

PRESS MARK
Press No.an*.....
Shiclf No.
Book No.! !
$R 37260$

$$
6 \text { hor }
$$

PROBLEMS OF LIFE AND REPRODUCTION

$$
\varepsilon^{-r i l .1}!
$$

PROBLEMS OF LIFE AND REPRODUCTION

BY MARCUS HARTOG M.A., D.Sc., F.L.S., F.R.H.S.
Protessor of \%oology in L'merersity Collegr, cork

WHTH ILLISTRACIONS

$$
\begin{aligned}
& 3^{1 \mathrm{BLIO}} \mathrm{r}_{4} \\
& \text { COLL.REG. } \\
& \text { TED, EDIT }
\end{aligned}
$$

LONDON

JOHN MURRAY, ALBEMARLE STREET, W.
I 913

ALI. KlGHIS KEskRVED

PREFACE

The idea of this volume first presented itself to me many years ago as a general treatise on Reproduction, suited to the layman interested in biologieal questions and without any technical preparation for their study. There seemed to be a need for this, accentuated by the tendency of many authors catering for this public to put forward the views of their own school as the final conclusions of biologists at large: a need which has certainly not diminished since the inception of the task. But though much of the systematic survey was completed, it was interrupted by more urgent tasks which I could not refuse, and the typoseript lay by. On taking it up again I found that a work of this scope could hardly be made suitable for that publie to which I desired to appeal ; while, on the other hand, the views that were important lay already exposed in various essays, or rather, buried in the back numbers of periodicals. My publisher was good enough not only to forgive me my long delay, but to aecede to my suggestion to
collect these essays into a volume. 'Two of the essays have been much modified : the first, on "Fertilisation," has been rewritten in great part, and the other, which appeared in Science Progyess as "The Dual Foree of the Dividing Cell," has been completely remodelled, I may say, with its essential contents expanded and brought up to date, under the title of "'The ' New Force,' Mitokinetism."

In the revision, indeed, I have endearoured to bring everything up to date, and have not hesitated to do so without note or comment wherever no question of priority was involved: but where this was the case I have pointed it out by the inclusion of new matter in square brackets [], according to established custom.

A well-entrenched position needs strong weapons and unflinching attacks ; and I have not hesitated to use all the legitimate arms of scientific controversy in assailing certain views; for they have been widely pressed on the general public with an assurance that must have convinced many that the position was protected by the universal consensus of biologists.

It is more grateful to express here my warm thanks to many friends. My wife has been a most useful eritic, and my brother Philip has constantly given me stimulating and helpful suggestions, and has spared
no pains in revealing that perspective which an author cannot alone obtain for his own work. 'To my son-in-law, William Cramp, I owe that cooperation on the physical side without which I should never have dared to attack what are, after all, essentially physical problems. With the drawings I have had the assistance of my demonstrator. Mr. J. I.. Johnson, D.Sc., of Laldy Windle, and the highly trained serviees of Miss Lyynton, who, when this book was in preparation, attended to the making of the illustrations on behalf of Mr. Murray. 'To the courtesy of the Editors of The Contemporar? Revice and of The Fortmghtly Rcvicw I owe the opportunity of republishing the essays that have appeared therein; to that of Mr. Fifield and Mr. Streatfield the republication of the essay on "The Biological Writings of Samucl Butler."

1. H.

August 1.5, $1!112$.

CONTENTS

CHAPTER I

SOME PROBLEMS OF REPRODUCTION

Comemporary Recier, 189:
Reproduction in Green Flagellates-Fission and brood-division-Life history of L'lothrix zonata-Zoospores and gametes-Conjugation and fertilisation origimally the mion of zoospores-Processes in Fucacex, abortion of some of the female gametes-Similar abortions of reproductive bodies common-Homologies in reproduction of Mosses, Ferns, etc.-"Polar bodies" of Metazon aud their interpretation-Exogamy distinct from sexual differentiation-Origin of sex-I'andorina Morum-Discussion of function of syngamy or fertilisation processes-Weismam's "shuffing": hypothesis-Strasburger's " elimimation of defeet" hypothesis-" Rejuvemation" hapothesis-Loss of disease-resistance in potatoes propagated by cuttings-Manpas's researches on senescence aud conjugation in Infusoria-Definition of rejusenescence as removal of senescence-Rcjuvenescence also possible by rest or change of habit-Probable canses of senescence explained as dulling of reactions between cytoplasm and nucleus-Hence change of surroundings as well as internal reorganisation will rejuvenate-Essence of syngamy the creation of a new cell-Relations and efficiency of various modes of rejuvenescence compared-Tendeney of organisms to live up to their ndvantages-Conelusion . . pp. 1-33

CHAP'TER II

THE CELLULAR PEDIGREE AND THE PROBLEM OF HEREDITY

Nulural Scinner. 1808

Introductory: cells as units-Multicellular "propagation" and unicellular " reproduction" contrasted-Explanation of " ccllular pedigree"Modes of cellular reproduction, simple fission, brood-formation, syngamyCycles of reproduction in Protista, e.g. Malarial Parasite-Colonies and
social aggregates-Segmentation and colony formation-Low type of specialisation within the colony in Proterosponyia hacckclii-Structure of Sponge-Partial sterilisation within organic colony-Early stago of development-Transmission of properties of sterile collaterals to reproductive cells-Propagntion and regeneration-Embryonic layers in animals and plants-Summary of facts-Restriction of propagative powers in higher animals-Characteristic envelope of plant cells-Power of nutrition growth and multiplication in "resting" state-Behaviour of reproductivo ecfls in lowest forms-Differentiation of colony into reproductive and " somatic " rells-Volvox-Mctaphytes-Mosses and their alternating modes of reproduction-" Short-circuitings " in Mosses and Ferns-Fern and its alternating modes of reproduction-Flowering plants-Dicotyledons or Exogens and their cambium-Cork, wound-cork, callus-Propugation in flowering plants and in animals compared-The problem of " collateral transmission"--Wcismann's "germ-plasm" or "determinant "hypothesis explained and eriticised-Its lack of objective base-Tho transmission of acequired charactors-Darwin's "pangenesis"-Spencer's "physiological units," and Hancke's "Gcmmules" and "Gcmmaria" hypothesis-Hering and Samuel Butler's thoory of "Uneonscious Memory " and its hereditary transmission-Rhythm of, possibly, ehemical changes

- Pp. 34-78

CHAPTER III

THE RELATION OF BROOD-FORMATION TO ORDINARY CELL-DIVISION

Quarterly Journal of Microscopic Science, 190.1 (largely reurillen)

Function of eell-division according to Herbert Spencer and to Leuc-kart-Relation of surface to bulk-The limit of growth-Utilisation of reserves always due to intermal ferments, or "zymases," which are isolablo -Examples: leaves, germinating sceds, and tubers and bulbs-ProtistaSegmenting eggs of frog and hen-" Motabolism " and Gaskoll's distinction of "anabolism" and "catabolism"-Further nccessary clistinction of two modes of anabolism, into plasmic and accumulativo (" anatrophism" and "anasorism")-Mctatrophism-Accumnlativo anabolism of brood-mother-cell followed on germination by intracellular digestion of reserves by forments, and by plasmic anabolism which entails progressive fissionsLimit of growth oxtended by change of form and inercasod surfaco, by internal vacuolisation, or by superficial outgrowths-Change of form muy delay or provoko fission, respectively--Multiplication of nuclei without division of cytoplasm leads to "apocyte"-Brood-formation by resolution-Brood-formation direct or delayed-False brood-formation
pp. 79-90

CHAPTER IV

THE "NEW FORCE," MITOKINETISM

I. Introductory-II. Historical-Enrly view of homogeneity of proto-plasm-Its differentintion into eytoplasm and nuelens-Obseurity of process of nuclear division in living object-Advances due to improved mieroscopes and improved technie-Fol's diseovery-IIl. Structure of "resting" nucleus-Chnnges on nppronch of division in ehromatin-Division of ehromatin granules on ehromosomes-Weismann's "icls "-Partitive division and the function of eliromatin-The cell field: centrosomes, spindle, asters-Its formation and growth-Movements nud behaviour of partinlly split chromosomes-Discession of their halves-Resemblance of cell field to electrostatic fich-Telophase-Difference between typical Animal scheme and proeess in Plants, which have no distinet centrosomesDetniled explanntion of discession of half- or duughter-chromosones from the "Mahomet's coffin" position (equatorial plate)-Function of spindle fibres-C'omparison of cut melon- $I V$. Study by physical modelsElectrostatic models-Faraday's geometric lines of foree and material ehains of force-Flexible induetors-Confusion of ideas between lines and ehains-Discession of chromosomes modelled in a plane mngnetic field-Distribution of lines in a leteropolar fiedd eomparable to those of heat in n conduetor or of stream lines between "souree nnd sink "- "Heteropolar " or "spindle " ficld, and " homopolar " or " erossed" fiedd-Ňnturo of foree of eell field-Its ineonsisteney withmagnetien and osmotic currents and tension- Eleetrostatic field and electric current field also inadmissible since the eentrosomes are electrically " like " and opposite to the chromo-somes-lnadequate motives for clinging to clectrostatie explanationHydrodynnmic ficlds (vortex, pulsation, oscillation) impossible-Suggestion of ethereal pulsations-Mitokinetism consequently Ω "new" forceV. Summary of the play of forees in the dividing cell-VI. Relation of this discovery to the question of Vitalism versus. Mechnnieism-In itself no valid argument-Weak argunents for one side strengthen the opposition, ass in the ense of "organie" chemical substances-l"ossibitity of reproducing forces outside the living body-Harmonious and purposive character of living proecsses-" How?" and "Why?"-Alleged debt of study of life to mechanistic idens-Mechamistic explamations often merely generalise the very problems which they profess to solve-Conclusion. pp. 97-128

CHAPTLER V

NUCLEAR REDUCTION AND THE FUNCTION OF CHROMATLN

Netural science, 1 sas
Definition of Nuelear Reduction ("Mciosis")-Stage of occurrence coineides with gametogenesis in Metnzoa-Theories based on assumption
that this coincidence is universal broke down when it was noted as a stage of sporogenesis in Mosses and Vascular Plants-Instcad of preparation for fusion of cells, a reversion to norm, to check indefinito multiplication of chromosomes-Generally stage coincides with first resumption of prolistoid multiplication-Fucacer-Conjugatæ-Strasburger's explanation rejected -Function of chromatin-Its reduction during working life of cell, and inerease on approach of division-Function connected with divisionProbably serves as a mechanical help towards splitting of chromosomesThe achromatic snbstance of chromosomes is probably the essential constituent with the function of the transmission of inherited characters
pp. 129-139

CHAP'TER VI

FERTILISATION

ON THE ROLLE OF THE SPERM IN METAZOA
TABULAR VIEW OF THE HEHAVIOUR OF THE ZYCOTE

Quarterly Journal of Microscopic S゙cience, 1904 (largely rewrilten)
Origin of term, applied to insemination or impregnation of femaleExtonsion to (1) fusion of sperm and egg and (2) fusion of equal pairing cells-So-called "artificial fertilisation," "chemical" and "physical" now termed "artificial" or "induced parthenogenesis"- P'Artueno. aENESIS is really a "germination" and designates the direct germination of a potential gamete-In most cases outside Mctazon and in some of these the zygote goes to rest and eneysts immediately or aftor a short period of brood-formation-Formation of membrane after fusion of male and femalo cell a surviving trace of this resting stage-Ambiguity and lack of morphological consisteney in term "egg " (note)-Disadvantages of use of word "fertilisation" and of "sex," "sexual"-Exogamy distinct from binary sexual differentiation, though it may be superinduced on it-Proposed limitation of words "sex," "sexual" to eases of binary differentiation of pairing cells-And substitution of "syngamy" with its adjectives "syngamous," "syngamic," to designate all cases of cell and nuclear fusion -Function of centrosome in syngamy of varying importance-Commonest type of syngamy-The eomplete fusion of two cells, nucleus to nucleus, cytoplasm to eytoplasm-The nuclear fusion delayed in some cases, notably Uredineæ-Difforontiation of pairing cells by progamic fissions-" Maturation " fissions of metazoan " egg " not a process of climination-- " Reducing divisions " distinct in time from progamic fissions in Archegoniates, Sphacelariaceæ, etc., and of different import-Progamic fissions and polar bodyformation in the Wracks (Fucacere)-Polar bodies of Mctazoa reduced oospheres, sometimes "fertilised" by a sperm (Planarinns)-True morphological explanation of progamic fissions: that pairing cells were originally zoospores formed by brood-division-Functional oxplanation . for two nuelei to fuse, one at least must be fresh from fission-Illustrations,
isogamous Conferve-Trichospherium, Actinophrys; Basidiobolus, Desmids, Spyroyyra, Dintoms, Metazon, Wracks, Floridex, EEdojonium, Characea, Arehegoniates, Flowering Plants, Cyeadacer and Gingko-The value of this generalisation as an "interpolation" formula-Endokaryogamy and "autogamy" in Saprolegnica, Basidiomycetes, Ustilaginea, Uredinex, fusion of second polar nucleus with oosphere nueleus in the brine-shrimp Artemia-Autogamy in Rhizopods-"Merogony ". (fusion of sperm with enueleated egg or part of it), experimental in many easesNormal in Alcyomriea-Function of syngamy $=$ eellular reorganisationconclusion and summary-Note on the rolle of the sperin-Size of female cell conditioned more by abundance of reserses thmof living eytoplasmGrowth of sperm cytoplasm within the egg at the expense of these reserves manifested in Rhynchelmis and Echinoderms, ooncurrent with that of oosphere-Bibliography- Tabuhar view of behnviour of zygote pp. 140-175

CHAPTER VII

TIIE TRANSMISSION OF ACQUIRED CHARACTERS

Contempurary Review, 19118

I. Darwin and the neo-Darwimans-Denial of transmission of acquired charncters by A. R. Wallace and others-Their dogmatism and intoleraneeTheir influence on the cultured laity-Definition of "aecquired eharaeters" -Sumburn and mutilation mere injuries and excluded from eategory- A priori grounds for neo-Darwininn claims-Soma and stirp-Absence of visible meehanism-Cnnon that "absence of visible mechanism for transmission demonstrates impossibility of transmission "-Nutritive and chomieat dependence of stirp on soma-lmmmity-Transmission of nervous reactions from soma to stirp, exmmple-Embryological evidonce-Nigration of nervous system in clevelopment, and Balforr's explanation-Brown-Séquard's guinea-pigs-Attitude of most psychologists-Transmission in Plants-Bacteria and Moulds-Hastened ripening of cereals raised from seed grown in a northern elimate-Kammerer's results on Sahamanders and Obstetric 'Toads-Anticipatory adaptations in human development-Precocious widening of pelvis at puberty-Havelook Charles on modifications for sitting and squatting appearing before birth in the races that practise the one or the other-Weismannic explanation too subtle for presentment, makes greater demands on faith than Lamarck-im-Hormone theory-Syllogistic proof of the extreme probability of Lamarckian transmission-Weismam"s "determinant" theory of heredity; his supplementary hypothesis of gorminal selection-Nuolear divisions partitive, not differential as postulated by the "determinant" theory-Lamarekian transmission supported by Charles Darwin, G. J. Romanes and Herbert Spencer, and by living biologists of the highest eminence-Their hostile criticisms on Weismannism-Majority of English
botanists on same side-Nevertheless some English zoologists support Weismam, and go so far as to suggest that almost all the chicf biological thinkers and investigators "share their views "-Lankester's argumentConchusion
II. ("A Rejoindere" to Dr. Archdall Reid.) The methods of the neo-Darwinian School-Misleading display of the uncontrovertedUnjustifiable clain to weight of current biological authority-States that attempts have been mude "to revivo the Lamarckian hypothesis," which has never been dead or dormant-Erroncous representation of views of modern Lamurckians in respect of the effects of "ill conditions" and of scars and mutilations-Criticism of the essayette on fnets-Its standpoint peculiar, its treatment inconsistent-Originality of Dr. Reid's view of the origin of variations in natural selection-Dr. Reid's silence on the Lamarekian thesis of C'harles Darwin's "Expression of the Emotions" - Discussion on immunity-Clains to authority of weight of experimental evidence disproved-Royal Commission on the eare and control of the feeble-minded-C'onclusion inconsistent with the facts.
pp. 173-215

CHAPTER VIII

MECIIANISM AND LIFE

Contemperary Revietr, 1908

Alternation of vogue of rival theories-Explanation of collapse of older vitalistic school-"Vital Forec" and modern restricted physical definitions of Force-Synthesis of "organic" chemical substance-Rise of "descent" theory-Effect of religious prepossessions-Carl Vogt, Ernst Haeckel-Lionel Beale, T. H. Huxley-General mechanistic nttitude of official physiologists in 1887-Limitations of their training-Foster and Sanderson exceptions-Need of elear definitions-Machine and mechanisın (including tool)-" Automaton" and "automatic " defined-Automatism of clock, stenm engine, ete.-Machines require explanation by purposeThings at large adequately explained by history-Misapprehension of this distinction due to excessive reaction from the perpetual "Why's" of childhood-Typewriter inexplieable by physies and chemistry apart from its purpose-l'nley's design argument-Distinetions between machines and things at large-Capabilitios of organisms lacking in machines"Conscious automatn" a question-begging term-Charaeters of organisins -Nutrition, assimilation for repair and growth-Reserves-Character of stimulus and response (" release action ")-Greed of matter and energy pointed out by Joly, and its consequence-Reproduction-Repair, often greater than moderate damage--Muscles, bones, trees, compensationModes of obtaining food supplies-Cell-division-Criticism of methods of "physiologists" which exclude "general physiology"-Experimental
embryology and eytology abandoned by them to others-NlitokinetismChemical reactions of organisms in many respeets different to those of the laboratory, especially in the lack of isolating vessels, and the limited range of temperature in the organism-Invoeation of colloid chemistry inade-quate-Embryological phenomena-Powers of repair in mutilated em-bryos-"Identical twins"-Compressed embryos, and their normal development-Train regulation : determinism or foresight?-Regulation and side-tracking-Comparative harmlessness of harmful practices such as head and waist compression-Spontancity and egotism distinguish organism from machine-Conclusions
pp. 216-242

CHAPTER IX

THE BIOLOGICAL WHITLNGS OF SAMUEL BUTLER

First published as an introduction to " ''neonscions .Jemory," 1910

Foreword-List of writings-"Life and Habit"-Its main theses-H is disappointunent at its unfavonrable reception by biologists-Due to their aversion to eriticism of theory, and their misunderstanding of Butler's scrious reasoning veiled hy his irony-"Evolution, Old and New" an exposition of the pionecring work of Buffon, Erasmus, Darwin, and Lamarek-Attack on Charles Darwin for his neglect of his precursors, which is, however, explicahle by his history-Butler actuated by resentment at what he considered injustice, and hy the supposed banishment of mind from the organic world- "Uneonscious Memory," transhation of Hering's lecture, and passages from V. Hartmonn's " Philosophy of the Unconseious" with his eriticisms on hoth-Reecdes towards monism from his own distinetion between organisms, machines, and things at large"Luck or Cumning " a strenuous polemie against Charles Darwin-Further advance towards monism, but possibly tentative rather than assertive"The Deadloek in Darwinism"-Darwinism v. Wallaceism ?-General reviow of Butler's biological work-His failure to realise fundamental difficulty of Lamarckion transmission-'The absence of an obvious mechanism-How can "memory" exist without a nervous system ?-But plants behave as if they had a psyche-Germ-plasm theories-Defenders of Lanarekian viows--Herbert Spencer, Vines, Henslow, Cunningham, Cope, O. Hertwig, Delage, Le Dantec-H. P. Orr's theory of evolution on Butler-Hering lines-Hartog's "Fundamental Principles of Heredity "-The Hormone theory and J. T. Cumninghan-Post-Darwinian controwersies-Fhetuations and mutations-Darwin's disparagement of latter influeneed by Flecming Jenkin-Bateson on discontinuous variations at first negleeted -De Vries and the " mutation" theory-Luther Burbank-Butler's anticipation of it-Drieseh's work at first mechanistic, afterwards vitalistic-His "psyehoid" Entelechia-Kignano on " Centro-epigénèse-F. W. Hutton's
"Lesson of Evolution"-James Mark Baldwin and the "circular reaction "-Declares inadequacy of purcly physico-chemical explanations in lifo as in history -H. S. Jemings on "Behaviour of Lower Organisms " and on "Plysiological States"-R. Semon's book "Die Mnemo" essentially a dovelopment of the Hering-Butler hypothesis-His criticisin of Butler due to his aversion to vitalism-Recent recognition of Butler's work by Francis Darwin and by Bateson-Conclusion . . pp. 243-282

CHAPTER X

INTERPOLATION IN MEMORY

Contemporary Revicw, 1900
An imaginary complete syllabus of education in stone-throwing-Its probable results-The practical study-" Allowance" for quantities not yet experienced and for new combinations-Classification in memory in categories-Items within the category linked into a continuous "something " compared to an interpolation curve-Definition and illustration of such a curve by a case of fever-The "primeiplo of Association" fails to recognise this continuity-Recognition of continuity in various domains, "faculty," "artistic feeling " for form, colour, nud stability - Violin playing, billiards, language, cards - Combination of continnties in different categories-ls combination the summation of ronscious judgmonts? Richet's estimate of speed of single mentations-Rapidity of combinations too great for such summation-Term "instinctive " unsuitablo-Criticism of logical syllabuses of instruction-How we learn balance on a bicycle, and stcering hands off--A teacher's view of "Progressivo Mothods for tho Piano"
pp. 283-297

CHAPTER XI

THE TEACHING OF NATURE-STUDY

Fortnighly Reriete, 1910
Scope of lecture-A bird's-cye view of generalities-Precursors of movement in eighteenth century: Aikin and Barbauld, Miss EdgeworthGenoral discouragement in public schools in first half of nineteenth century -Shelley and Charles Darwin, Dr. Arnold-Persistence in private schools and under governesses-Mrs. Marcet, Dr. Brewer-Henslow's introduction of botany into village schools-Breadth and valuable results of his teaching -Quaker schools, general recognition of nature study tho now fact-Old-fashioned object-lessons, their weakness-Their value, since science is tho study of relation-Object-lessons on school-house best introduction to topography-Modification of Rudyard lipling's "jewel game"-

Opportunities for teaching orderly presentation-Difficulties to teacher from unequal capacity of pupils-Part of uncongenial work should be left to papils-Transition from object-lessons to geology, geography, and botany-Dr. T'urnbull's syllabus of botany for Irish Intermediate Schools -Teachers warned against cxcessive sclf-sacrifice-Spontancity and socalled " methods of researeh"-Defects in "heuristic theory of paelagogics "-Teachers' work must not be continuously strenuous, but allow time for individual silent study by pupils to the profit of both partiesValue of technical descriptions of dissections of plants-Extension to other points, including identification by floras in higher classes-Good systematic knowledge indispensable even to physiological botanists-De Bary's opinion-Insistence on use of current technieal terms at outsetDifficulties imagined by adult not existent in child's mind-Illustrations from music and naval architecture-Avoid anfaniliar pseado-technical or pseado-seientific terms like "chives" for stamens, and "chalk-stuff gas" for carbon dioxide-Neatness and deftness-Brushwork-Use dark paper so as not to falsify the papil's sense of light-values and tone-relationsIntrodaction of animal study-Use of lens and of microscope-Lectures, with note-taking, followed up by question-papers a most useful trainingEach answer to be a complete lugical statement-Volanteering tabooedExaminations incidentally teaeh composition-Aathor's personal experience of their value as papil, teneler, examiner-School-calendar-phenological tables of appearances of leaf, fruit, and flower, birds, etc.Metcorologieal observations- lhenology in towns: seasomal succession of strect ganes, of fruit and regetables-Hints for selood museam and garden -School walks-Cegenbaur and Hacekel

- pr.298-317

INDEA

- pl. 319362

IIS' OF ILLUSTRATIONS

PLite: between piae
I. Diagram of "maturation," syngany, and commonee- ment of segmentation in a metazoon (from J. A. Thomson) 148-9
F10. rage

1. Lifo-history of Ulothrix zonata (after D)odel-Port) 4
2. Eudorina elegans (after Pringsheinı) 6
3. Oogeny in the Wracks (Fucacere) (after Oltmanns) 9
4. Arehegone of a Fern (aftor D. H. Campbell) 10
5. Dingram of mato and fenate gamotogenic divisions in Motazoa (from J. A. 'Tliomson) 11
6. Pandorina Morum (after Kingsheim) 15
7. Reproduction in the monad Pseudospora Lindstedtii 23
8. Structure of "resting " eell (from Thomson). 25
9. Life-cycle of Malarial Parasite (modified from Romakl Ross) 39
10. Proterospongia Hacckelii (after W. Savile Kent) 42
11. Development of the Sponge Oscarclla (after Haider) 44
12. Vertical section of tho epiderm of a Vertobrate (aftor Fïrbringer) 49
13. Volvox (from J. A. Thomson) 53
14. Vegetative system of a Leaf Moss (after Luerssen) 55
15. Young eapsule of a Leaf Moss, parasitic on mother plant (after Luersisen) 56
16. Fern-scale (Prothal) (after Lucrissen) 61
17. Soxual reproduetive organs of Fern-sealo (after Luerssen) 62
18. Embryonic Fern Plant parasitic in mother-seale (after Luerssen) 64
19. Cross section of wounded stem of an exogenous Flowering plant, showing normal and sceondary cambium, wound- cork, and eallus (after Harting). 66
20. Diagram showing necessary reduction of the ratio of surface to bulk by inereaso of dimensions 80
21. Delayed brood-formation in tho Wracks (after Oltmanns). 88
HIT. Page
22. Apocytial strueture and delayed brood-formation in Saprolegnicex 89
23. Earliest figuro of mitokinetic fiold (aftor Fol) 95
24. Diagram of "resting-eoll" (from 'Jhomson) 97
25. Diagrammatie history of first stages of mitotic coll-division in Echinodorm embryo (after Wilson). 99
26. Diagrammatic listory of completion of the procoss (after Wilson) 10.3
27. Diagrams explaining discession of chromosomes 107
28. Diagrams of "lines of force" in fiolds between (A) two "unlike" and (B) two "like" poles rospectivoly (after Watson) 114
29. Spindlo in anaphase with "blobbed" eentrosomes in oosperm of Pond-worn1, Rhynchelmis (after Véjdowsky and Mrázek) 115
30. Half of Rhumbler's net, pulled in at two centres (modificd from Rhumbler) 116
31. First initosis of oosperm of Axolotl, showing eombination of spindlo (mitokinotic field), and anti-spindle or erossed figure (osmotic fiold) (modified from . Jenkinson) 117
32. Plant-colls fixed after tho passago of an electrie eurrent (after Pentimalli) 120
33, 34. Oogeny in the Wraeks (aftor Oltmanns) 134, 154
33. Unequal brood-formation (oogony) in archegone of Forn (after Campbell) 1:5
34. Growth of sperm at the expense of the yolk-rescrves in the Pondworm, Rhynchelmis (aftor Véjdowský and Mrázek 168
35. Diagram of relations botween body ("soma") and gorm ("stirp") in successive generations (from Thomson) 181
36. Regulation in the development of portions of scgmenting oosperm of Jellyfish, Laodice (aftcr Norscholdt and Haider) 237
37. Altcration in cell lineago of Frog ombryo due to com- prossion (after O. Hertwig) 239
38. Diagram of rolations botween body ("soma") and germ ("stirp") in successive genorations (from Thomson) 258
39. A curve of temperaturo illustrating intorpolation 288
table
I. Diagram of growth and reproduction in a Sponge 47
II. Diagram of growth and reproduction in a Moss 57
IIT. Diagram of growth and reproduction in a Forn 63

PROBLEMS OF LIFE AND REPRODUCTION

CHAPTER I

SOME PROBIEMS OF REPRODUCTION

Condegathon, Ferthasatioñ, and Remevenescence I propose in the following pages to give a short account of some of the chief discoveries bearing on Life and Reproduction that late researches have brought forth, and to show how all the facts may be welded into a coherent and consistent theory. This survey cannot be absolutely eomplete, from the very technical nature of some of the points, whieh are better treated in the pages of a seientific journal. ${ }^{1}$ Yet the subject is so fascinating, and possessed of such wide-reaching interest, that I make no attempt to apologise for bringing it to the notice of the wider circle of the "eultured laity": who, without direct teaching, can but slowly learn what matters

[^0]are being disenssed in the restricted group of professional students of biology. The problem I have essayed to solve is the meaning of the process of fertilisation, its origin, essence, and objects ; and, as a rider, I have examined the use and need of crossfertilisation, and the validity of the aphorism, "Nature abhors perpetual self-fertilisation."

I

In the course of my inquiry I soon found that the farourite field of most recent theorists-the Animal Kingdom (limited to the Metazoa or amimals of eomplex structure)-was as unfarourable a one as could be chosen. In the Vegetable Kingdom, however, I espied a path, not wholly free from awkward gaps. but still casy to pick up afiesh after each break: and this we may follow down to that very primitive group, the Green Flagellates, of which the lower Algw are, indeed, only highly developed examples, leading for the most part a stationary life, in permanent groups or "colonics." Each Flagellate is a single cell, formed of protoplasm or living matter ; this again is divided into a peripheral layer, the cytoplasm, and a central body, the mucleus, differing from the eytoplasm in its chemical composition and in the complexity of its structure. The eytoplasm is prolonged into one or more whip-like lashes, the "flagella," organs of motion, which give their name to the group. Such a cell grows and
enlarges to double the size, and then undergoes fission-that is, it splits or divides into two equal "daughter-cells," which, in their turn, repeat more or less closely the life and behaviour of their "parent." But, besides this altemation of growth and division-or multiplication, if you will-there is yet another mode of reproduction, that usually eomes in at distant intervals only. In this mode, a cell, after cnlarging, it may be, to many times its original bulk, undergoes not a single fission only, but a series of fissions; for the daughter-cells also divide immediately after their formation, and so on, without any interval for mutrition and growth. In this way a brood of many cells is formed, minute in proportion to their numbers. Such cells are frequently very active, and are hence called "swarmers," or "zoospores." I shall call them, irrespective of their activity, "brood-cells," and the original cell a "brood mother-cell."

With this explamation we may now examine the reproduction of the pretty filamentous Alga, Clothrix zonata, which often forms a green down on stones in running water, and whose life-history was studied in great detail in 1876 by Prof. Arnold Dodel of Kurich. Ulothrix consists of cylindrical cells growing end to end, each invested by a protective layer of cellulose, so that the filament may be described as a tube, subdivided by transserse partitions into chambers, with a protoplasmic cell in cach
chamber (Fig. 1). Each cell may grow and divide by transicrse fission, a new horizontal wall separating the daughter-eells. In this way the whole filament

Fig. 1.-Ulothrix zonata.
1, Young filament, showing cells all diviting transversely. 2, Portion of adult filament showing cells escaping from carity as single 1 -flagellate zoospores at a, cscaping after a single division at b, after two divisions at c, after numerons divisions as microzoospores or facnltative pairing cells at $d, e, f, g ; g-k$, stages of fusion (syngamy) ; l, fusion-cell enlarging ; m, fusion-cell encssted at rest; n, fusion-cell dividing into a brood of, liberated at $a ; p p$, cells of filament cf which the protoplasm las divided into brood-cells, which grow out into filaments at once.
grows in length. Sometimes, however, there is no new partition formed, and the two daughter-cells shrink a little from the wall of the parent-cell and from one another, rounding off at the same time.

These "naked cells" may each produce four flagella, escape from the chambers in which they were formed, and swim off as zoospores (b), or else they cach form a fresh cell wall in sith, and grow out into a new filament at right angles to the parent one (p). In the same way, a cell may by repeated fissions form broods of from four to one hundred and twenty-eight naked cells, small in proportion to their number, and with only two Hagrella: and the brood-cells may develop in either of the above ways.

All the swarmers, whatever their size and numbers, after swimming freely for a short time, may at last come to rest, attach themselves by one end, acequire a cell wall, and grow out into a new multicellular filament: nay, may even do so in situ (Fig. 1, p). But the smallest swarmers, under certain conditions, will first approach in pairs, and then fuse to form single cells of double the size before coming to rest (Fig. 1, ぶ-l). This union involses their complete fusion, cytoplasm to cytoplasm and mucleus to nucleus, so that the resulting cell has the structure of a normal uni-nucleated cell when it finally comes to rest (m).
'The process we have just studied is termed "conjugation," the cells that unite are termed "gametes," or "pairing cells," and the resulting cell called a " zygote." or "fusion-ecll " ${ }^{1}$: and we have here the key to all processes of conjugation and of

[^1]fertilisation, since this is the most primitive type. In eertain forms allied to Ulothrix, more than two gametes -as many as six-may unite to form a single zygote. In other cases, again, such as Eudorina elegans. (Fig. 2), a small green organism floating in fresh-water pools, we find the grametes all similar in

Fig. 2.-Eudorina clegans.
I, Female colony with sperms (sp) entering to fertilise the oospheres. II, unit cell of indifferent or female colony ; v, incleus, r, red eye-spot; A, houndary of the gelatinous mass of the spherical colony; III, similar cell dividing in sifu to form anew similar colony. IV-VI, brood-divisions to form a male colony; L, lash-like organs (llagella) of the mother-eell, $M_{1} M_{2} M_{3}$, mate colony separating into single eells at the surface of the female colony 1 .
form, but evineing in size and behaviour a division into two types: the one smaller and more atetive, the other larger and more sluggish. 'This differentiation affects the eytoplasm far more than the nucleus. It may advance so far that the larger eell is enormous and motionless, or nearly so, while the
smaller cell is reduced to a nucleus, with just enough cytoplasm to enclose it and carry it to its destination. This differentiation of size and activity is what we term sca'. 'The larger gamete is the fomale, oosphere, or egg^{1}; the smaller is the male, spermatozoon or sperm, whose flagellate type is retained in the highest animals, betraying still their lowly origin.
'The term conjugration is seldom used in speaking of such highly differentiated types. We say that the orum is fortilised by the spermatozoon. But, despite the adrantages of familiarity, "fertilisation" is not a good word to employ, as it has an erroncous comnotation ; for the process is not a onesided one, but its very essence is the fusion of two cells: their difference of si\%e and behaviour is, as it were, a mere accident from our present standpoint. [I have suggested its replacement by "syngamy " (sce p. 149).]
'To pass on: we have found that gametes, whether equal or sexually differentiated, are in their origin brood-cells: and we may expect everywhere to find some trace of their origin in their development. I take a few instances which indicate alike the origin of the process and the character of the facts that may, by masking this origin, lead to false interpretations and erroncous theories. The lower members of the group of Olise Scaweeds, so common on our seashores, show at most but slight differentiation in

[^2]the size and behaviour of their gametes; the limited order of the Fucucere or Wracks, however, have welldeveloped eggs and sperms. In the type genus Fucus the ova are formed in broods of eight (Fig. 3, $2-9$), and indications of this number are found in all the other genera of this order. But in a second genus (Ascopliyllhmi) only four of these ova have enough cytoplasm to be of any use, while the other four are reduced to nuelei with but a trace of cytoplasm around them, incapable of fertilisation, and mere abortive rudiments (Fig. 3, 1:3); in a third (I'cluctio) only two of the eggs are functional and six are abortive (Fig. 3, 10) ; and in Himunthatia one of the ova retains nearly all of the cytoplasm of the brood mother-cell, and the seren others are abortive (Fig. 3, 11, 12).

Such abortions of certain members of a brood or group to the farour of others are not execptional in nature. Many flowers produce far more ovules than ever ripen into seed; the Acorn, for instance, is a unilocular and seeded fruit, proceeding from a threechambered fruit-vessel in the flower. with two ovules in eath chamber. Space will not allow me to cite more examples of what is a very eommon occurrence. With this clue we ean explore some more intricate problems. Thus in Mosses, Ferns, etc., we find the oosphere is a large eell lying in the cavity of a flaskshaped structure. while the three other cells of the same brood of four occupy the neek of the flask, and are
hence called "canal-cells" (Fig. 4). These canal-cells ultimately degenerate into a slimy substance, holding

Fig. 3.-Oogeny in the Wracks (Fucacex).
1, Female intlorescence of Sarcophyces. 2-9, Oogone of Fucus (common Bladder-Wrack), its liberatiou, division, and separation into eight oospheres. 10, Oogone of Pelvelia with two zoospheres functional and six dwarfed and fuctionless. 11, 12, Oogone of Himanthalia with one functional aud seveu rudimentary oospheres (not all seen). 13, Oogone of Ascophyllum with four functional and four functionless oospheres (only three of each in riew).
matters in solution which attract the spermatozoa, and lead them down to the ovum. Here it is very clear that threc of the four brood-cells are not merely
aborted, but degraded into an accessory apparatus for ensuring the fertilisation of their more favoured sister. In the higher animals (Metazoa) the "ovarian egg," as it is called, is not a gamete, but a mothercell, producing a brood of four eells by two successive divisions (Fig. 5). The first division is a very unequal one, forming a large cell and a small one called the " first polar body." The small cell may or may not

Fig. 4.-Flask-shaped structure (archegone) of a Fern.
A, young with the brood of four reproluctive eells. B, the three upper ones degenerating as " eanal-eells," the lowest enlarged as the ousphere.
undergo a second equal division ; the large eell undergoes a seeond division, unequal like that of the "ovarian egg." 'The large eell thus finally formed is the true egg or oosphere, now suseeptible of fertilisation; the small one is the "second polar body." We ean only interpret "polar bodies" in the light of our previous study as aborted functionless ova. These brood divisions of the ovarian egg have been studied most elaborately by zoologists of
the highest distinction, and some of them, like Giard, Mark, Bütsehli, and the brothers Hertwig, have recognised the facts as stated above ; but others have ignored or neglected the process of brood-formation

Fig. 5.-Comparison of formation of reproductive cells (in this case pairing cells) in malo and female of higher animals.
The primitive cell, or oogone in either case produces four cells by two successive divisions; in the male, $A^{\prime}-D^{\prime}$, ther are all equal and fmetional; in the femate the divisions are mequal, and only one functional pairing cell, or oosphere, is formed, the other three being functionkss as "polar" bolies, ph. The lines in the nuclens are chromosomes. For more detailed illustration of the same facts see below, Plate I, aft rg. Hs).
that forms gametes in more primitive types, and have essayed to interpret this as a process standing apart from all others of organic life. ${ }^{1}$ Hence, dis${ }^{1}$ [This view of the polar bodies as rudimentary oospheres has since received absolute confirmation; for in certain marine llatworms their size is relatively laree, and they may be fertilised by sperms.]
regarding the obvious explanation that this, like so many other processes of individual development, reealls the past history of the race, they have sought for physiologieal explanations; and urged that in the formation of polar bodies, the egg eliminates what would, if retained, interfere with fertilisation and its object. But if this were so, similar processes should take place in all cases of the formation of the female gamete ; which is not the case, as we have seen. 'I'o take a familiar explanation, we may easily conceive a breed of cats that had only enough milk for one of a litter ; should we ascribe the eontinued production of three or four extra kittens, always doomed to starvation, to a physiological excretion, or rather to the inheritance from a race of better milkers? This parallel was suggested to me by a friend, and clearly expresses the view we take of that much-vexed question-" 'The signifieance of the polar bodies."

Like the ovarian eggs, the mother-cells that form spermatozoa may sometimes (in Sponges) form other products than functional gametes among their broodcells; but there is never more than one cell so modified in each brood, and this exeeptional cell is always degraded for the proteetion or mutrition of the rest of the brood, not merely aborted and wasted like the polar bodies. Again, while in some cases any two or more of the gametes of a species may unite together irrespective of their origin, we early find restrictions on these unions, other than those of
sex. Thus, in Clothrix itself no gamete will pair with another of the same brood, and fusion only takes place between those sprung from different mother-cells; in other cases we find that this reluctance to enter into kindred unions extends to all the gametes formed on a single individual. This incompatibility of close blood-relations may fairly enough receive the familiar name of "exogamy." Its occurrence seems to be antecedent to the appearance of binary sex ; and may be superadded thereto in varying degrees of strictuess. Thus, many flowers are so extremely exogamous that the pollen even of another flower of the same plant is not fitted for their fertilisation; and without cross-fertilisation from other plants of the same species no grood seed can be produced. Yet, despite this fact, the appearance of exogany has been regarded as a primitive foreshadowing of true sex; though to admit this proposition is to give the word "sex " a comotation very different from the usual one, and indeed incompatible therewith. ${ }^{1}$

The real origin of sex is, as implied above, the gradual differentiation of pairing cells into eategories of distinct size and habit; and we have one remarkable instance that bridges the gap between the equality and identity of the gametes, on the one hand, and true binary sex on the other. In our group of the Green Flagellates is included a colonial

[^3]form, known as Pandorina Morum (Fig. 6). This organism, not uncommon in rain-fed pools, is a tiny sphere, composed of sixteen or thirty-two flagellate cells imbedded in the surface of a globular mass of jelly that binds them into a colony. For conjugation each cell divides into sixteen or thirty-two swarmers, which are strietly exogamous. l3ut the brood mother-cells villy in size, and with them their off'spring; so that we find three distinct sizes of gametes, small, medium, and large. The small ones can conjugate with one another, with the medium. and with the large ones; the medium also ean conjugate with one another, as well as with the small and large gametes; but the large gametes are ineapable of conjugation together. Thus, the large gametes are exelusively female in behaviour; the medium may play the part of males to the large ones and females to the small ones, as well as enter into equal conjugation with one another ; the small ones behave as males to the two larger sizes, but are equal in conjugation with one another. We have, then, here a very rough attempt at sexual differentiation ; if we omitted the power of equal union of the first two sizes, we might deseribe the small, medium, and large gametes as male, hermaphrodite, and female respectively. It is easy to eonceive how by natural processes of evolution the middle form might be eliminated; the smaller forms, by an inerease in their exogamy, lose their power of uniting together ;
and the sexual union of small and large gametes set up as the only type of conjugation for the species.

Fig. 6.-Pandorina Morum.
I, colony, showing motile hash-like organs (flagella): the dark spots are the red eye-spots. II, colony with all its members undergoing broal-division. III, Eeparation of individual cells as gametes. IV-VI, Pairing of twogametes differing only in size. VII, Fusion-edlat rest. VJII, Growth and solution of wall of fusion-cell. 1N, Fusion-cell free, as a large-size swarmer (negazoobpore. \mathbb{K}, Its brood-divislon to form a fresh colony.

The juste-milicu is ever a slippery platform, in Nature as in politics. Such processes of sexual differentiation
there is good reason to believe have arisen more than onee in the life-history of primitive organisms.

II

Now that we have studied the main facts of conjugation, we pass on to inguire what was its original purpose or function. ('ertainly not mere reproduction, for binary unions suppress one-half the number of individuals ultimately formed from the brood-cells; :und multiple unions still further lower the propagative output of the species. Yet no mode of reproduction dissociated from conjugation exists in the higher animals; and from every side we have evidence that the process must be endowed with singular virtues for the preservation and progress of the race. Three distinct answers have been given to the question as I have stated it.

Professor Weismann of Freiburg in Baden, who has enlisted in his following the majority of our English biologists, holds the following views: 'The

[^4]original reproductive cells contain germs ("ids") representing a limited number of ancestors; by the formation of polar bodies the egg eliminates half its germs, more or less at random : and similarly the spermatazoon contains only half the full number of ancestral germs. Each fertilised egg formed by the union of the two would thereforc contain the full number of the ancestral germs ; but these would be a different selection in cach case, cren with the same parents, owing to the random method of elimination of half the germs on either side of the preceding process. Hence the offspring would vary because of their different ancestral composition : and from these variations natural selection would have cicry opportunity to pick out those most adrantageous to the progress of the race. We can understand this by supposing all the primitive reproductive germs of the one parent to be represented by identical red packs of cards, those of the other by blue packs, and the mature orum or spermatozoon to contain only half the cards of a pack (red or bluc as the case may be) taken at author from my former viens are logisally correct, but are no longer justifiable, sime in the meantime I mynclf have gained further insight into the problems concerned." It is moteworthy that the Master's candour was never imitated by a similar withlrawal by his follower: of the eharges bronght arainst my intelligence amd grool faith. The views of the "(ierm-llisism" have been further modified by the subsidiary hypothesis of germinal selection (see helow, p. 194). But it is impossible to ascertan how murh of the card-hnfling theory of variation is still retained by Weismann himself, or by the writers of his sehool. They still reject the admiscibility of rejurenessence by cell-fusion.]
random. If the number of cards in each pack were limited to twelve only, there would be $\frac{12}{6 \times[6}=924$ combinations of germs possible for ovum or spermato\%oon, and $(924)^{2}=853,776$ combinations possible for the germs of a fertilised egg of a single pair of parents ; and with packs of fifty-two cards the latter number would be replaced by one of thirty (30) digits beginning 245935, etc. But the facts, which at the time the hypothesis was broached seemed to allow of its being applied to the ligher anmals at least, can no longer be interpreted in Weismam's scisc. Morcover such a shuffling process should rather tend to breed out variations than to produce them.

