split into two valves like of a pea,
if a little pressure be applied as in the ordinary process of. shelling peas.
2. The Lomentum.-This is a kind of legume which is contracted in a moniliform manner between each seed, as in Hedysarum (fig. 686), Omithopus, and Acacia Sophora (fig. 692). It is sometimes called a lomentaceous legume. This fruit, together with the legume, characterise the plants of the Leguminosæ. When the lomentum is ripe, it commonly separates into as many pieces as there are contractions on its surface (f fg. 686), or it remains entire (fig. 692) ; in the latter case the seeds are separately enclosed in cavities which are formed by the production of as many internal spurious dissepiments as there are external contractions.
3. The Drupe.-This is a superior, one-celled, one- or twoseeded, indehiscent fruit, having a fleshy or pulpy sarcocarp, a hard or bony endocarp or pyrene, and the pericarp altogether separable into its component parts, namely, of epicarp, sarco-

Fig. 693.

Fig. 693. Drupe of the Peach.- Fig. 604. The same cut vertically.
carp, and endocarp. The Drupe is sometimes called a stonefruit. Examples occur in the Peach (figs. 693 and 694), Apricot, Plum, Cherry (fig. 695), and Olive. In the Almond, the fruit presents all the characters of the drupe, except that here the sarcocarp is of a toughish texture, instead of being succulent. Many fruits, such as the Walnut and Cocoa-nut, are sometimes termed drupes, but improperly so, as they are in reality compound, or formed originally from two or more carpels or ovaries, besides presenting other characters differing from simple fruits. (See Tryma, page 318, and Glans, page 319.) A number of drupes aggregated together on a common thalamus form collectively a kind of Etærio (see Etserio). Any fruit which resembles the drupe in its general characters is frequently termed drupaceous or drupe-like.
4. The Utricle is a superior, one-celled, one or few-seeded fruit, with a thin. membranous, loose pericarp, not adhering to
the seed ; generally indehiseent, but rarely opening in a transverse manner. Examples of this kind of fruit may be seen in Amaranthus and Chenopodium (fig. 696).

Fig. 690

Fig. 696.

Fig. 695. Vertical section of the drupe of the Cherry. ep. Epicarp. en. Endocarp. mt. Mesoearp. g. Seed with embryo.-Fig. 696. Utricnlar frnit of Chenopodium, surrounded by the persistent calyx.
b. Apocarpous Fruits.- Under this name we include those fruits which are formed of a single mature carpel or orary, but of which two or more are produced by a single flower. The simple fruits just described are frequently placed by botanists under this head, together with those to which we are now about to allude. Apocarpous fruits are also sometimes called multiple, and this latter term is again applied by others to those fruits which are the produce of several flowers. We distinguish three kinds of Apocarpous fruits :-The Follicle, the Achrenium, and the Etærio.

1. The Follicle.-This is a superior, one-eelled, one- or manyseeded fruit, dehiseing by one suture only, which is commonly

Fig. 698.
Fig. 699.

Fig. 697. Follicles of the Columbine (Aquilrgiti).-Fiq. 68S. Follleles of the Aoonite (Aconitum).-Fig. 609. Follieles of the Peony (Prenio).
the ventral, and is consequently one-valved (fig. 666). By the latter eharaeter it is known at once from the legume, which opens, as we have seen, by two sutures, and is two-valved; in
other respects the two fruits are alike. In Magnolia glauca (fig. (ii7), and some other species of Magnolia, the follicle opens by the clorsal suture instead of the ventral. Examples of the follicle occur in the Columbine (fig. 697), Hellebore, Larkspur, and Stu. ohants Aconite (fig. 698), in all of which plants the fruit is composed of three or more follicles placed in a whorled manner on the thalamus ; in the Asclepicts, Periwinkle, and Pæony (fig. 699), where each flower generally forms two follicles; and in the Liviodendron and Magnolia (fig. 667), where the follicles are numerous, and arranged in a spiral manner on a more or less elongated thalamus. It rarely happens that a flower produces but a single follicle; this, however, sometimes occurs in the Prony and in other plants. The two follicles of Asclepics are more or less united at their bases, and the seecls, instead of remaining attached to the ventral suture, as is the case in the truc follicle, lie loose in the carity of the fruit. This double fruit has therefore by some botanists received the distinctive name of Conceptaculum.
2. The Achrャnium or Achene is a superior, onecelled, one-seeded fruit, with a clry indehiscent pericarp, which is separable from the seed, although closely applied to it. Linnæus mistook some of these achrenia for seeds, and called the plants producing them gymnospermous (nakedseeded). Such fruits may be, however, generally distinguished from seeds by presenting on some point of their surface the remains of the style. This style is in some cases very evident, as in the Clematis (fig. 657), and

Fig. 700.

Fig. 700. Vertical section of au achenium of the Pasque-fiower (Anemone Pulstilla). The fruit is snid to be tailed in this instance in consequence of being surmounted by a fenthery style. -- Fig. 701. Achænin of Bugloss (Lycopsis). Anemone (fig. 700). Examples may be seen in the Clematis and Ancmone, as just noticed, and in the plants of the orders Labiate and Boraginacer (fig. 701). In rare cases we find a flower producing but a single achænium.
3. The Eterio. - When the achsenia borne by a single flower are so numerous that they form more than a single whorl or series, they constitute collectively an ctærio. Examples may be seen in the species of Ranumculus and Adonis where the achrenia are placed upon a convex thalamus of a dry nature ; and in the Strawberry (fig. 702), where they are situated upon a fleshy
thalamus. Hence, in the Strawberry, the so-ealled seeds are in reality so many separate achrenia, while the part to which the Strawberry owes its value as a fruit is the succulent thalamus.

In the fruit of the Rose the achænia, instead of being placed upon an elevated thalamus, as in the ordinary etrerio, are situated upon a concave thalamus, to which the calyx is attaehed (fig. 454, r, r). This modification of the ordinary etærio has been made a separate fruit by some botanists, to which the name of Cynarhodum has been given. A similar kind of fruit also occurs

Fig. 702. Fruit of the Strawbery.-Fig. 703. Fruit (etcerio) of the Raspberry (Rubus Ideus). in Calyeanthus.

In the Raspberry ($f g$. 703) and Bramble, we have a kind of etrerio formed of a number of little drupes, or drupels as these small drupes are sometimes termed, crowded together upon a dry thalamus. The etærio and its modifications are placed by Lindley under a class of fruits called by him aggregate fruits, the characters of which are 'Ovaria strictly simple; more than a single series produced by each flower.' The term aggregate is also by some botanists applied to fruits which are the produce of sereral flowers.
c. Syncarpous Fruits. - Under this heed we inelude all fruits uthich are formed by the more or less complete combination of two or more mature earpels or ovaries, and where only one fruit is produced by a single flower. In the two former classes the fruits are formed of simple ovaries; in this class from ovaries of a more or less compound nature. In describing these fruits we shall follow generally the classification of Lindley. Thus, in the first place, we arrange them, from their superior or inferior character, in two divisions ; and each of these divisions is again separated into others, derived from the dry or fleshy nature of the pericarp, and its dehiscent or indehiscent elaaracter.

Division 1. Superior Syncarpous Fruits.

a. WITH A DRI INDEHISCENT PERICARP.

1. The Caryopsis is a superior, one-eelled, one-seeded, indehiseent fruit, with a thin dry membranous periearp, completely and inseparably united with the seed (figs. 704 and 705). This fruit resembles the aehrenium, but it is distinguished by the complete union whieh exists between the periearp and the seed.

It is, moreorer, generally considered as being of a compound nature, from the presence of two or more styles and stigmas on the ovary (fig. 601). It is found in the Oat, Maize, Rye, Wheat, Barley, and generally in the Grass order. These fruits, like the achrenia, are commonly called seeds, but thcir true nature is at once evident when they are examined in their early state.
2. The Samara is a superior, two- or more celled fruit, each cell being dry, indehiscent, one- or few-seeded, and having its pericarp extended into a winged expansion. Examples may be found in the Maple (fig. r06), Ash, and Elm. By some botanists each winged portion of such a fruit is called a samara, and thus such fruits as the Maple are considered to be formed of two united samare.

Fig. 704.
Fig. 70\%.
Fig. 700.

Fig. 707.

Fil. 704. Caryopsis or fruit of the Oat.Fig. 705. The same eut vertically. o. Pericarp. I. Integuments of the seed. a. A1bumen or endosperm. c. Cotyledon. g. Gemmule or plumule. r : Radicle.-Fiy. 706. Samara or fruit of the Maple.-Fig. 707. Carcerule or fruit of the Mallow (Mftlet).

Costh The Carcerate is a superior, many-celled fruit, each cell being dry, indehiscent, and one- or few-seeded, and all the cells more or less cohering by their unitcd styles to a central axis. The common Mallow (fig. 707) is a good example of this fruit.
4. The Amphisarca is a 'superior, many-celled, indeliscent, many-seeded fruit, indurated or woody extcrually, pulpy internally.' Examples, Omphulocarpus, Adansonia, C'rescentia.

b. WITH A DRY DEHISCENT PERICARP.

1. The Capsule is a superior, one or more celled, many-sccded, dry, dehiscent fruit. The dehiscence may either take place by valves, as in Colchicum (fig. 669) and Datura (fig. 679) ; or by pores, as in the Poppy and Antirihinum (fig. 626) ; or transversely, as in the Pimpernel (fig. 709) and Henbane (fug.

Fig. 708. Fig. 709.

Fig. 710.

Fig. 708. Spiral capsule of a species of Ife7icteres.-Fig. 709. Pyxis of Pimpernel (Anagallis).-Fig. 710. Capsule of a speeies of Scrophularia, dehiscing in a septicidal manner.
684) ; or only partically, as in Mignonette (fig. 665), Dianthus (fig .664), and Lychuis (fig. 663), When the capsule dehisces transversely the fruit has received the distinctive name of Pyxis.

Fig. 711. Fruit of Snndbox-tree (IFura crepittens). It is composel of fiftecu enrpels whinh separate from the axis when ripe, and lurst with grent foree. - F'ig. 712. Inferior capsular fruit (dipluegia) of the Iris, opening in a loculicidn! manner.
The capsule is either one-celled as in the Mignoncttc (f fy. 665), Heartsoase (fig. 681), and Gentian (fig. GS0) ; or two-celled is in the Scrophularia ($f(y .710$) ; or three- or more celled, as in Colchicum (fiy. 669), and Datura (fig. 679). It assumes
various forms, some of which are remarkable, as in Helicteres (fiy. 708), where it is composed of tive carpels twisted spirally together, and Illicium ranisatum, where the carpels are arranged in a stellate manner. The capsule is a very common fruit, and is found almost universally in many natural orders, as Papaveracer, C'aryophyllaceæ, Primulaceæ, Scrophulariaceæ, Liliaceæ, Gentianacere, de., de.

When a capsule consists of three or more carpels, which spparate from the axis, and burst with elasticity (cocci) (page $30 \pm$), as in Ricimus (fig. 675) and Hura crepitans (fig. 711), it has been termed a Regma.

When a fruit resembles the ordinary capsule in every respect, except that it is inferior, as in the species of Iris (f fy. 712) and Compamilc (figs. 687 and 688), it has received the name of Diplotegic. (See Diplotegia, page 319.) In the natural orders we shall describe such a fruit as capsular.
2. The Siliqua is a superior, oneor two-celled, many-seeded, long, narrow fruit, dehiscing by two valves separating from below upwards, and leaving the seeds attached to two parietal placentas, which are commouly connected together by a spurious vertical dissepiment, called a replum (fy. 713). The placentas are here opposite to the lobes of the stigma, instead of altcrnate, as is the case in all fruits which are regular in structure. When the replum extends entirely across the cavity, the fruit is two-celled ; if only partially, it is one-celled. Examples of this fruit occur in the Wallflower (fig.

$$
\text { Fig. } 713 . \quad \text { Fig. } 714 .
$$

Fig. 713. Fruit or siliqua of the Wallfower showing the separation of the two valves from the replum.---Fig. 714. Silienla of Shepherd's Purse (Thluspi). 713), Stock, Cabbage, and a large number of other Crucifere. When a fruit possesses the general characters of the siliqua, but with the lobes of the stigma alternate to instead of opposite the placentas, as in Chclidonium (fig. 683), it has been named a Ceratirm or a siliquaform rapsulc.

The siliqua is sometimes contracted in the spaces between each seed, like the lomentum (page 311), in which case it is indehiscent, as in Rophamus sativus, and is then called a lomentaceons siliqua.
3. The Siliculcu.-This fruit resembles the siliqua in every respect except as to its length ; and in usually containing fewer seeds. Thus the siliqua may be described as long and narrow, the silimele as broad and short. Examples occur in the Shepherd's Purse (fiy. 714) and Scurvy-grass.

The siliqua and silicula are only found in plants of the order Crucifere. Both fruits are occasionally one-sceded, and indeliscent.

c. WITH A FLESHY INDEHISCENT PERICARP.

1. The Hesperidium is a superior, many-celled, few-secded, indehiscent fruit, consisting of a separable pericarp, formed of the epicarp and mesocarp combined together ($f y .715, p, c$), and having an enclocarp, d, projecting internally in the form of mentbranous partilions, which divide the pulp into a number of portions or cells, which are easily separated from each other. This pulp, as already noticed (page 300), is cither a development of succulent parenchyma from the imner lining of the ovary generally, or from the placentas only. The seeds, s, s, are imbedded
 Fig. 716.

Fig. 715. Transverse section of the fruit of the Orange (Cirus Auromium). p. Epicarp. e. Mesocarp. d. Endocarp. s, s. Seeds.-Fig. 716. Abnormal development of the fruit of the Orange, in which the carpels, ce, and ci, are more or less distinct iustcad of being united.
in the pulp, and attached to the inner angle of each of the portions into which the fruit is divided. The fruits of the Orange, Lemon, Lime, and Shaddock are examples of the hesperidium. It is by no means uncommon to find the carpels of this fruit in a more or less separated state (fig. 716), and we have then produced what are called 'horned oranges,' 'fingered citrons,' 'Ec., and the fruit becomes somewhat apocarpous instead of entirely syncarpous.
2. The Tryma is a superior, onc-celled, one-seeded, indehiscent fruit, having a separable fleshy or leathery rind, consisting of epicarp and mesocarp, and a hard two-valved endocarp, from the inner lining of which spurious clissepiments extend so as to divide the seed into deep lobes. It differs but little from the ordinary drupe, except in being formed from an originally compound ovary. Example, the Walnut. + Cucoanut.
3. The Nuculanium.-This fruit, of which the Grape (fyg. 720) may be taken as an example, does not differ in any important characters from the berry, except in being superior. (See Berry.)

Division 2. Inferior Syncarpous Fruits.

a. WITH A DRY INDEHISCENT PERICARP.

1. The Cremocarp is an inferior, dry, indehiscent, two-celled, =arp. composed are joined face to face to a common axis or carpophore, from which they separate when ripe, but to which they always remain attached by a slender cord which suspends them (fig. 717). Each half-fruit is termed a hemicurp or mevicarp, and the inner face the commissure. Each prtion of the fruit resembles an achenium, except in being inferior; hence the name diachænium has been given to this fruit. Examples of the cremocarp as above defined are found universally in the plants of the order Umbellifere, but in no other order. By Lindley, the definition of cremocarp is extended so as to include fruits of a similar nature, but which contain more than two cells, as, for instance, those of Arabia.
2. The Cypsela. -This differs in nothing essential from the achrenium, except in being inferior and of a compound nature (see page 292). It occurs in all plants of the

Fig. 717. Cremocarp or fruit of Angelica. order Composite. When the calyx is pappose it remains attached to the fruit, as in Salsafy and Dandelion.
3. The Glans or Nut is an inferior, cry, hard, indehiscent, one-celled, one or two-seeded fruit, produced from an ovary of two or more cells, with one or more ovules in each cell, all of which become abortive in the progress of growth except one or two (page 296). The three layers constituting the pericarp of the nut are firmly coherent and undistinguishable, and the whole is more or less enclosed by a cupule. The Acorn (fig. SWEAT CHEST 400), and the Hazel-nut (fig. 401), may be taken as examples. began of By some botanists the fruit of the Cocoa-nut Palm is called a nut, but this differs in being superior, and in its pericarp presenting a distinction into epicarp, mesocarp, and endocarp. (See Drupe, page 311.) Such a fruit is better described as nutlike.

Dot ${ }^{b}$ b. With a DRy dehiscent pericarp.

1. Diplotegia. -This is the only kind of inferior fruit which presents a dry dehiscent pericarp. It has already been stated under the head of Capsule (page 317), that the diplotegia differs in nothing from it, except in being inferior. The species of I_{T} is (fy. 712) and Campanula (figs. 687 and 688) are examples of this fruit. The diplotegia may open either by pores ($f y .688$), Vanilla is a dyplotefla having
valves (f ig. 712), or transversely (fig. 685) like the ordinary capsule. In the latter ease, as with the trne capsule with transverse dehiscence, the fruit is called a Pyxis.

c. WITH A FLESHY INDEHISCENT PERICARP.

1. The Bacca or Berry is an inferior, indehiseent, one- or more celled, many-seeded, pulpy fruit (figs. 718 and 719). The pulp is produced from the placentas, which are parietal (fig. 718, $p l$, and have the seeds, s, s, at first attached to them ; but these become ultimately separated and lie loose in the pulp, p. Examples may be found in the Gooseberry and Currant. We have already stated (page 318), that the fruit of the Grape is called a Nuculanium (fig .720), and that it differs in nothing essential from the berry, except in being superior. The name baccate or berried is applied by many botanists to any fruit of a pulpy nature, and will sometimes be used in this sense in our deseription of the natural orders.

ovaries or carpels; while by others the placentas are regarded as parietal, and the fruit normally one-celled, as defined above. Those who adopt the first view bclieve that each placenta sends outwards a process towards the walls of the fruit, and that these processes ultimately reach the walls and then become bent inwards and bear the seeds on the curved portions. If these processes remain, the fruit is three-celled; if, on the contrary, they become absorbed, it is only one-celled, and the placentas are spuriously parietal. According to the view here adopted. the placentas are parietal and send processes inwards which meet in the centre, and thus render the fruit spuriously three-celled; or, if these are afterwards obliterated, or imperfectly formed, the fruit is one-celled. This fruit is illustrated by the Melon, Gourd, Cucumber, Elaterium, and other Cucurbitaceæ. The fruit of the Papaw-tree resembles a pepo generally, except in being superior.
2. The Pome is an inferior, indehiscent, two or more celled, few seeded, fleshy fruit; the endocarp of which is papery, cartilaginous, or bony, and surrounded by a fleshy mass consisting of mesocarp and epicarp, which is generally considered to be formed by the cohesion of the general parenchyma of

Fig. 722. Tertieal section of the pome or fruit of the Apple (Pymus Malus).-Fig. 723. Vertical scetion. of the balansta or fruit of the Pomegranate. the ovary with the tube of the calyx. Some botanists, however, regard the fleshy portion as consisting of the enlarged end of the flower-stalk, in which the true carpels are imbedded. Examples may be seen in the Apple ($f i g .722$), Pear, Quince (fig. 473), Medlar, and Hawthorn.
4. The Balausta is an inferior, many-celled, many-seeded, indehiscent fruit, with a tough pcricarp. It is formed of two rows of carpels, one row being placed above the other, and surrouncled by the calyx ; the seeds being attached irregularly to the walls or centre. The Pomegranate fruit ($\mathrm{f} y .723$), is the only example.

2. Fruits formed by the Combination of Several Flowers.

These fruits have been termed Anthocarpous, as they consist not only of the mature carpcls of several flowers united, but also usually of the bracts and floral envelopes in combination with them, that is to say, the whole inflorescence is blended to form the fruit. They have been also called

Multiple, Aggregate, and Collective fruits, and the two former terms have also been applied in a difficrent sense, as mentioned under the head of Apocarpous fruits (pages 312 and 314). Some botanists also term them Infrutescences or Confluent fruits. Such fruits have been likewise termed polythalamic, to distinguish them from fruits formed by single flowers, which are callod monothalamic. The following have received distinctive names:-

1. The Cone is a more or less elongated fruit, composed of a number of indurated scales, each of which bears one or more naked seeds (fig. 730) on its inner surface. This fruit is seen in the Scotch Fir (fig. 724), Larch, Hemlock Spruce (fig. 420), and a great many other plants of the order Conifere ; which derives its name from this circumstance. All plants also of the Cycas family which possess fruit have one of a similar structure, but here the seeds are more numerous and placed on the borders of the scales. There are two views as to the nature of the indurated scales : thus, by some botanists they are regarded as carpels spread open, each representing a female flower ; by

Fig. 724.
 the Juniper (Juniperus communis).-Fig. 726. Galbulus or fruit of the cypress (Cupressus sempervirens). - Fig. 727. Sphalerocarpiums or fruit
of the Yew (Tarus baccata), surrouded by bracts at the base.
others, as bracts. They certainly more resemble the latter organs in appcarance, as they never present any trace of style or stigma on their surface. Other botanists (scc page 204) regard the cone as the spurious fruit or pseudocarp of a single flower, and not as a collcction of fruits, as here described. Sume again make no distinction betwcen a conc and a Strobilus (scc Strobilus).
2. The Gelloulus.-This fruit is but a modification of the Conc; differing only in being more or less rounded in form instead of somewhat conical, and in having the heads of the scales much enlarged. It is seen in the Cypress (fig. 726), and in the Juniper (fig .725). In the latter the scalcs bccome fleshy, and we united together into one mass, so that it somewhat rescmbles at first sight a berry, but its nature is at once scen by examining the apex, when three radiating lincs will be obscrved corresponding
to the three fleshy scales of which the fruit is formed, and which are here but imperfectly united.

No other kind of fruits except the Cone and Galbulus are found in the natural orders Coniferæ and Cycadacere.

In the Yew (Taxus baccata) (fig. 727) and other plants belonging to the Taxacer, an order closely allied to the Conifere and Cycadacer, the so-called fruit is in reality not a fruit at all, as it consists simply, as demonstrated by Sir Joseph Hooker, of a naked seed, surrounded, except at the apex, by a fleshy cup or aril. This so-called fruit has been termed a Sphalerocarpium. Properly speaking, even if regarded as a fruit, it cloes not belong to the class of Collective fruits at all; as it is formed of but a single flower. We have placed it here, following Lindley's arrangement, and because, like the two preceding fruits, its essential character consists in its naked seed. Some other fruits are, however, included by Lindley and others with this under the name of Sphalerocarpium.

The Cone must be carefully distinguished from Cone-like fruits, such as those of the Magnolia (fig. 667) and Liriodendron. The latter are not collective fruits at all, but they consist of the mature carpels or follicles of a single flower, placed upon an elongated thalamus.
3. The Strobilus or Strobile.-The fruit of the Hop (Humulis Lupulus) (fig. 421) is by some botanists considered as a kind of Cone with membranous scales, to which the name of strobilus or Strobile has been given ; but the strobile differs essentially from the cone, in having its seed distinctly enclosed in a carpel placed at the base of each scale. We distinguish this fruit, therefore, as a distinct kind, under the above name. It should also be noticed that the term Strobilus is frequently employed as synonymous with Cone.
4. The Sorosis is a collective fruit, formed of a number of separate flowers firmly coherent into a fleshy or pulpy mass with the floral axis upon which they are situated. Examples of this may be seen in the Pineapple (fig. 292), where each square portion represents a flower ; and

Fig. 728.

Fig. 728. Sorosis or fruit of the Mnlberry (Morus nigra).-Fig. 729. Fruit (etwrio) of the Raspberry (Rubus Ideus). the whole is surmounted by a crown of empty bracts. The Bread-fruit and Jack-fruit are other examples of the sorosis. The Mulberry (fig. 728) may be also cited as another well-known fruit, which presents an example of the sorosis. At first sight, the Mulbcrry appears to resemble the Raspberry (fig. 729), Blackberry, and other
fruits of the genus Rubus, but in origin and structure the latter are totally different. Thus, as already notieed in speaking of the Etærio (page 314), the Raspberry, and other fruits of the genus Rubus, consist of a number of drupes or fleshy achæmia crowded together upon a dry thalamus, and are all the produce of a single flower. But in the Mulberry, on the contrary, each rounded portion of which the fruit is made up is derived from a flower, the calyx of which has become succulent and united to the ovary ; the combination of a number of flowers in this case therefore forms the fruit, while in the Raspberry the fruit is produced by one flower only.
4. The Sycomus is a collective fruit, formed of an enlarged and more or less succulent receptacle, which bears a number of separate flowers. The Fig (f fy. 406) is an example of a syconus. In this, the flowers are almost entirely enclosed by the enlarged hollow, pear-shaped reeeptacle, and what are eommonly calied seeds are in reality one-seeded fruits resembling achronia. The Dorsteria (fig. 407) is another example of the syconus, although it differs a good deal from that of the Fig in its general appearance ; thus the receptaele is less succulent, and only slightly eoncare except at its margins, so that the separate fruits are here readily observed.

All the more important fruits which have been named and described by botanists have now been alluded to, but in practice only a few are in common use-such as the Legume, Drupe, Achene, Follicle, Caryopsis, Siliqua, Silicula, Capsule, Nut, Pome, Berry, and Cone. This has arisen, partly from the same names having been given by different botanists to totally distinct kinds of fruits ; and partly from botanists in many cases preferring to deseribe a partieular fruit aecording to the special eharacters it presents. It is, however, much to be regretted that a eomprehensive arrangement of accurately-named and well-defined fruits should not be generally adopted, as it cannot be doubted that, if such were the ease, it would be attended with mueh advantage, and save a good deal of muneeessary deseription and repetition.

Section 6. The Ovule and Seed.

Having now described the nature, structure, and general eharacters of the gynoeeium or mimpregnated pistil, and the fruit or mature pistil, we pass to the description of the bodies eontained respectively within them, namely, the Ovule or infertilised body, and the Seed or fertilised Ovule.

1. the ovule.

The ovule is a small, somewhat rounded or oral, pulpy body, borne by the placenta, and which when fertilised becomes the seed. It is cither attaehed direetly to the placenta, when
it is said to be sessile (figs. $33,0,0$, and $633, g$) ; or indirectly by a stalk called the fimiculus or funicle (figs. 615, ov, and (637), when it is described as stalked. The point of attachment of the ovule to the placenta if sessile, or to the funiculus when stalked, is termed the hilum. These terms are applied to the seed in the same sense as to the ovule. The ovule has been compared to a bud, and has been called the seed-bud by Schleiden and others.

The ovules are commonly enclosed in an ovary ($f g .33,0,0$), but all plants of the Coniferæ, Cycadacer, and allied orders are exceptions to this ; thus in the Cycadacere they are situated on the margins of leaves in a peculiarly metamorphosed condition, and in the Conifere at the base of indurated bracts or open carpellary leaves (fig. 730, ov). Such ovules are therefore termed naked, and as the seeds of these plants are also naked, such plants are called Gymnospermous; while those plants in which the ovules are distinctly enclosed in an ovary, are said to be Angiospermous. It should be noticed, however, that there are some plants in which the seeds become partially naked in the course of the development of the ovary into the fruit, as in the Mignonette (fig. 665), Leontice, and Cuphea, in which cases they are sometimes termed semimude. True Gymnospermous plants, or those in which the ovules are naked from their earliest formation, should be carefully distinguished from those with seminude ovules, as the former character is always associated with important structural peculiarities in the plants themselves, as we have already noticed in treating of the stem and other organs. Other important differences will also be described hereafter, and more especially in the Physiological part of this volume, under the head of Reproduction of Gymnospermia.

Numper and Position of the Ovules.-a. Number.-The number of ovules in the ovary, or in each of its cells, varies in different plants. Thus in the Polygonacer, Composita, Tliymelacere, and Dipsacacer, the ovary contains but a solitary ovule ; in the Umbelliferæ and Araliacer, there is but one ovule in each cell. When there is more than one ovule in the ovary, or in each of its cells, the number may bc either few and easily counted, when the ovules are said to be definite, as in Esculus (fiy. 735), -and the ovary or cell is then described as binvulate, trionulate, quadriowulate, quinqueovilate, dcc.; or, the ovules may be very numerous, wheu they are said to be multionulute or indefinite, as in the Pansy (fig. 33, ov).
b. Position.--The position of the ovules with regard to the cavity or cell in which they are placed is also liable to vary. Thus when there is but one ovule, this may arise at the bottom of the ovary or cell and be directed

Fig. 731. Vertical section of the fruit of Ω specics of Rumex (Polygonacear). p. Enlarged calyx surromading the fruit. The fruit contains a single erect orthotropous seed. The position of the orule in the ovary is also deseribed as ereet and orthotropous. The embryo is inverted or antitropons.
towards the summit, as in Composite and Polygonacea (fig. 731), when it is said to be erect; or it may be inserted at the summit of the ovary and be turned downwards, as in Hippuris (fig. 732), in which case it is inverse or pendulous; or if it is attached a little above the base, and directed obliquely upwards, as in Parietaria (fig. 733), it is aseending; or if, on the contrary, it arises a little below the summit, and is directed obliquely downwards, as in the Mezereon ($f_{i g}$. 734) and Apricot, it is suspended; or if from the side of the ovary, without turning upwards or downwards, as in Crassula, it is horizontal or peltate. In some plants, as in Armeria (fig. 637), the ovule is suspended from the end of a long funiculus arising

Fig. 732.
Fig. 733.
Fig. 734.

Fig. 735.

Fig. 732. Vertical seetion of the ovary of the Mare's Tail (Hippuris tutguris). 0. Orule, which is inversc or pendulous, and matropous. s. Base of the style. f. Fuuicnlns. r. llaphe. c. Chalaza.-Fio. 733. Tertical section of the ovary of the Pellitory (Perfetarin offeimetis), with a single ascending ovale. The letters have the saue references as in the last figure. -Fig. 734. Verticul section of the ovary of the Mezereon (Diphene Mezereum), containing a solitary suspended ovule. The letters refer as before. From Jussien.-Fig. 735. Tertien seetion of a cell of the orary of a speeies of Escultes eontainiug two ovules, $o, 0$, one of which is sweminding and the other suspended. m, m. The mieropyle or formuen in the two ovules. s. Base of the style. From Jussien.
from the base of the ovary; such an ovule is frequently termed reclinate.

In the above cases the position of the ovule is in general constant, and hence this character is frequently of much importance in distinguishing genera, and even natural orders. Thus, in the Compositre the solitary ovule is always erect; while in the allied orders, the Valerianacere and Dipsacaceæ, it is suspended or pendulous; - the two latter terms are frequently used indifferently by botanists. In the Polygonacere ($f i g .731$), the ovule is also always solitary and erect; and in the Thymelacere (fig. 734), it is suspended. In other natural orders we find the position varying in different genera, although generally constant in the same ; thus, in the Rosaceæ, the genera Geum, Alchemilla, and others, have an ascending ovule, while those of Poterium, Sanguisorba, \&c., have it suspended, and in Potentilla both ascending and suspended ovules are found. In the Ranunculaceæ also we find the ovule varying in like manner as regards its position.

We will now consider the position of the ovules when their number is more than one. Thus when the ovary or cell has two ornles, these may be either placed side by side at the same level and have the same direction, as in Nuttallia, when they are said to be collateral ; or they may be placed at different heights, and then they may either follow the same direction, when they are superposed, or one ovule may be ascending and the other suspended, as in Fisculus (fig. 735). The position of the ovules in those cases where they are in clefinite numbers, is also usually constant and regular, and similar terms are employed; but when the number of ovules in the ovary or ccll is indefinite, the relations are less constant, and depend in a great measure upon the shape of the cell and the size of the placentas. Thus in the long ovaries of many of the Leguminosæ and Cruciferæ (fig. 615), the orules are superposed, and by not erowding each other they will all be turned in the same direction; while, on the contrary, if the ovules are numerous, and developed in a small space, they will necessarily press against each other, and acquire irregular forms and varying positions, according to the direction of the pressure. In describing these varying positions the same terms are used as those referred to when speaking of the relations of the solitary ovule. Thesc terms are also applied in the same sense to the relations of the seed in the pericarp.

Development and Structure of the Ovule.-The ovule first appears on the placenta as a little conical cellular projection, which gradually enlarges and ultimately acquires a more or less rounded oroval form, which is sessile or stalked, and is termed the mucellus or muclcus (fig. 738), and which may be regarded as corresponding to the megasporamium of some of the vascular Cryptogans (page 369). This nucellus is at first perfectly uniform in texture and appearancc. presenting no cavities except those of the ordinary parcuchymatous cells of which it is composed, and having no integuments or coats; but as development proceeds
a special cavity is formed at or near its apex (fig . 739, c), in which the embryo or rudimentary future plant is clereloped after fertilisation; henee this cavity is ealled the embryo-suc. It is analogous to the megaspore (page 370) of eryptogamous plants. In rare cascs, as in the Mistletoe, two or three embryo-sacs are formed. This sae is produeed by the speeial devclopment of one of the eells lying near the centre of the nucellus, which as it continues to inerease in size presses upon the surrounding parenehymatous eells, and thus oceasions their more or less complete absorption. This sac sometimes causes the almost entire absorption of the nueellus, and even projeets beyond it, either through the opening in its eoats afterwards to be deseribed, called the micropyle (figs. $742, e$, and $743, m$), or through its sides in various direetions, by whieh one or more saecate proeesses are formed. More usually, however, the tissue of the nucellus is not entirely absorbed, but a variable proportion is left surrounding the embryo-

Fig. 736.
Fig. 737.

Fig. 736. Apex of the embryo-sae in the orule of Polygonum diturictlum. s, s. Syuergidæ. e. Oosphere.-Fig. 737. The internal parts of the ovule a short time before fertilisation. ". Inuer coat of the orule. s. Embryo-snc. b. Germinal vesicles. c. One of the nntipodal eells. (After Hofmeister.) sac. The sae eontains at first an abundance of watery cellsap and protoplasm, in whieh, before fertilisation takes plaee, there are usually three rounded or oval large nueleated cells formed at its apex, which have been termed the germinal or embryonic vesicles (fig. 737, b). Different views have been entertained of the strueture of these germinal vesicles. But they are now universally regarded as simply nueleated masses of protoplasm, or, in other words, primordial cells, as will be afterwards fully explained when treating of the Reproduetion of the Angiospermia. Less frequently one, three, or more of these eells make their appearanee. Sometines the germinal vesieles are eonsiderably elongated, being attaehed to the wall of the embryo-sae by the narrower end, and projecting by their free rounded extremity into the cavity of the sae. The two upper of these germinal vesieles (fig . 736) have been termed the synergide, s, s; and the third, whieh is plaeed somewhat laterally lower down, is the oosphere or orum-cell, e, which ultimately beeomes the embryo, as will be explainced hereafter (see Reproduction of the Phanerogamia). Besides these germinal vesieles, the embryo-sae usually eontains, before fertilisation has been aeeomplished, two or more small nueleated cells whiel have been called antipodul cells (fig. 737, c), from
being commonly situated at the opposite end of the sac to the gerninal vesicles, that is, at its base. These cclls have a cellwall formed of cellulose; but their purport is unknown, and their existence is temporary, as they disappear after fertilisation.

Some ovules, as those of the Mistletoe (fig. 739), consist simply of the nucellus, n, and embryo-sac, c, as above described, in which case the nucellus is termed nucled (fig. 738) ; but in almost all plants it becomes enclosed in one or two coats. Thus, in the Walnut there is but one coat, which appears at first as a little circular process around its base ; this gradually increases in size, and by growing upwards ultimately forms a sheath or cellular coat to the nucellus, which it entirely closes except at the apex, where a small opening may be always observed (fig. 740 , end). The coat thus formed, where there is but one, is called the integumentum simplex, s; and the orifice, end, at the apex of the nucellus, n, is termed the micropyle or foramen. Besides the

Fig. 738. Orule of the Mistletoe (Viscum album), consisting of a naked nucellus. -Fig. 739. The same ovalc cut vertically to show the embryosac, c, in the nucellus, n.-Fig. 740 . Ovule of the Walnut (Jugluns regi(f). n. Projecting end of the nucellus. s. Coat covering the mucellus except at the formmen, end.-Fig. 741. Ovule of a species of Polygonum. f. End of ovule where it is attached to the placenta. p. Primine. s. Sceundine. ex. Exostomc. end. Endostome. n. Projecting end of the nucellus.

Walnut, there is only one coat formod in the Compositr, Campanulaceæ, Lobeliaceæ, and some other orders.

In most plants, however, the ovule has two coats, in which case we observe two circular or annular processes around the base of the nucellus, the inncr one being first developed; these processes continue to grow upwards as before described, until they also ultimately form two sheaths or coats, which entirely enclose the nucellus except at its apex (fig. 741). The inner coat is at first seen to project beyond the outer, but the latter ultimately reaches and encloses it. The inner coat is usually terined the secundine (figs. 741,s, and 742, c), and the outer the primine ; but some botanists, following the order of development of the coats, term the inner coat the primine, and the outer the secundine, thus reversing the order of names as above mentioned. Others, to prevent confusion, more properly term the inner coat or secundine, the integuncutum internum ; and the outer coat, or primine, the integumentum cxternum. The orifice left at
the apex of the nueellus, as in the former instance where only one coat is present, is called the foramen or micropyle. The

Fig. 742.

Fig. 742. Section of an ovale (diagrammatic). a. Nucellus. b. Embryosac. c. Inner coat. d. Outer coat. e. Micropyle. f. Chalaza, g. Funiculus or funicle.
openings in the two eoats commonly correspond to eaeh other, but it is sometimes found eonvenient to distinguish them by distinet names ; thus, that of the outer is called the exostome (f fi. $741, e x$) ; that of the inner, endostome, end. In some plants, as in Weluitschia, the primine appears as a prolonged tubular body beyond the apex of the ovule, in whieh ease it elosely resembles a style.

The nueellus and its eoat or coats are intimately conneeted at one point by a eellulo-vaseular eord or layer, ealled the chaluza (figs. 743, ch, and 744, ch) ; but at the other parts of the ovule they are more or less distinet. This chalaza is the point where the vessels pass from the placenta, or when the ovule is stalked from the funieulus, into the orule, for the purpose of affording nourishment to it ; it is generally indieated by being eoloured, and of a denser texture than the tissue by whieh it is surrounded. The ehalaza is by some considered as the organic base of the ovule, and the mieropyle as the organie apex; but it is better to speak of the hilum as the organic base of the ovule, and the ehalaza as the base of the nueellus. Through the micropyle the influenee of the pollen is eonveyed to the embryo-sae, as will be hereafter fully described.

The development and strueture of the orules as described above refer only to those of the Angiospermia; those of the Gymnospermia present some very striking differenees, whieh will be described hereafter, when speaking of their reproduetion.

Relation of the Hilum, Chalaza, and Micropile to one another. - When an ovule is first developed, the point of union of its coats and nueellus, ealled the ehalaza, is at the basc or hilum, close to the plaeenta or funieulus; in whieh ease a straight line would pass from the mieropyle through the axis of the nueellus and its coats to the hilum. In rare instanees this relation of parts is preserved throughout its devclopment, as in the Polygonacese (fig. 743) ; when the ovule is termed orthotropous, atropous, or straight. In suel an ovulc, thercfore, the mieropyle, m, would be situated at its geometrical apex, or at the end farthest removed from tho hilum, in which ease the organie apex would eorrespond to the geometrieal apex ; while the ehaliza, ch, would be placed at the base of the ovule or liilum.

It gencrally happens, howevcr, that the orule, instcad of
being straight as in the above instance, becomes more or less curved, or even altogether inverted. Thus in the Wallflower (fg .744), and other plants of the order to whieh it belongs, as well as in the Caryophyllaeere and many other plants, the apex of the ovule becomes gradually turned downwards towards its base, and is ultimately plaeed close to it, so that the whole

Fig. 743.

Fig. 744.

Fig. 743. Vertical seetion of the orthotropous ovulc of Polygonum. ch. Chalaza. prim. Primine. sec. Secuudine. n. Nucellus. s. Embryo-sie. m. Micropyle. Fig. 744. Vertical section of a campylotropons ovile of Wallfower (Cheirtenthus). f. Funiculus. ch. Chalaza. d. Primine. s. Secundine. n. Nueellus. mic. Jieropsle.
ovule is bent upon itself, and a line drawn from the micropyle, mic, through the axis of the nueellus, n, and its conts, would deseribe a eurve; hence such ovules are called campylotropous or curved. In these ovules, the chalaza, ch, and hilum eorrespond as in orthotropous ones, but the mieropyle, mic, instead of being at the geometrical apex of the ovule, is brought down close to

Fig. 74 .

Fig. 745. The eampylotropous ovule of the Mallow in its different stages of levelopment. From Le Nrout. In a the curvature is commencing, in b it is more cvilent, in c still more marked, and in d it is completed. f. Funiculus. p. Primine. s. Sccuudine. n. End of uneellus, ext Exostome. end. Endostome.
the hilum or base. The progressive development of the campylotropous ovule is well seen in the Mallow, as represented in figure $745, a, b, c, \pi$. This kind of ovule appears to be formed by one side dereloping more extensively than the other, by whieh the mieropyle is pushed round to the base.

In a third class of ovules the relative positions of parts is
exactly the reverse of that of orthotropous ones-hence such are called anatropous or inverted ovules. This arises from the adherence of the funiculus to the outer coat of the ovulc, so that during its development the base of the nucellus is pushed up and completely inverted, so that the chalaza ($f(y .746, c h$) is removed from the hilum, h, to the geometrical apex of the ovule ; the micropyle, f, being at the same time turned towards the hilum, h. In anatropous ovules a connexion is always maintained between the chalaza and the hilum by means of a vascular cord or ridge called the raphe ($f(g .746, y$), which is the elongated funiculus adherent to the ovule. This raphe or cord of nutritive vessels passing from the placenta or funiculus, and which by its cxpansion forms the chalaza, is generally situated in anatropous ovules on the side which is turned towards the

Fig. 746.

Fig. 747.

Fig. 746. Vertical scction of the anatropous orule of the ${ }^{\text {D }}$ Dandelion. h. Hilum. f. Micropyle or foramcu. n. Nucellus. s. Base of the mncellus. ch. Chalaza. 3 : Raphe.-Fiy. 747. Longitudinal section of the amphitropous or trausverse ovule of Lemna trisulct. j. Funiculus. n. Nucellus. p. Primine. sec. Secuudiuc. s. Embryo-sac. ch. Chalaza. i_{0}. Raphc. m. Micropyle. From Schleiden.
placenta or funiculus. Anatropous ovules are very common; examples may be found in the Dandelion ($f(g .746$), Apple, and Cucumber.

Besides the three kinds of ovules mentioned above there is another kind more rarely met with which is intermodiate between orthotropous and anatropous, to which the name of amphitropers has been given. In this ovule, which is also called heterotropous or transverse, the hilum, f, is on one side, and the micropyle, m, and chalaza, ch, arc placed transversely to it (fig. 747), and therefore parallel to the placenta. In this case the hilum is comnected to the chalaza by a shor raphe, r.

The further development of the ovule will be described hercafter under the head of Reproduction of the Phanerugamia.

2. THE SEED.

Nature and Genfral Characters of the Seed as compared with the Ovule.-The 'seed is the fertilised ovule. Like the ovule, it is either attached directly to the placenta, in which case it is described as sessile; or by means of a stalk, called the funiculus or funicle (f figs. $668, f$, and $748, f$), when it is said to be stalked; its point of attachment is also termed the hilum. The position of this liilum may be commonly seen on seeds which have separated from the funiculus or placenta, by the presence of a scar, or in a difference of colour to the surrounding integument. The hilum varies much in size, being sometimes very minute, while in other cases it extends for some distance over the surface of the outer coat of the seed, as in the Horsechestnut and Calabar Bean. The centre of the hilum, through which the nourishing vessels pass, has been called the omphalodium. The hilum, as in the ovule, indicates the base of the seed, while the apex is rcpresented by the chalaza. This chalaza ($\mathrm{fig} .748, \mathrm{ch}$) is generally more evident in the seed than in the ovule, and is frequently of a different colour to the other parts. It is well seen in the Orange, and commonly in all anatropous seeds, in which case also the raphe may be gencrally noticed forming

Fig. 748.

Fig. 748. The seed of a Pea, with its integuments removed on one side. $p l$. Pircenta. f. Funieulns. rep. Raphc. ch. Chalaza: m. Micropyle. te. Testa or episperm. e. Endopleura or tegmen. The part within the endopleura is commonly ealled the nuc'eus of the seed, and is formed of cotyledons, c, gemmule or plumule, g, radicle, r, and stalk or tigellum between the plumule and radicle. a projection on the face of the seed.

The micropyle also, although smaller and less distinct than in the ovule, owing to a contraction of the surrounding parts, may be frequently observed on the seed ($\mathrm{fg} .748, \mathrm{~m}$) ; its detection is of some practical importance, as the radicle, r, of the embryo, with a few exccptions, is directed towards it. It should be noticed that while the micropyle constitutes the organic apex of the ovule, the chalaza indicates that of the seed.

The terms orthotropous, campylotropous, anatropous, \&c., are applied to seeds in the same sense as to ovules; consequently the hilum, chalaza, and micropyle have the same relations to one another in the seed as in the ovule. Thus the hilum and chalaza are contiguous to each other in an orthotropous secd, and the micropyle is removed to the opposite cnd ; in a campylotropous seed the hilum and chalaza are also near to each other, and the micropyle is brought round so as to approach the hilum ; in an anatropous seed the chalaza is removed from
the hilum and plaeed at the opposite cnd, while the micropyle and hilum correspond to each other ; while in amphitropous seeds, the chalaza and micropyle are both removed from the hilum, and placed transversely to it.

Almost all seeds, like ovules, are more or less enclosed in a pericarp, the only real exceptions to this law being in Gymnospermous plants, as already referred to (page 325) under the head of the Ovule ; and hence the division of Phanerogamous plants, as already noticed, into the Gymnospermia and the Angiospermia. The means of clistinguishing small fruits from seeds have been also alrealy described. (See pages 295 and 313.)

In describing the position of the seed in the fruit, the same terms are used as already mentioned (page 326) under the head of the Ovule. Thus a seed may be erect, inverse, pendulous, suspended, aseending, \&c. The number of seeds contained in the fruit or pericarp is also subject to variation, and corresponding terms are employed aceordingly; thus we say the fruit or pericarp is monospermous, bispermous, trispermous, quadrispermous, quinquespermous, multispermous, \&c.; or oneseeded, two-seeded, three-seeded, four-seeded, fivc-secded, maryseeded, \&e.

Having now alluded to those charaeters, \&c., which the seed possesses in common with the ovule, we pass to the consideration of its special characteristics.

Forys of Seeds.-Seeds vary much in form, and, in describing these variations, similar terms are employed to those used in like modifications of the other organs of the plaut. Fig. 749. Fig. 750. Fig. 751. Fig. 752.

Fig. 749. Rounded seed of the Watereress (Nosturtium officinalf). The testa is retienlated or netted.- Fig. 750 . Reniform seed of the Poppy (Paparer), with an alveolate or pitted testa.-Fig. 751. Obovoid seel of the Larkspur (Delphinium), the testa of whieh is marked with ridges and furrows.-Fig. 752. Seed of Chiekweed (Stelleriti), the testa of which is tuberculated.

Thus, a seed may be rounded, as in the Nasturtium (fig. 749); ovoid, as in Polygula (fiy. 705) ; oval, as in Asclepias (fig. 755); obovoid, as in Delphinium (fig. 751) ; reniform, as in Papater (fig. 750), \&c. \&c.

Structure of the Seed.-The seed eonsists cssentially of two parts ; namely, of the inner substance or body of the seed, which is commonly termed the Nucleus or Kernel (figs. 36, emb, clb, and 757, v), and Intcguments or Cocts (figs. 36, int, and 757, т).

1. The Integuments or Coats.-There are two seecl-coats or integuments. These have been variously named by botanists ; the terms employed in this volume, and those most frequently used, are testa or episperm for the outer coat; and tegmen or endopleura for the inner.
a. Testa, Episperm, or Outer Coat (fig. 748, te).-This integument may be either formed of the primine of the ovule only, or, as is more frequently the case, by the combined primine and secundine. The testa is generally composed of ordinary parenchymatous cells; but in some seeds, as in those of Acanthodium, we have in addition a coating of hair-like cells containing spiral fibres (see page 65). These cells are pressed closely to the surface of the seed by a layer of mucilage; hence if such seeds be moistened with water, the mucilage which confines them becomes dissolved, by which they are set free, and then branch out in every direction. It frequently happens, also, that the membrane of the cells is ruptured, and the elastic fibres which they contain then becoming uncoiled, extend to a considerable distance from the testa. The seeds of Collomia (sce page 45) and many other Polemoniaceous plants, \&c., exhibit this curious structure, and form beautiful microscopic objects.

Colour, Texture, and Surface of the Testa.-In colour, the testa is more generally of a brown or somewhat similar hue, as in the Almond, but it frequently assumes other colours ; thus, in some Poppies it is whitish or yellowish, in others black, in Indian Shot (Cannu) and Pieony also somewhat black, in the Arnatto and Barricarri (Adenanthera) red, in French Beans and the seeds of the Castor-oil plant beautifully mottled, and various other tints may be observed in the seeds of different plants.

The testa also varies in texture, being either of a soft nature, or fleshy and succulent, or more or less spongy, or membranous, or coriaceous, or when the interior of its cell-walls is much thickened, it assumes various degrees of hardness, and may become woody, crustaceous, \&c.

The surface of the testa also presents various appcarances, and is often furnished with different appendages. Thus it may be smooth, as in Adenanthera; or wrinkled, as in Nigella; striated, as in Tobacco ; marked with ridges and furrows, as in Delphinium (fig. 751); netted, as in Nasturtium (fig. 749) ; alveolate or pitted, as in the Poppy (fig. 750) ; tuberculated, as in Chickweed (fig .752) ; spiny, as in the Mulberry, \&c. The testa of some sceds is also furnished with hairs, which may either cover the entire surface, as in the various species of Gossypium where they constitute the material of so much value called Cotton (see page 67), and in the Silk-cotton tree (Bom$b a x$) ; or they may be confincd to certain points of the surface, as in the Willow (f ig. 756), Asclepias (fiy. 755), and Epilobirm (fig. 761). In the latter cases the-tufts of hairs, thus confined to
certain points of the testa, constitute what is ealled a coma, and the seed is said to be comose.

Other seeds, again, have winged appendages of various kinds ; thus, in the Sandwort (fig .754), the testa is prolonged, so as to form a flatiened margin to the seed, which is then de-

Fig. 753.

Fig. 754.

Fig. 756.

Fig. 753. Seed of a species of Pinus, with a winged appendage, u.-Fig. 754. Marginate or bordered seed of Sandwort (Arenarin).-Fig. 755. Comose oval seed of Asclepias, -Fig.756. Comose seed of a species of Willow (Salix).
scribed as marginate or bordered; while in the seeds of the Pinus (fig. 753, w), Catalpa, Bignonia, Swietenia, Moringa, \&c.. the testa forms wings, and the seed is said to be winged. These winged seeds must be carefully distinguished from samaroid fruits, such as the Ash, Elm, and Maple (fig. 706), where the wing is an expansion of

Fig. 757.

Fig. 757. Young anatropous seed of the White Water-Lily (Nymphera alba) cut vertieally. F. Funiculus. A, A. Gelatinous aril. T. Integuments of the sced. N.Nucleus. n. Raphe. ch. Chalaza, m. Micropyle. s. Embryo-sac. Fi. Rudimentary emmryo.
t the pericarp instead of the testa. In like manner, hairy seeds should not be confounded with pappose fruits, such as those of the Compositx, Dipsacacer (fig. 468), and Valerianaeer (fig. 46it), where the hairy processes belong to the calyx.

Bencatll the testa, in anatropous sceds (figs. 757, R, and 748, rap), and the modifieation of these termed amphitropous, the raphe or vascular cord eonnecting the hilum with the ehalaza is found. Its situation is frequently indicated by a projccting ridge on the surface of the seed, as in the Orange, while at other times it lies in a furrow formed in the substance of the testa, so that the surface
of the seed is smooth, and no evidence is afforded externally of its position.

The testa is also usually marked externally by a scar indicating the hilum or point by which it is attached to the funiculus or placenta. The micropyle, as already noticed (page 333), may be also sometimes seen on the surface of the testa, as in the Pea (f fg. $748, m$) ; but in those cases where no micropyle can be detected externallv, its position can only be ascertained by dissection, when it will be indicated by the termination of the radicle ; this being directed, as already alluded to (page 333), towards the micropyle. In some seeds, as in the Asparagus, the situation of the micropyle is marked by a small hardened point, which separates like a little lid at the period of germination: this has been termed the embryotegia.

On removing the testa, we observe the raphe, which frequently ramifies over the inner coat, and where it terminates it constitutes the chalaza ($\mathrm{fig} .757, \mathrm{ch}$, and $774, \mathrm{ch}$). The structure and general appearances of these different parts have been already described. (See page 333.)
b. Tegmen, Endopleura, or Internal Coat (fia. 748, e).-The inner membrane or coat of the seed is essentially parenchymatous like the outer. This integument usually appears to originate either from the substance of the nucellus or from the secundine of the ovule; but sometimes in other ways. In many cases, however, it seems to be altogether wanting, which probably arises from its complete incorporation or adherence to the testa. Sometimes the embryo-sac in the ripe seed remains distinct from the albumen of the nucleus (fig. 762), and remains in the form of a bag or sac which envelopes the embryo, as in the Nymphreacer, Piperacer, and Zingiberacer. To this distinct membrane the name of vitellus has been given.

When clearly distinguishable the tegmen is generally of a soft and delicate nature, although sometimes it is of a fleshy character either entirely or in part. It is usrally of a whitish colour, and more or less transparent. This layer is closely applied to the nuclens of the seed, which it accompanies in all its foldings and windings ; and in some cases even dips down into the albumen of the nucleus, and thus divides it more or less completely into a number of parts, as in the Nutmeg and Betelnut (fig. 763, p). (See Albumen, page 341.) The testa may either accompany the tegmen in its windings ; or, as more frequently happens, especially when the nucleus is curved, the tegmen alone follows the windings of the nucleus, the testa remaining in an almost even condition.

Arillus.-Besides the two integuments described above as those that are usmally found in all seeds, we occasionally find on the surface of some seeds an additional integument, which is generally of a partial nature (f iy. $757, A, A$), and to which the
name of arillus or aril has been given. No trace of this structure is present in the ovule till after the process of fertilisation has taken place. Two kinds of aril have been described, which have been respectivcly called the true arillus, and the false arillus or arillode. These have an entirely different origin; thus, the true arillus arises in a somewhat similar manner to the coats of the ovule already described (page 329), that is to say, it malkes its first appearance around the hilum in the form of an annular process derived from the placenta or funiculus, and gradually procceds upwards, so as to produce a more or less complete additional covering to the seed, on the outside of the testa. This arillus is well seen in the Nymphcea ($\mathrm{fig} .757, \mathrm{~A}, \mathrm{~A}$). But the false arillus or arillode arises from the micropyle, and secms to be a dcvelopment or expansion of the exostome, which gradually extends itself more or less over the testa to which it forms a covering, and after thus coating the seed, it

Fig. 758.

Fig. 758. Progressive development of the arillode in the seed of the Spindetree (Euonmmus). a. Arillode. f. Funiculus. 1, represents the roungest seed; 2 and 3 , the progressive development of the arillode; 4 , the oldest and fully developed seed.
may be even bent back again so as to enclose the micropyle. The gradual development of the arillode in the sced of the Spindlc-tree is well shown in fig. 758. In the Nutneg, the arillus originates from both the hilum and the micropyle ; it forms a scarlet covering to the testa, and is commonly known in commerce when dried and preserved, under the name of mace. According to Miers, the arillode in the Spindle-tree is produced from the funiculus and not from the exostome, in which case it would necessarily be an arillus, and not an arillode as commonly described. In practical Botanly both the truc arillus and arillode are commonly designated under the general term of aril.

Carmonles or Strophioles.-These are small irregular protuberances which are found on various parts of the testa. They arc always developed, like the arillus and arillode, subsequent to fertilisation, and are accordingly not found in the ovule. In the Milkwort (fig. 759) they are situated at the base or hilum of tho seed ; in the Asarabaccia (fiy. 760) and Violet on the side, for a $\quad \therefore \dot{b}, \ldots, 1$, ,
in a line with the raphe; while in the Spurge they are placed at the mieropyle. Some writers consider these earuncules as forms of the aril, of which they then distinguish four varieties, namely :-1. The true arillus, as in Nympheea (fig. 757, A, A); 2. The arillode or micropylar arillus, as in Enonymus (fig. 758); 3. The raphiou arillus, as in Asarm. (fig. 560) ; and 4. The chalazal arillus, as in Epilobium (fig. 761), where the tuft of hair's at one end of the seed is regarded as an aril. Other writers again partially adopt these views, and define the earuneules as little protuberanees growing from the raphe, and therefore originating independently of the funieulus or micropyle ; hence the earuneules of Milkwort and Spurge would be regar'ded as true or false arils aceording to their respeetive origins, and the appendages of Asarabaeea and Violet would be true earuncules. Other botanists again, instead of using the two terms strophioles and caruneules as synonymous with each other, apply

Fig. 759. Oroid seed of Milkwort (Polygula), with \& caruucule at its base or hilum.-Fiy. 760. Seed of Asarabacea (Astrum), with a caruncule on the side, which is callef by some a raphinn arillus.-Fig. 761. Section of the comose seed of Epilotium. The tuft of hairy processes is sometimes called a chalazal arillus.
the former term only when the processes proceed from the hilum, and the latter to those coming from the mieropyle. Altogether, there is a great differenee of opinion among botanists, as to the application of the terms caruncules and strophioles; but in this country they are more eommonly understood in the sense in which we have first defined then.
2. The Nucleus or Kernel (figs. 36, emb, all, and 757, s). In order to understand the structure of the body of the seed, or, as it is commonly termed, the nucleus, we must bricfly narrate the ehanges whiel the nueellus of the ovule undergoes after the process of fertilisation las been effected. Wc have already stated, that at an early period before impregnation has taken place, a quantity of protoplasmie matter of a semi-fluid nature is present in the embryo-sae. Very soon after fertilisation has been aceomplished in the Angiospermia, frequently even before
any change is apparent in the oosphere, a number of cells are produced by free cell-formation (see Cell-development) in the protoplasm of the embryo-sac around the embryo. These cells, which contain nutritive matters of various kinds, especially designed for the nourishment of the embryo developed in the sac, form what is usually ternied endosperm. In the Gymnospermia the endosperm is formcd before fertilisation. The cells existing outside the embryo-sac, or those of the nucellus gencrally; also become filled with starch and other nutritive material in rudimentary seeds, and form what has been called the perisperm.

The embryo, by absorbing the nourishment by which it is surrounded, begins to enlarge, and in so doing presses upon the

Fig. 762.

Fig. 762. Vertical section of the seed of the White Wa-ter-lily, showing the embryo enclosed in the remains of the em-bryo-sac or vitellus, and on the ontside of this the albumen surrounded by the integnments.
 parenchymatous cells by which it is enclosed, and thus causes their absorption to a greater or less extent, according to the size to which it ultimately attains. In some cases, the embryo continues to develop until it produces the destruction, not only of the parenchymatous tissue within the embryo-sac, as well as the sac itself, but also of that of the nucleus, and it then fills the whole interior of the sced, and is coated directly by the integuments. But at other times the cmbryo does not develop to any such degree ; in which case it is separated from the integuments by a mass of parenchymatous tissue of varying thickness which may be derived from that of the nucleus itself, or from both that of the nucleus and embryo-sac according to the extent to which the embryo has developed. To the tissue which thus remains and forms a solid mass round the embryo, the name of allumen has been commonly applied; but as the nature of this substance is different from that called by chemists vegetable albumen, it is now often designated as the perisperm or endosperm according to its origin as described above. Both endosperm and perisperm may be seen in the Nymphasa (figs. 757 and 762). The general name of albumen will be alone generally cmployed in future in this volume, as it is the one best understood, and so long as we recollect its origin and nature, the adoption of such a name can lead to no confusion.

From the above considerations it will bo erident that the nnelens of the seed may either consist of the embryo alone, as in the Bean and Pea (fig. 748) ; or of the embryo enclosed in cllnumen, as in the Poppy (fig. 775), Pansy (fig. 754, al), Oat (fig. 705, a), and Nymphra (fig. 762). We have two parts, therefore, to describe as constituents of the nucleus, namely; the albumen and the cmbryo.
a. Albumen, Endosperm, Perisperm.-Those seeds which have the embryo surrounded by albumen, that is, by either cndosperm or perisperm, or both, are said to be albrminous; while those in which it is absent are exclluminous. The amount of albumen will in all eases, as described above, be necessarily in inverse proportion to the size of the embryo.

The cells of the albumen contain various substances, such as starch, albuminoids, oily matters, dc., and thus aet as rcservoirs of nutriment for the use of the embryo during the process of germination. The varying contents of the cells, together with certain differcnees in the consistence of their walls, cause the albumen to assume different appearances in ripe seeds, and thus frequently to afford good characteristic marks of different seeds. Thus, the albumen is described as mealy, starchy, or farinaceous, when its eells are filled with starch-granules, as in the Oat and other Cereal grains ; it is said to be fleshy, as in the Barberry and Heartsease, when its walls are soft and thick ; or when its cells eontain oil-globules, as in the Poppy and Cocoa-nut, it is oily; or when the cells are soft, and ehiefly formed of mueilage, as in the Mallow, it is mucilaginous; and when the cells are thickened by layers of a hardened nature, so that they become of a horny consistence, as in the seeds of the Vegetable Ivory Palm and Coffee plant, the albumen is deseribed as horny. These different kinds of albumen are frequently more or less modified in different seeds by the admixture of one with the other.

Generally speaking, the albumen also presents a uniform appearance throughout, as in the seeds of the Vegctable Ivory Palm ; but at other times it is more or less separated into dis-

Fig. 763

Fig. 763. Vertienl seetion of the fruit of the Betel-nut Palm (Areca Calechu). c. Remains of perianth. f. Periearp. p. Ruminated albumen of the seed. e. Embryo.-Fig. 764. Embryo of the Lime-tree (Tilia europref). c, c. Cotyledons, eneh witl five lobes arranged in a pa'mate manner. r. Radicle.
tinct eompartments by the folding inwards of the tegmen as already described (see page 337). In the latter case the albumen is said to be ruminated, as in the Nutmeg and Betel-nutor apeca (fiy. 763, p).
b. The Embryo is the rudimentary plant, and is therefore necessarily present in all true seeds; it is the fertiliser oosphere
of the embryo-sac. The embryo being the rudimentary plant, it is necessarily the most important part of the sced, and it contains within itself, in an undeveloped statc, all the essential parts of which a plant is ultimatcly composed. Thus we distinguish, as alrcady noticed in the first chapter, thrce parts in the embryo ; namely, a radicle, plumule or gemmule, and onc or more cotyledons. These parts may be readily recognised in many seeds; thus in the embryo of the Limc (fig. 764), the lower portion, r, is the radicle or portion from which the root is dcveloped; the two expanded lobed bodies above, c, c, are the cotyledons; and between these the plumule or gemmule is placed. In the Pea, again (f ig. 16), the two fleshy lobes, c, c, are the cotyledons, between which there is situated a little axis, t (tiyell 1 um), the upper part or bud-like portion of which is the plumule, n, and the lower part, r, the radicle.

Fig. 765. Germinnting embreo of the Oat. r. Rootlets coming through shenths, co. c. Cotyledon. $\%$. Young stem. These parts are still bettcr observed when the embryo has begun to develop in the process of germination; thus in fig. 18, which represents the French Bean in that condition, r is the radiclc from which the roots are being given off below, the cotylcdons are marked c, c, and the plumule is seen coming off from between the cotyledons, and forming a direct continuation of the axis from which the root is developed below. The tigellum or hypocotyledonary axis is generally a mere point, but at other times it forms a short stalk (figs. 16, and $748, t$). Plants which thus posscss two cotyledons in their embryo are called Dicotyledonous. But there are plants in which, as already noticed, there is commonly but one cotyledon present (figs. 705, c, and $765, c$), and which arc, accordingly, termed Monocotyledonous. In rare instances, however, a monocotyledonous cmbryo has more than one cotyledon, and then the second cotyledon alternates with the first, instead of being opposite to it, as is invariably the casc with the two cotyledons of Dicotyledonous plants. By the difference thus presented in the embryos of Flowering Plants, as already described in the first chaptcr, thesc plants arc divided into two great classcs, called respectively Dicotyledones and Monocotyledones.
(a) The Monocotyledonous Embryo. - The parts of the monocotylcdonous embryo are in gencral by no means so apparent as those of the dicotylodonous. Thus the cmbryo at first sight, cxternally, usually appears to be a solid undivided body of a cylindrical or somewhat club-shaped form, as in Triylochin (fig. 767) ; but if this be more carefully cxamined, a littlo slit, f, or
chink, will be observed on one side near the base ; and if a vertical section be made parallel to this slit, a small conical projection will be noticed, which corresponds to the plumule : and now, by making a horizontal secticn, the cotyledon will be noticed to be folded round the plumule, which it had thus almost entirely removed from view, only lcaving a little slit corresponding to the union of the margins of the cotyledon; and which slit thus became an external indication of the presence of the plumule. In fact, the position of the cotyledon thus rolled rom the plumule is analogous to the sheaths of the leaves in most Monocotyledonous plants, which thus, in a similar manner, enclose the young growing Fig.766. Fig.767. parts of the stem.

In other monocotyledonous embryns the different parts are more manifest ; thus, in many Grasses, as, for instance, the Oat (fig. 705), the cotyledon, c, only partially encloses the plumule, g, and radicle, r; and thus these parts may be readily observed in a hollow space on its surface (fig. 704).

We have already stated (page 342) that a monocotyledonous embryo has accasionally more than one cotyledon, in which case the cotyledons are always alternate, and hence such embryos are readily distinguished from those of Dicotyledonous plants, where the cotyledons are always opposite to each other if there are but two ($f i g .773$), or whorled ($f i g .772$, c) when they are more numerous (page 344).

The inferior extremity of the radicle is usually rounded (f g. 767, r), and it is through this point that the rootlets, r, burst in germination (fig. 765). The radicle is usually much shorter than the cotyledon, and generally thicker and denser in its nature; but in some embryos it is as long, or even longer, in which

Fig. 766. Vertical seetion of a mature carpel of a species of Triglochin. p. Pericarp. s.Stigma. g. Seen. r. Raphe. f. Funiculus. c. Cha-laza.-Fig.767.Embryo of Triglochin. r Radicle. f. S'it corresponding to the plumule. c. Cotylcdon. Frons Jussieu. case the embryo is called macropodous.
(b) The Inicotyledonous Embryo.-These embryos vary very much in form : most frequently they are more or less oval, as in the Bean and Almond (fig. 768), where the embryo consists of two nearly equal cotyleclons, c, between which is enclosed a small axis or tiyellum, t, the upper part of which, g, is the plumule, and the lower, r, the radiclc. The tigellum upon germination appears as a little stalk (f ig. $18, t$), supporting the cotyledons, and hence it is also termed the hypocotyledonary usis (see page 342).

In by far the najority of cases the two cotyledons are nearly of equal size, as in tlie Pea (f iy. 16, e, c) ; but in some cmbryos, as in Trapu, some Hirats, \&c. (fig. $769, c^{\prime}, c$, they are very
unequal. Again, while the cotyledons usually form the greatcr part of the embryo (fig. 16, c, c) ; in other instances, as in I'elece butyrusa (fig. $771, c$), they form but a small portion. In Carapa (fig. 770), again, the two cotyledons become united more or less

Fig. 71.
 one of the cotyledons has been removed. c. The cotyledou which has been left. r. Radicle. g. Pinmule. t. Tigclium. c^{\prime}. Scar left br the removal of the other cotyledon.-Fig. 769. Vertical section of the embryo of a species of Hircer. c^{\prime}. Large cotyledon. c. Small cotyledon. g. Plumule. r. Radicle.-Fig. 770. Vertical section of the embryo of C'arturl guianensis, showing the a'most complete union of the cotyledons, the linc, c, only dividing them. r : Radiclc. g. Plumule.-Fig. 771. The embryo of Pehea butyrosa. t. Large tigellum. c. Rudimentary cotyledons.
completely into one body, so that the embryo appears to be monocotyledonous; but its nature is readily ascertained by the diffcrent position of the plumule in the two cases; thus, in the monocotyledonous embryo the

IIG. 772.

Fig. 773.

Fig. 772. The so-called polycotyledonousembryo of a specics of Pinus beginning to germiuate. c. Cotyledons. r. Radicle. f. Tigellum.-Fig. 773. The cmbryo of Geranium molle. c. Cotyledous, ench of which is somewhat lobet, rand furnishod with a petiole, p. r. 1zudicle. plumule is situated just below the surface ($f i g .705, g$) ; but here (fig. 770), the plumule, g, is in the axis of the cotyledons.

The cotyledons are sometimes altogether absent, as in Ciuscutu. At other times their number is increased, and this may either occur as an irregular character, or as a regular condition, as in many Conifere (fig. $772, c$), where we frequently find six, nine, or even fifteen cotyledons; hence such embryos have been termed polycotylerlonous. It scems, however, that this appearance of a larger number of cotyledons than is usual in Dicotyledonous plants, arises from the normal number becoming divided down to their base into scgments. In all cases where the number of cotyledons is thus increased, they are arranged in a whorl (fig. $772, c$).

The cotyledons are usually thick and fleshy, as those of the Bean and Almond (fig. 768), in which case they are termed Heshy; at other times they are thin and leaf-like, as in the Lime (fig. $764, c, c$), when they are said to be foliaceous. The foliaceous cotyledons are frequently provided with veins, and stomata may be also sometimes observed on their epidermis; but these structures are rarely to be found in fleshy cotyledons. Fleshy cotyledons serve a similar purpose to the albumen, by acting as reservoirs of nutritious matters for the use of the young plant during germination; hence, when the albumen is absent, the cotyledons are generally proportionately increased in size.

The cotyledons are commonly sessile, and their margins are usually entire, but exceptions occur to both these characters; thus, in Geranium molle (fig. 773, p), they are petiolate; while in the Lime (fig. 774, c, c) they are distinctly lobed; and in the Geranium ($\mathrm{fig} .773, c$), they are also somewhat divided or lobed at their ends.

The cotyledons also vary in their relative positions to each other. Generally they are placed parallel, or face to face, as in the Almond (f ig. 768), Pea (fig. 16), and Bean; but they frequently depart widely from such a relation, and assume others analogous to those already described in speaking of the vernation of leaves and the restivat:on of the floral envelopes. Thus each of the cotyledons may be either reclinate, conduplicate, conrolute, or circinate. These are the commoner conditions, and in such instances both cotyledons are either folded or rolled in the same direction, so that they appear to form but one body; or in rare cases they are folded in opposite directions, and become equitant or obvolute; or other still more complicated arrangements may occur.

Fici. 774.

Fig. 775.
Fig. 76.

Fig. 77t. Vertical section of the seed of the Pansy or Heartsease. h. Hilum. pil. Embryo with its malicle, r, and entylcdons, co. ch. Chalazi. al. Alhumen. ro, Raphe. The embryo is ereot or homotropons. - F'ig. 775. Fertical seetion of the seed of the Poppy, with the embryo slightly curvel in the axis of albumen.-Fig.776. Vertical section of the secd of Dunits, showing its spiral embryo.

The position of the radicle in relation to the cotyledons is also liable to much variation. Thus the radicle may follow the same direction as the cotyledons, or a different one. In the former case, if the embryo be straight, the radicle will be more
or less continuous in a straight linc with the cotyledons, as in the Pansy (f fig. $774, r$) ; if, on the contrary, the embrro is curved, the radicle will be curved also (firg. 775), and sometimes the curvature is so great that a spiral is forncd, as in Bunias (f ig. 776). In the latter case, where the direction of the coty-

Fig. 778.

Fig. 777. Embryo of the Woad (Istlitis tinctoriti). 1. Undivided. 2. Horizontal section. c. Cotyledous. r. Radicle.-Fig. 778. Embryo of the Wallifower (Cheirunthus Cheivi). 1. Undivided. 2. Horizontal section. r. Radicle. c. Cotyledons. ledons and radicle is different, the latter may form an acute, obtuse, or right angle to them; or be folded back to such an extent as to lie parallel to the cotyledons, in which case the radicle may be either applied to their margins, as in the Wallflower ($f i g .778, r$), when the cotyledons are said to be accumbent; or against the back of one of them, as in Isatis (f fy. $777, r$), when they are termed incumbent.

Having now described the general characters of the monocotyledonous and dicotyledonous embryo, we have, in the last place, to allude briefly to the relation which the embryo itself bears to the other parts of the seed, and to the pericarp or cell in which it is placed.

Relation of the Embryo to the other Parts of the Seed, and to the Fruit. - In the first place with regard to the albumen. It must necessarily happen that when the albumen is present, the size of the embryo will be in the inverse proportion to it ; thus in Grasses ($f i g .705, a$) we have a large dcposit of albrmen and but a small embryo, while in the Nettle (fig. 779) the embryo is large and the albumen very small. The embryo may be either external to the albumen (figs. 705 and 782), and thus in contact with the integuments, as in Grasses, in which case it is described as e.rtemal; or it may be surrounded by the albumen on all sides, exccpt on its radicular cxtremity, as in the Pansy or Heartsease (fyy. 754), when it is internal. Sometimes the end of the radicle, as in the Conifero, becomes united to the albumen, and can no longer be distinguished.

The embryo is said to be axile or axial when it has the same direction as the axis of the seed, as in Heartscase (fiy. rit , pl) ; or when this condition is not complied with, it is abavile or eccentric, as in Rumex (fig. $\left.\tau 80^{\circ}, p l\right)$. In the latter case, the cmbryo is frequently altogether on the outside of the albumen, and directly below the intcguments, as in Mirabilis Jalapro (fy . 781 , e) and Lychnis ($f y .782, \mathrm{cmb}$), when it is describerl as peripherical.

We lave already observed, that the radicle as a general
character is turned towards the micropyle (fg . $780, r$), in which case it is said to be homoblastic ; and the cotyledonary extremity is then directed to the chalaza, ch. Some apparent exceptic ins to these relative positions occur in the Euphorbiacere, and a few other plants, when the radicle is described as cnantioblastic; but such are merely accidental deviations arising from certain trifling irregularities in the course of the development of the parts of the seed.

Fig. 780.

Fig. 779. Vertical section of the fruit of the Nettle, coutaining a single seed. t. Integuments of the secd. pl. Placenta. r. Radicle, st. Stigma. -Fig. 780. Vertical section of the frnit and solitary crect orthotropons seed of the Dock (Rumex). ov. Pericarp. mic. Micropyle. pl. Embryo which is inverted or antitropous, and turned towards one side of the albumen, alb. ch. Chalaza. ro Radicle.-Fig. 781. Vertical scction of the carpel of Mirabilis Jalapa, containing one seed. a. Pericarp. s. Style. e. Peripherical embryo with its radicle, r, and cotylcdons, c. p. Albumen. ℓ. Integuments of the seed.-Fig. 782. Vertical section of the sced of Li.chnis dioica. te. Integuments. (ml . Embryo on the outside of the albumen, alb. The embryo is amphitropous.

While the relation of the radicle and cotyledonary portion is thus seen to be generally constant, it must necessarily happen from the varying relation which the hilum bears to the micropyle and chalaza, that its relation to the radicle and cotyledonary portion of the embryo must also vary in like manner. Thus in an orthotropous seed, as Rumex (fig. 780), the chalaza and hilum coincide with each other, and the radicle is then turned towards the apex of the seed, and the cotyledonary portion to the chalaza and hilum ; in this case the embryo is said to be antitropons or inverted (figs. 731 and 780). In an anatropous seed, as Heartsease (fig .774), where the micropyle is contiguous to the hilum, h, and the chalaza, ch, at the opposite extremity, the radicle, r, will point towards the hilum or base of the seed, and then the embryo is said to be erect or homotropons. In a campylotropous seed, where the chalaza and micropyle are both near to the hilum, as in Lychnis (fig. 782),
the two extremities of the embryo, which in such eases is generally peripherical, become also approximated, and it is said to be amphitropous. Thus, when we wish to know the direction of the embryo, by ascertaining the position of the hilum, chalaza, and micropyle, it is at once evident.

We have now lastly to explain the different terms which are in use to express the relations which the embryo bears to the cavity or cell in which it is placed. We have already described the terms used in defining the position of the seed to the same cavity (see page 334), which we found might be either erect, inverse, suspended, pendulous, ascending, or horizontal, in the same sense as previously mentioned when speaking of the ovule (page 326). But as regards the radicle this is said to be superior or ascending, as in the Nettle ($f \mathrm{fg} .779, \imath^{\circ}$) and Rumes (fig. 780, r), when it is clirected towards the apex of the cell or pericarp; inferior or descending when it points to the base ; centripetal if turned inwards towards the axis or centre; and centrifugal when it is turned towards the sides. The above relations of the embryo to the other parts of the seed and to the cavity or cell in which it is placed, are sometimes of much practieal importance.

Section 7. Theoretical Structure or General Morphology of the Flower.

Having now taken a comprehensive view of the different organs of the flower, we are in a position to examine in detail the theory which has been leept constantly in view in their description, namely, that they are all modifications of one common type, -the leaf. The germ of this theory originated with Limneus, but the merit of having first brought it forward in a complete form is due to the poet Goethe, who, as far back as 1790 , published a treatise 'On the Metamorphoses of Plants.' The appearanee of Gocthe's treatise at onee drew the attention of botanists to this subject, and it is now universally admitted that all the organs of the flower are formed upon the same plan as the leaf, or, in other words, that they are homologous parts, and that they owe their differences to special causes connected with the functions which they have severally to perform. Thus the leaf, being designed to elaborate nutriment for the support of the plant, has a form, strueture, and colour whieh are adapted for that purpose; while the parts of the flower, being designed for the purpose of reproduetion, have a structure and appearance which enable them to perform their several functions.

It was formerly said that the parts of the flower were metamorphosed leaves, but this is stating the question too broadly, beause they have never been leaves; they are to be
considered only as homologons parts to leaves, or parts of the same fundamental nature, that is, as well stated by Lindley, 'constructed of the same elements arranged upon a common plan, and varying in their manner of development, not on account of any original difference in structure, but on account of special, local, and predisposing causes : of this plan the leaf is taken as the type, because it is the organ which is most usually the result of the development of those elements,-is that to which the other organs generally revert, when from any accidental disturbing cause they do not sustain the appearance to which they were originally predisposed,-and, moreover, is that in which we have the most complete type of organisation,' and, we may add, is that which can always be distinctly traced by insensible gradations of structure into all the other parts.

Haring first defined the general nature of the doctrine of Morphology, or that doctrine which investigates the various alterations of form, and other charactcrs, which the different parts of plants undergo in order to adapt them to the several purposes for which they were designed, we shall then proceed to prove that all the parts of a flower are homologous with leaves. In doing so, we shall examine the several organs of reproduction, both as they exist in a natural condition, and in an abnormal state, commencing with the bract, and then proceeding in a regular manner with the different whorls of the flower, according to their arrangement from without inwards.

In the first place, it is evident that the bract is closely allied to the leaf, from its structure, form, colour, and from the ordinary development of one or more buds in its axil. But in order to be perfectly convinced of this analngy, let anyone examine the Foxglove, the Lilac, or the Prony, and then it will be seen that all stages of transition occur between leaves and bracts, so that it will be impossible to doubt their being homologous parts.

That the sepals are homologous with leaves is proved, not only by their colour and other characters, but also by the fact, that many flowers exhibit in a natural condition a gradual transition between sepals and bracts, and the latter, as already noticed, are readily referable to the leaf as the type. Thus, in the Camellia the transition betwcen the sepals and bracts is so marked, that it is almost impossible to say where the latter end and the former begin. In the Marsh Mallow (fig. 395) and Strawberry (fig. 396), again, the five sepals in the flowers of the two plants respectivcly alternate with five bracts; and the difficulty of distinguishing them is so great, that some botanists call both sets of organs by the name of scpals. In many flowers in a natural condition, therefore, there is a striking rescmblance between sepals and leaves; and this analogy is at
once proved to demonstration by the fact, that in monstrous Howers of the Rose, Clovcr, Primrose (fig. 783), and other plants, the sepals are frequently con-

Fif, 783.

Fig. 783. Monstrous Primrose with the sepals converted into true leaves. From Lindley. verted into true leaves.

We now pass to the petals, and although these in the majority of flowers are of a different colour to leaves and sepals, yet in their flattened character and general structure they are essentially the same; and their analogy to leaves is also proved in many natural flowers by the gradual transitions exhibited between them and the sepals. This is remarkably the case in the White Water-lily (fig. 453); also in the Magnolia and Calycanthus, where the flowers present several whorls of floral envelopes, which so resemble one another in their general appearance and colour, that it is next to impossible to say where the sepals end and the petals begin. In many other instances, also, there is no other way of distinguishing between the parts of the calyx and those of the corolla than by their different positions, -the calyx being the outer series, the corolla the inner. The analogy between petals and leaves is still further shown by the fact, that the former are occasionally green, as in certain species of Cubra, in a variety of Remunculus, and in one of Campanula rapunculides; and also from their being occasionally converted, either entirely or partially, into leaves. We thercfore conclude that petals like sepals and brasts are homologous with leaves.

The stamen is, of all organs, the one which has the least resemblance to the leaf. In describing the structure of the stamen we have shown (page 247), however, that the different parts of the leaf may be clearly recognised in those of the stamen. We find, moreover, that in many plants the petals become gradually transformed into stamens. This is remarkably the case in the White Water-lily (fig. 453); thus in the flowers of this plant the inner scries of petals gradually become narrower, and the upper extremity of each petal exhibits at first two little swellings, which, in those placed still more internally, become true anthers containing pollen. From the fact that the stamens can thus be shown to be merely modified petals, while the latter have been already proved to be modified leaves, it must necessarily follow that the stamens are so also. If we now refer to what takes place in many cultivated flowers, we hare conclusire evidence at once affurded to us of the leaf-like nature of stamens. Thus, in what are called double flowers, the number of petals is principally increased by the conversion of stamens iato petals ; hence the number of the latter increases as the former decreases.

Thus, if a double Rose be examined, all sorts of transitions may be observed between true petals and stamens. In other cases, the stamens have been actually transformed into true leaves. As far as the stamens, therefore, we have no difticulty in tracing, both in the normal and abnormal conditions of the parts of the flower, a regular and gradual transition from the ordinary leares, thus forming conclusive evidence of their being developed upon a common type with them.

If we now pass to the carpel, we find that transitional states between the stamen and carpel are unknown in the normal condition of flowers, the difference in the functions performed by them respectively being so opposite, that it necessarily leads to corresponding differences in structure. We must, therefore, look to monstrosities, or deviations from ordinary structure, for examples of such conditions. Even these are by no means common. Such way, however, be occasionally found in the Houseleek, some Poppies, and in other plants. In a paper, published by the author in the Pharmacentical Jownal for March, 1856, a very remarkable instance of this transition from stamens to carpels was described; it occurred in Pupaver bracteatum. In this case, several whorls of bodies, intermediate in their nature between stamens and carpels, were found between the true androcium and gynocium. The outer whorls of the intermediate bodies differed from the ordinary stamens, in their colour, in being of a more Heshy nature, and in being enlarged at their upper extremity and inner surface into rudimentary stigmas ; in other respects they resembled the stamens, and possessed well-marked anthers containing pollen. The whorls next in succession gradually lost their anthers, became more fleshy, bore evident stigmas, and on their inner surfaces, which were slightly concave, they had rudimentary orules. Still more internally, the intermediate bodies, whilst resembling those just described in their general appearance, became more concave on their inner surface, and bore numerous perfect ovules: and within these, the intermediate bodies had their two margins folded completely inwards and united, and thus formed perfect carpels. Such an example as this shows in a striking manner that the stamens and carpels are formed upon a common type, and hence, that the latter are, like the former, homologous organs with leaves. The analogy of the carpel to the leaf is, however, constantly shown in cultivated flowcrs, even in a more striking manner than the stamen is thus proved to be a modificd condition of that organ. Thus in many double flowers, as Buttercups and Roses, the carpols, as well as the stamens, become transformed into petals. It is by no means rare, again, to find the carpels transformed into true leaves in cultivatcd Roses, \&c. A similar condition also occurs in the Double Cherry (fiys. 587589), and has been already fully described when speaking of the carpel ; in which place we have also shown the analogy of the
carpel with the leaf, by tracing its devclopment from a littlc concave body but slightly differing in appearance from a lcaf, u_{p} to its mature condition as a closcd cavity, containing one or more ovules (see page 268). We have, thercfore, as regards the carpel, the most conclusive evidence of its being formed upon a common type with the leaf, and that it is consequently homologous with it.

The carpel being thus shown to be homologous with the leaf, it must necessarily follow that the fruit is likewise a modified condition of the leaf, since it is formed of

Fig. 784.

Fil\% 78. A monstrous or abnormaily developed Penr, showing the axis prolonged beyond the fruit, and bearing true or folinge leaves. one or more carpels in a matured state.

Further proof of the homologous nature of the parts of the flower to the leaf is afforded by the fact that the floral axis, instead of producing flowers, will sometimes hear whorls of true leaves. In other cases the axis becomes prolonged beyond the flower, as in certain species of Epacris, and frequently in cultivated Roses (f fg. 655), or beyond the fruit (fig .784), and becomes a true branch bearing leaves. To this clongation of the axis the term median prolification is usually applied.

Various other examples might be adduced of the transformation of the floral organs into more or less perfect leares. Thus, in the common White Clover, the parts of the flower are not unfrequently found in a leaf-like state. A similar condition has also been observed in monstrous Strawberry flowers. In fact, no one can walk into a garden, and examine cultivated flowers, without finding numerous instances of transitional states occurring between the different organs of the flower, all of which necessarily go to prove their common origin.

When a sepal becomes a petal, or a petal a stamen, or a stamen a carpel, the changes which take place arc said to be owing to ascending or direct metamorphosis.
But when a carpel becomes a stamen, or a stamen a petal, or a petal a sepal, or if any of these organs become transformed into a leaf, this is called retrograde or descending metamorphesis.

Wc have thus proved by the most conclusive facts, that all the organs of the Hower are formed upon a common type with the leaf, and differ only in their special development, or, in other words, that they are homologous parts. Hence a flowerbud is analogous to a leaf-bud, as we have already stated (page
218), and the flower itself to a branch the internodes of which are but slightly developed, so that all its parts are situated in nearly the same plane ; and, as flower-buds are thus analogous to leaf-buds, their parts are also necessarily subject to similar laws of development and arrangement, and hence a knowledgē of the latter gives the clue to that of the former.

The symmetrical arrangement of the parts of the flower arising from their being homologous parts with the leaves, will now be clescribed, together with the various causes which interfere to prevent or disguise it.

Section 8. Symatry of the Flower.

The term symmetry has been variously understood by different botanists. As properly applied, a symmetrical flower is one in which each whorl of organs has an equal number of parts; or where the parts of one whorl are multiples of those of another. Thus, in some species of Crassula (fig. 785), we have a symı-

Fig. 785. Flower of Crassult rubens. c, c. Sepals. p, p. Petals. e, e, e. Stamens. o, o. Carpels, at the bree of each of which is seen t scale, a, a. -Fig. 786. Flower of a Sedum.
metrical flower composed of five sepals, five petals, five stamens, and five carpels; in Sedum (fiy. 786) we have five sepals, five petals, ten stamens in two rows, and five carpels; in the Flax we have five sepals, five petals, five staniens, and five carpels, each of which is partially divided into two by a spurious dissepiment (f ig. 618) ; in the Circera (f ig. 787) we have two organs in each whorl; in the Rue (figs. 611 and 579) we have four or five sepals, four or five petals, eight or ten stamens, and a fouror five-lobed pistil ; and in the Iris there are three organs in each whorl. All the above arc therefore symmetrical flowers. When the number of parts in each whorl does not correspond, or when the parts of a whorl are not multiples of one another, the flower is unsymmetrical, as in Verbenc, where the calyx and corolla have five parts in each whorl, and the andrcecium and gyncecium only four.

A symmetrical flower in which the number of parts in each whorl is the same, as in Crassula (fig. 785), is said to be isomerons, or when the number is unequal, as in the Rue (figs. 579 and 611) and Sedum (fig. 786), the flower is anisomerous. The number of parts is indicated by a Greek numeral prefixed to the word meros, signifying a part. Thus, when there are two parts in the whorls, as in Circæa (fig. 787), the flower is dimerous, and the symmetry is said to be binary or two-membered. This may be considered either as answering to the distichous or two-ianked arrangement of leaves (see page 151); each whorl forming a cycle composed of two organs, the internodes between them not being developed ; or to successive pairs of opposite leaves decussating with each other. This arrangement is thus marked, $\sqrt[2]{ }$. When there are three parts in a whorl, as in the Squill (fig. 28), Iris, and Lily, the flower is trimerous, and the symmetry is ternary, trigonal, or triangular ; it is indicated thus, $\sqrt[3]{ }$. This may be regarded, either as answering to the tristichous arrangement of leaves (page 152), each whorl forming a cycle of three organs, the internodes between them not

Fig. 787.

Fig. 788.

Fig. 787. Diagram of the flower of Circiea -_Fig.788. Diagram of the flower of Staphyleat pinnata.
being developed; or to successive whorls of three organs in each. When there are four parts in a whorl, as frequently in the Rue (fig .579), the flower is tetramerous, and the symmetry, which is marked $\sqrt[1]{ }$, is quatemary or tetragonal; the sucessive whorls in such a flower may be compared dircctly with whorls of lcaves each consisting of four organs ; or indirectly with opposite decussating leaves combined in pairs, the internodes not being developed. When there are five parts in a whorl, as in Crassula rubens (fig .785), the flower is said to be pentamerous, and the symmetry, which is marked thus, $\sqrt[5]{ }$, quinary or pentagonal. Such a flower may be considered as answering to the pentastichous arrangement of leares (page 150) with the internodes undeveloped; or to be composed of successive whorls of five leaves, the internodes between each whorl being almost undoveloped, or very short.

Of the above arrangements, the pentamerous is most common among Dicotylcdons, although the tetramerous is also by no
means rare ; while the trimerous is generally found in Monocotyleclons.

Althougl a symmetrical flower, as above described, necessarily infers that the parts in each whorl are equal to, or some multiple of one another, still it is very common for botanists to call a flower symmetrical when the three outer whorls correspond in such particulars, while the parts of the gynœeium are unequal to them ; as in Staphylea pinnata (fig. 788), where the three outer whorls are pentamerous, while the pistil is dimerous. The gyncecium of all the organs of the flower is that which less frequently corresponds in the number of its parts to the other whorls.

By some writers, again, a flower is said to be symmetrical, when it can be divided into two similar halves, as in Cruciferee, where there are four sepals, four petals, six stamens, and two carpels (figs. 25 and 26), and the whole so arranged that the flower may be separated into two equal parts.

Various other terms are used in describing flowers, which will be best alluded to here, although some have been previously noticed. Thus a flower is said to be complete, when the four whorls-calyx, corolla, andrcecium and gyncecium-are present, as in the Rue (fig. 611) ; where one or more of the whorls is absent, the flower is incomplete (figs. 29 and 30). When the parts of each whorl are uniform in size and shape, as in the Rue (figs. 579 and 611), the flower is regular ; under other circumstances it is irregular, as in the Pea (figs. 452 and $47 \uparrow$). In a normal arrangement of the parts of the flower, the successive whorls alternate with each other, as shown in figs. 785 and 787 ; thins here, the sepals alternate with the petals, the petals with the stamens, and the stamens with the carpels.

A perfectly normal and typical flower should possess a calyx, corolla, androcium, and gynœcium, each of which should be so arranged that its parts form but a single whorl; the different whorls should consist of an equal number of members; the parts of successive whorls should alternate with one another ; and the organs of each should be uniform in size and shape, and distinct from each other and from the surrounding whorls. This normal and typical flower is, however, liable to various alterations, arising from several disturbing causes, which modify and disguise one or more of their typical characters. Some of these causes have been already alluded to in the description of the different organs of the flower, but it will be necessary for us to investigate them more fully here, and classify for systematic study. All the more important deviations of the flower from its normal character may be arranged under the following heads :-

1 st. The adhesion or union of the parts of the same whorl ; or those of different whorls.

2 nd. The addition of one or more entire whorls in one or
more of the floral circles; or increase in the number of parts of a whorl.

3rd. The suppression or abortion of one or more whorls ; or of one or more parts of a whorl.

4th. Irregularity produced by unequal growth, or unequal degree of union of the mombers of the same whorl; or by abnormal development of the thalamus or axis of the flower.

That part of Botany which has for its object the investigation of the various deviations from normal structure, both in the flower and other parts of the plant, is called Teratology.

1. The changes due to union or adhesion of parts. - We arrange these in two divisions: one of which is characterised by the more or less complete union of the members of the same whorl ; and the other by the adhesion of the different whorls. The first is frequently termed coalescence, cohesion, or concresconce; and the latter adnation or cudhesion.
a. Coalescence, Cohesion, or Concrescence.-This is of very common occurrence in the members of the diflerent whorls of the flower. Thus it occurs in the calyx, when it becomes monosepalous or gamosepalous; in the corolla, when it is monopetalous or yamopetalous; in the filaments, when it gives rise to monadelphous, dicdelphous, and polyadelphous stamens; in the anthers, when they are syngcnesions or synantherous ; and in the pistil, when the carpels are syncarpons.
b. Adnation or Adhesion of the different whorls is also by no means uncommon. Thus the calyx may be united to the corolla, or to the andrœcium, or to both; or all these whorls may be united with the ovary. These different adhesions have been already explained, under the terms perigynous, epighnous (page 254), as regards the stamens; and superior (page 227) as applied to the calyx. Again, the stamens may be united to the corolla, when they are said to be epipetalous (page 253) ; or to the pistil, when the term gynandrous is used (page 255). All the changes due to union or adhesion of parts have been fully described in treating of the different whorls of the flower.
2. Addition or Multiplication of Parts. -This may be also considered under two hcads:-1st. The addition of one or more entire whorls in one or more of the floral circles; and 2ndly, the increase in the number of the parts of the whorl, which is usually said to be due to the multiplication by division of any or all of the organs of a whorl. The former is commonly tcrmed angmentation; the latter chorisis, dchuplication, or unlining.
a. Augmentation. - The increase in the number of whorls may occur in one or more of the floral circles. Thus the Barberry (fig. 789) has two whorls of sepals, two of petals, and two of stamens ; in this flower, therefore, we have an addition of one whorl of organs to each of the threo external floral circles. In the Poppy, we have a number of additional whorls of stamens
(fig. 791). In the Magnolia order generally, the increase is chiefly remarkable in the carpels ($\mathrm{fig} .604, \mathrm{c}, \mathrm{c}$). In Nymplucea (fig. 790), the petals and stamens arc greatly increased in number. In many of the Ranunculacere, as Clematis (f f. 792), the stamens and carpels are very numerous, owing to addition of whorls. As a rule, the increase in the number of whorls is most common among the stamens. When the increase is not exccssive, the number of the organs so increased is a multiple of the normal

Fig. 789. Diagram of the flower of the Barberry (Berberis).——Fig. 790. Diagram of the flower of Nymphece.
number of parts in each whorl ; thus in the Barberry (fig. 789) the normal number is three, and that of the sepals, petals, and stamens, six, so that in each of these whorls we havc double the normal number. When the addition of parts extends to beyond three or four whorls, this correspondence in number is liable to much variation ; and when the addition is very great, as in the stamens of the species of Clematis (fig. 792), and the carpels of

Fig. 791. Diagram of the flower of the Poppy (Pupacer).-_Fig. 792. Diagram of the flower of Clematis (Renunculctece).

Liriodendron (fig. 604, c, c), it cannot be well determincd, and the symmetry is then disguised or destroyed ; which is also the case if the whorls are crowcled together.
b. Chorisis or Dechuplication.-This is gencrally looked upon by botanists as another means of multiplication of the parts of a flower. It consists in the division or splitting of an organ in the coursc of its development, by which two or more organs are produced in the place of one. Chorisis differs from augmenta-
tion in the fact, that it not only increases the number of parts, but also interferes with their regular alternation ; for augmentation does not necessarily interfere with alternation, it only obscures it when the number of additional parts is excessive, or ${ }^{-}$ when the whorls are crowded together.

Chorisis may take place in two ways, either transversely, when the inereased parts are placed one before the other, which is called vertical, parallel, or transverse chorisis; or collaterally, when the increased parts stand side by side, whieh is termed collateral chorisis. Transverse chorisis is supposed to be of frequent occurrence; thus the petals of Lychinis (fig. 501, a and many other Caryophyllaceous plants, exhibit a little scale on their inner surface at the point where the limb of the petal is united to the elaw. A somewhat similar scale, although less developed, oceurs at the base of the petals of some species of Rannuculus (fig. 498). The formation of these seales is supposed by many to be due to the chorisis or unlining of an inner portion of the petal from the outer. Other botanists consider these appendages as abortive stamens, or glands (see page 240). Each petal of Parnassia (fig. 500) has at its base a petal-like appendage divided into a number of parts, somewhat resembling sterile stamens; this is also stated to be produeed by transverse chorisis.

In plants of the orders Rhamnacer (fig. 793), and others, the stamens are placed opposite to the petals, hence they are

Fig. 793.

Fig. 793. Dirgram of the flower of Buckthorn (Rhammus cuthaticus). supposed by many botanists to be produced by chorisis from the eorolla; but others explain this opposition of parts by supposing the suppression of an intermediate whorl (see page 360). Transrerse chorisis is also frequently to be found in the androcium, but it is less frequent in the gyncecium. Examples of transverse chorisis in the gyncecium are furnished, however, by Crassula (fig. 785), where eaeh carpel has at its base on the outside a little greenish seale, a, a, which is supposed by some to be due to it.

It will be obscrved, that in the abore cases of transverse chorisis, the parts which are produced do not resemble those from whieh they arise, and this appears to be a universal law in this form of ehorisis.

Collateral Chorisis.-Wc have a good example of this form in the Stock, Wallflower, and other plants of the order Crueiferax. In these flowers, the two floral envelopes are eaeh eomposed of four organs alternating with one another (fiy. 794). Within thesc we lind six stamens, instead of four, is should be the case in a symmetrical flower ; of these two aro placed opposite to the lateral sepals and alternate with the adjacent petals,
while the other four are placed in pairs opposite the anterior and posterior sepals ; we have here, therefore, four stamens instend of two, which results from the collateral chorisis of those two. In some Crucifere, as Streptanthus (fig. 795), we have a strong confirmation of this view presented to us in the fact that, in place of the two stamens, as commonly observed, we have a single filament forked at the top, and each division bearing an anther, which would seem to arise from the process of chorisis

Fig. 795.

Fig. 796.

Fig. 794. Diagram of the flower of the common Waliflower.-Fig. 795. Flower of a species of Streptanthus, with the floral euvelopes removed, showing a forked stamen in place of the two anterior stameus. From Gray.-Fig. 796. Diagram of the flower of the Fumitory.
being arrested in its progress. The flowers of the Fumitory are also generally considered to afford another example of collateral chorisis. In these we have two sepals (fig. 796), four petals in two rows, and six stamens, two of which are perfect, and four more or less imperfect ; the latter are said to arise from collateral chorisis, one stamen here being divided into three parts. Other examples of this form are by some considered to be afforded by the flowers of many species of Hypericum ($f \mathrm{fg} .554$, f, f) ; in which each bundle of stamens is supposed to arise from the repeated chorisis of a single stamen.

Collateral chorisis may be considered as analogous to a compound leaf which is composed of two or more clistinct and similar parts. Transverse chorisis is supposed by Gray and some other botanists to have its analogue in the ligule of Grasses (fig. 374, lig), as that appendage occupies the same position as regards the leaf as the scales of Lychnis ($\mathrm{fig} .501, a$) and other plants clo to the petals (see page 239).

Lindley held that the whole theory of chorisis ' is destituto of real foundation, for the following reasons :-
' 1 . There is no instance of unlining which may not be as well explained by the theory of alternation.
' 2 . It is highly improbable and inconsistent with the simpli-
city of vegetable structure, that in the same flower the multiplication of organs should arise from two wholly different causes; viz., alternation at one time, and unlining at another.
'3. As it is known that in some flowers, where the law of alternation usually obtains, the organs are occasionally placed opposite each other, it is necessary for the supporters of the unlining theory to assume that in such a flower a part of the organs must be alternate and a part unlined, or at one time be all alternate and at another time be all unlined, which is entirely opposed to probability and sound philosophy.
'4. The examination of the gradual development of flowers, the only irrefragable proof of the real nature of final structure, does not in any degree show that the supposed process of unlining has a real existence.'

According to Lindley's view, therefore, whenever the organs of adjacent whorls are opposite to each other instead of alternate, this is supposed to arise from the suppression of a whorl which should be normally situated between the two that are present.
3. Suppression or Abortion.-The suppression or abortion of parts may either refer to entire whorls ; or to one or more parts of a whorl. We shall treat this subject briefly under these two heads.
a. Suppression or Abortion of one or more Whorls. - We have already stated that a complete flower is one which contains calyx, corolla, andrœecium, and gynoecium. When a whorl is suppressed, therefore, the flower necessarily becomes incomplete. This suppression may either take place in the floral envelopes; or in the essential organs.

Sometimes one whorl of the floral envelopes is suppressed, as in Chenopodium (fig. 29), in which case the flowcr is apetaluus or monoehlamydeous; sometimes both whorls are suppressed, as in the common Ash (fig. 30), when the flower is naked or achlamydcous.

When a whorl of the essential organs is suppressed, the flower is imperfeet, as it then by itself cannot form seed. The androecium or gynceium may be thus suppressed, in either of which cases the flower is unisexual; or both androcium and gynœecium may be suppressed, as in certain florets of some of the Compositie, \&c., when the flower is neuter. When the stamens are abortive, the flower is termed pistillate (fig. 35); or when the pistil is absent, staminate (figs. 34 and 503). The terms monoceious, diccions, and polygamous, which have reference to this point, have been already sufficiently explained (see page 241).

Some botanists, as already noticed (page 358), consider that when the organs of adjacent whorls are opposite to each other instead of alternate, such an arrangement of parts arises from the suppression of an intermediate whorl ; but this riew is
manifestly insufficient to account for such a circumstance in all cases. Thus in the Rhamnacere (fg .793), the stamens are opposite to the petals, and frequently united to them at the base, and we cannot but regard them as produced by transverse chorisis from the petals. In some cases, therefore, we regard the opposition of the parts of contiguous whorls to be due to suppression, and in others to chorisis.
b. Suppression of one or more Organs of a Whorl.-This is a very common cause of deviation from normal structure ; we can here only bring forward a few examples.

This suppression of parts is most frequent in the gynoecium. Thus in the Cruciferæ (fig. 794), we have four sepals, four petals, six stamens, and two carpels ; here two carpels are suppressed. In the Heartsease (fig. 797), we have a pentamerous

Fig. 797.

Fig. 798.

Fig. 797. Diagram of the flower of the Heartsease.-Fig. 793. Dingram of Ω Leguminous flower.-Fig. 799. Diagram of the flower of Impatiens pureifora.
flower, so far as the calyx, corolla, and androecium are concerned, but only three carpels, two carpels being here suppressed; in Leguminous plants (fig. 798), we have five sepals, five petals, ten stamens, and only one carpcl, four of the latter bcing here abortive ; in plants of the order Compositæ the calyx, corolla, and andrœcium have each commonly five organs, but only one, or, according to some botanists, two carpels.

In scme species of Impatiens (fig. 799), we have five carpels, five stamens, and five petals, but only three sepals; here two sepals are suppressed ; in Troprolum pentaphyllum (fig. 800), therc are five sepals, and but two petals, three of the latter organs being here abortive. In the Labiatæ and Scrophulariacere one of the stamens is commonly suppressed, and sometimes three; thus in the Lamium we have five parts to the calyx and corolla, but only four stamens; and in the Salvic we have also five parts to the calyx and corolla, but only two perfect stamens.

The abortion of whorls and parts of a whorl is well illustrated by plants of the Euphorbiacees, and the following diagram
from Jussieu will show this fact in a remarkable manner (fig. 801). Thus, in No. 1 we have a flower eonsisting of but two whorls, the petals and carpels being suppressed ; in No. 2, while the same whorls are present, one of the stamens is absent; in No. 3 two stamens are abortive ; in No. 4 the calyx is suppressed, and one stamen, the place of the calyx being oecupied by thrce bracts; while in No. 5 the place of the ealyx is occupicd by two bracts, and there is only one stamen present ; this of itself constitutes the flower, which is thus redueed to its simplest condition.

Fig. 801.

Fig. 800. Diagram of the flower of Tropceolum pentaphyl-lum.-Fig. 801. Diagram of flowers of Euphorbiaceous plants becoming more and more simple. After Jussien.

1. Staminate flower of Tragia camabina.

2.	"	"	Tra
3.	"	"	Anthostema senegalense.
4.		"	Adenopeltis colliguty.
5.			Euphorbia.

Besides the above examples of the suppression of parts, therc is another kind of suppression, to which the term abortion more properly applies. This consists in the degeneration or transformation of the parts of a flower. Thus in Scrophelaria the fifth stamen is reduced to a seale; in the Umbelliferæ the limb of the calyx is commonly abortive, while in the Compositie it is either abortive (fig. 465), membranous (fig. 466), or reduced to a pappose form. Many of the so-called nectarics of flowers are merely transformed stamens. In unisexual flowers such as Tamus, the stamens are frequently present as little scales. In culcivated semi-double flowers, such transformations are very common; thus we frequently find the stamens and carpels partially transformed into petals; or when the flowers are entirely double, all the parts of the androecium and gynoecium are thus eonverted into petals.
4. Irregularity.-This may be produced by thrce different eauses-namely, unequal growth of the mombers of a whorl; unequal degree of union ; and abnormal devclopment of the thalamus or axis of the flowcr. The first two eauses camnot woll be separated, and will bc, therefore, treated of under one head.
a. Unequal Growth and Unequal Deqree of Union of the Members of a Whorl. - From thesc eauscs such whorls beeome irrcgular, and we have produced what are called irregular flowers. These irrcgular forms have been already treated of ini describing the different floral organs. All the examples of irregular forms
of calyx and corolla, therefore, which have been alluded to under their respective heads, will afford good illustrations. The stamens of plants belonging to the sub-order Papilionacer of the Leguminose will afford numerous examples of unequal union in the staminal whorl ; and other illustrations will be found under the heads of the Androecium and Gynœecium.
b. Abnormal Development of the Thalamus or Axis of the Flower. - The irregular forms of flowers due to this cause have been also alluded to when describing the thalamus. Thus the flowers of the species of Nelumbium (fig.654), Liriodendron (fig. 604), Strawberry (fig.605), Raspberry (fig.606), Ramunculus (fig. 542), Rosa (fig. 454), Dianthus (fig. 602), Gymandropsis (fig. 656), and Geranium (fig. 640), will furnish examples of this form of irregularity.*

CHAPTER 5.

REPRODUCTIVE ORGANS OF THE CRYPTOGAMIA OR FLOWERLESS PLANTS.

The nutritive organs of the Cryptogamia have been already briefly alluded to in the chapter on the General Morphology of the Plant, and in our descriptions of the stem, root, leaf, and other parts. But their reproductive organs have, at present, been only very generally referred to, hence we now proceed to describe them as fully as our space will allow.

The reproductive organs of the Cryptogamia differ widely from those of the Phanerogamia; for, in the first place, they hare no flowers properly so called-that is to say, they have no trne androecium or gynœcium, the presence of which is essential to our notion of a Hower ; and hence such plants are termed Flowerless. But although these plants have no flowers, and therefore no true stamens or carpels, they have organs which perform analogous purposes to them, and to which the names of Antheridia, Pistillidia, Archegonia, and many others, have been applied. As thesc organs are, however, more or less concealed or obscure, Flowerless plants have been also called Cryptogamous, which signifies, literally, concealed sexes. The term asexual, which was formerly applied, has now been proved to be gencrally incorrect.

Secondly, as Cryptogamous plants, or Cryptogams as they are commonly called, have no flowers, they do not produce true seeds or parts containing a rudimentary plant or embryo ;

[^0]but instead of seeds, they form reproductive bodics called spores, which in most cases consist of one cell, or larcly, two or more, with commonly onc or two coats, and enclosing granular and other matters. The term spore is, however, used in a very varied sense, as our sketch of the Reproductive Organs of the Cryptogamia will show. As used above, it is intended to apply to ascwual reproductive cells. A spore having no embryo can have no cotyledonary body, which is an essential part of the embryo, consequently flowerless plants have also been called Acotyledonous. In germination again, as the spores have no rudimentary stem or root, they have connmonly no definite growth, but this takes place by an indifferent extension of one or both of their membranes. But some exceptions are. afforded to this latter peculiarity by certain spores which have on their outer membrane certain spots or pores, through which, in germination, little threads are protruded from an extension of their inner membrane. This is exactly analogous to the production of the tubes from pollen-cells; indeed, in their general structure, spores (especially those of the Fungi, which exhibit the above growth) have a striking similarity to pollen-cells. It should be noticed, however, that spores, although so similar in structure to pollen, perform essentially different functions. The threads which are thus produced by the germination of spores may either reproduce the plant directly, or give rise to an intermediate body of varying form, called the prothallium or prothallus (figs. 806 and 809), from which the fructiferous or fruit-bearing frond or stem ultimately springs.

Such are a few of the chief distinctive characters of the reproductive organs of Cryptogamous plants. The nature of these organs in the different orders of flowerless plants is, however, so remarkable, that, in order to become acquainted with them, it will be necessary for us to describe the peculiarities of each separately.

The Cryptogamia havc been arranged, as already noticed (see page 11), in two great divisions, called Cormophytes and Thallo. phytes, under which hoads we shall therefore give a sketch of the reproductive organs of the different natural orders or groups which are comprised respectively within them.

Section 1. Reproductive Organs of Cormophytes.

Cormophytes, or, as they have been also tcrmed, Acrogens, have been divided into scveral sub-divisions, which arc commonly called Natural Orders or Orders: these are the Filices, Equisetacea, Iycopodiacer, Selayinellacce, Marsileacea, Musci. and the Ifcpaticacea. Thesc orders are differently arranged and clefined by botanists ; but as our object is only to give a gcneral sketch of their reproductive organs, we have adopted the above
arrangement as perhaps, upon the whole, the simplest, and from its being the one nost commonly in use, at least in practical Botany.

1 Filices or Ferns.-The fructification of these plants consists of little somewhat rounded cases, called sporangia, capsules, or theca ($f y .802, s p$), containing spores in their interior, and springing commonly from the veins on the under surface or back of their leaves or fronds (figs. 802 and 803); or, in some few instances, as in Acrostichum, from their upper surface ; and in others, as in Hymenophyllum, from the margins. The sporangia are arranged in little heaps called sori, which vary much in form (figs. 802, sp, and $803, s$); these are either naked, as in Polypodium (fig. 802), or covered by a thin membranous layer continuous with the epidermis, which is called the indusium

Fig. 802.

Fig. 803.

Fig. 804.

Fig. 802. A portiou of a frond of the common Polypody (Polypodium vulgare), showing two sori springing from its veins. The sori are naked, and consist of a number of sporangia or capsnles, $s p$, in which the sporcs are contained. -Fig. 803. Portion of a frond of the Male-fern (Aspidium Filix-mas), with two sori, s, s, covered by an indusium. - Fig. 804. Portion of a frond of the Royal or Flowering-fern (Osmunda regalis), with its sporangia or capsules arranged in a spiked manner on a branched rachis.
or involucre, as in Aspidium Filix-mas (fig. 803). Sometimes the sporangia are so densely compacted that no intervening parenchyma can be distinguished-the latter being destroyed by the excessive development of the former ; in which case, instead of being collected in sori on the back of the fronds, they appear as little bodies arranged in a spiked manner on a simple or branched rachis, as in Osmunda (fig. 804).

The sporangium or capsule is a little cellular bag or case (fig. $805, s$), usually stalked, p, and more or less completely surrounded by a ring or amulus; this ring is frequently elastic, and thus causes the bursting of the sporangium when ripe, and the escape of its contained spores. In some Ferns the ring is imperfect, and in others it is altogether wanting ; hence Ferns
provided with a ring are called annulcte, while those in which it is absent are said to be examnelate.

The spores, which are all of one leind (isosporous or homossyorous), are usually somewhat angular in form, and have two

Eig. 805.

Fig. 805. Sporangia or capsules of a Fern (1farginaria verrucosa). s. Sporangium supported on a stalk, p, and surrounded by a ring or anuulus, which is a coutinuation of the stalk. One sporangium is represented as burst on its side, and the coutaiued spores in the act of being scattered.-Fig. 806. Uuder surface of the prothallinm of a Fern, showing archegouia etr, autheridia (n, aud root hairs h. After Borg and Schmidt.
coats like pollen-cells; and like them, also, the outer coat, which has a yellowish or brownish colour, is either smooth or furnished with little points, streaks, ridges, or reticulations. In germination the inner coat is

Fig. 807. Side view of an antheridium contaiuing a number of sperm-eells or mother-cells, se. sp. Antherozoids escaping from the antheridium after having burst the sporm-cells. first protruded in the form of aur elongated tube through an aperture in the outer coat, which ultimately bursts, and the tubular prolongation, by cell-division, forms a thin flat green parenclymatous expansion, called a prothallium (fig. 806), from which one or more root-hairs are commonly produced in its earliest stage (fig. $806, h$). On the under surface of this body (fig. S06, ar, an) there are soou produced two different structures, called antheridia and aschegonia, which represent rcspectively the andreecimm and gynceciunı of flowering plants ; hence the prothallia are moncecinus. The antheridice are cellular bodics (fig. 807) containing other minute cells called sperm-cells, se, or mother-cells, in each of which is developed a little spiril ciliated filament, sp, termed
the antherozoid, which performs the same function as the pollen of tlowering plants. The archegonia (fig. 808) are little cellular papillie of a somewhat oval form, with a canal in their centre leading to a cavity which has been called the embryo-sar, and in which, before impregnation, is a cell termed the germ-cell or

Fig. 808.

Fig. 808. Vertical section of an archegoninm, passing throngh the canal and embryo-sac. After Henfrey.—Fig. 809. Prothallium, p, p, of Adiant um Capillus-Veneris seen from below, showing the Fern-plant developed from the fertilised germ-cell of the archegonium. b. First frond. $u_{,}{ }^{\prime} u^{\prime \prime}$ " Roots. h. Root-hairs. After Sachs.

Fig. 809.

germ-corpuscle. Impregnation takes place by the contact of the antherozoids with the germ-corpuscle, and from the development of this, after fertilisation, ultimately the plant with fronds bearing sporangia is produced (fig. 809).

The Ferns are thus seen to exhibit in their growth two generations: in the first of which the spore produces a thalloid expansion, with antheridia and archegonia-the protlatlium or sexual generation; and in the second, a new plant resembling the one from which the spore was originally derived-the aserval or non-sexual generation (sporophope) or Fein proper. Thus, ytc Ferns exhibit an instance of what has been called cltermation of generations.

In some rare cases, as in Pteris cretica, no archegonia are produced, although the antheridia are fully cleveloped. The Fern proper then arises from the prothallium in a simply vegetative manner ; this is known as apogamy.
2. Equisetacee or Horsetalls.-In these plants the fully developed fructification, found usually in the early spring, is borne in cone-like or club-shaped masses at the termination of the stem-like branches (f ig. 13). Each mass is composed of a number of peltate stalked scales, on the under surface of which numerous spore-cases, called sporanyia, or capsules, are arranged (fiy. 810). These capsules, when ripe, open by a longitudinal fissure on their inner surface, and thus set frce the contained spores.

The spores, which are all of one kind, present a very curious structure; they are little rounded or somewhat oval bodies, with three coats, the outer of which ultimately splits up, so as to form four elastic filaments, whieh are attached at one end to the smooth inner coats of the spore, and terminated at the other by a club-shaped expansion (figs. 811 and 812). These

Fig. 810. Peltate stalked scale of a species of Horsetail (Equisetum), bearing on its lower surface a number of sporangia or capsules.-Fig. 811. Spore of $\%$ Horsetail furnished with fonr elaters, which are wound round it. The elaters are terminated by a club-shaped expansion. - Fig. 812. The same spore in a dry state, showing the elaters in an uncoiled condition.
spiral elastic filaments, whieh are called elaters, are at first wound round the spore ($\mathrm{fig}, 811$), but they ultimately uncoil (fig. 812), and thus appear to assist in the dehiscence of the sporangium, and in the dispersion of the spore to which they are attached.

When these spores germinate, a little pouch-like proeess protrudes from their surface by an elongation of their membrane ; this ultimately forms a green lobed flattened expansion, the prothallium, which differs however from that of the Ferns in usually being furnished only with antheridia or archegonia-the prothallia therefore are said to be diœecious, instead of monœcious as ordinarily in Ferns.

The male and female prothallia moreover differ somewhat in size, the former being the smaller of the two. As in Ferns also, from the germ-cell of the archegonium after impregnation by the antherozoids, a new plant is ultimately produced resembling in every respect that of the parent plant from whieh the spores were derived. As is the case in Ferns, therefore, we have in the Equisetaeere also an instance of alternation of generations.
3. Lycopodiacee or Club-Mosses. - The sporangia or capsules in the plants of this order are placed, like those of the Selaginellacere, in the axils or at the base of the leaves or scales, on short stalks. The leaves (f ig. 12) thus bearing the sporangia or fruetification are frequently eollected together into a kind of cone, or spike, while at other times they are scattered along the stem. The spores, like those of the Filices and Equisetacer, are of one kind only, in which they differ from the Selaginellaceæ, to which in other respeets they are closely allied, the two orders until lately being plaeed together under the common name of Lyeopodiacere.

The sporangia are somewhat reniform, two-valved cases closely resembling the antheridium or microsporangium of the Selaginellacere, and containing a number of spores, the smaller of which ultimately contain antherozoids (see Selaginellaceæ). But little is known of the early development of the spores, but they ultimately produce large prothallia, with root-hairs like the Filices, and like them these prothallia are monœcious, bearing antheridia and archegonia on their upper surface, and from the sexual action of which new plants are formed. Hence the Lycopodiacere, like the Filices and Equisetacero, also exhibit an example of alternation of yenerations.
4. Selaginellacee or Selaginellas.-The sporangia or capsules in the plants of this order are situated in the axils or at

Fig. 813. Seale or leaf of Selaginella apodf, with macrosporangium in its axil.—Fig. 814. Antheridinm or mierosporangium of the above, plaeed in the axil of a leaf or seale. After Henfrey.-Fiq. 815. Mierosporangium of a species of Selaginelle. It is two-velved, and eontains a number of small spores or microspores.--Fig. 816. Macrosporangium or megasporangium of a species of Selaginella. This is a two-valved, four-lobed sac, and contains four large spores which are commonly ealled macrospores.
the base of the leaves (figs. 813 and 814). The leaves thus bearing the fructification are frequently collected together into a kind of cone or spike, while at other times they are scattered along the stem. The spores, like those of the Marsileacer, are of two kinds (hetcrosporous), and are enclosed in separate cases. These cases are variously named; the names which would correspond to those commonly used in describing the Marsileacero would be sporangia and antheridia; but the former are also more frequently called megasporangia or macrosporangia (figs. 813 and 816), and the latter mierosporangia (figs. 814 and 815). The contents of the former are generally termed large spores, megaspores, or macrospores (fig. 816) ; and those of the latter small spores or microspores (fiy. 815).

The meyasporangia or macrosporangia are uspally two-valved
cases (fig. 816) with four lobes, each of which contains onc large spore (macrosporc) ; but in some cases they are 4 -valved. The macrospores or megaspores are in number 2,4 , or 8 .

The antheridia or michosporangia are somewhat reniform twovalved cases (fiy. 815), containing a large number of small spores (microsporcs), in which antherozoids are ultimately produced.

The large spores are considered by Hofmeister and others as the analogues of the ovules. The antheridia or microsporangia are therefore to be considered as the male organs, and the macrosporangia as the female.

- In germination, the large spore produces a prothallium in its interior, thus resembling the Marsileaces. In this archegonia are soon developed, and ultimatcly a new plant is produced by fertilisation taking place by means of the antherozoids.

An order called Isoëtaceer, which includes the species of Tsoëtes, is sometimes placed next to the Sclaginellacer. It has essentially the same characters, except as regards its nutritive organs.
5. Marsileaces or Pepperworts.-In the plants of this order the fructification is placed at the base of the leaf-stalks. It consists usually of a two-valved stalked sporocarp (fig. 817, s), which is generally Fig. 817. many-celled, or sometimes only one-celled.

Fig. 817. Frnetification of a species of Marsilea. s. Twovalved sporocnrp. p. Peduncle. Tructification. The contents of the sporocarps, and the mode in which they are arranged, vary, however, in the different genera of this order, and hence it will be necessary for us to allude to them separately.

In Mursilect, the fructification consists of a stalked two-valved hardened sporocarp (fig. $817, s$). The valves are held together by a gelatinous ring, which is at first connected with the stalk of the sporocarp, but when the latter organ bursts, the ring becomes detached from the stalk at onc end, straightens, and appears as a long gelatinous cord protruding from the sporocarp (fig. 817, p), and bearing on its sides somewhat oblong spikes of fructification, f. These spikes are at first enveloped in a membrane, and are composed of two distinct organs, called antheridia or mierosporania ; and macrosporangia, megasporangia or sporangic. Thesc organs are attached to a sort of placenta, the antheridia being on one side, and the sporangia on the other.

Each sporangium or female organ contains but one spore, called an oculary spore, macrospore, or megaspore. It consists of a central nucleus, surromed by a cellular coating except at its apex, where there is a littlc cavity. According to Hofmeister,
' this carity is gradually filled up with cellular tissue, constituting a conical prothallium confluent with the nucleus. A single archegonium is formed in the centre, the orifice of which corresponds with the apex of the prothallium.' Fertilisation takes place by means of the antherozoids of the microspores.

The antheridit or male organs contain a number of small cells (ficy. 818), which ultimately develop long spiral antherozoids. These small cells are called pollen spores, small spores, or microspores.

In Pilularia the fructification consists of stalked, pill-shaped, hairy sporocarps. The interior of each sporocarp is divided usually into four cells (fig. 819), and when ripe it opens by four valves. In the interior of each cell there is a mucilaginous process or placenta attached to the walls, upon which are placed numerous antheridia and sporangia, as in Marsilea. The structure of these antheridia and sporangia resembles in all cssential

Fig. 818.

Fig. 819.
Fig. 818. Antheridium of a species of Marsilea containing microspores. After Le Maout. Fity. 819. Trausverse section of the sporocarp or sporc fruit of Pilularia globuliferu. After Henfrey.--Fig. 820. Vertical section of the sporocarp of Salvinia, showing sporangia in onc cavity, b, and anthcridia in the other cavity, a.
particulars those of Marsilea. In fact, the only difference between the fructification of Marsilea and Pilutariu is the more complicated nature of the sporocarps in Marsilea.

The fructification of Salvinia (fy .820) appears to rescmble that of Mcorsilece and Pilulurica, except that the anthericlia, , and sporangia, b, are here contained in separate sacs, and are attached to a sort of central cellular placenta. In germination, also, the prothallium of Salvinia differs from that of Marsilect and of I'ihuturia, in producing several archegonia, instead of only one, as is the case with them. From thicse causes the Marsileaces are frequently divided into two orders, namely, Marsileaces and Salviniacese, the former including the genera Piluleriu and Mursilect, and the latter those of Sulvinia and Azolln. The common name of Rhizocarpcee is also frequently applied to the two combined orders.

In reviewing the fructification of the Marsilcacer, we find that it differs from the Filices, Equisetacea, and Lycopodiacee in producing two distinct liinds of spores, and in the prothallium not forming a distinct expansion on the outside of the spore, as is the case with them, but being confluent with the spore. These characters show that the Marsileacere are closely allied to the Selaginellacere.
6. Muscr or Mosses. - The reproductive organs of this order are of two kinds, which are called antheridia (fig. 821), and arehegonia or pistillidia (fig. 822). These are surrounded by leaves, called perichrotial ($\mathrm{fg} .824, f$), which are usually of a different form and arrangement to those of the stcm ; and in some Mosses they have, in addition to the perichratial leaves, another covering formed of three or six small leaves, of a very different appearance to them, termed perigonial, and constituting collectively a perigone. The antheridia are regarded as the male organs, and the archegonia or pistillidia as the female.

Fig. 821.
Fig. 822.

Fig. 821. Antheridium, a, of the Hair-moss (Polyllichum), containing a mumber of cells, c, in each of which there is a single antherozoid. p. Paruphyses, surrounding the antheri-dimm.- $F^{\prime} i g$. 822. Archegouinm or pistillidium of a Moss surrounded by partphyses.

The antheridia and archegonia sometimes occur in the same perigone, in which casc such Mosses have been termed hermuphodite. More frequently, however, they are in difterent perigones, and then both kinds of reproductive organs may occur on the same plant, or on separate plants (figs. 9 and 10); in the former case we apply the term monocious, in the latter dincions.

The antheridium or male organ is a somewhat elliptical, more or less rounded or elongatcd cellular sac ($\mathrm{fig} . \mathrm{S} 21, \alpha$), which is filled at maturity with a number of minute cells, c, termed sperm-eells or mother-cells; in each of which there is a single spiral antherozoid. The antheridium opens by an irregular perforation at its apex, and thus disclarges the sperm-cells with their antherozoids. Among the antheridia there are generally to be found slender cellular jointed threads (f fo. $821, p$), called paraphyses, which are probably nothing morc than abortive antheridia, as they appear to perform no special function.

The archegomia, like the antheridia, are also usually surrounded by filmentous cellular bodies, called peraphyses, which
appear to be in this case abortive archegonia (fig. 822). The wrehegonium or female organ is a flask-shaped cellular body with a long neck, the whole somewhat resembling an ovary with its style and stigma ($f(y .822$). The neck is perforated by a canal which leads into a carity, at the bottom of which is a single cell, called the germ or embryonal cell. The case of the archegonium is called the epigone. This germ-ccll appears to be fertilised, as in Ferns, by the antherozoids passing down the canal until they reach it. In the case of Mosses, however, the fertilised germ-cell does not directly develop a new plant like its parent, but after fertilisation has taken place, the germ-cell becomes gradually developed into a somewhat conical or more

Fig. 823.
Fig. 824.

Fig. 823, Coseinodon pulcinalus. sp. Sporangium enclosed in the culyptric. 1. Sete or stalk. r. Vaginule. From Henfrey. - Fig. 824. The Hygrometric Cord-moss (Funariu hygrometrica). f. Perichatial lenves. p. Stalks or sete, encll of which supports a sporangium, u, eovered by a calyptra, c.- Fig. 825. Sporangium of the Extinguisher-moss (Encalypta vulyaris) before dehiscence. u. Sporaugium covered by a transjarent enlyptra, c, and supported on a seta, s. Beneath the ealyptra is seen the lid or operculum, 0 . Fit. 826. The sporangium, u, of $f i g$. 825 nfter dehiscence. The calyptrac c, and operculum o, being removed, the peristome, p, may be seen.
or less oval body ($f(y .823, s p$) elevated on a stalk, t, and as it grows upwards it bursts the epigone, and carries one portion of it upwards as a kind of hood (fig. 824, c), while the other portion remaius below as a sort of sheath (fig. $823, v$), round the stalk. The contral portion, formed by the development of the embryonal cell, is called the sporangium (figs. $824, u$, and 825 t) ; the stalk the seta (fiys. 824, p, and $825, s$); the hood the calyptra (figs. 824, c, and 825, c) ; and the sheatl at the base the ragimule (fig. 823, v).

The sporanaium, or capsule, as it is also termed, when fully formed, is a hollow urn-like case (figs. 827 and 828, u), the centre of which is usually occupied by a cellular axis, called the columella (fig. 829), and the space between this axis and the walls
of the sporangium is filled with free spores, which are small eells with two eoats and markings resembling those of pollencells. The sporangium is either indehiseent; or it opens by four vertieal slits so as to form four valves, as in the sub-order Andræeæ; or more eommonly by a transverse slit elose to its apex, like fruits with eircumseissile dehiseence, by which a kind of lid is produced, ealled the operculum (figs. 826,o, and 827) ; whieh is either persistent or deeiduous. The sporangium is sometimes mueh dilated at the base, where it joins the seta ; this swelling is ealled an apophysis, or, if it only oeeurs on one side, a struma.

The wall of the sporangium is eommonly described as eonsisting of three cellular layers, the outer of which forms the opereulum, just deseribed, and the inner two layers the peristome.

Fig. 827.

Fig. 828.

Fig. 829

Fig. 827. Pottia truncala, shoming the separation of the operculum from the sporangium. From Henfrey.- Fig. 828. Sporangium, n, of the Hair-moss, deprived of its calyptra and operculum. p. Peristome. e. Epipluragma or tympanam.-Fig. 829. Transverse section of a sporangium of the Hair-moss, showing the columella surrounded by free spores.
At the dehiscence of the sporangium the stoma or mouth is entire, smooth, or unfurnished with any processes (fig. 827); or it is surrounded by one or two fringes of teeth, ealled eollectively the peristome ($\mathrm{fg} .826, p$), whieh, as just stated, are formed from the two inner layers of the wall of the sporangium. These teeth are always four or some multiple of that number. Sometimes a membrane from the inner wall is stretched aeross the mouth of the sporangium, and forms what has been ealled the cpiphragma or tympanm (fig. 82S, e). When the mouth is naked, the Mosses in which sueh a sporangium is found are ealled gymmostomons or notied-mouthed; when the mouth is surrounded by a single row of teeth, they are said to be aploperistomous ; or, when with two rows, they are diploperistomous. The different appearances presented by the teeth, as well as their number nud degree of cohesion, form important distinetive charaters
in the different genera of Mosses. The operculum, as already stated, is formed by a projection of the outer laycr of the wall of the sporangium. At the point where the operculum separates an elastic ring or annulus is produced, which encircles the mouth of the sporangium.

In germination, the inner coat of the spore is protruded as a tubular process, which ultimately produces a kind of prothallium in the form of a green cellular branched mass, somewhat like a Conferva. This is called the Protonema, and upon its threads are subsequently developed leafy shoots, upon which archegonia and antheridia are afterwards developed. In Mosses, therefore, we have another instance of alternation of generations.
7. Hepaticacee or Liverworts. - The reproductive organs of Liverworts are of two kinds like those of Mosses, to which this order is closely allied; they are called antheridia, and

Fig. 830. A portion of the thallus or thalloid stem of Marchantia nolymorpha. r. Receptacle, supported on a stalk, s. In the upper surface of the receptacle the autheridia are imbedded.- Fig. 831. Anthcridium of Merchantia, discharging its small cellular conteuts (sperm-cells).
archegmia or pistillidia, and both kinds may be found on the same plant, or on different plants; hence these plants are either monecious or dicecious.

The antheridicu or male organs are variously situated in the different genera of this order; thus, in the leafy plants they are placed in the axils of leaves, as in some species of Jungermannia; in other plants they occur in the substance of the frond or thalloid expansion, as in Riccia and Fimbriaria; and in others, as in Marchantia, they are found imbedded in the upper surface of peltate or discoid-stalked receptacles (fig. 830, r). The antheridia are small, generally shortly stalked, cellular sacs, of an oval (fig. 831) or somewhat flask-shaped form, in which are
eontained a number of small sperm-cells; and their walls are usually formed of a double layer of eells. When ripe the antheridium bursts and discharges its contents; the sperm-cells also burst, and each emits a single antherozoid, in the form of a spiral thread with two or three coils, somewhat like those of Chara (fig. 857).

The archegonia or fcmale organs, like the antheridia, are differently arranged in different genera; thus in Riccia they are imbedded in the substauee of the frond, while in Jungermannic and Marchantia (fig. 832) they are imbedded in the under sur-

Fig. 832.

Fig. 833:

Fig. 832. A portion of the thallas orthalloidstem of Marchantice polymorplat. r. Rcceptacle supported on a stalk, s. On the under surface of the receptacle the archcgonia are imbedded. - Fig. 833. Archegonium of Marchemtio. b. Perigone, open at its apex and swrounding an inner ccllular case or epigone. e, c. Para-physes.-Fig. 834. Elaters, e, of Murchontia. s, s. Spores.

Fig. 83%.

face of the receptacles, r, which are elevated above the thallus on stalks, s. They are usually small flask-shaped bodies, cach of which consists of a eellular case or epigone (fig. 833), having a canal in its upper elongated portion which leads to a carity, at the bottom of which a single free cell, called the germ or embryonal cell, is developed. The germ-cell is douhtless fertilised, as in Fcrns and Mosses, by the passage of the antherozoids down the eanal until they come in contaet with it. The fully-developed archegonia, like those of Mosses, have also at times an additional eovering surrounding the epigone, called the perigone, which frequently grows up so as to form a sort of eup-shaped corering
(fig. S33, b). At the base of the perigone, a number of cellular filaments, perichretial leaves, or paraphyses, are also occasionally to be found (fig. S33, c, c).

As in the case of Mosses, the fertilised germ-cell does not directly develop a new plant like its parent, but after fertilisation the germ-cell enlarges and bursts through the epigone, and forms a sporangium or capsule; the epigone either remaining as a sort of sheath round the base of the sporangium, which is called the vagimulc, or its upper part is carried upwards as a sort of hood or styloid calyptra.

The sporangia vary much in different genera. In Marchantic they are formed of two layers of cells: one external, called the cortical or peripheval layer; and one internal, in which the spores, \&c., are developed. The cells of the cortical layer exhibit spiral fibres, like the cells constituting the inner lining of the anthers in Flowering Plants. The cells forming the internal layer are thus described by Henfrey:-'At an early period the cells of the internal mass present the appearance of a large number of filaments radiating from the centre of the sporangium to the wall. These soon become free from each other, and it may then be perceived that some are of very slender diameter, and others three or four times as thick. The slender ones are developed at once into the long elaters (fig. 834, c) characteristic of this genus, containing a double spiral fibre, the two fibres, however, coalescing into one at the ends. The thicker filaments become subdivided by cross partitions, and break up into squarish free cells, which are the parent cells of the spores, four of which are produced in each. ${ }^{3}$ The sporangia in this genus are situated on the under side of the receptacle (fig. $832, r)$, and vary in form ; they burst by valves.

In Jungermannia the sporangia are elcvated upon stalks arising out of a vaginule; they are more or less oval in form, and open by four valves which spread in a cross-like form ; they contain spore-cells and elaters with a single spiral filament (fig. 8). In Authuceros the sporangia open by two valves, and have a central axis or columella; they are of an elongated, tubular, or conical form, and are situated on a short stalk, and contain spore-cells and elaters, but the latter have no spiral fibres in their interior, and are much simpler in their structure than those just described as found in Marchantic. In Riccia the sporangia are imbedded in the substance of the frond, and have neither elaters nor columella. They have no regular dehiscence.

The spores have usually two coats, like pollen-cclls; and the outer coat also frequently presents markings of different kinds; but in Marchantia the spores have but one coat. They mostly germinate without any well-marked intermediate prothallium, although some produce a kind of prothallium in the form of a confervoid mass or protonema, like a Moss (see page 375).

Seetion 2. Reproductive Organs of Thallophytes.

Thas Thallophytes may be divided into four large groups, called respectively, Fungi, Lichenes, Characer, and Algre, in each of which again several subordinate divisions have been made. The general characters of the larger groups will be dcscribed hereafter in Systematic Botany. At present we have only to examine their reproductive organs, and of these even we can only give a general sketeh; but for fuller information on this subject the student is more especially referred to Sachs's 'Text Book of Botany,' as printed at the Clarendon Press of the University of Oxford.

1. Fungi or Mushroons.-To give a detailed description of the various modes of reproduetion occurring in the different sub-divisions of this order would be beyond the scope of this volume, and we will therefore simply choose a few examples as types of the different methods by which reproduction may take place. For this purpose we will adopt the classification proposed by De Bary, according to which the Fungi are dirided into the following groups, viz.:-(i) Phycomycetes, (ii) Hypodermiæ, (iii) Basidiomycetes, (iv) Ascomycetes, after which we shall give a short notice of the Bacteria, which are now generally regarded as an order of the Fungi, called Schizomycetes.
(i) Phycomycetes.-As an example of this group we will briefly deseribe the life history of Cystopus candidus, a fungus which is eommonly found growing upon Cruciferous plants. It resembles closely in its morphological phenomena Vaucheria (the life history of which is described under 'Algæ,' page 39t), not only in respect to its unieellular mycelium, but also in its formation of oogonia and antheridia.

On examining a plant infested by Cystopus, it will be seen that the greatly elongated one-eelled branched myeelium of the fungus (fig. 835, A), is interwoven, as it were, among the cells of its host, and draws nourishment from the latter by means of little rounded projections or bladders, known as harstorin, which penetrate the ccll-walls of the host-plant. After vegetating for some time in this manner, crect branches grow out beyond the surface of the epidermis, from whieh conidia are formed by a process of budding. (The term conidia, when used by us, indicates in all cases reproductive cells whicll are thus produced asexually.) From these conidia, when moistened with dew, rain, \&c., zoospores are formed, and these settling down upon a similar plant will, under favourable eircumstances, again develop the Cystopus myceliun.

But Cystopus can also produce zoospores by means of a sexial process, which takes place in the interior of its host. The ends of eertain filaments of the myeeliun swell up, forming nogoriu (fig. 835, A, og, og); whilst two elub-shaped bodies, the inthe-
vidia (fig. 835 , в, an), are formed by branches which arise from near the base of the ongonium. In the course of its development, the nogonium becomes of a more or less spherical form, and at its base a septum is formed separating it from the general carity of the Cystopus mycelium, whilst the greater part of the protoplasm eontained in the ongonium arranges itself so as to form a rounded mass known as the oosphere (fig. 835, в, os).

Fig. 830.

Fig. 335. A. Branehed myeelium of Cystopus with young oogonin, og, og. B. Portion of mycelium bearing oogonium, og, with the oosphere, os; and antheridium, an. C. Mature oogonium, with os, the oospore. D. Mature oospore. E, F. Formation of swarm-spores or zoospores, G, from the oospores. i, i. Protruded endospore. After De Bary.

When fertilisation is about to take place, one or other of the antheridia eomes in contact with the oogonium ($f i g .835, \mathrm{~B}, a n$), and subsequently the protoplasm of the antheridium reaches that of the oogonium by penetrating the membrane of the latter (f ig. $835, \mathrm{~B}$). An oospore is thus formed ($\mathrm{fig} .835, \mathrm{c}$, os), which becomes surrounded by a rough dark brown coat or exospore, and contains numerous starch granules (f ig. 835, D). After lying dormant during the winter, the protoplasm of the oospore becomes divided into numerous segments, the whole being covered by a thin membrane known as the endospore (fig. 835 E , i, and F, i); and from each of the little segments of protoplasm is formed a zoospore or suarm-spore (fig. 835, (1). The endospore ultimately forces itself like a bladder (fig. 835, 玉, i, F, i) through the exospore, and then bursting, the zoospores, G , are sot free,
each of which, like those from the eonidia, may settle down and produce a new Cystopus mycelium.
(ii) Hypodermix.-Puccinia graminis, which we will take as the type of this group, is remarkable not only in showing a distinct alternation of generations, but also in the fact that each generation is developed upon a different host, and thus affording a good example of what has been called hetercecism, or changing from host to host during different changes of development.

Thus in the spring, the fungus ($f i g$. 836) may be seen in one phase of its existence growing on the Barberry (Berveris vulgaris), whilst in the summer, upon certain Grasses fungous growths (figs. 837 and 838) may be seen which have been developed from spores formed whilst the Puccinia was inhabiting the Barberry, and which in faet constitute the second generation.

If a section be made

Fig. 836.

Fiy. 836. Section through leaf of the Barberry infested wath I'vecina graminis. 0 .
Evidermis of upper surface of leaf. sp. berry infested with Incimat graminas.
Epidermis of upper surface of leaf. sp. Spermogonin. p, p. Layers of cells (peridium), surronnding, a, a, the recidium fruits, After Saclis. through one of the yellowish swellings seen on the leaf of a Barberry plant which is affected by the fungus, the whole tissue of the leaf at the spot in question will be found to be permeated by the mycelium of the Puccinia, whilst two kinds of fructification may be noticed, one on either side of the leaf. On the upper surface (fig. 836, o) are somewhat rounded spaces, termed spermogonice, sp, full of rery delicate hair-like bodies, and from the floor of the cavity very small spore-like structures, the spermatia, are formed. On the under surface are the mueh larger acidium fruits or acidice, a, a. These eonsist of closely packed vertical hypha, from whicl, by a process of continuous budding, a great number of conidia-like spores are detached. It is by the germination of these spores and their growth on Grasses, that what are known as the uredufruits are produced.

These uredo-fruits consist of a dense mycelium (fig. 837, sil), interwoven among the cells of the Grass leaf, from which vertical branches shoot upwards bearing at their extremities oval granular spores, the uredospores, ur. These uredospres, germinating in other Grasses, again produee uredo-fruits, and
this process may be carried on throughout the summer. But towards autumn some of the older uredo-fruits produce what are known as the teleutospores (figs. 837, t, and 838, t, t). These are two-celled, somewhat elongated spores, which, germinating upon the Barberry leaf, give rise to the æcidium fruits which we have already described.

It will be noticed that as yet no sexual process has been discorered to occur during the life history of Puccinia. Should such be hereafter demonstrated, it will probably be found that the recidia are formed in consequence of the fertilisation of female organs by the spermatia.

Fig. 837.

Fig. 838.

Fig. 837. Part of alajer of uredospores. sh. Hyphe or myeelium ramifying among the cells of a leaf of the Conch Grass. ur. Uredospores. t. A teleutospore.-Fiq. 838. e. Epidermal, and b, inuer layer of cells of the infested leaf. t, t. Telcutospores. After De Bary.
(iii) Basidiomycetes.-As an example of this group we will briefly describe what is known of the life history of the common Mushroom (Agaricus campestris). That which is ordinarily known as the Mushroom is in reality the receptacle (f ig. 6), fructificution, or spore-produciny structure, growing from a mycelium, $m y$, which is vegetating underneath the surface of the ground or other substance upon which the fungus may be growing. The rereptucle, in the case which we are considering, consists of two parts (fig. 839, A), viz. :-the cap or pileus, p, and the stalk or stipe, st. The former may be regarded as the essential part of the receptacle, the spores beng produced on its under surface, whilst the stalk simply serves the purpose of raising the cap some distance above the ground.

In the earlier stages of development the young reeeptaele consists of small, somewhat pear-shaped bodies (fig. 839, B), made up of a dense mass of hyphal tissue eontinuous with that of the myeelium, m. As growth proceeds in these bodies, an annular air cavity is formed near the upper part, the roof of whieh forms the under side of the pileus, and, growing rapidly in a transverse direction, ultimately beeomes covered by a number of closely set vertieal folds placed in a radiating direetion from the centre to the margin; these are the lamelle or gills, and collectively eonstitute the hymenium (fiy. 6, b), upon whieh the spores are produeed in a manner to be presently described. The growth of the eap gradually eauses the floor of the earity,

$$
\text { Fig. } 889 .
$$

Fig. 839. A. Vertical section of the commou Mushrooun (Agaricus campestris). my. Mycelium. rol. Remains of volva. st. Stipe, (an. Annulus. h. Hymenium with its gills or lamellæ, u. p. The pileus. - B. m. Xrecelinm of Aguricus, benring numerous young receptacles in different stages of development. After Sachs.
known as the veil or inchusium, to give way from the margin, so that it eomes at last to hang from the stalk in the form of a fringe or anmulus (figs. 6, c, and 839, A, an).

In some speeies of Agarieus, as tho present, the whole plant is entirely enelosed at first in a kind of veil or eovering (fig. 6), ealled the rolve, whieh ultimately beeomes ruptured, and free from the tissue forming the membrane on the upper surfaee of the pileus; but its remains may be seen at the base of the stalk (jiy. 839), A, vol).

If a transverse seetion of one of the lamelle of a mature hymenium be made, it will be seen to eonsist of eells, greatly elongated in the eentre, eonstituting the trama (fig, S40, t), but being smaller and more or less rounded towards the periphery, whero they form what is known as the sub-hymenial huyer,
sh. Placed upon and derived from this layer are the densely crowded club-shaped cells known respectively as the busitia, s', $s^{\prime \prime}, s^{\prime \prime \prime}, s^{\prime \prime \prime \prime}$, or parctphyses, q, according as they produce spores or remain sterile.

From each basidium, in this species, two spores are produced, the process of their development being as follows :-On the free rounded surface of the basidial cell there first appear two little processes, s^{\prime}, which quickly become swollen at their extremities, $s^{\prime \prime}$. The swelling in each instance increases, and finally a protoplasmic cell is produced, $s^{\prime \prime \prime}$, which becomes separated from the little stalk, $s^{\prime \prime \prime \prime}$, and forms a spore. The

$$
\text { Fig. } 8 \pm 0 .
$$

Fig. 840. Transverse section of a lamella of the mature hymenium of Ayr t cu, crmpestris. t. Trama. sh. Sab-hymenial layer. q. Parnphyses. st, $s^{\prime \prime}$, $s^{\prime \prime \prime}$. Basidia in different stages of development, slowing formation of spores. $s^{\prime \prime \prime \prime}$. Basiditum after the spores have fallen oft. After Swehs.
spores, thus formed, when placed under favourable circumstances are capable of producing the mycelium, or dense network of hyphie, from which again the fructification or receptacle is developed. Judging from analogy, we would have expected the fructification to be the result of a sexual process taking place in the mycelium, thus giving rise to an alternation of generations, but from the latest researches on the subject this does not seem to be the case.
(iv) Ascomycetes.-From this division of Fungi two examples may bo selected for description.

The first which we will consider is Claviceps purpurea, or the Ergot Fungus. If we trace the development of this Fungus upon the ovary of the affected Grass (Rye being the one more
eommonly seleeted), we find that it first produces what is known as the sphacelia (fig. 842). On examining a section of an ovary in this eondition, it is seen to be almost eompletely surrounded by a dense mass of hyphal tissue, which also penetrates more or less into its interior, and gradually, in faet almost entirely, takes the place of the proper strueture of the ovary--this being more partieularly the case towards the base of the organ.

Fig. 841.

Fig. 841. Young selerotium, c, of Claviceps growing up and supplanting the oll sphacelin, $s p h$. - Fig. 8 42 . Section throngh the junetion of the sphacelia with the selcrotium of Claviceps, showing formation of conidia.

Fig. 843.
Fig. 844.

Fig. 843. Portion of the horn-shapen selcrotium of Claviceps propurea, or the Ergot Fungus, bearing four stalkel receptacles, Fio. St4. Longitudinal seetion of a reeeptacle of the same, magnified, showing the peritheeia. After Tulasne.
From the free ends of the outer hypher great numbers of eonidia (fig. 842) are produced by budding, which appear to have the nower of again produeing sphaeelia in other Grasses. Finally, the hyphal tissue beeomes mueh more dense, this taking place gradually from the base to the apex, until the sclerotium
($f(9.841$) or ergot, which is ultimately ($f g .843$) a somewhat horn-shaped body of a dark purple colour, is formed.

After remaining dormant during the winter, the Ergot or Sclevotium produces spores (from which the sphacelia can again be formed) in the following manner. Stalkcd rcceptacles (fig. 843) grow up from the tissue of the Ergot, in which are developed a number of perithecia (fig. 844). These perithecia are somerrhat flask-shaped cavities (fig. 845), which are filled witl asci ; the latter containing long slender spores ($f i g .846$), termed ascospores, which again, by germinating on the Rye or allicd Grasses, give rise to the sphacelia.

Pe-ize, our second example of the Ascomycetes, is a genus of Fungi containing a great number of species, many of which

Fig. 845.

Fig. 846.

Fig. 845. A single perithecium of Claricens purpuren, magnified, showing the contained asci. After Tulasne.-Fig, 846. Asci of the same, containing the long slender ascospores. After Tulasuc.
are very common, and may be scen growing upon the dead trunks of trees, \&c. Pezize is recognised as a small discshaped body, slightly cupped on the upper surface and of a reddish-purple colour. On close examination it is found that this structure (which is in fact the fructification) is growing from, and continuous with, a mycelium vegetating under the surface of the wood, \&c., upon which the Fungus is situated. On examining a vertical section under the microscope, it is seen to consist of numbers of elongated cells closely packed side by side. Of thesc the greater number are very narrow and somewhat club-shaped at the extremitics, whilst the others arc broader ($f y .847, a-f$) and each contains eight oval spores in a greater or less state of devclopment. Thesc lattcr cells are known as the asci (the spores they produce being termed asco-
spores) ; whilst the former very narrow elongated cells are sterle branchlets, which are known as the parapluyses. The ascospuies are produced by the process of free cell-formation.

That which we have been describing, however, is merely one phase of the life-history of Peziza, as this is one of the Fungi in which a clearly marked alternation of generations exists. Thus at a certain period of the year there appear on the Peziza myeclium branches directed vertically upwards, which, after branching and rebranching, produce structures by means of which a sexual process takes place. These consist of antheridia (fi\%. $848, i$, and what may be termed oogonia, a, the latter being

Fig. 848.

Fig. 847. sh. Sub-hymenial layer of the mycelium or hyphæ of Peziza convexula. a, b, c, d, e, f. Successive stages of devclopment of the asci and ascospores intermixed with slender paraphyses. After Sachs. - Fiy. st8. h, h. Nycelium or hyphr of Pezizat confluens. a. Oogoniun with hooked process, f. i. Antheridium. After Tulasne.
ovoid vesicles placed at the extremities of the branchlets; whilst the former is an elongated club-shaped body rising from below the base of the oogonium. The antheridium, i, finally unites with the oogonium, a, through the interposition of a hook-shaped process, f, on the latter, and as a result of the fertilisation a number of hyphre, h, h, shoot up from the base of the oogonium, which ultimately develop so as to form the fructification which we have already examined.

Bucteria.-A very large and important group of organisms is that of the Bacteria. Where these should be placed is still somewhat a matter of doubt; but they are more commonly arranged among the Fungi, forming the order Schizomyectes of the group Protomycetes. Cohn includes them amongst the Alge, though they differ materially from Alge in the fact that they will not live in clean water, but require decomposable substances for their
nutrition ; in this, and in that they do not contain chlorophyll, they resemble Fungi, and should cloubtless be considered as Fungi, unless, incleed, they belong to the lowest group of animals, ria., Monads, as is maintained by some observers. Whether all Bacteria have an envelope of cellulose is questionable, for as their structure cannot be made out except under the highest powers of the microscope, what appear's to be cellulose may really be nothing more than a halo produced by improper illumination, indifferent staining, and other causes. The forms of Bacteria vary considerably, some being small spherical bodies,

Fig. 849.

Fig. 849. Bacilli, showing development from spores. After Klein, which may exist singly, or in chains, or in masses, Mierococci (fig. 850, 5, 6, and 7) ; others are somewhat oval in form, Bacteria ($\mathrm{fig} .850,2$); others, again, rockshaped, Bueilli (fig. 849) ; while some have the form of a corkscrew of one or more turns, Spirilla (fig. 850, 3 and 4), dc. Most of the Baeria are motile, the source of movement in many forms

Fig. 850.

being flagella, generally one at each end (fig. 850, 4), while in others the cause of movement has not yet been discovered. Bacteria may be divided according to their morphology or their physiology, some producing coloured secretions, ehromogenous, although they themselves are colourless; others causing foementation, zymogenous; while others are most probably the cause of disease, pathogenous. It is this last group which has been creating so much interest lately in connexion with phthisis, cholera, hydrophobia, anthrax, ic. The methods of reproductimon are fission, and in some cases the production of spores, though both methods are most probably aycunogenic.
2. Lichenes or Lichens. - Of late years Lichens have becn regarded by many botanists as, in reality, Asconnycetous Fungi, parasitic upon Algæ. But as the recent researches of Crombic and others have shown that this view of their nature is highly improbable, and as moreover Lichens present so many characteristics peculiar to themselves, we shall describe them and their modes of reproduction under a separate head. According to the view that Lichens are species of Fungi, parasitic upon Algæ, the chlorophyll-containing cells or govidia (figs. 85̈,

Fig. 851.

Fig. 852.

Fig. 853.

Fig. 851. Thallus of Opegrapht atra, showing linear apothecin, termed lirellæ.- Fig. 852. Portion of the thallus of P'umelin pariefina, with young round apolhecia, ap, and spermogonit, sp. After Henfres:-F'ig. 853. Section of the thallus through an npotheeinm of Cetruria ishandica. as. Asei, three of which contain nscospores. par. Parnulyses. gon. Gonidia. After Berg and Sehmidt.
gon, and 855 , gon), found within the substance of their thallus, and which used formerly to be regarded as special asexual reproductive organs, are in reality Alga upon which the Fungus is parasitic. Thus the thallus of a Lichen is a compound structure, consisting of two elements, the fiengal and the ulgal.

The reproductive organs of Lichens are of three kinds:-(1) Apothecia ; (2) Spermogonia ; and (3) Pycnidia.

The apothecia are of various forms, and have received different names accordingly; the more usual are the round (fig. Sī2, ap) and linear (fig. 851); the latter are commonly termed lirellie.

The apothecia may be cither sessilc or stalked; the stalk, when present, is termed the podetiom. The apothccium is either composed of two parts, called the thalamium and excipulum, or, of the former only; when the latter is found, it forms a partial or entire corering to the thalamium. The body of the apothecium constitutes the thalaminm, and the layer of cells at the bottom of this, upon which the thecre and paraphyses are placed, is termed the hypothecium. When the apothecium is divided by a rertical section, it is seen to contain a number of spore-cases called usci ($f i g .853, a s$), surrounded by thread-like or somewhat clubshaped filaments, called paraphyses, par, which are usually regarded as abortive asci ; the asci and the paraphyses are placed perpendicularly upon the hypothecium. The apothecia are frequently of a different colour from the surrounding thallus; this is due either to the paraphyses or the excipulum. Each of the asci, as, generally contains eight spores, but in some cases only four, and in others sixteen; thus the spores are commonly a multiple of two, and the number is always constant for each species. In rare cases the asci have a large number of spores, and are hence said to be polysporous. The spores themselves are usually termed ascospores. Some of these spores arc of a very complex structure, being divided into two, four, or many cells. They are frequently coloured, and form beautiful objects under the microscope.

In a very few genera of Lichens, as Abrothallus and Scutula, certain structures have been discovered by Tulasne, called stylospores. 'They consist of isolated spores borne upon shortish simple stalks. They are produced in conceptacles to which is applied the name of pycnidia.'

The spermogonic were first cliscovered by Tulasne, but they have now been found in a great number of Lichens, and probably exist in all. They generally appear as little black specks near the margins of the thallus, in the tissue of which they are usually more or less imbedded (f fg. 852, sp) ; but rarely, they are quite free and above the thallus. The spermogonium varies in form, and has one or more cavities, with a small orifice at the top termed the ostiole or pore (fig. 854, os), with which all the cavities communicatc. The spermogonium, when mature, has its interior filled with a number of bodies called spermatia (figs. $854, s$, and $855, s$), raised on stalks, termed sterigmatu or spermutophores (figs. 854, sp, and 855, sp). The form of the spermatophores varies much : according to Henfrey, 'The simplest are short slender stalks, simple or branched; or they are articulated branches composed of a great number of cylindroid or globular cells (f ig. $855, s p$) ; or the branches are reduced to two or three elongated cells. The spermatict (fig. 855, s), are terminal on the spermatoplores, and consist of exccedingly minute bodies, ordinarily linear, very thin, short or longish, straight or curved, without appendages, and motionless, and lie
in a mucilage of cxtreme transparency. The spermatia are commonly regarded as the analogues of the spermatozoids produced in the antheridia of the higher Cryptogans.' When the spermogonium is mature, the spermatia (f ig. 854, s), arc diseharged through the pore or ostiole, os, in vast numbers.

Fig. S5.

Fig. 854. Vertical scction of a spermogonium of Cladonia rangiferina. sp. Spermatophores. os. Ostiole or pore, from which the spcrmatia, s, are cscapiug. -Fig. 855. Highly magnified fragment from the wall of a spermogoninm of Purmelia parietima. sp. Articulaterl sterigmata or spermatophores. s. Spermatia. gon. Gouidia. After Henfrey.

Fic. 8 汤.

Lichens may also be reproduced in a vegetative manner by means of little detached portions of the thallus known as soredia. Thesc are regarded by those who maintain the compound nature of Lichens as consisting of some of the Algr, through which the Lichen derives its nutrition, conneeted and intermingled with a weft of fine fungal hyphee. Such a sorcdium when placed under farourable conditions is capable of growing into a Lichen of the same nature as that from which it derived its origin.
3. Characee or Charas. - By many botanists the Charas are classed among the Alge, but as they present in their structure and mode of reproduction many points of difference from the latter, we have placed them in a scparate group immediately preceding them. They may be regarded as a link comnceting the Algre with Cormophytes.

The reproductive organs are of two kinds, both of which grow at the base of the branches, and cither on the same or on different branches of the same plant, or on different plants. These organs are called respectively, globules and mucules.

The glolule (fig. S̄ (f, a), which is regarded as an antheridium, or male organ, is a globular body, usnally placed immediately below the nucule, s, but oecasionally by its side. Of a grech
eclour whilst young, it turns to a deep briek-red as it becomes mature. It consists of eight valves, or, as they have been termed, shield-cells, each of which is a flattened triangular cell, curved so as to present a convexity to the outer surface of the globule, and having its margins erenate or toothed, so as to dovetail, as it were, with the adjoining shield-cells. From the centre of each shield an oblong cell (fig. 858, c), the manubrium, is given off in a perpendieular direetion. The

Fig. 8506.

Fig. 8.6. A. Portion of the axis of Cherre fragilis. s. Nucule or pistillidium. a. Globule or antheridium. b. Internode. c. Crown or corona of nincule. β. Abortive leaves. $\beta^{\prime}, \beta^{\prime \prime}, \beta^{\prime \prime}$, Sterile leatlets. B. sk. nuculc, and a, globule, both in an early stage of developmeut. w. Notal cell of leaf. u. Union cell betwecu it and basal node of globule. l. Cavity of internode of leaf. br. Cells of leaf covcred with cortex. After Saclis.-Fig. 857. A portion of a filament, fil, of fig. 858, in the cells of which the antherozoids are developed; with \& 2-ciliated antherozoid by its side. Fig. 858. A globnle cut in half to show the oblong cells or manubria, c, and the scptate filaments, fil. After Henfrcy.

Fig. 857.

eight eells from the eight shields eonverge in the eentre of the globule. A ninth cell of a similar form, but larger than the others, also penetrates into the centre of the globule between the four lower shield-eells; this is the stalk which fixes the globule to the branch upon which it is plaeed. At the central end of eaeh manubrium is a rounded cell, whieh supports in turn four other smaller eells, and from eaeh of these latter four confervoid filaments are given off ($f i g .858$, fil), in each cell of which is procluced a single spiral antherozoid (fiy. 8̄̄7), which
is furnished with two very long cilice of excessive fineness. These antherozoids ultimately escape from the cell by a sudden movement resembling the action of a spring, and may then be seen to exhibit active movements in water.

The mucule is regarded as a pistillidium, archegonium, or female organ. It is an oval sessile body, situated in the axil of a branch (fig. 856,s) ; it consists of a central cell with a double coat (fig. 860), surrounded by five cells, which are wound spirally round it, and terminating

Fig. $859 . \quad$ Fig. 860.

Fig. 859. Nncale or archegonium of Chura. a. Apices of the spirally wound cells.- Fig. 860. Vertical section of a nucule. above in five or ten smaller cells the ends of which remain frec (fig. 859 , a), and thus form a kind of crown at the apex of the nucule (figs. 856 A, c, and 859, a). At an early stage of growth the cells are separated from each other, and a canal is thus left between them extending from the crown towards the central cell. This canal is supposed to form a passage, by means of which the antherozoids reach the central cell of the nucule, by which its contained oosphere is fertilised. Ultimately the nucule drops off from its parent, remains at rest until the following season, and when it germinates first produces a single axial row of cells, forming a pro-embryo or pro-thallus from which the leaf-bearing sexual plant ultimately grows.
4. Alge or Seaweeds.-This order of plants, like the Fungi, comprises a very large number of species, which vary exceedingly in form, size, colour, and ather peculiarities. They are all either inhabitants of

Fig. 861.

Fitg. S61. Filaments from a Nostoc colony. After Luerssen. water salt or fresh, or live on moist surfaces; and may be microscopic plants, or growths of enormous size. Adopting no special classification of the Alga:, we will simply describe the processes of reproduction occurring in certain examples as types of the rest.

Nostoc, a very common Alga, is found living sometimes in water, though more frequently on the damp surfaces of trees, stones, de. It cousists of a jelly-like substance, in which are imbedded moniliform threads of cells (fig. S6i), the different filaments being interwoven with one another. The greater number of the constituent cells contain chlorophyll ;
but usnally there are also placed at definite distances from one another larger colourless cells, which are not, like the others, capable of division, and are ordinarily known as heterocysts (fig. 861). By means of the growth and subsequent division of the smaller cells, the Nostoc colony may become increased in size, and new colonies also at certain times bccome formed in the following manner. By means of the imbibition of water the jelly of the old colony swells up and allows the Nostoc filaments or rows of cells to become free. Each cell subsequently grows rapidly in a transverse direction till the appearance is presented by each filament of a number of disc-like bodies placed side by side. Cell-division next takes place in a direction parallel to the axis of the filament, so that a number

Fif. 862.

Fig. 863.

Fig. 862. Two filaments of spirogyra about to conjugate; eaeh cell is seen to eontain ehlorophyll arranged in spiral bauds with grains of stareh, oil globules, and a central nuelens, sursounded by protoplasmic threads which extend to the eell-wall. e, b, c. Lateral protrusions of the cell-walls of adjoining eells. After Sachs.-Fig. 863. A. Filaments of Spirogyro eonjugating. a. Formation of zygospore. b. Formed zygospore. в. A filument in whieh are young zygospores, c, aurl whieh contain drops of oil. After Snelis.
of septate thread-like bodies are produced, which, joining by their ends, grow so as to ultimately produce a new Nustoc colony. At the same time the heterocysts are developed from cells which previonsly differed in no apparcnt respect from the rest, and the jelly-like cnvelope of the colony becones also gradually formed.

Spirogyra, our next example of this order of plants, is one in which the process of reproduction known as conjugation very commonly takes place. Spirogyre is an Alga which may be found in great quantities in most ponds towards the cnd of summer, and is one of the pretticst objects which can bo
examined under the microscope. Seen with the naked eye, it consists of a mass of long, very slender green threads or filaments, which float in the water where they are growing. Examined with the microscopc, each filament is seen to be more or less cylindrical, and composed of a great number of similar cells placed end to end (fig. 862). The chlorophyll is arranged in the parietal layer of protoplasm of the cell in a definite spiral manmer ; the name of some of the species being determined by the number of such spirals in a single cell. Each cell is capable of growth and clivision, and by this means the bulk of the entire plant is increased.

When coniugation is about to take place, two filaments approach each other, and from the sides of contiguous cells (fiy. $862, a, b, c$), protrusions of the wall occur which meet in the centre. The protruding ends of the wall then intervening between the cavities of the two conjugating cells next become absorbed ($\mathrm{fg} . \mathrm{863}, \mathrm{A}, a$), and the protoplasm of one cell separates itself from its cell-wall, and gradually travels into the other cell, where it becomes intimately mixed with the protoplasm existing there; the whole mass then becomes of a somewhat oval shape, surrounds itself with a cell-wall, b, and in fact constitutes what is called a zygospore. Later on its colour changes from green to that of a deep red, and after remaining dormant during the winter the zygospore germinates at the beginning of spring, and so gives rise to a new Spirogyra plant.

Varcheria, which we will now consider, exhibits true sexual reproduction, in addition to the formation of ascexual spores. An irregular kind of alternation of generations exists in this genus, inasmuch as asexual spores are usually produced by a certain number of successive generations, the sexual process only taking place in generations separated by a considerable interval from one another. At the same time it must be noticed that asexual spores may bc formed in the same plant as that in which sexual reproduction takes place.

Vaucheria may be found growing either in water or on moist surfaces. Its thallus consists of one very clongated and greatly branched cell, attached to some fixed object by means of a portion of its thallus, which is much branched and perfectly transparent (fig. 864, D, w). The other, or non-transparcnt portion of the ccll contains protoplasm, chlorophyll grains, and frequently numbers of small oil globules. The asexual spores are formed in various ways in the different species, the more common method being that in which a small branch bocomes separated from the parent cell by division, the protoplasm thus shut off sccreting a cell-wall round itself, and thus forming a spore, which ultinatcly germinating gives rise to a new Jancheria thallus. (M. C. Cooke and Bates have described the main filaments or threads as much divided of by septa into cells at the period of fructification: and Cooke belieres, from this
circumstance and others, that zoogonidia may be produced in Veucheria in cells divided off for that purpose.)

Zoospores or Zoogonidia are also not unfrequently formed as follows:--The contents of the branch, which has swollen into a sporangium, contract, and escape as a primordial cell, or one without a cell-wall, from a fissure at the apex (fiy. 864, A, sp). This primordial cell is densely covered by short cilia, and is termed a zoospore or zoogonidium, which at first rapidly rotates; but it soon comes to rest, when the cilia disappear, and a cellulose wall is produced ($\hat{\pi} g .864$, в). This spore then germinates by putting out one (fig. 864, c) or two tubes; or it forms on the other side, at the same time, a branched root-like organ (fig. 864, D, w).

$$
\text { Fici. } 864 .
$$

Fig. 864. A. sp. Newly formed zoospore or zoogonidium of Vaucherin sessilis escaping. B. Zoospore at rest after having lost its cilia. c. First stage of germination. D. Filament of Veucheria sessilis producing oogonia, og, og, and antheridium, h. w. Hyaline root-like process, forming a sort of mycelium. sq. Zoospore, which by germinating has formed the filament. After Sachs.

When sexual reproduction takes place, short branches of the thallus or filament, which are in close proximity to each other, become transformed into antheridia, h, and oogonia, og, og (fig. 864, D). The branch which is to form the antheridium is longer than that which forms the oogonium, and generally becomes more or less curved, and a division is made about halfway from its base. The protoplasm in the upper part becomes differentiated into antherozoids, which by means of the bursting of the antheridium become free at the same time as the rupture of the oogonium takes place.

The orgonia (fiy. 864, D, og, og), of which there are frequently two near to each other, are somewhat ovoid; they differ from the antheridia in containing a good deal of chlorophyll, and are separated from the cavity of the thallus or filament by a septum situated at their base. The green and granular contents finally collect in the centre of the oogonium, and colourless
protoplasm is to be seen at its end ; the cell-wall then opens at this point, and the contents at the same time retract from the cell-wall and what is termed the ousphere is formed. The antheridium opens at the same time as the oogonium, and the antherozoids escape, reach the oosphere, mix with it, and then disappear ; and the oosphere is transformed into an oospore. The oospore thus formed acquires a distinct cell-wall of its own, and its colour also changes to a reddish hue. By the germination of the oospore, a new V ancheria thallus may be formed.

Fucus.-This genus includes numerous species, which form the various plants commonly known as Scaweeds. The thallus (fig. 5) is usually long, very much branched, and of a greenish brown colour. In structure, it is made up at the surface of closely packed small cells, but towards the interior the cells are more elongated, and joined end to end, so as to form filaments

Fig. 86 万.

Fig. 865. Vertical section of a female conceptacle of Fucus msiculosus coutaining oogonin and paraphyses. After Thuret.
which are interwoven amongst one another (fig. 860̃). The walls of the constituent cells are peculiar in consisting of two parts, an inner firm layer, and an outer one which is generally more or less swollen by imbibition of watcr. (Sce page 73.)

Reproduction is efficted by a sexual process, which takes place in the following way:-Numerous little cavities, known as conceptacles, appear sunk in the surface of large swollen receptacles (fig. $5, t, t$), on the ends of the longer forked branches of the Fucus, and in these are contained the antheridia, or ooyonia; or both of these organs, together with abortive filaments or paraply/ses. Some species, as Furus platycarmes, are monoecions, i.e. contain both antheridia and oogonia in the same conceptacle; but in others, as I'ucus resiculosus, either only antheridia or
oogonia conceptacles are produced in the same plant; such species therefore are dicecious.

Taking Fucus resiculosus as an example of the dicecious species, on making a section through a female conceptacle, its carity is found to be of a more or less spherical form, and marked off from the loose tissue of the interior of the thallus by a thin layer of denser tissue resembling, and in fact boing a continuation of, that of the surface, which may be called the epidermal layer (fig. 865). Springing from all parts of the wall of the conceptacle are slender jointed filaments, the paraphyses. Amongst these paraphyses are the oogonia, which are produced from certain cells of the lining, or epidermal layer of cells.

The antheridia in the moncecions species, as Fueus platycarpus, are developed in the same conceptacle as the oogonia; and

$$
\text { Fig. } 866 .
$$

Fig. 867.

Fig. 868.

Fig. 866. Antheridia. π, a, on the brancher hairs of the mate eoneeptaele. After Thuret.-Fit. 867. Oogonium with the oospheres fully separated, and disengaging themselves from their coverings. After Thuret.-Fig. 868. An oosphere without a cellulose cont being fertilised by antherozoids so as to form all oospore.
in dicecions species in separate conceptacles, then termed male, conceptacles. These antheridirt (fig. 866) are somewhat elliptical bodies, a, a, formed on branched hair-like cells. When mature the antheridium becomes a bright red colour, and contains a number of small antherozoids (fig. 868), each of which is furnished with a pair of cilia.

The onronia are globular bodies borne upon a short onecelled stalk, in which are produced eight oospheres by means of the division of the contained protoplasm (fir. 867). These, which are at first angular, become rounded off, and are ultimately set frec by the bursting of the oogonium membrane. The antherozoids, which escape ahmost simultaneously with the onspheres, gather round the latter and appear to become finally blended with their substance (fig. 868). The oospore thus
formed secretes around itself a cell-wall and very soon begins to germinate. Growth and division proceed, and so a new Fucus thallus is built up.

Edogonium. - The thallus of Gdugonium consists of a long, unbranched row of cells ; and each cell is nucleated, and contains chlorophyll granules imbedded in the parietal protoplasmic layer. Reproduction is

Fig. 869.

Fig. 869. A. Mildle part of a sexunl filment of Gdogonium ciliutum. og, og. Oogonia fertilised by the dwarf male plants, m, m, developed from zoospores formed in the cells, n (antheridinm), at the upper part of the filament. B. Ripe oospore. c. Pieee of mnle filament of a species of Uddogonium, with produetion of antherozoids, z, z. D. The four swarm-spores resulting from nu oospore. F. Swarm-spore at rest. Alter I'riugsheim. effected either asexually by means of zoospores; or in a sexual manner by antheridia and oogonia. The former are produced by means of the bursting of a cell and the consequent escape of the cell contents in the form of an ovate mass with a tuft of fine cilia at the more pointed extremity.

In the latter case the antherowoids are formed in special cells, and either on the same filament as the oogonia (fig. 869, A, $n, o g$) ; which is then termed a sexual flament ; or on another filament ($f i g .869, \mathrm{c}, z, z$), then called a male filament. The antherozoids resemble the zoospores or zoogonidia, but are smaller. The oogonia (fig. 869, A, og, og) are oval bodies containing a great deal of chlorophyll, and are formed by the enlargement of any of the individual colls of the filament. The contained protoplasmic mass, or oosphere, may be fertilised in two different ways. Either the oosphere is directly fertilised by coutact with the antherozoids above described (fig. 869, c, z, z); or by means of an antherozoid produced from a peculiar form of swarm-spore known as an androspore (fig. 869, A, n). The androspore, which is produced from cells rescmbling those
of the antheridia, becomes attached to the oogonium, forming what is known as a dwarf male plant (fig. 869, A, m, m), and subsequently discharges its protoplasm in the form of an antherozoid, by which the oosphere may be fertilised, and become transformed into an oospore.

In either case the oospore after a short period of rest gives rise to four swarm-spores (fig .869 , D), each of which ($\mathrm{fg} . \mathrm{F} .869$, e) subsequently grows into a swarm-spore-producing plant, so that in (Edogonium we have another example of alternation of generations, similar to that which occurs in Vaucheria (page 394), riz., one in which a series of generations consists of the swarm-spore-producing plant, whilst at more or less regular intervals a sexual generation takes place. It should be noted howerer that zoospores may be also produced in the same individual plant as that in which the sexual process takes place.

BOOK II.

SYSTEMATIC BOTANY, OR THE CLASSIFICATION OF PLANTS.

CHAPTER 1.

GENERAL PRINCIPLES OF CLASSIFICATION:

Section 1.-Spectes, Gexera, Orders, and Classes.
OUR attention has been hitherto clirected to the examination of the structure and forms of the various organs and parts of plants. In doing so, we camnot but have noticed the almost infinite varieties of forms which have thus been presented to us, and also at the same time observed that, notwithstanding such variations, there are some striking resemblances in the structure of the organs of certain plants, by which a close relationship is thus clearly indicated between them. It is the object of Systematic Botany to take notice of such relationships, and thus to bring plants together which are allied in their forms and structure, and to separate those that are unlike; and in this way to take a comprehensive view of the whole Vegetable Kingdom. In its extended sense, Systematic Botany has for its object the naming, describing, and arranging of plants in such a manner, that we may readily ascertain their names, and at the same time get an insight into their aftinities and general properties.

At the present time there are at least 120,000 species of plants known to exist on the earth. It is absolutcly necessary therefore, for the purpose of study, or in order to obtain any satisfactory knowledge of such a rast number of plants, that we should arrange then according to some definite and fixed rules ; but before we procecd to describe the systems that have becn deviscd at various times for their arrangement, it will be necessary to dctine the principal terms which are in common use in suclı systems.

1. Specues.-By the term species we understand a collection of indiriduals which resemble each other more nearly than they
resemble any other plants, and which, taking Flowering Plants as illustrations, can be reproduced by seed; so that we may from analogy infer that they have all been derived originally from one common stock. Thus, if we walk into a ficld of Beans, Peas, or Clover, we observe thousands of individuals, which, although differing to a certain catent in size, and in some other unimportant characters, we at once associate together under a common name. In like manner we commonly observe around us, in the gardens and fields, similar collections of individuals. Such collections of plants, thus seen to resemble one another in all their important parts, constitute our first idea of a species ; and that idea is at once confirmed if, by taking the seeds of such plants and sowing them, we obtain other plants exactly resembling those from which such seeds have been derived. Species are, however, under special conditions, liable to variations, and we hare then formed what are termed varieties and races.
a. Varieties or Sub-species.-It has just been obscrved, that if the seed of a species be sown, it will reproduce its parent, or, in other words, produce a plant resembling its parent in all its important parts. But this will only happen, when the new individual has been exposed to similar influences of soil, heat, light, moisture, and other conditions, as its parent; and hence we find that variations in such particulars will lead to certain peculiarities in form, colour, size, and other minor characters, in plants raised from the seeds of the same species. In this manner we have produced what are termed varieties. In snme cases such rariations are merely transient, and the individuals presenting such peculiarities will in time return to their original specific type, or perish altogether ; while in other instances they are permanent and continue throughout the lifc of the individual, the whole plant being, as it were, impregnated with the particular variations thus impressed upon it, and hence such variations may be perpetuated by the gardener in the operations of Budding, Grafting, \&c. (see page 107), as is the case with many of our fruit trees and flowers. But even these varieties cannot be propagated by seed; for if their seeds be sown, the individuals which will be produced will have a tendency to revert to the original specics from which such varieties have been obtained, so that the nature of the plant raised will depend upon the character of the soil in which it is placed, and the other external conditions to which it is exposed. Thus, if we sow the seeds of a number of different varieties of Apples, the fruit subsequently produced by the new gencration of Apple trees will, instead of resembling that, of their parents, have a tendency to revert to that of the common Crab, from which species all such varieties have been originally derived. Hence a variety differs essentially from a specics in the fact that it cannot be propagated by seed.
b. Races.--Besides the varieties just alluded to there are
others, which are ealled permanent varieties or races, because their peculiarities can be transmitted by seed. Familiar examples of such raccs are afforded by our Cereal grains, as Wheat, Oats, and Barley ; and also by our culinary vegetables, as Peas, Lettuces, Radishcs, Cabbages, Cauliflowers, and Broccoli. How such races of plants have originated, it is impossible to say with any certainty. In the first case they probably arose in an aceidental manner, for it is found that plants under cultivation are liable to produce certain variations or abnormal deviations from their specific type, or to sport, as it is termed. By further cultivation under the care of the gardener, such variations arc after a time rendered permanent, and can be propagated by seed, These so-called permanent varieties, however, if left to themselves, or if sown in poor soil, will soon lose their peculiarities, and either perish, or return to their original specifie type ; it will be seen, therefore, that races present well-marked characters by which they are distinguished from true species. Hence, although our cereal grains and culinary vegetables have beeome permanent varieties by ages of cultivation and by the skill of the cultivator, they can only be made to continue in that state by a resort to the same means, for if left to themselves they would, as just observed, either perish or revert to their original specific type; and hence we see also, how important is the assistance of the agriculturist and gardener in perpetuating and improving such variations.

Another cause which leads to constant variations from the speeific type is hybridisation. The varieties thus formed, which are called hybrids and cross-breeds, are, however, rarely transmitted by seed-although, in some instances, sueh is the ease for a few generations-but they gradually revert to one or the other parent stoek. (See Mybridisation.)

We have now seen that species, under certain circumstances, are liable to variations, but that all such varieties lave a tendency to revert to their original specific type. Henee, in a practical point of view, specics must be considered as permanent productions of Nature, which are capable of varying within eertain limits, but in no cases eapable of being altored so as to assume the characters of another species. There is not the slightest foundation for the theory, which has been adrocated by some naturalists, of a transmutation of species. All suels statements, therefore, that have been made, of the conversion of Oats into Rye, or of any speeies whatever into another, are entirely without foundation, and have arisen from imperfect observation.*

* The alove views as to the origin and mature of species and varicties must be understood, as we have stated athove, in a practieal point of vow, although until the last few rears they were, in every sense, almost miversally entertained by naturalists; bit they are opposed to those now far more generally adopted, and which were first developed is Darwin's great

In practice it is important that we should distinguish rarieties from true specics, for nothing is so calculated to lad to confusion in Descriptive Botany as the raising of mere varieties to the condition of species. No individuals should be considcred as constituting a species unless they exhibit important and permancont distinctive characters in a wild state, and which can be perpetuated by seed. Great unccrtainty still prevails in our systematic works as to what is a specics and what is a variety ; and hence we find different authors, who have written on British and other plants, estimate the number of species contained in such genera as Rosa, Rubus, Saxifraga, Hieracium, Salix, Smilax, and others, very differently.
2. Gevers. - The most superficial observer of plants will have noticed that certain species are more nearly allied to each other than to other species. Thus, the different kinds of Roses, Brambles, Heaths, Willows, may be cited as familiar examples of such assemblages of species; for, although the plants comprehended under these names present certain well-marked distinctive characters, yet there are at the same time also striking resemblances between them. Such assemblages of species are called genera. A genus, therefore, is a collection of species which resemble each other in general structure and appearance more than they resemble any other species. Thus, the various kinds of Brambles constitute one genus, the Roses another, the Willows, Heaths, Clovers, and Oaks form also, in like manner, as many different genera. The characters of a genus are taken exchusively from the organs of reproduction, whilc those of a species are derived generally from all parts of the plant; hence a genus is defined as a collection of species which resemble each other in the structure and general characters of their organs of reproduction. It is not nccessary, however, that a genus should contain a number of species, for, if a single species presents peculiarities of a marked kind, it may of itself constitute a genus.

It frequently happens that two or more species of a genus have a more striking resemblance to each other in certain important characters than to other specics of the same genus, in which case they are grouped together into what is termed a subgenus, and further subdivisions of more nearly allied species, such as sections, sub-sections, \&c., may be made.
3. Orders or Natural Orders.-If we regard collcctions of genera from the same point of view as we have just done those of species,-that is, as to their close resemblances,--
work 'On the Origin of Species,' and in other volumes by the same gifted observer. This author contends that species, so far from being immutalile, are liable to clange of almost any extent-in fact, that phants, by the operation of eauses acting over a long period of time, may become so altered, that they preserve scarcely any apparent resemblance to those from which they were originally derived.
we shall find that some of them also resemble eaeh other more than they do other genera. Thus, Mustards, Turnips, Radishes, and Cabbages have a strong eommon resemblance, while they are unlike Strawberries and Brambles; and even less so to Hazels, Oaks, and Beeches; and still more unlike Larehes, Pines, Firs, and Cedars. Proceeding in this way throughout the Vegetable Kingdom, we colleet together allied genera, and form them into groups of a higher order ealled Orders or Natural Orders; henee, while genera are colleetions of related species, orders are eolleetions of allied genera. Thus, Turnips, Radishes, and Cabbages, all belong to different genera, but they agree in their general. strueture, and are henee ineluded in the order Cruciferx ; while Strawberries, Brambles, Roses, Apples, and Plums, are all different genera, but from the general resemblance they bear to eaeh other in their strueture, they are plaeed in one order, ealled Rosacea. Again: Oaks, Beeehes, and Hazels are different genera, but they belong to one order; also the Pines and Cedars are different genera, but as the fruit of them all is a cone, they are grouped together in one order, which is termed the Coniferr.

We find also that eertain genera of an order, like eertain speeies of a genus, have a more striking resemblanee to eaeh other than to other genera of the same order ; hence sueh are grouped together into what are ealled Sub-orders. Thus the Chieory, Dandelion, Sow-thistle, Lettuee, Thistle, Burdock, and Chamomile, all belong to the same order, but there is a greater resemblanee in the Chieory, Dandelion, Sow-thistle and Lettuce to each other than to the remaining genera. Hence, while all the above genera belong to the order Compositx, they are at the same time plaeed in two different sub-orders. Thus, one suborder, ealled the Liguliflorx, includes the Chieory, Dandelion, Sow-thistle, and Lettuee ; and the other sub-order, the Tubuliflore, that of the Thistle, Burdoek, and Chamomile. In like manner, while we find the Plum, Strawberry, Raspberry, Rose. and Apple, all belonging to the same order Rosacer, some of them have more resemblanee to each other than to others. Thus, the Plum has a drupaceous fruit, and is therefore plaeed in a distinet sub-order, whieh is ealled Drupacea; the Strimberry, Raspberry, and Rose are mueh more like each other than they are to the Plum or Apple, henee they are put in a sub-order ealled Roscex ; while the Apple, from the eharaeter of its fruit, is plaeed in a sub-order termed Pomex.

It is also found eonvenient to subdivide sub-orders into Tribes, Sub-tribes, \&e., by colleeting together into groups eertain very nearly allied genera, but it is not neeessary for ns to illustrate such divisions further, as the prineiples upon whieh they depend have been now suftieiently treated of,
4. Classes.-By in elass, we understand a group of orders possessing some very important struetural charaeters in eommon.

Thus we hare the classes Monocotyledones and Dicotyledones, which possess certain clistinctive characters in their respective embryos, \&c.

The Classes are also divided into Sub-classes, Serics, Cohorts or Allicunces, and other divisions, in the same manner as the orders, genera, and species are subdivided ; but as the names of such dirisions vary in clifferent systems, and are all more or less artificial, it is not necessary for us, in this place, to dwell upon them further. The classes themselves, in clifferent systems, are also generally arranged in more comprehensive groups, which have been variously named Sub-kingdoms, Groups, Divisions, Regions, Sub-divisions, \&c. But as these are also of different extent and rariously defined by botanists, we must refer to the several systems for particulars respecting them.

The following table will include all the more important groups we have alluded to; those in more general use being indicated by capitals.

1. Sub-kivgdoms or Divisions. Sub-divisions.

2. Classes.

 Sub-classes.Series.
Cohorts or Alliances.
3. Orders.

> Sub-orders.
> Tribes.

Sub-tribes.
4. Genera.

Sub-genera.
Sections.
5. Species.

Varieties. Races.

Scction 2. Characters, Nomencrature, Abbreviations, and Symbols.

Descriptive Botany is the art of describing plants in technical language, so that they may be radily recognised when met with by those to whom they werc previously unknown, who possess a knowledge of the technical names of the different parts and organs of plants and of their various modifications. This subject is too extensive to bc treated of here; reference must be made to special treatises for this purposc ; but it is nccessary for us to refer briefly to the Characters, Nomenclature, Abbreviations, and Symbols of Plants.

1. Charicters.- By the term character, we mean a list of
all the points by which any particular variety, species, sub-genus, gemus, sub-tribe, tribe, sub-order, order, sub-class, or class, dc., is distinguished from another. We have also two kinds of characters, which are called respectively essential and natural. By an essential character, we understand an cnumeration of those points only, by which any division of plants may be distinguished from others of the same nature ; such may be also called diagnostic characters. A natural character, on the other hand, is a complete description of a given species, genus, order, class, \&c., including an account of every organ from the root upwards, through the stem, leaves, flowers, fruit, and seed. Such characters are necessarily of great length, and are not required for general diagnosis, although of great value when a complete history of a plant or group is requircd. Those characters, again, which refer to a species are called specific, and are taken generally from all the organs and parts of the plant, and relate chiefly to their form, shape, surface, division, colour, dimension, and duration; or, in other words, to characters of a superficial nature, and without reference to their internal structure. The characters of a genus are called generic, and are taken from the organs of reproduction. The characters of an order are termed ordinul, and are derived from the general structure of the plants in such groups, more especially of the organs of reproduction. While the characters of a class, \&c., as already mentioned, are derived from certain important structural peculiarities which the plants of such divisions exhibit. The essential character of a genus, when indicated in Latin, is put in the nominative case, while that of a species is placed in the ablative.
2. Nomenclature. - It is the object of nomenclature to lay down rules for naming the various kinds of plants and the different groups into which they are arranged in our systems of classification ; in the same manner as it is the object of terminology to find names for the different organs of plants, and the modifications which those organs present.
a. Species.-The namos of the species are variously derived. Thus the species of the genus Viola, as shown by Gray in the following paragraphs, exhibit the origin of many such names. 'Specific names sometimes distinguish the country which a plant inhabits: for example, Viola canudensis. the Canadian Violct; or the station where it naturally grows, as Viole palustris, which is found in swamps, and Viola arensis, in fiolds; or they express some obvious character of the species, as Viola rostrata, where the corolla bears a remarkably long spur, Viola tricolor, which has tri-coloured flowers, Viold rotundifolia, with rounded laves, Tiola lanceolatu, with linnceolate leaves, Viole pedata, with pedately-parted laaves, Violu mimulaefolic, where the leaves are compared to those of a Primuse, Viola asarifolia, where they are likened to those of A samm, Viola proescens, which is hairy throughout, dic. Frequently
the species bears the name of its discoverer or describer, as Violu Muhlenbergii, Viola Nuttallii, \&c.

Specitic names are written after the generic, as indicated above in the different species of the genus Viold, and these together constitute the proper appellation of a plant, in the same way as the surnames and Christian names designate the members of a family. The specific names should also in all cases be adjectives, or substantives used adjectively; in the former case they should agree in gender and case with the name of the genus. Thus when a species is named after its discoverer or describer, it is usually placed in the genitive casc, as Viola Nuhlenbergii and V. Nuttallii; but when such names are merely given in honour of botanists who have had nothing to do with their discosery or description, the specific names are generally put in the adjective form, as Carex Hookeriana, Veronica Lindleyana: such a rule is, however, frequently departed from. Sometimes the specific name is a noun, in which case it does not necessarily agree with the genus in gender ; such specific names are often old generic ones, as Dictamnus Fraxinella, Rhus Cotinus, Lythrum Salicaria, Rhus Coriaria, Dianthus Armeria, Phamnus Frangula. In such cases the specific name shonld begin with a capital letter : a similar rule should also be adopted when it is derived from a person ; but in all other instances it is better that the specific name should begin with a small letter. The specific name was called by Linnæus the trivial name; thus, in the particular kind of Violet called Viola palustris, Viola is the generic, and palustris the specifie or trivial name.
b. Genera.-The names of the genera are substantives, in accordance with the rule laid down by Linnæus as follows :Every species shall have a particular name, compounded of a substantive and an adjective, whereof the former indicates the genus, and the latter the species. This has already been referred to under the head of Species. The names of the genera are derived in various ways: thus, either from the name of some eminent botanist, as Linnrea after Limæus, Smithia after Smith, Hookeria after Hooker, Jussiea after Jussieu, Tournefortia after Tournefort, Lindlcyana after Lindley ; or from some peculiarity of structure or habit of the plants comprised in them, and from various other circumstances. Thus, Crassila is derived from the genus comprising plants with succulent or thickencd leaves; Sagitaria, from its arrow-shaped leaves; Arenaria, from growing in sandy places; Lithospermum, from its fruits (which were formerly regarded as seeds) having a stony hardness; Campotmula, from its corolla being in the form of a bell; Lactuca, from its milky juice ; and so on. Others, again, have derived their gencric names from supposed medicinal properties, such as Scrotheduria, from its former use in scrofula; Pulmonaria, from its cmployment in pulmonary disease, dc.
c. Jorlers. - The nancs of the orders in the Artificial

System of Linnzens are chiefly derived from the various characters of the gyncecium and fruit. Those of Natural Systems are usually taken from some well-known genus which is included in any particular order, and which may be regardcd as the type of that order. Thus, the genus Ranunculus gives the nawe Rannanalacere to the order to which it belongs; the genera Paparer, Malva, Hypericum, Geranium, Rosa, Lilium, Orchis, and Iris, in like manner, give names respectively to the orders Papareracex, Malvacex, Hyperiсасеж, Geraniaceæ, Rosacex, Liliacer, Orchidacer, and Iridaceæ. At other times the names of the orders are derived from some characteristic feature which the plants included in them present. Thus, the order Cirwiferx is so named because its plants have cruciate corolliss ; the order Leguminose comprises plants whose fruit is a legnme; the Umbellifere are umbel-bearing plants; the Labiatx have a labiate corolla ; the Coniferr are cone-bearing plants; and so on.
d. Classes.-The names of the classes are derived from some important and permanent characters which the plants comprised in them possess, relating either to their structure or mode of development. Such names vary, however, according to the views of different systematic botanists. Those which have been more commonly used in this country are, Acotyledones, Monocotyledones, and Dicotylcdones-terms which are derived from the structure and characters of the reproductive bodies in the three classes respectively. Others, also in common usc, arc derived from the mode of development and structure of the stem : such are Exogens, Endogens, and Acrogens. The abore names are used especially in Natural Systems of Classification ; while the names of classes in the Artificial System of Limneus are derived chiefly from the number and other characters presented by the andrœeium.
e. Sub-kingdoms, Divisions, de.-The names of these are generally derived from the presence or otherwise of evident flowers or reproductive organs, as those of Phaneroyamia and Cryptogamia. The names of Cotyledones and Acotyledones, indicating the presence or absence of an cmbryo, have been also in common usc. Others, again, have beell employed, having reference to their clementary structure, as Fasculures and Cellulares; or to the presence or absence of a stem, as Cormophyta and Thallophyta. The other sub-divisions are variously named according to the views of different botanists.
3. Abbreviations and Stmbols.-It is usual in botamical works to use ccrtain abbreviations and symbols. A few of the more important need alone be mentioncd here.
a. Abbreciations.--The names of authors, when of more than onc syllable, are commonly abbreviated by writing the first letter or syllable, d゙c., as follows:-
L. or Linh. means Limmeus; Juss. is the abbreviation for Jussicu; DC. or De Cand. for De Candolle; Br. for Brown ;

Lindl. for Lindley ; Rich. for Richard ; Willd. for Willdenow ; Hook. for Hooker ; With. for Withering ; Endl. for Enclicher ; Bub. for Babington ; Berk. for Berklcy, \&c., \&c.

It is common to put such abridged names after that of the genus or species which has been described by them respectively. Thus Eriocculon, L. indicates that the genus Erioccullon was first described by Linnæus ; Miltonia, Liudl. is the genus Miltonia as defined by Lindley; Nuphar pumila, DC. is the species of Nuphar defined by De Candolle, \&c., \&c.

Other abbreviations in common use are Rad. for root; Caut. for stem ; Fl. for flower ; C'ol. for calyx ; Cor. for corolla; Per. for perianth ; $F r$. for fruit ; Ord. for order ; Gen. for genus ; $S_{p} p$. or sipec. for species ; Var. for variety ; Hab. for habitat; Herb. for herbarium, dce. Again-
V. r. c. (Vidi viram cultam) indicates that the author has seen a living cultivated plant as described by him.
V. v. s. (Vidi vivam spontaneam) indicates that the author has seen a living wild plant.
V. s. c. (Vid siccom cultam) indicates that a dried specimen of the cultivated plant has been examined.
V. s. s. (Vidi siccam spontaneam) indicates that a dried specimen of the wiid plant has been examined.
b. Symbols.-The more important symbols are as follow :-
$\odot, \bigcirc,(\mathrm{D})$, or A , signifies an annual plant.
$\odot \odot$ (${ }^{(2)}$, or B , means a biennial plant.
4, Δ, or P , signifies a perennial.
h or Sh. means a shrub.
T signifies a tree.
(twining to the right ;) twining to the left.
t a staminate flower.
여 a pistillate flower.
an hermaphroditc flower.
广 - ㅇ a moncecious plant.
ㅎ : ㅇ a diwecious species.
¢ 古 o a polygamous species.
$O=$ signifies that the cotyledons are accumbent, and the radicle lateral.

- \| Cotyledons incumbent, radicle dorsal.
\bigcirc Cotyledons conduplicate, radicle dorsal.
- || || Cotyledons twice folded, radicle dorsal.
|| || Cotyledons three times folded, radicle dorsal.
? The note of interrogation is uscd to indicate doubt or uncertainty as to the genus, species, locality, \&c.
! The note of exclamation indicates certainty in the above particulars.
- The asterisk indicates that a good description is to be found at the reference to which it is appended.

CHAPTER 2.

SYSTEMS OF CLASSIFICATION.

We have already stated that Systematie Botany has for its object the naming, deseribing, and arranging of plants in sueh a manner that we may readily aseertain their names, and at the same time get an insight into their affinities and general properties. Every system that has been deviscd for the arrangement of plants does not, however, eomprise all the above points : for, while some systems are of value simply for affording us a ready means of aseertaining their names : others not only do this, but at the same time give us a knowledge of their affinities and properties. Henee we divide the different systems of Classifieation under two heads ; namely, Artifieial and Natural,-the former only neeessarily enabling us to ascertain readily the name of a partieular plant; while the latter, if perfeet, should comprise all the points which come within the objeet of Systematie Boiany. The great aim of the botanist, therefore should be the development of a true Natural System; but in past times, Artifieial Systems, more partieularly that of Linneeus, hare been of great value. Linnæus himself never devised his system with any expectation or desire of its serving more than a temporary purpose, or as an introduetion to the Natural System, when the materials for its formation had been obtained.