The second answer given is that of Professor Strasburger of Bonn. He thinks that any degradation existing in cither one parent only, and not in the other, will tend to be climinated from the off'spring of conjugation, and that, as it is improbable that similar deterioration will be present in both the parents, conjugation is conservative of the integrity of the race.

The third explanation, which has probably the largest following abroad, and the smallest in England, is, that the conjugation and fertilisation bring about rejuesnescence; and this is the view that we shall now examine.

If we are asked, "What is rejuvenescence ?" we
can only answer, "The escape from senescence," and we must go on to examine what we mean by "senescence" ; and if we find it hard to give at the outset a precise comnotation to the term, we may at least see what kind of processes it denotes in the organic world. 'Ihere has long been a general feeling among naturalists that plants suffer in the end from long-continued asexual propagation by buds, cuttings, and grafts alone, though seedlings produced by fertilisation regain their primitive vigour. Many much-prized varieties of our fruit trees seem to be on the wane from this cause. Here, in Ireland, the Champion Potato, from its resistance to the blight, was largely cultivated for many years ; but we have seen it in turn lose its resisting powers after separated years of propagation by "sets." Many instances, more or less striking, of similar deterioration are to be found in the literature of the subject. ()n the other hand, attention has recently been directed to a body of facts which would show that the asexual reproduction of certain plants and animals can be prolonged indefinitely without evil results. We have, therefore, not only to study the deterioration, but to find some explanation that will cover the

[^5]exeeptional eases I have just quoted ; for without this no explanation can be satisfactory.
'Till lately our evidence of this kind of deterioration was rather appreciable in the court of common sense than of the rigorous character demanded by the rules of the tribunal of science. But science already owes many a heary debt to the honourable body of devoted amateurs, including such men as Buffon and Charles Darwin, Lyell and Murchison. One of these, M. Maupas, sub-librarian ${ }^{1}$ to the city of Algiers, has reeently given us an absolute proof that in one group, at least, degeneration must needs follow propagation by division only; has shown the exact character of this degeneration, and its goal in the death of the race ; and has brought it into line with similar degradations elsewhere by terming it a "process of senescence." With exceptional skill and patience, and well-earned success, Maupas has studied for some year's past the Ciliate Infusoria. These lowly organisms are so minute that the unit we use to measure them is the one twenty-five thousandth of an ineh, and few exceed, or, indeed, attain, the hundredth of an inch in length. Yet Maupas devised such conditions to breed and grow them that he could feed and observe them, count their numbers, or transfer them at will. 'The tiny animals, as is well known, habitually multiply by binary fission, like

[^6]the Flagellates. Under certain circumstances, now for the first time clearly defined, they conjugate in pairs, but separate shortly afterwards instead of fusing into a single cell. In this process either animal receives a nucleus from its fellow which fuses with its own nucleus; so that in this respect the animal, after conjugation, or "exconjugate," resembles the zygote of other groups. Maupas discovered that if he founded a colony with a single exconjugate, it grew and underwent fission regularly, increasing and multiplying in the most literal sense for a certain time. But, in due course, if conjugation was prevented, the offspring became more stunted at each fission, and their nuclear apparatus was more and more reduced; then conjugation beame impossible, and the cycle closed by the degradation and ultimate death of its members. ${ }^{1}$ If, however, conjugation had been induced early enough, two new and vigorous cycles made a fresh start from the exconjugates, to run a similar course, and end again either in conjugation or in degradation and extinction. The decline in the nature and vigour of the later members

[^7]of a cycle Maupas terms "seneseenee," since it resembles the decline of old age in the multicellular indiridual of the higher animal or plant groups. Thus senescence in the Infusoria is the spontaneous failure of vigorous life and reproductive poweralways determined by the prolonged sequence of reproduction by fission without conjugation, and is avoided by conjugation. Therefore conjugation averts senescence, or conjugution determines rejuzenesconce; whicherer way we phrase it the facts are the same, and the proof here is absolute. And it seems likely that in most other organisms that enjoy a process of fertilisation or conjugation, the exclusion of this process determines senescencethe diminution of all vigour in life, nutrition, growth, and, above all, reproductive power.

There are, however, certain organisms whose lifehistory is thoroughly well known, and which show no signs of ever having possessed such a process as conjugation ; and others probably descended from ancestors that possessed a process of conjugation, but which appear to have lost it completely. The little group termed Monadinea by Cienkowsky (Fig. 7) belongs to the former class ; the great majority of Fungi to the latter. ${ }^{1}$ In both

[^8]groups we find that there are well-marked resting states, and for reasons stated below we may well beliere that the rest is sufficient without conjugation to restore the jaded energies of the organism and repel senescence. Moreover, many species of Fungi exist in more than one state, and those that

M M Artog del
Fir. 7.-Lifo history of a Monadine, I'sculospora Lindstallii, parasitic in the aquatic Moulds called Saprolegnies.
1,2, liasellate zoospores, 3-8, Ancebold form in varions stages. 7, \&. Perforation of cell wall of mould toeffect entry. 3, A hitt at rest; n, nucleus; e, eleposit of excreta. W0, Nuclear broddivision Is complete. 11-13, Resolution into zoospores. 16, A nother mode of resolution. 14, 15, Adult forms Which have developed a single lash (" flagelmm"). 17, Tube of Mould empty of its original contents, exeept some granules of cellulin, and containing adult states of parasite.
are parasitic frequently change their host with the state in which they live. Prof. Marshall Ward, of Cooper's Hill, wrote on this point in 1884: "We may not inaptly compare the sojourn of the fungus in its second host to a trip to the sea-side, where the wearied and enfeebled organism enjoys fresh dict and association for a time, which in their turn
pall, to prepare the recipient to renew the old modes of life." ${ }^{1}$

III

We have seen that the rejuvenescence may be effected by rest, by change of mode of life, by processes of conjugation or fertilisation: it is next neeessary to seek for the probable causes of seneseence, in order to discover the mechanism of rejuvenescence in each case. Every cell, whether a complete organism in itself, or one of the units that go to build up a complete amimal or plant, consists, as we know, of two parts, the cyloplasm and the unclens lying within the cytoplasm (Fig. 8). The cytoplasm is that part which comes directly in contact with the surrounding medium, which feeds, breathes, moves, and has the power of protecting the cell as a whole by secreting in investment of membrane or cell wall when needed. 'The nucleus, lying inside the cytoplasm, can have no direct action on the external world, and can receive no direct influence from it; it is nourished by the cytoplasm, and, for matter as for energy, there must be direet interchange with the cytoplasm, and with that only. On this ground, and on many others which we camnot go into here, a general belief has grown up among biologists that the nucleus has to the cytoplasm much the same relations as a nerve-

[^9]contre has to the organism of a complex animal. During the active life of a cell the nucleus would then be constantly doing exhaustive work. Moreover, we know that nerve-centres lose in time their ready response to stimuli of the same kind and from the same quarter, when too frequently repeated; just as the weaver loses all sense of the din from

Fig. S.-Diagram of cell.
Ct, Crtoplasm. Ce, Centrosme. N. Nuclens: containing n, nucleole and chr., choromatic network. V°, Vacuoles, or spaces containits liquin. (ir, liranules. I'f, Plastids, indivilualised masses of cytoplasm which in plants are the containers of the green and yellow eolourine matters, and lave the power of forming starch.
the busy looms around him, deafening though it be to the unaceustomed cars of the visitor. We may well eonceive that the nucleus also during the continuanee of active cellular life gradually loses its readiness of response to the stimulation from the cytoplasm, and with its sensibility the power to guide and control aright the functions of the cytoplasm : so that the life of the cell is impaired. During fission the nucleus and cytoplasm are divided
evenly among the daughter-cells, and the life of the parent-cell is continued in them, just as the life of a Fuchsia or Geranium plant is continued in the cuttings into which it is divided. 'Ihus any disorder is handed down from cell to cell in the cycle of fission ; and if the cause that originated the disorder persists, the disorder itself will increase, to the ultimate ruin of the race. If the lessened sensibility of the nucleus from prolonged association with the same cytoplasm be the cause of senescence, we can see how this disorder would steadily augment throughout a cycle of reproduction by fission alone. But a prolonged period of rest would restore the sensibility of the nucleus, and therewith revive the flagging energies of the cell ; and we must remember that in the resting state the nucleus is probably well fed at the expense of food-material previously stored in the cytoplasm. ${ }^{1}$ So the Lancashire operative, after passing his Whit-week at Southport or Blackpool, has a vivid sense of the whirr and clack on returning to the weaving-shed. Thus, rest alone may determine rejuvenescence.

In the case of a change of habit (or of host for parasitic organisms) we see that the protoplasm, being placed in new conditions, must transmit new stimuli to the nucleus, which was jaded only to the old stimuli of its former state. We can now feel the

[^10]full force and beauty of Ward's comparison with the invigoration produced by a trip to the sea-side.

Let us now return to conjugation. By our hypothesis we have succeeded in explaining the virtues of rest, and those of changes in the conditions cxtcrnal to the organism. We may well believe that an alteration of the intcronal arrangements of the organism will produce a similar benefit. Such an internal reorganisation is most surely achieved by a change in the constitution of one or both of the structures of which the cell is formed, so that it is no longer the same nucleus associated with the same cytoplasin : and this change is effected in conjugation and fertilisation. We might, indeed. compare the association of the nucleus and cytoplasm in the cell to that of a great industrial house : the nucleus would represent the firm, the masters guiding the business of the house and maintaining its traditions; while the cytoplasm would represent the staff of employees, elerks and hands, whose work is conditioned by three factors-namely, their own powers. the direction of the firm, and the action of the external world and things at large ; and when such a house begins to go downhill, new blood in firm or staff, or both, will often sase it from bankruptcy. Nay, we may push the simile a step further, for the incoming member must be suitable in character and temperament: a man who revels in meclanical contrivance alone may be a pillar of
strength to a firm of engineers, but is clearly out of place in a solicitor's office, or the counting-house of a wholesale linen-draper. So the renewal of the cell-life by the introduction of "fresh blood" is always subject to the condition that the new element be not too alien to the race ; and thus hybridisation is of rare oecurrence. ${ }^{1}$ 'The reorganisation we speak of takes place in the simplest way in cqual conjugation, by the fusion of two or more similar cells. cytoplasm with cytoplasm, nucleus with nucleus. to form a new cell whose cytoplasm and nucleus are alike fresh creations, never before associated by the very nature of the case. In the more specialised process of fertilisation the nucleus is still a fresh creation formed by the union of two old nuclei, the male and female respectively; but the cytoplasm is practically the old cytoplasm of the female only, the amount brought in by the spermatozoon being very small, and perhaps inapprcciable in many cases. ${ }^{2}$

If the explanation put forward is valid, a further step in specialisation would be the union of the nucleus of one cell with the cytoplasm of another to form a new cell, whose constituents were both old, but whose association would be a new one. Such a union is unknown in Nature; indeed, we know of no means by which the cytoplasm could

[^11]spontancously expel its nucleus and remain alive to receive another. ${ }^{1}$ But the astounding fact remains that even this union, unknown to Nature, has been effected by art, and with the result demanded by our theory. Prof. Oscar Hertwig, of Berlin, observed that the egg of a Sea-urchin, when shaken violently in sea-water, breaks up into fragments, which all retain their vitality for some time, though of coursc only one of them has a nucleus; and he sitw spermatozoa enter these non-nucleated fragments of cytoplasm, which then began developing like the normally fertilised eggs. Prof. 'Th. Boveri, of Munich, carried the observation a stage further, and found that these bodies-female eytoplasm and male nucleus-underwent nomaal development and became larva; in fact, they behaved exactly like the ordinary fertilised egors, which possess female cytoplasm also. but a muclens formed by the finsion of both male and female muclei.". 'This gocs very far to prove the truth of my proposition-that the cssential process of conjugration or fertilisation lies in the creation of a nce ee ell, zehose muclens and protoplasm here not been previonsly associated in a common cell-lifc. We have already seen that the object of these processes is rejurenescence, and with this proof the solution of my problem is complete; we now turn to the rider.

[^12]
IV

Since the renovation of the cell as an associalion is the very essence of conjugation and fertilisation, it is most effectually brought about when the cells that fuse are not too closely akin. This prineiple finds expression in various ways and degrees. We have seen the frequent reluctance of gametes of the same brood to pair together ; and this antipathy exists sometimes between equal gametes of different broods but produced on the same individual. Hermaphrodite animals are usually cross-fertilised ; the same is true of hermaphodite flowers, which show an infinite variety in the arrangements ensuring the frequency and effieacy of those insect visits that transfer the pollen of one flower to the stigma of another. Many flowers are absolutely sterile with their own pollen; and the offspring of crosses between distinct families of the same species, animal or vegetable, usually contrast by their vigour with those that lave been bred "in and in." It is on such facts as these that the aphorism, "Nature abhors self-fertilisation," was founded. Yet there are many facts that show that Nature's abhorrence of self-fertilisation is, to say the least of it, capricious in the extreme. We know of strictly endogamous Algae, where of neeessity the equal gametes of the same brood must always pair together ${ }^{1}$; certain

[^13]Howers and certain hermaphrodite animals are always self-fertilised, and these are among the hardiest of their kind '; some groups of men, like the inhabitants of certain fishing villages, are bred "in and in " to the closest extent compatible with the canon law, in bonds of the utmost eomplexity, and yet present some of the finest types of human health and beanty. These antinomies require reconciliation, and this will be the close of our task.

We have seen that rejurenescence is necessary to all beings in some form or other ; but the mode adopted varies with the species. Resting stages probably effected rejusenescence in primitive organisms : and other modes came in and became habitual in consequence of the greater good they did to the individual and the race. Thus (1) simple conjugation, (2) exogamy, (3) binary sexual fusion, (4) cross-fertilisation, - each was in turn an improvement and a benefit; but in the course of time each by habit became a neeessity. For in the nature of living beings every bencficial luxury tends to become an acquired need. We know too well how much casier
${ }^{6}$ it is for us to live up to our wonted luxuries, than to retreneh and do without them; for this it is that gives the sting to adversity among the privileged classes of society. What is true of the individual is true of the

[^14]race; here also the aceustomed bencfit is become no less a need becaluse it began as a luxury.

One or two concrete instances will add plaimess to what is really everywhere recognised in non-scientifie regions. Wild beasts are invariably infested by parasites of all kinds; no doubt they would fare better without having the constant charge of these unbidden guests: but still their presence cannot be really very harmful to life or to health. Civilised man, who cooks his food, thus wards off the visits of internal parasites, and is in consequence remarkably free from them; but what does this habitual immunity entail? Why, the European, when by exception he does become the host of parasite worms, suffers terribly from their presence: yet the Abyssinian who feasts daily on raw beef (when he can get it) thinks it positively unlucky to be without a tapeworm ; and so precludes us from aphorising, " Man differs from the beasts of the field in not tolerating Tienia." Again, the improved means of locomotion of the present day are a benefit gained within the last eighty years; but we have so lived up to this benefit that in three generations it has become an organie need of the community. 'Thanks to this benefit, it is true, we have enlarged trade, cheapened food, and inereased human life in duration, eomfort, and numbers; but every exceptional snowstorm tells us that easy communieation has ceased to be the mere luxury it was at the outset, and has become an absolute
condition of modern soeial life. We see then that every improved mode of rejureneseence has a twofold effect on the race that enjoys it, strengthening it in one way by rendering it more infirm in another : for the preservation of the rigour of the race comes to depend entirely on a process that eireumstances may render difficult or impossible of aceomplishment. In such cases it may befall only the hardiest of the race to survive the stress of adrersity, and. deprived of the wonted higher mode of rejureneseence, to content themselves with a lower one. Thus we find the winter flowers of many plants self-pollinated, while those born in a more genial season are crossed by insect risits: thus we find some races able to breed in and in, or capable of merely asexual reproduction to an indefinite extent, without any deterioration; while their close allies, habitually more faroured and more pampered, would degenerate or die off under the same circumstances. This view alone can explain the perplexing antinomies, which have hitherto remained unreconciled by any theory.

The saying, " Nature abhors perpetual self-fertilisation," was hased, as we have seen, on a one-sided riew, extending over a limited field. But if we rise to a general surrey of the whole facts of reproduction, in all forms from lowest to highest, we may say, "All organic rates in their cycles, like man in his daily life, require Rest and Change "; and we shall not be far from the truth.

('HAPTER II

HにREDITY

In the recent elaboration of the 'Iheory of Deseent, as first fully published by (harles Darwin, two schools of thought have arisen. The one, though professing discipleship pure and simple, has laid extreme stress on the principle of Natural Selection, which owes so much to Darwin, but has rejected his belief in the internal tendencies of races to vary in adaptation to changed surroundings ; while the other has attributed the greater share in the transformation of species to the latter factor, and sent Natural Selection into the background. 'The two most illustrious leaders of scientific thought have been August Weismann on the one side and Herbert Spencer on the other. 'Their debates have long since obtained an audience among the cultured laity; but while the arguments are well known, some of the most important facts have been rather taken for granted than fully stated and clearly co-ordinated even in the scientific press. I allude especially to the coarser relations of the actual mechernism of reproduction and of the act of trans-
mission from one generation to the next of the form which elothes on or assumes the parental characters. Such an exposition as we have to make camot be limited to the higher organisms which are familiar to us in our daily life, for these are complex claborations; while the primitise types, though still existing abundantly, are only to be studied with the mieroscope. It is in this field, hidden if not buried, that we must first labour, if we wish to understand aright the foundations of the wonderful superstructure of the higher Organie Kingdoms. We shall endearour to use as few unfamiliar terms as possible, bearing in mind that the reader has no Handy Atlas to help him in following the exploration of this foreign country, with its outlandish names.

Only two centuries ago the microseope revealed to mankind an immense world of mimute living ereatures as well as the details of the structure of the familiar Animals and Plants. Naturally enough the carly observers, or "philosophers," as they were then ealled, inferred that these strange small creatures must have as complex a structure as our own. They proceeded zealously to search for, and sometimes to proclaim, the existence therein of brain, heart, blood-vessels, ete., just like those of ordinary bird, beast, or fish. ${ }^{1}$ Sinee then we have learned that the ultimate units of

[^15]strueture of the familiar organisms are identical in character with the entire organism of one of such microscopic beings; and the search we have referred to would be now regarded as equivalent to seeking in a limestone pebble the pillars and buttresses, the vaults and domes of a great cathedral in miniature. Such units of structure are called " cells," an ill-chosen term indeed, whose signification, however, as a nucleated unit of protoplasm, is familiar to every one. 'The lower organisms consist of single cells or of aggregates of similar cells : the higher ones consist of complicated arrangements of those dissimilar aggregates of ecells which we call tissues. 'The former we call Protists, distinguishing between Proto\%oa and Protophytes according as the mode of existence is animal or plant-like : the higher animals and plants we term Metazoa and Metaphytes respectively, the appropriate conjoint term, " Mctists," not having been coined by any recognised authority.

Throughout the higher groups the act of reproduction ${ }^{1}$ of the race consists in the separation from the complex organism of single reproductive cells, which may either independently grow up into the original discover the same Organs of Body, Multiplicity of Parts, Variety of Motions, Diversity of Figures, and I'articular Ways of Living as in the larger Aumals. - How amazingly curious must the Internal Structure of these Creatures be! The Heart, the Stomach, the Eutrails and the Brain. How minute and fine the Bones, Joints, Museles and Tendme! How exquisitely delicate beyond all Comereption the Arteries, Veinsand Nerves!" ("The Miernscope Marde Basy," hy Henry Baker, ed. v., 176it.)
'In the limited sense, distinguished from "propagation," as defined immediately.
form, or else one with another fuse to produce a new cell which grows up. Again, in most Plants and many Animals multicellular portions of the body may become detached, and finally develop into complete organisms; this we shall call "propagution," not "reproduction." In either case the parent body continues to exist, alive or dead, after the detachment of these cells or groups of eells. In l'rotists, matters are very different; for here, when the cell individual has attained its full size, it usually divides into two new cells, and is itself no more, alive or dead. We call the original cell a "mother-coll," the new ones " drugshter-cells," by a convenient metaphor; but we must remember that the devoted mother here absolutely merges her very existence into that of her offispring, a self-denying type of maternity often imagined but never realised among ourselves. Thus, as Weismann first explicitly stated, the Protists may cscape personal death by the sacrifice of their individual life ; he therefore terms them "immortal." It is with cellular pedigree, according to the mode of parentage we have just explained, that we shall mostly have to deal in this chapter.

The modes of reproduction among Protists are many and various. The most familiar is the simple halving of the cell cach time it has attained double its original bulk (Herbert Spencer's "limit of growth ")," ${ }^{a}$ process termed in Hibernian phrase " multiplication

[^16]by simple division." Sometimes, however, the first division is followed immediately by another, and so on, so as to produce with little delay grandchildren or great-grandehildren, etc. ; this process is called "l/rooddivision," or, when the progeny do not immediately separate, "segmentution." ${ }^{1}$ Again the progeny of brood-divisions may assemble in groups, usually in pairs, which fuse to form a new or "finsion-cell"; this process is ealled " conjugation," or, if the " pairingcells " are dissimilar, "fertilisation." We must bear in mind that conjugation processes are not, strictly speaking, processes of multiplieation ; for the act of paring halves the total number of cells for the time being, one replacing two : the two literally become one flesh.

We very often find these three reproductive processes recurving in eycles, e.g. a succession of simple divisions at the limit of growth is wound ap by brood-formation, and the brood-cells conjugate; the fusion-cell then initiates a fresh cycle. But the order of the processes varies in different cases, and sometimes even different modes of brood-division may alternate. The Malaria parasite is found in the blood (Fig. 9, 1-5) as a little amoeba-like being that enters the blood-corpuscles and grows till it fills it. then it undergoes brood-formation and is resolved into cight or sixteen cells that destroy the remains of the corpusele in eseaping, and each enters a fresh

[^17]

Fig. 9.-Dingram of the life-cyele of the parasite of Malarial Fever.

1. Foung germ from salixa of spottel fuat or $\$ 1$ siquito. $1 a$, Young germ liberated from a real hood-corpus.le destroyed by the ripming of the brool of sueh germs (wee 5). 2, 3, (irow th of parasite within the cormsele. I, Brool-formation of parasite within the corpmsele. b, Brook-cells liheratel. ti, Full-grown parasite which has not undrogone broot-formation, and destined to be the lirool-parent of pairing cells. $7 n, b$, Its, growth when liferated in the liuatis stomach, su, Its differentition iuto an oosphere and polar borlies (compare lig. 10). \& b, Diturentiation as a male cell into fonr sprms and a rytophore destined to disintegrate (see f. ! ! 1) . s, liolated sperms, !, "syugay ${ }^{\circ}$ or fertilisation. 10, Enlarging oosperm within the Cinat's stomach. 11, 12, Its migration throngh the wall into the borly cavity. 13. First hromb-rivision of oosperm. 14, semod brombedivision of one of the cells to form the minut, zoospores (sickle-germs), more highly magnilied. 15, Matured product of the oosperm filled with zoospores ready to migrate into the salivary ghands, and seen free in 16.
corpusele (Fig. 9, (i). After a time eertain of them cease dividing, and stay at full size in the corpuscle till a Mosquito ${ }^{1}$ takes it in with the blood which it sucks (Fig. !, ז), Within the Mosquito it behaves as a gamete mother-cell : either it divides into four, each growing out as it separates into a long filament (the spermı, Fig. 9, 86), or else it shows phenomena whieh are similar to the formation of the polar bodies (see p. 10), and so constitutes an oosphere or female pairing cell (Fig. !), 8u). The fusion-cell (Fig. 9, 11-12) migrates throngh the gut wall into the body cavity of the Mosquito, and there enlarges greatly and divides to form several spheres (F'ig. 9, 13). This first brood-division is followed by a second, calried to an enormous extent, so as to give rise to thousands of sickle-like cells (Fig. 9, 14-16), which migrate to the salivary glands of the Mosquito, and pass into man the next time the inseet takes a feed. Thus we see that brood-formation of one type takes place in the multiplication of the organism within the blood of man ; a second type (or rather two correlated types, male and female) oecur in the gut of the insect, and give rise to the pairing cells. The fusion-cell within the body eavity of the Gnat shows yet a third type producing the spheres; while the formation of the minute sickle germs, destined to infeet a new host, is the result of the last type of brood-fission displayed.
[^18]In many cases the separation of the daughter- or brood-cells is not complete, and they remain associated in more or less close mion. Such an assemblage of cells of common origin is called a biological "colony" in the strict sense, the term "social agorecute" being used for an assemblage formed like a human colony by the flocking together of originally isolated organisms. Protist colonies may be formed in three ways, the third being only a combination of the first two :
(1) Cell-dizision, alternating with intervals of growth, gives rise to daughter-cells which remain united together.
(2) Brood-ditision (segmentation) produces a number of cells which remain united together.
(3) Mised formation: a colony first formed by segmentation continues to enlarge by the division after growth of its several cells, the daughter-cells still remaining comnected.
Colonies of the first and third type may be propagated by the separation of a part of the colony ; if the separated part consist of a single cell, this merges into trine reproduction.

In the most primitive colonial Protist, all the cells of a colony are practically alike; and the colony ultimately breaks up into its individual cells, which reproduce in one or other of the ways described above. But in some cases the colonial habit has induced differentiation among the cells. There is a
striking example of this in Proterospongine hacthelii (a small organism found in pond-water by Savile Kent), which consists of a large mass of cells united by a gelatinous secretion (Fig. 10). Those at the outside of the mass are provided with a waring lash, the base of which is surrounded by a fumel or collar

Fig. 10.-A colony of Proterospongia haeckelii.
20, Colony. a a, Central cells, " amoboil." $b b$, similar cells diviling by simple constriction after molear division. s, Central vell umlertoing hrood-division or "sporulation." c, Collar of external cells. $\quad 4$, Nucleus, and c.e., Contractile racuole. 3, Coluninl jelly. 26, Young solitary cell. 27, solitary cell with collar anl gelatinous investment.
of protoplasm. 'These eells take in the food particles brought into contact with them by the waving of the lashes in the surrounding water; while the cells at the centre of the colony (a, b) appear to be only indirectly nourished by the food, which is digested
and transmitted to them from the collared-cells. Our knowledge of the life cycle of the organism is still very incomplete, but it appears certain that only the central cells can truly act as reproductive cells by segmentation (s), while outer cells may possibly separate to propagate the race also by the slower process of nutrition and growth, followed at intervals by simple division. We might almost regard this as a Metazoon with two tissues-the outer one nutritive, the imner reproductive, and aseribe the specialisation to the relative position of the two layers: the outer one is farourably situated for obtaining food from the ambient water : while the inner, debarred from all activity by its position, and fed and sheltered from the stress of contact with the unkind world by the outer layer, derotes its energies to the reproduction of the species.

Indeed, this organism, as its mame implies, is, as it were, a forerumer of the Sponges, and probably represents a last surviror of thicir ancestral type. For a simple Sponge (Fig. 11) is a sack attached by the bottom and widely open above ($O s$). with the wall pierced by numerous pores ($p o$). This wall consists of three layers-an outer eppidermic layer ($\left.\boldsymbol{E}^{(} \cdot\right)$, an intermediute layer, and an imner or stomach layer (En), the cells of the last possessing lash and collar. The lashes of the stomach-cells produce a constant current of sea-water through the sack, which passes in through the pores and out through the mouth, and brings
with it the food particles which the stomach-cells alone can take up, the two other layers being nourished by them. In this case it seems that only

Fia. 11.-Development of a simplo Spongo, Oscarclla (after Haider).
A, Blastula stage, a hollow ball of cells in a single layer. \quad, Gastrula stage, donbling in or invaginating into a double-layered cup. C, Attachment and commencing closure of mouth of cirp (" blastopore") - a few " middle" cells seen on either side between the two layers. b, Yonng Sponge approaching Its definitive form. Ec, Epiderinal, En, stomach, layer of cells. Os, Osculc. po, l'ore.
such fragments of the Sponge as contain all three layers can propagate it; and in nature, indeed, hollow outgrowths of the sack are formed as branches, and may even be detached as buds. But
only the intermediate layer, sheltered as it is on every side, differentiates certain eells as reproductiveeells. These by brood-divisions produce male ! and female pairing cells: and the fusion-eell after fertilisation grows up into a fresh Sponge. We have here a very marked advance on the primitive eolonial Protists ; for here the eolonial organism ean only be propagated by the co-operation of all three kinds of cells. The individual cell is no longer a Jack-of-alltrades, but it has been so specialised that it needs the assoeiation and co-operation of cells speeialised in other directions to form a complete self-sufficing organism ; and each kind of cell ean by growth and division only reproduce its own type and tissue, but not the complete organism of which it formed a part. This has been aptly termed by Prof. Orpen Bower a proeess of stcrilisution.

We have noted the rieher endowment of certain of the intermediate cells. We must now follow up(Fig. 11) the fate of the fusion-cell (fertilised egg, oosperm). This divides afresh repeatedly, and by its segmentation gives rise to a hollow spherical eolony (s), one hemisphere being eomposed of smooth cells, while the other is provided with lashes. The latter now sinks into the former so as to give the colony the form of a lined skull-eap (13). ${ }^{1}$ The lining is eomposed of collared cells, which are the stomach-cells; the outer layer of eells again divides into two

[^19]layers, the epidermic and middle eells respeetively. This is essentially the proeesses of reproduction and early embryonie growth found in all Higher Animals, save that the middle layer may be formed from the inturned eells instead of, or as well as, the outer ones, and that the reproductive cells may be formed in different layers in different classes. The annexed genealogical table (I), starting with the fusion-cell and ending with the pairing or sexual cells, represents the cellular pedigree in a Sponge.

From the above it is clear that the fusion-eells, though they are deseended from middle cells only, yet produee by their divisions offspring that ultimately beeome eells of kinds which are different, and have never been in the line of their direet aneestry. We might eompare this with a race of which the older and the younger members of a family were always sterile and different in eharacter and endowments from the intermediate, fertile ehildren; but where every fertile couple produeed among its progeny some resembling the parents, others with the endowments and charaeters of the sterile uncles and aunts. ${ }^{1}$ We must, however, bear in mind that any comparison of a strict eellular pedigree with the genealogical table of the members of a Metazoan race is only an analogy. While the main features of reproduction in the Higher Animals run on the same general lines as

[^20]the Sponges, certain of them may present differences; and especially, as above noted, the relation of the middle and the reproductive cells to those of the two original germ layers respectively, varies in different groups.

Propagution by budding in the Higher Animals, and regencrution, or the repair of injuries, are essentially two different aspects of the same phenomenon. In both cases the cells of one or more tissues multiply rapidly, and revert more or less closely to the state they possessed in the developing embryo. In some cases these " embryonic cells" can only give rise to tissues like those they respectively sprung from, or,

[^21]
48 CELLULAR PEDIGREE AND HEREDI'IY

at least, to tissues belonging to the same layer ; but in the lowest Worms the middle cells are capable of thus forming other layers. In the Vertebrata the regenerative functions are strictly limited; thus, if the surface of the skin is completely removed over an ulcer or burn, the new epiderm only grows over by gradual extension of the living epiderm at the edges, not by its direct growth upon the raw. 'Jhis is the rationale of the modern practice of "skin grafts," which implanted at intervals over the surface of a healing wound give so many centres for the new overgrowth of epiderm to start from, thus accelerating the process of "skinning over."

Most tissues of the Higher Animals retain sufficient "vitality" to be able to enter at once on processes of regeneration of their own individual kind in calses of wounds; and in the Newts, for instance, eren a complete structure like a limb can be renewed after amputation. 'The epiderm of V'ertebrates (Fig. 12) retains in its decpest layer an almost indefinite power of growth and reproduction, the cells next the true skin forming a continuous stratum, each cell of which is constantly growing and dividing, the upper cell at each division becoming horny, to be ultimately cast off as other horny cells ane formed beneath it, while the lower retains the original power of growth and division. 'This layer is absolutely eomparable to the layer of cells that forms cork in most green plants (see Fig. 19, p. 66). 'The periosteum
or layer of cells overlying the bone has similar but less active powers.

Reviewing the facts, we find that-
(i.) In Protista, each cell retains the power of reproducing in its offspring its own characters or those of a direct ancestral cell, which we may term the law of direct celluler tronsmission, uninterrupted

Fig. 12.-Vertical section of epiderm of n Vertebrate.
showing the hasal embryonic layer (r, b) and the progreaive romeling of and flatening of the horny cells to which it gives origin.
or altcrnoting, according as only one or several alternating modes of cellular reproduction constitute the genetic cycle.
(ii.) In Metazoa, the power of reprodueing a complete organism is confined to certain reproductive cells, which must begct in their progeny cells like those which are only related to them collaterally; this we call the law of colloterol cellnlan tronsmission.
(iii.) The remaining cells of the Mctazoan can
seldom or never revert closely enough to a primitive type to produce all those other tissues of which they are collaterals, though their propagative power may be very great. 'This limitation of reproductive power we may call the luze of speciulised sterility.
(iv.) In most cases of animal budding (as in repair) we find that the several tissues co-operate to produce a complete organism; this we call the lato of co-operative propagation. ${ }^{1}$

The power of propagation of animals by small fragments is possessed very largely by Sponges, some Colenterates, Starfishes, and certain Flatworms; it is practically lost in the higher groups for several reasons, considerations of nutrition being most important. An Animal fragment can only obtain the nutritive matter for forming new cells by eating up, as it were, part of itself, until it has formed new organs for the prehension and digestion of food. 'I'o do this, the fragment must be always big enough to render this sacrifice possible ; and, moreover, the tissue-cells must not be too specialised to adapt themselves to the altered conditions. Thus, the complex tissues of a human arm, accustomed to be served by a constant supply of blood current bearing in an abundance of food and oxygen and carrying off all waste materials, and to the guidance of a highly developed nervous system, can never

[^22]adapt themselves to a life of isolation. In this respect Animals contrast markedly with Plants. Budding is, indeed, unknown in Arthropods, Molluses, and true Vertebrates, though it plays a large part in their lowly relations, the Tunicates or Sea Squirts.

To study in the way we have applied to Anmals the laws of reproduction and propagation in Plants, we must revert to those Protists whose life is essentially regetal. These possess a coloured portion of protoplasm (green, yellow, or red), in which, under the stimulus of light, inorganic materials are combined to form the organic food on which (like animals) 'they feed. As these inorganie materials exist in solution they can soak into the cell, which needs neither mouth nor stomach; and the cell can exist, grow, and multiply by division at the limit of growth, even while invested with a thin coating of the papery material, cellulose. If the cell start as a cylinder or oroid, and the divisions are always in the same direction, at right angles to its length, the product (a colony of our first type) is an elongated filament, like those which form the green, slimy scum on our wayside ditches (see Fig. 1) ; if the divisions take place in two planes, the colony will form a plate or disk, which may curve as it grows to form a hollow sphere (F"ig. 2); if in three, a solid mass, which is much more rare. When a period of increased vital activity ensues, brood-formation sets in ; the brood-
cells are at first naked, lacking the cellulose wall, and usually provided with swimming lashes. The brood-cells may in one and the same species ${ }^{1}$ have very different fates. They may (1) settle down within the wall of the parent-cell, and grow out into filaments, which finally rupture the parent-cell wall by their elongation; or (2) they may escape, and only settle down to grow into filaments after swimming about for a short time; or (3) they may pair first of all, and then the fusion-cell, after a rest, makes a fresh start of life and growth and multiplication within the cell wall. The life cycle may be very complex. We may even find states of Ulothrix in which the cell walls of the filament gelatinise, and the cells themselves round off, the colony forming a very irregular mass.

In some forms that are in other respects very primitive we find a true differentiation that has advanced further than Proterospongia, the lowest animal type we have selected as an illustration. Volvox globator is a beautiful green sphere the size of a small pin's head, found actively rolling over and over, as its name implies, in still waters fully exposed to the light. On microscopic examination it is seen to consist of many hundreds or even thousands of green cells imbedded in the surface of a spherical mass of gelatinous cellulose, and sending their active lashes into the water. Scattered among

[^23]these are a few larger eells, which may be seen in all stages of segmentation ; and as these grow and segment they protrude into the eavity of the sphere, and finally rupture it and become free as new individuals. The ruptured sphere sinks to the bottom, and the colonial cells at its surface soon

Fig. 13.-Volvox globator, a green colonial organism, showing the regetative cells.
The reproductive celts, female (a) and male (b) : in the upper male colony the resolution into sperms is visible; c, ordinary cells.
die, whether from the unfarourable conditions or no it is impossible to say. At the time for pairing it is only the few large cells that become or give birth to pairing cells; the resulting fusion-cell segments to form a new colony. Here again we have a well-marked sterilisation of tissue-eells, and their characters are transmitted only through the
reproductive cells, their collaterals. From our standpoint Yolvow must rank as a lowly Metaphyte (Fig. 13).

The majority of Metaphytes show a much higher differentiation and a power of colonial propagation far greater and more continuously exercised than in any Animals.

The first that we shall consider are the Scaleand Leaf-mosses. As is well known, the little capsule or "urn" is full of a fine dust consisting of reproductive brood-cells or "spores." 'These germinate and grow, as in Protophytes, into filaments consisting of elongated cells, some of which are green, and run on the surface of the ground, while others penetrate it and serve as roots (Fig. 14, $p p, r r$). But so little specialised are they that the reversal of a minute sod containing them will determine a change of their relative character and functions. On branches of these other cells are formed, which are short and thick. 'These divide, and by their colonial growth the proper leafy Moss-plant is formed ; but only the lower part for the time being assumes the condition of the moss tissues, the uppermost cells being colourless, nourished by the green cells of the stem and leaves, and assuming and retaining the functions of an cmbryonic tissue. 'This constitutes the "growing point" characteristic of all the higher plants.

Ultimately, in the deeper parts of flask-shaped outgrowths, near the growing point, are formed re-
productive cells, which give rise to pairing cells, male or female, as the case may be. Fertilisation is internal, the male cell swimming up to the immorable female, and fusing with it in situ. The fusion-cell

Fig. 14.-Vegetative system of a Leaf-moss.
A, Wase of leafy shuot giving off filaments, colourless rnot-hairs (rr) and ereen "prototiema" $(n \mu)$; h, a bulbel or resting mass of cells ; k, a young leafy plant. B, C, D, Development of a spore into protonema.
remains imbedded in the Moss-plant (Fig. 15), and is nourished thereby as a parasite, and, undergoing segmentation, is converted into a colonial mass. 'The outer layer of this colony in the most primitive Scalc-mosses is converted into a capsular wall, while the immer cells are reproductive cells, each of which forms a brood of four spores. In the Leaf-mosses the colonial body formed by the segmentation of

Fig. 15.-Young capsule or urn of a Leaf-moss formed from oosperm.
f, " Foot" for attachment and nutrition from p the leafy plant. m, Base: and a, Apex of the ruptured flask or arehegone in which the cansule was formed. $s p$, Reproductive cells destined each to form a brood of four spores. s, Constricted part of urn destined to elongate into lis bristle-like stalk.

the fusion-cell is much more modified, with increase of specialisation and corresponding sterilisation ; for its lower part is converted into a bristle-like stalk (s), and the wall and centre of the urn-shaped capsule are both composed of green tissue adapted for the formation of organic food materials.
l3efore we group thase facts into a table we must notice the extraordinary powers of propagation of the Moss-plant: if cut up into fragments, almost any green cell, whether of the Moss-plant or the young urn, is capable of growing out into a green filament that will produce new leafy plants ; and this in addition to the propagative power by ordinary branching or budding of the embryonic tissues at the growing point. We will, according to custom, begin our table (II) with the fusion-cell.

It will be seen here that there is no necessary colonial death (as in V^{\prime} olvows) of the leafy Mossplant, though the older tissues of the stem and the leaves usually dic down after the maturation of the parasitic capsule ; and that the power of propagation possessed under certain circumstances by the green cells of the Moss-plant and urn makes them possible direct ancestors of reproductive cells.

Still, in what we may regard as the normal cycle, the reproductive cells produce among their offspring collaterals as well as direct ancestral forms. The character of the cycle is noteworthy: two systems of colonial growth each beginning with a single cell are
determined or closed by the production of brood mother-cells; and these systems contrast both in the characters of the colony and in the nature of the brood eells. The colonial outeome of the spores is the filamentous growth and the leafy Moss-plant, and the brood-eells formed therefrom are the sexual pairing eells; the colonial outcome of the fusioncell is the capsule, and its brood-cells are the asexual spores. 'This is then an " alternation of generations" in the sense of colonial or habitual terminology (as distinguished from the alternation of eell-cycles in the Protists). Botanists lave termed the contrasting colonial plants "Sexual" and " Asexual," " Gametophyte and Sporophyte," respectively, from the character of the brood-cells which each produces in turn.

In the ascending scale of the Vegetable Kingdom we first meet in the Moss-plant with those tissue-cells which we term "cmbryomic" ; these must be defined as colomial cells nomrishied biy the wdult pait of the colony, and having for their sole finnction groocth with differentiation, or contimued division at the limit of groweth, to form new cells and organs. Such cells are obviously not at all "primitive," as they are frequently called, but on the contrary are the essential outcome of high colonial differentiation. That the whole colony may exist in this condition in the early stages of development is only rendered possible in the case of the Moss-urn by its receiving nourishment as a parasite from the leafy plant.

The Fern is only comparable with the Moss by a complete detachment from preconceived ideas. Most readers know that the Fern slieds from the brown ridges or spots on the under side of its leaves a fine dust, whose particles are the spores. Fach spore in germinating produces a cellular filament, which soon expands into a green plate (Fig. 16), the equivalent of the leafy Moss-plant, or, better, the "plant" of the Scale-moss or Liverwort, to which it bears a close resemblance. On this are borne sexual organs, flasks or archegones, and sperm-capsules or antherids, which produce sexual cells (Fig. 17). 'The fusion-cell, as in the Moss, is at first parasitic on the scale (Fig. 18), and develops into a Fern "plant," such as we know it with stem, roots, and leaves, and finally spores. 'The essential difference here is that in the Mosses the spore-forming plant is entircly parasitic and of limited growth, while in the Fern it becomes independent, and is of unlimited growth, being provided with organs of support and conduction as well as of nutrition. We may well say that the sterilisation (to use Bower's term) of part of the colony has led to so extended a power of colonial growth and branching, that the power of forming reproductive cells is in the end enormously increased. 'The propagative capacities of Ferns by buds from embryonic tissue are very great; those of fragments of the spore-bearing plant are slight; but the sex-bearing scale may be artificially propagated by being cut into
small pieces, although its normal life is usually ${ }^{\prime}$ limited by the formation; of the parasitic Fern-plant

Fig. 16. - Fern-scale (Prothal), under surface, showing behind a group of flask organs, and further back sperm-capsules and root-hairs. The notch is the growing point of embryonic tissue.
from the fusion-cell (Fig. 18). Ferns then show the same alternation between spore-bearing and sex-

Fig. 17.--Sexual reproductive organs of Fern-scale.
A, Female (arehegone) ; 1, flask nearly mature ; a, seetion of neek showing central eanal ; 3, neck opening for admission of sperm; 4, lower part containing oosperm or fertilised egg. B , sperm-capsule (antherid) discharging sperms.
bearing generations as Mosses; but the order of relative conspicuousness and abundance of colonial

growth is inverted ('Table III). We have seen that in Mosses a vegetative transition by cell-growth might
take place from the spore-bearing generation to the other. In Ferns similar transitions are possible both ways, so as to cut out the stage of brood-cell formation, which we regard as the critical reproductive stage. ${ }^{1}$ Thus in many Film-ferns, instead of producing spores, the leaves grow out into scale-plates bearing sexual organs ("apospory") ; while in the common Cretan

Fia. 18. -Embryonic Fern Plant parasitic in mother-seale.
A, Young Fern-plant in flask. B, More advanced stage: b, leaf-origin: t, root-origin ; f, foot for parasitic ingrowth into Feru-scale. C, Outline section a little later; p, fern-scale; \mathfrak{r}, growing point of Fern-stem ; b, first leal; r, first root.
fern, the scale produced from the spore grows out directly into the spore-bearing leafy Fern-plant instead of giving rise to sexual cells ("apogamy"). In Flowering plants the relations of the sex-bearing plant are much obscured, and it would lead us too far to explain them here. Suffice it to say that the "plant" 1 These transitions have been aptly termed "short-circuiting." by Sir Edward Fry.

EMBRIONI(: 'TISSUES IN FLOWERING-PLAN'TS 65

as we know it corresponds to the Fern-plant or Moss-capsule: it is the Sporophyte, not the Gametophyte. The parasitism of the embryo formed from the fusion-cell is usually intense and prolonged.