In both artifieial and natural systems, the lower divisionsnamely, the genera and speeies-are the same, the differenee between the systems eonsisting in the manner in whieh these divisions are grouped into orders, classes, and other ligher groups. Thus in the Limmean and other artificial systems, one, or, at most, a few charaeters are arbitrarily seleeted, and all the plants in the Vegetable Kingdom are distributed under classes and orders aceording to the eorrespondence or difference of the several genera in suel respeets, no regard being had to any other charaeters. The plants in the classcs and orders of an artifieial system have, therefore, no neeessary agrecment with eaell other exeept in the eharaeters seleeted for convenienee as the types of those divisions respeetively. Hence sueh a system may be eompared to a dietionary, in whieh words are arranged, for convenience of referenee, in an alphabetical order, adjacent words having no necessary agreement with each other, except in commencing with the same letter. In the Natural System, on the contrary, all the characters of the gencra are taken into consideration, and those are grouped together into orders whieh correspond in the greatest number of important eharaeters; and the orders are again united, upon the same prineiples, into
groups of a higher order, namely, the classes and other divisions. While it must be eviclent, therefure, that all the knowledge we necessarily gain by an artificial system is the name of an unknown plant; on the other hand, by the natural system, we learn not only the name, but also its relations to the plants by which it is surrounded, and hence get a clue to its structure, properties, and history. Thus, supposing we find a plant, and wish to ascertain its name, if we turn to the Linnrean System, and find that such a plant is the Menyanthes trifoliata, this name is the whole amount of the knowledge we have gained ; but by turning to the Natural System instead, and finding that our plant belongs to the order Gentianacex, we ascertain at once from its affinities that it must have the tonic and other properties which are possessed by the plants generally of that order, and, at the same time, we also learn that it accords in its structure with the same plants ; and hence, by knowing the name of a plant by the Natural System, we may at once learn all that is most important in its history. It is quite true that all the orders, as at present constituted, are by no means so natural as that of the Gentianacee, but this arises from the present imperfection of our systems, and can only be remedied as our knowledge of plants extends ; even a system, derised as perfectly as possible one day, may be deficient the next, in consequence of new plants being discorered which might compel us to alter our views, for at present the Floras of many regions of the globe are imperfectly known, and those of others almost entirely unknown. Sufticient, however, is now known of plants to cnable us to establish certain great divisions according to a natural method, and which after cliscoveries are not likely to affect to any important extent. The present imperfections of the Natural System are, therefore, comparatively unimportant, and will no doubt disappear as our knowledge of the Flora of the globe becomes extended.

Having now described the general characters upon which the artificial and natural systems depend, and the particular merits and disadvantages of the two kinds of systems respectively, we proceed in the next place to describe the special characters upon which such systems are founded, commencing with those of an artificial nature, which, however, will be only treated of very briefly.

Section 1. Artificial Systems of Classiflcation.

The first artificial system of any importance, of which we have any particular record, is that of Casalpinus, which was promulgated in 1583. Only 1520 plants werc then known; and these were ristributed into fiftecn classes, the characters of which were chiefly derived from the fruit. The next systematic arrangement of an artificial character was that of Morison, about the year

SYSTEM.
 TABULAR VIEW OF THE LINNÆAN ARTIFICIAL

 rate involnere．
Monandrid， 1 stamen．
DILNDRLA， 2 stamens：and so on nceording to the number of sta－ mens，as in the first 13 classes． ＇นวแนวร I＇Visusvion 2．DiANORIA， 2 stamells．
3．HEXANURIA， 6 stamens．

－squәut！
 on the same plant．

 nate，anda third pistillate flowers．
Filices．Ferns． Filices．
2．EQULSETACEAE．Horsetais．
3．LyCOPODIACEAE．Club－mosses．
SFLAGINELLACEA．Selaginellas， 4．Shlaginellacers．Selaginelias． －squon．taddac＊ardovarisatin $\cdot 9$
1670. He divided plants into eighteen elasses, which were eonstrueted aecording to the nature of the flower and fruit, and the external appearance of the plants. The systems of Hermann and others were also constructed upon somewhat similar prineiples, while that of Camellus was franed from the characters presented by the valves of the pericarp, and their number. In the system of Rivinus, which was promulgated in the year 1690 , plants were divided into eighteen classes ; these were founded entirely upon the corolla-its regularity or irregularity, and the number of its parts being taken into consideration. The system of Christian Knaut was but a slight alteration of that of Rivinus. That of Tournefort, which was promulgated about the year 1695, was for a considerable time the favourite system of all botanists. About 8,000 species of plants were then known, which were distributed by Tournefort into twenty-two classes. He first arranged plants in two divisions, one of which comprised herbs and under-shoubs, and the other trees and shrubs; and each of these divisions was then divided into classes, which were chiefly charaeterised according to the form of the corolla. Many other systems were devised which were simply alterations of the foregoing, as that of Pontedera. Magnolius, however, framed a system entirely on the calyx ; while Gleditsch attempted one in which the classes were founded on the position of the stamens. All the above systems were, without doubt, useful in their day, and pared the way for the more comprehensive one of Linnæus, which we now proceed to notice.

Linnean System.-This eelebrated system was first promulgated by Linneus in his 'Systema Naturee,' published in the year 1735 ; and although it was somewhat altered by subsequent botanists, the Linnean System, in all its essential charaeters, was that devised by Limneus himself ; and although now superseded by natural systems, it will be advisable for us to give a general sketch of its principal charaeteristies.

The classes and orders in the Limeean System are taken exclusively from the essential organs of reprodnction, the sexual nature of which Limneus had clearly established: henee this artifieial scheme is commonly termed the Sexual System.

The table (pp. 412 and 413) of the Classes and Orders of the Linnean System will show at a glance their distinctive eharacteristics so far as the Phanerogamia are eoncerned; but the Cryptogamia have been arrunged according to the Natural System.

Section 2. Natural Systems of Classification.

The objeet of all matural systems, as already noticed (page 411), is to group tugether those plants which correspond in the greatest number of important charaeters, and to separate those that are unlike. The mode in which this has been atteupted
to be carried out varies according to the particular vicws of botanists as to the relative value of the characters furnished by the different organs of plants ; but it must be evident to those who desire to arrange plants according to their natural affinities, that those systems of classification will be the most natural in which the organs of the highest value, and those least liable to change, are especially relied on in the determination of the affinities of plants.

Taking these principles as our guide, we should regard the organs of reproduction as of the highest importance, and we find accordingly that while some plants have flowers with evident sexes, others have no flowers, and their sexual organs are more or less concealed; hence the former are called Phanerogamous or Phænogamous, and the latter Cryptogamous. The former are also reproduced by true sceds containing an embryo, whilst the latter are reproduced by spores in which we have no such structure as an embryo ; hence these charactcrs are of the first importance.

Next in importance comes the presence or absence of an ovary, as such a difference is accompanied by essential structural and functional peculiarities, and we have thus the two great divisions of Angiospermous and Gymnospermous plants.

Next in value is the structure of the cmbryo itsclf, as it contains within itself in a rudimentary condition all the essential organs of a plant. Hence as the embryo varies in the number of its cotyledons, cotyledonous plants arc further divided into two classes-those possessing one cotyledon being called Monocotyledonous, and those with two, Dicatyledonous.

Next in importance is the presence or absence of a stem, giving the names of Cormophytes and Thallophytes ; whilst in those with stems the internal structure and development presents us with well-marked and important characters.

The characters founded upon the position and relation of the stamens and carpels to each other, as also to the floral cnvelopes; as well as the presence or absence of one or both of the floral envelopes, and the union or otherwise of their constituent parts, although not of the highest importance, are of much value in the subordinate divisions.

The leaf also is of some importance as regards its venation : thus, in Cormophytes the leaves or fronds have commonly a forked venation ; those of Monocotyledonous plants are parallelveined ; while those of Dicotyledonous plants are net-veined or reticulated. Again, stemless plants have no true leaves, but produce a flattened cellular expansion or thallus, which has no true veins.

Such are the gencral principles which should be attended to by those who arrange plants according to their natural aftinitics; but it must be bornc in mind, that even in the best devised natural systems there must be (at least at present) much that is
artificial, so that all that we mean by a Natural System is, that it expresses, as far as is possible only, the arrangement of plants according to their natural affinities. (Sce page 411.) This imperfection of our natural systems necessarily arises from our incomplete knowledge of existing plants ; for as our aequaintance with new species is becoming every day extended, our views are liable to be modified or changed, and even supposing plants he ever so naturally arranged, we should be still unable to place them in a linear series, for 'Different groups touch each other at several different points, and must be considered as alliances connected with certain great centres. We find also that it is by no means easy to fix the limits of groups. There are constantly aberrant orders, genera, and species, which form links between the groups, and occupy a sort of intermediate territory. In this, as in all departments of natural science, there are no sudden and abrupt changes, but a gradual transition from one series to another. Hence exact and rigid definitions cannot be carried out. In every natural system there must be a certain latitude given to the characters of the groups, and allowances must be made for constant anomalies, in so far as man's definitions are coneerned.'

Natural Systems. - We now proceed to give an abstraet of the more important natural systems. The first attempt at arranging plants aceording to their natural affinities was by our celebrated countryman, John Ray, in the year 1682 ; and imperfect as any scheme must necessarily have been at that day, when the number of plants known was very limited, still his arrangcment was in its leading divisions correct, and has formed the foundation of all succeeding systems. He dirided plants thus:-

1. Flowerless.
2. Flowering; these being again subdivided into
a. Dicotyledons.
b. Monocotyledons.

Ray still further grouped plants together into genera, which were equivalent to our natural orders, many of which indicated a true knowledge of natural affinities, and are substantiall represented at the present day by such natural orders as the Fungi, Musci, Filices, Conifere, Labiatæ, Composite, Umbellifere, and Leguminose.

Next in order was the scheme propomded by the celebrated author of the most perfect artificial system ever devised for the arrangement of plants, namely, Limneus, who, about the year 1751, drew up a sketch of the natural afthinities of plants under the name of Fragments. Many of the divisions thus prepared by Linneus are identical with natural orders as at present defined, among which we may mention Orchidere, Gramina, Compositre (nearly), Umbellate, Asperifoliae, Papilionacea, Filiccs, Musci, and Fungi.

Jussieu's Natural System. - To Antoine Laurent de Jussieu, however, belongs the great merit of having first devised a comprehensive natural system. His method was first made known in the year 1789. It was founded upon the systems of Ray and Tournefort, to which he made some important additions, more especially in considering the position of the stamens with respect to the ovary. The following table, which requires no explanation, represents his arrangement.

Acotyledons
Monocotyledons

Class.

1. Acotyledones.
2. Monohypogynæ.
3. Monoperigynæ.
4. Monoepigynæ.
5. Epistaminere.
6. Peristamineæ.
7. Hypostaminere.
8. Hypocorollæ.
9. Pericorolle.
10. Epicorollie Synanthere (anthers coherent).
11. Epicorolle Corisanthere (anthers distinct).
12. Epipetale.
13. Hypopetalæ.
14. Peripetale.
15. Diclines.

Under these fifteen classes Jussieu arranged 100 natural orders or families. This was the first natural arrangement in which an attempt was made to assign characters to natural orders, but so admirably were these drawn up, that they have formed the basis of all succeeding systematists. Indeed, the limits of a great many of Jussieu's natural orders are identical with those of the present day.

De Canjolle's Natural System.-The next system of note after that of Jussicu, was that of Augustin Pyramus de Candolle, which was first pronulgated in 1813. This system, modified, howerer, in some important particulars, is that which is most in use at the present day, and which, generally, in its essential divisions, we shall adopt in this volume. In the first place, De Candolle divided plants into two great divisions or sub-kingdoms, called Vasculares or Cotylclonese, and Cellulares or Acotyledonere, the characters of which are as follows :-
Division 1. Vasculares, or Cotyledonex ; that is, plants possessing both cellular (parenchymatous) tissuc and vessels ; and having an embryo with one or morc cotyledons.

Division 2. Cellutares, or Acotyledonere ; that is, plants composed of cellular (parencliymatous) tissue only ; and whose embryo is not furnished with cotyledons.
The former division was again divided into two classes, called Exogenæ or Dicotyledonex, and Endogenie or Monocotyledonere, the essential characters of which may be thus stated:-
Class 1. Exogena, or Dicotyledonex; that is, plants whose vessel.s arc arranged in concentric layers, of whicls the youngest arc the outcrmost and the softest; and having an embryo with opposite or whorled cotyledons.
Class 2. Endogenx, or Monocotyledonex; that is, plants whose vessels are arranged in bundles, the youngest being in the middle of the trunk; and liaving an embryo with solitary or alternate cotyledons.
These classes were again divided into sub-classes or groups. Thus, uncler the Dicotyledonce were placed four groups, named Thalamiflore, Calyciflore, Corolliflore, and Monochlamydete. Under the Monocotyledonce two groups werc placed, called Phanerogamæ and Cryptogamæ. The latter group, which included the higher Cryptogamia, was placed under Monocotyledonce from a mistaken iden that the plants included in it possessed an cmbryo of a somewhat analogous character to that of monocotyledonous plants. The Acotyledoner werc also dirided into two groups, called Foliose and Aphyllæ.

The following is a tabular view of De Candolle's system.

Sub-kingdom 1. Tasculares, or Cotyledone.e.

Class 1. Exogenx, or Dicotyledonex.

Sub-class 1. Thalamiflorw
2. Calycifore
3. Corolliflora
4. Monochlamydex

Petals distinct, inserted with the stamens on the thalamus.
Petals distinct or more or less united, and inscrted on the calyx.
Petals mnited, and inscrted 1 m the thalamus.
\{Haring only a single cirele of floral envelopes, or none.

Class 2. Endogenx, or Monocotyledonea.

Sub-class 1. Phencrogame
2. Cryptogame
(Frnctifieation risible, regular.
(Fructification lidden, unknown, or irregular.

Sub-kinglom 2. Cellulares, or Acotyledonefr.
Sub-class 1. Foliosæ
2. Aphylle

Vuder these sub-classes De Candollc arranged 161 Natural Orders. The enumeration of these is unnecessary in an elementary rolume ; we shall content ourselves with mentioning a fer only, as examples of the different groups. Thus, as examples of Thalamiflore-Crucifere, Caryophyllere, and Malvacer; of Calyciflorx-Rosaceæ, Umbellifere, and Compositæ; of Corol-liflore-Convolvulacer, Solaneæ, and Labiatæ ; of Monochla-mydex-Polygoner, Urticere, and Amentaceæ ; of Phanerogamx -Orchider, Irider, and Graminer ; of Cryptogamæ-Filices, Equisetacer, and Lycopodiner ; of Foliosce-Musci and Hcpaticie ; and of Aphyllx-Lichenes, Fungi, and Algr.

In this system it will be observed that De Candolle adopted the primary divisions of Jussieu, but he reversed the order of their arrangement; for instead of commencing with Acotyledons, and passing through Monocotyledons to Dicotyledons, he began with the latter, and proceeded by the Monocotyledons to Acotyledons.

Since the appearance of De Candollc's system numerous other arrangements have been proposed by botanists, as those of Agardh, Perleb, Dumortier, Bartling, Lindley, Schultz, Endlicher, and many others. As all these systems, with the exception of those of Lindley and Endlicher, were never much used, and are not adopted in great systematic works of the present day, it will be- unnecessary for us to allude to them further. But the latter having been used in important systematic works, it will be advisable for us to give a general sketch of their leading characters.

Endicher's Natural System.-The system of Endlicher is adopted in his 'Genera Plantarum, 'published between the years 1836-1840. The following is a sketch of this system. He first divided plants into two great divisions, which he denominated Regions, and named Thallophyta and Cormophyta. These were again divided into Scctions and Cohorts, as follows :-
Region 1. Thallophyta. Plants with no opposition of stenk and root; with no vessels and no scxual organs; and with germinating spores lengthening in all directions.
Section 1. Protophyta. Plants developed without snil ; drawing nourishment from the clement in which they grow; and having a vaguc fructification; as in Algee and Lichencs.

Seetion 2. Hysterophyta. Plants formed on languid or decaying organisms ; nourished from a matrix ; all the organs developing at onee, and perisling in a definite manner ; as in Fungi.

Region 2. Cormophyta. Plants with stem and root in upposite direetions; spiral vessels and sexual organs distinet in the more perfeet.
Seetion 3. Acrobrya. Stem growing at the point only, the lower part being unehanged, and only used for eonveying fluids.
Cohort 1. Anophyta. Having no spiral vessels ; both sexes perfect ; spores free in spore-eases. Examples, Hepatieæ and Musei.
Cohort 2. Protophyta. Having vaseular bundles more or less perfect; male sex absent. Spores free in one- or many-celled spore-cases. Examples, Filiees and Equisetaeer.
Cohort 3. Hysterophyta. Having perfeet sexual organs; seeds without an embryo, polysporous ; parasitie. Example, Rhizanthee.
Section 4. Amphibrya. Stem growing at the eireumferenee.
Examples, Graminer, Liliacer, Iridaeer, Orchidaceæ, and Palmaceæ.
Section 5. Acramphibrya. Stem growing at both the apex and eircumferenee.
Cohort 1. Gymnospermix. Ovules naked, reeeiving impregnation immediately by the mieropyle; as in Conifere.
Cohort 2. Apetale. Calyx absent, rudimentary, or simple, ealyeine or coloured, fiee or united to the ovary. Examples, Cupulifere, Urtieaeex, and Pulygoner.
Cohort 3. Gamopetalx. Both floral envelopes present, the outer ealycine, the inner eorolline, the latter being monopetalous; rarely abortive. Examples, Compositre, Labiatre, Serophularine:r, and Erieaeer.
Cohort 4. Dialypetalx. Both floral envelopes present, the outer being monosepalous or polysepalous, free or united to the ovary, calyeine or sometimes eorolline ; the inner being corolline with distinct petals, or rarely eohering by means of the base of the stamens, and with an epigynous, perigynous, or hypogynous insertion ; rarely abortive. Examples, Umbelliferx, Ranuneulacea, Crueifere, Caryophyllex, Rosacear, and Legumincse.

Under these divisions Endlicher included 277 Natural Orders. After Jussieu, he commenced with the simplest plants and gratdually proceeded to the more complicated, placing those of the Leguminose at the highest point of the series.

Lindley's Natural Sistem.-To Lindley especially belongs the merit of having been the first botanist who made any serious attempt to introduce a natural arrangement of plants into use in this country. The first system proposed by him in 1830 was but a slight modification of that of De Candolle. No attempt was made in this system to form minor groups or divisions of the tribes; but in 1833, in a new system, Lindley arranged the natural orders in groups subordinate to the higher divisions, which were called Nixus (tendencies). These primary divisions were again divided into Sub-classes, Cohorts, and Nixus or groups of nearly allied Natural Orders. In 1838, Lindley again altered his arrangement su far as regarded Exogens; and finally, in the year 1845, further modified his views, and proposed the following scheme, which was that adopted by him in his great work on 'The Vegetable Kingdom.'

LINDLEY'S NATURAL SYSTEM.

1. Asexual, or Flowerless Plants.

Stem and leaves undistinguishable Stem and leaves distinguishable .

Class 1. Thallogens. Class 2. Acrogens.

2. Sexual, or Flowering Plants.

Fructification springing from a thallus Class 3. Rhizogens. Fructification springing from a stem.

Wood of stem youngest in the centre ; cotyledon single.

Leaves parallel-veined, permanent ; wood of the stem always confused

Class 4. Endogens.
Leaves net-veined, cleciduous;
wood of the stem, when peren-
nial, arranged in a circle with
a central pith . . . Class 5. Dictyogens.
Wood of stem youngest at the circumference, always concentric; cotyledons two or more.

Seeds quite naked . . . Class 6. Gymnogens. Seeds enclosed in seed vessels . Class 7. Exogens.
The Exogens were further divided into four sub-classes thus :-
Sub-class 1. Diclinous Exoyens, or those with unisexual flowers, and without any customary tendency to form licrmaphrodite flowers.

Sub-class 2. Hypogynous Exogens, or those with hermaphrodite or polygamous flowers ; and stamens entirely free from the calyx and corolla.
Sub-class 3. Perigynous Exogens, or those with hermaphrodite or polygamous flowers, and with the stamens growing to the side of either the calyx or corolla ; ovary superior, or nearly so.
Sub-class 4. Epigynous Exogens, or those with hcrmaphrodite or polygamous flowers, and with the stamens growing to the side either of the calyx or corolla; ovary inferior, or nearly so.
Neither of the other classes are divided into sub-classes, but of Endogens four sections are distinguished thus :-

1. Flowers glumaceous (that is to say, composed of bracts not eollected in true whorls, but consisting of imbricated colourless or herbaceous scales).
2. Flowers petaloid, or furnished with a true calyx or corolla, or with both, or absolutely naked ; unisexual (that is, having sexes altogether in different flowers, without half-formed rudiments of the absent sexes being present).
3. Flowers furnished with a true calyx and corolla ; adherent to the ovary ; hermaphrodite.
4. Flowers furmished with a true calyx and corolla, free from the ovary; hermaphrodite.
Under the above classes Lindley includes 303 Natural Orders, which are arranged in fifty-six groups subordinate to the sections, sub-classes, and classes, and which arc termed Alliances.

Bentham and Hoorer's System.-The essential features of this system for the arrangement of the Phanerogania, which is adopted in their great work, 'Genera Plantarum,' are as follnw :-
Division I. Phanerogamia.
Sub-division 1. Avgiospermia.
Class 1. Dicotyledones.
Sub-class 1. Polypetale.
Scries 1. Thalamiflore.
2. Disciflore.
3. Calyciflore.

Sub-class 2. Ganopetale or Monopetale.
Series 1. Inferie or Epigyiz.
2. Supcre.
3. Dicarpix.

Sub-class 3. Monochlamineez or Incomplet.e.
Scries 1, Curvembryæ.
2. Multiovulate aquatices.

Series 3. Multiovulatre terrestres.
4. Micrembryre.
5. Daphnales.
6. Achlanydosporer.
7. Unisexuales.
S. Ordines anomali.

Class 2. Monocotyledones.
Series 1. Microspermæ.
2. Epigynæ.
3. Coronariere.
4. Calycinæ.
5. Nudifiore.
6. Apocarpæ.
7. Glumacere.

Sub-division 2. Grinospermia.
The series in the above system in the sulb-classes Polypetalie and Gamopetal:e are further divided into Cohorts as follows :-

Sub-class 1. Polypetale.
Series 1. Thalamiflore.
Cohort 1. Ranales.
2. Parietales.
3. Polygalineæ.
4. Caryophyllineæ.
5. Guttifcrales.
6. Malvales.

Series 2. Disciflore.
Cohort 1. Geraniales.
2. Olacales.
3. Celastralcs.
4. Sapindales.

Series 3. Calyciflore.
Cohort 1. Rosales.
2. Myrtalcs.
3. Passiflorales.
4. Ficoidales.
5. Umbellales.

Sub-class 2. Gayopetale.
Series 1. Infere or Epigyne.
Cohort 1. Rubialcs.
2. Astcrales.
3. Campanales.

Series 2. Superre.
Cohort 1. Ericales.
2. Primulales.
3. Ebenales.

Series 3. Dicarpiæ or Bicarpellatie.
Cohort 1. Gentianales.
2. Polemoniales.
3. Personales.
4. Lamiales.

No division of the series is made in 'Genera Plantarum ; but in the English translation of Le Maout and Decaisne's ' Traité Général de Butanique,' which was edited by Sir. J. D. Hooker, the sub-class Monochlamydere and the class Monocotyledones are divided as follows :-

Sub-class 3. Monochlamidere.
Division 1. Ovary superior (Supera).
Cohort 1. Chenopodiales.
2. Laurales.
3. Daphnales.
4. Urticales.
5. Amentales.
6. Euphorbiales.
7. Piperales.
8. Nepenthales.

Division 2. Ovary inferior (Infera).
Cohort 1. Asarales.
2. Quernales.
3. Santalales.

Class 2. Monocotyledones.
Division 1. Ovary inferior (Inferæ).
Cohort 1. Hydrales.
2. Amomales.
3. Orchidales.
4. Taccales.
5. Narcissales.
6. Dioscorales.

Division 2. Ovary superior (Supera).
Sub-division 1. Ovary apocarpous (Apocarphe).
Cohort 1. Triurales.
2. Potamales.

Sub-division 2. Ovary syucarpous (Symearpa).
Cohort 1. Palmales.
2. Arales.
3. Liliales.
4. Pontederales.
5. Commelyuales.
6. Restiales.
7. Glumales.

For full particulars in reference to this system, reference should be made to Bentham and Hooker's 'Genera Plantarum,' and to the English translation of Le Maout and Decaisne's 'Traité Général de Botanique,' edited by Sir J. D. Hooker. The essential characters of the various divisions are also described below uncler the head of 'Natural System adopted in this Manual,' and in the chapter clescribing the 'Arrangement, Characters, \&c., of the Natural Orders.'

Besides the above systems, others are now much used in Fermany, as those of A. Braun and Caruel of the Phaneroifamia ; and those of Sachs and others of the Cryptogamia.

Natural Ststen adopted in this Manual.--The natural arrangement adopted in this volume, which is founded, so far as the Phanerogamia are concerned, upon the systems of De Candolle and Bentham and Hooker,-that of De Candolle being the basis, is as follows :-

The Tegetable Kingdom is first divided into two sub-kingdoms, namely:-Phanerogamia or Flowering Plants; and Cryptogamia or Flowerless Plants.

Sub-kingdom 1. Phanerogamia or Flowering Plants.-This includes plants which have evident flowers; and which are reproduced by seeds containing an embryo with one or more cotyledons.

Sub-kingdom 2. Cryptogamia or Flowerless Plants.-This includes those plants which have no flowers ; and which are reproduced by minute bodies termed spores, which have no embryo.

Sub-kingdon I. Phanerogamia or Flowering Plants. These are divided as follows :-
Division I. Angiospermia, in which the ovules are distinctly enclosed in an ovary; and are fertilised indirectly by the action of the pollen on the stigma. Endosperm formed after fertilisation. It is divided thus:-
Class 1. Dicotyledones, in which the embryo is dicotyledonous; the germination exorhizal ; the stem exogenous; the leaves with a reticulated venation ; and the flowers commonly with a quinary or quaternary arrangement. In this class we have three sub-classes.
Sub-class 1. Polypetale, with usually bisexual flowers, which are commonly furnished with a calyx and corolla, and the latter composed of rlistinct petals. This is divided into three series as follows :-
Serics 1. Thalamiflore, that is, plants, the flowers of which have usually the calyx, corolla, and stamens distinct from onc another ; ovary superior ; and the stamens hypogynous.

Series 2. Disciflorx.-Thalamus furnished with a disk, whieh is hypogynous or adnate to the calyx or ovary ; or bearing a series of glands; stamens arising from the disk and either lypogynous or perigynous; ovary superior, placentation usually axile.
Series 3. Calycifloræ.-Calyx usually gamosepalous; petals arising from the calyx or from a perigynous disk; stamens perigynous or epigynous, ovary superior or inferior.
Sub-class 2. Gamopetale or Corolliflore, with usually bisexual flowers ; ealyx commonly gamosepalous ; corolla gamopetalous; stamens inserted on the eorolla or ovary, or rarely separate from the eorolla, and arising directly from the thalamus; ovary superior or inferior. Of this sub-elass we have three series, as follows :-
Series 1. Inferx or Epigynx, in which the ealyx is adherent and the ovary consequently inferior ; stamens epigynous.
Series 2. Superx, in whieh the ealyx is inferior; the stamens inserted on the corolla, or rarely on the thalamus ; ovary superior (except in Vacciniacex), and usually more than 2eelled.
Series 3. Dicarpix or Bicarpellata, in whieh the ovary is usually superior, and eomposed of 2 earpels, or rarely $1-3$; stamens inserted on the eorolla.
Sub-elass 3. Monochlanydee or Incomplete.-Flowers either have a eal yx only (monoch lamydeous), or without both ealyx and eorolla (achlamydeous) ; often unisexual. Of this sub-elass we have two series, thus :-
Series 1. Supera, in whieh the ovary is superior.
Series 2. Inferver Epigyne, in whieh the orary is inferior.
Class 2. Monocotyledones, in whieh the embryo is monoeotyledonous; the germination endorhizal ; the stem endogenous; the leaves usually with a parallel venation ; and the flowers with a ternary arrangement. This elass may be divided into two subelasses as follows :-
Sub-elass 1. Pctaloidece.-Leaves with a parallel renation, or rarely retieulated, permanent or oeeasionally deeiduous; floral envelopes (perianth) vertieillate and usually eoloured, rarely green or scaly, and sometimes absent. This subelass may be divided into two series :-

Series 1. Inferx or Epigyna, in which the ovary is inferior, or rarely superior, as in some Bromeliacest and Hemadoracere. Perianth usually in two whorls and both coloured.
Series 2. Superre, in which the ovary is superior. Of this we have two sub-series.
Sub-series 1. Apocarpr, in which the gynoecium is usually apocarpous, or rarely of one carpel (simple).
Sub-series 2. Syncarpx, where the gynœcium is syncarpous, or in some Palms apocarpous.
Sub-class 2. Glumacer.-Leaves parallel-veined, permanent; Hlowers glumaceous, that is, having no proper perianth, but imbricate bracts instead.
Division II. Gymnospermia, in which the ovules are naked or not enclosed in an ovary, and are fertilised directly by the action of the pollen. Endosperin formed before fertilisation.
Sub-kingdom II. Cryptogamia or Flowerless Plants are those which have no proper flowers, that is, having no floral envelopes, stamens, or carpels, and which are reproduced by minute bodies termed spores, which have no embryo. This may be divided as follows :-
Division I. Cormophyta.-Plants with commonly roots, stems, and leaves, and with vascular tissue; or the latter is imperfect or entirely absent. This may be divided thus:-
Class 1. Vasculares or Vascular Cryptoganis, or those containing evident vascular tissue. Of this we have two sub-classes as follows :-
Sub-class 1. Isosponia, producing spores of one kind only, from which prothallia free from the spores are developed, and containing both anthericlia and archegonia.
Sub-class 2. Heterosporia, producing spores of two kinds, namely, megaspores or macrospores, and microspores. The megaspores devclop a prothallium which remains attached to the spores, and which produces archegonia (female prothalliun) ; and the microspores form a small rudimentary prothallium also confluent with the spores, which produces only antherozoids (male prothallium).
Class 2. Muscivee, or Cormophytal Chyptogams without rascular tissue, or in which the latter is imperfect.

Division II. Thallophyta.-Plants without any distinction of roots, stems, and leaves, and which are entirely composed of parenchymatous tissue. This division has been variously divided by botanists; but as their arrangement at present is very transitional, reference must be made for full rarticulars to special treatises.

The following is a tabular arrangement of the above system:-
Sub-kingdom I. Phanerogamia or Flowering Plants.
Division 1. Angiospermia.
Class 1. Dicotyledones.
Sub-class 1. Polypetale.
Series 1. Thalamiflore.
2. DisciHore.
3. Calycifloræ.

Sub-class 2. Gamopetalæ or Corollifloræ.
Series 1. Inferæ or Epigynæ.
2. Superæ
3. Dicarpiæ or Bicarpellatre.

Sub-class 3. Monochlamydeæ or Inconpletr.
Series 1. Superæ.
2. Inferæ or Epigynæ.

Class 2. Monocotyledones.
Sub-class 1. Petaloider.
Series 1. Inferæ or Epigynr.
2. Superæ.

1. Apocarpæ.
2. Syncarpæ.

Sub-class 2. Glumacer.
Division 2. Gymnospermia.
Sub kingdom II. Cryptogamia or Flowerless Plants.
Division 1. Cormophyta.
Class 1. Vasculares.
Sub-class 1. Isosporia.
2. Heterosporia.

Class 2. Muscinere.
Division 2. Thallophyta.

CHAPTER 3.

ARRANGEMENT, CHARACTERS, DISTRIBUTION, PROPERTIES AND USES OF THE NATURAL ORDERS.

Havivg now given a general sketch of the more important Natural Systems-especially of that one which we propose to follow in this volume-and described the characters of its divisions, we proceed to the description of the various, natural orders arranged under those divisions. Our attention will be chiefly directed to the principal orders, and especial importance will be given to their diagnostic characters, - or those only which are nécessary for their distinction. In our notice of the natural systems, we have seen that some authors, as Jussieu, Endlicher, and Lindley, commence with the simplest forms of plants, and end with the most complicated; while others, as Ray, De Candolle, and Bentham and Hooker, take an opposite course, and proceed from the most highly developed plants to the simplest. We have adopted the latter plan here, because the more highly developed plants are much better known than those of lower organisation, and are of more general interest to the majoity of our readers.

Sub-kingdom I.

PHANEROGAMIA OR FLOWERING PLANTS.

Division I. ANGIOSPERMIA.

Class I. Dicotyledones.

 Sub-class I. Polypetalce.Series 1. Thalamifloræ.
Cohort 1. Runales.-Gynoecium apocarpous, or very rarely syncarpous, or simple. Seeds usually albuminous.
Drder 1. Ranunculacee, the Buttcrcup Order. -Character.-Herbs, or rarely climbing shrubs, with a watery, colourless, usually acrid juice. Leaves altcrnate or opposite, generally much divided (figs. 333, 334, and 371), or sometimes entire, with usually dilated and amplexicaul petioles. Stipules generally absent, but rarely present, and then adnate. Inflorescence definitc (fig. 432) or indefinite. Calyx of 3-6, usually 5 (fiy. 870) distinct sepals, regular (fiys. 432 and 870) or irregular (fig. 45̄), green or rarely petaloid, deciduous or very rarely persistent; zestivation generally imbricate (fig. 870), sometimes valvate (fig. 792) or induplicate. Curolla of 3 15, usually 5
(fig. 870) distinct petals, regular (fig. 870) or irregular (fig. 496) ; estivation imbricate (fig. 870), sometimes absent (f fy. 792). Stamens numerous (figs. 792 and 870), or very rarely ferw, hypogynous (figs. 542 and 871, e) ; anthers adnate (fig. 872), bursting longitudinally. Carpels generally numerous (figs. is 42 and $871, p$), or rarely few or only 1 , usually distinct and onc-celled ($\mathrm{fig} .875,0$), or very rarely united so as to form a compound many-celled ovary ; ovary with one (fig. 875,g) or many ovnles ; oveles anatropous, attached to the ventral suture (fig. 875) ; styles simple (fig. 871, p). Fruit various, either consisting of a number of dry achenes, or of one or more whorls of fnllicles (fig. 873), which are sometimes united bclow, or sometimes

Fig. 8 oro.

Fig. 870.

Fig. 87.

Fig. 8.4.

Fig. 872.

Fig. 870. Diagram of the flower of a species of Ranunculus.-Fig. 871. Fertical section of the flower of Ranunculus acris. c. Calyx. pe. Peta's. P. Stanens. $\quad p$. Carpels.-Fig. 872. Alnate anther of a Ranunen'aceous plant.- Fig. 873 . Numerous follicles of Trollius curopeus.- Fig. 874. Vertieal section of the seed of the Monkshood (Aconitum). sp. Coverings of the seerl. emb. Embryo. alb. Albumen.-Fig. 875. Vertical seetion of a earpel of Remunchlus acris. o. Ofary. g. Orule. s. Stigma.
there is only one follicle ; or very rarely the fruit is baeatc, with one or more seeds. Seeds solitary or numerous, when solitary, crect or pendulous ; embryo minutc (fig. 874, emb), at the base of homogenenns horny albumen, alb.

Diagnosis.-Herbs or rarely shrubs, with a eolourless, watcry, and usually acrid juiec. Sepals, petals, and stamens distinct. hypogynous. Corolla with an imbricate restivation. Stamens usually numerous; anthers adnate, bursting longitudinally. Carpels, exccpt in a vory few instanees, more cr less distinct.

Seeds with a minute embryo, and homogeneous horny albumen, anatropous.

Dirision of the Order and Illustrative Genera.-The order may be divided into five tribes as follows :-
Tribe 1. Clematidex. Calyx valvate (fig. 792) or induplicate. Fruit consisting of a number of achenes. Seed pendulous. Mlustrative Genus:-Clematis, Linn.
Tribe 2. Anemonex. Calyx imbricatc, usually coloured. Fruit consisting of a number of achenes. Seed pendulous. Illustrative C'enus:-Anemone, Haller:
Tribe 3. Panunenter. Calyx imbricate (fig. 870). Fruit consisting of a number of achenes. Sced erect. Ilustratice Gemes:-Ranunculus, Limn.
Tribe 4. Helleborea. Calyx imbricate. Petals irregular or none, Fruit consisting of one or more whorls of many-seeded follicles (flg .873), which are sometimes united below; or rarely baccate. Illustrative Genera:-Aconitum, Lim. ; Cimicifnga, Elliott.
Tribe 5. Pronier. Calyx imbricate. Fruit consisting of from 2-5 follicles, which are more or less surrounded at the base by a cup-shaped disk (fig. 580). Illustrative Genus:-Pæonia, Limu.
Distribution and Numbers.-These plants occur chiefly in cold damp climates, and are almost unknown in the tropics, except on mountains. The order includes about 600 species.

Pioperties and Uses.-The plants of this order generally abound in an acrid principle, which in some is even vesicant. This acridity is, however, very volatile, so that in most cases it is dissipated by drying, or by infusing them in boiling, or even sometimes in cold water ; it varics also in different parts of the same plant, and even in the same parts at different seasons. Some plants contain in addition a narcotic principle; and when these principles are in excess they are virulent poisons. Generally the plants of this order are to be regardcd with suspicion, although some are simply bitter and tonic.

Aconitun.-Some species of this genus are very virulent poisons. The Iried root of Acnnitum ferox, which is known as Nepal or Indian aconite, las been usually considered to be the sole source of the celebrated Indian drng and poison, 'Bikl' or 'Bish' but this is also obtained indifferent'? from A. Napellus, A. uncinatum, A. palmatum, and probably others.Aconitum Napellus, a Europran species, eommonly called Monkshood, is the official plant of the British Pharmacopmein. The leaves, flowering tops, and root (more especially the latter), are poisonous, but when used in proper doses ther are sedative, anodrne, and diuretic. Several fatal cases of poisoning have oceurred from the root having been mistaken for Horseralish. The other European species are ahmost inert. The properties of the alove species are especially the to at least two powerful alkaloids, called aconitiue and pseud-aconitiue. The official aconitine is a mixture of these alkaloils, and prolably others, in varying proportions, and has heen much used extornally in neuralgia and chronic rheumatism, and also occasionallyintrenally in rhenmatism and other diseases, but it is a dangerous remed. for internal use. The freshl leaves and flowering tops, the dried root, anid
aconitine, are official in the Britisl Plarmacoppeia. Olher species lave similar properties, as, for instance, the species yielding Japancse acouite roots or tubers, now supposed to be A. Fischeri. These roots contain a very powerful alkaloid named japaconitine. It is said to exceed in poisonons properties both aconitiue and pseud-aconitine. The Aconitum ferox contains the largest amount of alkaloids of any known species. The root or rinzome of Aconitnm heterophyllum has no poisouous properties; it is official in the Pharmacopecia of India, and has a reputation in India as a tonic and antiperiodic medicine. It is known in the Indian bazaars as Atis or Atees.

Actea spicata, Baneberry.-The rhizome of this plant, as slown ly the author, is a frequent adulteration in this country of Black Hellebore rlizome. The same adulteration has also been noticed on the Continent, and in America. The fruits are poisonous. (See Cimicifinga).

Cimicifugn.-The rhizome with the attached rootlets of (imicifuga (Actra) racemgsa has been long used in the United States as a rencedy in acute rheumatism, chorea, and varions anomalous forms of nervous diseases. It has been introduced into this country, and employed with some success in similar diseases ; and is now official in the British Pharmacopocia. In the form of a tincture it is also reputed to be a valuable external application for reducing indammation; indeed, in such cases, it is said to be far more efficacions than tincture of arnica. It is the source of the eclectic remedy known in the United States as cimicifugin.

Clemutis erecta and C. Flammula.-The leaves of these plants have been nsed as rubefacients and vesicants. Some other species poossess analogous properties.

Coptis.-The root of Coptis trifoliata, Goldthread, which is a native of North America, is a pure and powerful bitter, and is nsed as a stomachic and tonic. The root of Coptis Teeta, commonly known in India as Coptis or 'lita root, is found in the bazaars of India ; and is official in the Pharmacopocia of India. It is also known under the name of Mishmi Bitter or Mahmira. It is intensely and powerfully bitter, and is a valnable tonic. Both these drugs contain berberine.

Delphinium Staphysagria.-The sceds of this plant were formerly employed for their emetic, purgative, and anthelmintic properties; but their violent action has led to their internal disuse. They are commouly known uuder the name of Stavesacre seeds. They contain an alkaloid, called delphinine. They are, however, still much used extermally in various skin diseases, and are now official in the British Pharmacopeia ; they are also employed externally for destroying vermin. Delphinine has also been used externally in neuralgin and rheumatism.-D. Consolidum.-The root and seeds contain delphinine, and have similar properties to Stavesacre seeds.

Helleborus.-The rlizome and rootlets of Helleborns qfficinalis constituted the Black Hellebore of the ancients, which was much used by them as a drastic hydragogue purgativc.-Helleborus niger is the Black Hellebore of the present time; it is still occasionally employed in this country and elscwhere, and possesses similar properties to the former (see Actaia).-Hellcborus virdis and H. Jotidus are also of a like nature, and may he nsed as eflicient substitutes ; indeed that of H.viridis is more powerfill in its action.

Hydrustis canadensis.- The rhizome and rootlets, muder the names of Yellow Root and Golden Seal, are used in the United States for their tonic properties; and are also reputed to exercise an cspecial influence over nutous surfaces. Their action is due to the presence of berberine and a peculiar alkaloid called hydrustinc. The drus used ly the eclectic practitioners in the United States muder the name of hydrastinc is oltained from it. 1lydrastis is also used by the Indians of the Western States of North America to dye varions shades of yellow.

Nigelle sutiva.-The seeds were formerly employed instead of pepper. They are regarded in India as carminative. It is smpposed that these
sceds, or those of another species used by the Afghans for flavouring enrries, form the Black Cummin of Scripture (ISsaiah xxviii. 25, 27).

Rununculus.-R. sceleratus and R. Flammula are very acrid, which property is also possessed to a certain extent by many other specics.- R. 1 Ficaria has thickened roots which eontain a good deal of starch; hence they have becu used as food.

Tenthorrhiza apuifolia.-The root has a pure bitter taste, and possesses well-marked tonic properties. It is also used by the Indians in the southern parts of the United States as a ycllow dye. It contains berberine as a constituent.

Many plants of the order are commonly cultivated in our gardens ; as various species of Clematis, Anemone, Ranunculus, Eranthis (Wintcr Aconite), Helleborus (Christmas Rose), Aquilegia (Columbine), Delphinium (Larkspur), Aconitum (Monkshood), Promia (Pæouy). Peonia Moutan or Moutan officinalis is the Trec Paony of China, which is remarkable for its very large showy Howers, and for the number of its blossoms: thus, Fortune mentions a plant in the neighbourhood of Shanghai which yearly produecd from 300 to 400 flowers.

Order 2. Dillentacee, the Dillenia Order.-Character. -Trees, shrubs, or rarely herbs. Leaves usually altemate, very rarely opposite, generally exstipulate. Sepals 5 , persistent, in two rows. Petals 5, deciduous, hypogynous, imbricate. Stamens numerous, hypogynous. Carpels $2-5$, rarely 1 , more or less distinct. Fruit formed of from 2-5 distinct or adherent carpels, rarely 1 . Seeds numerous, or 2 or 1 by abortion, anatropous, arillate ; albumen homogeneous, fleshy ; embryo minute.

Diagnosis.-Stipules absent, except in rare cases. Sepals and petals 5 each, hypogynous; the former persistent in two rows, the latter with an imbricate æstivation. Carpels more or less distinct. Seeds numerous, arillate ; albumen fleshy, homogeneous.

Distribution and Numbers.-The plants of this order occur chiefly in Australia, India, and equinoctial America ; a few species have been also found in equinoctial Africa ; none occur in Europe. Illustrative Gewera:-Dillenia, Linn.; Candollea, Labill. There are nearly 200 species belonging to this order.

Properties and Uses.-These plants have generally astringent properties ; they have been used as vulneraries, and for tanning in Brazil.

Dillenia.-The young calyces of some species have an acid tastc and are emplosed as an ingredient of currics in some parts of India. Some species of Dillenia grow to a large size, and form hard durable timber.

Most of the Indian species belonging to the genus Dilenia are remarkalle not only for their evergreen foliage, but also for the benuty of their flowers. They are sometimes cultivated as stove or greenhonse plants in this country.

Order 3. Calycanthaces, the Calycanthus Oriler--Dia-gnosis.-These are shrubby plants resembling the Rosacex, but they differ in having opposite leaves, which are always simple, entire, and exstipulate ; in theiresepals and petals being numerous, and similar in appearance; in having stamens whose anthers are adnate, and turned outwards; and by having convolute
cotyledons. They are placed here in accordanee with the viev.s of Bentham and Hooker.

Distribution and Numbers.-They are natives of Japan and North America. Illustrative Genera:-Calycanthus, Chimonanthus. These are the only 2 genera, which include 6 species.

Properties and Uses.-The flowers generally are fragrant and aromatic; and the bark of Calyeanthus floridus, Carolina Allspice, is sometimes used in the United States as a substitute for Cinnamon bark.

Order 4. Magnoliacees, the Magnolia Order.-Character. -Trees or shrubs, with alternateleathery leaves (fig. 336), and with usually large convolute stiputes which enclose the leaf-bud and fall off as it expands. Sepcls usually thrce to six, deciduous. Petals three or more, hypogynous, in two or more rows. Stamens numerous, hypogynous (fig. 604, e). Carpels sevcral, one-celled, often arranged upon an elongated thalamus ($\mathrm{fg} \mathrm{g} .604, c$). Fruit consisting of numerous dry or succulent, dehiscent (fig. 667) or indehiscent carpels, which are distinct or united at the base. Seeds anatropous, with or without an aril, solitary or several, often suspended from the fruit by a long funiculus (fig. 667); embryo ninute; albumen fleshy, homogencous.

Diagnosis.-Trees or shrubs. Leaves alternate, leathery. Stipules usually present, and then large and enveloping the leafbud, deciduous. Sepals and petals with a ternary arrangement of their parts, hypogynous, the former deciduous, the latter with an imbricate æestivation. Carpels distinct or coherent at the base. Albumen homogeneous.

Division of the Oider.- The order may be divided into two tribes:-

Tribe 1. Magnoliex.-Carpels distinct, arranged upon an elongated thalamus in a conc-like manner (fig. 604, e). Leaves not dotted or searecly so. Illustrative Genera:-Liriodendron, Limn.; Magnolia, Limu.

Tribe 2. Winterex.-Carpels united at the base, and forming but one whorl. Leaves dotted and often exstipulatc. Illustricttive G̃enera:-Drimys, Forst.; Illicium, Lim.

Distribution and Numbers. -The majority of the plants of this order are found in North America. Some also occur in the West Indies, Japan, China, India, South America, Australia, and New Zealand. Nonc have been found in Africa or any of the adjoining islands, or in Europe. The order contains about 170 species.

Properties and Uses. These plants are chicfly remarkable for bitter, tonic, and aromatic properties.

Drimys Winteri.-The bark, which was formerly known under the name of Winter's Bark, has tonic, aromatic, antiseorbutic, and stimmant properties. 1t was often confoumed with Canela Burk, which has heen termet Spurious Winter's lank. It was formerly moth employed in this comutry, hat at present it is very rarely or ever usect. 'The 'Winter's Bark. ns now found in commerce, is commonly obtained from Cimamodendron
corticosum (see Cinnamodendron), a native of Jamaica.-Drimys grana(tensis pussesses similar properties.

Ilhicum anisatum, Star-Auise.-The whole plant, partieularly the fruit, has the flavour and odour of the European Anise plant (Pimpinella Anisum). - Star-Anise fruit is used by the Chinese as an aromatic and earminative, and salso as a spice. A large portion of the Oil of Anise of commerce is now derived from this fruit. This oil and the fruit from which it is obtained, are official in the British Pharmacopœia; it is regarded as a superior oil to that olitained in Europe from the fruit of Pimpinella Anisum, which is also ofticial, and was formerly the sole botanical source of Oil of Anise. The species of Illicium which grows in Japan is regarded as distinct by Siebold, and named I. religiosum, but more generally it is included by botanists under 1. anisatum. Husemann, Holmes, and others, however, have reeently given reasons for believing them distinct. The frnits of 1 . religiosum are oeeasionally imported; they have a faint aromatic odonr and taste, which have been regarded as resembling bay leaves or camphor, but are entirely devoid of the chacacteristic anise taste and odonr of the Chinese fruits. In Japan ther are termed Skimi, shikmi, or shikimi fruits; and the recent observaJapan as a cheap lightinar by expression from the seeds. This and for lubricating purposes.

Liriodendron tulipifera, Tulip-tree. -The bark possesses bitter and tonic properties.

Magnohia.-M. glauca, Swamp Sassafras or Beaver Tree. The bark is tonic and aromatic, somewhat resembling that of Cinchona in its action. The unripe fruits of other species, as Magnolia Frazeri and M. acuminata, hare similar properties.

Michetia Champaca.-The flowers of this plant, which is a native of India, vield a fragrant oil. (See Cananga, p. 436.)

Tusmannia aromatica.-The frmit is used in New Holland as a substitute for pepper.

The plants of this order are also remarkable for the framrance and beauty of their flowers and foliage ; hence they are favourite objects of culture in this country, either as hardy plants, such as several Magnolias and the Tulip-tree; or as stove and greenhonsc plants, snch as species of Illicium.

Order 5. Schizandraces, the Schizandra Order.-Charact e r.-Trailing slorubs. Leaves alternate, exstipulate, simple, often dotted. Flowers unisexual. Calyx and conolla with a ternary arrangement of their parts, hypogynous, imbricate. Burren flower:-Stamens numerous, monadelphous or distinct, hypogynous ; anthers 2-celled, extrorse, with a thickened connective. Fertile flower :-Carpels numerous, 1-celled, distinct or united ; ovules 2, pendulous. Fruits numerous, collected into a cluster, baccate. Seeds with abundant homogeneous fleshy albumen; embryo very minute. This order is made a tribe of - Magnoliacere by Bentham and Hooler.

Diagnosis.-Trailing shrubs. Leaves alternate, exstipulate, simple. Flowers unisexual. Sepals and petals imbricate. Stamens numerous, hypogynous. Ovules pendulous; embryo very minute, with abundant homogeneous albumen.

Distribution and Numbers.-This small order only contains 12 species. These species occur in India, Japan, and the southern parts of the United States. Illusticutive Genera:-Schizandra, L. C. Rich.; Hortonia, Wight.

Properties and Uses.-The plants of this order are insipid and mueilaginous. Some have edible fruits.

Order6. Anonacee, the Custard-apple Order.-Charaeter. -Trees or shrubs. Leares alternate, simple, exstipulate. C'alys of three sepals, generally united at the base, persistent. Coralla of six petals, in two whorls, leathery; astiration usually valvate, hypogynous, rarely united, or more rarely altogether absent. Stamens usually numerous, and inserted on a large hypogynous thalamus; connective enlarged, 4 -angled ; anthers adnate. Carpels usually numerous, distinet or united, or very rarely solitary, with one or more anatropous ovules. Fruit composed of a number of dry or sueeulent earpels, whieh are distinet, or united so as to form a fleshy mass ; or rarely simple. Seeds one or more, anatropous; embryo minute; albumen ruminated.

Diagnosis.-Trees or shrubs. Leaves alternate. Nostipules. Calyx of 3 sepals, persistent. Petals 6, in two rorss, hypogynous, usually valvate. Anthers adnate, with an enlarged 4eornered eonneetive. Albumen ruminated.

Distribution and Numbers.-The plants of this order are almost entirely eonfined to the tropieal regions of Asia, Afriea, and Ameriea. None are found in Europe. Illustrative Genera:Xylopia, Linn.; Anona, Linn. ; Monodora, Dunal. There are nearly 400 speeies in this order.

Properties and Uses.-Generally aromatie and fragrant in all their parts. Some have edible fruits, whieh are mueh esteemed.

Anona squamosa and A. muricata yield the agreeable sucenlent fruits of the East and West Indies, ealled Custard-apples: the fruit of A. squamosa is ealled Sweet-sop: that of A. muricata, Sour sop. They are now frequently imported into this eountry. Other species are also esteemed for their fruits, as Anona reticulata, which yields the netted Custard-apple, and A. Cherimolia, which produces the Cherimover of Pern. Another species, namely. A. palustris, is the sonree of West "Indian Cork-wood, so called from its clasticity and lightness; the fruit is termed the Alligator Pear, bat in consequence of the presence of a nareotic principle it is not eaten. This mnst not beennfounded with the true Avocado or Alligator Pear, which is in mueh repute in the West Indies, and is derived from Persea gratissima. (See Persea.)

Colocline (Unona) polycarpa, DC.-The Berberine or Yellow-dye tree of Soudan.-The bark of this tree yields a beantiful vellow eolour, which is much used as a dyeing material in certain parts of Africa. Wheu reduced to a coarse powder, it is also a topical remedy of great repute in the treatment of indolent ulcers, and chronie leprons sores of the extremities. It eontains berberine, to which its medicinal virtues are probably duc.

Cananga (Unona) odoruta.-The flowers yicld a very fragrant oil, which is known under the uames of Ilang-ilang. Alanguilan. Oleum Unonas, and Olemn Anome. Aceordine to Guibourt, the oil known as Macassar Oil is Coena-nut oil digested with the flowers of Michelia Champaca (see . Vichelia, p. 435) and Cananya odorata, coloured yellow by means of turncric.

Duguetia quitarensis.- Aecording to Schombirgl, the strons clnstic wood ealled Lance-wood, chicfly used by eoachmakers, is furnished by this plant, which is a native of Guiana.

Monodora Myristica, the Calabasli Nutmeg, has somewhat similar aromatic qualities to the trine Nutmeg of commerec. These mitmegs are also commonly known as Jamaica or American nutmegs.

Tvaria febrifuga.-The fruit of this speeies is supposed to be the one which is used as a febrifuge by the ludians on the Orinoeo; aceording to Martius, however, that is obtained from the Nylopia grandiflora.

Nylopiu- - I. armatica (Habzelia rethiopica), DC., is eommonly known is Piper rethiopicum. The dried fruit is used by the Afriean negroes on acsount of its stimulant and earminative effeets, and also as a condiment.Wylopia undulata has nearly similar moperties.- Xylopia glabra vields the Bitter wood of the West Indies, which has tonie properties. The finits of 11. longifulia are used as a febrifuge throughout the valley of the Orinoeo.

Order 7. Menispermaces, the Moon-seed Order.-Character. - Climbing or trailing shrubs. Leaves alternate, simple, exstipulate, usually entire. Flowers generally diocious, but sometimes imperfectly unisexual, rarely perfect or polygamous. Barren flower:-Calyx and corolla with a ternary arrangement of their parts, generally in two whorls, imbricate or valvate. Stamens usually distinct, sometimes monadelphous. Carpe's rudimentary or wanting. Fertile flower:-Sepals and petals usually resembling those of the barren flower. Stamens imperfectly developed, or wanting. Carpels usually 3 , sometimes 6 , commonly supported on a gynophore, distinct, 1-celled, each containing one curved ovule. Fruits drupaceous, curved around a central placental process, 1 -celled. Seeds 1 in each cell, and curved so as to assume the form of that cell ; embryo curved ; albumen present or absent; when present homogeneous, or partially divided into plates or convolutions by the projection inwards of the inner membranous covering of the seed.

Diagnosis.-Trailing or climbing shrubs. Leaves alternate, simple, exstipulate. Flowers usually diœcious. Scpals, petals, stamens, and carpels with a ternary arrangement, hypogynous. Carpels distinct. Fruits 1-celled, curved. Seed solitary, curved; embryo curved ; albumen absent, or usually small in amount, and then either homogeneous or somewhat ruminated.

Miers remarks, 'that there is probably no family so completely heteromorphous as the Menispermacce, or which presents such extreme and aberrant features at variance with its normal structure.' Hence there is great difficulty in drawing up a satisfactory diagnosis of this order.

Distribution and Numbers.-The plants of this order are chiefly found in the forests of the tropical parts of Asia and America. None occur in Europe. Illustrative Genera:-Jateorhiza, Miers; Menispermum, Tourn. There arc, according to Lindley, about 300 species included in this order ; but some other botanists much reduce this number.

Properties and Uses.-These plants are chiefly remarkable for their narcotic and bitter properties. A few are mucilaginous. When the narcotic principle is in excess they are very poisonous. Some are valuable tonics.

Anamirta paniculata.-Tle fruit of this plant, which is known as Cocculus indicus, is poisonous. It has heen extensively employed for a lonn prriod as a poison for taking fish aud game, whieli it stupefies. It is also
reputed to be nsed to a great extent (ehiefly by publicans) to impart a bitter taste to malt liquor, and to inerease its intoxicating effects; but it must be admitted that we have no very satisfactory evidence on this point. The average annual imports of Cocculus indicus from India are about 50,000 llis., a quantity, it is said, sufficient to drug 120,000 tuns of beer. It hus been also employed externally to destroy vermin, and for the cnre of some skin diseases. It owes its active properties to a poisonous neutral priuciple eontained in the seed, called picrotnxin. The periearp also coutains two isomeric alkaloids in minute yunatity, which have been named menispermine and paramenispermine, of which but little is known.

Chondrodendron tomentosum.-The root of this plant, which is a native of Brazil, as shown by Hanbury, is the original Pareira brava, and is the drug on which its reputation was fonnded. It is official in the British Pharmacopœia. (See Cissampelos.) The stem possesses similar but less powerful properties; it is, however, frequently mixed with the root. Pareira root contains an alkaloid which has been named cissampeline or pelosine, but which Fluickiger has proved to be identieal with beberine, the active principle of Bebeeru hark. (Sec Nectandra.)

Cissumpelos.-C. Pareira was official in the British Pharmnenpecia as the botanical source of Pareira root. It possesses tonic and dinretic properties. The true Pareira root of commerce is not, however, derived from Cissampelos Pareira, but from Choudrodendron tomentosum, as noticed above in referring to that plant. Other spurions kinds of Pareira bruva are derived from Abutu mfescens, which vields White Pareira brava; from Abuta anara, Yellow Pareira brava; and also from other Menispermaceous plants.

Coscinium fenestratum.-The wood and bark of the stem possess tonic and stomachic properties. The stems have been imported into this country from Ceylon, and sold as trne Calumba ront; they eontain much berberine.

Jateorhiza.-Joteorhiza Calumba is now official in the British Pharmacopœia as the botanical source of Calumba root, so well known ns a valuable stomachic and tonic. The tonic and stomachic properties of Calumba root are espeeially due to a peculinr neutral principle, called calumbin. It also contains berberine and calumbic acid, to the presence of which its properties are also, to some extent at least, due.

Menispermum caurdense, Yellow Parilla or Moonseed. -The root rields the eclectic remedy called meuispermin, which is reputed to be alterative, tonic, laxative, diurctic, and stimulant; and to be especially uschul in syphilitie, cutaneons, and rheumatie affections. This root has also been sold in the United States under the name of Texas Sarsaparilla.

Tinospora cordifolia.-The ront and stems are official in the Plaruacopreia of India, aud are known under the name of Gulancha; they possess well-marked tonic, antiperiodic, and diuretic properties.

Order 8. Berberinace.e, the Barberry Order.-Character. -Shubs or herbaceous perennial plants. Leaves altermate (fig. 383), compound, usually exstipulate. The leaves are frequently apparently simple, but in such cases it will be fomed that the blade is articulated to the petiole, which is evidence of their compound nature. The stem is generally free from hairs and other appendages of a similar character, but it is often spiny (fig. 38:3). These spines are nothing more than the hardened reins of some of the leaves, between which the parenelyma is not developed. Sepuls 3, 4, or 6, deciduous, in two whorls (fig. 876). Pctals equal to the sepals in number and opposite to them, or twice as many, hypogynous. Stamens hypogynous (fig. Sis), equal to
the petals in number, and opposite to them (fig. 876) ; antluers 2 -celled, each opening by a valve from the bottom to the top (fyss. 540 and 585), except in Podoplyyllum where they dehisee longitudinally. Curpels solitary, 1-celled (figs. 877 and 878); style somewhat lateral (fig .877) ; stigma orbicular (fg .878); cevles anatropous, attached to a marginal placentct (figs. 877 and 878). Fruit baceate, or dry and capsular. Seeds (fig. 879) usually with a minute embryo; albumen between fleshy and horny.

Fig. 876.

Fig. 878.

Fif. 879.
Fig. 8 i7.

Fig. 876. Diagram of the flower of the Barberry (Borberis). Fig. 877. Verticnl section of the Hower of Epimedium.-Fig. 878. Vertical section of the ovary of Berberis.-Fig. 879. Vertical sectiou of the seed of Berveris, with the embryo in the axis surrounded by albumen.

Diagnosis.-Leaves alternate, very often spiny. Sepals 3, 4 , or 6 , deciduous. Petals hypogynous, and opposite to the sepals when equal to them in number. Stamens definite, hypogynous, opposite to the petals; anthers 2 -celled, each opening by a recurved valve, except in Podoplyllam where they dehisce longitudinally. Carpel solitary; placenta marginal ; ounles anatropous. Seeds with albumen.

Distribution and Numbers. - They are found in the temperate parts of Europe, America, and Asia, and are very common in the mountainous parts of the North of India. Illustrative C'enera:-Berberis, Linu. ; Epimedium, Linn.; Leontice, Linn. The order includes about 100 species.

Propertics and Uses. - These plants are generally acid, astringent, and bitter; but some are purgative. Their acid properties are due to the presence of oxalic acid.

Borleris unlgoris, the erommon Barlerry:-The fruits of this and other species are arid and astringent, amb form a refreshing preserve. Its bark
and stem are very astringent, and are oceasionally used ly dyers in the preparation of a yellow dye. The common Barberry hark is sometimes employed to adulterate Pomegranate root-bark. It is said to be tonic in small doins, and cathartie in large ones. It owes its properties more especially to berberine. The root-barls of B. Lycium, B. asiatica, and B. aristata, forms Indian Barberry bark. This bark, whieh is official in the Plarmaeopocia of India, possesses tonie, anti-periodie, and diaphoretic properties; and its extract, under the name of Rusot, is employed in India as a local application in ophthalmia and other affections of the eyes. The properties of Iudian Barberry bark are espeeially due to the presence of the alkaloid berberine.

Caulophyllum thalictroides, Blue Cohosh.-The root (rhizome) has a reputation among the eclectic practitioners in the United States in certain uterine affections. It is regarded as a stimulating tonic and slight nareotic. The eelectic remedy termed caulophyllin which is obtained from it, is reputed to be antispasmodic, alterative, tonic, diuretic, and vermifnge.

Jeffersonia diphylla.-The root (rhizome) is popularly known as rheuma-tism-root in the United States, from its reputed value in rhemmatism. It is commonly said to resemble senega root in its action, and to possess emetie, tonic, and expectorant properties.

Podophyllum peltatum, May-apple.-The rhizome and rootlets possess hydragogue eathartic properties, owing especially to the presence of a resin, which is frequently termed incorrectly podophyllin. The rhizome is official in the British Plarmacopœia as the source of the official Resin of Poduphyllum, which is now largely used as a eholagogue, \&e., in this country.

Order 9. Lafdizabalacem, the Lardizabala Order.-Charae-ter.-Shrubs of a twining habit. Leares alternate, exstipulate, eompound. Flowers unisexual. Barrenflower:-Calyx and corolla with a ternary arrangement of their parts, each in one or two whorls, deeiduous. Stamens 6, opposite the petals, usually monadelphous, sometimes distinet. Rudimentary carpels 2 or 3 . Fertile flower:-Calyx and corolla as before, but larger, hypogynous. Stamens 6, very imperfeet and sterile. Carpels distinet, generally 3 , rarely 6 or 9 , 1 -eelled; ontles usually numerous, rarely 1, imbedded on the inner surface of the ovary. Fruit baecate, or sometimes follieular. Seed with usually a minute embryo in a large quantity of homogeneous albumen. This order is placed in Berberidacea by Bentham and Hooker, and by Baillon; and by De Candolle in Menispermaecs.

Diagnosis.-Twining shrubs. Leaves alternate, exstipulate, eompound. Unisexual flowers. Carpels distinct, superior. Seeds parietal, imbedded ; embryo usually minute, with abundant homogeneous albumen.

Distribution and Numbers.-There are about 15 speeies belonging to this order. Aeeording to lindley, two genera inhabit the cooler parts of South Ameriea ; one is a tropical form, and the remainder are from the temperate parts of China. Mlustrative G'enera:-Stauntonia, DC.; Lardizahala, luiz et Par.

Properties and Uses. -The plants of this order appear to be without any aetive properties. Some have edible fruits. Others have been introdueed into our greenhouses as evergreen climbers.

Order10. Cabombacee, the Water-shield Order.-Character. - Aquatic plants, with floating peltate leaves. Sepals and petals 3 or 4 , alternating with each other. Stamens definite or numerons. Thalumus Hattened, small. Carpels 2 or more, distinct. Fruit indehiscent. Seeds few ; embryo minute, enclosed in a vitellus, and outside of abundant fleshy albumen.

Diagnosis.-The only orders likely to be confounded with this, are the Nymphraceæ and Nelumbiacer. The plants belonging to the Cabombacer are distinguished from the Nymphreacer, by having distinct carpcls, marginal placentas, few seeds, no evident thalamus, and by the presence of fleshy instcad of farinaceous albumen; and from the Nelumbiacer, by their small thalamus, by having more than one seed in each carpel, by their minute embryo, and their abundant albumen. Both Cabombaceæ and Nehmbiaceæ are inchuded in Nymphracce by Bentham and Hooker.

Dislribution and Numbers.-There are but 3 species belonging to this order. They occur in America, Australia, and India. Illustrative Genera :-Cabomba, Aubl. ; and Brasenia, Pursh, are the only genera.

Properties and Uses.-They have no important properties. Brasenia (Hydropeltis) purpurea is said to be nutritious.

Order 11. Nympheacee, the Water-lily Order.-Charac-ter.-Aquatic percmial herbs. Lcaves usually floating, peltate or cordate. Flower's solitary, large and showy. Sepals inferior,

Fig. 881.

Fig. 882.

Fig. 880 . Flower of Yellow Water-lily (Nuphnr huteum).-Fig. 881. Ovary of Nuphut with mmmerous rudiating stigmas.-Fig. 882. Vertieal seetion of the seed of Nympheet clba, showing the embryo enclosed in a vitellus, and on the outside of albumen.
usually 4 ($f(g .453, c, c, c, c$), or rarely 5 (fig. 880), persistent, generally petaloid on their inside. Petals numerous (fig. 453, $p, p, p, p)$, dcciduous, often passing by gradual transition into the stamens ($f i g .453, p, e$), in the same way as the sepals pass into the petals; inserted on a flesly disk-like expansion of the thalamus below the stamens (f fg. 522). Stamens numerons, placed upon the thalamus; filuments petaloid (fig. $453, e, 1,2$, 3, 4, b) ; anthers adnate. Thalamus large, forming a disk-like expansion more or less surrounding the ovary, and having
inserted upon it the petals and stamens (fig. 522). Carpels numerous, united so as to form a eompound ovary (fyg.869) ; ovary many-eelled (fig. 790) ; styles absent ; stigmas radiating on the top (figs. 522 and 881), and alternate with the dissepiments. Fruit indehiseent, many-eelled. Seeds numerous, attached allover the spongy dissepiments; embryo minute, enelosed in a separate sae or vitellus, and on the outside of farinaeeous albumen ($f g .882$).

Diagnosis.-Aquatie perennial herbs with cordate or peltate usually floating leaves. Thalamus large, and forming a disklike expansion more or less surrounding the ovary, and haring inserted upon it the petals and stamens. Sepals inferior, persistent; petals numerous; stamens numerons, with petaloid tilaments and adnate anthers ; earpels united so as to form a compound many-eelled ovary; stigmas radiating on the top, and alternate with the dissepiments ; ovules numerous, and attached all over the dissepiments. Embryo minute, on the outside of farinaceous albumen, enelosed in a vitellus.

Distribution and Numbers.- The plants of this order are chiefly found in quiet waters, throughout the whole of the northern hemisphere; they are, generally speaking, rare in the southern hemisphere. Illustrative Genera:-Vietoria, Lindl. ; Nymphra, Linn. There are about 40 speeies.

Properties and Uses.-These plants have bitter and astringent properties. They have been also eonsidered as sedative and narcotie ; but there does not appear to be any foundation for sueh an opinion. Many eontain a large quantity of stareh both in their rhizomes and seeds ; henee, sueh parts are used for food in some countries.

Victoria Regia.-This plant is a native of Equatorinl Ameriea, and has been introduced into this country, where it has exeited much interest, both on aceount of the benuty and size of its fluwers, and its enormons and singularly: construeted leaves. The flowers when filly expanded are more than a foot in diameter ; and the leaves, which are turned np at their margins, var: from four to cight feet in diameter. The plant is commonly known in this country as the Victoria Water-lily, and in South Ameriea inder the name of Water-maize, as the seeds are there used for food, for which purpose they are commonly roasted with Maize or Indian Corn. The rhizomes also conitain a large quantity of starch.

Order 12. Nelumbiaceef, the Water-bean Order.-Charae-ter.-Aquatic herbs. Leares peltate, rising above the water. Flowers large and showy. Sepals 4 or 5 . Petals mumerous, in several whorls. Stamens numerous, in several whorls ; filuments petaloid. Thalamus very large (fig .654 , that), flattened at the top, and excavated so as to present a number of eavities, eaeh of whieh contains a single carpel (fig. 654, carp). Fruit eonsisting of the ripened nut-like earpels, which are half-buried in the eavities of the thalamus. Seed solitary, or rarely ' 2 ; without albunen; embryo large, enelosed in a membrane, with two fleshy cotyledons, and a mueh-developed plumule. This order,
as we have already stated, is included in Nymphracea by Bentham and Hooker.

Diagnosis.-Aquatic herbs with peltate leaves. Thalamus very large, flattened at the top, and excavated so as to present a number of cavities. Carpels distinct, and partially imbedded in the large honeycombed thalamus. Fruit of numerous, usually 1 -seeded, nut-like bodies. Albumen none; plumule very large.

Distribution and Numbers.-These beautiful water plants tre natives of stagnant or quiet waters of temperate and tropical regions in the northern hemisphere ; they are most abundant in the East Indies. Mlustrative Gemus:-Therc is but 1 genus, Nelumbium; which includes 3 species.

Properties and Uses.-The nut-like fruits of all the species are edible, as well as their rhizomes, which contain starch like those of Nymphreaceous plants.

Nelumbium speciosum.-The fruit of this plant is commonly considered to have been the Egyptian Bean of Pythagoras; and the flower the sacred Lotus so often represented on the nonuments of Egypt and India. The plant, however, is no longer found in Egypt, lut it is common in India. The leaves and peduncles contain a large number of spiral vessels ; these, when extracted, are used for wieks, 'which on great and solemn necasions are burnt in the lamps of the Hindoos placed before the shrines of their gods.?

Cohort 2. Parietales.-Gynœcium syncarpous; placentation parietal, or very rarely axilc.
Order 1. Sarraceniacee, the Side-saddle-flower Order.-Character.-Perennial herbs, growing in boggy places; with radical hollow leaves, which are pitcher- or trumpet-shaped (figs. 391 and 392). Sepals 4-6, usually 5, persistent, imbricate. Petals 5, liypogynous, sometimes absent. Stamens numerous, hypogynous; anthers adnate, 2-celled. Carpels 3-5, united so as to form a compound 3-5-celled ovary ; ovales numerous; placentas axile ; style simple and truncate, or expanded at its top into a large shield-like angular process with one stigma beneath each of its angles. C'apsule 3-5-celled, dehiscing loculicidally. Seeds numerous, attached to large axile placentas; cllumen abundant.

Diagnosis. - Perennial boggy plants, with pitcher or trumpetshaped leaves. Calyx permanent, imbricate. Carpels united so as to form a compound nvary, and a 3-5-celled dehiscing fruit, with large axile placentas ; albumen abuudant.

Distribution and Numbers.-There are 8 species, of which 6 are confmed to the bogs of North America, 1 occurs in Guiana, the other species is found in California. Illustrative Generct: -Sarracenia, Heliamphora.

Properties and Uses.-The pitchers are lined by glandular hairy appendages; thesc secrete a peculiar cligestive fluid which dissolves any inscets that find their way into them. The solu-
tion thus formed is ultimately absorbed, and appears to be necessary for the healthy condition of these plants.

Sarracenia.-The rhizome, rootlets, and leaves of Sarracenia purpurea were formerly vaunted as a specific in small-pox, but from exteusive tria's in the hospitals of this and other countries, they have been fonnd to be entirely useless.-S. variolaris and S. fiava are reputed to be diurctic and mildly purgative, and usefnl in dyspepsia, headnche, \&c. The properties, however, of all the species seem to be unimportant.

Order 2. Papaveracee, the Poppy Order.-Charactcr.Herbs or shrubs, usually with a milky juice (white or coloured). Leaves alternate, exstipulatc. Sepals usually 2 (fig. 883) or rarely 3 , caducous (fig. 471). Petals 4 (figs. 883 and 884), or rarely 6 , or some multiple of 4 , or very rarely wanting; usually crumpled in restivation (fig. 883), hypogynous. Stamens generally numerous (figs. 883 and 884), hypogynous (figs. 32 and

Fig. 884.
Fig. 885.

Fig. 883. Dingram of the flower of the Poppy, with two sepals, four erumpled petals, numerous stamens, and a eomponnd one-eclled ovary with several parietal plaeentas projecting into its interior so as to nearly divide it into several eells. - Fig. 884. Flower of Celandine (Chelidomium majus). sti. Two stigmas on the пpex of a lengthened or pod-like orary.-Fiy. 885. Siliqneform or podslaped eapsule (cerutium) of Celandine.

884) ; anthers 2-celled, inmate (fig. 32). Ovary 1-celled, with 2 or more (figs. 623 and 883) parictal phacentas, which project more or less from the walls into its cavity, and in Romneya actually adhere in the axis; styles absent (fig. 32) or very short; stigmas 2 (fig. 884, sti), or many (fig. 32, sti), altornate with the placentas, and opposite the imperfect dissepiments ; when numerous, they form a star-like process on the top of the ovary (fig. 32); ovnles numerous (fig. (;23). Fruit 1 -celled, and cither pod-shaped with 2 parietal placentas (fig. 885), or capsular with several placentas ; dchiscing by valves (fig .885) or pores, or sometimes indehiscent. Seeds usually mumerons ; cmbryo in fleshy-oily albumen ($f i g .775$).

Diagnosis. - Usmally herbs with a milky juice. Leaves alternate and exstipulate. Peduncles 1 -flowered; flowers regular and symmetrical. Calyx and corolla with a binary or ternary
arrangement of their parts, deciduous, hypogynous. Stamens numerous, hypogynous ; anthers 2-celled, innate. Ovary compound, 1-celled, with parietal placentas, stigmas alternate to the placentas. Fruit 1-celled, except in Romneya. Seeds numerous, albuminous.

Distribution and Numbers.- Nearly two-thirds of the plants of this order are natives of Europe, and are mostly annuals. They are almost unknown in tropical regions, and are but sparingly distributed out of Europe in a wild condition. Mlustrative Genera:-Papaver, Linn.; Chelidonium, Linn. The order includes above 130 species.

Froperties and Uses.-The plants of this order are in almost all cases characterised by weli-marked narcotic properties. Some are acrid, while otlers are purgative. In a medicinal point of view, this order must be regarded as the most important in the Vegetable Kingdom, from its yielding Opium, undoubtedly the most valuable drug of the Materia Medica.

Argemone mexicana, Mexican or Gamboge Thistle.-The seeds have narcotico-acrid properties. An oil may be oltained from them by expression, which possesses aperient and other properties, and has been recommended as a remedy in cholera. In the West Indies, the seeds are also used as a snbstitute for Ipecacuanha. In the Enst Indies, the oil is likewise emplored as an external application in certain skin diseases.

Chelidonium majus, Celandine.-The Celandine is a native of this country, growing especially in the neighbourhood of towns and villages. It has an orange-colonred jnice of a poisonons nature, which is a popular external application for the cure of warts, and has been used successfully in opacities of the cornea. It has been also administered internally, and is reputed aperient, dinretic, and stimulant.

Prapaver.-P. somniferum, Opinm Poppy.-Opinm is the juice obtained by incisions from the unripe capsules of this plant, inspissated by spontaneons evaporation. It has been known from early times, having been allnded to by IIppocrates, Diagoras, and Dioscorides. Various kinds of opium have been described under the names of Turkey, Smyrna, or Asia Minor, Egyptian, Persian, European, Indian, Chinese, and others. Opinm which is produced in Asia Minor is that most commonly nsed in this conntry, and is alone official for all the preparations of the British Pharmacopoia, except the alkaloids which may be obtained from other kinds of opium. Its consumption is largely on the increase; thas, in 1839, the quantity imported into Great Britain was 41,000 pounds, and in $1852,114,000$ pounds, and it is very much greater at the present time. Thus the average anmal exports of opium from Smyrna alone are now probably more than 300,000 pounds. But India is the great opinm producing country, for here the guantity of opium prodnced annually is nearly $12,000,000$ pounds, Of° this enormous quantity at least $8,000,000$ poinds are exported to and consumed in China, representing a market value of about as many pounds sterling. Opium is also now largely prodnced in China. Opium possesses in a markerl degree the narcotic properties of the plants of the order from which it is obtained. In large doses it is a nareotic poison. It is also regarded as soporific, anodyne, and antispasnodic. Its nareotic properties are rhiefly due to a peculiar alkaloid called morphine, which is combined with meconic acid. Its properties are also due, to some extent at least, to othrer jeculiar principles which it contains. as codeine, warcotine, ureceine, thebuine, meconine, and a number of others, the properties of which are
but little known. The alkaloids codeine and morphine in the form of some of its salts, and meconic acid, are official in the Britislı Plarmacopocia. While the juice obtained from the unripe pericarp has been proved to possess suchactive properties, the seeds are bland and wholesome. They yicld by expression an oil which is much used on the Continent and in this country, as a substitute for olive oil and for other purposes. It is one of the oils enployed for the purpose of adulterating olive oil. The cake left after the oil his been extracted may be used for fattening cattle. The dark-coloured seeds are known as Muw seeds, and are largely eaten by birds. They are also used as a medicine for them.-Pupaver Rheas, the common Red or Cors Poppr, has scarlet or red petals, as its name implies. A syrup prepared from the fresh petals (which are official in the British Plarmacopeia) is used as a colouring ingredient by the medical puactitioner. The fresh petals are also supposed to possess slight narcotic properties.

Sunguinaria cumalensis, Puccoon.-The rhizome and rootlets of this plant, which is a native of North America, contain a red juice, from which circumstance it is commonly termed Blood-root. This so-called root is used internally in large doses as an emetic and purgative, and in smaller doses as a stimulant, diaphoretic, and expectorant. It is also said by Eberle to exercise a sedative influence on the heart, as certain as that of Digitalis. When applied externally, it has been stated to have well-marked escharotie properties, and has been used, combined with chloride of zine, as an external application for the destruction of cancerous growths; but from trials in this country it has been proved valueless for such a purpose.

Many genera belonging to this order are commonly cultirated in our gardens, as Pupaver, Argemone, Romeria, Platystemon, Eschscholtziu, \&c.

Order 3. Fumariaces, the Fumitory Order.-Character. -Smooth herbs with a watery juice. Leares alternate, much divided, exstipulate. Sepals 2 (fig. 886), deciduous. Petals 4,

Fig. 886. Diagram of the fiower of Corydalis, with two sepals, four neta's in two whorls, six stamens in two buadles, and n one-eelletlovary with two parietal plaeentas.--Fig. 887 . Fertical seetion of the flower of Iyprecoum. -Fig. 888. Upper or posterior petal of Corydnlis, spured at the bare. and a bundle of three stmmens.- Fig .889 . Vertieal seetion of the seed of Fumeria.
cruciate, very irregular, in two whorls (fig. 886) ; one or both of the outer petals being gibbous or spurred (fys. 886 and 888), and the two inner frequently united at the apex. Stamens hypogynous, usually 6 , diadelphous, the two bundles being opposite the
onter petals, and containing an equal number of stamens ($f y$. 886), the middle stamen of each bundle having a 2 -celled anther ($\mathrm{fig} . \mathrm{S86}$), the two outer with 1 -celled anthers (fig .886) ; in rare cases there are four stamens, which are then distinct and opposite the petals. Ovary superior (fig. 887), 1-celled, with parietal placentas (figs. 886 and 887) ; style short, or long and filiform ; stigma obtuse or lobed; ovrles amphitropous. Fruit indehiscent and 1- or ${ }^{2}$-seeded, or two-valved and dehiscent, or a succulent indehiscent pod-like fruit; in the two latter cases containing a number of seeds. Seeds shining, crested ; embryo abaxial, minute (fig. 889); albumen fleshy. This order is included in Papaveracex by Bentluam and Hooker.

Diagnosis.-Smooth herbs, with a watery juice, and alternate exstipulate much-divided leaves. Flowers very irregular and unsymmetrical, and either purple, white, or yellow. Sepals 2, deciduous. Stamens hypogynous, usually 6 , diadelphous, or 4, distinct ; always opposite to the petals. Ovary superior with parietal placentas; ovules amphitropous. Embryo minute, abaxial, in fleshy albumen.

Distribution and Numbers.-The plants of this order principally occur in thickets and waste places in the temperate latitudes of the northern hemisphere. Illustrative Genera:Dicentra, Borkh.; Fumaria, Toum. There are about 110 species.

Properties and Uses.-These plants possess slightly bittcr, acrid, astringent, diaphoretic, emmenagogue, and aperient properties. The rhizomes or tubers of Diceutra (Corydalis) formosa are the source of corydtalin, which is used by the cclectic practitioners in the United States of America in syphilis, scrofula, \&c.; but the properties of this and other plants of the order appear to be unimportant. Some species are cultivated in our gardens and greenhouses. The most important of these is Dicentra (Dielytra) spectabilis, which has very showy flowers, but, like all other plants of the order, it is scentless.

Order 4. Cruciferfe, the Cruciferous Order.-Character. - Herbs, or very rarely shrubby plants. Leaves alternate, exstipulate. Flowers usually yellow or whitc, rarely purple, or some mixture of thesc colours; inflorescence racemose (fig .891) or corymbose ; usually ebracteated. Sepals 4 (fig. 890), deciduous; restivation imbricate or rarely valvatc. Petals 4 (figs. 25, p, and 890), hypogynous, arranged in the form of a Maltese cross, alternate with the sepals, deciduons. Stamens 6 , tetradynamous (fig .892 , cc), hypogynous. Thelamus furnished with small green glands (fig. 892, gll) placed between the stamens. Ovary superior (fig. 892), with two parietal placentas (fiy. 615 and 893), 1-cclled, or more usually 2 -celled (fig. 890) from the formation of a spurious dissepinent called the replum ($f u y$. $615, \mathrm{c}, \mathrm{l}$) ; woules generally numerous, arranged altcrnately on two parietal placentas so as to form a single row, amphitro-
pous or eampylotropous ; style none ($f g .892$), or very short ; stigmas 2 (fig. 893), opposite the placentas. Fruit a siliqua (fiys. 682 and 893), or silicula (figs. 714, 894, and 895), 1- or 2 -cellcd, 1- or many-seeded. Seeds stalked, generally pendulous (figs. 893 and 894) ; embryo with the radicle variously folded upon the eotyledons (figs. 776, 777, 778, 896, and 897); albumen none.

Diagnosis.-Generally ebracteated herbs. Inflorescence indefinite ; racemose or corymbose. Sepals and petals 4, deciduous, regular, the latter cruciate. Stamens tetradynamous. Ovary with two parietal placentas; stigmas 2. Fruit a siliqua or silicula. Seeds stalked, without albumen, and with the radicle variously folded upon the cotyledons. No other order is likely to be confounded with this if ordinary care be taken, as tetradynamous stamens only occur here, except in a very few plants belouging to the order Capparidacer.

Fig. 890.

Fig. 891.

Fig. 891. Portion of the Howering branch of the Walltower.

Division of the Order and Illustrative Genera. -This large and truly natural order has been divided into sub-orders according to the nature of the fruit, and also as to the mode in which the embryo is folded. The latter is the most natural arrangement.

The sub-orders founded on the mature of the fruit are as follows :-

Sub-order 1. Siliquose. - Fruit a siliqua (fig. 682), opening by valves longitudinally. Illustrative Genera:-Chciranthus, Limu. ; Brassica, Liun. Sub-order 2. Siliculosa latisepte.-Fruit a silicula opening by valves ; the replum in its broader diameter (fiy. 890̄). Illustralive Gemes:-Cochlcaria, Limn. Sub-order 3. siliculosid angustisepta. - Fruit a silicula opening
by valres ; the replum in its narrower diameter (fig. 894). Illustrative Genera :-Capsella, Manch; Iberis, Lime.
Sub-order 4. Nucumentacea.-Fruit an indehiscent silicula; often 1-celled, owing to the absence of the replum. Illustrative Genus:-Isatis, Limn.

Fig. 892.

Fig. 895.

Fig. 893.

Fig. 896.

FIG. 894.

Fig. 897.

Fig. 892. Essential organs of the Wallfower (Cheiranthus Cheiri). r. Thalamus. yl. Glands. ec. Tetradynamous stamens. sti, Stigmas.-Fig. 893. An unripe siliqua of the Wallfower, with one of the valves removed to show the replum, and the stalked pendulous seeds.- Fig. 89t. The silicula of Shepherd's Purse (Capsella Bursa-pastoris) in the ret of dehiseing, showing the stalked pendulous seeds.- Fig. 895. Siliculn of the Seurvygrass (Cochlearia officinalis) in the aet of deliseing.--Fig. 896. The embryo of Bunicts orientalis.-Fig. 897. The embryo of the Cabbage plant (Brassich oleracea). 1. Undiviled. 2. Horizontal seetion. r. Radiele. c. Cotyledons.

Sub-order 5. Septulatx.-The valves of the fruit opening longitudinally and bearing transverse septa in their interior. There are no examples among British plants.
Sub-order (f . Lomentacer. - Fruit a siliqua or silicula, dividing transversely into 1 -seeded portions, the true siliqua sometimes barren ; the beak placed above it containing one or two seeds. Illustrative Genera:-Cakile, Gaert. ; Raphanus, Linn.

The arrangement of Bentham and Hooker is essentially the same as the above.

The sub-orders founded on the mode in which the embryo is folded are as follows :-
Sub-order 1. Pleurorhizex ($\mathrm{O}=$) (fig. 778).-Cotyledons accumbent, flat ; radicle lateral. Illustrative Genera:-Cheiranthus, Linn.; Arabis, Linn.
Sub-order 2. Notorhizex ($0 \|$) (fig. 777).-Cotyledons incumbent, flat ; radicle dorsal. Illustrative Genera:-Hesperis, Linn. ; Isatis, Linn.
Sub-order 3. Orthoplocer ($O \geqslant$) (fig. 897).-Cotyledons conduplicate, longitudinally folded in the middle ; radicle dorsal, within the fold. Illustrative Genera:-Brassica, Limn. ; Raphanus, Linn.
Sub-order 4. Spirolobex ($\mathrm{O}\|\|$) (figs. 776 and 896).-Cotyledons twice folded, linear, incumbent. Illustrative Genus:Bunias, Linn. There are no examples among British plants. Sub-order 5. Diplecolobex (〇 \| \|\|).-Cotyledons thrice folded, linear, incumbent. Illustrative Genera:-Senebiera, DC. ; Subularia, Linn.

Distribution and Numbers.-The plants of this order chiefly inhabit temperate climates. A large number are also found in the frigid zone, and a few in tropical regions, chiefly on mountains. The order includes about 1,600 species.

Propertics and Uses.-This order is generally characterised by antiscorbutic and pungent properties, frequently combined with acridity; it is one of the most natural in the Vegctable Kingdom, and does not contain a single poisonous plant. The seeds frequently contain a fixed oil. Many of our commonest culinary vegetables are derived from this order.

Anastatica hierochuntina, Rose of Jerieho.-This plant, which is fonnd wild in the deserts of Egypt and Syria, is remarkable for its hygrometric properties. Thus, when it is full grown, and its branches have become dry and withered, it eontracts and coils up, so as to assume the form of a hall, and in this state it is blown about by the winds from place to place: but if it be then exposed to moisture, it uneoils, and the branches expand asain as if restored to life. 'Some superstitious tales are told of it, among which, it is said to have first bloomed on Christmas Eve to salute the birth of the Fedeemer, and paid homage to His resurrection by remaining expanded till Easter.' In Palestine it is termed 'Kal' Maryan,' Mary's Flower.

Brassica.-This genus contains several species which are commonly enltivated as food for man and eattle.-Brassica Rapa is the eommon Thurnip; and the Swedish Turnip is probably a lyborid betweon Brassica campestris and B. Rapa or B. Napus, hat according to some it is derived from B. campestris.-B. Napus yields liape, Cole, or Colza seels, from which may be expressed a large quantity of hland fixed oil, which is muell emploved for burning and other purposes. The calse left after the expression of the oil is also used as foom for eattle, \&e., under the name of Oil-eake. The seeds of 13 . chimensis vield Shanghai Oil.-B. oleracea, the Wild Cabbage,
is supposed to be the original species from which have been derived, by eultivation. nll the rarieties of Cabbages, Kohl-Rabi, Greens, Broceoli, and Cnuliflowers. The Kohl-Rabi is produeed by the stem enlarging above the ground into a fleshy knob, resembling a turnip. Broeeoli and Cauliflowers are deformed inflorescenees.-B. nigra and \bar{B}. alba were formerly plaeed under the genus Sinapis, L.; but this genus is now eommonly inclnded in Brassica. The seeds of these two species are in common use in medicine and for eulinary purposes, and the seedlings are also employed as salads; those of the former are dark-coloured, and are known as Black Mustard seeds; those of the latter have a vellowish colour, and are termed White Mustard seedsboth kinds are official. Flour of mustard, so extensively used as a condiment, is prepared from a mixture of commonly two parts of powdered Black and three of White Mustard seeds : the proportions, however, used by different mnnufacturers vary. Both the Blaek and White Mustard seeds contain a large quantity of fixed oil, whieh is readily obtained by submitting them to pressure ; this expressed oil is called fixcd oil of nustard. It is remarkable that we do not find ready formed in cither Black or White Mustard seeds the pungent acrid principle or principles for which mustard is especially distinguished. But when Black Mustard seeds are distilled with water, they yield a very acrid and pungent volatile oil, on which their virtues essentially depend. The elements of this oil exist in the seed, in the forms of myronate of potash or sinigrin and myrosin. These substances, when mixed through the nedium of water, cause the formation of the volatile oil of mustard, which is official in the British Pharmacopoia. But the active properties of White Mustard seeds are not due to the presence of a volatile oil, as no such oil can be obtained from them by distillation with water, or otherwise; but they nre owing to a fixed acrid oily principle, which is developed under the influence of water, by the aetion of myrosin, one of its constituents, on a erystalline principle which it also contains, ealled sinalbin or sulpho-simapisin. Flour of mustard is given internally as a stimmlant, diuretic, and emetic ; and externally applied, it is irritant, rubefacient, \&c. The volatile oil is a powerful vesieant. White Mustard seeds are also taken in an entire state as a stimulant in dyspepsin. The seeds of Sinapis juncert, a native of Indin, possess similar properties to those of Black and White Mustard seeds; they are official in the Pharmacopœia of India, under the name of Sinapis indica.

Camelina sativa, Gold of Pleasure. The seeds are stated to be valuable as food for eattle. They eontain a large quantity of oil.

Cardamine pratensis, Cuckoo-flower.-The flowers were formerly much used for their stimulant and diaphoretic properties, and have long been a popular remedy for epilepsy in children.

Cochlearia.-C. Armoracia (Armoracia rusticana).-The root is the common Horseradish, so much used as a condiment. Several fatal cases of poisoning have occurred from the substitution of Aconite or Monkshood root for that of Horseradish, which it is supposed to resemble. Fresh Horseradish ront is officinl in the British Pharmacopeia; it is user in medical practice-externally, as an irritant, rubefacient, and vesicant, and internally as a stimulant, diuretic, and masticatory. Its virtues depend upon the formation of a small quantity of volatile oil, under the influence of water, from the supposed presence of the same principles as those contained in black Mustard seeds. (See Brassica.)-C. officinalis, Scurvy•grass, was leng esteemed for its anti-scorbutic properties.

Crambe maritima, Sea-knle.-The stem and leaf-stalks of this platit, hy cultivation under diminisherl light, form a much esteemed veretable, lis thre wild state the plant possesses a gond deal of acridity, but this is almost entirely remover by cultivation as above.

Isatis timctoria, Woard-This plant yicliss a dark-hlne dye. which was formerly much used in this country and other parts of Europe, but it is
now rarely or ever emploved, having been superseded by Indigo, In China also, a blue dye is obtained from the fruits of Isatis indigotica.

Lepidinm sativum, Garden Cress.-This is well known as a pungent salad ; it is commonly used for that purpose mixed with the seedlings of the Mustard plants.

Nasturtium officinale.-This plant is the common Watercress, so well known as an excellent and wholesome salad. It has been highly spoken of as a remedial agent in the treatment of cachectic diseases. According to Mulder, it coutains iodine.

Raphanus sativus.-This is the common Radish, so much employed as a salad, \&c. The siliques of Raphanus caudatus, when about half-grown, are good as a boiled vegetable; and in a still younger state they form an agreeable salad, having a mild radish-like flavour.

Sinapis.-This genus is now commonly inelnded in that of Brassica (which see).

Many plants of the order are favourite objects of culture in our gardens, such as the Stock (Matthinla), Wallfower (Cheiranthus Cheiri), Candytuft (Iberis umbellata), Honesty (Lunaria brennis), \&c.

Order 5. Capparidacee, the Caper Order,-Character.Herbs, shrubs, or rarely trees. Leaves alternate, exstipulate, or rarely with spiny stipulate appendages. Sepals 4 ($\mathrm{fg}, 650$, cal), sometimes cohering more or less; æestivation imbricate or valvate, equal or unequal. Petals usually 4 (f g. 656, cor), cruciatc, imbricate, generally unequal and unguiculate, rarcly 8 , or sometimes nonc. Stamens numerous or definite, if 6, very rarely tetradynamous, placed usually upon a prolonged thalamus or stalk by which they are raised above the calyx and corolla (fig. 656, st). Ovary (fig. 656, ov) placed ou a gynophore or sessile, 1 -celled ; placentas 2 or more, parietal ; style filiform or wanting ; ovules amphitropous or campylotropous. Fruit 1-celled, usually many-seeded, very rarely 1 -sceded, either pod-shaped and dehiscent, or baccate and indehiscent. Seeds gencrally reniform, without albumen ; cmbryo curved; cotyledons leafy.

Diagnosis.-Herbs, shrubs, or trces, with alternate leaves. Sepals and petals 4 each, the lattcr cruciatc, and generally unequal. Stamens usually numerous, very rarely tetradynamous, commonly inserted on a stalk, which raises them above the calra and corolla. Ovary 1-celled, placentas parietal. Fruit deliscent or indeliscent, 1 -cellcd. Sceds generally reniform ; embryo curved; no albumen.

Division of the Order and Illustrative Genera. -The order has been divided, according to the nature of the fruit, as follows :-

Sub-order 1. Cleomex.-Fruit capsular and dehiscent. Illustrative Genera :-Gynandropsis, DC. ; Cleome, DC.
Sub-order 2. Capparea.-Fruit baccate and indehiscent. Illustrative Genera:-Cadaba, Fursk. ; Capparis, Lim.

Distribution aml Numbers.-The plants of the order arc found in tropical and sub-tropical regions of the globe. In Africa they are cspecially abundant. The common Caper (Cap-
paris spinos(t), which inhabits rocky places in the south of Europe, is the only European species, and also that one which is found farthest north. The order contains about 360 species.

Properties and Uses.-In their properties these plants resemble in many respects the Crucifera, being generally pungent. stimulant, and antiscorbutic. Others are aperient, diuretic, and anthelmintic. In some plants the pungent principle is highly concentrated, or probably is in itself deleterious, so that those in which it is found are very poisonous.

Cadaba indica.-The root is reputed to be aperient and anthelmintic.
Capparis.-The flower-buds of various species of this genns are used to form the well-known pickle called Capers. Thus, Capparis spinosa is that emplovel in the south of Europe, C. Fontanesii in Barbary, and C. regyptiaca in Egypt. C. regyptiuca is stated to be the Hyssop of Seripture. Capers are stimulant, antiscorbutie, and aperient. The fruit of C. coriacea hasbeen lately recommended as a valuable remedy in epilepsy, and generally for nervous and hysterical affections.-C. Sadada has a small fruit which possesses an acrid peppery taste, and is an important article of food in some parts of Afriea. The fruit of one species, said to be allied to C. pulcherrima, and which is found in the neighbourhood of Carthagena, is extremely poisonous.

Cleome.-Some species are very pungent, and are used as condiments like our mustard.

Cratera religinsa is commonly employed amongst the natives in India as a stomachic and tonic. The root of C. gynandra, the Garlic Pear, is said to be resicant.

Gynandropsis pentaphylla, a native of India, is reputed to be antispasmodic. The bruised leaves are rubefacient, and even vesicant; and its seeds are used as a substitute for mustard, and, like mustard seeds, contain a fixed oil.

Polanisia.-Some speeies of this genus are also employed like mustard. The root of P. icosandra is used internally as a vermifuge, and externally as a rubefacient, \&c.

Order 6. Resedacee, the Mignonette Order.-Character. -Herbs, or rarely small shrubs. Leaves alternate, entire or divided, exstipulate, or with minute glandular stipules. Calyax with from 4-7 divisions. Petals 2-7, entire or with a deeply lobed or fringed limb (fig. 499), unequal. Disl fleshy, large, hypogynous, one-sidcd. Stamens definite, inserted on the disk. Ocary sessile, 1-celled (fig. 621) ; ovules amphitropous or campylotropous ; placentas (fiy. 621, pl) parietal; stigmas 3, sessilc. Fruit usually opening at the apex long before the -secds are ripe (fiy. 621), 1-celled. Seeds usually numerous, reniform; enbryo curved, without albumen.

Diaunosis.-Usually herbs, with alternatc leaves and unsymmetrical flowers. Disk large, hypogynous, one-sided. Stamens definite, not tetradynamous. Ovary sessile, 1 -celled, with parietal placentation; stigmas 3, sessile. Fruit usually opening at the apex before the secds are ripc. Seeds generally numerous, reniform, exalbuminous.

Distribution and Numbers. -They are chiefly natives of Europe and the adjoining parts of Africa and Asia. A fow
occur in the north of India, Cape of Good Hope, and California. Illustrative Genera :-Reseda, Lim. ; Astrocarpus, Neck. There are about 45 species in this order.

Properties and Uses.-But little is known of their properties. The plants are generally somewhat acrid, and were formerly supposed to be sedative.

Reseda.-Reseda odorata is the Mignonette plant, which is so much esteemed for the fragrance of its flowers.-Reseda lutenla, a common plant in this country, and known under the name of Weld, yields a yellow dye.

Order 7. Cistacee, the Rock-rose Order.-Character. Shrubs or herbs, often viscid. Leaves opposite or alternatc, entire, stipulate or exstipulate. Flowers showy. Sepals usually 5 (fig. 898), sometimes 3 , persistent, unequal ; cestivation of the three inner twisted. Petals usually 5 (fig. 898), very rarely 3, caducous, hypogynous, frequently corrugated in the bud, and twisted in a reverse way to that of the sepals. Stamens (fig. 898) distinct, hypogynous, definite or indefinite. Ovary 1-(fig. 898) or F1g. 898.

Fig. 899.

Fig. 898. Diagram of the flower of a speeies of Heliunthemum.-Fig, s99, Seetion of the seed of a speeies of Cistus, the pointed end being its apex.
many-celled from parietal septa ; ovules orthotropous; style single; stigma simple. Fruit capsular, usually 1-celled, with $3-5$, or rarcly 10 valves ; or imperfectly $3-5-10$-cclled ; placentas parietal (fig. 898). Seeds definite or numerous, albuminous (fig. 899) ; embryo (fig. 899) curved or spiral, with the radicle remote from the hilum.

Diaynosis.-Leaves entirc. Sepals and petals with a ternary or quinary arrangement, twisted in astivation ; the former persistent, the latter caducous. Stamens lypogynous, distinct. Ovary with parietal placentas and orthotropous orules; style single ; stigma simple. Fruit capsular. Sceds with mealy albumen ; embryo invertcd, curved or spiral.

Distribution und Numbers.-These plants are most abundant in the south of Europe and the north of Africa. Some few are found in other parts of the globe. Illustrative Genera:Cistus, Tourn. ; Helianthemum, Toum. There are about 200 species.

Properties and Uses.-These plants have generally resinous and balsamic properties. Some are regarded as stimulant, expeetorant, and emmenagogue.

Cistus creticus.-The fragrant resinous substance called Ladanum or Labdanum is oltained from this plant in the Levant, and also from C. ladaniferus, C. laurifolius, and C. salvifolius. Ladanum was formerly nsed as a stimulant and expectorant; and is still employed by the Turks as a perfume, and for fumigation.

Order 8. Violace.e, the Violet Order.-Character.Herbs or shrubs. Leaves simple, stipulate (fig. 379), with an involute vernation, alternate or sometimes opposite. Sepals 5 (fg. 797), persistent, imbricate, usually prolonged at the base. Petals 5 (fig. 797), hypogynous, equal or unequal, one usually spurred. Stamens equal in number to the petals (fig. 797), and usually alternate with them, or rarely opposite, inserted on a hypogynous disk, often unequal ; anthers 2 -eelled, sometimes united

Fig. 900.

Fig. 901.

Fig. 900. Essential organs of the Pansy (Viola tricolor). st. Obliquely hooded stigma. a. United anthers, two having long spurred appendages at the base.--Fig. 901. Vertical section of the seed.
(fig. 900), introrse ; filaments short and broad (fig. 900), and elongated, so as to project beyond the anthers (fig. 527) ; when the Howers are irregular, two of the anthers are spurred at the base (figs. 527 and 900). Ovary 1-eelled (fig. 33), with 3 parietal placentas (fig .797) ; style single, usually declinate (fig. 33) ; stigma eapitate, oblique, hooded ($f(y .900$, st) ; ovules usually numerous (fig. 33, o, o). Frit capsular, 3-valved, dehiseence loculicidal; placentas parietal, on the middle of the valves (fig . 681). Speds usually numerous (fig. 681), sometimes definite ; embryo straight, ereet, in the axis of fleshy albumen (fig. 901).

Diagnosis.-Herbs or shrubs. Leaves simple, stipulate, and with involute vernation. Sepals, petals, and stamens 5 each, hypogynous. Stamens all perfect ; anthers introrse with the filaments prolonged beyond them, and sometimes having spurlike appendages below. Ovary 1 -celled, with 3 parietal placentas; style and stigma single. Fruit 1-celled, dehiseing by

3 valves, each valve bearing a plaeenta in its middle. Seeds having a straight erect embryo in the axis of fleshy albumen.

Division of the Order and Illustrative Genera.-The order has been divided as follows :-

Sub-order 1. Violex.-Having irregular flowers and appendaged anthers. Illustrative Genera:-Viola, Limn. ; Ionidium, Vent. Sub-order 2. Alsodece. With regular flowers, and anthers not furnished with spurred appendages. Illustrative Genera:Alsodeia, Thouars; Pentaloba, Lour.
Distribution and Numbers.-The herbaceous plants of the sub-order Violeæ are ehiefly natives of Europe, Siberia, and North Ameriea; the shrubby mostly of South America. The Alsodeæ are exelusively natives of South America, Afrien, and Malacea. There are about 300 speeies belonging to the order.

Properties and Uses.-The plants of this order are ehiefly remarkable for emetie and purgative properties. A few also are mueilaginous, and others have been reputed to be anodyne. The emetie property is due to a peeuliar alkaloid named violine, whieh greatly resembles, if it be not identical with, emetine, the active principle of the true Ipeeacuanha root. (See Cephaëlis.) This principle is more especially found in some of the shrubby South American speeies, but it also oeeurs, to some extent at least, in many of the herbaceous European speeies.

Ionidium.-The root of I. Ipecacuanha, Woody Ipeeaenanhn, is the False Ipecnenanha of Brazil ; it is employed as an emetic in that region. Other species of Ionidium, as I. parviftorum, I. 1tubu, and others, possess similar properties. The roots of 1. parviflorum (. microphyllum, Humb.) constitnte the Cuehunchully de Cuença, which is much used in Venezuela as a remedy for elephantiasis.

Viola.-The flowers of V. ndorata, the Mareh or Sweet Violet, have been always highly esteemed for their fragrance. An infusion or syrup of the petals is a useful chemieal test. as its violet or purplish colour is turned red by acids, and green by alkalies. The syrup is emploved partly on aceount of its colour and odour, but chicfly as a laxative for very young ehildren. The flowers were formerly regarded as anodyne. The roots: stems, and seeds have been also regarded as emetic and purgative. The: contain violine, a principle which, as just stated, is closely analogons to, if not identienl with, emetine.-V. peduta, a mative of North imerica, posseses similar properties to V. odorata.- Tiola canina, the Dog Violet, is snill to le efficacious in certain cutaneous diseases.- Tiolatricolor, a common indigenous plant, is the species from which all our cultivated varicties of Pausies or Heartsease have heen derived. The Violets generally lave been used on the Contiuent as demulecut expectorauts.

Order 9. Sauvagestacen, the Sauragesia Order.-Clarae-ter.-This order is by some botanists considered as merely a sub-order of Violacee. It is distinguished by the flowers of its species having either 5 perfeet stamens altermate with 5 sterile ones, or numerous stamens. If there are only 5 stamens, these are also opposite the petals; the anthers are likewise extrorse,
and lave no appendages. The fruit also bursts septicidally, and hence each valve bears the placentas at its margins.

Distribution and Numbers.-They are natives chiefly of South America and the West Indies. Illustrative Genera:-Sauvagesia, Linn.; Lavradia, Velloz. There are about 15 species.

Properties and Uses.-But little is known of the properties of the plants in this order. Sauragesia erecta contains a good deal of mucilaginous matter, and has been used internally as a diuretic, and in inflammation of the bowels, and also externally in cliseascs of the eye.

Order 10. Canellacese, the Canella Order.-Diagnosis.By some authors this small order is placed in Clusiaceæ; it is, however, at once distinguished from the Clusiacer, by its general appearance ; alternate leaves; longitudinal dehiscence of anthers; absence of disk; presence of a style; and albuminous seeds. It is placed here in accordancc with the views of Bentham and Hooker.

Distribution and Numbers.-This order contains but 2 genera and 3 species. They are natives of the West Indies and continent of America.

Properties and Uses.-These plants have aromatic, stimulant, and tonic properties ; being closely allied in these respects to the Magnoliacer.

Canella alba, the Lanrel-leaved Canella or Wild Cimmanon.-The inner bark of this plant is the official Canella of the British Pharmacopceia. It has been contounded, as already noticed, with Wintcr's Bark, and hence has been called Spurious Winter's Bark. (See Drimys.) In its properties it is a warm aromatic stimulant and tonic. In America it has been emploved as an antiscorbutic. In the West Indies, and in some parts of Europe, it is used as a spice. It has an odour intermediate between cloves and cinnamon. By distillation it yields a volatile oil, to the presence of which its propertics are, in a great measure, due ; it also contains a peculiar bitter principle.

Cinnamodendron.-C. axillare, a native of Brazil, and C. corticosum, a native of Jamaiea, \&c., have aromatic barks, which possess similar properties to the bark of Crmella alba.-C. corticosum yiclds the so-called Winter's Bark, as now commonly found in commerce. (See Drimys.)

Order 11. Bixaces, the Arnatto Order.-Character.Shmibs or small trees. Leaves alternate, exstipulate, usually entire and leathery, and very often dottcd. Flowers polypetalous or apctalous; usually hermaphroditc, but sometimes unisexual. Sepals 4-7, somewhat united at the base. P'etals hypogynous, distinct, cqual in number to the sepals and alternate with them, or sometimes absent ; sometimes with scales at the base. Stamens hypogynous, of the same number as the petals, or some multiple of them. Ovary 1- or more celled, sessile or slightly stalked ; placentas 2 or more, parietal, somctimes branched so as to form a network over the inner surface of the ovary and fruit. Fruit 1-cclled, dchiscent or indchiscent, having a thin pulp in its centre. Secels numerous, usually
cnveloped in a covering formed by the withercd pulp; allumen fleshy-oily ; cmbryo straight, axial ; radiclc turncd to the hilum. The Pangiacere of some authors are included in this order, in accordance with the views of Bentham and Hooker.

Diagnosis.-Shrubs or small trees, with alternate exstipulate leaves. Flowers polypetalous or apetalous, rarcly uniscxual ; petals hypogynous, sometimes with scales at the base. Stamens hypogynous, equal in number to the petals or some multiple of them. Fruit dehiscent or indehiscent; placentas parietal. Seeds numerous, albuminous ; embryo axial, straight ; radicle towards the hilum.

Distribution and Numbers.-The plants of this order are almost confined to the hottest parts of the East and West Indies, and Africa. Ilhustrative Genera:-Bixa, Linn. ; Pangium, Rumph. There are over 100 species.

Proporties and Uses.-Many plants of the order are feebly bitter and astringent, and have been used as stomachics ; others are alterative, tonic, and emetic. The fruits of Oncoba and of some of the Flacourtias are edible and wholesome; but those of some other plants are poisonous. It is said, however, that by boiling, and maceration afterwards in cold water, the poisonous properties may, in some cases, be got rid of, as in the seeds of Pangium cdule, the kernels of which are then used as a condiment, and for mixing in curries. But even these, according to Horsfield, act as a cathartic upon those unaccustomed to their use. The seeds of some species are employed as dyeing and colouring agents.

Bixa Orellana.-The seeds of this plant are covered by a reddish pulp, from which Arnatto or Anuatto is made. This is used as a red dre, and for colouring eheese, ehocolate, butter, de. The seeds are said to be eordial, astringent, and febrifingal.

Cochlospermum Gossypium.-Aceording to Royle, the trunk of this plant yields the gum Kuteera, whieh iu the North-western Provinees of India is used as a snbstitute for Tragaeanth.

Gynocardia odorata.-The seeds, which are official in the Pharmacopocia of India, are known under the names of Chaulmugra, Chaulmogra, or Chaulmongra. They yield by expression a fixed oil in which their properties essentially reside. The oil and seeds have long been employed internally with success in India, in leprosy, scrofnla, skin diseases, and in rhenmatism ; and the oil has also been of late years need with some suceess in this conntry in similar diseases. The oil and seeds, in the form of an ointment, have also been much employed as a loeal stimulant in various skin diseases, ete.

IIydnocarpus.-The seeds of H. Wightiana and of H. venenata, both of which species were formerly confonnded together nuter the name of II. indorians, also yield fixed olls, which have similar properties, and are used both externally and intermally in similar eases to the seeds and oil of Chaumugra. The frnit of $I I$. venenatus is poisonous, and is employed in Ceylon for poisoning fish.- /I. anthelmintica is held in high esteem by the Chinese as a remedy in skin disenses.

Order 12. Pittosporacem, the Pittosporum Order.-Cha-racter:-Trees or shrubs, with simple alteruate cxstipulate leares.

Flowers regular. Sepals and petals 4 or 5 , hypogynous, imbricate, deciduous. Stamens 5, hypogynous, alternate with the petals; anthers 2 -celled. Ovary superior ; style single ; stigmas equal in number to the placentas, which are 2 or more, and either axile or parietal ; oviles anatropous, horizontal or ascending. Fruit baccate, or a loculicidal capsule. Seeds numerous, with a minute embryo in copious fleshy albumen.

Jistribution and Numbers.-They are chietly Australian plants; but are occasionally found in Africa and some other parts of the globe. None, however, occur in Europe or America. Illustrative Genera :-Pittosporum, Soland. ; Cheiranthera, Cunningham. The order includes about 80 species.

Properties and Uses.-These plants are chiefly remarkable for their resinous properties. Some have edible fruits, as certain species of Billardiera. A few are cultivated in this country ou account of their flowers, as Sollya, Billardiera, \&c.

Order 13. Tremandracef, the Porewort Order.-Charac-ter.-Heath-like shrubs, with usually glandular hairs. Leaves exstipulate, alternate or whorled. Flowers axillary, solitary, pedicellate. Sepals 4 or 5, equal, slightly coherent, deciduous, and with a valvate æstivation. Petals corresponding in number to the sepals, deciduous, and with an involute æstivation. Stamens distinct, hypogynous, $8-10,2$ being placed before each petal ; anthers 2 - or 4 -celled, with porous dehiscence (f ig. 537). Ovary 2-celled ; ovules 1-3 in each cell, pendulous; stylc 1 or 2 ; stigmas 1-2. Fruit 2-celled, a capsule with loculicidal dehiscence. Seeds pendulous, hooked at the chalazal end; embryo straight, in the axis of fleshy albumen; radicle next the hilum.

Distribution and Numbers.-All are natives of New Holland. Ilhustrative Genera:-Tetratheca, Smith; Tremandra, R. Br. The order includes about 16 species.

Properties and Uses.--Altogether unknown.
Cohort 3. Polygalinex.-Gyncecium syncarpous ; ovary usually 2-3-celled; placentation generally axile, or very rarely parietal.

Order 1. Polygalacee, the Milkwort Order.-Character. -Shrubs or herbs. Leaves alternate (fig. 902) or opposite, exstipulate, and usually simple. Pedicels bracteate. Flower's irregular, unsymmetrical (figs. 902 and 903), and arranged in a somewhat papilionaceous manner ; but herc the wings are derived from the calyx, whereas in the Leguminose they belong to the corolla. Sepals 5 (fy. 903, s), very irrcgular, usually distinct ; of which 3 are placed exterior, and of these 1 is posterior and 2 anterior ; the 2 interior are lateral, usually petaloid (fig .902), and form the wings to the flower. Petcls hypogynous, nsually 3 , more or less united, of which 1 , forming the kecl, is larger than the rest, and placed at the anterior part of the flower ; the keel is cither naked, crested, or 3 -lobed; the other 2 petals
are posterior, and alternate with the wings and posterior sepal of the calyx, and are often united to the keel; sometimes there are five petals (fig. 903), and then the 2 additional ones, $p r, p r$, are of small size, and alternate with the wings and anterior sepals. Stamens lypogynous, 8 (figs. 903, e, and 907), usually combined into a tube, unequal, the tube split on the side next to the posterior sepal (fig. 907) ; anthers clavate, innate, usually 1 -celled (fig. 907), rarely 2 -celled, opening by a

FIG. 902.

Fig. 903.

Fig. 907. dehiseng at their nuex.

Fig. 904. Fig. 90 ว̃.

Fig. 905.

Fig. 902. A portion of the stem of the common Milkwort (Polygala vulgaris). with simple alternate exstipulate leaves, and irregular flowers. - L'ig. 903. Diagram of the flower of the same. s. Sepals. $p s, p s, p s$. Posterior and auterior large petals. $p \neq, j \%$. Lateral petals. e. Stamens. c. Carpels. - Fig. 904. Gymळcium of the same. or. Ovary. styl. St lle. stia. Stigma.-Fig. 905. Fruitwith one cell opened. yer. Periearp. $g r$. Seed. \because Caruncula. $-F i y$. 906. Seetion of seed. le. Testa. ar. Caruncula. al. Albumen. pl. Embryo.-Fig. 907̈. Amlreeeinm of the same, with one-eelled anthers
pore at their apex, or rarely by valves. Orary (figs. $903, c$, and 904, ov 2 - 3 -celled, one cell being frequently abortive; orule: solitary or twin, suspended ; style simple (f ig. 904, st $y l$), curred, sometimes hooded at the apex ; stigma simple (fig. 904, stig). Fruit (fig. 905) varying in its nature and texture, indehiscent or opening in a loculicidal mamer, occasionally winged. Needs pendulous ($\mathrm{fig} .905, \mathrm{gr}$), smooth or hairy, with a caruncule next the hilum (fiys. $905, r$, and $906,{ }^{(a r}$) ; cmbryo straight or nearly
so. in copious flesly albumen, and with the radicle towards the hilum (fiy. 916, pl). (See Krameria).

Ditagnosis (excluding Krameria).-Herbs or shrubs, with simple exstipulate leaves. Flowers irregular, unsymmetrical. Sepals and petals imbricate, not commonly corresponding in number, and usually arranged in a somewhat papilionaceous manner ; odd petal anterior ; odid scpal posterior. Stamens 8 , hypogynous, usually combined ; anthers generally 1-celled, with porous dehiscence. Fruit flattened, usually 2 -celled and 2 -seeded. Seeds with abundant fleshy albumen, and with a caruncule next the hilum.

Distribution and Numbers.-Sume gencra of the order are found in almost every part of the globe. The individual genera are, however, generally confined to particular regions, with the exception of the genus Polygala, which is very widely distributed, being found in almost every description of station, and in both warm and temperate regions. Illustrative Genera:-Polygala, Linu.; Monnina, Ruiz et Pavon; Soulamea, Lam. There are over 500 species.

Properties and Uses.-The greater part of the plants of this order are bitter and acrid, and their roots milky; hence they are frequently tonic, stimulant, and febrifugal. Some are emetic, purgative, diuretic, sudorific, or expectorant. The roots of the different species of Krameria are very astringent from the presence of tannic acid; they are commonly known under the name of Rlatany roots. A few species have edible fruits, and others abound in a saponaccous principle.

Frameria.-(The species of this genus are sometimes separated from the Polvgalaceer and placed in an order by themselves termed Krameriacea. They are distinguished by their flowers not presenting a papilionaceous arrangement ; in their stamens being 1,3 , or 4 , and distinct ; in their ovary being 1 -cellecl, or ineompletely 2 -eclled; and in their exalbuminous seeds). The ront of Krameria triandra, a native of Peru, which is known as Peruvian, Payta, or Red lihatany; and the root of another species, K. tomentosn, St. Hil. (K. Ixina, var. granatensis, Triana), a native of New Granada and Brazil, which is termed Savanilla, New Gramada, or Violet Rlatany, are official in the British Pharmacopoia. A third kind of Rhatany, which is said to be derived from K. argentea, is imported from Para; it is known as Brazilian or Para lihatany, or from its colour Brown Phatany. Other speeies of K'rameriualso yield roots similar to Phatany, but they are not usually found in eommerce; and Holmes has recently described a very astringent root which has appeared in the London market as Rhatany, and imported from Guayaquil, which he believes is obtained from a genus nearly allied to Krumeric. Phatany root is used in medieine as an astringent, and is well alapted for all those diseases which require the employment of such medicines. It is also emploved, mixed with equal parts of orris rhizome and clanreonl, as a tooth-powder. A saturated tincture of Rhatny root in brandy is called wine eolouring, and is used in Portugal to give roughness to l'ort wines.

Monnina polystachyit and M. salicifolia. -The lark of the root of these plants is especially remarkable for the presence of a saponacenns principle ; it is used in I'cru as a substitute for soap, and for eleaning and polishing
silver. It is moreover reputed to be a valuable medicine in diarrhcea and similar diseases. The leaves are also reputed to be expectorant.

Polygala.-Many species of this genus have bitter properties, as P. amara, P. rubella, P. vulgaris, and P. major; they have been used as tonies, stimulants, diaphoretics, \&c.-Polygala Senega, Senega root.-The root of this species was first introduced into medicine as an antidote to the bites of snakes. Various other species of Polygala have been reputed to possess similar properties, but they are generally regarded as altogether useless in sucll cases. Senega root is official in the British Pharmacopoia ; it is used in large doses as an emetic and cathartic ; and in modcrate doses as a sialagogue, expectorant, diaphoretic, diuretic, and emmenagogue. Its principal virtues are due to the presence of a very acrid substance, which has been called Senegin or Polygalic Acid: it is said to be a glucoside, and is in the form of a white amorphons powder.-P. sanguinea and P. purpurea, in North America; P. Serpentaria at the Cape; P. Chamxbuxus, in Europe; P. crotalarioides and P, telephioides, in the Himalayas, and other species, are said to possess somewhat similar properties ; and one species, P. venenosa, a native of Java, has the acrid principle in so concentrated a state as to render it poisonous.P. tinctoria, an Arabian species, is used for dyeing.

Soulamea amara, a native of Malacea, is intensely bitter, and is regarded as a valuable febrifuge ; it is also a medicine which has been employed with very great suceess in cholera and pleurisy.

Order 2. Vochysiacee, the Voehysia Order.-Charaeter.Trees or shrubs, with entire usually opposite leaves, which are furnished at the base with glands or stipules. Flowers rery irregular and unsymmetrieal. Sepals 4-5, united at the base, very unequal, the upper one spurred; astication imbrieate. Petals, 1, 2, 3, or 5, unequal, inserted upon the ealyx ; astivation imbrieate. Stamens 1 to 5 , usually opposite the petals, or rarely alternate, arising from the bottom of the ealyx, most of them sterile. Ovary superior or partially inferior, 3-eelled, or rarely 1-eelled ; placentas axile ; style and stigma 1. Fruit usually eapsular, 3 -eornered, 3 -eelled, with loeulieidal dehiseence; or rarely indehiseent and 1 -eelled. Seeds usually winged, without albumen, ereet.

This order is, on aceount of its ealyeifloral eharacter, frequently plaeed near Combretacex, but it is readily distinguished from it by its superior or nearly superior ovary. Lindley eonsiders it most nearly allied to the Violueer and the Polygalacer -henee we plaee it here.

Distribution and Numbers.- Natives of equinoetial America. Illustrative Genera:-Voehysia, Juss.; Salvertia, St. Hil. There are about 50 speeies.

Properties and Uses.-Generally unimportant, although some are said to form useful timber.

Order 3. Frankentacese, the Frankenia Order.-Clarae-ter.-Herbs or undershrubs, muelı branched, with small opposite exstipulate leaves, and sessile flowers. Callyx tubular, furrowed, persistent. Petals unguieulate, 4-6, hypogynous. Stamens it or more, hypogynous, distinet, or eonuate at the base. Orery superior, 1 -eelled, with parietal plaeentas. Fruit capsular, 1-
celled, enclosed in the calyx, and dehiscing in a septicidal manner. Sceds numerous, minute ; embryo straight, erect, in the middle of mealy albumen.

Distribution and Numbers.-The plants of this order are scattered over the globe, except in tropical India and North America, but they chiefly occur in the south of Europe and north of Africa. Ilustrative Genera:-Frankenia, Linn.; Beatsonia, Roxb. There are about 24 species.

Properties and Uses.-Unimportant. They have been reputed mucilaginous and slightly aromatic. The leaves of a species of Beatsonicu are used at St. Helena as a substitute for tca.

Cohort 4. Caryophyllinex. - Gynoccium syncarpous ; ovary ultimately 1 -celled, with free central placentation, or very rarely parietal.
Order 1. Caryophyllacee, the Pink Order.-Character.Herbs. Stems swollen at the nodes. Leaves opposite, entire, exstipulate, or with small membranous stipules, often connate at their base. Inflorescence cymose (fig. 434). Flowers generally hermaphrodite, or rarely unisexual. Sepals 4 or 5 (fig. 908), distinct or united into a tube ($f i g .460$), persistent. Petals equal in number to the sepals (fig. 908), hypogynous, unguiculate ($\mathrm{fig} .475, ~ o$), often deeply divided ($\mathrm{fig} .474, p$), sometimes absent, frequently raised above the calyx on a stalk (fig. 909). Stamens equal in number to the sepals, and then either alternate or opposite to them, or usually twice as numerous (figs. 908 and 910), or rarely fewer, frequently attached with the petals on a stalk above the calyx (fig. 909) ; filaments generally distinct (fig. 910), or somctimes united at the base, subulate; anthers innate. Ovary sessile (fy. 910), or supported with the petals and stamens on a short gynophore (figs. 602, 9 , and 909), generally 1 -celled, and with a ficc central placenta (figs. 633 and 634), or rarely 2-5-celled (figs. 632 and 908) ; styles 2 (fig. 602) to 5 (figs. 633, s, and 634, s), papillose on their inner surface (fig .602), and hence should be properly regarded as stigmas; ourules few or numerous (figs. 633 and 634, g), amphitropous. Fruit a 1-cclled capsule, opening by $2-5$ valves, or by $4-10$ teeth at the apex (figs. 663 and 911), and having a free central placenta (figs. 633 and $634, p$), or rarely 2 - 5 -celled with a loculicidal dehiscence, and with the placentas slightly attached to the dissepiments. Seeds usually numerous, rarely fow ; embryo curved round the albumen (figs. 782 and 912), which is of a mealy character, or rarely straight.

Liagnosis.-Herbaceous plants with the stems swollen at the nodes, and opposite entire exstipulate leaves : or rarely with small mombranous stipules. Inflorcscence cymose. Flowers usually hermaphroditc. Sepals, petals, and stamens with a quaternary or quinary arrangement, the petals sometimes
absent. Calyx persistent. Stamens hypogynous; anthers innate. Ovary commonly 1 -celled, styles 2-5. Capsulc 1-ccllcd, or rarely 2 -5-celled ; placenta usually frec central, or in the $2-5$-celled fruit slightly attached to the dissepiments. Sceds with the embryo curved round mealy albumen; or rarcly straight.

Division of the Order and Illustrative Genera.-The order has been divided into four tribes or sub-orders as follow:-
Tribe 1. Alsinex.-Sepals distinct, and opposite the stamens when the latter are equal to them in number. Styles free ($f i g$.

Fig. 908.

Fig. 910.

Fig. 909.

Fig. 912.

Fig. 908. Dingram of the flower of a species of Dionthus.-Fig. 909. Tertieal seetion of the flower of the same.-Fig. 910. Essential organs of a species of Stellaria.-Fig. 911. Capsule of a speeies of Dienthus, dehiscing partindly in a valvular manner so as to form four teeth at the apex.Fiy. 912. Vertieal seetion of the seed of Chickweed (Stellaria media).
910). Stipulcs nonc, or small and membranous. Tllustrative Genera :-Alsine, Wahlenb.; Stellaria, Limn.; Spergula, Limn. Tribe 2. Silenex.-Sepals coliering into a tube (fig. 460), and opposite the stamens when the latter are cqual to them in number. No stipules. Illustrative Genera:- Dianthus, Limn. ; Lychnis, Lim.
Tribe 3. Molluginex.-Scpals distinct or nearly so, and alternate with the stamens when the latter are equal to them in number. If the stamens wre fewer than the scpals, they are then altcrnate with the carpols. No stipules. Illustrative Genera:-Mollugo, Limn. ; Colanthum, E. Mey.

Tribe 4. Polycarper.-Sepals distinct. Orary sessile. Styles connate at the base. Stipules membranous. Illustrative Gemus:-Polycarpon, Linn.
Distribution and Nrmbers.-They are natives shiefly of temperate and cold climates. When found in tropical regions they are generally on the sides and summits of mountains, commonly reaching the limits of eternal snow. The order contains nearly 1,100 species.

Properties and Uses.-The plants of this order possess no important properties. They are almost always insipid. Some of the wild species are eaten as food by small animals, and some have been said to increase the lacteal secrctions of cows fed upon them. This is supposed to be the case more particularly with Vaccoria vulgaris. Saponaria officinalis has been used in syphilis; it contains a peculiar principle called saponin. This principle has also been found in species of Lyclnis, Silene, Cucubalus ; and more especially in Gypsophila Struthium, to which latter plant it communicates well-marked saponaceous properties : hence it is commonly termed Egyptian Soap-root. The other species in which saponin is found also possess, to some extent, similar properties. Saponin is reputed to be poisonous in its nature.

Some of the plants have showy flowers, as the species of Dianthus, silene, and Lychnis: hut they are generally insignificant weeds. Dianthus barbatus is the Sweet-William of our gardens ; D. plumarius is the parent of all the cultivated rarieties of the common Pink; and D. Caryoplyllus, the Clove Pink, is the origin of the Carnation and its cultivated rarieties, which are commonly known as Picotees, Bizarres, and Flakes.

The three following Orders have been variously placed by botanists, but they are closely allied to Caryophyllacea, and we put them here following Bentham and Hooker, except that the Scleranthacere are included by them in Paronychiacere.

Order 2. Paronychiacen, the Knotwort Order.-Cha-racter.-Herbs or shrubs, with entire, simple, alternate or opposite leaves, and membranous stipules. Flowers minute. Sepals 5 , or rarely 3 or 4 , distinct or more or lcss unitcd. ${ }^{2}$ Petals small or absent, perigynous. Stamens somewhat hypogynous, either equal in number to the sepals and opposite to them, or more numerous, or rarely fewer. Ovary superior, 1- or 3-celled ; styles 2-5. Fruit dry, 1- or 3-celled, dehiscent or indehiscent. Seeds either numerous upon a free central placenta, or solitary on a long funiculus arising from the base of the fruit; albumen farinaceous ; embryo curved.

Distribution and Numbers.-Natives chiefly of barren places in the south of Europe and the north of Africa. Illustrative

Genera:-Illecebrum, Linn.; Corrigiola, Linn. There are about 100 species.

Properties and Uses.-Slightly astringent.
Paromychia.-The flowers and leaves of Paronychia argentea and P. nirea are used in the preparation of a kind of tea in France, which is employed as a remedy for persons suffering from oppression of the chest, or from any difficulty of digestion. It is known as Thé Arabe or Sanguinaire.

Order 3. Scleranthacee, the Scleranthus Order.-Diagnosis de. -This is a small order of inconspicuous herbs, generally considered as a sub-order of Paronychiacer, but from which its plants are distinguished by the want of stipules; by being apetalous; by the tube of their calyx becoming hardened and covering the fruit, which is solitary and 1 -celled; and by their stamens being evidently perigynous. They are valueless weeds found in barren places in the temperate regions of the globe. There arc about 14 species, of which two species belonging to the genus Seleranthus are natives of Britain. Their uses are unknown.

Order 4. Portulacacez, the Purslane Order.-Character. -Sueculent herbs or shrubs, with entire exstipulate leares. Flowers unsymmetrical. Sepals 2, or rarely more, united at the base. Petcals usually 5, distinct or united. Stamens perigynous or hypogynous, varying in number, sometimes opposite to the petals; fllaments distinct; unthers 2-celled, versatile. Ovary superior, or rarely partially adherent. Fruit capsular, usually dehiscing transversely, or by valves; sometimes indehiscent; placenta free central. Seeds numerous or solitary ; embryo curred round farinaceous albumen.

Distribution and Numbers.-Natives of waste dry places in various parts of the world, but chielly at the Cape of Good Hope and in South America. Ilustrative Genera:-Portulaca, Tourn.; Claytonia, Linn. There are about 190 species.

Properties and Uses.-The fleshy root of Claytonia tubernsa is edible. Portulaca oleracea has boen used from the earliest times as a pot-herb, and in salads. It possesses cooling and antiscorbutic properties. Many of the plants have large showy flowers.

Order 5. Tamaricacees, the Tamarisk Order.-Character. -Shrubs or herbs, with alternate entire scale-like leares, and spiked or racemose flowers. Calyw 4- 5 -partite, imbricate, persistent. Petels distinct, and attached to the calyx, withering, imbricate. Stamens lypogynous; anthers introrse. Orem? superior, 1-celled, with 3 distinct styles. Fruit 1-celled, with 3 parictal or basal placentas, and deliscing loculicidally by 3 valves. Seeds numerous, comose, without albumen, and having a straight embryo, with the radicle towards the hilum.

Distribution and Numbers. - The plants of this order usually grow by the sea-side, or sometimes on the margins of rivers or
lakes. They are most abundant in the basin of the Mediterranean, and are altogether confined to the northern hemisphere of the Old World. Illustrative Genera:-Tamarix, Limu.; Myricaria, Desv. There are about 40 species.

Properties and Uses.-The bark of these plants is astringent, slightly bitter, and tonic. The ashes of some species of Tamarix contain much sulphate of socla.

Tamarix.-T. mannifera produces a saccharine substance, which is known under the name of Mount Sinai Manna. This is considered by Ehrenberg as an exudation produced by a species of Coceus, which inhabits this plant.-T. gallica, T. orientalis, and some other species of Tamarix, are liable to the attack of insecte, which produce galls on their surface. These galls are astringent, and are sometimes used in medicine, and as dyeing agents where astringent substances arc required.

Cohort 5. Guttifercles.-Calyx with imbricate restivation. Stamens generally numerous. Gynœcium syncarpous. Seeds usually exalbuminous.

Order 1. Elatinacee, the Water-pepper Order. - Cha-racter.-Little annual marsh plants, with hollow creeping stems, and opposite leaves with interpetiolar membranous

Fig. 913. Diagram of the flower of a species of St. John's Wort (ffyperi-cum).-Fig. 914. Vertical section of the flower of the same.- Fig. 915. Tertical section of the sced.
stipules. Flowers small and axillary. Sepals and petals 3-5, the latter, as well as the stamens, being distinet and hypogynous. Ovary superior; styles $3-5$; stigmas eapitate. Fruit eapsular, 3-5-celled, placentation axile ; dehiscence loculicidal. S'eds numerous, exalbuminous; embryo straight. This order has been variously placed, but it appears to be most ncarly related to Hypcricacere, although in some respeets resembling the Alsinere in Caryophyllacce.

Distribution and Numbers.- The plants of this small order are scattored all over the world. Illustrative Genera:-Elatine, Limn.; Merimea, Camb. Lindley cnumerates 22 spccies.

Properties and Uses.-They are gencrally eonsidered acrid, henec the English name of the order.

Order 2. Hypericacee, the St. John's Wort Order.-Cha-racter.-Herbs, shrubs, ortrees. Leaves opposite or very rarely alternate, exstipulate, simple, entire, often dotted and bordered with black glands. Flower's regular. Sepals 4 or $\overline{5}$ (fig. 913), persistent, unequal, distinct or united at the base, imbricate. Petals (fig. 913) equal in number to the sepals, hypogynous, unequalsided (fig. 914), frequently bordered with black glands ; æstivation twisted. Stamens usually numerous, rarely few, hypogyuous (f ig. 914), mostly polyadelphous ($f g .554$), or rarely distinct, or monadelphous, sometimes having glands alternating with the bundles of stamens; filaments filiform ; anthers 2 -celled, with longitudinal dehiscence. Ocary 1-celled, formed of from 3-5 carpels, which are partially inflected so as to project into the cavity ; or $3-5$-celled by the union of the dissepiments in the centre (fig. 913) ; styles equal in number to the carpels; stigmas usually capitate or truncate, rarely 2 -lobed. Fruit capsular, usually 3 - 5 -celled, sometimes 1 -celled ; placentas axile or parietal, dehiscence septicidal. Seeds minute, numerous ; embryo straight or curved, exalbuminous (f g. 915).

Diagnosis.-Leaves entire, often dotted, exstipulate. Flowers regular. Sepals and petals hypogynous, with a quaternary or quinary distribution; the former with an imbricate restivation; the latter unequal-sided, commonly marked with black glands, and having a twisted eestivation. Stamens hypogynous, usually numerous and polyadelphous, rarely few, and then distinct or monadelphous ; anthers 2-celled, opening longitudinally. Styles several. Fruit 1 -celled, or $3-5$-celled. Seeds numerous, exalbuminous.

Distribution and Numbers.-The plants are generally distributed over the globe, inlabiting both temperate and hot regions, and almost all varieties of soil. Illustrative Genera:-Hypericum, İim.; Vismia, Vell. There are about 280 species.

Properties and Uses.-They abound usually in a resinous yellow juice, which is frequently purgative, as in Tismia guicmensis and V. mierantho. Other plants of the order, as Hyperieum perforatum and H. Androsamum, have tonic and astringent properties, and Cratoxylon Homsehuchii is slightly astringent and diuretic.

Order 3. Reathuriaceas, the Remumuria Order.-This small order was first instituted by Ehrenberg. The plants belonging to it do not differ in any essential characters from Hypericaceax, except that they have a pair of appendages at the base of the petals, and shaggy sceds with a small quantity of mealy albumen. Bentham and Hooker refer them to Tramaricacer.

Distribution and Nrmbers.-Natives of the coast of the Mediterranean and the salt plains of Northern Asia. Illustrative Gemus:-Reaumuria, Hasselq. There are 4 species.

Properties and Uses.-Tliey contain much saline matter. A
decoction of the leaves of Reaumuria rermiculata is used internally; and the bruised leaves as an external application for the cure of scabies.

Order 4. Gutitferef or Cilusiacee, the Gamboge or Mangosteen Order.-Character.-Trees or shrubs, sometimes parasitical, with a resinous juice. Lerves (f fig.916) coriaceous, entire, simple, opposite, exstipulate. Flourer's usually perfcct, sometimes uuisexual by abortion. Sepals 2, 4, 5, 6, or 8, imbricate, usually persistent, frequently unequal and petaloid. Petals hypogynous, equal in number to (fig. 916), or a multiple of, the sepals, sometimes passing by imperceptible gradations into them. Stamens usually numerous, rarely few, hypogynous, distinct, monadelphous, or polyadelphous ; anthers adnate, not beaked, introrse or extrorse, opening by a pore or transverse slit, 2 -celled, or sometimes 1 -celled. Disk fleshy, or rarely with five lobes. Ovary superior, 1- or many-celled ; style absent ; stigmas peltate or radiate (fig. 916) ; placentas axilc. Fruit clehiscent or indehiscent, 1- or many-celled. Seeds solitary or numerous, frequently arillate, without albumen ; embryo large, straight, with minute cotylectons.

Diagnosis.-Trees or shrubs with a resinous juice, and with opposite, simple, coriaceous, exstipulate leavcs. Sepals and petals usually having a binary arrangement of their parts ; the former imbricate and frequently unequal ; the latter equal and liypogynous. Stamens almost always numerous; anthers adnate, without a beak, opening by a pore or transversely. Disk fleshy or lobed. Ovary superior, with sessile radiatc stigmas, and axile placentas. Sceds exalbuminous ; cotyledons minute.

Distribution and Num-

Fig. 916. Fiowering stem and frnit of the
Nungosteen plant (Getriniu Monyostant).
Fig. 916. Fiowering stem and frnit of the
Nungosteen plant (Gurcinit Monyostant).

Fig. 916. bei's.-Exclusively tropical, and especially occurring in moist situations. The larger proportion are natives of South America, but a few occur in Madagascar and the African continent. Illustrative Geverct: - Clusia, Linu.; Garcinia, Linu. Therc are about 250 species.

Properties and Uses.-The plants of this ordcr are chiefly remarkable for yielding a yellow gum-resin of an acrid and purgative nature. In many cascs, however, the fruits are edible, and are held in high estimation for thar delicious
flavour. The seeds of some are oily, and other plants of the order are good timber-trees.

Caloplyllum.-C. Calaba is reputed to yield the resinous sulbstance known as East Indian Tacamahaca. This is useful as an application to indolent ulcers.-C. Inophyllum and C. brasiliense also vield similar resins. From the seeds of C. Inophyllum an oil is likewise obtained by expression; this is the Bitter Oil or $I V$ eandee of Indian commerce. It is in great repute throughont the East Indies and Polynesia as a liniment in rhenmatism. paius in the joints, and bruises. The timber of the same plant is also applied to several useful purposes.-C. angustifolium, the Piney tree, furnishes valuable timber.

Calysaccion longifolium.-The dried flower-buts of this tree constitute, with those of Mesua ferrea, the Nag-hesar or Nag-kassar of the Indian bazaars. (See Mesua.)

Clusia.-Chusia flava, C. alba, and C. rosea, rield a glutinous resinons matter, which is used in some parts of the West Indies in place of pitch, C. fluva is called in Jamaica the Balsam-tree. In Nevis aud St. Kitt's the three species are known indifferently under the names of Fat Pork, Monkey Apple, and Mountain or Wild Mango. The flowers of C. insignis also yield a resinous substanee in Brazil.

Garcinia.-The official and well-known gum-resin Gamboge has been shown by Hanbury to be the produce of Garcinia Morella, var. pedicellatu, now termed G. Hunburii ; it is official in the British Pharmacopoia. Commercial Gamboge is obtained principally from Siam; it is the only kind used in Europe. Siam Gamboge oceurs in two forms:-1st, in the form of cylinders, which are either solid or more or less hollow, and commonly known as pipe or roll Gamboge; and, 2nd, in large eakes or amorphous masses, called lump or cale Gamboge. The pipe Gamboge is the fincst kind. Gamboge is used in medicine as an active hydragogne and drastic purgative. It is also au anthelmintic. It was the basis of the once colebrated nostrum, termed Morrison's pills. In over-doses it acts as an acrid poison. Gamboge likewise forms a valuable water-colour, and hence is mucl used in painting; it is also employed to give a colour to the lacquer-ramish for brass-work, \&e. In India, a gum-resin resembling Siam Gamboge, and identical with it in its properties, is obtained from G. pictoria. It is only. found in irregular masses. Good Gamboge is also obtaincl in Travaneore from G. travancorica.

The Mangosteen, which is reputed to be the most delicious of all fruits, is obtained from G. Mungostuna, a native of Malacca. This plant has produced fruit in stoves in this country. The rind is astringent, and has been sulstituted, as first noticed by the anthor, in this country, for Indian Bael (see Egle Marmelos). It has been emploved with great adrantage in Iudia in chronic diarhoea, and in advanced stages of dysentery-G. cornea. G. Kudiana, and G. pethenculatu, also rield fruits of a similir claracter to the Mangosteen, althongh rery inferior to it. The seeds of G. indica (purpuret, upon beiug boiled in water, vichl a concrete oil, called Kohum Butter or Concrete Oil of Mengosteen. It is nseful in clapped hands. \&e., and might be employed in the preparation of suppositorice, and for wher phamarcutical purposes. The finit has an agreable acid darour, and is used in India for various purposes.

Mhmmet anericant-The truit is highly esteemed in the West Indies and South America. It is known under thic names of the Mammer Apple and the Wild. Aprient of South Ameriea. 'I'he seeds are anthelmintic. A spirit and a kind of wine may he also obtained from this plant-thus, from the flowers a kind of spirit, and from the sap a winc.

Aresua. -The species of this semus are remarkable for their very hard timber. Lindles remarke, "that the root and bark of these plants are "litter,
aromatic, and powerfully sudorific; their leaves mneilaginous; their unripe fruit aromatic, acrid, and purgative.' The flower-buds of Mesua ferrea oceur in the bazaars of India, with those of Calysaccion longifolium (see Culysaccion), under the name of Nag-hassar; they are highly esteemed for their foragrance, and are also used in Bengal, as well as the leaves of the same plant, as antidotes to suake-poisons. Nag-kassar is also much employed for dreing silks. Nag-kassar was imported into England a few rears since. The flower-buds are about the size of peppercorns, of a cinnamonbrown colour, and hnve a very fragrant odour somewhat resembling that of violets.

Pentadesma butyracea.-The fruit of this plant vields a fatty matter, heuce it is called the Butter or 'Tallow Tree of Sierra Leone.

Order 5. Ternstreniacee or Camelliacee, the Tea Order.-Character.-Trees or shubs. Leares leathery, alternate, usually exstipulate, and sometimes dotted. Flowers regular, and generally ver'y showy, rarely polygamous. Sepals 5 or 7, coriaceous, imbricate, deciduous. Petals 5, 6, or 9, often united at the base, imbricate. Stamens hypogynous, numerous, distinct or united by their filaments into one or several bundles ; arthers 2-celled, versatile or adnate. Ovary superior, manycelled ; styles filiform, 3-7. Fruit capsular, 2-7-celled ; placentas axile ; dehiscence various. Seeds few, sometimes arillate ; albumen wanting or in very small quantity ; embryo straight or folded ; cotyledons large and oily ; radicle towards the hilum.

Diagnosis.-Trees or shrubs, with alternate usually exstipulate leathery leaves. Sepals and petals imbricate in restivation, and having no tendency to a quaternary arrangement. Stamens numerous, hypogynous; anthers versatile or adnate. Orary superior ; styles filiform. Seeds solitary or very few, attached to axile placentas ; albumen wanting or in very small quantity.

Distribution and Numbers.-These plants, which are mostly ornamental trees or shrubs, are chiefly natives of South America, but a few are found in the East Indies, China, and North America. One species only occurs in Africa. There are no European species, although a few are cultivated in Europe. Illustrative Genera:-Ternstromia, Nut.; Camellia, Linu. 'The order, as defined above, following Lindley, contains about 130 species.

Properties and Uses.-Generally speaking, we know but little of the properties of the plants of this order ; but some, as those from which China Tea is prepared, are moderately stimulant, astringent, and slightly soothing and sedative.

Cumellia or Thea (see Thea).-Wumerous varicties of Cumellia juponea, which is a large tree in its native comentry, are enltivated in our wremlomses, and are eckerated for the leanty of their flowers and foliage. The sefeds of C oleifera vield log expression it gond salad oil.-C. Sustunpua has fragrant flowers, which are said to be used in some districts to give flavour and mbin to Chinese Tea.

Freziera theoides.-The leaves of this shrub are used as a kind of tea in Panama.

Gordonia.--The bark is astringent, and is therefore nseful in tanning, for which purpose it is sometmes employed in the United States.

Kielmeyera speciosa.-'The leaves of this plant, which is a native of Brazil, contain much mucilage, and are used on that account for fomentations.

Thea or Camellia.-The genus Thea is now more generally regarded as not really distinct from that of Camellia, and hence the species of the two genera are frequently ineluded under one genus, which is named ly botanists either Camellia or Thea. Formerly it was smposed that Clinn Teal, which is so extensively used as a beverage in this and many other countries, was prepared from the leaves of three species, two being natives of China, namely, Thea Bohert and T. viridis; and another, a native of Assam, Thea assamica. Nearly all botanists are, however, now agreed that these three supposed species are only varieties of one, which is termed Thea chinensis or Camellia Thea. It was also formerly supposed that Black and Green Teas were the produce of distinct plants ; but Fortune, Ball, and others lave proved that both Black and Green 'Teas may be made indifferently from the same plant, the differences between such teas depending essentially upon their mode of preparation. Thus, Green Teas are prepared by drying the leaves as quickly as possible after they are gathered; and then slightly heating them ; aiter which they are rolled scparately or in small heaps, and then dried as quickly as possible ; while Black Teas are made from the leaves, which, after being gathered, are exposed to the air for some time, and then, after having been tossed about, are placed in heaps, where they undergo a kind of fermentation; after which they are exposed to a fire for a short time; then rolled iu masses to get rid of the moisture and to give them a twisted character ; then they are again exposed to the air, and subsequently exposed for a seeond time in a shallow pan to the heat of a charconl fire, rolled again, and exposed to the air, and finally dried slowly over a fire. Thus, Green Tea consists of the leaves quiekly dried after gathering, so that their colour and other properties are in a great measure proserved; while Black 'Tea is eomposed of the leaves dried some time after being gathered, and after they have undergone a kind of fermentation, by which their original green colour is changed to black, and other important changes produced. A great part of the Green Tea which is exported from China, and eonsumed in this country, and in other parts of Europe and Anterica, is coloured artificially with a mixture of prussian blue, turneric, and grpsmm. Sereral varieties of Black and Green Tens are known in commerce. Thns of the former we have Bohea, Congou, Sonchong, Pekne, Caper, Se.: of the latter, Hyson, Hyson-Skin, Twankay, Gunpowder, \&e. Some teas liave a particnlar odour somewhat resembling the flowers of the common Cowslip; this is producel by mixing with them the dried Howers of the sweet-scented Olive (Olea fragrans). Other teas are scented with the dried flowers of Choronthus inconspicuus, Aglaia odorata, \&c.

The cultivation of the 'Ica-plant is now being carried on with grent success in Indin. Thus, in 1882 no less than $60,000,000 \mathrm{lhs}$. of Tea were exported, and its cultivation is largely increasing. A large quantity of Tea is also at the present time produced in Japan and Java. Chima, however, is the great tea-producing conntry : in that part of the world, nearly fono,000 acres of ground are devoted to it atone, and the total anmal prouluce, at the present time, is probably not less that 600 millions of pounts. In the Conited Kingem, the consumption of Tem has very much increased of late years. Thas, in 1810, it was only $50,000,000$ llis., while at the present time it ammuts to about $140,000,000 \mathrm{lbs}$. T'en owes its chiof propertics to the prosence of a volatile oil, tannic acid, and more especially the alkaloid, called theine. Theine is identieal with ceffeine, the alkatoid contatned in Conlee, and is otheinl under that nume in the British l'harmacopoia, and guarenine the alkalod of Guaram, and is closely allied to theobomine the allakod of cond-seeds. (See Coffect, Publliniu, ind Theobroma.) Tea-leaves also contain abont

6 per cent. of glaten. but this is scarcely extracted in any amount by the ordinary mode of making Tea. It has been stated that Tea, besides its wellknown stimulating and soothing effects, is indirectly mutritive-that is to say, the theine it contains has the effect of preventing the waste and decay of the body, and any substance that does this necessarily saves food, and is thns indirectly nutritive ; but Dr. Edward Smith has shown that, on the contrary Tea increases the bodily waste. As a nervine stimulant, tea-or, still better, its alkaloid theine or caffeine and its salts-may be taken with mnch adrantage in leadache and nemralgia, and in other affections cansed low exhanstion of the system from depression of nerve power.

Order 6. Marcgraviaceee, the Marcgraavia Order.-Dia-gnosis.-This is a small order which is generally regarded as allied to Clusiaceæ and Hypericacez. The species belonging to it are chiełly distinguished from Clusiacex, by their unsymmetrical flowers, versatile anthers, and very nimerous minute seeds. Some genera of the order are remarkable for their peculiar bracts, which become hooded, pouched, or spurred. They are distinguished from Hypericaceæ chiefly by their unsymmetrical flowers, equal-sided petals, distinct stamens, and sessile stigmas. They are sometimes placed as a tribe of Ternstrumiacer.

Distribution and Numbers.-Generally natives of equinoctial America. Illustrative Genera:-Ruyschia, Jucq.; Maregraavia, Plum. There are 26 specics.

Properties and Uses.-Scarccly anything is known of their properties. Marcgracuia umbellata is reputed to be diuretic and antisyphilitic.

Order 7. Rhizobolacee, the Souari-nut Order.-Character. -Large trees. Leares opposite, coriaceous, digitate, exstipulate, with an articulated stalk. Sepolls 5 or 6, more or less united. imbricate. Petals 5 to 8 , unequal. Stamens very numerous, slightly monadelphous, in two whorls, the inner shorter and often abortive, insertcd with the petals on an hypogynous disk; anthers 2 -celled, with longitudinal dehiscence. Ovary 4 -, 5 -, or many-celled ; styles short, as many as the cells of the ovary ; stigmas small ; ovules solitary, attached to the axis. Fruit consisting of several combined indehiscent 1 -seeded nuts. Seed reniform, exalbuminous, with the funiculus expanded so as to form a spongy excrescence ; radicle very large, forming nearly the wholc of the nucleus; cotyledons very small (fig. 771, c). This order is frequently incorporated with the Ternstrœmiacer.

Diamosis.-Large trees, with opposite digitate exstipulatc leaves, with an articulated stalk. Flowers regular, hypogynous. Petals equal-sided, and inserted with the numerous stamens on an hypogynous disk. Styles very short. Seed solitary, exalbuminous, with a very large radicle, and two very small cotyledons.

Distribution and Numbers.-The order contains but 2 genera, including 8 species, all of which aro large trees, natives of the forests in the hottest parts of South America. Illustrative Giomes:-Caryocar, Linu.

Properties and Uses.-Some of the trees are valuable for their timber, others yield edible nuts, and some an excellent oil.

Caryocar.-C. butyrosum (Pehea tuberculosa or butyrosa).-This tree is much esteemed for its timber, which is used in shipbuilding and for other purpeses. The separated portions of the fruit constitute the Souari, Surahwa, or suwarrow-nuts of commerce, the kernels of which are probably the most agreeable of all the unt kind. They are occasionally imported into this country. An excellent edible oil may be also extracted from them, C. nuciferct also yields Souari-nuts. A concrete oil is obtained in Brazil, fron C. brasitiense.

Order 8. Dipteraceet, the Sumatra Camphor Order.-Cha-racter.-Large trees with a resinous juice. Leaves alternate, involute, feather-veined, with large convolute deciduous stipules. Calyx 5-lobed, tubular, unequal, persistent, imbricate, ultimately enlarged into winglike expansions. Petals 5, hypogynous, often coherent at the base ; astivation twisted. Stamens numerous, hypogynous, distinct or united in an irregular manner by their filaments so as to become somerhat polyadelphous; anthers innate, 2 -celled, subulate, prolonged above or beaked. Ovary superior, 3-celled; ovules pendulous; style and stigma simple. Fruit 1-celled, dehiscent or indehiscent, surrounded by the enlarged permanent calyx. Seed solitary, exalbuminous; radicle superior.

Distribution and Nrmbers. - Natives exclusively of the forests of the tropical East Indies, with the exception of the genus Lophira, which belongs to tropical Africa. (The latter genus, by Endlicher and others, has been separated from the Dipteracere, and placed in an order by itself under the name of Lophiracee. The chief characters of distinction are, its 1-celled ovary with numerous ovules on a free central placenta, and its inferior radicle.) Illustrutive Genera:-Dipterocarpus, Gürtn.; Dryobalanops, Gürtn. There are about 50 species belonging to this order.

Properties and Uses. -These plants form very large and handsome trees, which abound in an oleo-resinous juice. To the presence of this they owe their peculiar properties.

Dipterocarpus.-The trunks of D. lwvis, and nther species. natives of the East Indies, yield by incision an oleo-resinous substince, called Wood Oil or Gurjun Balsam. "In its properties Wool Oil resembles Cupaibin and is largely emploved for similar purposes in India, where it is oflicial; it is also in nse in Englamd as a substitute for, or as am adnlterant of, that brug. Wood Oil is also used in India for pinting honses, \&e.

Dryobalanops aromatica or Camphora, - This is a large tree, a native of Sumatra and Borneo. From its stem, a liquid called Liqnid Camplor or Camphor Oil, and a crestalline solid substance named Sumatra or Bormen Camphor, are derived. The Liquid Comphor is obtained hy making deep incisions into the tree. It is a luodrocarbm, and has an ofour resembling a mixture of Cajujut oil, camplor, and cardamoms. It has heen nsed in the preparation of scented sonp. The Solid Sumatra Complar is fomed in fissures and cavities in the interior of the truuks of the full-grown trees, and
can only be extracted from the tree by cutting it down and dividing it into pieces. It generally oceurs only in small pieces, but occasionally masses weighing 10 or 12 lbs. have been removed. This camphor resembles in its properties the ordinary official or Laurel Camphor (see Cimamommm Canphora). It is not, howerer, a commercial artiele in this country, or in Europe, becanse it is so highly esteemed by the Chinese, that they will give from eighty to a hundred times more moner for it than that which they obtain for their own camphor, which is the kind we employ, and which is more valued by us. Thus the first quality is valued at about $10 l$. a pound. It is sometimes termed Barns Camphor. It is regarded as especially valuable for embalming the dead.

Hopea odorata.-This plant yields a fragrant resin, which, when powdered, is a popular styptic amongst the Burmese.

Shorea robusta is a valuable timber-tree; it is a native of India, and its wood is there extensively used under the name of Sál. A colourless, yellowish or brownish resin, called Dammar in Bengal, is also obtained from this plant. It forms a substitute for the ordinary resins of the Conifera in the making of plasters.

Tateria indica.-This plant yields an oleo-resinous substance which is known in India under the name of White Dammar or Piney Resin. It is used as a rarnish, and for making candles. The substance called Piney Tallow, or Tegetable Butter of Canara, is a concretc oil obtained from the fruits of this plant. It has been employed in India as a local application in rheumatism, \&e., and some has been lately imported into this country.

Fatica Tumbugaia is said to yield a portion of the Black Dammar of India. (See Canurium.)

Order 9. Chlenacee, the Sareolæna Order.-Character. -Trees or shrubs. Leaves entire, alternate, with large dccidnous eonrolute stipules. Flouer's regular, unsymmetrical, furnished with in involucre : the involucre surrounding 1-2 flowers, and persistent. Sepals 3, imbricate. Petals 5, eonvolute, sometimes united at the base. Stamens generally very numerous, rarely but 10, monadelphous; anthers roundish, 2-eelled. Ovary 3celled ; style 1; stigma trifid. Fruit eapsnlar, 3-celled or rarely 1-celled ; pluentas axilc. Seets solitary or numerous, suspended ; embryo in the axis of fleshy albumen ; cotyledons lcafy ; radicle superior.

Diagnosis.- Readily distinguished among the Thalamiflore by their alternate simple stipulate leaves; and involucrate flowers, which are regular and unsymmetrical. The calyx is also imbricate, the stamens monadelphous, and the seed has abundant albumen.

Distribution and Numbers.-There are but 8 species included in this order, all of which are natives of Madagasear. Illustrotive Grome:-Sareolæna, Thoun's.

Properties and Uses.-Altogether unknown.
Cohort 6. Malvales.-Calyx with valvate restivation. Stamens usually numerous. Placentation axile or sutural.
Order 1. Malvacefe, the Mallow Order.-Character.Jevts, shubs, or trees. Leares alternate, often downy, more or
less divided in a palmate manner (fig. 324), stipulate. Flowers regular, usually axillary, and often surrounded by an involuere or epicalyx (figs. 470 and 917). Sepals usually 5 (figs. 470 and 917), rarely 3 or 4, more or less united (fig. 470) ; with valvate or some form of cireular æestivation (fig. 917). Petcls hypogynous, equal in number to the divisions of the ealyx ($f i g .917$), with a twisted restivation, either attached to the column formed by the united stamens (fig. 918) or free. Stamens hypogynous, numerous, monadelphous (figs. 549 and 918) ; anther's 1-eelled,

Fig. 919.

Fig 918.

Fig. 917. Diagram of the flower of a species of Mulra. The threc external lines represent bracts, which together form nu pliealyx or involucre. Fig. 918. Tertical section of the flower of a Alallow.-Fig. 919. Pistil of the same surrounded by the inferior calyx ant involucre.- Fi\%. 920. Horizontal section of the fruit of Malece syltestris. a. Axis. pl. Placenta. 1. An cmpty cell. c. Embryo with twisted cotyledons.
reniform, with transverse dehiscence ($f(0,535$). Orary superior, eonsisting of several cirpels (figs. 917 and 919), whieh are either apoearpous (fig. 919), or united so as to form a compound ovary with as many cells as there are earpels; placentas attached to the ventral sutures when the earpels are apoearpous (fig. 920 , p^{\prime}), or axile when the ovary is compound ; styles equaling the earpels in number (fig. (119), united or distinet. Fruit either a eareerule, that is, consisting of a number of 1-celled, indehiseent
(figs. 707 and 920), 1- or many-seeded carpels ; or a capsule with loculicidal (fig. 672) or septicidal dehiscence, and numerous seeds. Seeds sometimes hairy ; albumen none or in small quantity ; embryo curved ; cotyledons much twisted (fig. 920, c). Diagnosis. - Leares alternate, palmately-veined, simple, stipulate. Flowers regular. Calyx with valvate or some form of circular æestivation. Petals tristed in restivation. Stamens hypogynous, numerous ; anthers 1 -celled, reniform, dehiscing transrersely ; filaments united so as to form a column. Carpels distinct or united. Seeds with very little or no albumen; embryo curved; cotyledons twisted.

Division of the Order and Illustrative Genera.-This order may be dirided into three tribes as follows :-
Tribe 1. Malver.-Flowers fumished with an involucre or epicalyx (fig. 917). Fruit consisting of separate carpels (apocarpous) (fys: 707 and 920). Illustrative Genera:-Malva, Linn.; Althra, Limn.
Tribe 2. Hibiscea.-Flowers furnished with an involucre (f fg. 470). Fruit formed of united carpels (syncarpous) (fig. 672). Illustrative G'enera:-Hibiscus, Lim. ; Gossypium, Linn.
Tribe 3. Sider.-Flowers withnut an involucre. Fruit apocarpous or syncarpous. Illustrative Gemus:-Sida, Limm.
Distribution and Numbers.-These plants are chiefly natives of the tropics and the warmer parts of temperate regions. They diminish gradually as we approach the north, and are altogether absent in the frigid zone. There are more than 1,000 species.

Properties and Uses.-No plant of this order possesses any deleterious properties. The order is generally characterised by mucilaginous and demulcent qualities. From the liber of many species strong and tough fibres are obtained, and the hairs covering the seeds of certain specics constitute cotton.

Abutilon esculentum. Bencao de Dens, furnishes an artiele of diet, the bniled flowers leeing used in Brazil as a vegetable.

Althreu. -The root and leaves of A. nficinalis, the Marsh-mallow plant, abound in mucilage, particularly the root, and hence all preparations from these parts are demulcent, and useful in disenses of the mucons membranes, \&e. An emollient cataplasm is also oecasionally prepared from the boiled ront. In Franec Marsh-mallow is in much greater request than in this enuntry. A favourite preparation there is the Pâte de Guimauve, which is a kind of lozenge made with the mueilage of Althaa root, gum-arahic, surar and white of egg. - Althed rosea, the Hollyhock of our gardens, has similar properties. From the leaves a blue eolouring matter rescmbling indigo is olbtained. Strong fibres have been also proetured from the bark, and used in the manufacture of good cordage.

Gossypiam.-Several species and varieties of this cenus furnish entton, which is the hairy eovering of their seeds. (See page 67.) There appear, howerer, to be three species more especially from which our commereial cotton is oltained, namely, G. herluceum, G. berlutdense, and G. pcruvianum. 1. Gossypium herfaceum, whieh is supposed by Masters to be a eultivated varictyo of G. Stocksii, a native of Sindh, viclds the common Indian cottous,
as Dacea, Behar, Nankin, \&e. Nankin Cottou is remarkable fur its vellowish-brown colour, which colour was formerly thought to be artificial, and proluced by dycing, but it is now known to be natural to it. 2. G. barbadense is the species which yields all the liest long-staple cotton of commerce. Thus from it the much-esteemed Sea-Island Cotton is oltained, as also the New Orleans, Georgian, and other cottons derived from the United States. It also yields the Bourbon cotton of Indin. 3. G. peruvianun or acuminatum, probably a variety of the latter, furnishes the South American varieties of cotton, as Pernambnco, Peruvian, Brazilian Cotton, \&c. Another species, Gossypium arboreum, is the Tree-Cotton of Iudia, which yields a variety of a very fine, soft, and silky nature. This is used by the natives of India for making turbans. The amonnt of cotton employed for manufacturing purposes in this and other conntries is cnormous, although the supply was much interfered with by the late American civil war: lence, since that period, the cultivation in the East Indies, Africa, Sc., of the plants yielding it has been much extended, aud large supplies are now obtained from the East Indies, Egypt, \&c. The amount of cotton, however, produced in the United States during the year 1881 exceeded $7,000,000$ bales. The increase in the consumption of cotton in this country may be at once judged of by the following statement. In 1800 , the amount of cotton imported was $50,010,532$ lbs. : in 1810, it had increased to $132,488,935 \mathrm{lhs}$; in 1820 , to $151,672,655$ llbs. ; in 1830 , to $263,961,452 \mathrm{lbs}$. ; in 1840 , to $592,488,000 \mathrm{lbs}$; and in 1850, to about $772,000,000 \mathrm{lbs}$. This latter amount is equivalent to about $2,600,000$ bales, each of which averages 336 lbs . in weight, making altogether abont 340,000 tons. It has been computed that the value of this in a raw state is about $30,000,0001$., and when manufactured into cotton fabrics, about three times that amonnt, or $90,000,0002$. Of these about $30,000,000$. worth were exported from the United Kingdom, and $60,000,000$. worth consumed in this country. In the United Kinglom there were at the same period ahout 2,000 cotton factories, using a motive power equivalent to that of 90,000 horses, and employing 300,000 human beings. The above interesting statistical record will cxhibit in a prominent manner the immense importance of cotton to the inhabitants of this comntry. From 1830 up to the time of the American war the consumption of cotton enormonsly increased; it then materially decreased, but at the present time the quantity consumed in this conntry alone is probably not less than $1,500,000,000 \mathrm{lus}$. ; and by the whole manufacturing world about double this quantity.

Cotton is official in the British Pharmacopeia for the purpose of preparing gun-entton (Pyroxylin), from which collodion and flexible collodion are directed to be made. Collodion is a valuable local application to wounds, \&c., and in burns, skin diseases, erysipelas, \&c. Cotton in itself is also a useful application to burns and inflamed surfaces. It acts by excluding the air, and by keeping the affected parts at a miform temperature. The seeds of the Cotton-plants, after the cotton has heen olitained from them. upon being submitted to pressure, yield a fixed oil, which may he employed for burning in lamps, and for other purposes. From 80,000 to 100 . (min tons are imported annually. The oil has been largelv used in place of olive oil for edible purposes, and for making soap. The cake left after the expression of the oil is employed for feeding eattle. A decoction of cotton seeds has been employed in the United States as a remedy in intermittent tevers. Cotton-root bark is also regarded in the United States of America as an excellent emmenarogue.

Mibiscus.-The umipe fruit of Hibiscus (Abchmeschus) esculcntus, known in the East and West Indies muler the mame of Okra. Gombo, Bendikai. Se., is used, on aecount of the abondance of the mucilage it contains, to thicken sonps, \&e., and in Western Africa in varions ways in the preparation of native dishes. It also possesses vahable emollient and demuleent properties, and may be emphored in all enses where such remedies are
required. It is offieial in the Pharmacopeia of India. The roasted seeds have been used as a substitute for coffee. The seeds also yield by expression an oil which may be employed for edible and other purposes like olive nil. The fibre of the stems is also valuable for paper-making, and a patent has been taken out in France for this purpose, and the plant has been introduced into Algeria. The paper prepared from it is called bauda paper. - Abelmoschus moschatus derives its specific name from the musky odour of its sceds, which are regarded as cordial and stomachic, and are sometimes mixed with coffee by the Arabs. They are also employed as a perfume. The powdered seeds steeped in rum are used in the West Indies as a remedy against the bites of serpents.-IF. comnabimus vields the valmable filure known under the name of Sunnee or Brown Indian Hemp, which is commonly used in India as a sulstitute for true Hemp. It is sometimes termed Sunn Hemp, but improperly so, as the true Sunn Hemp is derived from Crotalaria juncea, a plant of the order Leguminosæ. (See Crotalaria.) From the seeds a fixed oil is obtained br expression.-Mibiscus arboreus, a native of the West Indies, is also remarkable for the tenaeity of its inner bark, and it is said by some anthors that the whips formerly used by the slare-drivers were manufactured from its fibres. (See Lagetta.)-Hibiscus Rosa-sinensis has astringent petals, which are used by the Chinese to blacken their eyebrows and the leather of their shoes. The expressed fresh juice of these petals is said to form a good sulustitute for litmus : and an infusion of the petals has also been reputed useful as a demulcent refrigerant drink in fevers. Varions other species of Hibiscus, as H. striatus, H. tiliaceus, \&c., also yield valuable filures, useful for textile fabrics, or for paper-making.

Malachra capitata.-The leaves are reputed to be anthelmintic, and are employed for such a purpose in Panama.

Malva.-Malva sylvestris, the common Mallow, has similar, althongh very inferior, properties to the Marsh-mallow. (See Althra.) Its bark also yields strong tibres.-Malva Alcea.-The petals of this plant have astringent properties, and yield a black dye.

Paritium elatum.- The material known as Cuba Bast, now largely used by gardeners for tying up plants, \&c., is prepared from the liber of this tree. Cuba Bast is also employed for tying up the bundles of Havaunah cigars.

Paunia diuretica derives its specific name from its supposed diuretie property, for which purpose it is used in Brazil.

Sidä.-Sida micrantha and other species supply fibres useful in the mannfacture of cordage, \&c. Rocket-sticks are also obtained from the stems of S. micrantha--Sida cordifiliu and S. mauritiana have demulcent and emollient properties. $-S$. lanccolata has a very bitter root, which is reputed to be a valuable stomachic. The ronts of S. retusa and other species are held in estcem by the natives of India for the treatment of rhemmatism.

Many plants of the order have show flowers, and are cnltivated in our gratens and stoves ; for example, the Althrea rosea (Hollyhock), Abutilon, Hibiscus, Sida, \&c.-Hibiscus mutabilis is remarkable for the changing colour of its flowers, which vary in a single day from a cream-coloured rose to a rich rose or pink colour.

Order 2. Sterculiacee, the Silk-cotton Order.-Charac-ter.-Trees or shrubs, sometimes clirobing. Leaves altcrnate, simple or compound, with dcciduous stipules. Flowers usually perfect, sometimes by abortion unisexual, regular or irregular, often surrounded by in involucre. Calys and corolla resembling the Malvacere, always, however, having five parts ; but
the petals are sometimes absent. Stamens usually united by their filaments into a column, and indefinite, or rarely few and distinct; anthers usually 2 -celled, or rarely 1 -celled. C'urpels 3 or 5 , either distinct or united so as to form a compound orary, sessile or stalked, or rarely more numerous or solitary ; styles equal in number to the carpels, distinct or united; orules usually. definite, sometimes indefinite. Fruit either composed of a number of follicles, or capsular ($f y .708$), or rarely baccate. Seeds with fleshy-oily albumen or none; embryo straight or curved ; cotyledons either plicate or rolled round the plumule.

The order Byttneriacer of some botanists is here included in Sterculiaceæ.

Diagnosis.- The plants of this order are at once known among the Thalamiflore by their valvate 5 -partite calyx ; twisted corolla consisting of 5 distinct petals ; numerous perfect stamens united by their filaments into a column ; and usually by their 2 -celled anthers. The character presented by the anthers should be particularly noticed, as that alone, in most cases, at once distinguishes them from the Malvacea, which in many other respects they closely resemble ; indeed the Sterculiacere have been combined with the Malvacer. It should, however, also be observed, that the flowers of some of the Sterculiacea are unisexual by abortion.

Distribution and Numbers. - Natives chiefly of the tropics or of very warm regions; but some of the species are found scattered in almost every quarter of the globe, except Europe. Illustrative Genera:-Sterculia, Linn.; Helicteres, Limu.; Theobroma, Linn. There are more than $\check{0} 00$ species belonging to this order.

Properties and Uses.-In their properties the plants of this order resemble the Malvacer: thus, they are generally mucilaginous, demulcent, and emollient; some have a hairy covering to their seers ; and others yield useful liber-fibres. The cottony covering of their seeds, and the fibres yielded by certain plants of this order, are not, however, to be compared in importance to the similar products of the Malvacer. Some plants are reputed to be diuretic, emetic, or purgative.

Adansmia.-A. digituta, the Baobal--tree.-The frnit. commonly known as Monker-bread or Ethiopian Sonr-gourd, hats its seeds surromded be a large quantity of a starchy pulp with an acid Harour much rescmbibus eream of tartar. Its acid inature is snid to he due to malate of potassium. This forms an wholesome aurd agrecable article of food. When mixed with water it is used as an acid drink, which is regarded as a specific in putrid and pestilential fevers. It is also employed in Egypt in dysentery. All parts of the tree prossess emollient and demuleent properties. Its powidered leaves are used by the Afrienns under the mame of Laln, mixed with their dhily food, to check excessive perspiration. This property is owing to the presence of an astringent matter; heuee thev have been found serviceable in diarrhca, \&e. The bark is said to be febrifngal, and its liber-fibres are employed by certain African tribes, living where the tree is common, in the
manufacture of various articles of clress, cordage, \&c. The Baobab-trec is also remarkable for its enormons size, and the great age to which it attains. in some cases reputed to be several thousand years. One tree of this species has been found to have a trunk from 90 to 100 feet in circumference. Their hollowed trunks are used by the uatives in some districts of Africa as burialplaces for such of their dead as are believed to have communion with evil spirits.-A. Gregorii.-The fruit of this trce, which is a native of Nortl Australia, where it is known as Sour-gourd and Crcam-of-tartar tree, has similar properties to that of A. digitata. This genus is sometimes placed in Malvacer.

Bombax.-B. Ceiba, the Silk-Cotton tree of Sonth America, and B. pentandrum, the Silk-Cotton tree of India, are both remarkable for their size and height. The seeds of these plants are covered by long silky hairs ; hence their common name. But these hairs cannot be spun like those of ordinary cotton, chiefly on account of the smoothness and consequent want of adhesion between their sides, and are therefore useless for manufacturing purposes. They are employed, however, in many parts of the world, for stuffing enshions, \&c. The bark of B. pentandrum is reputed to be emetic. This genus is sometimes referred to Malvacex.

Chorisia.-C. speciosa has its seeds covered with silky hairs, which are used for stuffing cushions, \&c. This material is termed Vegetable Silk. The bark of C. crispifora is employed for making cordage in Brazil.

Drrin zibetlimus.-This tree, which is about the size of the ordinary peartree, rields the fruit called Durian, which is highly esteemed in the southeastern parts of Asia, being accounted next in value to the Mangostcen. It has, however, a strong smell, which renders it disagreeable at first, but this quality is soon forgotten after the palate las become familiar with it. This genus is sometimes referred to Malvacer.

Eriodendron Samauma, a native of South America, is remarkable for its great height. Its trunk frequently overtops all the surrounding trces before it gives off a single brancli. The hairy covering of the seeds of various species of Eriodendron is employed for stuffing cushions and similar purposes.

Guazuma.-The fruit of G. ulmifnlia contains a sweetish mucilaginous agreeable pulp, which is eaten in Buazil, and the young bark possesses mucilaginous properties.

Ochroma Lagopms, a Wcst Indian tree, has an antisyphilitic bark, and a spongy wood, which is sometimes used as a substitute for cork.

Salmalia.-The bark of some species of this genns is said to be cmetic, and honey obtained from the flowers of S. malabarica is commonly regarded as both emetic and purgative.

Sterculia.-The seeds of Sterculia (Cola) acuminata, and probably of other species, constitute the Kola-nuts of tropical West Africa, and the Guru-nuts of Soudan. They are largely used in various parts of Africa as foorl and medicine, and are also commonly stated to be employcd to sweeten water which has bcoome more or less putrid. Their use, however, as a puri fier of watcr is denied ly Dr. Daniell. They have been used of recent years in this country and elscwhere, as a stimulant tonic, and as a renedy in chronic diarrhoa, cardiac affections, and cachexia. These propertics are especially duc to the presence of theine; they also contain tannic acid. It is said that these nuts lave the power of staying, for cern a prolonged periof, the cravings of hunger, and of cnabling those who eat them to endure continued labour without fatiguc, resembling in these respects cocaleaves. 'The seeds of other species of Sterculia are also eaten in different parts of the slobe. This is the case with s. Chica, and S. lasiantha in Brazil ; and S. nolitis in Asia.-Sterculia Tragucuntha, a native of Sicrra Leone, receives its specific name from vielding a gum lecsembling Tragacaith. It is termed African Tragacanth, aud has been stated by Dr.

Flückiger to be a good substitute for the official Tragacanth. (See Astra-galus.)-S. urens, a native of Coromandel, yields a gunı of a similar nature, which is called Gum Kutteera. (Sce also Cochlospermum.) The frnit, seeds, leaves or bark of other species of Sterculiu are also used for varions purposes as medicinal agents in different parts of the globe. The seeds of all the species contain a fixed oil, which may be nsed for hurning in lamps, \&c. According to Hooker, S. villosa and S. guttata yield fibres from which ropes of excellent quality and cloth are made.

Thenbroma Caccoo, the Cacao or Cocon-tree. This tree, by far the most important plant of the order, is a native of Demerara and Mexico, and it is extensively cnltivated in the West Indies, Central America, Mauritins, \& \& From its seeds Cacao or Cocoa, and Chocolate are prepard. In the manufacture of Chocolate, the seeds are first roasted, then divested of their lusks and ground, and afterwards triturated in a mortar with an cqual quantity of sugar, to which some vanilla or cinnamon is added for flavonring, and a small quantity of Arnatto as a colouring agent. All the finer qualities are thus prepared, bnt the flavouring of the inferior kinds is sometimes produced by adding Sassafras nuts, cloves, or some other aromatic. Chocolate derives its name from the Indian term chocolat. Cocoa is either prepared by grinding ap the roasted seeds with their onter shells or husks between hot cylinders into a paste, which is then mixed with starch, sugar, \&c.,-this forms common cocna, rock cocoa, soluble cocıa, \&c.,-or the roasted seeds divested of their husks are broken into small fragments, in which state they form cocoa nibs, the purest state of Cocoa. The husks of the Cocoa seeds are also sometimes nsed by the poorer classes of Italy and Ireland in the preparation of a wholesome and agreeable beverage ; they are imported from Italy nnder the name of 'miserable.' Both Cocoa and Chocolate are used for the preparation of agreeable and nutritions beverages; these are not so stimnlating as Tea and Coffee, but they disagree with mayy persons on account of their fatty nature. The generie name, Theobroma, was given to this tree by Linnæus, signifying 'food of the gods,' to mark his opinion of the nutritious and agreeable nature of the beverages prepared from its seeds; but Belzoni, a traveller of the sixteenth century, regarded them in a very different light, for he declared that Cocoa was a drink 'fitter for a pig than for a man.' Cocoa seeds owe their properties chiefly to a peculiar alkaloid, named theobromine, whicl resembles theine, the alkaloid contained in China Tea (see Thea), \&e., and to a concrete oil or fat called Butter of Cocoa, which constitutes about half their weight. It has been compnted that Cocoa and Chocolate form the common unfermented beverages of abont fifty million persons in Spain, Italy, France, and Central America, and that the consumption of Coeoa in these countries anmully is over $100,000,000 \mathrm{lbs}$. Cocoa is also now largely used in Britain ; and its use has much increased of late years. Thins the consmmption in 1820 was only abont $276,000 \mathrm{lbs}$; in 1866 it was $4,583,124 \mathrm{lhs}$; in 1873 over $8,000,000 \mathrm{lbs}$; and it is now estimated to exceed $10,000,000 \mathrm{lbs}$. annually. From the pulp which surrounds the seeds a peculiar kind of spirit is distilled.

The concrete oil is official in the British Pharmacopeia. It enters into the composition of the suppositorics ordered in that rolume. In itself it possesses emollient properties. It is especially valmable from not readily becoming rancid by exposure to the air.

Order 3. Tillacese, the Lime-tree or Linden Order.-Character.-Trees, shrubs, or rarely herbs. Leaves simple, altcrnate (fig. 290), with dcciduous stipulcs. Nepals 4 or 5 (fig. 921), distinct or united, valvate in eestivation (fig. 921), deciduous. Petals equal in number to the sepals (fig. 921), entire or divided, or rarely wanting, imbricate. Stamens hypo-
gynous (figs. 923 and 924), usually numerous (figs. 921-923), distinct (fig. 923) or polyadelphous (fig. 557) ; anthers 2-celled (figs. 525 and 922), opening longituclinally, or by pores at the apex. Disk glandular, hypogynous. Carpels 2-10, which are generally united so as to form a compound many-celled ovary (fig. 921), sometimes distinct ; placentas axile (fig. 921) ; style 1 (figs. 922 and 923) ; stigmas equal in number to the carpels. Fruit clry or pulpy, sometimes samaroid, usually many-celled, or rarely 1 -celled by abortion. Seeds solitary or numerous ; embryo erect, straight, in the axis of fleshy albumen ; cotyledons flat and leafy (fig. $764, c, c$) ; radicle next the hilum.

Diagnosis.-This order resembles, in many respects, the

Fig. 921.

Fig. 922.

Fig. 923.

Fig. 921. Diagram of the flower of the Lime.-Hig. 922. Vertical sectiou of the flower of the same (Tilite eluro$p(t a)$.-Fig. 923. Peduuele of the Lime, bearing two flower-buds and a fully expanded flower.

Malvaceæ and Sterculiacer. It may be at once distinguished from thein by having a glandular disk, and by the stamens not being monadelphous; and from the Malvacere also, by the anthers being 2-celled. From all other Thalamiflore the plants of this order may be known by their alternate simple stipulate leaves; valvate testivation of calyx, which is also deciduous; floral envelopes in 4 or 5 divisions; stamens either distinct or polyadelphous; anthers 2 -celled; hypogynous glandular disk; many-celled fruit with axile placentas; and cmbryo erect, straight, in the axis of fleshy albumen.
livision of the Order and Illustrative Genera. -The order has been divided into two tribes, as follows:-

Tribe 1. Tiliex.-Corolla with entire petals, or wanting; anthers dehiscing longitudinally. Illustrative Genera:-Corchorus, Linn. ; Tilia, Linn.
Tribe 2. Elzocarpear.-Petals divided, anthers opening by pores at the apex. Mlustratire Genera:-Elæocarpus, Limu.; Vallea, Mut.
Distribution and Numbers, - A few are found in the northern parts of the world, where they form large trees ; but the plants of this order are chiefly tropical, and are there found as herbs, shrubs, or trees. There are about 350 species.

Properties and Uses.-In their properties the Tiliacer resemble the Malvacere. They are altogether innocuous, and are generally mucilaginous, emollient, and demulcent. Many of them also yield fibres, which are much used for manufacturing purposes. Some are valuable timber-trees, and some hare edible fruits.

Aristotelia.-A. Mraqui has an edible fruit, and from it a kind of wine is also made in Chili, which is given in fevers of a malignnat type. The fibres of the bark and the wood have been used in the mannfacture of musieal instruments. In New Zealand the fruits of A. racemosa, the Mako Mako, are also eaten.

Corchorus.-The fibres obtained from the bark of Corchorus capsularis, the Jute Plant, are commonly known under the name of Jute or Jute-hemp. This fibre is very valuable and is now imported in enormous quantities into this conntry, where it is used chiefly in the manufacture of eoarse bags. and as a foundation for inferior earpets, \&ee. It is also frequently mixeld with silk in the manufacture of elieap satin fabrics, and is likerrise employed as a substitute for hair, and in the manufneture of chignons, $\mathcal{E} C$. It does not appear to be rell adapted for sailcloth or cordage, because it will not bear exposure to wet. The imports in 1875 were over $500,000,000$ lbs., the value of which was $2,362,2262$. , of which only about $80,000,000$ lbs. were exported. In India it is used ehiefly for the pmrpose of making the coarse canvas ealled Gunmy, which is the material cmployed there for the bags, \&e., in use for packing raw produce.-Corchorus olitorius, eommonly called Jew's Mallow, is used in some parts of the world as a pet-lherb; it is also one of the sources of Jute. In Pamama, the leaves of C. mompoxensis are infused in boiling water, and the infusion is then taken as a substitute for tea.

Eleocarpus.- E. (Ganitrus) serratus.-The fruits are commonly known under the name of Molucea Berrics. When the fruit is divested of its pulp, the enloearp, which is latd and bony, and beantifully furrowed, is used for making necklaces. These are frequently brought as presents from India, and are also to be purchased in this eountry. The frnits of some species of Elencarpus are eaten, while others are used in the preparation of Indian carries. The bark of E. Hinatu (dentutus) affords an excellent dye, rarying in eolour from brown to puce or nearly black. It is cmploved in Xew Zealand for dyeing the garments of the natives. It is also useful as a tanning agent.

Grewia-G. supida, G. asinticn, and other species, have pleasant acil fruits, and are nsed in the East for making Sherbet.-G. elastica afforls valnable timber.-G. polygame is regarded in Queensland as a very valuable remedy in dysentery. The seeds are also employed in the preparation of a sub-aeid drink.

Luhea grundiflora.-The bark is astringent, and is employed in Brazil for tanning leather. The wood of other species is used for various jurposes in Brazil, as for making soles to boots, musket-stocks, \&e.

Tiliu europa, Common Lime or Linden Tree.-The inner bark is employed in the northern parts of Europe, more partieularly in lussia, in the manufacture of mats, which are eommonly known as Russian, Bast, or Bass mats. This Bast is oue of the substances employed by gardeners for tying up plants. 'The flowers are very fragrant when fresh, and an infusion of them is much used on the Continent for its expeetorant and antispasmodie properties. The wood of this and other species of Tilia is very white and smooth, and is employed for various purposes, as for earving, wainseoting, \&e.

Triumfetta.-Several speeies of this genus have astringent and mueilaginous leaves and fruits, and are employed in Brazil for making injeetions, whieh are reputed to be useful in gonorrhœa.

Fallea cordifolit.-The leaves are used for the purpose of dyeing yellow.

Artificial Analysis of the Orders in the Sub-class Polypetalx.

Series 1. Thalamiflorz.

1. Flowers with more than 20 stamens.
A. Iecuves without stipules.
a. Carpels more or less distinct (at least as to the styles), or solitury.
2. Stamens distinct.

Carpels immersed in a fleshy tabular
thalamus Nelumbitucere.
Carpels not immersed in a thalamus.
Embryo in a vitellus Cabombaceæ.
Embryo naked, very minute.
Sseds arillate Dilleniacer.
Seeds exarillate. Allumen fleshy and homogeneons.

Flowers hermaphrodite . . Ramunculacea.
Flowers unisexual . . . Schizundraces.
Seeds usually exarillate. Albumen ruminate Auonacea.
2. Stamens united in one or more pareels.

Calyx much imbricate.
Seeds smooth Hypericacea. Seeds slaggy Reuиmuriucte.

1. Carpels wholly combined (at least as to the ovaries), with more than one plarentu; or with a free central placenta.
Plaeentns parietal, in distinct lines. Anthers versatile. Juice watery . . Capuridacea. Anthors imate. Juice milky . . Pepaveracea.
Placentas parietal, spread over the lining
of the fruit Birnccae.
Plarentas covering the dissepiments - Nympherece.
Placentas in the axis.
Stigma larye, broad, aud petaloid . Surraceniucer. Stigma simple. Caly much imbricate.

Jeaver comporind
Rhiznbolacua.

Leaves simple.
Petals equal in number to the sepals.
Seeds few Guttifera.
Seeds numerous. Petals flat - Marcqrauvacea.
Seeds numerous. Petals crumpled Cistacpa.
Petals not equal in number to the
sepals. Styles not perfcetly com-
bined Ternstrœmiacce.
Placenta free central P'ortulacacer.
B. Leaves with stipules.
a. Carpels more or less distinct (at least as to the styles).
Carpels numerous
Magnoliacere.
b. Carpels wholly combined (at least as to the ovaries), with more than one placenta.
Placentas parietal
Bixисеж.
Placentas in the axis.
Calyx with an imbricate æstivation.
Flowers involucrate
Chlanacere.
Flowers not involucrate . . . Cistacez.
Calyx with a valvate extivation.
Stamens monadelphous. Anthers 2celled.

Sterculiacea.
Stamens monadelphous. Anthers 1celled Malvaceæ.
Stamens monadelphous. Calyx irregular, and enlarged in the fruit - Dipteracea.
Stamens quite distinct . . . Tiliuceæ.
2. Flowers with less than 20 stamens.
A. Leaves without stipules.
a. Carpels more or lcss distinct, or solitary.

Anthers with recurved valves . . . Bcrberidaces.
Anthers with longitudinal dehiscence.
Albumen abundant, embryo minute.
Flowers unisexual. Seeds usually numerons Lardizabalacea.
Flowers perfect. Embryo in a vitellus . . . Cabmbacea. Embryo not in a vitellus.

Albumeu homogeneous.
Sepals 2 Fumariaces.
Sepals more than 2. . Ranmenlacea.
Albumen ruminate. Slurubs - Anonacer.
Albumen iu small quantity, or altogether wanting.
Flowers unisexual Denispermaccr.
Flowers perfect Calycanthacce.
b. Carpels wholly combined (at least as to the
ovaries).
Placenta parictal.
Stamens tetradymamous . . . Cruciferr.
Stamens not tetradyummous,
Large hypogynois disk. Flowers tetramerous. Fruit elosed at the apex Cappuridaces.

Flowers not tetraunerous. Unripe fruit usually open at the apex . Reseductre. Small hevpogynous disk, or none.

Albumen abundant.
Flowers irregular . . . Fumariacex.
Flowers regular. Sap milky. Fruit without central pulp

Papaveracer.
Fruit with central pulp, or fleshy.
Sap watery
Bixtсеж.
Albumen in small quantity, or wanting.
Caly'x tubular, furrowed . . Frankeniacer.
Placentas covering the dissepiments

- Nymphracer.

Placentas axile or free central.
Strles distinct to the base.
Calyx much imbricate.
Seeds smooth. Petals unequal-sided, without appendages

Hypericaces.

Seeds shaggy. Petals unequal-sided, usually with appendages at the base

Reaumuriaceæ.

Calyx slightly imbricate.
Petals not twisted in restivation. Ovary with a freecentral placenta

Caryophyllaces. Styles more or less combined.

Calyx much imbricate, in an irregular broken whorl.

Flowers symmetrical
Guttiferx.
Flowers unsymmetrical, papilionaceous

Polygalacea.
Calyx but little imbricate, in a complete whorl.
Carpels 4 or more.
Ovary 1-cclled, with a free central placenta
Carpels less than 4.
Seeds comose Tamaricacer.
Seeds not comose.
Ovules pendulous. Pctals twisted in æstivation.

Cunellacer. Ovules ascending or horizontal. Petals imbricate in aestivatiou

Pittosporacer.
Calyx valvate, or but very slightly imbricate.
Authers opening by pres . . Tremandracez.
B. Leaves with stipules.
a. Carpels distinct, or solitary.

Anthers with recurved valves. Carpel solitary .

Berberidacea.
b. Carpels wholly combined (at least as to the "varies), with more placentas than one.
Placentas parictal.
Leaves with involute vernation. Antleers crested, and turned inwards .

Violures.
Stamens opposite to the petals. Anthers naked, and turned outwards . . . Sunvagesiarea.

$$
\begin{aligned}
& \text { Plaeentas in the axis. } \\
& \text { Styles distinet to the base. }
\end{aligned}
$$

In order to prevent the student being misled, and thus to refer plants to their wrong positionsin the Vegetable Kingdom, it should be particularly noticed, that although the general charaeter of the Thalamiffore is to have dichlamydeous flowers and polypetalous corollas, yet exeeptions do oceur occasionally to both these charneters. Thus, we find apetalous genera and species in Ranunculaceæ, Magnoliacer, Berberidaceæ, Surraceniacex, Menspermaceæ, Papaverucex, Cruciferre, Cunellacere, Bixacex, Violucex, Curyophyllacce, Puronychiaceæ, Scleranthacex, Malvacex, Sterculiacex, and Tiliaces.

Again, in the orders Anonaceæ. Pittnsporaceæ, Polygalaceæ, Portulacucex, Tamaricacer, Ternstromiacex, Ratacer, and Dipteracer, we find some monopetalous speeies and genera.

In Dilleniacex, Papaveraceæ, Capparidacer, Resedacer, Tinlacese, Caryoplyllaces, Portulacucer, Malvacer, and Sterculiacer, some of the species have stamens more or less perigynous instead of hrpogynous. Again, in some orders, as in certain liananculacer, Calycanthaceæ. Anonace, Nympheacex. Portulacarex, Capparidacex, Polygalaces, Bixacea, Ternstrcmiace, Vochysiacex, Tiliucea, and Dipteracea, the calys is more or less superior.

Series 2. Disciflore.

Cohort 1. Geramiales.-Calyx generally imbricate, or rarely valvate. Gynocium usually syncarpous, or sometimes apocarpous ; ovules suspended ; raphe ventral. Seeds albuminous or exalbuminous.
Order 1. Linacese, the Flax Order.-Character.-Herbs or rarely shrubs. Lecues alternate, opposite, or rarely verticillate, simple, entire, exstipulate, or rarely stipulate. Inforescence cymosc. Flowers regular (fig. 924), symmetrical, gencrally very showy. Calyx imbricate, with 3,4 , or 5 sepals (fig. 024), persistent. Petuls 4-5 (fig. 924), maguiculate, very deciduous, twisted in aestivation. Stcumens 4-5, minted at the base so as to form an hypogynous ring (fig. 925), from which
proceed 5 tooth-like processes (staminodes) which alternate with the fertile stamens, and are opposite to the petals (f fg. 925). Disk none or glandular. Ocary compound (figs. 618 and 924), its cells usually corresponding in number to the sepals; styles $3-5$; stigmus capitate (figs. 925 and 926). Frovit a septicidal capsule, each cell more or less perfectly divided into two by a spurious dissepiment proceeding from the dorsal suture (fig. $618, b$), and having a single seed in each division. Seed compressed, with or withont albumen ; embryo straight, with the radicle towards the hilum.

Diagnosis.-Herbs or very rarely shrubs, with simple entire leares, which are usually exstipulate. Flowers regular, symmetrical. Sepals, petals, and stamens 3-5 each; the sepals

Fig. 924.
Fig. 925.
F1G. 926.

Fig. 324. Dingram of the flower of the Flax Plant (Linum usitatissimum). - Fig. 925. Essential organs of the same, showing the monadelphous strmens surrounding the pistil.-Fig.926. Pistil of the same, with distinct styles and capitate stigmas.
persistent and imbricate ; the petals fugacious and twisted in iestivation ; and the fertile stamens united at their base, and having little tooth-like staminodes alternating with them. Ovary 3-5-celled, styles distinct, stigmas capitate. Fruit a septicidal capsule, each cell more or less divided by a spurious dissepiment, and each division containing one seed. Seeds compressed, with or without albumen, and having a straight embryo.

The plants of the order Erythroxylucer of some botanists, which, following Bentham and Hooker, we include in this order, are exceptional in the petals having at their base two scales, in their drupaceous fruit, and woody stem.

Distrilution and Numbers. -Chiefly natives of the south of Europe, Brazil, and some other parts of South America, West Indies, and the north of Africa, but more or less distributed over most regions of the globe. Illustrative Genera :-Linum, Lim. ; Radiola, Gmelin. There are about 160 species.

Properties and Uses.-The plants of this order are generally remarkable for the tenacity of their liber fibres, and also for the mucilage and oil contained in their seeds; hence the latter are emollient and demulcent. A few of the plants are bitter and purgative ; and some are stimulant and sedative. Others are tonic, and some are used for dyeing red.

Erythroxy'on.-Some species of Erythroxylon are tonic, others purgative, and a few stimulnut and sedative. The wood of E. hypericifolium and the bark of E. suberosum are red, and are used in the preparation of dyes of that colour. The wood of others has a similar reddish appearance, and from this common colour of the wood the name of the genns is derived. But by far the more iuportant plant of this genus is the following:-E. Coca. 'Ihe dried leaves of this plant, under the name of Coca or Cuca, are commonly used mixed with a little lime, or wood ashes formed of the burnt stems of Chenopodium Quinoa, Cecropia peltata, or other plants, by the natives of Peru and some other parts of South America, as a masticatory. The Peruvian Indians lave always ascribed to coca the most extraordinary virtues. Thus, they believe that it lessens the desire and the nccessity for ordinary food, and, in fact, that it may be considered as almost a snbstitnte for food. Spruce says, that an Indian with a chew of Ipadú (the native name for coca of the Indians of the Rio Negro) in his check, will go two or three days without food, and withont feeling any desire to slcep. Von Tschudi, Markham, Stevenson, Dr. Scherzer, and others have also given somewhat siniliar testimony as to the effects of coca. But Weddell spcaks far less highly of its virtues. He states that it does not satisfy the appetite, but merely enables those who chew it to support abstinence for a length of time without a feeling of hunger or weakness. The use of coca is also said to prevent the difficulty of respiration which is gencrally experienced in ascending long and steep mountaius. Its excessive use has been stated to be very injurions by producing analogous effects to those occasioned br the immoderate consumption of opium and fermented liquors; but Tschndi says that its uoderate use is rather beneficial than otherwise. Christison lias also testified to its value, froun experiments made on himself aud others, in removing and preventing fatigue. He states that by its use 'hunger and thirst are suspended; but eventually appetite and digestion are unaflected.: It was computcd by Johnston some time since, that the annual ennsumption of eoca was $30,000,000 \mathrm{lbs}$., and that its chewing was indulged in by about $10,000,000$ ot the human race. In Bolivia alone $15,000,000 \mathrm{lbs}$. of coca are produced annually. The constituent thus said to give rise to the peenliar stimulating, hunger-allaying, and narcotic effects of eoca seems essentiallyto be the alknloid cocaine. It also contains a peculiar form of tannic acid, termed coca-tumnic acid. Coca leaves and hydrochlorate of cocainc have now been made official in the British Pharmacopocia; the former have been used ns a nervine stimulant like tea and coffec, and also as a remedy in insomnia and otherwisc. Cocaiue itself in the form of the official hydrochlorate and other salts has been used most extensively and with very benelicinl eftifets as a local anesthetic in operations on the erevand in other cases. \times \& fect y ye

Linum.-The liber-fibres of Linum usitatissimum, when prepared in a particular way, constitute flax, of which linen tabrics are made. In 1873 , $2,194,000 \mathrm{cwt}$. of flax were imported into this country. Linen, when seraped, forms lint, which is so much used for surgieal dressings : and the short tibres of flax which are separated in the course of its preparation, constitute tore, which is much employed in pharmaer, surgery, and tor other purposes. The seeds of this plant, which is commonly known as the Flax llant, are termed Flaxseed, Linsecd, or Lintseed ; they contain mucl mucilage, and a fixed oil. The oil may be readily obtained trom the seeds lye expression; the
amount depending upon the quality of the seed, and the mode adopted for its expression, and varying from abont 20 to 30 per cent. Linsced oil is especially remarkable for droing readily when applied to the surface of any body exposed to the air, and thus forming a hard transparent varnish. This pecularity is much accelerated if the oil be previously boilcd, either alone, or with some preparations of lead. The cakc left after the expression of the oil is known as Oil-cake, and is employed as food for cattle ; and when powdered, it is frequently sold as Liusecd Meal, but the official Linseed Meal is simply Linseed powdered; hence it contains the oil, which is not present in the former. Linseed Meal which thus contains the oil is to be preferred when in a fresh state. An infusion of Linseed is employed medicinally for its demulcent and emollient propertics. The oil is extensively used in the arts, \&e.; and is a valuable application to burnt or scalded parts, either alone, or combined with an equal quantity of Lime-water ; this mixture is commonly known under the name of Carron-oil, a name derived from its having been extensively employed in the Carron Iron-foundry.The seeds, linseed meal, and linseed oil are all official in the British Pharma-copeia.-Linum catharticum, popularly termed Purging Flax, is a common indigenons plant. It possesses active purgative properties, and might be much more employed as a medicine than is the case at present.-Limum selaginoides, a Peruvian species, is reputed to be bitter and apsrient.