A very remarkable character of Dicotyledons or Exogens shared by some other Flowering-plants is the continuation downwards from the growing point of a zone of embryonie tissue, the "comblimm," which habitually by its growth and multiplication forms zones of wood on the imer side, and inner bark (or bast) on the outer (Fig. 1!). This layer has, in cuttings. an especial tendency to form buds. But all the living cells retain a power of forming a similar tissue at or near all exposed surface ; for instance. such a layer is formed a little within the surface of trees to produce the cork-this is known as the cork-cambium. We are all of us familiar with the little brown scars on plums, etc., that have been slightly injured when green: these are due to the local development of a layer of embryonic tissue below the injured surface, and the formation of a thin protective layer of cork therefrom.

Colonial propagation in Flowering-plants may take place by the separation of buds (which form normally at the growing point), or by development of so-ealled adventitious buds from the embryonic cambium zone of the stem or roots. Such propagation by minute fragments as occurs in Mosses is unknown here; but larger fragments of leaves can frequently produce

Fig. 19.- Part of transverse section of a stem which has been eut at the upper side and undergone repair and regeneration; the lower and right edg's only mark the part selected, and in the plant would bo eontinued, so that normal relations are shown (after Hartig).
a, Superficial cork. b, Fmbryonic cork-forming zone, "cork-cambium." c, Merbaceous layer, "cortex." d, Buntles of fibres. c, Inner herbaccons layer. $/$, "Ililoem," "liber," or innerbark. $\quad g$, Cambium proper. h, Wool. i, showing ontsicle disintegrated woundel layer and within "wound-cork" frowing from a secondary cork-cimbinm. k, Callus formed partly from cambium, bartly from cortex.
buds and ultimately plants. Just as with the stem, the cells within the cut surfaces produce an embryonic
tissue eallus (k), which gives rise both to a protective skin of cork (i) and to adrentitious buds.
'The readiness to form eork and adrentitious buds in this way varies extremely, and with this the power of leaf-propagation. For the formation of cork is an indispensable protection against the opposite dangers of drying up on the one hand, and of the attacks of microbes and moulds on the other. A gain, most Begonias are readily propagated by pieces of leaf; but in the bulbous varieties the leaf-fragments form a mass of embryonic tissue, well proteeted by cork, which remains for months or years before active buds are developed, so that they were long thought incapable of this mode of reproduction. Not only lBegonias, but Ciloxinias and other members of the showy order (iesneriacea', the I'eperomias with their massive speckled or veined foliage, and Chrysinthemums, are habitually multiplied in this way: and the list of possibilities in this direction is daily increasing.

On reviewing these facts we see that the law of collateral transmission applies to l'lants as well as to Animals, but that they have nuch greater powers of eolonial propagation, by the formation of embryonic tissuc from already specialised colonial cells, and by the persistenee of a portion of the colony (the growing point, and in Exogens the cambium layers) in the cmbryonic state. The fact that green cells can manufacture plant food in the light explains the greater vitality and propagative power of small Vege-
table fragments as compared with those of Animals ; and it is needless to assume any more recondite intrinsic differences. Even in this mode of propagation, the law of collateral transmission holds ; for many of the cell-forms of plants, such as hairs, woodcells, etc., are absolutely sterile, and consequently can never take part in the formation of an embryonic tissue capable of giving rise to a new plant.
'Thus, throughout the Higher Kingdoms we find the problem of heredity rests on different data to those supplied by the Protists. In these lowly forms, where the law of direct transmission prevails, it is easy to admit that when a cell resolves itself into two new ones which exactly reproduce its original state, they should each possess its original qualities: even where the transmission is alternate, we may admit that the different conditions at the different stages of a genetic eycle modify the organisms produced. In the simplest case of collateral transmission, as presented by Volvow globator; the sterilised colonial cells so closely resemble more primitive independent forms in their behaviour and character, that we may well believe that they have inherited such forms, directly and unaltered, from some Protist ancestor. while the reproductive cells have become modified. But it is impossible to suggest such an explanation for the higher Animals and Plants, since a nerve-cell with its outgrowths many feet long, or a woody fibre
which has expended all its living protoplasm in the building up of a firm wall, can only have been evolved as portions of a highly specialised colonial organism.
'The difficulty of explaining the mechanism of collateral transmission in Metazoa and Metaphytes by the direct transmission in 1'rotistal has been the origin of the recent lively discussions on heredity. To biologists saturated with the implicit conviction that direct eelfular tramsmission was alone possible. some mysterious ageney, that should be contained in the reproductive cells, and be handed down by them in their direct cellular descent, was an essential assumption ; and this agency is supplied by W eismam in his (eerm-Plasin theory, which replaced or supplemented that of Amphimixis (see p. 16). The reader will do well to bear in mind that it has been presented to the world in successive editions; each has been greeted as final by the disciples, who have made light of the objections raised thereto. though on erery oceasion such objections indueed the Master to recast the theory in his next work. Our presentment of the theory upheld in the "GermPlasm ; A Theory of Heredity," published in London in 1893, may therefore, for aught any one can tell, become obsolete rery shortly, owing to the author's " having (to use his own phrase) in the meantime gained a deeper insight." ${ }^{1}$

[^24]Weismann conceires that in the nucleus of what we have termed "reproductive" (and also, in part, "embryonic") cells is a mixed plasm, the "germplasm," composed of certain entities, the "determinants" for the several organs of the colony ; that when the cell divides at the limit of growth into two similar cells, the germ-plasm and the several determinants divide in the same way, so that the determinants are the same in each of the daughtercells as they were in the parent. But in those divisions which give rise to speeialised cells the germ-plasin divides as a whole, in such a way that the determinants are only distribuled between the daughter-cells, some to one, some to another; we may say that there is distribution or repurtition, not the true dieision of the several determinants. Similarly, the determinants each contain a group of minor entities the bioplors, and in the ultimate divisions of the cells of an organ these biophors are shared between the cells; and the proper biophors in each cell constrain it to play its specific part in the organism.

Those cells which constitute the direct line of descent between the reproductive cells of one generation and those of another are formed by true divisions of the germ-plasm, with all its determinants. But we are met by the facts of propagation by fragments composed only of tissue-cells in Animals, and still more in Plants, where specialised tissue-cells revert
to an embryonic eondition, or rather beget embryonie cells with a complete germ-plasm (Fig. 19, p. 65 f.). 'To explain this diffieulty, we must suppose that in these cases a portion of complete germ-plasm has passed at their formation into such tissue-cells, and that it Las remained dormant until the stimulus of separation from the colonial organism has revived its vitality. Agran in the four-celled stage of the segmented embryo of various widely distinct Anmals (even in the sixteen-celled stage of some) it is possible to isolate a single cell, ${ }^{1}$ which then develops into a complete embryo, though had it remained associated with its fellows it would hase formed only a definite part of the embryo. Here aggain we find the assumption of the existence of ${ }^{\text {" }}$ dormant determinants " that become active only in the separated cell, adduced by Weismam to save the theory. This assumption is also used to explain alternation of generations, where the Moss-plant and Moss-urn, or the Fern-seale and Fern-plant, alternate : their grem-plasm must contain two sets of determinants, one for the first, the other for the second generation, alternating in sleep and waking like the printer and the hatter in Box and Cox. We are reminded of the complex epicyeles required to render the universe workable on Ptolemy's geocentric hypothesis, and the Spanish king's comment thereon: "Had I been consulted at the ereation, I could have simplified matters."

[^25]So far, indced, this might be held as a formal or fictive hypothesis to explain the mechanism of heredity on the basis of Special Creation-each organism being created at the outset fully equipped with its own proper germ-plasm, determinants, biophors, and all. But no! Weismann is a firm believer in the theory of common descent, and, as we have seen, he and his school profess to be the only true Darwinians; and we come to his 'Theory of Variations. ${ }^{1}$

The germ-plasm with its contained determinants, as it lies in the reproductive cells of the body, is subject to nutritive changes, and consequently to constant slight variations which apparently are not correlated with anything else whatever. 'The haphazard variations of the determinants induce corresponding, and therefore haphazard, variations of the organism ; and the Almighty Natural Selection now steps in, weeds out the unfittest, and so induces the endless variety of form and function in the Organic Rcalm. 'This has been irreverently termed the "toss-up" or " dice-box" theory of variation. It is hard to see how variations in feeding or starving hypothetical determinants can have ever ended in the development of a vertebrate cyc, or in the exquisitely co-operating organs that render possible the parasitism of the offspring on the viviparous mother : it would be difficult if we had limitless axons of biological

[^26]time at our disposal, instead of the paltry million of centuries conceded as an outside limit by Lord Kelvin, even when multiplied by 4,000 , as l'erry and Poulton suggest. ${ }^{1}$ We have all heard of the German astronomer who was reading Lucretius, and said to himself as noontide approached, "So if the atoms had been flying about for all time, cold beetroot, oil, vinegar, garlic, and salt might have combined to form a salad." "Yes, dear," said his wife, who had come in unperceived to call him to dinner, "but not as good as you shall have with your cold beef."

It must be admitted that marvellous ingenuity is shown in giving explanations on this theory to cases where they are not needed ; we may cite the limitations of propagation by small fragments of Λ nimals or Plants, and the variations in the power of leafpropagation in the latter, which are so readily explicable without the germ-plasm hypothesis. On this hypothesis, indeed, we are asked to overlook the plain and obvious questions of mutrition, cork-formation, and bud-formation, and to concentrate our ideas on the prescnce of more or less dormant germ-plasm in the tissue-cells. We may well note here that among "Inductive Fallacies" Bain cites the error of assigning more causes than a phenomenon needs. "It is involved in the very idea of cause that the effect is in exact accordance with the cause; hence

[^27]
\%4 CELLUTAAR PEDIGREE AND HEREDITY

the proof that more causes were operative than the effect needs defeats itself." ${ }^{1}$

But the cardinal defeet in the theory is its objective baselessness. It professes to be founded on the mieroscopic study of the changes in the nucleus in cell-division ; but there we find nothing to justify the assumption of two modes of nuclear division in the embryo, the one dividing the determinants, and the other only distributing them between the daughter-cells. 'To justify such a theory there should at least be some such basis in fact, as indeed there is for the author's "id " theory of the relations of "amphigonic" inheritance (from two parents), ${ }^{\text {e }}$ which does not come within the purview of the present article. As it is, the theory falls under the ever-trenchant blade of Oceam's "razor," "Entia non sunt multiplicanda prater necessitatem." ${ }^{3}$

The antagonistic school, of Herbert Spencer, regard Living Beings as characterised by their continuous
1 "Logic," by Alexander Bain. P'art 11., Luduction, ed. 2, 1873, p. 395.
${ }^{2}$ To avoid complication and the undue lengthening of this essay we have been obliged to omit the consideration of the effect of double parentage in the higher organisms that reproduce by syngamy. But it is obvious that of itself it must tend to efface and not to accentuate the variations from the arerage standarl of the race [wherever Mendelian segregation does not occur: for this subject the reader is referred to "Heredity," by I'rof. J. A. Thomson?.
${ }^{3}$ This has been termed the "principle of parsimony." But "economy" is surely the better word, for parsimomy is economy pushed to inadequacy. If we onit the words "prater necessitatem" it becomes, indeed, a principle of parsimony:
adjustment of internal relations to extemal conditions, and cannot see a priori grounds for regarding the reproductioc cells as especially lacking in this power of adaptation. 'They regard instinct as only explicable as lubit, transmitted and relatively fixed by constant transmission from one gencration to the next; and are disinelined to admit (even as a formal hypothesis) any scheme that leaves all such considerations on one side. 'They therefore are compelled to refer variations in the offspring to the adaptive reaction of the parent to the enviromment, and hold that there must be some mechanism of transmission other than that of direct eellular inheritance, by which the reproductive cells hand down to their differentiated cell-offspring the characters of the corresponding cells in the parent organism as a wholc.

Charles Darwin felt this need so keenly (in a way largely ignored by those who style themselves his only true disciples) that he formulated his claborate provisional hypothesis of Pangenesis to supply the meehanism that he postulated. He supposed that every cell in the body gave forth minute buds or "gemmules" which circulated in the blood, and were carried by its current to the reproductive cells where they were stored up, and that in the development of the embryo they induced the formation of cells like those from which they were given off. Galton tried the erucial experiment of transfusing blood from one
breed of rabbits to another, and found that this had no effect on the purity of the offspring ; and thus shattered for the time Darwin's theory of P'angenesis.

The seeond theory is that of Herbert Spencer, of "biologieal units," of definite form and relation, which by their polarity tend to complete the organism. I shall describe that development of it recently put forward with great skill and ingenuity by Wilhelm Haacke under the title of the " Gemmaria theory." ${ }^{1}$ He holds that all living plasma is eomposed of minute units, the "gemma," grouped together in aggregates, the " gemmaria," both being of definite form and size, in virtue of whieh they tend to assume eertain relations of equilibrium in the cells and in the whole organism. Owing to this being a labile equilibrium, any disturbance due to an altered condition of the enviromment will alter the "set" of the gemmaria and ehange the conditions of their equilibrium. It is as the result of their relation to the organism at large that the gemmaria of the reproductive eells \mathbf{R} of an organism \mathbf{A} are compelled to reproduce the likeness of A ; eonsequently when the continuance of altered surroundings alters \mathbf{A} to A^{\prime}, the gemmaria of the reproductive cells will get a " set " ehanging them to R^{\prime}, which will reproduee the altered organism \mathbf{A}^{\prime}. Now, as a formal hypothosis,

[^28]this serves to give a very pretty provisional explanation of many phenomena of organic life : but we have no sufficient microscopic cvidence in its favour, and, to me at least, much that speaks against it. We know too little of the physical relations of cell-life to be able to accept, even provisionally, a theory based mainly on geometrical and mechanical conceptions.
'The most satisfactory explanation, perhaps, is that put forward by Hering and Samuel Butler,' the latter of whom has written with singular freshness and an ingenuity which compensates for the author's arowed lack of biological knowledge. 'This theory has indeed a tentative character, and lacks symmetrical completcness, but is the more welcome as not aiming at the impossible. A whole series of phenomena in organic beings arc correlated under the term of memory, conscious and unconscious, patent and latent. Our memory is conscious, when we say a lesson or remember a birthday; unconscious, when we let our fingers play of themselves a piece of music of which we could not write down a note; patent, when we remember to call at a friend's house; latent, during the interval while the servant is waiting at the open door, until the sight of the familiar stick in the hall recalls the owner's name which had

[^29]suddenly evaded our consciousness. Oif the order of muconscions. memorn?, latent till the arrival of the appropriate stimulus, is all the co-operative growth and work of the organism, including its development from the reproductive eells. Concerning the modus: operandi we know nothing; the phenomenon may be due, as Hering suggests, to moleeular vibrations, which must be at least as distinct from ordinary physical disturbances as Raiontgen's rays are from ordinary light, or it may be correlated, as we ourselves are inclined to think, with complex chomical changes in an intricate but orderly succession. ${ }^{1}$ For the present at least the problem of heredity can only be elucidated by the light of mental, not material processes.

[^30]
CHAPTER $1 \mathrm{II}^{1}$

THE RELATION OF BROOD-FORMATION TO ORDINARY CELI,-DIVISION

The general tendency of cells is to grow to a certain size, and then divide into two, either of whieh repeats the same story. 'The function of cell-division appears to be to maintain within sufficiently narrow limits the ratio of surface to bulk, for by its surface the cell comes into contact with its enviromment for supplies of matter and of energy, and for the discarding of waste. Now, this explanation put forward by Herbert Spencer and by Rudolf Leuckart needs a little examination. If a body of no matter what form increases in bulk while maintaining that form, as we have stated its relative surface is reduced. Take the most simple case, illustrated in Fig. 20. A cube a centimetre long has, we all know, the bulk of a cubic centimetre ; and sinee its six sides are each a centimetre square, its surface must measure six

[^31]square centimetres (Fig 20, A). Take now at cube Lwo centimetres (Fig. ㄴ(0, B) across: its bulk is cight cubic centimetres, and, since each face measures four square centimetres, its total surface is twenty-four square inches, or only three square centimetres of surface for each cubic centimetre of bulk, or only half the original ratio. We may say, that for every doubling of bulk the relation of surface to bulk is reduced in round numbers to four-fifths of what it

Fig. 20.-Showing necessary reduction of the ratio of surface to bulk by increase of dimensions.
was. Thus when there is a regular rhythm of celldivision, the daughter-cells, if after formation they revert to the form of the mother-cell, and divide at double their early bulk, have by then had their surface area diminished by about one-fifth, while fission restores it. 'This law applies absolutely to all bodies of eonstant form. Every architect las to face the problems of lighting and ventilation that come into view with the rising importance of the tasks confided to him. We have then here a finul cause explanatory
of the limiting of the size to which beings of determinate form and strueture can attain.

But we have seen in our previous chapters that what ive may eall the Spencerian rhythm of alternating growth and binary fission is often departed from in favour of another. Here the cell grows to many times its original size, and then divides into two new cells ; these divide again and again to form a brood of cells, in the processes known by the various names of "multiple cell-fission," " brood-division," "sporogony," "sporulation," "schizogony" and " segmentation," some of which we have already described; and the importance of this is the greater since we have recognised that pairing eells are in their origin brood-cells. We hase to seek, then, the relation between the two modes of cellular reproduction: how is it that in these reproductive "cells" growth proceeds until they pass into rest (including the enormous "egg" of the bird): and that when once they start from rest and begin to divide, they go on doing so till a brood of small cells is produced, numerous in proportion to the bloated dimensions of the original brood-mother ?

Recent researches on the utilisation of reserves in plants had shown that in every case examined a digestive ferment or "enzyme" was present, which, under fitting circumstances, could effect in vitro-as we term laboratory conditions - the same digestive process which the living organism performs. Thus,
the green cell under the influence of light accumulates during the day reserves of starch, which is removed at night to where it is wanted : well, from these parts a diastatic ferment ean be extracted which will effect the same transformation in the test-tube. From germinating seeds can be extracted ferments which like those of the pancreas will transform proteids (white of egg, etc.), into peptones, and these further into amides, such as we find passing from the seed into the growing parts of seedlings. Again, Krukenberg, Le Dantee, Miss Greenwood, and A. Dixon and myself have isolated similar peptic ferments from Protists, where the food is taken into the cell-protoplasm and there digested. Moreover, we know that when tubers, bulbs, and other resting parts of plants start into growth, the process is accompanied by the presence of enzymes that enable their stores to be directly utilised for the growth of their cells and tissues.

It seemed, then, probable on the one hand that the enormous growth of reproductive cells might be due to the absence of any possibility of their utilisation of their own reserves, and on the other hand that this utilisation could only occur when the cell started to produce digestive ferments within its body. lnvestigations on the segmenting eggs of the lirog ${ }^{1}$ and of the Hen amply

[^32]confirmed this conjecture : and all the evidence goes to show that in the anmal, as in the Plant, a cell can only utilise its internal reserves for the growth of its living substance secondarily and mecliately, by the internal production of a ferment that dissolves them and makes them arailable.

The term "metabolism" is used by physiologists to designate the chemical changes that occur within the organism, and in the eighties Gaskell introduced the distinction between "amabolism" and "cratabolism." "Amabolism" is what the chemist termes an cudothormic process, in which energy is made latent. and usually complex substances are built up of simple ones; while " culabulism" is "carothermic": energy is liberated, usually in the form of heat, and complex substances are broken down into more simple ones, sometimes by mere splitting up of the molecule, sometimes by splitting accompanied by the taking up of water (hydrolysis) or by taking up oxygen (combustion). 'This distinction of Gaskell's is doubtless of capital importance, and has played a great part in biological theory. But admirable as it is from the point of view of energetics in the eyes of the physicist and the chemist, it overlooks one additional distinction of at least equal import to the biologist. A cell receiving available matter for amabolism may dispose of it in one of two ways, both falling under the rubric of "anabolism," yet sharply contrasting with one another.

1. 'The cell may groze by incocose of living substance whieh we may term "anatrophism"; or,
2. 'The nutritive matters may be built up into reserves, in the protoplasm but not of it ; this proeess we may term " amasorism" or heaping-up. Anatrophism, plasmie anabolism or grooth-true assimilation as we may eall it-inereases the total amount of living matter with all its activitics and needs: anasorism or accumulation means the mere enlargement of the cell by the heaping up of products which are inert until an internal ferment be formed to dissolve them again-which is of course a catabolic process.

A cell during a purcly anasoric period-a period of aecumulation-is gorged with this inert matter, but its need for increased surface need not, and as a matter of fact does not, increase with its bulk, like a cell whose living protoplasm has enlarged by assimilation ; and so it does not divide, even though Speneer's limit be seemingly long past: the formation of internal ferments to utilise the stores and so arrest their aceumulation does not oceur. A time comes when the eell, from its own gluttony, is too obese for even this aetivity_ "it has bitten off more than it ean chew "-and it "goes to rest." If now, owing to changed cireumstances, ${ }^{1}$ germination sets in,

[^33]it forms the necessary ferment, the eytoplasm starts growing at the expense of the digested stores; the need for extended surface forthwith arises and determines cell-division, which continues to go on until the stores are exhausted, and the cells must live "on their own," either in co-operation, as in Higher Organisms, or individually, as in the Protists. On this view we can bring into correlation Spencerian fission and brood-division. If we wish to aceumulate a store of Greek words we may term the correlated catabolism of the reserves and anabolism of the living tissue "metatrophism." But we see that in its way the segmenting egg is as strongly amabolic as the growing ovarian egg. 'To deny its anabolic character because of the concurrent digestion of the reserve granules would be as rational as to term the infant mainly catabolic because of its obrious digestion of its mother's milk or the pap supplied by its nurse : although the breaking down here is greater than the building up and growth. The growing calf and the stalled ox are both anabolic, but to very different purpose. The thesis of the brilliant authors of "'The Evolution of Sex " ' requires new treatment in face of this distinction, which strangely eseaped their notice.

[^34]Not the accumulation of reserves alone may condition the enlargement of the eell to more than double its original bulk. In our discussion of this limit, we considered that the reduction of the surfacearea is associated with the retention of the original form and character. But this is not always the case : in Ulothrix (Fig. 1, p. 4), as in many Lower Plants, the \%oospore is approximately spherical with but small and few vacuoles, or cavities containing liquid. When they develop a cell wall, their character is changed by that fact: the mere loss of motility probably renders a lessened surface-area admissible. But furthermore, a large central cavity or vacuole develops, around which the protoplasm is stretched in a thin layer, allowing of a still greater enlargement with the retention of sufficient surface. 'Thus the new structure in the eells of the Ulollorix filament demands a new limit of growth. But when the protoplasm rounds off again the demand for inereased surface is greater, and brood-division sets in. 'The larger the units, the more sluggish they are. Again in Radiolarians and Foraminifers the cytoplasm is produced into enormous networks, or fine radiate expansions, which increase the surface-arca indefinitely: binary fission is rare, brood-formation eommon in these groups.

We pass to yet another mode in which a cell is able to grow to enormous dimensions without suffering from disproportionate bulk. It would seem as
if one condition for effective working is the sufficient proximity of the nucleus to the working eytoplasm ; for we find that where the activities of the cell are confined to one end, the nucleus approaches that end.

In certain organisms, not only is the cytoplasm extended by a great vacuole so as to become thin and expanded, but, in response it would seem to the necds of life, the nucleus undergoes repeated division ; the nuclei separate and become scattered at fairly even intervals, so that no part of the cytoplasm is unduly remote from a nucleus. This is the case in many Fungi (Fig. $2 \underline{2}$), and in one group of Green Alga, the Siphoneat or IPhycophycere. In these cases the multinuclear mass is called a "coenocyte," or, perhaps better, an "apocyte ": ultimately it is resolved into individual cells, by the cytoplasm concentrating about the individual nuclei. Sometimes a portion of the eytoplasm escapes this rearrangement, and then is doomed to death : such a residue of cytoplasm is called "epiplasm," ${ }^{1}$ and when it is left over from the brood-cells formed by "resolution of an apocyte," it has received the special name of "eytophore" as with the Malaria sperm. An excentric cytophore occurs with the sperms of many Metazoa, and the segmenting \%ygote of Noctiluca (the little pinhead-like Flagellate that is the main souree of the phosphorescence of our British seas). It corre-
${ }^{\prime}$ 'The "piphasm in Asomycetes (Thifle, Morel etc.), is peripheral ant
 adhitional onter coat.
sponds in a measure with the mass of food-yolk at first left uninvaded by segmentation in large eggs, such as those of Birds, Reptiles, and Sharks, where

Fig. 21.-Delayod brood-formation (bradyschist division) in the Wracks (after Oltmanns).

Abstract

1-3, Pelectia: 1, the nucleus has divided twice to form four nuclei; 2, another division has produced eight nuclei, of which four are seen; $3, \mathrm{by}$ simultancous clearage the apocy te is resol red into cight cells, of which only two are large cnongh to be functional. 4. Ascophyllum: eightnucleate stage; 5, resolution into cells, four functional, four reduced. 6, 7, IIMardhalia; 6, eight-mucleate stage : 7 , resolution into one functional and seven reduced cells; $c h$, nucleus of functional cell ; e^{\prime}, reduced cell.

it is excentrie, or of Arthropods (Insects and Crustacea, etc.), where it is central.

Thus we may classify the modes of broodformation as follows:

1. The simplest and most dired is where celldivision alternates regularly with nuclear division, so

Fia. 22.-False brood-formation in the Water-moulds (Saprolegniex)
1, Etructure of the young apocy tial filament. With multinucleate protoplasm arcund a central space (vatule). 2, surface view. 3-1, Optical sections of aggregation of cytoplasm around indivilual nuclei. 5, swelling up of cytoplasm by absorption of water. G-7, liseretion of water into vacules, ami splaration first into irregular blocks and tinally into single uni-nucleate cells, the zoospores; ! ! The zooporem filtally rounting off.
that no apocytial stage oceurs, as we find in the segmenting egg of the Frog and many other animals. We term this "cully.schist."
2. The second type is the delayed or " brady.schist," where nuclear divisions progress consecutively for a time, uninterrupted by divisions of the eytoplasm (Fig. 21). Here the brood mother-cell passes for a time into the condition of an apocyte, and is finally resolved into single cells by the concentration of the cytoplasm around the several nuclei ; this process may be immediate, each nucleus acquiring its cytophasmic investment simultaneously, or indirect, by segregation into blocks, which ultimately divide up into single cells (Fig. 22). A noteworthy case of this is where the brood-cells have a particular configuration, so that they grow out from the surface of the brood mother-cell, as in spermatogenesis and in the zoospores of the Coccidiacere, etc. : this has been termed "schizogony" (Fig. 9, p. 39).
3. "False brood-formation" applies to the ease where the organism is in its ordinary state multinuclear (apocytial), as in the case of the sporange of Phycomycetes, and without any special stage of nuelear divisions the cytoplasm divides into uninucleate eells (Fig 22).

These modes, I think, practically exhaust the processes by which single reproductive cells are formed, whether spores or gametes, and by which the early stages of colonial organisms arise from the re-
productive cells. In cases where the reproductive cell contains an excess of nutriment, there may be a combination of the direcl type, giving single eells, and tric delayed type, giving rise to blocks of cells with an apocytial condition of the yolk below the blastoderm, as in the bird's egg, etc.

CHAPTER IV

THE "NEW FORCE" MHTOKINETISM ${ }^{1}$

I

Every discovery of crucial importance made at the present day in the laboratories of the physicist and chemist is certain to be expounded without delay to the general public in accounts of varying value, whose accuracy is frequently in inverse relation to their picturesqueness; and its recognition soon passes into the mental assets of all well-informed people. But such rapid diffusion is rare with biological matters, save in so far as they may be of direet social or medical import. Thus it befalls that the most important find in the minute processes of the living organism made during the last forty years

[^35]has hitherto escaped general motice. By this time our knowledge of the processes in the dividing cell has grown enormously through the co-operation of numerous workers at home and abroad; and we may confidently state that these processes display the working of a new type of force amalogous to statical electricity, but distinct from it, as from all known forces outside the organism.

It seems, therefore, high time that some attempt were made to introduce this discovery to what the Germans call "the cultured laity."

II

In the seventies biologists were wont to speak of protoplasm-" the Plysical Basis of Life," as Huxley termed it in his celebrated essay-as a "structureless jelly," though dough would have been the apter word-and even to speak of it as a unitary chemical substance ; and this belief still survives among many who look on themselves as well-informed. Yet within the first half of that very decade improved microscopes and improved technic were to show how really complex is the structure of the cell, the living unit of protoplasm. Even in the forties the cell was known to consist of two parts: the outer layer, or " cell body." which obviously discharged most of the duties of ordinary life ; and the "nucleus," or immer kernel, which appeared to have some direct connection with the processes of reproduction ; and
"protoplasm" was distinguishable into what we nowadays call the "cytoplasm" and the "nucleoplasm." When a cell divides into two, it was found that as an antecedent to the actual division there had been a replacement of the old nucleus by two new ones, the "daughter-nuclei," one for each daughter-cell. In some cases the nucleus does divide by constriction, narrowing like a dumb-bell, till severance takes place through the waist. But in other cases-we may say, the majority-the old nucleus becomes obscure in the living cell before the two new ones appear ; and thus the intermediate processes escaped recognition until improved methods of microscopic study were devised. In the use of high magnification it is necessary to examme very thin transparent layers ; and to obtain these "sections" the tissues or cells must be infiltrated with some coherent substance like paraffin-wax or collodion. Again, structure is revealed in the living object by slight differences of refractivity ; whereas death renders the substance so opaque that it is necessary to "clear" the sections by saturation with a highly refractive medium like Canada-balsam, in which, however, the original differences of refractivity are more or less effaced. But, since different structural elements fortunately take up dye-stuffs in different ways, we replace the original differences of refractivity by differential "staining." Lastly, we find that in spontaneous or slow death the tissue
undergoes post-mortem changes that vary, and alter the strueture in diverse witys; but by appropriate coagulants we "fix" the tissues as we kill then, so that only linomen and limited changes oecur. Suitable planing machines (mierotomes) have been derised that enable us to obtain from a speeimen a complete series of sections of equal thimess, and

Fia. 23.-Early figure of mitokinetic fielf, Hhe initial stages of next division of the two-celled stage of the segmenting ege of fieryonia.
cere, Centrosomm: n. Remains of nucleus.
that, if we wish, of not much orer $\frac{1}{25000}$ of an inch, the thousandth of a millimetre. ${ }^{1}$ By all these means combined we are enabled to examine organic strueture with a precision fir above that which is applicable to the living cell. Since adrances in the optical powers of the microscope aceompanied progress in teehnie, a new horizon was opened to the biologist in the seventies and the following deeade.

[^36]Passing over what the mathematicians call " first approximations," Hermann Fol, of Gencra, was the first to see clearly and describe clearly the intermediate stages between the disappearance of the old nuclens and the appearance of the two new ones which had hitherto eluded the search of the histologist. In 1873, in the course of his work on the development of the Geryonide (a group of Jellyfish), he wrote :
" O_{n} either side of these remains of the nucleus are seen aggregates of plasma, closely associated granules which form two starlike figures. The rays of these stars are formed of the granules, serried into straight files. Several of these files stretch in bows from the one star or attraction-centre to the other. The whole picture is extremely clear, and has a vivid resemblance to the way in which irondust strewn between the two poles of a magnet arranges itself."

We might almost say that the whole history of cytology has been founded on this discovery. Before Fol's publication, all that was known of the changes of nucleus and cytoplasm was that the nueleus beeame obseured ; that a peculiar dumbbell-like strueture extended along the axis of the cell ; that two new nuclei appeared ; and that the cell divided aeross the axis, joining them. Within a dozen years most of the facts that we are about to examine had been made out in their essentials, and combined into an
intelligible scheme, notably by Strasburger, Flemming, and Guignard.

III

During the life of the cell and its accomplishment of the task thereof, the nucleus in its functional condition-too often miscalled the " resting-state "has the structure shown in Figs. 24,25 : within the

Fic. 24.-Diagran of "resting-cell."
el, Cytoplasm. ce, Centrosome with centrioles. x, Nucleus; containing n, nucleole and Chr., chromatic network. Gr, Granules. Il, Mlastids. V, Vacuoles.
nuclear wall is a thin coating of protoplasm, " nucleoplasm" or "linin," continuous with an internal network of the same substance; it appears to be in constant motion. This plasm or linin stains poorly, if at all, with basic stains, and is hence also termed "achromatin": but cmbedded in it are deeply stained granules of various sizes, termed "chromatin-granules." Besides these we see one or
more larger droplets of stainable material, lying free in the nuelear sap, or attached to a thread of limin: these are the " nucleoles," whieh appear to be mere stores of unorganised chromatie matter to be dissolved and redistributed where needed. On the approach of cell-division, which we may regard as the maturity or even the old age of the cell, the chromatin increases enormously in amount (Fig. 2.5, A). The chromatin-granules grow in size and in number ; they become approximately uniform and evenly distributed along the threads of linin, which they may distend at the points where they are seated. The linin now forsakes its irregular distribution, and forms often a single thread, sometimes re-entrant on itself, and soon breaks up into short lengths, the "chromosomes": or the network may resolve itself into chromosomes direetly, without passing into the single-thread stage ${ }^{1}$ (Fig. 2.5, C, D).

The physieal conditions that determine this change escape us completely, and we can only compare it to the transwerse segmentation of other elongated living structures. The next ehange is the duplication of the chromatin gramules into pairs, separated by the width of the chromosome (Fig. 2.5, F^{\prime}). ${ }^{2}$ This is possibly due to elongation at right angles to the filament. followed by transverse division, under conditions like

[^37]the similar fission of bateria-or, more strictly speaking, " mierococei." 'The achromatin of the filaments seems to coneentrate around the granules, so that

Fisc. 25. - Diagrammatic history of first stages of mitotic cell-division in EChinoderm embryo (after Wilson).

[^38]the thread becomes moniliform, or necklaee-shaped, except for the representation of each bead by a pair, and for the fact that the beads are embedded in the substance of the thread instead of being strung upon
it. Owing to this concentration, the section of the thread through a pair of granules has the form of a horizontal figure of ∞. We may fairly ascribe this partial splitting of the chromosome to the "like" ${ }^{1}$ attractions exerted by each chromatin-granule on the surrounding linin, and the persistence of the continuous longitudinal strip to the viscidity of the linin just balancing the splitting force. 'The granules have now apparently fulfilled their purpose ; they cease to be visible, and the whole chromosome is stainable, as if the staining substance of the granules had dissolved in and saturated the linin substance of the chromosome. 'The alternation of growth and resolution of the chromatin-granules is surely a strong argument against attributing to them such living personalities as Herbert Spencer's "physiological units" or W eismann's "ids " ${ }^{\text {i }}$ if we are to attach any importance to the evidence of our eyes, aided by the best available methods ; and this is the only evidence we have on the matter. And if the chromosomes as a whole are to be considered as aggregates of "units," it is the linin stretches between successive granules that would represent such units, and the chromatin-granules the boundaries between them.

Each thread is now, as we have seen, partially split lengthwise into two "daughtcr-chromosomes." We

[^39]may well admit the probability that the sister-threads are in their successive zones counterparts one of the other ; and possibly that each successive zone has its own peculiar character to be transmitted to the daughter-nucleus. If this be the case, and it be of primary importance that every portion of the nucleoplasm should be transmitted in absolutely equivalent parts to both the daughter-cells, we have the function of the chromatin-granules set forth in broad daylight: in the terms of the Schoolmen, their " final cause " is to cffect this "partitioc" division. It is hard to sce what other means could effect so difficult a physical problem as the longitudinal splitting of a viscid thread. For us, then, the limin, not the chromatin, is the essential constituent of the chromosomes; and this view, put forward by us in 1898 (see Chapter V, p. 138), has since been adrocated independently by onc of the greatest of our living cytologists, 'Theodor Boveri. ${ }^{1}$

The completion of the splitting, and the repartition of the sister-halves of each chromosome between the two daughter-cells, is accomplished under the dynamic agency of the " cell field," and is comparable to the effects of electrostatic or magnetic induction.
'The structural changes in the cytoplasm that determine the cell field are more or less indepen-

[^40]dent of those that take place in the nucleus, and vary in different cases. The following is the case in Animals, with but slight differences in detail. In contact with the nuclear wall is a sphere of cytoplasm, the centrosome, with a central granule, the centriole ($\mathbf{F *}$ ig 25, $\mathbf{2}$). The centriole divides by constriction, and the two new centrioles separate. Then, while the outer part of the old centrosome undergoes changes that merge it into the surrounding cytoplasm, around each of the two new centrioles there forms a new centrosome that cularges by growth, and is soon seen to be formed of regularly honeycombed plasm-"alveolate" is the technical word for it (see Figs. 29, 31, 36, pp. 115, 117, 158). The two new centrosomes appear to be united from the very first by fine plasmic threads forming a spindle ($\mathrm{Fig} 25,13$); while from each radiate the "astral" threads that branch into the eytoplasm on all sides but that of the nucleus, tangential to which the young spindle lies (C, D). The spindle and asters grow both by the elongation of the existing threads and the intercalation of new ones: notably the spindle grows by the incurving of the more internal astral threads, which meet those from the other aster, and fuse with them along the middle line or equator of the spindle. As this growth of the spindle goes on, the nucleus passes, as it were, into the spindle at its equator, and some of the spindle threads abut on the nuclear wall, and appear to start its liquefaetion (Fig. 25, C, I) -a
process that, once begun, eontinues until the wall has disappeared, when the ehromosomes come to lie free in the cytoplasm, as modified by the formation of the

Fig. 26.-Diagrammatic history of final plases of cell-division (after Wilson).
 separatin. H, Anaphase, the datherechromomomes moving up to the rentrosomes, and the centrioles divided. I. Telophase, the chromonomes coalescing to form the dather-nuclei, and the eytoplasm constricted. J, Completion of the process.
spindle and asters (Fig. 25. E^{\prime}). Thus the structure of the whole central region of the cell is now one of threads: the spindle and asters delieate and but
slightly stainable (achromatin), and the chromosomes more massive, even passing into rods or large granules at times, but always flexible and plastic. 'This resolution into threads is aptly designated by the Greek word mi'tosis. The chromosomes now lie on, or rather across, the equator of the spindle, where under low powers they appear to form a dark plate, whence both the aggregation itself, as well as the particular stage, has been termed the "equatorial plate" (Fig. $\left.25, I^{\prime}, 26, G\right)$. The present usage, however, is to reserve this term for the material aggregation of chromosomes, and to term the stage itself the "metaphase," or " metakinesis."

The separation (repulsion?) between the chromosomes and between their split halves now increases, and they start apart from one another. After lingering for some time at the equator, the halfchromosomes finally part company altogether, and glide away from one another to opposite poles of the spindle, where they lie huddled in a group just on the inner side of either centrosome. This stage of the "discerssion of the half-chromosomes" is called the "anaphase." Judging from the relative abundance of the different stages seen in a preparation where cell-divisions are frequent, we justly infer that the metaphase lasts a long time, and that the earlier stages of the anaphase are not so rapid as the later ones. Now, this is precisely what would happen if their motion expressed the action of a polarised
centred force analogous to statical electricity-a "Nectoniun" force whose intensity is inversely proportional to the square of the distance. 'The chromosomes of cither group now round up against the centrosomes, swell up and become vacuolated, and finally coalesce to form a daughter-nuclens. This last stage is called the "telophase." If a prolonged period of individual cell-life is to follow, the nuclens becomes poor in chromatic substance; but if a new division is to follow close on the heels of the past one, the chromatin of either daughternucleus increases in amount, as we might expect. The outer part of the centrosome swells up and becomes confounded with the eytoplasm at large: but a central part remains with a centriole. which may carly divide into two as if for the preparation for a new division (Fig. 26, H). Cell-division, whether by constriction or by the appearance of a dividingplane across the equator of the spindle, maty follow immediately on the construction of the daughternuclci, or it may remain in abeyance so as to give rise to a multinuclear structure which is strictly speaking not a cell, and has received the name of " cœnocyte," or, more aptly, "apocyte," such as we find in Saprolegniea (Fig. 22, p. 89). Thus, though cell-division usually follows close upon nuclear division, the two processes are absolutely distinct. Such is the process in Metazoa, and in some Cryptogamic Plants. In Flowering Plants there are
no obsious centrosomes, and the spindle is formed in a different way. 'The cytoplasm immediately around the nucleus becomes fibrillate, and the fibres group themselves into bundles, which ultimately lay themselves side by side, their free ends converging to two opposite points. In other respects the process of ${ }^{\prime}$ mitosis shows no marked differences.

We have seen that the chromosomes hang together in a group at the equator, diverging, it is true, as far as their stiekiness or viscidity will allow them to, and the split halves, or daughter-ehromosomes, also show an increased sepanation here. We may call this the "Mahomet's coffin position," for the chromosomes and their halves behave much like ban's of magnetic iron would do if they lay in a very viscid medium midway between the opposite poles of an electromagnet. We may compare their action to those of such bars (Fig. 27, u), lettering the poles as + and - instead of N and S . For simplicity we have represented the split halves of a single chromosome parallel to one another on a single thread of the spindle. The least disturbance that tends to separate them will put them in a position (b) where the one is nearer the one pole, and the other to the opposite one, and they will glide apart, very slowly at first, but quiekening up afterwards as they near opposite poles (c). 'This accounts for the relative frequency with whieh we observe the stage of metaphase as compared with anaphases. More rarely

2

3
 4

5

Fro. 27.-Diagrams to show passage of a pair of inductors (corresponding to chromosomes) in a bipolar field to the poles.
a. The" Mahomet's cothin position" (equatorial-plate metaphase. J, c, Transitions to anaphase. d, Abmormal anaphas of both to the same pole. $c, /$. Passage of bothinductors to one pole-a rare ocenrence in cell-division. The signs + - indicate the pularity or "charge" of the centres of tho enis of the luductors. The fine lines represent the achromatin fibres of spindle and usters in a tieh with a " parmoable " mpelope, as in many cells.
the displacement eventuates in the two coming end to end, in file, so that they proceed to the one pole in that order ($c, f f^{\prime}$), or both may shift towards the same pole, diverging as they do so $(d){ }^{1}$

If, however, we imitate long thin chromosomes by flexible strings of soft iron beads, they would bend in their passage. If a string lay in a . \wedge. pointing outwards on the equatorial plate, either leg would eurve as it moved away into a $\square \rightarrow$, with the straight leg pointing to the pole; and then the straight leg would bend back, and the eurved loop straighten out so as to approach the pole as a \lll, or a I.C. ('The full stop indicates the polar end of the disceding chromosome.) 'This change actually takes place where the chromosomes are long and slender, as in the regetative tissues and endosperm of Liliacea.

We have now seen that the eytoplasm and the nueleoplasm divide in different ways: the former divides "directly," the latter "indireetly." We may compare the cell with a melon, the cytoplasm with its skin and flesh, and the nucleus with its stringy pulp and seeds in the central cavity. Cut the melon aeross the middle, or, better still, imagine it to be so eonstrieted aeross the middle as to develop a waist, and divide into two, the one the stalk-half,

[^41]the other the eye-half; and we have a fair model of cell-division as far as it.affects the eytoplasm. If, however, before this process is completed we imagine every string and every seed of the immer pulp to split, we shall have a model of the mode in which the nucleus is resolved into two: this type of division with its complete halving of every element we have termed a " partitive" division.

IV

We may now proceed to analyse the force expressed in the cell-figure, which Fol at the outset compared to the "magnetic spectrum," or figure formed by sprinkling magnetic dust over a surface above two opposite magnctic poles; but this is not the only physical analogy to the cellfigure. As shown by laraday and Gallardo, we may obtain an electrostatic "spectrum" by immersing two opposite poles of an electric machine into a non-conducting liquid such as paraffin oil or turpentine, containing in suspension short fibres of silk, crystals of sulphate of quinine, or (as I have found) magnesium powder: the essential being that the suspended matter shall be of higher "permeability" 1 to electrostatic force than the liquid. Again, if we attaeh two skeins

[^42]of light silk to the opposite terminals of an eleetrie machine we shall find them diverging from one another, and arched so as to be eoncave to the "axis of figure," or line uniting the terminals: if they are long enough the inner threads from opposite poles will meet across the eentre, so as to form a spindle. In these cases the threads or files of powder are constrained to arrange themselves along what Faraday termed the "lines of force": that is, the lines along which a particle more susceptible to the force than the medium would travel under the stress of the force.

It must be remembered that Faraday's lines of force are ideal, geometrical lines; and what is to be found in the text-books refer's to their distribution in a uniform medium. The material particles used to demonstrate the distribution of these lines are seleeted on aecount of their superior "permeability" or "susceptibility" to the force over that of the medium ; and it is obvious that their presence must in a measure alter the distribution of the lines by disturbing the homogeneity of the medium in which the field is formed. We find the same thing with rays of light, whose path we may render visible by introducing floating dust into the air they traverse, although by seattering some of the light the motes slightly alter its distribution. We eall particles of the more suseeptible material "inductive particles"; and bodies of larger size that are more susceptible
than the medium "inductors." 'The files of particles that arrange themselves along the lines of force we may distinguish as material "chains of force." If, instead of being held in place by the frietion of the surface of glass or paper, as in the common magnetic figures of the lecture-room, these chains are formed by segregation from suspension in a liquid. they are found to possess a certain coherence or toughness, and behare as flexible inductors. Fol's "files" constituling the spindle and astral rays, and the muclear "remains" or " chromosomes," both fall, then, into the category of Hexible inductors. We must remember, however, that, unlike the chains of filings formed by segregation, the spindle fibres are formed by growth from and between the eentrosomes. So far as I know, the conditions of "chains of force" have receised no attention from the physicist: and it is only lines of force that are discussed in the text-books arailable to the biologist. Hence, owing to a confusion of two distinet categorics, much false reasoning has been promulgated on this subject-such as might arise in financial discussion. for instance, where it was implicitly assumed that the "pound sterling" of account and the gold sovereign were terms of identical meaning, and unisersally interchangeable.

Owing to this omission of the physicist the behaviour of "chains of force" can only be studied by actual observation. We cannot do this in the
eell, where they are only accessible to our view in fixed and stained specimens, and their history is a matter of the combination of images of successive stages: our only resource is the use of physical models, and in these we may observe their formation b!! segregation, lout not b!! such grozeth as talices place in the lioming organism. Undoubtedly, as we shall see, an electrostatic model would be the closest we eould find; but for this it is necessary to use high voltages, which are difficult to regulate, and involve the constant risk of severe shocks to the observer, while the apparatus will not work in a saturated atmosphere, such as we frequently have in Cork. I have therefore utilised what may be termed a principal plane in the magnetic field, across the poles of two vertical electromagnets ; and found that in almost every respect the cell-field in its axial section resembles this, the chief difference being that ceecry axial section of the cell-field is of the same character, whereas in the magnetic field it is only the horizontal plane containing the poles and at right angles to the magnets that shows the arrangement in question. The cell-field is clearly the seat of a stress-force, whose action with a single pole, were the medium uniform, would decrease inversely as the square of the distance from the eentre, just like gravity. But the cell-field reveals two centres of opposite character: what is uttruction to the one is repulsion from the other-in other words,
it is "heteropolar." Thus the cell-force is a " DUAI." force, like magnetism or statical electricity. We may compare the distribution of lines of force in a uniform medium under two centres of opposite character to that of the flow of heat through a conductor containing a source of heat and a refrigerator, or, using Clerk-Maxwell's simile which has gained miversal acceptance, to the stream-lines in a liquid between an upwelling "source" and a swallow-hole or "simk." In all cases of the kind the lines of force or of flow between "opposite" or "unlike" centres hare the spindle distribution (Fig. 28A) ; but if there be two "like" centres the lines constitute what has been termed the "erossed figure" or "antispindle" (Fig. 28ıs). 'This is a geometrical truth which there is no cluding, though many biologists hare failed to appreciate it.

We may best realise the significance of figures by imagining a float or boat to be cast up through the source and carried passively away from it along a stream-linc. If the source be single and isolated, the boat will trasel out in a radial straight line. If there be a "sink" near, say towards its left hand, it will experience a suck towards that side, and its course will be deffected, and concave to the axis between source and sink. If, on the other hand, there be a second source within reach, the flow from that will push the boat away, and its course will become convex to the axis uniting source and source. It is an easy

114 'TIHE "NLW RORCE" MITORTNETMSM

matter to see that the flow lines between two sinks will have the same distribution as between two sources.

Of the dual forces, that are known, every one has,

Fig. 28, A.-Spindle-field between two eentres of opposite sign, upper half of axial section. The lines represent " unit lines."
Fia. 28, 13.-Diagram of the crossed fiek, or antispindle, showing the directions of lines of force between two like poles. The lines shown are not " unit lines."

I think, been invoked in turn. Magnetism is out of the question, for the eentrosomes behave like isoluted poles, and every particle of magnetie substanee, however small or large, has at least tro opposite poles.

Were the elongated centrosome which sometimes occurs (Fig. 29) ${ }^{1}$ the seat of magnetism, there would be a small spindle extending from a to b, and enveloping each of them, the chains incursing to either end.

Osmotic currents or stream-lines have also been suggested. If into a solution of a crystalline substance we introduce a tiny crystal at one point and

Fig. 29.-Spindle in anaphase with "blobbed" centrosomes of the I'ondworm Rhynchelmis (after Véjdowský and Márzek).
a drop of the pure solvent at another, stream-lines pass from the pure drop towards the crystal forming a spindle figure, which suspended particles of any light insoluble powder will serve to delineate. If we take two drops of the pure solvent, or two particles of the crystalline substance dissolved, the strean-lines will have the distribution of the erossed figure (Fig. 2813). Now, it is admitted on all

[^43]hands that the centrosomes are "like" in respect of osmosis, and therefore the cell figure is not due to this force, which demands " unlike poles" to form the spindle.

So far we have dealt with an osmotic field of floze, but another kind of field-a field of tension-may be produced by osmosis. If there be osmotic attraction in a system of spaces full of liquid, and

Fig. 30.-Half of Rhumbler's net, pulled in at two centres; the direction of the lines of force (tension) indicated by thickenings. This illus. trates the meshes of an osmotic field of tension with two like centres of concentration in an alvenlate strueture; it will be noted that in the regions of greatest tension the short sides of the meshes are nearly obliterated (modified from Rhumbler).
bounded by extensible walls-what is called a foam structure, from its resemblance to the grouping of air-spaces in foam or froth-we find that, left to itself, the spaces are of hexagonal section, and very regular, as seen, indeed, in the centrosomes (Figs. 29, 31). But if the equilibrium of the field be disturbed by internal centres of greater or of lesser concentration, the lines of tension are indicated by the general trend of the longer sides of the hexagons.

This has been rery prettily modelled by Ludvig Rhumbler: he stretches a hexagonal network of elastic threads over a hoop, and pulls down the network at two points through a cireular dise lying below the hoop. The result is shown in Fig. 31, where the lines of force have been indicated by thickening the longer walls of the meshes. This

Fig. 31.-Oosperm of Axolotl showing spindlo arrangement of plasmic threads along axis, and anti-spindle arrangement of the longer Walls of the alveolar plasm further ont, darkened on the left side to bring out the arrangement. The circular or owal areas represent yolk-granules (modified from Jenkinson).
represents a ficld of osmotic tension with two like centres of concentration. It is at once seen that the lines of tension are those of the crossed figure, not those of the spindle. From various facts we may infer that the cell field has in the centrosomes two like centres of osmosis. But these can only find visible expression where there is an alveolar structure of the cytoplasm to display them. 'This is
sometimes the case with the cytoplasm, as, for instance, in the outer part of the oosperm of the Axolotl (Fig. 31, where we have followed the same course as in our modification of Rhumbler's figure of the elastic network, and represented the trend of the longer walls of the meshes by thickening the lines on the left-hand side of the figure). It is obvious that where the eytoplasinic structure is a foam it is the seat of a field of "like" forces, but where it is resolved into threads mitokinetism is lord and master ; for the spindle figure between the unlike mitokinetic centres is typically shown. 'This contest between two distinct forces is visible elsewhere. In Fig. 2!, where the centrosomes are blobbed, the spherical portion of the centrosomes, within which is osmotic equilibrium, and lying sereened by the wall from mitokinetism, the meshes are hexagonal; whereas in the blobs the mechanical tension of the pull of the spindle, itself due to mitokinetism, has drawn out the meshes into oblongs. Here we have an obvious refutation of those theorists who, for simplicity's sake, would refer all the processes of the dividing eell to one foree alone, solitary and supreme. 'To the effeets of osmotic flow and tension we may attribute, at least in part, the separation of the centrosomes, another faetor being the like electric charge.

A third force that has been invoked is statical clectricity, and the discovery of Ralph R. Lillie that
the chromosomes bear an electric charge was held to support this explanation. But it is clear that here again the centrosomes must have like charges, both opposite to the chromosomes ; and that the electrostatic field would be the " crossed figure " (Fig. 2813), not the "cell-spindle," which latter must therefore be due to some other cause. Pentimalli, working out Lillie's line of thought, and confirming in the most striking way his discovery of the electric charge on the chromosomes, has contributed the final disproof of the alleged electric character of the spindle field of the cell. I'et, strangely enough, in his paper he showed that he had not realised the true import of this most important contribution to our knowledge. l'entimalli passed a continuous current through the young roots of a lyyacinth, fixed them immediately, and examimed them in thin sections. He found that the chromosomes manifested their negrative charge by migrating towards the anode. But his figures showed that the spindle assumes no definite orientation with respect to the current, and that its electric condition does not appear different from that of the other parts of the cell (save, of course, the chromosomes) (Fig. 32). 'This experiment also negatives current-electricity as the spindle force. None the less do many respected cytologists cling to the belief that somehow electricity is at the bottom of the phenomenon, recalling the attitude of the credulous buyers of a certain appliance war-
ranted to cure all diseases, with a touching faith in the saying "Elec"tricrev is Lare" that heads advertisements of the "Inventor and Sole Manufacturer."

Hydrodignamic fields of . force may be produced in fluids in various ways, by centres of vortices or zehirls, by centres of oscillation to and fro, or by centres of pulsation (the alternate swelling and contraction of

Fig. 32.-Cells which havo been fixed after the passage of an electric current through the living plant. The + and - indicate the anode and eathode respectively.
the centres). But none of these would appear capable of giving rise to such a field in the cellcontents, heterogeneous and viscid, on account of the damping action. Howerer, for completeness' sake, we may examine each of the three cases. The centres of vortex action will give rise to the spindlefield if they both rotate in the same sense. If now the two vortices have their axes in line, the field
they give rise to will rescmble the magnetic field, which, as we have seen, is inconsistent with the relations shown in the "blobbed" figure (Fig. 29). If, howerer, the two vortices have their axes parallel, at right angles to the axis of the cell, they could not give rise to the symmetrically oroid cell-figure. But the extension of the rays into the protoplasm is a sure proof that no such mad waltzing of the centrosomes as is demanded can oceur. 'This last criticism applies to centres of oscillation, as well as the face that the field which oscillators produce is of the magnet type, which, indeed, we may call an "axially centred " type; whereas the mitokinctie field. like the electrostatic, centres on points (or spheres), not lines. The last field, that of pulsulorss is free from this geometrical objection. 'The field between two pulsators whose phases are synchronous one with another is the crossed figure: but if the two pulsate in opposite plases, or alternate, as we say, the spindle-figure is the result. In the first place, such pulsations must be exceedingly rapid to clude notice, for nothing can be seen of them eren when the achromatic cytoplasm is coloured in the living cell by Congo or neutral red ; and, as noted before, it is pretty certain that minute rapid pulsations would be so damped in the cell-field as to lose their regularity.

But it has been suggested to me by Mr. William Cramp, M.Se., M.I.E.E., that disturbances in the chler of a similar character to the pulsations of a
liquid body might be insoked to explain mitokinctism, as, indeed, to explain statical clectricity. This hypothesis would give a formal explamation of the force without carrying us further. The pulsation hypothesis was put forward by Arthur 13. Lamb in 1908, but he failed to note the diffieulty of applying it in its primitive hydrodynamic form.'

V

After this survey of the spindle fields known to physicists the only conclusion that we can come to is, that the cell-field shows the greatest analogy in its formation and behaviour to the electrostatic field between oppositely charged conductors; but that the force is no more electrostatic force than it is any of the other known dual forces. Some years ago we termed it provisionally "mitokinctic force" or "mitokinctism," 2 not to prejudge the question of its nature ; the name must now stand as denoting a "new forec," so far unknown in the physical world of non-living material. The whole of the phenomena of the mitosis of the cell may be explained by assuming that the threads of spindle and of rays are highly "permeable" to this foree,

[^44]and that the chromosomes are still more "permeable" to it. The chief difference between the working of our physical models and the living cell is that (as noted above, p. 111), the "chains of force" of the model arise by segregation from the turbid medium, while the cell chains arise by aroictl. How the dual field arises is not absolutely clear anywhere, especially in I'lants. In Animals we get some light: for' a single centrosome divides into two between which a few threads are seen to stretch in spindle form, while others diverge as stars. 'The two centrosomes diverge and enlarge, and at the same time the spindle and rays grow both by the elongation of the existing threads and by the formation of fresh ones. 'The additions to the spindle are largely due to the formation, elongation, and incurving of astral rays which meet and unite on the equator. We may perhaps find an analogy in the formation of an electrostatic field: when two insulated brass conductors are made to touch, and then pulled apart, it will usually be found that they are "oppositely charged "-in other words, they are the opposite centres of a " spindle" electrostatic field. So the divergence of the centrosomes in Animals may initiate the field between them. Once formed, it is casy to suppose that the increasing energy of the field is due to the active rhemical processes of the cell.

VI

We may summarise the forces at play in the dividing cell as follows:
I. Well-known physical forces, such as the mechanical tensions of the spindle-fibres, and of the astral rays on the peripheral cytoplasm : viscosity, altering the curve of long chromosomes on their way to the poles (p. 108) : osmotic actions and electrostatic charge, which contribute to the divergence of the centrosomes: surface tension, which certainly also plays a part in the actual division of the cell. We must note that the actual division of the cell is due to concentration round two like centres, and though frequently following muclear division may be quite independent of it, as in Saprolegnica and other habitually apocytial organisms.
II. Forces which occur elsewhere in living beings, but whose physical interpretation is uncertain: such as protoplasmie streaming ; the separation of the chromosomes; growth of the rays through the viseid eytoplasm ; and fission of the centriole, the chromatin-granules, and the cell-body.
III. Mitokinetism, the new dual heteropolar foree.
IV. Forces without any clear analogies in the physical or the cell-world: the formation of the mitokinetie field when needed, the resolution of the nuelear network into chromosomes, the new organisations of the daughter-nuclei, ete.

VII

The discovery of a new foree in the organism will doubtless raise once more the question of Vitalism versus Mechanicism: I may say at onee that, to my mind, it leaves it where it was. Assuredly much of the persistent adrocaey of the view that mitokinetism is identical with electrostatic foree has been due to the latent fear that a "new force" within the organism, not known in the inorganic world, might strengthen the side of the vitalists. As a ritalist I may say that I should never drean of weakly attempting to strengthen my position by the shelter of so frail an argument: the past has taught me better. 'Time was when it was thought that complex earbon compounds. such as are produced within the organism, and are hence known as "organic" substances, could not be produced in the laboratory. To cite the words of Prof. H. E. Armstrong:
"Organic chemistry originally dealt only with substances more or less directly derived from the animal or vegetable kingdom, and it was long beliered that the chemist was powerless to produce organic substanees from their elements as they were formed in the animal or plant under the influence of life, it being supposed that therefore the interposition of a special foree, termed the vital foree, was requisite. The first step towards the disproval 10
of this hypothesis was made by Wöhler, who in 1828 succeeded in artificially producing urea, the characteristic crystalline constituent of urine." (Prof. H. F. Armstrong in the "Encyclopaedia Britamica," ed. ix., 1876 , p. 520.)

To claim now the manifestation of a new force as the exclusive attribute of the living organism is to run the risk that, if the force were found at some future time outside the organism, there would be a big set-back in the position of vitalism, such as arose, we have seen, on the artificial production of urea. 'The prestige of a certain view of Nature may be destroyed for two or three generations by the occupation and fortification of a position liable to be stormed at any moment. Exen if we do not come upon this force among things at large, there is still the possibility that human ingenuity, which has derised so complex a play of matter and energy as the Niagara Falls power-installations, may ultimately succeed with its intricate machines in producing mitokinetic force outside the organism. 'True, such machines are themselves the work of the living organism, and not the play of Nature. The eell originates for itself the mitokinetic field when, in Michael Foster's phrase, " it wants" to divide, and to distribute the elements of the nucleus fairly between the daughter-cells; just as Man sets up an eleetromagnetic or a density plant when he ${ }^{1}$ See p. 220 .
wants to sort out the minerals from the miner's heap. That such a mechanical plant could be produced save as the result of the intelligence and forethought of Man is unthinkable : the appearance of the mitokinctic field in the cell at the appropriate time is but one of the million cases where the oceurrences of the organism are conditioned no less by final than by proximate causes. Thus the organism demands a" Why ?" as well as a " How ? " to explain its existence and its workings.' 'The future is an ever-present factor of life.

It has been urged-quite untruly-against the vitalist that only by the methods inspired by the mechanistic idea of life has physiology progressed. In the present instance the application of the methods of the physicist has indeed enabled us to realise the true chanacter of the foree at play in the dividing cell; but it has proved that this special force is, so far, peculiar to the living organism, and left us in the dark as to its relation to other physical forces, and to its proximate cause. Herbert Spencer and Lenckart showed, it is true, many years ago, that the cell and the nucleus would lose in their functional powers if they continued to grow in size indefinitely," because the area increases only as the square of any linear dimension, whereas the bulk increases as the cube. To take a concrete

[^45]instance : a cubical organism (could such exist) one inch in height) would have a surface of six square inches for one cubic inch of volume ; if it increased to the dimensions of two inches cube, its bulk would have grown to eight eubic inches, while its enlarged surface would only be twenty-four square inches, or three square inches of surface to the cubic inch of bulk-just half the original ratio. Iet this explanation is merely that of the utility, the "why," of the fimal cause of organic multiplication, not of its proximate cause ; and it is strange that this point has been so largely overlooked by Spencer and his disciples.

If the discovery of the new force, Mitokinetism, has done nothing to advance vitalism, it has certainly done nothing to retard its progress in this twenticth century.

CHAPTER 「


```
    (%1%OMATMバ
```


I

Tue following remarks should have found their correct place in＂＇The C＇ellular P＇edigree and I Ieredity＂ （Chapter 11），published under the title of＂＇The F＇undamental Principles of Heredity＂in Nutural Science for October and November 1898，but were omitted not to overweight it with details of a some－ what abstruse character，and as lying apart from the main object of the study－the tracing out of the cellular pedigree of the organism，with insistence on the point that＂collateral cellular transmission＂was operative in all higher organisms．And I would ask the reader to refer to my previous paper in comec－ tion with the present one．
＂Nuclear reduction＂［＂Meiosis＂of Farmer and Moore］is an casy process to define after we under－ stand normal nuclear disision．When a nucleus is

[^46]about to divide, its formed matter resolves itself into a definite number of segments; these split each into two, one of which is destinced to either of the daughter-nuclei resulting from the division. Such segments have received the name of "chromosomes." Ustatly, a nucleus on the approach of division reveals the formation of as many segments as entered into it at its formation; and thus the number of segments remains constant from (cell-) generation to generation in the same species : but at a certain point in the life-cycle the number of segments appearing on division is ustally half that at the previous divisions of the eells of the parent-rycle ; and this is, in its finally limited senses, called " nuclear reduction."
[The process involves two successive cell-divisions termed by larmer "mecotic divisions"; both differ somewhat from normal karyokinetic cell-divisions, and were termed by Flemming "heterotype" and "homocotype" respectively. 'The assidnous labours of many cytologists for over two decades have failed to completely solve some essential problems in the process.]

Where does nuclear reduction oceur? In Metazoa, usually during the peculiar two cell-divisions that give rise to a brood of four spermatozoa, or to the oosphere and the three polar bodies (abortive oospheres) respectively: that is to say, at the inception of the formation of the sexual paring-cells. ${ }^{1}$ 'The extension of this by \%oologists to all cases was

[^47]tempting ; and the demands of the W cismamism of the eighties made this extension appear imperative: reduction or excretion processes in gametogeny were diligently sought for, and of course found, everywhere ; and in 1891^{1} I enumerated and diseussed as many as fifteen which had been aceumulated in defiance of morphological homology or physiological equivalence. In the same paper I studied the question of muclear reduction from the then state of our knowledge : and pointed out that in F lowering l'lants reduction occurs in the pollen-mother-cell. and that this is the equivalent of the ascirual spore-mother-cell of Archegoniate Cryptogiams (ľerns, Mosses, etc.). "We must remember that the reduction takes place in the pollen-motherceclls of Flowering llants, which are themseleces homologous with the mother-cells that form tetrads of asexual spores in Archegoniate Cryptograms; henee we may be allowed to conjecture that reduction also takes place in the latter group ; and by parity that it is not confined to granctogonia ? [$=$ the mother-ceells of a brood of gametes]. . . ."

At the time there was only one case, that of a Liverwort, that had been at all fully worked out,

[^48]but since then we hase learned that in the orule of Flowering llants reduction takes place at the first division of the primitive nucleus of the embryo-sac ; and that in the Archegoniatie without exception [and in Floridear and Estocarpeae among Scaweeds] reduction takes place at the inception of the formation of the tetrads of the spores, not at that of spermatoroa and oospheres, the equisalents of the sexual cells of Metazoa. Now, the spore of Mosses gives rise to the Moss-plant, capable of indefinite regetative growth and propagation ; that of the Fern to the leen-scale, which in Ci!mmons? (Gold- and Silver-Ferns), for instance, is peremial also. 'Thus nuclear reduction is not a process that finds its direct function in gametogenesis, the formation of cells specially adapted for " sexual " (sit venia verbo ${ }^{1}$) fusion.
takes place in ('ryptogans at whrer-, unt grmptr-formation. The anticipation thas formulated by me in 1831 was repeated by Orerton in 18983, and
 18944, 1. 82:5), while later the eror has heen continmed hy Wilson (1890; 19. 196). I did not think such a question of prionity worth noting for itself, but take this opportunity of correcting the mistake.

1 The word "sexual" has two distinet meanings; the one relating to the fusion of two cells, etc., into one, the other the differentiation of such pairing-cells into two molike categories such that cells of the one will only pair with cells of the other. "Sex," "sexual differentiation," "sexual processes," are terms ans often used in the one sense as in the other ; and we may easily aroid the confusion by describing the former as "pairing processes," on "fusion processes," and the like, and using the adritional adjective " hinary" with "sex," "sexnal," to distinguish the latter meanings of the terms [1 hawe since propused the gencral terms "syngamy;" "symganir," "eyugamons," to hesigute finson procesces of all kinds; see ('hapter V'I, on "F'ertilisation," p. 14:7).

In the existence of the Higher Animals, or Metazoa, there is a long cycle of colonial cell-divisions, alternating with a short one of protistoid brooddivisions producing the sexual cells. In Higher Plants there are two such alternating cycles of colonial and protistoid growth, the Moss-plant or Ficm-scale producing the sexual cells, and the Mossurn or Fern-plant producing the asexual spores. In 1891 I wrote of nuclear reduction: ". We may perhaps regard it as an adaptation to prevent the madue multiplication of chromatomeres [= cluromosomes] in the zygote, and the cells produced therefiom." This view has been claborated by Strashurger ; but it will be better, as we slall see, to explain it in another form than his. Since, nomatly, cach uncleus exhibits on its division the same mmber of segments that it had on its formation: the fertilised egg, oosperm, zygote, or whaterer we please to call a cell formed by the fusion of two. on its division will present twice the number that were present in either of its two original constituents. If, then, at cach sexual fusion this doubling contimued, the number of nuclear segments in each cell would inerease indefinitely in geometric progression, which is, of course, out of the question : a rednction must take place somewhere. This necessary reduction takes place at the first resmmption of protistoid multipliectlion, i.e. cellular reproduction, as contrasted with molticellular propagation (see p. 37). In Higher Plants,

134 "NU(LEAR REDH("TION" ANI) CHROMATIN

 where there are two such resumptions, this is obrious; in Metazoa there is only one such resumption,

Fra. 33.-Oogeny in the Wracks (Fucacer).
1, Female inflorescence of sarcophyers. 2-?, Oogone (brool-mother-e9tl of onspheres) of Fucus, the common Ihadeler Wrack, its liberation and division into a brood of eight onspores. 10, Oogone of Pelectia, with two oospheres fumetional and six (three only seen) abortive.
 seen). 13, Oogone of 1 senphyllum with four oosipheres functional and fonr (three only seen) abortive.
which coineides with the formation of the (protistoid) sex-cells, and it is this mere coincidence that gave rise to the idea that reduction was a prepuration for
cell-finsion, instead of being the necessary consequence of cell-fiusion. [Dr. Charles Walker aptly regards this as the passing out firom the "somatic co-ordination"; and reduction occurs in the cmanciputed mother-cells of callicer.]

A rery curious case is that of Fucacer, the Wracks (Fig. 33), which, like Animals, hate only one colomial form-the familiar plant, and one protistoid repro-duction-that produeing the sexual cells: here, as we should anticipate, reduction occurs as in Meta\%oa at the inception of the latter process. Had this case been worked out before that of the Archegoniate Cryplogams, it would hase afforded great support to the physiological hypothesis.

Again, the little fresh-water Algae, the Conjugatie, hate their eells isolated, or at most in simple colonies of filaments, where the cells, placed end to end in a single row, divide each on its own account, so that they are really rather protistoid than comparable with the differentiated colonial cells of Higher Plants. In these plants nuclear reduction oceurs at yet amother point of the eycle-namely, at the very first cell-divisions of the zygrospore, which is, as we see, the resumption of protistoid cell-division after conjugration. ${ }^{\text {. }}$

[^49]Strasburger's statement of this explanation is somewhat different. He writes:
"The morphological cause of the reduction in number of the chromosomes . . . is in my opinion phylogenctic. I look upon these facts ats indicating at ietar'" to the original sencration from which, after it had attained sexmal differentiation, offspring was developed having a double number of chromosomes . . . it is the reappearance of the primitioce mmuler of chromosomes as it existed in the nuclei of the Eencration in zehich seatuld differentintion [rather cell-fusion, for whether it be sexual or isogamous makes no difference to the point]. /irsi tooli place."

If we are to take literally the phrases that I hawe

Lothapores we the Areheromiatos, amd at the firet two divivoms (omt of Horee) in the "mhryo-sile, which are at the same mondoblogical stage. In
 the sexmal plant, the reduction and gametogenic divisions are coine ident ; hat in the Pharocarpere, a closely allial group of ()live Seaweeds, rednction take place at the fomation of totrapores as in lierns and Mosses, and the tetraspore grows into all alterating regetative type of plant which forms piring-cell: hy brond-formation. In the Red Seaweeds (Floridear) we find the same altermation of gemerations, and rednction at the same stage. In the minellular (or filamentous) ('mingates, reduction takes place on the germination of the \%gote, and is accompaniod by a process whel may be deseribed as abortive brool-formation. In litfisoria the complication of the ecoll-honly and unclear apparatns is puite exceptional among Protista: reduction takes place on the return to simplicity of the unclear apparatus, and is associated with what I have just moted as an abortive hrood-division to form the paring-muclei : the process may well he compared with that of Higher Animals.

In many Scomycetons Fingi two molear finsions are noted, the offspring of the fissiont of the first finsom-murlans paining with one another. Here reduction of the matal type follows at omere and is asompated with the first two divisions, and a secomd mhertion (brachymeiosis) takes place in the thind of the three divisions that give rise to the eight spores.]

REDUCTION A CONSEQLENCE OF SI゙NGAMY
 137

italieised. we shall have to assume that two sueh plants as the Onion and the 'Turban-lily have independently developed a pairing process: for the number of the nuclear segments is 8 and 16 in the former, 12 and 24 in the latter; the same would apply to the two forms of the Roundworm of the horse, with $\underline{2}(4)$ and $1(2)$ segments respec-tively-which is absurd. Yet so much of the essay is taken up in proving that asexual reproduction is the older mode, not only in primitive organisms, but in individual groups of Higher Organisms, that one wonders if Strasburger has not really missed the inconceivability of his statement as it stands; and hence I camot accord to the explanation above given the full weight of his distinguished anthority. as I should wish to do. ${ }^{1}$

Again, we hase seen that the process of "muclear reduction." despite its name, involves no neeessary reduction in the quantity of nuclear matter, but only in the mumber of the segments into which it is distributed. Hence the process camnot have the physiological function ascribed to it as a "prepuration for gametogenesis "; and since we have noted the oceurrence at the inception of a long series of cellmultiplieations, this physiological function would be absolutely useless.

[^50]
II

A word about the functions of the chromatin or nuclein in nuclear division. 'The amount of chromatin in a nucleus is constantly changing; very often after a cell is formed the muclein is much reduced in amount, and with this reduced amomet the cell does all its individual life-work. At the approach, however, of cell-division, the nuclein grows, and reaches a maximum at the commencement of the nuclear division that precedes that of the cell as a whole ; the nucleus of the daughter-cell repeats the conduct of its parent. Whaterer be the function of the chromatin in the "arorlilns" "eell, as we may term it. it is evidently less important than its function in the dividing cell. 'The achromatic substance of the nucleus (linin) forms the basis, as it were, of the nuclear segments, the strands on which the chromatin is imbedded in the form of gramules, like the string of a necklace, or better, the braid in beaded passementeric ; these gramules first split, and then the threads on which they are strung (Fig. 25, p. 99). An explanation far removed from current theories has forced itself on me-perhaps after all it is the achromatic plasm. (linin) of the nucleus whose fair and equal division is the important matter, the final cause of karyokinesis. But the splitting of a viscid thread is one of the most diflicult mechanical feat.s to accom-
plish. Suppose, then, that there is a certain polarity about the granules of chromatin, through which, after their division, they tend to recede from their fellows as far as possible; through this they will determine a splitting of the filament on which they are strung. The close of nuclear division sees their task accomplished; and, as we should expect, the chromatic granules, having fulfilled this appointed task, now atrophy, and remain in this state till the approach of a new cell-division determines at fresh growth of their substance. According to this view the linin is the tramsmitter of inherited properties. and the chromation has a purcly mechanical function in karyokinesis: it aroids the many difficulties due to the aseription by Weismann's school of hereditary constancy to a substance so subject to periodic atrophy and growth as the chromatin of the nueleus.
[This view was later put forward by Boveri ; and we have developed it above more fully in Chapter IV. on "'The New Foree Mitokinetism."]

CHAP'TER VI

FERTMISATION

At the Southport meeting of the British Association, l'rof. Hickson, President of the Section of Zoology, asked me at very short notice to open a discussion on "Fertilisation" in the Section, to which I was about to contribute a Note on "Progamic Fissions." 'The following pages represent far more closely what I would have wished to say than what I actually said.

I

The word "fertilisation," like so many others in science, has come down to us from the days of ignoranee, undergoing many changes of meaning, and acquiring new meanings by accretion on its way. Undoubtedly it was originally used in the sense in which we speak of a farmer "fertilising " his landit conveyed the idea that a female became fertile, or was enabled to bear offspring, by a co-operative process on the part of the male ; and to this the name
was applied. This process is now distinguished as " insemination," or " fecundation," though in French the term" fécondation " has acquired all the meanings of "fertilisation."

When, later on, the germ of the young animal was always found to develop from the egg, actually produced by the femalc before and independently of insemination, the term was transferred from the mother to the egg ; and was then habitually used to denote the process, or rather one among several processes, by which the egg, hitherto anl inert "resting-cell." is induced (in the instances most familiar) to become active, and by its divisions to give rise to the young living embryo. At first, we know, this change was attributed to a mere emamation, an aura seminalis given off from the seed of the male; but Spallanzani demonstrated 150 years ago that the semen must actually come in contact with the cgg. By the middle of the last century the change was recognised in all well-studied instances as due to the entrance of a sperm, one of the formed constituents of the semen, and its complete fusion with the egg; the term "fertilisation" was then applied to this fusion.

During the last three decades of the nineteenth century it was shown that the sperm is itself a cell, and that the fusion is a complete one, cytoplasm to cytoplasm and nucleus to nucleus, so that the germ begins life as a simple uni-nucleate cell, which we term the "oosperm," the equivalent of the "fertilised egrg" 11
of common speech. 'The latter term is falling into disuse from its undue exaggeration of the share of the egg; and is the more to be depreeated as the process is known to be in essenee identical with other fusions, known as "isogamous" or "equal conjugations," where the two paring-cells are similar to the point of identity, as in Ulothric (Fig. 1, p. 4).

Meanwhile, dating from the last years of the nineteenth century, through the revival, prineipally by Jacques Loeb, of lines of research initiated a decade earlier by the brothers Hertwig, it has been found that by treatments of the most varied kinds (mechanical, osmotic, chemical) the eggs of certain Metazoa could be induced to develop without the intervention of the sperm. 'This result was too rashly called "artifieial fertilisation," and was still more rashly invoked as the clue to the meaning of the fusion-process which constitutes " fertilisation " in its actual derived sense. Indeed, the lay press was full of marvellous accounts of "chemical fertilisation," for which, perhaps, the enthusiastic professors of the Chicago school were hardly to be held responsible. ${ }^{1}$ Yet, as we have seen, this was no misuse of the term in its older senses the egg, hitherto infertile, beeame fertile under the

[^51]treatment, and started as a germ into a new life. But that sense had become so entirely obsolete that now, by common consent, we apply to all these cases the uneontroversial term "artificial" or "induced parthenogenesis."

We must remember that in many groups of animals the eggs (or eertain types of them) can develop without any eo-operation of the sperm ; and, indeed, this often occurs in the Eehinodermata, the very group on which the above experiments were chiefly tried. Again, in many lower organisms whose pairing-cells are not differentiated into sperm and oosphere, but are similar, should fusion fail to oceur at the right moment, it is not only impossible, but needless; for the single cell will develop individually, its product taking the same course as would have done the product of a fusion (e.g. Ulothrix, Spyprog!yr(u). Such development, known since the eighteenth century, had reecived the name of "parthenogenesis." The proeess is clearly identical in mature with the development of non-paring resting-cells, such as the resting-spores of Fungi, Alga, and many Protista, and the spores of Mosses, Club-mosses, and Ferns, to which the term "germination" is applied. This same term is also given to the starting into development of such multicellular bodies as the seeds of Flowering Plants, and their bulbs and tubers, and similar bodies in Higher Animals, like the statoblasts of Polyzoa. For germination to take place favourable
external conditions are sometimes needed ; whereas in other cases, as with the seeds of the Mangroves, there is no pause, and the seed develops as soon as formed. The renewed growth after rest, whether of spores or of seeds, single cells or cell-masses, appears to be due (1) to the formation of ferments that can dissolve the intra-cellular reserves; and (2) to the conditions that firvour the uction of such ferments, and the consequent growth of protoplasm at the expense of the reserves rendered available by digestion. We may henceforward regard all such starting into growth as "germination," reserving the term "parthenogenesis" for the special germination of cells that normally (or rather, habitually) are capable of a fusion process with another pairing-cell ; in other words, "parthenogenesis" is the direct "germination" of a potential gamete. ${ }^{1}$

On the other hand, the germination of the restingcell (of which to us the Metazoan egg is the most familiar type) and the process of cell-fusion are by no means invariably associated together in time. True, they are so conneeted in the cases most familiar to us, but in the bird's egg itself the development of the germ is arrested on laying, and the

[^52]"fertilised egg" ${ }^{1}$ of the Rotifer, the Greenfly, and the Entomostraean (in marked contrast to the parthenogenetie egg, which develops at once!), after at most a few segmentations, passes into a state of rest, to germinate only after a prolonged rest. ${ }^{2}$ The same holds good with the seed of most Flowering Plants, as I know to my cost, being a raiser of Abutilons; the germ forms an embryo of many similar cells, whose development is arrested after a time. 'Then, only after a lapse of months, it may be, when exposed to suitable conditions-heat, moisture, and aeration-it starts to grow. The same applies to tuber's and the statoblasts of Polyzoa, the gemmules ${ }^{3}$ of Sponges, the resting-bodies of one Scyphistoma (larva of a Jelly-fish), ete.

If now instead of eounting species of living beings we count types of reproduction, which are so varied in the Protista, the Algre, and the Fungi, we shall find that in the majority of cases the pairing-cells are naked. but that the fusion-cell immediately invests

[^53]itself with a complete wall, and either goes to rest itself, or, as in most Sporozoa, divides into a limited number of cells, which themselves pass into the resting-state. Indeed, the almost universal formation of a cell-wall around the fusion-cell or oosperm, in Higher Plants and Animals, as soon as the process of fusion takes place, may be regarded as a survival of this tendency of the cell formed by the fusion of two to pass at once into rest. [The justification for this contention will be found in the Tabular View at the end of this chapter, p. 171 f .] Had our knowledge of reproductive processes been derived from these lower beings, we should never have associated the physiological proeess of the germination of the restingcell with the morphological process of cell-fusion, nor included the former process under the term "fertilisation."

The word "fertilisation" labours under two disadvantages in its later restricted sense, which, historical considerations notwithstanding, must to-day be regarded as its correct sense : (1) in the minds of most naturalists it is still tainted with the idea of what we have differentiated as "germination"--the scent of the rose still clings to the emptied vase; (2) it will not conveniently yield an adjective to apply to its modes, etc. 'This latter objection has been taleitly felt by most writers, who have had to fall back upon the term "sex," "sexual," cte.-extending this term,
which originally implied a binary differentiation, to all cognate phenomena, whether there exist such differentiation or no. Thus my friend Mr. Wager has written a most important and valuable paper on the "Scavulity of the Fungi," though no differentiation of male or fcmale exists in some of the most important and, indeed, primitive types. The word is the more unfortunate, for the user of this terminology is unconsciously swayed by the implicit idea of such binary differentiation into finding everywhere two contrasting categories of beings or cells as exist among oursclves. Yet we have seen (Chapter I) that in the most primitive cases the fusing-cells are to all intents and purposes identical-nay, more than two may fuse into a single cell. Indeed, in isogamy with exogamy, so common in Protista, (ll!! one gamete will pair with (an!! other, provided only that it belong to a different brood to its own. It has been suggested that here we have a sort of foreshadowing of sexual differentiation, but the suggestion will not hold water for a moment, as we have seen (p .13). Let us consider twenty-six broods of pairing-cells matured at the same time, and letter them with the letters of the alphabet, and suppose that their exogamy be a glimmering of sex. Then we may suppose that A is of the male sex, and that with respect to it $1, \mathrm{C}, \mathrm{D}, \ldots . / /$ are all more or less females ; the same applies to B with respect of C, etc. ; and in the same way we could show that
any one brood is male and female at once - that is, that they are sexually undifferentiated. "Therefore, etc., Q.E.D."

Again, in the Heliozoan Actinospluerium, the pairing-cells are second cousins by the laws of cellular kinship (p. 37), and have had precisely the same history from the grandparent-cell ; and the pairing-nuclei of Amobor coli are sisternuclei. ${ }^{1}$ 'The suggestion that there ean be any binary differentiation in such cases has arisen simply from the associations inseparable from the word "sex"; and the only ground for the assumption of latent differentiations is the subjective effect of the word on the minds of the writers who have used it in default of a better word. For these reasons I have for some years past never used the word or its derivatives, save where there actually existed the binary differentiation, and then I have prefixed the word "binary" to avoid all ambiguity even to myself. As a substitute I have used the terms "pairing-cells," "pairing-" or "fusion-processes," ete., for all cases where no binary differentiation was necessarily involved or implied. But besides

[^54]

Fig. 13

Paate 1.-Diagram of nuclear reduction and syngamy in a Metazoon with eight chromosomes (nfter Ziegler).
1-4, First brooldivinion eventuating in formation of frst poiar body; in 4 the sperin is seen eutering before the " roduction " processes are complete. $5-6$, Completion of the reduction process and ysmetogenic dirisions of the ezt by the second dirision to form three polar bodies and the oosphere; in 5 the cytopiasm of the sperm has erown and dereloped a centrosome which has dirided in 6 into two. 7-12, Approximation and association of nuciei, and division into first two cells with blende i nuciei ; $c .=$ centroso ne ; ch. = chromosomes; p.n. = female pairingnucieus; $n l=$ nucleoic ; $P . B=$ poiar body $; s p=\operatorname{sperm}$ or sperm nucleus: T. = equatorial plate of Erst dirision.

12

being eumbersome, this terminology yields no good derivatives. Therefore I renture to propose the term "Sringamy" to replace "fertilisation" in its modern restricted sense, which will be followed, I antieipate, in to-day's diseussions; and the derivative adjeetives "syngamic" and "synganous" follow naturally. The foregoing discussion is not a mere matter of words, but of the clarifieation of our thought, which is ever dulled and confused by the use of ambiguous or question-begging words, especially when such are the terms used to designate the main objects of our discussions and of our theories.

It has been suggested that one subjeet fitly touched upon here would be the function of the centrosome in syngamy. ${ }^{1}$ As this organ is as completely absent from Flowering Plants, it can have no import of universal bearing in our general theory; though it has doubtless a partial bearing in Metazoa, where its presence is common. Since, however, even here the centrosome is of varied origin (intra-nuclear or extra-nuclear), and is seen to be formed anew in the parthenogenetic embryos of Echinoderms, its importance must have been much overrated ; and we camot to-day aecept the riews of those naturalists

[^55]who have held that the chief function of the sperm is to introduce a centrosome into the egg (see below, p. $16 \% \mathrm{f}$.).

The most common type of syngamy is "eytogamy," the complete fusion of two cells, the "gametes," cytoplast with cytoplast, nucleus with nucleus, into a uni-mucleate cell, which we call the " \quad ygote," the "oosperm," in cases of binary sexual differentiation. In the most primitive cases this union takes place completely and directly; but in some the union is delayed and incomplete up till the first cell-division, and, indeed, the two constituent halses of the successive nuclei along the new nuclear line may for a long series of divisions show their distinctness more or less defined. ${ }^{1}$ 'This delay is clearly a derived and not a primitive phenomenon, and may be perhaps explained by the acceleration or precocity of the germination of the oosperm in Higher Animals and Plants.

II

One at least of the two pairing-cells is often the product of a cell-division or a series of one or more

[^56]preceded by a series of cell-divisions immediately preceding the fusion: these are the "progamic fissions," which we have now to consider. When the syngamy is bisexual, either the male cells or the female cells, or both. may be the produce of such progamie divisions. The special type most familiar to zoologists as universal in Metazoa (with the possible exception of the Alcyonarians, p. 163) is the so-called "maturation of the egg." The large cell gorged with reserves, produced in the ovary, divides into two, the one with the greater part of the eytoplasm and retaining the "egg" character, the other with a minute cytoplast, though its nucleus is the counterpart of the other. 'The former cell then undergoes a similar unequal fission, and the larger cell is now the actual female pairing-cell, or "oosphere," often termed "mature egg" ; and the two small cells are called the "first" and "second polar bodies" respeetively (the first polar body may also divide into two). This process may even be delayed until the entrance of the sperm into the egg. At the very commencement of the modern cytological study of fertilisation, in the late seventies, Buitschli, Giard, and especially Mark independently interpreted these divisions as the reversion to a protistic type of reproduction, to form a brood of four reproductive eells, the one functional, the other three abortive. This view sank into neglect before suggestions made a little later by Balfour and by Minot, who regarded
the process as one of climination into the small cells of something interfering with reproduction by syngamy. A modification of their views by Weismann led to the identification with this of over half a seore of non-homologous "reduction processes," and a succession of theories. of which it may suffice to say now that they have had their day. One ground for these theories is the fact that in Metazoa, where progamic divisions were first studied, they are marked by their coincidence with the meiotic or reduction divisions, and eventuate in the reduction of the number of chromosomes in the pairing-eells to half of that obtaining in the tissue-cells (to be doubled anew by the fusion of two cells to form the oosperm and the new being). Soon, however, it was seen that reducing divisions occur to produce the tetraspores of the Archegoniate Cryptogams [and of the Floridere and Phæocarpear], which do not pair, but germinate into distinct plants, from the tissues of which the pairing-cells are only produced after long tissue-generations; when it became obvious that "progamic fissions" and "reducing divisions" are phenomena distinct though sometimes coincident, and that a separate explanation was needed for the former.

Osear Hertwig, in 1890, showed that in Ascreris the " maturation divisions" of the egg's are absolutely homologous with those that form a brood of four equal sperms in the male. In a paper completed
a year later I showed by eomparison with numerous data that the view of the three oldest observers was alone tenable.

In 1889 Oltmanns deseribed a process in the Wracks (Fueatee) eomparable with the formation of the polar bodies, but of crystalline transpareney of interpretation when the different species were eollated. As we have noted above (pp. 8, 88, Figs. 3, 21), the oogonial eell always divides into a brood of eight; in some speeies these are all equal and funetional oospheres ; in others four (4) are funetional and four (4) abortive: in others two (2) are functional and six (6) abortive; in others. again, only one (1) is functional and the other seven (7) are abortise. If additional proof were wanted that the polar bodies have this signification, it was firmished recently by Francotte, who found that certain marime Planarians have exceptionally large "polar bodies." which may be "fertilised" by sperms like the "matured egg" itself. Thus the morphology of the progamic divisions of the eggs of Metazoa is established ; and generally such divisions may receive the same morphological explanation, which I will definitely state thus, as I did in 1891 : the most primitive pairing-cells are zoospores, produced by brood-formation (multiple cell-division), and their descendants have to be formed in the same way: tissue-cells can never act directly as gametes. ${ }^{1}$

[^57]The objeetion has been justly raised that this gives no adequate reason for the retention of an atavistic

Fig. 34.-Oogeny in the Wracks (Fucacce).
1, Female inflorescence of Sarcophyces. 2-3, Oogone of Fucus (common Blahler-Wrack), its liberation, division, and separation into eisht vospheres. 10, Oonone of l'electia with two zoospheres functional aml six dwarfel and fnnctionless. 11,12 , ()orone of Himamhatia with one functional and seven rudimentary vospheres (not all seen). 13, Oogone of Ascophylhum, with four functional and four functionless (only three of each in view).
process, whieh could not have survived had there not been some definite plysiologieal good to the race. But a survey of the facts seems to show that muclei
can rarely if ever fuse menless at least one or other of them is fiesh from fission.