Sethia.-S indica is in great repute in Ceylon as a vermifuge for children. The leaves are dried, powdered, and given mixed with boiled rice.-S. acuminata is also uscd in a similar way for the same purpose. It is known in Ceylon as Matura Worm Medieine.

Drder 2. Malpighiacee, the Malpighia Order. - Charac-ter.-Trees or shrubs, often climbing. Leaves usually opposite or whorled, rarely alternate; stipules generally short and deciduous, sometimes large and interpetiolar ; the lcaves are occasionally furnished with hairs, which are fixed by their middle, that is, peltate (fig. 168). Flowers perfect or polygamous. Calyx 5 -partite, persistent, frequently with glands at the base of one or all of the divisions; xstivation imbricate or rarely valvate. Petals 5, hypogynous, unguiculate ; astivation conrolute. Stamens usually 10 , monadelphous or distinct; connective fleshy and elongated beyond the anther-lobes. Ovary generally consisting of 3 carpels, rarely 2 or 4 , partially or wholly combined; ovules 1 in each cell, pendulous from a long stalk; styles 3, distinct or united ; stigmas 3, simple. Fruit either drupaceous, samaroid, or a woody nut. Seed solitary, exalbuminous; embryo straight or variously curved.

Diamnosis.-Trees or shrubs, with simple stipulate leaves. Flowers perfect or polygamous. Calyx and corolla with 5 parts ; the sepals having usually large glands at the base, and imbricate or very rarely valvate in æestivation; the petals unguiculate, without appendages, hypogynous, convolute. Stamens usually 10, sometimes 15, with a Heshy prolonged connective. Ovary generally composed of 3 carpels, or in any case not corrcsponding in number, or being any power of the three outer whorls; ovules solitary, pendulous from long stalks. Seeds cxalbuminous, usually with a convolute cmbryo.

Distribution and Numbers.-They are almost exclusively
natives of tropical regions. Illustrative Genera:-Malpighia, Plum.; Byrsonima, Rich.; Nitraria. There are about 580 species.

Properties and Uses.-An astringent property appears to be most general in the plants of this order. Some have edible fruits; and the seeds of others are reputed to be poisonous.

Bunchosia armeniaca, a native of Peru, is stated to have poisonous seeds.
Byrsonima.- Some speeies have edible fruits. The Byrsonimas are, however, prineipally remarkable for theirastringeney. Thus the fruit of B.spicuta (Bois-tan) is used in dysentery; the bark of B. crassifolia is emploved internally as an antidote to the lite of the rattlesnake, and for other jurposes where astringent medieines are desirable. The lark of other speeies is also in use for tanning in Brazil. Ameriean Alcornoque bark, which is imported into this country for the use of the tanner, is said to be the produce of B. laurifolia, B. rhopaleefolia, and B. coccolobrefolia.

Malpighia glabra and M. punicifolia have edille fruits, which are used in the West Indies, as a dessert, under the name of Barbados Cherries.

Nitraria.-This genus is by some put into an order by itself called Nitrariacere. Aecording to Munly, \boldsymbol{N}^{*}. tridentata is the trie Lntus-tree of the ancients. (See also Zizyphus.) It is a native of the desert of Soussa, near Tunis, and its fruit is of a somewhat intoxicating nature.-N. Billardieri, a native of Australia, has an edille fruit.

Order 3. Humiriacee, the Humirium Order.-Character. -Trees or shrubs with a balsamic juice. Leaves alternate, simple, coriaceous, exstipulate. Calyx 5 -partite, imbricate. Petals 5 , imbricate. Stamens hypogynous, 20 or more, munadelphous; anthers 2 -celled; conneetive elongated beyond the anther lobes. Ovary superior, usually surrounded by a disk. 5 -celled; ovules 1 or 2 in each cell, suspended; style simple; stigma 5 -lobed. Fruit drupaceous, 5 -celled, or fewer-celled by abortion. Seed with a narrow embryo lying in fleshy albumen, orthotropous.

Distribution and Numbers.-Natives of tropical Americil. Illnstrative Genera:- Humirium, Mart.; Tantanea, Aubl. There are 18 species.

Properties and Uses.-A balsamic yellow oily liquid, called Balsam of Umiri, is obtained from the incised stem of Humirium floribundum ; this is reputed to resemble Copaiba in its properties. The bark is used by the Brazilians as a perfume. Other species are also said to yield useful balsumic liquids. The socalled balsamic liquid found in plants of this order is probably not a true balsam, but an oleo-resin resembling Wood Oil and Copaiba.

Order 4. Zygophyllaceze, the Bean-caper or Guaincun Order.-Character.-Herbs, shubs, or trees. Leaves opposite, stipulate, without dots, usually imparipimate, or marely simple. Flowers perfect, regular, and symmetrical. Calye 4- or 5 -partite, convolute. Petals unguiculate, 4 or 5 , inbricate, hypogynous. Stimens 8-10, hypogynous, usuatly arising from the back of small scorles ; filaments dilated at the base. Ovary 4-5-celled,
surrounded by glands or a toothed disk; style simple; ovules 2 or more in each cell (fiys. (б̃59 and 660) ; placentas axile. Fruit capsular, dehiscing in a loculicidal manner, or separating into cocci, 4- or 0 -celled, and presenting externally as many angles or winged expansions as cells; rarely indehiscent. Seeds few ; albumen in small quantity, or rarely absent ; radicle superior ; cot yledons foliaceous.

Diagnosis.-Herbs, shrubs, or trees, with opposite stipulate dotless leaves. Calys and corolla with a quaternary or quinary arrangement ; the former convolute in cestivation, the latter with unguiculate petals and imbricate. Stamens 8-10, hypogynous, usually arising from the back of scales. Ovary 4-5celled ; style simple. Fruit 4 - or 5 -celled. Seeds few, with little or no albumen ; radicle superior ; cotyledons foliaceous.

Distribution and Numbers.-They are generally distributed throughout the warm regions of the globe, but chiefly beyond the tropics. Illustrative Genera:-Zygophyllum, Linu. ; Guaiacum, Plum. There are about 100 species. Melianthus is by some botanists separated from the Zygophyllacere, and taken as the type of a new order, to which the name Melianthere has been applied.

Properties and Uses.-Some of the plants are resinous, and possess stimulant, alterative, and diaphoretic properties; others are anthelmintic. The wood of the arborescent species is remarkable for its hardness and durability.

Guaiucum.-The heart-wood, and the resin obtained from the stem of G. officinule and G. sanctum are official in the British Pharmaeopeeia; they are commonly known as Guaiacum Wood. and Guaiacum Resin. The resin is generally procured by burning logs of the wood much incised in the middle, and catching the resin as it flows from the central incised portion in a calabash or some other suitable vessel placed below it. It also exndes to some extent spontaneously, and especially so when the tree is cut or wounded in any way. Both the wood and resin are used asstimulants, diaphoreties, and alteratives, chicfly in gout and rheumatism, but also in syphilitic and varions cutaneous affections. The wood is known in commerce as Lignum Vite. It is remarkable for its hardness, toughness, and durability, which qualities render it very valunble for many purposes. The leaves are also used in the West Indies, on account of their detersive qualities, for seouring and whitening floors.-G. sanctum has similar medicinal properties to the above, and rields an analogous resin. A portion of the resin of commerce aud also of the wood is olttained from this species; henee, as already noticed, this plant is likewise official in the Britislı Pharmacopeia.

Larrea mexicunc.-This plant is remarkable for having an odour resemlling creasote: lience it is commonly known as the Creasote Plant. The Mexicans are said to use an infusion of the leaves for bathing in with good effect in rhcmmatic affections.

Meliunthus mujor.-The flowers of this species contain a large amonnt of saecharine matter, which is used for food by the natives of the Cape of Good Hope, where the plant abonnds.

Prganuin Ifarmatu-ln India the seeds are reputed to be stimnlant, emmenngogue, and anthelnintic. In Turkey they are used as a spice, and alsi in the preparation of red dyes; these dyes are, however, not of a very permanent nature.

Tribulus. - T. terrestris is a prickly plant, whieh is abundant in dry barren plaees in the East. It is considered to be the Thistle mentioned in Matt. vii. 16, and Ileb. vi. 8. The fruit of T. lanuginosus is much esteemed in Southern India as a diuretie.

Zygoplyyllum Fabagn, Bean-eaper.-It derives its common name from the eircumstanee of its flower-buds being used in some parts of the world as a substitute for Capers. It is also reputed to possess anthelnintic properties.

Order 5. Geraniacee, the Crane's-bill Order.-Character. -Herbs or shrubs, with swollen usually articulated joints (nodes). Leaves simple, opposite or altemate, with membranous stipules. Floweis regular or irregular. Scpals 5 (fig. 927), inferior, persistent, more or less unequal ; wstivation imbricate. Petals $\overline{5}$ (fig. 927), or rarely 4 fronı abortion, unguiculate, hypogynous or perigvnous; æstivation twisted (fig. 927). Stamens usually twice ($f i g .928$) as many as the petals, (some are, however, frequently abortive), hypogynous, and generally united at the base (fig. 928), the alternate ones shorter and occasionally barren. Disk inconspicuous or glandular. Carpels 5, arranged

Fig. 927.

Fig. 928.

Fig. 929.

Fig. 930.

Fig. 927. A portion of the floweriug stem of Geranium shltaticum.-Fig. 928. The andræcium nad gynœecium of the same.-Fig. 929. The pistil, partially matured, surrounded by the persisteut calyx.- Fig. 930. Transverse section of the seed.
around an elongated axis or carpophore (fig. 929) ; styics corresponding in number to the carpels, and adhcring to the carpophorc. Fruit consisting of five 1 -seeded carpels, which ultimately scparatc from the carpophore from below upwirds by the curling up of the styles, which remain adherent at the summit (fiy. 640). Seeds without albumen ; cotyledons foliaceous, convolute (fig. 930).

Diagnosis.-Hcrbs or shrubs, with simplc leaves, membranous stipulcs, and swollen joints. Sepals 5 , imbricatc. Petals twisted in estivation. Stamens lypogynous, generally united at the basc. Fruit consisting of 5 carpcls attached by means of their styles to an elongated axis or carpophore, from which they scparate when ripe from below upwards by the curling up of
the styles, and ultimately dehisce. Seeds 1 in each carpel, exalbuminous ; embryo with foliaceous convolute cotyledons.

Distribution and Numbers.-Some are distributed over various parts of the world, but they abound at the Cape of Good Hope. Eaamples of the Genera:-Erodium, L'Héritier; Geranium, Linn. ; Pelargonium, L'Héritier. There are nearly 5ू0 0 species.

Properties and Uses. - Astringent, resinous, and aromatic qualities are the more important properties of the plants of this order. Many are remarkable for the beauty of their flowers; and others fur the agreeable odours of their leaves and flowers, which render them useful in perfumery.

Erodum.-The species are reputed to be astringent. $-E$. moschatum is remarkable for its masky odour.

Geranium.-The root of G. maculatum is a powerful astringent, for which reason it is much used in North America, where it is called Alum-root. It contains much tannic aeid, and forms a good substitute for kino and catechu.-G. parviflorum produces edible tubercular roots, which are known in Van Diemen's Land under the name of Native Carrots.

Pelargonium.-The species of this genus are favourite oljeets of eulture on account of the beanty of thcir flowers. They are ehiefly natives of the Cape of Good Hope, but the species have been much improved by cultivation. They are commonly, but improperly, called Geraniums. In their properties they are generally- astringent, but the fresh tubercular roots of P. triste are eaten at the Cape of Good Hope. From the leaves and flowers of Pelargonium roseum, P. odoratissimum, and P. Radula, and some other spccies or varieties of Pelargonium, essential nils may be obtained by distillation with water. The latter species yields the true German Geraninm Oil or Oil of Rose-leaved Geranium, as well as the French Geranium or 'Palina-rose' Oil; and the two first-named species yield the so-called Algerian Rose Oil. Both these oils, but especially the former, are used in perfumery. These true essential oils of Geranium must not be confounded with the so-called Geranium Oil of India. which is the produce of an Indian Grass, Andropogon puchundes, Trin. (A. schoenanthus, Linn.). (Sce Andropogon.) This latter oil is that used in Turkey for mixing with Otto of Roscs. (See Rosa.) $-P$. capitatum, or Rose-leaved Geranium, has been cultivated to some extent in this country, and the oil obtained from it is said to be equal to those imported under the name of Geranium oils.

Order 6. Balsaminacee, the Balsam Order.-Character.

-Herbaceons plants with succulent stems and a watery juice. Leaves alternate or opposite, simple, exstipulate. Flowers hypogynous, very irregular. Sepals 3 (fig. 799)-5, very irregular, deciduous, with an imbricate restivation, the odd one spurred (fig. 799). Petals 5 (fig. 799), or more usually 4, 1 being abortive, distinct or irregularly united, deciduous, alternate with the sepals; æstivation convolute. Stamens 5 (fig. 799), alternate with the petals, and somewhat united. Disk 5 none. Ovary composed of 5 carpels, united so as to form a 5 -celled compound body (f ig. 799) ; style simple; stigma more or less divided into 5 lobes. Fruit usually capsular, 5 -celled, and dehiscing in a septifragal manner by 5 elastic valves, which become coiled up (fig. 931); placentas axile; sometimes
sucenlent and indehiseent. Seeds solitary or numerous, suspended, exalbuminous ; embryo straight.

Diagnosis. - Succulent herbaceous plants,

Fig. 931.

Fig. 931. Capsule of Touch-me-not (Impatiens noli-metangere), with recurved coi'ed-up valves. with simple exstipulate leaves. Stems continuous and not separable at the nodes. Flowers hypogynous, very irregular. Sepals $3-5$; petals usually 4 ; both irregular and deciduous; æstivation of sepals imbricate, that of the petals convolute. Stamens 5 . Ovary 5-celled ; style simple. Fruit 5 celled, usually bursting with elasticity, without a beak. Seeds suspended, exalbuminous. This order is by smme botanists, as Bentham and Hooker, ineluded in Geruniacex.

Distribution and Numbers.-A few are scattered over the globe; but they are chiefly natives of the Iudies, growing generally in damp shady places and where the temperature is moderate. Illustrative Genus:-Impatiens, Liuu. There are about 110 species. Properties and Uses.-They are said by De Candolle to be diuretic, but their properties are generally unimportant.

Order 7. Vivianiacee, the Viviania Order.-Diagnosis. -These plants are readily known among the Discifloræ by their exstipulate leaves, regular flowers, valvate 10 -ribbed calys, permanent withering twisted petals, 10 hypogynous stamens with distinet filaments, 2 -celled anthers with longitudinal dehiscence, superior 3-celled ovary, 3-celled capsule with loculicidal dehiscence and albuminous seeds with a curved embryo and radicle next the hilum. This order is included by Bentham and Hooker in Geraniacea.

Distribution and Numbers.-They inhabit Chili and South Brazil. Illustrative Gencra:-Casarea, Cambess.; Viviania, Willd. There are 15 species.

Propertics and Uses.-Unimportant.
Order 8. Tropeolaceat, the Indian Cress Order.-Charact er.-Smooth twining or trailing herbaceous plauts, with an acrid juice. Leaves alternate, exstipulate. Flower's irregnlar. Sepals $3-5$ (fig. 800), the upper one spurred; valvate or very slightly imbrieate in esstivation. Petals (fig. 800) 3-5, hypogynous, more or less unequal ; astivation convolute. Stamens (jig. 800) (;-10, somewhat perigynous, distinct ; anthers 2-celled. Dish: none. Ovary of 3 (fig. S00) or 5 carpels, each of which contains one peudulous ovule ; style 1 ; stigmas 3 or 5 . Fruit indehiseent. usually consisting of 3 earpels arranged round a common axis, from which they ultimately separate, each carpel containing one seed. Seed large, exalbuninous; embryo large ; radicle next the
hilum. This order is included in Geraniacex by Bentham and Hooker.

Distribution and Numbers. - Chiefly natives of South America. Illustrative Genera:-Troprolum, Linn.; Chymocarpus, Don. There are about 40 species.

Properties and Uses.-Generally acrid, pungent, and antiscorbutic, resembling the Crucifere. The unripe fruit of Troprotum majus, which is commonly known as Indian Cress or Garden Nasturtium, is frequently pickled, and employed by housekeepers as a substitute for Capers. Most of the T'ropreolums have tubercular ronts, some of which are edible, as T. tuberosum.

Order 9. Liminathacee, the Limnanthes Order.-Diagnosis. -This is a small order of plants included by Lindley in the Tropæolaceæ, with which it agrees in its general characters; but it is distinguished from that order by having regular flowers; more evidently perigynous stamens; and erect ovules. It is placed in Gerciniacere by Bentham and Hooker.

Fig. 933.
Fig. 934.

Fig. 932. Diagram of the flower of Oralis.-Fig. 933. Vertical section of the flower of the same.-Fig. 934. Vertical section of the seed.
Distribution and Numbers. - Natives of North America. Illustrative Genus:-Limnanthes, R. Br. There arc 3 species. Properties and Uses.-In these they rescmble the Cruciferæ and Tropæolaceæ.

Order 10. Oxalidaces, the Wood-sorrel Order.-Characte 1. -Herbs, or rarely shrubs or trees, generally with an acid juice. Leaves alternate or rarely opposite, usually compound or occasionally simple; generally with stipules, or rarcly exstipulate. Floneers regular and symmetrical. Sepals 5 (fig. 932), persistent, imbricate, occasionally somewhat united at their basc. Petrils 5 (fig. 032), hypogynous (fig. 033), ungniculate, rarcly. wanting; xstivation twisted. Stamens louble the number of the petals and sepals (f ig. 932), arranged in two rows alternating with each other, the imner row longer than the outer (figs. 550
and 933) and opposite to the petals, commonly somewhat monadelphous (fig. 550) ; anthers 2-celled, innate. Disk none. Ocary superior (fg .933), $3-5$-celled, with as many distinct styles as there are cells; stigmas capitate or somewhat bific. Fruit usually capsular and 3 -5-celled and 5 - 10 -valved, occasionally drupaceous and indehiscent; placentus axile (fi. 933). S'eeds few; sometimes provided with a fleshy integument, which bursts with elasticity when the fruit is ripe, and expels the sceds; embryo (fig. 934) straight, in cartilaginous fleshy albumen; radicle long, and turned towards the hilum; cotyledons flat.

Diagnosis.-Herbs, or rarely shrubs or trees, usually with compound exstipulate leaves. Stems continuous and not separable at the nodes. Flowers hypogynons, regular, symmetrical. Sepals, petals, and stamens with a quinary distribution; the sepals persistent and imbricate ; the petals twisted in restivation ; the stamens commonly somewhat monadelphous, with 2 -celled innate anthers. Disk absent. Styles filiform, distinct. Fruit $3-5$-celled, without a beak. Seeds few, with abundant albumen, a straight embryo, long radicle turned towards the hilum, and flat cotyledons. This order is closely allied to the Ceraniacex, to which it is referred by Bentham and Hooker.

Distribution and Numbers.-These plants are generally distributed throughout both the hot and temperate regions of the globe; the shrubby species are, however, confined to the former. They are most abundant at the Cape of Good Hope and in tropical America. Illustrative Genera:-Oxalis, Limu.; Averrhoa, Lim. There are about 330 species.

Properties and Uses.--Chiefly remarkable for their acid juice, which is due to the presence of binoxalate of potassium. They usually possess refrigerant properties. The fruits of some are eaten by the natives in the East Indies, but they are too acid to be generally acceptable to Europeans.

Averrhox Bilimbi and A. Curambola vield acid fruits, known respectively under the names of B'imbing and Carambole. They are enten by the natives in the East Indies, but are too acidulons for Europeans, who nevertheless use them for pickles.

Octalis.-O. Acetosellat, Common Wood-Sorrel, is a common indisenons phant aboundiner in wools. It has termate leaves, nud is eonsidered hy many to be the true Shanrock, as its leaves open abont St. Patrick: Day. When infused in milk or water, it forms a p!easant refrigerant drink in fevers. The leaves, taken as a salad, are antiscorbutic.-O, crenva, a piant which is called Arracacha, together with others, as O. Deppe; O, esenlenta. Se., have edible tubers, which nre used as sulbstitutes for potatoes in sume districts.-O. anthelmintict, the Mitehaniteho of Ahyssinia, has very acrid tubers. These are mueh employed for their anthelmintic propertics iu that country, beiner frequently prefered to Kousso (Hagenia abyssinica), a p!ant bedmeing to the Rosacea, and which is n!so largely used in Ahysinia for a similar purpose. (See IFageniu chyss:micu.)

Order 11. Rutaces, the Rue Ordcr.-Character.-Trees, shrubs, or rarely herbs. Leaves exstipulate, simple or compound,
dotted. Flurers perfect (fiqs. 579 and 935) or polygamous, regular. Calyx having $3-5$ segments (fig. 035), imbricate. Petals equal in number to the divisions of the calyx (figs. 611 and 035) or wanting, rarcly combined so as to form a mono. petalous corolla; assication usually twisted, rarely valvate. Stamens distinct (figs. 579 and 611), or more or less united into one or several bundles (fig. 935), equal in number to or twice (figs. ji 9 and 611) as many as the petals, or some multiple of them, or rarely fewer by abortion. Disk annular or cup-shaped, glandular, hypogynous (figs. 597 and 937). Ovary sessile (fig. 611), or raised oll a gynophore (figs. $608, g$, and $624, g$) ; it is composed of from 2 to $\overline{5}$ carpels, which are either distinct, or united so as to form a compound ovary having as many cells as there are component carpels; style simple (fig. 936) or divided

Fig. 935.
Fig. 936.
Fig. 937. Fig. 938.

Fit. 935. Diagram of the flower of the Orange (Cibus Aurantium). Fiy. 036. Vertical section of the pistil, showing a portion of the disk at its base, and a solitary hypogynous stamen.-Fig. 937. Pistil of the Orangc, with disk at its base, and the calyx: the petals and stamens lave been removed.-Fig. 938. Vertical section of the seed of the Common Hene (Ruta griteolens).
towards the base (fyy. 608) ; ovulce 2, 4, or rarely more, in each cell. Fruit capsular, its carpels either united or more or less distinct, or succulent and indehiscent, and in Aurantier forming an hesperidium (fig. 715). Seeds solitary or in pairs ; albumen present or absent ; radicle superior (fiy. 938).

Diugnosis.-Leaves exstipulate, dotted. Flowers perfect or polygamous. Calyx and corolla with a ternary, quaternary, or quinary distribution of their parts; the former with an imbricate aestivation, the latter twisted or valvate, and sometimes wanting. Stamens equal in number, or twice as many as the petats, or some inultiple of them, or fewer. Ovary of from 2-5 carpels, separate or combined, either sessile and surrounded at the base lyy a fleshy and glandular disk, or elevated upon a gynophore ; ovules sessilc. Fruit eapsular or sacculent. Embbryo with a superior radicle. Albumen present or absent.

Division of the Order and Illustrative Cienera. - The Rutacese lave been variously divided, and Bentlam and Hooker have largely extended the order by inchnding the orders Aurantiacces and Xanthoxylacere of former botanists, which arrangement is here adopted. As thus extended, they have divided it into the following tribes:- Cusparicr, Ruter, Diosmer, Boroniere, Xanthoxylere, Toddalier, and Aurantiee. Illustrative Genera: —Ruta, Tourn.; Barosma, Willd.; Xanthoxylon, Kmuth. ; Toddalia, Juss. ; Citrus, Limn.

The Xanthoxylere are espccially distinguished by their polygamous flowers; and the Aurantiere by the blade of their leares being articulated to the pctiole ($f g .320$), their deciduous imbricate petals (fg . 935), and their pcculiar fruit (hesperidium) (fig. 715).

Distribution and Numbers.-The Rutere are found chiefly in the southern part of the temperate zone and in Northern Asia; the genera Diosma, Barosma, de., abound at the Cape of Good Hope ; other genera are found in Australia; and some in cquinoctial Amcrica. Santhoxyleæ are mostly American ; Aurantiere usually East Indian. There are about 620 species.

Properties and Uses.-The Ruter arc generally characterised by a powerful penetrating odour, and bitter tastc. In medicine they are cmployed as antispasmodics, tonics, febrifuges, diuretics, \&c. The Xanthoyler are almost universally characterised by pungent and aromatic properties, and sometimes by bitterness. In medicine, they have been employed as stimulants, sudorifics, febrifuges, tonics, sialogogues, and emmenagogues. The Aurantiea abound in glands containing essential oils, which render them fragrant; honce such oils arc nseful in perfumery, and for flavouring, and other purposes. These volatile oils are especially abundant in the leares, the petals, and the rind of the fruit. The latter also contains a bitter tonic principle. The pulp of the fruit has an acid or somewhat saccharine taste; and the wood is always hard, and of a compact nature.

Adenandret fragrans.-The leaves are sometimes used to adulterate Buchu.

Ayle Marmelos, Indian Bacl.-The half-ripe fruit is a favomrite remedy in India as a demmentent and astringent in diarthea and desentery: In a dried state it is official in the British Pharmacomein. hut it appears in this condition to be far less active than when freslo. Mangosteen rind has been sulstituted for it in this eomerry, as first motieed be the anthor of this volume. (See Gurcinia.) The hark of the ront likewise posseste astringent properties. Its leares are also reputed to be useful in asthmatic complaints. The rind of the ripe fruit yiells a pleasant perfinme, and itpulp is destribed as heing very nutritions and mest pleasant to the taste; it possesses, moreover, laxative properties.

Amyris.-(See Burseracee.)
73arosma. - 'The leaves of severnl species, which are commonly known as Bucha leaves, are used in modieine for their aromatic. stimulant, antispasmodic, and dinretic properifes; they seem also to have a specific in-
fuence over the urmary organs. The plants yielding them are natives of the Cape of Good Hope. They owe their properties essentially to a powerfully scented volatile oil. They also contain abundance of muciluge, and, according to Landerer, a peculiar bitter prineiple called barosmin or diosmin, but of this nothing definite is known. The official species of the British l'harmacopeia are B. betulina, B. crenulatu, and B. serratifolia.

Cusimirou edulis.-The truit is said by Seemann to be delicious, and also to produce a soporific effect.

Citrus.-This is by far the most important genus of the order; the fruits yielded by the difterent species and varieties being highly valued for clessert and other purposes. The Orange, Lemon, Lime, Shaddock, Pompelmoose, Forbidden Fruit, Kumquat, and Citron, are all well-known, although the species from which they are derived are not in all cases well-defined.Citrus Auruntium, Risso.-The fruit is the Common or Sweet Orange. Of this there are a great many varieties; the most important of which are the Common or China Orange, the Blood Red or Malta Orange, and the St. Michael's Orange. Other varieties are sometimes imported, as the Noble or Mandarin Orange and the Tangerine Orange. The Orange-tree is remarkable for the enormous number of truits it is capable of yielding; thus, one tree will sometimes produce as many as 20,000 oranges. The small unripe frnits of this species, as well as those of the Bitter: Orange, form what are ealled Orange-berries; these are used for flavouring Curaçon, and when polished by a lathe, they constitute the ordinary issue peas of the phamacies. The leaves and young shoots of the Sweet Orange, as well as those of the Bitter Orange, by distillation with water, yicld a volatile oil, which is called Oil of Orange-leaf or Essence de petit grain; that obtained from the Bitter Orange is considered to be of the tinest quality. A similar oil may be also distilled from orange-berries. From the rind of the ripe fruit a tragrant oil is procured, which is known as Essence de Portugal or Essential Oil of Sureet Orange. The Howers of this species, as well as those of the Bitter Orange, vield Oil of Neroli; that from the latter is preferred. The distilled water of the flowers of these two speeies, after the oil is removed, constitutes the Aqua Naphre or Orange-flower Water of commerce, which is official in the British Pharmacopeia. It is to the presence of Oil of Nevoli that the odour of Eau de Cologne is more particularly duc. The rind of the Sweet Orange is an aromatic stimulant and tonie; its juice is also very extensively used as a refreshing and agrecable beverage at table, and also medicinally as a refrigerant.-Citrus Bigaradia of Duhamel or Citrus vulguris of Risso, is the official Bitter or Seville Orange. The leaves, tlowers, and naripe fruits of this species yield, by distillation or otherwise, similar essential oils to those outained from analogous parts of the Sweet Orange. (See above.) Orange-flower Water is generally prepared from the flowers of the Bitter Orange, as it is considered more fragrant than that obtained from the Sweet Orange. The unripe fruits (as already noticed), like those of the Swect Orange, are called Orange berries, and are used like them for making issue pens, and for flavouring Curaço. The rind of the ripe fruit yields a volatile oil, ealled Essential Oil of Bitter Orange or Essence de Bigarude. The chief use of the Bitter Orange is in the making of marnalade. The rind is also employed in medicine as a tonic and stomachic, and is more valuable in these respects than that of the Sweet Orange. It is likewise used for Havouring Curaça fud other substances; and in the preparation of cundied orange-peel-Citrus Limonum of Risso is the Lemon tree. Of the fruit we laveseveral varicties; the more important of which are,-the Wax Lemon, the Inperial Lemon, and the Gacta Lemon; they are ehielly imported from Sicily and Spain, the latter being the most esteemed. Botli the rind and the juice are employed in medicine, ind for other purposes; the firmer as a stomachic and carminative, and for flavouring; the latter as an agrecable and refrehing beverage, and also tor its refrigerant and antiseorbuticectlects.

The juice contains a large quantity of citric acid. Candied $C_{+}+m o n-p e e l$ isemployed in confectionery, and as a dessert. The concentratel juire of Lemons, as well as that of the Lime, is importerl in enormous quantities. and used in the preparation of the offial citric acid. The rind contains a lirge quantity of essential oil, which is generally obtained from it by expression by what is termed the sponge or ecnelle process, or sometimes by distillation; it is commouly known as Essential Oil or Essence of Lemon. '1he best is (1)tained by the first process, and it is distinguished as Essence de Citron au zeste, the latter being termed Essence de Citron distillec. 'This vil is prineipally used as a flavomring agent in coufectionery, and in medicine, and also in perfumery.- Citrus Limetta, DC., or C. Bergamia, Rison et Poit., is the source of the Lime fruit. This is sometimes imported into this conntry in a preserved state, and in that condition it forms a most agreeable desert. Its ju:ce is also imported and largely employed with that of 1 dmons in the preparation of citric acid, as already noticed. Both the fruit of C. Limonum and C. Bergomita are official in the British Pharmacopeia as the source of eitric acid, and the frout of the Lemon-tree is also official for its rind and juice. 'The Bergamot Orange is obtained from C. Bergamia var. vulguris of Risso. From the full-grown, but still unripe and greenisl fruits of this variety, either by expression or distillation, the essential oil, called Oil or Essence of Bergamot, which is largely nsed in perfmmery is obtained. Citres Medica. -The fruit of this is the Citron, or the Cedrat of the Frenth. Thus is supposed to be the Hebrew Tappnach, which is transhted in our version of the Old Testament as Apple-tree and Apples. The rind of this fruit is commonly imported into this comntry in a preserved state, and is nsed in confectionery. Its pulp is less aeid and juicy than the Lemon, but it may be employcd, as well as that of the Lime, for similar purposcs. Essence or Essential Oil of Cedrat is obtained from the nearly ripe fruit hy the sponge or ecuelle process. It is chiefly used in perfumery. The Citron, Lime, and Lemon are distinguished from Oranges by having a more closely adherent rind, by their more lengthened form, and by the possession of : 1 more or less prominent protuberance at their apex. Besides the above fruits obtained from the genus Citrus, we have also the Shaddock, from C. decumama; and the Kumquat of Clina, from C juponict. 'The Forbidden Fruit and the Pompelmoose also, both of which, as sold in the London markets, are varieties of the Shatdock,-the former being the smallest fruits, and the latter those of the largest sizc.

Cookia panctutu.-This plant produces the Wampee-fruit, wheh is much esteemed in the islands of the Indian Archipelago, and in China.

Correa alba, and other species.-The leares are sometimes employed as a substitute for tea in Anstrilia.

Dictummus Fraxinellu, False Dittany:-The root was formerly muth used in medicine, and reputed to possess aromatic tonic, diurctic, antispasmodic, and emmenagogue properties, but it is now rarcly if wer employer. The plant contains such a large amount of volatile oil as to render, it is said, the atmosplere around it inllammable in hot weather; we have, however, never found this to be the case.

Fsenbeckia febrifuga, a native of South Amerien, has a fehrifugal hark, which is used in Biazil as a substitute for Pernvian Bark. As stated he Maisch. it is sometimes smastituted for the oflieial Angmstura Bark in the United States, and has also been met with in France.

Fovodia glaura.-The bark is extensively used by the Japanese, hoth medicinally and for dyeing purposes.

Feroma elphlumtum.-This is a large tree, a mative of India. A kind of gum exules from its stem which elosely resembles Gimm Arahic. "lue fomg leaves lave an Anise like odour, and are nsed by the native practitinnets of ludia for their stomachic and carminative eflects. The unripe fruit is said to resemble that of Indma bael in its preperties, and has been
substituted for it in this eountry ; the ripe fruit is stated to be antiseorbutic. This fruit is commonly known under the name of the Elephant or Woodapple.

Galipea Cusparia.-This species is the source of Cuspatia or Angustura Bark, which is official in the British Phamacopeia. 'I his bark is imported directly or indirectly from South America. It is used in medicine as a stimnlant tonic and febrifuge, in small doses; while in large doses it is somewhat emetic and purgative. It has fallen into disrepute on the Continent, in conseqnence of the substitution for it former'y of the poisonous bark of Strychnos Nux-vomica. At one time, indced, the substitution was so common that the importation of Angustura Bark into Austria was prohibited, and the whole of it then found in that empire was ordered to be destrored. At the present time such a substitution is never met with although it occurred in Dublin about thirty years ago.

Murraya (Bergera) Konigii.-The bark, root, and leaves of this plant are employed by the native practitioners in India for their tonie and stomachic properties.

Pilocarpus pennatifolius.-The leaves of this plant, which is a native of Brazil, are the source of the drug known under the name of Jaborandi. Jaborandi is now official in the British Pharmacopoia. It is an energetic diaphoretic and sialogoguc. It owes its properties to a peeuliar alkaloid named pilocarpine, the nitrate of which is official in the British Pharma-copoia.-P. Selloanus, an allied species or varicty of the above, is also stated to afford Jaborandi. This name Jaborandi is likewise applied in South America to sereral other plants of very different aftinities. A species of pepper, Piper Jaborandi, is especially so designated.

Ptelert.-The root-bark is much employed by the eclectic practitioners in the United States of America as a tonic in remittent and intermittent fevers. The fruit is very bitter and aromatic, and has been used as a substitute for Hops, while the young green shoots are reputed to possess anthelmintic properties.

Ruta.-R. graveolens, Common Rue.-This plant, which is a native of Europe, has a very powerful disagreeable peculiar odour, which it owes to the presence of a volatile oil, which is oflicial in the British Pharmacopoia. Its taste is bitter and unuseous. It is used in medicine as an antispasmodic, anthelmintic, emmenagogue, stimulant, and carminative. It has been regarded for ages as most bencficial in warding off contagion, and in keeping oft noxious insects. This plant is said to be the Pcganon of the New Testament (Luke xi. 42).-Ruta montaua possesses very acrid properties ; so much so, indeed, as to blister the hands of those who gather it.

Ticorea frbrifuga, a native of South America, has a febrifugal bark which is used in some districts as a substitute for Peruvian Bark.

Toddalia aculeata.-The bark of the root is official in the Plarmacopoia of India. It possesses aromatic tonic, stimulant, and antiperiodic properties, and was formerly known in Europe under the name of Lopez root, and used as a remedy in diarrhcea.

Xunthoxylon (Zanthoxylum).-The species of this genus possess in a remarkable degrec pungent and aromatic properties; hence they are popularly termed Peppers in their native countries. In America they are commonly known, from their prickly bark, under the name of Prickly Ash. The fruit of X. piperitum is employed by the Chinese and Japanese as a condiment, and as an antidote arginst all poisons. it is gencrally termed in commerce Japancse Pepper. The aromatic pungent propertics appear to be continerl to the pericarp.-X. alutum yields an analogous pepper to the above, and Stenhouse has deseribed two peculiar principles which he obtained from it, viz. an oil and a stearoptene: the former is a pure hydrocarbon, to Which the aromatic odour of the pepper is due, and to which he has given the uanc of Xintluxylene; the latter is a crystalline solid body consistins
of carbon, oxygen, nad hydrogen, but devoid of nitrogen when pure, and which he has called Xanthoxyline. It is probable that it also contains: resinous substance, to which its pungency is due. The fruits of \mathbf{X}. hustile and X. Budvunga have similar properties. The seeds and fruits of the former are sometimes employed in India for the purpose of stupefying fish. The seeds of X. Budrunga are aromatic and fragrant, like lemon-peel; and the unripe fruits and seeds of \mathbf{Y}. Rhetsa have a taste like that of orangepeel. The root of \boldsymbol{X}. nitidum is used us a sndorific, stimulant, febrifure, and emmenagogue by the Chinese. The bark of X . fraxineum is official in the United States Pharmaeopoeia under the name of Prickly Ash Bark. It is chiefly used as a remedy in chronic rhemnatism. It is also a popular remedy as a masticatory in toothache; hence the plant is also known under the name of the Toothache Shrub. The bark contains berberine. 'Tb harks of other species, as those of \mathbf{X}. Clava-Herculis, Linn., and of X. carolinianum of Lamarek, possess somewhat similar properties to the bark of -1. tiraxineum.

Order 12. Smarubacee, the Quassia Order.-Character. Shrubs or trees. Leaves without dots, alternate, compound or sometimes simple, exstipulate. Flonvers regular and symmetrical, axillary, or temmal, perfect or unisexual by abortion. Calyx imbricate, in 4 or 5 divisions. Petals equal mumber to the divisions of the calyx, with an imbricate estivation, sometimes united into a tube. Stamens twice as many as the petals, the flaments usually with a scale at their back; cuthers with longitudinal dehiscence. Dish conspicuous, hypogynous. Ovary stalked, 4- or 5-lobed, 4- or 5-celled, each cell with 1 suspended ovule; style simple ; stigma with as many lobes as there are cells to the ovary. Fruit usually consisting of 4 or 5 indehiscent, 1 -seeded, drupaceous carpels, arranged around a common axis, or capsular or samaroid. Seed with a membranous intcgument, exalbuminous; radicle supcrior, retracted within thick cotyledons.

Distribution and Numbers. - With the exception of one plant, which is a native of Nepaul, they are all found in the tropical parts of India, America, and Africa. Illustrative Genera:-Quassia, Lirn. ; Sinıaruba, Aubl. Therc are about 50 species.

Properties and Uses.-A bitter principle is the most remarkable characteristic of the ordcr; hence many of them are tonic and febrifugal.

Ailanthus.-The bark of A. excelst is regarded in India as a tonic and febrifuge. It may be used as a substitute for Quassia. The bark of A. wataburica, when incised, yields an aromatic gum-resinons snbetance, whid is employed in dysentery, and ans incense in the East Indics. The leaves of A. glandulosa are the fivomite tood of the silk moth (Bombyx Cynthit). The root is largely used in China as a remedy in dysenters.

Brucea quassioides, a native of the Himalayas, has a very biter root. which forms a good substitnte for Qnassia.

Irvingin- - I. Barteri, a native of the Western Const of Afriea, has edible seeds, from which a kind of food, ealled Dika or Udika bread, is premared. The firnits of species of Irvingit are edible, and are termed Wild Mansers in tropical Afrien.

Picrana excelsa rields onr oficial Quassia Wood. (See Quassiu.) It is much used as a tonic, febrifuge, and stomachic, and also possesses anthelmintic properties. An infusion of Quassia sweetened with sugar acts as a powerful narcotic poison on flies and other insects; hence it is used as a fly-poison, Like other pure bitters, its infusion may be also employed to preserve animal matters from decay. It is largely used by brewers as a substitute for hops. It owes its active properties chiefly to the presence of an intensely bitter erystalline substance called Quassine. In Jamaica this plant is known under the name of Bitter Ash or Bitter Woocl. The wood was much used a few years since in the manufacture of small goblets, which were sold under the name of bitter cups.

Quassia umara.-The wood is intensely bitter. It is a native of Surinam, and was formerly much used as a febrifuge and tonic; the Howers are also stomachic. It is the original Quassia of the shops, but it is no longer imported into this country ; that now sold under the name of Quassia being derived from Picriena excelst, a native of Jamaica: hence the latter may be called Jamaica Quassia, and the former Surinam Quassia. It is, however, still official in some of the Continental pharmacopœias. (See Pierrent.)

Samudera indica.-The bark is used in parts of India as a fcbrifuge; the oil from the sceds is largely employed in rhenmatism ; and the leaves externally in erysipelas. Both bark and seeds contain a principle, which has been termed sumaderine.

Simaba Cedron.-The seeds are highly esteemed throughont Central America, where they are employed for their febrifugal propertics, and are thought to be a specific against the bites of venomous snakes and other noxious animals. They have been used in this country for the latter purpose but without any sensible effect. The active principle has been named cedrine.

Simamba (Simarnuba) amare is a native of Northern Brazil and Guiana, and some of the West Indian islands. In Jamaica and the West Indies generally its place is taken by the closely allicd species S. glatuct, which is known under the name of Mountain Danson. This latter plant las often been confounded with S. amara. The bark of the root of S. am era is official in the United States Pharmacopueia. It possesses tonic propertics. and has been used in diarrhcea, dysentery, \&c. It contains Quassine, the same prineiple which has been found in Quassia wood

Order 13. Ochnaces, the Ochna Order.-Character.-Under-shrubs or smooth trees, with a watery juice. Leaves simple, stipulate, alternate. Pedicels jointed in the middle. Sepals 5 , persistent, imbricate. Petals hypogynous, definite, somstimes twice as many as the sepals, dcciduous, imbricate. Stcmens equal in number to the sepals and oppositc to them, or twice as many, or more numerotis ; filaments persistent, inserted on an hyporymones fleshy dish; anthers 2-celled, with longitudinal or porous dehiscence. Carpels sessile, corresponding in number to the petals, inserted on a large Heshy disk, which becomes larger as the carpels grow ; owules 1 in each carpel. Fruit consisting of several indehiscent, somewhat drupaccous, 1-seeded carpels. Seed exalbuminous or nearly so; embryo straight ; rudicle towards the hilum.

Distribution and Numbers. - Natives chiefly of the tropical parts of India, Africa, and America. Illustrative Genera:Gomphia, Schreb.; Ochna, Sclureb. There are about 80 species.

Properties and Uses.-The plants are gencrally remarkable for their bitterness. Some have been employed as tonics and astringents ; others, as Gomphia parviftora, yield oil, which is used in Brazil for salads. In their properties generally, the Ochnaceee much resemble the Simarubaceæ.

Order 14. Burseraceef or Aayridacee, the Myrrh Order. -Character. - Trees or shrubs, abounding in a fragrant gumresinous or resinous juice. Leares compound, alternate or opposite, frequently dotted and stipulate. Flowers perfect, or rarely unisexual. Calyx persistent, with 2-5 divisions. Petals 3-5, arising from the calyx below the disk; æstivation ralvate, or occasionally imbricate. Stamens twice as many as the petals, perigynous. Dish perigynous. Ovary 1-5̄-celled, superior, sessile, placed in or upon the disk ; ovules in pairs, attached to a placenta at the apex of the cell, anatropous. Fruit dry, 1-5celled; epicarp often splitting in a valvular manner. Seeds exalbuminous ; radicle superior, turned towards the hilum.

Distribution and Numbers.-They hare been only found in the tropical regions of America, Africa, and India. Illustrative Genera:-Boswellia, Roxb.; Balsamodendron, Kunth. There are about 60 species.

Properties and Uses.-The plants of the order appear to he almost universally characterised by an abundance of fragrant resinous or gum-resinous juice. Some are considered poisonous; others bitter, purgative, or anthelmintic; and a few furnish useful timber.

Amyr's.-A. hexandra and A. Plumieri have been stated to rield a portion of the Elemi of commerce, but there is no proof whatever of sueh being the ease- A. elemifera, of Royle, yields Mexiean or Vera Cruz Elemi.- A. balsamifera is said to furnish one kind of Lignum Rhodium, but on no suffecient authority.-A. toxifera, as its name implies, is regarded as poisonous. This genus is unw sometimes placed in Rutacer.

Balunites regyptiaca has slightly acid leaves, which are reputed to be authelmintie, while the unripe fruits are acrid, litter, and purgative ; they are eaten. however, when ripe. The seeds of this plant also yield ber expression a fixed oil of a tatty nature, enlled zachun in Egypt, where the plant is cultivated.

Bulstmodendron or Balsamodendrum.-B. Myrrha is generally. reparded as supplying the gum-resin known in commeree under the name of Myrrl. It is ealled in Helorew mor or mur, and is mentioned in the Old Testament for the first time in Gen. xxxvii. 25 ; hence it must have heen in use for more than 3,500 years. The plants yielding the different kinds of Mrerrl, although it is not yet positively known from whene they are derived, are natives of Somali-land and the ndjoining parts of Arabia. But from recent investigations it would appear certain that the dificial or African Myrrh is the protuce of B. Myrrhat ; that kind known as Arabian Myrrl beeine also derived from the same or a nearly allied species; and that of East Indian Myrrh or Bissa Bôl from probably. B. Kataf, Kimth. Other species vield similar products. The botanical source of the Stacte or Liquid Myrrla of the ancients, and whichentered into the composition of the holy ineense in ase loy the Jews, is entirely monkiown, for no drus of modern times lass hern identified with it. Medicinally, myrrla is regarded as tonie, stimulant, cx-
pectorant, and antispasmodie, when taken internally ; and as an external application it is astringent and stimulant. The substance called $B a^{l} m$ of ${ }^{\circ}$ Gilead or Balm of Mecca, and which is supposed to be the Bulm of the Oil Testament, is procured from B. Opobalsamum. The gum-resin known as Indian Bdellium or False Myrrh (the Betellium of Seripture), is derived from B. Mukul and B. puóescens. This Bdellium is the Googul of the Iudian Materia Mediea, and the Mokul of the Persians. It is very similar to Myrrh. The resinous substance known as opaque Bdellium is derived from B. Playfuirii, a native of Somali-land. Africtan Bdellium is derived from B. afric.mum. The inner bark of B. pubescens peels off in thin white laters like that of Bosuellia papyrifert. (See belowr.)

Boswellia.-The gum-resin known under the name of Olibanum is obtained from species of this genus. The name Olibanum appears to be derived from the Greek dißavos. It is the Lebonah of the Hebrews, the Incense or Frankincense of the Bible, and the Lubain of the Arabs. Oliba. num or Frankincense is now principally obtained from Arabia and the Somali country in Africa. Three species of Boswellit, natives of the Somali country, have been deseribed by Birdwood, who has named them, B. Carterii, B. Bhau-Dajiana, and B. Frereana. The former is the true Frankincense or Luban-tree; but a similar product is obtained from B. Bhau-Dajiana, which is probably only a variety of B. Cartcrii.-B. Frereanu is the Yegaar-tree of the Somalis, and affords Luban Maitee, a very fragrant resin, which is chiefly employed in the East as a masticatory. The two first species are the principal botanieal sources of the Arabian or African Olibanum of commerce. The kiud known as East Indian Olibanum is derived from B. thuriferu (serruta). It is the Salai-tree of India, where its resin is much used for incense. Olibanum is chiefly used for fumigation, and in the preparation of incense. It is also regarded as a remedial agent in bronchitis and in chronic pulmonary affections.-B. papyrifera, a native of Abyssinin, also yields a fragrant gum-resin. 'this tree is likewise remarkable on account of its inner bark, which peels off in thin white layers, which may be used as paper.

Bursera gummifera and \mathcal{B}. ucuminata yicld fragrant resinous substances -that from the former is termed Chibou or Cachibou resin; that from the latter, Resin of Carana.

Conarium.-C. commune is the plant referred to in the British Pharmacopeia as the reputed souree of Manila Elemi, which is the only kind now found in commerec. Other authorities, however, refer it to C. allum and Icica Abilo (see Icica). But at present we have no trustworthy data as to its botanical source. Elemi is used as an external stimulant application to indolent uleers, \&e. The kernels of Commone, known as Java Almonds, abo vield by expression a bland oil, which resembles almond oil in its pro-perties.-C. Ualsumiferum of Ceylon, and C. album, a native of the Philippine Islauds, also ficld fragrant resinous substances resembling Elemi.C. edule yields Afriean Elcmi.-C. strictum is the prineipal, if not the only, source of the Black Dammar of Southern India. It is said to be a good substitute for Burgundy Pitch. This resin is also sometimes stated to be olstained from Vutica Tumbugaiu, a tree of the order Dipteracea. (Seo Vatica.)

Elephrium.-E. tomentosum produces one of the resinous sulstances called Tracamaliac.-E. gruveolens, a native of Mexico, is reputerl to be the source of a wood sometimes imported under the name of Mexican Lign-aloe Woor, and also of a volatile oil obtained from it. This must not be eonfounded witl the true Lign-along of the Bible. (Sce Aler aylon.)

Icica-I. Icicaribr and other species of Icica, rield Brazilian Elemi.I. Abih, Blanco.- liliekiger and Hanbury regard this plant as the souree of Manila Elemi (see Canarium). Other species produce somewhat analogous fragrant resins, as I. Carane, the source of Aucrican Balm of Gilead;

1. heterophylla, the plant yiclding Balsam of Acouchi ; I. heptaphylla, \&c.1. altissima furnishes the Cedar-wood of Guiana, of which there are several varieties. It is chicfly used for making canoes.

Order 10̈. Meliacee, the Melia Order.-C liaracter.-Tiees or shrubs. Leares alternate or rarely somewhat opposite, simple or pinnate, exstipulate. Flowers occasionally unisexual by abortion. Calyx 3-4-or 5-partite. Petals equal in number to the divisions of the calyx, hypogynous, sometimes united at the base; imbricate or valvate. Stcomens twice as many as the petals, monadelphous; anthers sessile, placed within the orifice of the tube formed by the united filaments. Disk hypogynous, sometimes large and cup-like. Ovary compound, usually 2-34 - or 5 -celled, rarely 10 - or 12 -celled ; style 1 ; stigmas separate or combined ; ovules 1,2 , or rarely 4 , in each cell. Fruit baccate, drupaccous, or capsular, in the latter case opening loculicidally ; many-celled, or by abortion 1-celled. Seeds few, not winged, arillate or exarillate; clbumen fleshy or usually absent ; embryo generally with leafy cotyledons.

Diagnosis.-This order is very nearly allied to Cedrelacce, and by some botanists the latter order is included in it. It is chiefy distinguished from Cedrelacere by haring more completely monadelphous stamens; by the possession of fewer secds ; and in those seeds being without wings.

Distribution and Numbers.-They are found more or less in all the tropical parts of the globe; but are said to be more common in America and Asia than in Africa. A few are extratropical. Illustrative Gencra:-Melia, Linn.; Aglaia, Lour.; There are about 150 species.

Properties and Uses.-These plants are generally remarkable for bitter, tonic, and astringent properties. Others are powerful purgatives and emetics, as Guarea Aubletii, G. trichilioides, G. purgans, G. spiciftorct, and some species of Trichilia; thesc all require much caution in their administration, and in some cases are reputed poisonous. A fow species have edible fruits. The seeds of some yield fixed oils by expression.

Aglaid odurate.-The flowers are used to give a perfume to certain varietics of Tea.

Carapa.-The seeds of C. gutineonsis, an African species, yicld by expression a fatty oil, called Kundah or Tallicoonuh, which is purgative aud anthelmintic: it is also adapted for burning in lanps, and for other purposes. An oil of a similar nature is also obtained from C. Touloumum ; it las been imported under the name of mote-grease. The seeds of C. guianensis. an American species, also yicld a somewhat similar oil, called Craboil, which possesses analogous properties. The bark of these species possesses felirifugal propertics.

Letusium.- This is a genus of plants inhabiting the East Indian Archipelago. They yich fruits which are much estemed, and known under the names of Langsat. Lanséh, Aycr-Ayer, and Bejetlan.

Melia Azndirachte, the Nilu, Neem, or Margosa tree of India.-The hark possesses astringent, tonic, and antiperiodic properties; and the fresh leares are stimulant, and are used as an extermal application in the form of a
poultiec to indolent nleers, \&c. The leaves have leen also recommended is a raluable remedy in the premonitory and progressive stages of smallpox. The seeds rield a bitter oil, which is a faroumite native remedy in India as an anthelmintic. and as an cxternal application in theumatism, \&e. Roth the bark and leaves are official in the Pharmacopeia of India. - M. Azedarach.-The root-bark of this tree is official in the United States Pharmacopeia; it is regarded as an anthelmintic. The fresla bark is the nost active.

Milnea edulis produces an agreenble fruit.
Sylncarpus Granutum.-The hark possesses astringent and tonic propert.es, and is employed as a remedy by the Malays in diarrhœa, cholera, \&e.

Order 16. Cedrelacee, the Mahogany Order.-Character. -Trees. Leaves alternate, pinnate, exstipulate. Calyx 4-5-cleft, imbricate. Petals hypogynous, of the same number as the divisions of the calyx, imbricate. Stamens twice as many as the petals and divisions of the calyx, either united below into a tube, or distinct and inserted into an annular hypogynous clisk; anthers 2 -celled, with longitudinal dehiscence. Ovary usually with as many cells as there are divisions to the calyx and corolla, or rarely only 3 ; oveles 4 or more, in two rows, anatropous; style and stigma simple. Fruit capsular (fig. 677), clehiscence usually septifragal (fig. 678). Seeds (fig. 677, g) flat, winged, attached to axile placentas; albumen thin or none; embryo straight, erect, with the radicle next the hilum. This onder is now frequently incorporated with Meliacea. (See Meliacer.)

Distribution and Numbers.-Chiefly natives of the tropical parts of America and India; they are very rare in Africa. Illustrative Genera :-Swietenia, Linn. ; Soymida, Adr. Juss. There are ahout 25 species.

Properties and Uses.-The plants of this order have fragrant, aromatic, tonic, astringent, and febrifugal properties, and many of them are valuable timber-trees.

Cedrela.-The barl of the plants of this genus is generally fragrant.-C. febrifuga, C. Toona, and uther species have febrifugal and astringent barks; they have been used as sulstitutes for Cinchona.-C. odrrata is the source of Jamaica or Honduras Celar:-C. Toona furnisles a wood resembling mahogany, which is much used in the East Indies, and is oceasionally imported into this country. It is termed Toon, Tunga, Pomn, or Jeea wood; and is said to be one of the woods known as Chittagong wood.-C. custrulis produces the Red Cedar of Australia.

Chloroxylnu.-The lenves of this genus are dotted, and yield by distillation an essential oil.-C. Surefenta is the source of East Indian Satin-woorl, which is sometimes imported into this country for the use of eabinet-makers. It is also employed for making the backs of lair and clothes-brushes, and lye the turner.

Oxleya xanthoxyla furnishes the Ycllow-wood of Queensland.
Snymida febrifuga, the liohuna or Red-wood Tree.-The hark, which is official in the l'larmacopecia of Indin, is commonly known under the name of Rolun Bark, aud is regarded as tonic, febrifugal, and astringent. In the Benural bazaars, the lark of Strychnos Nux-vomicu is also known under the native name of Rohun, and this has led to its oceasional sulstitution for Soymirla lark (see Strychnos). It is much employed in the East Indies in intermittent fevers, diarrhoen, and dyentery.

Swietenia Mfuhagni supplies the well-known valuable wood called Mahongany. This is chiefly imported from Honduras and Cuba, and a!so to some extent from other West Indian islands. Its bark possesses febritugal properties.

Order-17. Challeetlacef, the Chailletia Order.-Character. Trees or shrubs. Lexres alternate, entire, stipulate. Calyrs inferior, with 5 sepals; rstivation induplicate. Stamens 10, perigynous, in two alternate whorls, the outer petaloid and sterile ; but the latter whorl more resembles a corolla. Orury superior, 2-3-celled, with twin suspended ovules. Fruit dry, $1-3$ celled. Seeds exalbuminous. This order has been variously p'aced, but is more commonly referred here.

Distribution and Nrmbers.-Natives of tropical regions. Illustrative Genera:-Chailletia, DC. ; Stephanopodium, Pöpp. There are about 10 species.

Properties and Uses. - Unimportant. The fruit of Chailletio toxicaria, a native of Sierra Leone, is commonly called Ratsbane on account of its poisonous nature.

Cohort 2. Olueales.-Calyx imbricate. Gynoecium syncarpous; ovules suspended; raphe dorsal. Seeds albuminous.
Oider 1. Olacacee, the Olax Order.-Character.-Trees or shrubs, with alternate simple entire exstipulate leaves. Flowers small, regular, axillary. Culyx minute, monosepalous, generally enlarging so as to cover the fruit; restivation imbricate. Petals hypogynous, valvate in restivation. Stamens definite, partly sterile and partly fertile; the latter opposite to the petals, inserted upon or outside of a eonspieuous dish; anthers 2-celled, bursting longitudinally. Ovary free, often imbedded in the disk; ovules suspended from a free central placenta. Fruit drupaceous. Seed without integuments, solitary ; embryo minute; albemen fleshy.

Distribution and Numbers. - Natives of tropical or sub-tropical regions. Illustrative Genera:-Olax, Limn.; Liriosma, Pöpp. The number of species is doubtful.

Properties and Uses.-Some have fragrant flowers. Tine fruit of Ximenia amerieuna is eaten in Senegal. The leares of Olace zeylanica are used by the Cingalese in their curries, $\mathbb{f e}$, and the wood in putrid fevers. The wood of Heisteria cucrinea is considered by some to furnish the Partridge-wood of cabinetmakers. (See Guettarla.)

Order 2. Icacinacees, the Icacina Order.-Diagnosis.-This is an order of plants consisting of evergreen trees and shrubs, and formerly included in the order Olacacee ; but, as shown by Miers, they are clearly distinguished from that order, as follows:- 'They differ most essentially in the caly, being always small, persistent, and unchanged, and never increasing with the growth of the fruit; the stemens being always alternate
with the petals, not opposite ; the petals and stamens are never fixed on the margin of the conspicuous cup-shaped disk; the octry is normally plurilocular with axile placentation, and when unilocular, this happens only from the abortion of the other cells, the traces of which are always discernible, never completely unilocular at the summit, and plurilocular at base, with free central placentation. In Icacinacere the ovulcs are suspended below the summit of the cell in pairs superimposed by cup-shaped podosperms; only one of these becomes perfected, and the seed is furnished with the usual integuments.'

Distribution and Numbers.- 'They are natives of tropical or sub-tropical countries; chiefly the East Indies, Africa, and South America, a single species being found each in New Holland, Norfolk Island, and New Zealand.' Illustrative Generct:-Icacina, Adr. Juss.; Sarcostigma, W. et A. There are about 70 species.

Properties and Uses.-Unknown.
Order 3. Cyrillacee, the Cyrilla Order.-Diagnosis.-Evergreen shrubs, with alternate exstipulate leaves, nearly related to Olacacer, but chiefly distinguished by their imbricate petals, which are altogether free frum any hairiness on their inside; and by the stamens being all fertile, and, if equal in number to the petals, alternate with them.

Distribution and Numbers.-They are all natives of North or Tropical America. Illustrative Genera:-Cyrilla, Mylocaryum. There are 6 species.

Properties and Uses.-Unknown.
Order 4. Phytocrenacee, the Phytocrene Order.-Diagnosis. - This order has been variously placed by botanists, but is referved here by Bentham and Hooker. Formerly it was incorporated with the Artocarpacer, but their seeds have a large quantity of albumen, which at once distinguishes them from that order. The plants belonging to it, all of which belong to the genus Phytocrene, Wall., are climbing shrubs, natives of the East Indies, with dichlamydeous unisexual flowers, and seeds with a large quantity of albumen. Their wood has also a very peculiar structure. They yield a large quantity of watery juice when wounded, hence they are termed Water-vines, or 'Plantfountains.' In Martaban this juice is drunk by the natives.

Order 5. Aquifoliacese or Ilicacee, the Holly Order.-Character.-Evergreen trees or shmils. Lecues (fig. 323) coriaceous, simple, exstipulate or with minute stipulcs. Flowers small, axillary, somctimes unisexual. Sepals distinct, 4-6, imbricatc. Corolla 4-6-partite, imbricate. Stamens equal in number to the divisions of the corolla and alternate with its segments; anthers 2 -celled, adnate, opening longitudinally. Disk none. Ovary supcrior, 2-6- or more celled, with one
suspended ovule in each cell ; placentas axile. Fruit fleshy, indehiscent. Seed suspended; embryo small, at the base of a large quantity of fleshy albumen ; radicle superior.

Distribution and Numbers. - They are widely although sparingly scattered over the globe. Only one specics, the common Holly, is found in Europe. Illustrative Genera:-Ilex, Linn.; Prinos, Linn. There are about 115 species.

Properties and Uses.-Bitter, tonic, and astringent properties are those chiefly found in the plants of this order. Some are emetic and purgative, while others are largely used as a kind of Tea.

Ilex:-The leares and bark of I. Aquifolium, the Common Holly. have been employed in intermittent fevers. Thie berries are purgative and emetic. Bird-lime is prepared from the bark, and its white wood is used ly cabinet makers for inlaring. A deeoction of the leaves of I. vomitoria ennstitutes the Blaek drink of the Cree Indians. The dried leaves and youngtwigs of I. paraguayensis, the Brazilian or Paraguay Holly, and other species on varieties, are extensively employed in South A meriea as Tea, nuder the name of Maté or Paraguay Tea. 'It is remarkable that Maté contains Theinc, the alkaloid alreadry notieed as existing in China Tea, \&e. (See Theu, pare 472.) Like China Tea it also contains a volatile oil, tannic acid, and gluten; its properties are therefore somewhat similar. but it is more exciting, and when takeu to exeess produces a kind of intoxiention. In Brazil a kind of Maté, ealled Gongouhn, is also prepared from I. Gongonhta and I. theezans. Maté tea is generally used in Brazil, Paraguay, Peru. Uruguay, Chili. and other parts of Sonth Ameriea. The consumption of Maté in the rarimus South Ameriean Repmblies is from 20 to 40 millions of pounds anmally. From the great astringency of the fresh leaves of I. parayuayensis, I. Gimgonhu, aud other species, they are used by the dyers in Brazil. The nuripe fruits of I. Necoucoua contain mueh tannie acid, and are employed in dyeing cotton.

Prinos gleber.-The leaves of this plant, which is a native of North America, are nsed as a snbstitute for Clina Tea. This is known under the name of Appalachinin Tea. (See Viburnum.) The bark of P. rerticillatus, called Black Alder Bark or Winter. Berry. is emplored in the United States in the form of a deeoetion, as a tomic and astringent.

Cohort 3. Celastrales.-Calyx imbricate or valvate. Gynnecium syncarpous; ovules erect; raphe ventral. Seeds usually albuminous; radicle inferior. Nearly always trees or shrubs.

Order 1. Celastracea, the Spindle-tree Order. - Character. -Shunbs or small trees. Leaves simple, generally alternate, or rarely opposite, with small deciduous stipules. Sepals 4-5, imbricate. Petcls with imbricate astiration, equal in number to the sepals, inserted on a large disk; sometimes wanting. Stamens as many as the petals and alternate with them, inserted on the disk; anthers innate. Disk large, flat, expanded. Orary sessile, superior, surrounded by the disk, $2-5$-celled, each cell with 2 ovules; orules erect, with a short stalk. Fruit superior. $2-5$-celled, either drupaceons and indehiscent, or capsular with loculicidal dehiscence. Seecls with (fig. 758) or without an aril;
alhumen fleshy ; embryo straight; radicle short, inferior; cotyledons flat.

Diamnosis.-Shrubby plants, with simple leaves and small deciduous stipules. Flowers small, regular, and perfect; or rarely unisexual by abortion. Sepals and petals 4-5, imbricate in restivation. Stamens equal in number to, and alternate with, the petals, and inserted with them on a large flat expanded disk. Orary superior, sessile, surrounded by the disk. Fruit superior, $2-\overline{0}$-celled. Seeds albuminous; enıbryo straight; radicle inferior.

Distribution and Numbers.-Chiefly natives of the warmer parts of Asia, North America, and Europe ; they are also plentiful at the Cape of Good Hope. Generally speaking, the plants of the order are far more abundant out of the tropics than in them. Illustrative Genera:-Euonymus, Limu.; Celastrus, Kunth. There are about 280 species.

Properties and Uses.-Chiefly remarkable for the presence of an acrid principle. The seeds of some contain oil.

Cathe edulis.-The foung slender shoots, with the attached leaves, constitute the Arabian drug. called Kât, Khat, or Cafta. This is largely chewed by the Arabs, and is said to pituce great hilarity of spirits and an agreeable state of wakefulness. A decoction is also made from it, and usen as a beverage like our tea: its effects are described as being somewhat similar to those produced by strong green tea, but the excitement of a more pleasing nature. Br some writers the term Kat is applied to the drug in its unprepared state, arid Cafta to a preparation made from it. The leaves and yonner shoots of C. spinosa are also said to be used in the preparation of Kât.

Celastrus.-The seerls of C. paniculatus vield an oil of a powerfully stimulating nature, which is sometimes used as a medieine in India nader the name of 'Oleum nigrum.' C. scundens and C. senegalensis have purgative and emetic barks.

Elaodendron Kubu.- The drupaceous fruits of this species are eaten at the Cape of Good Hope.

Fuonymus.-E. europaus is the common Spindle-tree of our hedges. The wood is used to make sliewers, spindles, \&c. In France, charcool is said to be prepared from the wood, and used in the manufacture of gunpowder; while the young shoots in a charred condition form a kind of drawingpencil. The seeds are reputed to be purgative and emetic, and are also said to be poisonous to sheep; those of some other species lave similar properties. The lark of E. tingens has a beautiful vollow colour on its inside, wwhich may be used as a dye.-F. chropurpmens. Wakoo.-The bark, chiefty of the ront, of this plant, and also, to some cxtent, of that of E. americumis are used in the United States of America in the preparation of what has bern termerl enonymin. This is reputed to possess tonic, hydragogue, catlartic, diuretic, alterative, and anti-periodic properties. It has been used with some success in this country as an hepatic stimulant.

Order 2. Hippocrateacee, the Hippocratea Ordcr.-Cha-racter.-Shrubs, with opposite simple laves, and small deciduous stipules. Flowers small, regular, and unsymmetrical. Sepuls and petals 5, hypogynous, imbricate, the former perzistent. Stamens :3, hypogynous, monadelphous ; anthers with transversc dehiscence. Disk conspicuons, Ovary . 3 -celled; olucentes axile; style 1. Fivuit baceate, or consisting of

3 samaroid carpels. Secels definite, exalbuminous; emlr?! straight; rudicle inferior. This order is referred to Celastracese by Bentham and Hoolier.

Distribution and Numbers. - They abound prineipally in South America; some are also found in Africa and the East Indies. Illustrative Genera:-Hippocratea, Linn.; Tontelea, Aubl. There are about 86 species.

Properties and Uses. - Very little is known generally of the plants of this order. The fruit of several Brazilian species of Tontelea is edible, and in Sierra Leone that of T. pyriformis is described as very pleasant. Hippocratea comosa yiclds nuts of an oily and sweet nature. The inncr yellow bark of Kokoona zeylanica is employed in Ceylon as a febrifuge and sternutatory, and as a dye.

Order 3. Stackhousiacee, the Stackhousia Order.-Cha-racter.-Herbs or rarcly shrubs, with simple, entire, alternate, minutely stipulate leaves. Calyx 5 -cleft, with its tube inflated. Petals 5, united below into a tube, arising from the top of the tube of the calyx, and having a narrow stellate limb. Stamens 5 , distinct, of unequal length, perigynous. Ovary superior, 3or 5 -celled, each cell containing one erect ovule; styles 3 or $\overline{5}$, distinct or united at the base. Fruit consisting of from 3--5 indehiscent carpels, attached to a central persistent colunn. Seeds with fleshy albumen ; embryo erect ; radicle infcrior.

Distribution and Numbers.-Natives of Australia. Illustrative Genera:-Stackhowsia, Smith; Tripterococcus, Endl. There are about 20 species.

Propecties and Uses. - Unknowns.
Order 4. Rhamnaceer, the Buckthorn Order.-Character. Shribs or small trees, which are often spiny. Leaves simple, alternate or rarely opposite; stipules small or wanting. Flouers small, usually perfect ($f i g .793$) or sometimes unisexual. Caly. $4-5$-clcft, with a valvate restivation (fig. 793). Disk fleshy, lining the tube of the calyx. Petals equal in number to the divisions of the calyx (fig. 793), and inserted into its throat, hooded or convolute, sonetimes wanting. Stamens perigynous, equal in number to the petals (fig. 793) and opposite to them when present, and alternate to the clivisions of the calyx. Orury (fig. 793) superior or half superior, inumersed in the disk, 2-3or 4 -celled; ovnles one in each cell, erect. Fruit dry and capsular, or fleshy and indehisccut. Sieds onc in each cell, erect, usually with fleshy albumen, but this is sometimes wanting, exarillate; cmbryo long, with a short inferior radicle, and large flat cotyledons.

Diagnosis. - Small trees or shrubs, with simple leaves and small regular usually perfect flowers; rarely unisexual. Calya $4-5$-parted, valvate, with the tube coated with a disk. Petals and stamens distinet, perigynous, and cqual in number to the divisions of the calyx ; the petals sometimes wanting, but, when present, opposite to the stamens. Ovary more or less superior,
surrounded by a fleshy disk. Fruit 2-3- or 4-celled, with one erect seed in each cell. Seed usually albuminous, without an aril.

Distribution and Numbers.-Generally distributed over the globe except in the rery coldest regions. Illustrative Genera:Zizyphus, Tourn. ; Rhamnus, Juss. There are about 400 species.

Properties and Uses.-Some of the plants have acrid and purgative properties; others are bitter, febrifugal, and tonic. A few are used in the preparation of dyeing materials, and some few others have edible fruits.

Cenmothes americams.-The young shoots are astringent; and in New Jersey the leaves are dried and used as a substitute for China tea; furming what is commonly known as New Jerser Tea.
7) iscariu febrifugu.-The root is used in Brazil as a febrifuge and tonic.

Gounnia clomingensis is reputed to possess stomaehie properties.
Hovenia dulcis.-The peduneles of this plant become nltimately enlarged and succulent, and are much esteemed in China, where they are eaten as a fruit.

Rurmus.-This genus is by far the most important in the order. Thus, R. eutharticus, commonly called Buekthorn, produces a fruit the fresh juice of which has lieen used fur ages as a hydragogue cathartie; but it is rarely employed at the present day, on account of its violent and unpleasant operation, except in veterinary practice. The pigment kumwn as stop-green, the rert de cessie of the French, is prepared lye evaporating to dryness the fresh jnice of Buckthorn berries previously mixed with lime. The bark of R. Frungula, the Blaek Alter, has long been employed in Germany, Holland, and some "ther parts of Europe, as a laxative, and is now official in the British Pliarmncopweia. The bark of the young trunks and larger brauehes is rewarded as the most active, and more especially so after having been kept for a year or more. A greenish or yellowish-green dye is made from the leaves. The wood under the name of 'Dogwood' is largely used in the manufacture of the finer kinds of gunpowder. The bark of R. Purshiunus has also been much employed of late years in the United States of America, and in this country more reeently, as a purgative in large doses, and as a tonic aud stomachie in small doses. It is known under the name of Cuscuru Sugrodu, and is oltained from Californiar ; it is now official in the British Pharmaeopoia. The unripe fruits of R. infectorius are known in ennumeree under the name of French berries (Graines d'drignnn of the French); while those of R. amygddlinus constitute the herries callerl yellow berries or Persian berries. Some authors say that hoth the French and I'ersian berries are the produce of one speeies, the R. infectorius, and that the ouly difference betwcen then is in size-those called French or Arignon berries being smaller, and not of such good quality as the Yersian berries, which are obtained from Asiatic Turkey and Persia. These berries produce a beantiful yellow enlour, which is used for dycing moroceo leather, and live calieo printers.-R. saxatilis prodnces a fruit, which may lef also emplover for dueing yellow. In Alyssinia, the leaves of R. pruciflorns, and the fruit of R. Studdo, looth of which possess litter perperties, are cmploved ats a sulstitute for hops in the preparation of beer. From R. whtermus a blue dye may be prepared. The Chinese green dye (Lo-kuo), knowu lure ats Chinese (ircen Indigo, aurl now much used in Europe, is preparell from R. chlorophorns (ghobsus) and R. utilis.

Sugretic theezuns is an mative of Chima, where its leaves are used as: a sulsstitut, for tom hy the porer inhaljitants.
 in the prothertion of oramere and other dyes.

Zizyplens, Many specter of this gemus have edible fruits. Thus: the
Z. vulgaris, Z. Jujubut, and others, yield the fruits known under the name of Jujubes. Jujube is a favourite dessert fruit in Japan; and another Japanese species, Z. sinensis, yields the fruits known as Japonicas, which are necasionally to be met with in Covent Garden Market.-Z. Lotus has also an edible fruit, which is esteemed by the Arabs, Sc. This is generally helieved to be the Lotus of the ancients, and from which the Lotophagi receped their name. By some, however, the Lotus of the ancients is supposed to be the Nitraria tridentata. (See Nitraria.) The berries or seeds of some species of Zizyphos are regarded as sedative, while those of Z. Boclei are reputed to be poisonous. Some believe that the crown of thorns which was placed on our Saviour's head was made from Z. Spinu-Christi.

Order 5. Vitacee, the Vine Order.-Character.-Usually shrubs climbing by tendrils (fig. 214), with a watery juice, the joints swollen and separable from each other. Lerves simple (fig. 214) or compound, opposite below, alternate above, stipulate or exstipulate. Flowers regular, small, green, stalked (fig. 426) ; peduncles sometimes cirrhose. Calyominute, with the limb generally obsolete. Petals 4 or 5 , sometines united at the base; restivation induplicate ; inserted on a dislio which surrounds the ovary, caducous. Stamens corresponding in number to the petals and opposite to them, also inserted on the disk (fig. 518) ; flaments distinct or somewhat united at the base ; anthers versatile, bursting longitudinally (fig. 51S). Ovary superior, surrounded by a disk, 2-6-cclled, usually 2; style very short, simple; stigma simple (fig. 518). Fruit succulent (fig. 720), sometimes termed a nuculanium, usually 2-celled. Seeds erect, few, usually 2 in ench eell; testa bony; albumen hard ; embryo erect, with an inferine radicle.

Diagnosis. -Shrubloy plants, climbing by tendrils, with sinple or compound leaves, which are opposite below and alternate above. Flowers small, green, regular. Petals and stamens corresponding in number, 4 or 5 , the latter opposite to the petals, both inserted on an hypogynous disk; astivation of petals induplicate ; anthers versatile, opening longitudinally. Ovary superior, surrounded by a disk, with a very short simple style and stigma. Fruit a muculanium. Sceds few; testa bony; embryo erect in horny albumen ; radicle inferior.

Distribution and IVumbers. - The plants of this order are found in warm and tropical regions of the globe. None are natives of Europe. The common Grape Vine, which is now completely naturalised in the South of Europe, and is enltivated nearly all over the globe where the temperature does not risc too high or fall ton low, is supposed to be a native of the shores of the Caspian. Alustrative Genera:-Vitis, Limn. Ampelopsis, L. U. Rich. There we about 260 species.

Pooperties and Uses.-The leaves, stems, and umripe frnits, especially the latter, of the plants of this order, abound more or less in an aeid juice, the acidity being chiefly due to the presence of tartarie and malic acids, and acid tartrate of potash. As the fruit ripens, it generally loses its acidity, and becomes sweet, owing to the formation of Glucose or Grape Sugar.

Ampelopsis hederacca, Virginian Creeper.-The juice of the leaves and other phrts is said to possess poisonous properties.

Cissus.-The leaves and fruits of some species, as C. setosa. C. cord attu, Sc. are acrid. A blue dye is obtained in Brazil from the leaves and fruit of C tinctoria.

I'itis cinifera.-This very valuable plant, which is eommonly known as the Grape Vine, has followed the steps of man into almost every region of the erlobe where the climate is at all adapted to its growth. The varieties of the Vine are exceedingly numerous, being more than 300. The fruits, under the name of Grapes, are too well known to need any particular deseription. They have been in use for more than 4,000 years for the making of wine vincgar, brandy, and other fermented liquors. Grapes possess retiriserant properties, and are hence useful in febrile and inflammatory affections. Grapes when dried are called raisins, which are largely used at dessert and for eulinary purposes. They are also official in the British Pharmacoucia under the name of Uoa. Of raisins we have several commercial varieties, the more important of which are Valentias, Museatels, and Sultanas. The Mascatels, or Raisins of the Sun, are considered the finest. The sultanas are remarkable for the absence of seeds. Raisins possess demulcent and slightly refrigerant properties, but they are principally employed in medicine for flavouring purposes. Besides the above kinds, there is also a suall sechless variety of raisin, commonly linown under the name of Currants. This name is a eorruption of Corinth, where they were originally grown, int they are now chiefly obtained from Zante and the other Ionian Islands. The leaves and tendrils of the Vine are astriugent, and have been nsed in diarrhea ; and the sap has been employed in France in chronic ophthalmia.-- Vitis vulpina, V. Labrusea, and other species or varieties, whieh grow wild in North America, yield fruits which are known as the Museadine aud Fox-grapes. These are similar, although very inferior in their properties, to those of the common Grape.

Cohort 4. Sapindales.-Calyx imbricate. Gyncecium usually syncarpous, or rarely apocarpous ; ovules generally ascending, with the raphe ventral. Seeds nearly always exalbuminous. Trees or shrubs, rarcly herbs.
Order 1. Sapiniaceat, the Soapwort Order.-Character.Usually large trees or twining sluwbs, or rarely climbing herbs. Lerves generally compound (fig. 368), or rarely simple, altermate or sometimes opposite, often dotted, stipulate or exstipulate. Flowers (fiys. 939 and 940) mostly perfect and unsymmetrical, sometimes polygamous. Sepuls 4-5 (fig. 939), either distinet or united at the base, imbricate. Petals 4-5 (fig. 939), ravely 0 , hypogynous, alternate with the sepals, imbricate, naked or furnished with an appendage on the inside. Stamens 8-10, rarely $5-6-7$ (fig. 939), or vcry rarely 20 , inserted into the disk or into the thalamns ; filements distinct or slightly monadelphous ; cuthers introrse, bursting longitudinally. Disto fleshy or glandular, hypogynous or perigynous. Ovary usually 3 -celled (fig. 93!), 1arely 2 - 01 - 4 -celled, each cell containing 1 , 2 (fig. 735), 3 , or rarely more uvnles; style undivided or $2-3$ cleft. Fruit cither fleshy and indehiscent; or capsular, with $2-3$ valves. Speds usually arillate, exalbuminons; embino rarely straight, usually curved (fiy. 941) or twisted in a spiral
direetion; cotyleclons sometimes very large; rarlicle next the hilum.

Diagnosis.-Flowers unsymmetrical, hypogynous. Sepals and petals $4-5$, imbricate, the latter commonly with an appendage. Stamens never agreeing in number with the sepals and petals, inserted on a fleshy or glandular disk, or upon the thalamus; anthers bursting longitudinally. Fruit usually consisting of 3 earpels. Seeds eommonly 2, sometimes 1 or 3 , or very rarely more, exalbuminous, usually arillate and without wings; embryo almost always eurved or spirally twisted.

Fig. 941.

Fig. 939. Dingram of the flower of the Horsechestnut (.Esculus Hippoc(ss(chum).-Fig. 940. Vertical section of the flower.-Fig. 341. Tertical section of the seed.

Division of the Order and Illustrative Genera:-This order has been divided by Lindley into 4 sub-orders, as follows :-
Sub-order 1. Sapindex.-Leaves alternate. Orules usually solitary. Embryo generally eurved or sometimes straight. Illustrative Genera:--Sapindus; Linn.; Nephelium, Linn. Sub-order 2. Hippocastaner.-Leaves opposite. Ovules 2 in a cell, of whieh one is aseending, and the other suspencled (fig. 735). Embryo eurved (fig. 941), with a small radiele and large fleshy eonsolidated cotyledons. Ilhustrative Gemes:Aseulus, Limn.
Sub-order 3. Dodonex.-Leaves alternate. Ovules 2 or 3 in a cell. Embryo spiral. Illustrative Genera:-Dodonea, Lim.; Ophioearyon, Schomb.
Sub-order 4. Meliosmex.-Leares alternate. Flowers very irregular. Stamens 5,3 of whieh are abortive, and only 2, therefore, fertile. Ovules 2 in each eell, suspended. Fruit drupaeeous. Embryo folded up. Illustrative Genus: - Meliosma, Blume. Bentham and Hooker include the Meliosmes in the order Sabiacee.
Distribution and Numbers.-Chiefly found in tropical regions, espeeially those of South Amerien and India; some occur in temperate elimates, but none inhabit the eold northern parts of
the globe. There are no native plants of this order in Europe. The Horsechestuut, now so well known in this country, is only naturalised among us. There are nearly 400 species.

Properties and Uses.-One of the most prominent characteristics of the plants of this order is the presence of a saponaceous principle, from which its common name is derived. Many are poisonous in all their parts ; but it is more frequently the case that, while the root, leaves, and branches are dangerous, the poisonous juice becomes so diffused throughout their succulent fruits as to render them innocuous, or, in several instances, even raluable articles of clessert. It sometimes happens, as in the Litchi and Longan fruits, that while the pericarp is wholesome, the seeds are dangerous. Some plants of the order are astringent and aromatic ; others are diaphoretic, diuretic, and aperient ; and some are valuable timber trees.

Esculus.-The bark of SEsculus Hippocastanmm, the Horsechestnut, is febrifugal. Its young leaves are somewhat aromatic, and Endlicher says that ther have been used as a sulstitute for Hops. The seeds have been lons emploved as an excellent food for sheep in Switzerland, and have been also recommended as a substitute for Coffee. They contain a saponaceous principle like the fruits of certain species of Sapindus. They also contain a large quantity of starch, and are much used in France, instead of potatoes and cereals, as a source of that substance. In some parts of Holstein also, this starch, which is there very carcfully prepared, has been used for many years for household purposes, being much preferred to that obtained fiom wheat, rice, or potatoes. The seeds are said to yield by expression a fixed oil, which has been introduced under the name of Oil of Horsechestnut, as an external apphication in rheumatism, \&c. Nothing, however, is known of the extraction of the oil from these seeds, and its sonree from them is scarcely probable. The roots, leaves, and fruits of the AEsculus ohiotensis, the Buckeye or American Horsechestnut, are generally regarded as poisonous, both to man and animals.

Cardiospermum Halicacabum.-The ront is described as diuretie, diaphoretic, and aperient. Its leaves, when boiled, are eaten as a vergetable in the Moluccas.

Cupania (Blighia) sapida.-The distilled water of the flowers is used by negro women as a cosmetic. The succulent slightly acid aril of the seeds is eaten, and much esteemed in the West Indies and elsewhere. The fruit in which the seeds are contained is commonly known under the name of the Akee-fruit. A decoction of these has been used in diarrhoa.

Iodomea.-Some of the species of this genus are aromatie. The wood of D. dinica is carminative. Others are reputed to be slightly purgative and febrifugal.

Nephelium.-This genus yields the delicions fruits of China and the Indian Archipelago, known under the names of Litchi, Longan, and Rambutan. Nephelimm Litchi produces the Litchi ; N. Longan, the Longan; and N. Rambutan or N. lappaceum, the Rambutan fruit. The Litchi firuits are frequently imported into this country; and rarcly also, the Longrau. It should le noticed that the seeds of all these fruits are very bitter, and are probablypoisonous.

Prullinit,-The seeds of Paulliniu sombilis, Guarana, are used in Brazil in the proparation of a kind of food whicll is known as Guarana bread, Brazilian Cocoa, or simply as Guarana. Guarana is also there used as a remedy in many diseases. Guarana bread is prepared ly takines the dried seeds deprived of their aril, and pounding and kneading them into a mass,
which is afterwards made into oblong or rounded eakes. These cakes are used in the same manner as we use cocon and chocolate-that is, they are mixed with water, and the mixture swectened and drunk. This beverage is largely consumed in Brazil, both on acconnt of its mutritive qualities, and for its stomachic, febrifugal, and reputed aphrodisiac effects. It contains: a bitter erystalline principle called Guaranine, which appears to be identical with theine (sec Thea, p. 472), the active principle of tea and eoffee, and hence Guarana has a somewhat similar effect upon the system to that produced by these two beveraces. Guarana has been lately* highly recommended for use in this conntry and elsewhere as a remedy in nervous headache. Its action is probably similar to tea, over which it seems to possess no advautages. It has also been recommended as a remedy in neuralgia, diarrhcea, and other diseases. In many species of Paullinit, the narentic property, which is but slighty marked in P. sorbilis, is very evideut. Thus, the lcives, bark, and fruit of P. pinnata are very dangerous, and are used in the preparation of a poison by the Brazilians, which slowly but surely destrnys life. Martius suggests that this poison might be efficacious in hydrophobia and insanity. P. cururu and P. australis have similar poisonous propertics.

Sapindus.-The fruits of Sapindus Supmaria, as well as those of S. inæqualis and others, contain a saponaccous principle, so that when mixel with water they produec an abundant lather; hence they are used in the West Indies instead of soap. It is said that 'a few of them will cleanse more linen than sixty times their weight of soap.' These plants also eontain a narzotico-acrid principle, as the pounded fruits, when thrown into water in which fish are contained, will produce upon them a kind of intoxication. The pericarp of S. senegalensis is eaten, but the seeds aet as a nareotico-acrid poison. The fruits of Sapindus esculentus and others are also edible.

Schnidelia serrata has an astringent root, which has been used in Iudia for diarrhœa.

The fruits of many plants belonging to this order, besides those already named, are edible, as those of Pierardia sativa and P. dulcis, producing the Rambeh and Choopa of Malacea; and Hedycarpus malaya aus producius the Tampui. Schmidelia edulis, in Brazil ; Melicocea bijuga, in the W'est Indies and Brazil ; Pappea capensis, at the Cape of Good Hope, See, also yield edible fruits.

Order 2. Aceracefe, the Maple Order.-Character.-Tiecs. Leaves opposite, simple, without stipules; renation usually radiate, rarely pinnate. Flowers often polygamous, racemosc or corymbose, regular. Caly. with an imbricate restivation, usually 5 -partite, occasionally 4- or 9 -partite. Petals imbricatc, without appendages at their base, corresponding in number to the divisions of the calyx, or altogether absent. Stamens usually S , inserted on a fleshy hypogynous disk, or larely the disk is absent. Ovary superior, 2 -loberl, 2 -celled; stigmas 2 ; ovules in pairs. Fruit a samara, 2-celled (fig. 706). Seeds 1 or 2 in cach cell, ascending, without an aril, exalbuminous ; embryo curved, with leafy wrimkled cotyledons, and an inferior radicle. This order is placed by Bentham and Hooker in Sapinducea, tribe Acerinea.

Diagnosis.-Trees with opposite simple exstipulate lcaves. Flowers often polygamous, and usually regular. Sepals and petals imbricatc, the latter without any appendages on their inside. Stamens hypogynous, usually on a fleshy disk ; ant hers bursting longitudinally; ovary superior, 2-celled. Frnit a
samara, 2 -celled, each cell containing 1 or 2 seeds. Seeds ascending, without an aril, exalbuminous; embryo curved, with an inferiur radicle.

Distribution and Numbers.-The plants of this order are natives of the temperate parts of Europe, Asia, and North America. None have been found in Africa and the southern hemisphere. Illustrative Genera:-Acer, Limn.; Negundo, Mönch. There are about 50 species.

Properties and Uses.-These plants are chiefly remarkable for their saccharine sap. Their light and handsome timber is also much used in turnery, for certain parts of musical instruments, and for other purposes ; and their bark is astringent, and is employed in different districts by the dyer in the production of yellow, reddish-brown, and blue colours.

Acer.-A. sacchurinum is the Sugar Maple. The Maple Sugar of America is obtained from this tree by making perforations into its trunk at the commencement of spring, and boiling down the saccharine sap which then exudes to the crystallising point. A few years sinee nearly 50 millions of pounds of Maple sugar were annually produced in North America, lut the quantity is diminishing yearly in ennsequence of the destruction of the native forests.-A. dasycurpum and other speeies also yield sugar. The bark of A. saccharinum has been also used in Ancrica in the production of a blue dye, and as an ingredient in the manufacture of ink.-A. cumpestre and A. Pseudo-platanus are common trees in Britain, and afford useful timber; the latter is generally known under the names of the Syeamore, Greater Maple, and Mock-plane. It derives the latter name from the resemblance of its leaves to those of the true Plane-tree (see Platanus), but their venation is different. Its wood is also used for making charcoal.

Order 3. Staphyleacee, the Bladder-nut Order.-Charac-ter.-Shrubs, with opposite or rarely alternate pinnate leaves, which are furnished with dcciduous stipules and stipels. Flowers symmetrical. Calyx 5-partite (fig. 788), coloured, imbricate. Petals 5 (fig. 788), alternate with the divisions of the calyx, imbricate. Stamens 5 (fig.788), alternate with the petals, and inserted with them on a large disk. Ovary superior, composed of 2 (fig. 788) or 3 carpels, which are more or less distinct ; avdes numerous; styles 2 or 3 , united at the base. Fruit fleshy or membranous. Seerls ascending, with a bony testa ; embryo straight; albumen little or none. This order is now frequently placed in Sapindacer.

Distribution and Numbers.-They are scattered irrcgularly over the globe. Illustrative Genus:-Staphylea, Linu. There are about 14 species.

Properties and, Uses.-The bark of some species is bitter and astringent, as that of Euscaphis staphylcoides. Others have oily and somewhat purgative seeds, as S'tcophylea pinnata, \&c.

Order 4. Sabiacef, the Sabia Order.-Diagnosis.-This is a small order of plants, containing but 2 genera, and 9 species, which were formerly placed as doubtful genera of the Anacardiacere; but the Sabiaceie differ essentially from the Anacardiacer,
in their stamens being oppositc to the petals; in their distinct carpels: and in their solitary ovules being directly attached to the ventral suture. Miers and Blume regard the Sabiacete as related to Menispermaces and Lardizabalacer. Bentham onel. Hooker inchule the Meliosmex of the Sapindacex in this order.

Distribution, Properties, and Uses.-Natives of the East Indies. Their properties are altogether unknown.

Order 5. Anacardiaceze, the Cashew-nut Order.-Character. -Trecs or shrubs, with alternate, simple or compound, dotless, exstipulate leaves, and a milky acrid or resinous juice. Flowers regular, small, and frequently unisexual. Calys persistent (fig. 942), with usually 5 , or sometimes 3,4 , or 7 lobes. Petals equal in number to the divisions of the calyx, perigynous, imbricate; sometimes absent. Stamens alternate with the petals, and of the same number, or twice as many, or even more numerous; perigynous, and united at the base if there is no disk, but if this is present then distinct and inserted upon it. Di:k amnular and hypogynous, or wanting. Ovar! usually single, 1 -celled, generally superior, or very rarely inferior ; styles 1, 3, 4, or none; stigmas the same number as the styles ; ovules solitary, attached

Fig. 942.

Fig 942. Flowering branch of the Rhus Cotinus, or Wig-tree, with one branch bearing fruit, and the others covered with hair-like appentages and sterile. to a long funiculus which arises from the base of the cell. Fruit (fig. 942) indehiscent, clrupaceous, or nut-like. Seed without albumen.

Distribution and Numbers.The plants of this order are chiefly found in the tropical regions of the glube, although a few are found in the South of Europe and in other extra-tropical warm districts. Illustrative Genera :-Pistacia, Lim.; Anacardium, Rottb. There are about 110 species.

Properties and Uses. - They abound in a resinous, somewhat gummy, acrid, or milky juice, which is occasionally very poisonous, and sometimes becomes black in drying. The fruits and seeds of some spccies are, however, held in high estimation, and are lirgely eaten in different parts of the world. Many plants of this order furnish varnishes.

Anacardium necidentale, the Cashew-nut, is remarkable for its cularged fleshy peduncie, which is enten as a fruit; and its juire, when fermented, produces a kind of wine in the West Indies; and in Bombay and other places in spirit is also distilled from it. Each peduucle bears a smiall kidnew-shaped nut-like fruit, the pericarp of whiel is sery acrid. but the seed is edible. B:ronsting the fruit the arridity is destroyed, and the seed then possesses is fine flavour. The nerid principle, which is of an oily nature, possesses power-
ful rubefacient and resiennt properties. The Cashew-tree also rields a large supply of a kind of gum, which is however bnt little used.

Holigarnu longifolia.-The fruits of this species and those of Semecarpu.s Anacardimm. furnish the blaek varnish of Sylhet, which is much used in India. (See Semecarpus.)

Mangifera indica.--The fruit of this plant is the Mango, which is so highly esteemed in tropical countries. Several varieties are cultivated: these differ rery moch in the size and flavour of their fruits. The kernel of the seed is employed in Brazil aud in lndia as an anthelmintic.

Melanorrhoa usitatissima furnishes the Black Varnish of the Burmese. It is employed in the arts, and also as an anthelmintic.

Odina Vodier has an astringent bark, which has been used in India. It also rields an astringent gum.

Pistacia.-P. Lentiscus is the somree of the concrete resin, which is official in the British Pharmacopœia, called mustic or mastich. It is obtained from the stem by incision. Mastich, when dissolved in spirit of wine or nil of turpentine, forms a good varnish, which was formerly much employed in this country, but of late years the place of mastich for this purpose has been supplied in a great degree by Dammar and other less expensive resins. It is used in the East as a masticatory ; and also to some extent for fumigration, and in the mannfacture of confections and cordials. It is also employed in this country by dentists as a temporary stopping for teeth, when "dissolved in alcohol or ether, for the relief of toothache and other purposes. It possesses stimulant and dimretic properties, but is rarely employed in medicine. It is exclusively collected, and from male plants only, in the island of Scio, where this plant is much cultirated.- P. Terebinthus is the source of the liquid oleo-resin called Chirn Tarpentine. It is obtained from the stem by incision, in the same way as mastich. Chian Turpentine becomes solid by keeping, from the loss of its volatile oil. It has the general properties of the ordinary 'Turpentines derived from some of the Conifere, and was formerly employed for similar purposes; but its use in medicine had become nearly obsolete until it was rccommended recently as being almost a specific in the treatment of nterine cancer, for which purpose it has been extensively emploved, but withont any evident success. It is nsed in Grecce and the Levant in the manufacture of cordials. Chian Turpentine, as its name indicates, is obtained from the island of Scio.-Pistacia vera produces the fruit known as Pistachio or Pistacia nut, the kernels of which are of a green colour, and have an agreeable flavour. They are highly estcemed by the Turks and Greeks, and are occasionally imported into this country. They are either eaten raw, or after laving been fried, with pepper and salt. $-P$. Khinjuh and P. cabulica yield concrete resins resembling mastich. This kind of mastich is imported into India from Cabul ; and rarely into Europe under the name of Bombay or East Indian Mastich. Curionsly shaped galls of a slightly astringent tercbinthinate taste are also obtained from P. Khinjuk, which enter into the native Materia Medica of India noder the name of Gül-i-pista.- P. atlantica also yields a concrete resin, which is used in place of mastich by the Arab tribes of Northern Africa.

Rhus, the Sumach.-Scecral species of this genus have more or less poisonous properties. They have gencrally a milky juice, which becomes black on exposure to the air ; and the emanations from some of them excite violent erysipelatous inflammation upon eertain individuals when brought within their influence.-R. Toxicodendron is the Poison-oak of North America. The leaves contain a peculiar acrid principle, to which their mediciual properties appear to be due. They lave been thought to be usefnl in old paralytic cascs and in chronic rhenmatism- \boldsymbol{R}. venenata is the Prison-ash or Poison-elder, and, like the two former, has very poisonous properties. The above plants, in a fresh state, ought to be very carefully
handled, as their juices frequently cause violent erysipclatons inflammation. The bark of R. Coriaria is a powerfid astringent, and in nsed in tanuins; other species have similar propertics. The fruit is acidulous, and is aten by the Turks. The leaves, when dried and powdered, coustitute the material called Shumac or Sumach, which has been employed in tanniner and flyong for ages. The nood of R. Cotinus is known in commerce as Young V'ustic or Zante Fustic. It is used for dyeing, and produces a rich yellow colour. This must not be confounded with Old Fustic, which is derived from an entirely different plant (see Machera tinctoria).-R. Metopiam, a native of Jamaica. furnishes the Hog-gum of that ishand: this is said to have astringent, diuretic, and purgative propertics when civen internally, and to act as a vulnerary when applied to wounds, \&c. From the fruits of R. suecedunea, and probably other species. Japanese Wax is obtained, which is uow larcely used in this country for candles, \&ec. On the branches of this plant in India, peculiar horu-like galls are found, which possess astringent properties.

Semecarpus Anacardium is the source of the Marking-nut. These fruits are used extensively in the preparation of a black varnish. The seeds are edible, like those of the Cashew. These nuts and the fruit of Mohiurna longifilia (as before noticed) furnish the black varnish of Sylhet, which is used in the Last Indies for varnishing lacquer work and for marking linen, henee their common name. The black thick juiee of this plant has powerfully caustic properties, and is in use by the natives of the East Indies as a vesicant. Its employment, however, has frequently led to serious consequences, and shoukd be condemned as dangerous.

Spondias.-S. pupurea, S. Mombin, and other species, have edible frnits, called Hog-plums in Brazil aud the West Indies. The fruit of S. cytherea or S. dulcis, a native of the Society Islands, is said to rival the Pineapple in flavour and fragrance.

Stagmaria verniciflua (Rhus vernicifera) is the sonrce of a waluable hard black varnish, known in the Indian Archipelago under the name of Japan Lacquer.

Order 6. Coriarlaces, the Corimia Order.-Diagmosis. This name is given to an order whieh ineludes but 1 genus, and 8 speeies. Its affinities are by no means understood; but it appears to be most nearly related to Oelnaeea, with which it agrees in having its earpels distinet, and plaeed on an enlarged disk; but it is distinguished from that order by its opposite leaves; sometimes polygamous flowers ; persistent fleshy petals ; absenee of style ; and long linear distinet stigmas.

Distribution. - Natives of the South of Europe, Chili, Pern, New Zealand, and Nepaul.

Properties and Uses.-The plants of this order are generally to be regarded with suspieion, as they have sometimes produeed poisonous effeets. The fruits of some, however, are edible, as Coriaria nepalensis, a native of the north of India, and those of C. sarmentosa, a native of New Zealand ; in the latter case the periearp is alone eaten, the seeds being poisonous. The fruts of C. myntifolia and C. moscifolia are very poisonous; these plants have been employed by dyers in the produetion of a black dye. The leaves of the former speeies have been also used on the Continent to adnlterite Senna ; this is a most serions adulteration, as these leaves are poisonous. They owe their poisonous propertios to a glueoside ealled coricu-myntin. 'They may be at
once distinguished from Senna leaflets by their two sides being equal and symmetrical at the base, those of Senua being unequal. Chemically they are also known frow Senna by their infusion producing a very abundant blue precipitate on the addition of persulphate of iron.

Order 7. Morivgacex, the Ben-mut Order.-Character. Trees with bi- or tri-pinnate leaves, and thin deciduous stipules. Flover's white, irregular. Sepals and petals 5 each; the former deciduous, petaloid, and furnished with a flesh!! dish; astivation imbricate. Stamens 8 or 10, placed on the disk lining the tube of the calyx in two whorls, the outer of which is sometimes sterile; anthers 1-celled. Ovary stalked, superior, 1-celled, with 3 parietal placentas. Fruit long, podshaped, capsular, 1 -celled, 3 -valved, with loculicidal dehiscence. Seeds numerous, without albumen.

Distribution and Numbers.-Natives of the East Indies and Arabia. There is only one genus (Moringa, Burm.), and 4 species.

Properties and Uses.-Pungent and slightly aromatic properties more or less prevail in plants of the order, hence they have been employed as stimulants.

Moringa pterygosperma.-The root resembles that of Horseradish in its taste and odour, and has bcen usel internally as a stimulant and diuretic, and locally, when fresh. as a rubefacient and resieant. A kind of gum somewhat resembling Tragacanth exudes from the bark when wounded. Its seeds are ealled in France Pois Quéniques and Chicot, and in England Ben-nuts. They yield a fixed oil called Oil of Ben, which is nccasionallyused ly painters, and also by perfnmers and wathmakers. The wood has leen supposed, but on no trustwortly authority, to be the lignum nephriticum of the old Materia Medica writers.

> Artificial Analysis of the Orders in the Sub-class Polypetalx.

Series 2. Disciflone.

1. Flowers with more than 20 stamens.
A. Leaves with stipules.

Carpels more or less distinet, (at least as to the styles), or solitary, superior or partially inferior

Anactrdiacer.
Carpels wholly combined, (at least as to the ovaries), superior

Hmmirincer.
2. Fuowers with less than 20 stamens.
A. Leaves uilhout stipules.
a. Carpels more or less distinct, or solitary.

Leaves without dots.
Abumen abmohant Zygophyllarere.
Albamen absent Anarrediacea.
Leaves dotted Burseracea.
b. Carpels wholly combined, (at least as to their ovaries).
Styles distinct to the base.
Calyx valvate Vrunniacere.
Calyx imbricate Linacez.
Styles more or less combined.
Calyx valvate or united, or bnt very
slightly imbricate.
Stamens hypogynous.
Calyx generally enlarging with the fruit

Olacaces.
Calyx not enlarging with the fruit.
Stamens opposite to the petals,
isomerous . . . ${ }^{\circ}$
Stamens alternate with the
petals, isomerons.
Leaves compound . . Burseracere.
Leaves simple . . . Icacinacte.
Stamens more or less perigynous.
Flowers irvegular, ovnles sus-
pended Tropenlaceæ.
Flowers regular, ovtules erect - Limuauthucea.
Calyx imbricate.
Fruit gynobasic.
Stamens arising from scales . Simarubucex.
Stamens not arising from scales.
Stryles wholly combined.
Flowers perfect . . Rutacex.
Flowers polygamous . . Sunthoxylea of
Rutacer.
Styles divided at the apex.
Flowers irregular, fruit usually with elastic valves .
Fruit not gynobasic.
Calyx much imbricate, in an irregular broken whorl.
Petals with appendages at their base. Leaves alternate
Petals without appendages at their base. Leaves opposite

Balsamenacere.

Calyx but little imbricate, in a complete whorl.
Carpels 4 or more. Seeds winged
Seeds wingless.
Stamens united into a
long tuhe. . .

Meliacea.

Stamens distinct, or nearly
so.
Leaves dotted.
Seeds amyedaloid

- Auranticre of Rutacer.

Leaves withont dots.
Seeds erect
Celastricpre.
Oapels less than 4.
Petals imhricate.
Ovules suspended . . Cyrillucere.
Ovules crect . . . Colustrace:
B. Leaves with stipules.
a. Curpels distinct, or solitary.

Carpels several Coriariacer.
b. Curpcls wholly combined, (at least as to theirovaries), with more placentus than oue.
Placentas parietal
Moringaceæ.
Placentas in the axis.
Styles distinct to the base.
Petals conspicuous, stalked . . Malpighiacer.
Styles more or less combined, fruit gynobasic.
Gynobase fleshy Ochnacer.
Gynobase dry.
Leaves regularly opposite . . Zygophyllacea.
Leaves more or less alternate.
Fruit beaked Geraniaceæ.
Fruit not beaked : . . Oxaliducea
Styles more or less combined, fruit not gynobasic.
Calyx much imbricate, in an irregular broken whorl.
Flowers not surrounded by an involucre

Sapindacer.
Calyx but little imbricate, in a com plete whorl.
Stamens 3, sepals and petals pentamerous

Hippocrateaceæ. Stamens more than 3. Calyx glandular.

Petals without appendages . Malpighiucer. Calyx not glandular.

Leaves simple.
Petals united by their claws into a tule
Leaves compound.
Petals distinct . . . Staphyleacez.
Calyx valvate.
Stamens opposite to the petals, isomerous.
Seeds one in each cell.
Stamens opposite to the petals if isomerous, anthers versatile, seeds two in each cell . . Stamens twice as many as the petals

Rhamntcex.

Vitaccs.
Burserucea.
The following exceptions may be noted to the characters usually distiuctive of the Disciflore. Thus we lave apetalous species in Zygophyllacea, Geraninces, Belsaminaces, Rutaces, Simurubacee, Bmrscracce, Olactceæ, Celnstrucere, Rhamuacere, Supind ices, Anacurdiacea, and some others.

Gamopetalous corollas are fotnd in Mumiviucer, Rutuceæ, Bulsuminucer, Melincere, and Stachhomsiucce.

Again, in Geranizcex, Bulsaminncere, Tropantacex, Oxalidtecee, Aceracea, Anccurdincea, Mulpighiucere, Linacca, \&ce, the disls is small, or entirely, or partially alsent. The ovary is more or less inferior in some Olactucere and Rhomucere; and the placentation is parictal insteal of axile in some Ochucese and in Moringuces.

Series 3. Calyciflore.

Cohort 1. Rosales.-Stamens perigynous or cpigynous. Gyncecium generally simple or apocarpous, or rarely syncarpous; ovary superior or inferior ; placentation usually marginal or axile; styles generally solitary or distinct, or rarely united; seeds albuminous or exalbuminous.
Order 1. Connaracee, the Comarus Order.-Character. Trees or shrubs. Leares alternate, without dots, compound, and generally exstipulate. Flowers usually perfect, or rarely unisexual. Calys 5-partite, infcrior, imbricate or valvate in restivation. Petals 5, inserted on the calyx, imbricate or valvate. Stamens 10, usually monadelphous, nearly or quitc hypogynous. Carpels 1 or more; omles 2, sessile, collateral, ascending, orthotronons. Fruit follicular. Seeds with or without albumen, arillate or exarillate; radicle superior, at the extremity most remote from the hilum.

Distribution and Number's. - Natives of the tropics and most common in tropieal America. Illustrative Genera:-Connarus, Omphalobium. There are about 42 species.

Properties and Uses.-Some have oily sceds ; others, as certain species of $O \mathrm{mphalobinm}$, have edible arils. The zehra-wood of the eabinet makers is said by Schomburgk to be furnished by Omphalubium Lamberti, a very large Guiana tree. (See Guettarda.)

Order 2. Leguninose, the Leguminous Order.-Charactcr. Herbs, shmos, or trees. Leaves alternatc, stipulate, usuallv compound (figs. 275, 377, and 380). Calys (figs. 943, s. and 944, c) monosepalous, inferior, more or less decply divided into five parts, the odd division being anterior ($f i g .943, s$). Petals usually 5 ($f(9.943$), or sometimes by abortion $4,3,2,1$, or rarely none, inserted into the base of the calyx, equal or uncqual, often papilionaceous (fig. 944), the odd petal, if any, postcrior (fig. $943, p s$). Stamens definite (figs. 943 and 9455), or indefinitc. usnally perigynous, or rarely hypogynous, distinet or united into 1, 2 (fias. 552 and 945), or rarely 3 bundles. Oram superior, usually formed of 1 earpel (figs. 603 and 943), although rarely of 2 or 5 ; 1 -celled with 1, 2, or many orules; style and stirmus simple ($\mathrm{fi} \% \mathrm{~s} .603$ and 945). Fruit usually a lcgume (figs. 668 and 689-691), or sometimes a lomentum (figs. 686 and 692), or rarcly a drupc. Seerls 1 or more, sometimes arillate, attaehed to the upper or ventral suture (fig. 946) ; albumen usually abscut ; cmlver (fig. 16) straight, or with the radicle folded upon the cotyledons; cotyledons leafy or fleshy, and cither hypngeal or epigeal.

Diemmosis.-Herbs, shrubs, or trecs. Leares nearly alwars alternate and stipulate, and usually compound. Flowers regular or inregular. Calyx inferior, $\overline{5}$-partite ; ond division anterior. Petals 5, and then unequal or equal ; or fewer by abortion, or
none, perigynous ; odd one, when present, posterior. Stamens distinct, or united into one or more bundles. Ovary superior, simple, 1 -celled; style simple, proceeding from the ventral suture. Fruit usually a legume, or sometimes a lomentum, and rarely a drupe. Seeds 1 or more, rarely with, or usually without

$$
\text { Fig. } 943 .
$$

Fig. 944.
Fig. 945.

Fig. 946.
Fig. 943. Diagram of the flower of the Garden Pea (Pisum sativam). s. Anterior sepal. ps. Snperior petal. pi,pi. Inferior petals. pl, $p l$. Lateral petals. et. Stamens. c. Carpel--Fig. 944. The flower of the same. el. Standard or vexilnm, ai. Wings or alæ. car. Carina or keel enclosing the essential organs. c. Calyx.-Fig. 945. The essential organs of the same surrounded by the calyx c. es. Bundle of nine stamens. el. Solitary stamen. st. Style and stigma.-Fig. 916. Legnme of the same, with one valve removed.
albumen. This order may be generally distinguished by having papilionceeous corollas or leguminous firit.

Division of the Order and Illustrative Genera.-The order has been divided into three sub-orders as follows :-
Sub-order 1. Papilionacee.-Petals arranged so as to form a papilionaceous corolla (fig. 944), imbricate in estivation, and the upper or odd petal exterior to the lateral petals. Illustrative Genera:-Ulex, Linn. ; Trifolium, Linu.; Vieia, Linn.; Ornithopus, Linn.
Sub-order 2. Cesalpiniex.-Petals not arranged in a papilionaceous manner, imbricate in æstivation, and the upper or odd petal with its margins inside the lateral petals. Illustrative Genera :-Cesalpinia, Limn. ; Cassia, Linn. There are no British plants in this sub-order.
Sub-order 3. Mimosee.- Petals equal, valvate in æstivation. Pollen compound. Illustrative Genera: - Mimosa, Linn.; Acacia, Willd. There are no British plants in this sub-order.
Distribution and Numbers.-This is a very extensive order, and has some representatives in almost every part of the world. A considerable number of the genera are, however, confined within certain geographical limits, while others lave a very wide range. As a general rule the Papilionacex are universally distributed, although most abundant in warm regions ; while the

Cxsalpiniex and Mimosex are most common in the tropics; but many of the latter are also to be found in Australia. There are about 7,000 species in this order.

Properties and Uses.-The properties and uses of the plants of this order are exceedingly variable. Lindley remarks, that 'the Leguminons Order is not only among the most cxtensive that are known, but also one of the most important to man, whether we consider the beauty of the numerous species, which are amongsi the gayest-coloured and most graceful plants of every region; or their applicability to a thousand useful purposes. The Cercis, which renders the gardens of Turkey resplendent with its myriads of purple flowers; the Acacia, not less valued for its airy foliage and elegant blossoms, than for its hard and durable wood ; the Braziletto, Logwood, and Rosewoods of commerce ; the Laburnum, the classical Cytisus; the Furze and the Broom, both the pride of the otherwise dreary heaths of Europe ; the Bean, the Pea, the Vetch, the Clover, the Trefoil, the Lucerne, all staple articles of culture by the farmer, are so many Leguminous species. The gums Arabic and Senegal, Kino, Senna, Tragacanth, and various other drugs, not to mention Indigo, the most useful of all dyes, are products of other species; and these may be taken as a general indication of the purposes to which Leguminous plants may be applicd. There is this, however, to be borne in mind, in regarding the qualities of the order from a general point of view ; riz., that upon the whole it must be considered poisonous, and that those species which are used for food by man or animals are exceptions to the general rule; the deleterious juices of the order not being in such instances sufficiently concentrated to prove injurious, and being, in fact, replaced to a considerable extent by either sugar or starch.' In alluding to the properties and uses of the more important plants of this order, we shall arrange them alphabetically under their respective sub-orders.

Sub-order 1. Papidionacef.- In this sub-order we have ineluded a number of plants which yield nutritious food for man or other animals, such as Peas (Pisum). Broad-beans (Faba), Kidney-beans, Searlet-runners and Haricots (Pluseolus), Lentils (Lens), Pigeou-peas (Cajanus, \&e.). The seeds of the above plants, and many others, are commonly known mider the name of pulse, and do not need any detailed deseription. 'The tubercular roots of Dolichos tuberosus and D. bullosus, Lathyrus tuherosus. and other plants, are eaten in the same way as potatoes. Lucerne and Medick (Medicago), Melilot (Melihtres), Clover (Trifolinm), Tares and Vetehes (Errum, Vicia), Saintoin (Onobrychis), and many others which are common fedder phants in different parts of the glohe, also belong to this sub-order, and do not require any notice in detnil. Some plants, or parts of plants, which it contains, are, however, poismons, as the ronts of the Scarlet-rumer (P 'haseolus multiforus), the ronts of Phaseolus radiatus, the seeds of Lathyrus Aphaca, the seeds, root, and bark of Laburmmes (Cy/isus alpinus and C. Laburnum). the seeds of Amagyris fietida, the seeds of the Calabar Bean (Physostigma venenosum), and also the seeds of the Bitter Veteln (Errum S:rviliz), the juice of Cormilla varia, the leaves of some Gomplandaimms, the leaves and young loranehrs of Tepherosin toricaria, the bark of the root of Piscidia Enythrina, and the parts or prodncts of some other plants.

Abrus precatorius.-The seeds are used as beads for making rosarics, necklaces, \&e-hence their common name of prater-beads. They are also employed in India as a standard of weight by Hindoo jewellers and druggists under the name of Retti or Rati. Each seed is estimated as equal to $\frac{3}{18}$ grains. They are of a scarlet colour, with a black mark on one side, and are poisonous when introduced in wounds or under the skin of animals, but innocuons when eaten. Under the name of Jequirity seeds, they have been used by the ophthalmic surgeon for the cure of granular lids. The roots resemble those of the Liquorice plant, and are used as a substitute for them; hence the names of Wild Liquorice and Inditu Liquorice, by which this plant is known. This root is official in the Pharmacopoia of India.

Eschynomene.-The stems of Eschynomene aspera furnish the Sola or Shula of India. These stems are remarkably light and spongy, and are therefore used for making floats and buows for fisliermen, for the manufacture of very light hats, and for other purposes where elasticity and lightness are necessary. A fibre called Duchai Hemp is oltained from Asschynomene camuabina.

Alhagi Mrarorum, Camel's Thorn.-This plant and ether species related to it, natives of Persia and Afghanistan, secrete a kind of manoa. This substance is obtained by simply shaking the branches. It is highly esteemed by the Afghans as a food for cattle. In some parts of the Last it is also used as food for man, and as a laxative. It has been supposed to be the manna upon which the Israelites were fed in the wilderness, but such an idea is undoubtedly incorrect. (See Lecanora).

Andira.-The bark of Andira inermis, known as Cabbage Bark or Worm Bark, was formerly much used as an anthelmintic. It possesses cathartic, emetic, and narcotic properties. In large doses it is poisonous.-Andira anthelmintica also possesses vermifuge properties. The powder known as Araroba, and which has been largely used of late years in many skin diseases under the name of Goa Pouder, is also derived from a species of Audira, which has been named A. Araroba. It is official in the British Pharmacopmeia nnder the name of 'Chrysarobin.'-A. retusa also yields a bark with similar properties to that of A. inermis; it is known under the name of Surinam Bark.

Arachis hypogaa.-This plant is remarkable for ripening its legumes under the surface of the ground, hence it is commonly known as the Ground Nut. The seeds are used as food in various parts of the world, and are oceasionally roasted and served up, in the same manner as Chestnuts, as an article of dessert in this country. In the United States the roasted seeds are employed as a substitute for coffee, in the preparation of a kind of chocolate, and for other purposes. Tuson has recommended ground-nut cake for the fceding of cattle. It is sometimes used for adulterating the more expensive feeding cakes in this country and elsewhere. The seeds vield by expression a fixed oil which is official in the Pharmacopocia of India; it is employed very extensively in India for cooking, \&e., where it is called Katchung oil. The oil is also occasionally imported, or it is oltained here by expression from the sceds. It is known commonly as gromad-unt or earth-nut oil. It is a very liquid oil, and is accordingly employed for watches and other delicate machiuery ; also for burning and other purposes. It forms a good and cheap substitute for olive oil.

Astraguhus.-A. gummifer and some otlier species of Astragalus furnish the official Trasacantl of the British Pharmacopocia, or, as it is commonly termed-gum dragou. It is used by manufacturers for stiffening crape, \&.c.; and in medicine for its demulcent and emollient properties, and as a vehicle for the exhihition of more active substances. Tragacantli exudes naturally, or more especially from wounds made in the stems of the above plants. The fum known as Sarcocolla, which is imported into bombsy from the Persian port of Bushire, is also considered by Dymoek to be derived from a
speries of Astragalus, or from one nearly alliced to that genus. The serds of A. beticus are used as a substitnte for coffec in some parts of Germauy.

Baptisia tinctoria.-This plant is the Wild Indigo of the United States. Its receives its common name from vielding a blue dye resembling indigo, although it is of far inferior quality to that substance. The roots and other parts arc reputed to be emetic and purgative. The eclectic remedy known as baptisin is obtained from this plant.

Boudichia virgilioides.-The bark of this plant, with that of one or more species of Byrsonima (Malpighiacex), is said to form the American Alcornoco or Alcornoque Bark of commerce. (See Byrsonima.) It is used by the tanners.-B. major, Mart.-The root bark of this plant, which is a native of Brazil, is in great repute in rheumatism, syphilis, \&c., but more especially in psoriasis and other skin discases. A kind of gum resembling Senegil gnm in appearance also cxudes from the stem, and is useful in diarrhœa.

Butcu.-B. frondosa, a native of India, yields an astringent substance called Butea gum or Bengal Kino, which resembles the official Kino in its properties. (See Pterocarpus.) It is official in the Pharmacopocia of India; it is used in diarrhœen and similar diseases, and also for tanning, \&c.- B. superba and B. parvifiora also yield a similar astringent substance. The dried flowers of B. fromdosa, and those of B. superba, are known nnder the names of Tisso and Kessaree Howers. They are extensively nsed in India in the production of beantiful yellow and orange dyes, and lave been imperted into this country. The fibres of the inner barl of B. frondosa are known under the name of Pulas cordage. The seeds of the same plant are also highly esteemed as a vermifuge in India; and from these seeds the oil known in India as moodooga oil, which is also regarded as an anthelmintic, is obtained. The substance known as stick-lac is also derived from this tree. It is produced on the young twigs by the punctnre of a species of Coccus. Stick-lac is used in the preparation of sealing-wax, and in dycing, \&c.

Castanospermun australe.-The sceds when roasted are said to resemble in flavour the chestnnt, but they are very inferior to it. The plant is a native of Moreton Bay, in Qucensland, hence the seeds are called Moreton Bay Chestuuts.

Cicer arietinum, Chick Pea; Bengal Gram.-The seeds are very largely. used in India as food for cattle, Sec. An acid liquid exudes from thic hairs of the stem, and other parts; it is employed as a refrigerant by the natives of India.

Chitoria ternatea.-The seeds of this Indian climber lave been nsed with success as a purgative.

Colutea arborescens, Bladder-senua.-The leaflets have been employed on the Continent to adulterate Alexandrian Senna. They are at once distinguished from Senna leaflets by their regularity at the linse.

Coronillu Emerns has cathartic leaves. 'They have been nsed tn adulterate Senna on the Coutinent. 'They form the Sène Sauvage, or Wild Senna, of France.

Crotoluria juucea is an Indiau plant which furnishes a coarse fibre ealled Sumn, Sun, Shumm, Tuag, Bengal Hemp, S.e. In Bombay and Mhiras this fibre is used as well is inte for making gromy bags. (See Corchorus eapsularis.) Sunn is sometimes eonfonnded with Sunuee, a fibre obtained from Hibiscus cunnabiuns. (See Mihiscus commabinus.) - Crotalarin temifolia. another Indian plant, now sometimes regarded as only a variety of C^{\prime} ' juncen, is the source from whence Jublimpore Memp is derived.

Cyclopia.-The leaves of some species of this genus are used as substitutes for Chima 'Tea at the Cape of Good llope under the names of IFonig-thee. Cape Ten, and Bush Tea. A centling to Henry C. (reenish and othors, these spectics are probably C. Lomgifolin. C. galeoides, C.genistoides, and C. braclyypoda.

Cytisus scoparius (Sarothumms sroparins) is the Common Broon. The seeds and tops in small doses are dimetic and laxative, and in large doses
purgative and emetie; the fresh and dried tops are official in the British Pharmacopœia.-Cytisus junceus, the Spanish Broom, has similar properties. The fibre has also been used from an early period in many parts of Southern Europe for the manutacture of a coarse kind of cloth for home use; it has been lately much employed in ltaly, and a patent has been taken out for preparing the fibre.

Dalbergia.-Several species of this genus are good timber trees. The most valuable of them all is D. Sissoo. In India its wood is called Sissoo and Sissum. East Indian Rosewood, or Black Wood, is obtained from D. lutifolia. Aceording to Dr. Allemão, of Brazil, the best Rosewood of commerce is dcrived from D. nigra, a native of Brazil ; and other qualities from species of Hachærium. (See Triptolomæa.)

Dipteryx.-The seeds of D. odorata, a native of Gininna, have a very powerful and agreeable odour, which is due to the presence of coumarin. They are used for scenting suuff and in perfumery, and are commonly known under the name of Tonquin or Tonka Bcans. Coumarin is also present in other plants of this sub-order, as in the seeds and flowers of Melilotus officinal's and M. carulea. Fragrant seeds are also obtained from U. eboënsis. They are the Eboe nuts of the Mosquito Coast; they yield a fatty oil.

Flemingia.-The glands of the young legumes of F. thodocurpa, Baker, a native of Arabia and East Tropical Africa, form the dye known at Aden nader the names of Warus or Wurrus. This, which is in the form of a powder, has long been known and used as a dye for silk, for which purpose it is commonly mixed with alum, carbonate of soda, \&c., when it produces a deep, durable, beautiful orange or flame colour. In its medicinal activity it is said to resemble Kamala (see Alallotus), with which it was formerly confounded.

Genista tinctoria, the Dyer's Broom, yiclds a good yellow dyc, or when mixed with Woad (Isatis tinctoria), Ω green. (See Isatis.)

Genffroya vermifuga, G. spinalosa, and other species, possess barks which have similar properties to those from the species of Andira. (See Andira.)

Glycyrrhiza.-The fresh and dried roots and underground stems of G.glabra, the common Liquorice plant, arc official in the British Pharmacoperia; these, as well as those of other species or varietics, particularly G.glabra var. plandulifcra and G. echinata, possess a remarkably sweet taste, which is especially due to the presence of a peculiar glucoside to which the name of glycyrrhizin or glycion has been given. Extract of liquorice root is imported in very large quantities into this country under the name of liquorice juice, or Spanish, or Italian juice, from the countries whence it is obtained. The Spanish juice is prepared from G. glalra; the Italian from G. echinatra. The root and extract of liquorice are employed in medicine as flavouring sulstances, and for their demulcent and cmollicnt properties. Various preparations of liquorice arc commonly kept in the shops, and sold under the names of Pipe liquorice, Pontefract lozenges, Spanish juice, Soluzzi juice, \&c.

Indigufera tinctoria, I_{0} cerulea, and some other spccies, when subjeeted to a peculiar process, vield commercial indigo, one of the most important of dycing materials. Sulphate of Indigo has been introduced into the Appendix of the British Pharmacopmia as a test agent. Indigo is very poisonous, although in proper doses it has been employed in cpilepsy and amenorrhea, but its value in such diseases rests on no very trustwortliy evidence.

Leus esculenta.-The seeds are commonly known under the name of J.entils, which liave focen estecmed from the carliest periods on account of their value as an artiele of food.

Machacrinm.-M. firmum, M. legalc, and probally other species, are said to lie the source of the inferior kinds of Kosewood. (Sce Dallergia and Triptolome...)

Melilotus officinalis.-The flowers and seeds of this and other species possess a peculiar fragrance, which is due to the presence of counarin. They are used to give flavour to the 'Schabzieger,' a hard cheese used for grating.

Mucuna.-The hairs covering the legumes of M. pruriens, a native of the East and West Indies, are sometimes used as a mechanical anthelmintic, under the name of Cowhage or Cow-itch. An infusion of the root of M. pruriens lias also beeu employed in India as a remedy for cholera. The young legumes are also cooked and eaten.-M. urens and M. altissina furnish a black dye.

Myroxylon or Myrospermum.-Two balsams which are obtained from plants of this genus are official in the British Pharmacopœia, namely, Balsam of Toln and Balsam of Peru. Balsam of Tolu is obtained from the stem of Myroxylou Toluifera (Toluifera Balsamum), by incision. It pussesses mild stimulant and expectorant properties, and is used in chronic bronchial affections. It is also employed in perfumery, and as an ingredient in fumigating pastilles. Balsam of Peru is oltained from M. Pereirx (Toluifera Balsamum, var.), a native of the Balsam Coast of the State of San salvador, in Central America. It is a viscid liquid balsam, which exudes from the tree after the bark has been first beaten and charred by the application of lighted torches or bundles of burniug wood, and subsequently removed. Balsam of Peru has similar properties to Balsam of 'Toln, but it is far less frequently employed. Balsam of Pern is sometimes known in eommerce under the names of Sonsonate or St. Salvador Black Balsam. Two other medicinal products are also derived from M. Pereirx, namely, White Balsam, which is obtained by pressing without heat the interior of the fruit and seeds ; and Balsamito, or Essence or Tincture of Virgin Balsam, which is made by digesting the fruit (deprived of its winged appendages) in rum. A peculiar crystalline substance has been obtained by Stenhouse from White Balsam, to which he has given the name of Myroxocarpin.-MI. peruiferum, a native of Ecuador, Peru, and Brazil, and which was long erroncously regarded as the botanical source of Balsam of Peru, yields a fragrant balsam not unlike Balsam of Toln, called at Rio 'Olea vermelho.'

Orobus tuberosus. - The roots are occasionally eaten in the Highlands of Scotland, and in Holland.

Physostigma vencnosum, Calabar Bean.-The seeds of this plant have been known for some years under the name of the Ordeal Beans of Old Calabar, from their use in that conntry for trial by ordeal. They are very poisonons, acting as a powerful sedative of the spinal nerrous system. Calabar Beans and their active alkaloid, Physostigmine or Escrine, are ofticial in the British Pharmacopeia, and in the form of an extract, or some other suitable preparation, have been extensively employed as a local application to the eye to cause contraction of the pupil. The secds, \&c., have also been administered internally in tetanus, chorea, and some other nervous affections; and also in the treatment of strychnia poisoning. 'The seeds, described by Holmes as the produce of another specics named P. cylindrosum, do not probably differ in any very important charaters from those of P^{3}. venenosum, and the two plats do not appear to be specitically distinct; but they require further examination.

Pongamia glabra.-The seeds yield an oil by expression which is a favourite application in ludia in rhemmatism and in several skin aflections.

Psoralea glandulosu.-The leaves are used in Chili as a substitnte for Pararuay tea.

P'terocarpus.-P. Marsupiam is the somrce of the kind of Kino which is official in the British Pharmacopoia. This is known under the names of East Indian, Amborua, or Mahabar Kino, or commonly as Gun kino. It is a valuable and powerful astringent.- P. crinaceus, a native of IVest Africa, vields a similar astringent substance called African Kino. Tast Iudian kino is that commonly met with in this conntry. Some other species
appear to vield similar produets.-Red Sandal or Red Sanders Wood, which is official in the British Pharmacopeia, is obtained from P. santalinus. It is used in medicine as a eolouring agent, and also by the dyer for the production of red and scarlet dyes. It contains a peculiar eolouring matter called Santalin or Santalic acid. - P. dalberginides is said to yield the Andaman Red Wood. It is a valuable timber tree, and is also useful as a dyeing material. The bark of P. flavus is used in China for dyeing yellow.- P. Dracn is one of the plants from which the Dragon's Blood of commerce is obtained. This is sometimes, but improperly, called Gum Dragon. The true Gum Dragon of the shops is yielded by specics of Astragalus. (See Astragalus.) - P. angolensis is said to supply the wood exported from Gaboon which is the 'Santal rouge d'Afrique' of the French, or Barwood of English commerce. (See Buphia.)

Robinia Pseud-acacia is the North American Loeust-tree. It is frequently cultivated in Britain on account of its flowers and its hard and durable wood.

Soju hispida.-The seeds are largely used in China, Japan. India, \&e., in the preparation of the sance called by the Japanese Sooja, and by us known as Soy. The seeds are also consumed in inmense quantities by the Japanese as a vegetable.

Sophora japonica.-The dried flower-buds are extensively used in China for dyeing yellow. They are known nnder the name of Wai-fu.

Tephrosia apollinea and T. toxicaria are used in Africa for the preparation of a blue dye resembling indigo. Several species of Tephrosia, particularly T. toxicaria, are employed as fish poisons. They stupefy the fish, which are then readily taken by the hand. It has been thought by some that T. toxicuria would act on the human system like Digitalis, and hence might be used as a substitute for it in those parts of the world where that plant is not a nativc. The leaflets of T. apollinea have been employed in Egypt to adulterate Alexandrian Senna. They may be readily distinguished from Senna leaflets by their silky or silvery appearance, and by being equal-sided at the base.

Trignella Fœuum-gracum.-The powdered seeds of this plant are used in veterinary medicine under the name of Fenugreek. They are also employed as an ingredient of curry powder ; nud for flavouring, \&e. the socalled concentrated cattle foods. In India they are largely used by the natives both as food and medicine; whilst the fresli plant is consumed as a vegetable.

Triptolomæa.-The true Rosewood of cabinct-makers, whieh is importcd from Brazil, has been generally regarded as the produce of one or more species of this genus, but this is now said to be derived from a species of Dalbergia, \&̌c. (See Dulbergia.)

Viandzea.-The sceds of this plant resemble those of the Arachis hypogrea in being edible. They are boiled and eaten as peas. Their native name in Surinam is Gobbc.

Sub-order 2. Cesabpiniede.-The plants of this sub-order are principally remarkable for their purgative properties. Many important dyewoods and several tanning substances arc also obtained from plants belonging to it. I'lee fruits of some again are edible, and none possess any evident poisonons properties.

Baphia nitida, a native of Sicrra Leone and other parts of Africa, is said by some to furnish the dye-wood known under the name of Barwood or Camwoot. This wocd produces a brilliant red colour. (Sce Pterocurpus angolensis.).

Buuhinia.-B. Vahlii, B. racemosa, and B. parviffora furnish fibres which are used iu makines ropes.-B. relusa produces a kind of sum.- B. varieg itu has an astringent bark, which is used in medicine, and for taming and dyeiner leather. The buds and dried flowers of B. tomentos: are also astrin-
gent, and are employed in dysentery, \&c. Other species of Bauhinia are used in Brazil for their mucilaginous properties.

Casalpinia.-The twisted ingumes of C. coriaria are powerfilly astringent; they are extensively used in tanning under the name of Divi-divi or Libi-dibi. The legumes of C. Papai are employed for a similar purpose, but they are very inferior to them; they are called $P i-p i$. The powdered legumes of Coriaria have been used with some success in India as an astringent and antiperiodic.-C. Sappan furnishes the Sappan, Bookum, or Bukkum-wood of India. It is used for dyeing red. The roots of the same tree, under the names of Yellow-wood and Sappan-root, are sometimes imported from Singapore, and employed for dyeing yellow. Sappan wood is also a useful astringent, somewliat resembling Logwood in its effects.-C. echinata furnishes Nicaragua, Lima, or Peach-wood, which is very extensively used in dyeing red and peach-colours.-C. cirsta is the plant from which Brazil-wood is obtained. It is employed for dreing rellow, rosecolour, and red.-C. brasiliensis furnishes another dyewood, called Brazilettowood, which produces fine red and orange colours. The exact species furnishing the above three dyewoods cannot, however, be said to have been altogether ascertained.

Cassia.-The species of this genus are frequently characterised by purgative properties. The leaflets of several species furnish the different rarieties of Senna. The kind, known commonly as Alexandrian Senna, is obtained from C. acutifolia of Delile. This variety is that which is generally most esteemed in this country ; but it was formerly much adulterated with the leaves, fruts, \&c., of other plants. The Comuon East Indian, Aralian, Mocha, or Bumbay Seuna is derived from C. angustifolia, Vahl. Timivelly Senna is furnished by the same plant cultivated in Southern India. The above three varieties are those generally used in England; but the Alexandrian and Tinnivelly kinds are alone official in the British Pharmacopœia. The Italian and Jamaica kinds of Senna are both derived from C. norata. American Sema, which was formerly official in the United States Pharma copeia, is obtained from C'. marilandica.-Cassia Fistula.-'The fruit, which is divided into a number of cells by spurious dissepiments, contains a blackishbrown viscid pulp with a sweetish taste, which possesses laxative and purgative properties. This pulp is official in the British Pharmacopoia. The root is also said to be purgative.-C. brasiliana (C. graudes) has a larger, longer, and rougher fruit, whieh also possesses purgative properties. It is commonly used in veterinary medicine, and is known as Horse Cassia. The fruit of C. moschata is the Snall American Cassia of the French pharmaciens. It is oecasionally imported. The pulp has similar properties to the two former, but is more astringent. The bark of C. auriculata is said by Roxburgh to be employed for tanning and dyeing leather. It has also been used instead of onk bark in the preparation of astringent gargles, \&c. The seeds are also regarded as a valnable local application in certain forms of ophthalmia. The flowers are also used for dyecing yellow. The powdered seeds of C. absus, muder the name of Chichm, are used in Errypt as a remedy in oplthalmia. They are also employed for a similar purpose in Indin. The leaves of C. alata are held in great esteem in the liast Indies und elsewhere as a loeal application in skin diseases; and the leaves of C. Sophora, C. occidentalis, and C. Tova are said to possess similar properties.

Ceratonia Siliqua.-The ripe frnit is known under the names of Carol, Locust, and St. John's Bread. Its pulp las a verr sweet taste, and is supposed to have been the food of St. John in the wilderness. 'The Carob Bean coutains about 63 per cent. of sugar when in a dried state, and upwards of 20 per cent. of other respiratory and fat-producing prineiples, and abont 1 per cent. of oil. Hence it is especially adapted for fattening purposes, and is now largely imported into this country as a food for cattle. It is snid
that the small seeds of this plant formed the original carat weight of jewellers.

Codarinm (Dialimm) acutifolium and C. ultusifolium yield fruits wnich are known under the names of Brown and Velvet Tamarinds. They are both natives of Sierra Leone. The pulp of loth species is eaten, and has an agreeable taste.

Copaifera.-Several species of this genus, as C. Langsdorfi, C. officinalis, C. guiamensis, C. coriacea, \&c., yield the oleo-resin commonly known under the name of Balsan of Copaiba; but it is improperly so called, as it contains ueither benzoic nor cinnamic acids, the presence of at least one of which substances is necessary to constitute a true balsam. Copaiba is obtained by boring or cutting deeply into the trunks of these trees. Copaiba is said in the British Pharmacopoia to be derived from C. Langsdorfii and other species of Copaifera.-C. pubiftora, and probably C. bracteata also, furuish the Purple Heart or Purple Wood of Guiana, which is largely employed for making nusket-ramrods, \&c.-C. Guibouriana or Gubourtia copalifera, is the principal, if not the sole, source of the copal resin of Sierra Leone. Dr. Welwitsch has, however, expressed his belief that all West African copal, and probably all gum resin exported under this name from Tropical Africa, may be looked upon as a fossil resin, produced in times past hy trees which at present are either entirely extinct, or exist only in a dwarfed posterity. (See Hymenæu and Trachylobium.)

Diatium indicum vields a fruit called the Tamarind Plum, the pulp of which has an agreeable, slightly acidulous taste, somewhat resembling that of the common Tamarind. (See Codarizm.)

Guilandina Bonducella, the Nicker Tree.-The seeds are very bitter, and possess tonic and antiperiodic properties. They are official in the Pharmacopoia of India, and have been employed with success in intermittent fevers, \&c. The seeds are also used for necklaces, rosaries, \&e. Tbe bark of the root likewise possesses litter and tonic properties.

Hæmatoxylon campechianum.-The heart-wood is employed in dyeing, and as an astringent and tonic in medicine. It is commonly known under the name of Logwood; and is offieinl in the British Pharmacopcia. It contains a crystalline colouring principle called hromatoxylin, to which its pre perties are essentially due.

Mymenaa.-H. Courbaril, the West Indian Locust-tree, is supposed to furnsh Gum Animé or East Indian Copal, but upon no reliable authority. Some of the East Indian Copal is, lowever, probally obtained from H: verrurnsa. Mexican Copal is also supposed to be derived from a species of Hymenra. (See Copaifert and Trachylobium.) The inner hark of H. Courbaril is reputed to possess antheluintic properties. The seeds of the same plant are imbedded in a mealy substance, which is sweet and pleasant to the taste; and from the liquor olstained by boiling them and the pulp in water, and subsequently allowed to undergo fermentation, au intoxicating beverage is procured. This tree grows to a large size, and its timber, under the name of Locust-wood, is used by ship-carpenters.

Mora excelsa.-This plant, which is a large tree, a native of Guiana, furnishes the Moru Wood enployed largely for ship-building. The bark is astringent, and useful for tanning.

Parkinsoniu aculeatu.-Useful fibres are obtained from the stems of this. plant.

Poinciuna pulcherrima.-The ronts are said to be tonic, and the leaves to have purgative properties.

Sucartzia tomentosa, the Bully-tree, a native of Guiana, yields a hard and rlurable wood. called Beefwood.

Tamariudus indicu.-The fruit is the well-knownTamarind. It contains an agreeablf, acidulous, sweet, reddish-1 rown pulp, which, when preserved in sugar, or in its pure state, is employed medicinally in the preparation
of cooling laxative drinks, and in other ways. 'I'he preserved pnlp is official in the British Pharmacopœia.

Trachylobium.-Sir John Kirk has shown that T. massambicense is the botanical source of the kind of Zanzibar Copal known as 'Sandarusi-m'ti,' Tree Copal. He also believes that the Copal known in the English market as 'Animé, the most valuable of all, and which 'is now dugg ' from the soil, is the produce of extinct forests, but probably derived originally from the same species of Trachylobium. Sir Joseph Hooker exhibited specimens of Fossil Copal at a meeting some years since of the Linnean Sociery, from T. Hornemanniamum. This and other kinds of Copal are nsed in the preparation of varnishes. Brazilian Copal is said by some to be derived from T. Murtianum and several species of Hymenre, but on no reliable authority. The origin of the kind of Copal known as Angola Copal is at present nodetermined. It has been referred to T. Martianum, but this tree has never been found in Africa. (See Hymenrea and Copaifera.)

Sub-order 3. Mimosef.-The plants of this sub-order are ehiefly remarkable for yielding gum and astringent substances. Some fer are reputed to be poisonous, as Acacia varians, the root of a Brazilian species of Mimosu, the leaves and branches of Prosopis utiliflora, the bark of Erythrophloum guineense, \&c.

Acacia.-Various species of this genus yield gnm, to which the common name of Gum Arabic is applied; but this is a misnomer, as very little gnm is collected in. and none is exported from, Arabia. It is official in the British Pharmacopœia under the name of Gum Acacia, and is said to be obtained from Acacia Senegal (A. Vereh), and other species of Acuciu. The more important varieties now known in the London market are as follows: Kordofan, Picked Turkey, or White Sennaar Gum, which is derived from A. Senegal (Verek) ; Scnegal Gum, also from A. Senegal; Suakin Gum, Talca, or Talha Gum, from A. stenocarpa and A. Seyal, Dclile, var. Fistula; Morocco, Mogadore, or Brown Barbary Gum, from A. arabica, Willd.; Cape Gum, principally from A. horidu (A. capensis) ; East India Gum, from A. arabicu, and other species; and Australian or Wattle Gum, from varions species, as A. pycnantha, A. decurrens, A. dealbatu, and A. homalophylla; but the botanieal sources of some of these commercial varieties cannot as yet be said to have been definitely determined. The extract prepared from the daramen or inner wood of Acacia Catechu furnishes a kind of Catechu or Cutch, which is commonly known as Black Catechu; it is a powerfully. astringent substance, containing much tannic acid, and iargely employed in the processes of taming and dreing, and also to some extent in medicine. (See Uncuria Gambier.) The dried lecrmes of A. nilotica are imported under the nomes of Neb-neb, Nib-nib, or Bablah, and are also nsed by tammers on account of their astringent properties. The bark of A. arabica possesses similar properties, and is used extensively in India under the name of Babul Burh as a substitute for oak bark. The barks of several other speeies which are natives of the Fast Indies possess similar astringent properties. The extract of the bark of A. metmoxylom, an Anstralian species, is also a valnable tanning substance, and is frequently imported on that aceount into this conntry. The bark is also sometimes imported nuder the name of Aeacia Bark.-A. formosu, n native of Cuba, furnishes a yery hard, tough, and durable wood, of a dull red colonr, called Subicu. This is the wood that was nsed in constructing the stairs of the Crystal Palace in 1lyde Park, at the Great Exhibition in 1851, and which nipon removal was found to be bit little worn. The flowers of A. Farmesiana are very fragrant, and when distilled with water or spirit field a delicions perfime. This plant also vields a valuable qum.-A. Seyal is sumposed to be the Shittalintree or Shitrim-wood of the Bible. Byo ohers, howerer, the phant yielding this wond has been thought to be A. cera, and by some A.harrida the tirst is probably correct.

Adenanthera pavonina, a native of India, \&c., produces a dyc-wood, called Red Sandal-wood. This must not be confounded with the official Red Sandal-wood already alluded to as bcing derived from Pterocorpus santalinus. The seeds, under the name of Barricarri seeds, are used in the northern parts of Sonth Amcrica for making necklaces, \&c. They are perfectly smooth, and have a bright red colour.

Erythrophloum guineense, the Sassy Tree of Western Africa.-The bark, under the uane of 'ordeal bark' or 'doom bark,' is used in certain parts of Africa as an ordeal, to which persons suspected of witcheraft, sectet murder, \&c., are subjected as a test of their innocence or guilt. It is also used for poisoning arrows. It is also known under the names of Sassy, Casca, Cussa, and Mancona Bark. It has been lately recommended as a remedial agent, but the experiments of Dr. Lauder Lrunton have been unatteuded with marked results. In its action it has been said to resemble that of digitalin and picrotoxin combined.

Prosopis.-The legumes of P. pallida and some other species are very astringent, and have been employed in tanning under the uanc of Algarobilla. The legumes of P. dulcis and other species or varieties found in South America, \&c., have a sweetish taste resembling the Carob Beans (Ceratonia Siliqua), and like them are used as food for cattle, under the name of Algorobo; and a drink called Chica is also prepared from them. The name of Chica was at first given to a fermented liquor of the Maize, but is now commonly applied in South America to several fermented drinks. The legumes of P. pubescens, under the name of Mosquit or Screw Bean, are largely used for feeding cattle in Arizona. A gim also cxudes from the stems resembling Gum Arabic; it is employed in Texas and Arizona medicinally, and for technical purposes.

Order 3. Rosacee, the Rose Order.-Character.-Trees, shrubs, or herbs. Leaves simple (fig. 308) or compound (fig. 378), alternate (fig. 289), usually stipulate (figs. 308 and 378).

Fig. 947.

Fig. 347. Dingram of the flower of a species of Rose, with five sepals, five petals, numerous stamens, and many distinct carpels.-Fig. 948. Vertical section of the flower.
Flowers regular, generally hermaphrodite (figs. 947-950), or rarely unisexual. Thalamus more or less convex (fig. 605), elongated (fig. 606, l), or concare (fig. 948). Calyx monosepalous (figs. $476, c t$, and 948), with a disk either lining the tube or
surrounding the orifice, 4 - or 5 -lobed, when 5 the odd lobe posterior (fig. 947), sometimes surrounded by a whorl of bracts forming an involucre or epicalyx (fig. 456). Petals 5, distinct, (fig. $476, p$, and 947), perigynous; or rarely none (fig. 952). Stamens definite (fig. 952) or numerous, perigynous (figs. 948 -950) ; anthers (fig. 951) 2-celled, dehiscing longitudinally.

Fig. 949.

Fig. 951. Fig. 950.

Fig. 053.

Fig. 950.

Fig. 949. Vertical section of the flower of the Peach (Prunus (Amugdalus) persica).-Fig. 950. Vertical scetion of the flower of the Quinee (Pyrus Cydonia).-Fig. 951. Two-celled anther with part of the flament of a specics of Rubus.-Fig. 952. Vertical section of the flower of a species of Alchemilla.-Fig. 953. Tertical section of the fruit (drupe) of the Cherry (Prunts Cerasus). epp. Epicarp. me. Mesncarp. en. Endocarp, within which is the seed with embryo-Fig. 954. Vertical scetion of an achenium of a species of Rose.-Fig. 955. Vertical scetion of the ovary, o, of a species of Rubus, with the ornle, ov.
Carpels 1 (fiy. 952), 2, 5, or numerous (figs. 947 and 948), with 1 -celled ovarios (figs. 952 and 955), usually apocarpous and superior (figs. 947 and 948), or sometimes more or less combined together, and even with the tube of the calyx, and thus becoming inferior (fig. 950) ; styles basilar (figs. 639 and 952), lateral (fig.
638), or terminal ($f i g .949$) ; ovztes 1 (fig. 955) or few ($f 9.950$). Fruit various: either a drupe (figs. 693-695), an achænium, a follicle, a dry or succulent etrerio (figs. 661 and 703), a cynarrhodum, or a pome (figs. 473 and 722). D'eeds 1 (figs. 953 and 954) or few (fig. 473), exalbuminous ; embryo straight.

Diagnosis.-Trees, shrubs, or herbs, with alternate leaves. Flowers regular. Calyx 4-5-lobed ; when 5, the odd lobe posterior. Petals 5, perigynous, or rarely none. Stamens perigynous, distinct ; anthers 2 -celled. Carpels one or more, usually distinct or sometimes united; generally superior or occasionally more or less inferior. Seeds 1 or few, exalbuminous; embryo straight.

Division of the Order and Illustrative Genera.-The order Rosacere, as above defined, may be divided into five sub-orders, which are by some botanists considered as distinct orders. They are characterised as follows :-
Sub-order 1. Chrisobalanex.-Trees or shrubs, with simple leares and frce stipules. Carpel solitary, cohering morc or less on one side with the tube of the calyx; ovules 2 ; style basilar. Fruit a drupe. Seed erect ; radicle inferior. Illustrative Genus:-Chrysobalanus, Lim. There are no British plants in this sub-order.
Sub-order 2. Drupacem.-Trees or shrubs, with simple laves and free stipules. Calyx deciduous. Carpel solitary, not adherent to the calyx ; style terminal. Fruit a drupe. Seed suspended (fig. 95゙3). Illustrative Genus:-Prunus, Linn.
Sub-order 3. Rosex.-Shrubs or herbs, with simple or compound leaves and adherent stipules. Carpels 1 or more, superior, not united to the flower-tube, distinct or sometimes more or less coherent; styles lateral or nearly terminal. Fruit either an etrerio, cynarrhodum, or consisting of several follicles. Seed usually suspended (fig. 955), or rarely ascending ; radicle superior. Illustrative Genera:-Rosa, Linn.; Rubus, Linn.
Sub-order 4. Sanguisorbee or Poterief.-Herbs or underslirubs. Flowers often unisexual. Petals frequently absent. Carpels. 1-3; style terminal or basilar (fig. 952). Fruit an achænium enclosed in the flower-tube, which is often indurated. Secd solitary, suspended, erect, or ascending. Illustrative Genera:-Alchemilla, Linn.; Poterium, Linn.
Sub-order 5. Ponex. - Trees or shrubs, with simple or compound leaves and free stipules. Carpels 1 to 5 , adhering more or less to each other and to the sides of the flower-tube, and thus becoming inferior; styles terminal (fig. 950). Fruit a pome, $1-5$-celled or rarely spuriously 10 -celled (figs. 473 and 722). Sceds erect or ascending. Illustrutive Genera:-Pyrus, Limn.; Cratægus, Linn.
Distribution and Nembers.--The Chrysobalanex are principally natives of the tropical parts of America and Africa. The Drupacest are alnost exclusively found in the cold and tom-
perate regions of the northern hemisphere. The Rosere and Sanguisorbex are also chiefly natives of cold and temperate climates, although a few are found within the tropics. The Pomers occur only in the cold and temperate regions of the northern hemisphere. The order Rosacere comprises about 1,000 species, of which about one-half belong to the sub-order Roseæ.

Properties and Uses.-The plants of the order are principally remarkable for their astringency, and for their succulent edible fruits. The seeds, flowers, leaves, and young shoots of many of the Drupacex and Pomex, when moistened with water, yield hydrocyanic acid; hence the parts of such plants are sometines poisonous. All other Rosacere are entirely devoid of poisonous properties.

Sub-order 1. Chrisobalaye.e.-Many plants of this sub-order produce edible drupaceons fruits.

Chrysobalanus.- The fruit of C. Icaco is clible. It is known in the West Indies under the name of the Cocoa-plum. The fruit of C. luteus is also eaten in Sierra Leone. The root, bark, and leaves of C. Icacn are employed in Brazil as a remedy in diarrhoea and similar diseases.

Parinarinm.- P. excelsum yields an edible frnit which is known in Sierra Leone uuder the name of the Rough-skinned or Gray Plum. The kernels of P. campestre and P. montanum are likewise reputed to rescmble the Almond in flavour.

Sub-order 2. Drupaceie.-This sub-order is remarkable from the parts of many of its plants yielding, when moistened with water, lydrocyanic acid. Their barks also frequently possess astringent and febrifural propertics, and yield a kind of gum ; while many, again, have edible frnits and seeds.

Pranus.-P. domestica and its varietics produee the well-known fruits called Plums, Greengages, and Damsons. When dried, plums arc termed Prunes or French Plums; the variety Juliuna being official in the British Pharmacopoeia.- P. spinosa is the common Sloe or Blackthorn, and P. insititia the Bullace.- P. armeniaca is the Aprient. The harks of P. spinosa and P. Cocomitia have febrifugal propertics. The leaves of P. spinos ℓ are sometimes used for adulterating the black varieties of China tea. A mixture consisting of the leaves of P. spinnsa and those of Fragariu eollina or F. vesca, in the proportion of one third of the former to two-thirds of the latter, have been used as a substitute for China Tca.-Prunus Amygdalus (Amygdalus communis) is the Almond-trec, of which two varicties are commonly distinguished, from the varying nature of their seeds, nuder the mames of P. amygdalus, var. dulcis, and P^{\prime}. amygdalus, var. nmara, both of which are offieial in the British Pharmaeopocia. There are however no detinite botanical characters distinguishing the Sweet and Bitter Almond trees; they eamnot therefore, in spite of the different qualitics of their seeds. be properly separated even as varieties. The seeds of the former, on account of their taste, are known as Sweet Almonds: and those of the latter as Bitter Almouds. 'The Almondtree is a native of Morneco, Syria, Persia, and Turkestan; it is also extensively. enltivated in the southern parts of Europe for the sake of its seeds. Sureet Almonds yield by expression a dixed oil eommonly known as Oil of Ahumds. They also contain sugar, and two albuminous substances called amandin, anul synaptase or emulsin. 'The eake left after the expressiou of the nil, when dried and powdered. is kyown under the mane of Almond-powder. Bitter Almonos vield a similar vil by expression. They also contain emulsim, and, in addition to the other ordinary constituents of Sweet Almonds, a crystalline substanee ealled amygdelin. When bitter almonds are moistened with water,
the emulsin aets as a kind of ferment upon the amygdalin, and the result is the formation of a volatile oil eontaining hydroeyanie acid, which is known as the Essential Oil of Bitter Almonds. The presence of hydrocyanic aeid renders this oil rery poisonous, but this is not the ease wheu the acid is separated from it. Bitter Almonds and their essential oil are extensively employed for flavouring by the eook and eonfeetioner, and also for seenting soap and for other purposes by the perfumer. The eake left after expressing the oil is frequently used for fattening pigs and for other purposes.-Prunns (Amygdulus) persica is the Peach-tree of our gardens, and a variety of the same speeies produces the Neetarine. The flowers have been emploved as a vermifuge, and the leaves for flavouring, and also as a vermifuge. The kernels may be used for the same purposes as the Bitter Almond. All these parts, as well as the bark, possess poisonous properties owing to the formation of hydroevanie acid.

The following plants are considered by some botanists to eonstitute a distinet genus, whieh is termed Cerasus, but the speeies eomprised in it are now far more eommonly ineluded under Prumus. Several species or varieties produce the fruits ealled Cherries: thus, P. virginiana of Miller is the Wild Black Cherry of the United States; P. avium, the Wild Cherry; P. Padus, the Bird Cherry ; and P. Virginiana of Linnæus, the Choke Cherry or Chokeberry. The latter is one of the fruits used commonly for mixing with Pemmican. (See Amelanchier.) The leaves, bark, and fruit of the Prunus Lauro-cerasus, the Common Laurel or Cherry-laurel, are poisonous. Their poisonous properties are due to the produetion of a volatile oil eontaining hydrocyanie acid when they are moistened with water. Cherry-laurel water is anodyne and sedative in its aetion, and may be employed in all eases where the use of hydroeyanie aeid is indieated. "It is, however. very liable to vary in strength. It is offieial in the British Pharmaeopœia, and is prepared by the distillation of the fresh leaves with water. The bark of P. virginiana of Miller (Prunus serotina, Elirh.) is offieial in the United States Pharmaeopoia, and is mueh valued as a remedial agent. It. is regarded as tonie, ealmative of nervous irritability, and as an arterial sedative. The kernels of P. occidentalis and other species are used for flavouring liqueurs, as Noyau, Cherry-brandy, Marasehino, \&e. A gummy exudation somewhat resembling tragaeanth takes place more or less from the stems of the different species of Prumus.

Sub-order 3. Roses.-The Rosex are chiefly remarkable for their astringent properties. Many yield edible fruits, and some very agreeable perfumes.

Agrimonia Eupatoria has been used as a vermifuge and astringent.
Fragaria elatior, F. vescr, and other speeies or varieties of Fragariu, furnish the different kinds of Strawberries.

Geum urbanum and G. rivale are reputed to possess aromatie, tonic, and astringent properties.

Gillenia trifoliata and G. stipulacea.-The roots of both these species are used in the United States as medieinal agents. In small doses they are tonie, and in larger doses emetic. They are commonly known under the names of Indian Physie and Ameriean Ipeeacuanha.

Hagenia abyssinica (Brayera anthelmintica) is a native of Abyssinia. The flowers and tops, under the name of Cusso or Kousso, have becn lone employed by the Abyssinians for their anthelauntic propertics. They have been also used of late years in this and other eountries for a similar purpose, and are said to lse effectual in destroying tape-worms. Cusso is official in the British Pharmacopecia.

Potentillu Tormentilla.-The rhizome and rootlets possess astringent and tonie properties. They are used in the Orkney and Feroe Islands to tan leather; and in Lapland in the preparation of a red dye. Some other speeics possess analogous properties.

Quillaia saponaria.-The bark of this and other speeies contains a large amount of saponine. It is employed in some parts of America as a substitute for soap. It has been much used iu this country as a detergent in eases of scurtiness and baldness.

Rosa.--The various species and varieties of this genus are well known for the beanty of their flowers and for their delicious odours. The fruits (which are commonly known noder the name of hips) of R. canina, the Dog-rose, and of other allied species or varieties, are employed in medicine for their refrigerant and astringent properties; they are official in the British Pharmacopoia. The fresh and dried petals of the unexpanded flowers of R. gallica constitute the official Red-rose petals of the British Pharmacopœia. They are used in medicine as a mild astringent and tonic, and on account of their colour. The petals of R. centifolia, the Hundred-leaved or Cabbage-rose, and of soune of its varieties "and allied species, are remarkable for their fragrance. Rose-water is prepared by distilling the fresh petals with water to which a little spirit of wine has been added. The petals of R. centifolia are also employed in medicine as a mild laxative; the fresh, fully-expanded petals are official in the British Pharuacopocia. The volatile oil known in commerce as Attar or Otto of Rose is now almost exclusively obtained from Roumelia on the sonthern slopes of the Balkan mountains. It is also largely produced in India, and to some extent in other parts, but the otto of these districts is almost, if not entirely, consmmed in the conntries whence it is obtained. The species cultivated for this purpose in Roumelia and India is Rosa damascena. All commereial Otto of Rose is obtained by distillation, and, according to Heber, it requires 20.000 roses to yield Otto of Rose equal in weight to that of a rupee. In Turker, 5,000 pounds (German weight) of roses are sad to yield by eareful distillation one pound of oil. It is exported from Smyrua and Constantinople. Otto of Rose is rarely or ever pure when iuported into this conutry. It is commonly adulterated with spermaceti, and a volatile oil which is derived from Andropngon pachnodes, Trin. (A. scheenanthus, Linn.). This oil is known under the names of Oil of Geranium, Rusa Oil, or Rusa-ka-tel, and is imported into Turkey from lidia for the express purpose of adulterating Otto of Rose. (See Pelargonium.)

Rubus.-Several species of this genus yield edible fruits: thins, the fruit of Rubus Idaus is the Raspberry; that of R.fruticosus, the Blaekberry; that of R. cæsius, the Dewberry; and that of R. Chamamorus, the Cloidberry. The bark of the root of R. villosus and R. canadensis is much employed as an astringent in some parts of North Ameriea, and is oficial in the United States Pharmacopoia.

Spiraa.-S. filipendula and S. Ulmaria.-The roots of these plants have tonie properties. S. Ulmaria is called Meadow-sweet from the fragrance of its flowers, which is due to the preseuce of commarin. Semman says that in Kamtselatka a strong liquor is prepared from the root of S. Kamtschatha.

Sub-order 4. Sanguisorbere. - The plants of this sub-order have generally astringent properties like the Rosea.

Acann Sanguisorba.-The leaves are used in Australia as a sulustitute for tea. Alchemilla arvensis, lield Ladies' Mantle or Parsley Piert, is astringent and tonic. It is also reputed to be diuretic, and was formerly thought to be useful in gravel and stone; hence it was called brcah-stouc.

Sub-order 5. Pomast.-Mauy plants of this sub-order rield edithe fruits, and from their seeds hydrocyauic acid may be frequeutlo obtaned.

Anelanchier canndensis.- The truit is kuown in linperts Land, \&e., under the name of Shad-bery or Service-berry. It is nsed for mixing with Penmienu, an article of Aretic diet. (See Pranus.)

Eriobotrya japonica produces a fruit called the Loquat. Some of these
fruits in grood condition have occasionally been imported into this country from Japan and South America.

Mespilus germanicu vields the frnit called the Mcdlar, of which there are several varieties.

Pyrus.-Some species of this genus produce edible fruits.-Pyrus Malus and its varieties produce the different kinds of Apples.- P. communis is the Pear-tree, so well known for its fruit. The wood is also sometimes used by wood-engravers instead of Box.-P. (ydonia (Cydonia vulgaris) is the common Quince.-The fruit is frequently mixed with apples in making pies ortarts, and is much esteemed for the preparation of a kind of marmalade and for other purposes by the confectioner. The seeds contain mnch mucilage, which is nutritive, emollient, and demulcent.-P. Aucuparia is the Mountain Ash or Rowan-tree. Its flowers, root, and bark yield hydrocyanic acid, and therefore possess, in a slight degree, sedative properties. \dot{P}. Aria is the Beam-tree, the timber of which is used for axle-trees and other purposcs.- P. domestica is the common Service-trec, and P.torminalis the Wild Service-tree.

Order 4. Saxifragacee, the Saxifrage Order.-Character. - Herbs with alternate leaves, which are entire or lobed (fig .

Fig. 956.

Fig. 957.

Fig. 9 है8.

Fig. 956. Sarijraga triductylites. The leaves are trifld and wedge-shapen, and the flowers arrangerl in a racemose cyme.-Fig. 957. Vertical section of the flower.-Fig. 958. Vertical section of the seed.
950), stipulate or exstipulate. Calys of 4 or 5 sepals, which are more or less united at the base (fig. 625), inferior or more or less superior (figs. 625 and 957). Petuls 4 or 5, perigynous, imbricate, alternate with the lobes of the calyx (fiy. 957), sometimes wanting. Stamers 5-10, perigynous (fiq. 957) or hypogynous; anthers 2 -celled, with longitudinal dehiscence. Disk
usually evident, either existing in the form of 5 scaly processes, or annular and notched, hypogynous or perigynous. Ocary superior or more or less inferior (fys. 625 and 957), usually composed of two carpels, united below, but more or less distinct towards the apex; 1 - or 2 -celled; styles equal in number to the carpels, distinct, diverging. Fruit capsular, 1-2-cellcd, usually membranous. Sceds small, numerous ; embryo (fig. 958) in the axis of fleshy albumen, and with the radicle towards the hilum.

Diagnosis.-Herbs with alternate leaves. Flowers unsynmetrical. Calyx inferior or generally more or less superior, 4-5-partite. Stamens perigynous or hypogynous. Ovary superior or more or less inferior, composed of 2 carpels united at the base, and diverging at the apex; styles distinct, equal in number to the carpels. Fruit capsular, 1-2-celled. Seeds numerous, small, with fleshy albumen.

Bentham and Hooker inchude the succeeding orders, Francoaceæ, Escalloniaceæ, Philadclphaceæ, Hydrangcaceæ, Hensluciaccx, Cmoniucex, and Ribesiacex, in the order Suxifragaeex, and arrange the whole in the following sub-orders:-1. Saxifragex. 2. Francoex. 3. Escalloniex. 4. Philadelphex or Hydrangca. 5. Cunoniex. 6. Ribesiox.

Distribution and Numbers.-They are exclusively natives of the northern parts of the world, where they chiefly inhabit mountainous districts, and sometimes grow as high as 16,000 feet above the level of the sea. Illustrative Genera:- Saxifraga, Linn.; Heuchera, Linn. There are about 320 species.

Propertics and Uses.-The plants of the order are all more or less astringent. This is remarkably the case with the root of Heuchera americana, which is much employed for its astringent properties in the United States under the name of Alum-root.

Saxifraga.-S. silbirica is said to contain a erystalline bitter prineiple, which has been termed bergenin, and is reputed to be a powerful tonic, ranking in its action between salicin and quinine.

Order 5. Francoacee, the Francoa Order.-Character.Stemless herbs. Leares exstipulatc. Catyn 4-partitc. Pctals 4, persistent. Stamens hypogynous or nearly so, four times as many as the petals, the alternate ones sterile, and commonly termed scales. Ovary supcrior, 4 -celled; oveles numcrous; stigma scssile, 4 -lobed. Fruit a membranous 4 -celled, 4 -valved capsule, with loculicidal or septicidal dehiscencc. Secds small, indefinite; embryo very minute, at the base of a Jarge quantity of Heshy albumen.

Distribution and Numbers.- Natives of Chili. Illustrative Genera:-Francoa, Caran.; Tetilla, DC. These are the only genera; they includo about 6 species.

Properties and Uses. -The Francoas are reputed to be cooling and sedative. Tetilla is astringent, and is employed as a remody in dysentery.

Order6. Escallonacef, the Escallonia Order.- Character. - Evergreen shrubs, with alternate exstipulate glandular leaves and axillary showy flowers. Culyw superior, 5 -toothed, imbricate in aestivation. Petcls 5, alternate with the divisions of the calyx, perigynous, or rarely hypogynous. Stamens 5, alternate with the petals, perigynous, or rarely hypogynous. Ovary inferior, 2--5-celled, crowned by a cone-shaped disk ; placentas axile ; style simple ; stigmas 2-5-lobed. Fruit capsular or baccate, crowned by the persistent style and calyx. Seeds very numerous, minute ; embryo small, in a mass of oily albumen.

Distribution and Numbers.-They are chiefly natives of the mountains of South America. Illustrative Generct:--Escallonia, Wutis; Itea, Limn.; Brexia, Thouturs. There are above 66 species.

Properties and Uses.-Unknown.
Brexia.-This genus has been made the type of a distinct order, named Brexiaceæ ; but Bentham and Hooker place it near the genus Escallonia.

Order 7. Philadelphacef, the Syringa Order.-Charac-ter.-Shrubs. Leaves opposite, simple, deciduous, exstipulate. Calyse superior, persistent, 4-10-lobed, with a valvate æestivation. Petals equal in number to the divisions of the calyx, and alternate with them. Stamens numerous, epigynous. Ocary inferior ; styles united or distinct; stiymas several. Capsule half-inferior, 4-10-celled, placentas axile. Seeds numerous, with fleshy albumen.

Distribution and Numbers. - Natives of the South of Europe, North America, Japan, and India. Illustrative Genera:-Philadelplus, Linn. ; Deutzia, Thenb. There are about 25 species.

Properties and Uses.-Of little importance.
Deutzia.-The leaves of some species of Deutzic, espeeially thnse of D. scabra, are envered with beautiful seales; hence, from their roughness, they are used in Japan for polishing purposes. D. gracilis, a greenhouse plant, is extensively grown for our flower markets.

Philadelphus coronarius is commonly cultivated in our shrubberies. It is a native of the South of Europe. It is genernlly known as the Syringa, or Mock Orange, from its flowers somewhat resembling those of the Urange in appearnee and odour. This odour is due to the presence of a volatile oil, which may be readily obtained from them by distillation with water. The leaves have a flavour and odour resembling the Cueumber.

Order 8. Hydrangeaceie, the Hydrangea Order.-Diagnosis.
-This ordcr is frecuently regarded as a sub-order of Saxifragacce, with which it agrecs in many important particulars; but it differs in its plants being of a shrubby nature; in their having opposite leaves, which are always exstipulate; in their valvatc calyx ; in their tendency to a polygamous structurc, as exhibited in the possession of radiant staminal flowers; and in having frequently more than 2 carpels, with a corresponding increase in the number of styles and cells to the ovary.

Distribution and Numbers.-Natives chiefly of the temperate regions of Asia and America. About one-half of the species are natives of China and Japan. Illustrative Generr:Hydrangea, DC.; Bauera, Sm. There are about 45 species.

Properties and Uses.-Unimportant:
Hydranyed.-The leaves of Hydrangea Thunbergii are used in Japan as tea, and this tea is so highly valued by the Japanese that they call it Ama-tsjo, or the Tea of Heaven. The root of II. arborescens, under the name of Leven Bark or Wild Mydrangea, is largely employed in the United States in ealculous complaints.

Order 9. Hensloviacee, the Henslovia Order.-Diagnosis. This is a small order of tropical plants containing but 1 genus, and 3 or 4 species, which is considered by Lindley to be nearly allied to Hydrangeaceæ; but distinguished by their tree-like habit, their styles being united into a cylinder, and in the total absence of albumen. Illustrative Genus :-Henslovia, Wall.

Properties and Uses.-Unknown.
Order 10. Cunoniacef, the Cunonia Order.-Diagnosis.Nearly allied to Saxifragaceæ, but differing from them in being trees or shrubs, with opposite or whorled leaves, and large interpetiolar stipules. The latter character will also distinguish them readily from Hydrangeacee, which are exstipulate. They are also known from the latter order by their calyx not being val vate.

Distribution and Numbers. - Natives of South America, the Cape, the East Indies, and Australia. Illustrative Gewera:Weinmannia, Linn. ; Cunonia, Lim. There are about 100 species.

Properties and Uses.-Astringent. Some have been used for tamning; others exude a gummy secretion.

Order 11. Ribestacee, the Currant Order.-Character.Shrubs with (fig. 384) or without spines or prickles. Leares alternate, simple, lobed, radiate-veined. Flowers axillary, racemose, perfect or rarely unisexnal. Calyx superior, 4-5-lobed. Petals 4-5, minute, inserted on the calyx. Stamens 4-5, perigynous, alternate with the petals. Ovary inferior, 1 -celled, with 2 parietal placentas (fig. 718, pl). Fruit a berry (figs. 718 and 719). Seeds numorous ; embryo minute, in horny albnmen.

Distribution and Numbers.-Natives of the temperate regions of Europe, Asia, and North America. Illustrative Genera:Ribes, Limn. Polyosma, Br. These are the only genera : which include about 100 species.

Properties and Uses. - Some are showy garden plants, as Rihes fuchsioiles, R. sanguinerm, R. uureum, R. coccinerm; but they are chiefly remarkable for their agreeable acid fruits. Thus, the frnit of Ribes Grossuluria is the Gooseberry ; R. rubrum and its varieties yield both Red and White Currants; and R. nigrum is the Black Currant.

Order 12. Crassulacee, the Houseleek Order.-Charac-ter.-S゙uceulent herbs or shrubs. Leaves entire or pinnatifid, exstipulate. Flowers usually cymose (fig. 436), symmetrical (figs. 785 and 786). Calyx generally composed of 5 sepals, but varying in number from 3-20, more or less united at the base, inferior ($\mathrm{fig} .785, c$), persistent. Petals equal in number to the divisions of the calyx (fiy. 785, p), with which they are alternate, either distinct or united, and insertecl into the bottom of the calyx; restivation imbricate. Stamens inserted with the petals (fig. $785, e$), either equal to them in number and alternate with them (fig. 785) ; or twice as many (fig. 786), and then forming 2 whorls, one of which is composed of longer stamens than the other, the longer stamens being placed alternate to the petals, and the shorter stamens opposite to them; anthers adnate, 2 -celled, with longitudinal dehiscence. Carpels equal in number to the petals and opposite to them (fig. 785, o), each having frequently a scale on the outside at the base ($f i g .785, a$), distinct or more or less united ; styles distinct. Fruit either consisting of a whorl of follicles, or a capsule with loculicidal dehiscence. Seeds very small, variable in number ; embryo in the axis of fleshy albumen, with the radicle towards the hilum.

Diagnosis. -Succulent herbs or low shrubs. Leaves exstipulate. Flowers perfectly symmetrical, the sepals, petals, and carpels being equal in number, and the stamens being also equal to them, or twice as many. Petals and stamens almost or quite hypogynous. Corolla monopetalous or polypetalous. Carpels opposite the petals. Fruit either apocarpous and follicular, or a many-celled capsule with loculicidal dehiscence. Seeds small ; embryo in the axis of fleshy albumen.

Division of the Order and Illustrative Genera:-The order may be divided as follows :-

Sub-order 1. Crassulee.-Fruit consisting of a whorl of follicles. Crassula, Hav. ; Sedum, Liuu.
Sub-order 2. Diamorpheæ,--Fruit a many-celled capsule with loculicidal dehiscence. Diamorpha, Nutt.; Penthorum, Liun.
Distribution and Numbers.-They are found in very dry situations in all parts of the world; a large number occur at the Cape of Good Hope. There are about 450 species.

Properties and U^{r} ses.-Astringent, refrigerant, and acrid properties are found in the plants of this order, but none are of much importance.

Cotyledon.-C. Umbilicus.-This plant, which is a common mative, more especially in the West of England, has loug been in use as a popular remedy in hysteria, and as an external applieation to destroy corns and warts. it has also been frequently used of late years as a remecly for epilepsy.- C. orbiculuta, a native of the Cape of Gond Hope, is employed in similar eases. Rhorisulu esculenta is eaten by the Greenlanders.
Sedum,-s. ucre is the common yellow Biting Stonecrop of our walls,
and, as its name implies, is of an aerid nature. It is also reputed to possess emetic and purgative properties.-Sedum Telephium is astringent. Linde.e. says that, in Ireland, the leaves of Sedum dasyplyyltum, rubbed anong oats, are regarded as a certain eure for worms in horses.

Order 13. Droseracese, the Sundew Order.-Character. Herbaceous plants growing in boggy or marshy places, frequently glandular. Leaves alternate, fringed at their margins (fiy. 375), and with a circinate vernation. Inflorescence scorpioid. Sepals and petals 5, hypogynous, equal, imbrieate, persistent. Stamens as many as the petals and alternate with them, or twice, thrice, or four times as many, distinct, withering, hrpogynous; anthers innate or versatile, extrorse. Ovary superior, 1-celled, with parietal placentation, superior ; styles 3-5, distinct or connected at the base ; ovules numerous, anatropous. Fruit capsular, 1 -celled, bursting by 3 or 5 valves, which bear the placentas in their middle or at thcir base; hence the dehiscence is loeulicidal. Seeds numerous, with or without an aril ; embryo minute, at the base of abundant fleshy albumen.

Diagnosis.-Bog or marsh herbs, with alternate exstipulate leaves and a circinate vernation. Inflosescence scorpioid. Flowers regular and symmetrieal, hypogynous, with a quinary arrangement of their parts, which are also persistent and imbricate. Anthers extrorse. Placentas parietal. Fruit capsular, 1 -celled, with loculicidal dehiscence. Seeds numerous ; embryo small, at the base of copious fleshy albumen.

Distribution and Numbers.-These plants are found in almost all parts of the world with the exeeption of the Arctic regioms. Examples of the Genera:-Drosera, Linn.; Dionæa, Ellis. There are about 110 species in this order.

Properties and Uses.-They possess slightly acid and acrid properties. Drosera rotundifolia and D. longifulia appear to have been very early employed as a remedy for consumption, but have now fallen into disuse. Some of the Droseras are said to be poisonous to cattle, but there is no satisfactory proof of such being the case. It has been supposed that certain species of Drosera would yield valuable dyes, because they communicate a brilliant purple stain to the paper upon whicli they are dried. and also from the circumstance of their yielding a yellow colour when treated with ammonia. The plants of the order are, however, chiefly interesting from the peculiar irritability of the glands on their leaves. Thus, the Sundews (Droseras) are fringed with bcautiful stalked glands, which close more or less in different species when insects alight npon them; while the plant known as Venus's Flytrap (Dioneca muscimula) (fig. 355), a native of North America, has two-lobed leares, caell of which is furnished on jts upper surface with three stiff glands, which, when touehed, cause the two halves of the leaf to collapse and enclose the object touching them. The glands in these plants scerete a viscid aeid digestive fluich, so that insects which alight
on them are unable to escape, and become ultimately dissolved and absorbed for their nourishment. The acid present in this fluid is said to be citric.

Order 14. Hamamelidacees, the Witch-hazel Order.-Character. -Small trees or shrubs, with alternate simple leaves and deciduous stipules. Flowers in globular heads or spicate, perfect or unisexual, polygamous or monocious. Calyx superior, 4- or 5 -lobed. Petals 4 or 5, with an involute, valvate, or circinate æstivation, or altogether wanting. Stamens 8, half of which are scale-like, sterile, and placed opposite to the petals, and half fertile and alternate with them ; or numerous. Ovary inferior, 2-celled ; ovules solitary or numerous ; styles 2. Fruit capsular, 2 -celled, with 1 seed in each cell ; sced albuminous.

Distribution and Numbers.-Natives of North America, Asia, and Africa. Illustrative Genera:-Hamamelis, Lim.; Liquidambar, Limn. There are about 25 species.

Properties and Uses.-Chielly rewarkable for thcir fragrant balsamic properties. Some have acrid bitter barks; and the leaves and bark of others are astringent.

Hamamelis virginica, Witeh Hazel, yields oily edible seeds. Its bark possesses powerful astringent properties, and has been much used in the United States and in this country for eheeking exeessive mueous diseharges and hemorrhages.

Liquidambar (Altingia).-This genus was formerly placed in an order, of which it was the only representative, termed Liquidambaracer or Altingiacer.-L. orientalis is the source of the balsam named Liquid. Storax, whieh, when purified, forms the offieial Prepared Storax of the British Pharmaeoperia. (See Styrax.) This plant is a native of Asia Minor. The storax is obtained from the inner bark, whielh is afterwards used by the Turks for the purpose of fumigation. This bark is the Cortex Thymiamatis or Storax Bark of pharmacologists.-L. styraciflua, a native of the United States and Central America, rields by incision, or from natural fissures, a balsanic resin ealled Sweet Gum, Liquidambar, or Copalm. Balsam.- L . Altingiana, a native of the Indian Archipelago and Assam, yields a similar fragrant balsam. In their effeets and uses, both Liquid Storax and Liquidambar resemble other balsanic substances, as the Balsams of Peru and Toln, Benzoin, \&e.-L. formosana of Hance also yields a resin, which is fragrant when heated.

Order 15. Bruniacee, the Brunia Ordcr.-Character.-Heath-like shrubs, with small imbricate, rigid, entire, exstipulate leares. C'alys usually superior, or sometimes nearly infcrior, imbricate. Petals and stamens 5 , inserted on the calyx, the petals alternate with the divisions of the calyx and valvate ; anthers 2-celled, extrorse, bursting longitudinally. Ovary superior or half-inferior, $1-3$-cclled, with 1 or 2 suspended anatropous ovules in each cell ; style simple or bifid. Fruit crowned by the remains of the calyx and a disk, 1-2-celled, in the first case indehiscent, in the latter dehiscent. Seeds with a minute embryo, in fleshy albumen.

Distribution and Numbers.-Natives of the Cape of Good

Hope, except onc Madagascar specics. Illustrative Genera:Brunia, Linn. ; Ophiria, Linn. There are about 60 species. Properties and Uses.-Unknown.

Order 16. Haloragaceet, the Mare's-tail Order.-Diagnosis. -Herbs or shrubs, generally aquatic. Flowers small (fig. 412), frequently ineomplete and unisexual. They are ncarly allied to Onagraceæ, and, in fact, are merely a degeneration or imperfect form of that order. They are known from it by their minute calyx, the limb of which is frequently obsolete; and by having solitary pendulous seeds, which have fleshy albumen.

Distribution and Numbers.-They are found in all parts of the world. Illustrative Genera:-Hippuris, Linr. ; Trapa, Linn. There are about 70 species.

Properties and Uses.-Of little importance except for their edible seeds.

Trapa.-This is a genus of floating aquatie plants, remarkable for their horned fruit and large amygdaloid seeds with unequal cotyledons. The seeds are edible; those of Trapa natuns are ealled Chutuigne d'Eau by the French, and Jesuit's Nuts at Veniee. In some parts of Southern Eirope they are ground, and made into a kind of bread.-T. bicornis is called ling by the Chinese, and its seeds are highly esteemed by them.-T. bispinosa is the Singhara Nut; its seeds are largely consumed in Cashmere and scme other parts of India.

Order 17. Callitrichaceef, the Starwort Order.-Charac-ter.-Small aquatic herbs. Leaves opposite, entire, simple. Flovers minute, axillary, solitary, unisexual, achlanydeous. Male flower of 1-2 stamens; anthers reniform. Female flower with a 4 -cornered, 4-celled ovary, with 1 pendulous orule in each cell. Fruit indehiscent, 4 -celled. Seeds 4 , pendulous, with fleshy albumen ; embryo inverted, with a very long superior radiele.

Distribution.-Natives of freshwater pools in Europe and North America. Callitriehe is the only genus; this includes several varieties or species.

Properties and Uses.-Unknown.
Cohort 2. Myrtales.-Gynœecium syncarpous, usually with an undivided style ; ovary inferior, or ineluded within the calyx-tube; placontation geverally axile. Seeds exalbuminous. Leaves nearly al ways simple.
Order 1. Rhizophoracefe, the Mangrove Order.-Charactcr. -Trees (fig. 255) or shrubs. Leaves simple, opposite, dotless or rarely dotted, with deciduous interpetiolar stipules. Caly.e superior, 4-12-lobed, with a valvate astivation, the lobes sometimes united so as to form a calyptra. Petels arising from the calyx, alternate with its lobes and equal to them in mumber. Stamens on the calyx, twice or thrico as many as its lobes, or
still more numerous. Ovary inferior, 2 - 3 - or 4 -celled, each cell with 2 or more ovules. Fruit indehiscent, 1-celled, 1-seeded, crowned by the calyx. Seed pendulous, exalbuminous, usually germinating while the fruit is still attached to the tree.

Distribution and Numbers.-Natives of muddy sea-shores in tropical regions. Illustrative Genera:-Rhizophora, Lam.; Bruguiera, Lam. There are about 20 species.

Properties and Uses.-Generally remarkable for their astringent properties, whence they are used for dyeing and tanning; they are also used medicinally for their febrifugal and tonic properties.

Rhizophora Mangle.-The Mangrove-tree.-The bark is sometimes imported into this country as a tanning material, but it is not much used. The fruit is sweet and edible, and its juice when fermented forms a kind of wine.

Order 2. Combretacee, the Myrobalans Order.-Character. -Trees or shrubs. Leaves alternate or opposite, exstipulate, entire, without dots. Flowers perfect or unisexual. Calyx superior, with it 4-5-lobed deciduous limb. Petals equal in number to, and alternate with, the lcbes of the calyx ; often absent. Stamens inserted with the petals on the calyx, generally twice as numerous as its lobes, or thrice as many, or sometimes equal to them in number; anthers 2-celled, with lopgitudinal or valvular dehiscence. Ocary inferior, 1-celled, with 2-4 ovules ; style and stigma simple. Hurt inclehiscent, 1 -seeded. Seed pendulous, exalbuminous; cotyledons leafy, convolute or plaited.

Distribution and Numbers.- Exclusively natives of the tropical parts of America, Africa, and Asia.- Mlustrative Generce:Terminalia, Linu. ; Combretum, Löffl. There are about 200 species.

Properties and Uses.-The order is chiefly remarkable for the presence of an astringent principle; hence the bark of some species, and the fruits and flowers of others. are employed in tanning and dyeing. Some yield excellent timber.

Combretum butyrosum, a native of South-eastern Africa, prodnees a kind of vegetable butter, which is called Chiquito by the Caflires, by whom it is used to dress their victuals.

Quingualis indica.-The seeds are in repute in the Moluceas for their anthclmintic properties.

Terminalia.-The fruits of several species are largely imported into this country uuder the name of Myrobaluns or Myrabolims. The principal kinds of myrobalans are the Chebulic and the Bellerie; the first is obtained from T. Chbulu, and the latter from T', bellericu. Myrohalans are principally used hy calico printers for the prodnction of a hatack colour which is very permanont. They are also employed by the tanuer. The belleric myrohanas have heen also called Busturd Myrabahans and Bedda Nuts. The flowers of T. Chebula are nsed as a dye in Travancore, and the ripe fruit is sairl to be an efficient pmrgative. The pulp of the fruit of Emblic Myrobalans (Terminaliu Emblica) is also said to be laxative, aud useful in
habitual constipation. The seeds of T. bellerica are eaten by the natives of some parts of the East Indies, but they possess intoxicating properties, and have produced symptoms of nareotic poisoning. The seeds of 7. Cutappa yield about fifty per cent. of an oil which is said to resemble almond oil in its properties, The seeds are edible, resembling almonds in shape, and are hence called Country Almonds in India. The sceds of T. citrinu are pur-gative.-T. Benzoin has a milky juice, which upon drying forms a fragrant and resinous substance resembling benzoin in its properties. (See Styrux Benzoin.)

Order 3. Myrtacees, the Myrtle Order.-Character. -Trees or shrubs. Leaves opposite or alternate, entire, exstipulate (fig. 959), usually dotted, and having a vein running just within their

Fig. 959.

Fig. 959. Flowering branch of the common Myrtle (Ityrtus communis). margins. Calyx superior (fig. 463), 4 - or 5 -cleft, valvate, sometimes separating in the form of a cap. Petals 4-5 (fig. 959), imbricate, rarely absent. Stamens usually 8 -10 , or numerous (figs. 463 and 959), or rarely 4-5; filaments distinct or polyadelphous. Ovary inferior (fig. 463), 1-6-celled; style and stigma simple (figs. 463 and 959) ; placentas axile (fig. 463), or very rarely parietal. Fruit dry or succulent, dehiscent or indeliiccent. Seeds without albumen, usually numerous. Division of the Order and Illus. tratize Genera.-The order may be divided into two tribes as follows :-
Tribe 1. Leptospermex. - Fruit capsular. Illustrative Genera: -Melalenea, Leptospermum.
Tribe 2. Myntex.-Fruit baccate. Illustrative Genera:Punica, Linn. ; Myrtus, Towm.
Distribution and Numbers.-Natives of the tropics and of the warmer parts of the temperate zones. Myrtus communis, the common Myrtle, is the most northern specics of the order. This plant, although now naturalised in the South of Europe, was originally a native of Persia. There are about 1,320 specics belonging to this order.

Properties and Uses.-These plants are generally remarkable for aromatic and pungent properties, which are due to the presence of volatile oils. Many of these oils have been used in medicine as stimulants, aromatics, carminatives, diaphoretics, or antispasmodics; and also in perfmery. The dried flower-buds and unripe fruits of some species are in common use as spices.

Other plants of the order are astringent, and a few secrete a saccharine matter. The fruits of some having a sweetish acidulous taste are edible. Many are valuable timber trees.

Eucalyptus.-E. resinifera, the Iron Bark-tree, a native of Australia and Tan Diemen's Land, yields an astringent, very resinous substance, called Australiun or Botany Bay Kino. E. rostrata, E. cormybosa, and other species, also yield an astringent substance resembling in appearance aud properties the official kino. It is known as Red Gum or Eucalyptus Gum. It is soluble iu water, but the so-called Australian Kino is but little soluble in that liquid. The leaves of $E \prime$. mannifera, E. viminalis, and probably other species natives of Australia, spontancously exude a saccharine substance resembling manna, which is therefore commonly termed Australiun Mumu. As this exudes, it hardens, and drops from the leaves on to the ground in pieces, which are sometimes as large as an almond. The products of the Eucalypti being frequently of a grummy nature, they are called Gum-trees in Australia.-E. Globuhes.-Varions preparations of the leaves and bark of this tree have been lately introduced, and recommended as valuable remedies in intermittent fevers, and so many medical prac. titioners have horne testimony to their value in such cases, that, allowing for exaggeration, their use must be, to some cxtent at least, beneficial ; but their antiperiodic properties are very inferior to those of the einchona barks, none of the alkaloids of which, as proved by Broughton, they contain. The leares and bark hare also been recommended as useful in many other ways. Thus the leaves of this spccies, as well as those of E. amygdulinus, and others, vield by distillation a volatile oil, those of E. amygdalinus yielding more oil than any other species. Oil of Lucalyptns is official in the British Pharmacopoeia ; it is a powerful antiseptic, and likewise rubefacient. It is also used in perfumery, \&e. The timber of E. Globulus, and many other specics, is very valuable owing to its solidity, hardness, durability, \&̌c., and also from the great length of the planks that may be ohtained from it. The bark of it, and other species, is also nseful for tanning and dyeing ; and the ashes of the wood are also remarkable for the large proportion of potash they contain. But important as are the products obtainable from E. Globulus, it has been brought more especially into notice on aceount of the iuflueuce that plantations of this very rapil-growing tree exert in improving* miasmatic climates by destroying the paludal miasm which causes fever in malarious districts, and by diaining the ground, from which circumstance it has bcen called the fever-destroying tree. The birk of certain species separates in fibrons lavers, which has occasioned them to be called Stringybark trees or Stringi-bark Gum-trees. These trees are somctimes of a prodigions height- 850 feet or sometimes ceen 450 fect, and 100 feet iu circumference. the trunks being destitute of brauches to a height of from 100 to 200 feet.-E. cocciferi appears to be the mest hardy species for growth in this country. It grows well in Earl Annesler's garden, Countr Down, Ireland. The bark of E. obliqua and several other species is said by Baron Mucller to be useful for making good packing and jrinting paper. Good writing paper may also be made from the hark of E. obliqua.

Engeniu.- Engenia curyophyllata (Caryophyllus aromaticus) is the Clove-tref.- 'lhe dried flower-buds constitute the cloves of commerce, which are so well kuown as a spice, and in medicine, for their aromatic, stimulant, and earminative properties. These properties are esseutially duc to the presence of a volatile oil. Both Cloves and the Volatile Gil of Cloves are official in the British lharmacopwia. The dried unripe fruits are called nother cloves; they are usd in China and other countrics as a spicc, and are occasionally iuported into this country ; but they are very inferior to the official cloves. The dried flower-stalks are also sonctimes nsed as a spice instead of Cloves. They are commonly known as Clove Stalls, and by the French as Griffes
de Girofle. - The Rose-apples of the East, whieh are mueh esteemed as dessert fruits, are the produce of various speeies of Hugenia; the most important are E. malaccensis and E. Jambos. In Brazil, the fruit of E_{2}. cauliflora, the Jabutieaba, is also much esteemed. The leaves of E. Ugni are used in Chili as a substitute for Paraguay Tea. The plant has been introduced into this country on account of its fruit, but not with any great snceess.

Glaphyria nitida is ealled by the Malays the Tree of Long Life. It is also known as the Tea plant, from its leaves being used as tea at Bencoolen.

Leptospermum. - The leaves of L. seoparium and L. Thea are employed in Australia as a snlostitute for China tea.

Melaleuca minor (M. Cajuputi).-The leaves when allowed to stand so as to undergo a species of fermentation, and theu distilled with water, yield a volatile oil of a very limpid nature aud light green eolour, called Cajuput(Qil, which is official in the British Pharmacopcia. This was formerlymneh employed as a remedy in cholera, but without any evident suceess. It has been used internally as a diffusible stimulant, antispasmodie, and diaphoretie ; and externally, when mixed with olive oil, or dissolved in reetibied spirit, as a stimulant embrocation in rheumatism, neuralgia, \&e. This oil has the property of dissolving eaontehoue. In Australia, the leaves of M. scoparia and M, gemistifolia are used as substitutes for China tea.

Metrosiderns.- MI. scrmdens, the Aha of New Zealand, and other species, afford valuable timber. The clubs and weapons of the South Sea Islanders are made from species of this genus.

Myrtus communis, the Common Myrtle.-The dried flower-buds and the unripe fruits were used as spiees by the ancients, and are still so employed in Tuseany. By distillation with water, the flowers form a very arreeable perfume, known in France ns Eau d'Ange. The leaves of M. Chekan, noder the name of Chekan, have long been used in Chili as an aromatic astringent, and have reeently been found in commeree.

Pimenta.-Pimenta officinalis (Eugenia Pimenta) is the Common All-spice.-The dried unripe full-grown fruits are our official Pimento. It is also known as Jamaica Pepper, or more commonly as Allspice (from its flavour combining that of Cimmmon. Cloves, and Nutmegs). It is used as a spice, and in medieine in similar eases to eloves. Its properties are chiefor due to the presence of a volatile oil, whieh is also oticial in the British Pharma-copœia.-Pmenta acris, Eugenia acris, or Myrcia acris, is commonly known nnder the names of Wild Clove, and Bay-berry. It is the souree of the oftieial Spirit of Ayrcia or Bay Rom of the United States Pharmaeoprein. Bay-rum is employed as a perfume, in faintness and varions nervous affetions, \&e., and also in the preparation of har-washes.

Psidium.-Various speeies or varieties of this genus yield excellent dessert fruits, which are eommonly known under the nane of Guavas. Of this fruit the natives of the West Indies make several kinds of preserves, as Guava jelly, stewed Guava, Qnake-pear, and Mrumalade. The more important are P. pyriferm and P. pomiferm. The bark of these plants also possesses astringent propertics. Both plants are found frequently in tropieal countries.

Panica Granatum, the Fomegramate, is the rimmon of the Bible, and the rooman of the Arabs. This plant is by some botanists regarded as the type of a distinet order, which is hamed Granatea, while by Bentham and Hooker it is placed in Lathraces. We, however, retain it as an anomalous genus of the Myrtacer, as its afinities are commonly regarded as most nearly allied to the plants of this order. The leaves, the flowers, aud the fruit were all used by the ancients for their astringent properties, and the juice of the fruit in the preparation of cooling driuks, on neconnt of its ancidulous taste. The flowers and fruitare still emploved in the East. The thowers are the Bulaustion of the aneients, whence their common name ba'dustinu flowers. The rind of the fruit, and the bark of the root, are the
parts now commonly used as medicinal agents in this country : but the latter is alone official in the British Pharmacopoia. Those are employed for their astringent properties, and the latter is also commonly regarded as a valuable anthelmintic ; the fresh bark is preferred by some, but apparently without any good reason. The astringent properties arc principally due to tannic acid, but also partly to gallic acid. The bark of the ront has also been recently proved by Taurct to contain a volatile alkaloid, which is evidently its important anthelmintic principle; this he has named pelletierine. The sulphate of pelletierine and tannate of pelletierine have been found very efficient remedies for tapeworm.

Sizygium Jambolanum.-The bark is emplored in the East Indies as a useful astringent in chronic diarrhoa and dysentery.

Order 4. Lecythidacee, the Brazil-nut Order.-Character. Large trees, with alternate dotless leaves, and small deciduous stipules. Flowers large and showy. Calyx superior. Petals 6, imbricate, distinct, or sometimes united at the base. Stamens numerous, epigynous; some of them cohering so as to form a unilateral petaloid hooded body. Ovary inferior, 2-6-celled; placentas axile. Fruit woody, either indehiscent or opening in a circumscissile manner (fig. 685). Seeds several, large, and without albumen. This order is referred to Myrtaceæ by Bentham and Hooker.

Distribution and Numbers.-Principally natives of Guiana and Brazil, and also occasionally of other hot regions of South America. Illustrative Genera:- Lecythis, Löfl.; Bertholletia, Humb. et Bonpl. There are about 40 species.

Properties and Uses.-These plants are chiefly remarkable for their large woody fruits, the pericarps of which are used as drinking-vessels and for other purposes. Their seeds are frequently edible.

Bertholletia excelsa, Berg. (B. nobilis, Miers), the Brazil-nut Trec.-The seeds constitute the edible nuts known as the Brazil, Juvia, Castanha, or Para Nuts. As naany as 100,000 bushels are annually imported into this country from Brazil. An oil is obtained by expression from these seeds which is used by artists and watchmakers. The laminated inner bark is valuable fur caulking ships and barges.

Lecythis.-The seeds of L. Ollaria arc large and cdible, and arc termed Sapucaya nuts. Ther are now commonly sold in our fruit shops, and are generally thought to be superior in flavour to the ordinary Brazil nuts. The hark of this plant may be separated into thin papery layers, which are used by the Indians as wrappers for their cigarettes. The fruits of this and other species have been called Monkcy-pots on account of their peculiar form.