In most isogamous organisms, if the zoogametes fail to pair within a short time of their liberation, from the absence of members of other broods than their own, they become incapable of pairing, and either develop directly, as in Ulothrix, go to rest, or die.

In the isogamous Confervas the zoogametes are usually formed by a cell-division superimposed on those that produce the ordinary non-pairing zoospores: this is indicated by their smaller size and their frequent possession of only half the number of flagella of the others (Fig. 1, p. 4).

The Rhizopod Trichosplucrium is apocytial: that is, nuclear divisions are not followed by the eleavage of the cytoplasm, so that the organism becomes multinucleate. It exists in two not wholly similar alternating forms, each of which is determined by the resolution of the apocyte into uni-mucleate cells, which escape as zoospores. In the First Form, produced from the zygote, these are formed direetly by resolution, are incapable of pairing, and grow into the Second Form. In the Second Form the resolution into zoospores is immediately preceded by the simultancous mitotic fission of all its nuclei, and the zoospores are exogamous gametes. In the Heliozoan Actinophrys two adults approach: before fusion the nuclei divide, and either mate is divided unequally
into a large functional gamete and a small abortive one, "polar body." In the Fungus Busidiobolus, whose filaments are composed of a single row of eells, multiplying by transverse fission, at a certain moment the cells conjugate two and two ; the cells that unite are apparently sister-cells. But this statement needs to be modified : in either cell the nucleus divides by mitosis, and two ronsin-muclei fuse, while the other two are cut off with a trace of eytoplasm as "polar bodies." In most Desmids two adult cells approach to pair, but either divides into two, which fuse respectively with those formed from the other original mate (progamete) ; so that the actual pairingcells are not those that approached one another in aetual cellular life, but their daughter-cells. In the Conjugate Spprrogryra the adult cells fuse by the outgrowth of tubes that meet and anastomose; but the nuelei long remain merely approximated without fusion in the zygospore during its long rest. It would seem from the results of Chmielewsky that either nueleus at the approach of germination undergoes fission to form a pairing-nucleus and one that aborts, and that it is these daughters of the distinct nuelei of the original pairing-cells that actually fuse at last as gameto-nuclei.

In Diatoms the cells that approaeh may either divide so as to form two pairs of gametes, as in Desmids, or they may themselves apparently pair; but the process of pairing is only completed after
the nuclei have divided once or twice, only one of the daughter-nuclei in either mate being functional, and the rest abortive. Similar divisions produce the pairing-nuclei of the Infusoria, in whieh the mates (progametes) are also addult.

In the Ustilaginese (the Smuts) the gameto-muclei are probably sister-nuclei of the same undisided cell ; but the Basidiomyeetes afford so far no support for my present thesis, for the origin of the several ($2-\tilde{7}$) nuclei that fuse to form the mucleus of the basidium is not linowen to be from recent mitosis.

In cases of unequal fusion the sperms usually need to be produced long in adrance and strongly differentiated, so that they are indeed incapable of fission. and consequently the progamic fissions are usually on the part of the female. On the other hand, not to deprive the female of its essential character of size, these progamic fissions are usually of the unequal type which we have already noted in the Mctazoan egg and in some Wracks, as well as in many isogamous forms in Protistal. [But in Florideae (Red Seaweeds) the nucleus of the motionless spermatium divides into two on the trichogyne, and only one of these two enters the oosphere to fuse with its nuclens.]

In the Conferva (Edogonium the oosphere is differentiated by transverse fissions producing a vertical row, of which the upper cell is the oosphere, the rest sterile cells. The same is the case with the Characeæ or Brittleworts. Again, in the Archegoniate Crypto-
gams the sperms have to be formed well in advance to be ready for the conditions for their discharge and travel to the archegone, or flask-shaped body in which lies the eentral cell (Fig. 35). This cell undergoes two divisions, both unequal. The first division early forms a small cell, which lies in the neek (and may again divide), "neck-canal-cell," and a central cell which fills the belly of the flask; this

Fig. 35.-Contents of arehegone of Fern.
A, The central eell has formed a brood of four by two consceutive divisions. B, The three upper eells are degenerating as canal-eells, the fourth has rounded off as the oosphere.
last cell only undergoes its unequal division very late under those very conditions that determine the travel of the sperms. The lower cell is here the oosphere, and the upper is an abortive cell known as the belly-eanal-cell from its position at the apex of the belly of the flask.

In Flowering Plants the males and females are really homologous with the corresponding organs of the Cryptogams just mentioned, though eertain diffi-
culties of interpretation still exist. 'The pollen-grain and the embryo-sac are both formed a good while in adrance, as each has to be ready on its side for the complicated process of pollination (including the growth of the pollen-tube, and the formation of the complex of cells in the embryo-sac, all naked, and including the oosphere), and therefore have arisen by carly divisions. The pollen contains two nuclei-a "regetative" and a "generative" nucleus : during the downgrowth of the pollen-tube the regetative nucleus is in advance, and is connected with the growth of the tube and travel of the protoplasm ; the generative nucleus divides in the tube itself into two, clearly homologous with the sperm-nuclei of the Fern, ${ }^{1}$ and are carried down to the embryo-sac without performing any organic function to disturb their condition of " youth" before fusing with the oosphere. It was the consideration of the different relations of the progamie divisions in these two cases that first led me to lay down as an embracing formula the statement that for finsion one at least of the teio muclei must be fiesh from division. ${ }^{2}$ 'This is not yet, I admit, a full physiological explanation, but it is as near to one as we can at present go. It corresponds to what the physicist

[^58]calls ann "interpolation formula." He finds a series of results which, plotted out, give a curve, and that this curve can be expressed by an algebraical formula which embodics all the results obtained, and probably others to be ascertained by fiesh experiment, though it would hase been impossible to arrive at such by " priori reasoning. And with such formular we have often to be content as representing a distinct advance for the time in that systematisation of knowledge which we call Science.

An opinion broached in my 1891 paper which met with the greatest opposition, not to say discredit, was that nuclei contained in the same eytoplasmic investment, as, for instance, those of the Saprolegnica, might fuse, and so effect a truly syngamous process (endokaryogamy). Nowaday's the cases where this occurs-namely, the Basidiomycetes, most A seomycetes, the Ustilaginear, as well as Aclinosphuerinm, are very widely regrarded as synganous. And the conjecture of Boveri that certain cases of apparent parthenogenesis when only one polar body was formed might be truly syngamous, the nucleus of the imperfectly detached second polar body moving back and fusing with that of the oosphere, and so taking the place and the rôle of a sperm, has been brilliantly confirmed by Bramer, who has followed up the details in the Brine-shrimp Artemia. As we have seen, the second polar body is undoubtedly the morphological equivalent of an oosphere, and can
in some cases be "fertilised" (sit zeniu zerbo) by a sperm. 'This farours Maupas's view that in the actual process of syngamy there is neither "male" nor "female"; but that sex is in its origin a mere adaptation of the cytoplasm to ensure on the one hand a sufficiently large amount of cytoplasm and reserves to the young, and on the other enough mobility on the part of one gamete to ensure its finding the other and to farour crossing. 'This differentiation may be reflected back on the whole cellular eycle of the lrotist or on the individual in Higher Organisms.

Lankester regards the independent germination of small zoospores as a case of male parthenogenesis, in cases where they never show any signs of pairing, and occur in a distinct stage of the life-eycle as in the parasites of malaria. etc. (IIemosporidia) ; but this seems to be an inversion of the facts. For paringcells assuredly originated from indifferent zoospores, which germinate independently: and where there are no symptons of such zoospores being sperms gone wrong, we are not justified in presuming it.

III

Now, a very remarkable type of syngamy was first discorered by Boreri, as long ago as 1889. He found that the egg of Echinids, when shaken up,
divides into fragments, only one of whieh can be mucleated; that sperms enter whether these contain the nucleus or no ; and that development follows in either ease. 'These experiments have been recently taken up and extended, notably by Dclage, who has given the name of "merogony" to the process. Merogonic fertilisation has been obtained also by eutting the egg in pieces, and by piercing the vitelline membrane so that a portion of the egg cytoplasm protrudes and is separated off as an "extra-ovate." Giard has regarded it as really a parthenogenesis of the male which, when reduced to a differentiated sperm, has not sufficient cytoplasm for independent life. However, this assumes that the cytoplasm plays no part of its own in cell-life, but lies absolutely under the despotism of the nueleus-a view for which evidenee is absent. The differentiated sperm has but a minute investment of eytoplasm ; but, such as it is, it in Metazoa contains the centrosome, and may, in other respeets as in this, have the power of growing within the egg at the expense of the reserves during the very proeess of fusion with the female cytoplasm. Male parthenogenesis, strictly speaking, ean only exist where the sperm is slightly smaller than the oosphere, while the binary sexual differentiation is not too eomplete to afford it enough cytoplasm to start on a earcer of its own ; and the term should be reserved for cases of what may be ealled "anisogamy," whieh are notably to
be found in eertain Algæ, sueh as P'andorina (p. 14, Fig. 6) and the Eetocarper.

The remarkable condition of the egg in Aleyonaria, where Hickson tells us that the female nueleus disappears completely as the egg matures, suggests that in this group the germ-muclous is cntirely of spermatic origin as in artificial merogony. Clearly we cannot speak of "merogony" where the cntire egg is present to receive the sperm, if we pay any attention to the etymology of this word : and it is hardly old enough for us to forget it. But the essenee of the process is that the cytoplasm of the germ is in this case almost wholly of maternal origin (with the above reservation), and the nucleus is wholly male. Therefore an Alcyonarian germ before segmentation, from which the unimportant ablation of a portion of the cytoplasm had been made, would be exactly equivalent to the merogonic germ of an Echinoderm. We will refrain from the ereation of a new term to eover this process.

IV

With regard to the function of syngamy, taking the widest sense of the word, the only general formula that will cover the facts is that it cffects a cellular reorganisation that can be effected in no other reay. In many eases it takes place between cells or nuclei related by the elosest bonds of cellular
kinship, which is so much closer than Metaroan kinship. Where, however, the gametes are of different parentage, it undoubtedly, on the one hand, tends to breed out individual deviations from the norm, as Strasburger holds ; and, on the other, it produces new combinations of individual variations which offer wider fields for natural selection, as Weismann postulates.

Finally, I would urge that no real advance can be made in any branch of seienee so long as we use words without a preeise meaning attached to them, unless we perpetually bear in mind their ambiguity. We only hinder advance when we base theories of the most wide-reathing significance on facts obtained in a very limited field (such as, for instance, the study of reproductive processes in the Metazoa), and when we use such theories as Proerustean beds on to which we seek to make all other faets fit, whether by lopping them where they prove too much, or by stretehing them where they prove too little. For these reasons, as a student of Plant and Protistie life, as well as of that of Animals, I am grateful for the opportunity that my friend, the l'resident, has given me of addressing Section D on the subjeet of fertilisation.

Sumadiry

1. The term" fertilisation" as aetually used is too ambiguous for scientifie precision.
2. In its first and older physiological sense it denotes the starting into active cell-life and multiplication of a resting-cell, and should properly be regarded as one case of germination. The parthenogenetic development of cggs under chemical and mechanical treatment falls under this category.
3. In its second, morphological, sense, regarded nowadays as the "strict" sense, it denotes a process of cellular (or nuclear) fusion, and is better designated as "syngamy."
4. The terms "sexuality, sexual," ete., hase been used also ambiguously: and would be advantageonsly (a) replaced by "syngamy" and its derivatives where no binary differentiation is necessarily implied, or (b) only used with the prefix "binary" where such differentiation is intended.
5. Syngamy is not necessarily associated with germination ; on the contrary, in the most primitive types the cell freshly produced by syngamy (the \%ygote) passes iuto a condition of rest, or gives rise only to a limited brood of resting-cells, which will not germinate except after the lapse of time and under farourable conditions. The formation of a membrane round the oosphere at the onset of syngamy in Metazoa and Metaplyytes is probably the last trace of this, the original consequence of syngamy.
6. Syngamy includes internal karyogamy, autogamy, "pseudogamy," and merogony, as well as the
pairing of separate individual cells. It seems possible that in the Aleyonarians the oosphere is non-nucleate, and that the nucleus of the oosperm is exclusively male, as in that produeed by merogony.
7. Progamic cell-divisions come under three formule :
(a) Gametes arc morphologieally equal to zoospores, and are therefore produeed by multiple eelldivisions.
(b) No tissuc-eell ever becomes dircetly transformed into a gametc.
(c) Karyogamy (with the possible exeeption of the Basidiomycetes) is rarely possible where both the pairing-cells (or nuclei) have had a share in active ecll-life or growth; therefore one or both must be fresh from division.
8. Progamie divisions and reducing divisions, though sometimes eoincident (as in Metazoa), are not neecssarily associated, but may be widely divided in the life-eycle where there is "antithetic alternation of generations."

The Rolle of the Sperm in Metazoa
This has been a matter of much debatc. One school sees in it merely the bearing-in of the ferment that starts the oosperm into development, or of a new centrosome to the oosphere whieh has lost its own during the formation of the polar bodies.

Another school refuses to consider anything but the male nueleus, which indeed constitutes the bulk of the sperm at its entrance. Others, again, insist that howerer small be the eytoplasm of the sperm in quantity, it is by no means negligible in quality. A consideration of the facts as presented in Nature, and described and figured coneordantly by numerous trustworthy observers, will convinee us that the third view is a decided under-statement of the ease.
'The minute size of the sperm, with its bare envelope of eytoplasm, is correlated with the presence of large stores of unorganised reserves in the egg. When it enters. its nucleus is so concentrated and condensed that it cannot fuse with the female nucleus until it has attained a more normal condition ; and for this purpose it must be nourished.

The first function, therefore, of the sperm on entering the egg is to procure this nourishment for itself, which it does by digesting some of the reserve of the egg : whercupon the eytoplasm of the sperm, with its centrosome, grows even more rapidly than its mucleus, till the organised living matter of the oosperm is seen to be largely constituted by this growth of the male element. 'This is clearly shown in the exquisite figures of Wilson (Echinoderms) and of Yéjdorskýy and Mrázek (Oligochates). We reproduce some of the latter (Fig. 36). Moreover, this secretion of a digestive ferment, and the consequent eytoplasmic growth, seems to explain fully
the physiological function of the sperm here as an "activator " of segmentation.'

Now, we must insist that the yolk-gramules are

Fig. 36.-Growth of the sperm at the expense of the reserve yolk granules (black round spots) in tho Pondworm (Rhynchelmis).
a, Young sperm nucleus and controsphere with radiating processes. b, r. Eneesuive sections throngh sperm centrosphere and melens; in c the tail is still seen persisting. d, A later stage with centriole (alot in rentral circle). e, f. Two consecutive sections at a similar stage. g. h. Sperm meleus in cytophasmic sheath projectines from the radial, alveotar cytoplasm oatsile the centrosome; the long rays seem here to serve as feelers, like the pisembopods of Leliozoa or Riatiolarla.
not living matter at all, but mere inclusions within the living cell, absolutely comparable to starchgranules. 'The mature of protoplasm is determined
${ }^{1}$ [Loeb in his recent work has suggested the formation of oxidases (ferments determining that low-temperature combinstion which liberates the energy for segmentation) as the physiongical function of the sperm, which may be replaced artificially. To us it appars that the digestive function is of primary importance.]
by its origin rather than by its food. so that the fact that the male cytoplasm grows in this way within the egg does not lessen its essential maleness.

Complete conjugation in many Animals only takes place, we may say, with the formation of the segmentation spindle, when the male eytoplasm is probably equal in bulk to the female eytoplasm.

We have noted above that the oosperm in primitive types of syngamy has usually the character of a resting-cell, whereas the fertilised egg of binary sex in many cases among Higher Organisms immediately undergoes brood-division (segmentation). The key to this difference probably lies in the fact just recapitulated. Since the sperm must grow for the conjugation to take place and therefore secrete an enryme to digest the food-gramules, the femate cytoplasm itsclf will also grow in presence of this digested food, as is clearly shown in the figures we have referred to. We have seen that such metatrophic growth at the expense of intra-cellular reserves is the starting-point for brood-division in general. Thus the impulse for division given by the sperm is no essential phenomenon of syngamous union: it is conditioned by the differentiation of binary sex, for it is the indirect consequence of that reduction of the sperm which makes its growth within the egg the necessary prelude of complete fusion therewith.

BH1BIIOGRAPII

1)elage, Y. " lítudes sur la Mérogonie," Arch. Zool. Eír"., nér. 3, vol. vii., 1900.
Delage, Y. "Sur linterprétation de la fécondation mérogonique et sur une théorie nourelle de la fécondation normale," ibid., 1900.

Delage, Yr. "Études expérimentales sur la maturation eytoplasmique che\% les Echinodermes," Arch. Zool. Eup., sér. 3, ix., 1902.

Delage, I. "La Parthénogenese experimentale," Vert. d. VIII. Int. Zoolog.-Kongresses, Gra\% 1910 (Jena, 1912).
l'raser, H., and Chambers, H. "The Morphology of Aspergillus' herbariorum," Amm. Mycol., v., 1907.
Hertwig, (). "Vergleich der Ei- und Samenbildung bei Nematoden: cine Grondlage fiir cellulare Streitfragen," Arch. Milir: Aut., xxxvi., 1890.
Hertwig, (). and (). "Ueber den Befrochtungs- und 'Teilongs. vorgang des tierischen Eies unter dem Einfloss :̈usserer Agentien," Jen. Z., xx., 1887.
Klebahn, H. "Ein Ueberblick iiber die nenere Diatomenlitteratur," Arch.f. I'rotistenk, xxi., 1902.
Loeb, J. " O_{11} the Nature of the Process of Fertilisation, and the Artificial Production of Normal Larvae," Amer. Jomm. Plysiol., iii., 1899.
Loeb, J. "Die Chemische Entwicklungserregung des 'Lierischen Eies, Kïnstliche l’arthenogenese," 1909.
Véjdorský and Mrázek. "Umbildung des Cytoplasma waihrend d. Befruchtung.u. Zellteilung," in Acch.aFikr. Anat., lxii., 1903.
Viguier, C. "Fécondation Chimique, ou Parthénogenèse!" Amı. Sćci. Nat. Zool., sér: 8, xii., 1900.
Vigruier, C. "Variations de la Parthénogrenese," ibid., xvii., 1903.
Wager, H. "'The Sexuality of the Fungi," Am, Bot., xiii., 1892.
Wilson. "Atlas of Fertilisation and Karyokinesis," 1895.
P.S.-lor the relations of Nuclear Reduction to Mendelian Inheritance see "Heredity" in this series, by Prof. J. Arthur 'Thomson.

'TABULAR VIEW OF 'THE BEHAVIOUR OF THE ZVGOTE

1. 'The gygote is free or set free carly, or is formed within a free cyst.
A. It is active in the medimm.

It displays the ordinary behaviour of the species.
i. Trichosphurium, Marine Foraminifera, Trypanosoma (:), Mastigella, Opalinu, Infusoria. It segments into a number of zoospores.
ii. Soctiluco.

It is ammeboid, but soon comes to rest, invests itself with a membrane and grows into a filament. iii. Bangiaceæ.

It is ammehoid, enlarges, encysts, and undergoes two successive modes of brood-formation to forin a host of sickle-shaped zoospores that migrate to the salivary glands.
is. Hæmosporidia.
It is flagellate, swims to a hort-plant, encysts, and sends a tube into the plant.
r. Chlorochytrium.

It is flagellate, but soon comes to a standstill and germinates into a multicellular plant.
vi. Several Siphoneæ, Cladophorn, Phæocarpeæ. ${ }^{1}$

It is flagellate, but soon comes to a standstill, encysts, and passes into a resting-state, during which it may at first enlarge.
vii. Most Chlorophyceæ (Green Seaweeds), including Phytoflagellates.

[^59]13. The eygole is not active, but, unless formed within a "yst, suromuds itself at onee with a cyst-wall, or, if already provided with a perforated wall, closes the apertures, so as to form it "\%yrocyst."
It goes at once to rest as a "hyprozygote," in which nuclear division sometimes takes place.
viii. Many Rhizopods (Eintamarlar, Chlamydophrys, C'cutrop!y.ris), Actinospharium, Actimophrys, some Diatomaceæ, Conjugatæ, Ustilagineæ, Uredineæ.

It may undergo partial segronentation, but then goes to rest and will not germinate till a certain period has elapsed, or under special conditions.
ix. Winter eggs of Turbellaria, Rotifers, and certain Crustacea and Insects, whose stmmer ergs, which germinate directly, are parthenogrenetic.

The aygotes are formed in numbers within a common cyst, and each argan encysts and inmediately forms a brood of sickle-shaped zoospores, which are not liberated except as in ix.

x. Gregarinaceæ.

'The plasmatic contents of the zygocyst at once divide into a brood of spores, which themselves encyst, and behave like the zygotes of x.
xi. Coccidiaceæ.

The plasmatic contents of the zygocyst undergo brooddivision into simple spores, which may encyst and rest or be active zoospores on liberation. xii. Several Flagellates, according to Dallinger.
"Two " ressoriuted" cells form a common cyst within which either breaks up into a hrood of gametes, equal or sexually differentiated.
C. The zygocyst germinates at once to produce the typical animal or plant. This is the case that has been taken as the type by those who write of "Chemical Fertilisation."

xiii. Fucaceæ (Wracks), Cladophoraceæ, most Metazoa.

2. The «ygote is produced within the parent, and remains there for some time, and is often parasitic upon it.

It segments within into a number of spores enclosed in a multicellular inventment of parental origin. xiv. Florideæ (Red Seaweeds).

It groes to rest within a preformed investment of parental origin.
xv. Characeæ (Brittleworts).

It develops at once as a parasite on its mother, but may soon go to rest in an investment derived from her or formed by her.
xvi. Archegoniate Cryptogams, Gymnosperms, Flowering Plants, Ovoviviparous Amphibians and Fishes, Mammals.

It may undergo partial segmentation within the parent, but is invested with a firm investment by the mother and is extruded.
a. It develops immediately.
xvii. Most Fishes, Amphibians, and Reptiles.
b. It goes to rest, and further development is only completed under certain conditions.
xviii. Birds.
3. The \%ygote is formed within the parental cytoplasm inside the cell-wall.

It goes at once to rest as a hypnozygote.

$$
\begin{aligned}
& \text { xix. Phycomycetes, Ustilagineæ (Smuts), } \\
& \text { Uredineæ. }{ }^{1}
\end{aligned}
$$

The zygote-muclens undergoes brood-divisions, and the brood-muclei attract a portion of the parental cytoplasm to form resting-spores, which often only germinate after rest and under special conditions.
a. The resting-spores are differentiated within the maternal cell-cavity.

xx. Ascomycetes. ${ }^{2}$

b. The matermal cell gives off processes into which the brood-nuclei pass, and which are cut off as hypnospores.

xxi. Basidiomycetes.

N.B.-I have endeavoured to make the above list fully repre-

[^60]sentative; but we still lack certain uncontroverted evidence of the syngamic processes of many of the lower organisms. In drawing up this table, besides consulting many origimal papers, I have freely utilised Oltmann's "Morphologic und Biologic der Algen " (190t) and Doflein's "Lehrbuch der Protozoenkunde" (1909).

CHAP'TER VII

THE 'TRANSMISSION OF' ACQUIRED CHARACTERS '
'Tine merit of Charles Darwin was to present a theory of descent in a form which gave at least two verle cousce: (1) 'The existence of variations, and (2) the survival of the fittest in the struggle for existence-or, to use that expression, really negative, which has found widest circulation, "natural selection." The eausal factors of variation were but lightly touched by him, but in many places he laid great stress on the transmission to the offspring of characters acquired by the parent in response to the prolonged influence of external conditionsthe inheritance of aequired eharaeters which was recognised by his predecessors, and is usually termed "the Lamarckian factor." Since his death his eo-discoverer, Alfred Russel Wallace, together with many who claim the right to wear Darwin's mantle,

[^61]and who boast the title of his direct heirs, have rejected this factor as non-existent: to them variation is always blind, with one exception to be referred to later on; it takes place in no efficient correlation with external conditions, however strongly these may affect the parent organism. That this assumption adds immensely to the difficulties in the way of the evolution of new species well adapted to their surroundings, they admit without the smallest embarrassment. 'That, while the organism has a power of adapting itself to widely diverging conditions, the race could, on their showing, only do so by the slow process of eliminating the less fitted to survive, appears to them to be a matter for rejoieing on the whole-creclunt quiu impossibile. For while, like the majority of biologists, they appear to trouble very little about theology and its dogmas, they have elevated the non-transmission of acquired characters to the rank of a biological dogma, held more fervently in proportion to its diffieulties; and they have gone very far on the way to the formal excommunication of those who cannot swallow it. In their exoteric utterances in lectures, essays, and letters to the newspapers, intended to reach the general publie and to initiate them into the areana of Science, they have denied all seientifie value to contrary opinions or even to cautious suspension of judgment, and have implicitly or explicitly treated
opponents and hesitators alike as a set of benighted nincompoops.

Thus it has been possible for writers of great individuality and original merit, taking their biology at second-hand from these self-proclaimed experts, to found wide-echoing social theories, such as Mr. Benjamin Kidd's "Social Evolution," on this doctrine as on a bed-rock; which, however, many competent surveyors, whom they know not, would describe as an inadequate footing or "raft" of concrete floated on a very quicksand of shifting views. It, therefore, behoves us to present in an accessible place and a readable form some arguments against this dogma that carry with them many, possibly the majority, of working biologists. And since the authority of scientific unanimity is claimed for the so-called " Neo-Darwinian" dogma, we shall recall the names of a few eminent leaders who repudiate it.

I

What is an "acquired character," such as might be transmitted? We should define it as a change in the characters, anatomical, physiological or psychologieal, determined by its environment, and usually one that will make it more efficient under changed conditions of life. 'This needs some discrimination. If the skin of a fair person be exposed to the more refrangible (the so-called "actinic") rays of light, as to sunlight on a snowfield or to the
eleetric are, it will become inflamed and blistered; this is mere damage, such as will probably be repaired by the healthy reaction of the organism; the "burn" will heal or suppurate, and we do not anticipate its transmission. But if a more lasting and less severe exposure induees tanning of the skin, which decreases the suseeptibility to severe sunburn, we might look for a more pigmented skin in the offspring. We have no statistical aeeount of the complexions of children of returned AngloIndians that would enable us to pronounce as to whether this does actually oecur or not. But the fact that even in black races the permanently proteeted parts of the skin, sueh as the palms of the hands, are lighter in colour, suggests that the deposit of pigment in the skin was originally an adaptation that has by repeated tramsmission gained a high degree of permaneney.

Much has been made of mutilations ; it is well known that these repeated for thousands of years on the young of the human race are not transmitted, and have to be repeated in each sueeessive generation. The same reasoning applies here as to the sumburn. Now, if a Newt's foot is cut off, the stump will grow into another foot : the same holds for a Lizard's tail: and for the limbs of Insects and other Invertebrates, regcncration, not deficicncy, is the adaptive response to mutilation. Moreover, any tendeney to transmit sueh defieieneies would in course of time result in a generation of formless imperfections, that must needs be eliminated by Natural Selection. 'The non-transmission of mutilations has been one of the arguments in farour of Weismannism, and we therefore dispose of it at once to elear the ground for more important points.

But before we come to these we must consider what is the a prioni ground that has led naturalists themselves, not wholly devoid of that merit and reasoning power which they deny to their opponents, to assert the impossibility of such transfer. The reproductive bodies are not formed of a secretion in which the whole organism takes a part: in complex animals they are cells set apart at a very early stage in the development of the individual, and take no direct share in the life of the parent, which may almost be held to play the nurse to them in the way of feeding them ;-to push the view to an extreme, the reproductive or germ-cells are in the body, not of it (Fig 37). 'This was recognised in theory first by Francis Galton, who distinguished between the body, or "soma," and the aggregate of germs, the "stirp." Now, these reproductive cells may be fed, and grow and multiply at the expense of the nourishment brought to them by the organism in which they lie; but, so far as we know, there is no nervous apparatus eonnecting them with the body, to
influence them; and without nerves we know of no transmission of impulse in animals. Therefore, for the majority of adaptations, there is no uscertained mechamism of transfer from the soma to the stirp, and as a consequence there can be no transmission. ${ }^{1}$ This assumes the canon: " No mechanism can exist that escapes the modicum of knowledge that we have gained during the century and a half or so that we have had to learn physiology." We ourselves are provided with so magnificent and complex a nerrous system for recording and correlating for the individual his relations with the external world, that we are tempted here to be overanthropomorphic, and to assume that the germ-cells need somewhat of the same kind to receive and transmit impressions to them. The reasoning seems premature : and, to use an old comparison, it recalls the poor little girl from the barrack workhouse school, who. when first boarded out, said she could not wash a single handkerchief in a basin, for lack

[^62]

ドa. 37.-Diagram of relations between the reproductive colls ("stirp") and body ("soma") through severalgenerations
The larger circles are the productive cells, interrupted by syngamy at thesucceasivegenerations, shown by the fusion of the sperm with the lane, well-nourithed reproductive cell-the egy or oosphere. The triangular masses of cells to the right represent the suecessive "bodies." Thelowermost cells rcpresent reproduction by direct division in Protints, and as we rise we find an increase in the proportion of body to germ. of the appliances of the steam laundry to which she had been accustomed. ${ }^{1}$

II

The stirp of Francis Galton, the germ-plasm of August Weismann, is, however, even in the estimation of the Neo-Darwinians, under the dependence of the soma or body at large in one important matter-the commissariat: it grows within the body, and must be nourished by it. If, then, the nature of the food-supply be altered in respect of the adaptation of the body to external conditions, the germ-plasm will undergo eorresponding changes. This is well shown in the case of "immunity" to microbic diseases. When such a disease invades the body, if the invasion be not too strong, and provoke untimely death, the organism forms certain substances which act as antidotes: they are called "antitoxins," or "antibodies" (a barbarous name, indeed); but we may here use the vulgar name of " antidotes." W ell, such antidotes must be formed in, or pass into, the germplasm, when the offspring will be born with the same immunity as the parent body has acquired,

[^63]and retain this immunity for a time, which is, indeed, often limited, just as the immunity of the parent is often limited. Instanees of such transmitted immunity are well known, and need not be cited here.

Again, the progressive weakening of the body, due to inadequate nutrition, may also be transmitted to the germ, and constitutional weakness may thus be inherited even when it was not eongenital in the parent, but only aequired. It seems not unlikely that the effect of abuse in alcohol, weakening the will of the parent, may in the same way be transmitted to the offspring, though Dr. Archdall Reid will not have this at any price. Moreover, there are a number of phenomena of nervous reactions to the medium, which may be transmitted. I cite one (of which I have personal knowledge), which was recorded in Nuture for March 14, 1891.
"A.B. is moderately myopic and very astigmatic in the left cye; extremely myopic in the right. As the left eye gave such bad images for near objects, he was eompelled in childhood to mask it, and aequired the habit of leaning his head on his left arm for writing, so as to blind that eye; or (when this was cheeked) of resting the left temple and eye on the hand, with the elbow on the table. At the age of fifteen the eyes were equalised by the use of suitable spectacles, and he soon lost the habit completely and permanently. He is now the father of two
children-a boy and a girl-whose vision (tested repeatedly and fully) is emmetropic,' so that they have not inherited the congenital defect of their father. All the same, they both have inherited his early acquired habit, and need eonstant watehfulness to prevent their hiding the left eye, when writing, by resting the head on the left forearm or hand. Imitation is here quite out of the question."

It was objected at the time by Sir Ray Lankester that the habit of leaning the head on the left arm or hand is so common among ehildren beginning to write that no stress can be laid on this. 'ro this the reply is that in no other children have I seen the attitude assumed so as to mask the left eye: most children who lean squint obliquely along the pen with both eyes; and the resting on the left hand supported by the elbow on the table is equally exceptional.

In the embryonic development of most Animals, the external layer that forms the general epiderm grows in along the middle line to form the central nervous system, which is ultimately buried deep within the body, like the brain and spinal cord in Man ; and the nerve-branches to eonneet it with the surface then grow out between the other tissues and organs to reach the surface again. The only formula that has ever been put forward to explain

[^64]this extraordinary migration and roundabout way of growth is that of F. M. Balfour : he suggested that the superficial layer of eells, that had first acquired nerve-characters from its direet relations with the outer world, had in successive generations become buried for protection, and that this adaptation required by the individual had become displaced in time in its heirs until it appeared in the very early stages of development. But in all Weismann's elaborate tapestry of interwoven hypotheses, not one thread is found as a clue to explain the extraordinary displacements, migrations, and outgrowths of the nervous system from its surface origin in the skin-layer of the embryo.

A whole series of unpleasant nervous changes produced in Guinea-pigs as the indirect results of certain wounds to the central nervous system are reproduced in their offspring, though the actual injuries were not of course reproduced in their young. These were obscrved by Brown-Séquard, and confirmed in many respects by G. J. Romanes. ${ }^{1}$

It is intercsting in this connection to note that the overwhchning majority of psychologists who

[^65]aceept the deseent theory invoke the transmission of acquired characters to explain many phenomena of innate instincts, such as those of the Pointer and the Setter. The Neo-Darwinian ascribes all these to casual impulses, arisen by variation without rhyme or reason, and once present, growing stronger in each generation by the selcction for breeding of those that evince them in the strongest manmer.

The transmission of acquired characters in Plants from the highest to the lowest is admitted by all to a certain extent; but the Neo-Darwinian explanation is in every case that whatever acts on the plant acts directly on the germ-plasm. We may cite a few cascs. In unicellular plants, such as bacteria, there is no distinction of soma and germ. The transmission of the characters of these under new modes of cultivation creates no difficultics either way. In low multicellular Plants, such as Moulds, changes in the medium in which the vegctative organs grow result in the formation of reproductive cells from the aerial parts, which have never dipped in the liquid; and these are better adapted to the special culture liquid than the original Mould. Here, too, the Weismannite holds that the conditions have also been such as to influence the germ by the nutritive substances passed up to it.

We come to the higher group. Cereals from seeds raised in Central Europe, when cultivated in
ligher latitudes nearer the Arctic Circle, ripen their seeds earlier and earlier. Such seeds produced after a year or two, when sown again in Central Europe, ripen their seeds as much as twenty-five days earlier than seeds that have been raised in continuous succession in their original home. Here, again, it is said that the effects of the long Northern days have affected the germ-plasm simultaneously with the plant at large. But why should the effect on the germ-cells of the sced be the same that has been so bencficial to the plant itself? Why is there correlation in this respect? The Nco-Darwinians appear to look at the individual elements of the organism as existing "on their own," an und fiir sich, and omit to notice that the connection of cells and organs everywhere determines peculiarities for the common good, which are replaced by other characters when they are separated. ${ }^{1}$

Within the last few months Kammerer has published a most striking instance of Lamarckian transmission in the two Salamanders of Central Europe.

[^66]The Spotted Salamander (\boldsymbol{S}. maculosu) is a lover of damp places: it produces numerous young, provided with gills-tadpoles, in fact-which it expels into the water, where they stay until they have exchanged these gills for lungs, when they come upon land. The Black Salamander (S. atrou) is essentially a land animal ; of its numerous fertilised eggs two only, the first in either oviduct, develop, living at the expense of their more sluggish sisters : they pass through their metamorphosis within the mother, and are born as lunged animals to live from the outset on dry land. By appropriate surroundings from birth the two species can be brought to exchange breeding habits, the Black Salamander producing a number of tadpoles for the adjacent water, and the Spotted only two lunged young fit to live on the land where they are born. Now, if the broods of exchanged characters be brought up under their proper original conditions, their brood is born not in the normal way of its respective species, but in the changed method that had been forced upon their mothers. It is most noteworthy that this change is a nutritive change indeed; but one secondary to what we may call a psychical change. It will be interesting to await the explanation of this acquired character on the germ-plasm theory, and to see what new subsidiary hypothesis will be spun to include this apparently glaring anomaly within the allembracing net of Weismann.
[Since the above was written Kammerer has extended his experiments to the Obstetric 'Toad (Alytes). In the Toad, the male winds round his legs the eggs as they pass in a continuous string from the female, and retires to a dark hole during the day, coming forth at night to moisten his living burden in the water. The tadpoles finally hatch out into the water on one of these excursions, in a much more advanced state than that of the tadpoles of most Amphibians. On raising the temperature in which these 'Toads are kept to $77-86^{\circ} \mathrm{F}$., the animals seek the water more freely, and pair in it: the eggs no longer cohere into a string, but fall separately into the water. After a time the males cease to try to wrap the eggs round their legs; and, moreover, the eggrs laid by the female are much smaller, and the tadpoles hatched from these leave the egg at an earlicr stage of development. Now, the young bred from the parents whose habits had been thus changed displayed the newo habits, although kept under the normal conditions; they sought the water for pairing, the eggs were small, and the tadpoles hatched out in the early stage. So far this is a most interesting parallel to the results already obtained with the Salamanders. Kammerer carried the experiments a stage further here, and started breeding between individuals of

[^67]the same species, with the one parent a normal animal, the other the offspring of those that had inherited changed behaviour. He found the charaeters thus aequired behaved as unit (" allelomorph") hereditary eharacters to the normal ones, and Mendelised ${ }^{1}$ just as do the unit eharaeters which have arisen spontaneously, or have been transmitted for generations. Of eourse, for the meaning of this statement I must refer the reader to Prof. 'Thomson's "Heredity " in this Series.]

Strange as it may appear, the bones and joints are exceedingly plastic, and adapt themselves to new situations and postures with wonderful faeility. Thus, after fractures and dislocations, the bony framework is altered to supply new strength, and new joints replace the original more or less effieiently. Still more noteworthy is it that indieations of postures and arrangements that are only effeetive in after-life appear even before birth; the widening of the female pelvis, that only finds its explanation in the roominess that will be needed during pregnaney, makes itself apparent in advanced ehildhood, before puberty. Havelock Charles finds that the races that habitually squat and sit tailor-fashion on the ground have adaptive peeuliarities in the hip, lower limbs, and

[^68]'TRANSMISSION BY SPECIAL SUBS'TANCES 191
foot-joints before birth. Now, these are absent from the modern Europeans, while they were probably present in their Neolithie ancestors, who were buried in their proper resting position, as, indeed, their deseendants are buried nowadays in our resting position; only, that position was for the Neolithie man squatting on the heels (or, rather, the sole of the foot), not sitting on seats nor lying down.

Now, if such ehanges have come about so as to be visible before the habit has been acquired, how can they be aceounted for? Surely by the assumption that the response of the bones and joints to the demands made by habits of life has been transmitted, so that it appears in the individual at an early stage. This case has long been known, and has been accounted for on Weismannie grounds; but the explanation put forward is too subtle for these pages; it is absolutely inadequate, and makes greater demands on faith than the admission of an unknown meehanism for transmission of an aequired charaeter.

We may here indicate one possible method of transmission of even these by what we may term "special substanees." It is found that when the thyroid body (which, when swelled up, is the wellknown goitre of eertain mountain valleys) is disordered, so that it does not provide the body with its special seeretion, a disease of the mind-sluggish
thought and quick temper-comes on, accompanied by certain changes of character: thus the secretion of the thyroid determines ecrtain psychical results. If now to the sufferer be fed rations of the thyroid (usuallydried, powdered, and compressed into tabloids), the nervous changes do not occur. 'Thus the presence or absence of certain substances will affect the nervous system, and conversely it is possible that every nervous change of adaptation to the surroundings may thus induce the formation of substances in the body, which, fed up to the germplasm, give the impulse to corresponding changes in the offspring. ${ }^{1}$

Thus there is no lack of a-priori presumption for the transmission of acquired properties, the "Lamarckian Factor" being characteristie of organisms generally ; and this will even fit into the form of a symmetrical logical syllogism. (1) The Factor is one of extreme utility to the race, and useful characters tend to be retained. (2) If, then, it existed in the primeval ancestors of Higher Organisms, it would probably be retained unless its retention were a physical impossibility. (3) Now, it undoubtedly docs caist in many Protista, which biologists agree are equivalent to the ancestors of

1 We gave a hint of this possible explanation in "Fundanental Principles of Heredity" in 1897 (see above, p. 78). It has since been developed by J. 'I. Cumningham ("Arch. f. Entwicklungsmechanik," 1909) : sec below, p. $2(64$.

Higher Organisms. (4) Again, its persistence in Higher Organisms is not physically inconsistent with the cellular differentiation characteristic of these; for it has been demonstrated in at least five different cases-the precocity induced in cereals by cultivation at high latitudes, the transmission of certain human adaptive habits, the facets of squatting races (or possibly their loss in the sitting and lying ones), the widening of the female pelvis, the breeding characters of the two European species of Salamander. Hence, we conclude, it is catremely probable that the pozer to do this is generally present.

II I

We have pointed out a few cases readily explicable by the transmission of acquired characters - the socalled "Lamarckian Factor." The inference in Plants is admitted by most; those in Animals find their readiest explanation on this assumption. On the other hand, Weismam and his school, finding the absence of recognisable mechanism for such transmission an insuperable difficulty, have taken refuge in a theory that professes to explain all. The theory is extremely complex, but we may give a selection of its principal features. Each germ-cell contains in its nucleus a special "germ-plasm," or "idioplasm," made up of entities called determinants. These grow with the cell, and when the cell divides, each determinant divides into two identical deter- minants, one for either cell. During and by means of the cell-divisions which give rise to the organs of the body, these determinants (or, rather, their offspring and their like) are sorted out and distributed to the various organs, whose character they detcrmine by their respective numbers, qualities, and dynamic energy (whence their name). Any given case can be explained by assigning the requisite qualities to its determinants. Moreover, any new case, as it arises, can also be explained by the inexpensive method of spinning out a little ingenuity, to invest the determinants with fresh qualities, active or dormant. Further, since a complete set of determinants lies in the nucleus of each germ-cell, where it is nurtured by the food soaking in from the body, we are told that these determinants must compete among themselves for their share of their food; thus there is a "struggle for existence" among these determinants, and the fittest survive-the process hypothetised is ealled "Germinal Selection." ${ }^{1}$ As the determinants correspond with the organs, and the organs show a magnified picture of the determinants of the germ, the apparent acquisition by the organism of new characters better suited to the environment is really due to the antecedent growth in vigour of the special determinants needed to produce

[^69]this effect ; and Lamarckian transmission is simulated so as to deceive the unwary and unenlightened. ${ }^{1}$

But we need not weary the reader by further elaboration. Suffice it to say that in all the nuclear divisions in the multiplication of the cells for the tissues and organs of the body, the visible nuclear elements divide in a most complete partitive manner, so as to ensure as far as possible equal distribution of these elements to the two sister-cells, however diverse be their ultimate goal ; and that thus the theory lacks objective foundation just where it should be forthcoming. Did we follow the procedure of many Weismannists-or "Neo-Darwinians," as they call themselves-we should go on to say, "accordingly the theory must be rejected by all writers capable of forming a valid judgment." We do not go so far, for we greatly admire the theory as a brilliant piece

[^70] of constructive ingenuity; but our admiration is purely asthetic.

IV
Such arguments as we have given in brief have not been without weight among biologists of the highest eminence. As we have seen, Charles Darwin laid mueh stress on the Lamarekian Factor, and G. J. Romanes shared his views; Herbert Spencer advoeated it in these pages [The Contemporary Revicw] some fifteen years ago, ${ }^{1}$ and broke many a lanee here with August Weismann; Ernst Haeckel, the Nestor of living zoologists, who rose into eminence in the early sixtics as the most brilliant adroeate and developer of "Darwinism," has never wavered. And even the flood-tide of Weismannism failed to earry convietion to many in the forefront of biologieal research and thought, who have elung to the doetrine of transmission of aequired eharaeters, and rejected the eomplex theory of Weismann. Thus Oscar Hertwig, one of the founders of our present knowledge of cell and nucleus, one of the diseoverers of the true nature and meaning of fertilisation, regards the transmission of acquired eharacters as proven. He declares that the determinant theory eannot explain the essence of organie development, and that the fundamental assumptions on whieh it is based are philosophically erroneous ("Sehon in philosophischer

[^71]Hinsicht beruht sic auf falschen Grundannahmen," "Allgemeine Biologie," Ed. 2, 1906, p. 460). On Germinal Selection he remarks :
"'To escape the difficulties of explaining hereditary transmission, Weismann has put immeasurably (unendlich viel) greater diffieulties in the way of a causal explanation of organic development. Anything like an adequate disproof of transmission he has given in none of his writings " (op. cit., 621).

Let us turn to Y'ves Delage, one of the most skilled zoologists of France, distinguished especially by his brilliant researches on induced parthenogenesis, ${ }^{1}$ no less learned in modern theories than able in his criticism of them ; and what do we find? He says of Weismann's biophores (supposed units that are grouped into determinants) :
"If they are possible they are useless; if they are useful they are impossible. . . . Thus the biophores are useless or incomprehensible, the number of determinants is inadequate. . . . The whole base of the theory is undermined and destroyed. . . . If we admit the possibility and existence of the whole constitution ascribed to the germ-plasm, we can show that the crown of the edifice is as flimsy as its foundations."

Felix Le Dantec, the glory of the French school of Mechanieists, writes, curtly enough :

[^72]198 'TRANSMESION OF' ACQUIRED) CHARA(NERS
"Strictly speaking, there is never any hereditary transmission exeept of aequired characters. Yet a whole sehool of naturalists have for some years tried to deny the possibility of such transmission. To deny it is the logical consequence of the fanciful system of Weismann" ("The Nature and Origin of Life," Eng. ed., 1907, p. 200).
E. B. Wilson, of Columbia University, New York, whose book on "The Cell in Development and Inheritance" (ed. 2, 1900), is in the hands of every student of biology, writes on the biophore-determinant theory that "it demands for the orderly distribution of the elements of the germ-plasm a prearranged system of forces of absolutely inconceivable complexity" (p.432). On the transmission of acquired eharaters, he writes (with complete reserve):
"Whether these variations first arise in the idioplasm of the germ-cells, as Weismann maintains, or whether they may arise in the body-cells and then be refleeted back upon the idioplasm, is a question to which the study of the cell has thus far given no eertain answer " (p. 433).
[Wilhelm Roux, editor of the Archiv fiir Entzoicklungsmechanili, and one of the most distinguished of experimental embryologists, who accepts in many respects Weismann's views on preformation, writes :
" The hereditary transmission of variations arising in the body [what we term 'aequired charaeters'] is
thus a most complex process dependent on the exact fulfilment of numerous conditions; so that we are not astonished to find it of regular oceurrence in only limited categories of cases." ${ }^{1}$]

The majority of English botanists, like Prof. Reinke of Kiel, have ranged themselves on this side or at least have imitated Wilson's reserve. Prof. S. H. Vines, of Oxford, has written strongly against Weismann ; and Prof. Bower, of Glasgow, in his mugnum opus "'The Origin of a Land Flora (1908)," cites with approval, if not acceptance, Goebel's strongly Lamarckian views. ${ }^{\text {a }}$ Sir William Dyer, however, defends the W cismamic position.

1

The majority of English zoologists are, however, enthusiastic Weismamnists and go so far as to deny the possibility of transmission where their master

[^73] would admit it. 'Thus in The Times of January 27, 1908, Sir Ray Lankester, whose headship no English zoologist would dream of questioning, writes:
"By degeneration is indicated a definite deterioration of the stook, or 'stirps' (as Mr. Francis Galton has termed it). There is no evidence that privation and injurious conditions cause detcrioration of the stock in animals and plants. 'They may kill out a stock or race ; but they do not alter its congenital qualities."

No wonder that a correspondent asked for chapter and verse, especially if we reflect that cren Weismamn allows that differences of nutrition of the body may affect the germ-cells, and consequently the stock. Again, in the January number of The Fortnightly Revictc (1908), Dr. Alfred Russel Wallace ascribes similar views to "almost all the chicf biological thinkers and investigators." 'This attitude is shared by many smaller men; and the unproven doctrine is pressed by all of them into the service of whatever social and economic views they may advocate.

The fact is that at an earlier date undue stress was laid on inadequate observation, and the inferences of untrained observers, such as midwives and the like. This has led to an excessive reaction. Eager to combinc into a harmonious whole the little we have learned of organic processes and conneetions during
the last century or so, many modern naturalists have rejected the obvious and been attracted by the completeness and the apparent logical symmetry of Weismannism. The Master has indecd deftly woven his web of hypothesis, with its warp of forced interpretations of structures that are known, and its weft of assumptions of substructures that are unknown, into the gorgeous brocaded robe of his theory : but it is as airy and unreal as that which left Hans Christian Andersen's emperor stark naked in the birthday procession. We, with many others, are well content to moderate our ambition, and to wear clothes, old and old-fashioned, it is true, ragged and riddled with holes, it well may be: but made of real objective stuff, and giving us at least, a partial covering.

Postscripti ${ }^{1}$

We may here note a criticism by Sir E. Ray Lankester, which he first put forth in 1894, in Nuture, and to which he evidently attaches great importance. Its most recent restatement is found in the article " Zoology" in the new edition of the "Encyclopredia Britannica," 1911 :
"Lamarck's first law asserts that a past history of indefinite duration is powerless to create a bias by which the present can be controlled. [For an accurate presentment of Lamarck's meaning the word

[^74]"hsolutcly should be inserted before "controlled."] He declares that in spite of long-established conditions and correspondingly evoked characters, new conditions will [substitute rather ma!y] evoke new responsive characters. Yet in the second law he asserts that these new characters will [rather may] resist the action of newer conditions, or a reversion to the older conditions, and be maintained by heredity. If the earlier conditions were not maintained by heredity, why should the later be?"

As stated by Lankester the argument appears a thorough disproof by the reductio ad absurdum; and yet Lamarck was a philosopher, not a fool! But the slight alterations suggested in our brackets make all the difference. We may easily test the argument by repeating it with a small change of instances, which in no way affect its essence.
"It may be asserted of the individual that his whole past history is powerless to ereate in him a bias by which the present can be eontrolled: in spite of long-established eonditions and correspondingly evoked habits, new conditions will evoke new responsive habits. Yet it is at the same time maintained that these new habits will resist the aetion of newer conditions or a reversion to older conditions, and be maintained by chstom. If the earlier habits were not maintained by custom, why should the later be?"

Clearly the paralogism lies in the presentment: Lankester puts forth as universal what is regarded
by the Lamarckian as occasional only. We camot say under what conditions any man can acquire new habits: this much is clear, that such acquisition varies from man to man, and in the same man at different periods of his life: and similarly Lamarckians hold that capacity for the acquisition of new hereditable characters has varied from race to race, and at different periods during the history of the race.

CHAP'TER VII (Coml.)

A REDOINDER

"Comment faites vous, monsieur, pour itre si sir de ces choses-lì ?"
Dr. G. Ancithani, Reme's attack on modern Lamarckianism as a factor in evolution affords an interesting study in the methods of his school. It contains three admirable "episodes," as a musician would term them, two of which are but distantly related to the subjeet. 'The first, on what I have elsewhere called " collateral cellular transmission," ${ }^{1}$ is but short, and is utilised to show, what all Lamarckians admit, that there is no obvious mechanism for the transmission of aequired characters. The second, on the value of faets in science, differs from the others in being skilfully woven in with passages of the main theme, and will be dealt with below. The third is in itself an extended essay on the relations of memory and intelligence, habit and instinet, some 1,300 words long, very eloquent and convincing, but quite as compatible with the Lamarckian as
${ }^{1}$ Chapter II, p. 45.
with the Wallacian ${ }^{1}$ view of evolution. Our only criticism is that this prodigal display of the uncontroverted, imported into a controversial article, is calculated to lure the unsuspecting reader to believe that all the wares offered by the author have the same indisputable virtues. Indeed, at the very outset he claims boldly that-
"in the latter part of the nineteentli century, Weismann and others pointed out that there are great difficulties in conceiving a probable means of [Lamarckian] tramsmission. . . . 'I'hereupon scientific opinion. us "t whole," underwent a change."

This assertion as to the general consensus of scientific opinion, "quod ubique, quod ab omnibus," quite on the lines of theological controversy, recurs constantly in the writings of Dr. Wallace and those who share his views in England. 'Three times this year [1908] have I already pointed out the brilliant array of biologists whose opinions on this matter have not been materially altered by the arguments of "Weismann and others,"- the last time being in the September number of this Review [C. R., 1908]. But the claim is ever repeated with unfailing assurance, like "Recommended by the Ficulty" on the

[^75]label of a quack nostrum. 'This incidentally disposes of the statement: "Mr. Francis Darwin . . . and Professor Marcus Hartog have attempted to revive the Lamarckian hypothesis." The hypothesis has never been even in a state of suspended animation : if thrust in undeserved disgrace from the schoolroom of certain English biologists, it has ever remained lively and lusty in the big world outside their door.

A critic may lighten his labours by misrepresenting the objeet of his criticism: Dr. Reid's presentment of modern Lamarckians is a gross carieaturc. 'Thus he supposes them to believe that "since parental characters are aequired all ill-conditions [,] that enfeeble the parent[,] enfeeble the child." He argucs as if the sentence contained the commas I have inserted in square braekets, and as if we held that all ill-eonditions necessarily enfeebled the parent. But the response of the parent to prima-ficcic "illeonditions" may be, as in several cases cited by me in September, not enfeeblement or deterioriation, but an adaptive ehange, so that to the offspring the same eonditions are no longer "ill-conditions," or at least not so "ill." Indeed, one danger from this transmissible adaptive response is suggested in the consideration of the slum problem. A high and complex eivilisation tends to promote not only the continuance of the majority who are part of it and live in and for it, but also of that adaptable part of
the minority who are thrust outside it and live on it. 'True, of the submerged one portion may be enfeebled and produce a yet weaker lineage, destined to die out and elear the ground. But another portion, who react by cunning, predacity, loss of shame and of social spirit, will turn their submergenee to profit: their lineage might well be described in Horace's words :

> "Actas parentum, peior avis tulit Moss nequiores mox daturos Progeniem vitiosiorem."
'The best tillage fiwours the lushest growth of weeds ; and if the firmer neglects them they will do their best to strangle his crops. It is the problem of to-day to devise means for dealing with those who turn the "ill-conditions" into which they are sunk by society to anti-social account.

Again, Dr. Reid insists that Lamarckians believe that scars and mutilations should be transmitted; yet elsewhere he refers to my essay of last September as if he had read it! Surely he must have missed the passage (pp. $179-80$) in which I point out that regeneration or repair is the adaptive response that should be transmitted, and not the injury itself. This was brought out by Sollas and myself some serenteen years ago. Really the matter is obvious. Would any gardener expect the acorns from an ill-trimmed or orershaded tree to grow into lop-sided
oaks? Y'et most botanists admit the Lamarckian factor. In all the lower animals the response to any injury or mutilation of not excessive extent is at least repair-not so imperfect as, with us, to leave a scar-or very often regencration of the part removed. Apparently this power has been reduced in the Mighest Animals, owing to its incompatibility with their specialised complexity (see p. 50). Dr. Reid asks his readers to try to "conceive whether the persistence of life is compatible with the Lamarckian hypothesis,"-a.s lie presents it; but we have shown that his picture omits the very features that give it life and reason. On a true presentment the reader may well answer that the persistenee of life is compatible with this hypothesis ; and so achieve an intellectual feat of whieh our author deelares himself " ineapable."
"Episode 2" is the essayctte on facts, from which we give some extracts:
"There are no scientific facts. All faets are equal before science. It is the elassifieation and interpretal tion of facts that constitute science. The greater the number of faets ineluded in our survey, the more complete our elassification, the more correct are our interpretations."

All this may be very good and true, provided we put a proper construction on the language. But the passage before this shows a very peeuliar standpoint:
" Most of the facts of nature lie patent under our cyes, open to interpretation if we tear aside the reils of familiarity and preconception. Some facts, however, are so obscurcd by the surroundings in which they are found that we must use experiment or some such method to make them plain. Experiment is valuable as a means of filling gaps in our knowledge, but it can do no more than render facts previously obscured as patent as the mass of those on which our knowledge is founded. In some sciences, for example physics, all facts are obscured [!!]. In others, for example cunatomy, all are patent [!! !]. In biology, especially in the case of the higher plants and inimals, most facts are patent, but some are obscured [!!!!]"

It is hard to take this paragraph as the serious expression of Dr. Archdall Reid's philosophy of the sciences.

But we may urge that all "facts" (which I suppose to mean correct observations of phenomena) are not "equal before science," in the sense that scientific questions are to be determined, like general elections, by a simple numerical poll. One single fact newly noted may suffice to overthrow a theory founded on countless other facts, if it camnot be brought into line with them on the basis of that theory. Dr. Reid's treatment of "expcrimental and laboratory facts" savours of inconsistency. Elsewhere he lays

[^76]stress on some in disproof of the alleged transmission of acquired epilepsy. Here he disparages them; and he ignores them elscwherc, when they appear to afford crucial tests against his own views. Possibly he has skipped these last in his reading.

Great originality is shown in his "Second Subject," the Origin of Variations. It is not Wallace's, for Wallace has put forward no general theory of variation for the organic rcalm at large, only a limited theory for those variations that led up to Man from his nearest roological kin. Assuredly, too, it has nothing to do with the special teaching of W cismann, who refcrs variation to the influences of nutriment and environment on the germ-plasm, as well as to the complex shuffling involved in the mixture of parents in the offspring. Dr. Reid's theory is, then, "quitc his own idea " ${ }^{1}$: variations are conditioned, if at all, by the haphazard of the future ; the non-existent and the unforcsecn.
"We know that a germ-cell on becoming fertilised spontaneously produces many different kind of cells, such as muscle and skin cells. In the same way, apparently, it produces germ-cells which vary among themselves as regards their germ-plasm. These germinal variations are neccssary if the species is to

[^77]adapt itself to changing conditions. Evidently, then, not only are many variations spontaneous, but they are sufficiently mmerons, diverse, and considerable to afford materials for selection, natural or artificial. A vast mystery is often made of the origin of variations. But, if zee admit that the regular waviations of somatic cells are due to Nratural Sclection, there seems no valid reason for refusing to admit that the maintenance of the no less re@ular variability of germ-cells is due to the same callse."

We can only take this to mean that the variation of germ-cells is due to the fieture chances of abundance or deficiency of food, of competition or co-operation with those of its own kind, of the presence or absence of foes or parasites, of the incidence of discases new and old, of weather, and of the movements of earth and water: for these are the factors of Natural Sclection. All selection is negative: a stern reality to the eliminated at the moment of their elimination, it is non-existent to the survivors. Dr. Reid personifies this recurrent negation as a sempiternal Deity; he transfers its action from the future to the past. 'This is the "All-Sufficiency" or "Omnipotence" (Allmächitigkeit, Weismamı) " of Natural Selection" with a vengeance!

Charles Darwin showed (in "The Expression of the Emotions," 1872) as his son has just recalled, that the only forthcoming explanation of certain modes of expression lies in the transmission of
acquired charaters. Thus Sneering or Snarling is the clearing for action, as a menaee, of the offensive canine teeth which are so well developed in Man's nearest zoological allies. 'This is not referred to by Dr. Reid. Yet it is no mere "islet of truth," "obtained by experiment or some such laboratory method" ; but one of a eategory of what Dr. Reid calls-
"a huge volume of equally undisputed faets gathered by simple observation, and duly eorrelated with them, so as to make the hypothesis 'furnish a basis for the rigorous deductive inference of consequences,' and so ascertain 'whether it is in harmony with all other laws included in the eonceived system of reality '" [I don't know from whom come cited quotations in single quotation marks]. "That which, rightly used, might bridge a gap between neighbouring continents is treated as the sole truth known to us."

How aptly and eloquently do these words characterise Dr. Reid's treatment of the experimental disproof of the non-transmission of mutilations and sears, his aversion to "use rightly" the facts on which Lamarekianism rests and is logieally founded!

The diseussion on immunity is largely one of words. I have not eontended for more than is unisersally admitted: that the young acquires antitoxins through the proeesses going on in its mother, and, like her, retains immunity for a certain time (p. 183).

I have actually utilised this very point to suggest in my essay that the transmission of definite chemical substances may form part of the general mechanism of transmission which so eludes us (p. 192).
" In any case, the vast mass of experimental as of other evidence is against the Lamarckian hypothesis." But evidence has to be judged : and this is a case where judges differ. From Alfred Russel Wallace, Ray Lankester, 'Thiselton Dyer, and Archdall Reid we turn to Charles Darwin, Gcorge Romanes, Sydney Vines, Francis Dirwin, K. (roebel, Wilhelm Roux, Oscar Hertwig, Y'ves Delage. 'The court is divided on the facts at present before it: if a rerdict has to be pronounced at this moment, it must go with the majority of eminent judges in science: that is, in farour of Lamarckian tramsmission as a factor in variation and evolution.

But Dr. Reid holds otherwise: he denies the competence of this court, and proposes another :
" The public will not accept unaccustomed views till they have been long-: ormulated,' or till they have received official sauction. Such sanction may be found in the recently published Report of the Royal Commission on the Care and Control of the Fecbleminded."

I am at present unable to procure this Blue Book;

[^78]but I an sure there must have been great diversity in the evidence adduced. Thus, while Dr. Reid mantains in his article as strenoously as ever his old thesis, "However much drinkers suffer, there is neither physical nor mental deterioration of the race," Dr. W. A. Potts, who was Medical Investigator to this Commission, is strongly opposed to Dr. Reid. Speaking of the effeet that alcoholism of the parents exerts on the offspring, he writes (Abstract of a Paper introductory to a discussion held by the Society for the Study of Inebriation, October 13, 1908; in Medical Press, October 14, 1908) :
"'The importance of this must be brought home more strongly by explaining the fallacy, in civilised
 unfit than a producer of them. . . . Reference to Morel's work substantiates the conclusions, which derive much greater importance from MacNichol's demonstration of a much larger number of dullards [53 per cent.] among the children of drinkers than among the ehildren of abstainers [10 per cent.]."

Evidently such views, diametrically opposed to Dr. Reid's, must have been laid before the Royal Commission ; and it is hard to explain why he writes as if they were unknown or non-cxistent.

Thus Dr. Arehdall Reid proclaims Peace during

[^79]an active campaign, and sings the paean of triumph in front of an unbroken foe. If the artillery of fact and reason in the hands of the anti-Lamarekians be as smashing as they represent, why does the effeetive damage to their foes fall so far short of the bulletins they publish?

CHAP'TER VIII

MECHANISM AND LIFE

A strange phenomenon in the growth of science is the alternation in the vogue of rival theories ; and it has nowhere been more marked than in the domain of biology. During the latter half of the last century the "mechanical" or "physico-chemical" view of life laid claim to dogmatic orthodoxy ; but in the last ten years the tide has changed. There are still many, indeed, who reluctantly admit the difficulties in the way of the proof of their mechanical theory, but express the fervent trust that our growing knowledge of physics and chemistry will overcome these difficulties, and give a full explanation of Life in terms of the laws of non-living things. But the majority of the biologists of the present generation are inclined rather to chaff these persons as the possessors of a "cheerful and optimistic temperament" than to share their pious aspirations.

I propose in this paper to survey the causes which
gave rise to the two latest phases of thought on the subject.

The collapse of the older vitalistic school towards the end of the first half of the nineteenth centurythe school which maintained, as modern vitalists do, but in a different way, that no complete explanation of the phenomena of living beings can be given in terms of the laws of non-living things-was, it would seem, largely due to the sudden increase in precision of our physical ideas, and to the general acceptance of the conception of the conservation of energy, as well as of matter. 'The peculiar behaviour of living beings hatd, down to that period, been referred to an abstract entity, called "Vital Force." When the physicists had limited the meaning of "force" by defining it as an "acceleration \times mass," when the persistence of energy through all its transformations was recognised, and the intake and output of energy of the living organism were found to balance as well as those of any machine or apparatus whatever, the term "Vital Force" lost its propriety, and had to be dropped. Indeed, it became obrious that the peculiarities of living beings could not be classed as forms of cnergy, force, or matter; and it was easy to disregard as mere lumber that quality which found no place in the symmetry of physics and chemistry; to ignore, as an intruder into the orderly laboratory, that presence which had no name to give to the custodian. A further encouragement to the
anti-vitalist lay in the glorious achievements of the chemist who-despite all predictions to the contrary -was now producing by combination and separation so many of those "organic" substances which had hitherto been only found in or produced by living beings ; while he failed to see that the chemist himself was also a living being. Indeed, in the seventies the current belief among students of Physiology was that within a decade albumen and other proteids would be synthetised, and that by the end of the century protoplasm would also be manufactured, probably in a living state.

Again, the rise of the Descent 'Theory, mainly due to Charles Darwin's presentation of it, had put forth a scientific explanation of many biological problems that had received none theretofore. And religious prepossessions also had their influence: many freethinkers assumed, quite absurdly, that the mechanical view was antagonistic to all theistie hypotheses, instcad of imperativcly requiring them as we shall see; and so it was welcomed by such men as Carl Vogt and Ermst Haeekel, the most brilliant and dogmatic of the number.

In England, at least, the vitalists of the period had a bad time and a poor show. 'Their opponents had the advantage of recognised position and the command of the publie ear : they were incomparably the better writers ; the taunt of theological prepossession was raised, not without reason, against
the vitalists ; and the protests of that inarticulately verbose genius, Lionel Beale, were overborne and swept out of sight by the brilliantly lueid dialeetie of Thomas Henry Huxley. 'Thus the attitude of the aceredited physiologists of the day appeared to their own students, and to the publie at large, to be hostile to vitalism in any form or shape. I remember that at the Manchester meeting of the British Association in 1887, one speaker hinted at a vitalistic explanation. When he sat down a distinguished Professor of Physiology jumped up, and carried the meeting with him by quoting without preface Bret Hartess wellknown lines:-

> "Do I wake: Do I dream?
> Do I wander in doubt?
> Are things what they seem?
> Or is visions about?"

We must remember that the official physiologists of the time found their main work, as we shall see, in aseertaining with great precision the changes, physical or chemieal, at the surfaces or at the extremities of organs. To increase the delicacy and accuracy of their obscrvations, they worked as far as possible with isolated organs, which, as Samuel Butler pointed out in "Erewhon," have, indeed, the character of internal machines in relation to the organism as a whole. Unconsciously they were impelled to magnify their office, and to exaggerate the theoretical value of their results: they assumed that if more were
known of the internal workings of living beings, they would all prove to be of the same character as those that lay in the territory they were so brilliantly exploring with the apparatus of the physicist and the chemist. Yet a little consideration might have made them hesitate. The processes of growth and repair are most essentially physiological ; and into these their manipulations and records gave no insight. The narrowness of this official school is manifest to the world in the practical exclusion from its textbooks of the work done during the last two decades of the century on the physiological processes of reproduction and heredity, and in the astounding fact that nearly all progress within this field has been achieved by biologists to whom the title of "physiologists" is not habitually given. 'The reign of mechanistic views is coincident with the rise of this official school of physiologists: its decay is due to the enormous amount of broad physiological work done outside the bounds of their almost crystallised tradition. Yet we must remember that the most distinguished British teachers of the school were far from the extreme views of their disciples, just as Wilkes protested that he was not a Wilkesite. My own revered teacher, Michael Foster, said one day, when I was pointing out certain osmotic relations in connection with renal secretion: "My dear fellow, that isn't enough; you may be sure that the kidney cell gets rid of what it wants to." And Burdon-

Sinderson said, when talking to me and Prof. Ch. Richet in 1900: "The real meaning of life is adaptation," using the word evidently in the same sense as "self-regulation." ${ }^{1}$ If all the processes in a factory were kept strictly secret, we can imagine a checker at the gate insisting that all that went on inside was some modification of earting; and possibly he might convince an outsider of that strange doctrine, on the ground that " Bill is employed at the factory, and he ought to know." We can now see, therefore, that the apparent consensus of physiologists until recently against vitalism need not have an undue weight with the man in the street.

It is always well to have clear definitions before us, or at least clear indications of what we mean by the words we use. Many a controversy has had a verbal confusion at its base, on one side or on both : and this question is no exeeption. "Machine," "Mechanism," meant originally a contrivance, an "rrangement by a living being. Both these words have come metaphorically to mean an arrangement, an assemblage of things standing in a causal relation to one another (in their widest sense including purely psychical relations, such as the "mechanism of memory"). It is obvious that the most outrageous

[^80]vitalist, accepting the law of calusality, would not reject this extension of "mechanieal " explanation in the living world; but in this sense the term ceases to have any controversial valuc. I think that a fair definition of a machinc ${ }^{1}$ is a portion or uggregate of matter chosen, fisshioned, or arranged by a living being to effect some transformation in the relations of matter, or of encegy, or of both. 'This change is the olujet or the pmopose of the machine, that is, of the mechanician who makes it; and in the making of the machine the purpose lies in the fiuture. Thus are machines differentiated from "Things at Large." ${ }^{2}$
"Mechanism," the more abstract term, is that arrangement in a machine which is concerned with its purpose or effect. 'Thus, while we should call a selected flint chip, no less than a steel knife, a "machine," any ornamentation on the latter would form no part of its "meehanism" as a knifc. "Mcehanies" is the science of machines, and has been restricted to include that dealing with the equilibrium and the movements of solids,-readily extended to those of liquids, so long as they do not change their state of aggregation. The wider seienec-dealing with

[^81]the equilibrimm, strains, vibrations, and movements, molecular and molar, of substances, so long as they change no more than their state of aggregration, solid, liquid, or gaseous-has receired the name of "Physies." 'The science dealing with interchanges of composition is " Chemistry "; and the older name of " Mechanical School," applied to the antivitalists, has given way to that of "Physico-chemical."

Before passing on, we must examine another term which has been much used with little precision of meaning and much vagueness of implication. "A utomaton," "automatie," which mean self-moving, were first applied to human or animal motions performed without conscious will or reason, or eren against these. I ater they were applied to machines requiring a minimum of manipulation during their work, and also to working models of animals, with internal machinery designed to execute motions like those of ${ }^{\circ}$ the original. 'These meanings survive to the present; we may eite two illustrations. Wre measure time at the present day by counting the oscillations of a suspended weight or of a coiled spring, and we know that such oscillations are gradually damped by friction, and soon cease: we make the antomatic watch or elock by introducing a coiled spring or a wound-up weight with a train of wheels; thus the oscillations are at the same time maintained for a long period, and recorded by the hands instead of being separately counted. In these respects we have
made our time-counters " antomatic." Again, in the first steam-engines of Newcomen the alterations in the steam-cocks by which the motion of the piston was periodically reversed were made by the hand of a boy in attendance. One boy, more playful or more ingenious than his mates, tied strings to various parts, and so made the reversals "automatic." The automatism of the machine is in every case the result of plamning, and has to be explained by future purpose, as well as by past manipulation. Thus we can differentiate machines from other non-living aggregates of matter by their purpose in the future, as well as by their history in the past. Compare (1) a mountain talus, a river, a lake, with (2)an embankment, a canal, a reservoir: scicnce finds no account of the past action of a living organism, no hint of a future purpose, in the produetion of the three former ; but both these have to be forthcoming for a full explanation of the three latter.

A mathine is distinguished, then, from other nonliving aggregates by its definite purpose: in other words, the purpose defines the machine. A sharpedged flint becomes a machine when a man takes it up to cut or to strike fire, whatever may have been the antecedent cause of its sharp edge: it was, however, a machine from the outset when it was produced by a "knapper" who split the original nodule to obtain it. If there has been a recent tendency to overlook this keynote of the machine idea, it is easy
to explain it by reflection on our mental growth. The young child has not enough experience of the history and behaviour of non-living beings to understand the " How?"-the reference to their antecedents which is the sole scientific explanation of those that are not machines: his only anxicty is the "Why?" By and by, as the child gains experience, he learns that for all occurrences that are not the actions, direct or indirect, of living beings, the "How" is a great deal easier to learn than the "Why" ; and that for many of these things the " Why" is unattainable. Moreover, in many cases of machines the "Why" is so obvious and so familiar that it ceases to be an object of consideration. 'Thus every one is interested in the kinematic arrangement of the typewriter, the linkage of keys, bars and types by which the pressure of the fingers is converted into a definite character on the paper ' ; but the " Why " explains itsclf, and is taken for granted. Yet what physico-chemical explamation, what geometric description would adequately explain the typewriter to the most intelligent of human beings who, let us suppose, is a master of physics and chemistry, but has no coneeption of written speech? It is just this recoil from childish anthropomorphism, carricd to an extreme, which explains, though it docs not justify, the meehanistic attitude of men of science during the latter half of the nineteenth century.

[^82]Aecident may invent a machine: reflection will duplicate it. The late Prof. Morrison Watson told me that his parrot, while playing with a bit of stick which it had gnawed to a point, casually seratched his back with it, and evidently liked the sensation. Thereafter, whenever he was given a bit of stiek, he deliberately sharpened it first, and then used it as a seratch-back. The "Why" now determined the "How." If such a simple machine, a mere tool or implement, can receive its full explanation only by the admission of what the schoolmen termed the "final cause," how much more docs purpose enter into the explanation of the complex physico-chemical relations of such a machine as a great electrical installation? Orer and abore the relations of forces, masses, chemical composition, etc., we must inroke the deliberate actions of intelligent beings foreseeing the future.

Seeing, then, that to explain machines we have to invoke the foresight of intelligent beings, the mechanical explanation of lising beings demands for its completion the acceptance in full of Palcy's "watch and design" argument, and the trespass aeross the boundaries of natural science into the domains of natural religion. And we saw at the outset that any wider definition of a " machine " will deprive the word of all controversial value.

It is easy to collect a few distinetions between machines and organisms. A maehine requires to be
set in place to perform its purpose : even if its purpose be locomotion it camnot direct itself without the intervention of an organism : it cannot, after completing one task, travel to a new site of operations. It may be so far automatic as to adapt itself to ecrtain varying conditions of work, but the limits of this self-adjustment are always narrow in range and limited in character. It cannot compensate for the effects of wear and tear by taking up fresh material and depositing it in the worn parts, so as to restore their efficiency; nor can it form afresh parts lost or destroyed. It camot accumulate material of its own kind so as to produce machines of its own type : nor can it divide into two or more machines like itself: A machine may, like an organism, have for its task the raising of energy to a higher type, and storing it up ; but though both can only do this at the expense of the dissipation of other energy, the machine does not store up the energy within itself, but elsewhere. Thus the electric plant raises a portion of the energy derived from the combustion of coal to the form of the energy in the accumulators, while the rest of the energy of the coal is dissipated as heat at a low temperature : but the energy is transformed in the turbogenerator, and stored in the cells of the accumulator.
"Automatie machines" are no less essentially machines: they have the same disabilities that we have already considered. If we try now to get round the diflicalty by calling animals "conscious automata,"
we are using contradictory terms ; indeced, the use of " automatism " in biology is so conducive to questionbegging, or at best providing decent fig-leaves for the naked ignorance which it is the duty of science to remove, that it should be wholly abandoned. It is curious to note here again that automatism found its first great exponent in the orthodox Descartes, and its last in the agnostic Huxley.

In the negative characters of machines mentioned above, we have foreshadowed the characters that distinguish living organisms. Only the highest organisms can make complex machines, it is true; but the beaver's dam, the parrot's scratch-back, the nest of the bird or the insect, and even the cemented shell of the lowly Foraminifer are all included under our definition. Yet we cannot adduce the production of machines as an essential or universal character of the living. But all do at some period of their existence take into themselves substances altering their composition and combination, with the ultimate result that they increase their substance in every part thereby -a long periphrase for the simple statement that the? grow. 'This process is termed "assimilation." This must be qualified for certain reproductive cells that owe their chief increase to the direct reception from the parent organism of chemical substances, which for the time they only store; ultimately they digest these internal food-supplies, and grow and multiply at the expense of these stores.

Indeed, while part of the food taken up by the organism is utilised for present needs of work, repair and growth. a eertain proportion is redeposited in reserve stores for the future needs of the organism itself, or for the nourishment of the reproductive eells (or of the offspring), which are, as it were, parasites for some time after their formation. Owing to these reserved stores that exist in the organism, the provocation of a minute external change may enable it to effect an absolutely disproportionate amount of work by the liberation of some of the stored energy : the external change is called the "stimulus," the discharge of energy, whether thus disproportionate or not, the "response," and the capacity for response to stimulus "irritability:" So comparable with this is the discharge of a projectile by the minute work of a trigger, or it may be the still minuter work of an electric spark liberating foot-tons of energy in a cammon, that organie response is termed action is détente (trigger-action) by the Freneh, and Auslösung (letting-off) by the Germans: we might term it "relcase."

On the whole, the organism shows a greed of energy and of matter, eventuating in the multiplication of its kind, quite unparalleled in the nonlising world: as was shown in 1891 by Prof. John Joly in his brilliant essay, "The Abundance of Life." Reproduction is due to the geometrical diffieulties in the way of unlimited growth
through this efficient greed. For, as Herbert Spencer showed, if in a growing body the form be retained, the ratio of surface to mass decreases, until at length the organism can no longer fulfil its functions for want of adequate surface. 'To remedy this disparity-and here we see another indieation of purpose-the organism reproduces or multiplies. It may divide into two, each half developing to the form of the original, in the lowest types; it may branch indefinitely ; it may divide unequally ; it may shed small parts of itself, such as buds, or simple reproductive cells which, alone or after paring, reproduce the behaviour of the parent (or it may be the grandparent). The proportionate size of such reproductive cells to the organism which they reproduce, and which has formed them, may be extremely minute-in man of the order of $1 \% 5$: 1 million.

The utilisation of part of the food in replacement of waste and in repair is familiar to us all : this the organism effects by itself, and for itself-I had almost used the forbidden term "automatically." It not infrequently happens that restoration goes beyond damage-repair is greater than wear; so that the organism is all the better off in the end for the strain on its working. 'Thus, what we may call casy fatigue of a muscle or group of muscles is followed by simple restoration; but if the fatigue be pushed to moderate distress, the restoration brings about in-
creased growth, strength and effieiency. Contrariwise, no machine is the better for such straining, and the more frequently it occurs, the more serious is the resulting damage.

Muscles are not alone endowed with this privilege: it is general in the organism. Bones contain systems of struts and stays to withstand the stresses to which they are exposed normally: if a broken bone sets askew, new systems are formed to replace those old ones that have lost their strength of position. 'Trees strengthen themselves by sending out their roots firther on the side that affords the firmest anchorage against the uprooting tendency of the prevailing winds; and an misupported sapling develops stronger roots than one that is stayed. Side by side with the power of repair is that of compensation for permanent impaiment of a portion of the body, often due to a corresponding increase of efficiency or of growth elsewhere. For instance, when the respiratory capacity of one lung is destroyed by disease, the other lung gains the power of carrying on double work; and if the one kidney is remosed the other kidney enlarges to meet the twofold task thrown on it.

Motile organisms travel actively to obtain their supplies; plants anchored by their roots in the soil scnd them out most freely in the directions where they will find rich soil and water. H. M. Jennings, the most successful observer of the lower motile
organisms, ${ }^{1}$ finds that even the simplest of these, the amoeba, failing direet indications to guide it to food, seeks it by a method of trial and error, whieh may well be compared to the behaviour of a pointer "quartering" the fields in seareh of game. Herbert Speneer tried to show that these "conservative" actions were the neeessary result of physico-chemieal laws, but in most cases his analysis stops short at the lucid statement of the problem to be solved. Thus in the matter of reproduction by division, he gives the very valid reason we have cited for the limits of possible growth of organisms ; but his account of the proximate causes of the actual division are inadequate or absent. In many cases, it is true, a cell usually divides across its longest diameter, a method which has a modieum of physical justification; but in the cambium (formative layer) of trees (see p. 65, Fig. 19) the division is parallel to the length, and rather in ateeordance with the future needs of the plant than with what we know of the existing physical eonditions. 'To use Foster's words, the cell divides "as it wants to," or rather, as the tree wants it to.

While all this must be well known to the physiologists, they have rather busied themselves in the domain where the peeuliarities of the living organism were less marked. They have worked at the surfaces

[^83]or at the ends to investigate resultent physical and ehemical effects: they have analysed the chemical substances discarded by the organism as waste, or obtained from its no longer living substance. But, as mentioned above, the physiology of the organism as a ichole, the physiology of the cell, the physiology of the Protista (organisms which have the character of isolated cells), no less than embryology and heredity, have long lain outside the door of the physiological laboratory, and been fostered by outsiders. I may be excused, then, if I refer to an analysis that I have made of the normal reproduction by division of the cell-a study which, from the minuteness of the object, excludes the use of the apparatus of physieal and ehemical measurement. 'The processes may be distinguished into the following : (1) those known in the non-living world; (2) those which are known to occur elsewhere in the living organism, but which hase as yet received no adequate physico-chemical explanation: (3) Mitokinetism, a strain-force similar to, but certainly distinct from, electrostatic force; (4) processes that find no clear equivalent elsewhere. ${ }^{1}$ Moreover, the general behaviour, the orderly way in which the same end is in different cases reached from different starting points, and by different routes, is rery characteristic of the living organism.

The chemical proeesses of the organism require

[^84]speecial attention. They may be distingruished into two classes : (1) the grosser actions that go on in cavities like the alimentary canal and the blood-vessels; and (2) the local changes that go on within the living tissues and the cells themsclues. The former are, I believe, all, without exception, destructioc, or retrograde changes, breaking down complex into simple chemical compounds, with liberation of energy, mostly in the form of heat, dissipative changes: and these it is usually easy to repeat in our apparatus of glass, metal, and caoutchouc, in our laboratory machines. But in class (2) we find, in addition, many constructive, accomulative changes, which have not yet been artificially repeated; and even among the destructive ones no chemist has produced those chemical orgamic ferments, such as pepsine, trypsine, ete., which play so important a part in the destructive changes of the cell and of the large cavities themselves. Again, the chemist resorts constantly to isolation and to separation: his vessels are of material that acts as an insulator or barrier to soakage ("osmosis"), to electricity, and, if needed, to heat; he resorts to crystallisation, precipitation, filtration, evaporation, and congelation; he utilises temperatures ranging far above the $30-40^{\circ} \mathrm{C}$. of living beings, and solvents such as pure alcohol, petrol, benzol, and ether, which are deadly to the organism.

Now, the cell is composed of colloid substance saturated with solutions of electrolytes, more or less
pervious to electricity, moderately conducting to heat, and often remaining at a uniform temperature ; or in any case within the limited range of little over $70^{\circ} \mathrm{F} .$, or say $40^{\circ} \mathrm{C}$. : such as outside the body will not suffice for the chemical tramsformations of the chemist, by which he synthetises organic substances. Hence it is admitted that our knowledge of the chemical transformations of the organism is inadequate. But the optimistic mechanicist consoles himself by proclaiming that our knowledge of the properties of colloids is incomplete. It is far less incomplete now than when this very explanation was put forward by Hacckel, orer thirty years ago ; but the growth of out physico-chemical knowledge, immense as it has been in the interval, has not remored the difficulties I have mentioned: it has not adranced the growth of the physico-chemical school ; but. on the contrary, has coincided with its erer-inereasing unpopularity among biologists. Much has been written of the "molceulan structure" of living protoplasm ; but it seems certain that living protoplasm is not a chemical sulistance, and therefore can have no molecular structure in the chemical sense of the word.

In embryology, the study of the evolution of the complex organism from a single cell, the morphological unit or equivalent of a single unit of the adult body offers remarkable examples of the peculiar
characters of living organisms. 'This original cell has for its function to grow at the expense of its cnclosed rescrves, until it divides into two ; and this process is repeated for some time without any marked differentiation, until there is an aggregate of cells which form in succession a rounded, mulberry-like heap (morula), a hollow spherical aggregate (blastula), and a double-sac (gastrula), like a lined skull-cap, the hollow being the primitive alimentary cavity. Only after these changes have taken place is there usually the begimning of differentiation of the cells among one another for the different tissucs into which they are to be transformed. At the first division into two these are normally destined to give rise to the right and left halves of the body respectively. The second division specialises the front from the rcar. But if at these early stages the embryo be violently shaken, the cells separate, and may develop, each "on its own," to form a complete animal, and not an incomplete one (Fig. 38). So if one cell at an carly stage be killed and the other or others be left together, the result will be a complete animal, save in so far as deformity may be introduced by the mechanical hindrance due to the presence of the dead cell. Again, if a complete embryo at the stage of the hollow sphere or of the lined cap be cut into two, either half will develop into a complete animal, and that by direct differentiation-not by processes of

Fig. 38.-Segmentation and development of single separated segmenration cells of the Medusa Laodice.
A, One of the first two cells isolated sud dividing into two ; B, its second division; C, first larval stage produced from it. D, Normal larva of second stage (planula) from an entire egg ; E, the same produced from one isolated of the first two cells, as in A. F, G, Blastula and planula produced from one of the four cells of the second fission of the egg. $I I$, Single cell of eight of the third fission of the egg developing into: I, blastula; t, planula (which is leaving the eggshell; l, Isolated cell of sixteen of the fourth fission; M, its division into two ; N, its planula.
repair and regeneration. The occurrence of such a division by some accident or by causes that com-
pletely eseape us occurs-very rarely-in man, and gives rise to " identical twins." ${ }^{1}$

It is interesting to note that Galton has found in a number of eases that identical human twins, brought up under different conditions, have had grave diseases at the same age, and died at nearly the same time. I ascribe this to no mysterious telepathic ageney, but to the power of the organism to go its own way and to reach its own end under widely different external conditions.

An instance of this persistent obstinacy of the organism is to be seen when for a short time, during the early stages of embryonic derelopment, the " egg" is compressed, so as to lie in a Flatland, where all the divisions must be vertieal, and all the eells lie in a single plane (Fig. 39). If the pressure be now removed, the cells group themselves so as to constitute a normal embryo, though the filiation of the cells of its different parts is wholly different from the normal arrangement. Thus, while we admit that development is according to causal laws, every step being conditioned by the antecedent ones, we cannot reach the threshold of complete understanding on

[^85]purely necessitarian lines. Let us take a parallel case on our opponent's own mechanical ground. An engine breaks down on a railway, and blocks one line completely and seriously. The Superintendent of the Line during the time of blocking will despatch

Fic. 39.-Diagram to show effeets of eompression on the Frog's embryo in early segmentation in varying cellular filiation.
A1, $12, .13$, successive stages without pressure; $/ 3, J 2, J 3$, comprosed between two horizontal plates; C^{1}, C^{2}, C^{2}, between two vertical phtes. The cellular liliation in every case is represented by the followimg pelligree :

all traffic both ways past the block over the free line, making temporary junctions and switches where such are needed; or he may eren send the trains by another route. It is, I admit, possible to give an account of the course pursued in terms of necessitarianism only, cach fact taking its place in a chain of porst proximate
causes. But the future problem-that of getting as many of the fiture trains to their destination as possible with a minimum of delay-is never absent from the despatcher's mind ; and were he in such a condition as to be incapable of realising the future, these arrangements would be left undone. We know nothing of the mind of the embryo, or of the individual eell, nor even can we say that it has a mind ; but we may safely say that the future is one of the determining factors of its behaviour under changed circumstances, and probably even under normal conditions. 'To declare it inadmissible is to clap the teleseope to one's blind eye.

This power of what we call metaphorically "sidetracking " is in the organism known as "self-regulation ": most apparent in the domain of embryology, but everywhere present, and including compensation, repair, and strengthening. Despite the antagonistic theories and practices of different nations, races rarely die out. The a-priori objeetions to compressing the skull or tight lacing are obvious to all ; and yet the Flat-head Indians and the fine ladies of civilised nations continue their respective practices with a surprisingly small amount of harm-most disconcerting in the latter case to the dress-reformer -thanks to their vital powers of readjustment and compensation under widely different conditions. It is, indeed, consoling to think that the best-meant efforts of the faddist, who earries theories based on

ORGANISMS, MACHHNES, 'THINGS A'` LARGE 241 inadequate premises to practical conclusions that must needs be erroneous, camnot do one tithe of the harm that would be done were our bodies, indeed, machines.

Thus the organism differs from a machine in its spontancity and in its egotism, which may, however, be a racial and not a personal egotism, as in the ease of the Protistic parent that loses its individuality in its offspring when it divides, or the Insect-mother that dies in generation. 'The organism grows itself: it adapts itself for its own or its racial needs, unlike the machine that works for those of the mechancian, of the material organism which has selfishly made it for its own ends. 'This was well pointed out in "I ife and Habit" by the late Samuel Butler, ${ }^{1}$ to whose stimulating writings I owe a profound debt of gratitude.

To conelude: We may distinguislı all aggregrates of matter into three classes :
(1) Oncinnisms, which grow and store energy and matter for their needs and for those of their lineage, and which reproduce, and are self-regulated ;
(2) Macminis, which are aggregates of matter not in continuity with organisms, and whieh are selected, constructed, or formed by an organism for the purposes of the organism itself or of its race ;
(3) 'lungs at Iabie. which do not come into

[^86]either eategory, and which are conditioned by their antecedents only.