Order 5. Barrivgtoniacee, the Barringtonia Order.-Diagnosis. -This is a small order of plants frequently placed among the Myrtace:e, but Lindley considered them as quite distinct from that order in the following particulars : namcly, the presence of a large quantity of albumen in their seeds, and in their having alternate dotlcss and often serrated leaves. Thomson has, however, proved that the secds are cxalbuminous, so that the characters scparating them from Myrtacco are very slight indeed. But another claracter of distinction is to be found in
the restivation of the calyx in the two orders; thus in that of Myrtacere it is valvate, while in Barringtoniacee it is inbricate.

Distribution and Numbers.-Natives of tropical regions in all parts of the world. Illustrative Genera:-Barringtonia, Forsl:: Gustavia, Linn.

Properties and Uses.-The bark of Stratadium raeemosum is reputed to be febrifugal, and the root bitter, aperient, and acrid. The fruit of Careya arborea is eaten, while that of Gustavia brusiliana is emetic, and produces an intoxicating effect upon fish. Generally the plants of the order should be regarded as somewhat dangerous.

Order 6. Chamelauciacef, the Fringe-myrtle Order.-Diagnosis.-This is a small order of shrubly plants with evergreen dotted leaves, and nearly allied to Myrtacer, but distinguished from them by their Heath-like aspect, their more or less fringed scaly or bristly calyx-tube, and by their 1-celled ovary. From Lecythidacer they are at once known by their habit, their dotted exstipulate leaves, and 1 -eelled ovary.

Distribution and Numbers.-Exclusively natives of Ausiralia. Illustrative Genera:-Chamælaucium, Desf.; Darwinia, Rudg. There are above 50 species.

Properties and Uses.-Unknown.
Order 7. Belvisiacere, the Belvisia Order.-Character.Shrubs. Leaves alternate, exstipulate, with a leathery texture. Calyx superior, coriaceous, 5 -partite, with a valrate restivation. Corolla ecnsisting of three distinct whorls of united petals. Stamens 20, somewhat polyadelphous. Disl fleshy, and forming a cup-shaped expansion over the ovary. Ovary 5 -celled, with two ovules in each cell; placentas axile; style 5 -angled or 5 winged; stigma flat, pentagonal. Fruit a soft rounded berry crowned by the calyx. Seeds large, kidney-shaped, exalbuminous.

Distribution and Numbers.-Natives of tropical Africa and Brazil. Illustrative Genera:-Asteranthos, Desf. ; Napoleona, Palis. These are the only gencra; they include 4 speeies.

Properties and Uses. - Nothing is known of the uses of thesc plants cxcept that the pulp of their fruits is edible, and the periearp contains much tannic acid. They might, therefure, probably be uscd as astringents.

Order 8. Melastonacese, the Mclastoma Order.-Character. -Trees, shrubs, or herbs. Leaves opposite, and almost always with several large curved ribs, and dotless. Flowers showy. Culyx 4-5- or 6-lobed, more or less adherent to the ovary, imbricatc. Petals equal in number to the divisions of the cally, twisted in restivation. Stamens cqual in number to, or twice as many as, the petals; filaments eurved downwards in astivation: anthers long, 2 -cellod, curiously beaked, usually deliscing by two pores at the apex, or sometimes longitudinally; in astiva-
tion lying in spaces between the ovary and sides of the calyx. Ovary more or less adherent, many-celled ; placentation axile. Fruit either dry, distinct from the calyx, and dehiscent ; or succulent, united to the calyx, and indehiscent. Seeds very numerous, minute, exalbuminous.

Distribution and Numbers.-They are principally natives of tropical regions, but a few are also extra-tropical, being found in North America, China, Australia, and also in the northern provinces of India. Illustrative Genera:-Melastoma, Juss. ; Medinilla, Gaud. There are about 2,000 species.

Properties aud Uses.-The prevailing character of these plants is a slight degree of astringency. Many produce edible fruits, and some are used for dyeing black and other colours. The name Melastoma is derived from the fruits of the species dyeing the mouth black. Generally speaking, the plants of this order possess but little interest in a medicinal or economic point of

Fig. 960.

Fig. 961.

Fig. 960. Vertical section of the flower of the Purple Loosestrife (Lythrum Selicaria).-Fig.961. Calyx of the same.
view, but none are unwholesome. A number of species arc cultivated in this country on account of the beauty of their flowers.

Melastomn.-The leaves of Mr. theezans are used as a substitute for ten, which has been eapecially commended by Bonpland.

Memecylon.- The leaves of Memecylon tinctorium are used in some parts of Iudia for dyeing yellow, \&c.

Order 9. Lythracese, the Lcosestrife Order.-Character. -Herbs or rarely shmbs, frequently 4 -sided. Leaves opposite or rarely alternate, entire, and exstipulate. Flowers regular or irregular. Calyx (fig. 961) persistent., ribbed, tubular below, the lobes with a valvate sestivation, sometimes with intermediate teeth (fig. 961). Petcls inserted between the lobes of the calyx and alternate with them (fig. 960), occasionally wanting, deciduous Stamens perigynous, inserted below the petals (fiy. 960), to
which they are equal in number, or twice as many, or even more numerous; anthers adnate, 2 -celled, opening longitudinally. Ocary superior (fig. 960), 1-2- or 6 -celled; ovules numerous or rarely few; style 1, filiform (fig. 960) ; stigma capitate or rarely 2-lobed: Fruit capsular, membranous, deliscent, surrounded by the non-adherent calyx-tube. Seeds numerous, with or without wings, exalbuminous ; placentation axile (fig. 900) ; embryo straight, with flat leafy cotyledons, and the radicle towards the hilum.

Diagnosis.-Herbs or shrubs, with entire exstipulate usually opposite leaves. Calyx tubular, ribbed, persistent, bearing the deciduous petals and stamens; the latter being inserted below the petals. Anthers 2-celled, adnate, bursting longitudinally. Ovary superior, with axile placentation ; style 1. Fruit membranous, dehiscent, surrounded by the non-adherent calyx-tube. Seeds numerous, exalbuminous.

Distribution and Numbers.-The greater number are tropical plants, but some are also found in temperate regions, as, for instance, in Europe and North America. One species only, Lythrum Salicaria, has been hitherto found in Australia. Illustrative Genera:-Lythrum, Linn.; Lawsonia, Linn. There are about 250 species.

Propertics and Lises.-These plants are chiefly remarkable for the possession of an astringent principle, and for their value in dyeing.

Ammannia vesicatoria.-The leaves are very acrid ; they are much used in India by the natives as a vesicant, but their action is slow, and they cause great pain.

Grislea tomentosa.-In India the flowers are employed for dyeing, mixed with species of Morinda. (See Morinda.)

Lagerströmia Regine has nareotic seeds, and its leaves and bark are reputed to be purgative and hydragogue.

Lawsonia inermis (L. alba). -The leaves and young twigs of this shrulb form the Henna, Henué, or Alkanua of Egypt and other countrics. Hemna is used by the women in the East to dye the tips of their fingers, their finger-and toe-nails, palms of the hand, and soles of the feet, of a reddishorauge colour. The men also use it for colouring their beards. It is likewise employed for dyeing skins and mornceo leather reddish-rellow, and hy the Arabs, Persians, \&c., for dyeing their horses' tails and maues. The leaves are also used to some exteut as au astringent.

Lythrum Salicaria, Purple Loosestrife, is a common British plant. and is said to be nseful as an astringent in diarrhoen, \&c. Other species probablypossess similar propertics.

Order 10. Onagracene, the Evening Primrose Order. Character. - Herbs or shrubs. Leares alternate or opposite, simple, exstipulate, without dots. Culy. (fig. 962) superior, tubular, with the limb usually 4 -lobed, or sometimes 2 -lobed (fig. 787) ; in restivation valvate; or rarely the limb is absent. Petals usually large and showy, generally regular and equal in number to the divisions of the calys (fiy. 787), twisted in
restiration, and inserted into the throat of the calyx (fig. 962) ; rarely absent. Stamens (figs. 787 and 962) definite, 2, 4, or 8 , or rarely by abortion 1, inserted with the petals into the throat of the calyx ; flaments distinct; pollen trigonal (figs. 573 and 576). Ovary inferior (fig. 962), 2-4-celled; placentas axile; style 1, filiform ; stigma lobed or capitate. Fruit capsular, or succulent and indehiscent, 2-4-celled. Seeds numerous, without albumen; embryo straight.

Diagnosis.-Herbs or shrubs, with simple exstipulate dotless leaves. Calyx superior, 2-4lobed, valvate in restivation. Petals usually equal in number to the lobes of the calyx, with a twisted eestivation, or rarely absent. Stamens few, inserted into the throat of the calyx with the petals. Ovary inferior, 2-4-celled ; style simple ; stigma lohed or capitate. Fruit dehiscent or indehiscent. Seeds numerous, without albumen.

Distribution and Numbers.-Chicfly natives of the temperate parts of North America and Europe; many are also found in India, but they are rare in Africa, except at the Cape. Mlustratire Genera:-Enothera, Linn. ; Circæa, Tourn. There are about 300 species.

Properties and Uses. - Generally the plants

Fig. 962.

Fig. 962. Vertical section of the flower of a species of Wil-low-herb (Epilobium). are harmless and possess mucilaginous properties. The roots of Wnothera biemis and other species of the same genus are edible. The fruits of many Fuchsias are somewhat acid and good to eat. Some species of Jussiza are astringent.
Cohort 3. Passiflorales.-Gynœcium syncarpous; ovary usually 1 -celled, or sometimes spuriously 3 -cclled; placentation parietal; ovules numerous. Seeds albuminous or exalbuminous. Leaves simple.
Order 1. Samydacem, the Samyda Order.-Character.Trees or shrubs. Leaves altcrnate, simple, evergreen, stipulate, usually with round or linear transparent glands. Calyx inferior, 4-5-partite. Petals absent. Stamens perigynous, 2 , 3 , or 4 times as many as the divisions of the calyx ; filaments united, some of them frequently sterile ; anthers 2 -celled. Ovary superior, 1-celled; style 1, filiform ; placentas parietal, bearing numerous ovules. Frmit capsular, leathery, 1-celled. Seeds numerous, arillate, with oily or flcshy albumen; embryo large.

Distribution and Numbers.- Exclusively tropical, and principally American. Illustrutive Genera:-Sanyda, Lim.; Casearia, Jucy. There are above 100 spccies.

Properties and Uses.-Of little importance. They are commonly bitter and astringent.

Casearia.-C. ulmifolia, a native of Brazil, is there highly esteemed as a remedy against snake-bites. Some species of Casearia have febrifugal properties, and others are said to be poisonous.-C. esculenta has purgative roots.

Order 2. Homaliacee, the Homalium Order.-Character. T'rees or shrubs, with alternate leaves. Calyx superior, funnelshaped, with from 5-15 divisions. Petals equal in number to, and alternate with, the divisions of the calyx. Stamens opposite to the petals and inserted on them, either distinct or in bundles of 3 or 6 . Ovary inferior, 1-celled; placentas parietal; ovules numerous; styles 3-5. Fruit a capsule or berry. Seeds small; embryo in the axis of a little fleshy albumen. This order is included in Samydaees by Bentham and Hooker.

Distribution and Numbers.--They are natives of the tropical parts of India, Africa, and America. Illustrative Genera:Homalium, Jaeq. ; Trimeria, Harv. There are about 36 species.

Properties and Uses.-Some species of Homalium are astringent, but nothing is known of the properties of the other genera.

Order 3. Loasacex, the Chili Nettle Order.-Character. Herbaceous plants, with stiff hairs or stinging glands. Leares exstipulate. Calyx superior, 4- or 5 -parted, persistent. Petals 5 or 10, in 2 whorls, often hooded. Stamens numerous, in several whorls, either distinct or united in bundles. Otary inferior, 1-celled, with several parietal placentas, or 1 axile placenta; style 1; ovrles anatropous. Fruit capsular or succulent. Seeds with a loose testa, and having an embryo lying in the axis of fleshy albumen.

Distribution and Numbers.-They arc all natives of North and South America. Illustrative Genera:-Bartonia, Muehl.; Loasa, A dans. There are about 70 specics.

Properties and Uses.-Some of the species are remarkable for their stinging glands; hence their common wame of Chili Nettles. Several species are cultivated on account of the beauty of their flowers. A Mcxican spccies, Mentzelin hispidu, is reputed to possess a purgative root.

Order 4. Turneraces, the Turnera Ordcr--Character.Herlaceous or somewhat shwubly plants. Lecues altemate, exstipulate, hairy. Flowers axillary. Calys inferior, 5 -lobed, imbricate in eestivation. Petals 5 , equal, twisted in estivation, without a corona, perigynous, deciduous. Stamens 5, alternate with the petals, perigynous; filaments distinct. Orary 1-celled, superior, with 3 parictal placentas; styles 3, more or less muited at the base, forked or brauched above. Fruit capsular, 1 -celled,

3 -valved, partially dehiscing in a loculicidal manner. Seerds with a caruncule on one side, and a slightly curved embryo in the midst of fleshy albumen.

Distribution and Numbers.-Natives exclusively of South America and the West Indies. Illustrative Genera:-Turnera, Plum.; Piriqueta, Aubl. There are about 60 species.

Properties and Uses.-Some are said to be astringent, others tonic and expectorant, and a few aromatic.

Turnera.-The drug known in the United Statcs under the name of 'Damiana' is principally derived, according to Holmes, from a species of Turnera, and probably T. microphylla. The source of another varicty of Damiana, used in America, is, however, said to be Aplopappus discoideus, DC., a plant of the order Compositæ. (See Aplopappus.) Damiana is a nervine tonic, and is reputed to be a pnwerful aphrodisiac, but on no sufficient anthority.

Order 5 . Passifloracele, the Passion-flower Order.-Ch a-racter.-Herbs or shrubs, usually climbing by teudrils (fig. 213), or rarely trees. Leaves alternate, with foliaceous or rarely minute stipules. Flowers perfect or very rarely unisexual. Sepals 5 , united below into a tube, the throat of which bcars a number of filamentous processes, and thus forming a kind of corona; petals 5, inserted into the throat, of the calyx on the outside of the filamentous processes, with an imbricate restivation; sometimes wanting. Stamens usually 5, monadelphous or rarely numerous, attached to, and raised above the calyx by, the stalk of the ovary. Ovary stalked, superior, 1-celled; styles 3, clavate; placentas parietal. Fruit 1-cclled, stalked, generally succulent. Seeds numerous, arillate ; cmbryo in thin fleshy albumen.

Distribution and Numbers.-They are chiefly found in tropical America, but a few also occur in North America and the East Indies, and several in Africa. Illustrative Genera:-Passiflora, Juss.; Tacsonia, Juss. There are about 214 species.

Properties and Uses.-Several have edible fruits, and others are said to be bitter and astringent, narcotic, emmenagogue, or diaphoretic.

Paropsis edulis has an elible fruit. It is a native of Madagascar.
Passifforu.-The fruits of several species of this genus are caten under the namc of Granadillas. The root of P. quadrangularis is said to be narcotic. The flowers of P '. rubra are also narcotic. Other species are reputer to be anthelmintic, emmenagoguc, expectorant, emetic, carminative, \&c.

Tucsonia.-The pulpy fruits of T. speciosa, T. mollissima, T. tripartita, and others, are edible.

Order 6. Malesimerbiacene, the Crownwort Order.-Diag-nosis.-This is a small order of herbaceous or somewhat shrubby plants, resembling Passifloraceere, in which it is included by Bentham and Hooker, but differing in never being climbers; in the want of stipules; in the filamentous processes of the flowers of that order being reduced to a short membranous ring or coronet
in this ; in the insertion of the styles at the back instead of the apex of the ovary; and in the seeds not being arillate.

1) istribution and Numbers.-They are all natives of Chili and Peru. Illustrative Genera:-Malesherbia, R. et P.; Gynopleura, Cav. These are the only genera; they include 5 species.

Properties and Uses.-Altogether unknown.
Order 7. Papayace.s, the Papaw Order.-Charaeter. Trees or shrubs, sometimes with an acrid milky juice. Leaves alternate, on long stalks, lobed. Flowers unisexual, or rarely perfect. Calys inferior, minute, 5 -toothed. Corolla monopetalous, and usually without scales or filanentous corona in the female flowers, 5-lobed. The male flower has a few stamens inserted on the corolla. The femcte flower has a 1-celled superior ovary, with 3-5 parietal placentas. Fruit succulent or dehiscent. Seeds numerous, albuminous, with the radicle towards the hilum. It is included in Passifloraces by Bentham and Hooker.

Distribution and Numbers.-Natives of South America and the warmer parts of the Old World. Illustrative Genera:Carica, Linn.; Modecca, Limn. There are abont 26 species.

Properties and Uses.-Generally unimportant; but the acrid milky juiee is said to be poisonous in some species; and in others emmenagogue. The seeds of some species are also emmenagogue.

Curica.-The aerid milky juiee of Carica digitatu is said to be a deadly poison. The juiee of the untipe fruits and the powdered seeds of Caricu Pupaya, the Papaw-tree, are powerful anthelminties; the former being the more aetive and ecrtain in its action. The fruit, however, when cooked, is eaten. The powdered seeds have also a great reputation in Southern India for their powerful emmenagogue properties, and it is well known that if the fruit be eaten in a eertain stage by preguant women it is exceedingl:liable to produce abortion, hence doctors invariably warn such patients not to eat sueh fruit. The milky juiee of the nuripe fruit has the properts of rapidly softening the toughest meat when boiled with it for a short time. Its usc for this purpose is very general in Quito; and experiments have showu that it contains a substanee ealled papayotin or papain, which has the property of digesting fibrin like pepsin. Papayotin has also been reenmmended in the form of a solution to remove warts, \&.c.. and as a solvent of the false membrane in diphtheria. The leaves are also used in some districts as a substitute for soalp.

Order 8. Cucurbitaces, the Gourd Order.-Charaeter.Herbs, generally of a succulent nature, and either prostrate or climbing by means of tendrils. Leaves succulent, alternate, with a radiate venation (fig. 310), more or less scabrous, exstipulate. Flowers misexual (figs. 963 and 964), monocious or dioccious. Calyx monosepalous, 5 -toothed (fig. 963), the limb sometimes obsolete, superior in the female flowers (fig. 963, co). Corolla monopetalous (fiys. 903, p, and $964, p$), 4-5-parted, or of distinct valvate or induplicate petals, sometimes fringed, perigynous. Male flower:-Stamens usually 5, epipetalous
(fig. 964 , st), and alternate with the segments of the corolla, either distinct or monadelphous, or more frequently triadelphous (fig. 964, st) in such a way that two of the bundles contain each 2 stamens, and the other but 1 stamen; rarely there are but 2 or 3 stamens present ; anthers 2 -celled, usually long and sinuous

Fig. 963.

Fig. 964.

Fig. 965.

Fig. 963. Femn!e or pistillate flower of the Cheumber (Cucumis sativus). co. Calyx adherent to the ovary; the limb is seen above, with five divisions. p. Corolla. s. Stigmas.-Fig. 964. Male or staminate flower of the same, the floral envelopes of whieh have been divided in a longitudinal manner. From Jussieu. c. Calyx. p. Corolla, st. Stamens-- Fig. 965. Pepo of the Squirting Cucumber (Ecbollium officinurum), diseharging its seeds and juiee.
(f y. $531, l$), or sometimes straight. Female flower:-Ovary inferior (fig. 963), 1-celled, or gencrally spuriously 3 -celled from the projection inwards of the placentas; placentas parietal, usually 3 , or rarely 2 ; ovules indefinite or sometimes solitary; style short (fig. 963); stigmas thickened (figs. 647 and 963, s), papillose, lobed (f ig. 647) or fringed. Fruit a pepo (figs. 721 and 265), or rarely a succulent berry. Sceds more or less flattened, usually with a leathery or horny testa, which is
cnveloped in a succulent or membranous covering, generally numerous or rarely solitary; embryo flat, without albumen; cotyledons leafy ; radicle towards the hilum.

Diagnosis.-Herbs, usually of a succulent nature, prostrate or climbing. Leaves rough, alternate, radiate-veined, exstipulate. Flowers unisexual. Calyx 5-toothed or obsolete, superior in the female flowers. Corolla perigynous. Male flower with usually 5 stamens, which are distinct, monadelphous, or triadelphous, and epipetalous; rarely there are but 2 or 3 stamens; anthers long and usually sinuous or sometimes straight. Female flower:-Ovary inferior, with parietal placentas; style short; stigmas more or less dilated. Fruit succulent. Seeds flat, generally numerous, exalbuminous, cotyledons leafy.

Division of the Order and Illustrative Genera.-This order has been divided into three sub-orders as follows :-
Sub-order 1. Nhandirobee.-Anthers not sinuous. Placentas projecting so as to meet in the centre of the fruit. Seeds numerous. Illustrative Genera:-Telfairia, Hook.; Feuillæa, Linn.
Sub-order 2. Cucurbitere.-Anthers sinuous (fig. 531, l). Placentas projecting so as to meet in the centre of the fruit (f f. $721, p l$). Seeds numerous. Illustrative Genera:-Bryonia, Linn. ; Ecballium, L. (\%. Rich.
Sub-order S. Sicef.-Placentas not projecting. Seed solitary, pendulous. Illustrative Genera:-Sicyos, Lim.; Sechium, P. Br.

The Cucurbitacer have been divided by Bentham and Hooker as follows:-
Series 1. Plagiosperines. - Orules horizontal. Illustrative Genus:-Bryonia, Lirru.
Series 2. Orthosperneef.-Ovules erect or ascending. Illustrative Genus:-Trianosperma, Torr. et Gr.
Series 3. Cremospernes. - Ovules pendulous. Illustrative Genera:-Sicyos, Lirur. ; Sechium, P. Br.
Distribution and Numbers.-Natives principally of hot climates in almost every part of the world, but especially abundant in the East Indies. One species only occurs in the British Islands, Bryonia dioica. There are about 360 species.

Properties and Uses.-An acrid bitter purgative property is the chief characteristic of the plants of this order; this is possessed more or less by all parts of the plant, but it is especially evident in the pulp surrounding the seeds: the seeds themselves are, however, usually hammless. In some plants this acridity is so concentrated that they become poisonous: while in other cascs, and especially from cultivation, it is so diffused that their fruit becomes edible. As a general rule, the plants of this order should be regarded with suspicion.

Bryonia dioica. - The fresh root is sold by herbalists under the names of White Bryouy and Mandrake root ; but the trne Mandrake root is derived from Muidragora officinalis. (Sce Mandragora.) In the form of a tiucture, in suall doses it is said to be useful in plenrisy ; but in large doses it acts as a hydragogue cathartic, and in excessive doses it is poisonous. The root is also employed as an external application to bruised parts. The young shoots when boiled are eaten as Asparagus.-B. alba, B. americana, and B. africana have similar properties. The root of B. epigaca is employed by the natives in India as an alterative in syphilis, and other affections. It is also reputed to be a porrerful remedy in snake bites.

Citrullus Colocynthis, the Bitter Apple.-This plant is supposed to be the wild vine of the Old Testament, the frnit of which is translated in our rersion wild gourd (2 Kings iv. 39). The pulp of this fruit, which is commonly known as the Bitter Apple or Colocynth, is, in proper doses, a valnable hydragogue cathartic, but in excessive doses it is an irritant poison. It owes its properties to a bitter ghtcoside called colocunthin. Two kinds are known in conmerce, viz. : Peeled Colocynth, which is chiefly imported from Spain and Syria; and Mrogador or Unpeeled Colocynth, which is obtained from Mogador. The former is the best kind, and is official in the British Pharmacopœia. It is commonly known as Turkey Colocynth, but that imported from France and Spain is sometimes distinguished as French and Spanish Colocynth. Mogador Colocynth is principally used by pharnacists for their show-bottles. The seeds possess the purgative property to a slight extent, but the pulp is by far the nore active part of the frnit. In parts of Africa, more especially in the Sahara, the seeds form an article of food.

Cucnmis.-The fruit of Cucumis sativus is the Cucumber ; that of C. Melo is the Melon.-C. trigonns and C. Hardwichii, both of which are natives of the East Indies, are reputed to be purgative, like the true official colocruth.

Cucurbita.-The frnits of several species or varieties are used as artieles of food. Thus the fruit of C. Citrullus is the Water-melon ; that of C. Pepo the White Gourd or Pumpkin ; that of C. Melopepo the Squash : and that of C. ovifera succada is the Vegetable Marrow. The fruit of sonte other species or varieties of Cucurbita are also eaten. The seeds of the Pumpkin are said to possess valnable anthelmintic properties in cases of tape-worm; the expressed oil is also reputed to be equally effectual. By some the fresh seeds are preferred. The seeds of the so-called C. maxima, Duch., or Red Gourd, have similar properties; this plant is, however, only another form of C. Pepo, and in Bentley and Trimen's 'Medicinal Plants' botli plants are treated of under C. Pepo. The seeds of the Water-melon and other speeies also possess diuretic properties. An oil called Egusé by the inhabitants of Yorruba in Africa, and which is largely used by them for dietetic purposes, and also as a medicine, is supposed to be derived from one or more species of Cucurbita. This oil is also well adapted for burning, and for the lubrication of machinery.

Fcballium offinurnm (Momordica Elaterium) is commonly ealled the Squirting Cncumber, from the finit separating when ripe from the stalk, aud expelling its seeds and juice with much violence (fig. 965). The sediment from the juice of the nearly ripe fruit, when dried, constitutes the official Eilaterium of the British Pharmacopoia. In doses of from $\frac{1}{10}$ to $\frac{1}{2}$ of a grain, when pure, it is a powerful hydragogue catlartic. It owes its properties to a white crystalline extremely bitter principle called Elaterin, which is also official in the British Phumacopocia. In improper doses elaterium is an irritant poison.

Feullaz cordifolia has iutensely bitter seeds, which are violently purgative and emetie; thus forming a striking exception to the generally harmless proproties of Cucurlitaceous seeds. The fruit is reputed to act as an antidote to poisoning ly strychnine. (See Strychnos.)

Lagenaria venlyuris is commonly called the Butile Gourd, from its lard
pericarp being used as a recejtacle for containing fluid. The seeds are purgative.

Luffir.-L. purgans and L. drastica.-The fruit of these plants is violently. purgative. It is commonly called American Colocynth. The fruit of other species has similar properties. The fruit of Laffa folida is termed the Sponge Gourd, as its pericarp mainly consists of a mass of fibres entangled together; it is cmployed for cleaning gnns and other analogous pnrposcs. The dried fibrous part of the poricarp of Luffa agyptiaca is used in bathrooms by Egyptian ladies to produce smoothness of the skin; it is commonly known as the Towel Gourd. These prepared pericarps may now loc commonly met with in this conntry nnder the name of "Loofahs." An infusion of the fresh stalks and leaves of $L u$ uffa amura, an Indian species, is said to be useful in affections of the splecn. It possesses bitter tonic and diurctic properties.

Sechium edule.-The green fruit is commonly paten in hot conntries. It is called Chocho or Chacha.

Telfairia pedata (Jollifia africana). -The seeds yield by expression a very good oil, resembling that obtained from Olives. They have a flavour like almonds, and are eaten in Africa. They have been imported into this country on account of their oil.

Trianosperma (Bryonia) ficifolia is the source of the celcbrated remedy known by the natives of the Argentine Republic as tayuru, and in Brazil as Leroy vegétal. It is said to possess powerful cmetic aud cathartic properties.

Trichosanthes anguinea is the Snake Gourd.-The fruits of this and some other species are eaten in India mixed with curries; but others are reputed to possess poisonons properties.

Oider 9. Begoniacew, the Begonia Order.-Character.Herbs, or low succulent shrubs. Leaves alternate, very unequalsided at the base (fig. 338), with large membranous stipules. Flowers unisexual, monocious. Calyx coloured. Male flower with 4 sepals, 2 of which are smaller than the others, and decussating with, and placed internal to them. Strmens numerous, distinct or united by their filaments into a column ; anthers 2 celled, clavate, with longitudinal dehiscence, clustered. Femule flower with 5 or 8 sepals. Ovary inferior, winged, 3-celled, from three large projecting placentas mecting in the axis; stigmas 3 , sessile, 2-lobed. Fruit winged, capsular. Seeds numerous, with a thin reticulated testa, and without albumen.

Distribution and Numbers.-Natives chiefly of India, Soutl America, and the West Indies. Illustrative Genera:-Begonia, Lem.; Diploclinium, Lindl. There are above 160 species.

Properties and Uses.-They are generally reputcd to possess astringent and bitter properties, and occasionally to be purgative. Some species of Begonia, as B. malabarica and B. tubcrosa, arc used as pot-herbs. The species of Begonia are much cultivated for the beauty of their flowers ind leares, and from their unequal-sided leaves, very characteristic of this genus, they are commonly termed Elepliant's Eirs.

Order 10. Datiscacex, the Datisca Order.-Character.Herbs, or in the casc of Tetrameles a large tree. Leares alternate, exstipulate. Flowers diclinous, apetalous. Male flower
with a 3-4-cleft calye. Stamens 3-7; anthers 2-celled, linear, bursting longitudinally. Femule flover with a superior 3-4toothed calyx, and a 1-celled ovary, with 3-4 polyspermous parietal placentas. Fruit dry, opening at the apex. Seeds without albumen, minute, numerous. This order is commonly placed amony the Monochlamydex; but its affinities are clearly with Begoniacere and Cucurbitacer, and hence it is placed here.

Distribution and Numbers.-They are widely distributed over the globe. Illustrative Genera:-Datisca, Linn.; Tetrameles, R. Br. The above are the only genera: there are 4 species.

Properties and Uses.-Of little importance. Useful fibres might probably be obtained from the plants of this order.

Datisca cannabina is bitter and purgative. The root is employed in Cashmere as a yellow dye.

Cohort 4. Ficoidales.-Stamens generally numerous, epigynous or perigynous. Gynœcium syncarpons ; ovary 1- or manycelled. Seeds albuminous or exalbuminous. Leaves simple when present, and exstipulate. Stem usually fleshy.

Order 1. Cactacee, the Cactus Order.-Character.-Succulent plants, which are usually spiny and leafless. Stems flesly, globular, columnar, flattened, or 3- or more angled, and alto-

Fig. 966.

Fig. 967.

Fig. 966. Vertical section of the flower of the Prickly Pear (Opmetia vulgrris). -Fig. 967. Diagram of the flower of the same.
gether presenting a peeuliar and irregular appearance. Flowers solitary, sessile. Sepals and petclls imbricate, usually numerous, in several whorls ($f i y .967$), and scareely distinguishable from each other, or rarely 4-merous ; adhercut to the ovary (fiy. 960). Stamens numcrous (figs. 966 and 967), with long filamcnts and versatile anthers. Ovary inferior (fiy.966), fleshy, 1-celled, with
parietal placentas (fig. 631); style 1; stigmas several. Fruit suceulent. Seeds numerous, parietal or imbedded in the pulp, without albumen.

Distribution and Numbers. - Natives almost exclusively of the tropieal regions of Ameriea. Illustratice Genera:-Meloeaetus, C. Barhin; Mammillaria, Haw. There are about 800 supposed speeies.

Properties and Uses.-The fruit of many speeies is somewhat aeid and agreeable, and is useful in febrile complaints. The fleshy stems of the Melon Caetus (Melocuctus) are eaten by eattle on aceount of their juiee in the dry districts of South Ameriea. Many speeies of Cereus, Epiphyllum, \&e., are cultivated on aeeount of their showy flowers. Some speeies of Cereus, as C. grandiflomes and C. nycticallus, open their flowers at night; they are remarkable for their size, some being as mueh as 1 foot in diameter.

Opuntia.-O. vulgaris.-The fruit of this plant is the Prickly Pear, which is much eaten in America and the South of Europe, and is nuw commonly importcd into this country, and nsed as a dessert fruit. It is not, however, much estcemed. The fruit of O. Tuna is of a carmine colour, and las beeu employed as a water-colour.-O. cochinillifera, the Nopal Plant, is cultivated in Mexico, Teneriffe, \&c., for the nourishment of the Cochineal Inscct (Coccus Cacti); the dricd female forming the Cochineal of commerce.

Pereskia aculeata.-The fruit of this plant is the Barbados Gooseberry.
Order 2. Mesembryanthacee or Ficoidef, the Iee-plant Order.-Charaeter.- S'ucculent herbs or shmus, with opposite or alternate, simple, exstipulate leaves. Calyx 3-8-partite, either free or partially adherent to the ovary. Petals either numerous and showy, or altogether absent. Stamens perigynous or epigynous, distinct, numerous or definite. Nvary inferior or nearly superior, usually many-celled, rarely 1 -eelled; placentas axile, free central, or parietal: styles and stigmes as many as the eells of the ovary, distinet; ovules usually numerous or rarely solitary, amphitropous or anatropous. Fruit usually eapsular and many-eelled, or rarely 1 -eelled, dehiseing in a stellate or eireumseissile manncr at the apex, or splitting at the base; or woody and indehiseent. Secds few or numerous, or rarely solitary ; embryo curved or spiral, on the outside of mealy albumen.

Diaunosis.-Sueeulentherbs or shrubs, with simple exstipulate leaves. Sepals definite, generally more or less adherent to the ovary. Petals very numerous or absent. Stamens perigynous or nearly epigynous. Ovary inferior or nearly superior; styles distinet; plaentas axile, free eentral, or parietal. Fruit capsular or indehiscent. Seeds with a eurved or spiral embryo on the outside of mealy albumen.

Division of the Order aml Illustratire Gencra.-The Mesembryanthacere may be dirided into three sub-orders as follows:-Sub-order 1. Memembryantiede--Leaves oppositc. Petals mi-
merous, conspicuous. Stamens numerous. Fruit capsular, dehiscent. - Mllustrative Genera: - Mesembryanthemum, Linn. ; Lewisia, Pursh.
Sub-order 2. Tetragonies.-Leaves alternate. Petals absent. Stamens definite. Fruit woody and indehiscent.-Illustrative Generct:-Tetragonia, Linn.; Aizoon, Linn.
Sub-order 3. Sesuviex.-Leaves alternate. Petals absent. Stamens definite. Fruit capsular, with transverse dehiscence.Illustrative Genera:-Sesuvium, Limu. ; Cypselea, I'urp.
The two last sub-orders are sometimes placed in an order by themselves, called Tetragoniacce, which is distinguished from the Mesembryanthacese by having alternate leaves, no petals, and definite stamens. The plants comprehended in the above three sub-orders are, however, so nearly allied, that we have, following Bentham and Hooker, placed them in one order as above. The tribe Molluginex of Caryophyllaceæ is also placed in this order by Bentham and Hooker.

Distribution and Numbers.-Natives exclusively of warm and tropical regions. A large number are found at the Cape of Good Hope. There are about 450 species.

Properties and Uses.-Several are edible; others yield an abundance of soda when burned; but generally the plants of the order are of little importance.

Lewisia rediviva.-The root is eaten in Oregon. It is sometimes ealled Tobacen-root from the smell of tobacco which it is said to acquire by cooking. According to M. Geyer, it is the racine amère of the Canadian Voyageurs; it forms a very agreeable and wholesome food when eooked.

Mesembryanthemum.-M. crystallinum is the Ice-plant. It is so called from its surface being studded with little papillæ (sce page 69) of an icelike appearance. Its juice is reputed to be diuretic. The ashes of this species, as well as those of M. copticum, M. nodiflorum, and others, contain much soda.-M. geniculitorum is employed as a pot-lerb in Africa, and its seeds are edible.-M. edule is called the Hottentot's Fig; its leaves are eaten. The fruit of M. requilaterale (Pig-faces or Canagong) is eaten in Anstralia.

Tetrugonia eapansa is used in New Zealand as a substitute for spinach. It has been cultivated in Europe, and employed for the same purpose under the name of New Zealand Spinach. It has been highly recommended for cultivation in this country. Its flavour is very similar to ordinary spinach.

Cohort 5. Umbellalcs.-Stamens few, epigynous. Gynœcium syncarpous; ovary inferior; ovules solitary, pendulous; styles surrounded at the base by an epigynous disk, generally distinct, or sometimes united. Seeds albuminous. Leaves exstipulate.
Order 1. Umbellifera, the Umbelliferous Order.-Cha-racter.-Herbs, shmbs, or very rarely small trecs, with usually hollow or rarely solid stems. Leaves altermate, generally amplexicanl (fig. 281), usually compound (fig. 363), or sometimes simple, and always exstipulate. Flover's generally in umbels,
which are usually compound (figs. 398, 430, and 968), or sometimes simple, and rarely the flowers are capitate, with (fig. 398, a) or without (fig .430) an involucre ; the partial umbels or umbellules also, with (fig. $968, b$) or without (fyg. 430, b) an involucel. Calyx superior, the limb entire, in the form of a ring, or 5-toothed, or obsolete. Petcls 5 (fig. 578), usually inflexed at the point, often unequal in size, inserted on the

Fig. 968.

Fig. 969.

Fig. 971.

Fig. 968. a. General nmbel of Tool's Parsley (.Eihusa Cynapium) in fruit. b. One of the umbellules, showing the 3 -leaved unilaternl pendulous in-volucel.-Fig. 969. A side view of the ripe fruit of Hemlock (Coniun meculatum).-Fig. 970. Transverse section of the fruit of the same.Fig. 971. Vertical section of one of the halves (mericarps) of the same fruit. The letters refer to the sme parts in the three linst figures. a. Ridges. b. Chaunels. d. Albumen. f. Embryo. g. Remains of the styles. h. Axis. i. Prolonged axis or carpophore.
calyx outside the disk which erowns the ovary; astivation imbricate, or rarely valvate or induplicate. Stamens 5, inserted with the petals and alternate with them (fig. 578), inctirved in festivation. Ovary inferior (fig. 578), crowned by a donble fleshy disk (stylopod) (fig. $578, d$), 2-eelled, with a solitary pendulous ovule in each eell; styles 2 ; stigmas simple. Fruit called a cremocarp or diachaniom (figs. 717 and 9(9), ennsisting of 2 earpels (mericarps) adhering by their face (commissure) to
a common axis (carpophore), which is undivided (fig. 971, h) or forked (fig. 717), from which they ultimately separate and become pendulous (fig. 717) ; each mericarp (figs. 969 and 970) an indehiscent 1 -seeded body, traversed on its clorsal surface by vidges, a, of which there are usually 5 ; but sometimes there are 4 others, alternating with them, in which case the former are termed primary, and the latter secondary ridges; the spaces between the ridges are called channels (vallecula),万, in which are frequently oily receptacles called vitto (fig. 170). Seed pendulous (fig. 971) ; embryo minute, f, at the base of abundant horny albumen, d; rudicle pointing towards the hilum.

Diagnosis.-Herbs or shrubs. Stems generally holluw ; leares alternate, usually compound and amplexicanl, or sometimes simple, and always exstipulate. Flowers almost always arranged in a more or less umbellate manner, or rarely capitate. Calyx superior. Petals and stamens 5, inserted on the outside of a double fleshy epigynous disk. Ovary inferior, 2-celled, with a solitary pendulous ovule in each cell ; styles 2. Fruit consisting of two indehiscent carpels, which separate when ripe from a common axis or carpophore. Seeds pendulous, one in each carpel, with a minute embrgo at the base of abundant horny albumen.

Division of the Order and Illustrative Genera:-The order has been divided into three sub-orders from the appearance of the albumen, but these are by no means well defined. They are as follow :-
Sub-order 1. Orthospermee.-Albumen flat on its facc. Illustrative Genera:- Hydrocotyle, Linn.; Enanthe, Linn.; Heracleum, Linn.
Sub-order 2. Campylospermee.-Albumen rolled inwards at the margins, and presenting a vertical furrow on its face. Illustrative Generc:-Anthriscus, Hoffm. ; Chærophyllum, Linn. ; Conium, Linn.
Sub-order 3. Celospermef.-Albumen with the base and apex curved inwards on its face. Illustrative Genera:-Ormosciadium, Boiss. ; Coriandrum, Linn.

By Bentham and Hooker this order has been divided as follows :-

Series 1. Heterosctadiee.-Umbcls generally simple or very irregularly compound, or the flowers are capitatc. Vitte nonc or obscure. Illustrative Genera:-Hydrocotyle, Linn.; Astrantia, Linn. ; Eryngium, Linn.
Scries 2. Haplozycies.-Umbels compound ($f(g .430$). Primary ridges of fruit alone conspicuous (figs. 969 and 970). Vittre usually obvions. Ilhustrative Genera:-Conium, Linn.; Myrrlis, Scop.; Feniculum, Adanson.

Series 3. Diplozygief.-Umbels usually compound (fig. 398). Fruit with primary and secondary ridges generally woll markcd. Illustrative Genera:-Caucalis, Linn.; Daucus, Linn.

Distribution and Numbers.-Chiefly natives of the northem parts of Europe, Asia, and America. Many occur, however, in the southern hemisphere. They are rare in tropical regions except upon the mountains, where they are by no means uncommon. There are about 1,400 species.

Properties and Uses. - Extremely variable: thus, some arc edible; others aromatic and carminative, and, in somc cases, stimulant and tonic, from the presence of a volatile oil; some, again, contain a narcotico-acrid juice, which renders them more or less poisonous; whilc others are antispasmodic and stimulant from the presence of a more or less foetid gum-resin, which is essentially composed of gum, resin, and volatile oil. This oil in the case of Asafoetida contains sulphur.

1. Esculent Umbellifere.

Anthriscus.-Two speeies of this genus are eultivated.-A. Cerefolium, Chervil, the leaves of whieh are nsed for fiavouring soups, salads, \&e.: and A. bulbosus, Parsnip Chervil, for its edible roots.

Apium gravenlens, Celery.-By eultivation with the absence of light, the stems and petioles become sucentent and develop but little aromatic oil, and are then edible.

Anesorhiza capensis is eaten at the Cape of Gond Hope.
Arracacha esculcuta, Arraeaeha, a native of New Granadn, has large eseulent rnots.

Buninm.-B. flexuosum and B. Bulbocastanum have roundisli tubercular roots, which are edible: they are kuown under the name of Eartl-nuts or Pig-nuts.-B. ferulefolium, a native of Greeee, has also edible tubercules, which are termed Topana.

Carum Gairdneri.-The roots of this plant are mueh eaten by the Indians of the Pacifie const of North Ameriea, either raw or boiled with other substances.

Crithmum maritimum, Samphire, is commonly used as an ingredient in pickles.

Daucus Carota var. sativa, the eultivated or Garden Carrot, is well known for its esenlent roots.

Fcouicnlum.-F. capillaceum (F. vulgare) is the common Fennel. which. when eultivated, is so well known as a pot-herb and garnishing substance. $-F$. capcnsis is a Cape esculent.

Fernla.-The roots of several species of this genus are eaten in Oregon and some other parts of North America.

Haloscins scoticum is the Sentish Lovage.
Helosciarlium californicmm.-The roots are said b. M. Geyer to be very delicious; they are caten by the Saptomia Indians in Oregon.

Cuanthe pimminelloides is said by linder to have wholesome rnots. but the species of Cuanthe are generally very pmisonous. (See Poisonous Umbellifera.)

Pusitinaca sativa, the Parsnip. -The roots of the eultivated plant are the parts eaten.

Petroselinum sativum is the Common Parsley of our gardens. An oily liquid, which las been named apiol, may be obtained from the
fruits; it has been reputed of value in intermittent fevers, and as an cmmenagoguc.

Prangos pabularia.-The herb is used as sheep food in Tartary and the adjoining comntries, and has been introduced as a forage plant into this eountry. The prevalent idea that its use correets the tendeney to rot in sheep is erroneous.

Sium Sisarum is eommonly known under the name of Skirret. It is sometimes eultivated for its edible roots.

Smyrnium Olusatrum, Alexanders.-This plant was formerly eultivated like Celery.

2. Aromatic, Carminative, Stimulant, And Tonic Umbelliferfe.

Peucedanum (Anethum) graveolens, the Dill; Carum Carui, the Caraway ; Coriandrum sativum, the Coriander ; Cuminum Cyminum, the Cummin; Duucus Carnta, the Carrot; Foniculum capillaceum (vulgare), the Fennel ; Fcniculum Pummrium, an Indian species; Pimpinclla Anisum, the Anise; and Ptychotis (Carum) Ajowan, the Ajwain or Omum, a native of Egypt, Persia, Afghanistan, \&e., and mueh eultivated in India. The fruits of the above plants, eommonly termed seeds, all possess aromatie, carminative, and more or less stimulant properties, whieh are due to the presence of volatile oils eontained either in the vitto, or their periearps generally. Some are also employed as eondiments, and for flavouring lifueurs. They are too well known to need any detailed deseription. The fruits of Levisticum nfficinale, Lovage, have somewhat similar properties. The fruits of Percedanum graveolens, Carum Carui, Coriandrum sativum, Pimpinella Anisum, and Foniculum capillaceum, as also their volatile oils, except that of Fennel, are official in the British Pharmacopocia.

Archangelica officinalis, Angeliea.-The root and fruits are pungent aromatie stimulants and mild tonies. They are prineipally used in the preparation of gin, and the liqueur known under the name of bitters. The young shocts are also made with sugar into a sweetmeat or eandy, whiels forms a very agreeable stomachie. The petioles were formerly blanehed and eaten like Celery.

Daucus Carota var. sativa.-The roots are used in the form of a poultiec, on aceount of their moderately stimulant properties.

Eryngium campestre and E. maritimum, Eryngo, lave sweet aromatic roots, possessing tonie properties.

Ferula (Euryangium) Sumbul.-The root, whieh is official in the British Pharmaeopœia, is imported into this country, by way of Russia, from Turkestan and Bueharia. It is also offieial in the Pharmaeopeia of India. It is eommonly known as Sumbul-ront, and also, from its strong musky smell, as Musk-root. It is a nervinc stimnlant, and antispasmodie.

Mydrocotyle asiatica.-The leaves, particularly when in a fresh state, are employed in India botli internally and externally, in leprosy, seeondary syphilis, \&c. They are official in the Pharmaeopoia of India. As a remedial agent in leprosy they cxcited much attention some years sinee in the Island of Mauritius, udder the name of Bcvilacqua.

Meum.-M. athamanticum, Bald-money or Mew, and M. Mutellina, have aromatic tonie ronts.

Selimum palustre.-The root has long been popularly used in some provinces of Finssia as a remedy in epilepsy. It has also been employed in hooping-cough, and other nervous affections; lut when tried in regular practice its use has not been attended with any marked suecess.

3. Iotsonous Umbetliferd.

The poisonons properties of these plants are due to the presence of a narentiro-acrib juice, and seem to vary aeeording to the nature of the soil and elimate, for Sir liobert Christison has ucticed that certain speeies which
are generally regarded as poisonous are quite harmless when oltained from certain loealities near Edinburgh. This is a very important poiut, and one which requires further investigation. Should it prove to be true in all cases, it woukd probably account in a great degree for the varving strength of the official preparations of Hemloek, which is commonly believed to arise from their careless preparation; and also for the different opinions entertained as to the poisonous or non-poisonous properties of some other species of Umbelliferous plants.

Ethusr Cynapiun, Fool's Parsley, is a very common indigenons plant, and is usually regarded as possessing poisonous properties; lont this is altogether contrary to the experience of Dr. John Harley. Ficinius and Walz hare, however, both isolated alkaloids: the first a erystallisable, verypoisonons snbstance; the latter a liqnid alkaloid, resembling, it is said, conine and nicotine. The leaves have been mistaken and eaten for those of Parsley.

Enanthe.-Finanthe crocata, Hemlock Dropwort or Dead-tongue, Enanthe Phellandrium, Fine-leaver Water Dropwort, Enanthe fistulosu, and some other species, are very poisonous. The roots of QEnanthe pimpinelloides, as already noticed. are said, however, to be wholesome. (See Esculent Umbelliferee.) All the above speeies are indigenous.

Cicuta.-C. virosa, Water Hemlock or Cowbane, is another indigenous plant of a highly poisonous nature. Its poisonous principle has been termed cicutoxin.-C. maculata, a native of America, has also very poisonous roots, which from having been mistaken for those of other harmiless Umbellifera, have not nnfrequently led to fatal results. The latter plant has been used as a remedy in nervons and sick headaches.

Conium maculatum, Hemloek.-This plant is indigenons; the fresh leaves and young branches and the fully developed green fruit are official in the British Pharmacopeia. In proper doses hemlock is extensively employed in medicine to relieve pain, relax spasm, and compose nervons irritation in general. It owes its properties chiefly to the presence of a colonrless oily liquid alkaloid with a penetrating mouse-like odour, to which the name of Conine or coniune has been given. In improper doses Hemloek is a powerful poison, and fatal accidents have arisen from its having been mistaken for other harmless Unbelliferous plants. Conine is said to be useful in acute mania; and Hydrobromate of Conine has been nsed suecessfully in spasmodic affections.

4. Umbelliferfa melding fetid Gum-Resins.

The most important of these gum-resins are, Asafetidir, Ammoniacum, and Galbunum; all of whieh are official in the British Pharmacopocia. Opoponax and Sagapenum are others, hut they are now searcely ever used in this country. They all possess antispusmodic and more or less stimulant properties; this is especially the ease with Asafoctida, which is also extensively used as a condiment in Persia, India, and other parts of the East, in the same way as garlic aud other allied plants are employed in Europe. Ammoniacum and Galhanum also possess expectorant properties, nore paticularly the former, and both are used extermally in the form of plasters to pronote the absorption of tumours and chronic swellings of the joints. The plants vielding these gum-resins are unt in all eases known, but they are exclusively natives of Persia, Afghanistan, Thibet. and the adjacent regions, except the one rielding Opoponix, whieh is found in the South of Europe, and in Sricia. These gum-resins are chiefly imported into this country from lndia, although sometincs from the Levant. They are commonly' seen in two forms-that is, in rombish or irregulur tears; or in masses formed by more or less amalgamated tears.

Aumoniacum is yielded by Dorema Ammoniacum, Don, and probably
other speeies. It exudes from the stem seemingly to some extent spontanenus's, but principally in consequenee of punctures produced by innmmerable bectles when the plant has attained perfeetion. It appears to be solely colleeted in Persin. The root of D. Ammoniarum is used in India in thẹ Parsee fire-temples as incense, and is imported from Persia under the name of Boi. This root is the soncee of the Indian Sumbnl-ront of Pereira.

Asafcetirla.-This is obtainell br ineision from the living ronts of Fernla Narthex, Bniss., F. Scorodosma, Benth. et Hook. fil., and probably other species, as $F_{\text {a }}$ alliacea, in Thibet. Afghanistan, and Persia. We have, however, no positive evidence of F. Narthex having been found exeept in Thibet. The fruit is also sometimes emploved in Jndia nnder the name of Anjudan.

Galbanum.-This gum-resin is prineipally derived from Ferula galbmiflua, Boiss. et Bulise; but also from F. ritricaulis, Boiss., and probably from F. Schair. Boszezow, and other species.

Opoponax appears to be ohtained from ineisions into the living root of Opoponax Chironium. whieh was formerly ealled Pastinaca Opopnnax.

Sagapenum.-Tothing positive is known with respeet to the plant vielding this substanee. It has been supposed to be derived from the root of Ferula persica, or some other speeies of Fprula.

Thapsia garganica is said to be the Silphinm plant of the ancients. The sum-resin from which the blistering property has been removed has been highly recommended as a remedy in pulmonary affeetions, more espeeially in phthisis. The Silphium plant is, however, sometimes stated to be the Narthex Silphium, Oersted.

Order 2. Aralmacex, the Ivy Order.-Character.-Trees, sh.rubs, or herbs. Leaves alternate, exstipulate (fig. 225). Flowers generally in umbels or capitate, usually perfect ($f i g .9_{4}^{-2}$) or rarely unisexual. Calyx more or lcss superior (fig.972), entire or tonthed. Petals (fig. 972), 2, 4, 5, 10, cleciduous, almost always valvate in æstivation or rarely imbricate, generally distinct or rarely monopetalous ; occasionally wanting. Stamens corresponding in number to the petals and alternate with them ($f i g .972$), or twice as many, inserted on the outside of a clisk which crowns the ovary; anthers introrse, versatile ($f i g .972$), with longitudinal dehiscence. Ovary (fig. 972) more or less inferior, usually with more than 2 cells, or very rarely 1 -celled, crowned by a disk, each cell with a solitary pendulous anatropous ovile; styles as

Fig. 9iz.

Fig. 972. Flower of the common Ivy (IIteder(t Helix). many as the cells, sometimes united; stigmas simple. Friit usually 3- or more celled, succulent or dry, each cell with 1 pendulons seed, with fleshy albumen.

Diagnosis. - Closely allied to Umbellifere, from which it may be gencrally distinguisher by the valvate restivation of the corolla ; and by the fruit being usually 3 - or more celled, the carpels of which do not separate when ripe from a carpophore. There is also a greater tendency among Araliacere to form a woody stem than in Umbellifcre.

Distribution and Numbers.-These plants are universally distributed, being found in tropical, sub-tropical, temperate, and the coldest regions. Ilustrative Genera:-Panax, Lim. ; Hedera, Limn. The order includes about 300 species.

Properties and Uses.-It must be regarded as a somewhat remarkable fact that, nearly allied as the Araliacere are to the Umbelliferæ, they never possess to any degree the poisonous properties which are frequently found in plants of that order. The Araliaceæ are generally stimulant, aromatic, diaphoretic, and somewhat tonic.

Aralia.-A. undicaulis is a native of North A merica, where its ronts are used popularly as an alterative and stimulant diaphoretic in rheumatic affections; they are eommonly known under the name of False, Wild, or A merican Sursaparilla, and are sometimes forwarded to this ennntry. Under the name of Rablit roots they have been also nsed as a remedy in syphilis by the Crees, in North America. The bark of A. spin sa, ealled Angelica or Toothache $T \because \mu$ in North Ameriea, is nsed as a stimulant diaphoretie. A. racemosa, A. spinosa, and A. hispida vield aromatie gum-resins. $-A$. edulis is used in China as a diaphoretie. Its young shoots and roots are also eaten as a vegetable in China and Japan.

Gunnera scabra is remarkable for its enormous leares, whieh are sometimes as mueh as eight feet in diameter ; the fleshy petioles resemble those of the Rhubarbs in appearance, and are eaten. Its ronts are astringent. This geuns is p?aced by Bentham and Hooker under Haloragacere.

Hedera Helix, the Ivy, is repnted to be diaphorctie, and its berries are emetic aud purgative. It eontains a peenliar aeid called hederic acid, whieh is supposed to be a glucoside.

Helwingia.-This genus, whieh enntains but one species, H. ruscifolia, has been sometimes made a distinet order called Helwingineer. The leaves are used in Japan as a vegetable.

Panax.-P. Ginseng.-The root of this plant, whiel is a native of Northern Asia, constitutes Ginseng, whieh is so ligluly prized by the Chinese as a stimulant and aphrodisiae, that they will sometimes give for it its weight in gold. The name Ginseng signifies ${ }^{\text { }}$ W onder of the World.'- P. quinguefolium is a native of North America. Its root is known under the name of American Ginseng. It has sinilar properties to the preceding.- P. PseudoGinseng, a native of ladin, also appears to have analogous properties.P. fruticosum, P. cochleatum, and P. Anisum have aromatic propertics.

Tetrapanar (Araliu) papyriferum.-From the pith of this plant, a native of the island of Formosa, the rice paper, which is used by the Chinese for making artificial flowers, \&c., is prepared.

Order 3. Cornacem, the Dogwood Order.-Cliaraeter.Shrubs, trees, or rarely herbs. Leaves simple, opposite or very rarely alternate, exstipulate. Flowers perfect or ravely unisexmal, arranged in heads, or in a corymbose, or nmbellate manner, with or without an involucre. Culye superior. 4-lobed. Petals 4, broad at the base, inserted at the top of the calyxtube; astivation valvate. Stamens 4, inserted with the petals and alternate to them. Ovary inferior, surmomited by a disk, usually 2-celled ; ovule pendulous, solitary, anatropous; style and stigma simple. Pruit drupaceous, crowned with the remains of the calyx. Seed pendulons; embryo in the axis of flesly albumen.

Diagnosis.-Trees, shrubs, or rarely herbs, with simple exstipulate, and (with but one exception) opposite leaves. Flowers perfect, or sometimes unisexual. Calyx superior, 4 -lobed. Corolla with 4 petals, and a valvate estivation. Stamens 4 , alternate with the petals. Ovary inferior, surmounted by a disk, usually 2 -celled, with a single pendulous anatropous ovule in each cell; style and stigma simple. Fruit drupaceous. Embryo in the axis of fleshy albumen.

Distribution and Numbers.-Natives of the temperate parts of Europe, Asia, and America. Illustrative Genera:-Cornus, Linn.; Ancuba, Thunb. There are above 70 species.

Properties and Uses.-The plants of this order are chiefly remarkable for tonic, febrifugal, and astringent properties.

Cornus,-The bark of the root of C. florida is official in the United States Pharmacopeia, and is used as a substitute for Peruvian bark in the treatment of intermittent and remittent fevers. It is therc commonly known mader the name of Dogwond Bark. The barks of C. circinatu and C. sericea are also official in the United States Pharmaeopeia, and have similar properties to the former. The frnit of C. mascula, the Cornelian Cherry, is astringent, a property also possessed by the leaves and flowers. The fruit, called Krania, is much esteemed by the Turks on account of its agrceable acid flavour. They use the juice in their sherbets and for other purposes. The fruits of C. suecica are used by the Esquimaux for food; and in the Highlands of Scotland they are reputed to possess tonic properties, the plant yielding them beins there termed lus-e-chrasis, or plant of gluttony, in allusion to the supposed effect of the frnits in increasing the appetite. The seeds of C. sanguinea, the common Dogwood of omr hedges, yield a fixed oil, which has been used for brorning in lamps. Chareoal for the manufacture of gunpowder is also prepared from the wood. The fresh twigs of C. fforidn or other species are much used in the United States and in the West Indies to rub on the teeth for the purpose of whitening them.

Order 4. Garryacee, the Garrya Order.-Character.Evergreen shrubs. Leaves opposite, exstipulatc. Flowers unisexual, apetalous, amentaceous. Male florer with 4 sepals, and stamens alternating with them. Female flower with a superior 2 -toothed calyw, and 1 -3-celled ovary with 2 styles, and 2 pendulous stalked ovules. Fruit indehiscent, baccate, 2 -seeded. Seeds with a very minute embryo in abundant albumen. By Bentham and Hoolier this order is inchaded in Cornacex.

Distribution and Numbers.-Natives of the temperate parts of North America, or of the West Indies. Illustrutive Genera:Garrya, Dougl.; Fadgenia, Endl. These are the only genera; they include 6 species.

Properties and Uses.-But little is known of the properties of these plants; but Garrya Fremontii, a native of Califoruia, is known as the Quinine Bush from its leaves being used in fevers and ague.

Order: Alangiacee, the Alangium Order.-Character.Trees or shrubs. Leates alternate, cotire, exstipulate, without
dots. Calyx superior, 5-10-tonthed. Petals 5-10, linear, reflexed. Stamens equal in number to, or twice or four times as numerons as, the petals; enther's adnatc. Ovary inferior, 1-2-cclled; style siople; ornle solitary, pendulous. Fruit drupaccous, more or less united to the calyx, 1-celled. Seed solitary, pondulous, with fleshy albumen, and large flat leafy cotyledons.

Distribution and Numbers. - Natives of various parts of the East Indies and the United States. Illustrative Genera:Alangium, Lam. ; Nyssa, Linn. There are about 8 specics. By Bentham and Hooker they are included in Cornacex.

Properties and Uses.-Of little importance. Some specics of Alangium are said to be purgative and aromatic ; and their succulent fruits are also edible. The fruit of Nyssa capitata or N. candicans is used occasionally as a substitute for Lime frıit, whence it is called the Ogechec Lime.

> Artificial Analysis of the Orders in the Sub class Polypetalx.

Series 3. Caljciflore.

1. Flowers with more than 20 stamens.

A. Ovary wholly superior.
a. Leaves without stipules.

1. Curpels more or less distinet, (at least as to the styles) ; or solitary.
Stamens distinctly perigynous. Ovnles suspended, erect, or ascending . . Rosacex.
2. Carpels wholly combined, (at least as to the ovaries).
Sepals more than 2 , united into a tube. Ovary with axile placentas .

Lyithraces.

1. Leaves with stipules.
2. Carpels more or less distinct, (at least as to the styles) ; or solitary.
Calyx with the oddl lobe inferior. Stamens somewhat hypoyvnous . a Sames
Calyx with the old lobe superior. Stamens distinctly perigyous . \cdot.
3. Carpels wholly eombined, (rit least as to the ovaries).
Leares with eircinate vermation. Placentas parictal

Droscracer.
B. Ovary inferior, or partially so.
a. Leates without stipules.

1. Placentas purietul.

Petals definite in number, distinet from the calya \cdot.
Petals indefinite in number, gradnally passing into the sepals.

Lomsiserie.
Cuturex:
2. Plecentas in the axis.

Leaves with tramsurent dots.
Uvary 1-celled Chrmatarcitucere.
Ovary with more than one cell . Myrtacea.
Leares without dots.
Petals very numerous . . . Mesembryinthacere.
Petals definite in number.
Petals narrow and strap-shaped . Alcugiucer.
Petals roundish and concave.
Styles united Baringtoniuceæ. Styles distinct Philudelphacere.
b. Leuves with stipules.

1. Curpels nore or less distinct, or soletary . Rosacer.
2. Carpels wholly combined (at least as to the ovaries).
Leaves opposite Thhizophoracer.
Leaves alternate.
Placentas axile Lecyhiducer.
Placentas parietal Homeliucere.
3. Flowers with less than 20 stamens.
A. Opary wholly superior.
a. Leaves without stipules.
4. Curpels more or less distinct, or solitary.

Carpels with hypogynous scales.
Each carpel laving one scale . . . Cirussulucex.
Each carpel having two scalcs . . . Fruacoucer.
Carpels withont hypogynons scales.
Carpels solitary, or all but one imperfect.
Leaves without dots.
Ovnles collatcral, ascending, scssile . Comuaracea.
2. Curpels wholly combincd, (at least by their neuries).
Placentas parietal.
Flowers with a ring or crown.
Flowers unisexual Papayacer.
Flowers lermaphrodite . . . Muleshemitere.
Flowers without a ring or crown - Turnerucea.
Placentas in the axis.
Styles distinct to the base.
Carpels eacl with one hypogyuons
seatle Crassulares.
Carpels without hypogyuons scales . Sarifinatacer.
Styles more or less combined.
Coalyx imbricate. Ovnles suspended. Bruniucer.
Culys valvate.
Leaves simple. Calyx tubular - Lathrucea.
b. Leaves with stipulcs.

1. Carpels distinct, or solitary.

Fruit legnminous; odd lobe of the enlyx inferior

Leguminoss.
Fruit not leguminous; odd lobe of the calyx supherior Rosuce .
2. Carpels wholly combincd, (at least by therr ovaries).
Placentas parictal.
Flowers with a ring of appendages . Passifforacex.
Placentas in the axis.
Styles distinet to the base.
Petals conspicuons.
Leaves oppositc Cипоіисеж.
Leaves altcrnate Suxifragaceæ.
B. Evary inferior, or partially so.
a. Leaves without stipules, or with cirrhose appendages.
Plicentas parietal.
Flowers completely unisexual. Monopetalous.

Cucurbitacer.
Flowers hermaphrodite or polygamons. Petals distinct

Ribesiaces.
Placentas in the axis.
Flowers in umbels, or capitate.
Styles two Umbelliferce.
Styles three or more . . . Araliucer.
Flowers not in umbels.
Carpel solitary.
Petals strap-shaped, reflexed . . Alangiacere.
Petals oblong.
Cotyledons convolutc . . . Combretucex.
Cotyledons flat Halorugacew.
Carpels two or more, divaricating at the
арех.
Leaves altcrnate. Herbs . . . Eaxifragaces.
Leaves opposite. Shrubs . . . Hydrangeacer.
Carpels two or more, not divarienting, combined.
Calyx valvate, or the limb obsolcte.
Stamens alternate with the petals if isomerons.

Albumen none. Ovules horizontal or ascending

Ontyracer.
Albumen present. Ovules pendulons Haloragacer.
Albumen abundant. Flowers conspicnous

Cornacex.
Calyx not valvate.
Stamens doubled downwards. Anthers with appendages, Leaves ribbed on curved. Authers short. Stamens only curved. Authers short. Leaves dotted .
Leaves not dotted.
Sceds rery numerons, mimute
Sceds few
Melastomucear
-
b. Leaves with stipmes.

Ilacentas parictal.
Stipules cirrhosc. Monopetalous . . Cucurlitacere. Stipules decidıons. Petals distinet . . Momahacea.

> Placentas in the axis.
> Stamens if equal to the petals, alternate with them.
> Leares oppusite Rhizophoracea.
> Leaves alteruate Humimeliducese

Althongh it generally happens that the Calyciflore have dichlamydeous flowers, polypetalous corollas, and perigynous or cpigynons stamens, yet many exceptions occur, which should be particularly noted by the student. Thus, we find apetalous plants in the Leguminnsx, Rosacex, Saxifiragacer, Cunoniucer, Cyаssulaceæ, Hamamelidscex, Haloragaceæ, Callitrichzceæ, Rhizophoracer, Combretacer, Sumyduceæ, Lousacer, Datiscaceæ, Mesembryanthucew, Araliacer, Garryacer, Myrtacer, Lythraceæ, Onagracer, Passifloracer. Monopetalous corollas oceur in Papayacer, Cucurbitacer, Belvisiucea, Crussulacea, Droseracex, Brunaceæ, Melastomucce, Turneracea, Cactacea, Lecythidacer, Araliacea. In some Calyciflore, again, the stamens are wholly or in part hypogynous or nearly so, as in Connaracer, Leguminosre, Suxifiugacew, Crassulaces, Francoacere.

Unisexual flowers always occur as a rule in Callitrichacex, Papayacea, Garryacex, and Cucurbitacex, and sometimes in Rosaceæ, Hydrangeacer, Passiftoracer, Ribesiacer, Haloragacer, Combretacer, Cornacex, Hamameliducex, and Araliaceæ.

Sub-class II. Gamopetalx or Corolliflorx.

Series 1. Inferæ or Epigynæ.
Cohort 1. Ruliales.-Stamens epipetalous and alternate with the lobes of the corolla. Ovary 1- or more celled, but usually 2 -celled ; cells of the ovary 1-many-ovuled. Seeds albuminous. Leaves generally opposite.

The orders placed in this series of the Corolliflore were included by De Candolle in the Calyciflora; the Corolliflore being restricted by him to those monopetalous orders in which the ovary was superior, and which are placed in our arrangement in the two series Superæ and Dicarpie. But the simplest arrangement for the student is to consider the Monopetalous Corolla as the essential mark of the Gamopetale or Corolliflore, and in accordance with this view we have this sories of the Gamopetalee, called Inferæ or Epigynæ. It should be noticed, however, that some monopetalous plants occur in certain orders of the Polypetale, as indicated in our artificial analyses of the three series of that sub-class.

Order 1. Caprifoliacees, the Honeysuckle Order.-Cha-racter.-Small trecs, shrubs, or rarcly herbs. Leaves oppositc (fiy. 285), usually exstipulate. Calyx superior (fig. 973), 4-5cleft. Corolla monopetalous (fiy. 974), 4-5-cleft, tubular or rotate, regular (fig. 974) or irregular, rarcly polypetalous. Stamens (fig. 974) 4-5, inserted on the corolla, and altcrnate
with its lobes. Ovary inferior (fig .973), 1-6-celled, often with 1 ovule in one cell, and several in the others, pendulous or suspencled ; style filiform or absent ; stigmas 1-3 (figs. 973 and 974) or 5. Fruit indehiscent, 1- or more celled, dry or succulent, and crowned by the persistent calycine lobes. Seeds solitary or numerous ; embryo small (fig. 975), in fleshy albumen.

Diagnosis.-Small trees, shrubs, or rarely herbs, with opposite usually exstipulate leaves. Calyx superior, 4- $\bar{\delta}$-cleft, persistent. Corolla monopetalous, and bearing commonly as many

Fig. 973. Pistil of the common Elder (Sumbucus nigra) surrounded by a superior 5-lobed calyx. - Fig. 974. Entire flower of the same. Fig. 975. Vertical section of the seed.
stamens as it has lobes, to which they are alternate; regular or irregular. Ovary inferior, 1-6-celled. Fruit indehiscent. Seeds with fleshy albunien.

Distribution and Numbers.-Chiefly natives of the northern parts of Europe, Asia, and Amcrica. They are rare in the southern hemisplere. Illustrative Genera:--Lonicera, Lima.; Viburnum, Linn.; Sambucus, Linn. There are about 220 species.

Properties and Uses.-The plants of this order have frequently showy flowers, which are also cominonly sweet-scented; hence many are cultivated in our gardens and shrubberies, as Honeysuckles, which are specics of Caprifolium and Lonicera; Guelder Roses (Viburnum species), Laurnstinus (Viburnum Tinus), Snowherry (Symphoricarpus racemosus), \&c. Some are emetic and purgative ; others astringent, sudurific, or diuretic; and some are acrid. A case of poisoning by the berries of the common Honeysuckle has also bcen recently reported. But the patient (a little boy) recovered ; the symptoms resembled those caused by belladonna.

Sambucus nigru, the common Elder.-Several parts of this plant have leen longe employed in medicine. Its flowers, which are official in the british l'harmacopecia, contain a volatile oil, which renders them mildly. stimulant aud sudorific. They are chiefly used in the formation of a cooling
ointment, and in the preparation of the official Elder-flower Water: The inner bark, buds, and leaves have more or less purgative and emetie properties. The frint is also mildly aperient and diuretic. It is extensively Ilsed for the purpose of adulterating Port-wine, and in the manufacture of Elder Wine. The wood is also employed for making skewers, \&c.e, and the pith in electrical experiments. The flowers of S . canudensis lave similar properties to those of S. nigra, and are official in the United States I'harmacopøeia.

Triosteum perfoliatum is a mild purgative and emetie. Its ronsted seeds have been used as a substitute for coffee.

Viburnum.-V. Luntuna, the Mealy Guelder Rose, or Wayfaring Tree, has a very acrid inner bark. It is sometimes considered as a vesicant. $-V$. Opulus, the Guelder Rose, is eommonly regarded as emetic and cathartic.\boldsymbol{J}. cassinoides. The leaves of this plant, mixed with those of Prinos glaber, are employed in North Ameriea as a sullstitute for 'Tea, under the name of Appalachian Tea (see Prinos). The blaek fruits of the Himalaya species are cdible and agreeable.

Order 2. Rubiacee, the Madder Order.-Character. Trees, shrubs, or herbs. Stems rounded or angular. Leaves simple, entire, and either opposite and with interpetiolar stipules (fig. 382), or whorled and exstipulate (fig. 286). (Although practically ue speak of whorled exstipulate leaves, the whorls of apparent

Fig. 976.
Fig. 977. Fig. 978. Fig. 979.

Fig. 976. Dingram of the flower of the Madder (Rubia tinctorum).-Fiy. 977. Pistil of the Madder, with its ovary milherent to the calpx, cal. 31. Styles and stigmas.-Fig. 978. Pistil of the Goose-grass or Clenvers ((ialium Apurine) ardherent to the calyx, b, hy its ovary. st. Styles.Fil. 979 . Vertical section of the fruitand seeds of the same. a. Albumen. c. Emhryo. μl. Placenta.
leares are in reality partly formed of leaves and partly of stipules which resemble the true leaves in appearance.) Inftorescence cymose. Calys superior (figs. 977, cal, and 978, b), with the limb 4-6toothed or entire, or obsolete. Corolla epigynous, monopetalous, regular, tubular or rotate, with its lobes corresponding in number to the teeth of the calyx when the latter is divided; estication valvate (f g. 9.976). Stamens inserted upon the corolla and equal in number to, and alternate with, its lobes (fig. 976). Ocary inferior (figs. 977 and 978), crowned by a disk, usually 2-celled (fig. 976) or sometimes more; style 1 or 2 (fiys. 977 and 978 , st) ; stigma simple or divided. Fruit inferior, 2 -celled or rarely more, dry or succulent, indehiscent or separating into two or more dry cocci. S'eeds 1 (fiy. 979), 2, or more, in each
cell ; when few they are erect or ascending, or when numerous, then attached to axile placentas ; embryo small, in horny albumen ($f i g .979, a$).

Diagnosis.-Trees, shrubs, or herbs, with opposite simple entire leaves, interpetiolar stipules, and rounded stems; or with whorled exstipulate leaves, and angular stems. Calyx superior. Corolla regular, epigynous, with its lobes valvate. Stamens equal in number to the teeth of the calyx and segments of the corolla, with the latter of which they are alternate, epipetalous. Ovary inferior, 2- or more celled, with an epigynous disk ; ovules anatropous. Fruit inferior. Seeds 1 or more in each cell, with horny albumen.

Division of the Order and Ilrstrative Genera.-This order was separated by Lindley into two orders, the Cinchonaceæ and the Galiacex or Stellatx, an arrangement formerly adopted by us, but now abandoned as not in accordance with the more generally accepted views of botanists. The Galiacee of Lindley were more especially distinguished from the Cinchonacee by their whorled exstipulate leaves and angular stems. The order Rubiacer is now divided by Hooker and Bentham into three series, each of which is again divided into sub-series and tribes. The Galiacere of Lindley are natives of the northern parts of the northern hemisphere, and the mountains of the southern ; while the Cinchonaceæ are almost exclusively natives of tropical and warm regions. There are about 3,000 species in the Rubiacere as defined above. Illustrative Genera:-Galium, Limn. ; Cinchona, Limn. ; Ixora, Linn.

Properties and Uses.-The properties of the plants of this extensive order are very important to man, furnishing him with many valuable medicinal agents, as well as substances useful in the arts and domestic economy. Thus many possess tonic, febrifugal, astringent, emetic, or purgative properties; some are diuretic and emmenagogue; a few are valnable dyeing and tanning agents ; and others have edible fruits and seeds. Some are reputed to possess intoxicating, and in rare cases even poisonous, properties. Various species are also cultivated in our stoves on account of the beauty and fragrance of their flowers.

Cephaëlis Ipecacuanha.-The root of this plant, which is a mative of Brazil and New Granada, is termed annalated Ipecacuanhu. In Brazil, this, as well as other emetic roots, are kuown under the same name, Ponya. The Ipecacuana plant has become somewhat searce in Brazil, but is new heing cultivated in India, but hitherto not with uneh suecess. It is the official I pecacuaula of the British, Indian, and United States IMarmacopoias. It contains an alkaloid called emetine, to which its propertics are principally. dhe. Ipecacuanh possesses emetie and purgative properties in large doses, and in small doses it is expectoraut and diaphoretic. It is also sedative.

Cinchona.-The plants of this genus are uatives exelusively of the intertropical valleys of the Audes, and principally on the eastern face of the Cor-
dilleras, growing commonly at heights varving from abont 4,000 to nearly 12,000 feet above the level of the sea. The Cinehona region extends from Santa Crnz de la Sierra, in Bolivia, about 19° S. lat., throngh Peru and Columbia, nearly to Caraeas, in about 10° of N. lat. The Cinehonas are suall shrubs, or large forest trees, with opposite evergreen leaves, and eommonly showy flowers. The bark of several speeies and varieties is extensively imported into this country, under the names of Cinchona, Peruvian, or Jesuits' Bark. Some few years sinee, in eonsequence of the great destruetion of Ciuchona trees in South Ameriea, and from no eare being taken to replace them, it was feared that in a short time our supply of this most valuable bark would have seriously fallen off, or even entirely failed; but, thanks to the energetie labours of Messrs. Markham, Spruee, MeIvor, Wilson, and others, the more valuable species have been transported to India, Jamaiea, Java, and elsewhere, and are now eultivated in these countries (more espeeially in India and Java) over large areas, with great suceess, so that we need no longer fear any defieieney of supply in future years. A large number of commercial varieties of Cinchona barks have been deseribed by Pereira, Weddell, Howard, and others, for a description of which we must refer to works on Materia Mediea. About fifteen speeies of Cinchona are known to rield commercial barks, and of these, four are espeeially mentioned in the British Pharmacopoia; which are the only ones we have space to refer to here. They are C. Calisaya, Weddell ; C. officinalis, Linn. ; C. succirubra, Pavon; and C. lancifolia, Mutis. Of these species, the first three respectively vield the formerly official Yellow Cinehona Bark, Pale Cinehona Bark, and Red Cinehona Bark, and from the latter speeies is derived the bark which is commonly known as Coquetta Bark. In the British Pharmacopœia of 1885, Red Cinchona Bark, from eultivated plants, is alone official for the ordinary preparations of that volume, but any kind of Cinchona Bark may be used for the preparation of the offieial salts of the alkaloids. Several alkaloids have been deseribed as constituents of the different kinds of Cinehona barks in varying proportions; but by far the more impurtant are Quinine, Cinchonine, and Cinchonidine. Some salts of all of these are now offieial in the British Pharmacopœia, and although those of quinine are gencrally regarded as the most valuable of them all, they are all more or less used in medieinc, and possess, in an eminent degree, antipcriodie, febrifugal and tonie properties. The barks themselves, in addition to sueh properties, are also somewhat astringent, and in some cases have been found to be effiencious as topieal astringents and antisepties.

Coffea a rabica, the Coffee Plant.-The seeds of this plant, when roasted, are used in the preparation of that most valuable unfermented beveragecoffee. When roasted, eoffee essentially consists of the albumen of the seed. Cuffee owes its properties chiefly to the presence of caffeine, whieh is identieal with theine (sce Thea, p. 472), and to a volatile oil. About 40 millions of pounds are annually ensumed in this enuntry, and the consumption for the whole world has been estimated at about 1,200 millions of pounds. Caffeine and its Citrate are official in the British Pharmneopœia, as already notieed muder the head of Thea. In Sumatra and some of the adjoining islands, an infusion of the roasted leaves is used as a substitute for Tea, under the name of Coffee-Tea. The leaf eontains similar ingredients to the seeds, and possesses thereforc analogous properties. Medicinally, eoffce has been also used with frequently bencficial effects as a nervine stimulant and astringent. In its effcets and uses it elosely resembles tea, but its astringent action is much less. Besides C. arabica, the seeds of other speeies have similar properties ; thus, C. mauritima of Bourbon and Mauritius, C. zanguebaricu of Mozambique, and espeeially C. liberica, a native of the West Const of Afriea. This last species is now largely eultivated, and becoming a very important souree of coffee; it bids fair to supplant C. arabica in many tropical countries. It is a larger and more robust plant, and flourishes at a lower
elevation; and the seeds are larger and of a finer flavonr. It affords the kind of coffee known as Liberian or Monrovian.

Coprosma.-The frnits of C. microplyylla and other species are eaten in Australia, where they are called Native Currants. In New Zealand the leaves of C. fotidissima are used by the priests to discover the will of the gods.

Galium.-G. Apurine, Goose grass or Cleavers.-The inspissated juice or extract of this plant has been used with success in lepra and some other cutaneons diseases. Its roasted seeds have beeu employed is a substitute for coffee. The extracts of G. rigidum and G. Mollugo have been used with beneficial results in epilepsy.

Gardenia.-From the frnits of G. graudifora, G. forida, and G. radicans beautiful yellow dyes are prepared, which are extensively emploved in China and Japan.-G. lucida and G. gummiferu, natives of India, yield a resinous exudation, which is said to be antispisuodic.

Genipa.-The frnit of some species is edible; that of G. umericana, the Lam tree, is the Gexipap of South America. In British Gniana a blnishblack dye, called Lana dye, is prepared from the juice of the fruit. The fruits of G. brusiliensis also furnish a violet dye.

Guettarda speciosa. - This plant is said by some to furnish the Zebrawood of cabinet makers, bnt, according to Schomburgk, this is obtained from Omphalobium Lamberti, a native of Gniana. (See Omplalobinm.) Tortoise-wood is also sometimes considered to be derived from a variety of G. speciosa.

Morinda.-The roots of M. cetrifolia and M. tinctoria are used in India and some other parts of Asia for dyeing red. They have been occasionally imported into this conntry, nuder the names of Madder, Munjeet, and Char゙root; but such names are improperly applied to them. (See Oldenlandia and Rubua.) The flowers of species of IIoriuda are also employed in India for dyeing, mixed with those of Grislea tomentosa. (See Grislea.)

Öldenlandia umbelluta.-The root is occasionally imported from India under the name of Chay or Che root. (Sce Morinda.) It is employed to dye red, purple, and orange-brown. The colouring matter is contined to the bark.

Pulicurea densiffora, a native of Bolivin, \&e., is stated to rield the bark now known in commerce as 'Coto Bark,' and which is reputed to be a raluable remedy in dinrrhoa, rheumatism, gont, \&c. It is said to owe its active properties to a peculiar erystalline sulistance named cotoin. Nothing certain, however, is haown of the botanical sonrce of Coto Bark. Morcover. other barks under the same name are now fonud in commerce, one of which is termed Paracoto Bark.

Psychotria. -The root of P. emetica is called black or large striuted Ipecacuanha. It is occasionally imported, but not used in this country. It would appear that there are two spurious kinds of Ipectacuanh which have heen described under the name of Striated,-one being derived from this plant: but the botanical source of the other, which is known is small striated Iperacuanha, is undetermined, although doubtless from one nearly allied to it-according to Planchn, a species of Richardsonia. Both of these kinds possess emetic properties like the roots of Cephaelis Ipecucuanh and Richardsonite scubra, but they are far less actire. Ther contain emetine. The roasted seeds of P. herbacea lave been used as a substitute for collec.

Remijia.-From the barks of 7 . pedunculata, R. Purdieana, and probably other species, which are known in commerec as Cuprea larks, salts of quinine and cinchonine may be obtained, and also the peculiar alkaloids copreine and homognininc. The barks of spectes of Remijia are otheial in the British Dharmacopeia as sonte of the salts of quinine ant cinchoninc.

Richatedsoma scubra.-The ront is entife. It contains the same active princinle (numels, emetine) as that of the odicial connututed Ipecacuanhen root,
from Cephaëlis Ipecacwanha, but it is not so active. It is commonly known as unchulated, white, or amylaceous Jpecacuanha. It is not used in this country.

Rubia. $-R$. tinctorum.-The dried root is known under the name of Madder, and is one of the most important of vegetable dyes. It is largely cultivated in France. Holland, and other countries. In France it is linown mader the name of Gurance. In the Levant, R. peregrina is also cultivated, and yields Levant Madder ; the roots are also called Turkey-roots in commerce. Madder is imported in two forms, namely, entire, and in a gronnd state. There are four kinds of Dutel Madder, known respectively as crop (the best), ombro, gamene, and mull (the worst). In the living state, madderroot ouly- eontains a yellow colouring principle, called mbian; but no fewer than five colonring matters lave been obtained from the root of commerce, called respectively mudder purple (purpurin), red (alizarin), orange, yellox, and brown ; it would appear, therefore, that these latter must be all derived from the single yellow colouring principle. Alizarin is by far the most valuable of these colouring substances. Besides its use as a dyeing material, Madder was long employed in medicine as a tonic and diuretic, and was also regarded as a valuable emmenagogue ; its virtues, however, as a medicine are very trifling, and it is no longer employed by the medical practitinner. Besides the roots of R. tinctorum and \dot{R}. peregrina, those of other species are likewise emplored in different parts of the world for dyeing : thus, the roots of R. cordifolia or Muajista, a native of the East Indies, are used in Bengal, \&c., and are ocensionally imported into this country moder the name of munjeet. The roots of R. Relbom are also employed in Chili for dyeing.
\dot{S} arcocephalus esculentus (Cephaliua esculenta).-The fruit is the Sierra Leone Peach. The bark is said to have astringent, tonic, and febrifugal properties.

Uncaria Gambier.-An extract prepared from the leaves and young shonts of this plant constitutes the kind of Catechu which is known in commerce as Gambir, Gambier, Pale Catcchu, and Terra Japonicu, and ly druggists as Cutechu in square cukes; it is official in the British Pharmacopeia, and Pharmacopeia of India. Catechu is one of the most powerful of astringents, and is extensively employed in tanning and dyeing, and also in medicine; it is also largely consumed in the East, as it forms oue of the ingredients in the famed masticatory called Betel.- U . acida, probably only a variety of the preceding, also appears to yield a portion of the Ganlbier of commerce.

Cohort 2. Asterales.-Stamens epipetalous and alternate with the lobes of the corolla when equal to them in number. Ovary 1-celled ; ovule solitary. Fruit dry and indehiscent. Seeds usually exalbuminous, but sometimes albuminous. Leaves exstipulate.

Order 1. Valeriavacere, the Valerian Order.- Charac-ter.-Herbs. Leaves opposite, exstipulate. Flowers cyinose, hermaphrodite (fiys. 494 and 495) or rarely unisexual. Cirlyse superior (figs. 4.94, c, and 980, ca), with the limb obsolete, membranous, or pappose. Corolla epigynous, monopetalous (figs. 404 and 495), tubular, imbricate, 3 --(f-lobed, regular (1) irregular, sometimes spurred at the base (fig. 495). Stumens 1 -i), distinct, fewer than the lobes of the corolla, and inserter in its tube (figs, 494 and 495). Orary inferior (fuy. 980), with

1 fertile eell, and usually 2 abortive or empty ones. Frnit dry and indehiscent, frequently pappose (fig. 467). Sced solitary,

Fig. 980.

Fig. 980. Vertical section of the ovary, \&c., of the Red Valerian (Centronthus ruber). cal Calyx. co. Corolla. sty. Style. ov. Ovale. suspended, exalbuminous; radicle superior.

Distribution and Numbers.-Chiefly natives of the temperate parts of Europe, Asia, and America; they are rare in Afriea. Illustrative Genera:- Centranthus, DC.; Valeriana, Linn. There are about 190 species.

Properties and Uses. - They are chiefly remarkable for the presence of a strongscented volatile oil, which renders them stimulant, antispasmodic, and tonic. Some are highly esteemed in the East as perfumes, but they are not generally considered agreeable by Europeans.

Nardostachys Jatamansi is commonly regarded as the Nordus indicus, the true Spikenard of the ancients. It is the Nard of the Hebrews, and the Nardos of the Greeks. It is much esteemed in India both as a perfume and as a remedial agent in epilepsy and hysteria. In some districts, as Leh, its chief use is for incense.

Valerianella olitoria.--The young leaves are occasionally used as a salad both on the Continent and in Eagland. In France they are known under the name of Mâche, and in England by that of Lamb's Lettuce.

Valeriana.-The rhizome and rootlets of V. officinalis form the official Valerian of the British Pharmacopocia. Valerian is much emplored as a nervine tonic, stimulant, and antispasmodic. The roots of V. Dinscoridis. V. Phu, V. celtica, V. Hardwichii, V. sitchensis, and other species, hare similar properties. V. sitchensis is most esteemed in Russin.

Order 2. Dipsacese, the Teazel Order.-Charaeter.-Herbs or undershrubs. Leaves opposite or verticillate, exstipulate. Flowers in dense heads (capitula) (fig. 428), surrounded by an involucre. Calyx (fig. 982) superior, with a membranous or pappose limb, and surrounded by an involueel. Corolla (fig. 982) tubular, epigynous, monopetalous, the limb 4-5-lobed, generally irregular (figs. 428 and 982), and with in imbricate restivation. Stamens 4, epipetalous (fig. 982) ; anthers distinct. Ovary inferior (fig. 982), 1-celled ; ovule solitary (fig. 982), pendulous; style and stigma simple. Fruit dry, indehiseent, and surmounted by the pappose calyx (fys. 468 and 981). Seed with fleshy albumen ; embryo straight ;aradicle superior.

Distribution and Numbers. -Chiefly natives of the South of Europe, and of North and South Africa. A few specics are found in this country. Illustrative Genera:-Dipsaens, Toum.; Scabiosa, Lim. There are about 170 species.

Properties and Uses. -Some are reputed to possess astringent and febrifugal properties, but as remedial agents they are alto-
gether unimportant. Dipsacus Fullonum is, however, an important economical species.

Dipsucus Fullonum, Fuller's Teazel.-The dried eapitula are used by fullers in dressing eloth, for whieh they are well adapted, as their hard

Fig. 981.

Fig. 982.

Fig. 981. Fruit of Scabiosa purpurea, surmounted by the propose calyx.Fig. 982. One of the ceutial florets of the capitulum of Scabiosa purpurere, with the ovary, \&c., cut vertica!ly.
stiff hooked braets raise the nap, without tearing the stuff like metal instruments. In 1860 no less than $20,000,000$ teazels were imported into this country from France.

Scabiosa succisa is ealled the Devil's-bit Seabions, on neeount of its albuptly terminated rhizome or root. It is said to be astringent, and to rield a green dye. The infloreseence sometimes develops in an umbellate manner, as in a specimen deseribed by the author in the Pharmaceutical Journal, ser. i. vol. xvii. p. 363 , thus exhiliting a marked deviation from the derelopment in eapitula which is the ordinary arrangement in the plants of this order.

Order 3. Calyceracee, the Calycera Order.-Charac-ter.-Herbs. Lecues alternate, exstipulate. Flowers in capitula, surrounded by an involucre. Calyx superior, irregular, 5-lobed. Corolla epigynous, monopetalous; regular, valvate, 5 -lobed. Stamens 5, epipetalous; filaments monadelphous; anthers partially united. Ovary inferior, 1-celled ; ovule solitary, pendulous. Fruit indehiscent. Seed solitary, pendulous, with fleshy albumen ; radicle superior.

Diagnosis.-These plants hold an intermediate position betweon Dipsacere and Composite, being distinguished from the former by their alternate leaves, absence of involucel to their individual florets, valvate zestivation of corolla, monadelphous filanents, and partially united anthers ; and from the Compositie in their anthers being only partially united, and in their pendulous albuminous seed, and superior radicle.

Distribution and Numbers.-Exclusively natives of South America, especially the cooler parts. Illustrative G'euera:-

Calycera, Cavan.; Leucocarpus, Don. There are about species.

Propertics and Uses.-Unknown.
Order 4. Composits, the Composite Order.-Character. Herbs or shmos. Leares alternate or opposite, exstipulate. Flovers (florets) hermaphrodite (fiqs. 983-985), unisexual (fig. 491) or neuter, arranged in capitula (figs. 427 and 444), which are commonly surrounded by an involucre formed of a number of imbricate bracts (phyllarics) (fig. 399); the separate florets are

Fin. 983.

Fig. 984.
Fig. $985 . \quad$ Fig. 985.

Fi!. 953. Labiate floret of Chelanthera linearis. O. Ovary with adherent calyx. t. Tube of the corolla. $l s$. Upper lip of the eorolla, li. Lower lip. e. Tube formed by the united anthers. s. Stigmns.-Fary. 984. Yertical section of the floret of Aster rubricrulis. O. Ovary eontaning one ereet nvule a. Pappose limb of the ealy. p. Corolga. s. Strle. c. Tube formed by the mited anthers.-Fig. 985. Floret of the Chicory (Cichorium Intybus). o. Ovary with arlherent calys. e. Tube formed hy the united ainthers. s. Stignias.-Fig. 986 . Vertien section of the ripe fruit of the Groundsel (Senecio), surmounted by a portion of the style. so; and the pappose limb of the enlyx. p. Periearp. 1. Testit. e. Sced. The nbore figmes are from Jussien.
also frequently furnished with membranous or scale like bractlets (palex) (fig. 404, b, b). Capitula developing successively in a centrifugal order (fig. 444). Calyx superior (figs. 983-985), its limb either entirely abortive (fig. 465) or membranous (fig. 466); in the latter case it is entire, tonthed, or pappose-that is, divided into bristles, or simple, branched, or feathery hair like processes (fig. 984, a). Corollu epigynons, monopetainus (fiqs. !83-985), tubular (fig. 405), lignlate (fig. 985), or bilahiate (fig. n83), 4-5toothed, with a valvate iestivation. Stamens (figs. 983-950. c)

5 or rarely 4 , inserted on the corolla, and alternate with its divisions ; filuments distinct or monadelphous ; anthers united into a tube (syngenesious or symuntherons) (fig. 548), which is perforated by the style and stigmas (fig. 985). Ovary inferior, 1-celled, with 1 erect ovule (fig. 984, o) ; style 1, undivided below, and commonly bifid above ($f y .987$); stigmas 2 , one being usually placed on the inner surface or maryins of each division of the style (figs. 983, s, 985, s, and 987). Fruit a cypsela, dry, indehiscent, 1-celled, crowned by the limb of the calyx, which is often pappose (fig. 986). Secd (fig. 986, e) solitary, erect, exalbuminous ; radicle inferior.

Diagnosis. - Herbs or shrubs, with exstipulate leaves. Flowers (called florets) arranged in capitula, which are

Fig. 987.

Fig. 387. Styles ancl stigmas of Composite Flowers to illustrate De Condolle's tribes, after Heyland and Lindley. 1. Albertinia erythropappa (Ternoniee). 2. Anisocheltt mikanioides (Eupntorieæ). 3. Bhumeat senecioides (Asteroideæ). 4. Ifendezin. bicolor' (Seneeioider). 5. Lipochueta umbellata (Senecioideæ). 6. Aplotaxis nopalensis (Cynnreæ). 7. Leucomeris spectubilis (Mutisieæ). 8. Leuceria tenuis (Nassauviea).
commonly surrounded by an involucre. Capitula developed succossively in a centrifugal manner. Calyx superior, its limb abortive, or membranous, or pappose. Corolla epigynous, monopetalous, 4-5-toothed, with a valvate restivation. Stamens epipetalous, crqual in number to the divisions of the corolla (senerally 5), and alternate with them ; anthers syngenesious. Ovary inferior, 1 -cellerl, with 1 erect ovule, and having but one coat; style simple, bitid above, with stigmatic branches. Fruit l-celled, dry, indchiscent. Sced solitary, crect, exalbuminous ; radicle inferior.

Dicision of the Order and Illustrative Genera.-This order has been varionsly divided by authors. By Linnecus, the plants of his class Syngenesia, division Polygamia (which corresponded to
the Natural Order Compositre as above defined), were arranged in five orders, under the names of Polygamia xqualis, P. smperflua, P. frustranea, P. necessaria, and P. segregata. The characters of these have been already stated at page 412. Jussieu separated the Compositre into three sub-orders as follows:-1. Corymbifere, the plants of which have either all tubular (floscrlous) and perfect florets; or those of the disk (centre) tubular and perfect, and those of the ray (circumference) tubular and pistilliferous, or ligulate (radiant). 2. Cynarocephalx, the florets of which are all tubular and perfect; or those in the centre perfect, and those of the ray neuter. And 3. Cichorcceer, having all the florets ligulate and perfect. A fourth sub-order was afterwards added, called Labiatiflorx, which includes those plants the florets of which were bilabiate, and which were unknown to Jussieu. The arrangement most frequently adopted at the present day is that of De Candolle; this was founded on that of Lessing. It is as follows :-
Sub-order 1. Tubuliflore.-Florets all tubular and perfect ; or those of the centre (disk) are tubular, and alone perfect, while those of the circumference (ray) are tubular or ligulate, and pistillate or neuter; juice watery. This sub-order includes the Corymbifere and Cynarocephalre of Jussieu. It has been divided into five tribes as follows :-
Tribe 1. Vernoniea.-Style eylindrical ; its arms generally long and subulate, sometimes short and blunt, always corered all over with bristles (fig. 987, 1). Illustrative Genere:Vernonia, Schreb.; Elephantopus, Lim.
Tribe 2. Eupatoricex. -Style cylindrical; its arms long and somewhat clavate, with a papillose surface on the outside near the end (fig. 987, 2). Ilustrative Genera:-Eupatorium, Toum. ; Tussilago, Toum.
Tribe 3. Asteroidex.-Style cylindrical; its arms linear, flat on the outside, equally and finely downy on the inside (fig. 987, 3). Illustrative Genera:-Erigeron, Linn.: Bellis, Limi.
Tribe 4. Senecioider.-Style cylindrical, its arms linear, fringed at the point, generally truncate, but sometimes extended beyond the fringe into a short cone or appendage of some kind (fig. 987, 4 and 5). Illustrative Genera :-Anthemis, Lim.; Senecio, Linn.
The above four tribes correspond to the sub-order Corrmbiferex of Jussien ; the next or fiftl tribe to the Cynarocephale of the same author.
Tribe 5. Cymarea. - Style thiekened abore, and often with a bunch or fringe of hairs at the enlarged portion: itshanches united or free (fig. !957, 6). Illustrative Crenera:-Arctium. Limn. ; Centauren, Limn.
Sub-order 2. Labiatiflond. - Florets with bilabiate eorollas,
perfect or unisexual. Juice watery. Of this sub-order we have two tribes:-
Tribe 6. Mutisiex.-Style cylindrical or somewhat swollen; its arms usually blunt or truncate, very convex on the outside, and either covered at the upper part by a fine uniform hairiness, or absolutely free from hairs (fig. 987, 7). Illustrative Genera :-Mutisia, Lime. fil. ; Printzia, Cass.
Tribe 7. Nassaviex.-Style neverswollen ; its arms long, linear, truncate, and fringed only at the point (fig. 987, 8). Illustrative Genera :-Nassanvia, Juss. ; Trixis, R. Br.
Sub-order 3. Liguliflore.-Florets all ligulate and perfect. Juice milky. This corresponds to the Cichoraceæ of Jussieu.
Tribe 8. Cichorea.-Style cylindrical at the upper part; its arms somewhat obtuse, and equally pubescont. Illustrative Genera:-Cichorium, Lim.; Taraxacum, Haller. Of these sub-orders the Liguliflore is the best defined.
By Bentham and Hooker the Compositæ are clivided into thirteen tribes.

Distribution and Numbers.-Universally distributed; but tho Tubuliflore are most abundant in hot climates, and the Liguliflore in cold. The Labiatiflore are almost entirely confined to the extra-tropical regions of South America. In the northern parts of the world the plants of this order are universally herbaceous; but in South America and some other parts of the southern hemisphere, they occasionally become shrubby, or even in some cases arborescent. Some years since there were about 9,500 species according to M. Lasègue, who remarks 'that they have steadily continued to constitute about one-tonth of all described plants in proportion as our knowledgc of species has advanced. Thus Linnæus had 785 Composites out of 8,500 species; in 1809 the proportion was, 2,800 to 27,000 ; De Candolle described 8,523 in the year 1838, which was again a tenth ; and now (1845) that the estimate of species has risen to 95,000 , Composite plants amount to 9,500 . ${ }^{\text {. }}$ Lindley calculated the order to contain about 9,000 species ; but Bentham and Hooker have reduced it to about 1,000 genera and 8,000 species.

Properties and Uses.-The properties of the Composite are very variable. A bitter principle pervades the greater number of the species in a more or less evident degrec, by which they are rendered tonic. Some are laxativc and anthelmintic. Many contain a volatile oil, which communicates aromatic, carminativc, and diaphorctic propertics. Others are acrid stimulants, and the Liguliflore commonly abound in a bittcr-tasted milky juice, which is sometimes narcotic.

Sul-orler 1. Tubutifions.-The plants of this subonder are chiefly remarkable for their bitter, tonic, aud aromatic properties; which are due
to the presence of a bitter principle, and a volatile oil. Some are esculent vegetables.

Achillea Millefolium, Yarrow or Milfoil, was formerly extolled as an excellent vulnerary and strptic. It is regrarded in the United States of America, where the leaves and flowering tops are official, as tonic, stimulaut, sudorific, and antispasmodic. In the form of a warm infusion they are also emetic. Aecording to Linneus, this plant was emploverl in his time in Sweden to inerease the intoxicating properties of beer. Formerly it hatd a high reputation as a vulnerary; bence its name of Nose-bleed.-A. moschata is known in Switzerland as 'Forest Lady's Herb,' and has been used there for ceuturies as a stomachie tonie. It is also termed 'Iva.'

Anacyclus.-A. Pyrethrum, Pellitory of Spain.-The ront is official in the British Pharmacopceia; it is employed as an energetic local irritant and sialagogue, in toothache, relaxation of the uvila, \&c.-A. officinarum of Hayne, German Pellitory, has similar propertics. The root is communly used in Germauy.

Anthentis nobilis, Chamomile or Camomile.-This plant is extensively cultivated for the sake of its flower-heads, which are official iu the British Pharmacopcia, and much employed internally for their stimulant, tonic, and antispasmodic properties ; and also externally for fomentations. These properties are due to a bitter prineiple (anthemic acid), and a volatile oil. The flowers coustitute the Roman or True Chamomiles of the Materia Mediea. The oil of Chamomile is also mueh used as a remedy in flatuleuca, and as an addition to purgative pills to prevent their griping action. It is offieial in the British Pharmacopoia.-A. Cotula, Marweed, has similar properties, but its disagreeable odour is an obstacle to its more general nse.

Aplopappus discoideus, DC , is said to be the source of a kind of Dumiuna, a drug used in the United States and elsewhere as an aphrodisiac. (See Turnera.)

Aplotaxis Lappa (Aucklandia Costus). -The root of this plant, which is a native of Cashmere, is said by Falconer to be the Costus of the ancients. It is chiefly used as a perfume, and for burning as iucense. It is also employed by the Chinese as an aphrodisiac.

Arctiom Lappa.-The root is euplored in the United States in gontr, rheumatic, scrofulous, and otter affections, and is reputed to be aperient, diuretic, and diaphoretic.

Arnica montana, Mountain Arnica, Monntain Tobacen, or Leopard'sbane, is an acrid stimulant. The flowers and rhizome have been employed in typhoid fevers, amaurosis, paralysis, \&c. It is termed on the Continent Panacea lapsorum, from the power it possesses of absorbing tumonrs and destroying the effects of bruises, when applied externally: Arnica rlizume and rootlets are ofticial in the British Pharmacopoia.

Artemisia.-A. Absinthium.-The dried herb, or the flowering tops, under the name of Wormuood, is used as an aromatic litter tonic, and as an anthelmintic. The tops and leaves are oflicial in the United States Pharmacopœia. They are also employed in the preparation of some liquenrs: particularly of one now very largely consumed in lirance under the uame of 'absinthe,' the exeessive use of which is attended with such injurions effects: that they have been designated under the uame of alsinthisu. Itthoush doubtless these effects are mainly due to the alcohol which it contsins. ther appear to be also in some degrec attributable to a volatile oil which thic wormwood contains.- A, chinensis. - Aceordiug to Lindler, the Chimese and Japanese moxas are prepared from the cottony or woolly coverine of the leaves of this and other species.-A. Dracmentus is Tarragon, the leares of whieh are sometimes used in pickles, salads, \&c.-A. maritimar. rar. Stechmemiana of Besser (A. p.umeforr, Weber), is the principal, if unt the only source of the official santouter of the British I'harmacopoia. Surtonica is the produee of Turkestan, and is known as Lavant or Mexaudrian

Wormseed. It comes to England by way of Russia. The official part is the dried unexpanded fower-heads. Santonica owes its properties essentially to the preseuce of a crystalline nentral principle called santonin, which is ako ofticial in the British Pharmacopeia. Both santoniea and santonin are valuable anthelmintics. Anothce kind of wormseed, very inferior to the above, has been described by pharmacologists under the name of Barbary Whornseed. Wormseed is also known by the uames of Semen Santonici, Semen Contra, Semen Cyme, \&.c.

Berthelotia lanceolata or indien, a native of India, has aperient leaves, which are said to be a good substitute for the official senna.

Bhomea grandis or balsamifera, a common weed in the Tenasserim prorinces of the Burman Empire, rields a kind of camphor. It is also in use in China. It is known as Bhmea or Ngai Camphor. In China it is used in medicine, and for perfuming the finer kinds of Chinese ink.

Culendula officinalis, the Marigold, has vellow florets, which are sometimes employed to adulterate saffron. A strong tincture of the flowers, apphed externally to wounds, is said to lave a similar effect to that of Arnica.

Curduus, the 'Thistle.-Some species of this genus, particularly C. benedictus, have been nsed as tonics and folbrifinges.

Carthamus.-C. tinctorius, Saflower or Bastard Saffron.- The florets are used in the preparation of a beantiful pink dye. The pink srucers of the shops are coloured by it. It is also largely employed in the manufacture of rouge. Safthower is sometimes used to adnltcrate hay saffron. The substance called cuhe saffron is prepared from it and mncilage. (See Crocus.) the fruits, which are commonly called seeds, yield by expression a large quautity of oil, which is known in India under the name of Konsum Oil. It is nsed pripcipally for burning. The fruits are also pnrgative, and are employed in dropsy. The fruits of C. persicus also !rield a useful oil.

Cynara.-C. Scolymus.-The young succulent receptacles of this plant are nsed for food, under the name of Artichokes. The edible Cardoons are the blanched stalks of the inner leaves of Cynara Cardunculus.

Erigeron, Flealane.-The leaves and tops of E. heterophyllum and E. philurdelphicum are official in the Lhited States Phamacopœia. Fleabane possesses diuretic properties, and is much used in gravel and other nephritic complaints. The leaves and tops of E. cauadense, Canadian Fleabanc, are likewise officinl in the Uuited States l'harmacopœia, and are reputed to be tonic, astringent, and diuretic. The oil which is obtained from them is also esteemed as an internal remedy in nterife and other hamorrhages.

Eupatorinm.-E. ghtinnsum.-The leaves of this plant constitnte one of the substances known as Matico in South America, the different kinds of which are employed as styptics. The otheial matico of this country is, however, derived from Piper angnstifoliam (Artanthc elongata), a plant of the Jat. Urd, Piperacer. (See Piper).-F., ayapuna and E. perfoliatum have been employed as antidotes to the bites of venomous reptiles. They are repnterl to possess stimulant, tonic, and diaphoretic properties. The leaves and flowering tops of E. perfoliatum, Thoronghwort, are official in the United States Pharmacopceia. Other species, such as E. purpurenm or Gravel loot, E. tencrifolimm, E. ageratoidey, E. aromaticum, E. incurnatnm, E. camabinum, and E. nercosum, have also been regarded in the Linited States and elsewhere as of medicinal value.

Grindelia robnsta and G. squarros', Gum Plants or Rosin Weeds.-The driet stoms, leaves, and moxpunded fower-heads of these plants, which are natives of California, are reputed to form a remedy of very great value in astluna, when fiven interually ; and when applied externally in the form of an infision or decoction, a marvellous effect is said to be produced in the cure of the cutanems eruptions caused by emanations from the Rhus Toxicodendron, or Poison-oak. They are oflicial in the United States Plarmatopeia, They are also said to be very useftl in hoopiug-coughs,
catarrhs, and bronchitis. Other species, such as G. hirsuta, appear to have similar properties, and are fiequently substituted for the former in commerce.

Guizotia oleifera is extensively cultivated in India for its seeds, which are known in commerce under the name of Niger seeds. These rield a thin oil, useful in painting, and for burning, and other pur poses, which is known in India as Kam til, Kala-til, Noog, \&.c. It may be nsed for the same purposes in pharmacy as sesamum oil and olive oil.

Helianthus.-H. tuberosus.-The tubers are much eaten under the name of Jerusalem Artichokes. The dried fruits have been employed as a substitute for eoffee.-H. anmuus is the common Sunflower. The pith contains nitrate of potassium, and is therefore sometimes nsed in the preparation of moxus in Europe. The fruits have been lately employed as an ingredient in a kind of soap called Sunflower Soap. They vield by expression a tixed oil which is used largely for food in Hungary and Russia, while the oil-cake furnishes an excellent food for cattle.

Inula Helenium, Elecampane.-The root is an aromatic tonic, cxpectorant and diaphoretic. It has been employed in chronic catarrh, and in dyspepsia. It was also formerly much used in this conntry as the basis of at favourite sweetmeat.

Liatris odoratissima, Wild Vanilla or Deer's Tongue.-The leaves of this plant, which is abundant in the southern United States, are used largely to give favour to tobacco and cigars. They wonld be probably very useful in perfumery. They owe their properties to coumarim. Other species, more especially Ľ. spicata, yield the root known as Button Snakerout, which is reputed to be stimulant, diuretic, and expectorant.

Madia.-The seeds of M. sativa, a native of Chilh, yield by pressure a large amount of fixed oil, which is edible, and the commoner kinds have also been used for illumination. The plant is now cultivated in Asia Minor, Algeria, and the warmer parts of France and Germany. The oil has also the valuable property of not congealing at 19° below zero of Réaumur, hence it is a valuable lubricating agent for delicate machinery.

Matricaria Chamomilla has sinilar properties to the true Chamomile. The flower-heads are the Flores Chamomillie of German pharmacologists; they are usually distinguished as Common or German Chamomiles.

Mikania.-N. Guaco has been much used as an antidote to the bites of venomous serpents in South America. It appears to me by far the most effieacious of all the plants known under the name of Guaco, for reliable testimony has shown that when promptly and properly administered it is is cure for the bites of the most venomous suakes. Guaco has alsu beeu highly spoken of as a remedy for gout and rheumatism.

Notonia.-The freshly gathered stems of N. grandifora and N. mrymbosa are reputed in India to be preventive of hedrophobia.

Pyrethrum.-The insect powders of commerce are the powdered flowerheads of several species of this gemis. Thus those of P. carneum aud P. roseum yield Persian Insect Powder ; but the most cnersetic inserticide is the Dalmatian Insect Powder, which is derived from l. cinevariafolium.

Santolina chamacyparissus, Laveuder Cotton. has long had a reputation as a vermifuge in the case of small worms. Its twigs, which have a strons and somewhat agreeable odour, have also been used for placing in wardrobs \&e., to drive away moths.

Silphimo-S. laciniutum, a native of North America, is known as the 'Polar Plant' or 'Compuss Plant,' becanse 'the leaves are said to present their faces uniformly north aul south:' Sir J. Hooker states than in travelling by rail any alteration in the direction of the road beromes visible at once ly the altered appearance of the leaves of the Comprise Plant.

Tanaretum culgare, the common Tausy, posscsses tomic and authelmintic propertics.

Tussilugo Farfara, Coltsfoot.-This plant is used as a popular remedy in elronic coughs and other pulmonary complaints.

Ternonia anthelmintica.-The sceds arc employed in the East Indies as an anthelmintic.

Fiunthium spunosum.-The powdered leaves, \&c., of this plant are said to be a most efficient remedy in hydrophobia; but they have been found useless when employed by regular practitioners.

Sub-order 2. Libiatiflor.e.-There are no very important plants known to belong to this sub-order; but some have been reputed to posscas aromatic, mucilaginous, purgative, and tonic properties

Pereziu fruticosa.-The root is much esteemed in Mexico as an agreeable and energetic purgative; its native name is 'raiz del pipitzahuac.' An acid of a brilliznt golden yellow colour, called pipitzuhoic acid, has been obtained from it ; it is known popularly as 'vegetable gold.'

Printzia aromatica.-The leaves are sometimes employed at the Cape of Good Hope as a substitute for tea.

Sub-order 3. Ligutiflore.-The plants of this sub-order generally eontain a milky juice, which commonly posscsses altcrative, aperient, diuretic, or narcotic properties. The roots of some are used as esculent vegetables; and other species, by cultivation with diminished light, bceome edible as salads.

Cichorium.-C. Intybus, Chicory.-The Chieory plant is indigenous in this and many other parts of Europe. It is also extensively cultivater for the sake of its roots, which when roasted and powdered are used as it substitnte for, or more frequently as an addition to, ground coffice. Alonve 100 millions of pounds are annually consumed in Europe. In 1865, the consumption in Great Britain alone was about 13 millions of pounds ; and it is now calculated that in' proportion to that of coffec it is nearly 40 per cent. It does not, however, possess in any degree the peculiar exciting, southins: and honger-staying properties of coffce, and its cxtensive cmployment is mucli to be cleprecated, as it is not unfreciuently attended with injurious effects. The fresh root has been employed in medicine, and is reputed to have somewhat similar properties to that of Dandclion. A blue dye may le prepared fiom the leaves.-Cichorium Endivia is the Eudive plant, the blanched leaves of which are used as a salad.

Lactuca.-L. sativa is the garden or common Lettnce. It is largely cultivated for use as a salad. As a medicine it possesses to a slightextent sedative, anodync, and antispasmodic propertics.-LLactuct virosa, the Wild Lettuce, possesses much more evident anodyne and antispasmonlic properties than the common Lettuce. The inspissated juice of both L. sutiva and L. virosa forms Lactucarium or Lettuce Opium, which is cmployed for its narcutic properties. L. virosa vields the best aurl the largest quantity of Lactucarium. L. virosu is official in the British Pharmacopecia. Other species of Lactuca, as L. Scariola and L.altissima, possess similar properties.

Scorzonera.-S. hispanica has escnlent roots, which are known under the name of Scorzonera, and are much esteemed. The ronts of S. deliciosa are also mucl valued in Sicily, where this plant is a native.

Tararacum officinale (Taraxacum dens lennis) is the common Dandelion. The root, which is official in the British Pharmacopocia, is very extensively emploved as a medicimal agent. It is commonly regarled as possessing a perieut, diurctic, and alterative properties. It contains a bitter crystalline principhr, called Turuzacin, to whish it seems principally to owe ity properties. When roasted, it has sometimes been employed as an addition to coftee, in the same mamer as Chicory root. The leaves, when very young and grown in the dark, are sometimes used on the Contincut as it salarl.

Trugopogon porrifolius.-The roots are eaten under the name of Salsify,
and althnugh a very useful vegetable, they are inferior to Scorzonera. In America it is called the Oyster Plant, as the roots when cooked are thouglit to have the taste of oysters.

Cohort 3. Campanales. Stamens epigynous, usually free from the eorolla. Ovary generally $2-6$-eelled, with numerous coules in eaeh cell. Fruit capsular. Seeds albuminous. Mostly herbs, or rarely shrubs. Leaves nearly always alternate ; exstipulate.
Order 1. Stylidiacese, the StylewortOrder.-Charaeter.Herls or under-shoubs, not milky. Leaves exstipulate. Calyr. superior, with from 2 to 6 divisions, persistent. Corolla with from 5 to 6 divisions; wstivation imbrieate. Stamens 2, gynandrous. Ovary 2 -eelled, or rarely 1 -eelled; style forming a eolumn with the filaments; stigma without an indusium. Fruit eapsular. Seeds albuminous.

Distribution and Numbers.-They are ehiefly found in the swamps of Australia. Illustrative Genera:-Stylidium, Swartz; Forstera, Limu. fil. There are about 120 speeies.

Properties and Uses.-Unknown.
Order 2. Goodentacex, the Goodenia Order.-Charae-ter.-Herbs, or rarely slmubs, not milky. Leares exstipulate. Flowers never collected into heads. Calyx generally superior, with from 3-5 divisions, oeeasionally inferior. Curolla irregular, 5-parted ; astivation induplieate. Stamens 5; filaments distinet; anthers distinet or mnited. Ovary 1, 2, or rarely 4 -eelled ; placenta free eentral ; style 1 ($\mathrm{fg} .644, \mathrm{t}$) ; stigma surrounded by a hairy ring or somewhat eup-slaped expansion of the upper part of the style termed an indusirm (fig. 644, i). Fruit capsular, drupaceous, or nut-like. Seeds with fleshy albumen.

Distribution and Numbers.--These plants are prineipally matives of Australia and the islands of the Southern Ocean ; rarely of India, Afriea, and South America. Illustrutice Genera:Gondenia, Sm.; Lescheazultia, $R . B r$. There are about 200 species.

Properties and Uses. - Unimportant. Many are cultirated for the beauty of their flowers.

Brunonia.-This genus of Australinn plants, consist ing of two species, is sometimes made the trepe of a distinct order, termed Brunoniaces; but Benthan aud Hooher refer them here. Their principal distinctive characters are the saperino ovary, cealbuminons seeds, and capitulate infloressence. Ther have no known uses.

Scaeola Tuccadte has a soft and spongy pith, which is used ly the Malays to make artificial flowers, nud for other purposes. Its roune ieaves are niso enteu as a potherb. Other species of Scavola are reputed to be emoltient.

Order 3. Campanulaceaf, the Harebell Order.-Charaeter. Herbuceous plants or undershrubs, with a milky juice. Leaves
rearly always alternate, exstipulate. Flower's scattered, or rarely in capitula. Caty superior (fig. 990), persistent (figs. 687 and 688). Corolle monopetalous, regular (figs. 437, b", and 479), marcescent (figs. 437, b^{\prime}, and 688) ; astivation valvate (fig. 988). Stamens equal in number to, and alternate with, the lobes of the corolla (fig. 988) ; anthers 2-celled, distinct or partly united. Ovary inferior (fig. 990), 2- or more celled (fig. 988); style undivided (fig. 507), hairy ; stigma naked. Fruit dry, capsular, dehiscing by lateral orifices ($f(y .687, t, t$, and 688) or by valves at the apex ; placentas axile (fiys. $630, p l$, and 988). Seeds numerous, with fleshy albumen (fig. 989).

Distribution and Numbers.-Chiefly natives of the temperate parts of the northern hemisphere ; a good many are, however, found in the southern hemisphere, especially at the Cape of

Fig. 988.

Fig. 989. Fig. 990.

Fig. 988. Dingram of the flower of Rampions (Comprenula Rerpunculus), Fig. 989. Vertical section of the seed.-Fig. 990 . Vertical section of the flower.

Good Hope. A few species only are tropical. 'Illustrative Genera:-Phyteuma, Lim.; Campanula, Linn. Therc are about 550 species.

Properties and Uses.-The milky juicc which these plants contain is sometimes of a sub-acrid character, but the roots and young parts of several species, especially when cultivated, are eaten in different parts of the world, as the roots of Campamulu Piapunculus, which are commonly known under the name of Rampions; those of Cyphice glandulifera, in Abyssinia; and those of Cyphia digitata by the Hottentots, \&c. Some species of Specularia have been used in salads. One species, Campanula glanca, is reputed to be a valuable tonic, and others are said to be anti-syphilitic. The order, howevcr, does not contain a single plant of any particular importance, either in a medicinal or cconomic point of view.

Order 4. Lobeliacee, the Lobclia Order.-Character. Herbs or shmbs, with a milky juice. Leaves altcrnate, exstipulate. Calys superior Corolla monopetalous, irregular, val. vate. Stumens 5; anthers syngenosious (fiy. 992), Ovary
inferior, 1-3-eelled ; placentas axile or parietal ; style 1 ; stigme surrounded by a fringe of hairs (fig. 991). Fruit capsular, dehiseing at the apex. Seeds nu-

Fig. 992.

Fig. 991. Stigma of Lobelia sypnilitica. _Fig. 992. The essential organs of the above, with the calyx. merous, albuminous. This order is especially distinguished from the Campanulacce by its irregutar corollas and syngenesions anthers. It is made a tribe of the Campanulaceæ by Bentham and Hooker.

Distribution and Nimbers.They are chiefly natives of tropical and sub-tropical regions; but a few occur in temperate and cold elimates. Illustrative (fóe-nera:-Clintonia, Doug.; Lobelia, Linn. There are about 400 species.

Properties and Uses. - The milky juice with which these plants abound is commonly of a very acrid nature, hence the species of this order should be regarded with suspicion. Indeed, some, as Lobclica infletce, Tupa Feuillxi, \&e., aet as narcoticoacrid poisons ; and that of Isotoma longiflora is vesicant, and when taken internally it eauses sueh violent purgation as to result in death.

Lobelia.-L. inflata, Indian Tobncco.-This speeies is a native of North America. The flowering herb and seeds have been extensively emploved, especially in the United States, for their sedative, antispasmodic, emetic, and expectorant properties. Lobelia resembles tobacco in its action ; the dried flowering herb is official in the British Pharmacopeia. Several fatal cascs of poisoning have occurred in the United States, and in this country. from its empirical use. The seeds may be distinguished under the mierosicope by their peculiarly retieulated character. The root of L. syl hilitica poisesses emetic, purgative, and diuretic properties, and, as its specific name implies; it has been reputed to be efficacious in syphilis.- L. arens has blisterinef qualities.- L. decurrens is used in Peru as an emetic and purgative, and its employment has been suggested in this country as a sulistitute for Ipecacuanha.

Series 2. Superr.

Cohort 1. Ericalcs. - Stamens generally hypogynous (except in Vaceiniacese), and twice the number of the lobes of the corolla; or equal in number and alternate with the lobes. Ovary with usually more than 2 eells; placentation generally axile ; style undivided.
Order 1. Vacolnaceef, the Cramberry Order. - Charaeter. Shrubs or small trees. Leures alternate, undivided, cxstipulate. Calys superior. Corolla 4-6-lobed; asstivation imbricate.

Stamens distinct, epigynous, twice as many as the lobes of the corolla; anthers (fiy. 533) appendiculate, with porous dehiscence. Ouctry 4-10-celled ; style and stignua simple. Fruit succulent. Seeds with fleshy albumen.

Distribution and Numbers.-Chiefly natives of the temperate regions of the globe. Illustrative Genera:-Vaccinium, Thibaudia. There are about 200 species.

Properties and Uses.-They are chiefly remarkable for their astringent leaves and bark, and for their edible sub-acid fruits.

Oxycoccus palustris (Vaccinium Oxycoccus).-The frnit of this plant is the Cranberry of Great Britain. It is used in making tarts and for other purposes.-O. mucrocarpus vields the American Cranberry, of which large quantities are imported into this country.

Vuccininm.-The fruits of several species are edible, thus :-V. Myrtillus rields the Bilberry; V.uliginnsum, the Bog or Black Whortleberry; and "T. Vitis-Idaa, the Red Yhortleberry or Cowberry. (See also Oryenccus.) The frnit of V. uliginosum is reputed to be narcotic, and is said to bee employed for making beer, \&c., heady. When exposed to fermentation, it produces a kind of wine.

Order 2. Ericacee, the Heath Order.-Character.Shubs. or small trees. Leaves entire, evergreen, opposite, whorled or alternate, exstipulate. C'alys 4 -5-cleft, inferior (fig. 483, c), persistent. Corolla hypogynous, monopetalous (figs. 478 and 993), 4 - - -cleft, or rarely distinct ; ast i vation imbricate. Stamens hypogynous (figs.993 and 994), as many, or twice as many, as the divisions of the corolla; anthers 2 celled (fig. 534), opening by pores or slits ($\mathrm{fig} .532, ~ r)$, appendiculate (fig. $532, ~ a) . ~ O v\left(v^{2} y ~ 4-5-c e l l e d, ~\right.$ with numerous ovules, surrounded by a disk or scales; placentas axile ; style 1 (figs. 993 and 994); stigme simple or lobed. Fruit capsular or rarely baccate. Seeds numerous, small, anatropous; embryo minute in the axis of fleshy albumen.

Niadgusis.-Shrubs or small

Fig. 093. Vertical section of the flower of a spceies of Heath (Ericu). -Fig. 99\%. Fssential orgims of the same. The stamens are seen to be hypogynous. trees. Leaves entire, evergreen, exstipulate. Calyx and corolla 4-5-merous. Calyx inferior. Corolla hypogynous, monopetalous, or rarely polypetalous. Stamens hypogynous; anthers 2-celled, appencliculate, dehiscing by pores or slits. Ovary 4 万. celled ; style 1 ; placentas axile. Fruit capsular, or very rarely baccatc. Secds small, anatropous, numerous, with fleshy albumon.

Division of the Order and Illustrative Genera.-The order may be divided into five tribes as follows :-
Tribe 1. Arbutex.-Corolla deciduous. Fruit baccate. Illustrative Genns:-Arbutus, Linn.
Tribe 2. Andromedex.-Buds usually clothed with scales. Corolla deeiduous. Fruit capsular, loculicidal. Illustrative Genus:-Andromeda, Linu.
Tribe 3. Ericeæ.-Buds naked. Corolla persistent. Fruit capsular, usually loculicidal, or rarely septicidal. Illustrative Genera:-Erica, Linn.; Calluna, Salisb.
Tribe 4, Rhodorex.-Buds scaly, cone-like. Corolla deciduous. Fruit capsular, septicidal. Illustrative Genera:-Azalea, Linn.; Phyllodoce, Salisb.
Tribe 5. Pyroleæ.-Herbs or somewhat shrubby plants. Crrolla polypetalous, or the petals united at the base, deciduous. Fruit capsular, loculicidal. Illustrative Genera:-Pyrola, Tourn. ; Chimaphila, Pursh.
Distribution and Numbers.-They are very abundant at the Cape of Good Hope, and are also more or less generally diffinsed in Europe, North and South Amcrica, and Asia. There are over 900 species.

Properties and Uses.-The plants of this order are chiefly remarkable for astringent properties ; others are tonic and diuretic; and some are narcotic, and even poisonous. This is especially the case with Kalmia latifolia, Rhododendron chrysanthum, Andromeda floribunda, and Azalea pontica. The frnits of many are edible. The species of Erica, Rhododendron, Kalmia, Azalea, \&c., are largely cultivated in this country on account of the beauty of their Howcrs. The three latter genera are commouly called American Plants. Such plants are mot, however, confined to America, as the name would imply.

Audromeda .floribunda.-This shrub, which is a native of North A merica, is poisonous, So recently as 1866 a number of sheep were poisoned by eating it, but ninetcen ont of thirty-seven attacked recovered under jndicionis treatment.

Arctostuphylos Uua-Ursi, the Bearberry--The leaves are astringent, and are official in the British Pharmacopmia. Combined with astringeney they also possess mild diuretio properties.

Azalea pontica.-Trelizond honey owes its poisonous properties to the bees feeding on the flowers of this plant. The poisonous honey mentioned ly. Xenophon, in his aceount of the 'lietreat of the 'Ten Thousame,' was of a like nature.

Chimaphila umbellata, Winter-green, Pipsissewn,-This herl possesses diuretic and tonie propertics, The leaves are official in the United States Pharmacopmia, In the UJited States, Chimanhila has heen called 'King's Cure, from its reputel value in serofula. The fresh leares are acrid, and when applied to the skin act as a rubefacient.
sepigna ropons, Trailing Arbutns.--Tlue leaves null stcms noseses similar properties to those of Uva-Ursi, and are nsed in the United States in similar diseases.

Siricu, From the roots of E, arlorea, which grows to a large size
on the lills of the Maremma, the so-ealled briar-root or briar-wood pipes are made. The pipes known as pipes de bruyere are also made from the roots.

Gualtheria procumbens, Partridge Berry.-The leaves aregofficial in the United States Pharmaeopcia. They possess aromatie, a-tringent, and stimulant properties, which they owe to the presenee of a volatile oil and tannic acid. 'The oil is known nnder the name of Oil of" Partridge Berry or Oil of Wintergree.. An infusion of the leaves is employed in eertain parts of North America, as a substitute for China tea, under the name of Mountain or Saluador Tea. The fruits, known as Partridge Berries or Deer Berries, are much relished by some persons.-G. leucocarpa and G. punctatu.-From the leaves of these two species, both of which are natives of Java, Dr. cle Vrij obtained an oil, whieh he found to be identieal with the Ameriean Winter-green Oil.

Kulmia latifolia, a eommon plant in the United States, is reputed to be narentic and poisounus. The leaves, uuder the name of 'Mountain Laurel,' are said to be a valuable remedy in obstinate diarrhoa. They have also been used in syphilis and skin diseases. They eontain a large amount of tannic aeid.

Ledum.-An infusion of the leaves of L_{1}. palustre and L. latifolum is employed in North Ameriea as a substitute for China tea, under the name of Labrador Tea or James's Tea. It possesses narcotio properties. This plant has also been recommended as a powerful inseetieide.

Rhododendrou.-The fowers of R. arboreum are used by the hill people of India in the preparation of a jelly. The powdered leaves of R. campautlatum are employed as snuff in certain parts of India. Tfre brown pulverulent substance found on the petioles of some Rhododendrons and Kalmias is also in use in the United States of America as a substitute for suuff.- R. chrysanthum, a Siberian plant, possesses very marked nareotie properties.

Order 3. Monotropaces, the Fir-rape Order.-Character. Soprophytes with scale-like leaves. Sepals more or less distinct, $4-5$, inferior. Petals 4-5, distinct or united. Stamens twice as many as the petals, hypogynous; anthers 2-celled, with longitudinal dehiscence. Occiy superior, 4-5-celled at the base, 1-celled with 5 parietal placentas at the apex. Fruit capsular, with loculicidal dehiscence. Seeds numerous, with a loose testa; embryo minute, at the apex of fleshy albumen. This order is raferved to Erieuces by Bentham and Hooler. It is closely allied. to the Pyrolex.

Distribution and Numbers.-They are found growing on Firs chiefly, in the cool parts of Europe, Asia, and North America. Illustrutice Genus:-Monotropa, Nutt. There are about 10 species.

Properties and Uses.-Unimportant.
Order 4. Epacridacem, the Epacris Order.-Character.Shunbs, or small trees. Leaves alteruate or rarely opposite, simple, with parallel or radiating veius. Calyx and corolla inferior, usually 5 -partite, or rarely 4 -partite. Stamens equal in number to the divisions of the cololla, or rasely fewer, hypogynous or adherent to the corolla; anthers 1-celled, without appendages, opening longitudinally. Oeary superior, many- or 1-celled; style simple. Fruit lleshy or capsular. Secels with a firm skin, albuminous.

Distribution and Numbers. - Natives of Australia; the Indian Archipelago, and the South Sea Islands, where they are very abundant. Illustrative Genera:-Astroloma, R. Lir.; Epacris, Smith. There are about 350 species.

Propertics and Uses.-Of little importance except for the beauty of their flowers, on which account they are much cultivated. The fruits of many species are edible, as those of AstroToma humifusum, the Tasmanian Cranberry ; Levcopogon Iichei, the Native Currant of Australia; Lissanthe sapidde, and others.

Cohort 2. Primulales.-Stamens generally epipetalous; equal in number to, and opposite, the lobes of the corolla or separate petals. Ovary 1 -celled, with a free central placenta and numerous ovules; or with a solitary ovule suspended from a long funiculus arising from the centre of the cell at the base.
Order 1. Plumbaginacem, the Thrift Order.-Character. Herbs or undershmbs. Leaves entire, alternate or radical, exstipulate. Flowers regular (fig. 995). Calyx tubular, plaited, persistent, 5 -partite (fig. 995). Corolla (fig. 995) membranous, $\overline{5}$-partite or of 5 petals, or rarely absent. Stamens (figs. $99 \overline{5}$ Fig. 996.

Fig. 995.

Fig. 905. Diagrom of the flower of a species of Plembergo.-Fi\%. 996. Essentinl orgaus of the smme.

and 996) 5 , opposite the petals, to which they are attached when the corolla is polypetalous, and hypogynous and opposite to the divisions of the corolla when this is monopetalous (fig. 995). Ovury 1-celled (figs. 637 and 995); ornle solitary, suspended from a long funiculus arising from the base of the cell (fig. 637) ; styples (fig. 996) usually $\overline{5}$, sometimes 3 or 4 . Fruit utricular, or dehiscing by valves at the apex. Sicel solitary; cmbryo straight; albumen mealy, and suall in quantity.

Distribution and Numbers. - Chiefly found growing on the sea-shore and in salt marshes in various parts of the globe, but by far the greater number inhabit temperate regions. Illustrative Genera:-Armeria, Willd.; Plumbago, Tourn. There are about 250 species.

Properties and Uses-Of little importance, but acridity and astringency appear to be the most remarkable properties of the plants of this order.

Armeria vulgaris, Common Thrift.-The dried flowers are commonly reputed to be diuretic.

Plumbago.-The roots of sereral species are acrid and vesicant when fresh, as those of P. europrea, Toothwort, P. zeylanica, P. scandens, and P. rosen.-P. toxicaria is used as a poisou in Mozamhique.

Statice caroliniuna is called Marsh Rosemary in the United States, where its root is official and is much emplored as an active astringent. The root of S. lutifolia has similar astringent properties to S. caroliniona, and has been used in Russia and Spain as a tanniug agent. The ronts of S. mucronata are said br Holmes to constitute the drug known in Moroceo as Tufrifa, which is supposed to possess nervine properties. The roots, termed 'Bareurn' and 'Graycuru,' and described by' Symes and Holmes, are very astringent, and appear to be derived from species of Statice; the latter, according to Holmes, from S. brasiliensis.

Order 2. Primulacee, the Primrose Order.-Character.

 Herbs. Leares (fig. 394) cauline, and then simple, opposite,

Fig. 999.

Fig. 997. Flower of the Pimpernel (Anaguthis arrensis) c. Calyx. p. Petals. s. Strmens.-Fif. 998. Vertical section of the flower of the same. pil. Free central placenta. s. Style and capitate stigma.- F'ig. 999. Vertical section of the seed of Primuth eleftior. \%. Integuments. p. Albnmen. e. Embryo. h. Hilum.
whorled, or rarcly alternate, exstipulate; or radical. Flower's regular, perfect (figs. 481 and 997). Culy, generally 5-cleft (fig. 458), or rarely 4-9-eleft, persistent, inferior (fig. 998) or semisuperior in S'amolus. Corolla (figs. 481, p, aud $997, p$) usually 5-or rarcly 4-9-cleft, very rarely absent, or rarely of distinet petals. Stamens (fig.997, s) equal in number to the segments of the corolla or separate petals, and opposite to them, or in
apetalous flowers hypogynous and alternating with the divisions of the calyx. Orary superior (figs. 458 and 998), or rarely partly inferior, 1 -celled (f fg. 998) ; placenta free central (figs. 635, pl, and 998, pl) ; style 1 (figs. 458 and 998) ; stigmince capitate (figs. 582 and 458). Fruit a capsule, dchiscing transversely and forming a pyxis (fig. 709), or in a valvular manner. Seeds numerous, with fleshy or horny albumen (fig. $999, p$) ; embryo placed transversely to the hilum (f fig. 999, e).

Diagnusis.-Herbs with simple, exstipulate, cauline or radical leaves, and regular perfect flowers. Stamens equal in number to the lobes of the corolla or separate petals and opposite to them. Ovary superior, 1-celled, with a free central placenta; style 1; stigma capitate. Fruit capsular, with transverse or longitudinal dehiscence. Seeds numerous, with albumen, and the embryo parallel to the hilum.

Distribution and Numbers.-These plants principally inhabit cold and temperate regions in the northern parts of the globe. They are rare in the tropics, where they are only found on the sea-shore or in mountainous districts. Illustratice Genera:Primula, Limu.; Anagallis, Tourn.; Glaux, Tourn. ; Samolus, Touru. There are about 250 species.

Properties and Uses.-Of no particular importance except for the beauty of their flowers. The flowers of the Cuwslip (Primula veris) are sedative and diaphoretic, and are sometimes employed in the manufacture of a soporific wine. The roots of Cyclamens are acrid, especially those of Cyclamen hederxfolium, which have been used as a drastic purgative and emmenagoguc. The Cyclamens are commonly known under the name of Sowbreads, from their being eaten by wild boars in Sicily.

Order 3. Myrsinacef, the Myrsine Order.-Character. Trees or shrubby plants. Leaves coriaceous, smooth, exstipulate. Flowers small, perfect or unisexual. Calyx and corolla $4-5$-partite. Stamens usually corresponding in number to the divisions of the corolla and opposite to them, but sometimes there are also 5 sterile petaloid alternate ones; authers dehiscing longitudinally. Ovary superior or nearly so, 1 -celled; with a free central placenta, in which the ovules are imbedded. Fruit fleshy. Seeds 1, 2, or many ; ulbumen abundant, horny.

Distribution and Numbers.-Chiofly natives of the islands of the southern hemisphere. Illustrative Genera:-Myrsine, Limn.; Theophrasta, Limu. There are above 300 species.

Properties and Uses.-Of little importance. The fruits ancl seeds of some species are pungent; and the seeds of others are said to be purgative. The frut of Myrsine africana is used by the Abyssinians mixed with barley as food for their asses and mules. The seeds of Theophresta Jussiai are used in St. Domingo in the manufacture of a kind of bread.

Ahyicerch.-This genus, of which there are five speceics, is considered by. Egiceras.
some writers to form a distinct order, the Egicerace.z. These inhabit sen-shores in tropical regions, and their seeds germinate while the fruits are still attached to the plant, aud send their roots down into the mud, like Mangroves. The genus EEqiceras. Gärtn., differs ftom Myrsinaceæ in its anthers dehiseing transversely ; in having follicular fruit; and in the seeds being without aibumen. Bentham and Hooker combine it with Myrsinacer, and hence it is so pluced here.

Cohort 3. Ebenales.-Stamens epipetalous, equal in number to, and opposite, the lobes of the corolla or separate petals ; or more numerous. Ovary more than 1-celled; placentation axile. Fruit Heshy. Seeds 1 or few, large. Trees or shrubs; leaves alternate.

Order 1. Sapotacee, the Sapota Order.-Character.Trees or shrubs, often having a milky juice. Leaves alternate, simple, entire, coriaceous, exstipulate. Flowers small, hermaphrodite. Calyx inferior, usually. with ö, or sometimes with 4-8 divisions, persistent. Corolla with as many divisions as the calyx, or twice or thrice as many. Stamens definite, in a single row, half of them sterile and alternating with the fertile ones, the latter being opposite to the segments of the corolla; anther's commonly extrorse. Ovary 4-12-celled, with a solitary anatropous ovule in each cell ; style 1. Fruit fleshy. Seeds large, with a shining bony testa ; embryo large, usually in albumen, and with a short radicle.

Distribution and Numbers.-Natives chiefly of the tropical parts of Asia, Africa, and America. Illustrative Genera:Chrysophyllum, Linn.; Isonandra, Wight; Bassia, König. There are about 220 species.

Properties and Uses.-Many species yield edible fruits ; others are valuable timber trees. The seeds of several contain a fatty oil. Some have bitter astringent febrifugal barks, and the milky juices of others yield a substance analogous in its general characters to caoutchouc or india-rubber.

Achras.-Several species of this genus yield dessert fruits; thas the fruit of A. Srapota is the Sapodilla Plum; that of A. memmosu, the Marma-lade.-Achrus Sapotu has also a febrifugal bark, and diuretie and aperient seeds. Its wood is called Bully-tree Wood or Black Bully. This lias a freenish colour, and is very hard. It is imported, and used for shipbuildines, and other purposes. (See Mimusops.) The bark of several other species has been also employed as a sulstitute for Cinchona.

Argania Sideroxylon.- From the serds of this species a valuable oil may be olbtained.

Bassia.-The ripe keruels of B. Iatifolita and those of B. Imaifolia, the Elloopstree, yicld fatty oils which are much employed in India, for lamps, eulinary purposes, and for soap-making; and exterinally in cutaneous affeetions. "The flowers of B. lomgifolia, under the name of Elloopu, have been importerl into London. Tluse flowers are used as food, and also yield an alcululice spirit which is in much repute in some prots of India. The wood of 13 . Comyfolin and othors is hard and durable, aud the bark aud leaves are used in medieine. From the secds of 13 . butyruceu a ennerete oil
is also olitained in India. It is linown under the name of Fulwa Butter. It is highly esteemed as an external application in rheumatism and other affections.

Butyrospermum.-B. Parkii.-This species, whicle is a native of Westtropieal A frica, is the source of Shea or Galam butter.

Chrysophyllum.-The fruit of C. Cainito is known nnder the name of Star-apple. It is much esteemed in the West Indies. Other specios of Chrysophyllum also vield edible frnits.-C. Buranhem, C. glycyphloum, or Lucuma glycyphlceum, yields an astringent bark called Monesia bark, which has been mueh employed in Franee and Germany in diarrhoea and siunilar affections. It contains a principle called monesin, which is analogrou- to sapomin. Monesin has been also employed as a medicinal agent. This plant is also the souree of the gun or gum-resin known in New York as Chicle. It has also been called Mexican Gum and Rubber Juice. It has been chieH! used for mixing with rubber for insulating telegraple wires.

Dichopsis (Isonandra) Gutta, the Gutta Percha or Talan-tree.-This is a native of Singapore, Borneo, Sumatra, and other eastern islands. The inspissated juice of this, and probably other species of I sonandra, and of other allied genera, as Chrysophyllum, Sideroxylon, Bussia, Payena, Mimusops, Isonandra, and Imbricaria, eonstitutes the raluable sulstance called Gutta Percha. The Gutta Pereha tree is now extinct in Singapore. in consequence of the destruetion of the trees in order to obtain the inice. The annaal importation of Gutta Percha into this country is more than 60.000 ewt. The best Gutta Percha is obtained from Dichopsis Gutta, and the second best variety is derived from a tree called 'Gatah Sûndek,' in Pcrak, whieh Dr. Trimen believes to be a speeies of Payena. Gutta Pereha is oftieial in the British Pharmacopœia.

Lucuma.-Scveral species yield edible fruits. The plant alluded to above under the name of Chrysophyllum Buranhem is now also termed Lucuma glycyphloum. (See Chrysophyllum.)

Mimusops.-The frnit of sereral species is emplored as a dessert ; that of M. Elengi is the Surinam Medlar. The bark of MI. Elengi alsn possesses astrugent and tonic properties; and in Southern India the fragrant nevtar distilled from the flowers is used as a perfume, and as a stimnlant medicine. 'The fruit of $M . K a k i$ is also much eaten in India. The seeds of some =pecies yield useful oils. Several speeies, as M. Elengi, MI. indica, M. hexamlru, produce hard, heary, and durable timber. The Bully-trec of Britich Guiana is also by some authors regarded as a species of Mimusops.-M. Balata (Achras or Sapota Mulleri), a native of Guiana and Central America, yie'ds a substance resembling Gutta Pereha in its properties. It is known as Balutus.

Order 2. Ebenacese, the Ebony Order.-Character.Trees or shrubs without milky juiee. Leares alternate, entire. eoriaeeous, exstipulate. Flowers polygamous. Calys 3-i-partite, inferior, persistent. Corolla 3-7-partite. Stamens equal in number to the lobes of the eorolla, or twiee or four times as many, epipetalous or hypogynous; anthers 2 -celled, introrse, opening longitudinally. Ovary 3-12-eelled, each cell with 1 or 2 ovules suspended from the apex; style usually having as many divisions as there are eells to the ovary. Fruit Heshy. Seeds large, albuminous ; rarliele superior.

Distribution and Numbers.-They are mostly natives of tropieal India, but a few oecur in eoller regions. Illustrutive Genera:-Royena, Limn; Diospyros, Linn. There are nearly 200 species.

Properties and Uses, - Many of the trees of this order are rewarkable for the hardness of their wood, which is commonly known under the names of Ebony and Ironwood. Many species have edible fruits, and some have astringent barks.

Dinspyros.-Many spccies of this gems have hard and dark-coloured heart-woods, whicly form the different kinds of Ehony: thns, from D. reticulata is nbtained Mauritius Ebony, the best kind ; from D. DIelannrylon, a native of the Coromandel Coast, that which is commonly known as Black Eloon; from D. Ebencster, the Bastard Ebony of Ceylon, from D. Ebenum, the be:t Cevlon Ebony; and D. hirsutr of Ceylon, and other specics, also yield inferior kiads of Ebony. Coromandel or Calamander Wood, a beantifully rariegated furniture wood, is also procured from Ceylon, and is obtaincd from D. quresitu and D. oppositifolia. The frnit of D. Kaki is eaten in China, India, and Japan. It is known in Japan under the name of the Kecr-fig. It is the Kuki of the Chinese. The plant fruits frcely in this mountry in a conserratory or orchard honse. - The fruit of D. virginiana, the Persimmon or Virginian Date Plum, is sweet and edible when ripe, especially after a frost, but it is very anstere in an unripe state; hence it is frequently employed in that condition in the United States, where it is official, as an astringent. In the Southern States an indelible ink is also made from the unripe fruit. The bark has been likewise used as a febrifuge and astringent.-D. Lotos, a native of Europe, has edible fruit. The Lark of D. Melannxylm possesses tonic and astringent properties. The fresh fruit of D. Embryopteris is powerfully astringent, and is official on that account in the Pharmacopoia of India. The ripe fruit is edible. 'The juice of the fruit is also employed in Bengal for various useful purposes. The raw fruit of D. mollis vields a black duc.

Royenu hirsutu var. rigida, a Cape shrub, has an edible fruit.
Order 3. Styraceex, the Storax Order.-Charaeter.-Trees or shombs. Leares simple, alternate, exstipulate. Flowers axillary, hermaphrodite. Calyx inferior or partially superior, 4-5-partite or almost entire, persistent. Corolla of Irom 5-10 petals, either united at the base or distinet ; xstivation imbricate or somewhat valvate. Stamens equal in number to the petals, or twiee or thriee as many, more or less united at the base; muthers 2 -celled, roundish or linear. Ovary superior or partially inferior; style simple. Fruit drupaeeous, always more or less fleshy. Sceds I usually in each eell, sometimes more; embryo in the midst of abundant fleshy albumen, with a long radiele.

Miers divides the Styrucer into two orders, ealled S'ymplocaces and Stypoctucer, the former of whieh is distinguished by its partially inferior ovary, imbricate restivation of eorolla, and roundish anthers; the latter having a superior ovary, valvate estivation of corolla, and linear anthers.

Distribution and Numbers. - These plants are sparingly distributed in wamn and tropical regions; but a few are found in onld climates. Illustrative Giencra:-Symplocos, Jacq. ; Styrax, Tumin. Miers enumerates about 120 species.

Properties and Uses.-These plants are principally romarkible for yielding stimulant balsamie resins. Some yield dycing wents, but these are of little importanee.

Styrax--The speeies of this genus frequently vield stimnlant balsamie resins--S. Benzoin, the Benjamin tree, is the principal, but probably not the only source of the conerete balsanne resin which is official in the British Pharmacopocia under the name of Benzoin. It is commonly, but improperly, called Gun Benjamin. This is usually obtained after making incisions in the bark. Two kinds are distinguished in commerce under the respective names of Siam and Sumatra Benzoin. The former is most csteemed in England. Benzoin is used in medicine as a stimulant expectorant. It is, however, chieHy employed in the preparation of the official benzoic acid ; and on account of its agreeable odour when heated it is a common ingredient in the incense so largely used in Catholic churches. It is also a constituent in aromatic or fumigating pastilles, and in court or black sticking plaster. In Brazil and elsewhere, other species of Styrux yield similar balsamie resins.-S. officinale, native of Greece, the Levant, and Asia Minor, was long supposed by many to be the sonrce of Liquid Storax; but Hanbury proved that while it was the source of the original and elassical Storax, this had in modern times wholly disappeared from eommerce, and that our Liquid Storax is the produee of Liquirlambar orientalis of Miller. (See Liquidambar.) Storax has similar medicinal properties to Benzoin.

Symplocos.-The leaves of S. Alstonia are slightly astringent. They have been employed as a tea in New Granada, under the name of Santa Fé Tea. The leaves of S. tinctoria (Sweet-leaf or Horse-sugar), a native of North America, have a sweet taste, and are eaten by eattle. They are also used in dyeing yellow. This plant has a bitter and aromatic root. The leaves of other species are also emploved in Nepaul for dyeing rellow. The bark of S. racemnsa is likewise used in India as a dyeing material and as a mordant. It is known under the name of Lotur bark.

Series 3. Diearpize or Bicarpellatae.

Cohort 1. Gentianales.-Corolla regular. Stamens generally epipetalous, and equal in number to, and alternate with, the lobes of the corolla, or rarely fewer. Leaves usually opposite and entire ; or rarely compound, and very rarely alternate.

Order 1. Oleaces, the Olive Order.-Charaeter.-Tiecs or shiubs. Leaves opposite, simple or pinnate, exstipulate (fug. 438). Flowers usually perfect, or rarely unisexual. Calyr persistent, 4-8-eleft (fig. 1000), sometimes obsolete (fig. 30), inferior (fig. 1002). Corolle regular, 4-8-eleft (fig. 1000), or of 4 distinet petals (fig. 1001), or absent (fig. 30); astimation valvate (fu. 1000) or imbricate. Stamens usually 2 (figs. 30 and 1001), rarely 4. Ovary superior (fig. 1002), 2-eelled (fig. 1000). with 1-4 erect, or 2 suspended ovules in eaeh eell (fig. 1002). Fruit dehiseent or indehiseent, often 1 -seeded. Needs with abundant fleshy albumen, or the albumen is small in quantity: embryo straight.

The order Jasminacer of mamy hotanists is here inchuded in the Oleccea. The tribe or sub-order Jusmineat is more especially di-timunished from. other ollecees by the imbricute astiretion of the corolla, erect ovules, and the small quantity of albumen in the secd.

Distribution and Numbers.-The plants of this order are principally natives of temperate and warm regions, but some also occur within the tropics. Illustratice Genera:-Olea, Limu.; Ligustrum, Toum.; Fraxinus, Tourn.; Jasminum, Linn. There are about 250 species.

Properties cund Uses. -The barks of many plants of this order are tonic and febrifugal. The mild purgative called Manna is obtained from a species of Ash. The pericarp of the common Olive yields the well-known Olive Oil Other species are remarkable for the hardness of their wood. The plants of the Jasminere have generally fragrant flowers. The volatile oil of Jasmine, which is used in perfumery, is chiefly obtained by distillation from the flowers of Jasminum officinale and J. grandiflorum. The fragrant flowers of J. Sambac are used as votive

Fig. 1001.

Fig. 1002.

Fig. 1000. Diagram of the flower of the Lilac (Syringe rulgaris).- Fiy. 1001. Flower of the Mamm Ash (Fronimus Ornus), with 4-cleft calyx; corolla with 4 distinct petals; 2 stameus; and 2 carpels.-Fig. 1002. Tertical section of the calyx and pistil of the Privet (Ligustrum vulyare).
offerings in India; they are also said to have much power in arresting the secretion of milk. The leaves and roots of some species of Jasminum are reputed bitter, and have been employed for various purposes, but generally speaking this tribe contains no active medicinal plants. The flowers of Nyctanthes arbortristis are employed in India for dyeing yellow.

Firarinus.-F. excelsior, the common Ash, has a fehrifugal bark. The leaves are reputed to possess cathartic propertics. 'This plant also vields a small quantity of Manna, especially when grown in a warm climate, but no commereial Manna is nhtained from it. The wood possesses much strength and elasticity combined with lightness, hence it is commonly used for ladilers, poles, and asricnltural implements. The sweet concrete exndation known as Manna is obtained hy making transverse incisions into the stem of Frexinus Orons; Inence this phant is official in the British Phamacomeia as the somere of Mamm. It is a mative of the South of Europe amo A sia Minor, but commercially our supplies of Manna are now entirely derived from Sicily: where the trees are cultivated for that purpose. Manna is a mild arperable lasative. It owes its properties essentially to monnite, an 1 also, probably, to some extent, to a peentiar resin-Frexinus chinensis is
the tree upon which the insect (Coccus $P e-l a$) produciug the White Wax of China feerls.

Olea-Olea europra, the Olive.-The ripe fruit has a very fleshy pericarp ; this yields by expression the fixed oil, known as Olive Oil, Salad Oil, and Sweet Oil, which is so largely used for dictetical purposes, in the arts, and in medicine ; it is official in the British Pharmacopocia. In medicine, it is prineipally employed exterually, either ly itself, or in combination with other substanees. When administered internally, it is nutrient, emollient demuleent, and laxative. The olives used as a dessert are ordinarily prepared by first soaking the green unripe fruits in water to deprive them of a portion of their bitterness, and then preserving them in a solution of salt slightly aromatised. The leaves and bark of the Olive-tree have been highly extolled by some writers for their tonie and febrifugal qualities. The febrifugal properties of the bark are said to be due to a peeuliar priuciple which has been named oliverin. The substance ealled olive gum or olivile is a resinous exudation from the Olive-tree. It was formerly employed in medicine, but at present is not applied to any useful purpose. The wood of the Olive is much used for eabinet work. The flowers of Olea fragruns are emploved in China to give odour and flavour to a partieular kind of tea.

Syringa vulgaris, the Lilae, has a tonie and febrifugal bark.
Orderi 2. Salvadoracem, the Salvadora Order.-Character. - Shrubs or small trees. Leaves opposite, entire, leathery, exstipulate. Flowers small, panieled. Catye of 4 sepals. Corolla 4-partite, membranous. Stamens 4. Ovary 1-2-eelled; stigma sessile. Fruit fleshy, 1-eelled, with a solitary ereet seed. Seed exalbuminous.

Distribution and Numbers.-Natives of India, Syria, and North Africa. Illustrative Genera:-Salvadora, Liun.; Monetia, L'Hérit.

Properties and Uses.-Some are acrid and stimulant. The only plant of importance is Salvactora persica, supposed by Royle to be the Mustard-tree of the Bible. The fruit of this is edible, and resembles the garden Cress in taste. The bark of the root is aerid, and is employed as a blistering agent in India. The leaves are reputed to be purgative.

Order 3. Apocynace e, the Dog-bane Order.-Chara e ter.Trees or shrubs, usually milky and aerid. Leares entire, commonly opposite, but oeeasionally whorled or seattered, exstipulate. Calyx inferior, 5 -partite (fig. 1004), persistent. Corolla (fig. 1004) 5 -lobed; astivation eontorted. Stamens (fy. 1004) 5, alternate with the lobes of the eorolla ; filaments distinct; anthers united to the stigma (fig. 1003), 2 -eelled (fig. 528) ; pollen griunular. Ovary composed of 2 earpels, whieh are generally merely in contact, but sometimes united so as to form a 2 -celled (fuy. 1004) or more rurely a 1 -celled ovary ; styles 2 or 1 (figs. 599 , t, and 1003) ; stigmu 1, expanded at the base and apex, and eontracted in the middle, so as to resemble in form an hour-glass or dumb-bell (fig. $599, s$) ; oveles numerous. Fruit consisting of 1 or 2 follieles, or a eapsnle, drupe, or berry. Sieds usually with albumen, or rarely cxalbuminous, often eomose.

Distribution and Nrumbers. - Nitires principally of the
tropics, but a few occur in northern regions. Vinca is the only British genus. Illustrative Genera:-Allamanda, Linn.; Urceola, Ruxb. ; Apocynum, Tourn. There are about 600 species.

Properties and Uses.-The plants of this order are generally to be suspected, as many of them are intensely poisonous, although the fruits of a few species are edible. Some are drastic pargatives, and in others the bark is tonic and febrifugal. India-rubber or Caontchouc, now commonly known in commerce as Rubber, is obtained from the milky juice of several species.

Fig. 1005.

Fig. $100+$.

Fig. 1003. Vertical section of the flower of Periwinkle (Vincte). -Fig. 1004. Diagram of the flower of the same.

Alstonia scholaris, a native of India and the Philippinc Islands, has a bitter, tonic, and astringent bark, which is much esteemed as a remedy in chronic diarrhoa and dyscntery. It is official in the Pharmacopocia of India, and is known as Alstonia burk or Dita burk. It is also regarded as a valuable antiperiodic and tonic. There has been oltained from it au uncrystallisable substance called dituin, which, administered in the same doses as quinine, is said to be an excellent tonic. Recent cxperiments have proved, however, that ditain is not au alkaloid but a compound sulstance from which an alkaloid termed ditumine may be obtained. More rccent investigations also show that Curtex Alstonia is not derived from the same plant as that vielding Dita bark, but from A. spectabilis, a native of Timor, the Moluceas, and the eastern parts of Java. It is known in Java as 'poclé,' and is much used in fevers. It contains a peenliar alkaloid which has been named alstozine or alstomamine. It also contains ditamine. According to Hesse, Australian Alstonia Bark, which is derived from A. constricta, contains at least four alkaloids, which he has named alstonine (chlorogeniue). porphyrine, porphyrosine, and alstonidine.

Alyxia stellata has an aromatic bark, which is analogons in its propertics to that of Canella and Winter's Bark.

Apocynmen.-The roots of A. canuabinum nand A. andeosmmifolium are emetic, diuretic, diaphoretir, and purgative ; that of the former, under the name of Amcrican ludian Hemp, is said to lee very useful in Bright's disease and dropsy. 'The dibre known as Calorado Memp' or Cancedian Hemp, which may be used in the mantfacture of the finer kinds of paper, is obtained from A. caremabianm.

Aspidosperua Quebrachon vields White Quchracho Bark, which has been highly recommended as a f̆́brifuse and antiperiodic. It is also useful in dyspmea. It contains a crystalline alkaloid, which has heen termed aspiduspermine. The investigntions of Dr. Wralfsuerg indicate that aspiduspermine is identical with the alkaloid prytine, described by Hesse in 1870.
which he derived from a bark known as White Paytx Bark, the source of which is now thought to be a speeies of Aspidosperma. More recent investigations of O. Hesse have however proved to him that pxytine and aspidospermine are quite distinet. Hesse has also found another alkaloid, which he lias named quebrachine. The bark known as Red Quebracho Burk is derived from Loxopterigium Lorentzii or Quebrachia Lorentzii of Grisebach, a plant of the order Anacardiacer.-A. excelsa, a native of Guiana, is remarkable for its fluted trunk; this is employed for making paddles Other spurious Quebracho barks are also known in eommerec, onc being Copalchi Bark, from Croton pseudo-China. (The genus Aspidosperma is sometimes placed in the B:gnomiucer.)

Carissa.-Curissa Carandas bears an cdible fruit, which is eaten in the East ludics, where it is used as a substitute for Red Currant jelly. The fruits of C. edulis and C. tomentosa are also caten in Abyssinia.

Geissospermum leve (G. Tellosii), yields the bark which is cmployed medicinally in Brazil as a febrifuge and antiperiodie. The trec is known under the name of Pan-Pereira.

Hancornia speciose bears a delicious fruit, which is mneh esteemed by the Brazilians. It is termed Mangalea or Mangava. The milky juice when hardened forms a kind of India-rubber. Collins says that Pernambuco Kubber is probably derived from this specics. This rubber is now imported in large quantities from Permambueo and Ceara. It is of good quality.

Landolphia.-L. owariensis, L. forida, and other specics, yield African Rubber.

Plumieria.-The flowers of P. alba and other speeies, natives of the West Indics and some parts of Sonth America, have a dclicious odour ; and it is said that the perfume known as 'Frangipani' is distilled from them. -P.rubre is ealled Red Jasminc in the West Indies.

Roupellia grata, a native of Sierra Leoue, yiclds an cdible frnit called Cream Jruit.

Tabernemontana utilis, the Hya-Hya, or Cow-tree of Dcmerara, has a milky nutritious juice.

Tanghinia venenifera, the Madagascar Poison-nut.-The sceds of this plant arc amongst the most deadly of poisons. It is said that one not larger than an almond will destroy twenty persons. It was formerly used as an ordeal in Madagascar.

Thevetia nerifolia.-The bark of this West Indian shrub is reputed to possess valuable antiperiodic propertics.

Urcenla elastica is one of the prineipal plants of the order vielding Indiarubber. Aecording to Collins it yiclds Borneo Fubber, and jrobably oticer India-rubber imported into Singapore, although some of this is obtained from Ficus elastica. (See Ficus.)

Tuhea gummifera, a native of Madngascar, and other speeies, vield a lind of rubber. This kind is much valued in France, where it is sonetimes known as Mauritins Rubber.

Wrightia.-The bark of W. antidyscntcrica is febrifugnl and astringent. It is called Conessi Bark. The seeds have similar propertics. Both the burk and sceds are much used in India. From IF. tinctoria al blue dre resembling Indigo is obtained. The wood of W. coccinca and W. mollissima are also employed in India for palanquins, thed by turners.

Order 4. Ascleptapacene, the Aselepias Order.-Charaeter. -Shubs or herbs, commonly milky, frequently twining, and sometimes succulent. Leaves entire, opposite or whorled or rarely seattered, exstipulate. Flowers regular (fig. 1005). Calys and corolla 5-partite (fig. 1005) ; asticution of the latter imbricate or rarely valvate ; the calyx persistent (fiq. 565), the corolla deciduous. Stamens 5 (fig. 1005), alternate with the
lobes of the corolla; filcuments usually combined so as to form a tube round the pistil (fg . 1006), or sometimes distinct; anthers frequently surrounded by horn-like appendages of the filaments (figs. 1006, a, and 1007, p); 'pollen when the anther clehisces, cohering in masses ($f g .565, b$) and sticking to five processes of the stigma ($f i g .565, p$) by twos, or fours, or singly.' Ocary superior (fig. 1006), formed of 2 carpels, which are more or less adherent below, but distinct above; styles 2 ; stigmas united and expanded into a fleshy 5 -cornered head, the pollenmasses adhering to gelatinous processes arising from its angles (fugs. $565, s$, and 1006). Fruit consisting of 2 follicles, or 1 by abortion. Seeds numerous, generally comose (fig. 755), with thin albumen.

Diagnusis. - This order is at once distinguished amongst the Dicarpiee by its curionsly formed stigma and adhering pollennasses.

Fig. 1005. Diagram of the flower of Asclepias nivea._Fig. 1006. Flower of a species of Asclepias, with the stamens united and forming a tube round the pistil. p. Corolia. a. Appendages of the stamens.- Fig. 1007. One of the stamens of the same removed. f. Filament. a. Auther. p. Hornlike appendage of the filament.

Distribution and Numbers.-They are chiefly tropical plants, abounding in southern Africa, India, and equinoctial America. Illustrative Genera:-Hemidesmus, R. Br.; Asclepias, Linn.; Hoya, R. Br.; Stapelia, Limn. There are about 1,000 species.

Properties and Uses.-The plants of this order are chiefly remarkable for their bitter acrid juice, which renders them stimulant, emetic, purgative, and diaphoretic. Several species are reputed to be antidotes to snake-bites. Some species yieid Caoutchoue; but no important commerciai kind of Rubber is obtained from them. The parts of some are edible, as the roots of Cromphocarpus pedunculatus, and the tubers of Ceropegia Vignaldiana, \&c.

Aselepias.-The ront of A. Curasszvict is employed in some of the West Indian islands as an emetie, hence it is termed Bastard Ipecacuanha. From
the stems of A. tenacissima, Jetee or Tongoose fibres are olbtained. The ront of A. tuberosa, the Butterfly-weed or Pleurisy-root, is employed in the United States as a diaphoretie and expeetorant.-A. incarnaia, Swallp, Sill-weed, is used in North Ameriea as an anthelmintie, and in asthma and rhemmatism; it has also been lately recommended as a good dinretie.

Calotropis. - The dried root bark of C. gigutea and C. procera forms Aludur burk, whieh is oftieial in the Pharmacopeia of India, and bas been much employed in entareous affections. It has been also nsed as a substitute for Ipeeaeuanha. It eontains a bitter principle. Aceording to lioyle, $A 3 k$ or Mudur fibres are obtained from this bark. The bark of the root of C. Humiltonii possesses similar properties, and is said to yield Yercum filres.

Cynanchum.-The expressed juiee of C. monspeliacunn mixed with other purgative snbstances constitntes what has been termed French or Montpeller Scammomy.-C. nvalifolium yields eaontehoue at Penang.

Gonotobus Cundurango.-Cundurango or Condurango Bark has leeen introduecd into this country and elsewhere as a speeitie antidote to eaneer, but extensive trials have shown that it is as nseless ns a remedial agent as any of the reputed cancer eures that have preeeded it. It is ofticial in the German Pharmacopecia.

Gymnena.-G. luctiferum is the Cow-plant of Ceylon. It derives its common name from producing a jniee resembling milk in colour and consistency. The leaves when boiled are administered to nurses nuder the idea that they increase the seeretion of milk.- G. sylvestre, a native of Northeru India, has the singnlar property when ehewed of destroying the power of tasting sugar for twenty-four hours, without in any other way interfering with the sense of tnste.

Hemidesmus indicus.-The roots are known under the names of Indiun or Country Sursaparilla, and as Ninnari root. They were originally imported under the name of Similax uspera, from an erroueous idea of their origin. They resemble Sarsaparilla in their properties, and are larselvused in India as a substitute for it. Hemidesmus is official in the British Pharmaeopecia and in the Pharmaeopecia of India.

Marsdenia_-M. tinctoria, a native of Silhet, produees a kind of indimo. -3. tenacissimut has very tenacions fibres, whieh are used for bow-strinys by the mountaineers of Rajmahl.

Solenostemma (Cynanchum) Argel.-The leaves have been mueh emploved to adulterate Alexandrian Scma. (See Cassia, p. 536.)

Tylophora usthmutica.-Tbe dried leaves form an eltieient substitute fur Ipeereuanba. They are official in the Pharmaeopocia of India. The rout hiss similar properties.

Order 5. Loganiaces, the Strychos Order.-Character. Shrubs, herbs, or trees. Leaves opposite, entire, stipulate; the latter, however, sometimes exist only in the form of a raised line or ridge. Calyx ($\mathrm{fig} .47 \mathrm{~S}, \mathrm{c}$) inferior, 4-5-partite. Corolla (fig. 478, t, l) regular, 4-5-01 10 -eleft ; astivation valvate, contorted, or imbricate Stamens epipetalous, usually equal in number, but sometimes unequal, to the lobes of the corulla; anther's 2-celled. Overy 2-3- or 4-celled; style simple below, and with as many divisions above as thero are cells to the ovary ; stigmu simple (fiy. $478, s$). Finit capsular or drupaceous ; placentes axile, ultimately detached. Seeds usually peltate, sometimes winged, with fleshy or cartilaginous albumen. This order is by no means well defined.

Distribution und A'mbers. - Nearly all natives of tropical
regions. Illustrative Genera:-Spigelia, Linn.; Strychnos, Lim. There are about 200 species.

Properties and Uses.-These plants are almost universally poisonous, acting on the nervous system and producing frightful convulsions. Several have been used in medicine in torpid or paralytic conditions of the muscular system, and for their valuable tonic, anthelmintic, and other properties, but they require much caution in their employment, and can generally be only giren in rery small doses.

Gelsemium nitidum or G. sempervirens, Yellow Jasmine.-The dried rhizome and rootlets are official in the British and United states Pharmacopeeias, and are regarded as of especial value in neuralgic pains of the face and jaws. Gelsemium is evidently a remedy of great power, and is now largely employed in intermittent, remittent, typhoid, and other fevers, in rhemmatism, various obseure nervons diseases, and other affeetions. The aetive principle, termed gelseminine, exercises a sedative aetion on the nervons system, and is said to correspond in its ation very elosely to conium. It is very poisonous.

Spigelia.-S. murylandica, Carolina Pink, Wormseed, Perennial Wormgrass. The root and leaves of this plant are mueh employed in the United States as anthelminties, and the rhizome and rootlets are there offieial. In large doses they operate as irritant eathartics, and in poisonous doses as narcotics. They are but little used in this eountry.- S. Anthelmiu. Demerara Pink Root, is employed for similar purposes in Guiana and the West Indies.

Strychnos.-This genus eontains some of the most poisonous plants that are known.-S. Ignatii.-I his plant vields the seeds known as St. Ignatius's Beans; these come to us from the Philippine Islands, and are official in the Lnited States Pharmaeopoia. They are intensely bitter, and contain the alkaloid Stryehnine in even larger proportions than Nux-vomiea seeds. Their efficets are similar to them; they are largely used by homeopathie practitioners. They are also much employed in India in native pratice.S. Nux-romica, the Kooehla tree, produces Nux-vomiea seeds, so well known for their powerfilly poisonous effects. These seeds owe their virulent properties to the presence of the alkaloids strychine and brucine, but more especially to the former, brucine possessing, it is said, only $\frac{1}{2 \pm}$ th the aetivity of stryehnine. It is stated ly some authors, but upon what anthority we know not, and it seems altogether improbable, that the fruit of Feuillew cordifoliu is an antidote to this poison. (See Feuilliea.) Both the seeds and the alkaloid strychnine are official in the British Pharmacopeeia, and in proper doses they are employed as stimulants of the nervous systen in paralysis and as valuable tonics. Nux-vomica seeds are imported from Coromandel, Ceylon, and other parts of India. In consequence of the enormous quantities which have been of late years brought to this eountry, it was thought that they were employed in the manufacture of bitter ale on aceount of their intense bitterurss, but this has been satisfacturily disproved. A large quantity of both nux-vomiea seeds and strychnine are employed by gamekeepers, and others, to destroy vermin; and both the seeds and strychnine are also largely exported to Australia, where they are extensively employed for destroying. the native dor (dingo), and vermin. The large importation of the seeds iuto this country is therefore satisfactorily aceounted for, and need give rise to no further misgivings as to their improper use. The bark of S. Nuxvamieu is also very poisunons, owing to the presence of brueine chiefly ; but it als, chntains traces of strychmine. As alteady noticed, it was formerly sulstituted for cusparia or ungustura burk (see p. 503), hence it is likewise known as fiulse engustura burk. This bark is also frequeutly sold in Caleuttat under the nanae of Rohun, from which circumstance it has locen substituted
for the febrifugal bark of Soymida ferrifuga, the Rolmna tree (see p. 509). The leaves and wood are also employed medicinally in India. The juice of Strychnos Tieute is the Java poison ealled Upas Tieuté. It owes its poisonons properties to Stryehnine. This poison must not be confounded with the true Upas, whieh is derived from a species of Antitris. (See Antiuris.) The reeent investigations of Planehon have shown that the eelebrated arrow-poison whieh is prepared by various Indian tribes in the northern parts of Sonth Ameriea, and known as Wourali, Urari, or Curare, is essentially prepared from species of Strychos. Planehon has also proved that different speeics are employed in its preparation in different districts. 'Thus in the region of the npper Amazon, S. Custelnazana is nsed; in the apper Orinoeo region a speeies elosely allied to S. toxifera is the essential element of the Curare; in British Guiana S. toxifera is also prineipally used, bnt this is assoeiated with S. cogens and S. Schomburgkii; while the fourth kind, the Curare of upper French Guiana, is prepared from a new species named S. Crevtuxii. Conrare has been employed in tetanus, but with no very satisfaetory results, and also in ehorea and hydrophobia. The wood of S. colubrina and S. ligustrina, natives respeetively of Malabar and Java, is employed as an antidote to the bites of poisonous suakes, hence it is termed Lignum colubrinum or Snake-wood. Several other kiads of wood are, however, known in Asia under the same name. Lignum colubrinum has been also employed as a remedy in intermittent fevers, and for other purposes. It eontains strychnine, and therefore requires mneh eaution in its nse. The hark of S. pseudo-Quina is extensively employed in Brazil as a snbstitute for Cinehona Bark. It eontains neither strychnine nor brucine, and is devoid of poisonons properties. It is frequently erroneonsly ealled Copalchi bark (see Croton for the souree of this bark). The dried ripe seeds of S. potatorum are devoid of poisonons properties. They are employed by the Hindoos to elear muddy water, hence the name of Clearing-nuts whieh is commonly applied to them. Their effieacy is due to the presence of albumen and easein, which aet as fining agents in a similar manner to analogous agents employed for beer and wine. These seeds are also repnted to be emetic. 'The pulp of the frnit of S. potatorum is edible, as is also that of S. pseudoQuina, S. innocua, and some other species; and, according to Roxburgh, that of S. Nux-vomica is likewise greedily eaten by birds.

Order 6. Gentianacee, the Gentian Order.-Character. Herbs, or ravely shrubs, usually smooth. Leares generally simple, entire, opposite, sessile, and strongly ribbed; rarely alternate, or stalked, or compound; always exstipulate. Flowers (fig. 431) regular, solitary and terminal, or in di-tri-chotomous cymes (fig. 435). Calyx inferior, persistent, usually with 5 divisions, or occasionally with $4,6,8$, or 10 . Corollu withering-persistent, its divisions corresponding in number to those of the calyx ; astivertion imbricate-twisted or induplicate. Stamens as many as the sogments of the corolla and alternate with them. Ocary 1 celled, or rarely partially 2 -celled from the projection inwards of the placentas; ovules numerous ; placentas 2, parietal (fyl. (680), anterior and posterior to the axis, and frequently turned inwards; style 1 ; stigmas 2, right and left of the axis. Fruit capsular (fig. 680), 1-2-celled, 2-vialved, with scpticidal dehiscence ; or rarely fleshy and indehiscent. Sceds numbrous (fi!/. (i80), small; embryo minute, in the axis of fleshy albumen.

Diagnosis.-Usually smooth herbs. Leaves exstipulate. Inflorescence definite. Flowers regular, solitary and terminal,
or in cymes. Calyx and corolla persistent, with an equal number of lobes. Stamens alternate to the lobes of the corolla, and equal to them in number. Ovary superior, 1 -celled, with 2 parietal placentas placed anterior and posterior, sometimes meeting in the centre and forming a 2-celled ovary ; style 1 ; stigmas 2. Seeds small, numerous, with a minute embryo in the axis of fleshy albumen.

Division of the Order und Illustrative Genera.-The order may be divided into two sub-orders as follows :-
Sub-order 1. Gentianee.-Leaves opposite, corolla imbricatetwisted. Illustrative Genera:-Gentiana, Linn.; Chlora, Limn. Sub-order 2. Menyanthee.- Leaves alternate, corolla induplicate. Illustr. Genera:-Menyanthes, Toum.; Villarsia, Vent.
Distribution and Numbers.-They are found in nearly all parts of the world, inhabiting both the coldest and hottest regions. There are upwards of 500 species.

Properties and Uses.-A bitter principle almost universally perrades the plants of this order ; hence many of them are tonic, stomachic, and febrifugal.

Erythrea Centaurium, the common Centaury, is an indigenous plant possessing similar propertics to Gentian. It was till lately official in our pharmacopœias. Other specics have similar properties.

Exacum.-Various species, as E. bicolor, E. pedunculatum, and others, natives of the East Indies, possess the tonic and stomachic properties of Gentian, and may le sullstituted for it.

Frasera carolinensis.-The root of this plant, which is a native of the United States, is commonly known as American Calumba. It has much less litterness than Gentian root ; and hence, though similar in properties, it is less powerful. It has been sold for Calumba in France, and is sometimes termed false Calumba.

Gentianct lutea.-This plant is a native of the mountains of central and southeru Europe. Its root is our official Gentian, so well known for its litter tonic properties. The roots of other speeics of Gentian are frequently found mixed with it in commeree, as those of G. purpurea, G. pmetata, and G. pannonica; 1,ut this admixture is of little consequence, as they all possess similar properties. Powdered gentian is sometimes used to give flavour, \&e., to cattle foods. From Gentian root, the Swiss and Tyrolese prepare a spirit which is much prized lyy them as a stomachic. The root of G. Catesbrei, a native of the United States, has similar propertics to, though less powerful than, those of G. luteu.

Menyanthes trifoliata, Buck-bean, Bog-lbean, or Marsh Trefoil.-The leaves and rhizome are tonic and astringent, and in large doses cathartic and emetir. The plant has been employed in Lapland, and some parts of Gcrmany; as a sulstitute for hops. It was till lately official in our pharmacopocits.

Ophelia (Agnthotes) Chivatu, the Chiretta or Chirayta. - The dricel plant possesses great bitterness. Chiretta is nsed ly the natives of India ay Geutian is cupporerl in Europe. It is also in inse as a tonic, \&e., in this countre, and is official in the British Pharmacopein. Other species, natives of the linst [ullice, lave similar properties, but are less valualle. One of these, namely, O. ungnstifolin, is now often sulstituted in this conntry for the gemuine drus, as was first unticer loy the author.

Suhbutim cumpur's. American Centaury.-The rried herl) is employed in the United States on aceonnt of its tome and febrifugal properties.

Cohort 2. Polemonictes. - Corolla regular or nearly so. Stamens epipetalous, equal in number to, and alternate with, the lobes of the corolla. Leaves alternate or rarely opposite, usually simple and entire, or sometimes lobed, and rarely compound ; always exstipulate.
Order 1. Polenoniacee, the Phlox Order.-Character.Herbs. Leaves opposite or alternate, simple or compound, exstipulate. Culys inferior, $\bar{\jmath}$-partite, persistent, generally regular. Corolla 5-lobed, with contorted or occasionally imbricate estivation. Stamens 5, alternate with the segments of the corolla; pollen usually of a blue colour. Ovary 3 -celled; styte 1 ; stigma trifid. Fruit capsular, 3 -celled, 3 -valved; placentes axile. Seeds few or many; cmbryo straight, in the axis of copious horny albumen ; cotyledms elliptical, foliaceous.

Distribution and Numbers. - They abound most in the temperate parts of North and South America; but are far less abundant in Europe and Asia, and altogether unknown in tropical countries. Illustrative Genera:-Phlox Linn; Polemonium, Tourn; Cobsea, Cav. There are above 100 species.

Properties and Uses. - Of no importance except for the prettiness of their flowers. The seeds of Collomia and some other plants of this order have their testa covered with hair-like cells containing spiral fibres ; these fibres in Collomia expand in coils when the seeds are moistened. (See pages 45 and 335.)

Orders 2 and 3. Diapeasiacee and Stilbacee.-These are two small orders of shrubby plants which are placed by Lindley in his Gentianal alliance, and regarded by him as nearly allied to Loganiacer. The Diapensiacer are sometimes regarded, however, as being near to the Ericacen; while others refer them to Convol vulacee. They have clearly aftinities with both Polemoniacee and Hydrophyllacere, and hence are placed here. There are but 2 genera, and 2 species, the uses of which are unknown. They are natives of North America and Northerns Europe. The Stilbacear, of which there are 3 genera, and 7 species, without any known uses, are natives of the Cape of Good Hope.

Order 4. Hydrophyllacee, the Hydrophyllum Order. -Character.-Herbs, lushes, or small trees. Lectes nsually hairy, lobed, and alternate. Fowers either solitary, stalked, and axillary; or numerous and arranged in a scorpioidal manner, Calyx persistent, 5 -partite. Corolla regular, $\overline{5}$-cleft. Strmens equal in number to, and alternate with, the segments of the corolla. Octry 1-2-celled, with two parietal placentas; styles and stigmas 2 ; ontles 2 or many. Fruit capsular, 2-valved, 2- or 1-celled. Seceds netted; clbwmen hard, abundant.

Distribution. and Numbers. - Chielly natives of the northern and most southern parts of the American continent. Illustrutive

Genera:-Hydrophyllum, Tourn.; Nemophila, Bart. There are about 80 species.

Properties and Uses.-Unimportant, except as showy garden plants.

Eriodictyon culifonnicum, Benth., has a reputation among the Spaniards and Indians of California as a remedy for consumption; and is hence known as the Consumptive uced. It has been recommended in the United States as a remedy for pulmonary and bronchial affections.

Order 5. Boraginace.e, the Borage Order.-Character.Herbs or rarely shrubs, with more or less rounded, usually roing and hairy stems. Leaves (fig. 440) alternate, entire, or rarely sinuated, usually rough, exstipulate. Inflorescence scorpioid (figs. 439 -442). Flowers regular, symmetrical (fig. 1009). Calys: (figs. 1008 and 1009) persistent, inferior, $4-5$-partite, or -lobed. Corolla (figs. 4S2, p, and 1009) regular or nearly so, 4-5-purtite, usually with scales in its throat (fig. 482, r); astication imbrisate. Stamens (fig. 1009) equal in number

Fif. 1008.

Fig. 1008. Vertical section of the fruit of a species of Jyyosotis. Two achrenia are seen, and two have becu remis ved. -Fig. 1009. Diagram of the flower of the Comfrey (Symphytum officinule).

Fici. 1009.

to the lobes of the corolla and alternate with them. Ovary superior, and composed of two carpels, each of which is 2lobed and 2 -celled (fig. 1009), with a solitary pendulous ovule in each cell ; style 1 (fig. 610, d), basilar ; stigma siraple or bific. Fruit consisting of from 2-4 distinct achrenia, placed at the bottom of the persistent calyx (figs. 701 and 1008). Seeds exalbuminous; embryo straight, with a superior radicle.

Diagnosis. - Herbs with rounded, usually rough stems, and alternate exstipulate leaves. Intlorescence scorpioid. Flowers regular and perfect. Calyx, corolla, and stamens equal in number, the latter being alternate with the divisions of the corolla. Ovary superior, deeply 4 -lobed, with one ovule in each lobe; style 1, basilar. Fruit composed of 2-4 achienia placed at the bottom of the persistent calyx. Seeds exalbuminous.

Distribution and Numbers.-Chiefly natives of temperate regions in the northern hemisphere. Illustrative Genera:Echium, Linn. ; Borago, Toum. ; Cynnglossum, Linn. There are nearly $7(0)$ species.

Properties and Uses.-The plants of this order are chiefly
remarkable fur their mucilaginous properties; hence they arc mostly harmless, and possess little value as medicinal agents. Some species have roots of a reddish colour, which renders them useful as dyeing agents.

Anchusa (Alkanna) tinctoria, Alkanet, has a dark bloorl-red ront; this is ehiefly employed to give colomr to cils, \&.c., which are used in permmery, and for dyeing woods and other purposes.

Borugo officinalis, Borage.-The root is mucilaginons and emollient. The herb imparts coolness to beverages in whieh it is steeped owing to its containing nitrate of potash.

Echium.-The broken leaves, stems, and flowers of species of Echium are employed in India as an alterative, tonie, demulcent, and dinretic. They are sold in the Indian bazaars under the name of Gouzabam.

Mertensia maritima is called the Oyster plant, from its leares haring the taste of nosters.

Symplytum.-S. officinale, Comfrey, is reputed to be vnlnerary. The romng leaves and shonts are sometimes caten as a vegetable. It is said to form a good substitute for spinach. The root contains much starch and mucilaginous matters, and when finely seraped and laid on ealieo to about the thickness of a erown pieee, it forms an excellent bandage for broken limbs. - S. asperrimum has been recommended for enltivation in this country as food tor pigs, \&c. It has long been used as a forage plant in Circassia tind in Russia.

Order G. Ehretiacee, the Ehretia Order.-Diagnosis.-These plants rescmble the Boraginacee in most of their characters, but they differ in having their carpels so completely united as to form a 2- or more celled ovary ; in their terminal style ; and drupaceous fruit. Thcy are usually characterised also by the presence of a small quantivy of albumen in their seeds, but this is sometimes absent. By many authors, as Bentham and Hool:er, the Ehretiacer are made a sub-order of the Boraginacex.

Distribution and Nrmbers.-Chiefly tropical plants. Ilhustrative Genera:-Ehretia, Linn.; Heliotropium, Limu. There are about 300 species.

Properties and Uses.-Unimportant.
Ehretic.-Some species of Ehretia have edible fruits. The roots of Eluetin buxifolia, when fresh, are employed in India by the native practitioners as an alterative.

Heliotroprom.-Some species lave a delicions odonv, as the Pernvim Heliotrope (Heliotropium pernviunum).-Heliotropium indicum is known in Liberia under the mame of the 'Erysipelas Plant,' from its common use. in the form of an infusion, as a fomentation to inflamed parts.

Order 7. Cormideas, the Cordia Order.-Character.Thees with alternate scabrous leures, exstipulate. Caly, and corolle 5 -merous; astivation of the corolla imbricate-twisted. Stamens 5 , alternate with the scgments of the corolla; cuthers versatile. Orary superior, 4-8-celled, with 1 penduluns orule in each cell; stigma 4-8-cleft. Fruit drupaceous, 4-8.celled, or frecucntly some of the cells are abortive; placentas axile. Seeds 1 in each cell, pendulous by a long cord; albumen none ;
cotyledons plaited longitudinally. This order is combined by Bentham and Hooker with Boraginaceæ.

Distribution and Numbers.-Natives almost exclusively of tropical regions. Illustrative Genera :-Cordia, Plum.; Varronia, DC. There are above 180 species.

Properties and Uses. -The fruits of many species are edible, as those of Cordia Myxa and C. latifolia, which are called Sebestens or Sebesten plums, and are eaten by the natives, and others, in India; those of Cordia abyssinica, Wanzey or Vanzey, which are esteemed by the Abyssinians; and the succulent fruits of Var-. ronia rotundifolia, which are used to fatten cattle and poultry. The bark of C. Mypa is reputed to be a mild tonic and astringent. Some species, as Cordia Rumphii and Cordia Gerascanthus, yield useful and ornamental timber. The wood of Cordia Myxa is said to be that from which the Egyptians constructed their mummy-cases. (See also Ficus.) Anacuhuite Wood, a substance imported into this country a few years since, and recommended as a tonic, \&c., is derived from Cordia Boissieri.

Order 8. Nolanacee, the Nolana Order.-Character.Herbs or shrubs. Leaves alternate, exstipulate. Inflorescence straight. Calyx 5-partite, persistent, with a valvate æestivation. Corolla regular, with a plaited æstivation. Stamens 5, opposite to the lobes of the calyx. Ovary composed of from 5-20 carpels, either distinct or more or less combined into several bundles; style on a fleshy disk, simple; stigma simple. Fruit composed of 5 or more separate or more or less combined achænia, which are enclosed in the persistent calyx. Seed with a little albumen ; embryo curved ; radicle inferior. This order is combined by Bentham and Hroker with Convolvulacea; and by others it has been referred to Boraginacer.

Distribution and Numbers - Natives exclusively of South America, especially of Chili. Illustrative Genera:-Nolana, Linn ; Alona, Lindl. There arc about 36 species.

Properties and Uses.-Unknown.
Order 9. Convolvulacese, the Convolvulus Order.-Cha-racter.-Herbs or shrubs, generally twining (fig. 227) or trailing, or sometimes erect, and frequently milky. Leaves (fig. 227) or scales alternate, exstipulate; sometimes leafless and parasitic (fig. 257). Calyx inferior, with 5 deep divisions, much imbricate (figs. 1010 and 1011), persistent. Corolla (figs. 1010 and 1011) 5-partite or 5-plaited, regular, deciduous, sometimes with scales in its tube (fig.1013); æstivation twisted, plaited or imbricate. Stamens 5, altemate with the lobes of the corolla (fig. 1011). Disk annular, hypogynous. Ovary (fig. 1011) 2-3- or 4 -celled, or the carpels are more or less distinct ; styles 1 or 2, usually 2 -fid; omeles $1-2$ in each cell or carpcl, erect. Fruit capsular, 1-4-celled, with septifragal dehiscence, or bursting transverscly at the base. Embryo (fig. 1012) large, curved or
coiled in a small quantity of mucilaginous albumen, with foliaceous crumpled cotyledons; or in Cuscuta the cmbryo (fig. 1014) is filiform, spiral, and the cotyledons scarcely perceptible; radicle inferior.

Diagnosis.-Generally twining or trailing milky herbs, with alternate exstipulate leaves; or parasitic and leafless. Calyx of 5 imbricate sepals, inferior. Corolla regular, 5 -plaited or 9 lobed. Stamens 5, alternate with the lobes of the corolla. Ovary 2-4-celled. Fruit 2-4-celled, capsular, septifragal. Embryo curved, coiled, or spiral, in albumen; radicle inferior.

Fig. 1010.

Fig. 1013.
Fig. 1012.
Fig. 1014.

Fig. 1010. Flower of Grent Bindweed (Convolentus sepium).-Fir\% 1011. Dingram of the same flower, showing two bracts on the ontside of the calyx.-Fig. 1012. Vertical section of the seed of the same.-Fig. 1013. Corolla of Dodder (Cuscufu) laid open to show five epipetnlons stamens and the seales in its tube.-Fig. 1014. Spiral embryo of a speeies of Cuscuta.
Distribution and Nombers.-They are chicfly found in the plains and vallcys of hot and tropical regions. A few occur in temperate climates, but they are altogetlier absent in the coldest latitudes. Illustrative Genera:-Conrolvulus, Limn.; I 1 omea, Lim.; Cuscuta, Lim. Therc are about 750 species.

Properties and Uses.-They are chicfly remarkable for the presence of an acrid milliy purgative juice in their roots, hence the order includes some important medicinal plants. The pur-
gative property of the juice is essentially due to the presence of peculiar glucosides. In the roots of ather species this purgative principle is either absent or in but small quantity, and starch or sugar predominates, which renders them edible. The seeds of some species are also purgative. The Cuscuteæ are leafless parasites, which often do great damage in clover- and flax-fields Sc. by destroying the plants from which they draw their nourishment.

Convolvulus, Bindweed.-From the incised living root of C. Scammonia, a native of Asia Minor and Syria, the purgative gum-resin called Scammony is obtained. This Scammony as also Scammony Root, and Scammony Resin, are official in the British Pharmacopœia. The best and greater part of the Scammony of English commerce is imported from Smyrna. The roots of many other species also possess in a certain degree purgative properties; as those of our native species, Convolvulus (Calystegia) sepium, C. arvensis, and C. Soldanella. It is said that Convolvulus dissectus yields hydrocyanic acid when distilled with water. It is one of the plants used for flavouring Noyau.

Ipомœа.-Ipomœa Purga (Exogonium Purga) is a native of Mexico, near Chicanquiaco. Its tubercular roots constitute the true Jalap of the Materia Medica, so well known as a pargative ; these properties are especially due to the glucoside convolualin. Jalap is official in the British Pharmacopoeia. The roots of I. orizabensis are sometimes found intermixed with true jalap. This spurions jalap is known in Mexico as male jolap, and in English commerce as woody jalap or jalap uond, and on the Continent as light or fusiform jalup. It possesses similar, although somewhat less powerful properties to those of true jalap; these properties are due to the glucoside jalapin. The roots of I. Turpethum, Turpeth, were formerly much used as a purgative. The large roots of I. macrorkiza contain much farinaceons matter, and are eaten by the inhabitants of the States of Georgia and Carolina.-I. pandurata is the Mechameck of the Indians of North Amcrica; its roots are said to be purgative and somewhat diuretie. Tampico jalap, now frequently employed as a substitute for true jalap, is derived from Ipomeer simulans. It appears to be nearly, if not quite, as powerful as the official kind.-Ipomoea (Pharbitis) Nil. The secds are ofticial in the Pharmacopœeia of India, under the name of Kaladana. They possess similar medicinal properties to our official jalap, but are not quite so active.-Ipomea (Butatas) edulis. The tubercular root of this plant constitutes the SweetPotato, which is so largely used for food in many tropical countries.

Rhodorrhizu.-From the species of this genus, natives of the Canary Islands, the volatile oil called Oil of Rhodium is commonly said to be obtained; but at the present time the so-called oil of Rhodinn of eommerce is a mixture compounded aecording to the taste of the vendor and the pocket of the buyer. The powdered wood is also used for snuff, and for fumigation.

Order 10. Solavacee, the Solanum Order.-Character.Herbs, or rarely shrubs, or trees, with a colourless juice. Leaces alternate, often in pairs. Infloreseence axillary, or frequently extra-axillary (fig. 354). Flowers isomerous (fig. 1015). Calys (fig. 1015) with 5 or rarely 4 divisions, usually persistent, often growing during the ripening of the fruit (acerescent). Corolla (fiy. 1015) regular or somewhat irregular, 5 - or rarely 4-partite ; restivation valvate, induplicate, plaited, or imbricate. Stamens equal in number to the lobes of the corolla, with which they are alternate (fiys. 1015 and 1019) ; anthers 2 -celled, sometines connate above, with longitudinal or porous dehiscence (fiys.

539 and 1016). Ovary superior (figs. 1016 and 1018), usually 2 -celled, in which case the cells are placed anterior and posterior (fig. 1019), rarely 3-5-celled ; style undivided (figs. 1016 and 1018) ; stigma simple or 2-lobed. Fruit capsular or baccate, 2-

Fig. 1016.
Fig. 1015.

Fig. 1017.

Fig. 1015. Diagram of the flower of the Potato (Solamum tuberosum). -Fig. 1016. Vertical section of the same. c. Calyx. p,p. Corolla. o. Ovary. e. Stamens. s. Style and stigma.-Fig. 1017. Vertical section of the seed of Solanum Dulcamara. te. Testa. ch. Chalaza. alb. Albumen, enclosing the curved embryo.

Fig. 1018.

Fig. 1019.

Fig. 1018. Tertical section of the flower of Tobaceo (Nicoliant Tabacum).-RFg. 1019. Dingram of the flower of the same.
or more celled. Secds mumerons, albuminous (fig. 1017, alb); cmbryo straight, or usually curved in a more or less ammlar or spiral form (fig. 1017).

Diagnosis.-Herbs or maroly shrubs or trees, with altcruate leaves, and a colourless juicc. Flowers isomerous. Calyx and
corolla with 5 , or rarely 4 divisions. Corolla regular or very slightly irregular ; æstivation valvate, imbricate, plaited, or induplicate. Stamens equal in number to the lobes of the corolla, with which they are alternate; anthers 2-celled, with porous or longitudinal dehiscence. Ovary superior, with axile placentation, usually 2 -celled, the cells being then placed anterior and posterior ; or rarely more celled. Fruit dehiscent or indehiscent, 2 - or more celled. Seeds numerous, albuminous.

In some former editions of this Manual, following the views of Miers, we adopted his new order, Atropacer ; but as this arrangement has not been generally adopted, we have now, in accordance with most authorities, combined the latter order with the Solanaceæ; but on account of the more important medicinal value of the Atropacere of Miers, we retain this order as a sub-order, and divide the Solanacere as follows :-
Sub-order 1. Solanee.- Estivation of the corolla valvate or induplicate. Stamens equal in number to the lobes of the corolla. Illustrative Genera:-Cestrum, Linn.; Solanum, Linn.
Sub-order 2. Atropee.- Estivation of the corolla imbricate, or some modification of imbricate. Stamens equal in number to the lobes of the corolla, one occasionally sterile. Illustrative Genera:-Atropa, Linn.; Lycium, Linn.
Distribution and Numbers-They are scattered over various parts of the globe except the polar circles, but are most abundant in tropical regions. This order, as defined above, contains about 1,120 species.
Sub-order 1. Solanee.-Properties and Uses.-The plants of this sub-order frequently possess narcotic properties from the presence of the alkaloid Solanine, but not by any means to the same extent as those of the Atroper. Fatal cases of poisoning have, however, occurred from their improper use. Some are pungent and stimulant owing to the presence of an acrid oleo-resin ; others contain a bitter tonic principle; and a few have edible fruits, leaves, or tubers. It has been stated that the juice of the Solanere does not produce dilatation of the pupil of the eye, as is the case with that of many plants of the Atropere ; but this is not strictly correct.
Capsicum. -The speeies of this genus are remarkable for the presence of an oleo-resinons liquid, named capsicin, in their fruits, whieh renders them hot, pungent, and stimulating. This oleo-resin has been proved by Thresh to eontain a very minute proportion of a erystalline substanee ealled capsaicin, which he has shown to be the real active principle of eapsieum fruits. The various species of Capsicum are generally supposed to have been originally natives of some warm part of the Amerienn continent, from whence they have leecome distributed over the world. There are several species and varicties of Capsicum in common use, one of which is oflicial in the British Pharnacopecia, namely, the CO. fustigiatum of Blume. The fruits of this are sometimes sold as Chillies; but this name is more commonly
applied in England to the fruits of C. ammum; hence the are better distinguished as Guinea Pepper. These frnits are less than an inch in length, and are the most pnogent of all Capsicum fruits. Cavenne Pepper is the powdered fruit of probably several species or varieties of Capsicum, but principally of C. fastigiatum. The frnits of C. cummum are frequently two or more inches in length. Hungarian Red Pepper (paprika) is olitnined from a variety of C. onnnum with a small pointed frnit. It is highly esteemed, and is said to be much nsed in the preparation of Cayenue Pepper. Other varieties or species of Capsicum in use in different parts of the world are, the C. cerasiforme (Cherry Pepper or Ronnd Chilli), C. grossum (Bell Pepper), C. frutescens (Spice Pepper), C. baccutum (Bird Pepper), C. tetragonum (Bonnet Pepper). The general name of Pod Pepper is sometimes applied to the fruits of the species and varicties of Capsicum.

Lycopersicum esculentum.-This plant produces the frnits called Loveapples or Tomatoes, so much employed in the preparation of sauces, and for other purposes.

Physalis.- P. peruviana has an edible frnit which is known as the Peruvian Winter Cherry. - P. Alkekengi, Winter Cherry, and some other species, are dinretic.-Physalis (Withania) somnifera, as its name implies, is reputed to possess narcotic properties.

Pınneeria (Withania) coagulans.-The dried fruit is employed in India as a carminative and stomachic, and also as a substitute for rennet in making cheese, \&e.

Solanum.-The Common Potato, which is so largely nsed for food in temperate climates, is the tnber of S. tuberosum. Other speeies, as S. Maghia. S. Commersoni, S. Jamesii, and other species or varieties, are now being experimentally cultivated in England, the United States, and Franee, and promise good results. The object is to obtain a plant snitable for moist air and soil, the S. tuberosum being best adapted for dry air and soil. A decoction of the stem and leaves has been used as an alterative in cntaneous diseases, and an extract has been also emploved as a narcotic and antispasmodic. The leaves when roasted have been ased with suecess for thickening mordants in dyeing. The medicinal properties of the Potato plant are chiefly due to the presence of a small quantity of an alkaloid called solanine, which has uarcotic properties. Snlaniue does not produce dilatation of the pupil like the alkaloids of the Atropere; aud hence the reason why the juice of the Solanea generally differs in such respect from that of the Atropex. Solanine has been detected in all parts of the lotatn plant, but in the tuler all traces of it are entirely removed by the processes of boiling and preparing potatoes for the table. Starch is largely obtained from potatoes, and nsed for food noder the name of English arrnuroot. Bright's nutritious furina, \&e. It is employed to a great extent in the preparation of Dextrine or British gum, whieh is used in the arts, Su.. as as substitute for gum, size, and paste.-Solamum Du'comara, Woody Nightshade or Bitter-sweet. The dried ymurr branches possess diuretie and diaphoretic propertics, and are employed as an alterative in entancons diseases, and in other cases. They also possess slight mareotic properties owing to the presence of solaninc. The fruits are in rare cases eveu phisonous, for one or more fatal eases of poisoning by them lave been recorded.-S. nigrum, Black Nightshade, also possesses alterative and narcotic properties. The fruit is said to lie edible; but it such the the ease. its use for food requires cantion, as solmine has been fonnd in it. In the Manritius, however, this herl, as well as S. oleraceam are eommon potherbs and are largely eonsmmed. The frnits of several speeies of siolanum are also eaten in varions parts of the world, as those of S. esculentum (s. Melongena), in Firance, Se. ; those of S. quitnense, named (Qnito Oranges: those of S. Lacinatmo in Anstralia, where they are termed Kaneraronnpples; those of \mathfrak{s}. muricatum and s. memerense in Peru: and those of S . antlropophagorum and \mathbb{S}. repandum in the liji lslands. 'Those of the tirst
species (S. esculentum) are much cstcemed in France under the name of Aubergines or Bringuls. They are about the size and form of a goose's egg and commonly of a parple colour, and are used as a vegctable. The white fruits of a varietry of the same plant are known as Egg-apples. The leaves of S. oleraceum and S. anthropophagorum are likewise eaten by the Fijians. -S. murginatum has astringent propertics, and is employed in Abyssinia in the process of tanning.-S. Pseudoquina is much employed in Brazil as a tonic and febrifuge. Several spesies of Solanum are also reputed to have diuretic properties, as S. mammosum, S. paniculatum, and others. The flowers and leaves of S. cernum are sudorific, and have been employed in gonorrhœea, syphilis, \&e.

Sub-order 2. Atropew.-Properties and Uses.-Many of the plants have powerful narcotic properties from the presence of peculiar and active alkaloids; hence several are very poisonous. The juice of numerous species will produce clilatation of the pupil of the eye. (See Properties and Uses of the Solaneæ, page 629.)
Atropa Belladonna, Deadly Nightshade, is a powerful poison; the root, leaves, and young branches are ofticial in the British Pharmacopœia. It is employed internally as an anodyne and antispasmodic, and externally for dilating the pupil of the eve. John Harley regards it as a valuable remedy in scarlatina. It owes its activity to a peculiar alkaloid called atropine, which is frequently employed to produce dilatation of the pupil, and for other purposes. Atropine is a most powerful poison. It is official, together with Sulphate of Atropine, in the British Pharmacopœia.

Datura.-D. Stramonium.-A narcotic property is possessed by all parts of this plant, and is especially developed in the sceds, which are ofticial in the British Pharmacoporia. Its medicinal effects resemble those of Atropa Belludonna. It is employed as an anodyne and antispasmodic. In spasmodic asthmu, smoking the herb, or inlanation from its intusion in warm water, has frequently given great relief, but its use requires much caution, as it has in some instances produced fatal results. A strong decoction of the leares is nsed in Cochin China as a remedy for hydrophobia, in which disease it is reputed to be very efficacious. Stramonium owes its principal activity to the presence of a narcotic alkaloid called duturine, which much rescmbles and is probably identical with atropine, the alkaloid of Atropa Belludnume. Recent investigations appear to show that it is also identical with duboisine and hyoscyumine (see Dubnisia). Daturine is a powerful poison, aud strongly dilates the pupil.-D. alla, D. Tatula, D. fastuosu, and other species or varictics, have similar properties to D. Sirumonium. In India D. alba is frequently used by the natives for criminal purposes, the professional poisoners from this drug being ealled Dhaturecus. The fruit of f). sanyuineu, the Red Thorn Apple, is in use among the Indians of the Andes. and in Central America, for the preparation of narcotic drinks; these, it is believed, produce a peculiar excitement, and enable those who partake of then to lave communication with the spirits of their ancestors.

Duboisio myoporoides.-This plant, which is a native of New Caledonia and some parts of Australia, is closely allied to Belladonna in its properties, aul contans a closely allied alkaloid which has been named duboisine. It is now said that this alkaloid, hyoscyomine, and dulurine, are of the same nature (ser Daturu). It is commonly used medicinally in the form of Sulphate of Duboisine. The leaves, knowin as 'Pitury, and ised an an Anstralian substifute for Coca (sce Erytmoxylon), are olitained from 11. Hopwoodii. 'I licy are said to contain an alkaloid nangogous to nicoline.

Hyosryemens niger, Henbane. The whole herl, possesses nareotic properties, and 1s employed medicinally as a marcotic, anodyne, and soporitic. Its
activity is essentially due to the presence of the alkaloid hyoscyamine (sce Duboisia), which is a powerful poison resembling atropine and daturine, and like them causing dilatation of the pupil. Another powerfnl alkaloid, named hyoscine, has also been found in Henbane. Two varieties of Henbane are commonly eultivated, the Annual and the Biennial ; the latter is commonly regarded as the more aetive, and its leaves and young flowering branches are official in the British Pharmacopœin.-H. albus, a native of the Mediterranean region, possesses the same properties as, and is probably of equal value to, that of H. niger. $-H$. insanus, a native of Beluehistan, is sometimes used for criminal purposes. It is said by Stocks to be a very poisonons speeies. It is ealled Mountain Hemp.

Mandragora officinalis, the true Mandrake.-The ronts have a fancied resemblance to the luman form, hence their name. This Mandrake must not be confounded with the root of Bryonia dioica, which is also sometimes so named (see Bryoniu). Mandrake is an aero-nareotic poison, and was nsed by the ancients as an anasthetic. 'The plant is called Deril's-apple by the Arabs. Mandrake is considered to be the Dudaim of Seripture.

Nicotiana.-The leaves of various species and varicties supply the different kinds of Tobace now in such general nse in some form or other in nearly every part of the globe. Mr. Crawford estimated the total annnal production of tobaceo over the whole globe in 1851 at $2,000,000$ tons, which, at the value of $2 d$. per pound, would amount to more than $37,000,000 \%$. sterling. The consumption of tobacco in this country has enormously increased of late years, and is still increasing. Thus in the year 1841 the quantity of tobaceo eleared for consumption in the United Kingdom a mounted to $13 \frac{3}{3} \mathrm{ez}$ per head of population. In the year 1851 the amount had inereased to $1 \mathrm{lb} .0 \frac{1}{4} \mathrm{oz}$. per head; in the year 1861 to $\mathrm{I} \mathrm{lb} .3 \frac{1}{2} \mathrm{oz}$. ; in the rear 1863 to $1 \mathrm{lb} .4 \frac{1}{2} \mathrm{oz}$. ; and in the year 1865 to 1 lb .5 oz . In $1874,45,253,303 \mathrm{lbs}$ of nmmanufactured tobacen were retained for home consumption, and of manufaetured cigars and snuff nearly $1,280,154 \mathrm{lbs}$., or nearly $1 \frac{1}{2} \mathrm{lbs}$. per head of the population, and the duty paid on this was nearly $7,500,000 l$. sterling. The total annual production of tobaceo over the whole globe at the present time is probably not less than $3,000,000$ tons. Tobacco owes its principal properties to the presence of an alkaloid called nicotine, which is a most energetic poison. Tobaceo has been employed in medieine as a local stimulant, and as a sedative, antispasmodic, emetic, laxative, and diuretic ; and the dried leaves of N. Tabacum are othial in the British l'harmacopmeia. The prineipal kinds of Tobaceo are the Ameriean, Latakia, Cuba, Manila, and Havannalı, from N. Tubacum; the Shiraz or Persian, from N. persica; the East Indian and 'Turkish, from N. rustica; and Orinoko, from \boldsymbol{N}. latissimu. The Tobaeco plant has lately been cultivated experimentally in this country, but we do not anticipate any very favourable results.

Scopolia juponica - The ront is used in Japan for similar purposes to that of Atropa Belladomm in Europe and America. It has been imported into this country moder the name of Japanese Belladouna root, and described by Holmes; it is said to eontain solamine. The leaves of s. luridus are stated by Waring to be equal, if not superior, to those of Belladonna iu their medicinal properties.

Cohort 3. reasonales.-Flowers generally anisomerons. Corolla usually irregular. Stamens epipetalous; posterior stamen nearly always suppressed, or appearing as a staminode; generally four and didynamons, or sometimes only two. Ovules usually numertus, or two superposed.
Order 1. Sorophulariacke, the Figwort Order-Charac-ter.-Herbs, or rarely shruby phunts, with alternate, opposite,
or whorled leaves; generally without, or very rarcly with, stipules; sometimes parasitical on roots. Inflorescence axillary. Flewers (figs. 1020 and 1021) anisomerous, irregular. Calyx inferior, persistent (fig. 710), 4-5-partite. Corolla more (figs. 488 and 489) or less (figs. 492 and 493) irregular, sometimes gibbous (fig. 488) or spurred (fig. 489), 4-5-partite ; æstivation imbricate (fig. 1021). Stamens generally 4, and didynamous (fig. $5 \overline{5} 9$), or sometimes 2 (fig. 1020), or rarely 5 or with a rudimentary fifth; anthers $1-2$-celled. Ovary usually 2 -celled with axile placentation ($f g .1021$), its component carpels being placed anterior and posterior ; style 1 (figs. 626 and 1020); stigma undivided or 2 -lobed. Fruit usually capsular, with variable dehiscence ($f i g .710$), or rarely baccate, usually 2 -celled. Sceds generally numerous, small, albuminous ; embryo straight

Fig. 1020.

Fig. 1020. Fiower of a species of Speelwell (Veronicr).-Fig. 1021. Dingram of the flower of the Great Snapdragon (Antirrhinum mujus), with one bract below.
or slightly curved. (The above definition of the Scroptulariacer is in accordance with the vieus of Miers.)

Diagnosis.-Herbs, or rarely shrubs. Flowers irregular, anisomerous. Inflorescence axillary. Calyx and corolla with 4 or 5 divisions. Corolla more or less irregular, æstivation imbricate. Stamens 4 and then didynamous, or sometimes 2, or rarely 5 , or with a rudimentary fifth or staminode ; anthers 12 -celled. Ovary usually 2 -celled, the cells placed anterior and posterior, with axile placentation; style 1. Fruit calsular, or rarely baccate. Sceds generally numerous, albuminous.

Distribution and Numbers.- The plants of this order are found in all parts of the globc. Illustrative Genera:-Vcrbascum, Linn.; Antirrhinum, Toum.; Scrophularia, Linn. ; Veronica, Tomm. As above defined, there are about 1,700 species.

Pirrpertios and Uses.-The plants of this order must be regarded with suspicion, as some are powerful poisons. Many
are bitter, others astringent, some purgative, emetic, or diuretic, and a few possess narcotic properties. A great many speeies are cultivated in our gardens, \&e., on account of the beauty of their flowers.

Capraria bifolia is used in Central America as tea.
Digitalis purpurea, Foxglove.- This is by far the most important medieinal plant in the order. The roots, leaves, and seeds are the most active parts, but the dried leaves only are official in the British Pharmacopocia. Foxglove is largely used as a diurctic in dropsies, and as a sedative of the circulation in diseases of the heart, \&e. In improper doses it is a dcadly. poison. It owes its activity essentially to the presence of a powcrfully poisonons bittcr principle, called Digitalin, which in proper doscs is used in medicine in the samc cases as digitalis itself; but it is a very variable sub. stance, and therefore uncertain in its action. Digitalin is also repnted to be a powerful anaphrodisiac. O'her species of Digitalis have similar properties to those of D. purpurea, but they are not so active.

Gratiola officinalis, Hedge Hyssop, was formerly official in our pharma. copœias. It possesses purgative, emetic, and diuretic properties, and in large doses is said to be an acrid poison.

Leptandra virginica.-The rhizome and rootlets are official in the United States Pharmacopoeia. The dricd rhizome and more especially the resinoid powder, called leptandrin, which is obtained from it, are regarded as exccllent cholagogues, and are used largely in the United States and elsewhere as substitutes for mercurials.

Lyperia crocera.-The flowers of this plant, which is a native of Sonth Africa, have been imported into this country from time to time, under the name of African Saffion. They closely resemble true satfiron in smell and taste ; and have similar medicinal properties. They are also employed for dyeing ; they yield a fine orange colour.

Scroplutaria. -The fresh leaves of N. nodosa are sometimes nsed, in the form of an ointment or fomentation, in skin diseases and indolent tumonrs, \&c. The leaves and roots of this spccies and of S. aquatica are purgative and emetic, and are supposed to be slightly narcotic.

Verboscum.-The leaves of V. Thapsus, Great Mullein, have cmollient. demuleent, and slightly narcotic properties. A decoction of the leaves in milk is frequently uscd as a domestic remedy on the Continent and in Ireland in incipient phthisis. Smoking the dried leaves is also said to be useful in allaying cough in phthisis. Its secds and those of I. nigrum are also stated to be emploved by poachers to stupefy fish in order that they may be readily taken.

Veronica.- The leaves of V. officinalis have been used in this country, and on the Continent, as a substitute for Clina 'Tea, hence the plant is sometimes ealled The de l'Europe. 'They have also been considercd diaphoretic, diuretic, expectorant, tonic, \&c., and were employed formerly in peetoral, nepliritic, and other complaints.

Order 2. Orobanchaces, the Broom-rinpe Order.-Cliaracter. - Herbs of a more or less fleshy character, growing parasitically on the roots of other plants. Ntems with scale-like leaves. Calyr: persistent, toothed. Corolla irregular, persistent; xstivation imbricate. Stamens 4, didynamous; anthers 1-2-celled. Ovary 1-celled; its 2 component carpels being placed right and left of the axis; placentas 2-4, parietal; style 1 ; stigma 2-lobed. Fruit a eapsule. Šeds rery mumerous, minate, with fleshy albumen and a very small rudimentary embiyo.

Distribution and Numbers.-Principally natives of Europe, Northern Asia, North America, and the Cape of Good Hope. Illustrative Genera:-Orobanche, Limn. ; Lathrea, Lirm. There are about 120 species.

Properties and Uses.-The presence of bitterness and astringency are the most marked properties of the plants of this order, and some have been said to be escharotic ; but they are altogether unimportant in a medicinal point of view.

Epiphegus.-The root of Epiphegus virginiana is called Cancer-root, from its haviug been formerly used as an application to cancers. It formed an ingredient in the ouce celebrated North American nostrum, called Martin's Cancer Puwder.

Order 3. Lentibulariacee, the Butterwort Order.-Cha-racter.-Herbs, growing in water, marshes, or wet places. Leaves radical, entire or divided into thread-like filaments bearing little pouches or air-receptacles. Flowers irregular, bracteated. Calyx persistent, bilabiate. Corolla personate or bilabiate, spurred. Stamens 2, included; anthers 1-celled. Ovary 1-celled; style 1, short; stignta bilabiate; placenta free central. Fruit a capsule, 1-celled. Seeds minute, numerous, anatropous, exalbuminous; embryo thick, straight, sometimes undivided.

Distribution and Numbers.-Natives of all parts of the globe, but more particularly of tropical regions. Illustrative Genera:Ctricularia, Linn.; Pinguicula, Tourn. There are about 180 species.

Properties and Uses.-Of little importance. The leaves of Pinguicula and the pitchers of Utricularia have the property of dissolving and absorbing insects, and other animal natters. (See Physiological Botany.)

Pinguicula.-Pinguicula vulgaris is termed Butterwort, from the property its leaves are said to possess of coagulating milk.

Order 4. Columelliacee, the Columellia Order.-Charac-ter.-Evergreen shrubs or trees. Ieaves opposite, exstipulate. Flowers unsymmetrical, yellow, terminal. Calyx superior, 5 parted. Corolla episynous, monopetalous, rotate, 5 - 8 -partite, imbricate. Stamens 2, epipetalous; anthers sinuous, with longitudinal dehiscence. Ovary inferior, 2 -celled, surmounted by a fleshy disk. Fruit capsular, 2 -celled, many-seeded. S'eds with fleshy albumen ; embryo minute.

Distribution and Numbers.-Natives of Mexico and Peru. It only contains the genus Columollia, Lour., which includes 3 species.

Properties and Uses.-Unknown.
Order 5. Gesneracee, the Gesnera Order.-Character.Herbs, or soft-wooded shrubs. Leaves wrinkled, exstipulate, generally opposite or whorled. Flonver's irregular', showy. Calyx

5 -partite. Corolla 5-lobed, perigynous or hypogynous. Stamens diandrous or didynamous with the rudiment of a fifth; anthers 2 -celled, frequently united. Ovary of 2 carpels, antero-posterior, superior or half-inferior, 1 -celled, surrounded by an annular fleshy disk or by glands; style 1. Fruit capsular or succulent, 1 -celled, with 2 -lobed parietal placentas. Seeds numerous, with or without albumen ; embryo with minute cotyledons, and a long radicle.

Division of the Order and Illustrative Genera.-The order has been divided into two sub-orders or tribes as follows:-
Sub-order 1. Gesneres.-Ovary partially adherent to the calyx. Seeds albuminous. Illustrative Genera:-Gesnera, Mart. ; Gloxinia, Hérit.
Sub-order 2. Cyrtandree.-Ovary not adherent to the calyx.
Seeds exalbuminous. Illustratwe Genera:-Aschynanthus, Juek.; Cyrtandra, Forst.
Distribution and Numbers.-Chiefly natives of warm or tropical regions. The Gesnereæ are all American; the Cyrtandree are more scattered. There are about 300 species.

Properties and Uses.-Of little importance except for the beauty of their flowers, which are common objects of cultivation in this country. Some Gesneree have edible fruits.

Order 6. Crescentiacees, the Crescentia Order.-Charac-ter.-Small trees. Leaves simple, alternate or clustered, exstipulate. Flowers irregular, growing out of old branches or stems. Calyx free, entire at first, afterwards splitting irregularly. Corolla somewhat bilabiate. Stamens 4, didynanous, with a rudimentary fifth; anthers 2 -celled. Ovary surrounded by an annular disk, 1-celled; placentas 2-4, parietal ; style 1. Fruit indehiscent, woody. Seeds large, numerous, wingless, exalbuminous; cotyledons large, amygdaloid; radiele short. This order is made a tribe of Bignoniacear ly Bentham and Houker.

Distribution and Numbers.--Natives exclusively of tropical regions. Illustrative Genera:-Crescentia, Limn.; Parmentiera, $D C$. There are about 36 species.

Properties and Uses.-Unimportant.
Crescentia.-The subacid pulp of the fruit of Crescentia Cujete, the Calahasl 'Tree, is eaten by the negroes in America, and its hard pericarp is used for bottles, forming floats, \&ce. The fruit has been lately describel as a nseful and plensant aperient.

Parmentiera.-The fruit of Parmentiera edulis muder the mame of Quandhscilote is enten ly the Mexicans, and that of P^{\prime}. cerifera is likewise greedily devonred by cattle in Panama. The latter resembles a candle in form, aud hence the tree benring it is named the Candle-tree.

Orler 7. Bicinoniaces, the Bignonia Order.-Character. Trees or shrubs, which are often twining or climbing, or rarely herbs. Leares exstipulate, usually opposite. Inflorescence terminal. Flowers irregular. Caly.e entire or divided. Corolla

4-5-lobed. Stamens 2 or 4; anthers 2-celled. Ovary seated in a disk, usually 2 -celled; placentas axile; style 1 . Frnit 2 valved, capsular. Seeds numerous, sessile, large, winged, exalbuminous; embryo with large leafy cotyledons.

Distribution and Numbers.-Chiefly tropical plants. Illustrative Genera:-Bignonia, Linn.; Tecoma, Juss.; Jacaranda, Juss. There are about 450 species.

Properties and Uses.-The chief interest of the plants of this order lies in their beautiful flowers, although some are used medicinally and in other ways.

Bignonia.-From the leaves of Bignomia Chica the Indians of South America obtain a red dye called Chica or Carajuru, which is used for painting their bodies and arrows, and for other purposes. This Chica must not be confounded with Chica or Maize Beer (see Zea Mays), and other Chicas which are common drinks of the Indians in South America. An oil is obtained in India from the wood of Bignonia xylocarpa. It is reputed to be a valuable external application in skin diseases.

Jacaranda.-The bark of Jacaranda bahamensis is employed as an anthelnintic in Panama. The leaves of J. lancifolia are said to be nseful in urethral inflammation: it has been used in the form of an extract.

Sparattosperma.-The leaves of Sparattosperma leucantha, a Brazilian species, have powerful diuretic properties.

Tecoma.-Some species of Tecomo have astringent properties. The wood of several plants of the order is used in Brazil.

Order 8. Pedaltacee, the Pedalium Order. - Charac-ter.-Glandular herbs. Leares entire, exstipulate. Flowers axillary, usually large and irregular. Calyx 5-partite. Corolla bilabiate. Stamens didynamous with the rudiment of a fifth, included: anthers 2 -celled. Ovary on a fleshy or glandular disk, 1-celled, with two parietal placentas; sometimes spuriously 4-6-celled ; style 1 ; stigma divided. Fruit bony or capsular. Seeds wingless, without albumen ; embryo with large cotyledons, and a short radicle.

Distribution and Numbers.-Chiefly tropical plants. Illustrative Genera :-Pedalium, Linn. ; Sesamum, Linn. There are about 25 species.

Properties and Uses.-Chiefly remarkable for their oily seeds.
Pedalium Mrurex....An infusion of the fresh leaves and stems has been employed with success in India in dysuria and gonorrhœa. The fruit under the name of Gokeroo or Gokhrue is also used in India as a remedy for impotenee, nocturnal seminal emissions, and incontinence of urinc.

Sesamum indicum.-The sceds yield by expression a fixed oil which is largely used in India, Japan, France, \&c., where it is regarded as an efficient substitute for Olive Oil. It is also cmployed in the West Indies ; and in Egypt and Ceylon it is used for cleansing the skin and hair. It is also said to be emploved to adulterate Almond Oil. The Oil is known as Benne, Sesamé, Til, 'Tecl, Gingili, or Gingelly Oit. This oil is also obtained from S. oricntale, and both this plant and that of S. indicum are official in the Pharmaeopecia of India, as its botanical source. Scsamé sceds are also largely used as fond in India and Tropical Africa. The leaves of both plants are likewise offeial in the Pharmacopocia of India, and are employed
in the form of an infusion, as a demulcent. In the United States they are also sometimes used in the form of a poultice.

Order 9. Acanthacee, the Acanthns Order.-Character. -Herbs or shrubs. Leares opposite or whorled, simple, cxstipulate. Flowers irregular, bracteated, Culyc 4-5-partite, or consisting of $4-5$ sepals, persistent, much imbricate; sometimes obsolete. Corolla more or less 2 -lipped. Stamens 2 or 4, in the latter case didynamous. Ovary seated in a disk, 2 -celled; placentas parietal, although extended to the axis; style 1 . Fruit capsular, 2-celled, with a variable number of seeds in each cell. Seeds hanging by hard cup-shaped or hooked projections of the plaeenta, without wings ; albumen none; cotyledons large and fleshy ; radicle inferior.

Distribution and Numbers.-Chiefly tropical. Illustrative Genera:-Aeanthus, Tourn.; Justicia, Nees. Therc are nearly 1,500 species.

Properties and Uses.-Generally unimportant; but several species are mucilaginous and bitter.

Acantlus.-The species of Acunthus have lobed and sinuated leaves, and are said to have furnished the model of the Corinthian capital.

Andrographis.-The dried stalks and root of Andrographis paniculata are official in the Pharmacopoia of India. They are known under the name of hariyat or creyat, and are held in high esteem in India for their bitter tonic and stomachic properties.

Ruellia.-From Ruellia indigotica a blue dẹe is obtained in China.
Cohort 4. Lamiales.-Flowers generally anisomerous. Corolla usually irregular. Stamens epipetalous ; posterior stamen commonly suppressed; usually four and didynanous, or rarely only two. Carpels or cells each with 1 ovulc or with 2 collateral ovules. Leaves always exstipulate.
Order 1. Selaginacea, the Selago Order.-Charaeter.Herbs or shrubs, with alternate cxstipulate leares. Flowers irregular, unsymmetrical, sessile, bracteated. Calyr persistent, usually monosepalous with a definite number of divisions, or rarely consisting of two distinct sepals. Corolla tubular, $\overline{5}-$ partite. Stamens 4, didynamous, or rarely 2 ; anthers 1 -celled. Ovary superior ; style 1, filiform; avule solitary, pendulous. Fruit 2 -cellcd, with 1 pendulous secd in each cell. Seed with a little fleshy albumen; embryo with a superior radicle. In Globularia there is but one earpel.

Distribution and Numbers.-Chiefly natives of the Cape of Good Hope. The species of Globularia are, howerer, Europtan plants. Illustrative ('enera:-Sclago, Linn.; Globularia, Linn. There are about 120 speeics.

Properties and Uses.-Of littlc importance.
Globularia.-The Globularias are purgative and emetic. The leaves of Globularia Alypum form the Wihd Sema of Germiny. In small doses they
act as a tonic, and in full doses as a safe, mild, and efficient purgative. They have been sometimes employed on the Cuntinent for the adulteration of the official Senna; and also, it is said, in the process of tanning. 'They contain both tannic and gallie aeids.

Order 2. Verbenacee, the Vervain Order.-Character.Herbs, shrubs, or trees. Leaves opposite or alternate, exstipulate. Calya (fig. 414) inferior, persistent, tubular. Corolla irregular, usually more or less 2-lipped. Stamens 4, usually didynamous, or rarely equal ; or sometimes there are but 2 stamens; unthers 2-celled. Ovary (fig. 1022) 2-4-celled ; style 1, terminal (fig. 1022) ; stigma undivided or bifid. Fruit dry or drupaceous, composed of from 2-4 carpels, which when ripe usually separate into as many 1 -seeded achænia. Seed erect or ascending, with little or no albumen, and an inferior radicle.

Diagnosis.-Known at once from the Labiate by their more united carpels and terminal style.

Fig. 102.2.

Fig. 1022. Pistil of the Vervain (Verbena).

Distribution and Numbers.-They are found both in temperate and tropical regions. Illustrative Genera:-Verbena, Linn.; Clerodendron, Linn. There are above 660 species.

Properties and Uses.-Many of the plants are slightly aromatic and bitter, but there are no important medicinal plants included in this order. Some are valuable timber trees; other species have fleshy fruits, which are edible ; and the leaves of a few are used as substitutes for China Tea. Many are cultivated in our gardens for the beaucy of their flowers or for their fragrance, as the different species and varieties of Verbena, the Aloysia citriodora, the Lemon-plant, \&c.

Clerodendron.-The leaves of \boldsymbol{C}. infortunatum, an Indian species, possess tonie and antiperiodie properties.

Gmelina parrifolia and G. usiatica have demulcent properties.
Lantena pseudo-thea is used in the Brazils as tea, under the name of Capitâo du matto. Some species of Luntunu have edible fruits.

Premna.-The inner bark of P. tuitensis, whieh is known under the name of 'aro' at Vanua Levu, is said to be one of the constituents of the remedy now used under the name of 'Tonga' in certain forms of neuralgia. (See also Rhaphidophora.)

Stuchytarpha jumaicensis is reputed to be purgative, emmenagogue, and anthelnintic. It is used medicinally in Liberia in the form of tea to prodnce abortion, and is there known under the name of 'Abortive Plant.' Its leaves are sometimes employed in Austria as a sulhstitute for, or to adulterate, China tea; this is known under the name of Brazilian T'ca.

Tectona grandis, Indian Teak-tree or Indian Oak, is the sourve of the very hard and duralle wood known as East Indian Treak, which is much employed in ship-l, uilding, \&c.

Verbena.-The ronts and leaves of Verbena hastata are repured to have excell-nt sudorific properties.

Vitex.-Several species of this genus have acricl fruits, as those of V. trifolia, Wild Pepper, V. Negundo, and V. Agnus-custus. Ithe fiesh leaves
of the two former speeies are in great repute in Indin for their discutient properties. They are also regarded as nnodyne, diuretic, and emmenagorrue.

Order 3. Myoporace.e, the Myopora Order.-Diaynosis.This order is sometimes regarded as a sub-order of the Verbenaeer, from whieh it only differs essentially in having two seeds in eaeh eell of the fruit, and by the embryo having a superior radiele.

Distribution and Numbers.-Chiefly natives of the southern hemisphere. Illustrative Genera:-Myoporum, Banles et Sol.; Avicennia, Linu. There are about 40 speeies.

Properties and UTses.-Unimportant. The bark of Avicennia tomentosa, White Mangrove, and other species, is muel used in Brazil for tanning.

Order 4. Labiata, the Labiate Order.-Charaeter.Herbs (fig. 393) or shrubby plants, with usually square stems. Leaves opposite (fig. 393) or whorled, eommonly strong-seented, entire or divided, exstipulate. Flowers generally in axillary eymes, whieh are arranged in a somewhat whorled manner so as to form what are ealled vertieillasters (fig. 393). Calyx inferior,

Fig. 1023.

Fig. 1024.

Fig. 1023. Diagram of the flower of the White Derd-nettle (Lamium album). -Fig. 1024. Flower of the commou Bugle (Ajuga reptans).
persistent, either tubular, 5 - or 10 -tonthed, and regular or nearly so, or irregular and somewhat bilabiate, witl 3-10 divisions ; the odd tooth or division always posterior (fig. 1023). Corolla (figs. 484-487, and 1025) usually more or less bilabiate. with the upper lip undivided (f ig. 484) or bifid (fig. 485), and eommonly more or less arehed over the lower lip (fig. 484). or sometimes nearly suppressed (fig. 1024) ; the lower lip 3-lobed (fig .1024), with the odd lobe anterior (fig .1023) ; or rarely the eorolla is nearly regular. Stamens usually 4, and then eommonly didynamous (figs. 487, 1025, and 1026), or very rarely of nearly equal length, or only two by abortion; anthers 2 -eelled, or 1 -eelled by abortion ; the filament or conneetive sometimes forked, eaeh branel then bearing a perfeet eell, or the cell on me side obsolete or sterile (fig, 1028). Ovary (figs. 609 and 1027) imbedded in the disk or thalamus, and formed of two earpels, cach of whieh has 2 deep lobes, with 1 ereet ovule in
each lobe ; style 1, basilar (figs. 609 and 1027) ; stigma bifid, (figs. 609 and 1027). Fruit composed of from 1-4 achænia, enclosed by the persistent calyx. Seed erect, with little or no albumen ; embryo erect, with flat cotyledons; radicle inferior.

Diagnosis.-Herbs or shrubby plants, with opposite exstipulate leaves. Flowers irregular, unsymmetrical. Calyx persistent. Corolla usually more or less bilabiate, with the odd lobe anterior. Stamens usually 4 and then commonly didynamous, or rarely of equal length; or only 2 by abortion. Ovary deeply 4-lobed ; style 1, basilar ; stigma bifid. Fruit consisting of

Fig. 10: 5.

Fig. 1027.

Fig. 1028.

Fins. 1026.

Fia. 1025. Front view of the flower of a species of Lamium. -Fig. 1026. The corolla of the Garden Sage (Salviu officinalis) cut open.-Fig. 1027. The corolla of the Horehound (Marmbium vulgare) cut open.- Fig. 1028. Lobed ovary, style, and bifid stigma of the Gardeu Sage (Salvia oficinalis).
from 1-4 achænia, enclosed by the persistent calyx. Sced erect, with little or no albumen; radicle infcrior.

Distribution and Numbers.-Chiefly natives of temperate regions. Illustrative Genera:-Mentha, Lirn.; Salvia, Linn.; Origanum, Linn.; Lamium, Linn. There are nearly 2,600 species.

Properties and Uses.-The plants of this large order are entirely free from any delcterious qualities. They abound in volatile oil, and are thereforo commonly aromatic, carminative, and stimulant. All labiate plants also contain more or less of a bitter extractive matter, and many of them posscss an astringent
principle, hence they are frequently tonic and stomachic. Several are used in perfumery on account of their agreeable odours; and many are employed by the cook for flavouring, such as Thymus mulgaris (Garden Thyme), Thymus citriodorus (Lemon Thyme), Salvia officinalis (Sage), Origanum vulgare (Marjoram), Majorana hortensis (Sweet Marjoram), Satureia montana (Winter Savory), Satureia hortensis (Summer Savory), \&c. The fleshy underground stems of Stachys palustris and of a species of Ocymum are edible.

Anismelos malubarica is in great repute in Southern India as a remedy. in intermittent fevers, catarrhal affeetions, \&c.

Hedeoma pulegioides, American Pennyroyal, is mueh nsed in the United States (where the leaves and tops are offieial) as an emmenagogue, and also occasionally as a stimulant and carminative.

Lavandula. - The flowers of L. vera, Common Lavender, yield by distillation with water English Oil of Lavender, which is official in the British Pharmacopocia; it is largely used in perfumery, and also in medicine as a stimulant, stomachic, and carminative. The fowers and leaves are likewise oecasionally employed as a sternutatory. The flowers of L. spica, French Lavender, yield Oil of Spike or Foreign Oil of Lavender, whieh has a much less agreeable odour than the English Oil ; it is not employed medieinally. but prineipally by painters and varnish-makers, and to adulterate English Oil of Lavender-L. Stochas also vields by distillation an essential oil, which is eommonly distinguished as the True Oil of Spike.

Marrubium vulgare, Common Horehonnd, is much emploved as a domestic remedy in eoughs, \&ce. The leaves and tops are official in the United States Pharniacopœia.

Melissu officinalis, Common Balm, possesses mild stimulant properties. It is used as a diaphoretie in fevers, as an exhilaratiug drink in nervous affections, and as an emmenagogne.

Mentha, Mint.-Several species are emploved in medicine, and as sweet herbs. The volatile oils of two species are official in the British Plarmacopoia, namely, of M. viridis, Spearmint, and of M. piperita, Peppermint.M. Pulegium, Pennyroval, M. votundifilia, M. aquatica, M. arvensis. and others, have similar properties. The stearoptene called menthol, which is offieial in the British Pharmacopeia, is said to be derived from M. arvensis, vars. piperascens et glabrata, and M. piperita. It has been largely used as an external appliention for relieving neuralgia. It has also powerfnl antiseptie properties; and acts internally as a diffusible stimulant. All the species and varieties are more or less aromatic, stimnlant, and carminative.

Micromeria Thea-sinensis is used in Franee as a substitute for China Ten.
Monardf.-M. punctate, Horsemint, is used medieinally in the U'nited States. In its properties it resembles the ordinary mints, but it is none stimulating. This plant is also one of the sources of the ofticial thymol. (See Thymus vulgaris.) -M. fistu'osa is said to be febrifngnl. The leaves of M. ridymu and M. purpureu are used in North Ameriea as tea under the name of Oswego Tea. The flowers of M. didyma eontain a colouring prineiple like coehineal, and have been nsed for the preparation of a kind of carmine.

Nepeta Cutaria, Catmint.-The lenves and tops are used in the United States, and resemble the ordinary Mints in their propertics.

Ocymum.-O. album is used in India as tea, which is known as Tonlsie 'l'ea.-O. sunctum, O. Buasilicum, and other species, are reputed throughout India to possess stimulant, diaphoretic, and expectorant properties.

Origunum.-O. vulgare. Common or Wild Marjoram, has similar prn perties to the other labinte plants. The herb is oflicial in the United States

Pharmacopeia. The dried leaves have lueen employed as a substitnte for China Tca. Hanlury first proved that the red volatile oil eommonly sold in the shops as Oleum Origani or Oil of Thyme, is obtained by distillation from Thymus vulgaris. This oil is imported from the South of France.O. Dictumuns, Dittany of Crete, is said to have febrifugal properties. The herb O. Majorana (Majorana hortensis), Sweet Marjoram, possesses similar properties, and was formerly official in this country. Several species of Origanum are used by the eook for flavouring, as O. vulgare, Common Marjoram, O. Majorana or Majorana hortensis, Sweet Marjoram, \&c.

Pogostemon Putchonli, Pucha-Pat or Patchouly.-This plant is a aative of Silhet and the Malayan Peninsula. The dried tops are imported and vield by distillation a strong-scented volatite oil, ealled Oil of Patchouli, which has been much employed in perfumery. The coarsely powdered herb is also used for making sachets.

Rosmarinus officinalis, Common Rosemary. The flowering tops contain a volatile oil which imparts to them stimulant and carminative properties. This oil is official in the British Pharmacopœia. Rosemary is however chieht used in perfumery, and by the hairdresser. The flavour of Narbonne honey is said to be clue to the bees fecding on the flowers of this plant. The dried leaves are sometimes used as a substitute for China Tca.

Salvia officinalis, Common or Garden Sage.-The leaves were formerly much employed as tea. They are official in the Uuited States Pharmacopreia. An infusion of Sage is frequently used in the United States as a yargle in common sore-throat and when the uvula is relaxed. It is also stimulant, carminative, and anti-emetic. Sage is also employed by the cook as a flavouring agent, \&e.

Satnreia juliana, called in Sicily erva de ibbisi, is much used as a remedy in intermittent fevers.-S. horterisis, Summer Savory, and S. montancs, Winter Savory, are in common use by the cook for flavouring.

Seutellaria.-The substance termed scutellarin is obtained from S. lateriflora. It is said to be a nervine stimulant.

Thymus vulgaris, Common or Garden Thyme, yields by distillation the molatile oil known as Oil of Thyme, which is offizial in the United slates Pharmacopeeia; it is a powerful local stimulant. It is chicf , used in veterinary practice. It is also employed for scentingsoaps. (sce Origanum.) The stearoptene obtained from oil of thyme, and known ns thymol. is a powerful disinfectant, and is employed, like carbolie acid, for surgical dressings. It is offieial in the British Pharmacopoia, and is derived not only from Thymus vulgaris, but also from Monarda punctata, another Labiate plant, and Carum Ajowan, of the order Umbelliferæ. This and other species of Thymus are also emploved by the cook as flavouring agents, \&c. (See Properties and Uses, p. 642.)

Trichostemma lanatum.-A decoction of the leaves of this plant, called by the Mexicans Romero, is used to impart a black colour to the hair, and to promote its growth.

Order 5. Plantaginaceef, the Ribwort Order. - Character. - Herbs, generally without aerial stems (fig. 1029). Leaves commonly ribbed and radical (fg. 1029). Flower's ustually spiked ($f i g .413$) and perfect (fig. 1030), or rarely solitary, and sometimes unisexual. Culyx persistent, 4 -partite, imbricate (fiy. 1030). Curolla dry and membranous, persistent, 4-partite (fig. 1030). Sturmens equal in number to the divisions of the corolla, and alternate with them (fig. 1030); filaments long and slender; anthers versatile. Ovary simple, but spuriously 2 - or sometimes 4 -celled from the prolongation of processes from the placenta; style and stigma entire (fig. 1030), or the
latter is rarely cleft. Capsule membranous, with transverse dehiscence; plaeenta free central. Seeds 1, 2, or more, with a mucilaginous testa; embryo transverse, in fleshy albumen.

Distribution and Numbers.-They abound in cold or temperate climates, but are more or less diffused over the globe. Illustrative Genera:-Littorella, Limu.; Plantago, Linn. There are above 100 species.

Fig. 1029.

Fig. 1030.

Fig. 1029. Plant of a species of Rib-grass (Plantago), with radical leares. - Fig. 1030. Flower of the same.

Propertics and Uses.-Generally of little importance ; but some are demulcent, and others astringent.

Plantugn.-Tho seeds of Plantago Ispaghula, P. amplexicaulis, P^{\prime}. ciliata P. Psyllium, P. Cymops, and others, are demulent, and may be nsed in the preparation of mucilaginous demuleent drinks; those of the first species are official in the Pharmacopecia of India, and are commonly there known by the Persian name of Ispaghut, or as Spogel seeds. The three first species are natives of India, but the two latter are Europeau. The leaves and roots of P. lanceolata and some other speries are slighty bitter and astriusent.

Artificial Analysis of the Orders in the Series of the Sub-class Gamopetale or Corolliflores.
** A few orders helonging to the Sub-class Polypetalie, the flowers of which are sometimes monopetalons, are also included in this analysis.

Scries 1. Infer.e or Epioraz.

1. Ovary interior.
A. Carpel solitary.
a. Authers zuited.

Ovule solitary, pendulous Cnlycerneca.
Orule solitary, erect Composita.
b. Anthers distinct.

Fruit with 1 perfeet eell, and 2 rudimentary ones.
Seed exalbuminous $\dot{\text { en }}$. . ${ }^{-}$
Fruit 1-eelled, and without any rudimentary one. Seed albuminous Dipsuceæ.
B. Carpels more than one.
a. Anthers united.

Leaves alternate Lobeliacea.
b. Anthers distinct.

1. Stamens 2.
Filaments not united to the style . . Columelliacer. Filaments nnited to the style . . . Stylidiacea.
2. Staneus more than 2.

Anthers opening by pores or slits . . Vacciniacere.
Anthers opening longitudinally.
Stigma with an indusium . . . Goodeniacere.
Stigma withont an indusium.
Leaves without stipules.
Stamens definite.
Leaves alternate. Corolla persistent Campanulucpa.
Leaves opposite. Stem round . Caprifoliacew.
Leaves verticillate. Stem square . Rubiacte.
Stamens numerous Belvisiaceæ.
Leaves with stipules.
Stipules interpetiolar. Flowers herma-
lihrodite
Rubiacer.
Stipules cirrhose. Flowers unisexual Cucurbitacer.

Series 2 and 3. Supere and Dicarpia on Bicarpeldata.

2. Ovary superior.

Carpels more than one.
a. Anthers opening by pores or slits . . . Ericaceæ.
b. Anthers opening longitudinally.

1. Anthers 1-celled Epacrideceæ.
2. Authers 2-celled.

Plants with dotted leaves. . . . Rutucere.
Parasitic brown scaly plauts . . . Munutropacea.
A. Flowers regular.
a. Ocary lobed.

Iutlorescence scorpioidal. IEstivation of enolla imbricate

Boragintcex.
Inforescence straight. Corolla with a valvate astivation. Leaves exstipulate . . Nolanucce.
b. Ovary net lobed.

1. Carpels more than three, rlistinct or combined. Stamens "rpal in number to the petals and opposite them.
Stems lierbaccors. Style 1. Fruit a cap-
sule Primulacere.

Stem woody. Style 1. Frnit fleshy, inde-
hiscent . - . Myrsinacex.
Stem herbaceons or woody. Styles 5, (rarely 3 or 4). Frnit membranous.
Stamens not opposite the petals if of the same number.
Carpels distinct.
Sceds nnmerous Crassulaceæ.
Sceds few
Carpels combined. Ovary 2- or more celled.
Ovules erect or ascending.
Astivation of the corolla plaited. Fruit dry

Convolvulacez.
Estivation of the corolla imbricate. Fruit fleshy

Sapotarex.
Ovules pendulons or snspended, or rarely partly ascending.
Stamens twice or four times as many as the lobes of the corolla, distinct.

Ebenaccæ.
Stamens equal in number to the lobes of the corolla. Filaments distinct. Anthers adnate

Aquifoliacex.
Stamens cqual in number to the lobes of the corolla. Filaments distinct. Anthers versatile.

Cordiaces.
Some of the ovules occasionally ascending. Filaments more or less cohering

Styraceæ.
2. Carpels three, combined so as to form a 3celled ovary.

Stem herbaceous. Disk hypogynous . Polemoniacea.
Stem woody. No disk . Diapensiacce.
3. Curpels two, combined or more or less distinct.

Oleacex.
Stamens 2
Stamens 4 or more. Inflorescence scorpioidal.
Fruit a capsule, 1-celled or imperfectly 2-celled

Hydrophyllacca.
Fruit drupaceous, 2 - or more celled. . Ehretiacea.
Stamens 4 or more. Inflorescence straight.
Leaves alternate.
Calyx in a broken whorl . . . Convolvulacci. Calyx in a complete whorl.

Anthers united to the stioma
Authers free from the stigma.
Placentas parietal
Asclepiodacese.

Placentrs axile.
Estivation of corolla valuate, induplicate-valvate, or imbricate

Solanacex.
Lenves opposite, whorled, or clustered.
Authers united to the stigma
Anthers free from the stigma.
Leaves with stipules
Asclepiadiscex.

Leaves without stipules.
Stigma slaped like an lour-glass.
Sistivation of corolla contorted Apocynacca.

> Stigma not contracted in the middle like an hour-glass. Estivationof corollaimbricate. Placentas parietal Estivation of corolla valvate. Gentianacese. Placentas axile . . Stilbacez.
4. Carpel solitury.

Stamens opposite the lobes of the corolla or petals $\dot{\text { p }}$. ${ }^{\circ}$. . Stamens alternate to the lobes of the corolla.
Fruit 1-celled. Sticma sessile. Fruit spuriously 2-celled or rarely 4-celled.

Style capillary Plantaginacea.

B. Flowers irregular.

a. Ovary 4-lobed Labiatæ.
b. Oeary not lubed.

1. Carpel solitary Šelaginacer.
2. Curpels two.

Fruit hard or nut-like.
Anthers 1-celled Selaginacer.
Anthers 2-celled. Ovules erect.
Corolla imbricate in astivation . . Verbenacer.
Corolla valvate in æstivation . . Stilbacea.
Anthers 2 -celled. Ovules pendulous . Myoporacex. Fruit capsular or succulent.

Placeatas parietal.
Leafless scaly brown root parasites - Ornbanchaces.
Leafy plants. Seeds with wings . . Bignoniucter.
Leafy plants. Seeds without wings.
Fruit a capsule or baccate. Cotyledous minute, radicle long

Gesneraces.
Fruit bony or a capsule. Cotyledons large, radicle short .

Pedrliacez.
Fruit woody with a pulpy interior. Crescentiaces.
Cotyledons large, radiele short
Placentas axile.
Seeds without wings.
Albuminous Scrophuluriaceæ.
Exalbuminous. Seeds attached to hard placental processes . .
Seeds winsed. Exalbuminous - Bignuitacer
Placentas frce central Lentibulariacer.
There are manr exceptions to the characters above given of the Gamnpietala or Corolliflore. Thus, among the Infere or Epigyna we sometimes find polypetalous corollas in Cuprifoliacees and Lobeliacere, and the ovary is sometimes superior in Condeniuces. In the Superæ and Dicarpix, poly. petalous species are more or loss found in Ericacese, Monotropacer, Epacriduces, Styracex, Oleaces, Primulaceer, Myrsinaceas and Plumbuginucea.

Again, among the Supere and Dicarpis we occasionally find the ovary inferior, or partly so, as in Ebenacea, S'tyrucex, Myrsinacese, Primuluceax, and alwars in Gesnertcees and Vucciniucer.

In Oleacere and Primnlacer, alectalons species sometimes occur ; and unisexual spreies are alsu occasionally found in Valerunacex, Compositu, Libenaces. Myssinucen, and Plantaginacex, and other exceptions have been already noted.

Sub-class III. Monochlamydex or Ineompletx.

This sub-class is frequently arranged in two sub-divisions, which are called, respectively, the Angiospermia and Gymnospermia; but the plants of the latter group present such striking differences in their characters from those of nther Dicotyledones, that they are now more generally placed in a division by themselves, as is the case in this volume, at the end of the Phanerogamia.

In this sub-class we follow in all essential particulars the arrangement of the Orders and characters of the Cohorts, as given by Sir Joseph Hooker in the English edition of Le Maout and Decaisne's 'Traité Général de Botanique,' instead of that adopted by Benthan and Hooker in 'Genera Plantarum,' where the following 'Series' are given instead of 'Cohorts' : -1 . Curvembryeæ. 2. Multiovulate aquatice. 3. Multiovulata terrestres. 4. Micrembryeæ. 5. Daphnales. 6. Achlamydosporeæ. 7. Unisexuales. 8. Ordines anomali. For a full description of the characters of these Series, and for lists of the Orders grouped under them respectively, reference should be made to 'Genera Plantarum.'

Series 1. Superæ.

Cohort 1. Chenopodiales. - Flowers usually hermaphrodite, or sometimes unisexual. Calyx green or coloured, generally regular ; tube short or absent ; segments imbricate in eestivation. Ovary superior, generally simple, or rarely compound; ovule solitary, basal, or rarely 2 or more. Seeds usually albuminous, or rarely exalbuminous; embryo generally curled or coiled. Usually herbs or shrubs, or very rarely trees.

Order 1. Nyctaginacee, the Marvel of Peru Order:Character. -Herbs, shrubs, or trees, with the stems usually tumid at the joints. Leares generally oppositc and entire. Flowers with an involucrc. Calyx* tubular or funncl-shaped, often coloured, plaitcd in restivation, contracted towards the middle, its basc persistent and ultimately becoming indurated and forming a spurious pericarp. Stamens 1 or many, hypogynous. Ovary superior, 1-cellcd; orule solitary ; style 1; stigme 1. Freit a utricle, enclosed by the hardened persistent hase of the calyx. Seed solitary ; cmbryo coiled round mealy albumen (fey. 781), with foliaceous cotyledons, and an inferior radicle.

* When there is hat one foral envelope in Dientyledons, we call that the calyx, whatever be its colour or other pecularity, in which nomenchature We follow the example of Lindley. By most botanists, however, the term perianth is emploved in such cases, but we nse that mame only in spaking uf Monocotyletons. (See page 223.)

Distribution and Numbers.-Natives exclusively of warm regions. Illustrative Genera:-Mirabilis, Limu.; Pisonia, Plum. There are about 100 species.

Properties and Uses.-Chiefly remarkable for the presence of a purgative property in their roots; which is especially the case with those of Mirabilis Jalapa and M. longiflora. M. dichotoma, Marvel of Peru, is commonly known by the name of the Four-o'clock Plant, from opening its flowers in the afternoon. Buerhacuia diffusa is said to possess expectorant properties.

Order 2. Amarantacee, the Amaranth Order.-Charac-ter.-Herbs or shrubs. Leaves simple, exstipulate, opposite or alternate. Flowers crowded, spiked or capitate, bracteated, hermaphrodite or occasionally unisexual. Calyx of 3-5 sepals, dry and scarious, inferior, persistent, often coloured, imbricate. Stamens 5, hypogynous and opposite to the sepals, or a multiple of that number; anthers 2- or 1-celled. Ovary free, 1-celled, with 1 or more ovules; style 1 or none; stigma simple or compound. Fruit a utricle or caryopsis, or sometimes baccate. Seeds 1 or more, pendulous; embryo curved round mealy albumen; radicle next the hilum.

Distribution and Numbers.-The plants of this order are most abundant in tropical regions; and are altogether unknown in the coldest climates. Illustrative Genera:-Celosia, Lirm.; Amarantus, Linn. There are nearly 500 species.

Properties and Uses.-Unimportant. Amarantus spinosus and other Indian species possess mucilaginous properties. Another Indian species, Achyranthes aspera, is also reputed to be astringent and diuretic. Gomphrena officinalis and G. macrocephalce are used in Brazil in intermittent fevers, diarrhoea, and some other diseases. Some of the species have bright-coloured persistent flowers, and are hence cultivated in our gardens, as A marantus candatus, Love-lies-bleeding; Amarantus hypochondriacus, Prince's-fenthers; Celosia cristata, Cockscomb; and others.

Order 3. Chenofodiacese, the Goosefoot Order.-Character. - Herbs or undershrubs, more or less succulent. Leuves exstipulate, usnally altemate, rarely opposite. Flowers minute, greenish, usually ebracteated, hermaphrodite or unisexual. Calyx persistent ($f(y .696$), usually divided nearly to the base (fig. 29), imbricate. Stamens equal in number to the lobes of the calyx and opposite to them (fig. 29), or rarely fewer, hypogynous or inserted into the base of the lobes; authers 2 celled. Ovar? superior (fig. 29) or partly infcrior, 1-celled, with a single ovule attached to its base ; style (fig. 29) usually in 2-4 divisions, rarely simple. Fruit usually an achænium or utricle (fig. 696), or sometimes baccatc. Seed solitary ; embryo coiled into a ring or spiral, with or without albumen; radicle towards the hilun.

Diagnosis.-They are chiefly distinguished from the Nyctaginacer by their habit and commonly ebracteated flowers.

Distribution and Numbers.-More or less distributed over the globe, but most abundant in extratropical regions. Illustrative Genera:-Salicornia, Tourn.; Beta, Tourn.; Salsola, Linn. There are above 500 species.

Properties and Uses.-Several plants of this order inhabit salt-marshes, and yield by combustion an ash called barilla, from which carbonate of soda was formerly principally obtained; but their use for this purpose has much fallen off of late years, in consequence of soda being more readily extracted from other sources. The plants which thus yield barilla principally belong to the genera Salsola, Salicomia, Chenopodium, and Atriplex. Many plants of the order are esculent, as Bcet and Mangel-Wurzel or Mangold Wurzel ; and some are used as potherbs, as Spinach or Spinage (Spinacia oleracect), Garden Orache or Mountain Spinach (Atriplex hortensis), and English Mercury (Chenopodium Bonus-Henricus). The seeds of others are nutritious; and several contain volatile oil, which renders them anthelmintic, antispasmodic, aromatic, carminative, or stimulant.

Beta.-The root of Beta vulgaris, the Common Beet, is used as a salad, and as a vegetable. It is largely eultivated on the Coutinent and elsewhere as a souree of sugar. Two yarieties of the Beet are commonly grown for sugar ; namely, that which is known under the name of Betterave a Sucre, and the White or Silesian Beet (Beta Cicla); the latter being the most exteemed. In 1868 about $8,000,000$ tons of Beet-root were grown, yieldins about 650,000 tons of sugar. Attempts have been made of late years to grow Beet in this country, and there ean be little doubt but that there are many distriets in whieh it might be cultivated with success. The grated root or sugar cake, and the molasses, which are refuse substanees obtained in the manufacture of beet sugar, are also useful; the former for feedins cattle; and the latter, when mixed with water, slightly aeidulated with sulpharic aeid, and submitted to fermentation, vields fromi 24 to 30 per cent. of spirit, which is said to be used to adulterate brandy like potato spirit. A variety of the Common Beet (Beta vulgaris macrorhiza) is usually regarded as the Mangel-W nurzel, so much employed as a food for cattle; but some look upon B. maritima as the source of both the Mangel-Wurzel and the varicties of the Garden Beet.-B. muritimu is sometimes used as a substitute for spinach or greens. The petioles and midribs of the leaves of the large White or Swiss Chard Beet, Betar Cycla, var., form the favourite vegetable of the French termed Poirée à curde ; it is cateu like Sea Kale or Asparacus.

Chenopodium.-The seeds of C. Quinea contain starch sranules, which are remarkable for being the smallest hitherto noticed. These seeds are known under the name of petty rice, and are a common artiele of ford in Peru.-C. Bonas-Hemricus, as already mentioned, may be used as a potherib. The frnits of C. cumbrosioides, linu., var. anthelminticum, Gray, , meder the name authelmintic prop-seed, are largely employed in the United States for their gualithes. The herb generally has similar properties. These eflects are due to the presence of a highly odorous volatile oil. Both the oil and fruits are official in the United States Plarmateopoia.-C. Botrys is repurel to positss somewhat similar properties, but is not so powerful.-C. ambrosinides is alko employed in Mexieo and Colnmbin as tea, which is henee known as Mexican

Tea.-C. Vulvaria or olidum, Stinking Goosefoot, is an indigenous plant. It is a popular emmenagogue aud antispasmodic.

Order 4. Basellace.e, the Basella Order.-Diagnosis.-

 This is a small order of climbing herbs or shrubs closely allied to Chenopodiacer, but chiefly distinguished by its plants having two rows of coloured sepals, and by their stamens being evidently perigynous. There are about 12 species, all of which are tropical plants. This is made a sub-order of Chenopodiaces by Bentluam and Hooker.Properties and Uses.-Basella rubra and B. alba are used in the East Indies as a substitute for Spinach. From the former species a purple dye may be also obtained. The fleshy roots of Ullucus tuberosus or Melloce tuberosa are largely used in Peru and some of the adjoining countries as a substitute for the Potato.

Order 5. Phytolaccacee, the Phytolacea Order.-Cha-racter.-Herbs or undershrubs. Leaves alternate, entire, exstipulate. Flowers hermaphrodite or very rarely unisexual, racemose. Calyx 4-5-partite. Stamens nearly or quite hypogynous, either equal in number to the divisions of the calyx and alternate with them, or more numerous; anthers 2 -celled. Ovary superior, composed of 2 or more carpels, distinct or more or less combined; styles and stigmas distinct, equal in number to the carpels. Fruit dry or succulent, each carpel of which it is composed containing 1 ascending seed; embryo curved round mealy albumen ; radicle next the hilum.

Distribution and Numbers.-Natives principally of America, India, and Africa. Illustrative Genera:-Giesekia, Lirn.; Phytolacca, Tourn. There are about 80 species.

Properties and Uses.-An acrid principle is more or less diffused throughout the plants of this order ; but this is frequently destroyed by boiling in water. Some are enctic and purgative.

Giesekia pharnacenides.-The fresh plant of this Indian speeies is reputed to be a powerful anthelmintie in eases of trenia.

Gyrostemon.-This genus, from its unisexual flowers and twin suspended ovules, \&e., is sometimes regarded as the type of a distinet order, Gyrostemonacea, but it is placed here by Bentham and Hooker. It has no known uses.

Phytolacca.-The roots and fruits of P. decandra, Poke or Pocan, are employed in the United States for their emetie and purgative propertics. They are also reputed to be somewhat nareotic. The ripe fruits have been used in ehronic rheumatism and in syphilitie affections. A substance named phytnlaccin is prepared from the roots and seeds, and has similar properties. Its young shoots boiled in water are caten iu the United States as Asparagus ; thinse of P. acinosu are also similarly eaten in the Himalayas. A speeies of Phytnlaccu, whielh has been named P. electricu, a native of Nicaragua, is snid to give a sensible shoek, as from a galvanic battery, to any persom attempting to gather a branch. It is also stated that the needle of the compass is affeeted by proxiuity to it.

Order 6. Petiveriace.e, the Petiveria Order.-Diagnosis, \&c. This is a small order of plants, which is ineluded by sone botanists, as Bentham and Hooker, in Phytolaeeaeex, with whieh it agrees in many partieulars. It is distinguished from that order by having stipulate leaves, an ovary formed of a single carpel, exalbuminous seeds, and a straight embryo with convolute cotyleclons. These plants are natives of tropical Ameriea. There are about 12 species in this order.

Propertics and Uses.-Most of the speeies are acrid, and some have a strong alliaeeous odour.

Petiveria.-Petiveria alliacea, Guinea-hen Weed, is reputed to be sudorific and emmenagogue, and its roots are used in the West Indies as a remedy for toothache. It is also commonly put into warm baths which are used to restore the action of paralysed limbs.

Order 7. Polygonacese, the Buekwheat Order.-Cha-raeter.-Herbs or rarely shrubs. Leaves alternate, simple, eommonly with oehreate stipules above the swollen joints (nodes) of

Fig. 1031.

Fig. 1032.

Fig. 1031. Flower of a species of Polygo. ииm.-Fig. 1032. Pistil of a species of Rumex.
 the stem (fig. 21, d), or rarely exstipulate. Flowers perfect
(fig. 1031), or sometimes unisexual. Calyx inferior (fig. 1031), (fig. 1031), or sometimes unisexual. Calyx inferior (fig Stamens of from 3-6 sepals, more or less persistent, imbrieate. Staments few (fig. 1031), hypogynuus or rarely perigynous; anthers dehiscing longitudinally. Ovary superior (fig. 1031), 1-eelled; styles and stigmas 2-3 (fig. 1031) ; ovule solitary, orthotropous. Fruit usually a triangular nut, and eommonly enveloped in the persistent calyx. Seed solitary, ereet (fig. 7S0) ; generally with farinaeeous albumen ; cmbryo ($f i g .780, p l$) antitropous.

Diagnosis.-Usually herbs with oehreate stipules. Leaves simple, altermate. Calyx infcrior, persistent, imbrieate. Stamens definite. Ovary 1 -eelled; styles and stigmas 2-3. Fruit triangular. Seed solitary, erect, usually with mealy albuuen, radiele superior.

Distribution and IVumbers.-Generally diffised over the globe, and more partieularly so in temperate regions. Thustrative Genera:-Rheum, Linn. ; Polygonum, Limn. Cuccoloba, Jucq. ; Rumex, Lim. There are about 500 splecies.

Propertics and Uses.-Chiedy remarkable for the prescuee of acid, astringent, or purgative properties. The acidulous ela-
racter is principally due to the presence of salts of oxalic acid. The fruits and roots of several species are more or less nutritious.

Coccoloba wifera, Seaside Grape.-From the leaves, wood, and bark of this species a very astringent extract is obtained, which is commonly known as Jamaica Kino. The fruit is aeid and edible, but not muelı esteemed.

Fagopyrum.-The frnits of F^{\prime}. esculentum (Polygonum Fagopyrum), Common Buckwheat or Saracen Corn, of F. tataricum, and other species, are used as a substitute for corn in the northern parts of Asia and Eastern Europe, and also in Brittany and other parts of the world. The former species is cultivated in Britain as food for pheasants. This plant when in flower produces an effect on many animals resembling intoxication, and a case has been reported within the last few years in whieh many lambs were in this war stupefied and ultimately killed by it.

Polygonum.-The rhizome of P. Bistorta, eommonly ealled Bistort root, is a powerful astringent, which property is due essentially to the presenee of tannic acid. Starch is also one of its constituents, hence it possesses, to some extent, nutritive properties, and is sometimes eaten, when roasted, in Siberia. The young shoots and leaves have been used from an early period in the North of England as a pot-herl, under the name of Passions, probablv from the plant being in perfection for sueh a purpose about Eastertide. The roots of P. viviparum are also used as food by the Esquimaux. The leaves of P. Hydropiper are very acrid, hence the eommon name of Water-pepper whieh is given to this plant. This species also yields a rellow dye. From P. tinctorium a blue dye resembling indigo is obtained in France, \&c. The Chinese produce a blue dye from several species of Polygonum.

Rheum, Rhubarb.-The species of this genus usually possess more or less purgative and astringeut properties; this is especially the case with their ronts, and hence these are largely used in medicine. "Various species of Rhubarb are indigenous or cultivated in different parts of the world, but until recently the botanical source of our official rhubarb root was unknown, and cannot even now be said to have been absolutely determined. It seems, however, almost certain that whilst the plant deseribed by Baillon under the name of Rheum officinale may yield some of it, that the source of the best official rhubarl-namely, that which formerly came to ns by way of Kiachta, and commonly known as Russian Rhabarb-is derived from R. palmatum, a plant which is a native of Tangut, in Kansu, the extreme northwestern province of China. In this province rhubarb is priucipally obtainied from wild plants, but also to some extent from cultivated ones. Rhubarb from this specics is also derived from the Chinese provinces of Szechnen and Shensi. The rhubarl, thus obtained from R. palmatum is chiefly exported by way of Shanghai, but also to a small extent from other ports, as Tientsin, Canton, Amoy, and Fonchow. In the British Plarmacopocia the ront is said to be derived from R. palmatum, R. officinale, and probably other speeies. The kind known as Indian or Himalayan Rhubarb is the produce of several species, but move aspecially of R. Moorcroftianum, R. australe, and R. Emodi. English Phularb is chiefly derived from R. Rhaponticum, and is now much used in the lospitals of this enuntry, and in Aneriea, but it is not so aetive as the official rhubarl, althongh probably equally efficacionts when given in sufficient doses. Some English rhubarb is also olitained from R. of ficiuale, which is now also cultivated in this country. The petioles of R. Ribcs are employed in the Last for the preparation of sherbet. The petioles of R. Thuppanticum and other splecies are used for tartsand puddings. Their acidulous character is priucipally due to the presence of oxalic neid. The ronts of the speeies of Rheum contain abundane of calcium oxafate erystals (conglomerate raphides). (Sce page 34.)

Rumex.-Several species possess acid properties owing to the presence of a potassium salt of oxalie acid, commonly termed salt of sorrel, especially R. aretosa, common Sorrel, R. Acetosella, R. scutatus, and R. Patientiu. They have been employed as pot herbs, and for salads.- R. acetosa is sometimes used medicinally for its refrigerant, diuretie, and antiscorlbutic properties. The root of 'R. Hydrolapathum, Great Water Dock, is astringent and antiscorbutie. The roots of R.alpinus are purgative, and were formerly. employed instead of Rhubarb under the name of Monk's Rhubarb. Thie substance known as rumicin is prepared from the root of Rumex crispus. It is said to possess astringent, tonie, and antiscorbutie properties.

The two following orders have no close affinities to any other orders, and are therefore not put in any cohort by Hooker, but placed under the head of 'Orders of Dubious Affinities.'

Order 1. Batidacere, the Batis Order.-This supposed distinct order only contains a single plant, the Batis maritima, a succulent shrubby species, with opposite leaves, and unisexual flowers arranged in amenta; it is a native of the West Indies, where it is occasionally used as an ingredient in pickles. Its ashes also yield barilla. Some authors regard this genus as belonging to Chenopodiaceæ.

Order 2. Podostemacere, the Podostemon Order.--Character.-Aquatic herbs with the aspect of Mosses or Liverworts. Leaves minute and densely imbricate, or finely divided. Flowers minute, generally hermaphrodite, or very rarely unisexual, spathaceous. Calyx absent, or of 3 sepals. Stamens 1 or many, hypogynous; anthers 2-celled. Ovary superior, $2-3$-celled; stigmas $2-3$; oveles ascending, numerous. Fruit capsular, ribbed, with parietal or axile placentation. Seeds numerous, exalbuminous, with a straight embryo.

Distribution and Numbers.-Principally natives of South America. Illustrative Genera:-Hydrostachys, Thouars; Podostemon, L. C. R. There are about 120 species.

Properties and Uses.-Unimportant. Some species of Lacis are used for food on the Rio Negro, dc., in South America; and other plants of the order arc eaten by cattle and fish.

Cohort 2. Laurales. - Flowers unisexual or hermaphrodite. Calyx green or coloured, gencrally regular. Ovary superior, 1-celled; stigma simple; ovule solitary. Seeds albuminous or exalbuminous ; embryo straight.
Order 1. Monimincee, the Monimia Ordcr.-Diagnosis.Trecs or shrubs, with opposite exstipulate leaves. Flowcrs axillary, unisexual. The flowers gencrally resemble those of the Atherospermacee, but they difficr in always being unisexual ; in the longitudinal dehiscence of their anthers; in the absence of fathery styles to the fruit; and in their ovules and secds being pendulous.

Distribution and Numbers.-They are principally natives of South America, but are found also in Australia, Java, Madagascar, Mauritius, and New Zealand. Illustrative Genera:Monimia, Thouars; Peumus, Pers. There are about 40 species.

Properties and Uses.--They are aromatic fragrant plants, but their properties are of no great importance.

Peumus Boldus or Boldon fragrans. - The leaves of this plant. which is a native of Chili, nuder the name of Boldo, have been recommended as a remedy in diseases of the liver, but their nse has not been attended with any marked success in European practiee. The fruits are edible.

Order 2. Atherospermacee, the Plume Nutmeg Order.-Character.-Trees, with opposite exstipulate leaves. Flowers axillary, racemose, bracteated, unisexual or rarely perfect. Calyx inferior, tubular, with several divisions. Male flowers with numerous perigynous stamens; anthers 2 -celled, opening by recurved valves. Female flower usually with abortive scaly stamens. Carpels superior, numerous, distinct, each with a solitary erect ovule; styles and stigmas as many as the carpels. Fruit consisting of a number of achænia crowned with the persistent feathery styles, and enclosed in the tube of the calyx. Seeds erect, with a minute embryo at the base of fleshy albumen. This order is combined with Monimiaeex by Bentham and Hooker.

Distribution and Numbers.-Natives of Australia and Chili. There are but 3 genera: namely, Atherosperma, Labill., and Doryphora, Endl., from Australia; and Laurelia, Juss., from Chili. These include 4 species.

Properties and Uses. - They are fragrant plants. The achænia of Laurelia somewhat resemble common Nutmegs in their odour.

Atherosperma.-A decoetion of the bark of Atherosperma mosclata is stated by Backhouse to be used in some parts of Australia as a substitute for China tea. This bark resembles sassafras in flavour and odour, hence it is commonly known under the name of Australian Sassafras; it is occasionally imported into this country. The decoction is likewise cmployed as a diuretic and diaphoretic. The wood is also valuable as timber.

Order 3. Myristicacef, the Nutmeg Order.-Character. -Trees. Leaves alternate, exstipulate, entire, dotted, stalked, leathery. Flowers unisexual. Calyx inferior, leathery, 3-4cleft; in the female flower, deciduous; astivation valvate. Male flover with 3-12 stamens, or rarely more numerous; filaments distinct or monadelphous; anthers 2 -celled, extrorse, distinct or united, with longitudinal dehiscencc. Female flower with 1 or many superior distinct earpels, or rarcly 2 ; each carpel with 1 erect ovule. Fruit succulent. Seed arillate, with copious oily-fleshy ruminated albumen; embryo small, with an inferior radicle.

Distribution and Numbers.-Natives of tropieal India and America. Illustrative Genera:-Myristiea, Lirn.; Hyalostemma, Wall. There are above 40 species.

Properties and Uses.-Aromatie properties are almost universally found in the plants of this order, and more especially in their seeds. The bark and the pericarp are frequently acrid.

Myristica.-The valuable and well-known spices ealled Nutmegs and Maee are both derived from M. fragrans (M. officinalis), the Nutmey trec. This tree is a native of the Molueeas and other Indian iskands, \&e, and it is now cultivated in the Banda Islands, also in the Philippines, Bencoolen, Penang and Singapore, in Mauritius, the West India Islands, and South America. At Penang and Singapore, whence formerly the best nutmegs were obtrincd, its eultivation has declined of late years. The Nutmeg trec bears pearshaped fruits, eommonly about the size of an ordinary peach, with fleshy periearps; each fruit contains a single seed, surrounded by a lacerated envelope called an arillode, or commonly mace; this is scarlet when fresh, but usually becomes yellow when dried, as in the mace of commeree. Beneath the arillode we find a hard shell, and within this the nuelcus of the seed invested closely by its inner coat, which also penetrates the substance of the albumen, and divides it into lobes (rumimated allumen). This nuclens-that is, the dried seed divested of its hard shell and arillodeis the eommercial and official Nutmeg of the British Pharmaeopocia. The periearp is uscd as a preserve. Both nutmegs and maee are largely employed as condiments, but their use requires caution in those subject to apoplexy or other cerebral affeetions, as they possess somewhat aareotic propertics. In medicine they are employed as stimulants, carminatives, and flarouring agents. Nutmegs yield when distilled with water a volatile oil, which is also official in the British Pharmaeopoeia. Maee under like eonditions also vields a volatile oil of nearly similar propertics. The substance known as Expressed Oil of Mace. Butter of Nutulegs, or Expressed or Coneretc Oil of Nutmegs, is imported ehiefly from Singapore, and is prepared by redueing nutmegs to eoarse powder, which after exposure to the vapour of hot water is submitted to pressure between heated plates. It consists of a small quantity of molatile oil mixed with several futty bodies, the most important of which is myristicin; this expressed oil is also official in the British Pharmacopoia. The above Nutmegs are frequently termed the Truc, Round, or Ofticinl Nutmegs, to distinguish them from those of an inferior qualitr, which are derived from other speeies of Myristica, \&e. One of these inferior nutmegs is found in commerce, and is ealled the Long or Wild Nutmeg. It occurs in three conditions, namely, without the hard shell and arillode, then termed Long or Wild Nutmeg; cnclosed within the shell but divested of the arillode (Long or Wild Nutmeg in the shell); and within the shell and arillode (Long or Wild Nutmeg covered with Mace). These long nuturers are said to be derived from Myristica futua, and probably also, to some extent, from MI. mulabarica. Ioth the long mutmeg and its mace are very inferior to the similar parts of M, frugrans. There are some other kinds of Nutmegs, derived from different species of Myristica. which are in use in various parts of the world, but as the are much inferior in their qualities aud are not found in commerce, it is unneeessary to allude further to them here. Some other lalse or Wild Nutmers are also derisell from plants uf the

Order 4. Lauracede, the Laurel Order. - Character.Aromatie tiees or shrubs (parasitie and twining in Cassy(ha). Lecoves simple, exstipulate, usually alternate, sometimes dotted
(Cassytha has scales instead of foliage leaves). Flower's generally hermaphrodite or sometimes unisexual (fig. 1033). Calyre inferior (f iy. 1033), deeply 4-6-c'eft, coloured, in two whorls, the limb sometimes obsolete; astivation imbricate. Stcomens perigynous, definite, some always sterile; filaments distinct, the inner ones commonly with glands at their base (fig. 541, g, g) ; auther's adnate, $2-4$ celled, l, l, dehiscing by recurved valves, c. Ocary superior (fig. 1033), 1-celled, with 1 or 2 suspended ovules. Frit baccate or drupaceous. Seeds exalbuminous ; embryo with large cotyledons, and a superior radicle.

Distribution and Numbers.-They are

Fig. 1083.

Fig. 1033. Vertical section of the female flser of Lrturtes nobilis, the Swect Bay. chiefly natives of tropical regions, but a fer occur in North America, and one (Laurus nobilis) in Europe. Illustrative Genera:- Uinnamomum, Burm.; Nectandra, Mottb. ; Laurus, Toum. There are above 450 species.

Properties and Uses.-The plants of this order are almost universally characterised by the possession of aromatic properties, which are due to the presence of volatile oils; many of them are therefore employed as aromatic stimulants. Others are narcotic ; some have sudorific properties ; and several are tonic, stomachic, febrifugal, or astringent. A few have edible fruits, and many yield valuable timber.

Acrodiclidium Cumara yields the False Nutmeg whieh is ealled in Guiana the Ackawa or Camara Nutmeg. Its nse is similar to that of the otlier false nutmegs derived from plants of this order. (See Agathophyllum and Cryptocurya.)

Agathophyllum aromaticum yields a kind of False Nutmeg, whieh is the Clove-Nutmeg of Dadagascar or Ravensarnu Nut. It is used as a spice. (See A crodicliclinm.)

Cinnamomum.-Cinnamomnm Camphora or Camphora officinarum, the Camphor tree, is a native of China and Japan, and has been introduced into Java. Commereial camphor is derived entirely from the island of Formosia and Japan, the former being known as China or Formosa Camphor, and the latter as Jupan or Dutch Camphor. Camplan is proeured in a crude state from the wood by a rude proeess of sublimation, and as thus ob)tniued is termed crude cumplor. It is exported to Europe, \&e., in this coudition, where it is afterwards puritied by subliming again, after which process it is called refined camphor, in whieh state it is official in the British Pharmaeopueia. Camphor is a stearoptene or solid volutile oil. This kind of amphor is commonly distingnished from other camphors by the name of Laurel, Common, or Official Cumphor (see Dryobalanaps, 1. 470゙). The oit of :unphor of commerce, formerly official in the United States Plarmaeopeeia, y the volatile oil which drains from the crude camphor which is stored ni vats lefore shipment. It is nsed externally in rhematiom, \&e. In proper loxas, emphor produces exlilarating aud anodye effecte, for which purpmets t is principally employed in medicine. In large doses it is nareotic ann poisonous. Cinnamon, which is so much employed as a condiment, and
medicinally as a cordial, stiunulant, tonic, astringent, earminative, antispasmodie, and as an adjunct to other medicines, is the inner bark of C. zeylanicum. 'The best comes from Ceylon. It owes its properties esseutially' to the presence of a volatile oil. This volatile oil is the Oil of Cinnumon of commerce. Both the bark and volatile oil are official in the British lharmaeopeia. A coucrete fatty substance is obtained iu Ceylon by expression from the ripe froits, which is ealled Cumamon Suet; this is supposed by Royle to be the Comacum of Theophrastus. From the leaves of the Cinnamon tree a volatile oil is also distilled in Ceylon. It has au analogons odour and taste to that of oil of eloves. The Cinnamon tree is the Kinmemon or Kimman of the Bible.-C. Cassia of Blume, yields Cassiu lignea or the Cassia buth of commerce which is obtained from China; this possesses analogous properties to Cinnamon, and like it yields by distillation a volatile oil, ealled Oil of Cassia, to the presence of which its qualities are esseutially due. Cassia buds of commerce, which are brought from China and oceasionally. used as a condiment and iu medieine, are the flower-buds of the sume plant. Cassia buds possess somewhat similar properties to Cassia bark. The Cassial tree is the Kidduh or Cassia of the Bible. The inner bark of C. iners is very similar in its nature to that of Cassia bark. The bark ealled Indiun Clove Bark is obtained from C. Culilawan. It possesses properties resembiing those of Cassia. Sintoc berb, whieh has analorons qualities, is the produce of C. Sintoc.-C. nitidum (eucalyptoides) and C. Tamalu were probably the sourees of the Folia Nalabathri of the old pharmaeologists, formerly so highly esteemed for their stomachic and sudoritic properties. The roots of C.parthemrylon and C. glonduliferum resemble the official Sassafras in their effects. The latter is the Sassaftas of Nepal.

Cryptocarya moschuta yields a kind of False or Wild Nutmea, which is termed the Brazilian Nutuneg. (Sec also Acrodiclidium and Agathophyllum.)

Dicypellium caryophyllatron yields Brazilian Clove-Bark or Clove Cassia Bark. It is oecasionally imported, and nsed for mixiurs with other spices.

Laurus nobilis, the Sweet Bay, is said to be the Ezrach or Green Bay Tree of the Bible. It is the classic Laurel whieh was used by the aneients to make crows for their heroes, hence it is frequently ealled the Victor's Laurel. The fruits, which were formerly official, are conmonly known under the name of Bay or Laurel berries. Bay berries are reputed to be aromatic, stimulant, and nareotic, but they are very rarely nsed in medieine. By: distillation with water they yield a volatile oil. commonly known as the Volatile Oil of Sweet Bay. The sulnstance ealled Faxpressed Oil of Bay or Laurel fat is obtained from both the fresla and dry fruits beressing them after they have been boiled in water ; this substance is of a green colour and butyraceous consistence, and is a mixture of volatile oil aud fatty bodies. like the expressed oil of nutmegs. Laurel leaves have somewhat similar properties to the fruit. From their aromatic properties they are nsed by the cook for flavouring. 'These leaves must not be enntounded with those if the Cherry Laturel, already noticel. (See Prunus.)

Mespilodaphe pretiosa, a native of Brazil, yichls the aromatie bark called? Casca pretiosa be the Porturuese.

Nectundret- \boldsymbol{N}. Rodine is the Bebeern or Greenheart Tree of Guiana. the wood of which is very hard and durable, and has been muployed in ship-building, \&e. Belveru or bibiru bark is obtained from this tree: it las been used in medicine as a subsititute for the cinchona barks, possessinn: like them, tonie, antiperiodie, febrifural, and astringent properties. Thesp properties are due cosentially to the presence of a peculiar alkaloid calmed Beherine, which has nearly similar mediciand propertics to quinine, and is cmployed by itself, and in the form of a sulphate, as an economical substitute for smphate of gninine. It is, however, very inferior in its properties to quiuine. Bebeern bark and smphate of beberine are both oflecial in the

British Pharmacopeeia. The seeds of the Bebecrn tree contain starch; this when mixed with an equal quantity of a decayed astringent wood, and a similar proportion of cassava pulp. is made into a kind of bread, and used as fond by the Indians.-V. cymbrerum of Nees vields the substance called Brazilian Sassafras. The cotyledous of N. Puchury major and minor are imported from Brazil under the name of Sassafras Nuts or Puchurim Beans ; they are much esteemed as a flavouring for chocolate. Other species of Nectundra, as N. sunguinea, N. exaltata, and N. leucantha, yicld more or less valuable timber.

Orendspline.-Several species of this genus vield valuable timber : thus the Sureet-ưond is the produce of O. exaltata; the Til of the Canarics, of O. fretens; and the Siraballi of Demerara is derived from a specics of Orenduphne or of some uearly allied genus.

Persea.-The fruit of P. gratissima is in much reputc in the West Indies. It is commonly known as the Avocado or Alligator Pear.P. indica, a native of "Madeira, yields a timber somewhat resembling malugany.

Sassifras.-The ront of s. officinale is nfficial in the British Pharmaenpeia. Sassafras is employed medicinally in this country and elsewhere. as a stimulant, diaphoretic, and alterative. From it thic Volatile Oil of Sassafras is obtained. Sassafras pith is largely used in the United States of America, where it is nfficial in the Pharmacoposia, as a demulcent.

Cohort 3. Daphnales. - Flowers usually hermaphrodite, or rarely unisexual. Calyx green or coloured, regular or irregular, often tubular. Ovary superior, 1- or rarely 2 celled: stigma simple ; ovule usually solitary. suspended or ascending. Seeds generally exalbuminous, but sometimes the albumen is present in small quantity ; embryo straight. Almost always trees or shrubs. Leaves exstipulate.
1)der 1. Thyameacee, the Mezereon Order.-Character. -Trees. shmbs, nr very rarely herbs. With an acrid very tough bark. Lecues entire, exstipulate. Flovers hermaphrodite (fig. 1034), or rarely unisexual. Calyx inferior, regular (fig. 1034), coloured, tubular, 4-5-lobed ; æstivation imbricate. Stamens perigynous (fil. 1034), twice as many as the divisions of the calyx, or equal in number to them, or fewer, in the two latter cases they are opposite to the lobes of the calyx ; anthers 2 celled, bursting longitudinally. Ovary superior (fig. 1034), simple, 1 -celled, with a solitary suspended ovule (fiq. 734). Fruit dry and nutlike. or drupaceons. Seed suspended ; albumen none or but small in quantity ; embryo straight, with a superior radicle.

Distribution and Numbers.-They are found more or less abundantly in all parts of the world, but especially in Anstralia and the Cape of Good Hope. Tllustrative Genera:-Daphne, Linn. ; Pimelea, Banls et Soll. There are about 300 species.

Propertirs and Uses.-The plants of this order arc chiefly emarkable for the tonchness and acridity of their bark. The ruit of Pirce palustris is nareotic, and that of the plants fencrally of the order poisonous or suspicious; but the seeds of

Inocarpus edulis are said to resemble Chestnuts in flarour whon roasted. Several species of Daphne, Pimelea, and othcr genera,

Fig. 1034.

Fig. 1034, Vertical section of the flower of a species of Daphne. are handsome shrubby plants.

1) aphne.-The dried barks of D. Mezereum, Mezereon, and D. Laureola, Spurge Laurel, are official in the British Pharmacopeia. Both the root-lark aud stembark are anthorised, but the former is generally regarded as the more powerful. Mezeren bark may be nsed as a vesieatory, and also as a masticatory in toothache. It is however principally cuploved as a stimulant, diaphoretie, alterative, aud diuretic. It ow \subset its properties essentially to an aerid resin. The fruit is also very aerid. The bark of D. Gnidium, Spurce Flax, is likewise official in the Paris Codex, aud is sometimes substituted in this conntry for our official bark, but it is not so aetive. The inner bark of I, cannabina and other speeies is used in some parts of the world for making paper, \&c.

Edgeworthia papyrifera.-The bark is used in Japan for the manufacture of paper money.
Lagetta Tintearia, Laee-bark 'Trec.-The bark posstsses, in some degree, similar propertics to that of Mezereon. When nacerated it may he separated into thin lamiure, the number of which depends upon the age if the speciunen ; these have a lace-like appearance, henee its commou uame of lace bark. It possesses grent strength, and may be used for making ropes, \&e. It was at oue time employed in the West Indies for making the slive whips. Sloane states that eaps, rufles, and even whole suits of ladics' elothes, have been made from it. Lagetta cloth has been imported into Liverporl under the name of guana.

Passerina Ganpi.-The bark is used in Japan for the manufacture of paper.

Order 2. Aqumartacese, the Aquilaria Order.-Cliarac-ter.-Trees with entire exstipulate leaves. Calyp tubular or top-shaped, 4-5-lobed, imbricate, persistcnt. Stamens perigynous, 10,8 , or 5 , opposite the lobes of the calyx when equal to them in number; anthers 2 -celled, opening longitudinally. Orary superior, usually 2 -eelled ; ovules 24 , suspended ; or rarcly 1 -celled with parictal placentation. Irruit generally 2 -valved, capsular, sometimes succulent and indehiscent. Seeds usually 2 , or rarely 1 by abortion; exalbuminous. This order is sometimes inclullid in Thymelucer.

Distribution and Numbers.-Natives exclusixcly of tropical Asia. Ilustrative Genera :-Aquilaria, Lam.; Leucosmia, Beuth. There are about 10 spceics.

Properties and Uses.-Some species yicld a fragrant stiunlam resin.

Aquilaria (Alenrylon).-The substance called Tign-Alocs, Agullochum Aloes-wood, or Eiagle-wood, is said to le the Ahatim nul Thatoth of the (): Testament, and the Aloe or Aloes of the New. It is obtained from I Guilari Agullochum, and probably nlso from A. ovata. It was formerly held it high repute as a medieinal agent in Europe, bat its nss is mow onsmeme It is said to be useful as a cordial, and as a remedy for gout and rhen matism.

Order 3. Eleagnacese, the Oleaster Order.-Character.s'mall trees or shmebs, with entire exstipulate usually vory seurfy (rig. 153) leares. Flowers mostly unisexual or rarely perfeet. Male flovers amentaceous, braeteated. Sepals 2-4, distinct or united. Stamens definite, perigynous. Female flowers with an jnferior tubular ealyx, and a fleshy disk; æstivation imbrieate. Ovary superior, 1-eelled, with a solitary ascending ovule. Fruit enelosed in the suceulent ealyx, indehiscent. Seed solitary, ascending, with thin albumen; embryo straight, with an inferior radiele.

Distribution and Numbers.-They are generally diffused throughout the northern hemisphere, and rare in the southern. Ilustrative Genera:-Hippophaë, Linn.; Elæagnus, Linn. There are about 30 species.

Properties and Uses.-Unimportant. The fruits of Elxagnus nrientalis are esteemed in Persia under the name of zinzeyd; and those of E. arborea, E. conferta, and others, are eaten in eertain parts of India. Those also of Hippophaë rhamnoides, the SeaBuekthorn, which is a native of England, are also edible, and have been employed in the preparation of a sauee for fish, but their use requires eaution from containing a narcotie prineiple.

Order 4. Proteacee, the Protea Order.-Cliaraeter.Shmibs or small trees. Leaves hard, dry, opposite or alternatc, exstipulate. Flowers usually hermaphrodite. Calyx inferior, 4 -partite or of 4 sepals; æstivation valvatc. Stamens perigynous, equal in number to the partitions of the ealyx and opposite to them; anthers bursting longitudinally. Uvary simple, superior, 1-celled, with 1 or more ovales, aseending or suspended. Fruit dehiseent or indehiseent. Seeds exalbuminous ; embryo straight, radicle generally inferior.

Distribution and Numbers.--Natives chiefly of Australia and the Cape of Good Hope. Illustrative Genera:-Protea, Limn.; Banksia, Linu. fil. There are more than 600 speeies.

Properties and Uses.-They are chiefly remarkable for the beauty or singularity of their flowers and their evcrgreen foliage. But the fruits and seeds of some speeies are eaten; and the wood is largely employed at the Cape and in Australia for burning, and oceasionally for other purposes; thus, that of Protea Ircudiftora is used at the Cape of Good Hope for waggon-wheels, henee the plant is named Wagenboom. The seeds of Macadamia termifolic, a native of Qucensland, are edible.

Cohort 4. Urticales. - Flowers usually unisexual, or rarely hermaphrodite Calyx green, usually regular, rarely absent. Stamens opposite the calyx-lobes or sepals. Ovary superior, 1 -eelled, or rarely 2 -eelled; stigmas $1-2$; ovule solitary, mieropyle always superior. Seeds albuminous or exalbuininous; embryo gencrally straight. Leaves usually stipulate.

Order 1. Urticacee, the Nettle Order.--Character.Herbs, shrubs, or trees, with a watery juice. Lcaves opposite or alternate, usually rough or with stinging glands (fig. 169) ; stipulate or rarely exstipulate. Flowers small, unisexual (fiy. 1035) or rarely hermaphrodite, seattered or arranged in heads or eatkins. C'alyx inferior (fig. 1035, c), lobed, persistent. Malc flower with a few distinet stamens (fig. 1035, e, e), perigynous, opposite the divisions of the ealyx, and with a rudimentary ovary (fig. 1035, pr) ; filaments at first incurved. Ferale flover

Fig. 1035.

Fiti. 1036.

Fig. 1035. Male flower of the Small Nettle (U'Hic! urens). c. Calys. P: e, ρ, e. Stamens, with 2-celled anthers. pr: Rndimentary ovary.-Fig. 1036. Vertical section of the ovary of the female flower of the same. 1 . Wall of the ovary. s. Stigma. o. Ovule.
with a superior 1 -eelled ovary (figs. 733 and 1036) ; ovule ereet, orthotropous (figs. 733 and 1036). Fruit indehiscent, surrounded by the persistent ealyx. Seed solitary, ereet (fiy. 779) ; embry"u (fig. 779) straight, enelosed in albumen ; and with a superiur radicle, r.

Bentham and Hooker, in 'Genera Plantarm,' include the forr succecding orders-Moracex, Cannabinacce, Artocarpaceix, and Ulmacex-in Urticacex, as sub-overs.

Distribution and Numbers.-These plants are more or less distributed over the world. Illustrative Genera:-Urtiea, Tomern.; Parietaria, Toum. The order eontains more than 300 species.

Propertics and Uses.-Chiefly remarkable for yielding valuable fibres, and for the acrid stinging juice contained in their glands.

Bohmeria-Several species yield valuable fibres, as B. Puya (Pomh fibre), in Nepaul aud Sikkim, and B, speciosa (Wild lhea). Thae nust celelorated of them all, however, is B. nirea, from which the tilues atre whtained that are used in the mamfacture of the eelelrated Clinese prass. cloth, and for other purposes. These tibres are also mow employed for textile fabrics, 选c. The Rhea fibre of Assam, one of the strongest kinown fibres, is also derived from this plant.

Laporten pustulatu, the Wood Nettle.-This is a mative of the Alleglauy
mountains and some other parts of North Ameriea. It has been much recommended for cultivation in Germany, \mathcal{K} e., as a textile plant.

Parietaria officinulis, Wall Pellitory, is by many regarded as a valuable diuretie and lithontriptie.

Urtica, Nettle.-The Nettles are well known from their stinging glands. Some of the East Indian speeies, as U. crenulata, U. stimulans, and more especially U. urentissima, produce very violent effects. Flagellation by a bunch of Nettles (Urica dioica or U. urens) was formerly employed in palsy, and other eases.-U. baccifera is used as an aperient in the West Indies; the root of U. pilulifera is regarded as diuretie and astringent ; and an infusion of the leaves of U. dioica, commonly known as Nettle Tea, is frequently used in parts of this country as a purifier of the blood. Some Nettles, as U. tuberosa, have edible tuberous roots; others rield useful fibres, as Urtica heterophylla, Neilgherry Nettle, and U. tenacissima.

Order 2. Moracee, the Mulberry Order.-Character.Trees or shrubs, with a inilky juice. Leaves with large stipules. Flowers unisexual, in heads, spikes, or catkins. Male flowers with a 3-4-partite calyx (fig. 1037) or achlamydeous. Sttamens 3-4, perigynous (fig. 1037) and opposite the segments of the calyx; anthers usually inflexed. F'emale flowers with 3-5 sepals. Ovary superior, 1-2-celled. Fruit a sorosis (fig. 728) or syconus (fiy. 406). Seed solitary, pendulous (fig. 1038) ; embryo hooked (fir. 1038), in fleshy albumen, and with a superior radicle.

Distribution and Numbers.-

Fig. 1037.
Fig. 1038.

Fig. 1037. Mate flower of the Black Mulberry (Morus nigra).-Fig. 1038. Vertical section of the ovary of the female flower of the same.

They are natives of both hemispheres, and occur in temperate and tropical climates. Illustrative Genera:-Morus, Tourn.; Dorstenia, Plum. There are over 200 species.

Properties and Uses.-The milky juice of some species possesses acrid and poisonous properties, while in others it is bland, and may be taken as a beverage. From the mılky juice of some Caoutchouc or India-rubber is obtained. The inner bark of (ther species supplies fibres. Somc possess stimulant, sudorific, tonic, or astringent properties. Many yield edible fruits, while the seeds generally of the plants of this order are wholesome.

[^1]British Pharmacopocia. The Fig tree is the Teonah of the Bible.-F. nppositifolia and F. polycarpa, natives of the last Indies, are snid to possems emetic properties.- F. elastica, a native of India, yields an inferior kind of India-rubber. It is known in commerce as Assan rubber. It also vields Java rubber. From other species a similar substance is obtained. 'The jnice of F. toxicaria and that of F. damona is a very powerful prison.F. Sycomorus (Sycomorus antiquorum), the Sycamore Fig, is said by some anthors to have yielded the wool from which mummy-cases were made. (Sec Cordia.) Richard states that the Abyssinians eat the inner bark of F. panifica. The brown hairy covering of the leaves of F. lusiophylla is used as a styptic at Singapore, \&c.-F. doliaria is said to have vermifigal properties.

Maclura.-The wood of M. tinctoria, a native of the West Indies and South Ameriea, is of a golden-yellow colour, and is used in this comntry and elsewhere as a dyeing agent. It is known as Fnstic or Old Fnstic, to distingnish it from Young Fnstic, already noticed. (See Rhus.) The fruit is edible. - M. aurantiaca is the sonrce of the fruit called Osage Orange, the juice of which is nsed by the native tribes in some districts of Americia as a yellow war paint.

Morus.-The frnit of Morus nigra is onr common Mnlberry ; the juice is official in the British Pharmacopocia. Nulberries are well known as a dessert fruit ; they are also employed medicinally for their refrigerant and slightly laxative properties, and likewise to give colour and flavonr tin medicines. The Sycamine tree of the Bible is supposed to be this plant. The leaves of this species, as well as those of Morus alba, White Mnlberry: and others, are in common use as food for silkworms. The roots of both M. nigra and M. alba are said to be catlartic and anthelmintic.

Urostigma Vogelii is the source of Liberian Rubber.
Order 3. Cannabinacea, the Hemp Order.-Character.Rough herbs, erect or twining, with a watery juice. Leares opposite or alternate, simple or compound, stipulate, often glandular. Flowers small, unisexual, diwecious. Male foners in racemes or panicles. Culyx scaly, imbricate. Stamens 5, opposite the sepals ; filaments filiform. Female flowers in spikes or strobiles (fig. 421), each flower with 1 sepal surrounding the ovary, which is superior and 1 -celled, and containing a solitary pendulous campylotropous ovule. Fruit dry, indehiscent. Seed solitary, pendulous, without albumen ; embryo curred or spirally coiled, with a superior indicle.

Distrinution and Numbers. - Natives of the temperate parts of the northern hemisphere in Europe and Asia. Illustratire Genera:-Cannabis, Tonm.; Humulus, Lim. These are the ouly genera, and each contains but one species.

Properties and Uses. - The plants of this order yield valuable fibres, and possess narcotic, stomachic, and tonic properties.

Camaldis sativa, the Common Hemp.-The valuaht fibre called Hemp is ohtained from this plant. It is principmly derived from kinsin, but the lest hemp is produced in Italy: Inferior hemp is oltained from the United Statrs amd ludia. In 1873, ino less than $1,2: 81,000$ ewts. of hemp were improted into Grent Britain. Hemp is chiefly nsed fir cordage, sacking, and kail-eloths. This fibre has been known for more than 2.500 years. The fruits, commouly termed hemp seeds, are oleaginons and demuleent. The are used for teeding birds. When snbmitted to pressure, they yied abmit

25 per cent. of a fixed oil, which is cmployed as a varnish, and for other purposes. When the Hemp phant is grown in tropical countries, it varics in some important characters from the ordinary Co sativa of colder chimates, and is even by some botanists considered as a distinct varicty, which has been named C. sativa var. indica, Indian Hemp. This latter plant produces less valuable fibres than the former, but it acquires marked nareotic properties trom producing a much larger quantity of a pculiar resin than is the ease with the plant of colder latitudes. The herb and resin are largely employed in Asia, and some other parts of the world, for the purposes of intoxication, and in medicine. The principal forms in which Indian Hemp is found are, -Gunjah or Ganja, the dried tops after flowering of the female plant, containing the resin; Bhang, Subjee, or Sidhee, the larger leaves and fruits without the stalks; and Churvos, the concrete resinous substance which exudes spontaneously from the stem, leaves, and tops. The above forms are in common use in India; and another form called Hashish or Hashash is largely' employed in Arabia. The word 'assassin' is said to be derived from hashish, the Arabic word for hemp. Other preparations of Hemp are, majoon, in use at Caleutta, mapouchari at Cairo, and the dawames of the Arabs. Indian Hemp is also used for smoking. This plant is likewise known under the name of Diamba in Western Africa, where it is employed for intoxicating purposes under the names of maconie and makiah. In the form of an extract or tincturc, Indian Hemp has been employed medicinallyin this country and elscwhere. Pereira calls it an exhilarant, incbriant, phantasmatic, hypnotic or soporitic, and stupefacient or narcotic ; but as obtained in this country, it varies so much in activity that its effects cannot be depended upon with certaintr, and it is conscquently not much employed. The dried flowering or fruiting tops of the female plants grown in India, nad from which the resin has not been removed (gunjuh or ganga), are official in the British Pharmacopœia. The resin is called cemmabiu, and is usually regarded as the active principle of the plant. Recently, however, a volatile alkaloid analogous to micotine has been indicated as one rit the constituents of Indian Hemp. This has, however, since been shown to be incorrect. The presence of another alkaloid, possessing tetanising properties, aud termed tetano-canuabin by Dr. Hay, has also not been confirmed.

Humulns Lupulus, the Hop.-The collective fruits of this plant are known under the name of strobiles (fig. 421), or commonly hops, and when dried are official in the British Pharmacopoeia. These fruits consist of scales (bracts), and achenia, the latter of which are surrounded by brownishyellow aromatic glands. These glands, which are usually terned lupulunic glands, are the most active part of hops ; they are also official in the British Pharmacopœia. They contain a volutile oil, and a bitter principle ealled lupuliu or lupulite, to the presence of which hops principally owe their propertics. The bracts also appear to contain a very small proportion of lupulin, and are therefore not devoid altogether of active properties; they also contain tannic acid, and are therefore somewhat astringent. Hops are used medicinally for their stomachic and tonie propertics. They are also to some extent narcotic, especially the odorous vapours from them ; henec a pillow stuffed with hops is occusionally employed to induce sleep. The chief use uf hops, lowever, is in the manufacture of ale and beer, to which they impart a pleasant armmatic bitter flavour, and tomic and soporific properties. They also prevent beer from rapidly becoming sour. In Belgium, \&ce., the young shoots of the Hop are used as a vegetable, and when properly prepared for the table they are said to make a most delicate dish.

Order 4. Aptocarpaces, the Bread-fruit Order.-Cha-racter.-Trees or shmbs with a milky juice. Leaves alternate (fig. 1039), simple, with large convolute stipules. Flowers unisexual, in dense heads (fig. 1039, a, b, c) on a fleshy re-
ceptacle. Male flowers (fig. 1039, b) achlamydeous, or with a 2 -4-lubed or $2-4$-sepaled calyx. Stamens opposite the

Fig. 1039.

Fig. 1039. Branch of the Bread-fruit tree (Artocarpus incisa). a, c. Heads of female or pistillate flowers. b. Head of staminate or male flowers. lobes of the calyx or to the sepals; anthers erect. Female flowers arranged on a fleshy receptacle of varying form (fiy. 1039, a, c). Calus inferior, tubular, 2-4-cleft or entire. Ovary superior, 1 celled. Fruit commonly a sorosis. Seed erect or pendulous, with little or no albumen ; embryo straight, with a superior radicle.

Distribution and Numbers. -Exclusively tropical plants. Illustrutive Genera:-Antiaris, Leschen. ; Artocarpus, Limu. There are about 60 species.

Properties and Uses.-The milky juice of several species yields India-rubber. This juice is in certain cases poisonous, while in others it forms a nutritious beverage. A few yield valuable timber. The fruits of some are edible, and the seeds generally of plants of this order are wholesome.

Antiaris.-A. toxicaria is the celebrated Antsjar or Upas poison tree of Java, but most of the stories related conecrning it are fabulmis. The milky juice is the poisonnus product. This poison owes its activity to a peenliar prineiple named by Pelletier and Caventou antiarin.-A Antiaris succidora, a native of the East Indies, has a very tough inner bark, wheh is used for eordage, matting, \&e. Saeks also are made from it as follows:-A lirauch is eut eorresponding to the length and diameter of the saek wanted. It is soaked a little, and then beaten with clnbs until the liber separates from the wood. This done, the saek formed of the bark is turned inside out, and pulled down till the wood is sawed off, with the exception of a small piece left to form the bottom of the sack.' 'These sacks are commonly used in earry riec, and other substances. The seeds have a very bitter taste.

Artocarpus.- The fruit of A. incisa is the important Bread-fruit of the Molueens and islands of the Pacifie. It supplies the place of corn to the natives of those regions. It is also used to some extent in the Wiost Indies. hut is not so mueh valued there for food as the Plantain. In the South Sea Islands the juice is employed as glue, the wood as timber, and the hark for making a coarse kind of cloth.-A. integrifolia yields the Jak or Jackfruit, whieh is largely used for fond ly the natives in Cevon. Sonthern Indin, and other warm parts of Asia. The roasted seeds are likewise mucly esteened. The inner wood is also employed to dye the Buddhist priente: robes of a yellow colour.

Brosimum.-B. Galuctodendron is the celebrated l'aln de Yaca or Convtree of South Ameriea. It is so named from its milky jutice heing mutritions like milk from the cow. It is the Massarauduba tree of Brazil, and its juice
las been also recommended as a source of India-rubber. The fibrons bark of B. Namagua is used in Panama for sails, ropes, garments, \&c.-B. Aubletii (Piratinera Guianensis), a native of British Guiana, is the source of the beatiful fancy wood called Snake-wood, Leopard-wond, or Letter-wood.-B. Alicustrum vields edible seeds, which are called Bread-nuts in Jamaica. The wood, which somewhat resembles mahogauy, is also there used by cabinet makers.

Castillon elastica.-This is the Cuacho tree of Darien, and, according to Collins, this species and C. Markhamiana, yield all the varieties of Indiarubber obtained from Central America, Ecuador, New Granada, and the West Indies; and known commercially as West Indian, Carthagena, Nicaragua, Hondnras, Gnayaquil, Guatemala, \&c., rubbers. These are chiefly exported from Carthagena to Great Britain and the United States.

Cecropia peltata is remarkable for its stems being hollow except at the nodes, hence they are used for wind instruments. Cows are said to thrive well on its leaves. Its cultivation has been recommended in Algeria as a forage plant.

Cudraniu.-The heart-wood of a species of this genus, which is a native of East Tropical Africa, vields a light yellow colour somewhat between that of quercitron bark and fustic, and may be used for dyoing.

Order 5. Ulmaceef, the Elm Order.-Character.-Trees or shrubs, with a watery juice. Leaves alternate, simple, scabrous, with deciduous stipules. Flowers hermaphrodite or unisexual, in loose clusters. Calyx inferior, membranous, imbricate. Stamens perigynous, definite ; anthers erect. Ovary superior, 1-2celled ; styles or stigmas 2. Fruit indehiscent, samaroid or drupaceous, 1-2-celled. Seeds solitary, pendulous, with little or no albumen ; embryo straight ; cotyledorts foliaceous ; radicle superior.

Division of the Order and Illustrative Genera:-This order may be divided into two sub-orders or tribes as follows :-

Sub-order 1. Celtere.-Ovary 1-celled, with drupaceous fruit. Illnstrative Genera:-Celtis, Tourn.; Mertensia, II. B. K. Sub-order 2. Ulmeæ.-Ovary 2-celled, with usually samaroid fruit. Illustrative Genera:-Planera, Gmel.; Ulmus, Linn.
Distribution and Numbers.-They are chiefly natives of the northern regions of the world. There are about 60 species.

Properties and Uses.-Some are valuable timber trees. The bark and fruit of others are bitter, tonic, and astringent ; and a few possess aromatic properties.

Celtis.-The fruit of C. austrulis has a sweetish astringent taste, and has been used in dysentery, \&c. It has been regarded by some writers as the Lotus of the ancients. The fruits are still caten in Spain and Grecee. (See also Nitruria and Zizyphus.) This plant is commonly known uuder the names of Nettle-tree and Sugar-berry--Corientulis has a romatic properties.

Ulmas, Elm. - The inner bark of Ulmus cempestris, the common Englisli Elm, is regarded as demulcent, tonic, diuretic, and alterative; it has been used in some chronic skin diseases, but as a medicimal agent it is now nearly. obsolete, and is no longer official in the lbritish Pharmacopocia. The dried and powderen bark has been mixed with meal in Norway to make bread in times of scarcity. 'lhe wood of this species, sis also that of U. montana, the

Seotel or Wyeh Elm, and others, is largely employed as timber, which is valuable not only for its toughenss, but beause it is not readily acted upon by water. The inner burk of U. fulua, the Slippery Ehm or Red Eiln, a native of the United States, where it is official in the Pharmacopecia, is much used as a demulcent for both external and internal use. When ground it is said to form an exeellent emollient poultice, like that of liuseed meal. It is also stated to have the property of preserving fatty substanees from raucidity: when these are melted and kept in contact with it for some time.
Cohor't 5. Amentales.-Flowers unisexual, in ordinary amenta or amentaeeous heads. Calyx absent, or present and green, or represented by 1 or more bristles, braets, braeteoles, or seales. Ovary superior, 1-2-eelled. Seeds nearly always exalbuminous. Trees or shrubs. Leaves alternate, simple, and usually with deciduous or persistent stipules; or in Casuarinaeea there are no evident leaves.
Order 1. Betulacea, the Bireh Order.-Charaeter.Trees or shruls. Leazes simple, alternate, with deeiduous stipules. Flowers small, unisexual, monocious, amentaeeous, with no true calyx, but in its plaee small sealy bracts, whieh in some eases are arranged in a whorled manner. Male flower:s with 2 or 3 stamens opposite the braets. Female flowers with a 2 -celled ovary, and 1 pendulous anatropous owule in eaeh cell. Iruit dry, thim, indehiseent, often winged, 1-2-eelled, 1-seeded, without a eupule. Seed pendulous, exalbuminous; embry" straight; rudicle superior. Bentham and Hooker inelude this order in Cupulifera as the tribe Betulex.

Distribution aud Numbers. - They are prineipally natives of the eolder regions in the northern hemisphere. Illustrative Genera:-Betula, Limu; Alnus, Tourn. These are the only genera; there are about 70 speeies.

Properties and Uses.-They are valuable for their timber, and for their astringent, tonie, and febrifugal barks.

Alnus-A. glutinosa, the common Alder--lts wood is valuable for the piles of bridges, and in other cases where entire smbmersion in water or damp earth is required. Its bark is astringent, and has heen nsed in medicine, and for tanning and dyeing. 'The leaves and eat kins have simihar properties. The wood is also employed for making chareong, which is much valned for the manufacture of gunpowder. The bark of A. incona is used in kamtschatka for making a kind of bread.

Betula.-B. abu, the common Bireh, vields the timber known as Norway Hirch. The wood is also used for making chareoal. lirom the bark, rootlets, and twiers of this species the oil known as Oleum Rusci or Birch Tar Oil, which gives the pechliar odour to lussia leather, is obtained. It has abso a high reputation in Russin. Polaud, \&e., in eertain skin diseases, more especially cezema. The sap contains in the spring a good deal of sumar, henee it is then used in the prepasation of a kind of wine this is come monly known as bireh wine, and is employed in domestic practice for those aflicted with stone or gravel.-13. migra, the Black lireh of North America, is ako valuable for its timber. Its sap, like that of B. alla and B. Lontr, yields sugar of trood ynality, and wine mat be also prepared from it. B. pupyrace las a thick tongh bark, which is used by the Indians in North

America for boats, shoe-soles, and other purposes paltrot is emplosed in India as 'a kind of paper. known in the United States as Sweet Birch or Cherry him Bield by distillation a rolatile oil, which is stid to be identical with that obtained from the leaves of Guultheria procumbens. (See Gaultheria, page 605.)

Order 2. Platavacees, the Plane Order.-Character.- Trees with a watery juice. Leuves alternate, pal-mately-lobed, with deciduous sheathing stipules (fig. 1040). Flowers unisexual, moncecious, in globular (fiy. 1040) amentaceous heads; achlamydeous. Male flowers with 1 stamen and a 2 -celled linear anther. Female flower's (fig. 1040) consisting of a 1-celled over!! and a thick style ; ovules $1-2$, pendulous. Fruits arranged in a compact rounded head, consisting of clavate achrenia with persistent styles. Sueds 1 or rarely 2, pendulous; embryo straight, in very thin albumen, with an inferior radicle.

Distribution and Numbers.-They are natives principally of North America and the Levant. Platamus, Linn., is the only genus, of which there are 5 or 6 species.

Properties and Uses.-Of no particular importance, except that, from their being large handsome trices, and flourishing well in large towns, they are commonly planted in our parks and squares. The leaves closely resemble in appearance those of the Sycamore tree. The timber is sometimes used by the cabinet-makci.

Fig. 1040.

Fir. 10.10. Branch of the Plane Tree (Platamus orientalis), with amentrecous leats of achlamydeous female flowers.

Order 3. Myricacee, the Bog-myrtle Order.-Character. Shumbs or small trees, with alternate, simple, resinous-dotted leaves, whichare usually exstipulate. Flower's unisexnal, amentaceous, moncecious or direcious, both kinds of flowers in the same or in different catkins. Male flowers achlimydeous; stamens definite Ferncle flovers achlamydeous, with a 1-celled sessile orrory, 2 styles, and 1 erect orthotropous ombe; fruit drupaceous; seed solitary, erect, without hairs; cmbryo without albumen; rudicle superior.

Distribution and Niumbers. - Natives of the temperate parts of Europe and North America, and of the tropical regions of

South America, India, and the Cape of Good Hope. Illustrative Genera:-Myrica, Lim.; Comptonia, Banks. There are about 20 species.

Properties and Uses.-The plants of this order are chiefly remarkable for aromatic and astringent properties.

Comptovia asplenifolia, Sweet Fern, is employed in the United States as an astringent and tonic in diarrhoea.

Myrica.-M. cerifera, the Waxberry, Candleberry, or Wax Myrtle. The bark of the root is used in the United States as a stimulant astringent in diarrhea and dysentery and also in jaundicc. The substance termed myricin is also derived from it, and is regarded as a good stimulant of the liver. The fruits when boiled vield the kind of wax known as Myrtle Wax. Other species of Myrica yicid a somewhat similar waxy substance. The fruit of M. sapida is eaten in Ncpal. Its bark is an aromatic stimulant; and is employed in some parts of India as a rubefacient and sternutatory. -M. Nagi is cultivated in Japan for its edible fruit, which is eaten both raw and when cooked.

Order 4. Casuarinacee, the Beef-wood Order.-Charac-ter.-T'rees with pendulous, jointed, striated branches, without evident leaves, but sometimes having short toothed sheaths, representing whorls of leaves, at the nodes. Flowers in bracteated spikes or heads, unisexual. Male flowers with 2 sepals united at their points, and 2 alternating bracts; 1 stamen, and a 2 -celled anther. Fernale flowers in dense spikes or heads, naked, but each having 2 bracts; ovary 1 -celled or rarely 2 -celled, with 1-2 ascending ovules, and 2 styles. Fruits winged, indehiscent, collected together into a cone-shaped body hidden under the thickened bracts. Seeds exalbuminous ; radicle superior.

Distribution and Numbers. -These plants are principally natives of Australia. They are called Beef-wood trees from the colour of their timber somewhat resembling that of raw beef. In general appearance they much resemble the branched Equiseta. Castecrina, Linn., is the only genus; it contains about 32 species.

Properties and Uses.-The species of Casuarina jield very hard and heavy timber, and the bark of some is said to be tonic and astringent.

Casuarina-Scveral species produce valuable timber, which is chieflo used in this country for inlaying and margucterie. The wood has a red colour, and is known under thic names of Becf-wond, Botany Bay Oak, Forest Oak, He-Oak, Shc-Oak, \&c. The bark of C. muricate is au cxecllent astringent, and is in use in India.

Oider 5. Salicaces, the Willow Order.-Character.Tices or shrubs. Lecres simple, alternate, deciduous, with persistent or deciduous stipules. Floneers unisexual (figs. 1041 and 1042), diocious, mentaccous (figs. 415 and 416), naked, or with a membranous or cup-like catyc. Male flowers (fig. 1041) with 1-30 distinct or monadelphous stancins. Fimale flower's sessile or stalked, with a superior (fig. 1042) 1-celled onory, and numerons erect anatropous oundes on 2 parietal placentas. Fruit 1 -celled, 2 -valved, dehiscing loculicidally. Secds
minute, numerous, with long silky hairs (fig . 756) springing from a funicle and covering the seed, exalbuminous; embryo erect, with an inferior radicle.

Distribution and Numbers. - Chiefly natives of cold and temperate climates. Illustrative Genera:-Salix, Toum.; Populus, Tonm. These are the only genera; there are about 250 species.

Properties and Uses.-Many species

 are either valuable for their timber, or for basket-work and other economic purposes. The bark commonly possesses tonic, astringent, and febrifugal properties. The hairs which invest the seeds have been employed for stuffing cushions, and for other purposes. The buds of some species secrete an oleo,resinous substance of a stimulating nature.Populus, Poplar.-Several species have been nsed for their timber. The bark is eommonilytonie. astringent, and febritugal, owing to the presence of salicin, whieh is official in the British Pharmacopæir. (See Salix.)
salix-Several species are used for timber, and for basket-work: and also for the manufaeture of ehareoal. The timber is white : lint is wanting in strength and durability. Osiers and Sallows are the shonts from pollard stump.s

Fig. 1041. Fig. 1042.

Fig. 1041. Male flower of a species of Willow (Salir), with two stamens, and a single bract at their base. -Fig.1042. Female flower of the same with bractat the base, and a solitary stalked ovary and style surmounted by two stigmas. of different speeies, as S. viminalis, S. vitellina. Sc. A peculiar neutral principle, a glucoside, resembling the alkaloid quinine in its medicinal properties, ealled salicin, has been obtained from the bark, leaves, or flowers of about tweuty speeies of Saliz. But the larks of S. Russelliana, S. alba, S. Caprea, S. fragilis, S. pentandra, and S. purpurea yield most of this principle. (See Populus.) As an antiperiodic. salicin is far inferior to quinine. Lately, however, salicin has been given successfully in acute rheumatism. Salicylic acid, which may be olitained from willow bark, and other vegetable substances, but is now commonly prepared from earbolic acid, lias recently, together with its salts, but more especially salicylate of sodft, been extensively and suecessfully used in rleumatism. Salicylic aeid has also been employed with success as an antiseptic, and in various other ways. Both saliein abd salicylic acid are official in the Pritish Pharmacopocia. The demartion of willow bark has likewise been found beneficial as an application to fonl and indolent ulcers, and in 1 soriasis and some other chronic skin affections.

Cohort 6. Euphorlicales.-Flowers usually unisexual, or very rarely hermaphrodite, either with a calyx only, or with both a calyx and corolla, or achlamydeons. Ovary superior, 1-many-celled, usually z-celled; ovules almost always suspended, 1-many in cach cell, anatropous. Fruit generally capsular, 1-many-colled. Secds 1-many in each cell. Seeds albuminous, or very rarely exalbuminous, suspended, or very rarely asconding ; embryo straight.

Order 1. Euphorbiacese, the Spurge Order.-Character. -Trees, shrubs, or herbs, usually with an acrid milky juice. Leaves alternate or opposite, simple (fig. 332) or rarely compound, stipulate or exstipulate. Flowers unisexual (jigs. $512,551,627$, and 1043), monœcions (fig. 1043) or direcious, axillary or terminal, sometimes enclosed in a calyx-like involucre (f ig. 1043, i); achlamydeous (fg . 627), or with a lobed (figs 551,641, c) inferior calyx having on its inside glandular or scaly appendages (fig. 641, t, and $1043, b$), or even evident petals (figs. $551, p$, and $641, p$), which are either distinct or united. Mcale flowers consisting of 1 (figs. 512 and $1043, \mathrm{fm}$) or more stamens (fig. 551, e), distinct or united into one or more bundles (fig. 551, a) ; anthers 2 -celled. Femule

Fig. 0043.

Fig. 104.

Fig. 1043. Monceious hear of flowers of a species of E'uphorvin. i. Tnvoincre, a portion of whiel has been removed in front. $9,9 \%$. Glands on the divisions of the involucre. b, b, Seales or braetlets at the base of the flowers. fm. fm. Male flowers, eneh eonsisting of a stamen supported on a pelfice?, to whieh it is articulated, ff. Female flower, supported on astalk. From Jussieu. - Fig. 1044. Vertical seetion of the periearp and seed of a carpel (coccus) of a species of Euphorvia.
fower's with a superior ovary (figs. 641 and (642), which is either elevated upon a stalk (fiq. 1043, ti) or sessile (figs. 611 and 642), 1- 2- 3 - or many-celled; styles either absent or corresponding in number to the culls of the ovary, entire or divided (figs. (627,641 , and 642) ; stignas equal in number to the cells of the ovary, or, when the styles are divided, corresponding in number to their divisions (fiys. 627, 641, and (i42) ; ovules 1 or 2 in each cell, suspended from the inner angle (fig. 10t4). Fruit either dry, and its component carpels then separating from each other and from the axis (figs. 65: and 711) and usually opening with elasticity ; or succulent and indehiscent. Seeds 1 or 2 in each cell, suspended (fig. 1044), often carunculate; embryo (fiy. 1044) straight, in fleshy albumen, with flattened cotyledons, and as superior raticle.

Dicamosis. - Herls, shrubs, or trees, commonly with an acrid milky juice. Flowers misexual, monecious or diacious.

Calyx absent, or present and inferior. Petals rarely present. Male flowers with one or more stamens, distinct or united, and 2-celled anthers. Female flowers with a superior, sessile or stalked, 1- or more celled ovary, and with 1 or 2 suspended ovules in each cell. Fruit of 1, 2, 3, or many dry carpels, which separate from the axis and from each other, and usually open with elasticity; or fleshy and indehiscent. Seeds suspended; embryo in fleshy albumen, straight, with flattened cotyledons, and a superior radicle.

Distribution and Numbers.-They are more or less distributed over the globe, and are especially abundant in equinoctial America. Illustrative Genera:-Euphorbia, Limn.; Mercurialis, Lim.; Ricinus, Toum.; Buxus, Toum. There are above 2,500 species.

Properties and Uses. - These plants generally contain an acrid poisonous principle or principles, which is found more or less in all their parts. Some are very deadly poisons. But in proper duses many are used medicinally as emetics, purgatives, diuretics, or rubefacients. A pure starch, which is largely employed for food, may be obtained from some plants of the order ; While India-rubber may be procured from the milky juice of others. A few are entirely devoid of any acrid or poisonous principle, and are used medicinally as aromatic tonics. Some have edible roots ; others yield dyeing agents ; and several are raluable on account of their wood.

Acalypha indica.-The expressed juiec of the leaves possesses emetic and expectorant properties. The root is purgative.

Aleurites triloba, the Candle-nut tree.-This plant is a native of the Moluceas, Cochin China, New Caledonia, \&e.; it yields a frnit called the Bancoul Nut or Crandle Nut. The seeds rield by expression an oil called Kekui or Kekune; this is largely employed in some parts of the world, and has been imported into London. It is used as an artist's oil, and has also been reeommended as a purgative. It is said to resemble castor oil in its action. Corewinder states that its illumimating power is superior to that of Colza oil ; but other observers say that its purgative power is very feeble, and that it is useless for illnminating purposes.-A. lactifera, a native of Ceylon, yields Gum-lice.

Anda brasitiensis.-The sceds vield by expression a fixed nit. Both the oil and seeds possess aetive eathartie properties. The oil is also said to possess drying qualities superior to even that of boiled linseed oil. The juice of the bark is used in Brazil for stupefying fish.

Buxus.-B. sempervirens, the Box-tree, is valuable for its timber, whieh is mueh used by wood engravers. Its leaves are purgative.-B. bulearicu, the Turkey Box, also yields valuable timber. The hest is known as Turkey Boxwood, and is obtained from regions round the Black and Caspian Scas.

Croton.-The seeds of C. Tiglinu constitute the croton seeds of the Materia Medien; these vield by expression the offieial croton oil of the Britich Pharmacopeia, whieh is a powerful hydragogue carthartic in doses of from one third to one minim. It is also employerl externally as a rubefacient and counter-irritant. The seeds are nised in India as purgative pills, under the name of Jumalyata pills. The seeds of C. Roxburghii, C. Pavann, and C.oblongifolius have also purgative properties.-C. Ehuteria of Bennett, a native of ilie Bahama Islands, yields the aromatie, bitter, and tonie bark
commonly known as Cascurilla bark, which is official in the British Pharmacopocia. It has an agreeable smell when burned, hence it is also used for fumigation and as an ingredient in pastilles.-C. Pseulo-Chinu vields the Quillcd Copalche bark of Pereira, and C. subcrosum is probably the source from whence Corky Copalche bark of the same anthor is olvained. Copalehe barks in their medieinal properties resemble Casearilla. The aromatic tonic bark known as Mralambo bark is the produce of C. Malambn. It is a tavonrit. medicine in Columbia for diarrhoe, and as a vermifuge, and is likewise nsed externally in the form of an alcoholic tincture in rheumatism. It has been also employed with good effeet in intermittent and some other fevers. In the United States it is reported to be used for adnlterating ground spices: -C. lacciferam, a native of Ceylou, and C. Draco, a native of Mexico, rield resins which are useful for making varnishes, \&c. The spirituons liquor known in the West Indies as Eau de Muntes, and nseful in irregnlar meustruation, is obtained from C. balsamiferum.

Crozophora tinctoria, a native of the South of France, vields by expression a green juice, which becomes purplish under the combined actiou of ammonia and the air. This purplish dre is kuown under the name of turnsole,

Elaococca or Dryandra Vernicia is a native of China and Jajan. The seeds vield by expression a fatty oil (the Wood Oil of China), which is enormously used in China for painting, and for preserving wood-work, varuishing furuiture, and in medicine. It is also largely exported from Haukow.

Euphorbia.-Some of these plants have suceulent stems, much resemblines the Cactacea; but their milky jnice will, in most cases, at once distinguish them. The acrid resin, commonly called gnm enphorbium, the botanical souree of which has been referred to various species of Euphorbiu, as E. canariensis, F. officinarum, E. antiquorum, and E. tetragona, has now been traced to Euphorbia resinifera of Berg. This drug is al dangerons aerid emetic and cathartic when taken internally, and caterually it is a powerful rubetacient; its use medicinally is now solely confined to reterinary practice. It is, however, very largely used as an ingredient in a kind of paint cmployed for the preservation of ships' bottoms. The seeds of E. Lathyriz, Caper Spurge, are purgative, and yield by expression a very active cathartic oil. They were formerly ealled Semina Catuputiar minoris. This plant is called the Caper Spurge, from the use of its piekled fruits by honsekepers as a substitnte for ordinary eapers. But their employment for such a purpose is not altogether frec from danger, although the process of pickling would seem, in a great measure to destroy the acrid purgative nature which the fruit possesses in a fresh state. The root of E. Iperucuanh is commonly known as American Ipecteuanha, from its nse in the United States as an emetic. The ront of k. corolluta, called Milk. weed in the United States, has similar properties.-E. Pctitiann and E. schimperiana have very purgative qualities. The root of E. neriffolin is in ureat repute in India as a remedy in snake-bites. E E. pilalifera, a mative of Quensland, \&c., is reputed to be useful in astlma. The acrid milky juice of E. antiquoram, E. Nionlia, and EE. Tirncalli possesses cathartic and anthelmintic propertics. Species of Euphorbin, as IF. helioscopia, E. Pepli:. and E. dendroides, are used in Grece to stupefy fish. The milky juice of F. Cattimundoo, a native of the Madras Presidency, \because ields a kind of Comentchone.

Fontainca Pancheri.-From the seeds of this plant. which is a native of New Californin, a drastie oil may be extracted, which Dr. Hacekel sapcloselresembles eroton oil in its properties.

Hevert Gadyaneasis (Siphoniu nlustica), IIevea brasilicusis, IT. Sprucenm. and prol ably other species, matives of Brazil and (himatare the somrees of Para lndia-rubber, the best commercial variety and the one mestly used in this country. The prineipal source is, however, II. brusiliensis. The com-
mereial kind of rubber known as Maranham is also probably obtained from one or more species of Hevea.

Hippomane Mancinella is the famous Manehineel tree. The juiee is a virulent poison. It would seem probable that the poisonous prineiple of this plant is volatile, as it has been asserted that some persons have died from simply sleeping nuder it. Seemann states, that if sea-water be applied to the eres when affected by the poison, it allays the inflammation in an efteetual manuer.

Jatropha.-The seeds of $J_{.}$purgans (Curcas purgans), and those of $J_{\text {. }}$ multifidus (Curcas multifidus), are ealled Physie Nots. They yield by presure fixed oils, and both the seeds and oils are drastic eatharties. The seeds of J. multifidus under the name of Purguira or Purquira nuts, are largely exported from the Cape de Verd Islands. They are almost all sent to Marseilles to be used in the mannfacture of soap. The oil may also be used for burning. \&e.; it is known as Purguira Oil, and in English commeree as Pulzu Oil or Seed Oil. The oil of J. puryans is eommonly distinguished as Oil of Wild Castor Seeds or Jatropha Oil, and is well adapted for burning. It is said to be employed for adulterating East Indian Croton oil. A decoetion of the leaves is used by the natives of the Cape de Verd Islands to exeite a seeretion of milk. The seeds of J. gossypifolia. Bastard French Physie Nut, also possess purgative properties.

Mallotus philippinensis (Rottlera tinctoria). -The fruit of this plant is covered by a red powder whieh eonsists of small glands and stellate hairs. It is designated in the Indian bazaars, Kamala. Kamala is nuch employed in India as an anthelmintie, and externally in eertain eutaneous discases. The Arabs also use it in leprosy, \&e. Kamala is official in the British Pharmaeopocia, and is said to be espeeially useful for the expulsion of tacuia. But in this country its employment has not been attended with any great success. Kamala has also been used externally in this ennotry in herpetie ringworm. Other kinds of Kamala have also been deseribed possessing similar properties, and which are also probably derived from speeies of Mallotus. (See also Fleminyia, page 533.)

Manihot utilissimu (Jatropha MÍanihot), Bitter Cassava.-Cussauu MLul, whieh is largely employed in making the Casszua Bread or Cahes. in common use by the inhabitants of tropieal Ameriea as food, is ohtained by rrating the washed roots, and then subjecting the pulp to pressure and drying it over a fire. The roots and expressed juiee are virulent poisons, owing chiefly to the presenee of hydroeyanie aeid; but their poisonous nature is destroyed by washing and the application of heat. Cassava Starch, Tapioca
Meal or Brazilican Arroveroot, and Tapioca, are also prepared from the Meal or Brazilian Arrovroot, and Tapinca, are also prepared from the ronts of Manihot utilissima: thus the fecula, which is deposited from the washer pulp atter the juiee has been expressed, when dried, constitutes Cassava Starel ; and Tapioca is prepared by submitting Cassava Stareh while moist to heat on hot plates. Tupioea is largely employed as a dietetical substance in this eountry and elsewhere. The sauce ealled Cassareep in the West Indies, \&ce, is the juiee concentrated by heat and flavoured with aromatics.-Manihot Aipi, Sweet Cassava, has none of the poisonous properties of the preeeding plant. It is now generally eonsidered as a varicty of Manifot utilissima. The root is a common article of food in the West Indies aud some parts of South Ameriea. It is as mealy as a potato when boiled. Cassava meal and bread, as well as Cassava starch and Tapioca, are also prepared from the roots of this plant, which are distinguished as Sweet Cassava roots.-M. Glaziovii is the source of Ceara India-rubber.

Oldfieldia ufricuna is the source of the valuable timber known as Afriean Oak or African Teak.

Omphalea triantra.-The juiee is sometimes employed in Guiana as a substitute for black ink. The seed from which the embryo has been extraeted is said to be edible.

Phyllanthus.-Phyllanthus Emblica (Emblica officinalis).-The fruits of this Indian plant constitute Emblic Myrobalans. (See Terminalia.). When in a dry state they are employed for tanuines, and as an astringent in modicinc. The fruits are likewise used as a pickle, or preserved in sugar. The bark is also astringent, and the flowers are reputed to be refriferant and aperient. $-P$. Niruri and P. urinaria are employed as diuretics in India.

Ricinus communis, the Castor Oil Plant, or Palma Christi.-The plant called Kikayon in the Bible, and translated Gonrd, is by some considered to refer to this species. This plant and other species or varieties are largel. cultivated in the East and West Indies, America, Italy, and some other parts of the world, for their seeds, which are commonly called Castor secds, from which the official Castor Oil is obtained. The leaves have been recommended as an external application, and for internal administration to promote the secretion of milk. Castor oil is obtained from the seeds, either by expression with or withont the aid of heat. or by decoction, or by the aid of alcohol. The oil employed in India, England, the United States, and with few exceptions now in other parts of the world, is obtrined solely by expression. Castor seeds when taken whole are extremely acrid, and have produced death ; but the oil obtained from them is a mild and most efficient non-irritating purgative. This oil is supposed to owe its purgative properties to the presence of some acrid principle which is contained in both the albumen and embryo, but at present this matter has not been isolated. The so-called concenirated castor oil, which is sold in gelatine capsulcs, is generally adulterated with croton oil, and hence may produce serious effects when giveu in particular cases. The Castor-oil plant is cultivated in Algeria for the purpose of fecding silkworms upon its leaves. The oil has also been used there for burning.

Stillingia.-S. sebifera is called the Chinese Tallow Tree, from its secds being covered by a white scbaceous substancc, which. when separated, is found to be a pure vegetable tallow; it is used for candles, \&c. The plant has now been successfully acclimatised in Algeria.-S. sylvatica, Queen's Delight. The root is official in the United States Pharmacopocia. It is known as Queen's root, and is used as an emetic, cathartic, and alterative. It is reputed to be very serviceable in several skin diseases, jaundice, some forms of dropsy, piles, \&c.

Order 2. Scepacee, the Seepa Order.-Diagnosis.-This order is elosely allied to Enphorbiaeex, in which it is included by Bentham and Hooker; but from whieh it is readily distinguished by its flowers being amentaccous.

Distribution, Numbers, and Properties.--Natives of the East Indies. There are 6 speeies. The wood of Scepa (Lepidostachys) Rosburghii is ealled Cocus or Kokra. It is very hard, and is ehiefly employed for flutes and similar musieal instruments.

Order 3. Eipetkacee, the Crowberry Order. - Character. -Small Heath-like evergreen shmbs. Leaves exstipulate. Flowers axillary, small, unisexual. Cal!a of 4-6 persistent, imbrieate, lyypogynous senles, the imermost oeeasionally petaloid and combined. Stamens alternate with. and equal in number to, the imer sepals or seales. Orary superior, placed on it disk, 2-9-eelled; ovules solitary. Fruit fleshy, composed of from 2-9 muts. Seed solitary in eael mut, aseending; embryo with an inferior radiele in tleshy-watery albumen.

This order is variously placed by botanists. We put it near to Euphorbiacer in accordance with the views of Lindley.

Distribution and Numbers.-Mostly natives of Northern Europe and North America. Illustrative Genera:-Empetrum, Linn.; Corema, Don. There are 4 species.

Properties and Uses.-The leaves and fruit are generally slightly acid. The berries of Empetrum nigrum, the Crowberry, are eaten in the very cold parts of Europe, and are also employed in Greenland in the preparation of a fermented liquor. In Portugal, the berries of Corema are used in the preparation of a beverage which is said to be useful in febrile complaints.

Order 4. Stilagivacee, the Stilago Order-Character. -Trees or shrubs. Leates alternate, simple, leathery, with deciduous stipules. Flowers minute, unisexual, in scaly spikes. Culyd 2-5-partite, Male flowers consisting of 2 or more stamens on an enlarged thalamus ; arthers usually 2 -lobed, with a fleshy comnective, and dehiscing transversely at the apex. Female flowers with a superior 1-2-celled ovary, each cell with 2 suspended ovules. Fruit drupaceous. Seeds suspended, albuminous ; cmbryo straight, with leafy cotyledons, and a superior radicle. This order is made a tribe of Euphorbiacea by Bentham and Hooker.

Distribution and Numbers.-Natives of Madagascar and the East Indies. Illustrative Genera :-Stilago, Linn.; Falconeria, Royle. There are about 20 species.

Properties and Uses.-Unimportant. The fruits of Anticlesma pubeseens and Stilago Bunias are subacid and agreeable.

Order 5. Peneacere, the Penea Order.-Character.Evergreen shrubs, with oppositc, cxstipulate, imbricate leaves. Flowers hermaphrodite. Calys inferior, bracteated, 4-lubed; xstivation valvate or imbricate. Stamens perigynous, 4 or 8 , alternate with the divisions of the calyx when equal to them in number. Ovary superior, 4 -celled; style 1 ; stigmas 4, with appendages on one side. Fruit 4 -celled, dehiscent or indehiscent. S'eeds varying in position, exalbuminous; embryo with very minute cotyledons.

This order is sometimes pheced near Proteceex, but it is especially distimgnished from that order by its 4-celled ovany and 4celled fruit.

Distribution and Numbers.-They are only found at the Cape of Good Hope. Illustrative Generu:-Penea, Lirn.; Geissoloma, Lindl. There are over 20 species.

Propertics and Uses.-Unimportant.
Pensed. The gum called Sarcocolla is eommonly said to be derived from Pemen Sarcorolla, P '. mucronatu, and other species of Penea. It was formerly employed as an external application to wounds and ulcers, under the idea that it possessed the property of agglutinating the flesh, whence its
name. It is imported into Bombay from the Persian port of Bushire; and Dymock thinks there ean be little doubt that the Sarcocolla plant will prove to be a species of Astragalus, or of some nearly allied genus. (See Astragalus.)

Order 6. Lacistemacee. - The Lacistema Order.-Charac-ter.-Shrubs. Leaves simple, alternate, dotted, stipulate. Flowers in axillary eatkins, perfect or unisexual. Calyx inferior, with several divisions, enclosed by a braet. Stamen 1, hypogynous, with a 2 -lobed connective, eaeh lobe bearing 1 eell of the anther, whieh bursts transversely. Ovary superior, seated in a disk, 1-celled, with numerous ovules attaehed to parietal plaeentas. Fruit eapsular, 1-eelled, 2-3-valved. Seeds genorally 2 or 3 , arillate, suspendcd, with fleshy albumen.

Distribution, Numbers, and Properties.-Natives of woody places in tropieal America. Illustrative Genera:-There are 2 genera, namely, Laeistema, Sucartz, and Synzyganthera, R. et P., whieh contain 6 speeies. Their properties and uses are unknown.

Cohort 7. Piperales.-Flowers hermaphrodite or unisexual, generally arranged in a spike or a spadix. Calyx usually absent, or when present rudimentary. Orary superior, generally 1 -eelled, 1 -ovuled, or 3 -4-celled with a few ovules. Seed albuminous (exeept in Ceratophyllum) ; embryo usually minute.
Order 1. Piperacef, the Pepper Order.-Charaeter. Herbs or shrubs with jointed stems. Leaves opposite, whorled, or alternate, and with or without stipules. Flowers spiked, hermaphrodite or sometimes unisexual, achlanydeous, braeteated. Stamens 2 or more ; anthers 1-2-eelled. Otary simple, 1-eelled, with one ereet orthotropous ovule; stigma sessile. Fruit more or less fleshy, 1 -eelled, 1 -seedcd. Seed ereet ; embryo in a distinet Heshy sae at the apex of the seed, and on the outside of abundant albumen.

Distribution and Numbers.-Natives exelusively of tropical regions, espeeially in Ameriea and the islands of the Indian Archipelago. Illustrative Genns:-Piper, Limn. There are above 600 species.

Properties and Uses.-The plants of this orcter are chiefly remarkable for aerid, pungent, aromatie, and stimnlant properties. These qualities arc prineipally found in their fruits, and are essentially due to the presence of an acrid volatile oil and resin. Some are nareotie, and others are reputed to be astringent and febrifugal.

Piper:-The dried lenves of Piper angustifolium (Artanthe clongata) constitute the ollicial Matien of the British Plarmacopreia. Mation has been recommended as a topical application for arresting hemorrhage from wounds, \&e. It has been also cmployed internally as a styptic, but its
effects thus administered are very feeble. Its action appears to be more especially mechanical, like lint, felt, \&e. In Peru Matico is cmployed for the same affections as Cubels. It should be noticed that the name Matico is applied by the inhabitants of Quito, \&c., to Euputorium glutinosum (see Eupatorium). Other plants are also similarly designated in different parts of Sonth America. The dried fruits of Piper aduncum and other species are used in America as pepper; and its leaves, as first noticed by the author, are frequently substituted in this country for those of Piper ungustifolium. The fruits of P. crocatum are employed for dyeing yellow. The dried unripe fruits of Piper Cubeba (Cubeba officinalis) constitute the official Cubebs of the British Pharmacopoia. Cubebs are the produce of Java and the adjoining islands. They are extensively employed in affections of the genito-urinary organs, upon which they are generally supposed to have a specific effect. In the East they are used as a stomachic. Their properties depend principally upon two resins, but also to some extent upon the presence of a volatile oil. This oil is also official in the British Pharmacopeia. They are frequently distinguished by the name of Tail Pepper, from the dried fruits having a short stalk attached to them. The dried unripe fruits of Piper Clusii, African Cubebs or Black Pepper of Western Africa, are employed by the negroes of Sierra Leone, \&e., as a condiment, and also in medicine. Their effects in genito-urinary affections do not appear to resemble those of the official Cubebs. According to Stenhouse they contain Piperine, and not the peculiar alkaloid of Cubebs, which has been termed Cubebine.-P. nigrum, Black Pepper. The dricd unripe fruits of this plant constitute the Black Pepper of the shops, and that which is official in the British Pharmacopoia. White Pepper is the same fruit in a ripened state divested of its external pulpy eovering. The former is the more acrid and pungent, as these properties are lost to some extent in the process of ripening. Both kinds are extensively used as condiments, and medicinally as stimulants and corrcctives. They are also regarded as somewhat febrifugal. They contain an acrid resin and volatile oil, to which their arrid, puncrent, aromatic, and stimulant properties are essentially due ; and Piperine which possesses to some extent fcbrifugal propertics.- P. methysticum or Piper trioicum, and probably other species, also produce good pepper. The dried unripe spikes of fruit known in commerce as Long Pepper are chiefly imported from Singapore and Calcutta, and are the produce of Piper officinurum or Chavica nfficinarum, and Piper longum or Churica Rexburglaii. Long Pepper contains an acrid resin. a volatile oil, and the crystalline alkaloid called Piperine. It resembles Black Pepper in its etlects, and is used in similar cases. It is chiefly employed for culinary purposes. Dried slices of the root are in great repute among the natives of Iudia under the name of Peepla Monl, as a stomachic. The leaves of P. Betle, Betel Pepper, and P. Siriboa are chewed by the Malays aud other Eastern races, mixed with slices of the Betel Nut (Areca Catcchu), and a little lime. Betel as thus prepared is considered to impart an ornamental red hue to the lips and mouth, and an agreeable odour to the breath, and is also supposed to possess stimulant and narcotic propertics, and to be a preservative against dysentery. (Sce Areca.)-P. Jaborandi is one of the plauts vieldiug a kind of Jiborandi。 (See Piloearpus.)

Macropiper methysticum.-The large rhizome of this plant is known in the South Sra Islauds under the name of Ava, where it is largely used in the preparation of an intoxicating and narcotic liquor, called Ava or Cava. It is also cmployed medicinally in chrouic rheumatism, crysipelatous eruptions, and rencreal affertions. It las becu lately tried sucecssfully in France as a remedy in gonorthoea.

Order 2. Saururacee, the Saururus Order.-Character. -Marshy herls. Leaves entire, alternate, stipulate. F'lowers
spiked, achlamydeous, hermaphrodite. Stamens 3-6, liypogynous, persistent. Otaries 3-4, usually more or less distinct, and each with a solitary erect ovule, or sometimes united and with a few ascending ovules. Fruit either consisting of 4 fleshy indehiscent achsenia, or capsular and 3-4-celled. seeds ascending, with a minute embryo in a fleshy sac on the outside of hard mealy albumen. This order is ineluded by. Benthem and Hooker in Piperacer, as the tribe Saurure.

Distribution and Numbers. - Natives of North America, Northern India, and China. Ilhstrative Genera:-Saururus, Limn. ; Houttuynia, Thunb. There are about 7 species.

Properties and Uses.-They have acrid properties, and are reputed to be emmenagogue. Some are also astringent.

Anemopsis culifornica is known in California as 'Y゙erba Mansa,' and an infusion of its roots and the external applieation of these in powder are regarded as very valunble remedies in venereal sores. The powder is very astringent and is also used as an applieation to cuts and sores.

Saururus cermurs, a native of North Ameriea, is said to be a valmalle remedy in inflammatory affeetions of the genito-urinary organs, and also externally as a soothing diseutient eataplasm.

Order 3. Chloranthacese, the Chloranthus Order.-Clia-racter.-Herbs or undershrubs with jointed stelus, which are tumid at the nodes. Leaves simple, opposite, sheathing, with small interpetiolar stipules. Flowers in terminal spikes, achlamydeous, with scaly bracts, hermaphrodite or unisexual. Stamens 1, or more and united. Ocary 1-celled, with a solitary pendulous ovule. Fruit drupaceous. Seed pendulous, with a minute embryo (not enclosed in a distinct sac) at the apex of fleshy albumen; radicle inferior.

Distribution and Numbers. - Natives of tropical regions. Illustrative Genera:-Hedyosmum, Suartz; Chloranthus, Suart:. There are about 15 species.

Properties and Uses.-Aromatic stimulant properties are the principal characteristics of the plants of this order.

Chloranthus.-The roots of C. officinults and C. brachystachys have been employed in Java as a stimulant ium malignant fevers, and for their antispasmodie effeets. The flowers of C. inconspicuus are used in China to pertume tea. (See Thea.)

Order 4. Ceratophyllacee, the Hornwort Order:-Clia-racter.-Aquatic herbs. Lentes verticillate, very finely divided. Flowers minute, axillary, sessile, monocious. Caly, or rather involucre of bracts, inferior, S-12-partite. Nate flewer consisting of 12-20 stamens; anthers sessile, 2 -celled. Femate fover with a superior 1 -celled orary, and 1 pendulous orthotropons orule. Fruit hard or nut-like, indehiscent. S'ed exalbuminous, pendulous; embryo with a large many-laved plumule, and a very short inferior radicle.

Distribution and Propertics.-Natives of the northern hemi:
sphere. Ceratophyllum, Linn., is the only genus. The properties and uses of the species are unknown.

Cohort 8. Nepenthales.-Flowers unisexual, dicecious. Calyx 4partite, imbricate. Stamens monadelphous. Ovary superior, 3 -4-celled. Ovules very numerous, attached to the sides of the septa. Fruit a loculicidal capsule. Seeds very minute, albuminous. Climbing plants. Leaves alternate, terminated by pitcliers.

Order 1. Nepenthacee, the Pitcher-plant Order.--Cha-racter.-Herbs or somewhat shrubby plants. Leares alternate, and when perfect terminated by a pitcher which is provided with an articulated lamina (fig. 390). Flowers terminal, racemose, unisexual, dicecious. Calyx inferior, with 4 divisions. Stamens usually 16 , united into a column; anthers 2 -celled, extrorse. Ovary superior, 4-angled, 4-celled. Fruit a capsule, 4-celled, with loculicidal dehiscence. S'eeds very minute, numerous, albuminous; embyro with an inferior radicle.

Distribution, Numbers, and Properties.-Natives of swanpy ground in China and the East Indies. Nepenthes, Limn., is the only genus; it includes about 14 species. Their properties are unknown ; but they are remarkable from their pitchers entrapping and digesting insects and other animal matters, from the formation of a digestive ferment by their glands.

Series 2. Inferse or Epigynae.

Cohort 1. Asarales.- Flowers hermaphrodite or unisexual. Calyx usually coloured. Stamens epigynous in the hermaphrodite flowers. Ovary inferior, 1-many-celled. Ovules numerous. Fruit baccate or capsular. Seeds usually albuminous ; embryo minute, and sometimes amorphous.
Order 1. Aristolochiacee, the Birthwort Order.-Cha-racter.-Herbs or climbing shrubs. Leaves alternate. Flowers axillary, hermaphrodite (fig. 1045), dull-coloured, regular or irregular. Colycy tubular, superior' (fig. 1045), with a valvate sestivation. Stumens $6-12$, arising from the top of the ovary, and more or less attached to the style (fig. 1046); anthers adnate, extrorse. Ovary inferior (fiy. 1045), 3-6-celled with numerous ovules; style simple ; stigmas radiating (fig. 1046), and corresponding in number to the cells of the ovary. Fruit capsular or succulent, 3-6-celled. Seeds numerous, albuminous (fig. 1047) ; embryo very minute (fig. 1047).

Distribution and Numbers.-Sparingly distributed in several parts of the world, but most common in tropical South America. Illustratwe Genera:-Asarum, I'vurn.; Aristolochia, Tunno. There are about 130 species.

Properties and Uses.-These plants contain a bitter principle and a volatile oil, and generally possess tonic, stimulant, and acrid properties. Many of the species are regarded in various parts of the world as useful in curing the effects of snakebites.

Aristolochia, Birthwort.-Several speeies lave been employed for eenturies in medieine, prineipally on account of their supposed cmmenagogue properties, and henee the nanie of Birthwort whieh is applied to the genus. 'The roots of A. longa, A. rotunda, A. Clemutitis, and others, have been thus

Fig. 1045. Fig. 1046.

Fig. 1047.
Fig.1045. Vertical scetion of the flower of the common Birthwort(Avistolochin. Clematitis).-Fig. 1046. The gynoceium and androecium of the same. -Fig. 1047. Transverse section of the seed. used. They all possess stimulant and tonie properties. The powdered root of A. longa was an ingredient in the once eelebrated Duke of Portlund's powder for gout. Several of the speeies have been reputed speeifies for snake-bites, but without any satisfactory proof.-A. anguicida is supposed by Lindley to be the eelebrated Gaaeo of the Columbians. The juice of its root, as well as that of many other speeies, is said so to stupefysnakes that they may be handled and played with.-A. Serpentaria, Virginian Snake-root. The dried rhizome and rootlets are official, together with the similar parts of A. reticulata, in the British Pharmaeopocia, under the name of Serpentary Rhizome. Serpentary rhizome was origiually introdueed into this country and elsewhere as an antidote to snake-bites, but it las no efficaer in such eases. It is, however, a valuable stimulant, tonie, and diaphoretie, and is especially useful in ferers of a low or typhoid character. The allied species, A. reticulata, is a native of the Western United States, and is also now offieial, as already stated, in the British Pharmacopocia. It yelds Tezan or Red River Snuke-root, which has similar properties to the ordinary Virginian Snake-root. - A. indica is in high repute in India as a stimulant, tonic, and emmenagoguc.-A. bractenta is regarded in India as an anthelmintic.-A. recurvilabra is the souree of the drus whieh is highly esteemed by the Chinese, and known as - Green Putehuk.' It is reputed to be a powerful purgative, emetic, and anthemintie. It is prineipally employed as an antidote against suakelites, and likewise as a remedy for burns and indigestion. It is also largel!. used for the purpose of uaking incense stick:.

Asarum.-A. europaum, Asarabacea, possesses aerid properties. It las been employed in mediene as an emetic, and as an crrline in headache and ophthalmia. Its powder is supposed to constatute the chief ingredient in rephalic smuff.-A. comudense, Canaida Sanke-root or Wild Ginger, las aromatic properties. The rhizome is used in the United States ats a tonic. diaphoretie, and aromatie stimulant.

Brayantia.-'lise juice of the leaves of B. Wallichii is regarded as an a atidote in snake-bites, but more especially of those of the eobra--ll. tomentos:a is used by the Japanese an an emmeningogne.

Order 2. Cyminaced, the Cistus-rape Order.-Character. -Root-parasites destitute of chloroplyyll, and with a fungoid texture. Flowers hermaphrodite or unisexual, and either soli-
tary and scssile, or clustered at the end of a scaly stem. Calyx tubular at the basc, 3-6-partite. Anther's sessile, opening longitudinally. Ovary 1-celled, inferior; ovales very numerous; placentas parietal. Fruit 1-celled, with numerous seeds imbedded in pulp. Seeds with or without albumen ; embryo minute, amorphous or dicotyledonous. This and the next order are frequently combined togeither in one order, Cytinaceas.

Distribution and Numbers.- Parasitic on the roots of Cistus, 2nd upon fleshy Euphorbiaceæ and othcr succulent plants. They occur in the South of Europe and Africa. Illustrative Genera:-Cytinus, Lim. ; Hydnora, Thunb. There are about 7 species.

Properties and Uses.-Some have astringent properties, as Cytimus Hypocistus. A kind of extract is made from this plant in the South of Europe, and used, under the name of Sucers Hupocistidis, in diarrhoea, and for arresting hemorrhage.-Hydnora africana has a putrid-animal odour, but when roasted it is eaten by the native Africans at the Cape of Good Hope.

Order 3. Rafflesiacee, the Rafflesia Order. - Charac-ter.-Root-parasites, devoid of chlorophyll, without evident stems or leaves, and with a fungoid texture. These plants consist essentially of flowers (fig. 25̄8) sessile upon the branches of trees, and surrounded by scaly bracts. The flowers are hermaphrodite, or unisexual and dioecious. Calyx 5-partite (fig. 258), tubular ; the throat surrounded by a number of thickened scaly processes, which are either distinct from each other or united into a ring. Anthers placed upon a column which adheres to the calyx, 2 -celled ; and either distinct, and each opening by a pore, or united into a many-celled body, and opening by a common pore. Ovary 1-celled, inferior ; ovnles very numerous; placentas parietal. Frwit indehiscent. Seeds very numerous, with or without albumen; embryo amorphous or dicotyledonous. This order, as mentioned above, is sometimes included in Cytinacea.

Distribution and Numbers.-Parasitic upon the stcms of Cissi in the East Indies, and on Leguminous plants in South America. Ilustrative Genera:-Rafflesia, R. Br.; Brugmansia, Blum. There are about 16 species.

Properties and Uses.-Some have styptic and astringent propertits. They are chiefly remarkable for their flowers, some of which are of gigantic sizc. (See page 132).

Cohort 2. Quernales.-Flowers unisexual ; male clustered or in catkins; female solitary, clustercd, or in catkins. Calyx green, in the male flowers reduced to a scalc, or lobed; in the female flowers 2-6-lobed or toothed. Ovary inferior, 1-(i-cellcd. Ovule 1, ercct, or 1 or more, pendulous. Fruit usually 1 -sccded. Secds exalbuminous. Trees or shrubs. Leaves simple or pinnate, altcrnate.

Order 1. Juglandacee, the Walnut Order.-Trees. Leares alternate, pinnate, exstipulate. Flowers unisexual (fiy. 1048). Male flowers in amenta (fig. 1048); with an irregular calyx, or a simple scille. Femule flowers solitary, or in small terminal clusters, or amenta, without a cupule; calyc supcrior, regular, $3-5$-lobed; ovary inferior, 2-4-celled at the base, 1-celled above ; ovule solitary, erect, orthotropous. Fruit called a tryma (page 318). Seed (fiy. 1049) 2-4-loberl, exalbuminous; cmbryo with sinuous oily cotyledons, and a short superior radicle.

Distribution and Numbers. - Chiefly natives of North America, but a few are found in the East Indies, Pcrsia, and the Caucasus. Juglens regia, the Walnut tree, is a native of

Fig. 1048.

Fig. 1049.

Fig. 1048. Staminate amentum of the Walnut tree (Juyluns regic) : the flowers are separated by scaly bracts-Fig. 1049. Seed of the Walnut tree.
the countries between Greece and Cashmere. Iliustratice Genera:-Juglans, Limn.; Carya, Nutt. There arc about 30 spccies.

Properties and Uses.-Chiefly important for thcir valuable timber, and for their oily edible seeds.

Carya--Carya alba is the common Hickory, valuahle for its timber, and for its edible seeds, which are known as Hickery Nuts.-C. oliverform's vields an olive-shaped or some what elliptieal seed resembling the Walnat and Hiekory in Havonr, which is known as the Peccen Nut. These nuts have the finest flayour of any species of this germs ; ther also wield a fixed oil ly. pressure, which is palatable. Botly Hickory and lecean nuts are oceasionally imported into thas country.-C. porcinac yields an edible seed which is termed the Pig or Ilog Nut. It is consumed he pirs, spuirrels, \&ce. Its wood is recrarded as superior to that of either of the uther species of Curya.

Juglens.-J. regia, the Walnut, is valnable for its lard rich dep brown benutifully: marked wood. This is much employed in ornamental furniture work, ant for gun stocks. The muripe fruit is also nised for picklius. The seed of this plant is our well-known edille Walnut. This rields he expression a useful fixed oil of a drying nature like Limsed nil. It may be entployed for burning in lamps and in eookery. The pericarp has had a reputation as a vermifuge from the time of thiploerates. The bark pessesess
cathartie properties.-J. nigra, the Black Walnut, a native of North America, is also esteemed for its timber:-J. cinerea, the White Walnut or Butter-nut, is another useful timber tree. The inner bark of its root, which is offieial in the United States Pharmaeopœia under the name of Butter-nut, is employed as a mild purgative. When applied to the skin it also aets as a rubefaeient. The substance termed juglandin is obtained from this bark; it is regarded as a nseful remedy in habitual constipation. The unripe fruit is used for pickling ; and the ripe seed is edible like our eommon walnut.

Order 2. Corylacee or Copuliferee, the Oak Order.Character. - Trees or shrubs. Leares (fig. 205) alternate, usually feather-veined (figs. 312 and 313), simple, with deciduous stipules. F'lower's monœcious. Male flowers clustered or in amenta (fig. 397), and with or without bracts ; stamens 5-20 (fig .1050), inserted into the base of a membranous calyx, or of scales or bracts. Female flowers solitary or amentaceous, and surrounded by an involucre of bracts (f ig. 1051), which ultimately form a cupule (figs. 400 and 401) round the ovary and fruit; ovary inferior, surmounted by a rudimentary calyx, 3- (fig. 1052) or more celled; ovules 2 in each cell or solitary, pendulous or

Fig. 1650.

Fig. 1051.
Frg. 1052.

Fig. 1050. Male flower of a species of Oak (Quercus)._-FTig. 1051. Female flower of the same.-Fig. 1052. Trausverse section of the femnic flower.
peltate ; stigmas almost sessile. Fruit a glans or nut (figs. 400 and 401), 1-celled by abortion, wore or less enclosed by the cupule. Seeds large, 1 or 2, exalbuminous; cotyledons thick, fleshy or farinaceous; radicle superior.

Bentham and Hooker include the order Betulacer in the Cupuliferre (see page 668), and divide the order as thus constituted into three tribes as follows:-Tribe 1. Betulere. Tribe 2. Coryler. Tribe 3. Quercineæ.

The Betulea are at once distinguished by their superior arary, and the absence of a cupule from the two latter; and the Coryleæ from the Quercince by the male flowers being achlamydeous, and having one ovule in each cell of the ovary; the latter having a 3-7-lobed ovary, and 2 ovules in each cell.

Some authors, again, divide this order into two ordersCorylacere and Cupulifcre.

Distribution and Numbers.-They abound in the forests of temperatc regions. A few occur in the high lands of tropical and hot climates. Illustrative Genera:-Carpinus, Tourn.; Corylus, Tonm.; Qucrcus, Toum. There are nearly 300 species.

Properties and Uses.-Most important on aceount of their valuable timber. Many yield edible seeds, and some have highly astringent barks and eupules.

Carpinus.-C. Betulus, the Hornbeam, and C. americanus, are well known for their timber, which is principally employed for making agricultural implements, and for the rogs of mill wheels.

Castanea.-C. vulgaris (vesca) is the Spanish Chestnut, which is much cultivated for its timber, and for its edible truits or nnts. These nuts are principally imported from Spain, where they are largely employed ans an article of food by the agricultural classes.-C. americana, a mative of the United States, also yields a much smaller, bnt very sweet, kind of Chestnut, which has been occasionally imported.

Corylus Avellana, the common Hazel, is the origin of the most anciently used and most extensively consumed of all our edible muts. There are several varicties of the Hazel, as the White, Red, and Jerusalem Fibberts; the Great and Clustered Cobs; the Red Smyrna, the Black Spanish. the Barcelona Nuts, \&e. 'The importation of these alone into this country' is, on an average, 150,000 bushels a year. The oil which is obtained from them by expression is oceasionally employed by artists and watchmakers. Good charconl is also obtained from the branches of the Hazel.

Fagus.-F. sylvatica, the Common Beech, is well known for its timber. The fruits (Beech-mast) form a food for pigs. The fruit of F. ferruginea is eaten in North America. The seeds of some species yield by expression a fixed oil.

Ostrya vulg ris (virginica) possesses a very hard wond, which in Ameriea has been called in consequence Iron-wood. It is also termed Lever-wood from its being used for making levers.

Quercus.-The timber of several species of this genns is emploved for ship-building, and other important purposes; namely, that of the Q. Robur, the common British Oak, of which there are two varicties, which by some are regarded as distinet species, and called Q. pedunculata and Q. sessiliflora; that of the Q. Cerris. Turkey or Adriatic Oak ; of the Q. albu. White Oak; the Q. rubra, Red Oak; the Black Oak (Q. tinctoria) ; the Q. Ilex: and the Live Oak (Q. virens), and others. Many Japanese species also yield valuable timber. The bark of several species is astriurent, and largely employed in tanning, \&e.; that of Quercus Robur var. pedunculatu is most estemed. The dried bark of the smaller braneles and yonng stems of this plant is official in the British Pharmacopeia, and is employed in medicine as an astringent and tonic. The fruits (acorns) of this and the other species or varictics which are natives of this country have been alsn generally rerommended as food for eattle, but recent experience would seem to show that they possess injurious properties. The outer bark of Quercus Suber, the Cork Oak, constitutes the cork of eommerec. The bark obtained from the younger branches of the same tree is also imported into this comutry from Spain. It is commonly known as Enropean Alcornoque Bark. and is nsed for tanning purposes. (See Bowdiehica.) The inner bark of older stems is also imported as cork-trec bark, and similarly employed.-Quercus Eyylop)s. The acorn-enps (cupules) of this species ine imported from the lowant under the name of Valonia; the dried half-matured acorns of the same plant are also imported mender the mame of Camate; and the very yonne ones as Camatina. These three articles are valuable for their taming pro-perties- Quercus tinctoria, the black Oak, has alrealy been notioed as a valuable timber tree. Its bark is ealled Quereitron Burk: it is nsed for taming, and in this country its imer portion is also employed for dyeiner vellow. The bark of (Quereus alba is nthicial in the United siat es lhirmacopocia, where it is cmploved for its astringent, febritugal, and tonic properties. The bark of Q. uquatich, a North American species, and that of (U.

Ilex, a South European speeies, is also employed by tanners.-Qnercus sinensis, a native of China, yields a dye.-Quercus coccifera, the Kermes Oak, has its young branches attacked by a species of Coccus, by which little reddish balls are formed upon their surface, which were formerly much used as a crimson dye. The young branches of Oak trecs are especially liable to be punctured by insects, by which the morbid cxcrescences conmonly called gulls are prodnced. The more important of thesc excrescences form the Nut Galls of commerce; they are produced on the branches of Quercus lnsitanica, var. infectoria by the Cynips Gallae tinctorix. They are alone official in the British Pharmacopœia; and are also extensively emploved in tanning, for the preparation of the official tannie and gallic acids, for making ink, and for other purposes in the arts. They likewise possess tonic, astringent, and antiperiodic properties. Pcreira also regarded them as a valuable antidote in poisoning by tartar emetic. The best Nut Galls come from the Levant. Two kinds are commonly distinguished under the names of blue and white galls. The dark-coloured galls, which are imperforate, are the most valuable. The round smooth galls, now frequently found on the lower branches of the Oaks in this eountry, although containing tannic acid, are far less valuable than commercial nut-galls. These are formed by the Cynips Kollari of Girand. The large Galls known as Mecca or Bussorah Galls, Dead Sea Apples, and Apples of Sodom, are said to be produced on Q. lusitanica by Cynips insana The aeorns of some species of Quercus, as Q. Ballota, Q. Gramuntia, (). Esculus, and Q. II indsii, are edible; also those of Q. cornea in China, and of Q. cuspidata in Japan.

Cohort 3. Santalales.-Flowers hermaphrodite or unisexual. Calyx usually conspicuous, coloured, valvate in restivation. Stamens equal in number to, and opposite the lobes of, the calyx. Ovary inferior, mostly 1-celled ; ovules 1 or more, devoid of integuments. Fruit usually baccate or drupaceous. Seed solitary, albuminous. Usually parasitic herbs or shrubs. Leaves, when present, entire.
Order 1. Loranthacese, the Mistletoe Order.- Character. -Parasitic shrubs. Leaces greenish, commonly opposite, exstipulate. Floners hermaphrodite, or unisexual and dicecious. C'alyc superior, with 4-8 divisions; restivation valvate; sometimes absent. Stamens equal in number to, and opposite the lobes of, the calyx. Ovary inferior, 1 -celled, with 3 ovules, suspended from a free-central placenta, or 1 erect and arising from the base of the ovary. Fruit commonly succulent, 1 -celled, with a solitary seed; embryo in fleshy albumen, with the radicle remote from the hilum.

Distribution and Numbers.-They are principally found in the hotter parts of America and Asia. Threc species are natives of Europe, and a few occur in Africa and some other regions. Illustrative Gienera: - Myzodendron, Sol.; Viscum, T'ourn.; Loranthus, Linn. There are above 400 species.

Properties and Uses. - Unimportant. Somc are astringent.
Loranthns letrondus, a native of Chili, prodnces a black dye.
Viscum allum is the common Mistletoc. It is parasitic on many trees in this eountry, as Willows, 'Thorns, Limes, Elms, Oaks, liirs, and espeecially
the Apple tree. The Mistletoe of the Oak, which is very rare, was an noject of superstitious veneration by the Druids. The fruit has a viscid pulp, which is sometimes employed for making bird-lime. It is said that the fruits when eaten produce severe poisoning symptoms, the effects resembling those of aleoholie intoxication. Its bark has astringent properties. The plant is now out of use as a medicinal agent, but was formerly in great repute as an antispasmodic. The leaves of V. monnicum, a plant which is parasitic on Strychans Nux-vomica, were found in India to possess similar poisonous properties to that plant, from growing upon it, and to be uscful in like cases to it in medieine.

Order 2. Santalacee, the Sandal-wood Order. -Charac-ter.-Herbs, shrubs, or trees. Leaves entire, alternate. Floner's usually hermaphrodite. Calyx superior, 4-5-cleft, valvate in æstivation. Stamens perigynous, equal in number to, and opposite the segments of, the calyx. Ovary 1 -celled, inferior; ovules 1-4, usually suspended; placenta free-central. Fruit indehiscent, 1 -seeded. Seed with a quantity of fleshy albumen; embryo straight, minute ; radicle superior.

Distribution and Numbers.- Natives of various parts of the world. The species found in North America and Europe are inconspicuous herbs; those of India, Australia, dc., are trees or shrubs. The genus Thesium is partially parasitic on the roots of other plants. Illustrative Genera:-Thesium, Limn. ; Santalum, Limn. There are about 120 species.

Properties and Uses.-Some of these plants, as Thesium, are slightly astringent; others have a fragrant wood; and a few produce edible fruits and oily seeds.

Fusamus acuminatus (Santalum cygnorum) is the Quandang Nut of Australia. The fruit is edible, and resembles Almonds in flavour. This tree also vields a kind of Sandal-wood. (Sec Santalum.)

Suntalum.-S. album is a native of India. The wood called Sandal-wond is remarkable for its fragranee. It is sometimes used as a perfume; but its ehief consumption is for inecnse in the Chinesc temples, and in India in the celcbration of sepulehral rites, where pieces of Sandal-wood are plaeed hev the wealthy in the funereal pile. The wood is also mueh nsed by cabinet makers for easkets and other purposes. In India and other parts of the East it is also employed medieinally as a sedative and for its refrigerant properties. By distillation it yields a fragrant volatile oil, whieh is estepmed as a perfune, and also medieinally as a remedy for gounorloca, gleet, \&e. It is ofieial in the British Pharmacopeia.-S. Freycinetiamun and S. pyrularium produce the Sandal-wood of the Sandwich 1slands; S. Yasi, a kind of Sandal-wood from the Fiji Islands; S. austro-calectonichm, that from New Caledonin; and S. cyonorum (Fusamus acuminatns) and S. spicatum, that from Western Anstraliar. (See F'usamus.)

Order 3. Balanophoracex, the Balanophora Order. Chariacter. - Leafless root-parasites with amorphous fungoid stems of various colours, but never green; and underground more or less fleshy tubers or rhizomes. Peduncles naked or scaly, bearing spikes of flowers, which are commonly uniscxual, bracteated, and of a whito colour. Male flowers very evident, each with a tubular calyx, which is cither eutire or $3-5$-lobed.

Stamens usually 3-5, or sometimes 1 , in the former case more or less united or distinct. Female flowers very minute, with a tubular superior calyx, the limb either wanting or present and bilabiate. Ovary inferior, usually 1-celled ; styles 2 ; ovule solitary, pendulous. Fruit small, more or less compressed, indehiscent. Seed solitary, albuminons, with a lateral undivided or amorphous embryo.

Distribution and Numbers.-These plants are parasitical on the roots of various Dicotyledonous plants, especially in the tropical and sub-tropical mountains of Asia and South America. Other species are found in different parts of Africa, Australia, \&c. Illustrative Genera:-Cynomoriun, Michel; Balanophora, Forst. There are, according to Sir Joseph Hooker, 37 species.

Properties and Uses.-Many are remarkable for their astrin. gent properties; others are edible, as Ombrophytum, a native of Peru, and Lophophytum of Bolivia; and some secrete a kind of wax.

Balanophorcu-In the mountainous districts of Java the natives make candles from a species of Balanophoru, as follows:-The parasite is heated in an iron pan, after which bamboo sticks covered with cotton are dipped into the melted mass, when the waxy substance of the plant adheres to them. This so-called wax is, according to Dr. de Vrij, a mixture of at least two resins and a vegctable fat.

Cynomorium coccineum is the Fungus melitensis of pharmacologists. It has had a great reputation as a styptic.

Langsdorffict hypogra.-This species yields so large a quantity of wax, that candles are made of it in New Granada. The stems are also said to be collected near Bogota, ‘and sold under the name of Siejos, and used as candles on saints' days.'

Artificial Analysis of the Orders in the Sub-class Monochlamydedi or Incomplete.
 (Modified from Lindley.)

> 1. Achlamydeous Flowerso
A. Leaves stipulate.
a. Flouers unisexual.

Ovary 1-celled. Oviles numerons. . . . Sulicacea. Ovules 1-2.

Ovule erect Myricaces.
Ovile pendulous Pluternacere.
Ovary 2 or more celled. Seeds few, not winged E'uphorlinucex.
b. Flowers hermetphrodite.

Carpel solitary.
Ovale crect. Embroo in a vitoplas . . . Piperacez. Ovule suspenderl. Embryo naked . . Chhorunthacese. Carpels several.

Ovule crect. Embryo in a vitellus
Suururaces.
B. Lenves exstipulate.
a. Flowers unisexual.

Ovules very numerons Podostemacere
Ovules solitary, or very few.
Flowers naked.
Ovary 1-celled Myricacea.
Flowers in an involuere.
Anther-valves reeurved Atherospermaceit.
Anther-valves slit.
Embryo on the outside of the albumen
Monimiucere.
Embryo enelosed in the albmmen
Euphorbiacea.
b. Flowers hermaphrodite.

Embryo in a vitellus.
Piperacese.
Embryo without a viteling
Podostemacex.
2. Monoehlamydeons Flowers.
A. Ovary inferior, or partially so.
a. Leaves stipulate.

1. Flowers hermaphrodite Aristolochiaceat.
2. Flowers unisexual Corylacex.
b. Leaves exstipulate.
3. Flowers hernaphrodite.

Ovary 3-6 celled. Ovules numerous . . Aristolochiacea.
Ovary 1-eelled. Ovules definite.
Ovules with a naked nueleus. Leaves opposite . Loranthacere. Ovules with a naked nueleus. Leaves alternate Santalaces. Ovules with a coated nneleus Chenopodiacea.
2. Flowers unisexual.

Amentaceons Juglundaceæ.
B. Ovary superior.
a. Leaves stipulate.

1. Flowers hermaphrodite.
a. Carpel solitary.

Stipules oelrreate
Polygonacear.
Stipules distinet
Petiveriacea.
b. Carpels more than one, combined.

Seeds exalbuminous.
Calyx imbriente
Uluacea.
Seeds albuminous.
Styles or stigmas 2. Leaves not dotted - Ulmaces.
2. Flowers unisexual.
a. Carpel solitary.

Cells of anther perpendicular to the filament. Stilaginaceas.
Cells of anther parallel to the filmment.
Embryo straight.
Sap watery. Stipules small. Sceds albu-
buminous milky. Stipules large. Seeds ex-
Urticacca. abbuminous

Embryo hooked.
Sap watery. Seeds without albumen . Cu cnabinucar.
Sap milky: Seeds with albnmen . . Moracese.
b. Carpels more than one, combined.

Flowers amentaccous.
Seeds arillate.
Stamen 1. Lacistemacese.
Stamens more than 1 . . . Scepucete.
Seeds not arillate Betulacer.
Flowers not amentaceons Fuphorbiacere.
b. Leaves erstipulate.

1. Flowers hermaphrodite.
a. Carpel solitary.

Anther-valves remrved Laurucer.
Anthers slit.
Leaves covered with seales Elaagnacer.
Leaves not sealy.
Calya long or tubular.
Hardened at base Nyctaginacea.
Not hardened in any part.
Stamens in the points of the sepals. Proteacea.
Stamens not in the points of the sepals

Thymelacer.
Calyx short, not tubular, or but slightly so.
Flowers in involucels
Polygonacere.
Flowers not in involucels.
Calyx dry and coloured . . . Amarantacea.
Calyx herbaceous or succulent.
Stamens hypogyneus or nearly so . Chenoporliacea. Stamens perigy nous Basellacea.
b. Carpels more than one, either distinct or combined.
Carpels distinct I'hytolaccacea. Carpe's combined.

Seeds exalbnminous.
Calyx tubular.
Ovary 2-celled Aquilariacer.
Orary 4-celled Penaucea.
Calyx tubular, or imperfect . . . Podostemacee.
Seeds albuminous Phytolaccacea.
2. Flowers unisexual.
a. Carpels solitary, or quite distinet.

Calyx tubnlar.
Anthers opening ly recurved valves . Atherospermarea.
Anthers opening longitudinally . . . Myristicacce.
Calyx not tubular.
Seeds exalbuminous. Embryo straight.
Leaves verticillate Ceratophyllaceat.
No evident leaves Casuarimacese.
Seeds albumiuous.
Embryo eurled ronnd the albumen . Chenopodiacce.
Embryo straight. IIomimiacce.
b. Carpels more than one, combined.

Ovules indefinite.
Leaves with pitchers Nepenthacea.
Ovules definite. Seeds aseending . . . Empetracese.
Fruit fleshy. Seeds suspended $\quad . \quad$. Luphorbiacea.
Fruit dry. Seeds

Root Parasites of Fungoid T'exture (Rleizogens of Lindley).
A. Ovary inferior. Ovules solitary Balanophoraces.
B. Ovary superior. Ovnles indefinite.

A nthers opening longitudinally Cytinacex.
Anthers opening by pores
Ruflesiacex.
Monochlamydeous or Achlamydeous flowers also occasionally, or in some orders always, occur, as already noticed, in plants belonging to the following orders of the Sub-classes Polypetale and Gamopetalre :-

Sub-class 1. Polypetalæ:-
Series 1. Thalamiflore:-Ranunculacex, Menispermacex, Papweracex, Flacourtiacex, Caryophyllacex, Scleranthacex, Paronychiacex, Sterculiacex, Byttneriacex, Tiliacex.

Scries 2. Discifloræ:-Malpighiacex, Putacex, Chailletiaceæ, Xanthoxylacex, Geraniacex, Cclastracex, Rhamıacex, and Anacardiacex.

Series 3. Calycifloræ:-Leguminosæ, Rosacex, Lythracex, Suxifragacex, Cunoniacex, Begomiacex, Datiscacex, Mesembryacex, Passifloracex, Myrtacex, Onagracex, Samydacex, Haloragacex, Combretacex, Hamamelidacex, and Araliacex.

Sub-class 2. Gamopetalæ:-Oleacex and Primulacex.

Class II. Monocotyledones.

In the class Monocotyledoncs, as in the sub-class Monochlamyder, we follow in all essential particulars the arrangement of the Orders and characters of the Cohorts as given by Sir Joseph Hooker in the English edition of Le Maout and Decaisne's 'Traité Général de Butanique,' instead of that adopted by Bentham and Hooker in 'Genera Plantarum,' where the following Series are given instead of Cohorts :-1. Microsperme. 2. Epigynæ. 3. Coronarieæ. 4. Calycinæ. 5. Nudiflore. 6. Apocarpæ. 7. Glumacer. The characters of these Series are given in detail, and lists of the Orders grouped under them respectively, in 'Gencra Plantarum.'

Sub-class I. Petaloidcx.

Scrics 1. Inferæ or Epigyne.
Cohort 1. Hydrales. - Flowers regular, ustally uniscxual. Inner whorl of perianth petaloid. Ovary 1-b-celled ; placontation parictal. Stamens 3 or more. Fruit baccate. Secds numerous; embryo distinct; cxalbuminons. Aquatic herbs.

Order 1. Hydrocharidace.e, the Hydrocharis or Frog-bit Order.-Character.-Aquatic plants. Flowers spathaccous, regular, unisexual or polygamous. Perianth superior, in 1 or 2 whorls, each composed of 3 pieces, the inner petaloid. Stumens few or numerous. Ovary inferior, usually 1-6-celled ; placentation parietal. Fruit indehiscent. Seeds numerous, exalbuminous.

Distribution, Numbers, and Properties.-Inhabitants of fresh water in Europe, North America, East Indies, and New Holland. Ilustrative Genera:-Anacharis, Rich.; Vallisneria, Mich. There are about 25 species. Their properties are unimportant.

Cohort 2. Amomales.-Flowers usually hermaphrodite and very irregular (regular in Bromeliaceæ). Perianth inferior, except in some Bromeliacer. Stamens 6,1 or 5 with anthers, the rest petaloid, or all antheriferous in Bromeliacer. Ovary usually 3-celled, with axile placentation. Fruit baccate or capsular. Seeds with farinaceous albumen ; embryo distinct. Leaves usually large and pinnately-veined.

Order 1. Zingiberacee or Scitaminaceee, the Ginger Order. -Character.-Aromatic herbs, with creeping rhizomes, and broad simple, stalked, sheathing leaves, with parallel curved veins springing from the midrib. Flowers arranged in a spiked or racemose manner, and arising from among spathaceous membranous bracts. Perianth superior, irregular, each whorl consisting of 3 pieces. Stamens 6 , in 2 whorls, all abortive except the posterior one of the inner whorl; anther 2 -celled ; filament not petaloid. Ovary inferior, 3-celled; placentas axile; style filiform. Fruit 1-3-celled, capsular or baccate. Seeds numerous, albuminous ; embryo enclosed in a vitellus.

By Bertham and Hooker the two succeeding orders, Marantacere and Musacex, are inchuded in Zingiberacex.

Distribution and Numbers. - Chiefly natives of tropical regious. Alustrative Genera:-Zingiber, Gärtn.; Curcuma, Linn.; Elettaria, Rheed. There are about 250 species.

Properties and Uses.-They are principally remarkable for the stimulant aromatic propertics possessed by their rhizomes and seeds, owing to the prosence of resins and volatile oils; hence several are used as condiments, and in medicine as aromatic stimulants and stomachics. Somc contain starch in large quantities, which when extracted is employed for food.

Alpinia.-The rhizome known as the greater or Java Galangal ront is deriwd from A. Galunga, Willd., a native of Java. The lesser or Chinese Ciulangal has becu traced lyy Hance to a new species, which he has termed A. officinurum. The lesser Galangal is now the only kind known in Eurnpean enmmerce. It is not used in this country ; but principally in Russia, where it is employed for flavouring the liqueur called nastoika, and vinegar ;
and also as a cattle medicine, a spice, and as a popular medicine. The Tartars use it to prepare a kind of tea.- The source of the light Galangul of Guibourt is altogether unknown. The Gulangals have similar properties to Ginger. The ovoid Chinu Cardanom is the fruit of A. alba; its seeds are used as a condiment in China.

Amomun.-Several species of this genus have aromatic and stimulant secds, which are used as spices and medicinal agents in various parts of the world. The only species which is employed in this country is the A. melegueta, which yields the Grains of Paradise of the shops. It is a native of the Western Coast of Africa. These seeds are much employed in Africa as a spice. The common notion that they are very injurious is erroneous. They are principally employed in this country in veterinary medicine, and for giving pungency to beer, wine, spirits, and vinegar.-A. Cardumomum yields the frnit known as the round Cardamom. The fruits of A. maximum constitute Java Cardamoms; those of A. Korurima Korarima Cardamons; aud those of A. globosum the large round and the small round China Cardamoms. The latter are much employed in China. Mayy other species have similar properties.

Curcuma.-C. longa.-The dried tubers or rhizomes of this plant constitute the turmeric of the shops. They are official in the British Pharmacopeeia as a test. Turmeric is used as a condiment, as a test, and for dyeing yellow. It is largely employed in India, China, and other parts of the Enst. It forms an ingredient in curry powder, \&c. Unsized white paper steeped in tineture of Turmeric, when dried, is employed as a test to detect free alkalies, which change its colour from yellow to reddish-brown.-C. angustifolia: the rhizomes contain a large quantity of starch, which, when extracted, forms East Iudian Arrowroot or Curcuma Stareh. This kind of arrowroot may be also obtained from other species of Curcuma, as C. leucorrhiza, C. rubescens, \&e. In its cffects and uses it resembles Wert Indiau Arrowroot or Maranta Starch (see Maranta) ; but it is not so pure astarch. -C. aronatica yields the Round Zedoary of pharmacologists.-C. Zedoaria is supposed to yield the so-called Cassuniunar roots, the Loug Zedoary, and the Zerumbet ronts of commerce ; they all possess aromatic and tonic properties. But Professor Areher believes that Zerumbet and Cassumunar are derived from C. Zerumbet. (See Zingiber.)

Elettaria.-E. Cardamomum yieldis the capsular fruits which constitnte the small or Malabar Cardamoms, the seeds of which are official in the British Pharmacopecia, and are in common use in medicine in this conntry on account of their cordial and stimulating properties, and also as dlavouring agents. In the East Indies they are extensively nised as a coudiment and for chewing with betel. In parts of the Contiuent, as Russin, Germany. \& C... they are also much employed for flavouring, and in the preparation of liquenrs, \&e.-E. major yields Cey-Ion Cardanoms, which are much used ou the Continent ; their nses and effects are similar, but they are of less value than the former.

Tingiber.-Z. officinale, the Giuger Plant.-The so-called Ginger-ront or Ginger of the shops is the rhizome of this species. The rhizomes when very young, or the young shoots of the old rhizomes, are used for preserviag, and form in this state Preserved Giuger. The Ginger of the shops is found in two states, oue being ealled white ginger or uncouted ginger, and the other black ginger or coated ginger. The former is prepared from the rlizomes of about a year ohd, which when dug up are washed, seraped, and dried : this kind is generally preterred, and is alone oflicial in the British Pharmacopocia. The latter is prepared from the rhizomes in as similar maner. but ant submitted to the seraping process. The essential distinetion bet ween the two consists, therefore, in White Ginger having its integument removed, while in Black Ginger it remains on the surface as a slarivelled membrane. Ginger is extensively used as a condiment, and also in medicine as a stimulant
and stomachie internally, and externally as a rubefacient.-Z. Cassumunar is supposed by some to be the plant from which Cassumunar root is obtained. (See Curcuma.)

Order 2. Marantacee or Cannacee, the Maranta Order. -Character.-Herbaceous plants, without aromatic properties. They have a close resemblance to the Zingiberacer. Their distinctive characters are, in their more irregular perianth ; in one of the lateral stamens of the inner whorl being fertile, and the other two abortive; in the fertile stamen having a petaloid filament, an entire or 2-lobed anther, one lobe of which is sterile, and the anther therefore 1-celled; in the style being petaloid or swollen; and in the embryo not being enclosed in a vitellus.

Wistribution and Numbers.-Exclusively natives of tropical ${ }^{\circ}$ regions. Illustrative Genera:-Maranta, Plum.; Canna, Linn. There are about 160 species.

Properties and Uses.-The rhizomes of some species contain starch, which when extracted is extensively used for food.

Canua.-One or more species of this genus yield 'Tous les mois,' a very pure and useful starch, although little used in this eountry or elsewhere. The exact speeies of Canna from which this starch is obtained is not positirely known ; it is said to be C. edulis, but it is just as probable to be derived also from C. glaucr and C. Achirrs. C. lutea is stated in the "Bombay Flora ' to yield 'Tous les mois.' C. indica and C. discolor also yield a similar starch.-C. indica.-The seeds are commonly known under the name of Indian Shot, from their black colour and hardness. These seeds and those of other species are made use of as beads. The rhizomes or tubers of some speeies are eaten as a vegetable; they contain much starch, which, as alrendy stated, resembles 'Tous les mois.'

Maranta.-M. arundinacea.-The rhizomes or tubers of this plant contain a large quantity of stareh, which, when extracted, constitutes West Indian Arrowroot, one of the purest and best known of the starches used as food. As this arrowroot is now obtained from M. arundinacer, which is eultivated for that purpose in other parts of the world besides the West Indies, it is lest distinguished as Maranta Starch. It forms a very firm jelly, and is perhaps the most palatable and digestible starch known. The best arrowront is the Bermuda kind, but this is becoming more searee every year. The name Arrowront is generally said to have been derived from the faet of the bruised rhizones of this plant having been employed by the native Indians as an application to the peisoned wounds inflicted by arrows. Others give, however, different derivations for this name. Thus 'T. Greenish believes that it is derived from the Indian word'ara-ruta, a termsignifyingr ' mealy ront.' The name of arrowroot is now given to various other starches which are used as food in this comutry and elsewhere.

Order 3. Musaceef the Banana Order.-Character.Herbaceous plants, often of large sizc. Leares large, with parallel curved veins springing from the midribs (fig. 318), and long sheathing petiolcs, which together form by their union a spurious aerial stem. Flowers irrcgular, spathaceous. Perianth irregular, 6 -partite, petaloid, superior, arranged in 2 whorls. Stamens 6 , inserted upon the divisions of the perianth, some abortive; anthers 2-celled. Ovary inferior, 3-celled. Eruit
eapsular, dehiscing loculicidally, or succulent and indehiscent, 3 -celled. Seeds usually numerons, rarely 3 , with mealy albumen; embryo not enelosed in a vitellus.

Distribution and Numbers.-Generaliy diffused throughout tropieal and sub-tropical regions. Illustrative Genera:-Musa, Tourn.; Ravenala, Adans. There are about 20 species.

Properties and Uses.-The fruits of some species and varieties form important artieles of food in tropieal regions. Others yield valuable textile materials; and the large leaves of many are used for various purposes, suel as to form a kind of cloth, and as thatching for eottages, \&c. The seeds and fruits of others are used as dyeing agents in some countries.

Mrusa.-The fruits of some speeies, as those of M. paradisiaca, the Plantain, and M. supicutum, the Banana, of both of whieh there are numerous varieties, are well known as important articles of food in many tropieal regions. They owe their value in this respeet ehiefly to the presence of srareh and sugar, but they also eontain some nitrogenous substances. Dr. Shier states that a new Plantain walk will yield 17 ewt. of starel per aere. Aeeording to Humboldt, the produee of Bananas to that of Wheat is as $1: 3$) to 1 , and to that of Potatoes as $4 \pm$ to 1 . Some of the finer varieties are also used as dessert fruits in this country and elsewhere. The expressed juice is in some parts made into a fermented liquor. The fibrous materials obtained from the spurions stems and flower-stalks of the different speeies of Musa may be used for textile fabries and in paper-making. The fibres from Mrusa teatilis constitute the Manila Henp of commeree. From the finer fibres of this plant the eelebrated Indian muslins are manufactured. The young shoots of the Banana and other speeies of Musa when boiled are eaten as a vegetable; and the large leaves are nsed for various domestic purposes. The young leaves of the Banama and Plantain are also in eommon use in India for dressing blistered surfaees.

Ravenala speciosa has been ealled the Water-tree and Traveller's tree on aecount of its large sheathing petioles storing up water. Its seeds are edible.

Order 4. Bromeltacee, the Bromelia Order.-Charae-ter.-Herbs or somewhat woodu plants, commonly epiphytical. Leuves persistent, crowded, channelled, rigid, sheathing at the base, and frequently scurfy and with spiny margins. Flouces showy. Perianth regular, superior, or nearly or quite inferior, arranged in two whorls, the outer of whieh has its parts commonly united into a tube; and the imner has its parts distinct. imbricate, and of a different colour to those of the outer whorl. Stamens 6 ; anthers introrse. Ovary 3 -celled ; style 1 . Fruit capsular or indehiscent (fig. 292). Seeils numerous; embryo minute. at the base of mealy albumen, with the radicle next the hilum.

Distribution and Numbers.- They are mostly found in the tropieal regions of America, West Africa, and the East Inties. They appear to have been originally natives of America and the adjoining islands, but are now naturalised in West Africa and the East Indies. Illustrative Genere:-Ananassa, Lindl.; Tillandsia, Lim. There are about 180 species.

I'roperties und Uses. - They are chiefly important for yielding
edible fruits and useful fibrous materials. Some are anthelmintic, and others contain colouring matters.

Ananassa sativa, the Pinc-apple.-The fruit (sorosis) of this species is the well-kuown and delicious fruit called the Pine-apple. A large number of these fruits are now imported into Britain, clicfly from the Bahama Islands, but in flavour they are very inferior to those produced by cultivation in this country. The unripe fruit possesses anthelmintic properties. The fibre obtained from the leaves of this species, as well as that from one or more species of Bromelia and Tillandsia, is known under the name of Pineapple fibre, and has been used for varions textile fabrics, and for the manufacture of paper, cordage, \&c.

Billbergia tinctoria.-In Brazil a yellow colouring agent is obtained from the roots of this plant.

Bromelia Pinguin possesses vermifuge properties. Its leaves yield useful fibres. The fibres of B. sylvestris under the name of Ixtle fibre or Mexican Grass are used for brush-making, ropes, and textile fabrics, and would probable form a good paper material.

Tillandsia usnenides is commonly called Tree-beard or Old Man’s Beard, from the fact of its forming a niass of dark-coloured fibres, which laang from the trees in South America, like certain Lichens in cold climates. This article has been imported uuder the name of Spanish Moss, and employed for stuffing cushions, \&c., mixed with horsehair. It has heen also used for stuffing birds, for packing, and for paper-making. About 10,000 bales are annually shipped from New Orleans.

Cohort 3. Orchidales.-Flowers hermaphrodite and very irregular. Perianth of 6 , or rarely 3 , segments. Stamens, 1 , 2 , or 3 , confluent with the style (gynandrous). Ovary 1celled with parietal placentation, except in Apostasiacere where it is 3 -celled with axile placeutation. Fruit capsular. Seeds very minute ; exalbuminous ; embryo very obscure.
Order 1. Orchidacee, the Orchis Order.-Character.Herbs or shrubs, terrestrial (figs. 261 and 262) or epiphytical (fig. 256). Roots fibrons or tuberculated (figs. 262 and 261) ; no true stem or a pseudo-bulb (fig. 256). Leaves entire (fig. 316), generally sheathing. Flowers irregular (figs. 546 and 1053), solitary or numerous, with a single bract, hermaphrodite. Perianth superior (figs. 546 and 1053), usually petaloid and composed of six pieces (f fg. 1054), which are commonly arranged in two whorls; the outer whorl, s, sl, sl, formed of three pieces (sepals), more or less united below or distinct; one, s, being anterior, or when the ovary is twisted posterior (figs. 546 and 1053), and two, sl, sl, lateral; the inner whonl (fig. 1054, pi, pl, $p s$) usually consists of three pieces (petals), (or rarely of but one), alternating with the pieces in the outer whorl; one (the labellum or lip) (fig. 1054, ps) posterior, or by the twisting of the ovary anterior (fig. 1053), usually longer and larger than the other pieces, and altogetlier different to them in form (fig. 1053), often spurred (fig. 546); sometimes the labellum exhibits a division into three regions of which the lowest is then termed
the hypochilium, the middle the mesochilium, and the uppor the epichilium. Androcium unitcd to the stylc (gynandrous) (fyys. 546,566 , and 1053) and forming with it a central column (gynostemium) ; the column usually bearing 1 perfect anther and two lateral abortive oncs, or in Cypripedium, two lateral perfect anthers and one abortive anther in the centrc. Pollen powdery, or more or less collected into grains or waxy or mealy masses (pollinia) (fig. 564, p); the masses free, or attached by their stalk, c (eaudicle), to a gland or glands (retinacula) at the apex (rostellum) of the stigma (fig. 566, a). Ovary inferior, 1-celled, with 3 parietal placentas (figs. 622 and 1054) bearing a number

Fig. 1053. Front view of the flower of the Tway-blade (Listera orata), showing the bifid labellum at the anterior part of the flower, and the other five divisious of the periantli ; the essential organs of reprodnetion forming a colmmn (gynostemium). Fig. 1054. Dingram of the flower of an Orehid. $s, s l$, sl. The three outer divisious of the perianth; s being anterior or inferior, $s l, s l$ being lateral. $p l, p i$. The two lateral divisions of the inner whorl of the perianth. ps. The superior or posterior division (labellum) of the inner whorl; this by the twisting of the ovnry becomes intimately inferior or nuterior. e. The fertile stamen, with two anther lobes. c. Transverse section of the ovary, with three parictal placentas. -Fig. 1055. Fruit of an Orchid deliscing by three valves, eaeh valve bearing a plneenta and numerous very minnte seeds.- Fig. 1056. Sced of an Orchid, with a loose retieulated testa.
of auatropous ovulcs; style united with the androecium and forming with it a column or gymostenium (figs. $54(\mathrm{i}$ and 1053); stigma a viscid space in front of the column (fig. 566). Froit usually capsular, 3 -valved (fig. 1055), the ralves bear the placentas in their middle, and separating when the fruit is ripe from the central parts or midribs of the component carpels, which are left as an open framework; or rately fleshy and indehisccnt. Seeds very minute and numerous, with a loose netted (fig. 1056) or rarely hard crustaceous testa, exalbuminous; cmbryo a fleshy solid mass.

Diagnosis.-This order is readily known by its irregular flowers; by the peculiar form which the labellum in many cases assumes, so as to cause the flower to resemble some insect, reptile, bird, or other living object; by its gynandrous stamens; its frequently more or less coherent pollen ; and by its 1-celled inferior ovary with three parietal placentas.

Dicision of the Order.-This order has been divided by Lindley and others into several tribes, the characters being derived from the number and position of the anthers, the number and nature of the pollen-masses, and other characters; but the description of these does not come within the scope of this rolume.

Distribution and Numbers.-They are more or less abundantly distributed in nearly every region of the globe, except in those which have a very cold or dry climate. Some species are terrestrial and occur chiefly in temperate regions; others are epiphytical and are confined to hot clımates. Illustrative Genera: -Malaxis, Swartz; Dendrobium, Swartz ; Oncidium, Swartz; Stanhopea, Frost; Orchis, Linn.; Cypripedium, Linn. The order contains about 5,000 species, 2,000 being in cultivation.

Properties and Uses.-These plants, which present so much interest from the singularity, beauty, and fragrance of their flowers, are of little importance in an economic or medicinal point of riew. Some are aromatic and fragrant, and are used as flavouring agents, several possess nutritious roots, and a few are antispasmodic and aphrodisiac.

Angreecum fragrans.-The dried leaves of this fragrant speeies are used as a kind of tea in the Mauritins; it is commonly known as Faham or Bourbon tea. It has been introduced into London and Paris, but is not mueh esteemerl. This tea should be prepared by boiling, and is recommended to be taken with milk and rum. It is said to produce a soothing effect, but without c.ausinis sleeplessness.

Cyprypedium pubescens.-The root is official in the United States Pharmaeopcia. It is regarded as an antispasmodie, and is employed for similar purposes as valerian, but is less powertiul. In the Chieago 'Pharmacist' for 1874. it is stated that C. pubescens and C. spectabile possess powerful poisonous properties, the effects produced resembling the poisoning from Rhus Toxicodendron and R. venenata; but this seems improbable. From the rhizome and montlets of C. pubescens, and probably also of C. spectabile and C. humile, the eclectic remedy termed cypripedin is obtained. This is regarded as a wentle nervine stimulant, and useful in epilepsy, chorea, and other nervons discases.

Eulophia vera and F. campestris.- The tubereules of these speeies are used in some parts of Iudia in the preparation of the nutritions substance known by the names of Sulep, Sulop, and Saloop, whieh is there very highly e:stremed: (See Orchis.)

Orchis.-The dried tubereules of several species, as those of O. mascula, O. latifulia, O. ALorin, and others, form European or Indigenous Salep; that prepared from O. mascola is said to be the best. Salep contains bassorin and al little starch, and possesses similar properties to those of other amylaceous sulbstances. (See Futophia.)

Solruliu.-The fruit of a species of Solralia, a native of Panama, is said to sield a kind of Vanilla whiel is called Chica.

Vanilla planifolia, V. aromatica, V. guianensis, V.palmarum, V. pompona, and other species, are remarkable for their fragrant odoriferous fruits, which constitute the Vanilla of the shops. Vanilla is extensively used for fiavouring chocolate, and also in confectionery and perfumery. It has been also employed on the Continent as a medieinal agent, in hysteria, \&c. It is also reciarded as an aphrodisiac. The fruits of V. planifolia and V. aromatica are commonly regarded as the most fragrant. (See also Solralia.)

Order 2. Apostastacea, the Apostasia Order. - Charae-ter.-Herbs, with regular hermaphrodite flowers. Periunth superior, regular, with 6 divisions. Stamens 2 or 3 , united by their filaments with the lower part of the style into a eolumn; anthers sessile upon the eolumn, 2 or 3 . Ovary inferior, 3 -eelled, with axile placentation ; oveles numerous; style united below with the filaments into a column, but prolonged above into a filiform process. Capsule 3-eelled, 3-valved. Seeds very numerous. By Bentham and Hooker this order is included in Orchidacex.