We may no longer speak of "vital force." I'rof. Benjamin Moore has suggested the term " biotic" or "biological energy," which seems to me to be equally unavailable. If the transformations of energy were proved to be wholly due to material aggregation, we might speak of " vital arrangement." I think it better, however, not to go beyond the facts or to use terms connoting an unknown and assumed entity, such as Occam would have disallowed, ${ }^{1}$ but to content ourselves with speaking of "vital behaviour."

For the preceding views I cannot claim more than their presentment in writing; they are those acted on implieitly in practice, and more or less conscionsly accepted in theory by the majority of working biologists (including psychologists) outside the physiologieal laboratory, and by a daily increasing proportion of those who work within its dignified portals, despite belated proclamations to the contrary. ${ }^{2}$

[^87]
CHAP'IER IX

'THE BIOI.OGICAI, WRITINGS OF' SAMUEI, BU'TLER
Foreword
In the reissuc of Samucl Butler's works there has long been a gap ; both stock and plates of " Unconscious Memory" had been destroyed in an accidental firc. As it was necessary to reprint the book, Mr. Streatfeild, Butler's literary exccutor, thought that it would afford a good opportunity for an introductory essay by a professed biologist, dealing with Butler's biological writings and his relation to biological thought during the last thirty years ; and he requested me to madertake this work. I could not refuse so honourable a task; but no one can be more humbly aware how trying it is to find one's prose in the same covers as Butler's, and that too in front of it. Still, the macebearer who walks before the Chancellor, to do him honour, is yet not therefore regarded as immodest. ${ }^{1}$

[^88]In reviewing Samuel Butler's works, "Uneonscious Memory" gives us an invaluable lead; for it tells us (chaps. II, III) how the author came to write the Book of the Maehines in "Erewhon" (1872), with its foreshadowing of the later theory, "Life and Habit" (1878), "Evolution, Old and New" (1879), as well as "Uneonscious Memory" (1880) itself. His fourth book on biological theory was " Luck, or Cunning ?" (1887). ${ }^{1}$

Besides these books, his contributions to biology eomprise several essays: "Remarks on Romanes' ' Mental Evolution in Animals,' " contained in "Selections from Previous Works" (1884), incorporated into "Iack, or Cunning?"; "The Deadlock in Darwinism" (Universal Revicto, April-June 1890), republished in the posthumous volume of "Essays on Life, Art, and Seience" (1904); and, finally, some of the "Extracts from the Notebooks of the late Samuel Butler," edited by Mr. H. Festing Jones, now in eourrse of publication in The Nczo Quartcrly Revič.

Of all these, "Life and Habit" (1878) is the most important, the main building to which the other writings are buttresses or, at most, annexes. Its teaehing has been summarised in "Unconseious

[^89]Memory" in four main principles: "(1) The oneness of personality between parent and offspring ; (2) memory on the part of the offspring of certain aetions which it did when in the persons of its forefathers; (3) the latency of that memory until it is rekindled by a recurrence of the associated ideas; (4) the uneonseiousness with which habitual aetions come to be performed." 'To these we must add a fifth : the purposiveness of the aetions of living beings, as of the machines which they make or select.

Butler tells ("Life and Habit," p. 33) that he sometimes hoped "that this book would be regarded as a valuable adjunct to Darwinism." He was bitterly disappointed in the event, for the book, as a whole, was received by professional biologists as a gigantic joke-a joke, moreover, not in the best possible taste. 'True, its central ideas, largely those of Lamarck, had been presented by Hering in 1870 (as Butler found shortly after his publication) ; they had been received with general favour, developed by Haeckel, expounded and praised by Ray Lankester. Coming from Butler. they met with contumely, even from such men as Romanes, who, as Butler had no difficulty in proving, were uneonsciously inspired by the same ideas-"N'ur mit Bein ischen ander'u Wörter:"

It is easy, looking back, to see why "Life and Habit" so missed its mark. Charles Darwin's presentation of the evolution theory had for the

246 BIOLOGICAL WRI'TINGS OF SAMUEL BU'TLER
first time rendered it possible for a "sound naturalist" to accept the doctrine of common descent with divergence; and so given a real meaning to the term "natural relationship," which had forced itsclf upon the older naturalists, despite their belief in special and independent creations. The immediate aim of the naturalists of the day was now to fill up the gaps in their knowledge, so as to strengthen the fabric of a unified biology. For this purpose they found their actual scientific equipment so inadequate that they were fully occupied in inventing fresh technique, and working therewith at facts-save a few crities, such as St. George Mivart, who was regarded as negligible, since he evidently held a brief for a party standing outside the scientific world.

Butler introduced himself as what we now call "The Man in the Strect," far too bare of scientific clothing to satisfy the Mrs. Grundy of the domain : lacking all recognised tools of science and all sense of the difficulties in his way, he procecded to tackle the problems of science with little save the deft pen of the literary expert in his hand. His very failure to appreciate the difficulties gave greater power to his work-much as 'rartarin of 'Tarascon ascended the Jungfiau and faced successfully all dangers of Alpine travel, so long as he believed them to be the mere blagues de reclame of the wily Swiss host. His brilliant qualities of style and irony
themselves told heavily against him. Was he not already known for having written the most trenchant satire that had appeared since "Gulliver's 'Travels"? Had he not sneered therein at the very foundations of society, and followed up his success by a pseudobiography that had taken in The Record and The Rock? In "Life and Habit," at the very start, he goes out of his way to heap scorn on the respected names of Marcus Aurelius, Lord Bacon, Goethe, Arnold of Rugby, and Dr. W. B. Carpenter. He expressed the lowest opinion of the Fellows of the Royal Society. 'To him the professional man of science, with self-conscious knowledge for his ideal and aim, was a medicine-man, priest, augur-useful, perhaps, in his way, but to be carefully watched by all who value freedom of thought and person, lest with opportunity he develop into a persecutor of the worst type. Not content with politely blackguarding the audience to whom his work should most appeal, he went on to depreciate that work itself and its author in his finest vein of irony. Having argued that our best and highest knowledge is that of whose possession we are most ignorant, he proceeds: "Above all, let no unwary reader do me the injustice of believing in me. In that I write at all I am among the damned."

His writing of "Evolution, Old and New " (1879) was due to his conviction that seant justice had

248 BIOLOGICAL WRITINGS OF SAMUEL, IBU'TLER
been done by Charles Darwin and Alfred Russel Wallace and their admirers to the pioneering work of Buffon, Erasmus Darwin, and Lamarck. To repair this he gives a brilliant exposition of what seemed to him the most valuable portion of their teachings on evolution. His analysis of Buffon's true meaning, veiled by the reticences due to the conditions under which he wrote, is as masterly as the English in which he develops it. His sense of wounded justice explains the vigorous polemic which here, as in all his later writings, he carries to the extreme.

As a matter of fact, he never realised Charles Darwin's utter lack of sympathetic understanding of the work of his French precursors, let alone his own grandfather, Erasmus. Yet this practical ignorance, which to Butler was so strange as to transcend belief, was altogether genuine, and easy to realise when we recall the position of Natural Science in Darwin's student days at Cambridge, in the early thirties and for a decade or two later. Catastropharianism was the tenet of the day: to the last it commended itself to his Professor of Botany (Henslow), and of Geology (Sedgwick), towards whom Darwin held the fervent allegiance of the Indian scholar, or chela, to his guru. ${ }^{1}$ As Geikie has recently pointed out, it

[^90]was only later, when Lyell had shown that the breaks in the succession of the rocks were only partial and local, without involving the universal catastrophes that destroyed all life and rendered fresh creations thereof neeessary, that any general acceptance of a descent theory could be expected. We may be very sure that Darwin must have received many solemn warnings against the dangerous speculations of the "Freneh Revolutionary School." He himself was far too busy at the time with the reception and assimilation of new facts to be awake to the deeper interest of far-reaching theories.

It is the more unfortunate that Butler's lack of appreciation on these points should have led to the enormous proportion of bitter personal eontroversy that we find in the remainder of his biological writings. Possibly, as suggested by Ceorge Bernard Shaw, his acquaintance and admirer, he was also swayed by philosophical resentment at that banishment of mind from the organic uniserse which was generally thought to have been achieved by Charles Darwin's theory. Still, we must remember that this mindless view is not implicit in Charles Darwin's presentment of his own theory, nor was it accepted by him as it has been by so many of his professed disciples.

[^91]"Unconscious Memory" (1880).-We have already alluded to an anticipation of Butler's main theses. In 1870 Dr. Ewald Hering, one of the most eminent physiologists of the day, Professor at Viemna, gave an Inaugural Address to the Imperial Royal Aeademy of Sciences: "Das Gedächtniss als allgemeine Funktion der organisirter Substanz" ("Memory as a Universal Function of Organised Matter "). When "Life and Habit" was well advanced, Francis Darwin, at the time a frequent visitor, called Butler's attention to this essay, which he himself only knew from an article in Nuture. Herein Professor E. Ray Lankester had referred to it with admiring sympatly in connection with its further development by Haeckel in a pamphlet entitled "Die Perigenese der Plastidule." We may note, however, that in his collected essays, "The Advaneement of Science" (1890), Sir Ray Lankester, while ineluding this essay, inserts on the blank page ${ }^{1}$-we had almost written "the white sheet"-at the back of it an apology for having ever advocated the possibility of the transmission of aequired charaters !
" Unconseious Memory" was largely written to show the relation of Butler's views to Hering's, and contains an exquisitely written translation of the Address. Hering does, indeed, anticipate Butler, and that in language far more suitable to the persuasion of the seientifie public. It contains a sub-

[^92]sidiary hypothesis that memory has for its mechanism special vibrations of the protoplasm, and the acquired capacity to respond to such vibrations once felt upon their repetition. I do not think that the theory gains anything by the introduction of this even as a mere formal hypothesis; and there is no evidence for its being anything more. Butler, however, gives it a warm, nay, enthusiastic, reception in Chapter V (Introduction to Prof. Hering's Lecture), and in his notes to the translation of the Address, which bulks so large in this book, but points out that he was " not committed to this hypothesis, though inclined to accept it on a mima-fucic view." Later on, as we shall see, he attached more importance to it.
'The Hering Address is followed in " Unconscious Memory" by translations of selected passages from Von Hartmann's " Philosophy of the Unconscious," and annotations to explain the difference from this personification of "The Unconscous" as a mighty all-ruling, all-creating Personality, and his own scientific recognition of the great part played by unconscions processes in the region of mind and memory.

These are the essentials of the book as a contribution to biological philosophy. 'The closing chapters contain a lucid statement of objections to his theory as they might be put by a rigid necessitarian, and a refutation of that interpretation as applied to human action.

But in the second chapter Butler states his recession from the strong logical position he had hitherto developed in his writings from "Erewhon " onwards; so far he had not only distinguished the living from the non-living, but distinguished among the latter machines or tools from things at large. ${ }^{1}$ Machines or tools are the external organs of living beings, as organs are their internal machines: they are fashioned, assembled, or selected by the beings for a purpose, so they have a fiuture purpose as well as a pust history. "Things at large" have a past history, but no purpose (so long as some being does not convert them into tools and give them a purpose): Machines have a "Why?" as well as a "How ?": " things at large " have a "How ? " only.

In "Unconscious Memory" the allurements of unitary or monistic views have gained the upper hand, and Butler writes (p. 23):
" The only thing of which I am sure is that the distinction between the organic and inorganic is arbitrary; that it is more coherent with our other ideas, and therefore more acceptable, to start with every molecule as a living thing, and then deduce death as the breaking up of an association or cor-

[^93]poration, than to start with inanimate molecules and smuggle life into them; and that, therefore, what we call the inorganic world must be regrarded as up to a certain point living, and instinct, within certain limits, with consciousness, volition, and power of concerted action. It is only of late, however, that I lave come to this opinion."

I have italicised the last sentence, to show that Butler was more or less conscious of its irreconcilability with much of his most characteristic doctrine. Agrain, in the closing chapter, Butler writes (p. 275):

- We should endearour to see the so-called inorganie as living in respect of the qualities it has in common with the organic, rather than the organic as non-living in respect of the qualities it has in common with the inorganic."

We conclude our survey of this book by mentioning the literary controversial part chiefly to be found in Chapter IV, but cropping up clsewhere. It refers to interpolations made in the authorised English translation from the German of Krause's "Life of Erasmus Darwin." Only one side is presented; and we are not called upon, here or elsewhere, to discuss the merits of the question. ${ }^{1}$
"Luck, or Cumning, as the Main Means of Organic Modification? an Attempt to throw Additional

[^94]Light upon the late Mr. Charles Darwin's 'Theory of Natural Selection" (1887), completes the series of biologieal books. 'This is mainly a book of strenuous polemic. It brings out still more forcibly the Hering-13utler doctrine of continued personality from generation to generation, and of the working of uneonscious memory throughout; and points out that, while this is implicit in much of the teaching of Herbert Spencer, Romanes, and others, it was no-where-even after the appearance of "Life and Habit "-explicitly recognised by them, but, on the contrary, masked by inconsistent statements and teaching. Not Laek, but Cumning, not the uninspired weeding out by Natural Selection, but the intelligent striving of the organism, is at the bottom of the useful variety of organie life. And the parallel is drawn that not the happy accident of time and place, but the Machiavellian comning of Charles Darwin, sueceeded in imposing, as entirely his own, on the eivilised world an uninspired and inadequate theory of evolution wherein luek played the leading part; while the more inspired and inspiring views of the older evolutionists had failed by the inferiority of their luek. On this eontroversy I am bound to say that I do not in the very least share Butler's opinions; and I must ascribe them to his lack of personal familiarity with the biologists of the day and their modes of thought and of work. Butler everywhere undervalues the important work
of elimination played by Natural Selection in its widest sense.

The "Conchsion " of " Luck, or Cumning ?" shows a strong adrance in monistic views, and a yet more marked development of the ribration hypothesis of memory given by Hering and only adopted with the greatest reserve in "Uneonseious Memory."
"Our eoneeption, then, concerning the nature of any matter depends solely upon its kind and degree of unrest, that is to say, on the characteristics of the vibrations that are going on within it. 'The exterior objeet ribrating in a eertain way imparts some of its vibrations to our brain : but if the state of the thing itself depends upon its vibrations, it [the thing] must be eonsidered as to all intents and purposes the vibrations themselres-plus, of course, the underlying substance that is ribrating. . . . 'Ihe same vibrations, therefore, form the substance remembered, introduce an infinitesimal dose of it within the brain, modify the substance remembering, and, in the course of time, create and further modify the mechanism of both the sensory and the motor nerves. 'Thought and thing are one.

- I commend these two last speculations to the reader's charitable consideration, as feeling that I am here travelling beyond the ground on which I ean safely renture. . . . I believe they are both substantially true."

In 1885 he had written an abstract of these ideas in his notebooks (see New Quarterly Revica, 1910,
p. 116), and as in "Luck, or Cumning?" associated them vaguely with the unitary conceptions introduced into chemistry by Newlands and Mendelejeff. Judging himself' as an outsider, the author of "Life and Habit" would certainly have considered the mild expression of faith, "I believe they are both substantially true," equivalent to one of extreme doubt. 'Thus: "the fact of the Archbishop's recognising this as among the number of his belicfs is conclusive evidence, with those who have devoted attention to the laws of thought, that his mind is not yet clear" on the matter of the belief avowed (see "Life and Habit," pp. 24, 2.5).
'To sum up: Butler's fundamental attitude to the vibration hypothesis was all through that taken in "Unconscions Memory"; he played with it as a pretty pet, and fincied it more and more as time went on ; but instead of backing it for all he was worth, like the main thesis of "Life and Habit," he put a big stake on it-and then hedged.

The last of Butler's biological writings is the essay, "'The Deadlock in Darwinism," containing much valuable criticism on Wallace and Weismann. It is in allusion to the misnomer of Wallace's book, " Darwinism," that he introduces the term "Wallaceism" ${ }^{1}$ for a theory of descent that excludes the

[^95]transmission of acquired characters. 'This was, indeed, the chief factor that led Charles Darwin to invent his hypothesis of pangenesis, which, unacceptable as it has proved, had far more to recommend it as a formal hypothesis than the equally formal germplasm hypothesis of W' cismann.

The chief difficulty in accepting the main theses of Butler and Hering is one familiar to every biologist, and not at all difficult to understand by the layman: [it is that of colluleral cellular transmission, dealt with in Chapter II]. Every one knows that the complicated beings that we term " Animals " and "Plants" consist of a number of more or less individualised units, the cells, each analogous to a simpler being, a Protist-save in so far as the character of the cell unit of the Higher being is modified in accordance with the part it plays in that complex being as a whole. Most people, too, are familiar with the faet that the complex being starts as a single cell, separated from its parent ; or, where bisexual reproduction occurs, from a cell due to the fusion of two cells, each detached from its parent. Such cells are called "germ-cells." The germ-cell, whether of single or of dual origin, starts by dividing repeatedly, so as to form the primary cmbryonic cells, a complex mass of cells, at first essentially similar, which, however, as they go on multiplying, undergo differentiations and migrations, losing their simplicity as they do

Fia. 40.-Dingram of relation between tho reproduetivo eells ("stirp") and body ("soma ") through soveral generations from below upwards.
The laper cireles are the line of reproductive cells, interrupted by syngamy between the successive generations shown by the fusion of the sperm with the large, well-nourished reprodnetive cell-the eyg or oospliere. The triangular masises of cells to the right represent the successive bodies. The lowermust erils represent reproluction by direet division in ['rutists; and as we rise we find an increase in the proportion of buily to germ.
so. 'Those cells that are modified to take part in the proper work of the whole are called tissuecells. In virtue of their activities, their growth and reproductive power are limited-much more in Animals than in Plants, in Higher than in Lower beings (Fig. 40). It is these tissues, or some of them, that receive the impressions from the outside which leave the imprint of memory. Other cells, which may be closcly associated into a continuous organ, or more or less surrounded by tissue-cells whose part it is to nourish them, are called "secondary embryonic cells," or "germ-cells." The germ-cells may be differentiated in the young organism at a very early stage, but in Plants they are separated at a much later date from the less isolated embryonic regrions that provide for the Plant's branching: in all cases we find embryonic and germ-cells screened from the life-processes of the complex organism, or
taking no very obvious part in it, save to form new tissues or new organs, notably in Plants. ${ }^{1}$

Again, in ourselves, and to a greater or less extent in all Animals, we find a system of special tissues set apart for the reception and storage of impressions from the outer world, and for guiding the other organs in their appropriate responses-the "Nervous System" ; and when this system is ill-developed or out of gear the remaining organs work badly from lack of proper skilled guidance and co-ordination. How can we, then, speak of "memory" in a germ-cell which has been screened from the experiences of the organism, which is too simple in structure to realise them if it were exposed to them ? My own answer is that we camot form any theory on the subject, that the only question is whether we have any right to infer this " memory " from the behaviour of living beings; and Butler, like Hering, Haeckel, and some more modern authors, has shown that the inference is a very strong presumption. Again, it is easy to over-value such complex instruments as we possess. 'The possessor of an up-to-date camera, well instructed in the function and manipulation of every part, but ignorant of all opties save a hand-to-mouth knowledge of the properties of his own lens, might say that a priori no pieture could be taken with a cigar-box perforated by a pin-hole ; and our ignorance of the mechanism of the psychology of any

[^96]organism is greater by many times than that of my supposed photographer. We know that llants are able to do many things that can only be accounted for by ascribing to them a "psyche," and in coordination enough to satisfy their needs; and yet they possess no central organ comparable to the brain, no highly specialised system for intercommunication like our nerve trunks and fibres. As Oscar Hertwig salys, we are as ignorant of the mechanism of the development of the individual as we are of that of hereditary transmission of acquired characters, and the absence of such mechanism in either case is no reason for rejecting the proven fact.

However, the relations of germ and body just described led Jiager, Nusshaum, Galton, I ankester, and, above all, W eismann, to the view that the germcells or "stirp" (Galton) were in the body, but not of it. Indeed, in the body and out of it, whether as reproductive cells set free, or in the devcloping embryo, they are regarded as forming one continuous homogeneity, in contrast to the differentiation of the body; and it is to these cells, regarded as a continuum, that the terms "stirp," "germ-plasm," are especially applied. Yet on this view, so eagerly advocated by its supportcrs, we have to substitute for the hypothesis of memory, which they declare to have no real meaning here, the far more fantastic hypotheses of Weismann ': by these they explain the

[^97]process of differentiation in the young embryo into new germ and body; and in the young body the differentiation of its cells, each in due time and place, into the varied tissue cells and organs. Such riews might perhaps be acceptable if it could be shown that over each cell-division there presided a wise allguiding genic of transcending intellect, to which Clerk-Maxwell's sorting demons were mere infants. Yet these views have so enchanted many distinguished biologists, that in dealing with the subject they have actually ignored the existence of equally able workers who hesitate to share the extremest of their riews. The phenomenon is one well known in liypnotic practice. So long as the non- IV^{r} eismannians deal with matters outside this discussion, their cxistence and their work are rated at their just value ; but any work of theirs on this point so affects the orthodox Weismannite (whether he acecpt this label or reject it does not matter), that for the time being their existence and the good work they have done are alike non-existent. ${ }^{1}$

Butler founded no school, and wished to found none. He desired that what was true in his work should prevail, and he looked forward calmly to the time when the recognition of that truth and of his share in adrancing it should give him in the lives of others that immortality for which alone he craved.

[^98]Lamarckian views have never lacked defenders here and in Ameriea. Of the English, Herbert Speneer, who, however, was averse to the vitalistic attitude, Vines and I Enslow among botanists, Cunningham among zoologists, have always resisted W eismannism ; but, I think, none of these was distinctly influenced by Hering and Butler. In Ameriea the majority of the great sehool of palæontologists have been strong Lamarekians, notably Cope, who has pointed out, moreover, that the transformations of energy in living beings are peeuliar to them.

We have alrcady adverted to Haeckel's aeceptance and development of Hering's ideas in his " P'erigenese der I'lastidule." Oscau Hertwig has been a consistent Lamarckian, like I' wes Delage of the Sorbonne, and these occupy pre-eminent positions not only as observers, but as discriminating theorists and as historians of the reeent progress of biology. We may also cite as a Lamarekian-of a sort-Felix Lee Dantee, the leader of the French chemico-physical school of the present day.

But we must seek elsewhere for speeial attention to the points which Butler regarded as the essentials of "Life and Habit." In 1893 Henry P. Orr, Professor of Biology in the University of Louisiana, published a little book entitled " A Theory of Heredity." Herein he insists on the nervous control of the whole body, and on the transmission to the reproductive cells of such stimuli, received by the
body, as will guide them on their path until they shall have acquired adequate experience of their own in the new body they have formed. I have found the name of neither Butler nor Hering, but the treatment is essentially on their lines, and is both clear and interesting.

In 1896 I wrote an essay on "The Fundamental Prineiples of Heredity," primarily directed to the man in the street. 'This, after being held over for more than a year by one leading review, was "declined with regret," and again after some weeks met the same fate from another editor. It appeared in the pagges of Nratural Sicience for October 1898, and in the Biolosisches Centrallulult for the same year [it constitutes Chapter II of this volume]. I reproduce its closing paragraph :
"'This theory [Hering-Butler's] has, indeed, a tentative character, and lacks symmetrical completeness, but is the more welcome as not aming at the impossible. A whole series of phenomena in organic beings are correlated under the term of memory, conscions and unconscions, patent and latent. . . . Of the order of unconscious memory, latent till the arrival of the appropriate stimulus, is all the co-operative growth and work of the organism, including its development from the reproductive cells. Concerning the modus operandi we know nothing: the phenomena may be due, as Hering suggests, to molecular vibrations, whieh must be at least as distinct from ordinary physical disturbances as Röntgen's
rays are from ordinary light; or it may be correlated, as we ourselves are inclined to think, with complex chemical changes in an intricate but orderly succession. For the present, at least, the problem of heredity can only be elucidated by the light of mental, and not material processes."

It will be seen that I express doubts as to the validity of Hering's invocation of molecular vibrations as the mechanism of memory, and suggest as an alternative rhythmic chemical changes. Similar views have recently been put forth by Y'es Delage ("Hérédité," 1903, p. 749), and in more detail by J. 'T. Cumingham in his essay on "The Hormone ' Theory of Heredity," in the Archio fior Entzeichlungsmechanili (1909), but I have failed to note any direct effect of my own essay on the trend of biological thought.

Among post-Darwinian controversies the one that has latterly assumed the greatest prominence is that of the relative importance of small variations in the way of more or less-fluctuations ; and of "discontinuous rariations," or mututions, as De Vries has called them. Darwin, in the first four editions of the "Origin of Species," attached more importance to the latter than in subsequent editions; he was swayed in his attitude, as is well known, by an article of the physicist, Fleeming Jenkin, which appeared in

[^99]The North British Reviezc. 'The mathematics of this article were unimpeachable, but they were founded on the assumption that exceptional rariations would only occur in single individuals, which is, indced, often the case among those domesticated races on which Darwin especially studied the phenomena of variation. Darwin was no mathematician or physicist, and we are told by his biographer that he regarded every tool-shop rule or apothecary's measuring glass as an instrument of precision ${ }^{1}$: so he appears to have regarded Fleeming Jenkin's demonstration as a mathematical deduction which he was bound to accept without criticism.

Dr. William Bateson, late Professor of Biology in the University of Cambridge, as early as 1894 laid great stress on the importance of discontinuous variations, collecting and collating the known facts in his "Materials for the Study of Variations"; but this important work, now become rare and valuable, at the time excited so little interest as to be "remaindered" within a very few years after publication.

In 1901 Hugo de Vries, Professor of Botany in the University of Amsterdam, published "Die Muta-tions-theorie," whercin he showed that mutations or discontinuous rariations in rarious directions may appear simultaneously in many individuals, and in various directions. In the gardener's phrase, the

[^100] the same time, and each sport may be represented by numerous specimens.

De Vries shows the probability that species go on for long periods showing only fluctuations, and then suddenly take to sporting in the way described, short periods of mutation alternating with long intervals of relative constancy. It is to mutations that De Vries and his school, as well as Luther Burbank, the great former of new fruit- and flower-plants, look for those variations which form the material of Natural Selection. In "God the K'nown and God the Unknown," which appeared in The Examince (May, June, and July), 1879, but though then revised was only published posthumously in $1909,{ }^{1}$ Butler anticipates this distinction :
" Under these circumstances organism must act in one or other of these two ways: it must either change slowly and continuously with the surroundings, paying cash for everything, meeting the smallest change with a corresponding modification, so far as is found convenient, or it must put off change as long as possible, and then make larger and more sweeping changes.
" Both these courses are the same in principle, the difference being one of scale, and the one being a miniature of the other, as a ripple is an Atlantic

[^101]wave in little; both have their adrantages and disadvantages, so that most organisms will take the one course for one set of things and the other for another. 'Ihey will deal promptly with things which they can get at easily, and which lie more upon the surface ; those, however, which are most troublesome to reach, and lie decper, zeill be handled upon more cataclysmic principles, being allozed longer periods of repose follozeed by short periods of greater activity . . . it may be questioned whether what is called a sport [= mutation] is not the organic expression of discontent which has been long felt, but which has not been attended to, nor becn met step by step by as much small remedial modification as was found practicable: so that when a change does come it comes by way of revolution. Or, again (only that it comes to much the same thing), it may be compared to one of those happy thoughts which sometimes come to us unbidden after we have been thinking for a long time what to do, or how to arrange our ideas, and have yet been unable to come to any conclusion" (pp. 14, 15). ${ }^{1}$

We come to another order of mind in Hans Driesch. At the time he began his work biologists were largely busy in a region indicated by Darwin, and roughly mapped out by Haeckel-that of phylogeny. From the facts of derelopment of the individual, from the comparison of fossils in successive strata, they set to work at the construction of

[^102] pedigrees, and strove to bring into line the principles of classification with the more or less hypothetical "stem-trces." Dricsch considered this futile, since we never could reconstruct from such evidence anything certain in the history of the past. He therefore asserted that a more complete knowledge of the physics and chemistry of the organic world might give a scientific explanation of the phenomena, and maintained that the proper work of the biologist was to deepen our knowledge in these respects. He embodied his riews, secking the explanation on this track, filling up gaps and tracing projceted roads along lines of probable truth in his "Analytiscle 'Theoric der organischen Entwicklung." But his own work convinced him of the hopelessncss of the task he had undertaken, and he hats become as strenuous a vitalist as Butler. 'The most complete statement of his present views is to be found in "The Philosophy of Life" (1908-9), being the Gifford Leectures for $1907-8$. Herein he postulates a quality (" psychoid") in all living beings, dirceting encrgy and matter for the purpose of the organism, and to this he applies the Aristotelian designation "Entelechy." The question of the transmission of acquired characters is regarded as doubtful, and he does not emphasise-if he accepts-the doctrine of continuous personality. His early youthful impatience with descent theories and hypotheses has, however, disappeared.

In the next work the influence of Hering and Butler is definitely present and recognised. In 1906 Signor Eugenio Rignano, an engineer keenly interested in all branches of science, and a little later the founder of the international review, Rivistic di Scicnza (now simply called Scientia), published in French a volume entitled "Sur la transmissibilité des Caractères acquis-Hypothèse d'une Centroépigenèse." ${ }^{1}$ Into the details of the author's work we will not enter fully. Suffiec it to know that he accepts the Hering-Butler thcory, and makes a distinct advance on Hering's rather crude hypothesis of persistent vibrations by suggesting that the remembering centres store slightly different forms of cnergy, to give out energy of the same kind as they have received, like clectrical accumulators. The last chapter, "Le Phénomène mnémonique et le Phénomène vital," is frankly based on Hering.

In "'The Lesson of Evolution " (1907, posthumous, and only published for private circulation) Frederick Wollaston Hutton, F.R.S., late Professor of Biology and Geology, first at Dunedin and after at Christchurch, New Zealand, puts forward a strongly vitalistic view, and adopts Hering's teaching. After stating this he adds, "The same idea of heredity being duc to unconscious memory was advocated by Mr. Samuel Butler in his "Lifc and Habit."

[^103]Dr. James Mark Baldwin, Stuart Professor of Psychology in Princeton University, U.S.A., called attention carly in the nineties to a reaction characteristie of all living beings, which he terms the "Circular Reation." We take his most recent account of this from his "Development and Evolution (1902) : ${ }^{1}$
" The general fact is that the organism reacts by concentration upon the locality stimulated for the contimuance of the conditions, movements, stimulations, zohich are vitally beneficial, and for the cessation of the conditions, movements, stimulations zelich are vitally depressing."

This amounts to saying in the terminology of Jennings (see below) that the living organism alters its "physiological states" whether for its direct benefit by the maintenance of beneficial eonditions, or for its indireet benefit in the reduction of harmful conditions.

Again :

" This form of coneentration of energy on stimulated localities, with the resulting renewal through movement of eonditions that are pleasure-giving and beneficial, and the eonsequent repetition of the movements, is called 'eircular reaction.'"

[^104]Of course, the inhibition of sueh movements as would be painful on repetition is merely the negative ease of the circular reaction. We must not read too much of our own ideas into the author's mind ; he nowhere says explicitly that the animal or plant shows its sense and does this because it likes the one thing and wants it repeated, or dislikes the other and stops its repetition, as Butler would have said. Baldwin is very strong in insisting that no full explanation can be given of living processes, any more than of history, on purely chemico-physical grounds.

The same riew is put differently and independently by H. S. Jennings, ${ }^{1}$ who started his investigations of living Protista, the simplest of living beings, with the idea that only accurate and ample observation was needed to enable us to explain all their activities on a mechanical basis, and devised ingenious models of protoplastic movements. He was led, like Driesch, to renounce such efforts as illusory, and has come to the conviction that in the behaviour of these lowly beings there is a purposive and a tentative character -a method of "trial and error "-that can only be interpreted by the invocation of psychology. He points out that after stimulation the "state" of the organism may be altered, so that the response to the

[^105]same stimulus on repetition is other. Or, as he puts it, the first stimulus has caused the organism to pass into a new "physiological statc." As the change of state from what we may call the "primary indifferent state" is advantageous to the organism, we may regard this as equivalent to the doctrine of the "circular reaction," and also as containing the cssence of Semon's doctrine of "engrams" or imprints which we are about to consider. We cite one passage which for audacity of thought (underlying, it is true, most guarded expression) may well compare with many of the daring flights in "Life and Habit":
"It may be noted that regulation in the manner we have set forth is what, in the behaviour of higher organisms, at least, is called intelligence [the examples have been taken from Protista, Corals, and the Lowest Worms]. If the same method of regulation is found in other fields, there is no reason for refusing to compare the action to intelligence. Comparison of the regulatory processes that are shown in internal physiological changes and in regeneration to intelligence seems to be looked upon sometimes as heretical and unscientific. Yet intelligence is a name applied to processes that actually exist in the regulation of movements, and there is, a priori, no reason why similar processes should not occur in regulation in other fields. When we analyse regulation objectively there seems indeed reason to think that the processes are of the same character in behaviour as

ENLARGING THE CONCEPT "MEMORY" $2 \pi / 3$

elsewhere. If the term 'intelligence' be reserved for the subjective accompaniments of such regulation, then of course we have no direct knowledge of its existence in any of the fields of regulation outside of the self, and in the self perhaps only in behaviour. But in a purely objective consideration there seems no reason to suppose that regulation in behaviour (intelligence) is of a fundamentally different character from regulation elsewhere " ("Method of Regulation," p. 492).

Jennings makes no mention of questions of the theory of heredity. He has made some experiments on the transmission of an acquired character in Protozoa ; but it was a mutilation-character, which is, as has been often shown, ${ }^{1}$ not to the point.

One of the most obvious criticisms of Hering's exposition is based upon the extended use he makes of the word "memory": this he had foreseen and deprecated.
"We have a perfect right," he says, "to extend our conception of memory so as to make it embrace involuntary [and also unconscious] reproductions of sensations, ideas, perceptions, and efforts; but we find, on having done so, that we have so far enlarged her boundaries that she proves to be an ultimate and original power, the source and, at the same

[^106]274 BIOLOGICAL WRITINGS OF SAMUEL BU'TLER time, the unifying bond, of our whole conscious life" (" Unconscious Memory," p. 68).

This sentence, coupled with Hering's omission to give to the concept of memory so enlarged a new name, clear alike of the limitations and of the stains of habitual use, may well have been the inspiration of the next work on our list. Richard Semon is a professional zoologist and anthropologist of such high status for his original observations and researches in the mere technical sense, that in these countries he would assuredly have been acclamed as one of the Fellows of the Royal Socicty who were Samuel Butler's special aversion. The full title of his book is "Die Mneme als crhaltende Prinzip im Wechsel des organischen Geschchens" (Munich, ed. 1, 1904; ed. 2, 1908). We may translate it "Mnene, a Principle of Conservation in the Transformations of Organie Existence."

From this I quote in free translation the opening passage of Chapter II :
"We have shown that in very many cases, whether in Protist, Plant, or Animal, when an organism has passed into an indifferent state after the reaction to a stimulus has ceased, its irritable substance has suffered a lasting change: I call this after-action of the stimulus its 'imprint' or 'engraphic' action, since it penetrates and imprints itsclf in the organic substance ; and I term the change so effected an 'imprint' or 'engram' of the stimulus ;
and the sum of all the imprints possessed by the organism may be called its 'store of imprints,' wherein we must distinguish between those which it has inherited from its forebears and those which it has acquired itself. Any phenomenon displayed by an organism as the result cither of a single imprint, or of a sum of them, I term a 'mnemic phenomenon'; and the mnemic possibilities of an organism may be termed, collectively, its 'Mneme.'
"I have selected my own terms for the concepts that I have just defined. On many grounds I refrain from making any use of the good German terms ' Gedaichtniss,' • Erimnerungsbild.' 'I'he first and chiefest ground is that for my purpose I should have to employ the German words in a much wider sense than what they usually convey, and thus leave the door open to countless misunderstandings and idle controversics. It would, indecd, even amount to an error of fact to give to the wider concept the name already current in the narrower sense-may, actually limited, like ' Erinnerungsbild,' to phenomena of consciousness. . . In Animals, during the course of history, one set of orgrans has, so to speak, specialised itself for the reception and transmission of stimuli-the Nervous System. But from this specialisation we are not justified in ascribing to the nervous system any monopoly of the function, even when it is as highly developed as in Man. . . . Just as the direct excitability of the nervous system has progressed in the history of the race, so has its capacity for receiving imprints; but neither susceptibility nor retentiveness is its monopoly; and,
indeed, retentiveness seems inseparable from susceptibility in living matter." ${ }^{1}$

Semon here takes the instance of stimulus and imprint actions affeeting the nervous system of a dog"who has up till now never experieneed aught but kindness from the Lord of Creation, and then one day that he is out alone is pelted with stones by a boy. . . . Here he is affeeted at onee by two sets of stimuli : (1) the optic stimulus of seeing the boy stoop for stones and throw them, and (2) the skin stimulus of the pain felt when they hit him. Here both stimuli leave their imprints; and the organism is permanently changed in relation to the recurrence of the stimuli. Hitherto the sight of a human figure quickly stooping had produeed no constant speeial reaction. Now the reation is constant, and may remain so till death. . . . The dog tucks in its tail between its legs and takes flight, often with a howl [as of] pain.
"Here we gain on one side a deeper insight into the imprint aetion of stimuli. It reposes on the lasting change in the eonditions of the living matter, so that the repetition of the immediate or synchronous reaction to its first stimulus (in this ease the stooping of the boy, the flying stones, and the pain on the ribs), no longer demands, as in the original state

[^107]of indifference, the full stimulus a, but may be called forth by a partial or different stimulus b (in this case the mere stooping to the ground). I term the influences by which such changed reaction are rendered possible, 'outcome-reactions,' and when such influences assume the form of stimuli, 'outcomestimuli.' '

They are termed "outcome" reactions or stimuli ("ecphoria") because the author regards them and would have us regard them as the outcome, manifestation, or efference of an imprint of a previous stimulus We have noted that the imprint is equivalent to the changed "physiological state" of Jemnings. Again, the capacity for gaining imprints and revealing them by outcomes firourable to the individual is the "circular reaction" of Baldwin, but Semon gives no reference to either author.

In the preface to his first edition (reprinted in the second) Semon writes, after discussing the work of Hering and Hacekel:
" The problem received a more detailed treatment in Samuel Butler's book, 'Life and Habit,' published in 1878. 'Though he only made acquaintance with Hering's essay after this publication, Butler gave what was in many respects a more detailed view of the coincidences of these different phenomena of organic reproduction than did Hering. With much that is untenable, Butler's writings present many a brilliant idea; yet, on the whole, they are rather a retrogression than an advance upon Hering. Evi-

278 BIOLOGIC'AL WRITIN(GSOF SAMUEL BUTLEER dently they failed to exercise any marked influence upon the literature of the day."
'This judgment needs a littlc examination. Butler claimed, justly, that his "Life and Habit" was an advance on Hering in its dealing with questions of hybridity, and of longevity, puberty, and sterility. Since Semon's extended treatment of the phenomena of crosses might almost be regarded as the rewriting of the corresponding section of "Life and Habit" in the "Mneme" terminology, we may infer that this view of the question was one of Butler's "brilliant ideas." That Butler at first shrank from accepting such a formal explanation of memory as Hering did with his vibration hypothesis should certainly be counted as a distinct "advance upon Hering," for Semon also avoids any attempt at an explanation of "Mneme." I think, however, we may gather the real meaning of Semon's strictures from the following passage:
"I refrain here from a discussion of the development of this theory of Lamarck's by those NeoLamarckians who would ascribe to the individual elementary organism an equipment of complex psychical powers-so to say, anthropomorphic perception and volitions. This treatment is no longer directed by the scientific principle of referring complex phenomena to simpler laws, of deducing even human intellect and will from similar elements. On the contrary, they follow that most abhorrent
method of taking the most complex and unresolved as a datum, and employing it as an explanation. The adoption of such a method, as formerly by Samuel Butler, and recently by Pauly, I regard as a big and dangerous step backward" (ed. 2, pp. 380-1, note).

Thus Butler's alleged retrogressions belong to the same order of thinking that we have seen shared by Driesch, Baldwin, and Jennings, and most explicitly avowed, as we shall sec, by Francis Darwin. Semon makes one rather candid admission, "The impossibility of interpreting the phenomena of physiological stimulation by those of direct reaction, and the undeception of those who had put faith in this being possible, have led many on the bacliacard path of vitulism." ${ }^{1}$ Semon assuredly will never be able to complete his theory of "Mneme" until, guided by the expericnce of Jcmnings and Driesch, he forsakes the blind alley of mechanisticism and retraces his steps to reasonable vitalism.

But the most notable publications bcaring on our matter are incidental to the Darwin Celebrations of 1908-9. Dr. Francis Darwin, son, collaborator, and biographer of Charles Darwin, was selected to preside over the Mecting of the British Association held in Dublin in 1908, the jubilee of the first publications on Natural Selection by his father and Alfred Russel

[^108]Wallace. In this address we find the theory of Hering, Butler, Rignano, and Semon taking its proper place as a vera causu of that variation which Natural Selection must find before it can act, and recognised as the basis of a rational theory of the development of the individual and of the race. ${ }^{1}$ The organism is essentially purposive : the impossibility of devising any adequate accounts of organic form and function without taking account of the psychical side is most strenuously asserted. And with our regret that past misunderstandings should be so prominent in Butler's works, it was very pleasant to hear Francis Darwin's quotation from Butler's translation of Hering ${ }^{2}$ followed by a personal tribute to Butler himself.

In commenoration of the centenary of the birth of Charles Darwin and of the fiftieth anniversary of the publication of the "Origin of Species," at the suggestion of the Cambridge Philosophical Society, the University Press published during the current year a volume entitled "Darwin and Modern Science," edited by Mr. A. C. Seward, Professor of Botany in the University. Of the twenty-nine essays by men of science of the highest distinction, one is

[^109]of peculiar interest to the readers of Samuel Butler: "Heredity and Variation in Modern Lights," by Prof. W. Bateson, F.R.S., to whose work on " Discontinuous Variations" we have already referred. Here once more Butler receives from an official biologist of the first rank full recognition for his wonderful insight and keen critical power. This is the more noteworthy because Bateson has apparently no faith in the transmission of acquired characters ; but such a passage as this would have commended itself to Butler's admiration :
"All this indicates a definiteness and specific order in heredity, and thercfore in variation. This order cannot by the nature of the case be dependent on Natural Selection for its existence, but must be a consequence of the fundamental chemical and physical nature of living things. 'The study of Variation had from the first shown that an orderliness of this kind was present. The bodies and propertics of living things are cosmic, not chaotic. No matter how low in the scale we go, never do we find the slightest hint of a diminution in that all-pervading orderliness, nor can we conceive an organism existing for onc moment in any other state."

We have now before us the materials to determine the problem of Butler's relation to biology and to biologists. He was, we have seen, anticipated by Hering ; but his attitude was his own, fresh and original. He did not, like Hering, hamper his original exposition by a subsidiary hypothesis of vibrations which may or may not be true, which burdens the theory without giving it greater carrying power or persuasiveness, which is based on no objective faets, and which, as Semon has praetieally demonstrated, is needless for the detailed working out of the theory. Butler failed to impress the biologists of his day, even those on whom, like Romanes, he might reasonably have counted for understanding and for support. But he kept alive Hering's work when it bade fair to sink into the limbo of obsolete hypotheses. 'To use Oliver W endell Holmes's phrase, he "depolarised" evolutionary thought. We quote the words of a young biologist, who, when an ardent and dogmatic Weismannist of the inost pronounced type, was indueed to read "Life and Habit": "The book was to me a transformation and an inspiration." 'The learned writings of Semon or Hering could never produee such an effeet: they do not penetrate to the heart of man ; they eannot carry eonvietion to the intelleet already filled full with rival theories, and with the unreasoned faith that to-morrow or next day a new diseovery will obliterate all distinction between Man and his makings. The mind must needs be open for the reception of truth, for the rejection of prejudiee; and the violence of a Samuel Butler may in the future as in the past be needed to shatter the coat of mail forged by too exclusively professional a training.

CHAPTER X

INTFERPOLATION IN MEMORY ${ }^{1}$

Some years ago the education of my children led me to consider certain questions as to the methods of elementary teaching, very distinct from any inrolved in my own eollegiate courses. The Art Syllabus of South Kensington, with its carefully graded steps towards the perfection of teehnique in form, tone, colour, and eomposition ; the practice of a conseientious teacher, who objected to any pupil passing to a higher grade in the "three R's" so long as any part of the back-work was not accurately and irrevocably fixed ; the various "Complete and Progressive" methods for piano, violin, and voice: all seemed to me on empirieal and traditional grounds to err by their very correctness and eompleteness. It oceurred to me to plan out a syllabus of instruction in the art of stone-throwing on a complete logical and progressive basis, and to see how it would work in the case of three imaginary pupils. The syllabus was as follows :

[^110]Grade I. (Preliminary).-Measure distance along the ground; then estimate the distance of certain points and correct by fresh measurements. This exercise is to be practised constantly as an accompaniment to the succeeding ones.