Distribution and Numbers. - Natives of damp woods in tropieal India. Illustrative Genus:-Apostasia, Blume. There are about 5 species. Their properties are altogether unknown.

Cohort 4. Tuccales.-Flowers hermaphrodite, regular. Perianth 6 -lobed. Stamens 3 or 6 , inserted on the tube of the perianth. Ovary 1- or 3-eelled; placentation usually parietal, or sometimes axile. Fruit eapsular or baceate. Seeds very minute and exalbuminous, or larger and albuminous; embryo very obseure.
Order 1. Burmanniacee, the Burmannia Order.-Charaeter. - Herbaceons plants, without true leaves, or with tuftecl radieal ones. Flowers hermaphrodite, regular. Perianth petaloid, tubular, regular, superior, usually with 6 divisions. Stamens distinet, inserted into the tube of the perianth, either : 3 with introrse anthers, and opposite the imner segments of the periauth, or 6 with extrorse anthers. Ovary inferior, 1-eelled with 3 parietal placentas, or 3 -eelled with axile placentas ; style 1 ; stigmus 3. Fruit eapsular, 1-3-eelled. Seeds numerous, very minute ; embryo solic.

Distribution and Numbers.-They are prineipally found in the tropieal parts of Asia, Africa, and Amerien. Illustrative Genera:-Burmannia, Limn.; Thismia, Griffi. Aceording to Miers, thero are 38 speeies. Their properties are unimportant. but some are reputed to be bitter and astringent.

Order 2. Taccacent, the Tacea Order.-Character.- Perennial herbs, with fleshy roots. Leaves large, with parallel veins, radieal, stalked. Flowers hermaphrodite. l'erianth tubular, regular, 6-partite, superior. Stamens 6, inserted into the base of the divisions of the perianth, with petaloid filaments,
incurved and hooded at the apex ; anthers 2 -celled, placed in the concarity below the apex of the filaments. Ovary inferior, 1-celled, with 3 parietal placentas projecting more or less into the interior ; styles 3. Fruit baccate. Sceds numerous, with flesly albumen.

Distribution and Numbers.-Natives of mountainous regions in India, the Malayan Archipelago, the Philippines, Australia, Polynesia, Madagascar, Guiana. According to Hance, there are three genera-I'acca, Forst.; Ataccia, J. S. Presl ; and Schizucapsa, Hance-which contain twelve or more species.

Properties and Uses.-The roots are bitter and acrid, but when cultivated they become larger and lose in some degree their acridity and bitterness, and contain much starch, which when separated is used for food.

Tacca.-The roots of T. oceanica yield the starch known as Tacca Starch or Tahiti Arrowroot. It may be employed as a substitute for Maranta starch. Cakes made from this starch are eaten by the natives of Otaheite and the other Society Islands, where this plant is commonly cultivated.T. pinnatifida is by some considered to be identical with the former specics. Like it, tlie roots contain starch, which is used as food by the inhalitants of China, Cochin China, Travancore, \&c.

Cohort 5. Narcissales. - Flowers hermaphrodite, regular or irregular. Perianth usually petaloid. Stamens 3 or 6 , inserted on the perianth or summit of the ovary. Ovary 3-celled; placentation axile. Seeds with copious fleshy, cartilaginous, or honny albumen ; embryo distinct. Leaves parallel-veined.
Order 1. Iridacef, the Iris Order.-Character.-Herbs, usually with bulbs, corms (figs. 244 and 245), or rhizomes ($f i g$. 233). Leares with parallel venation, generally equitant. Flowers spathaceous (fig. 1057). Perianth superior (fig. 1060), petaloid, 6 -partite (fig. 1058), in two whorls, which are equal or nearly so (fig. 1058), or unequal (figs. 1057 and 1060), in the size of their segments ; or sometimes the parts are entirely distinct ; convolute in æstivation. Stamens 3, inserted on the outer segments of the perianth (f ig. 1058) ; anthers 2-celled, innate, extrorse. Ocary inferior (fig. 1060), 3 -celled, with axile placentation (fig. $105 \mathbf{5}^{7}$) ; style 1 (figs. 1058 and 1059) ; stigmas 3 , often petaloid (fiys. (34.3, stiy, and 1060, s, s). Fruit capsular, 3-celled, 3valved, with loculicidal dehiscence (.fig. 712). Seeds numerous, with horny or fleshy albumen (fig. 1061, p).

Diagnosis.-Herbs. Leaves with parallel veins. Flowers on scapes, spathaceous. Perianth petaloid, superior, 6-partite, or rarely the parts are quite distinct, in 2 equal or nnequal whorls. Stamens 3, distinct or monadelphous ; anthers innate, extrorse. Ovary 3-celled, with axile placentation, inferior. Fruit capsular, with loculicidal dehiscence, 3-celled, 3-valved. Seeds numerous, albuminous.

Distribution and Numbers.-Chiefly natives of temperate and warm climates. They are found in various parts of the globe, but are most abundant at the Cape of Good Hope.

Fig. 1057.

Fig. 1060.

Fig. 1058.

Fig. 1057. Dingram of the flower of n species of Iris, showing solitary braet below, six divisions to the perianth arranged in two whorls, three stamens, and a three-eelled ovary with axile placentation.-Fig. 105S. A flower of the Spring Crocns (Crocus veraus) ent open to show the three extrorse stamens attached to the outer segments of the perianth. - Rig. 1059. The three petaloid stigmas of the same with the end of the style. -Fig. 1060. Vertieal seetion of the flower of Iris germanica. ce, ce. Two of the extermal and larger divisious of the perianth. ci. One of the jutermal and sma'ler divisions. f. Tube formed by the minion of the divisions of the perianth. e, e. Stamens, covered by the petaloid stigmns, s_{1} s. o. Inferior ovary, with numerous ovules, g, attached to plaentas in the axis. -Fig. 1061. Vertien section of the seed of the sme. f. Integnments of the seed. p, Albumen. e. Enbryo. m. Mieropyle. (From Jussien.)

Illustrative Genera:-Tris, Limu.; Gladiolus, Tourn.; Crocus, Linn. There are about 560 species.

Properties and Uses.-The rhizomes of several species possess aerid properties, which eauses them to be purgative, emetie, ice. Some are poisonous, and a few have fragrant rhizomes. Others
are employed as eolouring agents, and some are commonly regarded as antispasmodie, carminative, \&e. Many eontain starch in large quantities, but as this is usually combined with acridity, they are not generally available for food, although some are stated to be thus employed in Africa.

Crocus sativus, the Saffron Croeus.-This plant is the Karcom of the Bible. The dried stigmas with the end of the style (figs. 1058 and 1059) constitnte Hay Saffron, or when pressed together into a mass they form Cake Saffron. The latter kind, however, is not now found in the shops in this country ; the substance sold under that name being the eompressed florets of Carthamus tinctorius (see Carthamus). Saffron eontains a eolouring prineiple called polychroite. Saffron is also said to be obtained in Greeee of good quality from C. Sellerium; and the dried stigmas of other speeies, as C. aureus, C. odorus, C. luteus, C. vernus, \&e., are likewise employed to some extent for obtaining saffron in other parts of the Continent, \&e. Saffron is mueh in request as a flavouring agent on the Continent and in the East. It was also formerly mueh used in this country for a similar purpose, but at present is but little employed in this way exeept in Cornwall. It is offieial in the British Pharmaeopœeia, and is prineipally used as a colouring agent in this country, but also to some extent in certain nervous affections, and as an emmenagogue. Bird-fanciers also use it, as they believe it assists the moulting of birds.

Iris, Flower de Luee.-The rhizomes of several species are more or less purgative and emetic. The so ealled Orris-root of the shops is in reality the dried trimmed rhizomes of I. florentina, I. pallida, and I. germanica. 'These rhizomes possess a violet odour, and are prineipally used in perfumery, and also for imparting a pleasant odour to the breath; and by the Frenel, especially, for making issue-peas. The roasted seeds of 1." Pseud-acorus, the Yellow Flag of this eountry, have been reeommended as a substitute for eoffee, but they are altogether wanting in the important properties which render that substance so valuable for the preparation of an unfermenterl beverage. The rhizome and rootlets of I. versicolor, Blue Flag, are offieial in the United States Pharmaeopeia; and are regarded as purgative, emetic, and diuretie. The resinous substanee termed iridin or irisin by the Eeleeties in the United States is oltained from these rhizomes, and from those of allied speeies; it is regarded as possessing eathartie, alterative, and diuretie properties.

Morea (Homeria).-Some speeies of this genus, more espeeially that of M. collina, and of other Iridaeeous plants known under the nane of 'Tulp' at the Cape, have poisonous properties, and have been the cause of fatal results to eattle whieh have ehanced to eat it. Tulp is also poisonous to human beings.

Order 2. Amaryllidacee, the Amaryllis Order.-Charac-ter.-Bulbous or fibrous-rooted plants, without any aerial stem, or sometimes with a woody one. Leaves with parallel venation, and usually linear-ensiform, sometimes dry and harsh. Flowers usually on scapes, and spathaceous (fig. 402). Perianth regular or nearly so (figs. 402 and 1062), petaloid, superior (fig. 1064) with six divisions, and with (figs. 502 and $1063, n$) or without a corona (fiy. 1064) ; zestivation imbricate or valvate. Stamens 6, inserted on the perianth ($f y .1063$) or summit of the ovary (fig. 1064) ; anther's 2 -eelled, introrse. Ovary inferior (fig. 1064), 3-cclled (fig. 1062) ; placentas axile. Iruit capsular,

3 -eelled, 3 -valved, with loeulicidal dehiseenee, and nunerous seeds; or baecate, with $1-3$ seeds. Seeds with fleshy or horny albumen, sometimes carunculate ; embryo with the radiele turned to, or remote from, the hilum (fig. 1065).

Diagnosis.-Leaves with parallel veins. Flowers spathaceous. Perianth superior, petaloid, eommonly regular, 6 -partite, frequently with a corona. Stamens 6 ; anthers introrse. Ovary inferior, 3 -celled, with axile placentation. Fruit eapsular, 3valved, with loeulieidal dehiscence, or baeeate. Seeds numerous, albuminous.

Fig. 1062.

Fici. 1063.

Fig. 1062. Diagram of the flower of the Spring Snowflake (Leucojum vernum), with six divisions to the periautlo arranged in two whorls, six stamens, and a 3-celled ovary with axile placentation.-Fig. 1063. The perimuth of the Daffodil (Narcissus Pseuao-nercissus) cut open in a vertical manner. t. Tube bearing six staunens. l. Limb of the periantl. n. Corona.

Distribution and Numbers.-Natives of many paris of the world, but, like the Iridaeer, most abundant at the Cape of Good Hope. Illustrative Genera :-Galanthus, Limn. ; Amaryllis, Limn.; Nareissus, Limn.; Agave, Limu.; Hypoxis, Limu. There - are above 460 species.

Properties and Uses.-Several plants of this order possess poisonous qualities. This property is especially evident in Hxmanthus toxicarius, the juice of whieh is used by the Hottentots to poison their arrow-heads. Some yield exeellent fibres. The juice of some few speeies is saceharine, and is employed in the preparation of fermented liquors. Starch may be obtained from certain speeies of Alstremeria. Some are bitter and aromatic. Medieiually, several have been used as emeties and purgatives.

Agave americuma, the American Aloe, Muguey, or IInndred-years' Plant. The later mame was given under the erroneons idea that this species of Agave lived a humbed years before flowering. From the leaves of this rund other species the useful fibre knowa as Atoe Fibre, l'itu or P'té Hemp
is obfained. It is employed for textile fabries and for paper-making. The juice of the leaves of Agate americana and other speeies just before flowering. contains much sugar and mucilage, and when fermented yields a vinous acid beverage ealled I'ulyue, which is highly esteemed by the Mexieans. It has an odour something like putrid meat. A very intoxicating spirit or brandy may be also obtained from pulque. To this spirit the name of mexical or aquurdiente de maguey has been given. The unfermented juice is called Ayuamiel or honeyzuter. It is regarded as useful for the prevention of scurvy. Its ronts are reputed to possess alterative and diuretie properties. The leaves from the heart of A. Utahense and other speeies of Agave are cooked by the Pah-Utes, and form a very nourishing and palatable food.

Alstremeria pallida and some other suecics have succulent roots containing much starch, which, when cxtracted, is used as a kind of Arrowroot in certain parts of South Ameriea.

Crinum asiaticum, var. toxicarium of Herbert.-The fresh root (or more properly bulb) is official in the Pharmacopeia of India. It possesses emetic and diaphoretic properties, and its therapentie uses are said to be analogous to those of Squill. The dried root has similar qualities, but it is not so powerful in its action.

$$
\text { Fig. } 106 t .
$$

Fig. 1065.

Fia. 1064. Tertical section of the flower of the Spring Snowflake (Lencoinm rermmm).-_Fig. 1065. Vertieal section of the seet of the same.

Curculign.-. The roots of Curculign orchioides are used in Travancore by the native doctors in gonorrhen, menorrhagia, and other affections.

Narcissus Pseudn-narcissus.-From the bulbs of this plant A. W. Gerrard has obtained a crystalline neutral priuciple and an amorphous alkaloid, the latter of which he has named pseudo-narcissime. This alkalnid was found to produce profuse salivation, vomiting, and slight diarrhoa, when given hypodermically to warm-blooded animals.

Order 3. Hemodoracef, the Blood-root Order.-Charac-ter.-Herbs or rarely shrubs, with fibrous roots. Leanos usually equitant, ensiform. Perianth more or less superior, tubular, 6partite, regular, the divisions usually scurfy or woolly on their Dutside. Stamens 3 or 6 , when 3 they are opposite the inner segments of the perianth ; anthers introrse. Ovary inferior, or artially so, 3 -celled. Fruit dehiscent or indehiscent, covered oy the withered perianth. Secds few or mumerous, with cartiaginous albumen, and radicle remote from the hilum.

Distribution and Numbers.-Natives of America, the Cape If Good Hope, and Australia. Illustrative Genera:-Hremolorum, Smith, Vellozia, Mart. There are about 50 species.

Properties and Uses.-The roots of some species are used as
dyeing agents in North America, others are edible, and a few are bitter and astringent.

Aletris farinosa is remarknble for its bitterness. It is reputed to possess tonic and stomachic properties.

Hxemodorum.-The roots of several species, as those of II. paniculatum and H. spicatum, when roasted, are caten by the matives in some parts of Anstralia. The root contains a red colouring matter.

Lachnanthes tinctoria has a blood-red root which is used for dyeing in North America.

Cohort 6. Dioscorales.-Flowers unisexual and diœcious, regnlar. Perianth herbaceous. Stamens 6, inserted at the base of the perianth-segments. Ovary 3 -celled ; placentation axile. Fruit baccate or capsular. Seeds with abundant fleshy albumen and a distinct included embryo. Climbing herbs or small twining shrubs, with netted-veined leares.
Order 1. Dioscoreacere, the Yam Order.-Character.Climbing herbs, or small shrubs, with twining stems rising from tuberous rootstocks or tubers, placed above or under the ground. Leaves net-veined, stalked. Flowers unisexual, diœecious, small, bracteated. Male flower :-Perianth 6 -cleft. Stamens 6, inserted at the base of the perianth-segments. Female flower :-Perianth superior, 6-partite. Stamens sometimes present, but very short and abortive. Ovary inferior, 3 -celled ; styles 3 , distinct, or 1 , and then deeply trifid; ovules 1-2 in each cell, suspended. Fruit dehiscent and compressed, or fleshy and indehiscent, 1-3-celled. Seeds albuminous; embryo small, in a cavity in the albumen.

Distribution and Numbers. - Chiefly tropical plants. Tamus: communis is, however found in Britain and other temperate regions. Illustrative Genera:-Tamus, Linn.; Dioscorea, Limn. There are above 150 species.

Properties and Uses.-The plants generally contain an acrid principle. The tuberous rootstocks of many species of Dioseroca are, however, when boiled, used for food in tropical countries.

Dioscorea. -The thberous rontstock of several species, as those of J). alatu. D. sativa, and D. acnlerta, when boiled, are caten in tiopical connt ries, as potatoes are in Enrope. The Chinese Y:m (D. Batatas) is now enltivated in this country, and when properly boiled is estecmed by many as an esenlent. Some sjeceies of Dinscorea are very acrid even whed boiled, and c:annot therefore be used for food. The rhizome of I. rillosa, the W"ild Y'am of the United States, is rerarded as a valuable remedy in Virginia in rheumatism, and is henec commonly known as 'rhematism root.' It has also heen recommended in bilious eolic.

Tamus.-T. communis, Common Black Bryony, has a harge fleshy ront which when fresh possemses considerable acridity. It is sometimes need as a-topical application to bruised parts to remove the marks. Taken intermally, it acts as a diuretic, and also, it is said, as an emotic and cathartio. The yonng shoots of this species and those of T. crefict, when thormunty. boiled. so that their acridity is destroved, have been anten like asparamis.

Testudinarive elephartipes, a mative of the Cape of Good Itope, lass a very. peculiar tuberons stem, hence it has heen colled Elephant's Fomt or the "Wirtoies flant ; the inner part of this stent is very mealy, and is used for fook by the IIotientots

Series 2. Superæ.

Sub-series 1. Apocarpr.
Cohort 1. Trinuales.-Flowers unisexual. Perianth 6-lobed or 6 -partite. Stamens 6. Carpels 1 -ovuled. Seeds minute, with very dense albumen and rudimentary embryo. Minute, leafless, slender herbs.

Order 1. Triuridacee, the Triuris Order.-Diagnosis.-This is a small order of plants allied to Naiadacer, but usually to be distinguished by its rudimentary embryo. The flowers are, also, sometimes perfect.

Distribution, Numbers, and Properties.--Exclusively found in warm and tropical regions. Illustrative Genera:-Triuris, Miers; Sciaphila, Blume. There are 8 species. Their properties and uses are unknown.

Cohort 2. Potamales.-Flowers hermaphrodite or unisexual. Perianth with usually 6 segments, or rarely 2 or 4 , or absent. Stamens 1, few, or numerous. Seeds exalbuminous ; enbryo conspicuous. Usually water plants.

Order 1. Botomacea, the Butomus Order.-Character.Arfuatic plants with parallel-veined leaves, sometimes milky. Flowers hermaphrodite (fig. 1066), showy. Perianth inferior, of six pieces, arranged in two whorls (fig. 1066), the inner being coloured. Stamens few (fig .1066) or numerous. Carpels 3-6 ($f i g .593$) or more, more or less distinct; ovaries superior (fig. 1066) ; ovules numerous, arranged all over the inner surface of the ovaries (fig. 636). Fruit many-seeded, separating more or less when ripe into as many parts as there are component carpels. Seeds without albumen (fig. 1067). This order is inctuded by Bentham and Hooker in Alismucer.

Distribution and Num-bers.-A few plants of this order occur in tropical countries, but the greater number inhabit the northern parts

Fig. 1066. A flower of the Flowering Rush (Butomus umbellutus), with an inferior perianth arranged in two whorls, nine stamens, and six carpels.-F'ig. 1067. Vertical section of the seed of the same. of the world. Illustrative Genera:-Butomus, Tourn. ; Limnocharis, II. et B. There arc 7 spccics.

Properties end Cses. - Of little importance. Butomus umbellatus, the Flowering Rush, possesses acrid and bittcr propertics,
and was at one time used in medicine. The roasted rhizomes are edible.

Order 2. Alismaces, the Alisma Order.-Character.Swamp or floating plants. Leaves narrow or with an expanded lamina, parallel-veined. Flowers hermaphrodite (figs. 1068 and 1069) or very rarely unisexual. Perianth inferior, arranged in two whorls, each consisting of three parts (fig. 1068); the outer whorl herbaceous, the inner colourcd. Stamens few or numerous; anthers introrse. Carpels distinct, several (fig. 1068) ; ovaries superior, 1-celled ; ovules solitary or 2 superposed; placentas axile or basal (fig. 1069). Fruit dry. Seeds without albumen ; embryo undivided, curved.

Fig. 1068.

Fig. 1068. Flower of a species of Alisma, with an inferior perinnth arranged in two whorls each consisting of three parts, six stamens, and numerous separate carpels.-Fig. 1069. Vertical section of the same flower.

Distribution and Numbers.-These plants are prineipally found in the northern parts of the world. Illustrative Genera: Alisma, Juss. ; Actinocarpus, R. Br. There are about 50 species.

Properties and Uses.-Of little importance. Many liave fleshy or mealy rhizomes, which are edible when cooked. Others possess astringent properties. Alisma Plantago had formerly a reputation as a remedy in hydrophobia.

Order 3. Juncaginacee, the Arrow-grass Order:-Clia-racter.-Herbs, growing in marshes. Leaves with parallel veins. Flowers hermaplnodite, whitish or greenish. I'erianth small, more or less scaly, inferior, in two whorls, eaeh containing three pieces. Stamens 6, perigynous, anthers usually extrorse. Carpels 3-6, separate or more or less united ; ovules 1-2. Fruit dry, ultimately separating into as many parts as there are carpels. Seedsattached to axile or basal placentas, exalbuminous : embryo straight, with a lateral eleft (figs. 766 and 7ia). This order is included by Bentham and Hooker in Naiadacer.

Distribution and Numbers.-The plants of this order are found more or less in nearly all parts of the world, bnt are
most abundant in temperate and cold regions. Illustrative Genera:-Triglochin, Linn.; Potamogeton, Linn. There are about 50 species.

Properties and Uses.-Of little importance.
Ouvirandra fencstralis, a native of Madagascar, is commonly known nuder the name of the Lattice-leaf plant, from its leaves rescmbling open lattice-work. Its roots are of a fleshy farinaceous nature, and form an article of food; hence the name Ouvirandram by which the plant is known in Madagascar, the literal meaning of which is Water-yam.

Order 4. Naladacee, the Pondweed Order.- Character. Aquatic plants with jointed cellular stems. Leares with interpetiolar membranous stipules. Flowers small, unisexual (figs 1070 and 1071), monœecious or diœecious, solitary or in spikes. Perionth either wanting, or present and composed of 2 or 4

Fig. 1070.

Fig. 1070. Two flowers of the Horned Pondweed (Zannichellia palustris), one staminate, the other pistillate.-Fig. 1071. The gynoecium of the same, composed of four perfect carpels, and one imperfect.-Fig. 1072. Vertical section of one of the carpels. - Fig. 1073. Vertical section of the fruit and seed. All magnified. After Lindley.
parts, which are then free and scale-like. Stamens 1 or few, hypogynous ; pollen globose or tubular. Carpels 1 or more, listinct, with superior ovaries (fig. 1071); ovule solitary (fig. 1072). Fruit 1-celled, 1 -sceded (fig. 1073). Seed exalbuminous; embryo with a lateral cleft.

Distribution.-They are widcly distributed, but are chiefly ound in extra-tropical regions. Illustrative Genera:-Naias, Willd.; Zannichellia, Michel; Zostera, Linn.

Properties and Uses.-Their properties are of little importance.
Zostera marina, Sea-wrack, is in common use for packing, and for stnlfng chairs, mattrcsses, \&e., under the nanc of Alva (Ulva or Alga) marina. t has also been recommended for paper-making, but it is a very unsuitable naterial for that purpose.

Sub-series 2. Syncarpx.

Cohor't 1. Ialmales.-Flowers unisexual or hermaphrodite, usually arranged on a branched spadix, and enclosed in a spathe. Perianth 3 -merous, in two whorls, commonly green, but rarely coloured. Fruit indehiscent, 1 - or rarely 2 -seeded. Seed albuminous. Shrubs or trees.
Order 1. Palmacee, the Palm Order.-Character.-Trees - or shubs, with simple unbranched (fig. 199, 1), or rarely dichotomously branched trunks (fig. 200). Leares terminal (fig. 199, 1), large, mostly compound, with sheathing stalks. Flowers

F1G. 1075.

Fig. 1076. Fig. 1077.

Fig. 1078.

Fici. $100^{-9} 9$.

Fig. 1074. Diagram of a staminate flower of the Fan Paln (Chamerops), with six divisious to the perianth, and six stameus.-Fig. 1075. Diagram of n pistillate flower of the same, with six divisions to the perianth, aml a 3-eclled ovary.-Fig. 1076. Hermaphrodite flower of the Blue Dalmetto (Chumerops hystrix), with the perinath removed. or. Carpels. s\%. Sta-mens.-Fig. 1077. The same, with three of the stamens remored, so as to exhibit more completely the three carpels eomposing the pistil. sto Stamens. c. Curpels.-Fig. 1078. Vertical section of the fruit of the Cocoa-nnt 1ram (Cocos nucifern). a. The two outer layers or husk of the pericarp. b. Endocarp or inner layer. c. Albnnen. d. Carity in the allumen. e. Embryo.-Fig. 1079. Vertical section of the seed of the Fun I'nhm.
hermaphrodite (figs. 1076 and 1075) or unisexual (figs, 1074 and 1075), arranged generally on a brimched spadix (fiy. 417), wheh is enclosed by a spathe. Perianth usually green, inferior, in two whorls, each of which is composed of three parts (figs. 1074 and 1075). Stamens usually ($;$ (figs. 1074 and 1076), lyypogynous or
perigy nous. Carpels 1-3 (figs. 1076 and 1077), generally united, but sometimes distinct ; ovary superior ; ovules solitary, or rarely 2. Finuit (fig. 107S) nut-like, baccate, or drupaceous. Seeds with a minute embryo (fig. $1078, e$), in a pit of the albumen, d; ulbumen fleshy or horny (fig. 1079), of ten ruminate (fig. 763, p).

Distribution and Numbers.-Most of the plants are tropical, but a few occur in temperate regions. Illustrative Genera:Areca, Linn.; Chamærops, Linn.; Attalea, Humb.; Cocos, Linn. There are above 600 species.

Properties and Uses.-Of all orders of plants there is none, with the exception of that of the Grasses, so valuable to man as regards their dietetical and economic applications as that of the Palm Order. These plants supply him with sugar, starch, oil, wax, wine, resin, astringent matters, and also edible fruits and seeds. Their terminal leaf-buds, when boiled, are eaten as a vegetable. Their leaves are applied in various ways, as for thatching, materials for writing upon, and in the manufacture of hats, matting, \&c.; their wood is applied to many useful purposes; the fibres of their petioles and fruits supply materials for cordage, cloth, and various other textile fabrics; and the hard albumen of their seeds is applicable in many ways. But in a medicinal point of view they are of very much less importance ; indeed, they do not supply any important article of the materia medica used in Europe, although in tropical countries they are of more value, and in frequent use as medicinal agents.

Areca.-A. Catechu, the Betel Nut Palm.--The seeds are known inder the name of Betel Nuts or Areea Nuts. In the South of India an extract is made from these nuts, whieh is said to constitute the commercial variety of Cateehu known as Colombo or Ceylon Catechu, although it is doubtful whether any Catechu is prepared in Ceylon. It is the Betel Nut Catechu of Pereira. ${ }^{\text {. In }}$ its properties and uses this Cateehn resembles that obtained from Acacia Catechu, and the official Catechn from Uncaria Gambier. (See Uncuria.) Areea nuts are recrarded as astringent, and valuable therefore as a remedy in diarrhea. The powdered seeds or nuts have beeu longe employed as an anthelmintie for dogs, and Areea was introduced into the last British Pharmacopoeia, on aecount of its supposed effieney in promoting the expulsion of the tapeworm, and of the ronnd worm in the human suljeet, lout has now been omitted from possessing little or no value in such cases as a remedial agent. Charenal prepared from the Areca nut is termed Arecu-nut churcoul, and is sometimes used in this eomutry as a tooth-powder ; hut it dhes not appear to have any value over that of ordinary charcoal. The Betel Nut is one of the ingredients in the fumed masticatory of the Enst called Betel. (Sce Piper.) The dried expanded leaf stalks have been used in India as splints.-A oleracea is known as the West Indian Cabbage Palun, its young terminal bud when loiled being eaten as a vegetable.

Arenga succharifera or Suguerus succharifer, the Areng or Commuti Palm, supplies abundance of palm sugar in the Moluceas aud Philippines. Palm surar is ustally oldaned by boiling the juice which flows out from this and mauy other Palms upon wounding their spathes and surrounding parts; it is commonly known in India lay the name of dargery. The juice (torly.) of the Gommuti l'alın, when fermented, produces an intoxieating
liquid. In Sumbtra it is termed neva, and a kind of spirit (arrack) is distilled from it in Batavia. From the truuk of this Palm, when exhmsted of its sacharine juice, a good deal of our commercial Sngo is oltained. A sincle tree will yield from 180 to 200 pounds of Sago. (See alsn Metroxylon.) The juice of the fruit is very acrid. 'The stiff stroner horschair-like fibre known under the name of Gommuti or Ejow fibre is derived from the leafstalks of this palm.

Attulea.-A. funifera, Mart.-The fruits of this species are largel. imported ; they constitute the Coquilla Nuts of commerce. They are also termed Urucuri Vats. Their pericarps are very hard, and form a useful material for the handles of doors, drawers, stieks, imbrellas. \&c. The pendulons tibres of the petioles supply the coarser varicty of Pinssaba, known in commerce as Bahia Piassaba, the other and finer kind being derived from Leopoldinia Piassaba. (See Leopoldinia.) This coarser kind is oltained from Bahia. Other species of Attalea appear to yield similar fibres. From the seeds of A. Cahouni, the Cahoun P'alm, a fatty oil may be obtained. They lave been imported for this purpose. The seeds of A. Compta, the Pindova Palm, are much esteemed in Brazil, and the leaves are also uscd for making hats, \&e.

Borassus flabelliformis, the Palmyra Palm.-From the juice of this Palm toddy and arrack are procured in large quantities in lndia. Palmyra fibres are also obtained from its leaves, and Palmyra wood from the trunk.

Calamus.-Several kinds of walking-eanes are obtained from species of this genus, as C. Scipionum, the Malacea cane; C. Rotang and C. Rudentam, Kittan canes. Partridge canes and 'Penang lawers' are also the produce of andetermined species.-C. verus, C. viminalis, and other species, are likewise botanical sources of the canes now largely used for walking-sticks, and for chait bottoms, eouches, \&e. About twenty millions are annually imported, the value of which is probably not less than 40,000 . The fruit of C. Draco, and of probably other species, is the chief source of the astringrent resinous substance known as Dragon's Blood. (See also Pterocarpus Draco and Dracena Drucn.)

Caryota urens.-From this palm sugar may be proenred, and its juice forms a kind of toddy or palm wine. From the trualis of the old trees: kind of Sacro is obtained in Assam.

Ceroxylon andicola. -The trunk and axils of the leaves of this palm seerete wax, which may be applied to many useful purposes. It is a uative of New Granada.

Chamarops.-C. hamilis is the only Palm fonud wild in Enrope. It supplies fibres whieh have been nsed as a substitute for horselanr, and in Sicily its different parts are applied to various purposes, as walking. eanes, and for the making of hats, baskets, \&e. The leaves, under the name of Pahneto leaves, have been imported and used for paper-makins. Its young leaves or huds are also eaten as cabbage. Palm wine or toddy is likewise eollected from the spathes. The material employed for the Birazilian chip or grass hats is obtained from C. argentea.

Cocos nucifera, the Cocoa-nut Palm. Whis is perhaps the most valuable of all the Palns. An impure shigar, ealled Jaggery, is larpely obtained from the juice which flows out when its spathes and their neightomeng parts are injured. The fresh juice is termed Toddy. A spirit culled arrack is also prepared to a great extent from the fermented juice, as also vinegrar. The abmmen of the sceds, which are commonly kiown ass Cocoa-nuts, and the lignid portion within this (cocoa-nut milk), form an important part of the food of the imbatitants of tropical regions. In latre doses this milk when fresh has been nsed in ludin as an aperient. The Coeon-mut is also largelyconsumed in this country, From the alhmen the conerete oil known as cocor-nut oil or Cocosent butter, is obtained. It is extensively emploved for making candles and soap; the imports into this comtry atome being
nearly 100,000 tons annually. In India it is much esteemed as a pomatum ; but its uppleasant odour, and the rancid character which it soon acquires, prevent its use in this country for such a purpose. The oleine obtained by pressure from the crude oil, aud afterwards purified by alkalies, \&ec., has been recommended as a substitute for cod-liver oil, but although its employment has been farourably reported upon by some physicians, it has not been grenerally approved. From the fibrous portion of the pericarp the strong fibre called Coir or Cocoa-nut fibre is obtained. Coir is remarkable for its curability, and is accordingly much nsed for cordage, fishing-ucts, matting, scrubbing-brnshes. \&c. The wood of the Cocoa-mut Palm is very hard, handsome, and dorable, and is employed for several purposes nuder the name of l'orcupine Wood.

Copernicu cerifera, the Carnauba Palm, is a native of the Brazils. On the lower surface of its leaves wax is secreted, which is occasionally imported under the name of Carnanba or Brazilian Wax. The root is said to resemble Sarsaparilla in its medicinal properties, and has recently been imported into this country.
C. rypha umbraculifera, the Talipot Palm, yields a kind of Sago in Ceylon, but this is not an article of commeree.

Elais guineensis and E. melanococca, the Guinea Oil Palms.-The sareocarp of the drupaceous fruits of these Palms abounds in oil, which when extracted is known as Palm Oil. This is a solid butter-like oil, of a rich orange-yellow colour, and is extensively used in this country and elsewhere in the manufacture of soap and candles, and for lubricating the whecls of railway-carriages, \&c. The imports amount to at least 50,000 tons annually. In Africa I'alm Oil is used as food by the uatives. 'The hard stony putamen of the same fruits also yields a limpid oil. Palm wine or toddy is likewisc obtained from the wounded spathes of these Palms.

Euterpe.-E. m'ntana is one of the Cabbage Palms. It is so called from the circumstance of its young terminal leaf-bud being boiled and eaten as a vegetable. From the fruits of other species, as E. edulis aud E. Assai, pleasaut beverages are prepared.

Hyphene thebaica, the Donm Palm of Egypt (fig. 200). The pcricarp of the fruit of this Palm resembles gingerbread ; hence this plant is sometimes known as the Gingerbread tree.

Leopoldinia Piassaba.-The persistent petiole-bases of this Palm terminate in long pendulous beards of bristle-like fibres; these are cut off from the yound plants after laving been previously combed out by means of a rude comb, and now form an important article of commerec in Brazil. The fibres are known under the names of Piassaba or Piaçava, Para Grass, or Monkey Grass. They are chiefly used as a substitute for bristles by brushmakers, and for making the stout brooms now commonly employed for cleaning the streets, \&c. ' 'wo kinds of Piassaba fibre are known in com-merce-onc, the tiner varicty, imported from Para, and therefore kuown in commerce as Para Piassaba, which is derived from this plant; and a coarser kind oltained from Attalea funifera. (Sec Attalca.) According to Spruce, the pulp of the ripe fruit yiclds a delicious driuk, resemblings cream in colour and tastc.

Mauritia vinifera, the Muriti Palm, and M. Alexuosa, yield a large quantity of toddy.

Metroxylou ("Sagus). -From the trunks of M. Sagu or M. leve, and M. Rumphi, the principal part of our Sago is obtaiued ; from the former as much as 800 pounds may be procured from a siugle plant. Sago is principally imported into this country from Singapore. The average importatiou for some years has exceeded 4,000 tous. All the Sigo consumed in this contry is derived from these palms and Arenga saceharifera. (Sec Arenga and Cycres.)

Phenix.-P. duetyliferc is the Date Palm. The fruits called dates are
nutritious, and afford the prineipal food of the inhabitants of some parts of Afriea and Arabia. Animals are also fed upon them. 'l'hey are imported into this eountry, and used for dessert, bnt they are not so iuuch esteemed as they deserve. They have been lately employed as a food for cattle, but at present their price is too high to allow of any great consumption for sueh a purpose. They were also mueh used a few years since in the preparation of what was ealled 'Date Coffee.' The Date Palm is the l'alin commonly referred to in Scripture. The juice (toddy) affords sugar, and an intoxicating beverage termed lagbi is also sometimes obtained from it. The Ieaves, the fibres obtained from the leaf stalks, the wood, and in fact nearly every part of this palm, are applied to some useful purpose.- P. sylvestris, the Wild Date Palm, is the plant from which the largest quantity of palm sugar is obtained. It is a native of India, where it is said $130,001,000$ pounds of sugar are annually extraeted from it. Palm sugar resembles cane sugar in flavonr. The total amount of palm sugar obtained from the different kinds of Palms has been estimated by Johnston at $2: 20,000,000$ pounds. - P. farinifera yields an inferior kind of Sago, which is used in some parts of India.

Phytelephas macrocarpa.-The hard albumen of the seeds of this Palm eonstitutes the Vegetable Ivory of eommeree; this is nsed extensively by the turners ; but its principal consmmption is for button-making. These seeds are usually imported from Guayaquil. The fruits are supposed to present some resemblance to negroes' heads, and are hence termed Cabezu del negro.

Raphia Ruffia. -The integnment peeled from the voung leaves of this Palm is said to constitute the substance known as Manila Bast or Raphiu Bast, whieh is used as a tying material by gardeners.

Seaforthia eleyans.-This Palm prodnees the Moreton Bay Canes of commeree.

Cohort 2. Arales.-Flowers hermaphrodite or unisexual, arranged on a spadix, spike, or head, and with or without a spathe ; or sunk in pits of a minute scale-like frond. Perianth absent or scaly. Fruit a drupe or baccate. Seeds 1, few or many, almost always albuminous ; embryo minute, usually straight. Herbs, often very large, or rarely trees.
Order 1. Pandanacee, the Screw-pine Order.-Claracter. - Palm-like trees (fig. 199, 2) or shrubs. Leares amplexicanl, linear-lanceolate, and then imbricate, and spirally arranged in 3 rows; or pinnated or fan-shaped. Flowers misexual or polygamous, numerous, arranged on a simple or branched spadix, with many spathaceous bracts. Perianth absent or scaly. Stcemens numerous ; unthers 2-4-celled. Ovaries 1-celled; ovnles solitary or numerous, on parietal placentas. Fruit consisting of a number of 1 -seeded fibrous drupaceous carpels, or baccate, and many-celled, and many-seeded. Embryo mimnte, imbedded at the side ncar the base of fleshy albumen. By benthum and Hooker this order is separated into two orders, the Pandanaccie and the Cyclanthaccix.

Distribution and Numbers. - Exclusively trupical plants. Illestrative Gencra:-Pandanus, Limu. fil. ; Carludovica, R. of P. There are about 75 species.

Properties and Uses.-None possess any very active propertics. Pandanus has edible seeds. The juice which Hows from the
wounded spadices of Nipa, when fermented, furnishes a kind of wine. The fruit of Nipa fruticans is the Atap of India. The young unexpanded leaves of Carludovica palmata furnish the inaterial employed in the manufacture of Panama hats.

Order 2. Typhacee, the Bulrush Order.-Character.Herbs growing in watery places. Leaves rigid, linear, sessile, parallel-veined. Flowers monœcious, arranged on a spadix, or in heads, without a spathe. No true perianth, merely scales or hairs. Male flower with 1 - 6 distinct or monadelphous stamens, with long filaments, and innate anthers. Female flower a solitary l-celled carpel, with a single pendulous ovule. Frut indehiscent. Seed with mealy albumen ; embryo axile ; radicle next the hilum.

Distribution and Numbers.-A few are found in tropical and warm climates, but they are most abundant in the northern parts of the world. Illustrative Genera:-Typha, Linn.; Sparganium, Linn. These are the only genera; they include about 13 species.

Properties and Uses.-Unimportant.
Typha.-The young shoots of T. latifolin and T. angustifolia are sometimes boiled, and eaten like Asparagus; their rhizomes are also edible; and their pollen is inflammable. The pollen of some speeies of Typha is edible; thus. that of T. elephantinu is made into a kind of bread in scinde, and that of T. utilis in New Zealand. Some species are said to be astringent and diuretic.

Order 3. Aroidacew, the Arum Order.-Character.Herbs or shrubs, with commonly an acrid juice, and subterranean tubers, corms (fig. 1080, b), or rhizomes. Leaves sheathing (fig. $1080, l$), usually net-veined, simple or rarely compound. Flowers unisexual and monœcious, or hermaphrodite, arranged on a spadix (figs. 403 and 1081) within a spathe (fig. 403), or the spathe is absent. Perianth none (fig. 1081) or composed of scales which are inferior. Male flower:-Stamens few or numerous ; anthers extrorse, sessile (fig. 504) or upon very short filaments. Female flower :-Ovary (fig. 1082) 1- or more celled, superior. Fruit succulent (fig. 1080, c). Seeds pulpy, with abundant mealy, horny, or fleshy albumen (fig. 1083), or rarely exalbuminous ; embryo various.

Diagnosis.-Flowers on a spadix, and with or without a true spathe. Flowers naked, unisexual and moncecious; or hermaphrodite, and then frequently with a scaly inferior perianth. Anther's extrorse. Fruit succulent.

Division of the Order and Illustrative Genera:-The order may be divided into two sub-orders as follows:-
Sub-order 1. Aroides or Aracex.-Flowers unisexual, monoecious. Spadix surrounded by a spathe. Perianth none. Illustrative Genera:-Arum, Linn. ; Caladium, Vent.
Sub-order 2. Acores or Orontiea.-Flowers hermaphrodite.

Spadix surrounded by a spathe or naked. Perianth absent, or more gencrally present, and then scaly. Illustratire Genera:-Acorus, Linn.; Orontium, Linn.
This order was divided by Lindley into two separate ordersthe Aracex and Acoracex-on account of the hermalirodite flowers of the latter. In accordance, however, with the more general views of botanists, we make but one order, and place the tuo orders of Lindley as sub-orders.

Distribution and Numbers.-They abound in tropical countries, but also occur in cold and temperate regions. There are about 250 species.

Fig. 1080.

Fig. 1081.

Fig. 1083.

Fig. 1080. A plant of the Cuckoo-pint (A rum maculotum) in fruit. b. Corm. l. Leaf. s. The remains of the spathe. c. Fruit.- Fig. 1081. The spulix of the same with the spathe removed; the flowers are all naked and unisexual, n number of pistillate flowers or ovaries being below; above which are some rudimentary ovaries, then a number of sessile anthers, and above these are some staminodes or abortive stamens.- Fiy. 1082. Vertical section of the ovary of the same.--Fig. 1083. Vertical section of the seed.

Properties and Uses.-The plants of this order are all more or less acrid, and often lighly poisonous. But this acrid principle is frequently volatilc, or dccomposed by heat; hence it may be in such cases more or less destroyed by drying or exposing to leat the parts in which it is found. The best method of getting rid of the acridity is, however, by boiling in water, as the acrid matter is also commonly soluble in that Huid.

Starch is usually associated with the acrid principle, and when extracted, may be used for food like other starches. The underground stems or corms of many species, when cooked, are eaten in different parts of the world. Some are aromatic stimulants ; others expectorant, antispasmodic, or diaphoretic.

Acorus Calamus, Sweet Flag.-The rhizome is an aromatic stimulant, and is reararled by many as a valuable medicine in agues, and as a useful adjunct to other stimulants and bitter tonics. It is official in the United States and German Pharmacopeias. It is reputed to be sometimes employed by the rectifiers of gin. The candied rhizomes are employed by the Turks as a preventive against contagion. In India the rhizome is occasionally used as an insectifuge and insecticide, more especially in relation to fleas. The rolatile oil which may be obtaned from it by distillation is employed for scenting snuff, and in the preparation of aromatic vinegar.

Arisema atrorubens, Dragon Root, Indian Turnip.-From the eorm of this plant a nutritious fecula is obtained in the Linited States. The eorm is also given internally as a stimulant, in rheumatism, and in bronchial and other affections, and is likewise used extensively as an application to aphthous affections in children.

Arum.-The underground stems or corms of some of the species of this genus contain a large quantity of starch : thus those of A. maculatum. WakeRobin, Cuckoo-pint, or Lords and Ladies, a common native of this country, are the source of what has been called Portland Sago or Arrowroot ; a peck of corms yielding about 3 lbs . of starch. But the preparation of this starch is now, in a commercial point of view, given up. Formerly the corms were also used medicinally as diuretics and expectorants. When fresh, they act as an irritant poison.-A. campanulatum and A. indicum produee edible corms.

Caladium bicolor.-The corms of this and other species, when cooked, are edible. They are sometimes, but improperly, called 'Yams' in tropical countries. (See Dioscorea.)

Calla palustris has acrid rhizomes, but by drying, washing, grinding, and baking, these have been made into a kind of bread in Lapland.

Colocasia.-C. esculenta and other species have large fleshy corms which are much used in the West Indies, Madeira, Sce., as food, under the names of Yams (see Caladium bicolor), Cococs, or liddocs.-C. himulensis has also edible corms. They are used for food in the Himalayas.-C. antiquorum is applied to a like purpose in Egypt, and the corms of C. macrorhiza are also eaten in the South Sea Islands under the name of Tara.

Drucontinm.-The fresh roots of D. polyphyllum are in repute in Malabar for their antispasmodic propertics.

Rhuphidophora vitiensis, which is probably a variety of R. pertusa, is said by Holmes to be the botanical source of the fibrous portion of the remedy now known under the name of 'Tonga,' which is used as a remedy in meuralgia. Its native name is 'Nai Yalu,' or 'Walu.' A. W. Gerrard has found this portion to contain a volatile alkaloid, which he has named tongine. The other constituent of Tonga is said to be the inuer bark of Premna taitensis. (Sce Premna.)

Symplocarpus fcetidus, Skunk Cabbage.-The root has a very footid odour, especially when fresh. It is considered iu the United States as an efficacious nervinestimulant, and has been used in spasmodic astlma, whoop-ing-cough, catarrl in old people, and in other diseases. Its properties are much impaired by keeping.

Order 4. Lemnacefe, the Duckweed Order.-Character.Floating aquatic plants (fig. 252), with lenticular or lobed leaves or fronds. Flowers 2 or 3, enclosed in a spathe (fly . 1084),
moncecious, plaeed on the margin (f fy. 252) or surfaee of the frond, or in the axils of leaves. Perimenth none. Male flower with 1 (f ig. 1080) or a few stamens, whieh are often monadelphous. Female flower eonsisting of a 1 -eelled ovary (fig. 1085), with 1 or more ereet ovules. Fruit 1 - or more seeded,

Fig. 1084.

Fig. 1085.

Fig. 1084. A monœcious head of flowers of a species of Duckmeod (Lemna minor), consistiug of two male flowers, each of which is composed of a solitary stamen with a quadrilocular anther ; and oue pistillate flower in the centre; the whole surrounded by a spathe.-Fig. 1085. Vertical section of the pistil of the same.
membranous or baecate, indehiscent or sometimes dehiseent. Embryo straight, eleft, in the axis of fleshy albumen.

Distribution, Numbers, and Properties. - They inlabit cool, temperate, and tropical regions. Illustrative Genera:-Lemna, Linn.; Pistia, Linn. There are above 20 speeies. Their properties are unimportant.
Cohort 3. Liliales.-Flowers hermaphrodite or very rarely unisexual, in spikes, raeemes, umbels, or panieles, or solitary ; or rarely eapitate. Perimth in 6, or very rarely 4,8 , or 10 nearly similar distinet pieces, or united and commonly 6 lobed, regular or rarely irregular, usually all petaloid or green, or sometimes eoriaeeous or subglumaeeous. Embryo immersed in eopious albumen (not external to or in a lateral eavity). Leaves usually parallel-veined, or very rarely netveined.
Order 1. Liliaces, the Lily Order.-Charaeter.-Herls (fig. 242), shrubs (fig. 409), or trees (fig. 196), with bulbs (figs. 239-242), rhizomes (fig. 234), tuhers, or fibrous roots. Stem simple or branched (fig. 196). Leaves with parallel or rarely retieulated veins, sessile or sheathing, sometimes suceulent (fig. 1087, l). Flowers regulau (figs. 28, 429, and 108i), variously arranged or solitary. Perianth green or petaloid, inferior (figs. 28 and 1089), usually regular and 6-leaved (figs. 28
and 1086) or 6-partite (fig. 1087). Stamens 6 (fiys. 28 and 1086), or rarely more, or 3 in Ruscus, inserted on the perianth (fig. 1089), or rarely on the thalamus ; anther's introrse (figs. 523 and 1089). Ovary superior (figs. 28, 523 and 1084), 3-celled, or very rarely $4-6$-eelled, with numerous ovules on axile plaeentas (f igs.

Fig. 1086.

Fig. 1088.

Fig. 1089.

Fig. 1091.

Fig. 1090.
Fig. 1087.

Fig. 1086. Diagram of the flower of a speeies of Lily. s. The three outer divisions of the perianth. p. The three inner. e. The stamens. c. 'I'hreecelled ovary. - Fiy. 1087. Rreeme of flowers f, and portion of the sucenlent leaf 1 of a speeies of Aloe.-Fig. 1088. Flower of the Crown Imperial (F'ritillaria imporinlis) with half the perianth removed.- Fig. 1089. Tertical section of the flower of the Solomon's Seal (Polygonalum mulit-florum).-Fid. 1030. Transverse seetion of the ovary of the White Lily (Lilium rindidum).-Fig. 1091. Vertieal seetion of the seed of the Crown Imperiai.
$108(\mathrm{and} 1089$) ; style 1 (figs. 28 and 1089), or very rarely 3 or more, or absent; stigma generally simple (fig. 28) or 3-lobed (fig. 646). Irnit a loculicidal capsule, or sueeulent and indeliscent, usually 3 -celled. Seeds with flesliy allbumen (fig. 1091), numerons.

Diugnosis.-Leaves with usually parallel straight veins, or
succulent. Perianth inferior, generally 6-leaved or 6-partite, and regular. Stanens 6, or rarely more, or 3 in Lirscus; anthers introrse. Ovary superior, with axile placentation; style 1, usually undivided, or very rarely divided, and sometimes absent. Fruit indehiscent or a loculicidal capsule. Seeds numerous, albuminous.

Division of the Order and Mlhstrative Genera:-This order has been divided by Baker into three tribes as follows :-
Tribe 1. Liliex.-Anthers introrse (fig. 1089). Styles united (fig. 646). Fruit a loculicidal capsule. Illustratice Genera: Lilium, Linn.; Tulipa, Linn.; Scilla, Linn.
Tribe 2. Colchicex.-Anthers extrorse. Styles separate (fiy. 1092). Fruit a septicidal capsule (fig. 669). This tribe forms the order Melanthacex or Colchicacex of this volume.
Tribe 3. Asparagex. - Fruit baccate. Ilnustrative Genera:Asparagus, Lim.; Convallaria, Lim.
By Bentham and Hooker this order has been divided into 20 tribes arranged in 3 series, and includes the Colchicaceæ, Smilacer, and Philesiacese of this volume.

Distribution and Numbers.-They are widely distributed throughout the temperate, warm, and tropical regions of the globe. There are over 1,360 species.

Properties and Uses.-The plants of this order frequently possess important properties, but there is no great uniformity in them. Some are purgative ; others emetic, diuretic, diaphoretic, stimulant, acrid, \&c. Several yield astringent substances, and many produce valuable fibres. The bulbs, young shoots, roots, and seeds of others are highly esteemed, and largely consumed as articles of food and condiments.

Allizm.-The bulhs of several speeies of this genus are well known dietetical articles, and are extensively used as eondiments under the names of Onion, Garlic, Leek, \&c. Garlie and Onion are also sometimes employed in medicine; thas, externally applied, they are rnbefacient, \&c., and internally administered they are stimulant, expectorant, diuretic, and somewhat anthelmintic. Garlic is still official in the United States Pharmacopmeia. All the species yield an acrid volatile oil, eontaining sulphur as one of its ingredients. Some species when cultivated in warm dry reqions lose much of their aeridity and powerful taste, as the Pornuga, Spanish, and Eorptian Onions- A. sativum is the common Carlic ; A. Ceba, the Onion; A. Porram, the Leek; A. Schenoprasum, the Chive; A. Scorodoprasum, the Roeambole; A. ascalonicum, the Shallot.

Alne.-The species of this renus have sucenlent leaves (fig. 1087, l). The purgative drug Aloes is the inspissated juiee obtained from the parallel brownish-green yessels fombl beneath the epidermis of the leares. Several eommercial varieties of Alocs are known, but the origin of some is not aecurately determined.-Alop vulporis yields the kind ealled barbadoes Aloes.- A. Perryi has been proved to he the principal, if not the only, sonree of Socotrine Aloes, and also of the kind commonly known as Hepatic: Aloes, for, as was first slown by Pereira, the difference between these two kinds may be readily aceomed for by difference of preparation in the two respectively". Soeotrine aud Barbadoes Aloes are official in the British

Pharmacopreia.- Cape Aloes is vielded by A. spicata, A. ferox, and several other species. Other commercial rarieties of Aloes are known as Natal Aloes, Indian Aloes, Aden or Black Aloes, Curaçon Aloes, Se. Their sonrees are not acenrately known. Aloes is nsed in small doses as a tonie, and in larger doses as a purmative and emmenagognc. Aloes contains a crystalline principle termed aloin, to whieh its purgative properties are in a great measure due. Aloin is official in the British Pharmaenoeia.

Asparagns.-A. officinelis, Asparagus.-The voung sucenlent shoots, called turios, when boiled, are highly esteemed as in article of food. These and the roots and flowering stems are sometimes employed as dinreties. The jnice of Asparagus has marked dinretie properties, and is deserving of more atteution than it has of late years received. Asparagus is also popularly employed as a lithontriptic. The roasted seeds have been used as a sulistitute for cottee.

A sphodelus rumosus, a native of Turkestan, yields a tuber ealled Schireach, which is emploved as a diuretic and emmenagogue The Moroceo drun ealled Ablaluz is also said by Leared and Holmes to be derived from this plant.

Camassia esculenta bas edible bulbs, whieh are used liy the North Ameriean Indians under the name of Quamash. They are also known as Biscuit-roots.

Convallaria majalis, Lily of the Falley.-All parts of this plant have long had a repntation in Rinssia in the treatment of dropsy, and have bee a much eniployed of late years in this country and elsewhere, and frequently with good effects, in organic diseases of the heart, \&c. Convallaria appears to resemble digitalis, more than that of any other substance, in its aetion, but is not identical with it. Its properties seem to be pineipally dus to a glueosidet, ermed convollamurin, but also to some extent to another gluenside-convall.rin.

Dracaem Draco, the Dragon Tree of Teneriffe (fig. 196), yields a re 1 resin resembling Dragon's Blood, but it is not now known in commerce. (See Co'umus and Pterocarpus.) The roots of D. terminatis, the Ti llant, are baked, and eaten largely by the inhabitants of the Sandwich Islands. A fermenterl beverage is also obtained from the juice of this plant; and its leaves are employed as fodder for cattle, and for elothing and other domestic purposes.

Lilium.-The bulbs of some speeies, as those of I. tennifolium, L. kumtschaticum, and L. spectubile, are eommonly eaten in Siberin.

Phormium tenax.-This plant is a native of New Zealand. The fibre ohtained from its leaves possesses great strength; it is eommonly known under the name of New Zealand Flax. It is much used for twine and cordage, and oceasionally for linen, \&e. It was reeommended many years aro for paper-making, hut although a very strong paper may be prepared from it, very little eommercial progress las been made with this material. Its ront has heen recummended as a substitute fur Sarsaparilla ; and reeently it and the leaves have been stated to possess vulnerary properties.

Polngonatum officinale or vulgare.-The rhizomes of this, and probably those of P. multiflorum are sold in the herb shops under the name of Solomon's Seal. They are employed as a popular application to remove the marks from bruised parts of the body.

Rusens aculeatns, Butcher's Broom (fig. 409), has aperient and diuretic roots, which were formerly inuch employed in visceral diseases. The roasted seedly have been used ats a substitute for eoffee.

Sunseviera zeylanica and other speeies produce very stroug and tough fibres, which are known muder the names of Afriean Hemp and Bowstriug Hemp.

Trillinm.-T'he rnot of T' erectum (prendulum), under the name of Beth lioot, is used in the United States, and is regarded as astringent, tonie, and antiseptie. It is especially useful in menorlungia.

Urginea-U. Scilla (Scilla maritima),-The hull, of this spreies is the official Squill. It is a raluable medicine; in small doses actine as an expectorant and diuretic, and in larger doses ats an emetic and cathartic. In excessive doses it is a narentico-acrid poison. Two active principles have lieen kuown for some time as contained in Squill. one of which has heen reputed to possess expectorant and diuretie properties and not poisonous; and the other withont any value in medicine, but acting simply ats an irritant poison: the former has ljeen called scillitin, the latter sculein. Merck has more recently, however, found three principles, which be terms scillitnxin, seillipierin, and scillin, and he infers that the medieinal aetivity of Squill depends upon the two former.- U. indica and some other species appear to have similar properties to the offieial Squill.

Yanthorrhoo.-The species of this genus are commonly known in Now South Wales, where they are natives, under the name of Grass-trees. Their tops afford fodder for cattle, and their young leaves and buds are paten as a vegefable. From X. arborea, X. hasiilis. and others, two resins are ob, tained; one of which is known as the Yellow Resin of New Holland or Botany Bay Resin, the other as the Red Resin of New Holland or Black-hoy Gam. "The latter appears to be the produce of X. hastilis. Both resins exude spontancously from the trunks of the trees, and both possess a fragrant lalsamic obour. They have been recommended for use in the preparation of pastilles, and medicinally in those cases where tolu and other balsams are emplored.

Tucca gloriosu and other species whieh are commonly known under the name of Adan's Needle vield fibres, but these are little used. The leaves
 New Mexico, Arizona, and of South California, have been recommended recently as a valuable material for paper manufaeture.

Order 2. Colchicace or Melanthace.e.-The Colchicum Order. - Character.-Herls, with bulbs, corms (fiys. 246 and 1092), tubers, or fibrous roots. Flowers regular (figs. 1092 and 10.33), usually hermaphrodite, or rarely unisexual. Perianth. inferior, white, green, or purple (f fo. 1092), (i-partite or 6 leaved. Stamens i; (figs. 519 and 1093) ; anthers extrorse (riy. 519). Ovar! superior or nearly so, 3-celled, with axile placentation (fig. 1093) ; style 3 -partite (fig. 1092) ; stigmas :3. Fruit 3-celled (fuy. 1094), 3-valved, with usnally septicidal dehiscence (fig. 669). Seeds mumerous : embryo minute, in Heslyy albumen (fiy. 1095).

By Bentham and Hooker the plants of this order (see Liliaecex) are now placed, accordiney to the vieus of Buler, in the Liliacea.

Diammosis.-Herbs. Flowers regnlar, hermaphrodite or rurely misexual. Perianth inferior, li-partite or 6-leared. Stamens 6 ; anthers extronse. Ovary superiou ; style 3 -partite. Fruit a septicictal or very rarely a loculicidal capsule, 3 -celled, 3-valved, membranous. Seeds numerous, albuminuus.

Distribution und Numbers.-Generally diffised, but most irbundant in Europe, North America, and the northern parts of Asia. Illustrative Generu:-Colchicum, Limn. ; Toheldis, Hulson. There are about 150 species.

Properties aul Uses.-The plants of this order we almost universally poisonous owing to the presence of powerful alkaloids. But in proper doses several are valuable medicines, pos-
sessing emetic, purgative, diuretic, acrid, and narcotic properties.

Scheenocaulon officincle (Asagrea nfficinalis).-This plant, a native of Mexico, is the source of the othcial Cevadilla or Sabarlilla, of the British Pharmacopeia. Cevadilla is prineipally employed as a sonce of the alkaloid cerutrine, which appears to be contained only in the seeds; these are therefore alone ofticial for its preparation. The alkaloid is aiso official, but as obtained by the Pharmacopoeia process it is not quite pure, but is probably a mixture of alkaloids. Veratrine has been used externally, as a rubefacient, in rhemmatism, gont, and neuralgic affections, and also internally in similar affections in doses of one-twelfth to one-sixth of a grain. It is a most powerful poison. Cevadilla seeds have been employed internally as an anthelmintic. They are sometimes called lice seeds, because when powdered and appliced externally ther destroy vermin.

Colchicrm.-C. autnmiale, Colchicum or Meadow Saffron.-Both the seeds aud corms of this plant are official in the British, Indian, and Uuited

Fig. 1092. Flowering plant of the Colehieum or Meadow Saffiron (Colchicum autumnale).-Fig. 1093. Dingram of the flower of the same, with six livisions to the perianth arranged in two whorls, six stimens, and it 3-celled ovary. - Fi\% 1094. Transverse seetion of the capsule.-Fig. 1095. Vertieal section of the seed.

States Pharmacouceias. They are cmployed merlicinally in gout and rhen matism: but in improper doses they aet as a nareotico-acrid poison. They owe their properties essentially to a peculiar alkaloid, called colchicine, Which las been also used medicinally in similar diseases to colchienm. In -hronic rheumatism and in neuralgic affections of the joints, hypodermice injections of cokehicine have also been found useful. The one celebrated l'rnarla nostrum for cout, called Euu médicinule d'JIusson, owed its properties to Colehicum. The fowers and leaves, more especially the latter, are luisonoms to cattle, and luenec this plant, which, moreover, occupies a considerable spaec, as it has large leaves, should be cradicated as far as possible
from the pastures in which it is found. The Hermodectyls of the Greok physicians and Arabians, and which were largely cmployed by them in diseases of the joints, have been shown by Planchon to have leen the eorms of C. variegatum, the somrce also of the Hermodaetyls of the present diy. Some other Hermodaetyls had a different origin.

Veratrum.- The rhizomes and rontlets of V. allum are enumonly krown as White Hellebore roots. They contain several bases, the more important being the alkaloid veratrine, and another peculiar alkaloid termed jervine. White Hellebore is a narcotico-aerid poison. It has been employed as an errhine, and for destroying vermin ; and internally as a purgative and anudyne in gout, \&e. The dried rhizome and rootlets of V. viride, Green Hellebore, are now much employed in the United States, and to some extent e'sewhere, under the name of American Hellebore or Green Hellebore, as an arterial sedative in inflammatory affeetions. John liarley describes its action as neeupying a position intermediate between eolehicun and digitalis. Green Hellebore rhizome and rootlets are official in the British, Indian, ind United States Pharmacopcias.

Order 3. Smifacee, the Sarsaparilla Order.-Charac-ter.-Herbs or shrubs, more or less elimbing (fig. 1096). Leelces petiolate (fig. 1096), net-veined, artieulated. Flowers regular, unisexual and dicecious, or hermaphrodite. Perianth inferior, (6-partite, with all its divisions alike. Stamens 6, perigynous or rarely hypogynous ; anthers introrse. Ovary superior': 3- $\overline{\text { - or }}$

Fig. 1096.

Fig. 1090. Portion of a branch, with leaves and fruit, of smilax prapyracea.
rarely 1 -eelled, with orthotropous ovules; stigmas 3. Fruit baecate (fig. 1096), fow or many-seeded. Seeds with a minute embryo, in hard albumen. Thisorder, us we have already noticed, is included in Liliacere by Bentham and Hooker.

Distribution and N"umbers.--The speeies of this order are seattered over various parts of the world, both in tropical and temporate climates; they are, however, most abuadant in tropieal America. Illustrative Genere:-Smilax, Linn.; Ripogonum, lorst. 'These we the only genera; there are probably
about 120 species, but some botanists make the number consiterably more.

Propertues and Uses.-The plants of this order generally possess alterative properties.

Ripogonum parufforum has similar properties to Sarsaparilla. (See Smilar.) It is a mative of New Zealand, where it is much used as a remedial agent.

Smilax.-The roots of several speeies or varieties of Smilax eonstitute the Sarsaparilla of the Materia Mediea, whieh is commonly regarded as al valuable alterative. It is extensively employed in syphilis, various cutancous diseases, rheumatism, and many other iffections. Several kinds of Sarsaparilla are known, of which the most esteemed is that eatled Jamaica Sarsaparilla, althongh it is not the produce of that island. but of Central America. It is obtained from S. officinalis. This kind is alone nfticial in the British Pharmaeopeia. Other kinds of Sarsaparilla distinguished in commeree, are Mexiean or Lean Vera Cruz, from S. medica; Liston, Para, or Brazilian, from S. papyracea, and probally also from S. officinulis; Guatemala, from S. papyracea ; Honduras, from also, I believe, S. papyracea; and Guaraquil, from an unknown speeies. Several other species of Smilax are likewise in use in different parts of the world, as N . uspera in the South of Europe, where its roots are termed Italian Sarsaparilla ; S. glabra, S. lancifolia, S. ovalifolia, and S.prolifera in Indin; S. glycuphylia in Australia, S. Macabuchu in the Philippines, and S. anceps in the Mauritius, \mathbb{S}.-S. China is commonly regarded as the source of the ('hiua Ront of the Nateria Medica; but others refer it to S. ferox of Wallich. Several spurious China Roots are in use in America; their sourees are dnulbtful.

Order 4. Roxburghiacese, the Roxburghia Order.-Cha-racter.-Twining shrubs with tuberous roots. Leares netreined, leathery, broad. Flowers large and showy, solitary, hermaplrodite. Perianth inferior, with 4 petaloid divisions. stamens 4, hypogynous, with enlarged connectives; auther: introrse, apicilar. Ovary superior, 1 -celled, with a basal placenta ; stigmu sessile. Fruit 2 -valved, 1 -celled. Seeds numerous, in 2 stalked clusters, anatropous; embryo in the axis of fleshy albumen.

Distribution, Numbers, and Properties.-They are natives of the hotter parts of the East Indies. There is but one genus, Roxburghia, Dryand., which includes 4 species. Their properties are unimportant.

Order 5. Philesiaceie, the Philesia Order.-Diagnosis, dr.-The plants of this order are closely allied to the Roxhurghiacese, from which, however, they are readily distinguished ly their hexamerous perianth and androcium, perigynous stamens, parietal placentation, long style, and semi-anatropous wules. They are natives of Chili. There are 2 generaPhilesia, Commers. ; and Lapageria, R. et P.-and 2 species. In their properties they are said to resemble Sursaparilla. (See rimitar.) This order is inchuded in Liliaces by Bentham and Hooker.

Order 6. Juncaces, the Rush Order.-Character.-Sedge
or grass-like herbs, rhizomatous or witl tufted or fibrous roots. Leares with parallel veins, fistular or more or less flattened and grooved. H lowers regular (fig. 1097). Perianth inferior, (j partite (fig. 1097), scale-like or coriaceous, greenish or brown, persistent. Stamens 6 (fig. 1097), or rarely 3, perigynous ; anther:s introrse, 2 -celled. Ovary superior (fig. 1097), 1-3-celled ; style 1 (fig. 1097), stigmas 3 (fig. 1097) or 1. Fruit a loculicidal cap)sule, 3 -celled, 3 -valved, and with 1 or many seeds in each cell ; rarely 1 -celled, 1 -seeded, and indehiscent; embryo very minute, in fleshy or horny albumen (fig. 1098) ; radicle inferior.

Distribution and Numbers.-A few are found in tropical regions, but the mass of the order inhabit cold and temperate climates. Illustrative Genera:-Juncus, DC.; Linzula, DC: There are about 200 species.

Properties and Uses.-Their medicinal properties are unimportant, although some have a reputation as anthelmintics and

Fig. 1097.

Fig. 1098.

Fiy. 1097. Flower of a species of WVood-rush (Luzula), having an inferior perianth with 6 divisions, 6 stamens, and a superior ovary with 1 style and 3 stigmas.-Fig. 1098. Vertieal section of the seed of the same.
diuretics. The pale cellular tissue at the base of some of the leaves of certain species is occasionally eaten. The chief use, however, to which the plants of this order are applied, is in making floor mats, and the bottoms of chairs, dic. The leares of the species of Juneus are employed for these purposes. The internal cellular substance of the fistular leaves of Junci, which is commonly called the pith, is employed for the wicks of rush-lights. In China, a decoction of this cellular matter is also much used as a cooling medicine in febrile atfections. It is likewise employed in the manufacture of sun-hats, resembling those made in India from Aischyomene aspera, but they are not so durable as the Sola or Shola hats of Calcutia. (See Aischynumene.)
Cohort 4. Pontederales. - Flowers hermaphrodite. in spikes, panicles, or heads. Perianth of 2 segments or (6 in two whorls, all petaloid. Style simple. Fruit capsular ; placentation axile. Seeds with abundant mealy or tleshy albumen ;
with the embryo immersed-that is, not external to, or in a lateral cavity of the albumen. Marsh or water lierbs.
Order 1. Postederacee, the Pontederia Order.-Cha-racter.-Aquatic herbs. Leaves sheathing at the base, with occasionally dilated petioles. Flouer's hermaplnodite, irregular, spathaceous. Perianth inferior, 6-partite, petaloid, tubular, persistent, rolling inwards after flowering. Stamens 3 or 6, inserted on the segments of the perianth; anthers introrse. Overy superior; style 1 ; stigma simple. Fruit capsular, oceasionally somewhat adherent to the persistent perianth. Seeds numerous, with mealy albumen.

Distribution, Numbers, and Properties.-They are natives of the East Indies, Africa, and America. Illustrative Genera:Leptinthus, L. C. R.; Pontederia, Linn. There are above 30 species. Their properties are unimportant.

Order 2. Philydracee, the Water-wort Order. - Charac-ter.-Herbs, with fibrous roots. Leaves equitant, elsiform, sheathing. Flowers surrounded by a spathaceous persistent bract, hermaphrodite. Perianth inferior, 3 -partite, petaloid, the two upper segments united so that it appcars to consist of 2 segments. stumens 3, 2 of which are barren and petaloid, and all mited to the anterior lobe of the perianth ; pollen united in masses of four. Ovary superior, 3-celled, with axile placentas; style simple; stigma capitate. Fruit a loculicidal capsule. Sceds numerous, with an embryo in the axis of fleshy albumen.

Distribution, Numbers, and Properties.-They are natives of China, Cochin China, and Australia. There are 2 genera (Philydrum, Banks, and Hetreria, Endl.) and 2 spccies. Their properties and uses are unknown.

Cohort 5. Commeiynales.-Flowers hermaphrodite, in spikes, panicles, heads, or solitary. Perianth regular or irregular, of 6 segments in two whorls, 3 outer green or sub-glumaceous, 3 inner petaloid. Fruit capsular ; placentation parietal or axile. Embryo outside the albumen, or in a distinct cavity in its side.

Order 1. Commelynacee, the Spiderwort Order:-Charactcr. - Herbs, with flattened, narrow, usually sleathing lectes. Pericuth infcrior, more or less irregular, in six paits arranged in two whorls; the outer parts being green, persistent, and opposite to the carpels; the inner petaloid. Stamen!s 3 or 6 , some generally abortive, hypogynous ; whthers 2 -celled, introrse. Orery ? '-cclled, superior' ; style 1. Capsule 2-3-celled, 2 - 3 -valved, with loculicidal dehiscence and axile placentation. Seals few, with a linear hilum ; cmhryo shaped like a pulley, remote from the hilum, in dense fleshy albumen.

Distribution and Numbers. - They are chiefly natives of India,

Africa, Australia, and the West lndies. Illustrative Genera:Commelyna, Dill.; Tradescantia, Lim. There are above 260 species.

Properties and Uses.-Their properties are unimportant. The rhizomes of some species, as those of Commetyna tuberusn, C. angustifolia, and C. striata, contain much starch, and when cooked are edible. Others have been reputed astringent and vulnerary, and some emmenagogue, \&e.

Order 2. Mayacee, the Mayaca Order.-Diamosis. Small Moss-like plants growing in damp places. They are closely allied to Commelynacer, from which they differ in their habit; their 1 -celled anthers; their 1 -celled ovary and eapsule with parietal placentas; and in their carpels being alternate to the outer segments of the perianth.

Distribution, Numbers, and Properties.-They are found in America from Brazil to Virginia. Mayaca, Aubl., is the only genus, of which there are 4 species. Their properties and uses are unknown.

Order 3. Xyridacee, the Xyris Order.-Character.-Selge-like herbs. Leaves radical, sheathing, ensiform or filiform. Floucers hermaphrodite, in scaly heads. Perienth inferior, (ipartite, arranged in two whorls, -the outer sub-glumaceous or scaly, distinct, and opposite the carpels; the inner petaloid, regular, and united. Stumens 3, inserted into the base of the outer lobes of the perianth, or sometimes 6 ; arthers 2 -celled, extrorse. Ovary superior, 1-celled, with parietal placentas. C'apsule 1-celled, 3-valved. Seeds numerous ; embryo minute, in fleshy or mealy albumen.

The genus Rapatea is sometimes malle the type of a distinct order-the Rapateacear-whieh is placed in the cohort I'outederales.

Distribution and Numbers.-Exclusively natives of tropical and sub-tropical regions. Ilhestratire Genera:-Xyris, Lim.; Rapatea, Aubl. There are about 70 species.

Properties and Uses.-Unimportant. The leaves and ronts of some species of Xijris have been employed in cutaneous affections.
Cohort 6. Restiales.-Flowers hermaphrodite or usually unisexual. Perianth of $2-6$ glumaceous or membranous segments in 1-2 whorls, or reduced to scales, or absent. Stamens 1-6; anthers 1-2-celled. Ovary superior, 1-3celled, usually 3. Ovules solitary, pendulous in each cell, orthotropous. Fruit capsular, rigid, or membranous. Sechs allmminous. Embryo terminal, outside and at the end of the albunen remote from the hilum.
The orders included in Risticles are placed by Bentham and Hooki in their series Ghamacea. They form a connecting link between the (ilumaceir of this colame and the retaluider.

Oirler 1. Eriocaulacee, the Eriocaulon or Pipewort Order. Character. - Aquatic or marsh plants. - Leaves clustered, linear, usually grass-like. Flowers minute, unisexual, in dense lieads, each flower arising from the axil of a membranous bract. Periunth membranous, tubular, $2-3$-toothed or lobed. Stamens $\because-6$; anthers 2 -celled, introrse. Ovary superior, $2-3$-celled. Fruit dehiscent, 2-3-celled, 2-3-seeded. Seeds pendulous, albuminous, hairy or winged ; embryo lenticular, at the end of the albumen remote from the hilum.

Distribution, Numbers, and Properties.-Mostly natives of tropical America, and the North of Australia. One species is found in Britain-Eriocaulon septangulare, With. The order contains about 200 species. Their properties are unimportant.

Order 2. Restiacee, the Restio Order.-Character.Herlis or undershrubs. Leaves simple and narrow, or entirely absent. Stems stiff, either naked, or more commonly with slit convolute leaf-sheaths. Flowers with glumaceous bracts, spiked or aggregated, generally unisexual. No true perianth, its place being usually supplied by 2-6 ghumes. Stamens $2-3$, adherent to the inner glumes, or the latter are sometimes absent; anthers generally 1 -celled. Ocary 1-3-celled, with 1 pendulous ovule in each cell. Fruit capsular or nut-like. Need solitary, pendulous, albuminous ; cmbryo lenticular, terminal.

Distribution and Numbers.-Natives principally of South Africa, South America, and Australia. Some are also found in the tropical parts of Asia; but none occur in Europe. Illustrative Generu:-Leptocarpus, R. Br.; Restio, Liur. There are about 180 species.

Properties and Uses. - Unimportant. The wiry stems of some species have been used for basket-making, dc., and for thatching.

Order 3. Desvauxiacee, the Bristlewort Order. - Character. - Small Sedge-like herbs, with setaceous sheathing leaces. Flowers glumaceous, enclosed in a terminal spathe. Gilumes 1 or 2. Palex none, or 1 or 2 scales parallel with the glumes. Ntamens 1 or very rarely 2 ; anthers 1 -celled. Corpels 1-18, distinct or partially united, with 1 stigma and 1 pendulous ovule in eacl ovary. Fruit composed of as many utricles as there are carpels. Secds albuminous; embryo lenticular, terminal.

Distrilution, Nombers, and Properties. - Natives of Australia and the South Sea Islands. Illustrative Genert:--Desvauxia, Fi. Bir: Aphelia, R. Br. There are about 15 species. Their properties and uses are unknown.

Sub-class II. Glumaceie.

Cohort 1. Glumales.-Flowers hermaphrodite or unisexual, and arranged in spikelets, or rarely solitary, in the axils of glumes. No true perianth, but its place supplied by minute scales, hairs, or bristles, or these are absent. Stamens usually 1-3, rarely more; anthers 2 -celled. Ovary superior, 1 -celled, with 1 erect or ascending ovule. Fruit a caryopsis. Seerls with mealy or fleshy albumen. Embryo enclosed in the base of the albumen, or outside at the base.

Order 1. Cyperacee, the Sedge Order.-Character. -Grass-like or Rush-like, usually perennial herbs (fig. 235). Stcms solid, without joints or partitions, frequently angular (fig. 1099). Leaves without ligules, and with entire or clused sheaths round the stem (fig. 1099). Flowers spiked, imbricate, hermaphrodite (fig. 1102) or unisexual (figs. 1100 and 1101), each arising from the axil of $1-3$ bracts or glumes. (The huer-

Fig. 1100.
Fig. 1099.

Fig. 1101.

Fig. 1099. A portion of the amglar stem of a speeies of Ciner, with a closed sheath, -Fig. 1100. Staminate flower of a species of Carex. st. Stameus, with kong filaments and pendulous innate anthers. 9 . Glmme. -Fig. 1101, Pistillate flower of a species of Cumer, consisting of a glume at the base, and a pistil =mrrounder by an nrn-shaped tube (pertigynium), u. s. Style, terminated by flree stigmas.
most glumes are frequently empty, that is, without fourers in their axils.) Perianth absent, or existing in the female flowers in the form of a tube (perigyminm.) (fig. 1101, "), or as hypogynous scales or bristles (fig. 1102, b). Stamens liypogynous (fig. 110\%), $1-12$, eommonly 3 (figs. 1100 and 1102): (nthers -celled, int nate (figs. 1100 and 1102). Orury 1-celled, superior, (fy. 1102), with 1 erect anatropous ovule. Fruit indehiscent, 1 -seeded
(fig. 1103). Seed with fleshy or mealy albumon (fg .1103 , alb) : embryo lenticular (figs. 1103, μl, and 1104), enclosed in the base of the albumen (fig. 1103).

Diagnosis.-Grass-like or Rush-like herbs with solid and usually angular stems. Leaves without ligules and with entire sheaths. Stamens few, hypogynous; anthers innate, 2 -celled. Ovary superior, 1-celled; ovule solitary, erect, anatropous. Fruit indehiscent, 1-celled, 1-seeded. Embryo enclosed in the base of the albumen.

Distribution and Numbers.-Natives of all parts of the world, and found especially in marshes, ditches, and about running

Fig. 1102.

Fig. 1103.
Fig. 1104.

Fig. 1102. Hermapluratite fiower of a speeies of Club-rush (Scirpus), the glame having been removed. b. Hypogynous setre or bristles forming a kind of periinth. st. Hypogynous stamens with 2 -eelled inuate anthers. o. Oviay. s. Style. stig. Stigmas.-Fig. 1103. Vertiea seetion of the fruit of a speeies of Curex. s. Pericarp. te. Integuments of the seed. alb. Albumen. $p l$. Fmbryo.-Fig. 1104. Embryo of a speeies of Carer removed from the albumen. a. Lateral swelling. r. Radiele, c. Cotyledon. fo. Slit corresponding to the plumule.
streams. Ilhustrative Genera:-Carex, Lirn.; Cyperus, Linn.; Scirpus, Linn. There are about 2,000 species.

Properties and Uses.-Although closely allied in their botanical characters to the Graminaceæ, the Cyperacere are altogether deficient in the nutritive and other qualities which render the plants of the Graminacere so eminently serviceable to man and other animals. Indeed the order generally is remarkable for the absence of any important properties. Some of the plants are slightly aromatic, stomachic, and diaphoretic, others demulcent and alterative, and a few have been used for ceonomic purposes. The underground stems of certain species are edible when roasted or boiled. Some of the species by spreading and interlacing their subterranean stems through the sand of the sea-shore, and thus binding it together, prevent it from being washed away by the receding waves, and in this way protect the
neighbouring coast from encroachments of the sea. (Sce also Properties and Uses of the Graminaces.)

Carex.-The ereeping stems of C. arenaria and some allied speeies have leen used medicinally as substitutes tor sarsaparilla, under the name of (ieman Sarsaparilla.-C. hirta, C. procox, and others, are known in different distriets under the name of 'Carnation Grasses.' 'They have erroneously. been snpposed to eause the disease termed 'Rot' in sheep.

Cyper u s.--The rhizomes, tubers, or corms of C. longus, C. rotundus, C. pertemus, and C. esculentus, have been employed in medicine, and reqarded as aromatie, tonic, diaphoretie, diuretie, and astringent. The eorms or tubers of C. 'esculentus are, under the name of Chufa or Eiurth Almonds, used for food in the South of Europe, more especially in Spain, and when roasted lave been proposed as a substitute for eoffee and eoeon. They are linown ly the Freneli as Sonehet Comestible (Rush Nut). Their elicf use in loot European elimates is for making an orgeut, a refreshing aeid drink in hot weather. The boiled eorms of C. bulbosus are also edible, and are said to taste like potatoes.-C. textilis is used for making ropes, \&c., in India.-C. tegetiformis is muelu used in China for making hats, matting, \&e.

Eriophorum.-The speeies of this genns are commonly known under the name of Cotton-grasses, from their fruits being surrounded by cottony or downy hairs. These hairs are sometimes used for stufing cnshions, \&.e. Their' leaves are reputed to possess astringent properties.

Papyrus.- P. nilotica or P. regyptiaca, the Bulrnsh of the Nile and the Paper Leed of the aneients, is the true Papyrus of the Egyptians, and the one eommonly grown in botanical gardens under that name is the Syrian or Sicilian species (P. syriacu or P. siciliana). The plant is celebrated on account of the soft cellular tissue contained in its stems having been in common use by the ancients for making a kind of paper. Thesesheets of papyrus paper are remarkable for their durability. The Papyrus was also nsed for making ropes, boats, mats, \&e. The Sieilian speeies, P : siciliana, has likewise been employed for making paper:-P. corymbosus is extensively used in India for the manufacture of the eelebrated Indian matting.

Sripus.-Various species of this genus, as S. lacustris and S. Tabernemontana, \&e., are muelı employed, like the true linshes, for mats, chair-bottoms, baskets, \&e., and also by coopers for filling up the intervals in the seams of casks. They are eommonly known as Club-rushes or Bulrushes. The root of S. lacustris was formerly used as an astringent and diuretie.

Order 2. Graminaceas, the Grass Order.-Character.Herbs, shrubs, or arborescent plants, with round, commonly hollow (fig. 201), jointed stems. Leares alternate, with parallel veins and split sheaths (figs. 374, g, and 1105), and with a ligule at the base of the lamina (fig. 374, lig). Flowers hermaphrodite or misexual, arranged in spiked (fig. 418), panicled (fig. 419), or racemose locuste ; or solitary. No true verianth. its place being supplied by imbricate bracts, of which there are eommonly 2 , called glumes, or rarely 1 ; these glumes are placed at the base of the solitary flower, or at the base of each locusta (fiys. 405 and $1106, g l, g l$, and $1107, g e, g i$). Occasionally the ghomes are altogether absent. Each flower is also usually furnished with two other alternate brats (palcer) (figs. 1107, pe. $p^{i .}$), (or sometimes the inner palea $p i$ is wanting), the outer palea is frequently termed the floverng glame; and 2 or 3 hypogynous scales (lodiculid, squamule, or glumellules) (figs. 1106 ,
p, p, and $1108, p$) ; these scales also are occasionally absent. stumens $1-6$, usually 3 (figs. 1108-1110) ; filaments capillary (figs. 505 and 110!) ; anthers 2 -celled, versatile (figs. 500 and (i01). Ovary superior (fig. 1108), 1 -celled, with a solitary ascending orule ; stigmas feathery or hairy (figs. 601 and 1108). Fruit a caryopsis (figs. 704 and 705). Seed with mealy albumen (fig. 704, a) ; embryo lenticular (fig. 1111), lying on one side of the base of the albumen (fig. 705, 'c, $g, r)$.

Diagnosis.-LLeaves alternate, with split sheaths, and a ligule at the base of the lamina. Flowers generally arranged in spikelets or locustæ, or rarely solitary. Flowers glumaceous; palere usually two in each flower. Stamens hypogynous, few, usually S, with capillary filaments, and versatile anthers. Ovary superior, with a solitary ascending ovule; stigmas feathery or hairy. Fruit a caryopsis. Seed with mealy albumen, with the embryo on one side at the base.

Distribution and Numbers. Grasses are universally distributed orer the globe. In temperate and cold climates they are herbaceous and of moderate height, while in

Fir. 1105. A portion of the stem of the Cat's-tail Grass (I'hletum pratense), bearing a leaf with parallel veins, and a sp!it sheath. tropical countries they become shrubby and arborescent, and sometimes grow to the height of 50 or 60 feet. Grasses usually grow together in large masses, and thus form the verdure of great tracts of soil, and hence have been termed social plants. Illustrative Genera:-Panicum, Linn.; Anthoxanthum, Linu.; Phleum, Linn.; Agrostis, Linn.; Dactylis, Linn. ; Bromus, Lirn. There are over 4,000 species.

Properties and Uses.-Of all the orders in the Vegetable Kingdom this is the most important to man, as it affords the various fruits, commonly known as Cereal Grains, which supply the principal material of his daily bread in most countries of the world; besides being eminently serviccable in other respects, by supplying fodder for cattle, and yielding sugar and other very useful products. It is a remarkable fact that the native countries of wur more important Cereals or Corn producing plants are altogether unknown. A few of the Grasscs yield fragrant volatile oils. Paper lias long been made from the Bamboo in India, China, and some other parts of the world; and straw is now largely employed for a like purpose in this
country and elsewhere. Other Grasses have also, within the last few years, been used to a great extent for making paper. Almost all Grasses are wholesome, but one or more species of Bromus have been erroneously reputed to be purgative,

Fifi. 1106.
Fig. 1107.

Fig. 1108.

Fig. 1109.

Fig. 1111.

Fig. 1106. Dingran of a spikelet of the Oat (Arena). (From Le Maout.) gl, gl. Two glames, chelosing two hermaphrodite fiowers, and one, a, abortive. b. The outer palea or flowering glume. b, b. The imner pislea. p, p. Two senles (squamula or glumeltutos) ; the dotted enrred the on the right marks tho position of a thiren abortive seale. c, Stamens. c. Ovary.--F'ig. 1107. A spikelet (locustn) of the Oat (Avem satira). ar, Outer glame. gi. Inner glume, pe. Onter palea or flowering glume of the fertile flower. pi. Immer palea of the same. eo Stamens. o. Ovang. fin, and a. Abortive flowers.-N'ig. 1108. Fertile flower of the Oat, withont the palea. p. Glumellules. estamens. o. Oviry, s, s. Venthery stigmas.-lig. 1109. One of the florets of aspecies of Membw (irass (Poor prutensis).-Fing 1110. One of the florets of the liand Fesene Orass (Festuct duriuscula).-Wig. 111 L . The membryo of the Dato ". Lateral swelling, cotyledou. r. Radicle. f. Slit correspondmg to the plumule.
and one, Lolium temulentum, is said to be nareotie and poisonous. The powerful properties of the latter glass maty possibly be due to its lecoming ergotised, as its effects upon the spstem elosely resemble those produced by the common Eigot.

Puspulum scrobiculatum, an Indian species, is also said to be sometimes unwholesome. Stipa sibivica in Kashmir, Stipa inebrions in Mongolia, and several of the Melica of South Africa, have likewise been recently described as deleterious Grasses. Further experiments upon Lolium and the other supposed deleterious Grasses are desirable. Some of the species serve to bind togetherthe sand on the seashore, and thus prevent the encroachment of the sea on the neighbouring coast. (See also Properties and Uses of the Cyperaceer.)

Egilops ovata.-This grass has of late years beeome noted in eonsequence of M. Esprit Fabre having stated that the varieties of eultivated Wheat were derived from it and Agilops cordata. This is not strietly correet, however, for the plants grown by M. Fabre, and the grains of which ultimately assumed the form of cultivated Wheat, were produced by hybridisation liftween a speeies of Triticum and AEgilops ovata, the result being the formation of a variety of Egilops, ealled Egilops triticoides. The seeds of this. br cultivation for about twelve years, are said to have produced a yrass like ordinary Wheat; but it is not elear that prolonged cultivation fir a series of years has shown any tendeney in Kigilops ovata towards improvement.

Andropogon.-Several species of this genus are remarkable for their agreeable odours. This fracranee is rlue to the presence of volatile oils, of which several are used medicinally and in perfumery. These oils are commonly known under the general name of Grass Oils or Indiun Grass Oils. Those which are distilled from the fresh plants of A. Nardus, Linn., A. ritratus, DC., and A.paclenodes, Trin. (A. Schenanthus, Lian.), are official in the Plarmaconneia of India.-Andropogon citratus, Iudian Lemon Grass. is the soutre of Lemon-Grass Oil, whieh is also termed Oil of Terbence and Indiun Melissa Oil. The plant vielding it is largely eultivated in Ceylou and in the gardens of India. Lemon-Grass Oil is much emploverl in perfimmery under the name of ail of verbena, from its onlour resemblinis the Sweet Verbena or Lemon Plant of nur gardens. (See Aloysia (Lippia) citriodora.) It is spoken himhly of in India as an external applieation in rhemmatism, \&re., and for internal use in cholera. It possesses stimulant, earminative, antispasmodie, and diaphoretic properties. The fresh leares are sometimes used as a substitute for tea, and the centre of the stems for flavouring currics, Sc:-Citronellr Oilor Oil nf Clitronelle is the produce of Andropogon Vardus. It is employed in perfumery in England, \&e., and in its medicinal properties it alosely resembles Lemon-Grass Oil.-A. pachnodes is the source of the oil known in India as Rüsu lut-tel, or Rusu Oil. It is also known as Oil of Ceranium, Oil of Ginger Grass, or sometimes as Grass Oil of Namur. Oil of (ioravium is extinsively emploved in Turkey to altultevate Otto or Attra af Rose. (See Pelurgonium and Rosa.) It las similar properties and uses to thre twon preceding volatile oils.- A. muricatus has fratrmat roots, which are known under the names of Cuscus or Vetti-ver. It is importorl into this rountry ind elscwhere, and used for scenting baskets, drawers, $\mathcal{\delta c}$. It is also reputed in India to possess stimulant and diaphoretie properties.-A. Auniyor. b)st., is tho source of the drug known as Schomantlus or Juncus ofloritus. (bee :1s, si Jholeus.)

Authistiriu.-A. urs/ralis is the "Kingaron Grass" of Australia.-A. rilhuts is an ristremed Indian fodiler-grass.

Armuly l'hrumites, the Common Reerl.-The entms of this and some

Amone setive, the comnton $O_{1 t}$.-A great mumber of varioties of this speres.ar" cultivatol in the: North of Europe, \&e., on acomant of the srains (fruit+), which aro called Uats. These are exteusively wsed as food for
man and other animals. Oats depriverl of their lusk and conarsely fromed form Oatmend. When divested of their lusk and integnments they are called Grouts; and these when crnshed constitute Eiduden and Preppared Groats. Oats are also employed for the production of aleohol.

Bambusa.-B. armadinatex, the Bambon, and other speeies of Bambust, are applied to many useful purposes in warm elimates and elsewhere. Coont paper is made from them in ludia, China, de. The bambon has been also largely exported from the \mathbb{W} est Indies to Ameriea, \&c.. for the purpose of being manufactured into paper, and some of very gond quality has heen made from it. The very young shoots are boiled aud eaten like Aspararus, and are also used for pickles and swectmeats. Their hollow stems are variously employed. In India and China the leaves are reputed to posses emmenagogne properties. Sir Joseph Ilooker says, that in some distriots 'ia very large kind of Bamboo is used for water-luckets, another for quivers, : third for flutes, a fourth for walking-stieks, a fifth for plaitinework (baskets), a sixth for arrows; while a larger sort serves for bows. The ?oune shoots of one or more are eaten; and the seeds of another, either raw or eookecl. are made into a fermented drink. In China the Bamboo is used for numerous purposes-for water-pipes, fishing-rods, for making hats, shields, umbrellas, soles of shoes, Laskets, ropes, paper, sea folding-poles, trellis-work, wails. wovers of boats, and katamarans.' The above extract will give some idea of the various uses to whieh the Bamboos are applied. A solid silicious matter is commonly found in the hollow joints of the bamboo, to which the name of tabasheer has been given.

Coix lachryma is remarkable for its hard stony fruits, enlled Job"s tears, whieh are used for beads. They are also reputed to be diuretic.

Dactylis crespitosa (F'estuca'flabelloides) is the eelebrated Tussae Grass of the Falkland Islands. It is an excellent fodder grass for cattle and horses. It is now grown to some extent in Shetland and some of her parts of Britaiu.

Eleusine.-E. coracama.-The grains of this plant eonstitute one of the millets of India; in Coromandel it is ealled Natchnee. It is also cultivated in Japan as a corn erop. In Sikkim a kind of beer, ealled unurwa or millet beer, is prepared from the grains, and is in general use by the natives. (See Panicum and Holcus.) - E. Tocussa is an Abyssinian plant. Its grains are nsed for food under the name of Tocussu.

Gynerium.-G. argentrum is the clegant Pampas Grass.-- G. succharoides, a Brazilian species, eontains much sugar.

Holcus.-H. saccharatns, Sorghum saccharahum, or Andropogon sacchetratum, is the North China Sugar Cane or Sweet Sorgho. it is cultivated in China and other countries for the purpose of extracting its sugar, of which it is said to yield from 10 to 15 per cent. Its grain is eaten in Africa, and is termed Dorluna. The plant has been introduced into this conntry, and has been highly recommended for eultivation as a summer forage for eattle, but at present our knowledge respecting it will not allow of any positive conclusions upon its merits loeing arived at. It is now. however, extensively cultivated in the sonthern and eentral parts of Frabce as a fodder erop.- H. Sorghnm, Sorghum vulgave, or Audropogen Sorglum, of which there are several varicties, is exteusively cultivated in . Ifrica, India. de., for the sake of its grain, which is known as Egyptian Corn, lyo Wheat. Guinea Corn, Durra, Turkish Millet, and Jaar. 'This erain is much used for food in warm combtries. In this country if has also been employed for feeding poultry. The stems are used in the mannfacture of carpet brooms, whisks, \&e. A kind of beer catled Bouza is alsu prepared from the graius.

Hordeum, Barley.-Several species or varieties are commonly embivated in eold and temperate climates for their grains: as $I I_{\text {. }}$ dstichon, "lworowed or Long-eared Batley ; $I I$. vulgare, Bere, Biser, Four-rowed or Sprimg Barley; II. lexastichon, Six-rowed Barlẹ; and 1I. zoocriton, Sprat or

Battledore Barles. Barles is used dietetically in the manufacture of bread. and in the form of malt most extensively in the production of ale, beer, and ardent spirits. It is the common srain in use for the latter purposes in this country. Nalt is Barley which has been made to germinate by moisture and heat, and afterwards dried, by which the vitality of the seed is destroyed. Barley deprived of its husk constitutes Scotch, Hulled, or Pot Barley. When both husk and interuments are removed, and the seeds rounded and polished, ther form Pearl Barley, which is official in the British Pharnacopœia ; this, when ground, is ealled Patent Barley.

Ingeum Spartum, a Spanish grass, yields the fibre known as albardin, which is frequently mistaken for Esparto. (See Stipa.) It is used like it for paper-making.

Iolinia carulea is said to be equal in value to Fsparto Grass (see Stipu) for paper-makinc. Its especial ralue resides in the tenacity of its tibre. and the comparatively minute quantity of siliea it contains.

Oryza sativa is the Riee plant, the grain of whiel is more extensively nsed for food than that of any other cereal. Starch is also largely prepared from rice; it is onicial in the British Pharmacopœia under the head of Amylum, tngether with Wheat Starch and Maize Starch. From forty to tifty varieties of the Riee plant are known and cultivated in India alone; others have distinguished as many as 160 varieties. Riee appears to le less mutritive than the other cereal grains, and to be of a more binding nature, hence its use in diarrhœa, \&c. Spirit is sometimes distilled from the fermented infusion of rice. This spirit is frequently ealled arrack, but that name is properly used only in reference to the spirit distilled from Palm wine or Toddr.

Prenicum.-P. miliacenm rields Indian Millet. The grain is called Warree and Kadi-kane in the East Indies.-P. spectabile, a Brazilian species, grows six or more feet in height. It is a faromrite forder grass, and is eommonly known as the Angola grass.-P. jumentorum. is another fodder grass called Guinea grass.-P. pilosum vields a grain known in ludia as Bhadlee. The grain of P. fromentacenm is also nutritions. It is termed Shamoola in the Decean. Some of the Tartar tribes are said to prepare a kind of beer from a species of Millet, whieh is called Bouza, Murwa, or Millet-beer, but this is prohably not obtained by them from a species of Panicum, but from a species of Eleusine. (See Eleusine.)

Paspalum.-P. exile vields the smallest known cereal grain. This grain is known on the West Coast of Africa, where it is used as fond, under the nime of Fundi or Fundungi. It is also commonly called in Sierra Leone, Millet.-P. scrobiculatum also yields a kind of grain, known in lndia as Menya or Kodro. A variety of this grass is reputed to lee injurious to cattle.

Penicillaria spicata (Panicnm spicatum) is callecl Caffie Corn. It rields a serviceable grain, which is commonly distineruished as Afriean Millet.

Pemnisetnm dichotomm.-The grains of this grass are known in some parts of Western Africa under the name of kusheia. Ther are used there as fond. In Efrept and Arabia this grass is employed as fodder for camels and other animals, and also for thatehing and other purposes.

Phularis comuriensis. Canary Grass, is cultivnted for its grain, which is emplnyed as foorl for lirds, under the name of Canary seed. Its straw is also vilued as fodder for lorses.

Pou abyssinicu is an Abyssinian eorn plant, known uuder the name of Teff: The grains are sometimes employed in the preparation of Bouza or Millit beer. (See IPleusiue and Panicrim.)

Saccharum officinurnm is the Common Sugar-cane, so extonsively used for the proparation of Cane-sugar or Suerose. Molusses is the drainings from raw sugar ; and trearle the thick juiee which has drained from refined sugar in the sugar-moulds. Caramel is burnt sugar. Siagar-candy, pulled.
sugar, barley-sugar, and hard-bake, are all familiar preprarations of sugar. Both molasses and treacle are capable of fermentation by venst ; and then rield by distillation rum. Refined sugar and treacle are oflicial in the British Pharmacopeia.

Secale cereale, Common Rye, is much cultivated in the northern parts of the world for its grain, which is extensively employed for making brearl. Bre bread retains its freshness for a much loger time than wheaten bread. Quass or Iive Beer is a favourite drink in Russin. Rye is also used by the distillers. "When roasted it has been employed as al substitute for coffee. live is subject to a disease called Ergot, prodiced by the attuck of a fungus (see Claviceps), when its erains assume an elongated and somewhat curverl form. The diseased grains are commonly known as Ergot of Rye or Spurred Rye, which in certain doses is poisonous to man and other animals. Medicinally, ergot is given to excite uterine contractions in labour, and for other purposes; it is ofticial in the British Pharmaeopoia.

Setariu.-S. germunica is the sonrce of German Millet, and S. italica of Italian Millet. The latter is also mueh nsed in India. The Millets are largely used as food.

Stipa. - S. tenacissima or Marrochloa tenrcissim't, yields the fibre known nnder the name of Esparto or Alfa. (See Lygeun.) "This has been, of late years, very extensively employed for paper-making. The imports of Esparto are probably over 150,000 tons annmally. It is collected in Spain, Tunis, む.e. Esparto is also largely used in Spain for making matting, eard baskets, \&c.. and has been so employed since the time of the Phonicians, who are said to have used it extensively for like purposes.-The grain of S. pennuta, Feather Grass, is stated to be very nutritions.

Triticum.-T. sutivum (vulgare) is the common Wheat.-A great many varicties of Triticum are coltivated, as T. astioum, Spring or Summer Wheat; T. hybermm, Winter Wheat; T. compositum, Egyptimn Wheat or Many-eared Wheat; T. polonicum, Polish Wheat, and others.-T. Spelte, rielding the Spelt varieties, is a distiuct species. The grains of the several varieties of Triticum are commonly used in this and some other temperate conntries for making bread, and for their starch. Whent starch is official in the British Pharmacopeia, together with Rice and Maize Starch, under the common name of 'Aıylum.' Botlr ' Wheaten Flour' aud Crumb of Brearl are also official. Various nutritious foods are also prepared from whent grains, as Semolina, Sonjee, Manna Croup, Vermieelli, Maccaroui, Cagliari or Italian Paste, \&c.-T. repens.-A decoction of the creeping steus lias been used with suceess in mucous discharge from the bladder.

Zea Mays is the Indian Corn or Maize Plant. The granin is extensively used in warm countries. It is the most firttening of all the cereals, hut it frequently produces diarrhœa. The roasted cobs or ars are sold in India, as chestnuts similarly treated are in this country. 'The immature ears are sometimes eaten as a vegetable. Maize meal is sold under the name of polenta, and the fine flour as maizena, both of which are much mised as foot here and elsewhere. In South America a kind of beer. called Chica or Maize Beer, is made from the grain, and is extensively used. Maze stareh is also official in the British Pharmacopocia, under the name of 'Amylum.' with Siee and Wheat Starch. In Western Afriea a favourite ferment ed beverage is also prepared from Maize, ealled pitto or peto. 'The silky st yles and stimmas of this plant have been recommended ats of service in gravel and nepliritie colic.

Zizanin aquatica yields a serviceable grain known as Canata Rice or Swamp lice. Zizania straw has been recommended as a very valable paper material, and a company has beer formed to work it in the provine of Ontario, the only provinee in which the plant grows to any useful exteul.

Artificial -Analysis of the Orders in the Class Monocotrledones.
 (Morified from Lindley.)

Sub-class I. Petalvider.

1. Flowers witil in evident Perilntif.

A. Ovary inferior (Inferce or Epigyne).
a. Flowers gynandrons.

Ovary 1 -eclled. Placentas parıetal. . . Orchiiducere.
Ovary 3-celled. Placentas axile . . . Apostusiacere.
b. Flowers not gynandrous.

1. Veins of leaves diverging from the midrib, and parallel to each other.
Embryo enelosed in a vitellus.
Anther 2-celled. Filament one, not petaloid
Enbryo not enclosed in a vitellus.
Anther 1-celled. Filament one . . Murantacea. Anther 2-celled. Filaments more than one. Musucea.
2. Veins of leaves diverging from the bnse, and
parallel to the midrib.

Stamens 3.
Anthers extrorse Iridacere.
Anthers introrse Burmannizcea.
Stamens 6.
Anthers extrorse Bumanniucere.
Authers introrse.
Leaves equitant Hemortoracea.
Leaves flat.
Frit 1-celled Taccacese.
Fruit 3-celled.
Outer whorl. of the perianth petaloid
Outer whorl of the perianth not pe-
taloid
Amaryllidazer. taloid Bromeliucea.
Stamens more than 6
3. Veins of leaves retieulated.

Flowers unisexual
Hydrocharitacers.
Dioscoreacea.
B. Ovary superior (Supere). Lenves parallelveined.
a. Onter wharl of the periunth herbaceous or glumuccous.
Carpels more or less distinet.
Seeds attached over the whole inner walls of the fruit
Seeds attached to axile or basal placentas. Flowers conspicuons. Embryo curverl,
without a slit
Flowers iuconspicuous. Enibryo straight,
with a lateral witl a lateral slit

Butomucese. els combined.

Inner whorl of the perianth different from the outer.
Placentas axilc. Anthers 2-celled. Cupsule 2-3-celled

Commelynacere.
Placentas parietal.
Anthers 2-eelled, Capsule 1-eelled . Xyriducea. Anthers 1-celled. Capsule 1-celled - Muyucce.
The outer and inner whorls of the perianth alike.
Flowers on a spadix. Embryo with a lateral slit.
Flowers not on a spadix. Embryo without a slit

Aroiducers.
Juneaces.
b. Outer whorl of the perianth petalnid, or the
whole petaloid when only one whorl is present.
Carpels more or less distinct.
Seeds solitary. Flowers on a spadix . . Pu'maceæ.
Seeds numerous. Flowers not on a spadix. Anthers extrorse
Authers introrse.
Perianth of 6 parts. Secds without al. . Butomacer.
Perianth of 2 parts. Seeds with albumen Philydracex. Carpels eombined.

Flowers on a spadix.
Flowers not on a spadix.
Perianth rolled inwards after flowering. Aquatics
Perianth not rolled inwards after flowcring, eonspicuous
C. Ovary superior. Leaves net-veined.

Placentas basal . \quad.Placentas arilePlaentas parietal... . $\quad . \quad$. Suilacea.		

2. Flowers either naked, of witif a whomled scalx Pemantis, generally unisexual.
A. Flowers on a spadix.

ィ. Flowers bisexual. . . . Aroidacea.
Embryo eleft Pandanueca.
Embryo solid
Pontederacea.
Liliacea.
Palnaceæ.

Roxburghiacea.
a. Placentas basal

Colchicucex.

Embryo perfect.

Seed without albumen . . . Naiadacer.
Seerl with albumen Pistiucer.
Embryo rudimentary Triuridacee.
Ovules pendulous.
Carpel solitary.
Seed without albumen.
Pollen globose or tubular Naiaducer.
Seed wirh albumen Restiacere.
Carpels several, elistinct.
Authers 2-celled Naiadacca.
Anthers 1-celled Descuuxiucer.
Carpels several, combined.
Anthers 1-celled.
Stamens 2—3 Restiacere.
Stamen 1 Desvauxitcer.
Anthers 2-celled. Placentas axile.
Seeds with rows of hairs Eriocanlacea.
Seeds without rows of hairs . . . Restiacer.
Anthers 2-celled. Placentas parietal . . Tyridaceæ.
Sub-class II. Glumacere.
Stem solid. Leaf-sheaths not slit. Embryo basilar, within the albumen

Cyperacer.
Stem hollow. Leaf-sheatlis slit. Embryo basilar, outside the albumen

Graminacex.

Division II. GYMNOSPERMIA.

Order 1. Conifere or Pinacese, the Coniferous or Pine Order.-Character.-Resinous trees or evergreen shrubs, with

Fig. 1112.

Fig. 111 13.

Fig. 1114.

Fig. 1112. A ripe cone of the Lareh (i'inus (Abies) L(rrir). —.Fig. 1113. A mature earpet or scale of the Scotch Fir (linus sylvestris), with two winged naked seerls at its base. mic. Mieropyle. ch. Chinlaza. - Fiy. 1114. A scate of the Larch bearing one naked winged seed; the other seed has been removed.
branched continuous stems. Lectes linear, acicular (fiy. 341) or lanceolate, parallel-veined, fascicled (fig. 288) or innbricate alternate. Flowers naked, monwecious or diweious. Male flowers
arranged in deciduous amenta. Stamens 1 or scveral, in the latter case monadelphous; anthers 1-or more celled, opening longitudinally. Female flowers in cones (fig. 420), consisting of flattened imbricatc carpels or scalcs arising from the axil of membranous bracts ; ovules naked, 2 (fig. 730) or more, on the upper surface of each carpel. Fruit a woody cone (figs. 293 and 1112) or a galbulus (figs. 725 and 726). Seeds naked (j igs. 1113 and 1114), with a hard crustaceous integument, albuminous; cotyledons 2 or many (fig. 772).

Division of the Order and Mlustrative Genera.-This order has been subdivided as follows :-
Sub-order 1. Abictex.-Ovulcs inverted, with the micropyle next the base of the carpel (figs. 730 and 1113). Pollen curved. Illustrative Genera:-Pinus, Linn ; Araucaria, Juss.
Sub-order 2. Cupressea.-Ovules erect, with micropyle superior. Pollen spheroidal. Illustrative Genera:-Juniperus, Limn.; Cupressus, Tourn.
The order Taxacex is now frequently included in the Coniferx, forming the tribe or sub-order Taxez or Taxinew.

Distribution and Numbers.- The plants of this order occur in all parts of the world ; but they abound most in temperate climates. There are about 250 species.

Propertics and Uses.-They possess very important propertics. Many supply valuable timber, and most of the species contain an oleo-resinous juice or turpentine, which is composed of a volatile oil and resin.

Araucaria.-A. imbricata, from Chili, and A. Bidwillii, from Moretm Bay- have edible seeds. Those of the former are extensively used for food by the natives of Chili and Patagonia. It is said that 'the fruit of one large tree will maintain eighteen persons for a year.' Both sprecies also yield hard and durable timber.

Callitris quadrivalvis, the Arar Tree, vields the resin ealled Sanlarach, Juniper Resin, or Gum Jnuiper. It is imported from Mogador, and is emploved in the preparation of varnishes. When powdered it is called pounce. The wood of this tree is also very durable, and is used by the Turks for the floors and ceilings of their mosques.

Cedrus.-Cedrus Libani, the Cedar of Lebanon, and C. Deodara, the Dendar, which is probably ouly a variety of the former speeies, are most valuable timber trees. The turpentine obtained from the latter is used in India, where it is in great repute in skin disenses and as an applieation to nlcers, under the name of helon-ke-tel.

Cuppessus, the Cypress. - The wood of some speeies is very durable. It is supposed that the Gopher-wood of the Bible was obtained from species of Cupressus aud other allied Coniterax.

Dammarta-D. custrelis, the Kawrie or Cowdie Pine of New Zealand. produces a timber which is much valued for making masts and spars, A grmm-resiu known under the names of Australian Copal, Kawrie Gnm, and Australinu Dammar, is largely imported into this conntry; it is ehicfly nsed in the preparation of varnishes.-D. orientalis vields a somewhat similar gmu-resin, known as ludian Dammar.

Juniperus.- J. communis, the common Jmiper. The fruit and the colafile oil obtained from it and other parts of this plant, have stimulant and
diuretie properties. The oil distilled in Britain from the unripe fruit is offieial in the British Pharmacopeia. Oil of Juniper is also used to flavour the spirit known as Hollands; turpentine being commonly employed for a similar purpose for English (iin on account of its eomparative eheapness. Juniper wool has a reddish eolour, and is used oceasionally for vencers.- J. Orycedrus.-In France, a tarry oil, ealled Huile de Cade or Juniper Tar, is obtained by dry distillation from the wood of this plant; it is prineipally used in the form of an ointment for skin diseases, more espeeially in psoriasis and eezema ; it is also employed in veterinary praetice. The wood is very durable.- J. bermadiam is the Red or Peneil Cedar, and J. virginiana, the Virginian Red Cedar. The wood of these is employed for Cedar peneils; that of the former is eonsidered the best. The tops or leaves of J. virginiana are official in the United States Pharmacopeia, where they are used for similar purposes, and in like preparations to savine, but they are not so effectual in their operation.-J. Subina, the common Savine. 'The fresh and dried tops and the oil obtained from the former are official in the British Pharmacopœia; they have aerid. stimulant, diuretie, and emmenagogue properties. In large doses they are irritant poisous, and have been frequently taken to eause abortion. When loeally applied in the form of the offieial ointment. as a dressing to blisters and to issues and setons, they keep up and promote the diseharge.

Pinns.-Screral species of this renus are valuable timber trees; as P. sylvestris, the Seoteh Fir, whiel yiclds the timber known as Dantzic or Kiga Fir, and liussian Deal ; P. Strobus, the White Pine or Deal of the United States; P. mitis and P. australis, the Ycllow Pine or Deal ; P. mgida, P. Lambertiana, \&e., \&e. The wood of these trees is used to an enormous extent in this eountry, and elsewhere.-Pinus anstralis (palustris). the Siamp Pine or Long-leaved Pine, furnishes by far the greater proportion of the crude oleo-resin known as turpentine which is consumed in the United States, or sent from thence to otler eonntries.- P. Tredr, the Frankincense Pine, and P. Pinoster, the Cluster Pine, more espeeially the former, are also sonrces from whieh we derive our supplies of turpentine. The eoncrete turpentine known as Galipot is also obtained from P. Pinaster; but the analogous concrete turpentine known as Terebinthina, Thus Americanum, or Common Frembincense, and which is official in the British Pharmaeopeia, is derived from P ', anstralis and P. Tada. The crude oleo-resin turpentive yields ly distillation the essential oil ealled oil of turpentine or spirits or essence of turpentine, and ycllow and lhack resin. This oil is offieiai in the British Pharmacopœia, and is said to be derived from P. australis, P. Treda, P. Pinaster, aud P. sylvestris.-Pinns sylvestris, the Seoteh Fir, likewise produecs some turpentine, and the wood of this and other species of Pinns yields by destructive distillation the official Pix liquida or 'Tar, whieh is commonly known as Wood Tar ; and Creasote, which is a produet of the distillation of Wood Tar. Tar is a useful applieation in some skin disenses. Pitch or Black Pitch is another valuable product olitained from tar. The inner bark of the Scotel Fir is used in Norway for making bark bread. From the leares also of this species the substanee called Pine-wool, Forestwool, or Fir-wool is prepared. It is used for stufting cushions, \&ec; ; and is said to be repulsive to vermiu. \&c. Various other articles of domestic utility are also manufactured from pine-wool. A volatile oil called Fir-wool Oil or Oil of Pine Leaf is also obtained ber distillation from these leaves; and is useful in rhemmatism, nemraloin, \&e. It is offieial in the British Plarmaeopecia. Paper of good quality is now made from the wood of this and some other succirs of Pinns and Abies. (Sec Abies excelsa.) - P. Pinea, the Stone Pine, lias edible serds, which are used as a dessert under the name of pine-mats.P. Cembra, the Sitmpian Stonc l'ine, has also edible seeds. The youner shoots lw rlistillation vield the so-called Carpathian Balsann, P. Pumilio, the Mugho or Mountain liae, produces ly spontancous exudation an oleo-resin
called Hungarian Balsam. - Pinus Gerardiuna, found in 'Thibet and Afghanistan, has edible seeds.- P. longifolia: a Itimalavan species, vields: very good turpentine.

The following plants are fiequently placed in the genus Abies of Tonrnefort; but more commonly they are included in the genus Pinus.

Several species supply valuable timber, as Abies (Pinus) excelsa, the Norway Spruee, Albies (Pinus) alla, the White Spruce, A. (Pinus) ramudensis, the Hemlock Spruce, A. (Pimus) Larix, the Common Larcli, \&c.Abies or Pinus excelsa, the Pinus Picea of Du lioi, vields by spontaneonexudation a resinous substance which is the original Thus of the Materia Mediea. This wheu melted and strained constitutes our official Burgmody Pitch. The official 'Thus' is described under Pinus australis. Good paper has been made from the wood of this species. The leaf-bnds are used on the Continent in the preparation of a kind of beer, whieh is employed in scorbutic and rhemmatie complaints.-Abies or Pinus balsameu, the Canadian Balsam or Balm of Gilead Fir, vields our official Canada Balsam.-Abies or Pinus conadensis, the Hemlock Spruce Fir, yields an oleo-resin resemblins Canadn Balsam. This is official in the United States Plarmacopocia, and is commonly known as Canada Pitch.-Alies or Pimus Picea of Linnaths. the Pirus Abies of Du Roi, the Silver Fir, yields Strasbnry turpentine. Its leaf-buds, like those of A. excelsa, are employed in the preparation of : find of beer, whieh is used for similar purposes-Abies (Pimus) nigra, the Black Spruce Fir. The young branches of this when boiled in water, and the solution afterwards concentrated, vield Essence of Spruce, which is employed in the preparation of Spruee Beer.-A. Larix of Lambert, or Pinus Larix, the Larix europrea of De Candolle, y-ields Larch or Venice turpentine, and a kiud of Manua, called Larch Manna or Manna de Briancon. The bark is sometimes used in tanning. This bark, deprived of its onter layer, is official in the British Pharmacopoia, and is regarded as stimulant, astringent, and dimetic. It has been seeommended to check profuse expectoration in ehronic brouehitis, and for various forms of internal hemorrlase : but it is little used.

Thuja.-The young shoots of T. oecidentalis are used to prepare a tineture which is employed externally to remove warts, dic., and internally for worms, amenorihuer, \&ic.

Order 2. Taxacen, the Yew Order. - Charaeter. Trees or shrubs, with eontinuous branehes. Leares usually narrow, rigid, and veinless; sometimes broad, with forked Fig. 1115.

Fig. 1116.

Fig, 1115. Male Hower of the Common Yew (Tarus buccu(11), with numerolls monatelphonss stamens, Fily. 1116. Vertical section of the sced of the same. ar: The snecnlent eup-shapeel mass which surrounds the seenl. M, Fimbryo. ulb. Al-
 mamen. ch. Chiaza. mi. Mieropyle.
veins. Flowers unisexual, naked, braeteated. Male foncers sereral together, each with one or soveral stamens, whieh, in_{1} the latter case, are united (fig. 1115) on distmet: anthos bursting longitudinally. J'emole flowers solitary, and consisting
of a single ereet naked ovule, which is either terminal or placed in the axil of a braet. Seed small, usually more or less surrounded by a cup-shaped Heshy mass or aril (figs. 727 and 1116, (ir), albuminous (fig. 1116, all) ; embryo straight (fiy. 1116, $p l$). This order is now fiequently included in the Conifera, forming the tribe or sub-order Taxeæ or Taxinex.

Distribution and Numbers.-Natives of the mountains of tropical eountries, and of temperate regions. Illustrative Genera:-Taxus, Linn. ; Salisburia, Smith. There are about 50 species.

P'roperties and Uses.-In their general properties they resemble the Conifere.

Dacrydium.-D. Franklinii, the Huon Pine of Australia.-The wood is valuable for ship-building. Other species, as D. taxifolium, the Kakaterro of New Zealand, and D. cupressinum, the Dimon Pine, are also valuable timber trees.

Podocarpus Totarra and some other New Zealand species are valuable timber trees.-P. cupressina (imbricatu), a native of Java, yields a crystalline resin.

Taxus baccata, the common Yew, produces extremely durable and valuable timber. Its leaves and young branches act as a narcotico-acrid poison, both to the human subject and other animals. But they would seem to be most injurious to horses and cows; indeed, it is stated that sheep, deer, and turkeys will crop Yew trees with impunity. But this is certainly incorreet so far as sheep and deer at least, as these animals have been killed by eating Yew leaves. It is also frequently saicl that animals may fecd upon the young growing shoots without any injurious effect being produced, but that when these have been cut off, and left upon the ground for a short time, they are then poisonous. This notion is, however, altogether cronenus, for the shoots are poisonous whether fresh or dried. Fatal eases of poisoning have also occurred from eating the so-called fruit. (Sce page 323.) The red suceulent cup of this fruit is, however, harmless, the contained seed alone being poisonous. Yew leaves and the fruits, have been given medicinally for their cmmenagogue, sedative, and antispasmodic effects. According to Dr. 'Taylor, 'Yew-tree tea' is sometimes taken to cause abortion.

Oider 3. Gnetacef, the Jointed Fir Order.-Charaeter. Small trees or shribs, with usually jointed stems and branehes. Leares opposite, entire, net- or parallcl-veined, or sometimes small and scale-like. Flowers unisexual or rarcly hermaphodite, in eatkins or heads. Male flowers with a 1-leaved calyx; anthers 2-3-celled, with porous dehiscence. Femule flower naked or surrounded by 2 more or less combined scales; ornles $1-2$, naked, pointed by a style-like process. Seed sueculent ; embryo dieotyledonous, in the axis of fleshy albumen.

Distribution and Numbers.-These plants oecur in both tropical and temperate regions. There are 3 genera-Ephedra, Linu.; Welwitschia, Reichb. ; and Gnetum, Lian.; and about 30 species.

Properties and Uses, - Unimportant. The seeds and leaves of several speeies are caten. Some Ephedras are astringent. A new drug from 'Texas, known under the name of Cumillo,
has been lately recommended in cases of urethral inflammation, and in renal diseases ; it is said to be derived from Ephedra trifurcu.

Order 4. Cycadacere, the Cycas Order.-Character. Small Palm-like unbranched trees or shrubs, or occasionally dichotomous, with their surface marked by the scars of fallen leaves. Leares clustered at the summit: pinnate, parallelveined, hard and woody; leaflets sometimes circinate in vernation. Flowers quite naked, unisexual, dicecious. Male flowers in cones, consisting of scales, from the under surface of which 1-celled anthers arise. Female flowers consisting of naked orules placed on the margins of altered leaves, or of ovules arising from the base of flat scales or from the under surface of peltate ones. Seeds hard or succulent, with 1 or several embryos contained in fleshy or mealy albumen.

Distribution and Numbers.-Natives principally of the temperate and tropical parts of America and Asia ; and occasionally of the Cape of Good Hope, Madagascar, and Australia. Illustrative Genera:-Cycas, Linn.; Zamia, Lindl. There are about 50 species.

Properties and Uses.-The stems and seeds of the plants of this order yield mucilage and starch.

Cycas.-From the stems of Cycas circinalis and C. revoluta a stareli maybe obtained. Of this a kind of sago is prepared; that from C. revoluta is said to constitute Japan Sago, which is esteeured as an artiele of food where it is obtained. But this sago is not an article of European commerce, all the sago inuported into Europe being derived froun species of l'alms. (See Metrorylon and Saguerus.) The seeds of the above species are also edible.

Dion edule has large mealy seeds from wheh the Mexicans prepare a kind of arrow root.

Fincephulartos-Various speeies coutain starelr, and form what is called Caftre-bread.

Zamia.-In the Bahamas and other West Indian islands. excellent arrowroot is prepared from the stareh obtained from the stems of Z. integrifolia and other species. It is sold in the West India markets. but is uot kuown as a commercial article in this country or in any other part of Europe. Florida arrowroot is also obtained from this plant.

Artificial Analysis of the Orders in the GimNospermid.

Sub-kingdom II.

CRIPTOGAMIA OR FLOWERLESS PLANTS.

Division I. CORMOPHYTA.

Class I. Vasculares.

Sub-class I. Isosporia.
Order 1. Filices, the Fern Order.-Character.-Herbs with ihizomatous stems (fig. 14); or arborescent plants with cylindrical stems (fig. 15), usually unbranched, but sometimes forked (fig. 204). Leaves, or fronds as they are commonly called, arising irregularly from the rhizome (fig .14), or placed in tufts at the apex of the stem or caudex (.fig. 15) ; almost always circinate in vernation (figs. 14, 15, and 297); simple (fig. 1117, a) or compound (figs. 14 and 804). Fructification consisting of sporangia or capsules (figs. 802 and 804), collected in heaps (sori), which are placed usually on the under surface (figs. 802 , $s p$, and $803, s$) or at the margins of the fronds ($f g .1117, b$), or rarely on the npper surface, or occasionally arranged in a spiked manner on a simple or branched rachis ($f g$. 804) ; the sori are either naked (fig. 802, $s p$) or covered by a membranous scale (indusium) (fig. 803, s). Sporangia stalked (fig. 805, s) or sessile (fig. 1117, b), and either annulate (fig. 805) or exannulate ($\mathrm{flg} .1117, b$). Spores enclosed in the sporangia (fig. 805). (For further particulars upon the fructification of Ferns, see pp. 365-367.)

Division of the Order and Illustrative rienera.-This order has been variously divided; but the more common arrangement is into three sub-orders, which are frequently regarded as distinct orders.

Fig. 1117.

Fig. 1117. a. Barren and fertile fronds of the common Adder'stongue (Ophioylossum. vulyatum). b. Portion of the fertile frond of the same, with 2 -valved rlistinet, burst sporangia or capsules on its margins. These sub-orders are called Polypodiere, Danæeæ, and Ophioglossea. Their characters are as follows :-
Sub-order 1. Polypodiex or Polypotiacex, the Polypody Sub-order.-Fronds circinate in vernation. Sporangia more or less annulate (fig. 805), usually collected in sori on the under surface or at the margins of the fronds ($f i y s, 802$ and 803),
or occasionally arranged in a spiked manner on a simple or branched rachis (fig. 804). Illustratuve Gencra:-Polypodium, Linn.; Aspidium, Suartz; Osmunda, Linn.
Sub-order 2. Danxex, Danxueex, or Maratticeex, the Danæa Sub-order.-Fronds circinate in vernation, and all fertile. Sporangia arising from, or imbedded in, the under surface or back of the fronds, more or less united, exannulate. Illustrative Genera:-Danee, Smith; Marattia, Smith. There are no British plants in this sub-order.
Sub-order 3. Ophioglosser or Ophioglossacex, the Adder's-tongue Sub-order. - Fronds not circinate in vernation, barren or fertile. Sporangia arranged in a spike-like form (f fi. 1117, a) on the margins of a contracted frond, distinct, 2-valved (fyy. 1117, b), exannulate. Illustrative Genera:-Ophioglossum, Liun.; Botrychium, Swartz.
Distribution aud Nombers.-The plants of this order are more or less distributed over the globe, but they are most abundant in moist temperate regions. In the northern hemisphere they are herbaceous plants, but in the southern hemisphere and in the tropics they are sometimes arborescent, having stems occasionally as much as forty feet in height, and with the general habit of Palms. There are upwards of 2,500 species.

Properties and Uses.-Several species have farinaceous rhizomes, which, when roasted or boiled, are used as articles of food in some parts of the world, but generally only in times of scarcity. The rhizomes of Pteris esculeutce, Diplazium esculentum, Nephodium eseulentum, and Marattia alata, are those which are thus principally used. The leaves of several spccies possess slightly bitter, astringent, and aromatic properties, and those of others are mucilaginous. The rhizomes of some are astringent and tonic, and a few possess well-marked anthelmintic properties. The silky hairs found on the rhizomes and lower portions of the caudex of some species have beell used for stuffing cushions, ©c., and as mechanical styptics.

Acrostichum Huacsaro.-The rhizome of this species eonstitutes the Middling Calagnala or Little Cord, which is nsed medicinally in Pern. (Sce Polypodium.)

Adiantum.-The fronds and rhizomes of A. Capillus-T Teneris. True Maiden-hair, and those of A. perdutum, Canadian Maiden-hair, possers mucilaginons, bitter, slightly astringent, and aromatic properties, and have been employed as pectorals in catarils. The latter phant is most esteemed. Syrup of Capillaire is properly prepared, by adding to an intusion of Maidem-hair some sugar and orange-flower water ; but it is now frequently made by simply adding sugar to orauge-flower water. The frouds of A. metanoctulon are reputed to have tonic properties ; and varims qualitits have been attributed to other species of Aldiuntum.

Aspidium. - The dried rhizome with the persistent bases of the petioles of Aspidium F"lix-mas constitute the uflicial Male Fern of the British Marmacopeia. This has been med from the earliest times as nom anthehmintic;
it possesses most aetivity in a reeent state. The rhizome of Aspidium marginale, a native of the United States, is said to possess similar properties, The rhizome of A well as the former in the United States Pharmaeopoia. comocomo, is also mpineh esteemed anticum, under the names of Panna and Unof A. fragrans, possess aromatie and Zulus as an anthelmintie. The fronds used as a substitute for tea

Cibotium.-The silk hairs coverins the lower portion of the eaudex of C. Burometz or Aspidium Baromctz, the Seythian Lamb of old writers, have been imported under the name of Pakoe Kidang. This has great reputation in India as a strptie, and has been used for a like purpose (see Cyathea) in Holland, Germany, and other countries. It has also been employed for stufting eushions, \&e. It is obtained from Sumatra. Analogous hairs imported from the Sandwieh Islands, under the name of Pulu, may be employed for similar purposes as the preceding. Puln is said to be derived from three speeies of Cibotium, viz. C. glaucum, C. Chamissoi, and C. Denziesii; but other speeies also produee somewhat similar hairs.

Cyathea.-From the eandex of C. Smithii, a native of Sumatra, woolly hairs are obtained, whieh are imported under the name of Penghowar Djambi: they are used for similar purposes as Pakne Kiding and Pulu.

Ophioglossim vulgatum, the Common Adder's-tongue, has been employed as a vulnerary. In some parts of England it is used in the preparation of a popular ointment.

Osmunda regalis, the Flowering or Royal Fern.-In Westmorland and some parts of Laneashire, this plant is known under the name of 'bog onion.' The rhizomes when beaten, and maeerated all night in eold spring. water, are much esteemed as an applieation to bruises, sprains, \&e.

Polypodium.-The rhizomes of P. Calaguala, Genuine or Slender Calaguala ; of P.crassifolium, Thiek Calaguala or Deer's 'Tongue; and those of Acrostichum Huacsaro (see Acrostichum), are used medieinally in Peru, and are said to possess sudorifie, diuretie, febrifugal, and anti-venereal pro-perties.- P. Phymatodes.-The fronds, nuder the names of 'Male Fern,' and *Female Fern,' are employed in Siberia in nephritis, dysuria, and other kidney eomplaints.

Pteris aquilina, the Common Brake, is reputed to possess anthelmintie properties.

Order 2. Equisetacee, the Horsetail Order.-Character. Herbaceous plants with striated, hollow, jointed, simple or verticillately branched, aerial siliceous elect shoots or stems, arising from slender creeping persistent rhizomes. The joints are surrounded by membranous toothed sheaths (fig .13), which are generally regarded as modified leaves. When branched, the branches arise in a whorled manner from the axils of the teeth of the sheaths and correspond in number with them. Stems barren or fertile. Fructification borne in cone-like or club-shaped masses ati the termination of the crect shoots or stems (fig. 13). Each mass is composed of peltatc scales bearing the sporanyia or capsules on their under surface (fig. 810), each of which dehisces internally by a longitudinal fissurc. Spores surrounded by elastic club-shaped eiaters (figs. 811 and 812). (See pages 367 and 368 for a more detailed account of the fructification.)

Distribution and Nombers. -These plants are found in marshy or watery places in most parts of the world. There is
but one genus (Equisetum, Linn.), which includes about 20 species, many of which are indigenous.

Properties and Uses.-Of little importance either in a medicinal or economic point of view. They were formerly regarded as slightly astringent, diuretic, and emmenagogue, but are nover employed in medicine at the present day. The rhizomes contain much of starchy matters in the winter months, and might thercfore, in case of need, be used as food, like those of some Ferns. Silica is abundant in their epidermal tissues : this is especially the case in Equisetum hyemale, Rough Horsetail, which is largely imported from Holland under the name of Dutch Rushes, and employed by cabinet makers, ivory turners, and others, for smoothing the surfaces of their work.

Order 3. Lycopodiacee, the Club-moss Order. - Clarac-ter.-Herbaceons plants, usually resembling Mosses, or rarely shrubby, with creeping stems ($f(g .1118$) or corms, and forked ramification (fig. 12). Leaves sessile, small, simple, imbricate

Fig. 1118

Fig. 1118. Lycopodium inumdutum, Marsh Club-moss. The stem is creeping, and bears numerous small sessile imbricate leaves.
(fig. 1118). Sporangia situated in the axis of the leares, of of spicately or cone-like aranged scales (fig. 12), 1-3-celled, compressed, often reniform, 2 -valved ; and containing numerous spores of one kind only, which are marked at the summit with 3 radiating lines. (Sce pages 368 and 369.)

Distribution and Numbers.-They are almost universally dis-
tributed, occurring in cold, temperate and warm climates. Illustrative Genera:-Lycopodium, Linn. ; Psilotum, Swarti.. There are about 100 species.

Properties and Uses. - Many species contain an acrid principle. In moderate doses they are frequently emetic and purgative, but in large doses they occasionally produce poisonous effects. Some are reputed to possess aphrodisiac properties. The spores of several are inflammable.

Lycopodium.-L. clavatum, the common Club-moss, possesses well-marked emetic and pursative properties, and is also repnted to be dinretie and cmmenagogue. The spores have been employed externally for their absorbent qualities, in erysipelas and varions eutaneons affections; and when taken internally they are said to be dimretie, sedative, and demmleent. These spores are of a yellow colonr, and are sometimes known as vegetable sulphur. Besides their use medicinally, as just alluded to, they are oeeasionally employed in pharmaey for eovering pills, the object sought being, to render them tasteless and prevent their adhering together. Lycopodium spores, however, from their inflammable nature, are prineipally used in the preparation of tireworks, and for the production of artifielal lightning at theatres, \&e.-L. Selago has similar medieinal properties, but it sometimes acts as a nar-cotieo-acrid poison. The spores are of a like inflammable nature to those of L. clavatum. - L. catharticum is said to be a powerful purgative.

Fig. 1119.

foiy. 1119. Isö̈les lreustris, Lake Quill-wort. The stem is small manl cormlike, and bears its leaves, which are linear-cylindrical, in tufts.

Sub-class II. Heterosporia.

Order 1. Selaginellacefe, the Selaginella Ordcr.-Cha-racter.-Terrestrial or water plants (fig. 1119), with branched slender stems, or the stems are corm-like (fig. 1119). Leares sessile, small, and imbricate all round the stem or distichous, or in the plants with corm-like stems tufted, long, and somewhat linear (fig. 1119). Spurangia of two forms, the larger called the macrosporangium or megasporangium (fiy. 816), 2-4-valved, and containing 2-8 large spores (macrospores or megaspores); and the smaller or mierosporangium (fig. 815), resembling that of the Lycopodiacere, and containing a number of small spores (mierospores). (Sec pages 369 and 370 .) The speeies of Isoëtes are sometimes formed into a distinet order-the Isoëtacex (see paye 370). They are here included in Selaginellacea.

Distribution and Numbers.-They are found in all temperate and warm climates. There are 2 genera, and about 10 species. Illustrative Genera:-Selaginella, Beauv.; Isoëtes, Linn. 350 Properties and Uses.-Unimportant.

Order 2. Marsileaces or Rhizocarpee, the Pepperwort Order.-Character.-Aquatic herbs with small floating or creeping stems (f ig. 1120), from which arise sessile ($f i g .1120$) or

Fig. 1120.

Fig. 1120. The Creeping Pillwort (Pilulnra globulifert). The stems are creeping, and bear numerous sessilc leaves, which are circinate in vernation. The sporocarps are downy, and pheed in the axils of the leaves.
stalked leaves (fig. 306). Leares with circinatc voruation (fig. 1120). Fruetification at the base of the leaves (fig. 1120), and consisting of stalked valvuliur sporocarps (figs. 817, 81?, and 820) enclosing anthoridia in which a number of small spores (mierospores) are contained (fig. 818), and sporangia (fig. 820, b), both of which are either containcd in the same cavity (fig. 817) or in separate sacs (fig. 820). (Seo parges 370 and 371 .)

This order is frequently divided into two orders, namely, Marsileacer and Salviniacer.

Distribution and Nrumbers.-They are widely distributed, but are most abundant in temperate regions. Illustrative Genera:Pilularia, Linn. ; Marsilea, Linn. There are about 40 species.

Properties and Uses.-Of little importance. Marsilea Macropus is known in Australia as the Nardoo plant. The sporocarps contain starchy matter ; these are pounded, and used in the same way as flour.

Class II. Muscinee.

Order 1. Musci, the Moss Order.-Character.-Cellular plants (figs. 9, 10, and 824), terrestrial or aquatic, with erect or creeping stems, and usually spirally imbricate leaves (fig. 1121). Pieproductive organs of two kinds, called antheridia and archegonia (see pages 372-375). which are either placed on the same or on separate plants (figs. 9 and 10) ; hence these plants are monacious or diecions. The antheridium. (fig. 821) is a more

Fig. 1121.

Fig. 1121. A portion of Andrea rupestris, mueh magnified. The stem is ercet, with numerous sma'l imbrieate leaves, and a termunal sporangium, whieh is destitute of a seta. ". Sporan. gium after dehisceuee, showimg the 4 equal valves of whieh it is comonsed eonneeter at the summit by the persistent opereulum. The valyes are seen to lave dehisced vertieally. (After Hooker.)
or less rounded, elliptic, or cylindrical sac, containing, when mature, a number of minute cells (sperm-cells), each of which encloses a spirally twisted filament (antheromid). The archegominm is a flask-shaped body (fig. 822), which after fertilisation developes an urn-shaped sporangium (figs. 823-825), with usually a central columella (fig. 829) ; the space between which and the walls of the sporangium being occupied by spores, without any claters anong them. The spurangivem or capsele is commonly placed on a stalk (sefa) (figs. 823, t, and $824, p$), or occasionally it is sessile (fig. 1121), and at first is covered by a hood (calystra) (figs. 824, c, and 825, c), beneath which is a kind
of lid (operculum) (figs. 826, o, and 827). The sporangium usually opens when ripe in a transverse manner from the separation of the opereulum (figs. 826, o, and 827), or sometimes by splitting vertieally into four equal valves, whieh are eonnected at the summit by the persistent opereulum ($\mathrm{fig} .1121, a$) ; or rarely it dehisees irregularly. At the dehiscence of the sporangium, its mouth (stoma) is seen to be either surrounded by a peristome, consisting of one (aploperistomous) or two rows (diploperistomous) of teeth (fig. 826, p) ; or the mouth is naked (gymnostonous).

Division of the Order and Illustrative Genera.-This order is commonly divided into fuur sub-orders, whieh are frequently regarded as separate orders, the principal distinetive eharaeters of which are as follow:-
Sub-order 1. Sphagnarex or Sphagnex.-Bog-mosses. Sporangium globular, surrounded at the base by the ealyptra; the columella does not reach to the apex of the eapsule. The only genus is Sphagnum, Dill., whieh is found on boggy moors and in damp woods.
Sub-order 2. Andreacex or Andreex.-Split-mosses. - Sporangium splitting vertieally into four valves, but remaining eonneeted at the summit. Illustrative Genus:-Andreea, Ehr. (fig. 1121).
Sub-order 3. Phascreeæ or Phasceæ. - The sporangium does not burst; the spores eseaping by the decay of the wall of the sporangium. Illustrative Genus:-Pliaseum, Linn.
Sub order 4. Bryacex or Bryex. - Urn-mosses. - Sporangium, whieh is generally borne upon a seta of considerable length, dehiseing transversely by the separation of the operenlum (figs. 826 and 827). Illustrative Gonera :-Funaria, Hedgur.; Polytriehum, Linn.
Distribution and Numbers.-They are generally diffused orer the globe, but most abundantly in temperate elimates. There are about 1,250 speeies.

Properties and Uses.-Of little importance either in a medicinal or economie point of view. Some speeies are reputed to possess astringent and diuretie propertics, but nonc are cmplored by the medical practitioner in this country. The speeies of Sphagnum furnish food to the reindeer, and even to wan in the polar regions.

Order 2. Hepaticacea, the Liverwort Order (see pages 3-5-377).-Charaeter. - Smell celluher plants, either with a creeping stem bearing minute imbrieate leaves (fig. 1122) or with a lobed thalloid expansion (figs. $8: 30$ and 832). Reproductive orgenss of two kinds, called mintheridia and arehegonia. which are either on the same plant or on different ones: hence these plants are monccious or diecious. The antheridia are
small, oval, globular, or flasked-shaped, celhular sacs (fig. 831), situated in the axils of leaves, or immersed in the frond, or imbedded in the upper surface of peltate or discoid stalked receptacles (fig. 830, r). The arehegonia (fig. 833) are usually somewhat flask-shaped bodies, which are imbedded in the fronds, or contained in receptacles ($\mathrm{fg} .832, r^{\circ}$) which are elevated on stalks ($f i g .832, s$) above the thallus. Each archegonium dcrelopes after fertilisation a sporangium, which either bursts by valves (fig. 1123) or teeth, or by irregular fissures. The sporangium is usually without a columella, and contains spores

Fic. 112 ㄹ.

Fig. 1123.

Fig. 1122. Jungermanmia bi. demata. The stem is creeping, and bears numerous small imbricate leaves.-Fig. 1123. Sporangium of Jungermunnill hyalina, dehiscing vertically by 4 valves, and containing spores in its interior.
mixed with elaters (fig. 834) ; or it is furnished with a threadlike columella, and coucains spores and no elaters, or the latter are imperfect ; or it has neither elaters nor columella.

Division of the Order and Illustrative Genera.-This order may be divided as follows :-
Sub-order 1. Jungermanniacere or Jungermannica, Scale-mosses.-Sporangia oval ; without a columclla ; splitting vertically by 4 valves (f g. 1123). Spores mixed with elaters. Illustrative G'enera:-Blasia, Mieheli; Jungermannia, Dillen.
Sub-order 2. Anthoeerotcx. - Sporangia pod-shaped; 1-2valved ; with a filiform columella. Spores either mixed with imperfect claters, or these are absent. Illustrative Genera:Anthoceros, Micheli; Monoclen, Mool.
Sub-order 3. Marchrentiaceas or Murchuntion, Liverworts. Sporangia without valves; bursting irregularly or by tecth ; without a columellar. Sporcs mixed with elaters (fir. 834). Illustrative ('́enera:-Fimbriaria, Nees; Marchantia, March.
Sub-order 4. Ricciecea or Ricciere, Crystalworts.-Sporangia without valves ; bursting irregularly; without a columella.

Spores not mixed with elaters. Illustrative Genera:-Riccia, Mich. ; Spherrocarpus, Mich.
These sulb-orders arc sometimes reyarded as distinct orders.
Distribution and Numbers.--These plants are generally distributed over the globe, but they are inost abundant in damp shady places in. tropical climates. There are about 700 species.

Properties and Uses.-Of no importance, although some have been used in liver complaints, and other species, as Marchantia hemispherica, have been employed, in the form of poultices, in dropsy.

Division II. THALLOPHYTA.

Order 1. Fungi, the Mushroom Order.-Diagnosis. Plants formed of hyphal tissue, producing their fructification in the air ; growing in or upon decaying organic matters (in which care they are termed saprophytes), or on living organisms (when they are termed parusites), and nourished through their regetative structure called the spawn or mycelium (fys. 6, my, and 839 a, my). The Fungi, as here defined-that is, excluding Lichenes, are also destitute of green colouring matter and starch. Fructification various. (See pages 37S-357, and figs. 835-850.)

Division of the Order.-For a notice of the groups into which this order has been divided, sec pages 378-387.

Distribution and Numbers.-They abound in all parts of the world exeept the very coldest, where their spawn would be destroyed. Illustrativ Genera:-Agaricus, Limm.; Saccharomyees, Meyen ; Botrytis, Mich.; Morchella, Dilleu.: Tuber, Mich.; Mucor, Mich. The number of species is roughly estimated at over 4,000 . There are about 800 Eritish species.

Properties and Uses.-Fungi have very variable properties. Somc are medicinal, others cdible, and numerous species are more or less poisonous. Many dcaths have occurred from poisonous Fungi having been mistaken for edible ones; and, apart frous their botanical characters, seience as yet attords no certain characteristics by which they may be distinguished. Some general characters, howevcr, will enable us in most cases to do so: these may be tabulated as follows :-

Eiflinle Mushrooms.

1. Frow solitary in dey airy places.
2. (enerally white or brownish.
3. Have a compare britt te thesh.
4. When ent do not change colour by exposine to the air.
5. Jnice watery.
(i. Odour amrecable.
6. 'I'aste not bitter, acrid, salt, or astringent.

Poisonous Mrushrooms.

1. Grow in clusters, in woods, and dark damp places.
2. Usually with bright colours.
3. Flesh tough, soft, and watery.
4. Aequire a brown, green, or blue tint, when cut and exposed to the air.
5. Juice often milky.
6. Otour commonly powerful and disagreeable.
7. Have an acrid, astringent, acid, salt, or bitter taste.

All Fungi should be avoided which insects will not toueh, those also which have scales or spots on their surfaee ; and, whatever may be their apparent properties, all those whieh have arrived at their full development, or when they exhibit any signs of ehange, should be used with caution. When there is any doubt as to the qualities of the mushrooms, it is advisable to cut them into slices, and maeerate them in vinegar and water for about an hour, then wash them in boiling water previous to their being cooked. It has been proved that some injurious Fungi lose their poisonous properties when thus treated. It is quite true that, by following strictly the above rules, edible species will not unfrequently be thrown away, but this is of little comparative importance, as by so doing all injurious ones will certainly be rejeeted. Probably the best tests given above are, to avoid those whieh are milky, or which have a biting or acrid taste, or those which have a powerful or disagreeable odour. Colour will frequently fail us, for while some snowy-white Fungi are poisonous, others, which are highly eoloured, as, for instance, Agaricus cresareus, are, according to Berkeley, at onee the most splendid and the best of the eseulent Fungi.

Professor Schiff, of Florence, states that the poisonous mushrooms have a common poison whieh lie has termed muscarine, and that its effects are counteraeted either by atropine or daturine ; and it is said that Italian a pothecaries now keep these alkaloids in the rural distriets where the consumption of poisonous Fungi is probable. But no confirmation of these results has as yet been arrived at by other experimenters so far as to prove that muscarine is thus widely distributed, but its presence has been ascertained in Amunitr muscoric, and it is stated to be antagonistic to atropine. (See Amanitu.)

The species or varieties of Fungi must commonly consumed in this country are : the Common Mushroom (Agaricus (Pstlliote) compestris) and its varieties-those which are eultivated should be preferred; Agaricus (Psalliotu) arvensis, Agaricus (Marasmius) oreudes, the Champignon, Morchella esculenta, the Morel, Tuber cibarium, the Truftle, and several speeies of Boletus. Of all these the best known in this country is the common Mushroom, whether in its uneultivated or cultivated state; and as other Fungi are frequently mistaken for this, by which many deaths have occurred, we may give one or two hints in reference to it besides those given previously. Thus its spores are purple;
the gills are at first delicately pink, and afterwards purple; there is a permanent ring or collar round the stem; and it must not be sought in woods. Dr. Badham and others have proved that much valuable food is thrown away in this country by the rejection of edible Fungi. Dr. Badham enumerates no less than thirty species of Fungi which are natives of Britain, and which were eaten by himself and friends; and in the first part of Cooke's 'Handbook of British Fungi,' sisteen species belonging to the genus Agaricus alone are stated to be esculent. In France, Russia, Ttaly, Germany, and other countries, several Fungi are also eaten which are regarded by us as poisonous. It is difficult to account for these conflicting statements, but we believe that the differences thus observed in the effects of Fungi are due to variations of soil and climate, the conditions under which they are grown, the different states, fresh, dried, or preserved, in which they are eaten, manner of cooking, and the peculiar idiosyncrasies of individuals who partake of them. Even the common Mushroom is sometimes poisonous, and in Italy, Hungary, and elsewhere, is generally avoided. We consider, therefore, that, with our present knowledge, it is better to abstain altogether from Fungi when there exists the slightest doubt of their qualities.

From a chemical point of view the Fungi are remarkable for the large proportion of water which enters into their composition, by their containing much nitrogen, and being rich in phosphates.

Medicinally, Fungi have been regarded as aphrodisiac, narcotic, tonic, astringent, emetic, purgative, \&c. Ergot of rye (see Secale cereale, page 738), which is used medicinally to excite uterine contractions in labour, and for other purposes, is now proved to be the sclerotium of Claviceps purpurea, Tulasne. Wheat and a number of other grasses are also frequently ergotised.

Fungi are often very destructive to living plants and animals by growing upon them. Thus, in plants, the diseases known as blight, mildew, rust,'smut, vine-mildew, potato disease, ergot, and others, are either caused from, or accelerated by, the agency of Fungi. Many important communications attempting to prove that Fungi are either the cause of, or the means of propagating, various diseases in the human subject, hate been also made during the last few years, and it is now certain that Fungi are associated with several cutaneous and other external as well as internal diseases. In some cases of diplitheria reported a few years since in the 'British Medical Journal' by Dr. N. W. Taylor, it is stated that the only apparent source of the disease was the mouldiness of the walls caused by the production of Coprinus domesticus and a form of Aspergillus. Berkeley also informed Dr. Taylor, that when he was at Lille in 1838, at which time influenza was very fatal, it was supposed
to arise from the spores of some species of Coprimus. The great success of the antiseptic treatment, first introduced by Sir Joseph Lister, and since carried out by him with such energy, skill, and ability, is also due to its preventing the growths of such Fungi as the Bacteria in the discharges of wounds, in which otherwise they would cause putrefaction. The action of Fungi in disease is now under investigation by accurate and discriminating observers, and promises to throw much light on our. knowledge of the causes and propagation of various diseases ; it is one replete with importance and interest, but which cannot be entertained further in this volume.

In the same way various diseases of animals generally are either caused, or accelerated, by the attacks of Fungi. Thus the disease in the silkworm known under the name of muscardine is produced by one or more species of Botrytis. Similar diseases also occur in other animals. Caterpillars are frequently attacked by species of Sphæria or Claviceps, in China, Australia, New Zealand, and elsewhere, and ultimately destroyed. The mucous membrane of birds is also commonly infested with Fingi of various kinds.

In other ways, again, Fungi are often very destructive. Thus the disease called Dry Kot, which frequently occurs in wood, is especially caused by dampness, and the subsequent development of the spores of such Fungi as those of Merulius lacrymans and M. vastator, and Polyporus destructor. The different kinds of Moulds which are found on bread, cheese, preserves, fruits, paper, books, and various other substances, are also Fungi of the species Mucor, Botrytis, Aspergillus, Penicillium, Oidium, \&c.

An interesting matter connected with the action of Fungi on organic matters is also afforded by the process of fermentation, which is now commonly regarded as being essentially caused by Fungi. Thus, Pasteur has demonstrated that the fermentation of saccharine fluids is due to the development in them of the Yeast plant, and the butyric fermentation to the growth of Bacteria.

Agaricus.-Aguricus campestris, the Common Mushroom, and its varie-tips-A. arvensis, A. oreades (the Champignon), A. deliciosus, A. resareus and A. procerus, \&c.-are largely used for food in this and other parts of the world. (See Properties and Uses of Fungi, page 757.) The subterranean mycelium of varions species of Agaricus, as that of A. oreades, A. prunulus, A. Orcella, A. campestris, and others, and of allied genera, developes in a radiating manner, and, by the remains acting subsequently as a manure, canses the grass in our meadows, in such places, to grow in a very luxuriant manner in rings, which are commonly ealled fairy rings.

Anumita (Agaricus) muscaria is a very poisonous speeies. It possesses nareotic and intoxicating qualities, and is much used in Kamtschatka and some other parts of the Russian empire as a narcotie and intoxicating agent. This fungus possesses the remarkable property of imparting its intoxirating qualities to the fluid exeretions of those who partake of it. When steeperd in milk, and other liquids, it acts as a poison to flies; hence
its speeific name. It contains an uncrystallisable alkaloid named muscarine. This closely resembles pilocarpine in its action when administered internally, and it is stated to be antagonistic to atropine; lont it is remarkable that when locally applied it dilates the pupil like atropine. (See page 757.)

Bacteria.-The action of these organisms in connexion with disease has becn already referred to. (See pages 387 and 759.)

Boletus edulis and several other species are edible.-B. edulis is mach esteemed in Italy, \&c.

Claviceps (Cordiceps).-The disease called Ergot, which occurs in the grains of Ryc, Wheat, and many other Grasses, is prodnced by C. purpurea. The official Ergot of the Britioh Pharmacopeeia is the sclerotium of this fingus, produced between the pales, and replacing the grain of the common Ryc (Secale cereale). Ergot is largely used in medicine to cause contraction of the uterus in cases of tedions parturition, or to prevent flooding after delivery. It is also employed for other purposcs. In overdoses it acts as a poison, and sometimes causes death. Taken for a leugth of time, as in bread made with diseased Rye, it also acts as a poison.-C. Robertsii, C. sinensis, C. entomorrhiza, and other species, frequently attack caterpillars in a living state, which they destroy as their mycelium developes. The remains of the catcrpillar with the developed fingus of C. sunensis is a highly estecmed drog in China, where it is much used as a tonic.

Cyttaria Darwinii and C. Berteroi are cmployed for food, the former in Terra del Fuego, and the latter in Chili.

Elaphomyces granulatus and E. muricatus are sold in Covent Garden Market under the name of Lycoperdon Nuts. They are supposed to posess aphrodisiac properties, and to promote parturition and the sectetion of milk.

Exidia Auricula Juda, Jew's Ear, is reputed to possess astringent and discutient properties when applied externally in the form of a decoction, or poultice.-E. hispidela is used in Chima as a styptic, and as a food mixel in soups, \&c. It is known there under the name of Mogli, signifyins: ears of trces.

Lycoperdon, the Puffballs.-When the Lycoperdon gigauterm is submitted to combustion, the volatile emanations arising from it possess a narcotic property. It has been employed in this way to stupefy bees when removing honey from the hive, and has been also recommended as an anasthetic agent instend of ether and chloroform. A similar property is also possessed by some other species.

Mervtius lucrymans and $\mathbf{M I}$. vastator are two of the Fmag which oceur in the disease called Dry Rot. (Sce Properties and Uscs of Fungi, p. 759.).

Marchella esculcnta, the Morel, is a lighly estemed edible fungus, which is principally employed for flavouring. It is commonly imported in a dry. state from the Continent.

Mylitta anstratis is called Native Bread in Anstralia, where it is largely. used as food by the natives. This fungns frequently weighs as much is from one to threc pounds. Other species, nearly allicd to Mylitta anstralis. are also used in China for food and as medicine.

Oidium.- The Vine Fugnus is commonly supposed to be a species of this or a nearly allied genus. It would appear, however, that the so-called fungus, Oidinm, is a mycelial form of Erysiphe Tucheri.

Puchyma Cocos, Fries, is another fimgns, allied to Mrylith, which is highly estecmed as a food and medicine by the natives of Chinal. \&e., and ly the Indians of the United States of North America. It is the 'luckuhoe or Indian Bread of the Uuited States. It lans heen offered in the london markets under the name of China lioot. It may readily be distinguished from true China Root hy the absence of wiareh.

Penicillium ghencom, Alucor Mucedo, Aspergillus glaucus, Botrytis rulguris, and uther limeri, constitute the varnons kinds of Monlds alreadynoticed. (See L'roperties and Uses of Fungi, 1, 759.)

Peronospora (Phytophthora) infestans is the fungus whiclı causes the potato disease.

Polyporus.-P. destructor is one of the Fungi found in the Dry Rot of wood. (See Mernlius.) Thin slices of P. igniarius and P. fomenturius, when softened by beating with a mallat, are sometimes employed externally to restrain hemorrhage. Similarly prepared slices soaked in a solution of nitre, and dried, constitute Amadou or German Tinder. When impregnated also with grunpowder, they form Black Amadou. Amadou has been sometimes used to give support and pressure in certain surgical affections, and as a moxa.- P. squamosus and P. betulinus, when pressed, sliced, and prepared by rubbing with pumice, \&c., are used to make razor strops.- P. officinulis, Larch or White Agaric, has been cmployed externally as an astringent; and internally, to check perspiration, and as an emetic, eathartie, \&c. It was formerly employed as an anthelmintic, but its action is frequently violent. Larch Agaric is now imported from the northeru part of Russia, where it crows on the stems of Larix sibirica.- P. anthelminticus, a native of Taroy in the Tenasserim provinces of Burmah, is known as Shan-mo (Worm Mush:oons), being there highly esteented as an anthelmintic.- P. (Boleius) Laricis canadensis, Canadian Agaric, is reputed to be a valuable remedy in acute rhemmatism.-A species of Polyporus, believed by Berkeley to be P. Pini canadensis, Schweinitz, a native of Canada, is said to be a tonie bitter, and is recommended as an application to wounds.

Puccinia graminis is the fungus which produces the Mildew of Wheat.
Saccharomyces (Torula). -The so-called Yeast plant is a mycelial form of S.cerevisize; and the so-called Vinegar plant is also a more developed form of the mycelium of the same fungus. The ferment obtained in brewing beer is produeed by Saccharomyces cerevisia; it is official in the British Pharmacoperia.

Tuber, the Truffle.-The species of Truffle, several of which oceur in Britain, are subterranean. They are highly esteemed as seasoning or Havouring agents. The best are imported from France, Algeria, and Italy; they are commonly preserved in oil. T. destivam, T. cibarium, and ' T. meianosporum are the more frequently used species.

Order 2. Lichenes, the Lichen Order.-Character.Perennical plants, composed of hyphal tissue resembling that of Fungi, but its constituent cells are firm and dry, and enclose the cells known as gonidia (fiys. 853, gon, and 855, gon), which contain chlorophyll, and are now frequently regarded as mimute Algre, upon which an Ascomycetous Fungus is parasitic. (See page 388.) The whole is arranged so as to form a foliaceous, somewhat woody, scaly, crustaceous, or leprous thallus (figs. 851 and 852) ; living and fructifyirg in the air, and growing on the bark of trees, or on old palings, walls, \&c., or on stones, or on the exposed surface of rocks; usually epiphytic, but sometimes parasitic, and commonly presenting a dry, shrivelled, more or less lifeless appearance. Reproduction either vegetative by means of soredia (see page 390) ; or by true fructification, consisting of, (1) apothecia, which are sessile or stalked, and generally of a rounded (fiy. 852, ap) or linear form (fig. 851), and composed of asci or thece (fig. 853, as), enclosing 4, 8, or 16 spores; (2) of spermogonia containing spermatia (figs. 8022, sp, and 854, sp) ; and (3) of, very rarely, pycnidia enclosing styluspores. (For detailed account of the fructification of Lichens, sce pages 388-390.)

Distribution and Numbers.-Lichens are distributed over all parts of the world. The pulverulent species ' are the first plants that clothe the bare rocks of newly formed islands in the midst of the ocean, foliaceous lichens follow these, and then Mosses and Liverworts.' Lichens also form a considerable proportion of the vegetation of the polar regions and of mountain-tops. Illustrative Genera:-Opegrapha, Pers.; Verrucaria, Pers.; Lecidea, Ach.; Cladonia, Hoffm.; Peltigera, Hoffim.; Usuea, Hofm. There are above 2,500 species.

Properties and Uses.-Several possess nutritive properties from containing amylaceous substances, and such are also emollient and demulcent: others contain bitter principles, which render them tonic and astringent ; and many are important as dyeing agents. A few possess aromatic properties. Sume Lichens, as species of Variolaria, contain a large amount of calcium oxalate. None are known to be poisonous.

Cetraria.-C. islandica, Iceland Moss.-'lhis lichen contains abont 70 per ecut. of lichenin or lichen starch, and above 2 per cent. of a crystalline bitter principle termed cetraric acid or cetrarin. It is official in the British Plarmacopeeia, and is employed as a uutritious food, and as a mild mucilaginous tonic in catarrh, consumption, and other affeetions. When used for food it should be previously deprived of its bitterness: this may be done either by heating it once or twice in water to near the boiling point of Fahrenheit, or, still better, by digesting it in a weak alkaline solution formed by adding half an ounce of carbonate of potassium to about a gallon of cold water, and afterwards washing it with water.

Cladonia or Cenmyce.- C: rangiferina is the Reindeer Moss. It is so termed from constitnting the food, more especially in the winter months, of the Reindeer.-Cladonia (Scyphophorus) pyrvidata is commonly termed Cupmoss; this and other species have been employed as remedies in whoopingcough.

Gyrophora (Umbilicaria).-Several species, denominated tripe dc roche, possess mutritive qualities, and are used as food in the Arctic regions. Franklin and his companions owed their preservation in 1821, in a great measure, to the use of these lichens as food. The Gyrophoras also possess slight tonic properties owing to the presence of a bitter principle.-G.pustulata is one of the Lichens used in this comntry by the manuficturers of orchil and cudbear. (See Roccella and Lccanora.) It may be also made to produce a brown colour.

Lecanora.-L. tartarea was formerly the principal lichen used in the preparation of the dye called Cudbear ; but cudbenr is now obtained not only from it, but also from a number of other Liehens, as the specios of Roccella, \&c. (Sce Rocchlla and Gyrophor(t).-L. Perella vietds a similar dye. Two species of Lecanora, namely, L. csculenta and L. affinis, form important articles of food both to man and amimals gencrally. in l'ersis, Armenia, Tartary, \&e. They appear in some seasons in such enormons: guantities, that in certain districts the eover the ground to the depth of several inches, and the matives helieve they fall from heaven. L. esculcnta is also found in Algeria, Asia Minor, \&e., and Dr. O'Rorke las endeavonred to prove that this lichen was the mamue of the Mobrews, - that which fed then with regularity for forty years in the wilderness.

P'armelia.- P^{\prime}. purietina was formerly regarded as al valuable febrifuge. astringent, and tonic. It eontains a yellow ewstalline colonring mater, eatled chrysonhonic meid, which is identical with that obtaned fom Rhaharh. Goa powder, \&e.- P. perlata is cmployed by the manfacturers of orehil
and cudbear. (See Roccella.) It is also reputed to possess diuretic propeaties.

Peltigera.-Peltigera (Peltidea) canina and P. rufescens are known in the herb shops of this country under the name of Ground Liverwort. This was at one time official in the London Pharmacopeia, and regarded as a specific in hydrophobia.

Roccellu, Orchella Weeds.-R. tinctoria, R. fuciformis, and R. Impomecha, nnder the common name of Orchella Weed, are the species usually met with in this country. They are imported from various parts of the world, as the Canary and Cape de Verd Islands, the Azores, Angola, Madagasear, Mauritius. Madeira, South Ameriea, Cape of Good Hope, \&e. In commerce they receive the name of the country from whence they have been derived. Orehella weed is extensively used in the manufacture of the purple and red colours called orchil and cudbear. In Holland, the blue eolour called litmus is also prepared from the same Lichens; but the best kind is said to be made from R. tinctorin. Other Lichens, as species of Lecanora, Gyrophora, Parmeliu, Fariolaria, \&c., are also sometimes employed in Britain and elsewhere for the preparation of orchil, \&c. (Lee these speeies.) Orchil and cudbear are used for staining and dyeing purple and red colours, and also occasionally as tests for acids and alkalies. Litmus is employed as a test for alkalies, acids, and some salts with a basic reaction. It is official for this purpose in the British Pharmacopœeia. A decoction of Orehella weed possesses mucilayinous, emollient, and demulcent properties, and has been nsed in eoughs, catarrhs, \&ic.

Sticta pulmonaria, Tree Lungwort, Oak-lungs. -This lichen possesses tonic and mutritious properties, somewhat resembling in these respects Cetraria islandica. In Siberia it is said to be used instead of hops for imparting bitterness to beer. It is also employed in France, \&c., for the production of a brown dye.

Fariolaria. $-V$. dealbata and V. orcina are used for the preparation of Orchil in France.

Order 3. Characes, the Chara Order.-Diagnosis.-Water plouts, with a distinct axis branching in a whorled manner (fig.

Fig. 1124.

Fig. 1124. A small portion of a speeies of Nitella, magnified. The branches are arranged in a whorled manner. The contents of ench cell exhibit a kint of circulation. The direction of this circnlation is indicated by the arrows. The eirculating matter does not puss from cell to cell, but is confined to that in which it originates.

1124), and either transparent or coated with calcium carbonate. Reproductive organs of two kinds arising at the base of the
branches ($f i g .856, s, a$), and either on the same or on different branches of the same plant, or on separate plants. These organs are termed globules or antheridia (figs. $856, a$, and 858) and mucules or carpogovia (figs. $856, s, 859$, and 860). (See pages 390-392 for a detailed account of their structure.)

Distribution and Numbers.-These plants occur in stagnant fresh or salt water in all parts of the globe; but they are most abundant in temperate climates. Illustrative Genera:-There are two genera, Chara, Limu.; and Nitella, Agh. ; and about 40 species.

Properties and Uses.-These plants during their decay give off a rery foetid odour, which is regarded as most injurious to animal life. They have no known uses.

Order 4. Algs, the Sea-weed Order.-Diagnosis.-Parenchymatous plants, growing in salt or fresh water, or in moist situations. The thallus is foliaceous and branched ($f \mathrm{fg} .5$), or filamentous (figs. 861 and 862), or pulverulent. Many Alge are microscopic, and others are of large size. In colour they are usually greenish, rose-coloured, or brownish. They are reproduced in various ways. (See pages 392-399.)

Division of the Order and Illustrative Genvera.-The order is commonly divided into three sub-orders, which are frequently regarded as distinct natural orders; these are known under the names of the Melanosporex, Melanospermex, or Fucoidex ; Rhodosporex, Rhodospermex, or Floridex ; and Chlorosponex, Chlorospermex, or Confervoidex. To these sub-orders or orders may be added two others, called respectively the Diatomacex and Volvocinex. Numerous other arrangements of the Algie have, been proposed of late years, but as these must be regarded as transitional, we have retained the above-named sub-orders from their being more generally used in this country in works treating practically of the Algee ; and must refer those desiring detailed information in reference to other arrangements to such works as Sachs' 'Text Book of Botany,' \&e, and to spceial treatises on this group of plants. Reference should also be made to pages 392-399 of this Mannal for a gencral notice of their Reproductive Organs. Their distinctive characters may be briefly describel as follows:-
Sub-order 1. Melanosporea, Melanospermex, Fucoilex, or Broun-coloured Alge.-Multicellular Alge, growing in salt water, forming a foliacenus or filamentous thathis, and of an olive-green or olive-brown colomr. Ilustrative fonera:Sargassum, Rumph.; Fueus, Linn.
Suh-order 2. Rhodospores, Whodonpermex, Floridea, or Rosccoloured Alga.-Marine multicellular Algae, with a foliaceous or branched filamentous thallus, and of a reddish-purple, rose-coloured, or reddish-hrown colour. Illustrative (icnera: -Corallina, Tınm.; Chondrus, Crev.; Porphyra, Agh.

Sub-order 3. Chlorosporex, Chlorospermex, Confervoider, or Green-colonred Alga.-Unicellular or multicellular Algæ, growing in fresh or salt water, or in moist situations; usually of a bright green colour, or rarely red. Illustrative Generit:-Conferva, Pliu.; Palmella, Agh.; Spirogyra, Link. Sub-order 4. Diatomacea. - The following diagnosis is modified from Henfrey:-Microscopic unicellular plants, occurring isolate or in groups of definite form, usually surrounded by a

Fig. 1125.

Fi.\%. 1125. A species of Diatomaccons Alga (Dinfoma murimum) divided into parts by merismatic or fissiparous cell-division. The parts are seen to be striated.
gelatinous investment, the cells exhibiting more or less regular geometrical outlines and enclosed by a membrane, striated (fig .1125) or granular, either simply tough and continuous (fig. 1126), or impregnated with silex and separable into valves (fig. 1125). Reproduction by spores formed after conjugation of the cells which have previously lost or thrown off their cellulose walls (fig. 1126), or by division (fg .1125). The Diatomacere are again divided into two sections or tribes. 1. Diatomere (fig. 1125). Natives of fresh, brackish, or salt water, or of moist ground, of a brownish or olive colour,

$$
\text { Fig. } 1126 .
$$

Fi\%. 1126. Two Desmilliaccous Algr (Docidium Ehrenbergii)nfter conjugation, with a resting or inactive spore between them. (After Ralfs.)
valvular, and invested by a siliceous membrane. Illustrative Creneira:-Diatoma, DC.; Navicula, Bory. 2. Desmidicis (fig. 11:26). Found only in fresh water, of a green colour, continuous, containing starch, and not invested by a siliceous membrane. Illustrative Genera:-Closteriun, Nitжsch; Desmidium, Agh.

Sub-order 5. Volvocinex (fig. 1127). Henfrey diagnoses them as follows :-'Mieroseopie bodies swimming in fresh water by the aid of cilia arranged in pairs

Fig. 1127.

Fig. 1127. The Revolving Volvox (Voleox glabrion). The outer surface is ciliated. upon the surfaee of a common semigelatinous envelope, the pairs of eilia eaeh belonging to a green corpuscle resembling the zoospore of a confervid, imbedded in the periphery of the common envelope. Reproduetion by the development of eaeh eorpusele into a new colony, the whole being set free by the solution of the parent envelope, or by conversion of the eorpuseles into eneysted resting-spores like those of Conferve;' or, sexually, by impregnation taking place within the eolony from oogonia and antheridia.' Illustratice Genera:-Volvox, Lam.; Gonium, Lam. The members of this group were frequently regarded as Infusorial Animalcules, but in all their essential eharaeters they closely resemble the Confervoideæ; indeed, they are eommonly placed in that sub-order.
Distribution and Numbers.-Algæ are more or less distributed throughout the globe, growing in salt or fresh water, or in moist situations. Some speeies are found in the boiling springs of Ieeland, \&e.; others oceur in mineral springs, and some in ehemieal solutions. The waters of whatever temperature hare their own peeuliar forms. It is impossible to estimate with any degree of aceuracy the number of speeies of Alge, but they may be roughly estimated at 2,500 .

Properties and Uses.-Several speeies are employed for fond in different parts of the world; as, Laminuria sucharina, L. digitata, L. .potatorum, \&e.; Alaria esculenta, Durrillaa utilis, Sargassum species, Lridea edulis, Chondrus crispus and (": mamillosus, Gelidium corneum, (Ee., Gigartina speciosa, Lumbercia papillosa, \&e., Gracilaria lichenoides and other (fracilariots, Rhodymenia palmata, Porphyra vulgeris, and P. laciniuta. T'Tel latissime, J. compressa, $\mathcal{L e}$. , Nostoc celule and other speeies, Hormosiphon areticus, and many others The mutritious properties of the above are due to the presence of starch, sugary matter (mamite), mucilage, and albumen. M. Payen also diseovered a principle in Gelidium comeum (Algue de Juma), and some other Algre, to whieh he gave the name of geluse. To this substance the nutritions properties of Algie are likewise. to a great extent, due. According to Payen, 1 part of gelose dissolved in 500 parts of hoiling water will afford, upon cooling. il colourless, transparent jelly, 一 thus forming ten times more jelly than a like weight of the best animal gelatine. In order, therefore, to produce a jelly of equal consisteney, it would be unly
necessary to employ the tenth part of what is necessary when isinglass is used. Jellies prepared from species of Gelidium, Laurencia, \&c., are much employed for food in China, Japan, \&c. The so-called Japanese isinglass consists of numerous Algæ, but more especially of Gelidium cornenm, Gloiopeltis tenax, and Endocladia vernicata. The edible birds' nests, so highly valued for food in China, owe their properties probably in part to certain species of Algre, but essentially to the secretions of the swallows by which they are constructed.

In medicine the above-mentioned nutritious Algr may be used for their emollient and demulcent properties. Several species of Algre, particularly Fucus vesiculosus, have been also employed as remedies in goitre and scrofulous diseases. They owe their beneficial effects in such cases, principally, to the presence of a small quantity of iodine. The ashes obtained by burning many species of Algr in the open air form the substance called lelp, which was formerly much used for the preparation of carbonate of sodium, but this is now more cheaply obtained from sea-salt. Iodine is, however, still prepared from kelp.* Some Algæ hare been reputed to possess vermifugal properties ; noue are known to be poisonous.

Several Alga are remarkable for imparting colours to water, snow, de. Thus, Protocucrns atlanticus gives a red colour to certain parts of the Atlantic ; P. nivalis contributes to communicate a red colour to snow ; and P. viridis, a green tint; Dolichospermum Thompsoni imparts a green colour to some Irish and Scotch lakes ; the red colour of the Red Sea is also in part attributed to the presence of Trichodesmium crythreum, \&c. \&c. Dr. Robert Brown has also shown that the discoloration of the Arctic Sea is due to Diatomer, but principally to Melosia arctica, and that these form the brown-staining matter of the 'rotten ice' of northern navigators.

Alaria esculenta, Bladderlocks, Hen-ware, or Honey-ware, contains mannite. It is employed for food in Ireland, Sentland, Ieeland, and other northern regions, Berkeley says that 'it is the best of all the eseulent Algre when enten raw.'

Chondrus (Spherocnccus).-C. crispus is the source of the so-ealled Carrageen or Irish Moss. It possesses nutritive, emollient. and demuleent properties, and may be employed in the form of a decoction or jelly, in pulmonary complaints and other affections. Bandoline or fixature, used for stiffenine the hair, and other purposes, is commonly prepared from Carrageen. 'The mneilage of earrageen is likewise melh employed in the United States as a size for paper, eotton goods, felt and straw hats, aud for thicken-

[^2]ing the colours used in calico printing. Carrageen is alsn used in the United States for fining beer, coffee, \&c.-C. mimillosus or Gigartina mamillos: almost always occurs in the Carrageen Moss of commerce. lts properties are similar:-G. acicularis is another species also sometimes found mixed with it.

Durvillea utilis is used for food by the poorer inhabitants on the western const of South America.

Fucus.-Several species contain mannite, as F. vesiculosus, F. modosus, and F. servatus. These species are used in the preparation of kelp, and are also collected for manure.-F. vesiculosus, Sea Wrack.-This Alga is mnch used in winter in certain islands of Scotland for feediug horscs and cattle. Boiled in water and mixed with a little coarse meal or flour, it has been used in Gothland for feeding hogs, hence the plant is there called swinetang. The expressed juice has been given internally, and frictions of the plant lave been employed externally in glandular and scrofulous affections. A kiud of winc prepared from this Alga has also been nsed with success in similar diseases. The substance called Vegetable Ethiops, which has been likewise employed in such cases as the above. is a kind of charcoal produced by the incineration of this Alga in close vessels. The beneficial effects in these instances are principally due to the presence of a small quantity of iodine. This Alga has also, of late years, been iu some repute as remedyfor obesity, bnt its value for such a purpose seems to be but trifling. It is the essential constituent in the nostrum termed Anti-Fat.

Gelidium corneum, as already noticed, is nutritive. It is the Algue de Java, from which M. Payen first obtained gelose. (See pare 766.) It forms a frovonrite article of food in Japan, and other conntries, and is also used in the manufacture of a kind of glue, and for other purposes.

Gigartinu spinosa (Fucus spinnsus) is the Jelly Plant of Australi:1. It is employed for food and for niaking size, cement, \&c. (See Chondrus and Gracilaria.)

Gracilaria (Plocaria).-G.lichenoides (Plocaria candida), and G. confervnides are the sources of the soncalled Ceylon Moss, which is official in the Pharmacopocia of India. In most commercial specimens, however, the principal constitnent is G. lichennides. Ceylon Moss is mutritive, emollient. and demulcent, and may be employed in the form of a decoction or jelly, as food for children and iuvalids, and also medicinally, in pulmonary complaints, diarrhoe, and other affections. It is sometimes imported under the name of Agar-agar, but Gigartina spinosa has been also imported under the same name. Both species are largely employed in the liast for making nutritious jellies, for stiffening purposes, and for varnishin!. G. tcmut may be similarly used.-Gracilaria (Plocaria) Helminthocorfon is Corsican Mns. (See Laurencia.) It haș been used principally as a vermituge, but its properties have been much overrated.-G. crassa (Ki-tani) is cooked with sor or vinegar in China. It is also mployed by the Chinesc ladies to give a glossiness to their hair.

Halidrys siliquosa contains nearly 6 per cent. of mumite.
Iformosiphon arcticus (Nostoc arcticum.), which is very common in the Aretic regions, according to Berkeley, affords a mass of wholesome food, Which is far prefcrable to the Tripe de liuche (sce Gyroplown, p. 762), as it has none of its bitterness or purgative quality."

Irideca edulis, as its name implies, is matritious, and is sumetimes used for food in Scotland, and other parts of the world.

Laminaria.-L. succharime is remarkable for the large quantity of mannite it eontains, npwards of 12 per cont. Its roung parts, mixed with those of L. digitata, are eaten in Scothand, \&ec, under the name of Tangle. The latex species also contains much mamite. La. sacharima is called seatnpe in Chima, where it is used for food and other purpuses.- Co. potatorm is likewise employed for food in Australia, and other species possess similar
properties-L. bulbosx, L. rigitata, and L. saccharinu are used to a very large extent for manure and for the preparation of kelp. The latter is also frequently used as an hygrometer. L. digitata also contains much iodine.

Laurencia.-L. pinnatifida is remarkable for possessing pungent properties. It is called Pepper-dulse in Scotland, where it is occasionally eaten. Berkeley says that L. obtusa forms the greater part of what is now sold in the shops as Corsican Moss. (Sce Gracilaria).-L. papillosa (Tanshwni) is extensively employed in China and Japan in the preparation of a gelatinous substance called Yong-Tusi.

Tostoc.-N. echule is eaten in China, \&c. Other species are also edible. (See Hormosiphon arcticus.)

Porphyra laciniata and P. vulgaris are employed in the preparation of a kind of sauce or pickle, which is termed Sloke, Slokan, or Laver, $-P$. vulgaris is caten in China as a relish to rice. It is termed Tsz-Tsai (purple vescetable). It is also used for food by many of the Iudiaus along the Pacific coast, being cooked separately as greens, or with meat.

Rhodymenic palmata is an article of food in Scotland, Ireland, Iceland, \&c. It is the Wulse of the Scotch, and the Dillesk of the Irish.

Surgussum.-S. bacciferım is the Gulf-Heed of the Atlantic. This and other species contain iodine, to the presence of which they owe their beneficial effects in goitre, for which purpose stem-like pieces of s.baceiferum are much employed in South America under the name of Goitre-sticks.

Ulva latissima is employed in the preparation of Green Laver. It is very inferior to the laver prepared from species of Porphyra. Both these lavers might be bencticial in scrofulous affections, \&c., as they contain iodine.

BOOK III.

PHYSIOLOGY OF PLANTS, OR PHYSIOLOGICAL BOTANY.

Having now examined the structure, classification, properties and uses of plants, wc have still to consider them in a state of life or action, and to explain, as far as science enables us, the laws which regulate their life, growth, and reproduction. The department of Botany which investigates these phenomena is termed Physiology; and the various processes which go on in the plant, and which are the nccessary accompaniments of its life, arc called its functions. The different vital actions are naturally divided into classes, called, respectively, the functions of the organs of nutrition, and the functions of the organs of reproduction; the former being those concerned in prescrring the life of the particular plant, and the latter in continuing thic species. Physiology includes the study of the life of the whole plant, when it is termed general, and that of the particular organs, in which case it is called special ; and each division may be further divided into Physiological Chemistry, and Physiological Physics.

The present state of our knowledge of many points comected with the physiology of plants is so imperfcet that there is some difficulty in arranging a good plan for its study. In examining, therefore, the functions of the differcut organs, the order of arrangement adopted in treating of their structure and morphology will be followed as far as possible, after which will be added a bricf notice of General Physiology, and somc observations on Special Phenomena in the lifc of the whole plant.

CHAPTER 1.

SPECIAL PHYSIOLOGY OF THE ELEMENTARY STRUCTURES, AND OF THE ORGANS OF NUTRITION.

Seetion. 1. Physiology of the Eiementary Structures.

1. Functions of Parenchymatous Cells.-As the simplest forms of Vegetable life, such as the Red Snow Plant (Protococcus nivalis) (fig. 1), consist of a single cell of a parenchymatous nature, such a eell is neeessarily eapable of performing all the actions appertaining to plant life. Parenchyma also constitutes the whole structure of Thallophytes, as well as the soft portions of all plants above them ; hence the physiology of parenchymatous cells is of the first importanee. The morc important vital aetions of these cells are: (1) Formation of new eells ; (2) Absorption and transmission of fluids ; (3) Movements in their contents ; and (4) Elaboration of their fluid contents, and production of the various organic compounds of the plant.
(1) Formation of Cells (Cytogenesis).-All plants, as we have seen (p. 21), in their carliest conditions, are eomposed of one or more cells, hence all the organs which afterwards make their appearance must be produced by the modifieation of such cells, or by the formation of new ones.

The subject of cell-formation or cytogenesis has for many years engaged the attention of able physiologists, and by their united labours we have now arrived at tolerably definite eonclusions upon the main points of the inquiry, although some of the subordinate ones are still involved in obscurity.

New cells can only be formed from the thiekencd semi-fluid natter called protoplasm ; hence cclls ean in no casc be formed without the influence of living organisms. The nature of protoplasm has been already fully described. By varions observers this formative matter of eells has also been called mrganisablc matter, vegetable mucilage, cytoblastema, \&c. The cell-wall or membrane of cellulose takes no part in the formation of cells.

Each cell or elementary part consists of two kinds of matter, \quad or of matter in two states: the one termed by some germinal matter, which is vitally active ; the other, formed material, which is plysiologically dead. The protoplasm, primordial utricle, and nuclens of vegetable cells are of the first kind, and the cell-wall-which Dr. Bealc lias shown to be not a necessary part of the eell-the starch granules, $\mathcal{E c}$., are cxamples of formed
material. This latter may have very various appcarances, whilst germinal matter is always the same.

In vegctable tissues the formod material may be thick or thin, but has in every case becn produced by germinal matter. Nutrition is effected by the constant passage of nutrient matters from without inwards through the formed material to the germinal matter, whilst the direction of growth is usually from within outwards, the new formed material being generally interior to that of longer existence.

Cells originate in one of two ways : either free in the cavities of older cells, or at least in the protoplasmic fluid elaborated by their agency; or by the division of such cells. The first is called Free Cell-formation or Original Cell-formation; the second, Cell-division or Cell-multiplication, which is the usual mode of growth in the nutritive organs of plants.
A. Free Cell-formation. - We may distinguish two modifications of free cell-formation. 1. Free cell-formation from a nucleus or cytoblast; and, 2. Free cell-formation without the previous formation of a nucleus.
a. Free Cell-formation from a nucleus.-This mode was discovered by Schleiden, who at first considered it to be the only process of cell-formation that occurred in plants. Subsequently he modified his vicws materially, not only as regarded the manner in which it took place, but also as to its universality, and admitted that it was only one principal mode of cell-formation. The manner in which he describes it as taking place is as follows (figs. 1128 and 1129):-A portion of the protoplasm collects into a more or less rounded or somewhat oval form, with a defined outer border, thus forming the nucleus of the cell ; upon this a layer of protoplasm is deposited, which assumes the form of a membrane, and expands so as to form a vesicle; on the outside of this a cellulose membrane is secreted, and the formation of the cell is completed. The protoplasmic vesicle in this casc forms the subsequent lining of the joung cell-walls, and constitutes the 'primordial utricle' of Mohl.
b. Free Cell-formation without a previous nuclens.-In the process of free coll-formation, as described above, we have alluded to the production of the nucleus as the first step of the process, and it is regarded to be so in most instances by the greater number of observers. Henfrey, agrecing with Niigeli Ne., however, docs not consider the nucleus of any plysiolorical import in free cell-formation, which process he thus describes: - 'The essential character of froce cell-formation lies in the circumstance that the protoplasm which produces the primary cellulose wall of the new cell previously becomes separated from the wall of the parent cell, so that the new coll is free (or lousc) in the cavity of the parent cell.' In some cases, it is certain, no nucleus cam be detected in a cell previons to the formation of other cells free in its cavity; hence the prosence of the
nucleus eannot be regarded as essential ; but the portion of protoplasm, which in such cases separates from the general mass, must be capable of eovering itself with a membrane and forming a cell. This, aceording to Mohl, frequently occurs in the formation of the spores of the Algre, $\mathbb{E c}$.

Fic. 1128.

Fig. 1128. Cells from the embryosac of Chamcedorea Schiederna in the act of formation. ". The Foungest part, eonsisting of nuelei and protoplasm. b. Newly formed eells. c, d. Cells still further developed, with nuelei adhering to their sides. (A.fter Sehleiden.) -Fig. 1129. 2. The part of fig. 1128, a, more highly maguified. 3. A nuelens still more highly magnified. 4. A nueleus with the eell forming upon it. 5. The same more highly magnified. 6. The same: the nueleus here shows two mueleoli. 7. The nueleus of 6 , after the destruetion of the eell by pressure. 8. The eells of fig. II $28, d$, in a higher degree of devclopment, the ecll-walls lanving already united. (After Schleiden.)

Fig. 1129.

In Flowering Plants free eell-formation has been generally believed to oeeur in the embryo-sac, in which part, after impregnation, the germinal vesicles, the antipodal cells, and the eells of the endosperm thus originate. In Flowerless Plants it is the mode by which the spores in the asei of Lichens, Alge, and Fungi are developed.

In the ordinary course of vegetation, free ecll-formation can
only take place in the protoplasm contained in the interier of cells forming parts of living tissues.
B. Cell-hivision.-This mode of eell-formation has been also ealled by authors merismatic or fissiparons cell-formation. Cell-division can only take place in cells in which the contained protoplasm is in an active state, as in the cells of the meristem, a name given to that kind of parenchyma the constituent eells of whieh are capable of multiplying by division (see page 88). It may be treated of under two heads : namely (1) Cell-dicisimu without absorption of the walls of the parent cell; and (2) C'elldivision with absorption of the walls of the parent cell, and the setting free of the new cells.
a. Cell-division withont absorption of the walls of the parent cell.-This mode of cell-formation was first observed by Muhl, whose opinions were afterwards ably supported by Henfrey and Mitscherlieh. Aceording to these physiologists (and their observations have now been confirmed in all essential particulars by subsequent observers), this process is the one by whieh all the vegetating or growing parts of plants, whether Flowering or Flowerless, are produced and increased;-all increase in the mass of the different organs is therefore due to its agency. The manner in which it takes place is as follows:- the protoplasm of the cell, or, aceording to Mohl and Henfrey, the primordial utriele, becomes gradually constricted on the sides

Fig. 1130 .

Fig, 1130. F. Cell of Conferre glomeratu, with the eell-contents constracted by the half-completed scptim, b. A half-completel septum in which a considerable deposition of cellnlose has already taken phace. C. A septum in course of development, after the aetion of an acil. which lans camend contraction both of the primortial intricle (b), and the cell-content- (") d. Complete septann split into two lamellæ by the action of an acid. (After Mohl and Ilenfrey.)
so as ultimately to form a sort of hour-glass eontraction, and thus to divide the original contents into two distinct portions (fig. $1130 a, b, c, d$). Each portion of the protoplasm or of the primordial utricle then secretes a layer of cellulose orer its whole surfaee; and where this is in contact with the original wall of the primary cell it forms a new layer interior to it; hat where away from the wall, at the new septim, a distinct eellwall, so that the partition is double. The original cell thus becomes divided into two, and forms two cells, each of which
may grow and divide in a similar way, and thus by the continued growth and division in like manner, of successive cells, all increase in the mass of the diflerent parts and organs is due. This method of division is now often spoken of as direct, in contradistinction to the indirect method described further on (see p. 7TS). (It should be noticed that the primordial utricle of Mohl here referred to differs from that defined at page 26 of this Manual. Thus, according to the views adopted in this volume, the primordial utricle is characterised as the thin layer of protoplasm enclosing the watery cell-sap, and which lines the cell-wall after the cell has grown too large to be filled by protoplasm alone ; while Mohl regards it as a more or less thickened layer of protoplasm, having the appearance of a membrane lining the cellulose wall, and enclosing the ordinary protoplasmic contents of the cell.)

Cell-division is best observed in watcr-plants of a low grade of organisation, and in hairs. In very simple plants also, such as Palmella, in which the newly formed cells separate and become independent plants, the process of division is well seen ; but in the higher plants, where they remain permanently united to form tissues of greater or less solidity, it is demonstrated with difticulty.

In this mode of cell-formation, it is by no means evident what function the nucleus performs. That in some cases it is unimportant is clear, because cell-division, as above described, niay take place, as it does in some of the lower orders of plants, without the presence of a nucleus. In the higher orders of plants, however, the original nucleus of the cell appears to undergo subdivision into two halves, as is the case with the other contents, so that a nucleus is thus formed for each new cell into which the parent cell has been divided. But in other cases, separate nuclei are formed for the secondary cells, instead of the original mucleus dividing into two.

In some of the lower kinds of plants, a modi-

Fig. 1131. Yeast plant in process of development.-Fiy. 1132. Conferwalomerate, showing the progressive stages of gemmation or budding (b, c, d, e). u. Terminal cell. (After Mohl.)

Fig. 1132.
 fication of the above described process of cell-division takes placc espccially as a method of reproduction; this consists in the formation of secondary cells, is little bud-like prominences on the primary cells, either at their extremities, as in the Yeast plant (fiy.
1131), by which the plant is increased in lengtly ; or on the side of the primary cell when branches are produced, as in some Conferve (fig. 1132), in the fibrilliform cells of Fungi and Lichens, and in other cases, probably, much more frequently than is commonly supposed. The mode in which this budding occurs may be thus described. At a certain point the protoplasm or primordial utricle appears to acquire a special development, for it is seen to bulge out, carrying the cellulose wall of the cell before it, by which a little prominence is produced externally (fig. 1132, b) ; this continues to elongate until it forms it tubular projection, c, on the side of the primary cell. The cavity of this projection is at first continuous with that of the cell from whence it sprung, but after the projection has acquired a certain definite sizc, its protoplasm becomes constricted at the point of contact with the primary cell, d, and ultimately a cellulose partition forms between them, as in the ordinary process of celldivision. This process of cell-division is usually termed gemmation or budding. In some cases, as in the formation of the fibrilliform cells of Fungi and Lichens, no partitions are formed, but all the branches communicate with each other (fig. 48).
b. Cell-division with absorption of the walls of the parent cell, and the setting free of the new cells.-The pollen cells of all Fig. 1133

Fig. 1134.

Fiq. 1133. 1 . Cyliadrical cell from which are formed the parent cells of the spores of Mfarchutia polymorphs. p. Protoplasm of the parcht cells. b. The same eell convertedinto a string of eells. c. One of the parent cells isolated. 12. The four spores free. (After Menfrey.) -Fig. 1131. Formation of zonspores in Achly. A. Zoosporanginm, still elosed. n. The same burst, with the discharged zonspores. (After Carpenter.)
Flowering Plints, and the spores of the higher Flowerless Plants. are formed by this process, whiel only necurs in connexion with the organs of reproduction. The mamer in which it commonly
takes place in the formation of pollen cells has already been described at page 258 of this volume. The manncr in which spores are formed in the higher Flowerless Plants is substantially the same in most cases. It sometimes happens, however, that in the development of pollen and spores, the special parent cells are not formed, as has been shown by Schacht in the pollen of Enothera and in the spores of Anthoceros læris ; and by Henfrey in the spores of Marchantia polymorpha. (fig .1133).

In other cases, instead of the development of ouly four secondary cells in the cavity of the parent, the whole mass of the protoplasm may break up into a great number of small particles, as in the production of the swarm spores of many Algr and Fungi (fig. 1134). In this case the new cells (primordial) are only clothed by a cellulose wall after their separation from the parent- or mother-cell. The formation of the oospheres in Achlya (f ig. 1135), is a modification of this process of division. Some of these modifications of celldivision are closely analogous to the ordinary process of free cell-formation to which by many authors they are referred.

c. Rejuvenescence.-

Another method of cell-division is that which is tcrmed rejurenescence or reneral of a ccll, where the whole contents of a cell contracts, some of the cell-sap is cxpelled, the chlorophyll becomes rearranged, and its whole form alters as it escapes from the cell-wall and evcutually forms a fresh cell-wall. This process may be well secn in the swarm-sporcs of OEdogonium (fig. 1136).
d. Conjugation.-The production of azygospore, which occurs
in the process of conjugation as already noticed in Spirogyra (fig. 863), is also another method of cell-formation. It occurs frequently in Algie, and various groups of Fungi.

Indirect Division of the Nuelci of Cells (Karyolinesis). -Where this occurs, the nucleus, instead of dividing simply and directly, assumes various figures before dividing.

Fig. 1136.

Fig. 1136. A, B. Wscrpe of the swarm-spores of an Edoronium. C. One in free moof an Edocyonium. C. One in free mofixed, and has formed the attaching
disc. E. Iseape of the whole protoplasin fixed, and has formed the attaching of a germ-plant of Edogonium in the form of a swarm-spore. (After Pringsheim.)

Strasburger described this the next step the oops cease to be single and are very long, eacb thread forming sercral, and the whole producing a radiating, wreatli-like appearance (ficy. 1137,6). The loops then break so that their bents are central, the ends pointing outwards and producing a star-like appearance, the aster or monaster. The central mass and rays now appear to divide into two parts having diflerent planes one above the other (fig. $1137, c, d$), except at the periphery of the loops, where for it time the two stars romain commected, thougl soon they separate, producing the domble star, or dyouster, which in many cases is the only form of star that is seen, the monaster apparently not occurring at all. The two stars of the dyaster then recede from each other so that their centres occupy opposite poles of
the nucleus ($f i g .1137, e, f, g$) ; the daughter-stars of the dyaster thus produce a double basket appearance. The tibrils of these baskets next arrange themselves alternately, so that they seem to be trans-• versely striated. A membrane next forms between the two divisions of the former nucleus (fig. 1137, h), i.e. between the two daughter-baskets whose fibrils now become convoluted, thus producing in the new nuclei an intranuclear network similar to that which existed in the mother-nucleus.

These intracellular and intranuclear networks, as well as the division of the nuclei, are well seen in rapidly forming cells, such as those in the growing points and ovules of plants.

Rapidity of Cell-production.-By the ordinary method of cell-division, cells are in many instances produced with almost inconceivable rapidity. Thus it lias been stated that a fungus of the Priff-ball genus has been known

Fig. 1137. Successive phases 'of karyokinetic division of the nuclens (a) in the embryo sac: A, in Violn pulustris; B, in Corydalis cated. (After Strasburger.) to grow in a single night, in damp warm weather, from the size of a mere point to that of a large gourd; and it has been calculated, from the average size of its component cells, that such a plant must have contained at least forty-seven thousard million cells, so that they must have been developed at the rate of nearly four thousamd millions per hour, or more than sixty-six millions per minute. Another illustration of the rapid production of cells is afforded us in arctic and alpine regions, where it frequently happens that the snow over an extensive area is suddenly reddened by the Red Snow-plant (fig. 1). Again, it may readily be ascertained that, in a favourable growing season, many stems will increase thrce or four inches in length in twenty-four hours; thus the Agave americomu or American Aloe, when flowering in our conscrvatories, has been known to develop its flower-stalk at the ratc of at least a foot a day ; and in the warm climates where it is indigenous, as in the Mauritius, it will grow at least two feet in the same period of time. Leaves also, in some cases, develop very rapidly ; thins, Mulder states that he has seen the leaf of Uraniu speciosa lengtlien at the ratc of from one and a half to three and a half lines per hour, and even as much as from four to live inches per day. In all these cases of rapid growth in size, it must be remembered, however, that the increase is due not only to the formation of new cells, but also to the cxpansion of those previously formed.

In comnexion with the rapidity of growth, it may be stated
Fig. 1138.

! here that great light retards growth, as shown by the comparative height attained by the Wild Hyacinth according to whether it grows at the edge of, or in the thick part of a wood. Moisture and warmth, on the other liand, encourage growth ; hence, if a greenhouse is allowed to be warmer at night than in the daylight, the plants therein contained become drawn up (leggy, as it is termed) and weak.

For the purpose of measuring accurately the rapidity of growth, some such instrument as that shown in fig. 1138, and called an Ausanometer, is employed, where at the end of the long arm of a lever a, is a pen b, which marks on a revolving drum c, covered with smoked paper. To the hook on the short arm of the lever c, is attached the one end of a thread, the other end being fastened to the tip of the stem. As the stem grows, the long arm of the lever, which is weighted, falls, and a record traced on the drum c, which may travel continuously, or, as in Vines' Auxanometer, make a movement only at certain intervals of time, which are regulated by the clockwork arrangement at d.
(2) Absorption and Transmission of Fluids.-The cell-wall of all young and vitally active parenchymatous or prosenchymatous cells is capable of readily imbibing tluids, and we find, accordingly, that liquid matters are constantly being absorbed and transmitted through such cells. The power which thus enables cells to absorb and transmit fluids is called osmose. This physical force, as will be afterwards shown, is a most important agent in plant-life, for by its agency plants are enabled, not only to absorb crude food by their roots in a fluid state, but also to transfer it upwards, from cell to cell, to the leavcs and other external organs, for the purpose of being elaborated by the action of light, heat, and air. It is, moreover, by a somewhat inalogous process (diffusion of queses) that the cells on or near the surface of plants are enabled to absorb and transmit gaseous matters.

Osmose may be explained as follows : -Whenever two fluids of different densities are separated by a permeable membrane which is capable of imbibing them, there is always a tendency to equalisation of density between the two, from

Fig. 1139.

Irig. 1139. Apparatus to show osmotic uction. It consists of a bladder flled with syrup, to the olien end of which a tube is attinched, nul the whole placed in it vessel contaning water. the formation of a current in both directions, which will be modified by the action of the membrane, as well as by their own rates of diflusion. This osmotic action may
be easily observed, by filling a bladder with colonred syrup, attaching to its open end a glass tube, and then immersing it in a vessel containing water (fig. 1139). Under such

Fig. 1140.

Fig. 1140. Apparatus for illustrating the effeet of stretching or compressing a tulgidecll. (After Sachs.) circumstances the volume of the denser fluid in the interior of the bladder becomes increased (as will at once be secn by its rise in the tube), by the more rapid passage through the membrane of the thinner fluid than of the thicker, though at the same time a less portion of the syrup passes out into the water or thinner fluid, as may be proved by the sweet taste and colour which the latter gradually acquires. This double current will continuc so long as there is any material. difference of density between the two liquids. The stronger in-going current is termed endosmose, and the weaker outgoing current exosmose. If the position of the liquids be reversed, the currents will be reversed in like manner, the preponderating current, in almost all cases, being that which sets from the thinner to the denser liquid.

The pressure exerted by the water absorbed by endosmose against the walls of a cell, is spoken of as turgidity or turgescence. In such a cell the pressure exercised against the walls reacts upon the cell contents. If a cell is turgid, but capable of further extension without bursting, the changes which would be produced by stretching or compressing it, or otherwise altering its form, may be easily shown by the use of such a piecc of apparatus as that represented in $f g .1140$, where k is a wide and thick india-rubber tube, to which the glass rod s g acts as a stopper at onc end, while into the other end is fitted a glass tube drawn out, Ro. The tube is now filled with water, the upper level of which is at n. It will be found that on stretching the tube its calibre is diminished, but its capacity is increased, as shown by the fall of the water helow n; while compression, bending, or creasing will diminish the calibre, and thus raise the level above n.

The absorption and transmission of liquid matters throngh cells is now very casy to explain, for as the fluid contents of the cells of the roots of plants are denser than the water contained in the media in which they grow, they will continually absorb the latter by endosmose ; and as the changes which are going on in the cells by evaporation, assimilation, and other processes on the surface of plants, tend to thicker
their contained liquids, there will also be a constant. passage of the absorbed fluids from cell to cell towards those parts where such processes are taking place. The laws of ordinary adhesive or capillary rittraction and of the diffiusion of fuids also regulate the flow of the juices, which in certain cases may be even set in motion by either force. The action, however, of the intervening membrane (cell-wall) in greatly modifying or even overcoming osmotic action, is evidenced by the numerous cases in which neighbouring cells contain different substances without their interniixture. In cellular plants, such as Alge and Fungi,

Fig. 1141.

Fig. 1142.

Fig. 1141. Hair on calyx of flower-bud of Allherer rosea. The streaming of the protoplasm is indicated by the arrows. (After Sachs.) - Fig. 11-12. Part of leaf of Fillisneria spiralis, showing rotation of the protoplasm. n, n, n, n. Nuclei. c, c. Chlorophyll corpuseles. A, A. Cells in which some chlorophyll corpuseles are passing aloug the upper wall of the cell. (After J. W. Groves.)
absorption may take place at any part of the thallus; while in vascular plants it occurs principally through the roots, though all the green parts may contribute to it (see page 787), and that, too, probably independently of the presence or absence of stomata.
(3) Movements in the Contents of Cells.-In many cells, and probably in all at a particular period of their life, when they arc in a vitally active state, a lind of movement of a portion of their contents takes place. This movement is sometimes croneously considercd as a kind of rotation of the watcry proved ; but the vcry complete observations of Masm, havc is rendered visible by the opaque gramular particles which it contains (fig. $1142 \mathrm{~A}, \mathrm{c}$). The protoplasm tlus circulating does not pass from one cell to another, but is strictly confined to the cell in which it originates. This kind of movement has been termed Rotation, Gyration, Cyclosis, or Intracellular Circulation: it ceases, in the generality of cases, in cells when they have attaincd in certain sizc, but in those of many aquatic plants it continues throughout their life.

The appearances prescnted by these movements vary in different cases. Thus, in the cells of many hairs, as in those of the Common Spiderwort (Tradescantia virginica), the Putato (Solanum tuberosum) (fig. 40), and Althæa rosea (fig. 1141), the protoplasm becomes hollowed out by a number of racuoles filled with watery cell-sap, between which threads of protoplasm remain, and the motion is in reticulated currents radiating apparently from, and returning to, the nucleus; to this action the term circulation is applied. In the cells of the leaves of the V ullisneria (fig. 1142) and Auccharis, and in those of other parts of the same plants, intracellular movements may be readily observed when they are submitted to a moderate microscopic power; here, however, the protoplasm becomes hollowed out by a single contral vacuole filled with watery cell-sap, and passes with its gramular contents round the interior of the walls of cach cell, retaining its activity permanently; which movement is called rotation. In the Characex, and especially in the Nitellx, which are transparent, the moving protoplasm does not rotate round the walls, nor inl reticular currents, but passes obliqucly up one sirle of the cell (fig. 1124) until it reaches the extremity, and then flows down in an opposite direction on the other side.

No satisfactory explanation has yet been brought forward to account for this movement, but it is unquestionably comected with the vitality of the cell-contents, and Dr. H. de Vrics believes that it is chiefly instrumental in the transport of food material from one part of a plant to another. All agents that actually injure the cell will generally stop it at once, and permanently, though in some plants (as Nitella) a large cell may be ticd across the middle with the effect of stopping the circulation temporarily ; but after a short time it will recommence in each half. The movements of the cilicted zoospores of the Algie (seo page 395, and figs. 75-57), and those of the ciliated antherowods of Algae (sec page 397, and fiy. S68), and of the higher Cryptogamia (see page 366 , and $f(g .807$), are usually regarded as "tuctlogous to the rotation of the protoplasin.'
4. Elaboration of the Cell-contents.-All cells exposed to light, heat, and air, which contain protoplasm, have the power of pro-
ducing in their contents the various organic compounds which are concerned in the development of new tissues, and in the formation of others which have been termed secretions. (See Respiration and Assimilation.) In old cells the secretions of the plant are also, in part, deposited.
2. Functions of Prosenchymatous Cells.-Prosenchymatous cells are especially adapted by their construction and mode of combination into a tissue, for giving strength and support to plants; and there can be no doubt but that this is one of the offices which they pcrform. In a young state, also, before their walls are thickened, they appear to be the main agents by which the fluids absorbed by the roots are carried upwards to the leaves and other external organs, to be elaborated by the agency of heat, light, and air. The experiments of Hoffmann, Unger, Knight, Dutrochet, and others, seem to prove this. Thus, Hoftimann, by placing plauts in such a position as to cause them to absorb a solution of ferrocyanide of potassium, and then adding a persalt of iron to sections of them, found that the prussian blue which was formed by the reaction of the chemical agents thus applied was principally deposited in the prosenchymatous cells. Unger also came to the same conclusion, by causing plants to absorb a coloured vegetable juicc, and tracing its passage. Knight and Dutrochet cut a ring of tissue out of the stem down to the duramen, with the result that the leaves withered, and the tree subscquently died. But other experimenters, such as Link, Rominger, and Herbert Spencer, have arrived at opposite conclusions. (See Functions of Vessels.)
3. Functions of Vessels.-The functions of the spiral, annular, reticulated, pitted, and scalariform vessels have been a subject of much dispute from an early period, and have been repeatedly investigated. Hales, Bischoff, and others came to the conclusion that these vessels were carriers of air, and it is certain that air alone is found in old vessels; while Dutrochet, Link, Rominger, \&c., believed that their essential function was to carry fluids from the ront upwards, which views from recent observations appear to be correct. According to Link, when plants are watered for several days with a solution of ferrocyanide of potassium, and afterwards with a solution of persulphate of iron, prussian blue is found in the vesscls, and not in the prosenchymatous cells, as the experinicnts of Holfmann, alluded to in speaking of the functions of prosenchymatous cells, secm to indicate; and, more recontly, the experimonts of Herbert Spencer, conducted with grcat care, tend to show that in young plants at all cevents the vcssels are the chief sapcarriers whence the fluid exudes into the surrounding prosenchyma. From this it is clear that the constitucnts of the xylem are sap-carricrs.

F'unctions of Laticiferous Vessels.-The physiolorical import-
ance of these vessels has given rise to much discussion, and is still involved in obscurity. But it would appear that these vessels, and others which are closely allied to them, as sieretubes and vesicular vessels, act as temporary reservoirs of nutrient fluids, and also as carriers of such fluids to those parts of plants where they are required. (See also page 51.) Schultz called the tissue formed by the ramifications of the laticiferous vessels cinenchyma, because he believed that he had discovered in it a peculiar vital movement or circulation of the latex, to which he gave the name of cyclosis.* Other observers have also described a similar circulation ; but Mohl, Henfrey, \&c., altogether deny the existence of such a movement in uninjured tissues.

Dr. A. Fischer states that it is only the young cells of sievetubes which can produce albuminous substances, since they possess nuclei which are absent in the matnre tubes.
4. Functions of Epidermal Tissue.-The special functions of epidermal tissue are:-to protect the tissnes beneath from injury, and from being too rapidly affected by atmospheric changes ; to regulate the transpiration or exhalation of watery vapours; to absorb and exhale gaseous matters ; and probably, to some extent, to absorb water. The epidermis itself is specially designed to prevent a too ready evaporation of fluid matters from the tissues beneath, and hence we find that it is rariously modified to suit the different conditions to which plants are submitted. Thus, in submersed plants and submersed parts of plants, which are always exposed to similar influences as regards moisture, there is no true epidermis; whilst in aerial plants submitted to ordinary influences in cold and temperatc climates, we generally find an epidermis with only one layer of thin-sided cells, and covered by a cuticle of only moderate thickness. Cellulose is rarely, and then only with difficulty, discovered in cuticle, which is a thin structureless membrane extending uninterruptedly over the boundaries of the subjacent epidermal cells. It is coloured yellow by Schulze's fluid, yellow or yellowbrown on the addition of iodine, with or without sulphuric acid; it is soluble in boiling caustic potash, but insoluble in concentrated sulphuric acid. In other aerial plants, however, growing in the same latitudes, such as the Box, \&c., and generally also in those of a succulent nature where there is but a moderate exhalation, we find the upper walls of the epidermal cells especially thickened, or protected by a dense lajer of cuticle; whilst in aerial plants growing in very dry or loot regions, as the Oleander (fig. 125), we have frequently an eliidermis of two, three, or more layers of thick-sided cells, and other special contrivances to prevent a too ready exhalation of fluid. For instance, De Bary states that wax may be deposited in the cuticle, and that on heating to abont $100^{\circ} \mathrm{C}$., it

* The term 'ceclosis. has also been applied to the movement of protophasm in cells. (See p. i84.)
separates out in the form of drops. This wax may be associatcd with resin, and assists in preventing the aerial parts of plants from becoming moistened by water. Such plants as these are best fitted for growth in houses, where the air is usually very dry. While the epidermis may thus be shown to have for its object the restraining of a too abundant exhalation, the stomata and water-pores are especially designed to facilitate and regulate the passage of fluid matters, and in proportion to their number, therefore, upon the different organs and parts of plants, cxteris paribus, so will be the exhalation from them. (See also page 63.) Stomata, as already noticed (page 62), are sometimes found at the bottom of depressions on the under surface of leaves (fig. 124), and occasionally projecting above the general level, but usually they are placed nearly or quite on a level with the epidermal cells. The exact manner in which the stomata act is not rcadily explained, but it may be always noticed that when plants are freely supplied with moistmre, the stomata have their bordering guard-cells distended with fluid, clongated, and curved, so that the orifices between them are open; whilst in those cases where there is a deficiency of fluid the bordering cells contract, straighten on their inner surfaces, and thus close the orifices. Under the former condition of stomata, there is a ready communication between the external air and the internal tissues, and hence a free exhalation takes place; while in the latter state, the exhalation is more or less prevented. As a rule, stomata are open during the day when circumstances are favourable, and closed at night when the plant is asleep.

It is also through the cells of the epidermis, and more especially through the stomata, that certain gaseous matters are absorbed from, and exhaled into, the atmosphere, in the processes of Respiration and Assimilation. (See page 799.)

It has long been a disputed question whether the epidermal tissue and its appendages have the power of absorbing liquids, such as water. Some authors, as Unger and Duchartre, not only deny the possession of such a power, but also that of taking up watery vapour; and Prillieux has repeated their experiinents with the same results and conclusions. Some researches of Henslow seem, however, to prove that lcaves can absorb moisture. (See page 799.) Indeed, it is very difficult to account for the immediate recovery of drooping plants in a greenhouse when water is sprinkled upon the floors, or the revival in nature of vegetation when a mist follows a long succession of dry weather, except on the supposition that watcry vapour is taken up by the epidermal tissue and its appendages, unless the presence of moisture acts only in the way of checking transpiration. Epiphytical species seem also to obtain nourishment from the atmosphere by absorption through the epidcrmis. Whether water itself is absorbed by the epidermal tissue and its appendages is doubtful, though from the experiments of Detmer it
seems to be possible undcr certain circumstances. Various expcrimenters have endeavoured to show that they have this power. The researehes of Garrcau led him to the following conclusions:-1. That the epidermis possessed an evident endosmotic property, the intensity of which was in proportion to the age of the tissues whieh it invested; thus it was greatest when they were young, gradually diminished as they approached maturity, and was altogether lost when they became old. 2. The absorbing power of the epidermis was greater in proportion to the absence of waxy or fatty matters. 3. The epidermis covering the upper surface of the ribs, and especially of that of the petiole wherc it joins the stem, is that part of the leaf surfaee which presents the most marked power of absorption. 4. In certain instances in whieh the epidermis is absorbcnt, the cutiele presents impediments to absorption. 5. Simple washing with distilled water, and more especially with soap and water, augments the absorptive power. 6. When the epidermal tissues of leaves have lost their power of absorbing water, they can still absorb earbon dioxide. Further, the behaviour of Carnivorous

Fig. 1143.

Fig. 1143. p, p. Parenehyma of the leaf. e, e. Eipidermis cells. א. Stoma. i. Air eavity. In these figures the development of the stoma of Hylucinthus orientalis is represented from the first division of the mother-eell in A into two daughter-cells, to the complete separation shownin D. (hifer Sachs.)
Plants, as Drosera, Utricularia, \&c., sccm distinetly to prove the truth of the power of epidermal tissues to absorb mutrient materials in solution.

Origin and Develnpment of Stomata.-A stoma is formed by the division of an epidermal cell (the mother-ecll) by a partition which extends across and divides the two daughter- or sister-cells (fg. 1143); this partition then beeomes thickened, espeeially at the angles where it joins the wall of the parent-eell. After a time the thickened partition bccomes laminated, when a eleft appears in it, narrower in the middle, wider without and within, which unites the intercellular spaee (f g. 1143, $\mathrm{D}, \mathrm{s}, \mathrm{t}$) with the external air. Before tho parent-cell divides, a cuticularisation of its surface takes placc. the cuticle extonding over the apposed surfaces of the sister-cells, and the adjoining cells of the epi-
dermis. Eren when the division is complete, a pnrtion (if the leaf is examined in a superficial position) still remains as a simple lamella. These two sister- or daughter-cells are called guardcells, and further differ from the rest of the epidermis in containing chlorophyll and starch.

A special form of stomata called water-pores is found at the termination of the veins of some leaves (Tropaolum \&c.) which differ from other stomata in being non-contractile, and in some cases the guard-cells become entirely absorbed, leaving open spaces.
5. Functions of the Appendages of the Epidermis.Hairs and their modifications appear to be de-igned to protect the epidermis and parts beneath from injury due to cold and other external influences, hence we find young buds (see page 105), \&c., frequently coated with hairs, also in many flowers to prevent injurious insects carrying away pollen. Hairs also appear in certain instances, at least to some extent, to absorb fluid matters from the atmosphere, whilst in other cases they serve to assist the epidermis in restraining exhalation ; and we find, accordingly, that plants which are deusely coated with them are well adapted to grow in clry situations, and to sustain without injury a season of drought.

Glands are those organs which in themselves secrete some peculiar matter. (See page 68.) These secretions are either permanently stored up in them, or excreted.
6. Functions of the Intercellular Systex.- The intercellular canals, except at those times in which the tissues of the plant are gorged with sap, as in the spring of the year, arc filled with air, and the especial function which they perform is to allow a communication between the external air and the contents of the internal tissues by virtue of the laws regulating the diffusion of gases. They likewise facilitate exhalation of liquid matters by their connexion with the stomata. The iutercellular spaces are also, in most cases, filled with air, though certain recent observers have described protoplasm as occupying some of them, and as communicatiug with the protoplasm of the cells; while the air-cells and air-covities, as their names imply, are in like manner filled with aeriforn matters, and in water-plants are especially designed to diminish the specific gravity of the parts in which they are found, and thus to chable them to float readily, or to be suspended in the water. The receptacles of secretion, as their name implies, contain the peculiar secretions of certain plants, and are closely allicd in their nature to glands. (See page 72.)

Section 2. Physhology of the Organs of Nutrition.

1. Of the Root of Descendivg Axis. - The offices performed by the root are :-1. To fix the plant firmly in the earth or to the substance upon which it grows, or, in sume aquatie plants, to float or suspend it in the water. 2. To absorb liquid food. 3 . Aecording to some authors, to excrete into the soil certain matters which are injurious, or at least not necessary for the healthy development of the plant, though in the earth they may assist subsequent nutrition by dissolving substances which eould not otherwise pass into the plant. 4. To act as a reservoir of nutriment.

The office whieh the root performs, of fixing plants in those situations where food can be obtained, is evident, and needs no further remarks. It is also essential to the proper performance of its absorptive powers.

Absorption by the Root.-The function which the root performs of absorbing nutriment for the uses of the plant, from the materials in or upon which it grows, is not possessed by its whole surface, but is almost exelusively confined to the cells and root hairs (figs. 128 and 248) of the newly developed portions and young parts adjacent to them; and even these parts can only absorb when they are in the closest eontact with the particles of soil by the root-hairs. Hence, in the proeess of transplanting, it is necessary to preserve the young growing routs as far as possible, otherwise the plants thus operated upon will languish or die, according to the amount of injury they have sustained. The injury done to plants in transplanting is also to a greatextent influenced by atmospheric circumstances, and conditions of the soil at the time in which such an operation is performed; thus, nonder the favourable eircumstances of a warm soil and moist atmosphere, the destruction of a large portion of the joung extremities of the loot will do but little injury, as the plant will then speedily form new absorbent extremities; but if the conditions of the earth and soil be the reverse, then a large destruction of the young extremitics of the roots will canse the plant to die before new absorbent extremities can be formed. Special attention should be paid to the above facts when transplanting is performed in the growing season ; but it is far better, when possible, to transplant late in the summer or in the autumn when the growing season is drawing to it cluse, or in the spring before it has recommenced, as at such periods little or no absorption takes place and the plants have aceordingly time to recover themselves before they are required to perform any active functions. (See page 819.)

This absurption of food by the yonngest rootlets is due to osmose taking place between the contents of their cells and the fluids of the surrounding soil. But it should be noticed that, as
already mentioned (page 126), the cells at the extreme apex of the rootlets forming the cap are not adapted for absorption.

Roots absorb more water than the plant requires, and this excess of Hluid exerts a pressure up the stem called Root-pressure, which may be measured by cutting off the upper part of the stem of a growing plant and attaching a manometer to the cut end. (See page 822.)

Roots, as will be shown (page 792), only grow in length by additions near to their extremities, and as it is at these parts that absorption of food almost entirely takes place, they are always placed in the most favourable circumstances for obtaining it, because in their growth they are constantly entering new soil, and hence, as one portion of that soil has its nutritious matters extracted, another is entered which is in an unexhausted state. It has also been shown, by direct experiment, that when the roots meet with a store of nourishment in the soil, a greatly increased development of rootlets takes place for its absorption.

Roots can only absorb substances in a liquid state, therefore the different inorganic substances which are derived from the soil, and which form an essential part of the food of plants, must be previously dissolved in water. If the roots of a frcely growing plant be placed in water in which charcoal in the most minute state of division has bcen put, as that substance is insoluble in the fluid, it will remain on the surface of the roots, and the water alone will pass into them.

Selection of Food by Ronts. - Various expcriments have been devised to ascertain whether the plant possesses any power of selecting food by its roots. Saussure proved, that when the roots of plants were put into mixed solutions of various salts, some were taken up more freely than others. He also found that dead or diseased roots absorbed differently to those in a living and healthy condition. The experiments of Daubeny, Trinchinetti, and others, lead essentially to the same conclusions. Again, though the seeds of the common bean and wheat be sown in the same soil, and exposed, as far as possible, to the same influences in their after-growth and development, yet chemical analysis shows that the wheat stalk contains a much larger proportion of silica (which it must have obtained from the soil) than that of the bean.

The experiments of Bouchardat, Vogcl, and othcrs, appear, on the contrary, to indicate that roots absorb all substances presented to them indifferently, and in equal proportions. But the simple fact, as just mentioned, which is easily proved by chemical analysis-that the ashes of different plants grown in the same soil, contuin different substances or in different pro-portions-seems to prove incontestably that roots have a power of selecting their food. In using the term selecting, we do not, however, intend to imply that roots have any inherent vital power of selection resembling animal volition, but only to ex-
press the result produced by virtue of the mutual actions of the root and the substances which surround it in the soil. This power or property of selection is without doubt due to some at present but little understood molecular relation which exists between the membranes of the cells of different plants and the substances which are taken up or rejected by them, different roots possessing different osmotic action for the same substanccs. It follows also, from the recognition of this action as the cause of the absorpt on of fluid matters by the plant, that poisonous substances may be taken up when in solution by the roots, provided their tissues are not injured by them in their passage ; and we find, accordingly, that when such substances are found in the soil, a corresponding effect is produced upon plants by their absorption.

Excretion by Roots.-Roots seem to have no power of getting rid of excrementitious matters like that possessed by animals; but that they do throw off into the soil a portion of thcir contents

Fig. 1144.

Fig. 1144. Longitudinal section through root of I'teris hustatu, showing apiend region. v. Anical eell, from which are developed the tissue of tic sibstance of the root, o, c, and the root-eap or pileorhiza, k, l, m, n. (See page 125.) (After Snchis.)
by a process of exosmose, which appears to be an almostnecessary result and accompaniment of the endosmose by which alsorption takes place, is possible. Carbon dioxide, and possibly other acid substances, are parted with by roots in this way; and thus assist subsequent absorption by dissolving suhstances whicli could not otherwise pass into the plant. This is proved by

Sachs' experiment of letting roots grow over a slab of polished marble, whieh was eroded wherever the roots came in contact with it.

Storing of Nutriment by Roots.-Roots are frequently cnlarged by beeoming reservoirs of nutriment in the form of starcly, gummy, and similar matters for the future support of the plant. The tubercules of the Dallia (fig. 263) and Orchis (figs. 261 and 262); and the roots of the Turnip, (fig. 269), Carrot (fig. 267), and other hiennials, are faniliar illustrations.

Develominent of Roots.- The growing part of the root is called the growing point (punctum vegetutionis). It is enmmonly spoken of as the apex of the root, but is not really so, since it is covered with a cap of cells, the pileorhiac. (See pages 125 and 126.)

The cells composing it consist of primary meristem; * they are thin-walled, filled with protoplasm, and are capable of division. Here, as in stems, and unlike leaves, the last formed part is towards the apex; hence the growth in length is indefinite, the difference between the growing part or so-called apical ccll in roots ($f i g .1144, v$) and stems being that, in the former case, it or they (for there is (fig. 1145, a) usually a group of apical cells) are covered by a cap of cells formed from the distal or

Fig. 1145.

Fig. 1145. Polygonum Fitgopyrum. Root apex, median longitudinal section. pc. Pericambiun, outside boundary of the plerome. v. Rudiment of a ressel. e. Dermatogen. Between pe and e, periblem. \%. Root-cap or pileorhiza. a. Apical cells. After De Bary.
apex end of the so-called apical cell ($\mathrm{figs} .1144, k, l, m, n$, and $1145, h$) ; whereas in stems there is no such cap. (See page 795 , and figs. 1146 and 1147.)
2. Of the Stem or Caulome.-The offices performed by the stem and its ramifications are: -1 . To form a support for the leaves and other appendages of the axis which have but a

* This name is griven to that kind of meristem which forms the whole tissue of very young organs or parts of organs, in order to distinguish it from another kind of meristem, which is termed secondury meristem (as the cambium cells), which oceurs in organs alons with permanent tissue, or that tissue in which the cells are no longer capable of division, but have assumed their definite form.
temporary existence, and thus enable them to be freely exposed to the influenees of light and air, whieh are essential for the proper performanee of their funetions and development. 2. To eonvey air and fluid matters upwards, outwards, downwards, and inwards, to the organs of respiration, assimilation, transpiration, development, and seeretion. And 3. To aet as a reservoir for the so-called seeretions of the plant.
A. Special Functions of the Different Parts of the Stem. - a. The Medulla or Pith. -Various functions have at different times been aseribed to the pith. In the very young plant, and in all eases when newly formed, the eells of the pith are filled with a greenish fluid containing nutrient substanees in a state of solution; but as the pith increases in age it loses its eolour, beeomes dry, and is generally more or less destroyed. The pith, therefore, would appear to serve the temporary purpose of nourishing the parts whieh surround it when they are in a young state; and in some eases it seems also to act as a reservoir of the seeretions of the plant.
b. The Wond or Xylem. - The wood, when in a young and pervious condition (alburnum), is the main agent by which the crude sap is eonveyed upwards to the external organs to be aerated and elaborated; but whether the passage is primarily by the vessels or the prosenehymatous eells is disputed. (See page 785.) As the wood increases in age, and beeomes heartwood or duramen, the tissues of whieh it is composed beeome thiekened and altered in various ways, by whieh they are more or less hardened and solidified, and in this manner the stem aequires strength and firmness, but the tissues are no longer physiologieally aetive, and are in fact useless as earriers of sap.

Formation of Wood.- On the outside of the young wood, but organically eonnected with it and with the liber or bast of Dieotyledons, is the vitally aetive layer of cells (secondary meristem) ealled the eambium layer, from which are anmully formed new layers of wood (xylem) and imner bark (phloëm). The cells of the cambium layer are filled in the spring, and at other seasons when growth takes place, with elaborated sap, or that sap which contaius all the materials neeessary for the development of new structures. Great differences of opinion exist amongst botanists as to the exaet mamer in which wood is formed, but they are nearly all agreed that the materials from which it is formed are elaborated in the leaves, that without leaves there ean be no additions to it, and that in proportion to their amount so will be the thickness of the wood. It is neeossary, therefore, that the process of pruning timber trees sloonld be earefully condueted, and that when planted they should be plaeed at proper intervals, in order that they may be freely exposed to those influenees which are fa vourable for the development of their foliage.

Herbert Spencer believes that intermittent meelanical
strains, such as those produced by the wind, are the sole cause of the formation of wood, which is developed to resist the strains. His experiments were anticipated by Knight so far back as 1803 ; but his results must be taken with modification. It is probably true that sue a conservative formation of wood does oeeur to meet unusual strains ; but the want of correspondence in nature between great exposure to such strains and large deposit of wood, and the numerous examples of great woodformation in ligneous twiners and nailed-up trees, must prevent us from considering it an all-sufficient explanation. In the eases where no strains can have occurred, 'the natural selection of variations can have only operated ' to form wood, aceording to Spencer.
c. The Medullary Rays. -The functions which these rays perform is, probably, to as st the diffusion of a portion of the elaborated sap from the bark and cambium layer through the wood, in which certain of the secretions it contains are ultimately deposited.
d. The Bark.-The bark acts as a protection to the young and tender parts within it. The inner part is generally believed to convey the elaborated sap from the leaves downwards, in order that new tissues may be developed, and the different secretins deposited in the wood and in its own substanec. The bark frequently contains very active medieinal substances, and others which are useful in the arts, \&c.
B. Development of the Stem (Canlome).-The stem is daveloped from the apex or growing point (punctum regetationis), where is situated the apical cell or apical groups of cells. In most of the Cryptogamia growth is offected by the division of a single apical cell (fig. 1146, t), which is generally large, and divides into two daughtcr-cells, one of which becomes the new apical cell, while the other, the segment cell, by further division, forms the permanent tissue. In the stems of the higher plants, in-

Fig. 1146.

Fill. 1146. Longitudinal section through the apical region of three primary shoots of Chare fragilis. l. Apical cell, in which segments are formed by septa, each segment being further divided by a curved septum into a lower cell not further divisible, which develops into an internode, $g, q^{\prime}, g^{\prime \prime}$, $g^{\prime \prime \prime}$, and an upper cell which produces a note, m, m^{\prime}, and the leaves, $b, b^{\prime}, b^{\prime \prime}$, $b^{\prime \prime}$, which also undergo segmentation, (After Sirens.) stead of a single apical enl, there are generally several such cells (fig. 114T s, s), which differ from the like cells of roots in having no special cap, and from leaves in the fact that the cells last formed are at the apex. (See Development of Foots, page 792; aud of the Lectures, page 811.)
3. Of the Leaves or Phyllomes.-The essential functions of the leaves are :-(1) The exhalation of the superfluous fluid of the crude sap in the form of watery vapour ; (2) the at sorp)tion of fluid matter ; (3) the absorption and exhalation of gases; and (4) the formation of the organic compounds which are concerned in the development of new tissues, and in the formation of the various secretions of plants. These functions they are enabled to perform through the influence of heat, air, and light, to which agents, by their position on the ascending axis of the plant, and by their own structure, they are necessarily, under ordinary eircumstances, freely exposed.
(1) Exhataiion of Watery Vapour by the Leares.-The im-

Fig. 1147.

Fig. 1147. Phaseolus multiflorus. Longitudinal seetion through the apical region of the stem of an embryo. ss. Apex. ph, ph. Parts of the two first leaves. k, k. Commencement of their axillary buds. (After Sachs.)
mediate object and effect of this process, which is commonly termed transpiration, is, the thickening of the crude sap, and the eonsequent increase of solid contents in any particular portion of it. This transpiration of watery vapour, as already noticed (see page 787), takes plaee almost entirely throngh the stomata, and hence as a general rule the quantity transpired will be in proportion to their number. The prescnce or absence of a true opidermis, and the various modifications to which this is liable, have also, as already noticed (page 786), an important influence upon the transpiration of fluid matters.

From some interesting experiments of M. Garrean on transpiration of leaves, he was led to draw the following eonelusions:-1. The quantity of water exhaled by the upper and under surfaces
of the leaves is usually as 1 to 2,1 to 3 , or even 1 to 5 , or more. The quantity has no relation to the position of the surfaces, for the leaves, wheu reversed, gave the same results as when in their natural position. 2. There is a correspondence between the quantity of water exhaled and the number of the stomata. 3. The transpiration of fluid takes place in greater quantity on the parts of the epidermis where there is least waxy or fatty matter, as along the line of the ribs.

This transpiration of fluid is influeneed to a great extent by the varying conditions of the atmosphcre as to moisture and dryness ; thus, if two plants of the sance nature are submitted to similar eonditions, except that one is placed in a dry atmosphere, and the other in a moist, the former will give off more fluid than the latter, though, aceording to M'Nab, a plant exposed to the sun will transpire most in a moist atmosphere ; while in the shade, an atmosphere loadcd with vapour causes transpiration to cease. The great agent, however, which influences transpiration is light. According to De Candolle, light is the only agent whieh is eapable of promoting and modifying transpiration. He says, 'If we take three plants in leaf, of the same species, of the same size, and of the same degrce of vigour, and place them, after weighing them carefully, in close vessels, -one in total darkness, the other in the diffused light of day, and the third in the sunshine-and prevent absorption by the roots, we shall find that the plant cxposed to the sun has lost a great quantity of water, that in common daylight a less amount, and that which was in total darkness almost nothing.' The experiments of Heuslow, Daubeny, and others, also demonstratc, in a most eonclusive manner, the great influenee of light upon transpiration. Daubeny, moreover, found that the different rays of the solar spectrum had a varying influence, the illuminating rays laving more effect than the heating lays. Transpiration has been studicd by M. Wcisner in threc ways:(1) By comparing that of green with that of bleached plants ; (2) by exposing plants to the solar spectrum ; (3) by placing them behind solutions of chlorophyll. The result of thesc experiments has been that the action of light on transpiration is greatly increased by the presence of chlorophyll; that they are not the most luminous rays, but those which eorrespond to the absorption band of the chlorophyllian spectrum, which excite transpiration ; and finally, that the rays which passed through the chlorophyll solution exerted but little effect on transpiration.

Transpiration in some eases seems to depend but little upon whether the stomata are open or elosed, though it is generally greater on the under surface of leaves-i.e. where the stomata are chiefly fonnd. In summer transpiration is more aetive than absorption, while in spring the reversc endition obtains.

The rquantity of fluid thus exlialcd or transpired by the leaves
has been the subject of various experiments, The most cormplete observations upon this point were made by Hales so long ago as 1724. He found that a common Sunflower $3 \frac{1}{2}$ feet high, weighing 3 pounds, and with a surface estimated at 5,616 square inches. exhaled, on an average, about twenty onnces of fluid in the course of the day; a Cabbage plant, with a surface of 2,733 square inches, about nineteen ounces per day; a Vine with a surface of 1,820 square inches, from five to six ounces ; and a Lemon tree, exposing a surface of 2,557 square inches, six ounces on an average in a day. Hence if such a large amount of fluid be thus given off by single plants, what an almost incalculable quantity must be exhaled by the whole vegetation of the globe! It can therefore be readily understood that the air of a thickly wooded distriet will be always in a damp condition, while that of one with scanty vegetation will be comparatively free from humidity: and hence it will be seen that a country, to be perfectly healthy, should have the proportion of plants to a particular area carefully considered; for while, on the one hand, too many plants are generally prejudicial to health by the dampness they produce ; on the other, a deficiency, or want of them will produce an equally injurious dryness. The same circumstances have an important bearing upon the fertility or otherwise of the soil, and in this way have an indirect influence upon the health of the inhabitants. Thus, it is a well-known fact, that as vapour is constantly given off by plants, sain is more abundant in those regions which are well covered with forests, than in those which are comparatively free from them. It is found, accordingly, that a great change may be produced in the climate of a country by clearing it too much of plants; for while an excessive amount of vegetation is injurious to their healthy growth, if there be a great deficiency, it will become entirely barren from extreme dryness. By inattention to these simple but most important facts, which elearly indicate that open land and that furnished with plants should be properly proportioned the one to the other, many regions of the globe which were formerly remarkable for their fertility are now barren wastes; and, in like mamer, many districts, formerly noted for their salubrity, have become almost, or quite, uninhabitable.

The fluid which thus passes off by the leaves of plants is almost pure water. This transpiration of watery rapour must not be confounded with the exeretion of water containing various saline and organic matters dissolved in it, which takes place in certain plants, either from the general surface of their leaves or from special glands. In the peeuliarly formed leaves of Dischidia, Nepenthes (fig. 390), Sarracenia (fig. 391), and Heliumphora (fig. 392), watery excretions of this nature always exist. From the extremities or margins of the leaves of various Marantaceæ, Musacee, Aroidnces, Graminacer, and other
plants, water is also constantly excreted in drops, at certain periods of vegetation, through the water-pores there situated. But the most remarkable plant of this kind is the Caladium distillatorium, from which half a pint of fluid has been noticed to drop a way during a single night, from orifices (water-pores) placed at the extremities of the leaves, and communicating freely with internal passages. In those Mosses which have no trace of vascular bundles, Oltmanns points out that the rise of water does not take place within the stem, but by capillarity externally, and that in these plants transpiration does not take place.
(2) Absorption of Fluids by Leaves.-Hales, Bonnet, and others, inferred that leaves were capable of absorbing moisture, though De Candolle and others subsequently asserted positively that such was not the case, and that leaves remained fresh for some tine when exposed to the influence of moisture, solely because transpiration was hindered or arrested. The more recent researches of Henslow, however, as already noticed (page 787), seem to prove conclusively that both leaves and green internodes are capable of absorbing a large amount of moisture, and that probably the quantity absorbed is independent of the presence or absence of stomata. The experiments of Darwin and others with Carnivorous Plants seem to prove this also.
(3) Absorption and Exhalation of Gases by Leares.-We have already noticed (page 790) the property possessed by the roots of absorbing liquid food from the medium in which they grow, and also their power of excretion (page 792). Whilst plants are thus intimately connected by their roots with the soil or medium in which they are placed, thoy have also important relations with the atmosphere by their leaves and other external organs, which are constantly absorbing from, or exhaling into it, certain gases. The atmosphere, it should be remembered, is brought into communication with the interior of the leaves by the stomata: it indeed fills the whole intercellular structure of these organs much in the same way as the air fills the lungs of a mammal, or the lungs, bones, \&c. of a bird, to which in function they bear some sort of resemblance. The gases which are thus absorbed and exhaled by the leaves and other green organs and parts of plants have been proved, by a vast number and variety of experiments, to be essentially carbon dioxide and oxygen. The experiments of Boussingault would also indicate that, in some cases at least, carbon oxide is evolved with the free oxygen. Draper, Mulder, Cloez, Gratiolet, and others, likewise believe that leaves and other parts exhale nitrogen when exposed to sunlight. Plants, under certain circumstances, may also almorb nitrogen from the air, though it does not then serve for nutrition ; but the investigations of Lawcs, Gilbert, Daubeny, and Pugh tend, on the contrary, to negative this statement. Sir J. B. Lawes has recently confirmed his old opinion that the source of nitrogen is the soil, of carbon dioxide the air.

The amount of nitrogen found in plants is greater, lowever, than can bc accounted for by the quantity of nitrogen supplied to the soil by rain, and is doubtless partly due to the absorption of ammonia from the soil, as also, probably, partly by the leaves, according to Sachs and Meyer, whose observations have been confirmed by Schlösing.

The absorption and exhalation of carbon dioxide and oxygen by the leaves vary according to the circumstances in which they are placed. Thus, when the grcen leaves of a healthy plant are exposed to sumlight, all experiments show that carbon dioxide is absorbed from the atmosphere and decomposed, leaving its carbon, which is the result of the decomposition, behind, and evolving its oxygen. It is in this way that by far the largest proportion of carbon, which, as will be presently shown, forms so large a part of plants, is taken up by them.

The evolution of oxygen by the green leaves and also by other green organs may be readily observed taking place in the form of bubbles, when a submersed aquatic plant or some freshly gathered leaves are placed in water exposed to the direct rays of the sun. No such evolution of oxygen takes place unless the water contains carbon dioxide, and not, therefore, in pure freshly distilled water, or in that which has been recently boiled. It has been found, also, that there is a constant relation between the amount of carbon dioxide absorbed and the oxygen exhaled. These experiments prove therefore, not only the exhalation of oxygen by the leaves, but also that part of it must be derived from the decomposition of the absorbed carbon dioxide. These changes do not take place in the deep-seated tissues of the plant, nor in the epidermal cclls, but in those only immediately bencath the latter. This dccomposition of carbon dioxide is effected by the influence of chlorophyll; for when leaves are not green, as is the case in many parasitic plants and in those which are more or less blanched, they, like the other parts of a plant in a similar condition, are incapable of assimilating, and must therefore procure their nutriment from alrcady assimilated materials.

This absorption of carbon dioxide with fixation of carbon and evolution of oxygen is in direct proportion to the intensity of the light to which the plants are exposed ; but the experiments of Draper, Hunt, and others, show that the differcnt rays of the spectrum have a varying influcuce in promoting such a decomposition. The results obtained by Draper by exposing the green parts of plants to the diflerent rays of the spectrum were, that no oxygen was set free by them when they were in the violet and indigo rays; 00 to 33 only when in the extreme red; 1 in the blue; $4 \cdot 10$ in the green and bluc; $43 \% 5$ in the yellow and green ; and 24.75 in the red and orange. Hence he concluded, that the illuminating or yellow rays have the greatest effect in promoting decomposition of carbon dioxide, those nearest them much less so, and the heating and chemical rays
none at all. The experiments of Cloez and Gratiolet lead substantially to the same conclusions. That is to say, that the rays which photographically are most active are almost or wholly inert in the decomposition of carbon dioxide and the elimination of oxygen, while the so-called non-actinic rays are the most active. Some heat is necessary for this decomposition, and within certain limits it is found that a slight increase of heat will compensate for a corresponding diminution of active light rays. (See also The Effect of the Electric Light on the Growth of Plents, \&c., page S5̄8.)

Whilst the absorption of carbon dioxide and evolution of oxygen are thus taking place by day, it is supposed by most observers, that in the absence of light a contrary action occurs -oxygen being then absorbed, and carbon dioxide exhaled. At the same time, all who hold this opinion admit, that the amount of oxygen gas thus absorbed by night is very much less than that given off by day. Thus, the experiments of Saussure and Daubeny prove, that if plants be enclosed in jars containing ordinary atmospheric air, and be supplied under such circumstances with carbon dioxide, the quantity of oxygen gas in the contained air becomes increased.

Some authors, such as Burnett, Carpenter, and Garreau, maintain that carbon dioxide is given off by the leaves in varying quantities, both by day and night; whilst others again, such as Pepys, Cloez, and Gratiolet, deny that leaves, at any time when in a healthy state, give off carbon dioxide.

Those, again, who hold the opinion that leaves when exposed to solar light give off oxygen, in conseqnence of the absorption and decomposition of carbon dioxide, and that a contrary change takes place by night, maintain different views upon the nature of these changes. Some of them regard the evolution of oxygen by day as a true vegetable respiration, and hence look upon vegetable respiration as producing results upon the atmosphere we breathe diametrically opposite to those of animal respiration. Others, such as Mohl and Henfrey, say that here we have two distinct functions going on, -one, taking place by day, and consisting in the consumption of carbon dioxide, with fixation of carbon and evolution of oxygen; and another, only occurring by night, in the lcaves and other grcen parts, but also by night and day in those not green, and which consist in the absorption of oxygen and evolution of carbon dioxide. The former function they regard as a process of assimilation, and the latter as respiration, Broughton has more renently demonstrated a constant cvolution of carbon dioxide from nearly all parts of growing plants, and considers that this gas, thongh partly die to previous oxidation, is mainly separated from the proximate principles during chemical changes.

Those who maintain Burnett's views regard the constant
exhalation of earbon dioxide by day and night, as eonstituting vegetable respiration ; and the exhalation of oxygen by day, as eonneeted with assimilation; while the supporters of Pepys' views regard the exhalation of oxygen gas as vegetable respiration. Pepys says that oxygen is given off by the leaves both by night and clay, but in a greatly aeeelerated degree during the day; by most observers, however, no evolution of oxygen has been traeed at night.

It will be seen from the above abstraet of the opinions of different physiologists, that various ideas have been entertained by them as to the aetion of the leaves and other green organs under different degrees of light; and also upon the eharaeter of sueh ehanges. Generally, it may be stated, -that all agree as to the evolution of oxygen by the leaves and other green parts of plants under the influenee of solar light with the fixation of earbon, i.e. the deoxidation of assimilable materials, to whieh proeess the term assimilation is applied in this volume in aeeordanee with the views now eommonly entertained by botanists ; while that of respiration is here used to denote the absorption of oxygen and evolution of earbon dioxide, whieh takes plaee both by night and day, but is most evident by night, beeause the large quantity of oxygen given off during the day in the proeess of assimilation obseures the former ehange. In eertain plants the sun's light appears to be stored up in some unknown way for future use, so that we find some aquatie plants after exposure to its influenee disengage bubbles of oxygen in the dark.

Whatever views we may entertain, all admit that this erolution of oxygen gas by day has a most important intluenee in Nature. This will be at onee evident when it is remembered that it is the only known proeess by whieh oxygen gas, -so essential to our existence, and whiel is eonstantly being removed from the atmosphere we breathe, by the respiration of man and other animals, by the proeess of eombustion, by oxidation of mineral matter, and by other proeesses that are eonstantly going on upon the globe,-is restored to it in a free eondition. Thus we see that, 'the two great organised kingdoms of nature are made to eo-operate in the exeeution of the same design ; eaeh ministering to the other, and preserving that due balanee in the eonstitution of the atmosphere whieh adapts it to the welfare and aetivity of every order of beings, and whieh would soon be destroyed were the operations of either of them to be suspended. It is impossible to eontemplate so special an adjustment of opposite effeets without ahmiring this beautiful dispensation of Providence, extending over so rast as sale of being, and demonstrating the unity of plan upon whiel the whole system of organised creation has been devised.'

In a like maner, plants purify the water in whieh they grow, and render it habitable by eertain mimals. We all know ly early
experience, that if fish or other aquatic animals be placed in water in which no plants are grown, they will soon perish. This is partly because, as there is then nothing present in the water to destroy the noxious matters which are given off by the animals in their respiration and other processes, they are dcstroyed by their own action upon the medium in which they are placed. In nature, we always find plants existing with animal life in the water, so that the injurious influence communicated by the latter to that medium is counteracted by the assimilation of the former : this compensating influence of plants and animals is beautifully illustrated in our aquaria. We are taught by these facts that it is absolutely necessary, if we desire to maintain a large town in a healthy state, to set apart large arcas and plant them freely.

How far our views regarding the purifying influence of plants may require modification by the discovery by Boussingault of the evolution of a certain proportion of such a poisonous gas as carbon oxide, together with oxygen, it is at present impossible to say ; brat the subject is one of the very greatest importance, and cannot but repay further careful investigation. Boussingault has even thrown out a suggestion, that in some cases, so fur from plants purifying the air, they may, on the contrary, cause the atmosphere of marshy districts, where they are in excess, to be unhealthy. It is also probable that one cause of the unhealthiness of denscly wooded districts may be due to the evolution of carbon oxide. With refcrence to the above conclusions of Boussingault, it may be remarked, that his experiments were solely made by putting plants or the grecn parts of plants in water previously impregnated with carbon dioxide. The conditions, therefore, under which carbon oxide was formed were not altogether natural ones ; and hence it is desirable that future experimenters should test plants growing in the air as well as in water, and in every respect in as ncarly as possible their ordinary states of existence.

There exists a widely spread notion, that plants, when grown in rooms where there is but little ventilation, and hence, especially in our sleeping apartments, have an injurious influence upon the contained air. This idca has arisen from a knowledge of the fact that plants, as alrearly noticed, when not exposed to solar light, have a contrary effect upon the atmosphere to that which they have when submitted to its influence; that is to say, that they then absorb oxygen and give off carbon dioxide, instead of absorbing carbon dioxide and giving off oxygen. But the anount of carbon dioxide which is then given off by plants: is so extremely small, that it call lave no sensible effect upon the atmosphere in which they are placod. It might be readily shown that it would require some thonsands of plants, in this way, to vitiate the air of a rom to anything like the extent of that of a single animal, and that, therefore, the idea of a
few plants rendering the air of close rooms unwholesome by their action, is altogether erroneous. It is certain, however, that, under such circumstances, the odours of plants may affect injuriously, to some extent at least, individuals of delicate organisation or peculiar idiosyncrasies.
(4) Formation of Organic Componnds by Leaves.-By the alterations produced in the watery contents of the grecn leaves, Sc., by exposure to light, lieat, and air, the mattcrs which they contain are left in a very active chemical condition or in a state prone to change, and therefore freely combine togcther. By this means the different organic compounds are produced which are concerned in the development of new tissues; and in the formation of others, such as resinous matters, various acids, numerous alkaloids, colouring matters, dc., which, so far as we know at present, perform no further active part in the plant, and are accordingly removed from the young and vitally active parts, and either stored up in the older tissues as secretions, or removed altogether from the plant as excretions. (See page 792.) The production of these organic substances takes place by cessimilation, and metastasis. (See page 823.) We see, therefore, that without leaves or other analogous green organs no growth to any extent could take place, or any peculiar secretions be formed ; but it must be also recollected that without the exposure of even the leaves to light, no proper assimilation of the various matters taken up by the plant can be effected; for instance, if a plant be put into the dark, it becomes blanched (etiolated), in consequence of the non-development of chlorophyll, and, moreover, no woody matter is then formed (page 794), and but few of its peculiar secretions. The experiments of Pringsheim tend to show that the earlicst nutritive product produced by the influence of light, heat, and wir is formed in the interior of the chloroplyyll grains. This principle he has termed hypochlorin, and by its oxidation he believes that all nutritive bodies, such as starel, glucose, and oil, are formed. It is also supposed by Pringslicim that the function of the green colouring matter is to act as a screen, and to reject the rays of the spectrim favouring oxidation, and to allow those only to pass which aid mutrition. It is possible, however, that the hypochlorin is simply the result of the action of the hydrochloric acid used in the experiment upon the chlorophyll.

The effect of the absence of light upon plants is well shown when a potato tuber sprouts in the dark, in which case the whole of the tissues formed are seen to become ctiolated, and ultimately to die ; or when potatoes are reared with a diminished supply of light, as in an orchard, or under trees, when the tubers are found to be watery in consequence of the small quantity of starel then produced. Another illustration of the effect produced by the absence of light is afforded in growing certain vegetables for
the table, such as Sea-kale, Celery, dc. In these instances when the plants are grown freely exposed to light, as in their natural conditions, they form abundance of woody matter, which renders them tough or stringy ; and also peculiar secretions, which are either umpleasant to the taste or absolutely injurious. But the formation of these secretions, and also of the woody matter, is interfered with when the access of light is more or less prevented, and the plants then become useful vegetables.

How such a vast variety of compound substances can be formed in such simply organised bodies as plants, is at present almost unknown. It is to the labours of the physiological chemist that we must look for the elucidation of this important matter; but as it is not our purpose to allude to the various theories that have been entertained upon their formation and nature, we must refcr the student to chemical works for full details upon this subject. It is, however, certain that the elimination of oxygen and carbon dioxide, already described, are results of these chemical processes. The food of plants is highly oxygenated as compared with the important proximate principles formed within their leaf-cells, and hence a disengagement of oxygen must occur during their formation.
(5) Effects of Crases generally upon Leaves. -In the last section we have seen that those ordinary normal constituents of atmospheric air, namely, oxygen, nitrogen, carbon dioxide, and ammonia, in certain proportions, are especially necessary for the due elaboration of the various organic compounds of plants, and we have also shown that they are absorbed by the leaves or roots, or by both. It is by leaves especially, or perhaps entirely (see page 815), that carbon, which is so essential to plants, and which enters so largely into the composition of their various products and secretions, is absorbed. But it must be understood, at the same time, that plants will not live in an atmosphere composed simply of either carbon dioxide, oxygen, or nitrogen ; but that for their proper development these gases must be mixed in suitable proportions, for if either of them be in great excess, the plants will either languish or perish, according to circumstances. Plants will, however, flourish in an atmosphere containing a moderate addition of carbon dioxide, even more vigorously than in ordinary atmospheric air ; but if the amount be considerably increased, they will perish. This injurious effect of carbon dioxide, when in excessive amount, would seem to be owing to a dircctly poisonous influence. When plants are placed in pure nitrogen or oxygen, or under any other circumstances wherc they cannot obtain a suitable supply of carbou dioxide, they soom decay.

Whilst the above gases in suitable proportions are necessary to the due performance of the proper functions of plants, all other gases when mixed in the air in which they are placed, appear to act more or less injuriously upon them. This is more parti-
cularly the case with sulphurous acid and hydrochloric acid gases, even in small quantitios ; but an atmosphere containing much ammonia, common coal gas, cyanogen, dic., also acts 1 nejudicially.

The action of sulphurous and hydrochloric acid gases upon plants appears to resemble that of irritants upon animals; thus they first exert a local action upon the extremities of the leaves, and this influence is soon communicated to the deeper tissues, and if the plants be not removed into a purer air, they will perisli ; but when such gases are not in great quantities, if the plants are speedily removed from their intluence, they usually revive, the parts attacked being alone permanently injured.

While the gases thus mentioned act as irritant poisons upon plants, sulphuretted hydrogen, carbon oxide, common coal gas, cyanogen, and others, seem to exert an influence upon them like that produced by narcotic poisons upon animals, for by their action a general injurious influence is produced on their vitality, and a drooping of the leaves, dc., takes place ; and, morever, when such is the case, no after removal into a purer air will cause them to revive.

As the above gases are constantly present in the air of large towns, and more especially in those where chemical processes on a large scale are going on, we have at once an explanation of the reason why plants submitted to such influences will not thrive. The air of an ordinary sitting room, and especially one where gas is burned, is also rendered more or less unsuitable to the healthy growth of plants, in consequence of the production of injurious gases as well as from the dryness of the atmosphere.
W^{W} ardian Cases. - In order to protect plants from the injurious influences thus exerted upon them by the soot and impure ail of large towns, the late N. B. Ward introduced the plan of growing them under closed glass cases which has been found to succeed so admirably. These cases consist essentially of a box or trough in which a suitable soil is placed; in this the plants are put, and the whole is then covered by a closcly fitting glass ease. It is necessary, at first, to water the plants freely. When plants are grown under such eireumstances, upon exposure to light and air, transpiration takes place from their leaves, as under ordinary conditions of growth ; the Huid thus transpired is, however, here condensed upon the surface of the glass case which encluses the plants, and ultimately returned to the soil. It is thins brought into contact again with the roots of the plants, to be again absorbed and exhated by them; and these changes are continually repeated, so that the plants are always freely exposed to moisture, and do not requre a further supply of water for a considerable period. Those plants, especially, which succeed best in a dannp atmosphere, as is commonly the case with ferns, do exceedingly well in such cases. The inportant influence which is exerted by the invention is, the protection of
the contained plants from immediate contact with air impregnated with soot and other injurious substances; for in consequence of the glass corer fitting closely to the trough in which the plants are placed, the external air in its passagc has to pass through the very narrow crevices beneath the cover, and in so doing becontes filtered, as it were, in a great measure from its impuritics, before it is brought into contact with them.

Besides the use of these cases in growing plants luxuriantly in those places where, under ordinary circumstances, they would perish, or at all events grow but languidly, they have a still more important application, for they have now been most successfully employed in transporting plants from one countr'y to another which under ordinary circumstances would have died in their transit, and whose seeds could not have been transported without losing their vitality. The action of the Wardian cases in this mode of transporting plants is twofold: in the first place, the plants are protected from the influence of salt breezes, which are in most instances very injurious to them; and, secondly, the atmosphere of such cases remains in a quiet state, and they are therefore also protected from rapid changes of temperature.
(6) Colour of Leaves.-The green colour of leaves is due to chlorophyll contained in the cells situated bencath the epidermis. Chlorophyll bodies may be formed in the dark, but remain yellow, only becoming green under the influence of light, and hence the leaves and other parts of plants grown in darliness are blanched ore etiolated (page 804). To this rule therc are some notable exceptions-viz., the germinating seeds of many Coniferie and the fronds of Ferns, which will become green even in total darkness, provided that the temperature is sufticiently high. If plants with green leaves be withdrawn from the action of light and be placed in the dark, these leaves soon fall; and if others are produced, they have a whitish or yellowish colour. Again, if plants which have been grown in the dark be removed to the light, the leares upon them soon lose their whitish hue and become green. The rapidity with which leares become grten, and the intensity of their colour, will be in proportion to the amount of light and heat $\left(25^{\circ}-30^{\circ} \mathrm{C}\right.$. being about the maximum) to which they have been exposed. It has also been shown that iron is necessary for the production of chlorophyll. (See also The Effect of the Eleetric Light on the Grouth of Plunts, de., rage 858.)

The different rays of the spectrum have a varying influence in promuting the formation of chlorophyll Some difference of opinion exists as to those rays which are most active in this respect, lut the majority of cxperimenters agree that the illuminating or yellow rays - namely, those which, as wo have already seen (1age 800), have the greatest effect in promoting the decomposition of carbon dioxide-are those also which are the most active in the production of chlorophyll.
M. Frémy has investigated the nature of chlorophyll, and ascertained that it is composed of two colouring principles, one a yellow, which he has termed phylloccothin or santhophyll; and the other a blue, which he has called phyllocyanin or cyanuphyll. Both these principles have been isolated by M. Frémy, who has also endearoured to show that the yellow colour of etiolated and very young leaves is duc to the presence of a body which he has termed phylloxanthéin, and which is coloured blue by the rapour of acids. The same principle results from the

Fici. 1118.

Fig. 1148. Absorption spectra of chloroplryll and xanthophyll. (After Kraus.) The upper speetrum is given by an alcoholic extract of leaves, the middle one by dissolving chlorophyld in benzol, and the lowest by xanthophyll The bands in the least rofrongible portion $\mathrm{B}-\mathrm{E}$ are figured as obtained with a coneeutrated sontion; those in the most refrangib.e part of the spectrum $F-G$ are given as obtained with a weak solution. The letters
 of chlorophyll from rell to violct, and the figures $0-100$ divide the length of the spectrum into 100 equal parts. (After Sachs.)
decoloration of phyllocyanin ; hence it would seem that plyylocyanin is not an immediate prineiple, but that it is formed by the alteration of phylloxanthéin. The experiments of M. Filhol do not, however, altogether correspond with those of M. Frémy, whilst the more recent spectroscopic investigations of Professor Stokes and H. L. Smith tend to show that chlorophyll is more complex than M. Frémy imagined.

Chlorophỵll is stated by Sorby to exist in a blue and also in a yellow state, giving different effeets with the spectroscope, and Krans finds that by shaking up an alcoholic solntion of chlorophyll with benzol, two elearly separated strata are formed. a lower alcoholic one of a yellow colour, and an upper one of
benzol with a blue-green colour (see fig. 1148). Chlorofucin is another colouring matter, which, like the two preceding, is Huorescent, and has a yellow-green colour. Thase three are soluble in alcohol, but not at all in water, and not always in bisulphide of carbon. Sorby also describes other colouring matters which are soluble in bisulphide of carbon, and give different results to the foregoing with the spectroscope.

The autumnal tints of leaves, which are generally some shades of yellow, brown, or red, are commonly regarded as due to varying degrees of oxidation of the chlorophyll which their cells contain, to which change Henfrey applied the term 'decay of chlorophyll.' The experiments of M. Frémy show that the ycllow leaves of autumn contain no phyllocyanin, and hence that their colour is entirely due to the phylloxanthin, either in its original condition or in an altered state. Strong light may produce a fading of leaves and other green parts, which change appears to be due to an alteration in the position of the grains of chlorophyll in the cells, and is termed epistrophe or apustrophe as the case may be.

When leaves are of some other colour than green, the different colours are produced either by an alteration of the chlorophyll or of one of the principles of which it is formed, or in consequence of the presence of some other colouring agent.

Variegation in leaves must be regarded as a diseased condition of the cells of which they are composed; it is commonly produced by hybridisation, grafting, differences of climate, soil, and other influences. The variegated tints are due either to the presence of air in some of the cells, or more commonly to an alteration of the chlorophyll of certain cells, or one of the substances of which chlorophyll is composed. (See also Cotour of Flowers, page 828.) To all these solid bodies contained in the cells and comnected with its coloration or starch production, Schimper applies the general term of plastids. Schimper uses prefixes to the diflerent plastids thus:-Starch-forming corpuscles and colourless plastids which do not form starch he terms leukoplastids ; chlorophyll granules chloroplastids, and other colouring granules chromoplastids. From the observations of Schimper it seems that all these plastids have a common origin : viz. that they are the result of the division of leukoplastids, and never originatc, as was formerly believed, by frce ccll-formation. Some plastids have an active life, assimilating, forming starch or pigments, increasing by division, \&c. ; others having temporarily or permaneutly little or no vital functions, as is the case with many leukoplastids. Further, thesc passive plastids are frocruently crystalline in form ; the active plastids, espocially in the ligher plants, being usually round. The passive crystalline forms are doubly refractive. The crystalline forms may bcome spherical, and conversely, those which are spherical and active may become crystalline. From leukoplastids may
be produeed cither chloro- or chromo-plastids, and the latter may also be formed fiom chloroplastids. Meyer and Schmidt contirm these views in a remarkable manner, while Schnidt further suggests that there is some definite and elose relationship between these plastids and nuelei.
(7) Defoliation, or the Fall of the Leaf.-Leaves are essentially temporary organs ; for after a certain period, which varies in different plants, they either gradually wither upon the stem, as is usual in Monoeotyledons and Cormophytes (see page 190), and also in some Dieotyledons (page 189) ; or they separate from the stem by means of an articulation when they have performed their active functions, or even sometimes when quite green. In the former case, as we have seen, the leaves are described as non-articulated; in the latter, as articulated. In the trees of this and other temperate climates the leaves commonly fall off the same year in which they are developed, that is, before the winter months; and in those of warm and tropical regions the fall of the leaf often takes place at the dry season. But the leaves of some other plants, such as Firs, Boxes, Hollies, frequently remain for two or more years. In the former case they are said to be annual or deciduous, and in the latter persistent or evergreen. The fall of the leaf is commonly termed defuliation.

The eause or causes which lead to the death of the leaf are by no means well understood. The opinion eommonly entertained is this: the membrane constituting the walls of their cells gradually beeomes so inerusted by the deposit of earthy and other matters which are left behind by the fluid substanees whieh are eontained in or transmitted through them, that ultimately the tissues of the leaf beeome choked up and are no longer able to perform their proper funetions, and the leaf then begins to dry up. After its death the leaf may either fall, or remain attached to the stem, as already observed.

The fall of the leaf does not, then, depend upon the death of the organ ; it may oceur before death, or may not take place at all. When it happens, it is dependent on an organie separation or articulation, which Asa Gray thus describes:- 'The formation of the artieulation is a vital proeess, a kind of disintegration of a transverse layer of cells, whieh euts oft the petiole by a regular linc, in a perfeetly uniform manner in cach species, leaving a clean scar (fig. 207, b, b) at the insertion. The solution of continuity begins at the epidermis, where a faint line marks the position of the future joint while the leaf is still young and vigorous; later, the line of demarcation becomes well marked, internally as well as externally : the disintegrating proeess advances from without inwards nintil it reaehes the woody bundles; and the side next the stem, whieh is to form the surfaee of the scar, has a layer of eells condensed into what appears like a prolongation of the cpidermis, so that when
the leaf separates,' as Inman says, 'the tree does not suffer from the eftect of an open wound.' Gray then, quoting Inman, adds :-'The provision for the separation being once complete, it requires little to effect it; a desiccation of one side of the leaf-stalk, by causing an effort of torsion, will readily break through the small remains of the fibro-vascular bundles; or the increased size of the coming leaf-bud will snap them; or, it these eauses are not in operation, a gust of wind, a heavy shower; or even the simple weight of the lamina, will be enough to disrupt the small connexions and send the suicidal member to the grave. Such is the history of the fall of the leaf.'
(8) Development of Leaves.-Leaves and all their homologous forms, such as the parts of flowers, dc. are developed laterally just below the apex of the stem by cell-division either of a group of cells as in the Phanerogams, or of a single eell as in the Vascular Cryptogams. A conical papilla, or (in sheathing learcs) an annular eollar, is then the result of a deflection to one side of a group of these divided cells. Leaves are formed acropetally or indefini'ely, the joungest always being the highest, according to the laws of Phyllotaxy. 'The papille from which the leares originate are at first wholly cellular, consisting of periblem or proto-meristem, covered by a layer of dermatogen cells ; after a time elongated cells are formed in the centre ; and these are followed by spiral vessels, formed in a direction from the base upwards.' The first formed part of the leaf generally corresponds with its apex or with the summit of the common petiole--i.e. the apex of a leaf is generally its oldest instead of its youngest part as is the case with the stems where the apex is the growing point. (See page 795.) In leaves the apical growth soon ceases, though interstitial growth continues.

The following is an abstract of Trécul's conelusions :-
'All leaves originate in a primary cellular mamilla, with or without a basal swelling, according as they are to have sheaths or not; they are developed after four prineipal types: (1) the rentrifigal formation, from below upwards; (2) the centripetal formation, from above downvards ; (3) the mixed formation ; and (4) the parallel formation. The centrifugal or basifugal development may be illustrated by the leaf of the Lime-tree, which begins as a simple tumulu' at the apex of the stem. This tumour lengthens and enlarges, leaving at its base a eontraction which represents the petiole. The blade, at first entire, is soon divided from side to side by a sinus. The lower lobe is the first secondary vein. The upper lobe is divided in the same manner five or six times, forming as many secondary veins. Smuosities then appere in the lower lobe, indicating the ramifications of the lower rein ; and, finally, fresh toothings appear corresponding with more minute ramifications. Thus the various veins in the leaf of the Lime-tree are developed like the shoots of the tree
that bears them, and the toothing does not arise from cells specially adapted for that purpose on the edge of the leaf, as Mercklin has supposed. The hairs on the under surface of the leaf are also formed from below upwards.
'Leaves developed centripetally (called also the basilar or basipctal mode of leaf formation) arc more numerous than the preceding, and this method may be well studied in the formation of the leaves of the Hyacinth ; of this sort are the leaves of Sanguisorba officinalis, liosa arvensis, Cephalana procera, dec. In them the terminal leaflet is first produced, and the others appear in successive pairs downwards from apex to base. The stipules are produced before the lower leaflets. All digitate leaves, and those with radiating renation, belong to the centripetal mode of formation as regards their digitate renation.
'In some plants, as Acer, the two preceding modes of development are combined. This is called miced formation. In Acer platanoides the lobes and the midribs of the radiating lobes form from above downwards, the lower lobes being produced last, but the secondary venations and toothings are dereloped like those of the Lime-tree. In Monocotyledons we meet with the parallel (included by some writers with the basilar) leuf formation of 'Trécul. All the veins are formed in a parallel manner, the sheath appearing first. The leaf lengthens especially by the base of the blade, or that of the petiole when present.
'Leaves furnished with sheaths, or having their lower portions protected by other organs, grow most by their base; while those which have the whole petiole early exposed to the air grow much more towards the upper part of the petiole.'

CHAPTER 2.

GENERAL PHYSIOLOGY, OR LIFE OF TIIE WHOLE PLANT.
Having now briefly treated of the special functions of the clementary structires and of the organs of nutrition, as such structures are alone intimately concerned in maintaining the life of the plant and its various organs, we proceed to give a sketch of general physiology, or the whole plant in a state of life or action. In doing so, we slall first notice the substances required as food by plants and their sources : then proceed to consider the function of chsorption, or that process by which food is taken up dissolved in water ; and lastly, show how this fluid food is distributed throngh the plant, and altered in the leaves, so as to be adapted for the development of new tissues,
and the formation of other organic compounds, which are commonly termed secretions.

Section 1. Food of Plants and its Sources.

The rarious substances required as food can be only ascertained by determining the elementary composition of the parts and products of plants; for as plants have no power of forming these elements for themselves, they must have derived them from external sources.

As plants are incapable of locomotion, being fixed to the soil or to the substance upon which they grow, or floating or suspended in water, they must obtain their food from the media by which they are surrounded, that is, as a general rule, from the soil, or from the air, or from both; but no plants can take up their food except in the state of gas or vapour, or in a fluid state. In by far the majority of cases plants take up their food, both from the air br their leaves in a gaseous or vaporous state, and from the earth dissolved in water by their roots. But plants which are termed Epipliytes or Air Plants, as many Orchids (fil. 256), derive their food entirely from the air by which they are surrounded (see page 131) ; while Parasites (figs. 257 and 2.58) and Saprophytes cssentially differ from both Epiphytes and ordinary plants in the fact that their food, instead of being derived entirely from inorganic materials, which are afterwards assimilated in their tissues, is obtained entirely or partially from the plants upon which they grow, that is, in an already assimilated condition, or, as in Saprophytes, from organic matter in a state of decay (see page 133).

The materials of which plants are composed, and which, as stated above, are either derived from the air, or the earth, or more commonly from botlı, and which conscquently constitute their food, form respectively their organis: and inorganic compounds; and in all plants there is also a varying proportion of water. The process of burning cnables us conveniently to distinguish, to a great extent at least, the comparative proportion of these organic and inorganic compounds, and acquaints us with me of their distinctive peculiaritics. Thus, if we take a piece of wood, or a leaf, or any other part of a plant, and burn it as perfectly as wc are able, we find that the greater portion disappears in the form of gas and vapour, but a small portion of the original substance remains in the form of ashor incombustible material. The former or combustible portion is made up of organic compounds or volatile romstituents, that is to say, of combinations of curbon with other elements, and the latter portion of inorquaic compounds. The relative proportion of the wranic and inorganic constituents varies in different plants; but, as a general rule, the former constitute from 92 to !9! parts, while the latter form from 1 to about 8 parts in cvery 100.

1. The Organic or Volatile Constituents, and their Sonnces. The organic constituents of plants are, Carbon, Oxygen, Hydrogen, Nitrogen, and Sulphur. The first three alone form the celluluse of which the cell-walls are composed (see pages 4 and 23); while the protoplasmic contents of the cell are formed of compounds of these three elements with the two other organic constituents, namely, nitrogen and sulphur (see page 26). Phosphorus is also regarded as a necessary constituent of these nitrogenous cell-contents (page 26) ; but it belongs to the inorganic constituents.

These organic constituents are required alike by every species of plant, hence the great bulk of all plants is composed of the same elements, although the proportion of these varies to some extent in the different species, and even in different parts of the same plant. The following table, by Johnston, indicates approximately the relative proportion of the organic and inorganic constituents of some of our vegetable food substances in 1,000 parts, and of the different elements of which the former arc composed. These substances were first dried at a temperature of 230° Fahr. :-

	Wheat.	Oits.	Peas.	Hay.	Turnips	tor
Carbon.	455	5017	465	4038	429	411
Hydrogen .	57	64	61	50	56	58
Oxygen	430	367	$40!$	381	\pm	+10)
Nitrogen		22	${ }^{42}$	90	76	50
Ash.	25	40				

We must now makc a few remarks on each of the organic constituents, the sources from which they are derived, and the state in which they arc taken up by plants.

Carhon is the most abundant organic constituent, forming as it does from 40 to 60 per cent. of the weight of the entire dricd substance of different species of plants. That plants thus contain a large proportion of carbon may be conveniently proved by taking a piece of wood, the weight of which has been ascertaincd, and converting it into charcoal, which is impurc carbon containing in its substance also a small quantity of the inorganic constituents or ash. The charcoal thus produced is of the same form as the piecc of wood from which it was obtaincd, and when weighed it will be found to have constituted a large proportion of its original substance. As carbon is a solid substance and insoluble in watcr, it camot be taken up in its simple state, for plants, as folready noticed, can only take up their food as gas ur rapour, or dissolved in water. In the state of combination, however, with oxygen, it forms carbon dioxide, which is always present in the atmosphere and the soil. Carbon dioxide is also soluble to some extent in water. Hence we lave no difticulty in ascertaining the source of carbon and the comalition and mode in which it is absorbed by the plant; thus it is taken up essentially combined with oxygen in the form of carbon dioxide,
from the air directly in a gaseous state by the leaves, and, according to some, to a small extent from the earth, dissolved in water, by the roots. Sachs, however, states: 'The fact is unquestionable that most plants which contain chlorophyll obtain the entire quantity of their carbon by the decomposition of atmospheric carbon dioxide, and require for their nutrition no other compound of carbon from without. But there are also plants which possess no chlorophyll, and in which, therefore, the means of decomposing carbon dioxide is wanting; these must absorb the carbon necessary for their constitution in the form of other compounds. . . . Even the food of Fungi which are parasitic in and on animals is derived from the products of assimilation of plants containing chlorophyll, inasmuch as the whole animal kingdom is dependent on them for its nutrition.'

Oxygen is, next to carbon, the most abundant organic constituent of plants; and when we consider to what an enormous extent it exists in nature, constituting as it does about 21 per cent. by volume of the atmosphere we breathc, eight-ninths by weight of the water we drink, and at least one-half of the solid materials around us and of the bodies of all living animals, we see that there are abundant materials from which plants can obtain this necessary portion of their food. The whole of the oxygen required by plants, except the small quantity which is necessary in the process of respiration (page 802) appears to be taken up either combined with hydrogen in the form of water, with carbon as carbon dioxide, or in the form of oxygen salts. Some of the oxygen is therefore obtained by the roots from the soil, and some from the air by the leaves.

Hydrogen, the third organic constituent of plants, as just noticed, forms one-ninth by weight of water, and it is in this form that plants obtain nearly the whole of the hydrogen they require as food. It does not exist in a frec state in the atmosphere nor in the soil, and hence cannot be obtained by plants in a simple state. But in combination with nitrogen it forms ammonia, which always exists to some extent in the atmosphere and in the excretions of animals; and is also always produced during the decomposition of animal matter. Ammonia exists in a gaseous state in the atmosphere, and being frecly soluble in water, the raill as it passes through the air dissolves it, and carries it down to the roots, by which organs it is taken up. The roots in like manner absorb the ammonia dissolved in water which is contained in the soil. While the larger proportion of hydrogen, therefore, is taken up combined with oxygen as water, a small portion is acquired with nitrogen in the form of ammonia.

Nitrogen, the fourth and last organic constituent of plants, constitutes about 79 per cent. of the volume of the atmosphere, and is an important ingredient in animal tissues. It also exists in combination with oxysen as nitric acid in rain water, and in
the soil as a constituent of the various nitrates and animal products there found. Whether nitrogen can be taken up loy plants in a free state is at present very dombtful (see page 799), though most probably it cannot; for if all other nccessary food materials be supplied to plants, but all sources of ammonia, or compounds of nitric acid, rendered inaccessible, the albuminoids and nitrogenous substances generally do not increase, although thic plants may be freely exposed to the nitrogen-containing atmosphere, hence it is quite clcar that the principal form in which it is absorbed is as ammonia.

Sulphur, the only other organic constituent, and which, as we have noticed (page 26), is always combined with nitrogen and phosphorus in the protoplasmic cell-contents, is absorbed in a state of combination from the soil dissolved in water by the roots.

In reviewing the sources of, and modes in which, the different organic or volatile constituents of plants are derived and taken up, we see that the sourccs are the earth and the air, more particularly the latter; and that they are principally absorbed in the forms of carbon dioxide and water, the latter of which is not only food in itself, as it is composed of oxygen and hydrogen, two of the essential organic constituents of plants, but it is also an important vehicle by which other food is conveyed to them.
2. The Inorganic Constituents or Ash, and their Sources. -The amount of inorganic matter found in plants, as already observed (page 313), is very much less than that of the organic. The inorganic matters are all derived from the earth in a state of solution in water, and hence we see again how important a proper supply of water is to plants. While the organic constituents are the same for all plants, the inorganic constituents vary very much in the different kinds of plants.

The inorganic constituents differ from the organic also, in the following particulars :-1st, they are incombustible, and hence remain as ash, when the organic constituents are dissipated by burning ; and, 2ud, they are not liable to putrefaction, as is the case with them, under the influence of warmth and moisture.

The inorganic constituents of plants are as follows :-Plosphorus, Chlorinc, Bromine, Iodine, Fluovine, Silicon, Potassium, Sodium, Calciun, Strontiun, Magncsium, Aluminium, Manganesinm, Iron, Zine, Titanium, Lithium, Casimm, Rubidiun, Arsenic, Copper, Lead, Cobalt, Nickel, and Barium. Some of these appear to be almost universally distributed in varying proportions, but others are only accasionally met with. The more important are Phosphorns, Chlorine, Potassinm, Calcinm, Magnesinm, and Iron, which appear to be absolutely necessary for the nutrition of plants, The various inorganic constitucnts are not taken up in their simple states, but as soluble oxides, chlorides, brumides, fluorides, sulphates, phosphates, silicates, \&c.

Although the amount of inorganic matter in plants is very much smaller than that of the organic, still this portion, however small, is necessary to the life and vigorous development of most plants, and probably of all ; although in certain Moulds no inorganic constituents have been detected.

The inorganic constituents of plants are of great importance in an agricultural point of view, and in growing plants for use in medicine, \&c., as it is to their presence or absence, their relative quantities, and the solubility or insolubility of their compounds, in a particular soil, that it owes its fertility or otherwise, and its adaptability of growing with success one or another kind of plant.

Rotation of Crops.--The principle of the rotation of crops in agriculture is founded upon the fact of different plants requiring different inorganic compounds for their successful cultiration; and hence a particular soil which is rich in materials necessary for some plants, may bc wanting or deficient in thuse required by others. Thus, Wheat or any cereal crop requires more especially for its proper growth a full supply of silica and phosphates ; hence it will only flourish in a soil containing the necessary amount of such substances. As growth procceds, these constituents are absorbed in a state of solution by the roots, and are applied to the requirements of the plants. When the grain is ripe, it is removed as well as the straw, and the silica and phosphates obtained from the soil will thus be also removed with them ; the result of this is necessarily, except in fertile virgin soil, that these ingredients will not be then contained in the soil in sufficient quantities to support immediately the growth of the same species of plants. But by growing in a soil thus exhausted by Wheat, another crop of a different kind, such as Clover, Peas or Beans, which requires either altogether different substances, or a different amount, or other combinations of the same substances, or whose roots penetrate to a greater or less depth, we may obtain a profitable crop: whilc at the same time certain chemical changes will go on in the soil, and other ingredients be taken up frou the atmosphere, and in other ways, by which the land will be again adapted for the growth of Wheat.

The consideration of the above facts shows how important it is for the agriculturist to have some acquaintance with vegetable physiology and chemistry. He should know the composition of the various soils, and the plants which he cultivates, as well as the nature of the compounds required by them, and the modes in which they are taken up, and thus be able to adapt particular plants to the soils proper for them. If such soils do not contain the substances necessary for their life and vigour, he must supply them in the form of manures. The applications of chemistry and vegetable physiology to agriculturc are thus seen to be most important, and the great practical improvements
which have of late years taken place are mainly due to the in. creased interest taken in such matters, and the many admirable researches to which it has led. But however intcresting in an agricultural point of view these applications may be, our necessary limits will not allow us to dwell upon them further.

Section 2. Life of the whole Plant, or the Plast in Action.

The various substances required by plants as food having now been considered, we have in the next place briefly to show how that food is taken up by them, distributed through their tissues, and altered and adapted for their requircments. The consideration of these matters involves a notice of the functions of vegetation. The more important facts comnected with these functions have, however, already been referred to in treating of the Special Physiology of the Elementary Tissues, and of the Root, Stem, and Leaves; so that it now only remains for us in this place to give a general recapitulation of the functions of the plant, and to consider them as working together for the common benefit of the whole organism. It will be convenient to treat of these under the two heads of (1) Absorption ; and (2) Distribution of Fluid Matters through the Plant, and their Alteration in the Leaves.

1. Absorption.-The root, as already noticed, is the main organ by which food is taken up dissolved in water, for the uses of the plant. No matter can be absorbed in an undissolved condition ; and this absorptive power is owing to the superion density of the coutents of the cells of the young extremities of the roots over the fluid matters surrounding them in the soil, leading to the production of osmotic action through the cellwalls (see page 781 and fig. 1139).

That the roots do thus absorb fluid matters may be proved by a very simple experiment. Thus, if we take two glasses of the same capacity, and pour water into them until it is at the same level in cach, and then put the roots of a rigorous growing plant in the one, and cxpose both in other respects to the samc influences of light, heat, and air, it will be noticel that the water will gradually disappear from the glasses, but from that in which the roots are placed far more rapidly than from the other without them, and the more rapid removal in the former case must therefore be uwing to its absorption by the roots. In this way we ean also estimate, in some degrec at least, the amount absorbed, which will be found to be rery considerable; commonly, in a few days, far excecding in weight that of the plants whieh are experimented upon. This absorption of liquid by the roots is in many cases altogether independent of leaf-action, for, if the rootlets be healthy and the tissues above them filled with fluid, it will always occur ; and
the great force of the action in stumps cut off a little above the ground is well seen in such experiments as those of Hales (see page 822) and Hofmeister. But nevertheless, as a general rule, the amount of fluid absorbed by the roots is directly dependent upon the activity with which the other processes of vesetation are carried on, and more especially by the quantity of fluid matters transpired by the leaves; indced, under ordinary conditions, absorption is directly proportioned to transpiration in a healthy plant, for as fluid is given off by the leaves, it is absorbed by the roots to make up for the deficiency thus produced, and therefore all stimulants to transpiration are at the same time exciters of absorption. (See page 821). When absorption and transpiration differ greatly in amount, the plants in which such a want of correspondence takes place become unhealthy; thus when transpiration is checked from deficiency of light, as when plants are grown in dark places, the fluids in thern become excessive in amount; whilst if the atmosphere be too dry, as is the case when plants are grown in the sitting-rooms of our dwelling-houses, transpiration is greater than absorption, and hence they require to be frequently supplicd with water.

The mutual dependence of ab sorption upon transpiration should also be borne in mind in the process of transplanting trees. Transpiration is greatest at those seasons of the year when plants are most abundantly covered with leaves, and when solar light is most intense ; we ought not, therefore to transplant at such periods, because, as it is almost impossible to do so without some injury to the extremities of the roots, the amount of fluid absorbed may be insufficient to compensate for the loss by transpiration, and hence the plants will languish, or die, according to circumstances. By transplanting in atutumn or spring, we do not expose

Fig. 1140. Dingrammatic vertieal seetion of the stem of a Dicotyledon showing the distribution of the sap. The direetion is indieated by the arrows. a, a. Roots, by which the fluid matters are absorbed. b, b. The tissues by whieh they aseend to the leaves, c, c. d, d. Outer portions of stem and inner bark where the deseent takes place. e. Vertienl seetion of a branel. the plants to such unfavourable conditions, as the light is then less intense, and there are no leaves from which transpiration essentially takes place. (For further particulars on Absorption, see Absorption by the Foot, page 790.)
2. Distribution of Fluid Matters through the Plant, and their Alteration in the Leares. - The fluid matter thus absorbed by the roots (the sap, as it is called) is carried upwards by their tissues (fig. 1149) to the stem, and throngh its young portions to the
leaves, $\mathbb{d c}$. (as indicated by the arrows in the figure), to be aerated and claborated. After this it is returned to the stem; and descends probably by the inner bark and cambium layer of Dicotyledons towards the roots from which it started (page 825); and by means of the medullary rays and the general permeability of the tissues of which plants are composed, it is also distributed to the different parts where new tissues are being formed, and where the secretions are to be deposited. This general distribution of the fluid matters through the plant is commonly termed the Circulation of the Sup. The fluid as it ascends is called the Ascending or Cructe Sap; and as it descends, the Descending or Elaborated Sap. Although the term Circulation is thus commonly applied to this movement of the sap, it must be borne in mind, that the process bears no analogy to the circulation of the blood in animals; for plants have no heart or any organ of an analogous nature to propel their fluid matters, nor any system of vessels in which a flow thus produced takes place. As Professor Johnson has well put it, ' nutrient substances in the plant are not absolutely confined to any path, and may move in any direction. The faet tlat they chiefly follow certain channels, and move in this or that direction, is plainly dependent upon the structure and arrangement of the tissues, on the sources of mutriment, and on the seat of growth or other action.'
A. Ascent of the Sap.-The sap in its ascent to the leares passes principally through the young wood-cells and vessels (page 785), and therefore in Dicotyledons, when they are of any age, through the outer portion of the wood or alburnum. In such plants, also, we have but one main stream of ascending sap. In the stems of Monocotyledons and of Cormoplyytes the ascent also takes place through the unincrusted cells and vessels of the fibro-vascular bundles; and hence in such plants, and more especially in Monocotyledons, we have a number of more or less distinct ascending streams. In the lower Cryptogams or Thallophytes, which have no stems, there is no regular course of the sap, but the fluids may be noticed flowing in all directions through their cells, and to bo more especially evident in those parts which are of a lax nature.

The cause of the ascent of the sap is, as Herbert Sponcer las well expressed it, a disturbance of equilibrium creating a demand for liquid. This is produced mainly by the transpiration going on in the leares, but also by abstraction of the sap by the growing tissucs and by extravasation from the ressels by pressure. The circulation is helped by osmotic and capillary action, probably by the movements of protoplasin in the cells (see page 783), and also, when it occurs, by any swaying motion of the branches causing intermittent pressure on the vessels. In the winter no transpiration takes place, and the wood of the stem and roots is filled with watery matters holding starch and other
insoluble substances in suspension. The fluids of the plant are therefore in a nearly quiescent state, as there are no changes then taking place to produce their distribution. When the increased heat and light of spring commence, the insoluble starch, \&c., become converted into soluble dextrin and sugar, development and transpiration immediately follow, and a consequent ascent of the sap. This flow continues throughout the summer months, when the causes favourable to it are in full activity; but towards the autumn, as heat and light diminish again, the force of the ascent also diminishes, and the flow of sap is again suspended in the winter months from the reasons above alluded to.

The force with which the sap ascends is probably greatest in the summer months, when heat and light are most intense, and when vegetation is consequently most active; and least in the winter. At first sight it would appear, that the most rapid flow of the sap was in the spring months, at which period alone plants will give off much fluid, or bleed as it is commonly termed, when their stems are wounded. At this period gallons of fluid will come, in some cases, in a few hours, from a wounded tree before the leaves have expanded; and the fact that the leaves have not expanded is the explanation of the matter. For at this season of the year, before the leaves are fully developed, the reserve materials of the tree are largely stored up in the root, and from chemical changes there actively going on, the fluids in that part become very dense, and the consequence is that an excessive osmotic action takes place. There is far more fluid absorbed from the ear'th than the plant can use, and root-pressure then takes place, and this pressure forces the fluid up the stem. (See page 791.) This is the explanation of what is called bleeding. But this bleeding arises from the vessels as well as the prosenchymatous cells being then filled with sap, so that the whole plant is, as it were, gorged with it: much of the sap which at that period flows is indeed little more than water rapidly pumped up from the soil to supply the drain of Aluid. The process does not take place at any other time of the year, for as soon as the leaves are in full activity, or the flowers, if they be developed beforc the leaves, the fluid which is absorbed by the roots is naturally carried up the plant, and becomes transpired, and thus carried off. It by no means follows, therefore, that when the plant is most gorged with fluid matters, and bleeds, the force of the circulation is most active; but rather that it is greatest when the stem is least gorged with sap, as in the summer montlos, when vegetation is in full vigour, and the sap consumed as fast as it can be trausferred upwards through the stem.

In a healthy plant in a perfectly nomal state, the amount of fluid absorbed loy the roots, the force with which it aseends to the stem, and the amount transpired by the lewes, are directly proportionate to one another.

The foree of the aseent of the sap was measured loy Hales in the stem of the Vine by an apparatus, a modificd and improved form of whieh is represented in fig. 11 00 , where is shown a vine stoek, to the transverse seetion of which is attached a glass tube R, and the tube r fixed into it by the cork l_{i}. R is eompletely filled with water, the upper eork k^{\prime} then fixed firmly

Fig. 1150.

Fig.1150. Apparatus for the estimation of root-pressure. (After Sachs.) into it, and mercury poured into the tube r, so as to stand from the first higher at q^{\prime} than at q. The bent tube being filled with mereury to the levcl q^{\prime} at the commeneement of the experiment, the foree of the sap was readily ealculated by the fall of the mereury in one leg of the tube q, and its eorresponding rise above q^{\prime} in the other leg. In this way he found, that in one experiment the force of the aseent was suftieient to support a column of mereury $32 \frac{1}{2}$ inehes in height. He also ealculated from his experiments on the Vine, that the foree with which it rises in this plant is nearly five times greater than that of the blood in the erural artery of a horse, and seven times greater than that of the blood in the same artery of a dog. In some experiments of Brueke on the foree of the ascent of the sap in the spring in the Tine, he found that it was equal to the support of a eolumn of mercury $17 \frac{1}{2}$ inclies high. Hales' experiment is, however, a measure of the foree of absorption by the root (root-pressure), rather than of aseent of the sap (sce pages 791 and 821).

As the fluid rises in the stem it is of a watcry nature, and eontains dissolved in it the various inorganie matters in the same state nearly in which they were absorbed by the roots. It also eontains some organie substances whieh it has dissolved in its coursc upwards. Thus an analysis by Attficld of the spring sap from a 'bleeding' whitc bireh tree. showed that it 'consisted of 99 parts of pure water with 1 part of dissolved solid matter; eleven-twelfths of the latter being sngar. But although the sap in its passage upwards thus becomes more and more altcred from the state in which it was absorbed hy the roots, when it reaches the leaves it is still quite untitted for the requirements of the plant, and is henec ealled Crude Sap. It undergoes ecrtain changes in the leaves and other green parts, by whieh it lecomes altered in sereral particulars, and is then adapted for the uses of the plant. In this state it is termed Elaborated Sip. - B. Chunges of the Crude Sup in the Leares. -The ehanges
which the crude sap undergoes in the leaves and other green parts by the action of light and air have been already alluded to in treating of the Functions of Leaves; it will be here, therefore, only necessary to state in what those ehanges essentially consist. They are $:-1$ st. The transpiration of the superfluous fluid of the crude sap in the form of watery vapour, by which it becomes thickened. 2nd. The taking up from the air of oxygen and giving off of carbon dioxide, small quantities of water being probably formed at the same time, to which the term Respiration is now applied. The oxygen thus taken up in respiration is necessary to the vitality of the protoplasm, as also for the oxidation of nutrient matters during the process of metastasis, dc. Respiration is most evident during the night, for the large quantity of oxygen given off cluring the day in the process of assimilation completely obscures the former change. 3rd. The absorption and decomposition of carbon dioxide, by which carbon, that most important constituent of plants - is added to the crude sap, whilst oxygen is evolved, carbohydrates being at the same time produced. To this the term Assimilution is commonly applied. The carbohydrates so formed may be starch, fat, or cane sugar (sucrose), but more especially starch. A further process is found to take place in some of the assimilated substances; thus they may change their position, passing from the cells in which they were formed to others, generally also undergoing at the same time a change in their chemical composition; which eombined changes are termed metabolism or metastasis. The differences between assimilation and metabolism may be seen in the Potato, where by the former process starch is formed in the chlorophyllbearing leaves, which in its turn is converted into a glucoside in the stem and branches, and back again into starch in the tubers by metastasis. The crude sap being thus altered, then contains in itself the various nitrogenous and non-nitrogenous matters which are required for the development of new tissues, and the formation of other organic produets, which are commonly called'secretions. It is then termed Elaborated Sap.

Those organie matters which are necessary for development or growth are termed constructive matcrials, whereas those which are formed by metabolism or metastasis and which are not eon-structive-may be divided into two groups-

1. Degradation products, such as wood and cork, which can never be reconverted into constructive materials, though of the greatest use to the plant in giving mechanical support ; protecting the internal living tissues from frost, enabling plants to withstand the scorching heat of the sun, and in other ways. Many gums, as tragacanth, gum arabic, and others; and gum resins, as myrrh and bdellium ; are alsc formed from the cellwalls, \&e., of different plants, and are, therefore, other examples of such products.
2. Secondary products of metastasis, some of which, as sweet secretions, dc., are necessary for the perpetuation of the species, by attracting some insects, guarding against the visit; of others which would be injurious, and so furthering fertilisation; while some-as ethereal oils, resins, colouring matters, and many acids and alkaloids-appear to be of no further use to the plant.

The important influences which these changes in the leares have in promoting the purity of the atmosphere we breathe (page 802), the healthiness or otherwise of a particular country (page 798), and the fertility or barrenness of a soil (page 798), have likewise been already noticed. We have also scen that, in order that these changes may be properly performed, the leaves must be freely cxposed to light ; and from this dependence of assimilation on light, it follows, as we have noticed (page 804) that when the secretions of particular plants, which are otherwise agreeable, are injurious, or of unpleasant flavour, they can, by growing them in darkness or in diminished light, be made fit for the table, as is the case with Celery, Sea Kale, Lettuce, Endive, and others. For the same reason the plants of warm and tropical rcgions, where the light is much more intense than it is in this country or in other cold and temperate regions, are commonly remarkable for the powcrful nature of their secretions, as is well illustrated by the stronger odours of their flowers, and the richer flavours of their fruits. (See also Electricity of Plants, page 858.)

Again, as the formation of secretions depends upon the intensity of light, it frcquently happens that when a plant of a warm or tropical region which naturally produces a sccretion which may be of great valuc as a medicinal agent, or uscful in the arts, is transportcd to this or any other climate in which the intensity of the light is much less than it is in its native country, the secretion is not formed at all, or in diminished quantity. Even if such plants be placed in our hot-houses, where they may be submitted to the same degree of heat which they obtain naturally in their native countries, their secretions are either not formed at all, or in diminished amount, because light is the main agent concerned in their formation, and we cammot increase the intensity of light as we can that of heat, by artificial means. Another cause which commonly interferes with the formation of the sceretions of plants of warmer regions when grown in our hot-houses is the want of a proper and incessant supply of fresh air to facilitate transpiration, \&c.

The above facts are of great interest, as they have an important bearing upon the growth of plants and fruits for the table, as well as in a medicinal and economic point of view. At present, however, much remains to be discovered, before we call he said to have anything like a satisfactory cxplanation of the causes which influence the formation of the secretions of plants ; for it is found that the same species of plants when grown
in different parts of Great Britain, where the climatal differences are not strikingly at variance, or even at the ciistance of a few miles, or in some cases a few yards, frcquently vary much as regards the nature of their peculiar secretions. A striking illustration of this fact is mentioned by Sir Robert Christison, who found that sowe Umbelliferous plants, as Cicuta virosa, and Enanthe crocata, which are poisonous in most districts of England, are innocuous when grown near Edimburgh. The causes of such differences are at present obscure, but the varying conditions of soil and moisture under which plants are developed have doubtless an important influence upon their secretions. From a pharmaceutical point of view, so far as the active properties of the various medicinal preparations obtained from plants are concerned, this modification in their secretions by such causes is of much interest, and would amply repay investigation ; for it cannot be doubted but that each plant will only form its proper secretions when grown under those circumstances which are natural to it, and that consequently any change from those conditions will modify in a corresponding degree the properties of the plant. Probably here we have an explanation, to some extent at least, of the cause of the varying strength of the medicinal preparations obtaincd from the same species of plants when grown in different parts of this country, or in different soils, \&c.
C. Descent of the Sap.-After the crude sap has been transformed in the manner already described, it passes from the leaves to the stem, probably to the inner bark, and cambium-laycr of Dicotyledons ; and apparently to the parenchymatous tissues generally of the stcms of Monocotyledons and Cormophytes. It then descends in the stems of the several kinds of plants as far as the root, and in its course affords materials for the development of new tissues and the production of flowers and fruit; and at the same time undergoes further changes owing to metabolism, and dcposits its various secretions, de. (page 823). Hoffmamin in his experiments upon Fcrns, however, could not find any path by which the elaborated juices descended in the stem.

That the elaborated sap in Dicotyledons descends through the inner bark and cambium-layer is commonly believed, and several facts scom to support this belief. Thus, the formation of wool is ohviously from above downwards, for when a ligature is tied tightly romnd the bark of a Dicotylcdonous stem, or mure especially if a ring of bark be removed, no new wood is produced below the ligature or ring, while there will be an increased development above it, or roots will be produced there. Again, it is well known, that by removing a ring of bark from it fruit tree, a larger quantity of fruit may be temporarily obtained from that tree, owing to the greater amount of mutritive matter which then becomes available for the use of the reproductivo organs (see page 847). Another circumstance which appears
to show the line of descent of the nutritive matter, is the fact, that if the cortical parts of the stems of a Potato plant be peeled off, the formation of tubers is prevented. It appears that the descending sap supplies the material for the formation of new wood in the fibro-vascular layers. The course of the sap is also lateral, for in the autumn starch grains are found in the medullary rays between the wedges of developed wood; and where growth is going on, even an upward direction may be assumed. Herbert Spencer, however, argues that the retrograde motion of the sap is through the same channelschiefly, as he believes, the vessels of the newest wond--by which it passed up. He considers that this descent takes place in response to a demand for liquid by the stem and roots when transpiration from the leaves is at a standstill, as at night. As far as the leaf-petioles are concerned, the back current must be along much the same tissues as the upward flow; but probably the liber-cells of the petiole are the main channel, and these are directly continuous with the inner bark of the stem.

Spencer has also described and figured (Linn. Soc. Transactions, xxv.) cellular masses which he finds at the termination of the vascular system in the lower layer of parenchyma in many leaves, and which he considers to be undoubtedly absorbent organs by which the elaborated sap is abstracted from the leares ; his conclusions, however, require confirmation.

The opinions of observers vary much as to the offices of the diffierent parts of plants ; for instance, Mulder considers that all nitrogenous matters are not only absorbed by the roots, but also assimilated by them at once, while carbon is fixed by the green parts; so that a constant interchange must take place between the leaves and roots. Other authors, again, believe that the leaves form all the organic substances. While Sachs says: 'By the parenchyma of the fundamental tissuc, which always has an acid reaction, are conveyed the carbo-hydrates and oils; by the soft bast the mucilaginous albuminoids, which have an alkaline reaction.'

CHAPTER 3.

PHYSIOLOGY OF THE ORGANS OF REPRODUCTION.
Having now alluded to the special functions of the elementary structures, and of the organs of mutrition, and also to the general physiology or life of the whole plant, we proceed in the next place to treat of the functions of the Organs of Reproduction.

1. Funetions of Bracts and Florah. Entrlopes.-One of the principal oftices performed by these organs is, to protect the
young and tender parts placed within them from injury. When green, as is eommonly the ease with the braets and sepals, their eolour is due to the presence of ehlorophyll in their eomponent eells, and they then perform the samc functions as ordinary leaves. But when of other eolours than green, as is usual with the petals, and oceasionally with the bracts and sepals, they appear to have, in conjunetion with the thalamus, a speeial funetion to perform ; whieh eonsists in the production of a saeeharine substanee from the amylaeeous matter stored up in them. This saeeharine matter is designed more especially for the nourislment of the essential organs of reproduction. That sueh is the funetion of these parts seems to be proved by the varying eomposition of the thalamus at different periods of the flowering stage. Thus, at the period of the opening of the flower, the thalamus is dry and its cells are filled with amylaeeous matters; as flowering proeeeds, these matters become converted into saecharinc substanees ; and, finally, after flowering, the thalamus dries up. In faet a similar ehange takes place in the proeess of flowering to that whieh oecurs in germination, where the amylaeeous matters are in like manner eonverted into those of a saeeharine nature. When the saecharine matter is in excess, during the proeess of flowering, it is found upon the parts in a liquid state, and may be removed without the flower suffering, indeed one of its ehief uses seems to be that of determining the direction of the entrance of insects into Howers which receive entomophilous fertilisation.

During this eonversion of amylaceous into saceharine matters, oxygen is absorbed in great quantities from the atmospherc, and earbon dioxide given off in a eorresponding degree. Henee, the aetion of the parts of the flower which are of other colours than green upon the surrounding air under the influence of solar light, differs from that of the leaves and other green organs. The absorption of oxygen takes place in a still greater degree in the essential organs of reproduetion ; henee, sueh an effeet is more evident in hermaphrodite flowers, than in those in whiel the stauens and earpels have been more or less ehanged into petals --that is, when the flowers have become partially or wholly double. It has been proved, also, that staminate flowers absorb more oxygen than pistillate ones.

The combination which under the above eireumstances takes place between the earbon of the flower and the oxygen of the air, is also attended by an evolution of heat, whieh indeed is always the ease where aetive chemieal combination is going on. This evolution of heat in the majority of flowers is not observable, because it is immediately earried off by the surrounding air; lut in thuse plants where many flowers are erowded together, and more espeeially when they are surrounded by such a leafy strueture as a spathc, whieh contines the evolved heat, it may be readily noticed. The flowers of the male eone of Cycas circi-
nalis, those of the Vietoria regia, of sevcral Cacti, and of many Aroidacee, present us with the most marked illustrations of this evolution of heat. (See calso Development of Heat by Plants, page 855.)

That the heat thus evolved is dependent upon the combinittion of the oxygen of the air with the carbon of the flower was conclusively proved by the experiments of Vrolik and De Vries ; for they showed that the evolution of heat by the spadix of an Arum was mueh greater when it was placed in oxygen gas than in ordinary atmospheric air, and that when introduecd into carbon dioxide or nitrogen gases it ccased altogether.

Colour of Flowers. - All the eolours of flowers otherwise than green depend on colouring matter dissolved in the watery cellsap, and ehromo-plastids, the nature of which was very imperfeetly known until the reeent obscrvations of Schimper, Meyer, and Schmidt (see page 809), though spcctroscopic analysis had done something towards grouping them into series. The changes in colour which many corollas undergo are supposed to depend on the oxidation of these boclies. Most of the Boraginacere pass from pink to blue, from their first cxpansion, till they are fully open; the garden Convolvulus ehanges from pink to a tine purple in the same period. Cultivation will effeet great changes in this respeet, but there is a limit to its influence. The Dahlia and Tulip are naturally ycllow, and under eultivation may be made to assume all shades of red, orange, and white, but no tint of blue; Pelargoniums and the Hydrangca will take on various shades of blue, purple, red, and white, but never a yellow. Thesc facts led De Candolle to divide flowers in this aspect into two series - a xanthic which has yellow for its base, and a eyanic which has blue-either of which can be made red or whitc, but will not assume the basie colour of the other. There secm to be a few exceptions to this rule ; e.g. Myosotis versicolor changes from yellow in the bud to blue in the open corolla, and the Hyaeinth is not unfrequently a pale yellow.

Development of the Floral Envelopes.-The manner in which the floral envelopes are developed may be shortly summed up as follows:-

They are subject to the same laws of development as the usual foliage leaves, and make their first appearance as little cellular processes, which grow by additions to their bases or points of attachment to the axis.

The calyx is commonly developed before the corolla.
When it calyx is polysepalous, or a corolla polypetalous. the eomponent sepals or petals make their first appearance in the form of little distinct papille or tumours. the number of which corresponds to the scparate parts of the future calyx or corolla,

When a calyx is gamoscpatous, or a corolla gamopetalons, the first appearanee of these organs is in the form of a little ring, whieh niltimatcly becomes the tube of the calys or corolla, is the case may be. When these present lobes or tecth, as they
more commonly do, they arise as littlc projections on the top of the ring, the number of which corresponds to the future divisions of the calyx or corolla.

All irregular calyces or corollas are rcgular at their first formation, the cellular papille from which they arise being all equal in size ; hence all irregularity is produced by uncqual subsequent growth.
2. Functions of the Essential Organs of Reproduction. Sexuality of Plants.-Though vaguely suspected by the ancients, the true sexuality of plants was not definitively asccrtained till 1676, in which year Sir T. Millington, of Oxford, determined the real nature of the stamens. The androecium of flowering plants, as has been already repeatedly stated, constitutes the male apparatus, and the gynoecium the femalc. That the influence of the pollen is necessary to the formation of perfect sced is positively established.

While the presence of distinct sexes may thus be shown in flowering plants, both of which are necessary for the formation of perfect seed, by far the greater number of flowerless plants, in like manner, as we have seen, possess certain organs the functions of which are undoubtcdly scxual. It is quite true that the existence of sexuality has not bcen absolutcly demonstrated in all the Cryptogamia; but as it is known to exist in the greater number, we may fairly conclude from analogy that it is present in all.

We have already, as fully as our space will permit, described the structure of the reproductive organs of both the Phanerogamia and the Cryptogamia; we now proceed to give a general summary of the more important conclusions which have been arrived at as regards the process of reproduction in the several divisions of plants, and in doing so we shall commence with the Ciyptogamia.

1. Repronuction of the Cryptogamia. - In describing the structure of the reproductive organs of these plants (see pages 363-399), we treated of them in two divisions, called, respectively, Cormophytes and Thallophytes, each of which was again subdivided into several natural orders. We shall follow the same arrangement in describing their modes of reproduction, except that we shall here commence with the Thallophytes, and proceed upwards to those plants of a more complicated nature, instead of alluding to them, as we then did, in the inverse order.
A. Reproduction of Thallophytes.-The sexual method of reproduction (gumogenesis) of all Thallophytes has not been absolutely proved, but only concluded from analogy, though the asexual or vegetative mode (agamogenesis) obtains in all. Sexes lave been clearly slown to exist in certain Alge, Fungi, and Lichens; and generally in Characca. Oërsted, indeed, has described the impregnation of oügonia on the mycelium of Agaricus; but other observers have failed to verify his asser-
tions, and it is most probable that the reproduction of Agaricrs is asexual. The process of reproduction in the Fungi and Lichens has already been sufficiently noticed (see pages 378390) ; but the Algre and Characese require further explanation.
(1) Reproduction of Alga.-The reproduction of Algee takes place in the following ways: namely, by division (page 765 and fig. 1125), frce cell-formation (page 773), conjugation, and by the direct impregnation of naked spores or germ corpuscles by ciliated anthcrozoids. Each process is also liable to modifications.
a. Conjugation.-This process occurs in the Algre, as Diatoms, Desmids, Spirogyra, \&c. (See pages 394 and 765, figs. 862, 863 , and 1126.) It consists in the union of the contents of two independent unicellular organisms (fig .1126), or of the cells of two filaments (fig. 863), and the formation of a germinating spore by their mutual action. No difference can be detected in the structure of the conjugating cells, although in many, if not all cases, it is believed that there is some unobserved difference constituting the one as the male, the other as the female element.

Two inethods of conjugation may be noticed among the Alge. In the first mode, as seen in Desmidieæ, \&c. (fig. 1126), two individuals, each of which is composed of a single cell, approach each other, the external cellulose membranes bounding their respective cells then burst at their point of contact, and the contents of the two issue from the orifices thus produced, intermingle in the intervening space, and form ultimately, by their mutual action, a rounded body, called a zygosporc, resting, or inactive spore, which ultimately germinates. The contents of the spore are green and granular at first, but ultimately become brown, yellow or reddish. These resting spores are furnished with a coat of cellulose which in some cases divides into two layers, the exospore and endosporc; they are sometimes called sporangia, because they ultimately produce two or more germs in their interior, and are not therefore simple spores.

In the other mode of conjugation, which occurs in Zygncmu and Spirogyra (figs. 862 and 863), the cells of two filaments develop on their adjoining sides a small tubular process ; these ultimately meet and adhere, and the intervening septum existing at the point of contact becoming absorbed, the two cells freely communicate. The contents of the cells then contract into a mass, and ultimately combine together, either by the passage of the contents of one cell into the other, or by the mixture of the contents of the two cells in the tubular process between them. Under either circumstance, the mixture of the contents of the two cells results in the formation of a zygosporc or resting spore, which ultimately germinates and becomes an individual resembling its parents.
b. Impregnation of naked spores or germ-eorpuscles by ciliated anthcrozoids. -There appear to be two forms of this fecundation : thus, in certain Algre, as Vaucheria, the fecundation takes
place before the spore has separated from its parent (sec page $395, f i g .864$), and in others, after both the spore and ciliated antherozoids have been discharged, as in Fucus. (See page 397, figs. 866868.)
(2) Reproduction of Characer.In these plants we have two kinds of reproductive organs, called, respectively, the globule or antheridium (figs. $856, c$, and 858), and the nucule or carpogonium (figs. 856, s, 859, and 860) : the former is regarded as the male, and the latter as the female. Fertilisation takes place by the passage of the spiral antherozoids of the globule (f fg. Sã $)$) down the canal which extends from the apex of the nucule (figs. 859, a, and 860) to the central cell of the same structure, which then becomes fertilised. No free spore is, however, produced, but the nucule drops off, and after a certain period germinates, though the sexual leafforming plant is not directly developed, but is preceded by a proembryo (fig. 1151), which has, however, only a limited growth, and from it are produced at one part the rhizoids u, and further on, as a sort of lateral branch, the Chara or Nitella proper.

B, Reproduction of Cormophytes. Of the sexual nature of the plants in most orders of this sub-division of the Cryptogamia there can be no donbt. The sexual organs in all are also of an analogous character, and are of two kinds, one termed an antheridium, which contains spirally wound ciliated antherozoids, and is regarded as the inale organ ; and the other, called an archegonium or pistillidium, containing an embryonal cell or germ-cell, which is the female

Fig. 1151, Pro-embryo of Chera frugilis, sp. Germinating spore. $i, d, q, p l$, The !ro-embryo. At d are the rhizoids, $w . w^{\prime}$. Primary loot. g, First leaves of the second generation, or ('hura proper, (After Pringsheim.) organ. Furtilisation is effected by the contact of an antherozoid with an embryonal cell or germ-cell. We have already described the structure of the reproductive organs of Cormophytes (pages 364-377), both before and after fertilisation ; it will be only uecessary, therefore, in the present
place, to say a few words upon the mode in which fertilisation is supposed to take place in the different orders included in this division of the Cryptogamia, which are here, however, arranged in the invcrse order to that in whieh they were formerly described.
(1) Hepaticacer or Liverworts.-The two reproductive organs of this order elosely resemble those of the Mosses. They are termed antheridia (fig. 831) and archegonia or pistillidia ($f y$. 833), the former representing the male sex, and the latter the female. When the antheridium bursts (fig. 831), it diseharges a number of small cells, which also burst, and each emits a very small 2 -eiliated spiral antherozoid. These antherozoids pass down the canal of the archegonium ($f \mathrm{fg}, 833$) to the germ or embryonal eell which is situated at its bottom, whieh thus becomes fertilised. This cell after fertilisation undergoes various important changes, as already noticed (see page 377), and ultimately beeomes a sporangium, enclosing sporcs and elaters (fig. 834), which latter, c, are elongated, spirallythickened cells, whose office is to assist in disseminating the

Fic. 11 ǒ?

Fic, 1152. Protonemate of a Moss (Funarik hygrometrica). p. Confervoid protonema. a. Bud. b, Young leafy stem. \therefore Rootlets. spores when the valves of the sporangia open. When these spores gcrminate, they generally produce a sort of confervoid strueture (protonema), which in its after development resembles the like strneture of Mosses. (Sce below.)
(2) Musci or Mosses.-The roproductive organs of this order consist of antheridia ($f y$. 821) and archegonia (fig. S22), which closcly resemble the same structures in the Нераticacer. Fertilisation takes plaec in a similar manner (sec above), and the changes which take place after fcrtilisation in the embryonal cell which nltimately forms a sporangium containing spores, hut not claters, have been already doscribed. (Sce page 373.)

In germination, the spores at first form a green eellular branched filamentous mass, somowhat resembling a Conferva, which is termed the motonema (sec page 375). Upon the threads of this structure (f ig. 1152), buds (a) are ultimately prodnced, which grow up into leafy stems (b), upon which the archegonia and anthoridia are afterwards developed.
(3) Marsileacer, Rhizuctrpex, or Pepperrorts. - The two re-
procluetive organs of this order are generally distinguished as microsporangia (figs. 818 and 820, a), and macrosporangia or megasporangiu (fig. 820, b). These two structures are either contained in separate saes, as in Salvinia (fg .820), or in the same, as in Marsalea ($f i g .817$). The microsporangia or antheridia eontain a number of small cells, ealled generally miorospores or small spores (fig. S18), whieh ultimately produee antherozoids remarkable for their length and delieaey (fig. 1153). The maerosporangia (fig. 820,b) eontain eommonly but one spore, ealled an ouvlary spore, large spore, macrospore, or megaspore. In their organs of fruetifieation the plants of this order elosely resemble the Selaginellacea. Like the Selaginellaeeæ, the large spores also produee a small prothallium eonfluent with them (fig. 1154), in whieh subsequently only a single arehegonium generally, as in Pilularia and Marsilea, appears (f g. 1154, a), although in Salvinia sereral archegonia are formed. Fertili-

Fic. 11 ºs.
Fif: 1154.

Fig. 1153. smull spow or microspore, of Pill-wort (Piluluria ylobulifera), bursting aud discharging small cells enclosing antlicrozoids. Some of the latter may be observen to have escaped by the rupture of the sumbll cells in which they were contaned.-Fig. 1154. Vertical section of the prothallium of the above, which is formen, as in the Selagincllacee, in the interior of the lurge spom or macrospore. Only one archegonium, ", is here produced in the centre. The arehegonium consists of an intercellant canal, leading into a sac below, in which may be seen a solitary geron or embinjoral cell.
sation takes place by the eontact of the antherozoids with the germ-eell of the arehegonium, whieh imnediately developes, and forms a psendo-cmbryo bearing a great apparent similarity to the embryo of a monoeotyledon, from whieh a leafy stem bearing fruetification is ultimately produeed.
(4) Selaginellace: or Selaginellas.-The two reproduetive organs of this order are usually termed mucrosporangice or megnsporangia (figs. 813 and 816), which represent the female; and microsporangia or mentheridice (figs. 814 and 815), whieh are regarded as male organs. The contents of the microsporangia are called small spores or microspores, whieh break up into two sets of cells-one of whieh remains inaetive, and probably represents an abortive prothallium; while the other developes the antherozoids (fig. 115) large spores, mucrospores, or meguspores (fig. 816).

It is not till some monthis after being sown that the spores
commence to germinate, nor are the antherozoids produced till a nearly equal period has elapsed. In germination, the spone (mucrospore) produces a very small prothallium (fig, 1156, 7), on which archegonia (fig. 1157, a) are subsequently developed. Each archegonium (fig. 1157, a) consists of an intercellular canal leading into a sac below, which contains a single germ 心 cmbryonal cell. In the microspores one cell only constitutes the prothallium; all the others are mother-cells, which by dividing several times produce antherozoids. Fertilisation takes place by the ciliated antherozoids contained in the micruspores (fig1155, c.) passing down the canal of the archegonium and coming into contact with the germ-cell. This cell then grows by cell-

Fifi, 1156.
Fig. $115 \overline{7}$

Fig. 1155.

Fig. 1155. Small spore, or microspore, of a species of Selaginella, bursting and discharging small sperm-cells, c, in whieh antherozoids are con-trined.-Fig. 1156. Larye spore, mucrospore, or megaspore, of a species of Selaginella. The outer coat of the spore has been removed to show the entire inner eoat, with the young prothallium, p, at the nuper ent.-Fig. 1157. Vertieal seetion of a portion of the prothallium of the above in a more advaneed state, showing the arehegonia. a. Archegonium, in which the pseudo-embryo. e, has been developed from the germ-cell it contained, by contaet with the antherozoids. This embrro, by the growtlo of the suspeusor, is forced downwards and imbediled in the upper part of the cellular mass of the spore-sae.
division and forms a pseudo-embryo (fig. 1155, e), and ultimately produees a new leafy sporangiferous stem.
(5) Lyeopodiucex or Club-Mosses probably have only onelime of spore (microspore), from which is produced a prothallium boaring antheridia and archegonia: the germ cell of the latter being fertilised by the antherozoids which escape from the mature antheridia, and producing in turn an adult plant. Yery little. however, is known for certain about the life-history of the Lyeopodiacore (sce page 368).

1. (6) Equisetuces or Morsctails. And

(7) Filices or Herns. -The mode of reproduction of the plants of these two orders is essentially the same, and we shatl accordingly allude to then together. As already fully describul (sec pages $365-368$), their leafy structures bear spmangia or calpsules in which the spores are enclosed (fiys. $80:-805$, and 810810^{\prime}). There is but one kind of sporic.

In germination, which has also been noticed (pages 360 and 368), these spores ultimately form at thin, flat, green parenchymitous expansion or prothallium (figs. 806 and $1158, p, p$), which somewhat resembles the permanent thallus of the Hepaticace:e (figs. 830 and 832). Tpon the under surface of this structure we have som formed, in most of the Filices, both antherivia and archeyonier ; but in some, as well as usually in the Equisetacea, the antheridia and archegonia have only been found on scparate prothallia, and hence the latter plants are dicecious. The antheridia (fig. S07) contain a number of minute cells called sperm-cells (se), each of which contains a spirally wound ciliated antherozoid (sp). The archegonium (fy, S0S) is a little cellular papilla, having a central canal, which when mature is open. At the bottom of the canal is a ccll called the embryo-sac, in which a germ or embryo-cell is developed. This socalled embryo-cell is, however, simply a germinal corpuscle till after fertilisation ; that is, a free primordial cell, or mass of protoplasm without an extermal wall of cellulose.
'When mature, the upper part of the antheridium separates from the

Fiy 1158, ddi neum CippillusVeneris. The prothal ium, p, p, seen from balow, with young Feru (sporophore) attached to it, b. Its first leaf. $w^{\prime}, w^{\prime \prime}$. Its first and second roots. h. Root hairs of the mrothilium (x about 30). (After Sinchs,) lower, something like the lid of a box ; the sperm-cells then escape become r.pptured, and cmit their comtained antherozoids These anther zoids make their way down the canal of the archegonium to the cmbryo-sac, by which the contained germinal corpuscle is fertilisod. This germ-cell then developes a pscudo-embryo, which soon possesses rudimentary leaves and roots (fig. 1158), and ultimately produces a plant with fronds bearing sporangia, which resembles the parent from which the spore was originally obtained. The Ferus and Horsctails are thus seen to cxhibit two stages of existence : in the first, the spores produce a thalloid cxpansion ; and in the second, by means of antheridia and archegonia upon the under surface of this prothallium, there is ultimately produced a new plant, resembling in every respect the one from which the spore was originally derivel. Hence Ferns and Horsetails exhibit what has been termed alternution of generations.

Two remarkable conditions have been found to ohtain in cortain Ferns with regard to their method of reproduction. Thass in Pteris cretict, although intherozoids are developed, no archo-
gonia have been discovered, nevertheless the ordinary Fern plant is developed from the prothallium by a sort of budding. To this peculiarity Farlow applics the term apogamy; and quite rccently Druery describes what he calls apospory in Athyrium Filic-fomina, var. clarissima, where the sporangia do not follow their usual course of development by producing spores, but, assuming a more vegetative character, develop morc or lcss welldefined prothallia, which ultimately bear archegonia and antheridia. In Polystirhum angulare, var. pulcherrima, apospory is even more marked, as the prothallium seems to develop in a vegetative manner from the spore-bearing plant, without even being associated locally with the sporangia. Druery's observations have been confirmed by F. O. Bower.
2. Reproduetton of the Phanerogamia. - In all the plants bolonging to this division of the Vegctable Kingdom the male apparatus is represented by one (fig. 512) or more (fig. 26) stamens, each of which essentially consists of an anther enclosing pillen (fig. 27, p) : and the female, by one (fig. 583) or (fig. 31) more carpels, in (fig. 33) or upon (fig. 730) which one or more ovules are formed. When the ovules are contained in an ovary (fig. 33), the plants to which they belong are called angiospermous; but when they are only placed upon metamorphosed leares or open carpcls, i.e. are naked (fig. 730), the plants are said to ho g!mmospermous. In the plants of both these divisions of the Vegctable Kingdom the ovules by the action of the pollen are developed into perfect seeds whilst comnected with their parent, the distinguishing character of a seed being the presence of a rudimentary plant called the embryo. The modes in which reproduction takes place. and the after development of the embryo. differ in several important particulars in the Gymmospermin and Angiospermia; hence it is necessary to describe them separately.
A. Reproduction of the Gymnospermia. - We have already given a general description of the pollen and orules of the Phanerogamia, but as these structures present certain differences in the Gymmospermia, it will be necessary for us to allude to such peculiaritics before describing the actual process of reprodnction.

The pollen of the Angiospermia generally consists, as we have scc (pages 260-263), of a cell containing a matter called the fomilla, and having a wall which is usually composed of two coats, the outer being termed the extime, which possesses onc or more porcs (fils. 570) or slits (fige. $\overline{5}(68$ and 569), or both ; and the immer, called the intine, which is destitute of any pores or slits, and consequently forms a completely closed membranc. Each pollen-grain of the Anginspermia is thus generally regarded as a single cell ; but as it contains two or more nuclei round which the protoplasm is grouped, there is some doubt as to whether it should be described as consisting of a single cell. In the Gymmospermia, on the contrary, the pollengrains are certainly not. simple cells, but they contain other small cells, each with a
nucleus and distinct cell-wall, from one of which the pollen-tulue is developed, and which adhere to the inside of the internal membrane close to the point where the external membrane presents a slit (fig. 1159).

The ovules of the Gymmospermia, excluding those of the Gnetacer, which require further investigation, consist of a nucellus or macrosporangium (fig. 1160 , a), enclosed by a single coat, and with a large micropyle, m. Before the contact of the pollen with the micropyle, the primary embryo-sac, b, is developed in the nucellus. This embryo-sac is at first very small (fig. 1160 , b), but gradually enlarges (fig. 1161, a), and after a long period

Fig. 1159.

Fig. 1160.
Fig. 1161.

Fig. 1159. Pollen of Spruce Fir. W. Vesicular protrusions of the extine, c i. The intine, through in rent in which passes the pollen-tube which is ceveloper from y, the larger of the two or more cells mroduced by the livision of the central cell. q. The smatler cell accolding to Schacht, but mercly a slit according to Strasburger. (After Schacht.) - Fit. 1160. Tertical section of the jonng umimpregnated ovale of a species of l'iuus. u. Nncellus containjig a smal! mimary embryo-sne, b. m. Micronyle, which is here very inge.-Hig. 1161. Vertical scetion of an otder ovu c of the same. a. Enlarged primary embryo-sac filled with secomlary cndosperm cells, b, within the embryo-sac. c. Two pol!cu-tubes penctrating the apex of the nucellas.
becomes filled with delicate cells by free cell-formation, according to the older views, though Strasburger now considers that free tell-formation never occurs in embryo-sacs, but that the appearance of cells and nuclei is due to the division of previously existing nuclei. These cells are called endosperm cells ; they disappear very soon, and are replaced later on by a fresh development (fig. $1161, b$). The following account of the subsequent development of the ovule, and the mode by which it is fertilised, is taken from Heufrey, and is founded upon Hofmeister's investigations.
'In the upper part of the mass of the last-formed endosperm (fiy. $1161, b$), from five to eight cells are found to expand more than the rest, forming secomdary cminyonsors or corpmemile. these wre not formed in the sujerficial cells of b, but from
cells of the second layer, so that each is separated from the membrane of the primary embryo-sac by one cell (fig. 1162, A). These corpusculu, as they were called liy Robert Brown, theis discoverer, are very much like the archegonia in the internal prothallial structure of Selaginellu. After a time the secondary embryo-sacs divide into an upper or neck-cell, and a lower or central cell containing the oosphere. The neek-cell speedily divides and subdivides, to form the rosette which surmounts the central cell. In the upper part of this latter is then formed,

Fig. 1162. Develorment of the embryo in a species of Pimus. (After Henfrey, A. Upper part of the embryo-sac, with two secondary cmbryn-saes. corpuseula, or archcgonia. B. The zame, more advancell. ph. Pol.en-tube in the ennal leading down to the corpuscula. I. Germiual corpuscles at the buse of the secondary embrjo-sac. E, F, G. Successive stages of dcvelor ment of germinal eorpnseles, a in B. C. Four cellular filaments or suspensors, which are developed from the germinal corpuscles after impreguation; at H, is shown an earlicr stage. D. One of these suspensors, with the cmbryo (em) at its apex.
from subdivision of the nucleus, a very delicate cell, which is called the canal-cell. The mature eorpuscle therefore consists of a large central cell surmounted by a rosette of small cells placed immediately bencath the wall of the primary embryo-sac, or separated from it by a funnel-shaped spaee.'

The process of fertilisation takes place as follows: 'After the contact of the pollen with the micropyle of the orule, the pollen-tule, after remaining passive for a variable space of time, takes an active growth, traverses the endosperm, and arrives at the embryo-sac ly the time the corpuscles are developed. It penetrates the wall of tho embro-sac, enters into and dilates the fumel-sliaped space fust mentioned, passes down hetween the cells of the rosette, pushing them on one side (Tusacese, Cupresses), or causing their absorption and disappearance (Abietere) as well as that of the comul-cell, and finally penetrates into the cavity of the canal-cell. The changes which
take place in this latter are，according to Strasbirger，these ：－ disappearance of the original nucleus，and formation of four to eight new nuclei by condensation of the protoplasm and subse－ quent secretion of a cellulose wall around them．In this way four to eight new cells are formed by division of the central cell aftcr fertilisation ；these new cells divide so as to form cellular filaments，which break out through the bottom of the endosperm into the substance of the nucleus（ $f i(1162, \mathrm{c}$ ）．At the ends of these filaments cell－division again occurs（ fig．1162，D）；and from the apex of one of these suspensors or pro－embryos is developed by repeated cell－division in various directions，the embryo （1，cm）．At onc stage（in Thuja）a single apical cell，the terminal one of a group of fise，from which ultimately all the tissues of the embryo are formed，recalls the single apical cell of the Cryptogamia，but it is soon lost by subdivision．As there are several corpuscles，and each produces four suspensors，a large number of rudimentary embryos are developed；but usually only one of all these rudiments is perfected．
＇That embryo which is fully developed gradually increases in size，and most of the structures above described disappcar，so that the ripe seed exhibits a single embryo embedded in a mass of endosperm，the latter originating apparently from the nucleus of the nvule．The radicle is covered by a pileorniza，which is ultimately blended with the substance of the endosperm．＇

B．Reproduction of the Angiospermia．－The structure of the pollen－cells of the Angiospermia has been ahready described（see Pollen，and page 836）， and need not be further alluded to in this place．

The ovule has also been particularly noticed， and we shall now only recapitulate its com－ poncnt parts at the time when the pollen is discharged from the anthers－that is，just be－ fore impregnation takes place．It then consists of a cellular nucellus，containing one large cell， the embryi－sac，which is the mother－cell of the ousphere（figs．116．），b，and 1164，n），enclosed generally in two coats－an outer or primine （fiy．1169，d），and an inner or secundine，c．But sumetimes there is but one coat（ $\mathrm{fig} .740, s$ ）， and in rare cases the nucellus is naked or devoid of any coat（fig．738）．

These coats completely invest the nuccllus cxeept at the apex，where a small opening

Fig． 1163.

Fia．1163．Terti al section of an of゙せio （rliagrammatic）（： Nucellus．b．Fitu－ bryo－ste．$:$ Inner cont．A．Onter cont． e．Micropyle．f．Cia－ laza．g．ビunicu＇いs． or canal is left，termed the micropyle（figs． $116 \%, p$ ，and $1164, m$ ），that portion of it which passes through the primine being sometimes spoken of as the cxostome，and the part gring through the secundine as the endostome．In the interion of the nucellus，but of various sizes in proportion to it，the embryo－sac（figs． $1163, b$ ，and $1164, s$ ）is scen．The
sac is, however, liable to many modifications; thus, in some cases, as in the Orchidaceie, the embryo-sac completely obliterates the cells of the nucellus by its development, so that the ovule consists simply of it and its two proper coats. In the

Fig. 1164.

Fig. 1166.

Fig. 1164. Vertical section of the orthotropons ovale of a species of Polyyomum. ch. Cha:aza. n. Nucellu* invested by two coats. m. Micropyle. .. Embryo-sac. c. Germinal vesicle or corpuscle.-Fig. 1165. The ovnle, some time before fertilisation. "The onter coat. b. The imncr coat. s. The embryo-sac, with three nuclei at the upper end.-Fig. 1166. The internal parts of the ovu'e a short time before fertilisation. a. Inner coat of the ovule. s. Embryo-sic. b. Germinal vesuics. c. One of the antipodal cells. (After Hofmeister.)

Leguminose, the embryo-sac increases still further, and causes the absorption of the secundine or inner coat of the orule also, so that it is then simply invested by one coat; while in other plants, as in the Santalacere, the sac elongates

Fig. 1167.

Fi\%. 1167. Polygomum kirnricatum. Mature ferminal appncotus in atpex of cmbryo-sine, with two symergitie, s, ε, and the oosphere, e. so much at the apex as to project out of the micropyle. The embryo-sac contains at first a more or less abundant quantity of protoplasm ; in this afterwards appear nuclei (fiy. $1165, s$), which, surrounded by masses of naked protoplasm, form a corresponding number of cells (usually three) which are commonly termed germinal resicles (fig. $1166, b)$. The resicles are situated at or near the summit of the cmbryo-sac, one of them being the oosphere (fiy. 1165, e), which after fertilisation is sometimes called the oosperm, and ultinately becomes the embryo. The two remaning cells after disalppeaning reappear, and are called syneryidar (fic\%. 1107. $s, s)$. At the base of the embryu-sac, as already described (page 328), there are alsn, before fertilisation, two or more mucleated primordial cells, termed antipodal cells. (fiy, 1166, r).

Sinch is the general strincture of the ovale bofore it is fertilised, upon whinch so much difference of minion, until the
last few years, existed among physiologists. Thus Schleiden, Schacht, and others contended that no germinal vesicle existed in the sac until after the contact of the pollen-tube with it in the ordinary process of impregnation ; in fact, they believed that the germinal vesicle was itself formed from the end of the pollen-tube, which, according to their observations, penetrated the wall of the sac, and by subsequent development produced the embryo. This view was, however, at once combated by many accurate observers, who all agreed in describing the presence of one or more germinal vesicles or corpuscles in the sac before impregnation ; and subsequently, Schleiden himself, who originated this view of the origin of the embryo, was convinced of his error by Raddlkofer, one of his own pupils.

When the pollen in the process of pollination (page 20) falls upon the stigma (fig. $1169, b$, , $)$ (the tissue of which at this period, as well as that forming the conducting tissue of the style and neighbouring parts, secretes a peculiar viscid fluid as de-

Fig. 1168.
Fig. 1169.

Fig. 1168. A. Pollen-eell of Dipsocus Fullonum. B. Pollen-cell of Cucurbita. Each pollen-cell is putting ont a single pollen-tnbe. (After Thomé. .-Fig. 116y. Longitndinal vertical -ection throngli the uniovular ovary of l'oly:orum Concolculus. u. Stigma. b. l'ollen-eells. c. Poiten-tube. d. Wall of ovary, fin, Frect arthotropons ovule. se. Its embryo-siae. ch. Chafaza, -N.B. Two of the pollen-tubes mave penetrater the conducting tissme of the tyle, one of which has entered the micropyle of the ovule, the other not. (After Thome.)

scribed at page 271), its intine, carrying with it the fovilla, protrudes throngh one or more of the pores or slits of the cxtine (fig. 576) in the fom of a delicate tube, which penctrates through the cells of the stigma, by the viscid secietion of which it is nourished. In must plants but one pollen-tube is cmitted by each pollen-cell (figs. 1168, A and B, and 1169), c), but the number varies, and, according to some observers, is sometimes twenty or more. The pellem-tube continues to
elongate by growth at its apex, and passes down through the conducting tissue of the style (figs. $577, t_{p}$, and 1169 , c) when this exisis, or directly into the ovary when the style is absent. This growth of the pollen-tube is occasioned by the nourishing influence of the viscid secretion which it meets with in its passage through the stigma and conducting tissue of the style.

These tubes vary in length, but are frequently many inches, and are extremely thin. They are commonly unicellular, and lave therefore but one cavity ; but, according to Martin Duncam, in Tigridia, and all other monocotyledons with long styles which he examined, they are composed of several elongated cells, and hence lave as many carities as cells (see page 264). The time required for the development of these tubes also varies in different pollen-cells ; thus, sometimes they are developed almost immediately the pollen comes into contact with the stigma ; while in other cases many hours are required for the purpose. The pollen-tubes also occupy a varying time in traversing the canal of the style - that is, from a few hours to some weeks or even months. When the pollen-tubes lave penetrated the stigmatic tissue, the secretion of the latter ceases, and the stigma dries up. The upper part of the pollen-tubes also withers above, as growth takes place below.

The pollen-tribes having reached the ovary are distributed to the placenta or placentas, and then come ultimately in contact with the ovule or orules. One (or sometimes two) of these pollen-tubes enters into the micropyle of each of the orules (fiys. $1169, c, 1170, t$, and $1171, t$), and thus reaches the nucellus and embryo-sac. When it arrives at the latter it is generally somewhat enlarged (f fg. 1171, t), and adheres firmly to it at or near its apcx. The embryo-sac is frequently introverted to a slight extent at the point of contact with the pollen-tube (figs. 1170 and 1171), and it is stated by Hofmeister to perforate it in Camo: but if such a perforation occurs in this case, it is altogether in exception to what is generally observed. As soon as the contact of the pollen-tube with the embryo-sac is effected, a kind of osmotic action bet ween the contents of the two takes place, the result of which is the development of one (or rarely two, as in Orchis and Citrus) or more of the germinal vesicles into embryos.

The germinal vesicle (oosphere), in its development into an embryo, becomes surrounded by a membrane, and is then the oosperm. This generally divides at first in a transverse manner into two cells (fig. 1171, e); and then by further division forms the pro-embryo or suspenson (fiy. 1170, s). The apical cell assumes commonly a somewhat globuliu form (fig. 1170, r), and ultimately by cell-division forms the embryo, whether mono- or dicotyledonons. The suspensor is notpresent in all cases; while in others, where it is found, it varies in length. It is evidently not essential in all instances, as it always shrivels up during the development of the apical cell into the embryo. The latter, there-

REPHODUCIION OF THE ANGIOSPERMIA.-CROSSING. S\& 13°

fore, is the true rudimentary embryo. Other variations occur in the mode in which the germinal vesicle (oosphere) is developed into an embryo, but the above is a general sketch of the subject, and all that our space will allow us to give.

The changes which take place in the ovule during the development of the embryo, and the subsequent growth of the latter, have been already generally alluded to when treating of the seed.

Darwin, Sprengel, Hermann Miiller, Fritz Müller, and others, have shown that, in numerous plants, crossing is neces-

$$
\text { Fig. } 1170 .
$$

Fig. 1171.

Fir. 1170. Vertiea section of an ovile of a species of Enotherct. t. Enlarged ent of the pollen-tulse contaiuing fovilla, which has enterell the micro$11,{ }^{\prime} \mathrm{e}$, and is seen 1 ressing inwards the npex of the embryo-sae. s, r. Inipregnaterl germinal vesiele, which already begins to exhibit two parts: one, the upper, forming a suspensor, s; and another, below, r, a globular borly, which nitimately beeomes the embryo. e. Endosperm cells. Fig. 1171. Seetion of an ovule of in speeies of Orchis. t. Enlarged end of the pollen-tube containing fovilla, which las passed through the mieropyle, anl is closely applied to the embryo-sae, the upper side of which it has pmehed inwards. e. Germinal vesicle in the interior of the embryosac in an impregnaterl state, and dividing into two portions, the lower of which is the ridimentary embryo, and the upper forms a suspensor.
sary for a completely fertile union of the sexes; that is, that the ovules of one Hower must be fertilised by pollen from another of the same species. This may be effected in many ways; e.g. by the wind, when plants are spoken of as being anemophilous; or frequently by the uneonscious agency of insects, when they are said to be entomophituns, as in the Orehidacere, where the various modifications of strueture to ensure cross-fertilisation by this latter means are strikingly beautiful. The observations of Darwin. Miiller, and others have shown that self-fertilisution is probably exeeptional in plants; certainly oceasional erossing seems to lee necessary. The term protundrous is applied to those plants in which the pollen is ripe and extruded before the
stigma of the same flower is mature; while those plants in which the stigma is mature before the pollen are said to be protogynons ; either protandrous or protogynous plants being spoken of as dichogamous. It appears that cntomophilous plants, by being protandrous or protogynous, or by the peculiar mechanism of their flowers, are generally incapable of self-fertilisation, though some may become self-fertilised in the absence of inscet visitors, and these are not infrcquently protogynous, so as to facilitate cross-fertilisation if an opportunity should occur. Apparently the form, colour, markings, odour, and nectaries of flowers exist in special positions to determine not only the visits of insects, but also the direction of their entrance so as to ensure crossfertilisation, just as form, the presencc of hairs, or disagreeable odours, or other secretions, impede or wholly prevent the visits of injurions insects. The form and characters of the pollencells themselves seem to have a direct connexion with the method of fertilisation, those of anemophilous fowers being generally smooth and dust-like, whereas those of entomophilous Howers are often very irregular and sticky. Anemophilous plants too have not infrequently a nuch larger quantity of pollen than those which arc entomophilous.

Dimorphic or heterostyled species are those which possess two forms of both sorts of sexual organs, as species of Pitmula, Oxalis, and Pulmonaria, which have both long and short stamens, and long and short styles. The long stamens are associated with the short styles, and vice verst, in the flowers; and Darwin has proved, by experiment, that, for the complete fertilisation of either kind of pistil, it is necessary that pollen from the stamens of corresponding length, and therefore from a different flower, be employed. Lythrum Sulicaria is trimorphic-i.e. has styles and stamens of three different lengths-and similar laws liare been obscrved to prevail in its fertilisation. Legitimate fertilisation is the impregnation of the stylc of one flower by the pollen from a stamen of equal length with itself, but belonging to another Hower; while the fertilisation of a pistil by pollen from a stamen of difficrent length is termed illegitimute. Some plants have inconspicuous self-fertilising flowers, which are said to be cleistogamic. Such flowers occur in large numbers on the common Violets (Viola oderate and V. ceninu), in addition to the more showy ones which are entomophilous. Similar flowers are found also on Laminm umplexicunle, Orulis Acetusella, d'c.

Hybridisution, Hybridution, or the Production of H ybrids in Plants. - If the pollen of one species be applied to the stigma of annther species of the same genus, should impregnation take place, the sceds thins produced will give rise to oftspring interinediate in their characters between the two prarents. Such plants are called hydrids or mules. The true hybrids, which are thus produced between species of the same geinus, must not be confounded with simple cross-breeds, which result from the cross-
ing of two varieties of the same speeies : these may be termed sub-hybrids.

As a general rule, true hybrids ean only be produeed between nearly allied species, although a few exceptions occur, where hybrids have been formed between allied genera; these are called bigeners. The latter, however, are not so permanent as the former, for in almost all eases they are short-lived.

Hybrids always possess some of the eharacters of both parents, but they generally bear more resemblance to one than the other. Sometimes the influence of the male parent is most evident, and at other times that of the female, but no law can at present be laid down with regard to the kind of influenee exerted by the two parents respectively in determining the characters of the hybrid. In very rare cases it has been notieed that different shoots of the same hybrid plant have exhibited different eharaeters, some bearing flowers and leaves like their male parent, others like the female, and some having the characters of both. In sueh cases, therefore, the hybrid charaeters are more or less separated in the different shoots, which present respectivcly the charaeters of one or the other of their parents. An example of these facts may be seen in Cytisus Adani, produced by the true hybridation of Cytisus Laburnum and Cytisus porpurens.

Hybrids rarely produee fertile seeds for many gencrations, and hence cannot be generally perpetuated with any certainty by them; but if they are of a woody nature, they may be readily propagated by budding, grafting, and other analogous processes. (See page 107.) Hybrids are fertile with the pollen of one of their parents; the offspring in sueh a ease resembles closely the parent from which the pollen was obtained. By the suecessive impregnation of hybrids through threc, four, or more generations with the pollen of either of their parents, they revert to their original male or female type; thus, when the hybrid is successively impregnated by the pollen of its male parent, it reverts to the male type; and when with that of the female, to the female type. The influenee of the latter is, however, more gradual.

Hybrids somewhat rarely occur in wild plants. This arises chiefly from the following causes: thus, in the first place, the stigma is more likely to be impregnated with the pollen from stamens immediately surrounding it, or from those in other flowers on the same plant, than by that of other and more distimt plants; and, secondly, the stigma has a sort of electire affinity or umtural meference for the pollen of its own species. Indeed, Gaertner found that if the natural pollen and that of another species be applied to the same stigna at the same time, the latter remained inert, and the former alone fecundated the ovules, or was prepotent over the other; and, moreover, that when the natural was applied a short period subsequently
to the forcign pollen, the seeds thus produced were never liybrids. Hybrids appear to be produced more frequently in wild plants when the sexes are in separate flowers, and more espeeially when such flowers are on different plants.

Hybrids are frequently produced artificially by gardeners applying the pollen of one species to the stigma of another, and in this way important and favourable changes are often effected in the eharacters of our flowers, fruits, and vegetables. But varieties thus produced are not eommonly true hybrids, but simple eross-breeds.

The investigations of late years would appear to show that a similar law as regards hybridisation oecurs in the Cryptogamia as in the Phanerogania. Thus, Thuret has succeeded in fertilising the spores of Fucus vesiculosus with the antherozoids of Ficus serratus, an allied speeies; but he failed in his attempts to fertilise the spores of one genus of the Melanosporesus Algie by the antherozoids of another. Other evidence has als, been addueed as to the hybridisation of the Cryptogamia, and theire ean be little doubt that hybrid Ferns are sometimes produeed when a number of speeies are cultivated together, for it has been noticed that, under such cireumstanees, plants make their appearance which present characters of an intermediate nature between two known species.
3. Of the Frutt.-When fertilisation has been effected (see page 295), important changes take place in the pistil and other organs of the flower, the result of whieh is the formation of the fruit. The calyx and corolla generally fall oft, or if persistent, they form no portion of the fruit except when the ealyx is adherent, as in the Apple (fiy. 722), and Quince (fig. 473), when it necessarily constitutes a part of the periearp. The style and stigma also become dry, and either fall off, as in the majority of cases, or are persistent, as in the Poppy and Anemone (fiy. 700). But the principal alterations take plaee in the wall of the orary, whieh usually becomes more or less swollen, and soon undergues important chemieal ehanges, and forms the periearp, either by itself (a true fruit), or eombined with the adherent calys or uther parts of the flower, \&c. (a spurious fruit), (see page $29(i)$. Some pericarps, as already noticed (page 293), are fully develoned without the fertilisation of the ovules, as those of many cultivated varieties of Oranges, (irapes, Banamas, \&c. The fruits thus formed, although frequently more valuable than others for food, are, of course, useless for reproduction.

The fruit in its growth attracts the food necessury for that purpose from surrounding parts, henee, the fruiting of plants requires for its suceessful aecomphishment an accumulation of nutriont matter, and is, therefore, necessarily an exhanstive process. That the reproductive processes, and especially the ripening or maturation of the fruit, tend to exhanst the indiridual, is proved in various ways. Thus plants which fruit the
same year in which they are developed afterwards perish, from the exhaustion of nutiient matter thus occasioned ; and that such is the reasm is proved by the fact, that we can make amuals hiemial, or even peremial, by plucking oft the flowerbuds as they are successively developed. Some plants which only flower once require many years to accumulate sufficient nourishment to support the processes of reproduction. Such are the American Alve (Agure americana) and the Talipot Pahm (Corypha umbraculifera), both of which live many years before flowering, after which they die. A bad fruit year is also generally succeeded by a good one, and vice rersá, because in the former case an additional supply of nutrient matter is stored up for the fruiting season, and in the latter there is a diminished amount. Again, if a branch of an unproductive tree have a ring of bark removed so as to prevent the downward flow of the elaborated sap, its accumulation above will cause the plant to bear much fruit. Pruning depends for its success upon similar principles. In order to obtain good fruit it is also necessary not to allow too many fruits to come to perfection on the same plant. Other matters connected with this exhaustion by fruiting have becn already alluded to, in speaking of Annual, Biennial, and Peremnial Roots, at page 133.

The changes produced upon the atmosphere in the ripening of the fruit, depend upon the nature of the pericarp. Thus, when the pericarp preserves its green state, as also always when first formed, it has an action similar to that of the leaves; but when of other colours than green, and more especially when succulent, it evolves carbon dioxide at all times, instead of oxygen.

Chemical Constitution of Fruits. - The chemical constitution of fruits varies according to their nature and age. When the pericarp is of a dry na;ure, it commonly assumes a whitish or brownish colour, and its cells become thickened with hardened matturs, and their cellulose walls converted into lignin. Under such circumstances, no further changes take place in its chemrical constitution, and its vital activity ceases. But when the peri(arp becomes succulent whilst ripening, it assumes various tints; transpiration goes on from its outer cells, the contents of which thas become dense, and absorb the watery matters from those within them ; these in like manner react upon the contents of those within them, and so there is a constant passage of fluid matters fiom the surrounding parts by osmotic action into the pericarp; in this way, therefore, it continues to enlarge, until it las arrived at maturity, when transpiration nearly ceases from the deposition of waxy inatter in or upon the epidermal cells, and the stalk by which it is attached to the plant becomes dried up. When first formed such pericurps have a like composition with leares, and but little or no taste. After a time they acquire an acid flavour from the formation of vegetable acids, and
salts with an acid reaction. The nature of these acids and salts varies in different fruits: thus the Granc contains tartaric acid chiefly and acid tartrate of potassium ; the Apple, malic acid; and the Lemon, citric acid. As the pericarp ripens, saccharine matter is formed, and the quantity of free acids diminishes, partly from their conversion into other matters, and partly from their combination with alkalies. In order that these changes may be properly effected, it is ncccssary that the fruit be cxposed to the sun and air, for if grown in the dark it will continue acid; and it will be much less sweet even when developed in diffused daylight, than when freely exposed to the sun. As fruits ripen they evolve carbon dioxide, as already noticed, give off watery fluids, and a sensible elevation of temperature may be noted.

The origin of the sugar of fruits, and even its nature, is not satisfactorily determined. According to most observers, rive fruits contain grape sugar (glucose), but M. Buignet states that the sugar which is primarily formed in acid fruits is sucrose or cane sugar, and that during the process of ripening this sugar is gradually changed into fruit sugar (glucose and lavilnse), but very often there remains in the ripe fruit a mixture of these two sugars. The origin of the sugar is variously attributed to the transformation of the acids, cellulose, lignin, starch, dextrin, gum, and other matters of a like nature. According to M. Buignet's investigations, the cause of the change of the primarily formed cane sugar into fruit sugar is not the acids of the fruits, but appcars to depend upon the influence of a nitrogenous body playing the part of a glucosic ferment, analogous to that which M. Berthelot has extracted from yeast. M. Buignct adds, that ' the abundance in which starch is found distributed through the Vegetable Kingdom leads to the supposition that it is the true source of the saccharine matter in fruits. Its presence camnot, howerer, be detected in green fruits, either by the microscope or by iodine, excepting in green bananas, which contain it notable quantity of starch.' M. Buignet also notices that green fruits contain an astringent principle resembling tannin, which is capable of bcing converted into a sugar identical with the sugar from starch (maltose), under the influence of dilute acids and a proper temperature. The proportion of this tamin diminishes in fruits in the same ratio that the proportion of sugar increases.

The pericarp of some fruits has developed in it during the process of ripening, fixed and essential oils, as well as other substances of an aromatic nature. According to Fremy, the inncr walls of the cells of succulent fruits in an unripe state consist of a substance called pectose, which is insoluble in water, alcohol, or cther. This body has not been isolated, but is converted in ripe fruits by the agency of acids into pectine, which is soluble in water. Pectine is afterwards transformed into pectusic and then into pectic acid through the agency of a peculiar foment
called pectose. Frímy has also noticed, that at the period of ripening the thickness of the cell-walls diminishes rapidly; hence it would appear that these transformations of the pectic compounds play an important part in the changes which are taking place during the ripening of the fruit.

The changes which take place in the composition of fruits during ripening are well exhibited in the following table founded upon Bérard’s observations:-

Ripening of Fruits.-The time when a fruit is considered ripe varies in different cases. When the pericarp is of a dry nature, the fruit is looked upon as ripe just bcfore it dehisces ; but when the pericarp is of a pulpy nature and edible, we commonly regard it as mature when most agreeable for food. Hence the Apple is considered to be ripe in a state in which the Medlar would be regarded as unripe.

When succulent fruits are ripe, they undergo another change, a species of oxidation, which produces a decay, or bletting of their tissues, as it has been called by Lindley. This bletting, according to Bérard; is especially evident in the fruits of the Pomere and Ebenacere, and it would appear that the more austere the fruit is, the more it is capable of bletting regularly. Bletting appears to be peculiar to such fruits, and may be regarded as a state intermediate betwcen maturity and decay. A Targonelle Pcar, in passing from ripeness to bletting, according to Bérard, loses a great deal of watcr ($83 \cdot 88$, which it contains when ripe, being reduced to $62 \cdot 73$) ; much sugar ($11 \cdot 52$, being reduced to 8.77) ; and a little lignin (2.19 , being reduced to $1 \cdot 8 \pi$) ; but it acquircs, at the same time, rather more malic acid, gum, and albuminous matters.

The time required by different plants for ripening their fruits varics much, but almost all fruits come to maturity in a few months. Some, as those of Grasses gencrally, take but a few
days; while others, as certain of the Conifere, \&c., require more than twelve months.
4. Of the Seed. -The structure and general characters of the seed, as well as the origin and progressive development of its parts, have been already fully alluded to in a former section of this work (pages 333-348).

Our limited space prevents us from alluding to the multitude of ways and contrivances by which the natural dissemination of seeds is effected, and to the number of seeds produced by plants. Suffice it to say that, in all cases, a great many more seeds are matured than are required for the propagation of the species; and thus the extinction of the species in consequence of their decay, and their use for food by animals, \&c., is provided against.

Vitality of Seeds.-Sceds vary very much as to the time during which they will preserve their power of germinating. This vitality is frequently lost long before they lose their value for food. Some seeds of an oily or mucilaginous nature, or which - contain much tannic acid, speedily lose their vitality, and decay ; this is the case, for instance, with Nuts and Acorns, and hence, when seeds of this nature are required for propagation, they must be sown immediately or within a short time of their arriving at maturity, or special means must be adopted for their preservation. Other seeds, such as those of a farinaceous nature, as Wheat and Cereal grains generally, or those with hard and bony integuments, as many of the Leguminose, frequently retain their vitality for years.

From the experiments of De Candolle, those of a Committee of the British Association, and of others, it would appear generally, that the seeds of the Leguminosæ and Malvaccie preserve their vitality longest, while those of Composite, Crucifere, and Graminaceæ soon lose their germinating power. But some exceptions to the above statement occur in these orders.

Under particular circumstances it seems certain that seeds have preserved their vitality for a long period. Some of the cases brought forward as illustrations of this capability of seeds are, however, not supported by careful observations, as, for instance, that of the vitality of Whent taken from Egyptian mummies. There are no well-authenticated instances of Wheat taken from mummies, which have been untumpered with, germinating ; indeed, all experiments (Dietrich, Lardet, Haberlandt), tend to show that Wheat loses its power of germination in from three to seven years. But other well-authcnticatcd instances of seeds having preserved their vitality for a lengtlened period are on record. Thus, on the authority of Dr. Trimen, it was stated in the third edition of this Manual that some seeds of Nelumbirm in the herbarium (now in the British Museum) of Sir Hans Sloane, who died in 1.753 , germinated in 1866 ; these must, therefore, havc been considcrably over a century old. Mr. Kemp,
in the 'Annals and Magazinc of Natural History,' has likewisc narrated a still more remarkable case. This gentleman received some seeds which were found upwards of twenty-five feet below the surface of the earth, in the lowest layers of a sand-pit in process of excavation. Upon being sown, about one-tenth germinated and produced plants of Polygonum Convolvulus, Rumex Acetosella, and a variety of Atriplex patula. All these seeds are of a mealy or farinaceous nature. Mr. Kemp concluded from various circumstances, that they were deposited at a period when the valley of the Tweed was occupied by a lake; if this be the case, they must have retained their vitality during many centuries at least, as it is certain that in the time of the Romans no lake existed there. It las also long been noticed that when a new soil is turned up, plants previously unknown in the locality appear, which is a proof that the seeds of such plants must have lain dormant for frequently a very lengthened period.

Preservation and Transportation of Seeds.-As many persons frequently wish to send seeds to a distance, a few words on the best means of preserving them for that purpose will be acceptable to our readers. Thus when seeds are enclosed in hard or dry pericarps, they should be preserved and transported in them. This is the case with those of many Leguminous and Coniferous plants. When the pericarps are soft or liable to decay, the seeds should be removed from them. In all cases, seeds when required for preservation should be gathered when quite ripe, as at that period their proximate principles are in a more stable condition than when unripe, when they are very liable to change. Seeds should be also preserved quite dry. Secds of a farinaceous nature, if ripe and dry, will retain their vitality for a long period, and such may be readily transported to a distance. For the latter purpose they should be placed in perfectly dry papers in a dry coarse bag, which should be afterwards suspended from a nail or otherwise in the cabin of a ship, in which position they are maintained at a moderate temperature and exposed to free ventilation. Such secds require no further care. But seeds of an oily or mucilaginous nature, or that contain much astringent matter, require, as a further protection, to be excluded from the air. For this purpose they are best packed in stout boxes lined with tin, and filled with dry sand or charcoal powder. The sand or charcoal powder and the seeds should be placed alternatcly in laycrs, and the whole firmly pressed togcther. Such seeds, howcror, even when thus protected, frcquently lose their vitality. A coating of wax has in some cascs been found to preserve effectually the vitality of seeds. Probably seeds which are difficult of preservation might be transported in hermetically sealed bottles containing carbon dioxide. Wardian cascs are also an important means for transporting sceds (see page 806), and should be resorted to, when possible, in all doubtful cases.

Germination:-By germination we mean that power or act by which the latent vitality of the embryo is brought into activity, and it becomes an independent plant capable of supporting itself. The germination of Cryptogams has already been sufficiently alluded to when treating of the Root, at page 135, and in the sections devoted to the Reproductive Organs, and Reproduction of the Cryptogamia. Our further remarks will apply therefore solely to the Phanerogamia.

Length of Time required for Germination. -The time required for germination varies much according to the nature of the seeds and the conditions under which they are placed. Generally speaking, seeds germinate most rapidly directly after being gathered. If preserved till they arc quite dry, the process of germination in some cases is months in being effected, while in some seeds their capabjity of germination is entirely destroyed. The seeds of the garden Cress will frequently germinate in twenty-four hours, but the majority of seeds do not germinate for from six to twenty days, and some require months or even years. Germination is generally prolonged when the embryo is invested by hardened integuments or albumen, and it is usually most rapid in exalbuminous seeds, more especially if such seeds have thin soft integuments. Heat is the agent which most accelerates germination.

Conditions requisite for Germination.-A certain amount of heat and moisture, and a free communication with atmospheric air, are in all cases necessary to the process of germination. Electricity is also considered by some observers to promote it, but its influence in the process is by no means proved, and if exerted it is apparently of but little importance. Light has no influence on germination in most cases, according to Hoffinamn's experiments. (See also The Effect of the Electric Light on the Growth of Plants, page 858.)

Moisture is required to soften the parts of the secd and to take up all soluble matters; the cells of which sceds are composed are in this way enabled to expand, and the embryo to burst through the integuments, but excess of watcr is often injurious.

Heat is necessary to excite the dormant vitality of the emhryo, but the mount required varies very much in different seeds, and probably each species has its own proper range in this respect. As a general rule, from 50° to 80° Fahr. may be regarded as most favourable to germination in temperate climates, but some sceds will germinate at a temperature of 35° Fahr.; and those of many tropical plants require a temperatme of from 90° to 120° Fahr., or sometimes ligher, for germination.

Air, or at least oxygen gas, is required to combine with the supertluous carbon of the seed, which is thus evolved as carbon dinxide, with a sensible increase of temperature (page 856), as is well seen in the malting of Barley. The necessity of a proper
supply of oxygen is proved by the fact, that seeds will not germinate when buried too deeply in the soil, or when the soil is impervious to air. This explains how seeds may lie dormant at great depths in the soil, and only germinate when the soll is brought to the surface ; and hence we see the necessity of admitting air to seeds, as in the ordinary operations of agriculture.

Process of Germination. - When the above requisites are supplied in proper proportions to suit the requirements of different seeds, germination takes place; but should any be wanting or in too great amount, the process is more or less impeded, or altogether arrested. The most favourable seasons for germination are spring and summer ; and seeds sprout most readily in loose pulverised and properly drained soil, at a moderate depth, for, under such circumstances, air, moisture, and warmth have free access. Seeds thus placed absorb moisture, soften and swell, and certain chemical changes go on at the same time in the substance of the albumen, or, when this is absent, in the cells of the cotyledonary portion, by which a proper supply of nourishment is provided for the embryo. These chemical, changes chiefly consist in the conversion of starch and other analogous substances, which are insoluble and therefore not in a suitable state for absorption, into soluble matters such as dextrin and grape sugar. The immediate cause of this transformation of starch is due to a nitrogenous substance called diastase, which is developed, during germination, from an alteration of a portion of the nitrogenous contents of the seed. During these chemical actions heat is evolved, as in the multing of Barley (see p. 856), and carbon dioxide given off from the combination of the superfluous carbon in the starch and albuminoids with the oxygen of the air. The nutriment being thus made available for use, it is absorbed dissolved in water by the embryo, which is in this manner nourished, increases in size, and ultimately bursts through the integuments of the seed. Its lower extremity or radicle ($f i g .16, r$), or one or more branches from it ($f i g .765, r$), is commonly protruded first from its proximity to the micropyle, which is the weakest point in the integuments, and by taking a direction downwards becomes fixed in the soil, whilst soon after the opposite extremity elongates upwards (fiy. 16, t), and is terminated above by the plumule, which is the tirst terminal bud or growing apex of the stem. At the same time the cotyledonary portion is either left under ground or is carried upwards to the surface. The cmbryo during this development continues to be nourshed from the matters contained either in the albumen or cotyledonary portion, and ultimately by continuing to absorb nutriment it is enabled to develop its first leaves (primordial) (fig. 18, d, d,) and root, r. The young plant is now placed in a pusition to acquire the necessary nourishment for its further suppont and growth from the media by which it is surrounded, and is thereliy rendered independent of the other parts of the
seed; the cotyledonary portion accordingly perishes, and the act of germination is complete.

Direction of Plumule and Radicle.-The cause which leads to the development of the axis of the embryo in two opposite directions las not yet been satisfactorily demonstrated, although much has been written on the subject. By some it has been referred to the action of darkness and moisture on the root, and that of light and dryness on the stem. By others it has becu attributed to gravitation and the state of the tissues; and others, again, have regarded osmotic action as the cause. All these explanations are unsatisfactory, and need not be further alluded to. Darkness has been shown to lave no influence on the direction of the root, which is probably determined by the greater amount of moisture usually met with in the soil, and by gravitation or geotropism (see page 862). In Trapa natans the radicle is directed upwards towards the surfacc of the water in which the plant grows.

Differences between the Gernination of Dicotyledonous and Monocotyledonous Seeds.-Therc are certain differences between the gerinination of Monocotyledonous and Dicotyledonous embryos, which have already been alluded to briefly (see page 134), but which require some further notice.

1. Monocotyledonous Germination. - The seeds of Monocotyledons, in by far the majority of instances, contain albumen. This, as the embryo developes, is usually entirely absorbed ; but sometimes, as in the seed of Phytelephas, the contents of the constituent cells are removed, and the walls left as a kind of skeleton.

The single cotyledon of Monocotyledonous seeds, when they contain albumen, always remains cntirely (fig. 765, c), or partially within the integuments, during germination. In the latter case, the intra-seminal portion of the cotyledon corresponds to the limb of the cotyledonary leaf, and the portion which elongates beyond the integuments (extra-seminal) represents the petiolar portion. The latter part varies much in length, and is commonly terminated by a sheath, which encloses the young axis with the plumule. In the Palms this petiolar portion is often several inches in length. At other times there is no evident petiolar part, but the sheathing portion enveloping the axis remains sessile on the outside of the seed, and clongates in a tangcutial direction to it, as in the Oat (fig . 765), where the cotyledon, c, remains within the seed, and the plumule, g, rises upwards from its axil into the air.

In some few Monocotyledonous orders, such as Naiadacer, Alismacere, de., where the sceds are exalbuminous, the cotyledon is commonly freed from the integuments, and raised upwards with the plumule.

As already noticed (page 134), in the germination of Monocotyledonous embiyos, e.g. the Grasses, the radicle is not itself, except in rare cases, continued downwards so as to form the
root, but it gives off one or more branches of nearly equal size, which separately pierce its extremity, and become the rootlets ($f i g .251, r$). Each of these rootlets, at the point where it pierces the radicular extremity, is surrounded by a cellular sheath termed the root-sheath or coleorhiza (fig. 251, co). This mode of germination is commonly termed endorhizal; but it is not, as already stated, universal in Monocotyledons.
2. Dicotyledonous Germination.-The seeds of Dicotyledons are either albuminous or exalbuminous, and their germination in such respects, as a general rule, presents no peculiarity worth notice. The two cotyledons either remain within the integuments of the seed in the form of fleshy lobes, as in the Horsechestnut and Oak, in which case they are said to be hypogeal (from two Greek words signifying under the earth); or, as is more commonly the case, they burst through the coats, and rise out of the ground in the form of green leaves ($\mathrm{fig} .18, c, c$), in which case they are epigeal (from two Greek words signifying upon or above the earth). In the course of development the cotyledons commonly separate, and the plumnle comes out from between them ($f i g .16, n$). In those cases where they remain within the integuments, they sometimes become more or less united, so that the embryo resembles that of a Monocotyledon ; but a Dicotyledonous embryo may be always distinguished from a Monocotyledonous one by its plumule coming out from between the bases of the cotyledons, and not passing through a sheath.

The radicle of a Dicotyledonous embryo (see page 125) is itself prolonged downwards by cell-multiplication just within its apex (fig. 248, a), to form the root. An embryo which germinates in this way is termed exorhizel (page 134).

As a general rule, seeds do not germinate until they are separated from their parents; but in some cascs, and more especially when invested by pulp, as in the Gourds, Melon, Cucumber, Papaw, \&c., they do so before they are detached. In the above plants such a mode of germination is altogether exceptional; but in the plants of the order Rhizophoracere, as the Mangrove ($f i g .255$), the seeds commonly germinate in the pericarp before being separated from the tree, in which case the radicle is protruded through the integuments of the seed and pericarp, and becomes suspended in the air, where it elongates.

CHAPTER 4.

SPECIAR PHENOMENA IN THE LIFE OF THE PLANT.

1. Development of Heat by Plants.-As the various parts of living plants are the seat of active chemical and other changes during their development, and in the performance of their
several functions, we might conclude that their temperatire would rarely or ever, under natural circunistances, correspond with that of the atmosphere around them.

We have already noticed, that during the germination of seeds a considerable development of heat takes place (page 851). This is more especially evident when a number of seeds germinate together, as in the process of malting. The development of heat in flowering has also been alluded to (page 827). The rise of temperature which thus occurs in the proccsses of germination and flowering is due, without

Fig. 1172. Apparatus for estimating the rise of temperature during the germiuation of seeds and the opeuing of flower buds. (After Saelis.) doubt, essentially to the production of carbon dioxide. To estimate the degree of heat developed during germination and in flowering, Sachs devised the apparatus (fig. 1172), where the flask f contains a strong solution of potash or soda, l, which absorbs the carbon dioxide set free. In the neck of the flask is placed a fumel, r, with a small filter perforated by a needle. Into this are placed soaked seeds or freshly cut flower-buds in the act of opening, and a bellglass, g, used to cover the whole. Through the opening of the bell-glass, which is plugged with cotton wool, w, is passed a thermometer, t, whose bulb is so placed as to be surrounded on all sides by the seeds or flower-buds.

We have still to inquire, whether the ordinary vital actions which are going on in plants are calculated to raise or diminish their temperature. The experiments of Hunter, Schoepf, Bicrkander, Maurice, Pict-t, and more especially of Schübeler, lead to the conclusion that the trees of our climate with thick trunks exhibit a rariable internal temperature, being higher in the winter and at sumrise than the surrounding atmosphere-that is, at periods of great cold, or of moderate temperature; and lower in the summer or at mid-day-that is, at periods of great heat. In no observed cases were such trecs noticed to possess exactly the temperature of the atmosphere around them. The experiments of Réaumur on trees with slender tronks exposed directly to the sun's rays showed a considerable increase of temperature in them orer the external air. These experiments of Réamur are, howerer, by no means satisfactory.

The temperature of trees under the abore conditions depends upon various causes, such as the sun's rays, the anount of eraporation, chemical changes which take place during assimilation, dic., the conducting powers of the wood, and particularly upon the temperature of the soil in which the plants are grown. In the active poriods of the growth of plants, when evaporation is constantly going on, and the tixation of carbon taking place,
both of whieh proeesses are aecompanied by a diminution of heat, it is evident that such changes must have some effect in modifying the temperature ; and henee if, at such periods, their temperature be above that of the surrounding air, that it is due to external influences, such as the sun's rays, and the temperature of the soil, de. This probably explains, to some extent at least, why the temperature of thick trees exposed to great heat is lower than that of the surrounding air, for at such a period regetation is in a very active condition, evaporation and assimilation being then in full play. Again, when the temperature of the air is low, as in winter or during the night, little or no evaporation or assimilation takes place, and hence we find that the temperature is then higher than that of the external air.

The conclusions in the last paragraph do not, however, altogether agree with the published result of experiments made by Dutrochet ; for he found, by operating with Becquerel's thermoelectric needle, that when plants were placed in a moist atmosphere so as to restrain evaporation, a slight increase of temperature took place, thus seeming to prove that the chemical changes taking place in plants produced a rise rather than a diminution of temperature. Probably this slight increase of heat under sueh circumstances is due to the oxidation or combustion of a portion of the carbon of the plant. But Dutrochet found that when evaporation was allowed, the proper vital or specifie heat of plants was slightly below that of the atmosphere. He also noticed that the heat of plants varied during the course of twenty-four hours, - the hour of maximum temperature varying from ten in the morning to three in the afternoon, the minimum occurring at midnight. The variation in such cases was, however, extremely small, being only from about one-tenth to a little over one-half a degree of Fahrenheit. This specific heat of plants could only be observed in green and soft structures, those which were hard or woody (i.e. those which were composed mainly of dead tissues) not possessing any specific heat, beeause in such parts little or no metabolie changes were going on.

The above is but a brief summary of the conelusions which have been at present arrived at with regard to the development of heat by plants, and these are by no means of a conclusive nature. Much further investigation is required upon this matter.

In connexion with the subject of heat developed by plants may be mentioned the researches of Boussingault, Alphonse de Candolle, de., as to the temperatures required by diflerent plants to stimulate then into vegetative or reproduetive activity. That a certain sum of heat is required for the proper development of a plant has long been known; also that the life-history of some plants (as Wheat) will be completed in a shorter time in hut than in more temperate elimates.
2. Luminosity of Plants. - Very little is positively known respecting the development of light by plants. But it secms tolerably well ascertained, on the authority of Humboldt, Nces von Esenbeck, Unger, Drummond, and others, that the thallomes of some living Fungi are luminous in the dark. This luminosity lias been noticed in several spccies of Agaricus and the so-called Rhizomorpha; but Brefeld says that only the young hyphæ are luminous in the latter. According to Prescott, the nycelium of the common Truffle is also luminous in the dark.

The statement that certain Mosses, as Schistostega osmundacea and Mnium punctatum are phosphorescent, appears to have been founded on imperfect observation.

With regard to the development of light by the higher classes of plants, we have at present no very satisfactory observations to depend upon. It has been repeatedly stated, that many orange and red-coloured flowers, such as those of the Nasturtium, Sunflower, Marigolds, Orange Lilies, Red Poppies, \&c., give out, on the evening of a hot day in summer, peculiar flashes of light. This peculiar luminosity of orange and red flowers is now commonly regarded as an optical illusion, and the fact of such luminosity having been only noticed in Howers with such bright and gaudy tints, appears strongly to favour such a conclusion.

The rhizomes of certain Indian grasses have been reported to be luminous in the dark during the rainy season; and Mornay and Martius have observed, that the milky juices of some plants were luminous when exuding from wounds made in them. Martius also states, that the milky juice of Euphorbia phosphorea is luminous after removal from the plant, when it is heated.
3. Electricity of Plants. - Disturbances of electrical equilibrium are undoubtedly connected with the various chemical and mechanical changes which take place in plants. By the medium of a galvanometcr, Ranke, Velten, Burdon Sanderson, and others, have demonstrated that there exists in plants an electric current from the transverse to the longitudinal section of a vegetable fibre, similar, but in the contrary direction to that shown by Du Bois Reymond to cxist in the muscles, \&c., of animals. It is also found that the internal tissue of land plants is always electro-negative to the cuticulariscd surfacc.

The Effect of the Electric Light on the Growth of Plants and Production of Chlorophyll.-Some cxperiments made by the late Sir Wm. Siemens seem to prove that the electric light aids the growth of plants, produces chlorophyll, increases the brilliancy of flowers, and promotes the ripening of fruits. By sowing secds of rapidly growing plants and cxposing them to the same conditions with the exception of light, he found that those grown in the dark were etiolated and soon withered ; those exposed to daylight with a fair share of sunlight were vigorous, and of a
good green colour ; but those exposed to the electric light for six hours per day only, being in darkness the other eighteen hours, were vigorous though less green ; while those exposed to daylight and electric light successively, were the most vigorous, and the green of their leaves of a darker hue. This shows that plants may for a time grow continuously without rest, i.e. without sleep; but for what length of time this endurance would continue further experiments are required to prove. The electric light seems therefore to affect plants in a similar manner to the continuous summer sun in northern latitudes, where Dr. Schübeler found that the arctic sun caused plants to produce more brilliant flowers and richer and larger fruit than if the same plants had been grown with an alternation of light and darkness.
4. Movenents of Plants. - Three kinds of movements have been described in plants :-1. Motions of entire plants, such as those which occur in the Oscillatorieæ, Diatomeæ, and some other forms of the lower Algæ ; and of parts, e.g. the antherozoids, connected with the reproductive processes in some of the lower kinds of plants. The movements thus possessed by some of the lower Algæ is a marked deviation from what ordinarily occurs in plants. 2. Movements produced in parts of plants which are dead, or which. at least, have lost their active vitality. Such movements may be noticed in almost all the great divisions of plants, and are more or less connected with some reproductive function. We include here the bursting of anthers in the Phanerogams, and that of spore-cases in the Cryptogams the dehiscence of fruits, the separation of the component carpels from one another in the Euphorbiaceæ and Geraniacere, and many other phenomena of a like nature. 3. Movements which occur in the living parts of plants when in an active state of growth, $\& c$.

The first tuo classes of movements have been already alluded to in various parts of this work. The movements of the first class appear to depend upon a rotation of the protoplasmic cellcontents, the cause of which is at present unexplained ; or to the presence of cilia upon their surfaces. Movements of the second kind are entircly mechanical, and produced by the varying conditions of the different tissues as to elasticity and power of imbibing moisture.

The third kind of movements must be more particularly noticed. They only occur during active vegetation. The directions taken by organs properly come under this head. But this matter, so far as the plumulc and radicle are concerned, has been already noticed (page 854). With regard to the stem the extensive researches of Darwin on Twining Plants and Tendrils are full of interest. The ends of such structures have the power of spontaneously revolving ; and this they constantly do, usually from right to left, once in about two hours; to this
action Sachs has applied the term of revolving nutation, which Darwin has simplified into that of circumuntation. So soon as the organ meets with a support its motion is arrested, and it becomes spirally twined round by the arrest of the movement of successive portions. Tendrils contract spirally soon after they have laid hold of a support, and so draw up the stem to which they are attached. The remaining movements belonging to this class have been divided by Schleiden in the following mamer:--

1. Movements which evidently depend on external influences. These are divided into two :-
a. Periodical. b. Not periodical.
2. Movements independent, at least to some extent, of external influences, which are also divided into two :-
a. Periodical.
b. Not periodical.

Fig. 1173. Nicotiana glauca. A. Shoots with leaves expanded during the day. B. The same asleep at night, pointing vertically unwards. (After Darwin.)
(1.) Movements depending on External Tafluexces.-a. Periodical.-Under this head we include such morements as those of certain leaves and the petals of flowers, which occur at particular hours, the organs remaining in the new position thus taken up until the retum of a particular period, when they
resume as nearly as possible their original position. In leaves, these periodical movements consist in the closing up of such organs towards the evening and their expansion in the morning. In the petals of flowers great differences occur in opening or closing at particular hours of the day ; and, by observing these clanges in a variety of flowers, Linneus and others have drawn up what has been termed a floral clock. This periodical closing up of leaves and flowers has been called the sleep of plants. The compound leares of certain Leguminosæ and Oxalidacere are marked illustrations of these periodical movements, which are probably all indirectly dependent upon the varying con-

Fig. 117. Desmodium gyrans. A. Stem with leaves during the day, B. A similar stem with leaves asleep at night, pointing downwards. (After Darwin.)
ditions of light to which the parts of the phant in which they occur are exposed. All these movements Darwin considers to be due to modified circumnutation. This author says: 'In Lupinus the leaflets move either upwards or downwards; and in some species (for instance, L. luteus), those on one side of the star-shaped leaf move up, and those on the opposite side move down ; the intermediate ones rotating on their axes ; and by these varicd movements the whole leaf forms at night a vertical star, instad of a horizontal one as during day. Some laves and leattets, besides moving either upwards or downwards, become more or less folded at night, as in Bauluinia and in
some speeies of Oxalis. The positions, indeed, which leaves oceupy when asleep are almost infinitely diversified : they may either point vertieally upwards (fig. 1173, в) or downwards (fiy. 1174, в) ; or, in the ease of leaflets, towards the apex or towards the base of the leaf, or in any intermediate position.
'The nyetitropie movements of leaves, leaflets and petioles are effected in two different ways-firstly, by alternately inereased growth on their opposite sides, preceded by an inereased turgeseenee of their eells (see page 782 and fig. 1140); and secondly, by means of a pulvinus or aggregate of small eells, generally destitute of ehlorophyll, which beeome alternately more turgeseent on nearly opposite sides, and this turgescence is not followed by growth except during the early age of the plant.'
b. Not periodical. - Such movements are exhibited in a number of plants both in the leaves and in their reproduetive organs. In the leaves they are well seen in eertain species of Oxclis and Mimosa (fig. 373), in Dionxa muscipula (fig. 375), \&e. In the reproduetive organs they may be notieed in the eurving inwards or outwards of the stamens of certain plants, sueh as those of Berberis vulgaris and other species, Parietaria judiaca, Hclianthemum vulgare and other Cistaeex; also in the stigmas of the Lobeliaeer, and in the style of Goldfussia anisophylla, \&e. All the above movements are produced by external ageney, sueh as the aetion of inseets, the agitation caused by the wind, \&c. Other movements whieh fairly eome under this heading, and whieh, like the nyetitropie movements, are by Darwin regarded as being due to modified eireumnutation, are positive and negative heliotropism, positive and negative geotropism, \&e.

Positive heliotropism is the growing towards the souree of light. It has been long known that plants grown in eomparative darkness increase in length more rapidly than those exposed to a stronger light--i.e. that light appears to have a retarding influenee on growth-therefore, where a plant or part of a plant exhibits positive heliotropism, it is found that the part away from the light has attained a greater length than that towards it.

Some few vegetable organs, as the stem of Ivy, and many roots, exhibit negative heliotropism, where, as they grow away from the light, the parts next the source of illumination grew most.

Positive geotropism or gravitation is the term applied to the force which influenees the direetion of growth of most roots, espeeially of primary roots, whieh usually point direetly downwards to the eentre of the cartl.

Negative geotropism, on the other hand, signifies the direction taken by most stems, trees, \&e., being exactly opposite to that sought by the roots-i.e. upwards, or away from the centre of the earth.

As the terms positive and negative heliotropism and of posi-
tive and negative geotropism are frequently used carelessly, the qualifying expressions positive and negative being frequently omitted, Darwin adopts the term heliotropism in the sense of bending toverds the light ; apheliotropism for the contrary direction, i.e. away from the source of illumination; and, in the same manner, geotropism to imply towards the earth, and apogeotropism for bending in opposition to gravity, or from the centre of the earth.

In addition to the foregoing terms, diaheliotropism is sometimes used to express a position more or less transverse to the light which induced it; and diageutropism to a similar position with regard to the radius of the earth.

Iritability. - It has been already stated that some movements of plants are dependent upon the agency of insects. But though it has long been known that insects thus induce movements in certain plants, such as Drosere, Dionaca, Nepenthes, \&c., it is only by the observations of Darwin, Müller, Hooker, Vines, Riess, Wills, and many others, that we have learnt that the insects, which by these movements are caught, serve for nutrition, being dissolved and absorbed. It has been also demonstrated that this solution of nitrogenous matters is due to the presence of a kind of ferment which closely resembles that of the peptic glands of animals. It has like-

Fig. 1175.

Fig. 1175. Lenf of Drosera, showing a Fly cangit by the incurvel glands. (After J. W. Groves.) wise been proved that this ferment is only efficient when associated with an acid; and hence this solution is a truc digestive process like that of animals. During the solution and absorption of these nitrogenous matters the protoplasm retracts from the walls of the cells in the form of a ball. In fig. 1175 is shown a leaf of Drosera (Sundew) where some of the glands have bent over and caught an insect. Such plants are now commonly termed camionores.

Another remarkable instance of a carnivorous plant is the Utricularia, upon the leares of which little pouches or air'sacs (fig. 1176), are developed. These sacs have a somewhat elabo-
rate mechanism, with a valve which closes directly an animal has entered, thus keeping it a prisoner (fig. 1177). It has been known for a long time to be capable of entrapping small invertebrates, but recently it has been found to catch young fish in the same manner.

To plants which are thus stimulated to movement by chemical or mechanical means, the term irritable is applied; thus

Fig. 1176.

Fiy. 1176. A sac of Utricularia, showiug the external opening. -Fig. 1177. A vertical section of the same, showing the valve past which an entomostracous crustacean has entered, but cannot escape.

Fig. $117 \overline{7}$,

it is by reason of their irritability that the leaves and stems of the Sensitive plants (fig. 373) droop on contact with any foreign body.
(2) Movements independent, at least to some extent, of external Influences.-a. Periodical.-These movements are seen in some of the leaflets of certain tropical species of Desmodium, and more especially in those of Desmodium ! !yrans (fig. 1178). The leaf in this plant is compound, and bears three leaflets; the terminal one, a, being much larger than the two lateral ones, b, b. There are also two other rudimentary leaflets, marked c, noar the large terminal one. This large terminal leatlet, a, when exposed to the influence of a bright light, becomes more or less horizontal, but it falls downwards on the approach of evening (fig. 1178, a). This movement is clearly analogous to the sleep of plants, and, therefore, comes under the head of movements depending on external intluences, as proviously described (page 861). But the lateral leatlets, b, b, exhibit a constant movemont during the heat of the day, advancing by their margins towards the large terminal leatlet, and then retreating towards the hase of the common petiole. This movement takes place first on one side and then on the other, so that the point of each leatlet describes a circle. The
movements resemble those of the arms of the old semaphorc telegraphs, and hence this plant has been termed the Telegraph plant. They go on to a less extent even in the dark, and are most evident when the piants are in a vigorous state of growth, and when exposed to a high temperature. No satisfactory explanation has yet been giren of the direct cause of this movement. Similar movements have been observed in the radicle of many plants.
b. Not periodical. -These movements occur in the reproductive organs of a large number of the Phanerogamia. The

Fig. 1178.

Fig.1178. A portion of abranch, with Ω leaf of Desmotium gurims. The leaf, which is compound, consists of a large terminal leafot, ", ant two smalicr lateral ones, b, b. There are also two other rudimentary leafiets, marked c, near the terminal leaflet.
stamens sometimes curve inwards separately towards the stigma, ${ }^{2 s}$ in Ruta graveolens ($f y$ y. (111) and Parmassic palustris; or in pairs, as in Suxifraga trillactylites. They afterwards commonly return as nearly as possible to their former position. In PussiHoru, Nigella sative, certain Onagraceie and Cactacce, de., the styles move to the stamens; while in other Onagraces and certain Malvacere, \&c., both styles and stamens move towards cach other. In each of the above the arrangement is one adapted to prevent sclf-fertilisation, as it is protandrous and cntomophilous (see page 843).
\%. Ydours of Plavts.-These are very various in kind, many being highly agrecable, others excessively offensive, while others again, though pleasant in small quantity, become disagrecablo in larger anomit. The source of the particular odour is often a volatile oil or other product contained in the glands or receptacles of sccretion of the plant; but in some cases no
such origin is found, and the source of the odour is unknown, whilst its nature defies analysis. It is generally considered that smell is due to the giving off of minute particles into the air; Morren, however, from observations on the flowers of Orchids, was led to the inference that in some cases it depended on a physiological cause. He observed that the aromatic odour of Maxilluria, which continued to be exhaled so long as the flowers were unfertilised, was lost a little while after pollen was applied to the stigma.

Though chiefly developed under the influence of solar light, there are not a few plant-odours which are given off in the evening or at night. Several Orchids, Cestrum nocturnum, Hesperis tristis, Lychnis vespertina, and Cereus grandiforus are examples. In the last-named plant, the odour is given out in intermittent puffs.

There seems to be a connexion between the colour and odom of flowers; thus it has been observed that white flowers are very frequently fragrant, whilst brown and orange ones hare often a foetid smell-the so-called Carrion-flowers (Stapelix), certain Aroids, some Balanophoracere, and the Raffesiz being examples. The flowers of Monocotyledons are more often odorous than those of Dicotyledons.

GENERAL AND GLOSSARIAL

INDEX
TO
MORPHOLOGICAL, STRUCTURAL AND PHYSIOLOGICAL BOTANY.
** The teehnieal terms mentioned belov are explained at the pages referred to,
aud thos the Index may be also usell as a Glossary.

A BAJILE embryo, 346
Abnormal ilcvel:pmeut, 363
Abortion, 360
Abortive, 241
Abrupt root, 139
Abruptly pinnate, 176
Absorption, 781, 799,812

- by the root. 790,318

Acaulescent, 74
Aeeessory buds, 110, 112
Aceresceut, 230
Aeeumbent. 346
Aeerose, 171
Aehæninm, 313
Achene, 313
Aehromatin, 27
Achlamydeous, 18, 360
Aehlya, 777
A eieular, 174
Aeieular raphides, 35
Aciueciform, 174
Aeotylerlonous, 364
Aerogens, 36 !

- root of, 135

Acrogenone, 75

- stem, 101

Aeropetal, 201, 210
Acropetally, 109, 202
Acuminate, 169
Acute-pointerl, 169, 231
Arielphons, 255
Adlierent culy $x, 227$

- ovary, 280
- stipules, 183

Arlhesion, 356
Arliesive attraction, 783
Arlnate anther, 218

- filament, 240
- stipules, 183

Arluation, 356

Adrentitions buds, 110,111

- ront, 125, 128, 135

Ecilliam fruits, 380
Aerial bulbs, 123
Aerial leaves, strueturo of, 142

- modifientions of the stem, 117
- roots, 128, 130
- stems, 116

Estivation, 157, 218
Ethalium, 2
Agamogenesis, 829
Agrmogenie, 387
Age of dicotyletionous trees, 85

- - monoeotyledonous trees, 100
Agglegate fruits, 314. 322
Ail eavities, 72, 789
- eells, 789
- plants, 131

Alx, 233
Albumen, 21, 310, 341
Albuminous, 341
A.l)urnum, 85,794

A'eurone grains, 36
Alga, 392
Alternate leaves, 148. 149, 150
Alteruation of generations, 367, 368, 369, 835
Amentaceons, 203
Amentiferons, 203
Amentum, 202
Amphisarea, 315
Amplitropous, 332, 336, 3.19

Amplexienul, 147, 182
Antitropous, 332, 333

Andreere. 374
Androeeium, 18, 19, 241, 253
Aurliophore, 256
Ambrospore. 398
Amblions, 253
Anemophilous, 843
Angiospermia, 12
Angiospernouts, 325, 836
Angular divergenee, 151
Anisomerots, 354
Anisostemenons, 253
Annmal herds, 115

- rings of wood, 82
- leaves, 141
- roots, 133

Annular cells, 45

- vessels. 53. 101

Annulate. 366
Amulatel root, 138
Autulut, 365, 375,382
Anomalons leaves, 185

- strueture. 99

Anterior, 222
Antheln, 205
Antheritis, 9, 366, 369, 370, 372, $375,378,386,395,306$, 397. 393.831

Anther, 18, 241, 244
Antherozoil, 9, 372, 376, 391, 398
Authesis, 222
Anthocarpous, 321
Anthoceros, 777
Anthodium, 207
Anthotaxis, 191, 200
Antiporlal cells, 328,840
Antitropous, 34
Apetaloil, 230
Apetulous, 17, 360
3 к 2

Apex of frnit, 298

- Inmina, 169
- leaves, 140
- - ront, 125

Apheliotropism, 863
Apical cell, 793, 795

- style, 287
- Aehiscenee, 252

Apicilar, 287, 295
Apicnlar. 308
Apiculate fruit, 287
Aploperistomons. 37 t
A pocarpous, 19. 272
-fruits. 297, 312

- pistil, 272, 273

A pogany, 367, 836
Apongeotropism, 863
Apophysis, 374
A pospory. 836
Apostrople. 809
Anothecin, 388
Appendages of the epitermis, 63

- - calyx, 228
- - corolla, 237
— ——petals, 239
Appenclicnlate, 212.249251
Archegonit, $9,366,367,372$, 375. 831,

Aril. 339
Arillode, 338, 339
Arillns, 337
Arrangement in the flowerbud, 218
-... of bracts, 193
—— leaves, 146, 148, 155
Arrow-shaped leaves, 173
Articulated, 103,141
Artieulation, 180
Ascending axis, 13. 73

- inflorcscence, 201
- metamornhosis, 352
- ovule, 326
- rndicle, 348
- s2p, 820
- sced, 334
- stciu, 114

Ascent of the sap, 820
Asei. 385, 38y
Ascidia, 188
Ascomyceter, 383
Ascospores, 385, 389
A sexurl, 363, 367

- reproductive cells. 361

Assimilation, 29, 801, 8.23
Aster, 778
Λ tropons, 330
Atrachment of filanent, 218
Augmentation, 356
Auriculate, 173
A wh-chinpel, 171
Axin] embryo, 346
Axinl. 340
Axil. 110
Axile embryo. 3.16

- Hlacentil, 282, 285

Axillary, 111, 200

- inflotescence, 200, 201

Axillary stipules, 18 :
Axis, 198

BACCA, 320
Brecate, 320
Brcilli, 387
Bacterin. 386, 387
Balausta, 321
Banyan-tree, 131
Barbed latirs, 64
Bark, 79, 89

- funetious of, 795
- growth of, 92

Brac of fruit, 298

- leaf, 1 +1)
-ront, 125
Basidia, 383
Basidiomycetes, 381
Basifixed, 248
Basifugal, 811
Basilar, 308, 812
- style, 287

Basipetal, 812
Bast. 50
-. fibres, 50

- tissme, 50
- tubes, 51
- vessels, 51

Beaderl root, 138
Bell-shoper, :227, 234
Berried, 320
Berry, 320
Bicrenate. 164
Biennial herbs, 115

- roots, 183

Bifid. 165. 167, 288, 290
Bifoliate, 176
Biforines, 35
Bifurcate, 250
Biqcners, 845
Bijngate, 175
Bilabiate, 235
Bilobnte, 290
Bilocnlar. 246, 276
Binary, 354
Binate, 176
Biuvulate, 325
Bipmous cyme, 212
13ipartite, 167, 289
Biumunte, 176
Bipinmatifir, 160. 231
13ipimuntipartite, 166, 231
Bipinnatisecter, 166
Bisecterl, 167
Biseruate, 16 t
13isexthu, 2.10
13ispermons, 331
13iLornate, 178
Blate, $15,1+1,157$
1Hettina, 819
Blunt. 169
Ibont-shapert. 231
Bortleral. 336

- !its, 13

In=tryenil. 110
Bnstryx, 210
l3otaly, depnartments of, I

Botany, strncturil, 1
Botryoil, 20:
Botryo=e, 206
Bracteated, 193
Bracteoles. 199
Bractlet-, 192
Bricts, 16, 1:6, 191, 192. $193,3 \cdot 19$
Branches, 105

- monlifications of, 117. 119
Branching, 108
- corymb, 215
- dichotomouะ, 109
-- monopotial, 109
- spadix. 203

Bri-tles, 66
British gum, 3.3
Brotherhood, 255
Budding. 102,776
Buds, 103

- and ramification, 103

Bulb, 122
Bulbils, 123
Bulblet $s, 123$
Buudle-slienth, $77,78,102$
Bush, 115

Caducoue, 141. 200, 299, 240
Caladium, 799
Calamites, 10
Calcarate, 237
Calceolate, 296
Calyculus 299
Callus, 92
Culyptra. 373. 37-
Cnlyptrate. 230
Calyx, 17. 222. 225, 228
Cmbiform, 90
Cambium, 79, 87

- cells. 88
- łayer, 79. 87

Саmำแиาดtc, 227. 234
Camplotropolts, 331, 333
Cimal cell, 838
Cap, 381
Capillary, 242, in3
Capitate, 61. 292
Cabitulum, $20 \overline{7}$
Cap:ular, 317
(?unsule, 316, 365, 367, 373, 377
Cirecrule, 315
(:minn, 233
Carnivorols, 863
('ixple), 19, 267, 3.11
('mpelfily, ou
(arpogeninin, 931

(armumes, 33s.
(Tmyophylacemas. 238
(:nryplsf=311
Catiphyllarv. 104

- 1envic. $119,1 \approx 5.149$

Catkin. 20!
Camlato. ons
Cambex, 115

MORPHOLOGICAL, STRUCTURAL, AND PHYSIOLOGICAL BOTANY. 869

Caudicie, 260
Canlescent it
Caminary stipules. 183
Cululine leave $\approx, 1 \nmid 6$
Cilulis, 115
Citulowe, 14, 73. 793
Cell, 6
Cell-contents, 22
Cell-division, 772. $7 \mathrm{~T} 4,776$
Cell-forunation, 71
Cell-multiplication, 172
Cell-uucleus. -i
C.ell-zap, 22, 27

Cells, 21, 245, 276

- with bordereal pirs, 50

Cellular euvclope, 90,91

- plants, 8
- system, 57, 7t

Cell-wall, 22, 42
—thickening of, 42
Central placenta, 282
——free, 282
Ccutrifugal, 210, 348

- formatiou or leaves, 811
Centripetal, 201. 210, 348
- formation of leares. Sl1

Centripeta'ly, 2け2, 208
Ceratium, 317
Chalaza, 330, 337
Chatlazal arillus, 339
Characere, 391
Chura:, 390, 831
Chemical constitution of irnits, St7
Chloroplyyll, 28

- borlics, 29
- corpnscles. 29
- grains, 29
- granules, 28. 29

Chloroplastids, Rug
Chorisi.s, 356, 357
Cluromatiu, 27
Cliromogenous, 32-
Chromoplastils. 809
Cicatrix, 1.11, 180
Cicinal dichotoms, 110
Cicinnus, 216
Ciliaterl mutherozoils, 784
Ciliated zoospores. iot
Cinenchyma, 786
Circinate, 155

- cotylerlons, 355

Circular astivation, 219, 221
(irculation, 754,809
Circumnatation, Sid
Circumscissile, 342,307
(irrluns, 108
Clarlorle, 199
Clisting leaves, 147, 182
C'iathrate cells, 515
Clavate, 64, 17: 212
Claviceprs, 343
Claw, 231
Clawed, 231
Clcft, 365, 225, 231, 233, 291
(Heistogimic, 8 4t
Climbing, 11 .

Closed vascular bundles, 78, 95, 102
Cloves, 129, 123
CInb mosses, $368,83 \pm$
Clnb-slapect, 6t, 2.42
Coalescence, $3 \overline{5} 6$
Cont of polleu-cell, 260

- - sced, 335

Coated bulb, 122
-roots, 132
Cocci, 304, 305, 317
Cochlenr, 220, 221
Conanthium, 198
Cohcrent, 255
Cohesion, 356

- of stameus, 255

Coleorhiza, 129, 135, 855
Collateral, 327

- chorisis, 353

Collecting lairs, 68, 259
Collective fruits, 322
Collenchyma, 48
Colour of anther, 251

- - filnment, 243
- - 1lowers, 828
- leaves, 807
- - testa, 335

Columella, 301, 373, 377
Coma, 336
Commissme, 319
Common bundles, 96

- Calyx, 207
- petiole, 162,180

Comose, 336
Comparative anatomy of plants, 1
Complete flower, 241, 35.5
Composition of furut, 298

- - leaves, 162
- - pericarp, 298
- - starcli, 33

Compound corymb, 205

- flower, 207
- fruit, 297
- gynocium, 272
- hairs, 63
- leaves, $142,162,17 t$
- ovary, 275, 279, 250
- petiole, 180
- pistil, 267, 272
- roots, 135
- spadir, 203
- spiral vessels, 52
- style, 288
- umbel, 208

Conceptreles, 396
Conceptaculum, 313
Concrescence, 356
Conditions of germination, 852
Combueting tis:un, 271
Condmplicate, 155, 315
Conc, $203,204,322$
Uontluent frnita, 322
Conglomerate raphilles, 35
Conical calyx, 227

- lanirs. $6 \cdot 1$
- leald, 17.1
- root, 138

Conitlia, 378
Conjugation, 394, 777, 830
Commate, 148, 255
Commective, 244,248
Connexion of cells, 46
Comlitivent, 225, 232
Constructive materials, 823
Contents of cells, 22, 263
Coutorted æstivatiou, 220
-root, 139
Contracted cyme, 216
Convolnte, $150,220,345$
Coralline root, 137
Coruatc, 173,231
Cordatc-lanceolate, 173
Cordate-ovate, 173
Cordate-zagittate, 250
Cork, 92

- cambium, 92

Corky layer of bark, 90, 91, 92
Corm, 123
Cormophyta, 12
Cormophytes, 11

- leaves of, 190
- root oft, 135
- stem of, 101

Corollin, 17, 230
Corona, 240
Corpuscula, 837
Corrugated, 219
Cortex, 89
Cortical, 377
Corymb, 205
Costa, 157
Cotton, structure of, 67
Cotyledons, 12, 146, 342
Oreation, inorganic, 1

- organic, 1

Crecping root, 119

- stem, 119

Cremocarp, 319
Crenate, 164
Crenulated, 16.1
Crescent-shaped, 173
Crisped, 165
Cropss rotation of, 817
Cross-breeds, 8 it
Cross-fertilisation, 813
Crossing, 843
Crown of the root, 116
Cruciate, 233
Cruciform 233
Crule sap, 820
Crumpled, 219
Cryptogamia, 12. 363
Cryptogamous, 11, 78, 190, 363, 829
Cryptogams, 11
Crystalloids, 36
Culın, 115
(Funcate, 172
Cupute, 195, 319
Curlerl, 165
Curved ovules, $3: 31$

- veined, 161

Ourviserial, 153
Cublidiater, 169
Cuticle, 60

Cnticularised, 58

Cycle, 151
Cyclosis, 784. 786
Cylindrical cell, 33

- leaf, 174

Cyine, 210
Cymose, 110, 200, 210
Cyuarrhodum, 314
Cypsela, 319
Cystoiiths, 35
Cystopus, 378
Cytoblastema. 771
Cytogenesis, 771

Daughtrer cells. 788
Deatb of the leaf. 810
Deciduous, 141, 163, 193, $200,230,240,244,287$
Declinate, 243
Decomposed. 167
Decompound, 176, 178
Decumbent, 114
Decurrent, 148, 182
Decussate, 148
Decussation, 148
Deduplication, 356, 357
Definite inforescence. 200, 209, 210

- oviles, 325
- vasenlar bundies, 78, 95
Definition of a plant, 2
Defoliation, 810
Degeneration, 362
Degradation. 24
- prodncts, 823

Dehiscence of anther, 251

- fruit, 21, 301, 307, 308
- - septifragal, 305

Dehiscent frut, 21, 301

- pericarp, 316, 319

Deliquescent, 110
Dentate, 164, 231
Departments of botany, 1
Derin, 91
Dermatogen, 126
Descending axis, 13. 125, 700

- metamorphosis, 352
- radicle, 348
-. snp, 820
Descent of the sap, 825
Determinate inforescence, $200,209.210$
Develoument, abnorma!, 363
- of the nnther, 246
- - caulome, 795
- enbryo, 842
- - of exagenoms stems, 78
- - of floral envelopes, 828
- - heat, 855
.. - leaves, 811
- - ovale, 327
- - roota. 792
- - ytarcli. 31
———stem. 705
———stolusutn, 788

Dextrin, 33
Diachanium, 319
Diadclphous, 256, 356
Jiageotropism, 863
Dinheliotropism, 863
Dialypetalous, 232
Dinlysepalous, 225
Diandrous, 253
Diclusium, 110, 212
Dichlamydeous, 18
Dichogainous, 844
Dichotomous cyme, 212
Dichotomy, 103

- bostrycoid, 110
- cicina ${ }^{1}, 110$
- false, 99
- helicoid, 110
- scorpioid, 110
- sjmpodial, 109
- trme or normal, 109

Diclinons, 240
Dicoccolls, 305
Dicotylcdons, leaves of, 189; roots of, 134
Dicotyledones, 12, 342
Dicotyledonous, 342

- embryo, 343
- germination, 855
- leaves, 189
- roots, 134
- stem, 78

Dictyogens, 190
Didynamous, 258
Diffiusion of fluids, 783

- - gases, 781

Digitaliform, 237
Digitate, 168. 178
Digitipartite, 168
Digynons, 273
Dimerous, $27^{\circ}, 354$
Dimorphic, 258, 844
Dirccious, 24, 372, 375
Dipetalous, 232
Diploperistonıons, 374
Diplostemenons, 253
1)iplotegia, 317, 319

Direction of filaments, 243

- phmmle aud rarlicle, 854
Direct metamorphosis, 352
Disc-benting woot-cells, 43 , 50
-woorly tissue, 50
Discoirl pith, S1
Discpajous, 225
Disk, 265
Tissected, 165. 168
Disscpiment, 275
1histiclous, 151, 354
Distractile, 249
Divergent, 225, 232
Duifenhedral cell, 38
Dolubriform, 174
Dor:nl suture, 268, 300
porsitisel, 248
Dottell cells, 42
- lonves, 70
... vessels, 51
Donble Howers, 350

Domm palm, 99
1)racethas, 98

Drupaceons, 311
Dripe, 311
Drupe-like, 311
Duct, 51
Duplicato-rientate, 164
Duramen, 85
Duration of bracts 193

- - calyx, 229
- - corolla, 240
- - filament, 244
- - the leaf, 141
- - peduncle, 200
- - roots, 133

Dyaster, 778

EARTHY constituents, 813
Ebracteaterl, 193
Eccentric embryo, 346
Eetoplasm, 25
Effects of electric light.
858

- - gases upon leaves, suj

Egg-sbaped, 171
Eight-rankerl, 152
Elaboraterl sap, 820
Elaboration of cell-con. tents, 784
Elaters, 368, 377
Elective affinity, 8.5
Electricity of plants, S5s
Elementary structure, 21
Elliptic cell. 38
Elliptical, 171, 231
Elliptico-lanceolate, 173
Elongateal parenchymin.

- primary axis, 202

Emarginatc, 169, 231
Embracing, 147
Embryo, 11, 12, 341

- buds, 112
- cell, 835
- nolules, 112
- sinc, 328, 367, 835

Enibryomi cell, 3, 373.316
Embryonic Tesicles, 325
Embryotegia, 337
Emergences, 66
Empty bracta, 193
Enantioblastic, 347
Entocarp, 298
Emlogenous. 75

- stem, 75, 94, 96
- growth, 96

Fanloplasm, 25
Entopleura, 21, 337
Mnlorhizal. 135
limlomose, 78?
lindosurerm, 2!, 340,341
linulospore, 379,830
lintlostome. 230.839
1:muthecimm, 946,245
fin-iform, 17.
Entire calyx, 225

- corolla, 233
- leaf, 163

Entumophiluns, \$43

Enveloping, 220
Epiblema, 60, 128
Epicalyx, 193, 209
Epicrarp, 298
Epitermal appendages, 63

- layer, 397
- tissue, 57

Epirlermis, 58, 79

- functions of, 7S6

Epigeal, 8 อ̄5
Epigone, 373, 376
Epigynous, 254, 266
Epipetahoms, 253
Epiphragma, 374
Epiphytes, 131
Enisperm, 21, 335
Epistrophe, 809
Epithelium, 270
Equal leaf, 170
Equally pinnate, 176
Equisetaceæ, 307, 834
Equitant, 157, 345
Erect, 225, 232, 243, 347

- ovule, 326
- rhizome, 119
- seed, $33 \pm$

Ergot, 383, 3S5
Essential organs, 17, 20, 240, 360, 829
Etario, 313
Etiolated, 804
Evergreen, 141
Exalbuminous, $3 \ddagger 1$
Eranuulate, 366
Excipulum, 389
Exerescence, 112
Excreseent, 200
Excretion by roots, 792
Exeretions, 804
Excurreut, 116
Exhalation, 796, 799
Exocarp, 298
Exogenous stems, 74, 78
Exorhizal, 134, 855
Exosmose, 782
Exospore, 379, 830
Exostome, 330, 839
Exothecinm, 246, 247
Exserted, 256
Exstipnlate, 15, 142, 182
Extcrnal embryo, $3 \div 6$
Extine, 260, 261, 836
Extra-axillary, 113, 141, 199
Extrorse, 246

FAre, 246
Fill of the leaf, 141, 810
Fill-e arillthe, 338

- bark, 95, 96
- cyme, 110
- dichotomy, 99

Fririnaceons albumen. 3.11
Hasciated brasclest, 113
Frecicle, 149, 216
Fa-cicledl leaves, 149
Fasciculated root, 137
Fanx, 226, 233
Feather-veined, 159, 17 :

Fenthery, 228
Female apparatus, 836

- flower, 20, 831

Fern proper, 367
Ferus, 365, 834
Fern stems, 101

- internal strieture of, 102
- growth by buds, 102

Fertile, 241
Fertilisation, 90
Fertilised oosphere, 341
Fibres, 40,45
Fibriiliform eelis, 39

- tissue, 48

Fibrils, 60, 67, 127
Fibro-cellular tissue, 48
Fibro-vasenlar bundles, 39, 50, 76, 102

- - system, 57, 74, 90, 143
- - of leaves, 143
- tissue, 57

Fibrous eells, 44, 48

- root, 136

Ficl, 165
Firldle-shaped, 167
Filament, 19, 241, 242, 398
Filices, 365, 834
Filiform, 242
Fimbriated, 231
Fissiparous, 774
Fissured ealyx, 225

- stiguna, 291

Fissures of leaves, 165
Five-eelled, 276

- cleft, 165, 225, 288
- loberl, 280
- partite, 225
- rankerl, 151, 221
- ribbed, 160
- scerlcil, 334
- toothed, 225

Fixed cmbryo, 106
Flagellum, 117
Fleshy albumen, 341

- periearp, 318, 320
- cotyledons, 345

Floral envelopes, 17, 222, 360
Florets, 207
Flower, 17, 230

- parts of the, 218

Flowering plants, 11, 190
H'lowerless plants, 11, 190, 363
Flower-stalk, 15, 197
Foliacenus, 199, 227, 299, 345
Folinge lenves, 140
Folioles, 162
Follie ${ }^{1}$ e, 312
Food of plants, 813 sources of, 813
Formincn, 329, 330
Forked anther, 250

- filament, 242
- venation, 162

Formation of eells, 771

- - compound oviry, 278

Formation of organie compornds, 804
——pollen, 258
—— wood, 794
Formative tissue, 88
Formed material, 771
Forms of anther, 249
— - - lobes, 249

- - branehes, 113
— - eells, 37, 263
- - filament, 242
- - hairs, 63
- - leaves, 173 , 185
— - pedunele, 198
- - petiole, 181
- roots, 136
- - seeds, 334
- - stems, 113
- - style, 289

Fossil botany, 2
Four-celled, 245, 276

- eleft, 288
- lobed, 165, 280
- loctli. 245
- seeder, 334

Tovilla, 19, 263, 836
Free ealyx, 227

- cell formation, 772, 777
- ceutral placenta, 282
- ovary, 280
- stamens, 255

Friuged, 231
Fronds, 11, 101, 161,190
Fructifieation, 38 :
Fruit, 20, 294, 352, 846

- eonstitution of, 847
- deliseent, 21
- indehiscent, 21
- kinds of, 309
- n风ture of, 295
- perfeet, 298
- ripening of, 849
- simple, 309
- spurions, 846
- sugar, 8ı8
- true, 846

Fucts, 396
Fugreious, 141, 229
Functions, 770
— of bark, 795
— - braets, 826

- cpidermal appenilages, 789
- - - tissue, 786
- - essential orgrus, 82y
- - floral envelopes, 826
-- - glands, 789
- - hairs, 789
- - intercellular system, 789
- Iaticiferous vessels, 785
- - leaves, 796
- - medulla, 794
- - mednllary roys, 795
- organs of reprotitetion, 895
- prrenclymatous cells, 771

Function = of pith, 791

- prosencloymatous cells, 785
- - stem, 79 :
—— stomata, 787
- - Versels, 785

Fiudameutal organs of the plint, 13

- tissue. 81

Fungi, 378
Fruiculus, 325,333
Funnel-shaped, 23t
Furente, 162
Vusiform cell, 39

- loot, 138
(Tallbulus, 322
Galeate, 229
Gamogene: is, 829
(tamopetalons, 233, 356
Cr2mosepalous, 225, 356
Grping, 236
Gemmation, 776
(iemmule. $12,3+2$
General eharacters of fruit, 297
- (leseription of leaf, 140
- invo:ucre. 194, 209
- mort hology, 6, 348
-ontline, 169
- physiology, 770, 812
- properties of cell-wall, 42
- nmlel, 208

Generating tissue, 88
Genicnlate, -43
Geographieal botany, 1
Creotropism, 863
Germ-cell, 9, 367, 373, 376, 835
Germinal corpuseles, 367, 830, 835
-matter, 32, 771

- vesieles, 20, 328,840

Cermination, 12, 852

- conditious of, 852
- dicotylertonouts, 855
- monocotyledonous, 854
- process of, 853
- time requiren for, 852
(iibl)ous, 229, 237
Gills, 382
(i)anils, 68, 789
- compound. 68
- external, 68
- internal, 70
- lysigenous. 71
- neetariferons. 71
--schiangenous, 71
- sessile, 69
- simple, 68
- stalkect, 68

Climdular hairs, 67
Cilnus, 319
(iloboidtr, 36, 37
(ilobose, 227
(i)olutale, 390.831

Gloulidiante, 6.4

Gleocapsa, 6
G!omerule, 208, 216
Glove-shaped, 237
Glamelhules, 197
Glumes, 197, 203
Gomidia, 388
Grafting, 107
Gramulose, 33
Gravitatiou, 862
Green larer of bark, 90, 91
Ground tissuc, 81
Growiug part, 793

- point, 792

Growth by terminal buds, 90

- of the bark, 92
-... fibro-vaseular bumbles, 95
Gurit-eells. 61, 787, 789
(7)mnospermia. 11, 12, 836

Gimnospermous, 313,325 , 836
Gymuostomolus, 374
GJnandrons, 255, 3อ̄6
Gynin, 27:
Gynobase, 257
Gynobasie, 287
Gyuwecinm, 17, 19, 266, 272
Gynophore, 279, 294
Gynostemimm, 255
Gyration, 784

HAIRS, 63, 789
Halbert-shnped, 173
Half-adherent ovary. 280
Half-inferior ovary, 281
H:lf-superior calyx, 280
Falf-equitant, 157
Hard bast. 90
Hastate, 173
Hastate-anrielerl, 173
Haustoria, 132, 378
Head of flowers. 207
Heart-shnpet, 173
Heart-wood, 85
Heat of plants, 855
Helic id eyme, 213,215 , 216

- diehotomy, 110

Heliotropis11, 802. 863
Helmet-sliaper, 22!
Heminlbumuse, 37
Hemiearp, 319
Hepaticacere, 375, 832
Heptapetalous, 232
Heptasepmlous, 225
Hetlos, 115 .
Hermaphrodite, 240, 372
1 Tesperidinm, 318
110teroeysts, 393
Heterrecism, 380
Hoteroblromous, 153
Theteronhylloms, 173
Ileterorlizal, 135
Heterosporouss, 369
lleterostylerl, s.l.
1leterotropuns, 332

Hexapetnlou=, 232
Hexusepalous, 225
Hiddeu-veinerl, 157
!iflum, 31, 325, 333
Hlistology, 1, 21
Homoblastic, 3:37
Homodromots. 153
Homologous, 218, 349

- formations, 191

Howosporous, 366
Homotropous, 347
Hoorled, 229
Hood-shaped, 17 !
Hooked hairs, 64
Horizontal ovale, 326

- system, 57, 74

Horned oranges, 318
Horny albumen, $3 \div 1$
Horsetails, 367, 834
Host, 132
Hybridation, 844
Hybridisation, 844
Hybrids, 844

- production of, 844

Hybrid alga, 846

- ferms, 846

Hymenium, $3: 2$
Hypanthodium, 198
Hyphas, 6, 49
Hyphal tis:ue, 49
Hypocotyletonary axis.342, 3.43

Hypoerateriform, 234
Hyporlerma, 48, 143, 145
Hypotermix. 380
Hybogeal, 855
Hypogynous, 253, 266
Hypothecinm, 359
Hypsoplyylary leaves, 146 , 192

Indi:githmatas fertilis:ltion, S.4.
Imbriente, 156, 290, 290
Imbricated astivation, 219, 220
Tmparipinmate. 176
Imperfeet tlower, 360
lunvernation. 830
latetive suore, 830
Tneisim of leaves, 165
Thelmbed, 256;
Incomullcte tlower, 355
Incumbert. 316
lncurvel, 243
Indefinite inforesemee 2(6), :01

- oriles, 325
- viseular bumblea. 7

Inkhiseent fruit, 21. Sul
\rightarrow pericarp, $311,31 s, 320$
Infoterminato intlorescollee. 200,201
fulian fly-tree, 131
Imlivilual peenliarities, 107
Induplicate, 157,219, nou, $\because 21$

Indı-ium, 290, 365, 382
Intilliae, 141
Induriate, $1+1$
Inferior cealyx, 2.27, 280
—fruit, 29S. 319

- ovary. 227. 280
- ranlicle, 348
- syncarpons fruit, 319

Intlexer. 150
Intiorescence, 17, 191, 200

- axilliry, 200, 201
- definite, 200. 201, 209,218
- cleterminate, 200, 201, 209
- indefinite, 200, 201, 202, 20\%.215
- indeterminate, 200, 201, 202
- mixel. 217
- terminal. 200. 201, 209

Infrik-axillary, 141
Snfrutescences. 322
Infunlibuliform, 23t
Innate, 248
Inner bark, 90
Inorganic compounds, 813

- eonstitnents, 816

Insertion of leares, 146 , 199
—— 1:elmmele, 199
—— - stamens, 253
Insirle growers. 75, 96
Integuments of seel, 21, 334,335
Integumentnm externum, 324

- internum, 329
-- simplex, 329
Intercellular canals, 71, 789
- passages, 11
- spaces. T1. in9
- substanee, 73
- syrteni. il

Interlacing tissuc. 18
Interual embryo, 346

- glauds, 79
- organio, 10
- stincture, 95, 102, 142
-. sy:-tem, 91
Intermorles, 15, 103. 140
Interpetiolar, 18.
Interınpledly pinmate, 176

Intracellular eireulation, $78!$
Intriafoidiacens: 1×1
Intior~c. 216
luverely egg-iniper, 172 huart-flitperl, 173
Juverse orule, 326
— seerl, 3̈:1
luvertell embr50, 347
ovile, 332
Involueel, 194, 209
Involurie. 193, 194. 365
Jivolute, 15 ;
Irregnlar, 225, 227, 232
- flower, 35

Irrepular monopetalous coroll:, 235

- polypetalous coro!la, 233

Irreguinrity, 362
Irritability, 863
Invitable, 864
Isoëtacer, 370
fsoétes. 370
Isomerous. 354
I sosporous, 366
Isostemenons, 253

JOIST, 180
Jointed, 103
Jugate, in1i-, 175, 176
-bi-, 175

- tri-, 175
- multi-, 176

Jungermannia, 3

KARYOKLESIS, 778
Keel, 233
Kernel, 21, 334, 339
Kilney-shaped, 173
Kinds of bramehes, 113,116

- - eells, 46
— - frnit, 309
-.. - intloresecnee, 200, 202
207, 210
- - pedmuele 197
-. plaeentation, 282
———stems, 113, 116
- - stipules, 183

Kingtion, auinual, 1

- mineral, 1
- vegetable, 1

Kıob, 112
Knots, 106
L.ABIAIT., 235

Laciniatel, 167
Laemme, 72
Lamella, 291, 382
Lamina, 15, 141, 143, 157
Lanceolate, 171, 231
Large spores, 369,833
Lateral flowere, 200

- ojening, 308
-style, 287
Latex. 56
Latex-snes, 57
Laticiferons ressels, 56, 785
Littice cells, 56
Jayering, 118
Leali-arrangement, 146
Leaf-burls. 11, 103
- defined, 15, 140, 348
- levelopment, 811

Leai-stalk, 15, 1.11, 179

- traces, 96

Lentlets, 162
Senfy bract - 192

- fruit, 299

Leaves of eo:moplig tes, 161 190

Leaves of dicotyledons, 185

- - internal strueture of, 142
- monocotyledons, 189

Legitimate fertilisation, 844
Legume, 310
Length of filament, 242

- - germination, 852

Lenticels, 92
Lentieular glands, 87
Lepidote, 65
Leukoplnstids, 809
Lianas, 115
Liber, 90,92

- cells, 50

Lichenes, 388
Liehens, 388
Lid, 308
Life of the plant, 812, 818
Lignin, 24
Ligulate, 236
Ligu'e, 181
Limb, 226, 233
Limear, 171, 173, 231, 249
Lineur-lanceolate, 173
Linguiform, 174
Lipped, 235
Lirellæ, 388
Lithocysts, 35
Liverworts, $9,375,832$
Lobed, 165
Lobes of anthers, 244
—— leaves, 165,241

- - stigma, 291

Loeuli: 245, 276
Locnlieidal, 303
Locusta, 197, 203
Lorlienlæ, 197
Lomentaeeons, 311, 317
Lomentum, 311
Longitndinal deliseenee, 251
_ system, 57, 74
Luminosity of plants, 858
Lumate, 173
Lyeopodineere, 368, 834
Lymphatic hairs, 67
Lyrate, 167
Lyrately-pinnate, 176
Lyre-shaped, 167

NACE, 338
Maeropotlous, $3 \cdot 13$
Macrosporamgin, 369, 370, 833
Maerospores, $369,370,833$
Kale, 20,831

- apparatus, 836
- eoneeptacles, 397
- flament, 398

Malting of barley, 853
Mangrove-tree, 131
Many-cellet, 276
Мниу-eleft, 165, 288
Many-lobet, 280

Many-paircd, 176
Many-ribbed, 160
Many-scetcd, $33 \pm$
Many-valved, 301
Marcesceut, 230,240
Marchautis, 9, 777
Margiual placenta, 282
Margius of leaves, 140 , 183
Marginal, 2S2
Marginate, 336
Marsilen, 370
Narsileacer, 370, 832
Masked, 236
Mealy albumen, 341
Median prolification, 291 , 352
Merlulla, 79, 80, 794
Medullary rays, 79, 88

- functions of, 795
- sheath, 79, 81

Megispores, 369, 370, 833
Megasporangium, 327, 369, 370, 833
Meiostemenons, 253
Melanophyll, 28
Membranons, 227
Mericarp, 305, 319
Merismatic, 77t
Meristeun, 88, 774
Mesocarp, 298
Mcsoplyyll, 144
Mesothecinm, 246
Metabolisun, 823
Metam urphosis, 352

- ascending, 35?
- descending, 352
-rlirect, 352
- retrograde, 352

Metrstasis, 80t, S23
Micrococci, 387
Micropylur axillus. 3.39
Micropyle, 328, 329, 330
Microsomata, 25
Microsporangia, 369, 370, 833
Microspores, 258, 363, 371, 833
Midrib, 157
Milk vessels, 56
Mixcd intorescence, 217

- formation of leaves, 811

Monadelphons, 255, 356
Monandrons. 253
Monilster, 778
Moniliform hairs, 6 t

- root, 138

Monochasial, 215
Monochlnmyideons, 17, 230, 360
Munocotylcions, leaves of, 189

- loot of, 131

Monocotyledones. 12, 3.12
Monocutylerlomous, 312 cmbryo, 312

- prermination, 85.1
- lemves, 189
-roots, 134

Monocotylcilonons stcm, 78, 94, 96

- momalous structure of, 99
Monøcious, 241, 372, 375
Monogynous, 273
Monomerons, 279
Monopetalous, 233, 356
Monopodial branching. 109
Monosepalons, 225,356
Monospermons, 334
Monothalamic, 322
Monstrosities, 351
Morphological botany, 1, 5
Morphology, 5
- general, 0, 348

Mosses, 372, 332
Mother cells, $258,366,372$, 788
Month, 374
Movemonts in cells, 783
— of plants, ${ }^{5} 9$

- - - not periodica?, 862, 865
- - - periodical, 860, 864
- of protoplasm, 25

Mucilagiuous albunen, 341
Mucor, 6
Mucroniate, 169
Mules, S44
Multicostatc, 160
Multifil, 165, 288
Multifoliate, 178
Multijngate, 176
Multilocnlar, 276
Multiovulate, 325
Multiple corolla, 239

- fruits, 312, 322

Wnltispermons, 334
Nuriform purenchyma, 4 S , 59
Musci, 372, 832
Mushooms, 378
Mycelimm,381
Mjosin-globulin, 37

NAKED bud, 105

- bulb, 122
- Hower, 18, 360
- monthed, 37t
- nuce! h s, 3.9
- nuclens, 329
- ovule, 3:๖

Nipliform root, 138
Natural history, 1

- preference, 8.45

Nature of calucl, 208

- - cell, 29

Neck-ccll, 838
Necklace-sluped, 64, 138
Nectarifurous plands, il
Nectarijes, 71, 210
Ňcelle-shuperl, 171
Nepative reotropisin, 862

- heliotropi $\leqslant \mathrm{m}, 862$

Nervation, 157
Nerves, $110,143,141,157$

Nettel-veinerl, 159

- venation, 159

Nenter, 211, 360
Norle, 15, 140
Norles, 14, 100
Noulnlose root, 138
Non-adherent, $2: 27$
Nom-articulaterl. 141
Son-llevelopmeut of buls, 110
Nou-sexnal, 367
Normal bucle, 110
Nostoc, 392
Nuclcoli, 27
Nucellus, 327
Nucleus, 27, 31, 327, 339

- of sced, 21, 334
- - starch, 31

Nuculanium, 318
Nucule, 390, 392, 831
Number of oviles, 325

- - stamenz, 253

Nursiug leares, 146
Nut, 319
Nut-like, 319

Obcondate, 173
Obliquc leaf, 170
Oblong, 171, 231, 250

- cell, 37

Obovatc, 172
Obsolete, 227
Obtuse, 169
Obvolute, 157,345
Uchrea, 184
Cctapetalous, 232
Octa-tichous, 15:
Ollours of plints, 565
CEtloyonimm, 395, 7 -
Oisset, 117
Oily abumen, 311
Onplanlodimm. 333
One-cellerl, $\because 46,276,997$
Onc-lohed. 280
Onc-p:ured, 175
One-sceded. 334
One-vilverl, 301
Oogroniti, 375, 379, 356, 395. 396, 397. 395

Onepllere, $3,20,22,325$, 379, 396, 398. S35. 840
 $3!9$
Open vascula bumbles. 77
Opereular, 853

Opmoite leaven, 118, 149, 153

- -tipules. 18.1
nolhemlar. 173
Oriranic constituents, sul

- contwиm1く, 513
-- ('t+世tion, 1
Orquni able mater, 71
Orembugrally, 5

Organs of mutrition, 13,73 , 790

- - reproduction, 14, 15, 190, 240,826
- - vegetation, 13, 765

Origin of placenta, 284

- - stomata, 788

Original cell formation, Ti?
Orthotropous, 330, 333
Oseillatoria, 6
Usmose, 781
Ostiole, 389
Outer bark, 90
Outline of leaves, 169
Outside growers, 74
0 val, 171, 249, 250

- eell. 37
- parenchyma, 47

Ovary, 19, 267, 279

- compound, 275, 279
- simple, 279

Ovate, 171, 231

- -lanceolate, 173

Ovulary spore, 370, 833
uvale, 19, 324
Orum-cell, 328

Palleostological botiny, 2
Palate, 236
Palere, 197, 203
Pales, 197, 203
Palisade pareuehyma, 145
Palmate, 168, 178
Palmated root, 137
Palmately cleft, 168

- reined, 160, 176°

Palmatifill, 167, 168
Palmatipartite, 167
Palmatisected, 167
Panrluriform, 167
Panicle, 206
Panieled enrymb, 205

- cyme, 213

Papilionaeeous, 233
Papillee, 69
Pippose, 228
Pappus, 228
1'arallel ehorisis, 358

- formation of leaves, 811
--veined, 159, 161
- venation, 160,162

Paraphyses, 372, 383, 386, 389, 396, 397
Parasites, 132
Parenclyma, 47

- of leaves, 142,144
- varieties of, 17
- functions of, 771

Parenclymatous cells, 39

- system, 57, 74, 90

Purent cells, 258
Parictal placenta, 282
D'aripinnate, 176
Fartial lehi-cence, 316

- involucre, 194, 299
- Jetiole, 162, 180

Partial unbel, 209
Partite, 165, 225, 231, 233, $2 S 9$
Partitions, 165, 275
Parts of the anther, 244
——— flower, 218
——— leaf, $1+1$
——— stem, 794
Patulous, 225, 232
Peetinate, 167
Peetine, 848
Pectose, 849
Peetosie acid, 848
Pedate, 168, 178
Pedatifid, 168
Peldatipartite, 168
Pedntiseeted, 168
Pedicel, 16, 197
Pedunele, 15, 197

- duration of, 200

Peloria, 238
Peltate hairs, 65

- leaves, 147
- onule, 326

Pendulous, 116, 243, 326, 334
Penicillimm, 6
Pentagonal, 354
Peutamerous, 221, 354
Peutapetalous, 232
Pentasepalous, 225
Peutastiehous, 151, 221
Реро, 320
Pepperworts, 370, 832
Perennial herbs, 115
-- leaves, 141

- roots, 133

Perfect fruit, 298
Perfoliate, $1 \nmid 8$
Perianth, 17, 223
Periblem, 126
Pericarp, 21, 298
Perielartial, 372
Periderm, 91
Perigone, 372, 376
Perjgonial, 372
Perigynous, 254, 266, 356
Periodical movements, 860 , 864
Peripheral, 377
Peripherieal, 346
Perisperm, 340, 341
Peristome, 374
Perithecia, 385
F'ermanent tissue, 88 , 793
Persistent, 141, 183, 193, 200, 230, 240, 287
Personate, 236
1'etaloid, 17, 223, 227, 242, 289
Petals, $17,230,350$
Petioliur stipules, 183
1'ctiolate, 146
Petiole, $15,1 \cdot 11,1 \cdot 43,157,179$
P'etiolule, 162, 180
Peziza, 385
Phanerogamia, 12, 190
1rumerogamotas, 11, 190
Phanerogams, 11
Phelloderma, 90, 91

Pliellogen, 92
Phłoën, 70, 90, 794
Pluragmata, 277
Phyeoeyan, 29
Phycoerythrin, 28
Phyeonyeetes, 378
Plyylaries, 194
Plyylloelate, 199
Phyllocyanin, 28
Phyllode, 187
Phyllodia, 187
Phylloid pedunele, 199
Phyllome, 15, 140, 796
Plyllotaxis, 148,200

- of natural orders, 154

Phylloxanthein, 808
Ply lloxanthin, 28
Physiologieal botany, 1, 770
Physiology, 770

- of the elemeutary structures, 771
- - organs of mutrition. 790
——————reproduetion,
826
- — root, 790

Phytons, 106
Pileorliza, 126, 128, 792, 839
Pilens, 381
Pilose, 228
Pilularia, 371
Pinure, 175
Pimnate, 175

- with an ord leaflet, 176
Pimately-veinell, 159, 174
Pinnatificl, 166, 231
Pimnatipartite, 166, 231
Pimnatisected, 166
Pinnules, 176
Pistil, 19, 266, 272
Pistillate, 20, 360
Pistillidia, $372,375,831$
Pitchers, 188
Pith, 79, 80
- funetions of, 794

Pitted eellular tissue, 48

- eells, 42, 48
- tissue, 48
- vessels, 51

Placenta, 19, 267, 270, 281
Placentation, 281
Placentiferons, 306
Placentiform root, 139
Placentoid, 247
Phant in tetion, 818
Plants, odours of, 865
Plaited, 155, 2:0
Plasmodium, 2
Plastidle, 809
Plerome, 126
Plicate, 155, 220
Plumose, 228
Plumule, 12, 342, 343
Porl, 310
1'odetium, 389
Toclium, 109
l'ollariled trees, 111

Pollen, 19.258. 836

- cells, 19, 259
- clevelopment of, 258
- grains, 19
- sporangia, 791
- spores, 371
- structure of. 260
.- tube, 264
Polliuation, 20, 841
Pollinia, 260
Polyadelphous, 256. 356
Polyeotyledonon-, 3 ± 4
Polygamons, 241
Polygonal cell, 3 ,
Polyhedral parenclynima, 48
Polymerous, 279
Polypetalous, 23‥ 233
Polyphyllous, 225
Polysepalous 225
Polystemenous, 253
Polythalamic, 322
Pome, 321
Pore, 261, 389
Pore eells, 61
Porous eells, 42
- dehiseenee: 252, 302, 308
Position of ovules, 326
- - stameus, 253

Positive geotropism, 862

- lieliotropisur, 862

Prefloration, 157. 218
Prefoliation, 155, 218
Premorse leaf, 169

- root, 119, 139

Prepotent, 845
Prickles, 66
Primary axis, 197

- meristem, 793
- root, 125

Priminc, 329,839
Primordirl cell, 22, 328

- leares, 146,853
- utriele, 22, 26

Prismatic cell, 39

- leaf, 17.1

Proeambinm, 126
Proeess of germination, 853
Procumbent, 114
Produetion of hyhrins, 8.1t
Pro-embryo, 831.839
1rogressive, 77, 21U
Proliferons, 111
Prolifieation, 352
Prosenclıyma, 19

- varieties of. 49

Prosenchyniatots cells, 33. 785
1'rostrinte, 114
Protandrons. 8.3
Proteid grrins, 36
Proteine crystal.s. 36
['rothallinm, 361, 366, 367
Prothallus, $3(14$
Protista, 1
Protocoreches, 6,771
lrotogynous, 841
1'votonenus, 375 , 37\%, S32

Protoplasm, 22, 24, 771

- movements of, 25

Protrurling, 256
Pseud-rxis, 109
Pseurlo-bulb, 11 :
Pseulocarp, 204, 296, 322
Pseulo-embryo, 83 !
Psemdo parenchyma, 49
Puceinia, 380
Putiball, 779
Pulvinus, 181
Punctum vegetatiouis, 96, 792, 795
Putamen, 299
Pyenidia, 389
Pyramidal leaf, 174
Pyrene, 299
Pyxis, 316, 320

Quanrikin, 288
Quadrifoliate, 177
Quadrifureate, 250
Quadriloeular, 245, 276
Quadrinate, 177
Quadriovalate, 325
Quadripartite, 289
Quadrispermous, $33 \pm$
Quateminy, 354
Quinลขy, 221, 354
Quinate, 177
Quineuueial, 151, 220, 221, 222
Quiuquecostate, 160
Quinquedentate, 225
Quinquefill, 165, 167, 225, 288
Quinquefoliate, 177
Quinqueloenlar, 276
Quinqueovulate, 325
Quinquepartite, 225
Quinquespermous, 334
Quintuple-ribbed, 160
Quintupli-costate, 160

RACEALE, 204
Racemose, 110

- eorymb, 205
- eyne, 213

Ruwhis, 162, 180. 198
Judiater veined. 160
Iandieal leaves, 146

- perlunole. 198

Rarliele, 12, 342, 3.13
Ramal leaves, 146
Ramenta, 65
Ramentaceous hairs, 65
Ramilichtion, 108
Rmmitied colls, 43
Raphes, 332
Ruphlian arillus, 339
Raphides, 3:3
Rnuhitliferous, 35
[itulnis-bearing, 35
Lappidity of cell-prodnction. 779
1Receptrele. 17, 198, 265, $292,381,396$

Receptacles of secretion, 72,789
Reclininte, 155, 345

- ovule, 326

Recti-erial, 153
Recurvell, 243
Red snow plant, 6. 771
Reduplicate, 219.220
Reflexed, 225, 232
Regma, 317
Regressive, 210
Reguliar, 225, 227, 232

- burls, 110
- flower, 355
- monopetalous corolla, 233
- parenelıma, 48, 80
- polypetalous eorolls, 233
Rejnvenescenee, $\pi /$
Reliquire, 141
Renewal of ecll, 777
Reniform, 173
Replum, 277, 306, 317
Reproduction of :-
- Algre, 830
- Angiospermia, 839
- Charneer. 83 I
- Cormophytes, 831
- Cryptogamia. 529
- Equisetacea, 834
- Filices, 834
- Gymmospermia, 536
- Hepaticacere, $83:$
- Lreopodincere. 834
- Marsilencere, 832
- Musei, 832
- Plauerogamia. 836
- 1Rhizoen'per, 83:
- Selaginellacea, 833
- Thallophytes, 829

Reproduetive orgins of :-
——Algw, 392

- - Characeae, 390
- Cormoplytes. 364
- Equisetacere, 36 -
- Filices, 365
- Fingi, 385
- - Hepmticacen? 375
———Lichenes, 3es
-- Lycopolineer, 368
——Mtarsilencere, 374
— Mnsci. 3テュ
- - Solatrinelliseens. 369
- Thalloplytes BTs

Respirmtion, 4, sol. 2 ± 3
Resting spores, 836
Reticulated cells. 16

- reined, 153
- venation, 159, 16:2
- Tessels, 55

Retinmenla, $\because 60$
1Retrograde motamorphosis, $3.5 \pm$
Retrosartate. 164
Rothse, 16 !
Ruvolute, 1 SG
levolring mutation, sGo
1Rhizocarper, 371 , 832

Rhizoill, S31
lhizome, 118
Ribbel veniation, 160
Rib: 157
Rinul. false, $95,96,102$
Ringel cells, to
Ringent, $\because 36$
Ripening of frnits, $S 49$
Rolled le:rves, lō5. 156 157
Tont, 13, 11, 125, 790

- distinctive eliarncters of, 128
Foot-eap, 126, 128
Root-hairs, 64, 67, 127
Root-pressmre, 791. 82?
Root-sheath, 132, 855
Rootstock, 118
Rosrceots, 233
Rostellum, 260
Rotate, 235
Rotation, 784
Rotation of crops, 817
Ronnded eell, 37
- leaf. 173
- lobes, 249

Rommdish ovate, 173
Found parenchyma, 47
Rnminated. 341
Funcinate, 167
Rumner, 117
Pupturing, 308

SACCATE, 229,237
Sagittate, 173,250
Salver-slaped, 234
Salvinia, 371
Samara, 315
Sap, 27, 820
Saprophytes, 133
Sapwood, 85
Sareocarp, 299
Fircorlerm, 326
Scalariform vessels, 55
scalar, $65,104,105,140,193$, 196
Scaly braets, 103

- birls, 105
- butb, 122

Seape, 198
Sears of leaves, 111, 180
-... ferms, 101
Schizoceurps, 305
smlerenelyyma, $48,78,95$, 112
Sclerencliymatons, 12
Selerotimm, 384
fororpioid cyme, 213, 215, $\because 16$
richotomy, 110
Fiontf, 65
-raweerls, 392
seconrlary axis, 197

- enubryo-sacs, 837
- merlillary ravs. 89
-meristem, 793, 794
- prostucts, 82.
- root, 125, 128, 135

Secretiou, 823
Seeretions. 80.t
Sectech, 165. 231
Seeund, 215
Secmuline, 329, 83 ?
Seer, 11, 20, 208, 33 ?, 850

- preserration of, 851
- transportation of, 85]
- vitality of, S50

Seed-burl. 325
Seerl-nueleus, 334
Segnent cell, 795
Segments, 165
Selaginellaceæ, 369, 833
Selaginellas, 369, 833
Selceting power of roots, 791
Self-fertilisation, 843
Semi-clouble fowers, 362
Semi-mude ovale, 325
Sepals, 17, 222, 340
Septemfid, 165
Septemfoliate, 177
Septenate, 177
Septicidal, 303
Septifragal, 303, 305
Series, 150
Serrate, 164, 231
Serru!ate, 164
Sessile, 267

- anther, 19, 242
- Howers, 204
- leaves, 15, 149, 147, 179
- ovary, 279
- orule, 325
- pappus, 228
- sepal, 231
- seed, 333
- stigma, 290

Setu, 373
Setaceons, 66
Seta, 66
Setose. 66
Seren-eleft, 165
Sexnal filnmeut, 398

- generntion, 367

Sexuality of plants, 820
Sharp-pointert, 169
Sheath, $1+1,181$
Sheathing, 147
Shell, 21, 298
Shicld-like, 65

- -eells, 301
- shaped. 141

Stiruls, 115
sieve colls. 56

- tubes, 55, 786
- vessel 55

Silicula, 317
Siliģua. 317
Siliquaform eapsule, 317
Silver-gruin. 89
Fimple corolla, 239

- corymb, 245
- frnits, 297,309
- ⿷ynoscimm, 272
- liais 63
- Icaves, 112, 162, 163

Simple ovary, 279, 280

- mappus, 228
-petiole, 179
- pisti!, 267
- spira! ve sels, 52
— style. 288
Simmaterl, 164
Sinuous, 249
Sistel eells, 788
Size of eells, 41

-- - dieotylerlonous trees,

87

Skeleton leaves, $1+4$
Small spoless, 369, 371,833
Soft bast, 90
Solitary axillary fiower, 201

- terminal fower, 209

Solubilits, 380
Sorerlia, 390
Sori, 365
Sorosis, 323
Sourees of food, 813
Spadix, 203
Spathaceons braets, 196
Spathe, 196
Spathellae, 196
Spatlumate, 172
Speeial fuuetions of the stem, 794

- mother eells, 259
- phenomena, 855
- plıysiology, 771

Speeifie identity, 107
Spermatin, 389
Sperinatopliores, 389
Sperm-eells, 366, 372, 835
Spermogonia, 380, 389
Spermophore, 281
Sphacelin, 384
Sphsernphitles, 35
Splialeroearpiun, 323
Spherieal eell, 37
Spike, 202
Spikel cyme, 213
Spikelet, 197, 203
Spiue, 107
Spines of leaves, 185
Spiral ce'ls, 45

- iestivation, 219, 220
- vernation, 150
- vesse's. 52, 101

Spirilla, 357
Spirogyra, 393, 778
Spongelet, 126
Spongiform parenchyna, 47
Spongiole, 126
Sporangimm, 6, 365, 367, 369, 371, 373, 377, 831)
Spores, 11, 304
Sporoear1, 370
Sphorophore, 367
Spreading branches, 11 is
Spur, 23i
Spurions fruit, 206, 520. $8: 16$

- unclere, 5 a

Spurrert, 229, 237
Sçuante, 193

Squamous, 193
Squamulat, 197
Stalk, 157, 381
Stalkenl, 146, 228, 279, 333
Stalklets, 162.180
Stameus. 18, 241, 252, 350
Staminate, 20,360
Staminodes, 242
Standard, 233
Starch, 4, 99

- granules, 30
- - compound, 33
- nuclems, 31

Starchy albumen, 341
Stellate hairs, 64

- eell, 38
- pmenchyma, 47

Stem, 14, 73, 793

- refinerl, 78
- distinctive characters of, 128
- interual structure of, 74
- modifientions of, 117

Stemless, 74
Sterignata, 389
Sterile, 241
Stigma. 19, 267, 271, 290
Stigmatic fluid, 271
Sting, 69
Stipe, 115, 381
Stipellate. 183
Stipels, 183
Stipitate, 228, 279
Stipular, 157

- portion, 141

Stipulate, 182
Stipules. 15, 141, 182
Stolon, 118
Stoloniferous, 118
Stoma, 61, 374
Stomata, 61, 787
Stomatal cells, 61
Stomates, 61
Stone, 299
Stone-fruit, 311
Storing of uutriment by roots. 792
Straight ovule, 330
Strnight-veined, 161
Strap-sliaperl, 236
Strobile, 204, 323
Strobilus, 204, 323
Stropliioles, 338
Strnctural botanv, 1, 5
Stincture of antlier, 246

- - earpel, 269
—— cell-wall, 42
- - ovulc, 327
- - pollen, 260
- - seed, 334

Struma, 181. 374
Style, 20, 267, 270, 286
Styloporlium, 265
Stylospores, 38 8
Snherous layer of bark, 90 , $\cap 1$
Sub-hybrids, 845

Sub-lymmenial Inyer, 382
Submersed leaves, 145

- - strueture of, 145

Snb-rotnud, 173
Subterrancan modificntions of stems. 119
Subulate, 171
Snceulent, 15, 140, 145
Sucker, 118
Suminit growers, 75
Supcrficial placentation, 283
Supcrior calyx, 227, 280,356

- fruit, 298. 314
- ovarr, 227. 280
- radicle, 348
- syucarpous fruits, 314

Snperjoserl, 327
Supervolute, 157
Suppression, 360, 361
Snpra-axillary, 141
Surculose, 118
Surface of style, 289

- -testa, 335

Suspended ovule, 326

- sced, 334

Suspensor, 839. 842
Sntural, 251, 282, 303
Sutures, 246, 30 n
Swarm-spore, 379
Syconus, 324
Symmetrical flower, 35.3
Symmetry of flower, 353
Symporia, 109
Sympodium, 109
Synantherons, 255, 356
Syncarpous. 19. 35f

- frulits, 297, 314, 319
- pistil. 19. 272, 274

Synergidre, 328. 840
Syngenesions, 255, 356
Synochreate, 184
Systematic botany, 1

Tabular eells, 39

- parencliyma, 48, 89

Triled, 295
Taper-pointed, 169
Trpetum, 246, 258
Tap-root, 130
Tegmen. 21, 337
Tegmenta, 105, 183
Teln-contcxta, 48
Telentospores, 381
Tendril, 108
Tendrils of lenves, 186
Terntology, 356
Terminal infloreseenec, 200, 201, 209
Termary, 254
Terunte, 177
Tertiary axis, 197
Testa, 21, 835
Tetralynnmons, :58
Tetragomal, 354
Tetromerous, 279, 354
Tetrandrous, 253
Tetrapetalons, 232

Tetraseprions, 225
Texture of te-ta, 335
Thalaminu, 38?
Thnlamus, 17, 265, 292
Thallogens. 7
Thallome, 7
Thalloplyta, 12
Thailophytes, 7, 11
Thanllus. 7
Theere, 365
Theoretieal sirneture oi
the flower, 348
Thorn, 107
Tirec-cellerl, 276

- cleft. 165. 225. 285
- lohed. 165. 280
- pairerl. 175
- partitc. 225
- ranked, 152
- ribberl, 100
- seeded. 334
- toothed, 225
- valved, 301

Throat, 226. 233
Thyloses, 52
Thyrse, 207
Thyisns, 207
Tigelle, 12, 342, 343
Tigellnm, 12, 342, 343
Tonoblast, 22
Toothed, 164, 225, 233, 242
Torns, 265, 292
Trnclier. 53

- spnrious, 55

Tricheides. 46
Trachenebynin, 53
Tramn, 382
Transformation. 362
Transmission, 751
Transpirntion, 796
Transplanting. 790
Transporting seeds. $\$ 51$
Trausverse rlehiscence, 251 , $302,307,316$

- cborisis, 358
- ovule. 332

Trec. 115
Triadelphons, 256
Triandrons, 253
Trinngular, 354
Trichomes, 63
Trieocents, 305
Tricostnte, 160
Tridentatc, 225
Trifin, 165, 167, 225, 2s8, 290
Trifolinte, 177
Trigonal. 354
Trigynons, 273
Trijugate, 175
Trilobate, 290
Trilocular, 276
Trimerons, 279,354
Trimorphic, S. 4
Triovinlate, 325
Tripartite, 165, 167, 225, 289
Tripetalous, 232

Tripinnate，176
Tripiunatitici， 167
Tripimatipartite， $16 \vec{a}$
Tripinuatisected， 167
Triple－rlbbed， 160
Triplicostate． 160
Trisectelt， 165.167
Trisepalous， 225
Trispermous． 334
Tristichous．15：
Tritemate， 178
True arillus， 33 S， 339
－bast tissue． 90
－richotonir： 103
－Irnit．S46
－netted venation， 160
－raphides， 35
－root．125，134
Truncatc， 169
Truncaterl root， 139
Trunk， 11.5
Trymn， 318
Tube，226， 233
Tuber， 120
Tnberenlatei root， 137
Tnbercnle， 137
Tubular，227，231，233
－leaf． 174
Tnft， 149
Tufted leares， 149
－root， 137
Tunic， 122
Thnicated bulb，12？
Turgescence． 7.82
Turgidity， 782
Turpentine vessels， 72
Twigs， 108
Twilling， 115
Twisted æstivation， 220
－eorolla，221，222
－root， 139
－Fernation， 156
Two－celled，246． 276
－cleft，165， 288
－lobed，165， 230
－membered， 354
－pairerl， 175
－rankerl，151， 354
－secded， 334
－valved， 301
Tyloses， 52
Tympanmm， 374

UMBEL， 208
Umbclliferonマ， 208
Umbellule， 209

Uncinate， 64
Unilershurib， 115
Undulated， 164
Unequal leaf． 170
Unequally pimmate． 176
Unguiculatc， 231
Unguis， 231
Unijngatc，175． 176
Unilateral， 215
Unilocular，246，276， 298
Union of strmens， 255
Uniparous， 215
Unisexual，20，240，360
Unlining， 356
Unsymmetrical， 353
Uovili， 112
Urecolate， 235
Uredo－fruits， 380
Uredo－spores． 380
Urn－shaped，174， 235
Utriele， 311
Utricular vessels， 57

VACUOLES， 22
Vaginule，373， 377
Valvate．156，219， 221
Valves， 301
Valvular dehiscenee，253， 302
Tal ieties of estivation，219， 220
－－braets， 193
Vascular bnutles， 76
－－closed． 78
－－rlefinite， 78
－－indefinite， 77
－－open， 77
－－progressive， 77
－plants， 8
Vancheria， 391
Vegctable histology，1，5， 21
－mucilage， 771
－respiration， 801
Veil， 382
Veins， $140,143,144,157$ ， 158
Veinless， 157
Veinlets， 158
Velamen radicnm， 132
Venation，144， 157
－of lcaves of cormo． phytes， 161
－modifications of，158， 159
－trne netterl， 160

Veuntion，varieties of， 159 ， 160
Tentral suture，268，300
Ternation，155，200， 218
Tersntile， 248
Vertical system，57，74
－cliorisis， 358
Fertieil， 148
Terticillaster，216，217
Terticillate， 148
Tesicnlar vessels，57， 786
Tessels， 51
－fnnctions of， 785
Tcxillary，220， 221
Texillum，221， 233
Tital foree， 24
Titality of seerts， 850
Titellin－globnlin， 37
Titellus， 337
Tittæ， 72
Tolatile eonstituents： 813 ， 814
Volva， 382

W゙aLL of pollen－cell， 260
Wiurtian cases， 806
Warts， 69
Water－pores，789， 799
Watery vapons，exhalation of， 796
IVavy， 164
Wedge－shaped， 172
Werping， 116
Wheel－shaped， 235
Whorl，148， 362
Whorled，148，149，153， 201
Wing．182， 233
Winged，182， 336
Wood－eclis， 50
Wood，strnctnre of， 79 81
－formation of， 794
－functions of， 794
Woorly fibres， 49
－parcnehyma， 91
－tissue，49， 50
—— of the liber，50， 90
X゙ANTHC， 828
Xylem，76，81， 794

ZoNES of wood， 82
Zoogonidia． 395
Zoosporcs，379，395，398
Zygospore，394，777， 830
7ymogenous， 387

INDEX
 To
 SYSTEMATIC BOTANY；

INCLCDING THE

EOTANICAL NAMES OF THE SUB－KINGDOMS，DIVISIONS， CLASSES AND THEIR SUB－DIVISIONS，ORDERS，AND GENERA；AND THE SCIENTIFIC AND VERNACULAR NAMES OF THE SPECIES AND VEGETABLE PRODUCTS REFERRED TO IN BOOK II．OF THIS WORK．

ABRREVIATIONS， 408
Abelmoschus， 478
Λ bics， 74.4
Abietcre， 742
Ablaluz， 721
Abrus， 531
Abortive plant， 638
Absinthe，59t
Ablata， 438
Abntilon，477，
Acacia，530， 538
－bark， 538
Acrena， 544
Acalyphn， 673
Acantlucer， 638
Acanthus， 638
Acer， 521
Accracere， 520
Achilizen， 586
Achlya， 767
Achras，608， 610
Achyrantlies， 649
Ackawa mutinecr， 657
Aconitum，431， 433
Acoren， 715
Acorn， 686
Acorlis， 717
Actamphibryn， 420
Acrobrya， 420
Acrodiclidium， 657
Acrostichnm， 748
Actien， 432
Alhan＇s necille， 722
Achasomin， 480
Ailder＇A ton rite， $7.18,7.10$
Aden uloes， 721
Aclemandra， 500
Adenmatinerns 539

Adiantum， 74 S
Adriatic onk，6SG
Egiceras， 609
玉gilops， 735
庼g．e， 500
Eschynomene， 531
※sculus， 519
※thusa， 576
African bdellium， 507
－cubebs， 670
－clemi， 507
－hemp， 721
－kino， 534
－millet， 737
－myrrli， 506
－oak， 675
－olfbantim， 507
－rubber， 616
－safiron，63：
－tenk， 675
－tragacanth，481
Agallochum， 660
Agal－agar， 768
Agaricus，757， 759
Agithiofily 1 lum， 657
Agatiotes，gel
Agavic， 70.4
Aglain， 508
Agrimonia， 543
Agunmicl， 705
Aguardiente de Xagker， 705
A halim， 660
Ahaloth． 660
Ailanthus， $50-1$
А јоพ゚กแ， 575,643
ム watu， 575
Akec－frnit， 518

Ak fibres， 618
Akn， 550
Alanginocie， 579
Alangiamz， 580
－order， 578
Almuguilan， 430
Alarin，766， 767
Albardin， 737
Alchemilla， 544
Alcornoque bark，：92， 53% ， 686
Aller， 668
Alcoxylon， 660
Alctris， $70 G$
Aleurites， 673
Alesanders， 575
Alexnndrian sennan， 530
．．－wormsced， 590
Alfn， 738
Algn， 709
Algre， 764
－，clib！c， 766
Agrimoba， 539
Algarobill：i 53 n
Algerian rose oil，495
Nigne de Jaria， 6 Gu
Alliagi， 531
Alisma， 708
Altmincere， 708
Alkathet， 621
Alkimma，500，62． 4
Alligator pear， 436. e59
Allimm， 720
All－pice， 556
A！110n4， 512
－bitter， 512
－poweler， 512
－swect，54！

Amond tree, 542
Alnus. 668
Aloe, 660, 720

- tibre. 704

Aloes, 660, 720

- wood, 660

Aloysia, 639
Alpinia, 693
Alsineie, 464
Alsodere, 456
Alstonir, 615

- b:urk, 61.

Alstremeriz, 704, 705
Altliea, 477
Altiugin, 551
Alum root, 495, 546
Alva mariua, 709
A!sia, 615
Amadour, 761
Amanita, 759
Amarantacere, 649
Amarnuth order, 649
Amarantus, 649
Amaryllidaceæ, 703
Amaryllis, 703
Ama-tsja, 548
Amelanchier, 544
Ameutales, 668
American aloe, 704

- alcornoque, 492, 332
- balm of Gilead, 507
- calumba, 621
- centanry, 621
- colocynth, 568
- cranberry 603
- deal, 743
- gillseng, 578
- hellebore, 72.4
- horsechestnut, 519
- Indian hemp, 615
- ipecacuanha, 543, 674
-uturmegs, 436
- pennyroyal, 642
- plants, 604
- sarsaparilla, 578
- seuna, 536
- tobacco, 632
- wintergrecn oil, 605
-- wormseed, 650
Ammannia, 560
Anmoniacum, 576
Amonales, 693
Amomum, 694
Ampelopsis, 517
Amphibrya, 420
Amygdalus, 542
Amylnm, 737, 738
Amyridacere, 506
Amyris, $\overline{\text { an }}$
Anacardiacere, 522
Anacarilium, 522
Anaculraite wool, 625
Anacyclus, 596
Anagyris, 530
Ansmirta, 437
Ananassa, 697
Anshatatica. 450
Anclusa, 616
Andia, 673

Andaman red-wood, 535
Auclirn, 531
Andrancere, 754
Andreeze, 75-4
Andrographis, 638
Andromeda, 604
Andromedere, 604
Andropogon 735, 736
Androsremum, 470
Anemonc, 433
Anemonere, 431
Auemopsis, 680
Auesorhiza, 574
Anethum, 575
Augelica, 575

- tree, 578

Angiospcrmia, 429
Augola grass, 737

- copal, 538

Angrecum, 699
Angustura bark, 503
Anime, 538
Anise, 575
Anisomelos, 642
Aujudan, 577
Annatto, 458
Aumulated ipccacuauha, 586
Anona, 436
Anonaceæ, 436
Auophyta, 420
Anthemis, 596
Authistiria, 735
Anthocerotæ, 75 5.
Anthriscus, 574
Antiaris, 666
Antidesma. 677
Anti-fnt, 769
Autsjar, 666
Apiol, 574
Apium, 574
Aplopappus, 563,596
Aplotaxis, 596
Apocarpæ, 707
Apocynaccie, 614
Apocyulm. 615
Apostasia, 700
Apostasincce, 700
Appalachian tea, 512, 585
Apple. 545

- of Sodom, 687

Apricot, 542
Aqua Naphi, 501
Aquifoliacce, 511
Aquilarin, 660
Aquilariacer, 560
Aquilegia, 433
Arabian myrrl, 506

- olibaumm, 507
- senna, 536

Araceæ, 715
Arachis, 531, 535
Arales, 714
Aralia, 578
Aralincese, 577
Araroba, 531
Ara ruta, 695
Arar tree, 7.12,
Acaucuria, 742

Arbutex, 604
Archangelica, 575
Aretilum, 596
Arctostaphylos, 604
Arcea, 711

- charcoal, 711
- nut, 711

Arenga, 711
Areng palm, 711
Argauia, 609
Argel leaves, 618
Argemolie, 445
Arillode, 656
Ariswma, 717
Aristolochia, 682
Aristolochiaces, 681
Aristotelia, 484
Armeria, 607
Armoracia, 451
Armatto, 458

- order. 457

Arluica, 596
-root. 596
Aro, 639
Aroidacer, 715
Aroidex, 715
Aromatic umbellifcree, 575
Aırack, 712, 737
Alracacha, 498, 574
Arrow-griass, 708
Alrow-root, 746

- East Indian, 694
- English, 630
- Floridn, 746
- Portliand, 717
-. West Indion, 695
Artanthe, 678
Artemisia, 596
Artichokc, 597
Artocarpacer, 665
Artocarpus, 666
Arum, 715, 717
Arundo, 735
Asngreen, 723
Asarabacca, 682
Asarales, 681
Asarum, 682
Asclepiadaccre, 616
Asclepins, 617
Ash, 613
Asparagex, 720
Asparagus, 721
Aspergilius, 758, 760
Asphodelus. 721
Aspidium, 748
Aspidosperma, 615
Asafuetida, 577
Assam rubber, 66 t
Astcricce, 551
Astcrales, 589
Astcroidcre, 594
Astragnlus, 531
Astroloma, 606
Atup), 715
Atecs, 432
Atherospermn, 655
A.therospermaceæ. 655

Atis. 432
Atriplex, 650

Atropa, 631
Atropere, 629,631
Attalea, 712
Attar of rose, 54.4
Aubergiue $=631$
Aucklandia, 596
Aurantiere, 500
Australian alstonia bark, 615

- copal, 742
- dammar, 742
- gnin, 538
- kino, 555
- manna, 555
- sassafras, 655

Ava, 679
Λ rena, 735
A verrhoa, 498
Avicennia, 640
Avignou berries, 515
Avocado pear, 659
Ayer-ayer, 508
Azaduraehta, 508
Azalea, 604

BABLAII, 538
Babul bark, 538
Bacteria 759, 760
Bael, 500
Bahia piassaba, 712
Balanites, 506
Balanophora, 688, 689
Balanophoricere, 688
Balatas, 610
Balaustina flowers, 556
Belaustion, 556
Bald-money, 575
Balm, 507, 642

- of fir, 744
- - Gilead, 507
- - Mecea, 507

Balsaminacere, 495
Balsamito, 534
Balsamodendron, 506
Balsam order, 495

- tree, 470
- of Acouehi, 508
- copaiba, 537
- - Peru, 534
- - Tolu, 534
— - Umiri, 492
Bamboo, 736
Bambusa, 736
Bnnana, 695, 696
Banconl nut, 673
Bundakai, 478
Banda paper, 479
Bandoline, 768
Baneberry, 432
Bang, 665
Bnobab tree, 480
Buphia, 535
Buptisia, 532
Barbadoes aloes, 720
- cherries, 492
gooseberry, 570
Barlung wormseed, 597
Barberry, 438, 439

Barcelona nuts, 686
Barilla, 650
Bark bread, 743
Barley, 736

- sugar, 738

Barosma, 500
Barriearri seerls, 539
Barringtonia, 557
Barringtoniacere. 557
Barus eamphor, 475
Barwood, 535
Basella, 651
Basellacer, 651
Bassia, 6U9, 610
Bast, 485

- Cuba, 479

Bastard ebony, 611

- ipecacuanlı, 617
- - Freuch plyssie nut, 675
- myrobalans, 553
- safíron, 597

Batatas, 627
Batidacere, 654
Batis, 654
Battledore barley, 737
Bauhinia, 535
Bay-berry, 556, 658
Bayeuru, 607
Bay rum. 556
Bdelliuni, 507
Beam-trec, 540
Beau-eaper, 492, 494
Beans, 530
Bearberry, 604
Beatsouia, 463
Beaver-tree, 435
Bebeeru, 658

- bark, 658
- seeds, 659

Bedda nuts, 553
Beech, 686
-- - mast, 686
Becf-wood, 537, 670
Beet, 650

- root, 650

Begonia, 568
Begoniacer, 568
Behar eotton, 478
Bejetlan, 508
Belladomma, 631
Bellerie myrobalans, 553
Bell-pepper, 630
Belvisia, 558
Belvisiacem, 558
Beneno de Deos, 477
Bendikai, 478
Bengal gram, 532

- hemp, 532
- kino, 532

Benjamin-tree, 612
Benne oil, 637
Ben-111ts. 525
Benzoin, 612
Berberidaees, 438
Berberine-tree, 436
Berberis, 430
Bere, 730
Bergamot, 502
Bergera, 503

Bermuda arrow-root, 695
Berthelotia, 597
Bertholletia, 557
Beta, 650
Betel, 549, 711
Betel nut, 711
-- cateelin, 711

- palm, 711
- pepper, 679

Beth-root, 721
Betterave it sucre, 650
Betula, 668
Betulacere, 668
Betulew, 685
Bevilacqua, 575
Bhadlec, 737
Bhang, 665
Bibiru bark, 658
Bicarpellate, 612, 645
Bigg, 736
Biguonia, 637

- order, 636

Bignoniacex, 636
Bikh, 431
Bilberry, 603
Billardiera, 459
Billbergin, 697
Bindweed, 627
Bireh tar oil, 668

- wine, 668

Bird cherry, 543

- lime, 512
- pepper, 630

Birtllwort, 681, 682
Biscuit roots, 721
Bish, 431
Bissa b 31.506
Bistort, 653
Biting stonecrop. 549
Bitter nlmond, 54?
—— essential oil oi, 543

- apple, 567
- asll, 505
- eassava, 675
- eups, 505
- oil, 470
- orange, 501
- swect, 630
- vetch, 530
- wood, 437, 505

Bixa, 458
Bixmeex, 457
Bizarres, 465
Black alder, 515

- alder bark, 512
- aloes. 721
- amadion, 761
- berry, 544
- bireh, 66?
- bryony, 706
- bully, 609
- catechn, 538
- cammin. 133
- elrrant, 548
- (lammar, 175,507
- drík 512
- cbony, 611
- ginger, 694
- hellebore, 432

Black ipecncuanlat, "SS

- mustard, 151
- nightshade, 630
oak, 6S6
- pepper, 679
- piteh, 743
- Spanish nuts, 686
spruce fir, 744
- tea, 472
thorn, 542
- varuish, 523
——or Sylhet, 523, 5̄2t
- walnut, 685
whortleberry, 643 wood, 533
Blackberry, 544
Black boy gum, 729
Blablerlocks, 767
B!alder-nat order, 521
- senna, 532

Bliglia, 519
Blimbing, 498
Blood-red orange, 501

- root, 446, $70 \overline{5}$

Blue cohosh, 440

- flag, 703
- galls, 687

Blumen, 597

- camplior, 597

Bochmeria, 662
Boerhaavia, 649
Bog-bean, 621

- mosses, 754
- myrtle, 669
- onion, 749
- whort!eberry, 603

Boi, 577
Bois-tan, 492
Boldo, 655
Boldoa, 655
Boletus, 760, 761
Bombax, 481
Bombay masticli, 523 senna, 536
Bumbyx, 50.4
Bonducella, 52.5
Bonnet pepper, 630
Bookum wood, 536
Bornge, 624
-oriler, 623
Bornginacer, 623
Borago, 624
Porassus, 712
Borneo camphor, 174

- rubber, 616

Boswellia, 507
Botany Bay kino, 555

- - oak, 670
- - resin, 722

Botrytis, 759, 760
Bottle fourd, 567
IBonrbon eotton, 478

- tea, 699

Bouza, 736, 737
Bowdichia, $5: 32$
Bowatring hemp, 721
Tsox-tree, 673
leragantia, 682
Brake, 749

Brasenia, 441
Brassica, 450
Brajern, 543
Braziletto wood, 530,536
Brazilian arrow-root, 675

- chip lats, 712
- clove-bark, 658
- cocon, 519
- eopal, 538
- cotton, 478
- elemi, 507
- grass hats, 712
- holly, 512
- nutmeg, 658
-rlatany, 461
- sarsaparilla, 725
- sassairas, 659
- tea, 639
- wax, 713

Brazil uut, 557
—— tree, 557

- wood, 536

Bread fruit, 665, 666

- muts, 667

Breakstone, 544
Brexia, 547
Briar-root pipes, 605
Brinjals, 631
Bristlewort, 729
Britisll gum, 630

- oak, 686

Broad beans, 530
Broceoli, 451
Bromelia, 696,697
Bromcliacex, 696
Bromus, 734
Broom, 530,532

- rape, 634

Brosiunum, 666
Broussonctia, 653
Brown Barbary grum. 534
Brown-colonred alma, 66.

- Indian hemp, 479
-rhatany, 461
- tamarinkls, 537

Brucer, 501
Brunia, 551
Bruniacce, 551
Brunonia, 600
Bruuonincea, 600
Bryュecæ, 754
Bryea, 754
Bryonia, 567, 568
Bryony, 706
Buchin. 500
Buck-bean, 621
--. eye, 519
Buektiorn, 514, 515
Bnckwlieat, 652
Bukkum wood, 536
Bullace, $5 \cdot 12$
Tully-trec, 537, 610

- wood, 609

Bulrush order, 71.5
Bulruslies, 732
Bulmsh of the $\mathrm{Ni}^{\prime} \mathrm{e}, 732$
Bunchosia, 492
Buninun, 574
Eurgiudy pitch, 7.11

Burmannia, 700
Buruanmiacce, 700
Bursera, 507
Burscracea, 506
Buslı ten, 532
Bussorall galls, 687
Butcher's broom, 721
Butca, 532

- gum, 532

Butcmacere, 707
Butomns, 707
Binttercup order, 42,
Butterty wced, 618
Butter of cocoa, 482

- -uutmegs, 656
--nut, 685
- tree, 471

Butterwort, 635
Button suakeroot, 59 s
Butyrospermun, 610
Buxus, 673
Byrsoniua, 492, 532

Cabrage, 451
-bark, 531

- palm, 713
-- rose, 544
Cabcza del negro, 714
Cabombacer, 441
Caeao, 482
Cachibon resin, 507
Cactacew, 560
Cnetus, 569
Cadabra, 453
Cevalpinia, 536
Crasalpinice, 529, 5.35
Caffre breal, 716
- cor!1, 737

Cafta, 513
Oagliari paste, 738
Cahoun nuts, 712

- palm, 712

Cяj:ımиs, 530
Cujupnt oil, 556
Cake gamiboge, 470

- satiron, 507, 70:3

Culabar bcau, 530, 5.34
Calabasll mutmeg, 436

- tree, 636

Caladium, 717
Calaguala, 748, 740
Calamander wood, dil
Calamus, 712
Calenduir, 597
Calla, 717
Callitrichaceæ, 552
Callitriche, 552
Callitris, 742
Calophylluin, 470
Calotropis, 618
Cnlunıbs, 438
Culycunthacere, $43: 3$
Calyemithus, $433,4 \% 4$
Calyeera, 591
Calsceracenc, 581
C.llyciflore, 528
analysis of, 580
Calysaccion, 470

Calystegia, 627
Camara nutmeg, 657
Camassia, 721
Camata, 686
Camatina, 686
Camelina, 451
Caurllia, 471

- order. 472

Camellinces, 471
Camel's thorn, 531
Campanales, 600
Campanula, 601
Campanulacee, 600
Camplor, 474

- oil, 474
- tree, 657

Camphora, 474, 657
Campylospermez, 573
Camwood, 535
Canada balsana, 744
-rice, 738

- suake root. 682

Canadian araric, 761

- balsinn, 744
- fleabane, 597
- hemp, 615
- maideulair, 7 ± 8
- piteh, 744

Catagong, 571
Cmangia, 436
Canarimm, 507
Caumry grass, 737

- sceel, 737

Caneer-root, 635
Cundle-berry, 670

- unt, 673
- tree, 636, 1973

Candytuft, 152
Cunella. 457
Canellacers, 457
Cinnes, 712
Cane sugar, 137
Clulua, 635
Caunabinaces, 661
Cauuabis, 664
Cammaere, 695
Canutillo, 7 - 5
Caontchoue, 615, 618,674
Cape aloes, 721
-gum, 538
Caper order. 452
--spurge. 674
(apers, 453
Cape tea, 532
Capillaire, 748
Capitào de matto, 639
Cappareme, 452

Сapparis, 453
Capmaria, 634
Caprifoliacew, 583
Caprifolium, 584
Crpsieums, 620
Curajuru, 637
Cuminbole, 498
Carmmel, 737
Curuma resith, 507
(Arrtif, 508

- Ca"ぃพay, 575

Cardamine, 451
Cartamomss, 694
Cardiosperınum, 519
Carrloon, 597
Cardutus, 597
Carex, 732
Careyá, 558
C'arien, 564
Carissa, 616
Cariuloviea, 715
Carminative umbelliferx, 575
Curuation, 465

- grass, 732

Carmauba palm, 713

- wax, 713

Carob, 536

- benar, 536

Carolina allspiee, 43 t

- pink, 619

Carpathian balsam, 743
Carpinus, 686
Cavrageen moss, 767
Carron oil, 491
Carrot, 57士, 575
Carthagena rubbev, 667
Carthanus, 597
Carum, 574, 575, 643
Carya, 684
Caryoen: 474
Caryophyllaeea: 463
Caryophyllinex, 463
Cayophyllus, 555
Caryota, 712
Casea, 658
-bark, 539
Cascara, 515
Casearilla, 674
Casearia, 562
Cashew unt, 522

- tree, 523

Casimiroa, 501
Cassa bark, 539
Cassareep, 675
Cassava, 675
Cassia, 536, 658

- bark, 658
- buds, 658
- lignea, 658
- oil of, 658

Cassumunar root, 69.
Cassythis, 656
Castanea, 686
Castanlua muts, 55 a
Castanospermmm, 532
Castilloa, 64i7
Castor oil, 676

- - plant, 676
- - seerls, 676

Casuarina, 670
Casmminneere, 670
Catechin, 538, 589, 711
Catha, 513
Catmint, 642
Canliflower, 451
Can'oplly 1 1nm, 410
Cavi, 670
Caypme pepper, 630
Ceanothus, 515

Cearn India-rubber, 675
Cecropin, 490, 667
Cedar, 742
Cednr-woorl of Guinua, 50\%
Cerlrat, 502
Cedrela, 509
Cedrelatcere, 509
Cedrus, 742
Celandine, 445
Celastrucear, 512
Celastrales, 512
Celastrus, 513
Celery, 574
Celosia, 649
Celtere, 667
Celtis, 667
Cenomyee, 762
Centaury, 621
Cephaélis, 586
Cephaliua, 589
Cerasus, 543
Ceratonia, 536
Cerntophyllaceas. 690
Ceratophylluur, 681
Cereis, 530
Cereal grains. 733
Cereus, 570
Ceropegia, 617
Ceroxylon, 712
Cetraria, 762
Cetronella oil, 735
Cevadilla, 723
Ceylon enrdamons, 694

- eatechn, 711
- ebony, 611
- moss, 768

Clımela, 568
Chailletin, 510
Chailletiacere, 510
Chamælaneincene, 558
Сhamærops, 712
Chamomile, 594

- oil of, 596

Champignon, 757, 759
Chara, 763
Claraceæ, 763
Charmeters, 405
Cliataigue l'ean. 552
Claulmoogra, 458
Chavica, 679
Chay-root, 588
Clebulic mỵobalans, 553
Cheimantlus, 452
Chekinn, 556
Chelidonim11. 145
Ghenopodiacere, 649, 651
Chenopodiates, 648
Chenopodium, 650
Cherimoyer, 436
Cle-rout, 588
Chorry, 543

- birch, 669
- lanrel, 543
- pepper, (i30

Chervil, 574
Chestnut, 519
Chian turpentine, 523
Chibon resin, 507
Chica, 539, 637, 690, 738

Clichm, 536
(3ick pen, 532
Cliticle, 610
Chicory, 599
Chicot, 525
Clili-nettle, 562
Chillies, 629
Chimaphila, 604
China camphor. 657

- c:rdamoms, 694
- orange, 501
- root, 725, 760
- tea, $\$ 72$

Chinese galangal, 693

- grass-cloth, 662
- green indigo, 515
- 1uoxas, 596
- tallow tree, 676
- vam, 706

Chiquito, 553
Chirayta, 621
Chiretta, 621
Chittagong wool, 509
Chive, 720
($)$!!æнасеæ, 475
Uhlormuthncea, 680
Chlormuthus, 680
C'hlorospermeæ, 764, 765
Chlorosporere, 764, 765
Chioroxylon, 509
Chocho, 568
Chocolat, 482
Choco'ate, 482
Choke berry, 543

- cherry, 543

Chondrodendiron, 438
Chondrus, 766,767
Choupa, 520
Chorisia, 481
Cluristmas rosc, 433
Chrysobalanere, 541, 542
Chrysobalanus, 542
Chrysophylum, 610
Cuufa, 732
Churrus, 665
Cibotium, 749
(icer, 532
Cichorea, 595
('ichorium, 599
Cicuta, 576
(Mimicifuga, 432
Cinclıиの, 586

- bark, 587

Ginnamorlendron, 457
Cinnawomuin, 657
Cimlamon, 657
--uet, 658
(issampelos, 438
(ivsus, 517
'istacea, 454
C'i-tus, 455

- rifue, 682
(Gitron, 502
('itrone!la oil, 735
(Sitrullus, 567
(Sitru\%, 501
(:18donia, 762
()1:u-ses, 404, 408

Dlaviceps, 758, 760

Claytonia, 466
Clearing nnt., 620
Clenvers, 588
Cleuntider, 431
C'ematis, 432, 433
Cleome, 453
C eomeæ, 452
Clerodendron, 639
Clitoria, 532
C oudberry, 544
Clove cassia bark, 658

- bark, 658
- nutmeg, 657
- pink, 465
- stalks. 555
- tree, 555

Clover, 530
Cloves, 555
Club-moss, 750, 751

- -rushes, 732

Clusia, 470
Clusiacez, 469
C uster piue, 743
Cobunts, 686
Cocn, 490
Coccoloba, 653
Cocculus indicus, 437
Coccus pe-la, 614
Cochineal. 570
Coch'caria, 451
Cochlosjermum, 458
Cock's-comb, 649
Cocon, 482

- nibs, 482
- -nut, 712
- - butter, 712
- - fibre, 713
- —milk, 712
- - oil, 712
- palm, 712
- plım, 542
- tree, 482

Cocoes, 717
Cocos, 712
Cocus, 676
Codarium, 537
Cuelocline, 436
Colospermex, 573
Coffen, 587
Coffee, 587

- plaut, 587
- tea. 587

Cohosh, 440
(ioir, 713
Coix, 736
Cola, 481
Colchicacere, 722
Colchiccae, 720
Colehicum, 722, 723
Cole, 450
Collomia, 622
Collorlion, 478
Colocessia, 717
Colocyutlı, 567
Culombo catcelı, 711
Coloradu hemp, 615
Goltsfoot, 599
Colnmbine, 433
(Jolunclliscese, 635

Columellin, 635

- order, 635

Colutea, 532
Colza, 450
Comncum, 658
Combretacere, 553
Combretum, 553
Comfrey, 624
Commclyna, 728
Commelynales, 727
Commelynacere, 727
Common adder's tongue, 749

- allspice, 556
- ash, 613
- bれlm, 642
- bcech, 686
- bcet, 650
- black bryony, 706
- brake, 749
- broom, 532
- buckwheat, 653
- camphor, 657
- chamomile, 598
- clnb-moss, 751
- cocoa, 482
- elrler, 584
- fennel, 574
- frankinceuse, 743
-. Jemp, 664
- lıolly, 512
- horchound, 642
- larch, 744
- lavender, 642
- lanrcl, 543
- lettuce, 599
- lime, 485
- linden, 485
- liquorice, 642, 643
- marjoram, 533
- mushroom, 757, 759
-- myrtlc, 556
- ont, 735
- orange 501
- parsley, 574
- potato. 630
-- reed, 735
- rosemary, 643
- rue, 503
- rye, 738
- singe, 643
- senun, 536
- sorrel, 654
- sugar-cane, 737
-- thrift, 607
- thyme, 643
- wheat, 738
-wood sorrel, 498
- ycw, 745

Compass plant. 598
Composita, 592
Composite order, 592
Comptonia, 670
Concrete oil of mangostecn, 470

$$
\text { . . nntmegs, } 656
$$

Condurango, 618
Conessi bark, 616
Confervoidew, 761, 765

Conifere, 7.11
Coniferous order: 7.11
Conium, 576
Connaracese, 528
Connurus, 528
Consuluptive weed, 623
Couvailarin, 721
Convolvulaeere, 625
Contolvulus, 627
-order, 625
Cookin, 502
Copaiba, 537
Copaifera, 537
Copal, 537, 538
Copal resin, 537
Copalehe, 657

- bark, 616, 620, 67:

Copalm balsam, 551
Copernicin, 713
Coprinus, 758
Coprosma, 588
Coptis, 432
Coquetta bark, 587
Coquilla muts, 712
Corchorus, 484
Cordia, 625
Cordiaccæ, 624
Cordieeps, 760
Corcma, 677
Coriauder, 575
Coriandrum, 575
Coriaria, 524
Coriariacea, 524
Cork, 686
Cork-tree bark, 686
Cork-wiod, 436

- oak, 686

Corky eopalche bark, 67.4
Cormoplyta, 747
Cornacer, 578
Cornelian eherry, 579
Corn-poppy, 446
Cormus, 579
Corollifiore, 583
-aunlysis of, 644
Coromandel woot], 611
Corouilla, 530,532
Correa, 502
Corsican moss, 768
Cortex alstonix, 615

- tlyminmatis, 551

Corydalis, 447
Corylacen ${ }^{2}, 685$
Corylce, 685
Corylus, 686
Corymbiferx, 591
Corypla, 7lis
Coseinium, 438
Costus, 596
Coto birk, 588
(Cotton, 477

- grass, 732
- ront biurk, 478

Cotyledon, 549
Country almonds. b5.

- 4arsapurilla, 618
(Ponrlaril, 5.37
Cowlmue, 576
Cowberys,603

Cowdie pine, 742
Cowhage, 534
Cow-itch, 53 t

- plant, 618
- tree, 616,666

Cowslip, 608
Ciab oil, 508
Crambe, 451
Crauberry, 602
Crnne's-bill oriler, 491
Cirassulaccæ, 549
Crassu ex, 549
Cratæva, 453
Cratoxylon, 468
Creaun-of-tartar tree, 481
Cream-fruit, 616
Creasote, 743

- plant, 493

Cromospermex, 566
Cresceutia, 636
Creseeutiaeeæ, 636
Creyat, 638
Crimum, 705
Crithmum, 574
Crocus, 703
Crop, 589
Cross breeds, 402
Ctotalarin, 532
Croton, 673

- oil, 673
- pseudo-China, 616,671
- sceds, 673

Crowbery, 677

- or'der, 676

Crownwort order, 563
Crozophora, 67t
Cruciferæ, 447
Crueiferous order. 147
Crude complior, 657
Cryptoenry, 658
Cryptogamin, 7.17
Cuacho tree, 667
Cuba bast, 479

- tobacco, 632

Cubebn, 679
Cubebs, 679
Cucn, 490
Cuchunehully de Chensen, 456
Cuckno-flower, 151
Cuekoo-pint, 717
Cucululizs, 465
Cucumber, 567
Cueumis, 567
Cucurbita, 567
Cneurbitneca, sol
Cucurbitea, 566
Culbear, 762, 763
Cudrumia, 667
Сиแ!เแแน, 575
Cи1m1111, 575
Cumblumbigo, 618
Cunoniacen, 5. 18
Chmonia orler, 5.18

(1)1 1 -moss. 7 (62
(Gupren biuk, 588
Cmuessca, 712
Cupressus, 7!:

Cupuliferar, 985
Curacion aloen, 721
Curare, 620
Curcas, 675
Cureuligo, 705
Curcuma, 691

- starch, 651

Currant, 517, 548
Cuscus, 735
Cuscuter, 627
Cusparia bark, 503
Cusso, 543
Custard apple, 436
Cuteh, 538
Cyathea, 749
Cyeadaceas, 746
Cycas, 746
Cyclamen, 608
Cyoclopia, 532
Cydonia, 545
Cynanchum, 618
Cyinari, 597
Cynnexe, 594
Cynaroceplalae, 594
Cynomoriuu, 685
Cyperaeeæ, 730
Cyperus, 732
Cyphia, 601
Cypress, 742
Cypripedinm, 699
Cyrilla, 511
Cyrillaeea, 511
Cyrtandrea, 636
Cytinnece, 682
Cytiuns, 683
Cytisus, 530, 532
Cytturia, 76 u

Daccat entton, 178
Dacrydium, 745
Daetylis, 736
Dalbergia, 533
Dn'unatinn insect powiler, 598
Damiann, 563, 596
Unmmor, 475
Dommenti, 142
Dimsous, 542
Dimen, its
Daneacerv, 718
D:maxem, 748
Dantielion, 599
Dantzie tir, 713
Daplualles. 653
Diplule, 660
Dite collice, 714

- p191m, 713
plum, 611
Dates. 713
Datiscra, 569
Datiscncear. 568
Dithima, 6331

Dawames, 6in
Dendly nightshudu, 631
Dend sia :lpules, 687
- tomguc, 5 , 6

Denls, 743

Deer berries, 605
Deer's tongle, 598, 7.49
Delphinium, 432, 433
Demerara pink root, 619
Deodar, 742
Desmiliex, 765
Desvanxiacca, 729
Deutzia, 547
Devil's apple, 632

- bit scabious, 591

Dewberry, 54t
Dextrine, 630
Uhatureeas, 631
Di:lium, 537
Diamba, 665
Diamorpheae, 549
Dianthns, 465
Diapensiace:e, 62%
Diatomacere, 764,765
Diatomere, 765
Dicarpire, 61: 645
Dicentra, 447
Dichopsis, 610
Dictamutis, 502
Dicypellium, 658
Dielytra, 447
Digitalis, 634
Dika bread, 50 t
Dill, 575
Dilleuia, 433
Dilleniace:e, 433
Dillesk, 769
Dimon pine, 745
Dion, 746
Dionrea, 550
Dioscorales, 706
Dioscorea, 706
Dioscoreacew, 706
Diosma, 500
Diosmere, 500
Diospyros, 611
Diplazinm, 718
Diplecolohere, 450
Diplozygicar, 574
Dipsaccæ, 5 ! 9
Dipsncus, 591
Dipterncear, 47t
Dipterocarpus, 17 !
Dipteryx, 533
Dirca, 659
Di=caria, 515
Disciflora 488, 525
Dita bark, 615
Dittany, 022
— of Crete, 643
Divi-rlivi, 5.36
Tocelma, 736
Dolonera, 519
Dorlonest, 518
Doghane, filt
-rose, 5.4
violet, 450
Doč-wowl, 515,579

- brtk, 57 ! order,578
Dolichors, 530
Dolichosprormum, 767
Doon! lan"k, 530
Dorćm:, 576

Dorsteuin, 663
Dotm palun, 713
Dracena, 721
Dracontinm, 717
Dragon root, 717

- tree, 721

Dragou's blood, 535, 712, 721
Drimys, 434
Drop-wort, 576
Drosera, 550
Droseracere, 550
Drupacere, 541, 542
Dryaudra, 674
Dry rot, 759, 761
Dryobalanops, 474
Duboisia, 631
Duchai hemp, 531
Duckweerl, 717
Dudain, 632
Dnguetin, 436
Duke of Portland's powider, 682
Dulse, 769
Dirian, 481
Durio, 481
Durra, 736
Durvillæa, 766, 768
Dntch camphor, 657
-. madder, 589

- rushes, 750

Dyer's broom, 533

EIGLE Wooll, 660
Earth ahmonils, 732

- nuts, 574
- oil, 531

East Indian nrow-root, 694
—— copsi, 537

- - gum, 538
- - kino, 534
- - mastich, 523
- - myrulh, 506
- - olibanmm, 507
- - rosewoorl, 533
- - satinwoorl, 509
- - senna, 536
-.. - to bacco, 632
- - trenniahner, 470
———teak, 639
Fan l'inge, 556
- rle Mantcs, 674
... médicinale d'Husson, 723
Ebcnacere, 610
Ebenales, 609
Eboe-11uts, 533
Fhony, 611
Heballium, 567
Tehium, 624
Jidiocs, 717
Wlgeworthin, 660
Edible birl's nests; 767
mushoroonls, 756
Egg apples, 631
E\&use oil, 567
ligybtiant bentr, 443

Egyptian corn, 736

- ouion, 720
- soap-root, 465
- whent, 738

Ehretia, 624
Elretiacer, 624
Ejow fibre, 712
Eıragnncer, 661
Eleaguus, 661
Elæосагреæ, 484
Elæocarpus, 484
Elæосоеса, 674
Elsodendrou, 513
Ėlais, 713
Elaphoniyces, 760
Elaphrium, 507
Elaterium, 567
Elatiuncea, 467
Elder:, 584

- Hower water, 585
- wine, 585

Elecampane, 598
Elemi, 507
E'ephant apple, 503
Elephant's ears, 563

- foot, 706

Elettaria, 694
Eleusine, 736
Elloopa Howers, 609
Llloopa-tree, 609
Elin, 667
Euibilen groats, 736
Embliea, 676
Emblic myrobalans, 553, 676
Empetraecæ, 676
Empetrum, 677
Encephalartos, 746
Eurlizc, 599
Enilocladia, 767
English arrowroot, 630

- elm, 667
- mercury, 650
- oil of lavender, 642
- rlubarb, 653

Epacridacere, 605
Epacris, 605
Ephedras, 745
Epigata, 604
Epigynæ, 583, 641, 681, 692
Epipetala, 590

- analysis of, 628

Epiphegus, 635
Epiphyllun, 570
Equisetace:e, 749
Eqnisetum, 750
Eranthis, 433
Ergot of rye, 738, 760
Erica, 604
Vricacca, 603
Ericales, 602
Ericene, 604
Erigeron, 597
Eriobotrya, 544
Lriocmulacere, 720
Triocsulon, 729
Eriorlembron, 481
Evioulictjon, 623

Firiophorum, 732
Erodium, 495
Erva de ibbisi, 613
Erviun, 530
Eryngium, 575
Eryngo, 675
Erysipelas plant, 624
Erysiphe, 760
Erythraa, 621
Erythrophloumm, 539
Erythroxylon, 490

- Coen, 490

Esealloniaceæ, 547
Escallonia order, 517
Eseulent umbelliferæ, 574
Esenbeckia, 502
Esparto, 738
Essenee of bergamot, 502

- - eedrat, 502
- - lemou, 502
- - spruee, 744
—— turpentine, 743
- - virgin balsam, 534
- de bigarade, 501
- - eitron, 502
- - petit grain, 501
- - Portugal, 501

Essential oil of bitter almonds, 543
— — — orange, 501

- - eerlrat, 502
- - - lemon, 502
———sweet orange, 501
Ethiopian soul gourd, 480
Eucalyptus, 555
- gum, 555

Eugenia, 555, 556
Eulophin, 699
Euonymus, 513
Enpatorieæ, 594
Eupatorium, 597
Enphorbia, 674
Emphorbineez, 672
Enphorbiales, 671
Luropean aleornoque bark, 686

- salep, 698

Euryangium, 575
Enseaphis, 521
Enterpe, 713
Evening jurimrose, 560
Evodis, 502
Exneum, 621
Exiclia, 760
Exogouium, 627
Expressed oil of bays, 658

- - mace, 656
- - - mutmegs, 656

Fxtriet of liquorice, 533
Ezrach, 658

FABA, 530
Fugopyrum, 653
Pagns, 686
Fitham tea, 699
J'alse angustura bark, fil9

- ealimbo, 621
- dittany, 502

False ipecananla, 456

- myrrh, 507
- nutmeg, 656, 657, 658
- sarsaparilla, 578

Fat pork, 470
Feather grass. 738
Female ferm, 749
Feunel, 574, 575
Fenugreek, 535
Feru order, 747
Ferouin, 502
Feruln, 574, 575, 577
Festuea, 736
Feuillaea, 567
Fever-destroying tree, 555
Ficoidales, 569
Fieoideat, 570
Fieus, 663
Field ladies' mantle, 544
Fig, 663
Figwort, 632
Fi bert, 686
Filices, 747
Fine-leaved water drop-
wort, 576
Fir-rape ortler, 605
Fir wool, 743

- - oil, 743

Firs, 744
Fixature, 768
Fixed oil of innstard, 451
Flaeourtia, 458
Fiakes, 465
Flax, 490
-. plaut, 490
Flax seed, 490
Fleabaue, 597

- Canarliau, 597

Flemingia, 533
Flexible collodion, 478
Flores chamomillæ, 598
Florideæ, 764
Floseulons, 594
Flour of mnstard, 451
Flower de luee, 70.3
Flowering feru, 749

- plants, 429
- lush, 707

Flowerless plants, 7.17
Fœılieulum, 574, 575
Folia malabathri, 658
Fontainea, 674
Fool's pursley, 576
Forbiditen firit, 502
Foreign oil of lavemier, 6.12

Forest lany's lierb, 596

- oak, 670
- wool, 743

Formosa camphor, 657
Fossil copa, 538
-resin, 537
Font-o'slock plant, 6.48
Foxglove, 63.4
Fox.grapes, 517
Practurin, 543
Frimeon, 546
Franconcese, 546
Frangipnmai, 616

Frankenia, 462
Frmikeniacea, 462
Framkincense, 507. 743

- piue, 7.13
tree, 507
Frasern, 621
Fraxima, 613
Freneh berries, 515
- coloeyntlı, 567
- geraniam oil, 49.5
- lavender, 642
- plums, 542
- seammony, 618

Freziera, 471
Fringe myrtle, 558
Frog-bit, 693
Fuclisia, 561
Fucoidea, 764
Fucus, 767, 768
Fuller's teazel, 591
Fulwa-bntter, 610
Fumariaces, 446
Fumitory, 446
Fundi, 737
1"undungi, 737
Fungi, 756

- edible, 756
- poisonows, 757

Fungus uelitensis. 689
Furze, 530
Fu=anms, 688
Fusiforıu jalap, 627
Fustie, 664

- old. 664
- young, 524
- Zante, 524

GaEta lemon, 501
Ga'netodendron. 666
Galam butter, 610
Galangal root, 693

- greater. 693
- lesser, 693
- light, 694

Galbanum, 577
Galipea, 503
Ginlipot, 743
(ralimm, 588
rinlls. 687
(Gambier, 589
G:mboge, 470

- order, 169
... thistle. 445
Camene, 559
(i:mopetalix, 583
- :malysis of, 641

Innitrus, 484
f:unja, f65
Garance. 559
((morinin. 470
(iarden beet, 650
-- cirrot, 57.4
(ress. 452

- lettince. 889
macturtiom, 497
- orache, 650
- saree 643
- thyme, 642,643

Gardenia, 5Ss
Garlic, 720

- pear, 453

Garrya, 579
Garryaceæ, 579
Gatah Sundek, 610
Geissospermum, 626
Gelidinm, 766, 768
Gelose, 766
Gelseminm, 619
Genera, 407
Genipa, 588
Genipap, 588
Genista, 533
Geutian, 621

- order, 620

Gentiana, 621
Geutianaeer, 620
Geutianales, 612
rentianex, 621
Genus, 403
Geotfroya, 533
Geraniaeex, 494
Geraniales, 488
Geranium, 495

- oin, 544, 735
- - of India, 495

German ehamounilec, 598

- geranium oil, 495
- millet, 738
- pellitory, 596
- sarsaparilla, 732
- tinder, 761
resnera, 635
Gesneraceæ, 635
(resnerere, 636
Gemm, 543
Giesekia, 651
((igartina, 766, 768
Gillenia, 543
Gingelly oil, 637
Ginger, 693,694
fingerbread-tree, 713
(tingili oil, 637
Ginseng, 578
Glapliyria, 556
(ilobularia, 638
(G:oiopeltis, 767
Glunaceæ, 730
- analysis of, 741
filumales, 730
(ilycyrrhiza, 533
(imelina, 639
(tnetacere, 745
(ion powder, 531
(iobbe, 535
froitre-stieks, 769
(fokeroo, 637
fookhru, 637
(ion of pleasure, 451
- thread, 432

Coblilen seal, 432
(iombo, 478
(iommuti fibre, 712

- jalm, 711
(iempliat, 50f
(ifomphorearpus, 617

Gomphrenm, 8:9

Gongouha, 512
Gonolobus, 618
Goorlenincer, 600
Goodenir order, 600
Googul, 507
Gooseberry, 548
Goosefoot, 649
Goose-grass, 588
Gopher wood, 742
Gordonia, 472
Gossypium, 477
Gommia, 515
Gourd, 564, 676
Gouzabám, 624
Gracilaria, 766, 768
Grains of Paradise, 694
Graines d'Avignon, 515
Gram, 532
Graninaceæ, 732
Gramadillas, 563
Granntere, 556
Grapes, 517
Grape-vine, 517
Grass order, 732

- oils, 735
—— of Namur, 735
- trees, 722

Gratiola, 634
Gravel root, 597
Griby plum, 542
Greater galangal root, 093
-.. maple, 521
Great mullein, 634

- water doek, $65 \pm$

Green bny, 658
Greengage, 542
Greenheart tree, 658
Green-coloured alga, 765
Green hellebore, 724
-- laver, 769
-- putehuk, 682

- tea, 472

Greens, 451
Grewia, 484
Griftes de girofle, 555
Grindelia, 597
Grislea, 560
Groats, 736
Ground liverwort, 763

- mut, 531

Ground-nut oil, 531
Gnaeo, 598, 682
Guthacum, 492, 493

- resin, 493
- wood, 493

Gualtleriu, 605
Guanta, 660
Gnar:เ1าะ, 519

- bread, 519

Guarer, 508
Guatemala rubber, 667

- sursuparilla, 725

Glatvas, 556
Gunyuquil rubber, 667

- wnsaparilla, 725
finaycurt, 607
fianzumia, 181
Guelder-rose, 585
Guettarda, 588

Guibourtia, 537
Guilandina, 537
Guimanve, 477
(tuinea corn, 736

- grass, 737
-henweed, 652
- wil palm, 713
- pepper, 630

Guizotia, 598
Gmalancha, 438
Gulf weed, 769
Gn̂l i-pista, 523
Crum aeacia, 538

- miné, 537
- Arabie, 530,53S
- Australian, 538
- Benjamin, 612
- Brown Barbary, 538
- Cape, 538
- dragon, 531,535
- Enst India, 538
- emphorbium, 674
- juniper, 742
- kino, 530, 534
- Kordofan, 538
- kuteera, 482
- lac, 673
- Mogarlor, 538
- Moroeeo, 538
picked Turkey, 538
- plants, 597
- Senegal, 530, 538
- Stakin, 538
- Ta'ea, 538
- Tir'ha, 538
-- tragaeantli, 531
- trees, 555
- white Sennaar, 538
-- wattle, 538
Gumnera, 578
Gunny, 484
Gmujah, 665
(rurjun balsam, 474
Guru nuts, 481
Gustavia, 558
(iutta pereha, 610
frnttiferse, 469
Guttifernles, 467
Gymuema, 618
Gynmospermia, 741
- aualysis of, 746
frymandropsis, 453
(tynerimm, 736
(iynocardia, 459
(r) psophilia, 465
(i) 10])lhorn, 762

Gyrostemon, 65L

HABZelia, 437
Hementhise, 701
Hamatox y lon, 587
Hemorloracen, 705
Hamodoruin, 706
Ilagenia, 543
Halidrys, 768
Hulorayucex, 552
11atoscias. 574
Hamamelidacer, 551

Hamame is, 551
Hancornia, 616
Haplozygieョ, 573
Hare-bell, 600
Haricots, 530
Haschish, 665
Hashash, 665
Havanua tobaceo, 632
Hay saffron, 597, 703
Hazel, 686
Heart's-ense, 456
Heath order, 603
Hedcoma, 642
Hedera, 578
Hedge hyssop, 634
Herlycarpus, 520
Heisteria, 510
Helianthus, 598
Heliotropinm, 624
Helleborew, 431
Hellebores, 432, 724
Hellebor'us, 432, 433
Helminthocorton, 768
Heloseiadium, 574
Hel wingia, 578
Hemidesmus, 618
Hemlock, 576

- dropwort, 576
- sprnce, 744

Hemp, G64

- seed, 664

Henbane, 631

- annual, 632
- bieunial, 632

Menna, 560
Henué, 560
Hensloviacew, 548
Hen-ware, 767
He-oak, 670
Hepatic aloes, 720
Hepatiencea, 754
Hermodactyls, 724
Heterosciadiere, 573
Heterosporin, 752
Henehera, 546
Hevea, 674
Hibiscere, 477
Hibisens, 478
Miekory, 684

- muts, 684

Himalayan rhabarb, 653
Hippoeastancex, 518
Hippoernten, 513, 514
Hippocratencer, 513
Hippoinane, 675
Hippophaë, 661
Hips, 544
IIOM-g11m, 524

- nnt, 681
-. plums, 524
Molens, 736
Holigarim, 523
Holly, 511,512
Holly hook, 477
Homalincere, 562
Honnlium, 562
1Iomeria, 703
1 Tondinras cotiar, 509
- rubber, 667

Houduras sarsaparilla, 725
Honesty, 452
Honeysuckles, 58.4
Honey water, 705
Honcy-ware, 767
Honig-thee, 532
Hop, 665
Hopea, 475
Hordenm, 736
Horehound, 642
Hormosiphon, 766, 768
Hornbeam, 686
Hornwort, 680
Horseehestnut, 519
Horse enssia, 536

- mint, 642
- radish, 451

Horse sngar, 612
Hor'setail, 749
Hottentot's fig, 571
Houseleek, 549
Hovenia, 515
Hnile de Cade, 743
Hulled barley, 737
Hnmiriacere, 492
Hnmirinm, 492
Hnmmins, 665
Hondred-leaved rose, 544

- years plant, 704

Hungarian balsam, 744

- red pepper, 630

Hnon pinc, 745
Нуа-дуа, 616
Hybridisation, 402
Hybrids, 402
Hydnoearpus, 458
Mydnora, 683
Hydrales, 632
Hydrangen, 547
Hydrangeaceæ, 547
Hydrastis, 432
Hydrocharidacere, 693
Hydrocharis, 693
Hydrocotyle, 575
Hydropeltis, 441
Hydropliyllacere, 62』
Hydrophyllnm, 622
Hymenra, 537
Hyoscyanıns, 631
Hypericacer, 468
Hypericum, 468
Hypluene, 713
Hyssop, 453
Hysteropliyta, 420

IBERIS, 452
Tencina, 510
Icacinncew. 510
Ice plant, 571
Iceland moss, 76:
Teicn, 507
Tlang-ilang, 436
1lex, 512
Ilicacer, 511
11lieinm, 43\%
Tmbricuria, 610
Imperial lemon, 501
Incompletie, 618, 683

India-rubber, 615, 616, 667
Indian aconite, 431

- aloes, 721
- bael, 500
- barberry, 440
-bdellium, 507
- bread, 760
- elove bark, 658
- corı, 738
- cottoll, 477
— cress, 496,497
- danmar, 742
- fennel, 575
- fig, 664
- grass, 735
- - oils, 735
-hemp, 665
- lemon grass. 735
- liqnorice, 531
- inatting, 732
- melissa oil, 735
- millet, 737
- mu=lin. 696
- oak, 639
- plyysic, 543
- rlinbarb, 653
- rubber, 615
- sarsaparilla, 61^{2}
- satin wood, 509
- slıot, 695
- snmbul root, $5: 7$
- teak, 639
- tobacco, 602
- thruip, 717

Iudigenous salep, 633
Indigo, 533
Indigofera, 533
Infere, 583, 644, 681, 692
Inocarpus, 660
Insect powder, 59.3

- Dulmatian, 593
-- Persinn, 593
Inn18. 598
Ionislime. 456
Ipain, 490
Ipecncuanla, 586
- American, 543. 6it
- amyliceons, 589
- amminated. 586
- bastard, 617
-. black, 588
-. striated, 588
- unilulatel, 589
- white, 589
- woody, 456

Iponuca, 627
Tridicees, 701
Tridit:2. 766, 769
Iris, 701, 703
Irish moss, 769
Iron hark-tree, 55.5

- wood, 611, 62ti

Irvingia, 504
Isntis. 451 Izomamira, 610
I sosporia. 747
1sotomar. 60)2
Ispaglui, 644

I sult peiz, 501, 703
l t:t!i:u juicc. 533

- unillet. 733
- piste, 738
- Sirsaparilla, 725
- semna, 536

I Fib, 596
I rory wheat, 736
Iry, 578
-order, 577
Ixtle fibre, 697
J.AR, 736

Jaboraudi, 503
Jabuticab々, 5.56
Jacaranda, 637
Jack-fruit, 660
Jaggery, 711, 712
Jalap, 627
-- 1nsiform, 627

- light, 627
- male, 627
- spurious, 627
- Tampico, 627
- woody. 627 wood, 627
Jamiaca cedar, 509
—kino. 653
- nutmegs, 436
- pepper, 556
- quissia, 515.5
- sarsaparilla, 725
- senua, 536

Jamalgata pills, 673
James's tea, 605
Japan camplior, 657

- lacquer. 524
- sago, 746

Japallese bclladouna root, 632

- isingiass, 767
- moxas, 596
- pepper, 503
- wax, 524

Japonicas. 516
Jasmine, 613
Jasminea, 612
Jatminum, 613
Jatcorliza, 439
Jatroplia, 675

- maniliot, 675
- oil, 675

Javir almonds, 507

- cardamoms, 694
- galmural root, 693 rubber, 664
Jcea wood, 509
Jetfersonia, 440
Jelly plant, 768
Jerpuirity scerls, 531
Jerusalem artichoke, 598
- filherta, 686

Jemit's bark, 587 ullts, 562
Jetee fibres. 618
Jew's ear, 760 mallow, 481
Joh's tears, 736

Jointed fir, 745
Jollittia, 568
Jubbulpore hemp, 532
Juglantaceae, 684
Juglaus, 684
Jujube, 516
Juиспeere, 725
Jnncaginaeea, 708
Junci, 726
Juncus, 726,735
Jungermanuiacea, 755
Jnngermanniex, 755
Juliper, 742
-gum. 742

- oil, 743
- resin, 742
- tar, 743

Jnniperus, 561
Jussirea, 7 ± 2
Jute, 484

- hemp, 484
- plant, 484

Juvia nuts, 557

KADI-KANE, 737
Kaf-Maryan, 450
Kakaterro, 745
Kaki, 611
Ka'adana secrls, 627
Kala til, 598
Kalmia, 604,605
Kamala, 675
Ǩaugaroo apples, 630

- grass, 735

Karcom, 703
Kariyat, 638
Kasheia, 737
Kat, 513
Katclung oil, 531
Kawrie gunk, 742

- pine, 742

Keg-fig, 611
Kekui, 673
Kcknne, 673
Kelon-ke-Tel, 7.12
Kelp, 767
Kermes oak, 687
Kessaree flowers, 532
Klıat, 513
Klıus-klıns, 735
Kiddah, 658
Kidnes-beans, 530
Kielmeyera, 472
Kikayon, 676
Kinman, 658
Kinnemon, 658
Kino, 530
Ki-tsai, 768
Knotwort, 465
Kodro, 737
Kohl-rabi, 151
Kokoonat, 5ly
Kokres, 676
Kokum-i)utter, 170
Kola-muts, 481
Kocchla tree, 619
Koosnm oil, 697
Rorarima cardanoms, 68t

Kordofan gum, 533
下ousso, 543
Krameria, 461
Krania, 579
Kumquat, 502
Kundah oil, 508
Knteern, 458, 483

LABIATAE, 640
Labiate order, 640
Labiatifloræ, 594, 599
Labrador tea, 605
Laburuum, 530
Lace-bark, 660
Luchmanthes, 706
Lacistema, 676
Lacistemaceæ, 678
Lactuea, 599
Lactncarium, 599
Ladanum, 455
Ladies' mantle, 5 ± 1
Lagbi, 714
Lagenaria, 567
Lagerströmin, 560
Lagetta, 660
Lalo, 480
Lamb's lettuce, 590
Lamiales, 638
Laminaria, 766, 769
Lana dye, 588

- tree, 588

Lance-wood, 436
Lrudolphia, 616
Langsat, 508
Langsdorffia, 689
Lanseh, 508
Lansium, 508
Lantana, 639
Lapageria. 725
Laportea, 662
Larch, 744

- agaric, 76 E
- ntannit, 74
- turpentinc, $7+4$

Lardizabala, 44)
Lardizaba!neca, 110
Larix, 744
Larkspur, 433
Larren, 493
Latakin tobacco, 632
Lathyrus, 530
Lattice-leaf plaut, 709
Laurncere, 656
Laurales, 654
Lantel, 656

- berries, 658
- camphor, 657
- fat, 658
- -lcaved canella, 157
- lcaves, 65.

Lnurclia, 655
Lanrencia, 766, 769
Sturivs, 658
Lanrustinus, 58.
Lavandula, 642
Lavender, 6.12

- cotton, 598

Laver, 769

Lawsomia, 560
Lean Vera Cruz sarsaparille, 725
Lebonah, 507
Lecanora, 762
Lecythidaceæ, 557
Leeythis, 557
Lenum, 605
Leek, 720
Leguminosæ, 528
Leguminous order, 528
Lemuaceæ, 717
Lemon, 501

- -grass oil, 735
-plant, 639
- thyue, 642
-- tree, 501
Leutibulariacere, 635
Lentils, 530, 533
Leopard's bane, 596
- wood, 667

Leopoldinia, 713
Lepidium, 452
Lepidostaehys, 676
Leptandra, 634
Leptospermex, 554
Leptosper:mum, 556
Leroy végétal, 568
Letter wood, 667
Lettuee, 599

- opium, ${ }^{2} 99$

Lenconogon, 606
Levant madder, 589
-- wormseed, 596
Leveu bark, 548
Lever wood, 686
Levistieum, 575
Lewisia, 571
Liatris, 598
Liberian coffee, 588

- rubber, $66 \pm$

Libi dibi, 536
Lice seeds, 723
Lichenes, 761
Liehens, 761
Ligu-aloe wood, 660

- Mexican, 507

Lignum eolubrinum, 620

- nephriticum, 525
-rhodium, 506
- vitre, 493

Ligu'ifiorex, 595, 599
LiJae, 614
Li ineere, 718
Liliales, 718
Liliex, 720
Liliun, 7 ?1
Lily, 718

- of the vallcy, 721

Lima wood, 536
lime fruit, 501, 502
-- tree, 485
——order, 482
Jimmanthacers, 497
Limmanthes, 497
Linacere, 188
Linden order, 182

- tree, 185

Ling, 552

Linnæan system, 414
Linseed, 490

- meal, 491
- oil, 491

Lint, 490
Linum, 490
Liquidambar, 551
Liquid eamphor, 474

- myrrh, 506
- storax, 551,612

Liquorice, 533

- juice, 533

Liriodendron, 435
Lisbon sarsaparilla, 725
Lissantlue, 606
Litehi, 519
Litmus, 763
Little cord, 748
Live oak, 686
Liverworts, 754
Loasncere, 562
Lobelin, 602
Lobeliacea, 601
Locust irnit, 536

- wood, 537
- tree, 535, 537

Loganiacea, 618
Logwood, 530,537
Lo-kao, 515
Lolinm, 734
Lomeutacere, 449
Longan. 519
Long-cared barley, 736

- learcd pine, 743
- nutmegs, 656
- pepper, 679
- zedoary, 694

Lonicera, 584
Loofahs, 568
Loosestrife, 559

- purple, 560

Lopez root, 503
Lophira, 474
Lopboplyytum, 689
Loqnat, 544
Lorauthacere, 687
Lorinntins, 687
Lords and ladies, 717
Lotophagi, 516
Lotirr bark, 612
Lotus, 443, 516

- tree, 492, 516

Lovage, 575
Love-ipplee, 630
Love-lies-bleeding, 645
Loxopterigium, 616
Lalban, 507

- Muitee, 507
- tree, 507

Lneerise, 530
Lucumic, 610
Lntific, 568
Luhen, 485
Lamuria, 452
Lung-wort. 763
Lupulinic ylancls, 665
Lus-th-churtsis, 579
Lejelmis, 405
Lycoperdun, 760

Lyeoperdon muts, 760
Lycoper-icunn, 630
Lycopocliacew, 750
Lycoporlium, 751
Lygeum, 737
Lyperia, 634
Lytbraceæ, 559
Lythrum, 560

MACAD.AMIA, 661
Macassar oil, 436
Macearoni, 738
Mace, 656
Machærium, 533
Màche, 590
Maclura, 664
Maconie, 66 ō
Maerochloa, 738
Macropiper, 679
Madagascar poison nnt, G16
Madder, 588, 589

- order, 585

Mndia, 598
Magnolia, 434, 435
Magnoliacex, 434
Magnolieæ, 434
Maguer, 704
Mahuira, 432
Mabogany, 509, 510
Maidenhair, 748
Maize, 738

- becr, 738
- stareh, 738

Ma zena, 738
Majoon, 665
Majoraua, 642, 643
Makiah, 665
Mako-mako, 484
Malabar cardamonis, 604
Malabar kino, 534
Malacca canes, 712
Malachra, 179
Malambo bark, $67 t$
Male fern, $7: 18$

- jalap, 627

Malesherbiacere, 563
Mallotus, 675
Mallow, 479

- order, 475

Malpighia, 491, 492
Malpighince: 491
Milt, 737
Malta orange, 501
MLalva, 479
Mal vacee, 475
Malvales, 475
Malver, 477
Mammed, 470
Mammee apple, 470
Manclinned, 675
Mancona birk, 539
Mandarin ornnge, 501
Mintragorn, 63:
Mandrake, 567, 632
Mangalea, 616
Mmyrinya, 616
Wangel-wnrzel, 650
Mangifern, 523

— wild, 470,504
Mangotd wnrzel, 650
Mimgosteell. 470

- order, 463
concrete oil of, 470
Mathgrove, 55 ?
Manihot, 675
Manila bast, ilt
- eiemi, 50;
- hemp, $69{ }^{3}$
- tobacco, 632

Manua, 613

- croup, 733
- le Brianson, 74
- of the Hebrews, 762
- - Mount sinai, 467

Manr-earcl wheat, 738
Maple, 520

- sugar, 521

Maponchari. 665
Marauham rubber, 675
Maranta, 695

- starch, 695

Marantaceat, 695
Marasmius, 707
Marattia, 743
Murattiacea, 743
Maregran 1 ia. 473
Maregranviacea, 473
Marchantia, 756
Marchantincea, 755
Marehautiex, 755
Mare's-tail. 552
Margosa tree. 508
Marigold, 597
Marjoram, 6:2
Marking nut. 52t
Marmalate, 556

- fruit. 609

Marrubium, 642
Marsdenia, 614
Marsli-mallow, 477

- trefoil, 621
- rosemary. 607

Marsilea, 753
Marsileacear, -59, 753
Martin's cancer powler, 635
Marvel of Peru. 648
Mary's flower, 450
Massamniuba, 666
Mastiel, 523
Maté, 512
Matthiola, 452
Matieo, 597, 673
Matricaria, 598
Matura worm incdicine, 491
Mituritia, 713
Manritius cbony, 611

- rubber. fl 1 f

Maw secds, iff
Mayacn, 72:
Mryacere, 728
May apple, 410
Mayweed, 595
Meadow safiron, 723

- swect, 5+1

Mealy Gueder rose, 585

Mealy root, 695
Mecea galls, 687
Mechamect, 6:7
Medieago, 530
Medick, 530
Medlar, 545
Melaleuca, 556
Melanorrhaea, 523
Melanospermex, 764
Melanosporew, 764
Melinthacere, 722
Melastomacer, 558
Melastoma, 559
Melia, 508
Mclincere, 508
Meliantheæ, 493
Melica, 735
Melicocea, 520
Melilot, 530
Melilotus, 530, 531
Meliosmere, 518
Melissa, 642
Melloca, 651
Melo, 567
Melocactus, 570
Melon, 567

- caetus, 570

Melosia, 767
Memecylon, 559
Menispermacew, 437
Menispermmu, 438
Mentha, 642
Menthol, 642
Mentzelia, 562
Menyanthere, 621
Menyanthes, 621
Mertensia, 624
Merulins, 759, 760
Mesembryanthacea, 570
Mescmbryanthea, 570
Mescmbryanthemmm, 571
Mespilodaphuc, 658
Mespiíus, 545
Mesua, 470
Metrosideros, 556
Metroxylon, 713
Meum, 575
Mew, 575
Mexical, 705
Mexiean copal, 537

- elcmi, 506
- grass, 697
- gum, 610
- ligu-aloc woorl, 507
- sarsaparilla, 725
- tcr, 650
- thistle, 445

Mezcreou, 659

- bark, 660

Michelia, 435
Micromeria, 642
Middling ealagualit, 7.18
Mignonct te, $45 \frac{4}{2}$

- order, 453

Mikania, 598
Mildew, 761
Milfoil, 596
Milkweed, 674
Milkwort order, 459

Millet, 737

- bcer, 736, 737

Milnen, 509
Nimosa, 538
Mimoser, 529, 538
Mimusops, 610
Mints, 642
Mirabilis, 649
Mishmee bitter, 432
Mistlctoe, 687
Mitchamitcho, 498
Mocha seuua, 536
Mock orange, 547

- plane, 521

Mogadore colocyuth, 567

- gım 538

Moghi, 760
Mokul, 507
Molasses, 737
Molinia, 737
Molueca berrics, 451
Mollugineæ, 464, 571
Momordica, 567
Monarda, 642, 643
Moncsia bark, 610
Monimin, 654
Monimiaceæ, 654
Monkey apple, 470

- bread, 480
-grass, 713
- pot, 557

Mouksliood, 431, 433
Monk's rhubarb, 65t
Monniun, 461
Monochlamydea, 618

- analysis of, 689

Monocotyledones. 699

- aualrsis of, 739

Monodora, 436
Monotropaccas, 605
Monrovian coffee, 588
Montpelicr scanmony, 618
Moodooga oil, 532
Moonseed, 438

- order, 437

Mor, 506
M.ora, 537

- wood, 537

Moracea, 663
Moræa, 703
Morchella, 757, 760
Morcl, 757, 760
Moreton Bay canc-, 714
———eliestuthts, 53:2
Morind, 588
Moringa, 525
Moringacem, 525
Morocco gum, 538
Morus, 664
Mosqnit bean, 539
Moss, 753
Mote greasc, 508
Mother cloves, 555
Mould, 759, 760
Mount Sinai mamm, 167
Monntain arnica, 596

- ash, 545
-- damson, 505
- hemp, 632

Mo:ntain laurel, 605

- mango 470
- pinc, 743
-spinach, 650
- tea, 605
- tobacco, 596

Montan, 433
Mucor, 790
Mucmin, 534
Mudar bark, 618
-...fibres, 618
Mugho, 743
Mulberry, 663, 664

- paper, 663

Mull, 589
Mullein, 634
Munjeet, 588, 559
Mur, 506
Muriti palm, 713
Murraya, 503
Minrwa, 736, 737
Minsn, 696
Musaceæ, 695
Muscadine, 517
Muscatels, 517
Minsci, 753
Musciner, 753
Mushroom, 756

- edible, 756
- poisonous, 757

Musk root, 575
Mustard, 451

- tree, 614

Mutisicæ, 595
Mylittn, 760
Myopora, 640
Myoporaccæ, 640
Myrabolnms, 553
Myrcia, 556
Myrica, 670
Myricacer, 669
Myristica, 656
Myristicacce, 655
Myrobalans, 553
Myrospermum, 534
Myroxylon, 534
Myrrh, 506
Myrsinaceæ, 608
Myrsine, 608
Myrtaccæ, 554
Myrtales, 552
Myrtce, 554
Myrtle, 554

- wax, 670

Myrtus, 554, 556

Nag-KASsAT, 470, 471
Naiadacere, 709
Nai-yalu, 717
Nankin cotton. 478
Narcissales, 701
Narcissus, 705
Nardoo plinut, 753
Nardostachys, 690
Nirrl, 590
Nardos, 550
Narduse, 590
Nassanviere, 695

Nastoika, 693
Nasturtium, 452
Natal alocs, 791
Natclinee, 736
Native bread, 760

- carrots, 495
- currants, 588,606

Natural systems, 417
Neb-neb, 538
Nectandra, 658
Nectarinc, 543
Necm-tree, 508
Neilgherry nettle, 663
Nclumbiaceæ, 442
Nelumbium, 443
Nepal sassafras, 658
Nepenthacex, 681
Nepenthales, 681
Nepenthes, 681
Ncpeta, 642
Nephclium, 519
Nephrodium, 748
Nettle, 662, 663

- tea, 663
- trec, 667

Neva, 712
New Granada rlatany, 461

- Jersey tea. 515
- Orleans cotton, 478
- Zealand flax, 721
—— spinage, 571
Ngai camphor, 597
Nhandirober, 566
Nib-nib, 538
Nicaragua rubber, 667
- wood, 536

Nicker-tree, 537
Nicotiana, 632
Nigella, 432
Niger seeds, 598
Nim-trec, 508
Nipa, 715
Nitraria, 492, 516
Noble oraugc, 501
Nolana, 625
Nolanacere, 625
Nomenclaturc, 406
Noog, 598
Nopal plant, 570
Nortl American locust trec, 535

- China sugar canc, 736

Norwny birch, 6t8

- spruce, 744

Nosc-blecd, 596
Nostoc, 768, 769
Notonia, 598
Notorlizesc, 450
Noyau, 543, 627
Nucumentrecre, 449
Nummari root, 618
Nut-galls, 687
Nutmeg order, 655

- trec, 656

Nutmegs, 656

- Anerican, 436
- Brazilian, 658
- culnbash, 436
- Cumarit, 657

Nutinegs, clove, 657

- falsc, 656, 657
- Jamaicra, 436
- long, 656
- officinl, 656
- round, 656
- true, 656
- wild, 656

Nuts, 686
Nux-vomica, 619
Nyctaginacea, 648
Nyctanthes, 613
Nymphæaceæ, 4.41
Nyssa, 580

OAK lungs, 763
Oaks, 685
Oat, 735
Oatmeal, 736
Ochua, 505
Ochnaceæ, 505
Ochroma, 481
Ocymum, 642
Odiun, 523
Emanthe, 574, 576
Enothera, 561
Official camphor, 657
-untmegs, 656

- tar, 743

Ogechec lime, 580
Oidinm, 760
Oil cake, 450, 491, 598

- of almonds, 542
- - minise, 435
- - bergamot, 502
- - ben, 525
- - comphor, 657
- - cassia, 658
- - chnmomile, 59.6
- - cinnamon, 658
- - citronclle, 735
- - cloves, 555
- - geranium, 544. 735
- - ginger grass. 733
- - horscchestnme, 519
- - juniper 743
- - laveuder, 642
- - mace. 656
- - neroli, 501
- - nutmegs, 656
- - orange leaf, 501
— - partridge berry, 605
- - patchonli, 643
- - pine-lcaf, 743
— - rhodium. 627
- - rose-lcared geranitum. 495
—— sassafrna, 659
- - spike, 642
—— thyuc, 613
- - turpentinc, i. 13
- - verbeua, 735
—— wild castor secds, 685.
- - winter green, b05

Okra. 478
Olacaces, 510
Olxenles, 510
Olax, 510

Olilenlindia， 588
Ohltiellin， 675
Uli man＇s bearil， 697
D：ea， 614
－vermelho， 534
Oleacea，61？
Uleaster， 661
Jlenm anonæ， 436
－nigrum， 513
－origani， 643
－rusei， 668
－nиопæ， 436
Olibannm， 507
Olive，612， 614
－bark， 614
－gum， 614
－lenves， 614
－－oil， 614
－wood， 614
Olivile， 614
Ombro， 589
Umbrophytum，689
Omphalea， 675
O．nphnlobinm， 528
Omnm，${ }^{\text {an }} 75$
Onagracea， 560
Oneoba， 458
Onions， 720
Onobrychis， 530
Opaqne bdellinm， 507
Ophelia， 621
Cphioglossacere， 748
Ophiog．ossere， 748
Ophioglossum， 749
Opium， 445
－poppy， 445
Opoponax． 577
Opinntia， 570
Orange， 501
－berrics， 501
－flower water， 501
Orchella weeds， 763
Orchidaceæ， 647
Orchidales， 697
Orchil，762， 763
Orchis，697， 699
Ordeal bark， 539
－bean， 534
Orilers，403， 407
Oreodaphne， 659
Orgeat， 732
Origannm， 642
Orinoko tobaceo， 632
Orobanchacese， $63-1$
Orobus， 534
Orontiees， 715
Orris root， 703
Orthoplocere， 450
Urthospermere，566， 573
Oryza， 737
Oiage orange，66：
O－iers， 671
Usminda， 749
O．itrya， 686
Oswego tea， 642
Otto of rose， 5 Al
Onvi rumulra， 709
Oxalidacers， 497
Oxalis， 498

Oxleざa， 509
Oxycetlus， 743
Oxyeoecus， 603
Oyster plant，600， 624

PaChyMa， 760
Patonia， 433
－montan， 435
Pæonieæ， 431
Preony， 433
Pakoe Kidang， 749
Pale catechn， 589
－cinchonn bwrk， 587
Palicurea， 588
Palmacer， 710
Pa＇ma Christi， 676
rosa oil， 495
Palmales， 710
Palmetto， 712
Palm oil， 713
－sugar，711，712， 714
－vinegar， 712
－¥レax， 712
－wine，712， 713
Palms， 710
Palmyra fibres， 712
－palm， 712
－wood， 712
Palo de vaca， 660
Prmpas－grass， 736
Panacea lapsorum， 596
Panama hats， 715
Panax， 575
Pandanncere， 714
Pangium， 458
Panicum， 737
Panna， 749
Pansy， 456
Pao Pereira， 616
Papaver， 445
Papareracere， 444
Papaw，564
Pipaw－tree， 564
Papayacere， 564
Paper mulberry， 663
－rced， 732
Papilionacee，529，530
－inutritious， 530
－poisonons， 530
Pappea， 520
Paprika， 630
Papyrus， 732
Paracoto bark， 588
Para grass， 713
－Indlia－rubber， 67.1
－11uts， 557
－piassaba， 713
－rlatany， 461
－sarsaparilla， 725
Paraguay liolly， 512
－tea， 512
I＇aruira Mrava， 438
－root， 438
Parietales， 443
Parietaria，603
Pariuafinm， 542
Paritium， 179
Parkinsonia， 537

Pamelin， 762
Parmentiera， 636
Pironychia， 466
Paronychincer， 465
Paropsis， 563
Parsley， 574
－piert， 544
Parsnip， 574
－chervil， 574
Partridge berry， 605
—— oil of， 605
－canes， 712
－wood， 510
Paspalım，735， 737
Passerina， 660
Passifiora， 563
Passitloracere， 563
Passiflorales， 561
Passionflower order，j63
Passions， 653
Pastinaen，574， 577
Patchouly， 643
－oil of， 643
Pàte de guimanve， 477
Prutlinia， 519
Paronia， 479
Payena， 610
Payta rhatany， 461
Pca， 530
Peach， 543
－wood， 536
Pear， 545
Pearl barley， 737
Peas， 530
Peccnn－nut， 684
Pedalincea， 637
Pedalinin， 637
Peeled colocyntl， 567
Peepla mool， 679
Peganon， 503
Peganum， 493
Pekca， 474
Pelargonium， 495
Pellitory，596，663
－of Spain， 596
Peltidea， 763
Peltigera， 763
Penæa， 677
Penæacere， 677
Penang caontehone， 618
－lawyers， 712
Penghawar Djanlbi， 74
Pencil cetar， 743
Penghawar， $74!$
Penicillaria， 73 r
Penicillimm， 760
Pennisct11m， 737
Pennyroyal， 642
Pentadesma， 47 I
Pepper－dulse， 769
Peppermint，64：
Peppers，503， 678
Pepperwort， 752
Perenninl wormgrass，61！
Percskin， 570
Perczia， 590
Permambuco cotton， 178
－rubber， 616
Peromospora， 761

Persea, 659
Persinn berries, 515

- insect powier, 593
- tobnceo, 632

Persimmon, 611
Personales, 632
Peruvian bark, 537

- cotton, 478
- heliotrope, 624
- rhatauy, 461
- winter-cherry, 630

Peta'oidex, 692, 739

- Petiveria, 652,

Petiveriacere, 652
Peto, 738
Petroselinum, 574
Petty rice, 650
Peucerlanum, 575
Peumus, 655
Phalaris, 737
Phanerogamia, 420
Pharbitis, 627
Pliascacea, 754
Phascea, 754
Phaseolus, 530
Philadelphaceæ, 547
Philadelphus, 547
Philesia, 725
Philesiacex, 725
Philydraceæ, 727
Phlox, 622
Phœnix, 713
Phormium, 721
Phyllauthus, 676
Physalis, 630
Physic nuts, 675
Physostigma, 530, 534
Phytelephas, 714
Plytocrenaces, 511
Plyytocrene, 511
Phytolacca, 651
Phytolaccaceæ, 651
Pliytoplathora, 761
Piaçava fibre, 713
Piassaba, 712, 713
Picotees, 465
Picræna, 505
Pierardia, 520
Pigeon-peas, 530
Tig-faces, 571
Pig-nuts, 574, 684
Pilocarpus, 503
Pinclea, 660
Pimento, 556
Pimpinclla, 575
Pinacca, 741
Piudova palm, 712
Pinc-nuple, 697

- tibre, 697
- unts, 743
- order, 741
- wools, 743
- wool, 743
lines, 743
Pincy resin, 475
- tallow, 475
- trece, 170

Pincruicula, 635
Pink-root, 619

Pink order, 463
Pinks, 465
Pinns, 743,741
Piper, 678
Piperaceæ, 678
Piper wthiopicum, 437
-aluncum, 679

- angustifolium, 678
- jaborandi, 679
- nigrmm, 679

Pipera'cs, 678
Pipes de bruytre, 605
Pipewort, 729
Pi-pi, 536
Pipsissew: 604
Piratinera, 667
Piscidia, 530
Pistacia, 523

- nut. 523

Pisnm, 530
Pita licmp, 704
Pitch, 743
Pitcher plant, 681
Pite hemp, 704
Pitto, 738
Pittosporncere, 458
Pittosporum order, 458
Pitury, 631
Pix liquida, 743
Plagiospermere, 566
Plane tree, 669
Plantaginacere, 643
Plantago, 644
Plentain, 695, 696
Plant fountains, 511
Platanaceæ, 669
Platanus, 669
Pleurisy-root, 618
Pleurorhizer, 450
Plocaria, 768
Plum. 542
Plumbaginncer, 606
Plumbago, 607
Plume nutmer, 655
Plumieria, 616
Pon, 737
Poaja, 586
Pocnn, 651
Porl pepper, 630
Podocarpus, 745
Podoplyyllum, 440
Podostemacea, 654
Porlostemon, 65.
Pogostemon, 643
Poinciana, 537
Pouxée a carlc, 650
Poison ash, 523

- elder. 523
- mut, 616
- oak, 523, 597

Poisonous leguminoste, 530

- mushrooms, 755°
- umbelliferes, 575

Pois quentques, 525
Poke, 651
Polanisin, 453
Polar plant, 598
Polemonitucen, 622
Polemoniales, 622

Polenta, 733
Polish wheat. 738
Polycarpese, 465
Polygala, 462
Polygalacere, 459
Polygalincu, 459
Polygonaces, 652
Polygonatum, 721
Polygonum, 65:
Polypetalæ, 429, 525,580, 644
Polyponincew, 747
Polyporlieas, 747
Polyjodium, 749
Polypody, 747
Polyporus, 759, 761
Pouna wood, 509
Pomex, 541, 544
Pomegranate, 556
Pompelmoose, 52
Poudwecd, 709
Pongania, 534
Pontedernceæ, 727
Pontederales, 726
Poutederia, 727
Pooall fibre, 662
Poplar, 671
Poppy order, 444
Populus, 671
Porcupine woon, 713
Porewort order, 459
Porphrya, 766,769
Portlaud arrowroot, 317

- sago, 717

Portugal ouion, 720
Portulaca, 466
Portulacacere, 466
Potamales, 707
Potato, 630
Pot barley 737
Potentilla, 543
Poterier. 541
Pounce, 742
Praugos, 575
Prajer-beads, 531
Premma, 639
Prickly ash, 503

- bark, 504
- pear, 570

Primmose, 60 ã
Primula, 608
Priuntacene, 607
Primnlales, 606
Priuce's fenthers, 649
Prinos, 512
Printzin, 599
Prosopis. 538, 533
Protea, 661
Protencere, 661
Protococens, 767
Protophyta, 418, 120
1rumes, 542
Prumus, 542
Parlliota, 755
Psidium, 556
Psoralca, 531
Psychotria, $5: 8$
D'telen, 503
Pteris, 748,740

Pterocarpus, 3 .
Ptychotis, 575
Puecinin, 7 til
Puceonn, 4t6
Tuclia pat. $6 . \mathrm{H}_{3}$
l'uchurim beans, (iä)
Entibills, 764
Pulas corilage, 532
Eulguc. 705
lulse, 530
Pulit, 743
Pulzil oil, 67
Pımpkin, 567
Prnica, 556
Punnecria, 630
Pupli, 515
Purging tiax, 491
Purquira unts, 675

- 0il, 675

Purple heart, 537

- lonscstrife, 560
- woorl, 537

Purslane, 166
Pyrethrum, 508
Pyrolcre, 60t
Tyroxylin, 47 S
Pruus, 545

Qu.MKE pear, 50 G
Quannash, 721
Quamlang nut, 688
Quandhscilote, 636
Quass, 738
(2tinssia, 504

- woot, 505

Quebrachia, 616
Queen's delight, 676
-root, 67 G
Qucreinere, 685
Quercitron bark, 686
Quercus, 686
Quermales, 683
(xuillain, 544
Quillerl copulche bark, 674
Quill-wort, 751
(2uince, 5! 5
Quinine htish, 570
(xuisqualis, 553
Quito oranges, 630
li.anmer mot, 578

Rfueres, 101

Itul\{:1nt, 5!)
Inarlisle An:
Runlesia, 683
Rathesiateron, 683
Rnisj11s, 517
Haiz rel pipitz:lhurc, 509
1:tmbelı, 520
Itanbintin, 510
Ramphons, (301
Kamb-til, 508
Ranitles, 424
Ranmanculuce:口, 420
Ianuncules, 431

12an1utculus, 433
Rapratea, 728°
Rape, 450
Raphatins, 452
Raplia, 71.4

- bist, 711

Raspberry, 544
Ratj, 531
Ratsbanc, 510
Rattulu caucs, 71?
Rilvenala, 696
Ravensara uut, G57
Reatumưa, 468
Reaumuriaceæ, 468
Reil cedar, 509, 743

- cinelına bark, 587
- currant, 548
- elnn, 668
- filberts, 686
- gourd, 567
- gimm, 555
-- jasmine, 616
- 0ak, 686
- рори, 446
- guebriclio burk, GlG
- resin, 722
-rlatan5,461
- river suake-ront, 682
- rose leaves, 544
- sandal wooi, 535,539
- sanders wond, 535
- Smyrina juts, 686
- thornipple, 631
- whortleborry, 603
- Wond tree, 504

Reerl, 735
Refined eamplor, 657
Reinlcer 1110ss, 762
Remijia, $5 \varepsilon 8$
Resedn, 454
Resedacere, 453
Resin of Chranit, 507

- - podopliylltinn, 440

Restiacere, 729
Restiales, 728
Restio, 729
Retti, 531
Rhammaece, 51.1
Rlabmunss, 5 5 5
Rlaphitlopherin, 717
Rhatany, 461
Rher fibre, 662
Rheunl, (553
Theunatism juot, $1.10,706$
[his\%obolacers, 473
Rhjoocirncex, 752
Ihizogene of Tintlley; gy2
Rhi\%ophorョ, 553
Rhizophoracee, 552
Rliodiolit, 5.1?
Rhorlinm, oil of, 1227
Rhorlodendrou, (604, (60i)
Rhorlymení, 76f, 769
Thiodorete, Gu4
Rhodor"lıa, 627
Rhodospermere, 76t
Rliorlosinorea, 76.1
Illitbarlas, fi5.3
Rlıus, $523,524,597$

Ribes, 518
Ribesiacces, 5.18
Ribrort, 643
1Riceiaecz, 755
IRicciere, 755
liec, 737
-- paper, 578

- stareh, 738

Riehardsonia, 588
Rieinus, 676
Riga fit, 743
Rimmon, 556
Ripogourm, 725
Robinia, 535
Rocambole, 720
Roccella, 763
Rock-rose mulcr, 454
Rohuna-trec, 509
Rolum, 509

- bark, 509, 610

Roman chamomilc, 506
Romero, 643
J600man, 55G
Rosa, 544
Rosace:e, 539
Rosales, 528
Ilose-coloured algit, 761

- apples, 556
- of Jericho, 450

1Rosere, 541, 543
Rose-leavel geranitum, 495
Rosemary, G43
Rose oriler, 539
Rosewuod, 530, 533, 335
Rosin wecils, 597
Rosmarimus, 6.43
Rottleru, 675
Rough lorsetail, 750

- skinncd plum, 542

Honnd eardnmom, 691
-. chilli, 630

- mutinegs, 656
zedon'y, 60ג
Roupellitu, Cl 16
Row:an-tree, 545
lioxburghin, 725
Roxburgliacere, 725
Royal fern, 740
Royena, 611
ltabber, 615
Rubia, 589
Rubiacere, 585
Rubiales, 883
Rubus, 544
lutue, 503
order, 49 S
Jucllin, 6 as
Jinmex, 65 t
12nsi-kn-tcl, 541, 73.
Rutsa wil, 541, 78.5
Ruscus, 721
Rushus, 725
Itush nut, 732
luisot, H.4)
Russianl lost, 185
- Ienl, 743
- rhabarb, 653

1Ruta, 503
Intncere, 408

Rutere, 500
Ryc, 738
-bcer, 738

SABADILLA, 723
Sabbatia, 621
Sabiacere, 521
Sabia order, 521
Sabicn, 538
Sabina, 743
Saccharum, 737
Saccharomyces, 761
Sack-tree, 666
Safflower, 507
Saffron, 703

- bastard, 597
- croctls, 703

Sagapeuum, 577
Sage, 642, 643
Sageretia, 515
Sago, 712, 713, 714, 746
Saguerns, 711
Sagns, 713
Sainfoin, 530
Sâl, 475
Salad oil, 614
Salai trec, 507
Salep, 699
Salicacen, 670
Salicormin, 650
Salix, 671
Sallows, 671
Salmalia, 481
Salsify, 599
Salsola, 650
Sulvador'a, 614
Salvadorace:e, 614
Salvador tea, 605
Salvia, 642, 643
Salviniacea, 753
Samadera, 505
Sumbuctis, 584
Sampliire, 574
Samyda, 561
Sanydaceae, 561
Sutudal wood, 688
Sandurach, 742
Saudurusi-m'ti, 538
Suuguiunvit, 416
Sauguisorbere, 541, 544
Sunsevicra, 721
Santa Fé tea, 612
Santalnecer, 688
Santalales, 687
Santalum, 688
Santouica, 506
Sap-green, 515
Sapiudacew, 517
Sapinda'es, 517
Sapindee, 518
Supindus, 520
Sapodilla plum, 609
Saponaris , 465
Sinpoti, 609, 610
Sippotacere, 609
Sappun root, 536

- wood, 536

Sinpleay'i muts, 557

Saracen corrı, 653
Sarcoceplalus, 589
Sarcocolla, 531, 677
Sarcolæua order, 475
Sargassum, 766, 769
Sarothamnns, 532
Sณraceuia, 444
Sarraceniacete, 443
Sarsaparilla, 724, 725
Sassafras, 650

- nuts, 659
- oil of, 659
- pitli, 659

Sassy bark, 539

- tree, 533

Satin wood, 509
Satureja, 642, 643
Saururacce, 679
Saururus, 679, 680
Sau vagesia, 457

- order, 456

Sauvagesiacea, 456
Savauilla rlatany, 461
Savinc, 743
Savory, 642
Saxifraga, 546
Saxifragacee, 545
Saxifrage order, 545
Scabiosa, 591
Scævola, 600
Scaminouy, 627

- resin, 627
- root, 627

Scmlet rumers, 530
Scepa, 676
Scepacer, 676
Schirescli, 721
Schizandra, 435
Sclizandracene, 435
Schmillclia, 520
Schamanthis, 735
Schcenocanlon, 723
Scilla, 72:
Scin pus, 732
Scitaminucue, 693
Sclerantlacea, 466
Scleranthnts, 466
Scopolia, 632
Scol'zonelit, 509
Scotch barley, 737

- clm, 668
- fir, 743
- lovaje, 574

Screw bean, 539

- pine, 714

Scroplhularia, 634
Scrophrulurimuct, 63:
Scurvi grass, 45 l
Scutcllaria, 6.13
Seyphophorus, 7 (5)
Soythian lamb, 7-19
Sea-buckthor", 661
Scaforthin, 714
Sca islmud rotton, 178

- kale, 151
- taje, 769
- Weal, 761
- wrack, 709, 768

Soaside grupe, 653

Scbestell, 625

- plums, 625

Secalle, 738
Sechium, 568
Sedge, 730
Sedum, 549
Seed oil, 675
Sclaginacere, 638
Sclagiuellacez, 75.
Sclaginella order, 752
Sclago, 638
Selinuin, 575
Semecarpus, 523, 521
Semen contria, 597

- cyиæ, 597
- santonici, 597

Semina cataputix, G71
Scmolini, 738
Senccioider, 594
Sencga root, 462
Scuegal gum, 558
Scné sauvage, 532
Senuณ, 530, 532, 536
Septulate, 443
Serpentary rlizome, 682
Scrvice berry, 544

- tree, 545

Scsame oil, 637

- sceds, 637

Sesamum, 637
Sesuvicre, 571
Sctaria, 738
Scthia, 491
Seville oratuge, 501
Shad-berry, 54 :
Shaddock, 502
Shallot, 720
Slamoola, 737
Shammock, 408
Shanghate oil, 450
slian mo, 761
Shea-butter, 610
Slıe-onk, 670
Shikimi fruits, 435
Slitraz tobacen, 632
Shittill tree. 538
Shittin wood, 535
Sholn, 531

- hats, 726

Shoren. 475
Shmmac, 521
Shtmum, $55:$
Siam benzoin, 612
— gamboge, 170
Siberian stonc pine, 713
Sicese, 566
Sicilitn [mpu゙ル, 732
Sida, 179
Sidere, 477
Sideroxylun, 610
Side-siulde tlower oriler, 413
sidluee, bis 5
Sicjos, 688
Sierra leone peacla, 5sa
Silene, 165
Silencte, 10.4
Silesfan bect, Gan
Sillentosic, IK

Siliquosæ, 448
Silk-eotton, 481
-order, 479
Silphinm, 577, 593
Silver fur, 744
Simabor, 005
Simarouba, 505
Simayba, 505
Simarnbacere, $50-4$
Sinapis, 452
Singhara nut, 559
Sintue bark, 6 ō8
Siphonin, 674
Siraballi, 659
Sissoo, 533
Sissum, 533
Situm, 575
Six-rowed barley, 736
Sizyginm, 557
Skimi, 435
Skirret, 575
Skuuk eabbage, 717
Sleuder ealagualn, 749
Slippery elm, 668
Sloe, 542
Slokan, 769
Slokc, 769
Small American eassia, 530

- round China cartlamoms, 694
-striated ipeeacuanha, 588
Smilace:e, 724
Smilax, 725
Smyrninm, 575
Suake gourd, 568
- wood, 620, 667

Snowberry, 584
Soapwort nriler, 517
Sobralia, 699
Socotrine aloes, 720
Sıja, $5: 35$
Soln, 5.31

- 11ats, 7:26

Solamacert, 627
Solancex, 629
Solanmu, 627, 630
Golazzi juice, 53:3
Solenostennum, 618
Solomon's seal, 721
Foluble cocon, 482
Sonsonate black balsam, 5: 1
Sooja, 53:5
Sophior:t, 535
Sorglum, 7.36
Sorrel, 65:1
Somari nut, 47.4 - order, 473

Sonchet enmestible, 732
Sonjee, 738
Soulamea, 462
Sour gourd, 481

- sop, 436

Sonth American cotton, .178
Sow-brearl, 608
Soy, 535
Soymida, 500
Spanisl broom, 53.9

Spanish chestnut, 686

- eoloeynth, 567
- juiee, 533
- mıoss, 697
- onion, 720

Sparattosperua, 037
Spearmint, 642
Species, 400, 406
Speeularia, 601
Spelt, 738
Sphærin, 759
Sphreroeoeeus, 767
Sphagnaeere, $75 \cdot$
Sphagnere, 754
Sphagutun, 754
Spice pepper, $\mathbf{\text { S }} 30$
Spiderwort, 727
Spigelia, 619
Spikenard, 590
Spinaeia, 650
Spina Cliristi, 516
Spinaeh, 650
Spinage, 650
Spindle-tree, 512, 513
Spiræa, 544
Spirolobere, 450
Split-moss, 75.4
Spogel seeds, 6:1
Spondias, 524
Sponge gourd, 568
Sport, 402
Sprat, 736
Spring barley, 736

- wheat, 738

Sprnee beer, 7-14
-.. Girs, 74.
Spurge flax, 660

- laurel, 660
-- order, 672
Spurious Winter"s latrk, 457
Spurrenl rye, 738
Suntislı, 5 (i7
Squill, 72:
Scpirting chenmber, 507
S't. Iquatins' beans, (il!)
St. Jolm's wort oreler, 168 - breal, 5:36

St, Michnel's orange, 501
St, Salvator Jolack balsan, 534
Stacliys, 64:
Stachytarpla, fiso
Stackhonsin, 514
StackLousiaecu, 514
Stacte, 506
Stugmavia, 524
Staphylen, 521
Staphylencera, 521
Star-anise, 435

- apples, 610
- wort, 552

Statiee, 607
Stavesacre, 432
Sterculit, 481
Sterenliaced, 479
Sticklae, 532
Stietin, 763
Stilaginacea, 677

Stilago, 677
Stilbaecx, 622
Stillingia, 676
Stimulant nmbelliferas, 575
Stinking goosefoot, 651
Stipa, 735, 738
Stock, 452
Stone pine, 743
Storax, 551, 612

- bark, 551

Stramoninm, 631
Strasbnrg turpentine, $7 \not 44$
Stiavadium, 558
Strawberr'y, 543
Striated ipeeneuanha, 588
Stringy-bark tree, 555

- gitm-tree, 555

Stryehnos, 618

- orcter, 619

Stylewort order, 600
Stylidiaceæ, 600
Styracere, 611
Styrax, 612
Sunkin gum, 538
Sub-class, 405
--geuns, 403
...-kingdoms, 408

- orders, 404
- -species, 401
--tribes, 404
Snbjee, 665
Suecus lyppocistidis, 683
Sterose, 737
Singar berry, 667
- eane, 737
- candy, 737
- maple, 521

Sultanas, 517
Sumach, 52.3
Sumatra beuzoin, 112

- camplor', 17-1

Sumbul root, 575

- Imlian, 577

Summer savory, $6 \cdot 12$, , $6 \cdot 1 ?$

- w? 1 eat, 738

Sumdew, 550

- oriler, 550

Sunflower, 598

- soaj, 598

Snm11, 479, 5.j2
Summee licmp, 479
Superu, 602, 645, 648, 707
Sinvount bark, 531

- merliar, 610
-- guassia, 505
Suwnurow huts, 47 k
Swamp pine, $74: 3$
-- rice, 738
- sussafirs, 435
- silk-weed, 618

Swnrtzia, 537
Swedish turnij, 150
Sweet almond, 542
.. bัy, 658

- birch, 669
- cassavit, 675
- - roots, 675
_ ferrı, 670

Sweet fing， 717
－gim， 551
－1car， 612
－nimrjornm，612，（44．3
－oil， 614
－ornnge， 501
－potato，627
－sop， 436
－sorgho， 736
－violet， 456
－Willinm， 465
Swectwood， 659
Swietenin， 510
Swine tang， 768
Swiss chard beet， 650
Sycnmine，66t
Syenmore， 521
－figs， 664
Sycomorns， 661
Symbols， 409
Symploricarpms， 581
Symphytum，624
Symplocacere， 611
Symplocarpns， 717
Symplocos， 612
Syncarpe， 710
Syrian papyrus， 732
Syringa，547， 614
Syrnp of eapillaire， 748
System of Bentham and
Hooker， 422
－De Candolle， 417
－Endlicher， 419
－－Unssicu， 417
－－Lindley， 421
－－Linnæus， 414
－－Ray， 416
－－this Manual， 425
－artificinl， 411
－natirral，414， 416

TAAG， 532
Tuban－trce， 610
Tabashcer， 736
Tabcrmeniontann， 616
Tacamahac， 507
Treca，700， 701
－starch， 701
＇Inccacere， 700
Trecales， 700
Tresonia， 563
Tafrifa， 607
Tnditi arrowroot， 701
T＇nil－pepper， 679
Tralen gam， 538
Tallı gum， 538
Tralipot palm， 713
Tallicoonnh， 508
＇Pallow－tree，471，676
Tnmaricncen，466
＇rammrind， 537
－ $1 \ln \mathrm{~m}, ~ 537$
T＇nMスrindus， 537
Trmmarisk order，466
Tamarix， 467
Tumpico j＾lap， 627
＇1＇ルиииі，ธอก
T＇ルmıs，70e

Tranacetum， 598
l＇magerinc ormage， 501
T＇nughinin，616
I＇nugle， 769
＇T＇anshwni， 769
＇T＇minsy，598
＇I＇apioca， 675
－meal， 675
Tappnach， 502
Tnr， 743
Trara， 717
Taraxnenm， 599
Tares， 530
Tarrngon，596
Tasmannia， 435
Tasmanian eranberry， 606
Tnxacce，742，744
Tixcie， 7.12
Trxince， 742
T＇nxns， 745
Tayurn， 568
Ten， 472
－of henven， 548
－order， 471
Teak－tree， 639
Tenzel， 590
Tecoma， 637
Tectoni， 639
Teel oil， 637
Tcenalh，G64
Teffi， 737
Telfairia， 568
Tephrosia，530， 535
Tarebinthina， 743
Tcrminalin， 553
Ternstrœmiacer， 471
Terrn japonica， 589
Testudimarin， 706
Tctilla， 546
Tetragonica， 571
Tctragonin， 571
Tetrameles， 508
Tetrapanax， 578
＇Texas sarsupmilla， 438
－snake root， 682
Thalamiflore， 429
－nunlysis of， 485
Thalloplayta， 756
Thapsia， 577
Thé Λ rabe， 466
－de l＇Jntope，631
－sangniuaire， 466
Then， 472
I＇licobromn， 482
Theophansta， 608
Thesinm， 688
Thevetia， 616
Thick calagunia，7－19
Ihistle，491， 597
Thorn－ipple， 031
Thoronglawort， $5: 27$
＇Thrift，606
＇Jแแја， $7 \cdot 4$
Thus，7．13，7．44
Thyme，612， 643
－oil of，643
＇Ilyymeltuectr， 659
｜Thymms，612， 613
Jicoreat， 503

Til， 659
－nil， 637
I＇ilis， 485
Thlimect，482
Thiliene， 481
J＇illanhsia， 697
Timnivclly senus， 536
Tinospora， 438
Ti－plant，721
Tisso flowers， 532
Tita root， 432
Tobaceo， 632
－root， 571
Tocusso， 736
Toddalin， 503
Toddy，711，712，713，714
Tolnitcre， 53.4
Tomatocs，630
Tongn，639， 717
T＇ongoose fibres， 618
Tonie umbcllifere， 575
Tonka beans， 533
Tonquin beans， 533
Tontclen， 514
Toolsic tea， 612
Toon wooll， 509
Tootlunche－trec，sī8
－shrub， 504
Toothwort， 607
Торュпก， 574
Tortoise plant， 706
－wood， 588
Tornla， 761
Tons－lcs－mois， 695
Tow， 490
Towel gourd， 568
Trachylobium， 538
Tringaenntli， 530
Trigopogon， 599
Truiling arbutns， 604
Trmpa， 552
Traveller＇s tree，696
Treacle， 737
Trebizond lioncy， 604
Tree berid， 697
－copal， 535
－cotton， 478
－lung－wort． 763
－of long life， 556
－prony， 433
Trefoil， 530
Tremandrneen， 450
Trianosperma， 56%
Tribes， 404
Tribulus， 494
Trichilin， 508
I＇richodesmium， 767
Trichosunthes， 568
Trichostcuma，643
Trifolinu， 530
＇r＇rigonelln， 535
＇Irillinm， 721
Triostcum， 585
＇Iripe de rocloe． 762
＇Triptolomaxa， 535
Priticum， 738
＇lrimunfetts． 485
Jrimmles． 707

Triuris, 707
Troprolncere, 496
Troproluna, 497
'I've elumonile, 596

- maiclenhair, $7 \cdot 18$
- mandrake, 632
- untinegs, 656
- oil of spike, 642

Truttles, 757, 761
Tsz-T'sai, 769
Tuber, 75 7,701
Tubuliflore, 594, 595
Tnckahoe, 760
Tulip-tree, 435
Tulp, 703
Tunga woot, 509
Tupa, 602
Turkey box, 673

- boxwoort, 673
- colocyntll, 567
- onk, 686
- root, 589

Turkish millet, 736

- tobacco, 632

Turmeric, $69 \pm$
Turuera, 563

- order, 502

Turnerncee, 562
Turnip, 450
Turnsole, 674
Turpentine, 743
Turpeth, 627
Tussac-grass, 736
Tussilago, 599
Two-rowed barleg, 736
Tylophora, 618
Typlan, 715
Typlacere, 715

UDLEA bread, 504
Ullucus, 651
Ulmacea, 667
Ulmeæ, 667
Ulmus, 667
Ulva, 709, 766, 769
Umbellales, 571
TJmbelliferx, 571
Umbelliferous order, 571
Umbilicaria, 762
Umiri balsam, 492
Uncaria, 589
Uncomocomo, 749
Undalated ipecaeurnha, 589
United States deal, 743
Unona, 436
Upas, 666

- tientic, 620

Urari, 620
Ureeola, 616
Urginea, 722
Urn-moss, 754
Urostigma, 664
Urticat, 063
Urticrece, 662
Urticales, 061
Cirucuri muta, 712

UVก, 517

- ursi, 601

UFilvit, $1: 7$

Vaccarri, 165
Vilceinincein, 602
Taccinium, 603
Vahea, 616
Valerian, 590
Valcriana, 590
Valerianacere, 589
Valcrian order, 589
Valerianelln, 590
Vallea, 485
Falonia, 686
Vauillia, 700
Vanzey, 625
Varieties, 401

- permanent, 402

Variolaria, 762, 763
Varmonia, 625
Vasenlares, 747
Vateria, 475
Vatica, 475,507
Vegetable Ethiops, 768

- butter of Canara, 475
- ivory, 714
- Marrow, 567
- silk, 481
- sulplurr, 751

Velvet tamarinds, 537
Venice tnrpentine, 744
Ventilago, 515
Venus's fly-trap, 550
Vera Cruz clemi, 506
Veratrum, 724
Verbascum, 634
Verbenn, 639
Verbenacere, 639
Vermicelli, 738
Vernonia, 599
Vernonier, 594
Veronien, 634
Vert de vessic, 515
Vervain, 639
Vesca, 686
Vetches, 530
Vetiver, 735
Viburnum, 585
Vicia, 530
Victoria water-lily, 442
Victor's laurel, 658
Vinea, 615
Vine, 516

- fungus, 760

Vinegar-plant, 761
Fiola, 456
Violacea, 455
Violere, 456
Violet, 456

- orfler, 455

Virginiun creeper, 577 rate plum, fill

- red cular, 743 snake ront, 682
Viscum, 687
Vismia, 468
Vitacea, 51G

Vitex, 639^{\prime}
Vitis, 517
Vittic-Vily 1, 735
Viviania orfler, 496°
Vivimiacert, 496
Voanulzea, 535
Vochysia, 462
Vochysincere, 462.
Volatile oil of clozes, 555 .

- - hops, 665
- - - mnstard, 451
——— snssafiras, 659
- - - sweet bay, 658

Volvocineæ, 764, 766

WAGENBOOM, 661
Wai-fa, 535
Wake-Robin, 717
Wakno, 513
Wallfower, 452
Wall pellitory, 663
Walnut, 684
Wampee fruit, 502
Wanzey, 625
Waras, 533
Warree, 737
Water bean, 442
—cress, 452

- dropwor't, 576
- hemlock, 576
- lily, 441
- maize, 442
- melon, 567
- pepper order, 467
- pepper, 653
- shield, 441
- trec, 696
- vines, 511
- wort, 727
- yam, 709

Wattle gum, 538
Wax berry, 670

- lemon, 501
- myrtle, 670

Wayfaring tree, 585
Weandee, 470
Weld, 45.1
West African copal, 537
West Indianarowront, 695
... eabbage palm, 711

- - corkwood, 436
- - locust tree, 537
- - rubber, 667

Wheat, 738
White agaric, 761

- balsam, 534
- bect, 650
- - bryolly, 567
- - enmant, 548
- dammar, 475
- fillerets, 68G
- galls, 687
- ginger, 694
- gotuci, 567
- liellebore, 72.1
- ipecacuanlar, 589
manglove, 040
- mulberry, 664

White mustard， 451
－oak， 686
－parcira brava， 438
－payta hark， 616
－реррег， 679
－pine， 743
－quebracho bnrk， 615
－Senuaar gum， 538
－spruree， 744
－walnut， 685
－wax， 614
Whortieberry 603
Wig－tree， 522
Wild aprieot， 470
－hlack eheriy， 543
－enbbnge， 450
－eherry， 543
－einuamou， 457
－elove， 556
－date palm， 714
－ginger， 682
－gourd， 567
－hydrangen， 548
— indigo， 532
－lettuee， 599
－liquoriee， 531
－mangoes， 470,504
－marjoram， 642
－nntmeg，656， 658
－pepper， 639
－rhen， 662
－sarsaparilla， 578
－senni，532， 638
－Serviee tree， 545
－vanilla， 598
－vine， 567
－yam， 706
Willow， 670
Winter aconite， 433
－berry， 512
－cherry， 630
－green， 60.4
－－oil of， 605

Winter savory，642， 643
－whent， 738
Winterere， 434
Winter＇s bark，434， 457
－spmrious， 457
Witeh hazel， 551
Withauia， 630
Woad，451， 533
Wonder of the world， 578
Wood－npple， 503
－nettle， 662
－oil， 474
－－of Clina， 67.
－sorrel， 497
－tar， 743
Woody ipeeaeuanha， 456
－jalap， 627
－nightshade， 630
Worm bark， 531
－mushroom， 761
Wormseed，597， 619
Wormwool， 596
Wourali， 620
Wrightin， 616
Wurrus， 533
Wyeh elm， 668

Хахтлitu， 599
Xanthorriniza， 433
Xanthorrhœa， 722
Xanthoxylex， 500
Xanthoxylon， 503
Ximenia， 510
Xylocarpns， 509
Xylopia， 437
Xyridacer， 728
Xyris， 728

YAMs，706， 717
Yang－liai，7̈！！

Yarrow， 596
Yeast－plant，759， 761
Yegarr－tree， 507
Yellow berries， 515
－cinehona burk， 587
－deal， 743
—dye－tree， 436
－flag， 703
－jasmine， 619
－pareira brava， 438
－parilla， 438
－piue， 743
－resin， 722
－root， 432
－wood，509， 536
Yerhu mansi， 680
Yereum fibres， 618
Yew， 745
— order， 744
－tree tea， 745
Young fustie， 524
Yneca，72：

Zacilux 506
Zamin， 746
Zante fustic， $52 \pm$
Zanthoxylum， 503
Zanzibar eopal， 538
Zen， 738
Zebrin－wood，52S， 588
Zedoary， 694
Zerumbet， 694
Zingiber，654
Zingiberacea，643
Zinzeyd， 661
Zizania， 738
－straw， 73 E
Zizyphus， 515
Zostera， 709
\％ygophyHacce． 492
\％ygruplyilum， 494

In 4 rols. large svo. with 306 Coloured Plates, bound in half-morocco, gilt edges, $\mathfrak{L 1 1 . 1 1 s .}$

MEDICINAL PLANTS:
 JRELNG

DESCRIPTIONS, WITH ORIGINAL FIGURES,
of The

PRINCIPAL PLAN'TS EIIPLOYED IN MEDICINE;

AND AN ACCOUNT OF THEIR
PROPヨ卫TIES AND USES.
BY
ROBERT BENTLEY, F.L.S.,
Professor of Botun! in King's College, London; Professor of Botuny and Materia Medica 10 the Pharmateutical Socicty of Great Britain, dic.

AND
HENRY TRIMEN, M.B., F.L.S.

This pnblication consists of original coloured illustrations, natural size, with accompanying desoriptive toxt, of the plants which yield the drngs in common use. In making a selection from the very large number of species reputed to be of medicinal ralue, the British Pharmacopocia has been taken as a foundation, all the plants contained in it being figured. To these have been added a large number of others which, although not ufficial here, are included in the United States Pharmacopœia or in the Pharmacopœia of India. This work thus serves especially as an illustrated Botanical Guide to the British, United States, and Indian Pharmaeopeias, but it also includes other species employed in different parts of Europe, or in common use, though not official, in this country. Some others which afford food substances, of value chiefly to invalids, and a few of our most poisonons indigenous plants have also been added.

[^3][Continued on neal paye.
'We have already expressed our opinion that this is by far the most important book of the kind in our Janguage, so that here, beyond complimenting all concerned on the fincness and excellence of tho illustrations, we need only remark that the letterpress is in kecping witl, and worthy of, the plates.'-Medical Thimes and Gazettr.
'One of the most valuable contributions ever made to the scientific study of materia medica, and is indispensable to every teacher and earnest student of that hranch of medical knowledge.'

Dublin Medical Journal..
'The coloured illustrations are remarkably good and true to nature, and they represent all the plants that have bcen most recently introduced into our materia medica. In the letterpress just as much is said respecting the medicinal properties and uses of each plant as will complete the description.'-Medical Press and Circuralr.
'A complete repertorium for the botanico-medical student. It is not often that a reviewer can rise from a critical examination of a liver de lure with such an unmixed feeling of satisfaction as in the case of these handsome volumes.'-Nature.
'It is an indispensable work of reference to everyone interested in pharmaccutical botany. The botanical descriptions of the species from the hand of Dr. Trimen, and the description of the general characters, composition, propertics, and uses of its parts and products which are employed in medicine or otherwise, by Professor Bentley, may be thoroughly relied on, and in nearly all cases the coloured drawings and the dissections of the most important parts of the plant give a very correct idea of the species from which thedrug is obtained. Moreorer, the work, in four handsome volumes, will form a decided ornament to the library shelves or drawing-room table."

Pharmaceutical Journal.

- This superb treatise. . . . Each plate is well worth twice its pnblished price.'- Veterinarian.
- We are compelled to express once again our admiration of the thoroughness and uniform cxcellence with which the design of the authors has been carried out.'-Chemist and Dreggist.

OTHER WORKS BY PROFESSOR BENTLEY. THE STUDENT'S GUIDE TO STRUCTURAL, MORPHOLOGICAT, AND PHYSIOLOGICAI, BOTANY. With GG0 Engravings. Fep. 8vo. 7s. 6d.

THE STUDENT'S GUIDE TO SYSTEMATIC BOTANY, inclucling the Classification of Plants and Descriptive Botany. With $3 \overline{5} 7$ Engravings. Ficp. Sro. 3s. Ged.
London: J. \& A. CHURCHILL, 11 New Burlington street.

J. \& A. CHURCHILL'S

MEDICAL CLASS BOOKS.

ANATOMY.

BRAUNE.-An Atlas of Topographical Anatomy, after Plane Sections of Frozen Bodies. By Wilhelm Braune, Professor of Anatomy in the University of Leipzig. Trasslated by Edward Bellamy, t.R.C.S., late Surgeon to Charing Cross Hospital, and Lecturer on Surgery in its School. With 34 Photo-lithographic Plates and 46 Woodcuts. Large Imp. 8vo, 40s.
FLOWER.-Diagrams of the Nerves of the Human Body, exhibiting their Origin, Divisions and Connexions, with their Distribution to the various Regions of the Cutaneous Surface, and to all the Muscles. By Wrlliam H. Flower, K.C.B., F.R.C.S., F.R.S. Third Edition, containing 6 Plates. Royal 4to, 12s.
GODLEE.-An Atlas of Human Anatomy: illustrating most of the ordinary Dissections and many not usually practised by the Student. By Rrokman J. Godlee, M.S., F.R.C.S., Surgcon to University College Hospital ; Teacher of Operative Surgery, and Assistant Professor of Clinical Surgery in University College; Witl 48 Imp. 4to Coloured Plates, containing 112 Figures, and a Volume of Explanatory Text, with many Engravings. 8vo, £4 14s. 6d.
HEATH.-Practical Anatomy: a Manual of Dissections. By Chmistorifr Heath, F.R.C.S., Holme Professor of Clinical Surgery in University College and Surgeon to the Hospital. Seventh Edition, revised by Rickman J. Godlee, M.S. Lohd., F.R.C.s., Teacher of Operative Smigery, and Assistant Professor of Clinical Surgery in University College, and Surgern to the Hospital. With 24 Coloured Plates and 278 Engravings. Crown 8vo, 15s.

11, NEW BURLINGTON STREET.
J. \& A. Churchill's Medical Class Books.

ANATOMY-continued.

HOLDEN.-A Manual of the Dissection of the

 Human Body. By luther Holden, F.R.C.s. Fifth Edition, by John Langton, F.R.C.S. and Member of the Court of Examiners; Surgeon to St. Bartholomew's Hospital. With 208 Engravings. 8vo, 20 s .
By the same Author.

Human Osteology: comprising a Descrip-

tion of the Bones, with Delineations of the Attachments of the Muscles, the General and Microscopical Structure of Bone and its Development. Seventh Edition, by Charles Stewart, Conservator of the Museum, R.C.S., and R. W. Rem, M.D., Professor of Anatomy in the University of Aberdeen. With 59 Plates and 75 Wood Engravings. Royal 8vo, 16s.
AlSO

Landmarks, Medical and Surgical. Fourth Edition. Svo, 3s. 6d.

MORRIS.-The Anatomy of the Joints of Man.

By Henry Morris, M.A., F.R.C.S., Surgeon to, and Lecturer on Anatomy and Practical Surgery at, the Niddlesex Hospital. With 44 Plates (19 Coloured) and Engravings. 8vo, 16s.

TOOTH.-An Atlas of the Central Nervous

System and Cranial Nerves, from the larger work of Hirschfeld and Léveillé. Edited by Howard H. Tooth, M.D., F.R.C.P., Assistant Physician to the National Hospital for the Paralysed and Epileptic. 37 Coloured Plates. Imp. 8vo, 40 s.

WAGSTAFFE.-The Student's Guide to Human
 Osteology. By Wm. Warwick Wagstaffe, F.r.C.S., late Assistant-

 Surgeon to, and Lecturer on Anatomy at, St. Thomas's Hospital. With 23 Plates and 66 Engravings. Feap. 8vo, 10s. $0 d$.
WILSON AND CLARK.-Wilson's Anatomist's

 Vade-Mecum : a System of Human Anatomy. Eleventh Edition, by Henite E. Clark, M.R.C.S. Eng., F'.F.P.S. Glasgow, Professor of Anatomy in St. Mungo's College, Glasgow. With 492 Engravings and 26 Coloured Plates. Crown 8vo, 18 s .
J. \& A. Churchill's Medical Class Books.

BOTANY.

BENTLEY AND TRIMEN.-Medicinal Plants: being descriptions, with original Figures, of the Principal Plants employed in Medicine, and an account of their Properties and Uses. By Robert Bentley, F.L.S., and Henry Trimen, M.B., F.R.S., F.L.S. In 4 Vols., large $8 v 0$, with 306 Coloured Plates, bound in half morocco, gilt edges, £11 11s.
BENTLEY.-A Manual of Botany. By Robert Bentley, Emeritus Professor of Botany in King's College aud to the Pharmaceutical Society. With 1178 Engravings. Fifth Edition. Crown 8vo, 15s.

By the same Author.
Structural, Morphological, and Physiological Botany. With 660 Engravings. Fcap. 8vo, 7s. 6 d . also,
Systematic Botany, including the Classification of Plants and Descriptive Botany. With 357 Engravings. Fcap. 8vo, 3s. 6d.
SHORE.-Elementary Practical Biology. Vegetable. By THoMas W. Shore, M.D., B.Sc. Lond., Lecturer on Comparative Anatomy at St. Bartholomew's Hospital. 8vo, 6s.

CHEMISTRY.

BERNAYS.-Notes on Analytical Chemistry for Students in Medicine. By Albert J. Bernays, Ph.D., F.C.S., F.I.C., late Professor of Chemistry, \&c., at St. 'Thomas's Hospital Medical School. Third Edition. Crown 8vo, 4s. 6d.
BLOXAM.-Chemistry, Inorganic and Organic ; with Experiments. By Charles L. Bloxam. Seventh Edition, by John Mrllar Thomson, Professor of Chemistry, King's College, London, and Arthur G. Bloxam, Demonstrator of Cliemistry, Royal Agricultural College, Cirencester. With 282 Illustrations. 8vo, 18s. By the same Author.

Laboratory Teaching; or, Progressive

Exercises in Practical Chemistry. Fifth Edition. With 89 Engravings. Crown 8vo, 5s. 6d.
BOWMAN AND BLOXAM.-Practical Chemistry, including Analysis. By John E. Bowman, and rharles L. Bloxam late Professor of Chemistry iu King's College. Eighth Edition. Witn 90 Engravings. Fcap. 8vo, 5s. 6d.

CHEMISTRY-continued.

CLOWES.--Practical Chemistry and Qualitative Analysis. Adapted for use in the Laboratories of Colleges and Schools. By Frank Clowes, D.Sc. Lond., Professor of Chemistry in the University College, Nottingham. Fifth Edition. With 57 Engravings and Froutispiece. Post 8vo, 7s. 6 d .

CLOWES AND COLEMAN.-Quantitative Chemi-

 cal Amalysis. Adapted for use in the Laboratories of Colleges and Schools. By Frank Clowes, D.Sc. Lond., Professor of Chemistry in the University College, Nottingham, and J. Bernard Colemar, Assoc. R.C.Sci. Dublin, Seuior Demonstrator of Chemistry in the University College, Nottingham. With 83 Engravings. Post 8vo, 78. 6d.FOWNES.-Manual of Chemistry.-See WATTS.
FRANKLAN'DANDJAPP.-Inorganic Chemistry. By Edward Frankland, Ph.D., D.C.L., F.R.S., and F. R. Japp, M.A., Pl.D., F.R.S., Professor of Chemistry in the University of Aberdeen. With Lithographic Plates and Wood Engravings. Svo, 24 s.
MORLEY.-Outlines of Organic Chemistry. By H. Forster Morley, M.A., D.Sc., Joint Editor of "Watts' Dictionary of Chemistry." Crown 8vo, is. 6 d .

RAMSAY.-Elementary Systematic Chemistry.

For Use of Schools and Colleges. By William Ramsay, Pli.D., F.R.S., Professor of Chemistry in University College, London. With Engravings, 4s. 6d. (or Interleaved, 5s. 6 H .).

By the same Author.
A System of Inorganic Chemistry. With Engravings. 8 以o, 15 s.

VALENTIN.-Chemical Tables for the Lecture-

 room and Laboratory. By Wrlliam G. Valmetin, F.c.s. In Five large Sheets, 58. 6d.VALENTIN AND HODGKINSON.-A Course of Qualitative Chemical Analysis. By the late W. G. Valfantin F.c.s. Seventh Edition, ly Dr. W. R. Hongkinson, F.R.S.E., Professor of Chemistry and Plysics in the Royal Artillery Collcge, and Royal Military Acadcmy, Woolwich; assisted by H. Chapman-Tones, F.C.S. Demonstrator in the Royal School of Mincs, and F. E. Matthews. Pl.D., of Cooper's Hill College. With Engravings and Map of Spectra. 8vo, 8s. 6d. ['the 'lables scparatcly, 2s. 6d.]
J. £ A. Churchill's Medical Class Books

CHEMISTRY-continued.

WATTS.-Manual of Chemistry, Theoretical and Practical. (Based on Fownes' Manual.) by henry Watts, B.A., F.R.S.

Vol. I.-Physical and Inorganic Chemistry. Second Editiou (Fourteenth of Fownes'). By William A. 'Iilden, D.Sc., J.R.S., Professor of Chemistry in the Mason College, Birmingham. With 122 Wood Engravings, and Coloured Plate of Spectra. Crown Svo, 8s. 6d.
Vol. II.-Chemistry of Carbon-Compounds, or Organic Chemistry. Second Elition (Thirteeuth of Hownes'). Edited by WM. A. Tiliden, D.Sc., F.R.S. With Engravings. Crown Svo, 10s.

CHILDREN, DISEASES OF.

DAY.-A Manual of the Diseases of Children. By William H. Day, M.D., Physician to the Samaritan Hospital for Women and Children. Second Edition. Crown 8vo, 12s. 6d.
ELLIS:-A Practical Manual of the Diseases of Children. By Edward Eldis, M.D., late Senior Physician to the Victoria Hospital for Sick Children. With a Formulary. Fifth Edition. Crown 8vo, 10s.
GOODHART.-The Student's Guide to Diseases of Children. By James Frederic Goodhart, M.D., F.R.C.P., Physician to Guy's Hospital and Lecturer on Pathology in its Medical School. Fourth Edition. Fcap. 8vo, 10s. 6d.
SMITH.-A Practical Treatise on Disease in Children. By Eustaoe Smith, M.D., I.R.C.P., Playsician to H.M. the King of the Belgians, and to the East London Hospital for Children. Second Edition. Svo, 2\%s.

By the same Autho:.
Clinical Studies of Disease in Children. Second Edition. Post 8vo, 7s. 6 d . Also,
On the Wasting Diseases of Infants and Children. Fifth Edition. Post 8vo, 8s. $6 d$.
STEINER.-Compendium of Children's Diseases; a Handbook for Practitioners and Students. By Jomann Steiner, M.D. Translated by Lawson I'AI', F.R.C.S., Surgeon to the Pirmingham Hospital for Women, \&c. 8vo, 12s. 6d.
11, NEW BURLINGTON STREET.

J. \& A. Churchill's Medical Class Books.

DENTISTRY.

GORGAS. - Dental Medicine: a Manual of

Deutal Materia Medica and Therapeutics. By Ferdinanid J.S. Gorgas, A.M., M.D., D.D.S., Professor of Dental Surgery and Science, de., in the University of Maryland. Third Edition. 8vo, 16 s.
HARRIS. - The Principles and Practice of Dentistry; including Anatomy, Physiology, Pathology, Therapeuties, Dental Surgery, and Mechanism. By Chapin A. Harris, M.D., D.D.S. Twelfth Edition, revised and edited by Ferdinand .T. S. Gorgas, A.M., M.D. D.D.S. With over 1,000 Illustrations. $8 v 0,33 \mathrm{~s}$.

STOCKEN.-Elements of Dental Materia Medica

 and Therapeuties, with Pharmacopœia. By JAMeS STocken, I.D.S.R.C.S., late Lecturer on Dental Materia Medica and Therapeutics and Dental Surgeon to the National Dental Hospital; assisted by Thomas Gaddes, L.D S. Eng. and Edin. Third Edition. Fcap. 8vo, 7s. 6d.TOMES (C. S.).-Manual of Dental Anatomy, Human and Comparative. By Charles S. Tomes, M.A., F.R.S. Third Edition. With 212 Engravings. Crown 8vo, 12s. 6d.
TOMES (J. and C. S.).-A System of Dental Surgery. By Sit John Tomies, F.R.S., and Charles S. Tomes, M.A., M.R.C.S., F.R.S. Third Edition. With 292 Engravings. Crown $8 \mathrm{vo}, 15 \mathrm{~s}$.

EAR, DISEASES OF.

BURNETT.-The Ear: its Anatomy, Physiology, and Diseases. A Practical Treatise for the Use of Medical Students and Practitioners. By Charles H. Burnetre, M.D., Aural Surgeon to the Presbyterian Hospital, Philadelphia. Second Edition. With 107 Engravings. 8vo, $18 s$.

$D A L B Y$. - On Diseases and Injuries of the Ear.

 By Sir Wifliam B. Dalby, T.R.C.S., Consulting Aural Surgeon to, and Lecturer on Aural Surgery at, St. George's Hospital. Fourth Edition. With Woodcuts and Colvured Plates. Crown svo.J. \& A. Churchill's Medicul Clasis Books.

FORENSIC MEDICINE.

ABERCROMBIE. - The Student's Guide to Medical Jurisprudence. By John Aberorombie, M.D., F.R.C.P., Physician to Charing Cross Hospital. Fcap. 8vo, 7s. 6d.
OGSTON.-Lectures on Medical Jurisprudence. By Franois Ogston, M.D., late Professor of Medical Jurisprudence and Medical Logic in the University of Aberdeen Edited by Francis Ogston, Jun., M.D. With 12 Plates. 8vo, 18s.
TAYLOR.-The Principles and Practice of Medical Jurisprudence. By Alfred S. Taylor, M.D., F.R.S. Third Edition, revised by Thomas Stevenson, M.D., F.R.C.P., Lecturer on Chemistry and Medical Jurisprudence at Guy's Hospital ; Examiner in Chemistry at the Royal College of Physicians; Official Analyst to the Home Office. With 188 Engravings. 2 Vols. 8vo, 31s. 6d.

By the same Author.

A Manual of Medical Jurisprudence. Twelfth Edition, revised by Thomas Stevenson, M.D., F.R.C.P. With 56 Engravings. Crown $8 \mathrm{vo}, 14 \mathrm{~s}$.

ALSO,
On Poisons, in relation to Medical Jurisprudence and Medicine. Third Edition. With 104 Engravings. Crown 8vo, 16 s .
TIDY AND WOODMAN.-A Handy-Book of
Forensic Medicine and Toxicology. By C. Meymott Timy, M.B. ; and W. Bathurst Woodman, M.D., F.R.C.P. With 8 Lithographic Plates and 116 Wood Engravings. 8vo, 31s. 6d.

HYGIENE.

PARKES.-A Manual of Practical Hygiene. By the late Edmund A. Parkes, M.D., F.R.S. Eiglath Edition, by J. Lane Notter, M.D., Professor of Military Hygiene in the Army Medical School. With 10 Plates and 103 Wood Engravings. 8vo, 18s.
WILSON.-A Handbook of Hygiene and Sanitary Science. By George Wilson, M.A., M.D., F.R.S.E., D.P.H. Camb., Medical Officer of Health for Mid Warwickshire. Seventh Edition. With Engravings. Crown 8vo, 12s. 6d.

> 11, NEW BURLINGTON STREET.

J. \& A. Churchili's Medical Class Books.

MATERIA MEDICA AND THERAPEUTICS.
LESCHER.-Recent Materia Medica. Notes on their Origin and Therapeutics. By F. Harwood Lescher, F.C.S., Pereira Medallist. Fourth Edition. 8vo, 2s. 6d.
OWEN.-A Manual of Materia Medica; incorporating the Author's "Tables of Materia Medica." By Isambard OWEN, M.D., F.R.C.P., Lecturer on Materia Medica and Therapeutics to St. George's Hospital. Second Edition. Crown 8vo, 6s. 6d.

ROYLE AND HARLEY.-A Manual of Materia Medica and Therapeutics. By J. Forbes Royle, M.D., F.R.S., and

 John Harlex, M.D., F.R.C.P., Physician to, and Joint Lecturer on Clinical Medinine at, St. Thomas's Hospital. Sixth Edition, including addition and alterations iu the B.P. 1885. With 139 Engravings. Crown 8vo, 15 s .SOUTHALL.-The Organic Materia Medica of the British Plarmacopœia, Systematically Arranged. By W. Soctrall. F.L.S. Fourth Edition. Crowu 8 vo 5 s.

THOROWGOOD. - The Student's Guide to Materia Medica and Therapeutics. By John C. Thorowgood, M.D., F.R.C.P. Second Edition. With Engravings. Fcap. 8vo, 7s.

WARING.-A Manual of Practical Therapeu-

 tics. By Edward J. Waring, C.I.E., M.D., F.R.C.P. Fourth Edition, revised by the Author and Dudlet W. Buxton, M.D., M.R.C.P. Crown 8vo, 14s.WHITE.-Materia Medica, Pharmacy, Pharmacologv, and Therapeutics. By W. Hale White, M.D., F.R.C.P., Physician to, and Lecturer on Materia Medica and Therapeutics at Guy's Hospital ; Examiner in Materia Medica to the Conjoint Board of England. Fcap. 8vo, 7s. 6d.

MEDICINE.

CHARTERIS.-The Student's Guide to the Practice of Medicine. By M. CHarthris, M.D., Professor of Therapeutics and Materia Medica, University of Glasgow. Witl Engravings on Copper and Wood. Sixtl Edition. Fcap. 8vo, 9s.

> 11, NEW BURIINGTON STMEET.

J. \& A. Churchill's Medical Class Books.

MEDICINE-continued.

FAGGE AND PYE-SMITH.-The Principles and Practice of Medicine. By the late C. Hilton Fagge, M.D., F.R.C.P., and Philip H. Pre-Smith, M1.D., F.R.S., F.R.C.P., Physician to, and Lecturer on Medicine in, Guy's Hospital. Third Edition. 2 Vols. 8vo. Cloth, 40s., leather, 46 s .
FENWICK.--The Student's Guide to Medical Diagnosis. By SAmuel Fenwiok, M.D., T.R.C.P., Plhysician to the London Hospital. Seventl Edition. With 117 Engravings. Fcap. 8vo, 7s.

By the stame Author.
Outlines of Medical Treatment, including Foreign as well as English Methods. Third Edition. Crown Svo, 10s.
FOWLER.-A Dictionary of Practical Medicine. By Various Writers. Edited by James Kingston Fowletr, M.A., M.D., F.R.C.P., Physician to Middlesex Hospital and the Hospital for Consumption, Brompton. 8vo., cloth, 21s. ; half-calf, 25s
HARRIS.--The Student's Guide to Diseases of the Chest. By Vincent D. Harris, M.D., F.R.C.P., Physician to the Victoria Purk Hospital for Diseases of the Chest. With 55 Engravings, plain and Coloured. Fcap. 8vo, 7s. 6d.
NIXON.-Handbook of Hospital Practice and Physical Diagnosis. By Christopher J. Nixon, M.D., LL.D. Professor of Medicine in the Catholic University, Dnblin; Examiner in Medicine, R.C.P.I., and for the Conjoint Examinations of R.C.P. and S. Irel. With Plates and Engravings. Svo, 9s.

ORMEROD.-Diseases of the Nervous System (Student's Guide Series). By J. A. Ormerod, M.D., F.R.C.P., Physician to the National Hospital for the Paralysed and Epileptic. With 66 Illustrations. Fcap. 8vo, 8s. 6d.
TAYLOR.-A Manual of the Practice of Medicine. By Frederick Taylor, M.D., F.R.C.P., Physician to, and Lecturer on Medicine at, Guy's Hospital. Second Edition. With 24 Illustrations. Crown 8vo, 15 s .
WEST. - How to Examine the Chest: a Practical Guide for the Use of Students By Samuel West, M.D., F.R.C.P., Assistant Physician and Medical Thtor to St. Bartholomew's Hospital. Second Edition. With 46 Engravings. Fcap. 8vo, 58.
J. \& A. Churchill's Medical Class Books.

MIDWIFERY.

BARNES.-Lectures on Obstetric Operations, including the Treatment of Hrnorrhage, and forming a Guide to the Management of Difficult Labour. By Robert Barnes, M.D., F.R.C.P., Consulting Obstetric Physician to St. George's Hospital. Fourth Edition. With 121 Engravings. 8vo, 12s. 6d.

BURTON.-Handbook of Midwifery for Mid-

 wives. By John E. Burton, M.R.C.S., L.R.C.P., Surgeon to the Liverpool Hospital for Women. Second Edition. With Engravings. Fcap 8vo, 6s.GALABIN.-A Manual of Midwifery. By Alfred lewis Galabin, M.A., M.D., F.R.C.P., Obstetric Plysician and Lecturer on Midwifery, \&c., to Guy's Hospital, Examiner in Mid. wifery to the Conjoint Examining Board for England. Second Edition. With 249 Engravings. Crown 8vo, 15s.
REYNOLDS. - Notes on Midwifery: specially designed to assist the Student in preparing for Examination. By J. J. Reynolds, L.R.C.P., M.R.C.S. Second Edition. With 15 Engravings. Fcap. 8vo, 4 s .
ROBERTS.-The Student's Guide to the Practice of Midwifery. By D. Lloyd Rober'ss, M.D., F.R.C.P., Lecturer on Clinical Midwifery and Diseases of Women at Owen's College, Physician to St. Mary's Hospital, Manchester. Third Edition. With 2 Coloured Plates and 127 Engravings. Fcap. 8vo, 7s. 6d.
SWAYNE.—Obstetric Aphorisms for the Use of Students commencing Nidwifery Practice. By Joseph G. Swayne, M.D., Lecturer on Obstetric Medicine at the Bristol Medical School Nintll Edition. With 17 Engravings. Ficap. 8vo, 3s. 6d.

MICROSCOPY.

CARPENTER.-The Microscope and its Revelations. By William B. Carpenter, C.B., M.D., F.R.S. Seventh Edition. Edited by Rev. Dr. Dallinger, F.R.S. With 21 Plates and 800 Woodcuts. $8 v o, 28 \mathrm{~s}$.
LEE. - The Microtomist's Vade-Mecum; a Handbook of the Methods of Microscopic Anatomy. By Arteur Bolikis Lee, Assistant in the Rnssian Laboratory of Zoology at Villefranche-sur-Mcr (Nicc). Sccond Edition. Svo, 12s. 6d.

[^4]
J. \& A. C'hurchull's Hedical Class Books.

OPHTHALMOLOGY.

GOWERS.-A Manual and Atlas of Medical Ophthalmoscopy. By W. R. Gowers, M1.D., F.R.S., F.R.C.P., Physiciau to the National Hospital for the Paralysed and Epileptic. Third Editiou. Edited with the assistance of Marcus Gunn, M.b., F.R.C.S., Surgeon to the Royal Londou Ophthalmic Hospital; Ophthalmic Surgeon to the National Hospital for the Paralysed and Epileptic. With 12 Autotype Plates aud 83 Engravings. Svo, 16 s.
HARTRIDGE.-The Refraction of the Eye. By Gustavus Hartridge, F.R.C.S., Surgeon to the Royal Westminster Ophthalmic Hospital. Sixth Edition. With 98 Illustrations, Test Types, \&c. Crown 8vo, 6s.

By the same Author.

The Ophthalmoscope: A Manual for Students. With 2 Coloured Plates and 63 Engravings. Post 8vo 4s. HIGGENS.-Hints on Ophthalmic Out-Patient Practice. By Charles Higgens, F.R.C.S., Ophthalmic Surgeou to, and Lecturer on Ophthalmology at, Guy's Hospital. Third Editiou. Fcap. 8vo, 3s.
MACNAMARA.-Diseases and Refraction of the Eye. By Charles Macnamara, F.r.C.S., and Gustavus Hartridge, F.R.C.S., Surgeons to the Royal Westminster Ophthalmic Hospital. Fifth Edition. With 156 Engravings. Crown 8vo, 10s. 6d.
NETTLESHIP.-The Student's Guide to Diseases of the Eye. By Edward Nettleship, F.R.C.S., Ophthalmic Surgeou to St. Thomas's Hospital, Surgeon to the Royal London Ophthalmic Hospital. Fifth Edition. With 164 Engravings, and a Coloured Plate illustratiug Colour-blindness. Feap. 8vo, 7s. 6d.

POLLOCK.-The Normal and Pathological

 Histology of the Human Eye and Eyelids. By C. Fred. Pollook, M.D., F.R.C.S.E., and F.R.S.E., Surgeon for Diseases of the Eye, Anderson's College Dispensary, Glasgow. With 100 Plates, containing 230 Original Drawings by the Author, Lithographed in black and colours. Crown 8vo, 15 s .
WOLFE.-On Diseases and Injuries of the Eye:

 a Course of Systematic and Clinical Lectures to Students and Medical Practitioners. By J. R. Wolfe, M.D., F.R.C.S.E., Senior Surgeon to the Glasgow Ophthalmic Institution, Lecturer on Ophtlalmic Medicine and Surgery in Anderson's College. With 10 Coloured Plates, and 120 Wood Engravings, 8vo, 21s.
J. \& A. Churchill's Medical Class Books.

PATHOLOGY. BOWLBY.-The Student's Guide to Surgical Pathology and Morbid Anatomy. By Anthony A. Bowlby, F.R.C.S., Assistant Surgeon to, and Demonstrator of Practical Surgery and Sur. gical Pathology at, St. Bartholomew's Hospital. Second Edition. With 158 Engravings. Fcap. 8vo, 9s.

JONES AND SIEVEKING.-A Manual of Patho-

 logical Anatomy. By C. Handfield Jones, M.B., F.R.S., and Sir Edward H. Sieveking, M.D., F.R.C.P. Second Edition. Edited, with considerable enlargement, by J. F. PAyne, M.B., Physician to St. Thomas's Hospital. With 195 Eugravings. Crowu 8vo, 16s.
LANCEREAUX.-Atlas of Pathological Ana-

 tomy. By Dr. Lancereaux. Translated by W. S. Greenfield, M.D., Professor of Pathology in the Uuiversity of Edinburgh. With 70 Coloured Plates. Imperial 8vo, £5 5 s .
MOORE.-Pathological Anatomy of Diseases,

 arranged according to the Nomenclature of Diseases of the R.C.P. Lond. By Norman Moore, M.D., Assistant Physician and Lecturer on Pathological Auatomy to St. Bartholomew's Hospital. With 110 Illustrations. Fcap. 8vo, 8s. 6d.
SUTTON.--Lectures on Pathology delivered at

 the London Hospital. By the late Henry Gawen Sutron, M.B., F.R.C.P., Physician and Lecturer on Pathology at the London Hospital, \&c. Edited by Maurice Eden Paul, M.D., and Reviscd by Sanuel Wilks, M.D., LL.D., F.R.S. 8vo, 15 s .SUTTON. - An Introduction to General Pathology. By John Bland Sutton, f.R.C.S., Sir E. Wilson Lecturer on Pathology, R.C.S. ; Assistant Surgeon to, and Lecturer on Anatomy at, Middlesex Hospital. With 149 Engravings. 8vo, 14s.
WYNTER AND WETHERED.-A Manual of Clinical and Practical Pathology. By W. Essex Wynter, M.D., Medical Registrar and late Demonstrator of Anatomy aud Clemistry at the Middlesex Hospital; and Frank J. Wethered, M.D., Assistant Physician to the City of Londou Hospital for Diseases of the Chest. With 4 Coloured Plates and 67 other lllustrations, Svo, 12s. Gd.

> 11, NEW BURLINGTON STREET.

PHYSIOLOGY.

CARPENTER.-Principles of Human Physio-
logy. By Wllifad b. Carpenter, C.B., M.D., F.R.S. Ninth Edition. Edited by Henry Power, M.B., F.R.C.S. With 3 Steel Plates and 377 Wood Engravings. 8vo, 31s. 6 d .
DALTON.-A Treatise on Human Physiology : designed for the use of Students and Practitioners of Medicine. By John C. Dalton, M.D., Professor of Physiology and Hygiene in the College of Physicians and Surgeons, New York. Seventh Edition. With 252 Engravings. Royal 8vo, 20s.

FREY.-The Histology and Histo-Chemistry of

 Man. A Treatise on the Elements of Composition and Structure of the Human Body. By Heinrich frey, Professor of Medicine in Zurich. Translated by Arthur E. Barker, Surgeon to the University College Hospital. With 608 Engravings. 8vo, 21s.SANDERSON.-Handbook for the Physiological Laboratory: containing an Exposition of the fundamental facts of the Science, with explicit Directions for their demonstration. By J. Burdon Sanderson, M.d., F.R.S.; E. Klein, M.D., F.R.S.; Mrehael Foster, M.D., F.R.S., aud T. Lauder brunton, M.D., F.R.S. 2 Vols., with 123 Plates. 8vo, 24s.

STARLING.-Elements of Human Physiology.

By Ernest H. Starling, M.D., M.b.c.P., Joint Lecturer on Physiology at Guy's Hospital. With 94 Engravings. Fcap. 8vo, 6s. 6d.
YEO.-A Manual of Physiology for the Use of Junior Students of Medicine. By Gerali) F. Ywo, M.D., F.R.C.S., F.R.S., late Professor of Physiology in King's College, London. Second Edition. With 318 Engravings (many figures). Crown 8vo, 145.

PSYCHOLOGY.

BUCKNILL AND TUKE.-A Manual of Psycho-

 logical Medicine: containing the Lunacy Laws, Nosology, Aitiology, Statistics, Description, Diagnosis, Pathology, and I'reatment of Insanity, with an Appendix of Cases. By John C. Bucinill, M.D. F.R.S., and D. Hack Tuke, M.D., F.R.C.F. Fourth Edition, with 12 Plates (30 Figures). 8vo, 25 s .CLOUSTON. - Clinical Lectures on Mental Diseases. By Thomas s. Chouston, M.D., and F.R.C.P. Edin.; Lecturer on Mental Diseases in the University of Edinburgh. Third Edition. With 13 Plates. Crown 8vo, 14 s .

J. \& A. Churchill's Medical Class Books.

SURGERY.

BELLAMY.-The Student's Guide to Surgical

 Anatomy; an Introduction to Operative Surgery. By EDWARD Bellamy, F.R.C.S., late Surgeon to, and Lecturer on Surgery at, Charing Cross Hospital. Third Edition. With 80 Engravings. Fcap. 8vo, 7s. 6d.
BRYANT.-A Manual for the Practice of

 Surgery. By Thomas Bryant, F.R.C.S., Consulting Surgeon to Guy's Hospital. Fourth Edition. With 750 Illustrations (many being coloured), and including 6 Chromo-Lithographic Plates. 2 Vols. Crown 8vo, 32 s .
DRUITT AND BOYD.-Druitt's Surgeon's Vade-

 Mecum ; a Mauual of Modern Surgery. Edited by Stanley Boyd, M.B., B.S. Lond., F.R.C.S., Assistant Surgeon and Pathologist to the Charing Cross Hospital. Twelfth Edition. With 373 Engravings. Crown 8vo, 16s.
HEATH.-A Manual of Minor Surgery and

 Bandaging. By Christopher Heath, F.R.C.S., Holme Professor of Clinical Surgery in University College and Surgeon to the Hospital. Ninth Edition. With 146 Engravings. Fcap. 8vo, Gs.
By the same Author.

A Course of Operative Surgery: with Twenty Plates (containing many figures) drawn from Nature by in. Lévellié, and Coloured. Second Edition. Large Svo, 30 s.

ALSO,
The Student's Guide to Surgical Diagnosis. Second Edition. Ficap. Svo, 6s. 6d.
$J A C O B S O N$.-The Operations of Surgery: intended especially for the use of those recently appointed on a Hospital Staff, and for those preparing for the Higher Examinations. By W. H. A. Jadohson, M.A., M.B., M.Cli. Oxon., F.R.C.S. Assistant Surgcon to Gny's Hospital, and Lecturer on Anatomy in the Medical School. Second Edition. With 235 Engravings. Svo, 30s.

J. \& A. Churchill's Medical Class Books.

SURGERY-continued.

MOULLIN.-Surgery. By C. W. Mansell Moulliu, M.A., M.D.Oxon., F.R.C.S., Surgeon to, and Lecturer on Physiology at, the Londou Hospitcu; formerly Radcliffe Travelling Fellow and Fellow of Pembroke College, Oxford. With 497 Illustrations. Svo, 34 s .
WALSHAM.-Surgery: its Theory and Practice (Student's Guide Series). By Willian J. Walshamr, F.R.C.S., M.B., and C.M. Aberd., Senior Assistant Surgeon to, and Lecturer on Anatomy at, St. Bartholomew's Hospital. Fourth Edition. With 335 Engravings. Fcap. 8vo, 12s.

TERMINOLOGY.

MAXWELLL.-Terminologia Medica Polyglotta:

 a Concise International Dictionary of Merlical Terms (French, Latin, English, German, Italian, Spanish, and Rnssian). By Theodone Maxwell, M.D., B.Sc. Lond., F.R.C.S Edin. Roy. 8vo, 16 s.MAYNE.—A Medical Vocabulary: being an Explanation of all Terms and Phrases used in the various Departments of Medical Science and Practice, giving their Derivation, Meaning, Application, and Promunciation. By R. G. Mayne, M.D., LL.D. Sixth Edition, by W. W. Wagstaffe, B.A., F.R.C.S. Crown 8vo, 10s. 6d.
A Short Dictionary of Medical Terms, 2s. 6d. treves and LANG.-A German-English Dictionary of Medical Terms. By Frederick Tleves, F.R.C.S., Surgeon to the London Hospital, and Hego Lang, B.A. Half-bound in calf, 12s.

WOMEN, DISEASES OF.

BARNES.-A Clinical History of the Medical and Surgical Diseases of Women. By Robert Barnes, M.D., F.R.C.P., Obstetric Physician to, and Lectmrer on Diseascs of Women, \&e., at, St George's Hospital. Second Edition. With 181 Engravings. Svo, 2ss.
DUNCAN.-Clinical Lectures on trie Diseases of Women. By J. Matthews Duncan, A.M., M.D., LL.D., F.R.C.P., F.R.S., late Physician Accoucheur to, and Lecturer on Midwifery at St. Lartholomew's Hospital. Fourth Edition. 8vo. $16 s$.

J. \& A. Churchill's Medical Class Books.

WOMEN, DISEASES OF-continued.

GALABIN.-The Student's Guide to the Dis-

 eases of Women. By Alfred L. Galabin, M.D., F.R.C.C., Obstetric Physician to Guy's Hospital, Examiner in Obstetric Medicine to the University of Cambridge, and to the R. C. P. Lond. Fifth Edition. With Engravings. Fcap: 8vo.
REYNOLDS.-Notes on Diseases of Women.

 Specially designed to assist the Student in preparing for Examination. By J. J. Reynolds, L.R.C.P., M.R.C.S. Third Edition. Fcap. Svo, 2s. 6d.
SAVAGE.-The Surgery of the Female Pelvic

 Organs. By Henry Sayage, M.D., Lond., F.R.C.S., one of the Consulting Medical Officers of the Samaritan Hospital for Women. Fifth Edition. With 17 Lithograplic Plates and 52 Woodcuts. Royal sto, Coloured Plates, 35s.; Uucoloured, 15 s.
WEST AND DUNCAN.-Lectures on the Dis-

 eases of Women. By Cearles West, M.D., F.R.C.P. Fourth Edition. Revised and in part re-written by the Author, with numerous additions by J. Mattilews Duncan, M.D., F.R.C.P., F.R.S., late Obstetric Physician to St. Bartholomew's Hospital. 8vo, 16s.
ZOOLOGY.

CHAUVEAU AND FLEMING.-The Compara-

 tive Anatomy of the Domesticated Animals. By A. Chaureau, Professor at the Lyons Veterinary School ; and George Fleming, C.B., late Principal Veterinary Surgeon of the Army. Second Edition. With 585 Engravings. 31s. 6d.
HUXLEY.-Manual of the Anatomy of Inverte-

 brated Animals. By Thomas H. Huxler, LL.D., F.R.S. Witli 156 Engravings. Post 8vo, 16s.> By the same Author.

Manual of the Anatomy of Vertebrated Animals. With 110 Engravings. Post 8vo, 12 s .

WILSON.-The Student's Guide to Zoology:
 a Manual of the Principles of Zoological Scichce. By Andrew Wilson,

 Lecturcr on Natural History, Edinburgh. With Engravings. Fcap. 8vo, 6s. 6d.[^5]

[^0]: * For full details relating to the General Morphology and Symmetry of the Flower, reference may le made to Masters's 'Vegetable 'Teratology', and to Sachs's 'Text Book of Botany.'

[^1]: Broussonetia papyrifera, the Paper Mulberry, is so mamed from its inner lark being used in Clina, Japan, \&c., for the manufacture of a kind of paper. The Otaheitans, \&e., also make a kind of eloth from it.

 Dorstenia. -The rhizomes and rootlets of several species have been suppirsed to le antidotes to the lites of venomous reptiles, and also of many prisonous substances; those of D. Contrayerva and 1 . brashiensss were formerly employed in britain for their stimulant, tonic, and diaphoretie properties.

 Ficus.- F. Carica vields the well-known fruit named the Fig. Figs are nutritive, emollient, demulcent, and laxative; they are official fins the

[^2]: * See two valuable commmieations ley E. C. Stanford, in the 'Jomrmal of the Society of Arts,' for a detailed account of a new process for preparings iodine from kelp, and for a description of several other important produets oltainalle from Alga: aud also a 'Roport on the Exhibits in the Paris Exhilition of 1878,' by Paul, Holmes, and Passmore, in 'I'harmacequtical Journal,' ser. iii. vol. ix. p. 303.

[^3]: 'The plates are cxcellent, while the letterpress is clear, careful, and complete.' - Burtish Medical, Joursal.
 'A work which, from all points of view, is a eredit to the scientific literature of the day.'-Lancet.
 'This work, whieh is now eomplete, has fulfilled the ligh promise of its first part, . . . Analmost indispensable auldition to every materia medica library.'-Practitioner.

 - Beantifully illustrated, and as accurately described. It is an invaluable book as a work of reference, and forms a noble contribution to botanieal and medical seienec.'--Edinburgir Madical Jourinai..

[^4]: 11, NEW BURIINGTON STREET.

[^5]: 11, NEW BURLINGTON STREET.