Grade II.-Drop a stone on a point on the ground immediately in front of you: standing. sitting, and stooping at different degrees of inclination.

Grade IH.-Practise throwing the same stone at known, increasing distances.

Grade IV.--The same as III., but with the substitution of stones of different linoten weights.

Grades V. and VI.-Different combinations of the unknown in weight and distance, at a fixed mark.

Grades VII., VIII., etc.-Throwing, first known, then unknown, weights at moving objects while still yourself; to be practised in all three positions. Etc., etc.

The reader will have had enough of this syllabus: so had two, at least, of my three imaginary pupils. The first of them stuck hopelessly fast at the third stage, and loathes the very sight of a stone ; the other has constantly played the truant from that very stage. But I have ascertained that, engaging in illogical and illicit practice on his own account, he has long since killed off all the sparrows of the neighbourhood. And the third? He is a good, conscientious lad, and has worked through the course with assiduity; and if he fails, as he mostly does, to hit the mark, there is always a good reason in his mouth to account for the failure of his arm.

Now, it is perfectly casy to see what is the course of teaching that is followed by the ordinary boy, left to his own devices, and stimulated by the desire to imitate and the desire to destroy. He starts with certain more or less latent ideas of distance. He sets up an old bottle in the back garden, not too far off. After a certain number of shots he commences to improve, and progresses rapidly. 'Then he puts the bottle farther off; after a preliminary shot or two at the new distance he "gets the range." and now hits almost every time. 'The next thing he does is, like 'Jom Brown and Harry East, to fill his pocket with stones every time he goes out, and aim more or less casually as he walks along at any object fixed or moving that takes his fancy. Here the weights and distances are all monown they vary in each case ; while his pace and attitude at the moment of throwing introduce new, unknown factors, in new, unknown combinations. He "allows" duly for all these, and rery soon is expert enough to bring down a bird on a tree, or to hit a driver on the nose, with rarely failing precision. In any of these feats he has had apparently to estimate the rate of his own movements and the distance, and to remember and combine attitude and co-ordination of movements in strength and direction. He is impelled by a combination of movements and experiences-none of which probably are identical with previous movemonts and experienees-to execute without delay a
new combination of movements which are perhaps, even singly, equally new.

If we analyse our memories, and the way they are pigeonholed in our consciousness, we find that they are in the first place arranged in order of time, and associated, as in a commercial "waste-book," with the transactions that go before and after. Our conscious mind, moreover, effects a sort of ledger-like rearrangement, and groups them in categories of liind; but mere arrangement can only manipulate what it has received-namely, the individuch, discontimuous memories. But the facts that I have just dwelt on lead us to conceise that in the unconseious region of our memory there are not only the facts of memory, both impressions and expressions, classed in category, but that within each category there is a classification by magnitude ; and that there is further a something intervening between the impressions of different magnitudes which unites them into a continuous whole, while it separates them by a distance proportional to their difference of magnitude. In other words, while the different members of a given category of facts are the only ones accessible to our consciousness, they form in our unconscious memory, in geometrical metaphor, a figure bounded by an "interpolation curve" uniting the separate actual past sense-impressions, be they few or many.

We are all familiar with the sort of curve I refer to. We have seen Mr. Galton's statistical curves,
where magnitude of one kind is represented by a horizontal base-line, while magnitudes of another kind are represented by perpendiculars set off at the proper distances along that line. There may be only a limited number of the perpendicular lines; but we get a connected idea of the whole by joining up their tops into a broken line. Then, if we smooth out the angles, we get an "interpolation curve," and are able therefrom to obtain valuable, often valid, conclusions as to the relations of magnitudes of which we have no record, and which should lie between those we have got down on our chart. Nay, more : we maty gain a probable insight into the future or the past by continuing the curve either way beyond the part drawn by mere interpolation : this is termed "extrapolation." ${ }^{1}$ A common and unfortunately too familiar instance of the "interpolation curve" is the "temperature chart" of a fever-patient; where the base-line represents intervals of time, and the perpendiculars the corresponding observed temperatures of the invalid. If these temperatures are taken sufficiently often, the broken line joining the ends of successive perpendiculars approaches a continuous curve: and we can use this curve to extend our knowledge with the more precision, the more frequent the observations have been. Thus if we have taken the temperature every even hour during the day, we ean infer what has been the temperature at an odd

[^111]hour or hatf-hour by drawing a perpendicular from the proper point on the base-line to meet the eurve, as shown in the diagram; where the cross indicates the presumable temperature at 1 p.m., and the dagger that at 6 a.m., two hours before the doctor arrived. Again, if the doctor have been only called in when the fever was in progress, and the conditions were fairly uniform, he can by extrapolation, continuing the curve on either side, divine what has been the past course for a day or two before, and predict what

Fia. 41.- A temperature curve; see explanation in text.
will be its course for a day or two after. Of course, after the erisis, conditions change ; nor can we utilise the continuation of the curve backwards to a time before our friend "took ill."

Thus do the facts of our memory seem to be arranged, in order of magnitude in each category, and to be separated by a space corresponding by a definite law to the differences between the magnitudes of the observed memories of the same category. In drawing on our memories for guidance we utilise not only the distinct memories of experi-
ence, but we are able to draw on a continuous curre, as it were, by interpolation and extrapolation, so that our categories of unconscious memory acquire a continuity, which is absent from the impressions we reccive, and from our conscious memory. 'This continuous interpolated memory is as much a construct of the mind as the interpolation curve is a construct of the pen of the physician or statistician.

Now, I have been told by a fricnd, far better instructed than I in matters of psychology, that all this may be alleged to be implicit in the "principle of Association." 'To many, no doubt, the word " Association" has as comforting a somend as " Mesopotamia" ; but all this comfort will not cndow it with those ideas of continuity and proportionality we find in the metaphor of "interpolation." ${ }^{1}$ However, this fact and factor, although unrecorded and umamed by the professed psychologist, are well known to my friend the Man in the Strect, and are equally familiar to his wife or sister, the W'oman at Homc. But the curious point is. that the faculty of interpolation in different categories is most differently developed in different individuals, and consequently has receired most rarious names. Mrs. Beecher Stowe has given us the American name of faculty for it in the housckeeper, who, without watch

[^112]or clock, and with fires and "helps" of constantly varying capacity, is able to keep the complex household arrangements going "like clock-work." The artist calls it "fecling ": feeling for colour, for form, for stability or balance (in sculpture), for expression, etc. When a painter endowed with fceling for colour mixes a new combination of pigments on his brown palette, and then lays it on his white canvas, he feels all the time that when it is surrounded by the other blobs that will form his picture it will " take its place," and give just the effect of that particular spot of the picture he sees before his eyes: in watercolour the matter is further complicated by the changes undergone in drying. 'Teaching will multiply the number of observed facts, multiply the number of perpendiculars from the base-line, as it were ; experience will improve the power of combination : but a Leighton could never have been taught to paint with the glorious precision of colour and expression revealed to us by a Sargent. I know a little girl who has never been taught the elements of Staties, but whose feeling for stability is such that her earliest clay birds and rabbits "stood up of themselves," as a seulptor would say. A draughtsman may get erery feature out of drawing, but the expression is there, the incorrect details have combined to yield a living likencss ; and the caricaturist must needs possess this faculty

Again, the expert volinist who has a feeling for
correct intonation, who has a "good ear," in common parlance, ${ }^{1}$ has to adapt his fingering to each strange instrument, aye, and to each fresh string; for the intervals are never mathematically true, and vary with each fiddle and with each string. The pianist has to graduate differently the minute variations of touch to the varying resistance and resonance of cach instrument. A billiard player may have learned something of the laws of reflection of moving bodies, and possibly have a hazy glimmer of the subjects of friction and spin and imperfect elasticity, though these involve such high mathematical powers for conscious solution that it is doubtful whether any champion has mastered them. But even had he done so, he would require for their applieation to eacli table, each ball, each cue, a preliminary investigation into their several "constants"; and given all these, such problems are not to be worked out in the limited time an expert spends between two successive strokes of a break. Nor could he thereby, after trying a few strokes on a new table, allow, at once, as he does, for its "fastness," resiliency, and truth, different from any he has known.

We now come to a far more subtle order of facts : those of language. Every one who had an early taste for reading will remember how each new word lie

[^113]came upon took its rightful place in his vocabulary, while he was yet ignorant of its pronunciation, and probably ashamed to use it openly, or even to prove the accuracy of his divination by an appeal to grownups, lest his mispronunciation should expose him to their ridicule. I remember (not without a blush) having felt the meaning of the word "misled" as a synonym for "deceived" or "cheated," with such shades of difference as synonyms always have, while I still pronounced it to rhyme with "drizzled"; and I well recall iny relief when, without having betrayed myself to the adult scolfer, I discorered its comnection with "mislead." [An exceptional instance of "feeling" for language has occurred to me recently. A bright bahy-girl of twenty months, whose specch had not yet risen to the use of the verb) in other than gerundire forms, employed three particles of assent: "Mmm," "Awy" (="All right"), and "Ycs." "Mmm" is general and undifferentiated ; but she discriminated absolutely between the other two. "Yes" is the acceptance of the statement implied in a question: "Is your dolly a good girl?" "Did you put her to bed ?"-"Yes." "Awy" is reserved for the acceptance of a proposed act: "Will you fetch me my shoes?" "Shall I carry you?" ctc. During three weeks spent in her company I could detect no confusion whatever in this use.] A man with a gift that way will see from a single instance the difference of use of synonyms in his own language, and of
dictionary equivalents in another. He will sympathise with Sentimental Tommy, who would rather lose a prize on which his whole future was to depend than use any other word when "hantle" was the only right one for his meaning; he will refrain from translating the French " amusant" by "amusing," when applied to teehnical workmanship. ${ }^{1}$

A card-player will profit by lessons drawn from the laws of chance, mathematically worked out and applied to his game ; but the best players are hardly to be found among those who have memorised the deductions of these laws most suecessfully, and who carry out the precepts based on them with the greatest aceuracy on all occasions.

The facts of the case demand that the interpolation coneeption should be extended. and that we should admit that the mind can, unconsciously and directly, combine two or more eategories for the determination of correspondingly combined movements. Here. again, a geometrical construction comes to our aid. We are all familiar with the little automatic draughtsman, the toy made in Germany, which combines two curves (disposed here for consenience round the edges of two coneentric dises) so as to produce a sketch in a single plane. There must be a eapacity in our minds for a similar uneonscious orderly combination between the curves of the rarious eategories of our experience, so as to determine the

[^114]co-ordinated response in our movements. In the same way a tide-predieting machine utilises the combination of many different records, real and hypothetical, to work on the pen; this pen traces, on the stretched roll of paper passing steadily before it, a curve, which represents time on its base-line, and the height of the successive tides, the combined produce of many factors, on its perpendiculars.

It may be objected that possibly at any given time there is a higher, veasoning, mental working-out of the problems which are set by impression, and to be resolved in action. But true reasoning requires adequate time, and we now know that thought is a grood deal slower than we had been wont to assume. Prof. Charles Richet, in his lecture on the "Nerve Wave," ${ }^{1}$ given to the British Association in August 1899, adduced much eonverging evidence to show that the time required for any single mental operation is as long as the tenth of a second for a warmblooded animal. 'Thus, if we are counting ourselves to slecp, we may easily note that the disyllabic numbers take longer than the monosyllabic ones; and every link in a ehain of truc reasoning proportionately delays its eompletion. Conscious evaluation, allowance, and judgment arc among the slowest of our mental operations, for they require the comparison of successive mental images, successive " mentations," if I may be allowed to introduce a

[^115]most useful word, made in America. On the other hand, unconscious evaluations, allowances, and judgments, and the actions based on them, are practically instantancous. When, on a greasy day, the pedestrian crosses a crowded street, or the cyclist eseapes from the bus swerving athwart his track on the near side to shave the galloping hansom on his off side, he does so by processes literally quicker than thought ; or the accident insurance premiums would have to be considerably raised. Such unconscious processes hare becn termed "instinctive"; and indeed they are precisely of the kind that are to be met with in the lower animals. That they are not innate is, however, as certain in the one case as in the other. 'Io justify the application of the term "instinctive," we should have to give that term an extension to all such actions as we cannot explain by our conscious reasoning powers. 'The result of this speculation has been to strengthen my disbelief in a good deal of u-priori pedagogrics. and my belief in those empirical methods of teaching that hase stood the wear and tear of centuries. 'The worst point of a logical syllabus is that the error or omission of a premiss makes the conclusion all wrong. Since these two principles of interpolation and of automatic combination have never been presented to the mind of the psychological designer of logical programmes of tuition, it is certain that his teachings have been, so far, altogether askew. And, on the other hand, it is equally certain,
from these very eonsiderations, that those with a "faculty" for teaching will have, at least, not swerved very far from the right track. Again, it is even likely that our learning may have been far more efficacious than our teaching : that we have taught ourselves better than our tutors have taught us. Thus, in cyeling, we are instructed to maintain our balance, and to eheck the tendency of the machine to fall on one side by pulling the steering handle and turning its head to the falling side: and so we are tanght to wobble along. But we soon learn, all unconscious, to balance ourselies without this wobbling; and instead of balancing by the stecring handle, we even go one better, and, conversely, effect the stecring, "hands off," by the mere balance of the body. Yet no one has given an explanation of the latter feat in terms intelligible to the mathematical tyro, much less to the professional teacher of cycling. ${ }^{1}$

The moral of all this is, that the teacher of a pupil with a distinct " faculty" for any subject is losing his own time and wasting the pupil's if he insists on making sure of every step before going on to the next one; he is performing ill what would be done spontaneously and well by the mind of the pupil. A teacher of the piano once said to me:
"I should very much like to teach Miss A. from Blank's ' Progressive Mcthod ; but I daren't, as it's

[^116]too complete. I find that a good pupil does not do well with steady progress straight through the book; but she ought to skip some of the work from time to time, and go ahead. On the other hand, if I gave Miss A. the 'Method,' her parents would never consent to her buying another piece till she had learned every picce in it, and got them all noteperfect."

With this true story I may close this essay.

CHAP'TER XI

THE TEACHING OF "NATURE-STUDY"

An Address to Thachers ${ }^{1}$

I NEED not warn you that within the space of one hour I cannot attempt to cover the whole ground of my subject. 'The limits of time are far too narrow, and my personal experience in the teaching of young children has been far too restricted to warrant my presenting you with more than a bird's-eye view of the subjeet. I propose therefore to discuss general principles and generalities of practice ; you, for the most part already engaged in teaching, will judge of their value in the arrangement of your courses, and in deciding on the character of your daily lessons.

At the present day there may be a tendency to glorify ourselves in the conceit that we are pioneers in a new subject; and this we certainly are not. I may recall Aikin and Barbauld's "Evenings at Home," written over a century ago, with its chapter,
${ }^{1}$ Delivered in Queen's College, Cork.

EARLY DISCOURAGEMEN'T OF 'THE SUBJEC'I 299

"Eyes and no Eyes," conceived in the very spirit of such men as Lloyd Praeger. About the same period, Miss Edgeworth, that most distinguished Irishwoman, wrote "Harry and Lucy," for which I feel grateful, since it first told me of the new worlds available to us through the microscope, as well as instructing me in the principles of the architecture of the home. I may as well at once urge that to teach our subject in the right spirit you will regard a house as no less interesting than a honeycomb, and erect no barrier to screen off from the inquisitive eyes of childhood that portion of the external world occupied by the works of man. 'These early attempts failed because they did not yet impress the official directors of cducation. 'Think of the discouragement of Charles Darwin at Shrewsbury, or, a generation earlier, that of Shelley at Eton! Darwin found his vocation in his later student years under the sympathetic guidance of Prof. Henslow, of whom I shall have to speak again later. But Shelley fell in with no such guide; and who can doubt that he would have been a more stable man-and no less great a poet-had he fallen under the influcnce of a science master of the best type? l'ass on to a later generation, and turn over the pages of "'Iom Brown's Schooldays," with its truthful, living prescntment of the great Rugby head master, 'Thomas Arnold, and sce for yoursclves what short shrift poor Martin with his vocation as a

300 'ILE 'IEACHIN(OF' "NATURE-S'TLD) "
naturalist received at his hands. 'Times have changed, and it was time they should change. If the Duke of Wellington could truly say that the Battle of Waterloo had been won on the playgrounds of Eton, we may to-day say with equal truth that the shortcomings of our Army, the loss of ground by the industry and commerce of these islands in the peaceful conflicts of nations, have been prepared in the class-rooms of our public schools. In private schools, especially girls' schools, and by the much-decried family governesses, a modicum of nature-study, too often, alas ! divorced firom the actual study of nature itself, continued to be administered through such books as Mrs. Marcet's "Conversations," Dr. Brewer's "Guide to Science," and the like. But the first organised introduction of nature-study into the primary school appears to have been due to George Henslow, Professor of Botany at Cambridge and Rector of Hitcham, in the middle of the last century. In the national school of his Suffolk parish he taught botany from actual plants to the village boys and girls. 'The district is one notorious for the ultriaSaxon stolidity of its folk; yet the children took kindly to the teaching, technical terms and all: we learn that Henslow's pupils developed when adult into good and profitable servants, who were eagerly sought for in the county. Botany, mainly descriptive and systematic, was, as we have seen, the chief subject, taught practically on the flowers of the
field: but Prof. Daniel Oliver, who worked up Henslow's notes into the well-known "Lessons in Elementary Botany." tells that the instruction was broad as well as thorough. 'Thus the Elder, with its hollow eylindrical twigs filled with an abundance of pith, and used to make pop-guns, gave an insight into the materiality of the atmosphere and the elasticity of gases. From the utilisation of elder-pith by the physicist, a glimpse into statical electricity might well have been added; but I don't remember whether this was done. Again, in some of the great (Quaker schools, the botanical side of naturestudy has long been pursued: they have furnished the country with many professional botanists. such as Daniel Oliser. J. (i. Baker, the well-known authority on Lilies and on Ferns. Potter of Newcastle. But apart from this, Henslow's experiment was followed by decades of neglect ${ }^{1}$; and it has only been within the last ten years or so that our theme has become the subject of general interest-I had almost said of unisersal interest, but I remember that in agricultural lreland botany was for many years excluded from the Intermediate course for boys!

Thus what is new in nature-study is the recognition

[^117]of its value by authorities and by parents in every grade and class: the view that even elementary edueation should bring, or rather retain, children in observant relations with the world about them: the downfall of the barriers set up by boards of studies and head masters against the curiosity of the young child, whose whole previous education outside the school-house had been essentially on the lines of " nature-study."

In early and mid-Victorian education, a great part was no doubt played by the object-lesson, which you will find a most valuable introduction for young children to the methods of nature-study. It has been, I know, much decried for its sterility, as the mere giving of names to qualities, and the explaining by what needs explanation-as, for instance, replacing " heat " by "caloric," if not "water " by "aquosity." Yet in it we find more than the germ of most valuable teaching. Terminology is the indexed ledger of the arts and sciences, without which no big transactions are possible. Even the bare giving of names to the qualities of things seen and felt (and such alone can be the objects of true objectlessons) emriches the child's vocabulary, and cnables it to bring together, to correlate facts otherwise widely separated. 'Take, say, a lump of sugar" soluble," "sapid," "sweet," bring sugar into direct relation with hosts of other substances: " powdery," " crystalline," and "saceharine" applied to its struc-

OBJECY-LESSONS AN゚D THE "JEWEL GAME" 303 ture afford you comparisons with such apparently different objects as whitening, Iceland spar, and statuary-marble. 'Thus we see that, science being essentially the study of relation, the much-abused object-lesson given on a present object, well selected, affords a very good opportunity to initiate the scholar into one essential of scientific method. We shall revert to this question of terminology later, since it is one on which I hold strong views, although hardly fashionable ones. An object-lesson on the orientation and topography of the schoohonse, followed up by the drawing of rough plans to scale (on squared paper, of course), is the best possible introduction to map-drawing and reading and to the study of geography: the interpretation of mountain-shading and contour-lines may be illustrated by plans of dishes, bowls, or eups. Another (levelopment of the objectlesson is the "jewel game" that plays so important a part in the training of Rudyard Kipling's "Kim." You give your pupils a timed opportunity of seeing and noting a mixed collection of things - they may be an odd assortment of objects on a tray as in the book; or the figure, features, and attire of a lady passing the school-and you request a good account thercof. 'This account may be presented to you all of a muddle, or given in good orderly fashion. By insisting on order, as well as completeness and rapidity, you lead up to method in work, to orderly logical composition. Here you will come upon one
difficulty inherent in all chass teaching-the differences of individual aptitude. With the forward-those who possess "faculty," as the Americans call it ${ }^{1}$ your difficulty is an indirect one: you will have to damp their desire to shine on every occasion (inherent in the artistic and the literary temperament) by your tact, convincing them that your demands for selfeffacement imply the highest compliment. This will give the opportunity of constant practice to the mediocre; but here, as everywhere, you will need all your tact and patience in coaxing on the backward, the dull, the inarticulate. quietly nursing in them the weakly germs of intellect until they grow into healthy rigour. And all the time you have to maintain the interest of the quickest. Your occupation has indeed been aptly compared to that of the gardener: yet his task is the casier, inasmuch as he is free to weed out the weakly seedlings, and so give more space and air and light to the vigorous. But you will not lose heart if you recall how many sehool dullards have become world geniuses; the stone that was rejected of the builders has often become the headstone of the corner. And have no fear of giving some uncongenial work to your pupils; a little of it is good for them, as for us: a certain amount of uncongenial work-grind-has to be done in every complete work. It is not fair that all the school grind should fall to the teachers lot.

[^118]To return to our object-lessons on the schoolhouse ; from the building materials we pass to geology on the one hand, to trees and their growth on the other. The object-lessons on food lead us again to geography, and through the sceds of cereals to plant-life, which at the present day affords the farourite and most developed scetion of nature-study. You will not omit notions of transport and manufacture, bearing in mind the wide view we have taken of our subject, the extension of the definition of " nature-study." Now, in this special nature-study on plants, the Irish Intermediate Board have provided you, Irish teachers, with a most valuable botanical syllabus, drawn up by Dr. 'Tumbull, of the Department of Agriculture and 'Technical Education-a syllabus which, in essentials, I do not think can be much improved upon. But in following it you must beware of the share of sclf-sacrifice. It is so easy for the enthusiastic, conscientious teacher to impose too much work on himself, and so to deprive the pupil of his rightful opportunitics of independent effort. The children are, indeed, expected to make their own "spontancous" observations: but you will be tempted to lead up to, to carcfully prepare, these "spontancons" observations, lest the observer go astray and be led into wrong inferences: and here it is that, as I saly, you deprive the scholar of an opportunity for that independent effort on which we lay much stress. Again, I would warn you
against one fallacy that may induce conceit in pupil and teacher alike. It is impossible to train young children to perform original research, even though you make them repeat for themselves those experiments of the Priestleys and the Darwins which led up to their diseoveries in plant physiology, and you induce them to make correct deductions from their results. It is the invention, the method, the foresight, the preparation of the experiment that lues to be made that make the researcher, not the mere manipulation and record of experiments and observations devised by others. 'This is the fallacy of much pedagogie "theory" put forward by the heuristie school. Y'et it is much to train your children to observe patiently and to record systematically with system and aecuracy under your direetion.
'Touching the matter of self-sacrifice, I would caution you against the prevalent idea that the good teacher's work cian be, or should be, continuously strenuous. If you act on this supposition during the sehool-hours, what energy will you have left in your leisure to maintain and to extend your knowledge, so as not to become stale and groory? During each sehool period the children have intervals of eomplete rest, when they banish all care, stamping and shouting in the playground ; but such relaxation during the short intervals is impossible for your. And since this supposition is impossible and absurd, you may salve your unselfishness by reflecting also
that excessive strenuousness on the part of the teacher imposes too great a strain on the attention of the child, which camot be kept perpetually serewed up to the high piteh that your "strenuous teaching " would demand for its reception. 'Therefore, without compunction, see that your programme of nature-study provides for its pupils-within school-hours-work both individual and silent, like the routine of the dreary but essential long addition and multiplication sums, and comparable with the technical exercises of the musician.

For such work you will find ample opportunity in that branch of botany least insisted upon in your syllabus-the accurate technical description of plants based on neat and careful dissection and drawings. In the carlier stages the filling in of schedules may be used as a preparation for descriptions, as adrocated and practised by Henslow; but dissections for inspection must always accompany the schedules. Nowadays we may carry the work of description further by appending interesting details of bionomies, such as the relative time of ripening of anther and stigma, adaptation to cross or self-pollination, etc. Finally the advanced pupil should be trained to find for himself in the flora the true systematic position of his plant-order, genus, species, and eren varicty. 'This should be done from the completed description, not from the plant in the first instance; for in this way the inadequacy of a
description in details will at once receal itself: I insist on this the more, as I have seen descriptions marked high by grinders, though hardly more than the Natural Order was ascertainahle from them. Curiously enough, it is the ehamacters of the pistil that are most shirked in this way: in examination papers, with descriptions from memory or from the plant, the description of the flower stops short at the stamens and leaps to the mature fruit, which is neither present nor asked for. 'This work must, of course, be led up to by class demonstrations: the teacher will distribute specimens and read aloud the altematives, asking the pupils in turn "which alternative- 1 or B ? " 'This work gives a familiarity with plants which is indispensable to all botanists, and an admirable preparation for other branches of seience. I remember the great Professor De Bary, of Strasburg, when we were out for an excursion, insisting to me on the value of this sort of work, and inveighing against the idea of men expeeting to become good botanists (even as physiologists) who had no personal aequaintance with plants generally.

We now come to my unfashonable views. I lay the greatest stress on the habitual use of the correct technical terms in eurrent professional use among botanists and that from the very outset. No science, no art can be learned without its proper

A PLEA FOR CORREC' NOMENCLATURE 309

terms. The music-pupils find no diffienlty in such words as smonzando, arpecserio ; why should the nature-study classes boggle orer "decussate" and "cpigynons"? 'Technical terms remote from popnlar speech are often neecssary to aroid ambignity and confusion. What do you mean by speaking of the "top "and " bottom" of a hanging. shoot? When you speak of the "front" of a cat, do you mean towards the head or towards the abdomen? 'To introduce the terms "base," "apex," "dorsal," "rentral," " anterior," "posterior," is to replace shipshod ambiguity by scientific precision. "But," I hear some one plead, "why not make all these terms ont of Einglish material, and not overbneden the poor children's brains with long words of classical origin?" 'This objection is based on a profound lack of sympathetic insight into the psychology of the child-to speak plainly, it is tommy-rot, if you look into it. A new word to a child means a new idea, and an intelligent child welcomes the new word for the new idea that it brings. ${ }^{1}$ Moreover, the new word is to the child a mee word, and that is all: until its literary taste is developed-narrowed, if you will - the child eares nanght whether the word

[^119]be Latin, Greek, Semitic, or Hybuid; though he will, of course, take a bigger pride the bigger the word lie can handle correctly. Did any boy bitten with nautical enthusiasm ever find a difficulty in mastering the complex and absurd terminology of the good old three-master ship? It is only at a later age that technieal terms beeome the burden and the indignity that parents and pedagogists feel them. 'Therefore, to remove technical words from the young defers no difficulty in the present: it aetually creates one for the future if they are to pursue nature-study. Again, to substitute unrecognised vernacular terms is to make needless confusion. I have seen an old English botany in which the stamens were called "clises," which to any child familiar with a regetable garden would suggest that they must always smell of onions! John Ruskin, in horror at the connotations of the word "flesh," proposed to replace it for fruits in botany by "ambrosia," a term singularly unsuited to the flesh of the crab-apple or the rowan berry. In other seiences we have seen the same eountersense, the introduction of new, eomplex, ill-sounding words made in Germany, or inspired by an evil German spirit abroad in England. 'To replace the "impenetrability of matter" by the "unthoroughfaresomeness of stuff" was Horne 'Iooke's answer to a bet or a ehallenge, and not meant seriously; but why should we botanists be expected to model our
terms on such harsh and unreasonable ${ }^{1}$ barbarisms as "chalk-stuff gas? "

General neatness and deftness find their place in nature-study intelligently pursued-notably in botany, where, besides neat dissection, you will encourage the representation thereof by peneil or brush. Here comes a calution or two. The peneil sketch is essentially a translation, a selection ; but the brush aims at a relatively complete presentation. You must therefore take care not to falsify at the outset your pupils' sense of colour and of tone by allowing them to paint each flower, each leaf for itself. with a background of white paper to give the lie to the whole. Consider: white paper affords our representation of the highest possible light, a cloud or a white wall in full sumshine. Hold up your flower before such a background, and see what has become of the glowing colours you put into the picture you have just completed as it lay on the dull drawing-board beside you. I do not ask you always to insist on a background of correct value being washed in: but you will do much by using a relatively dark brown paper for the pictures, and recognising the use of Chinese white. It is only when we recall the origin of water-colour, which began by tinting up consentional arehitectural

[^120]drawings to make them look pretty, and the painting of flowers purely for decoration, that we can explain the absurd practice of using white paper for children to paint on.

It is due to the untrained feelings of parents, aided perhaps by an unwillingness to kill, that the study of animals is so much less accessible than that of plants. We all remember the indignant mother's letter of protest: "Please do not teach our Sarah Jane any more about her inside: it makes her feel uncomfortable, and it is not niee. Besides, it's rude." But the rearing of Caterpillars and 'Tadpoles, observations on the breathing and feeding of Fish, and so forth, are always open to you: you will not miss the opportunities you have of showing the trunk of Butterflies and Bees, and the pollen-hrushes and baskets on the legs of the latter, ete. You may even go so far as to demonstrate the structure of the chief groups of Vertebrates on a Fish, a Frog, a Fowl, and a Rabbit, with rough dissections. In this way you will lay a foundation for the later teaching of enough physiology to explain the prineiples of hygiene. I would suggest that mieroscopie demonstrations be introduced sparingly in the lower classes-nay, reserved for an oceasional treat. However, every pupil must be provided with a pocket-lens, and taught the use of it.

Whenever your lesson approaches lecture form, you will do well to follow it up by a question paper
to be answered against time, in school. For the youngest the questions should be such as to require answers as direct and simple as you please. But you will insist that every answer be put in the form of a complete statement, definite and complete in itself, and not a mere substantive, with qualifications floating, as it were, in the air, and unintelligible in the absence of the question. For the older pupils, on the contrary, your questions should exact a certain amount of reflection : and the answers should be presented in good logical form and order, illustrated with apt sketches where useful. 'They must, of course, never be allowed to stray from the scope of the ques-tion-a firourite practice with examinees, whether from lack of understanding, from a wish to replace the unknown or forgotten which is asked for by what is known, or from a general desire to shine by the abundance of their knowledge. P'ut your foot down on "voluntecring" in every shape, if from no other motive than fear of the external cxaminer, to whom it is an utter abomination. Your teaching in naturestudy will by this course give invaluable practice in the art of composition. ${ }^{1}$ I attribute much of whaterer success I have obtained in life to my training on these lines, when a boy under eleven. by weekly lectures

[^121]and question-papers from the late William Pinches, one of the founders of the College of Preceptors.

Outside the hours of class-teaching come the school calendar, the school musemm, the school garden, and the school walks. The calendar will contain daily records of various phenomena, the name of the pupil recorder being always appended. "Phenological" observations come first: the carliest appearance of spring plants, the opening of the leaf-buds of the various trees and shrubs, the dates of their flowering, of the fall of the flowers, of the ripening of the fruit, the autumnal changes of tint, and the leaf-fall. With birds we record the birds that sing right through winter, the first spring and the last autumn song of the less persistent songsters, the arrival and the departure of the migratory, the times of nest-building, of hatching, and of fledging, etc. Sinee these facts are all associated with the weather, you will record that also, teaching meteorology as you go along, without necessarily naming the word. In practice I would reeommend you to enter all records in a day-book as they come in, and keep a carefully arranged journal from it. You will do well to map out the daily meteorological observations on squared paper, so as to draw the weekly curves of maxinum and of minimum thermometer and of barometer and paste these into your journal. Of eourse, you will need the two thermometers and the barometer, to which apparatus you should add a rain-
gauge. You will find no difficulty in persuading your class that the care and record of these is a most honourable office-just as 'Tom Sawyer, when he was ordered to paint the fence, sueceeded in persuading his mates who had assembled to jeer at him that it was so high a function that participation in it could only be obtained by payment in the good-conduet tickets of the Sunday school. The weather charts of The T'imes or of the Meteorological ()ffice should prove no mysteries to your more advanced pupils.

But the lines of some of you may fill in big towns: and the town dweller should not miss his own opportunities of observation. 'Irees, birds, and wild flowers may be rather out of the way; but the town has its seasons, and its phenology should be recorded, for it is full of interest. 'Take the item of games. 'Trace the appearance of the hoop in winter, its remal replacement by the whipping-top, and later by the peg-top, the prevalence of street hurley ${ }^{1}$, the coming and going of marbles, and the irregular invasions of the squeaking balloon. 'The seasonal changes of toilette by men and women will add to the value of your record. More directly on the lines of nature study are the contents of the provision shops and costers' barrows-the fish, fruit, regetables and flowers, from their carliest introduction in the highclass shops to their ultimate profusion at low prices in the strects, and their final disappeatance.

[^122]The lessons on plants and the school walks should provide the nucleus for a herbarium for reference. Specimens that require preservation in liquid should be stored in formalin properly diluted, which is much cheaper than spirit, and not inflammable. Bottles are costly if they have to be purchased, but clear glass jam-pots and pickle-jars may often be provided by your pupils; for large corks or bungs, stoppers or erumpled paper soaked in paraffin wax (the eheapest candles melted down will do) are an admirable substitute. The curatorship, or rather the assistant curatorship, of the museum should always be entrusted to one or two selected pupils; and now that cheap editions are abundant, a library can easily be added to contain books for identifying the specimens, with such classics as White's "Natural History of Sclborne," W aterton's "W anderings," Darwin's " Naturalist's Journal," Moseley's "Notes of a Naturalist," the Travels of Bates, Belt, Wallace, etc.

The school garden is still more a question of possible accommodation than the school museum. You may have to content yourself with a windowshelf to carry flower-pots, jam-crocks, tins, and picklebottles, with a few boxes to hold the wet sawdust for germinating seeds; or you may be lucky enough to realise the teacher's dream of a bed for every plant and every plant in its bed, as in some of the wealthier schools for girls. ${ }^{1}$ But you must at any cost of effort
${ }^{1}$ Thanks to Prof. Armstrour's enlightened comsels, botany has been recently introduced into some of the great English public chools for boys.
hare the means of germinating seeds and of growing the scedlings from them.
'There is much to be said on school walks ; but I have no time for it. In some parts of Germany these form a regular part of the school routine ; and you will see the long string of children, each with his tin collecting-box, escorted by the primary teachers, going aficld for the plants that will be identified and studied in the sehool. The pupils are encouraged to preserve specimens for themselves and to form private herbariums. Hacekel, in his affectionate dedication of one of his books to his old comrade and friend, the great zoologist, Carl Gegenhaur, refers to the collections they made when he was a boy of twelve, and to their audacions criticisms on the text-book views of " good species," to which these collections grave the lic. Whatever be thought of Hacekel's elaims to eminence as a philosopher on mind and matter, body and sonl, none can refuse him a high seat among the greatest of living biologists. And it is to the fomdations that he laid by maturestudy when at school that he attributes the most important part in his school training. With this example of the value of our subject I must conclude.

INDEX

. 1 priori ground for Neo-Darwinian (logmatism, 180

- pedagories, 295
- presmution, $1!12$

Ablorrent method of Butler and Pauly, 279
Abortion of certain menvers of a Eroup or brool, sf.
Abortive brool-fumation in Conjugates and lnfusoria, 135 n .

- oospheres. 153, 151

Abstainers, 214
"Abmulane of Life, The," 22!!
Abuse of alcoltol, 18:3
Abutilons. 1 tis
Ahrsimian, 3 ?
Aealemy of science. Imperial lioyal, of Vienua. 2.0)
Acceleration \times mass, 215
Acceptance of thesent theory, gencral. $21!$
Accilent. 237
-and invention, 20?
Account (of things glimpserl), 30:3
Accumulation in allabonlism ($=$ anaturism), S4
— of (biological) material, 227
Accumblative chaneres, 234
Accumulator(s) cells, 220
Accumulators. 2t:
Aclaromatic substance of nuclens, 13 s
Achromatin. 97 f .
Acorns, 8, 207 f .
Acquired claracters, transmission of, in I'rotozon. \because - $:$:
— - " Mentelising " of, 190

- - inheritance of. "the trans. miseion, of." Ch. V'11, passim, 16if., 202 f. $250.272,2 s 1$
Arquiren mecessity, need, :31
- weakness, 1 N:3
" Actinic" rays, 1is f.
Actinophrys. symamy in, 155 f., 12
Actinospherium, 114, 160, 102
Action, 0391
- it ditente, "trigger," 229
- imprint, 074

Actions of living, of intelligent beings, 2es f.
- habitual, 245

Ietirator of germination, sperm an, 1 fis
Active zygutes, 171
Activity, periorls of, 267
Actual study, 300
Adaptation, $75,17!4, \because 2=1$

- for pollination, 307
- nuclear reduction an, 133

Alaptive habits, humm, $1!3$ change, tespon-e, 206 f .
Adlition sums, :307
Aldress on Memory, llering's, 250 f.

- Prancis larwin: Dublin, $27!1 \mathrm{f}$.

Aljustment of internal relations to external conditions. is
Admision. Semon's, $27!$
Adrance of vitalism. 1 OS
"- - upon llering." 2-8
Advaneed pupil, $30 \overline{7}$
"A Avancement of Neience, The," 2.50
Alvantages of position, $1!5 \mathrm{n}$.
Adrentitious buds, 65 f .
Aciditem, xeidiospore (of Uredinex), $150 \mathrm{n} ., 1 \mathrm{it}$
Aeration (for germination), 14 J
Aerial parts of Moulds, 186
"Aetas parentum, etc.," 207
After-action of stimulus, $2 \overline{7}$

- -life, 190
" Agritinst time," $31: 3$
Aggregate of cells, 23:
Aggregate (s) of cells $=$ tinsue, 36

Aggregites of matter, distingui-hed into classes, 211
Aggrugation, 22i3

- material, 2.12
- state of, 22: f., clantre of. $22: 3$

Agriculture and 'I'echnical liducation, Departmernt of, 30.5
Aikin and JBalmand, 2 ! 8
Aims of maturalists, 2.lt
Albumes, 218
Alcohol, 2:31

- abuse of, $18: 3$
- a stimulus to lufusoria, 21 n .

Alcolsolisu, $21 \cdot 1$
Alesonarise, inorogeny in, 151,163

- normal loss of female nuclens in egrgis of, 29 n .
- oosplicre of, 166

Algie, 2, 30, 16:3; reproduetion of, $14 \overline{5}$; resting spores of, 113 . Serealso ('hlonoplyeese, F'ncaces rluirleae, (lied, (ircen, Olive) Šatweeds
Alimentary camal, 234; cavity, 23b
" All right!" 2 ! 2
Alleniance, Danwins, 21s,
Allolomorjh, 1! 0
"Allgeneinc Jiolonice," $1!17$
Allies, mants zonlorical, 212
Allmitchtigkeit, 211
Allowance, conncions and mmeonseions, $2!1 \mathrm{f}$.

- - for fiactors unknown, 2sむ

All-pervicling orderliness of organisms, 281
"All-sufticicnes of Niatural S'lection," 211
Alpine trilvel, 246
Alternating (ellnlan transmission, 4) f.

- furms of Irvichospervium, Lisj
- vegetative type, 135 s 11.

Alteruation of grenerations, 59 f .
— - antithetic, l6f

- - in Fern and Moss, Glf.
- in vogne of theories, 216
- of growth and of resolution of chromatin, 100
Altermative required, 30s
- to Lamarekian hypothesis, Weismatnn's, 193 f .
Alveolar eytoplasm, 16 S
Alveolaie structure, alveoli (foam spaces). 115 f., 161
Alytes nbstotricouns, 159
Amatenrs devoted to seience, ?(1)
Ambiguity, 309

Ambiguity, of t(rm "fertilisation," 164
"Ambrosia" ($=$ flesh ol fruit), 310
America, 2liz
Amosbit, behnviour of, 2:32
. 1 macha coli, 1.45
Amcebnid \%ygut 171
Amplilbians, 1\&!

- Orovivipirous, \% y erote of, 173
"Anplitronic" inlieritatnce, $7 \cdot 1$
Amplimuixis, $6!$
- Inpothesis of Wraismann, 16 f ; cunfuted by Weismann's adminsion, lti 11.
Amsterdam, 2103
" Amus:nht," " anunsing ", 293
Anabolism, $83 \mathrm{f}^{\circ}$.
"Analytie l'sychology" 28! n.
"Analytische Theorie res organischen bintwicklnng," 268
Anaphase, $10: 3 \mathrm{f}$.
Ahtsorism, $8 \cdot 1$
Anatomical character, 178
Anitomy, 20!
dnatrophism, st
Alleestors of lligher Organisins, primitive, $1!910$.
 (sece also "ids "), 17
Anchorage (of roots), z:’l
Amkersen, llans (!nis(i:m, 2()]
Anglo-Inclian, 1 ! !
Animill, 223, 2ら7 f., 27!f.
- development of, 1×1
- kingrdon, 2
- lower, 208, 2!
- ivarm-blooded, 294

Animals, cecll-fiuld in, $12: 3$

- is conscions antomata, 227 f .
- complex, 1 s0
- Limmatcian Factor in, 19%
- nervons syistem of, IN2 11 .
- study of, :312
- utilization of rescries $i n, 8_{3}^{3}$

Anisogany, 162 f.
Inode, inigration of chromosomes $t(0$, 11!1f.
Anomaly, 188
Answer patpers, 313 n
Answers, complete, ? 13
Antagonistic theorices and practices, 240
Anteeedent canse, 224
Antecedents explain Things at Large, 225

- as sole condition, 242

Anterior, 309
Amher, 307 f.
Antherids $=$ inale organ of Fern, 60 , f1, 62
Anthropomorphic, 2 is
Anthropomorphism, ehildish, 22.5

- excessive, 181

Antibodies, antilotes, 1×2
Anti-Lamarckians, 215
Antinomies of cros:- and in-brealing, 31
— of fertilisation, 33
Antipathy of grametes of same individaril or bremel, 30
" Anti-pindle," 11:3 f., 11tir.
"Antithetic alternation of crenerations, 166
Amtituxins, $1: 2,212 \mathrm{f}$.
Antivitatist, 21s, 22:3
Apex, $3 u^{9}$
Aphorisms, Dr. licid's, 2 (1) f.
Apocyte, aportiall, x.s, i.? f., 10. $2,1 \%$
Apoeytial organismo, 121
$\lambda_{1 \times \text { wamy, }} 1$
Apology, lankesturs, f(n) priatinc views, 2.51
Apnepory, fi4
Apparatis, contial controllin!. 1-2n.

- laboratory, 2:34
- nuclear, if hifusinia, 83.) n.
- of otlicial plywiolugy, 2:20

Appenrance, earliol of opring plantof market goorls. 311 f.
Appropriate epithete, 206! n.
Aptitude, individual, 301
Aquosity : 0 O2
Are, electrie, 15:
"Archbishops belief," 2.si
Archilall lieitl, 1)r. (i., 1-3, 20! fo
Archegone $=$ flask-strapet strueture containing oosplore in lerns, Mosses, ete., ! f., (il f., 158
Archeguniate (ryptorams, reduction in, 132, 135, 15i, 159 n .

- asexmal spure- of. 13!

Arclitectural drawings, 312
Architceture, 2!9
Arehir fod. ges. Mhysiologie, l'tliineres, 2す! 11.

- E:nturickmngsmechanil. 1!s, 261

Arctic Circle, 18 i
Argument for lamarekian lact or, 196

- foumdel on "now force," $12.0,12 \overline{1}$
- from mutilations, 179
- of lamarck, 20)

Argument, Paley's, 226
Aristutelian. 2tic
Armstrong, l'rof. Henry 1:, 125, 31\%
drmy, shortemings of our, 300
Armold (1)r. T. K.) of Rughy, 247, 29!
Arpeggio. 309
Arraugement, 221 f .

- kinematic, 29.5
- (mechanism=), 221
- of memorics, 2×6
"- vital," 212
Arrest uf development in oosperin, $1+1 \mathrm{f}$.
Art of componition, 31:3
- syllabus, 2.3

Artmim (lirine-shimpl), 160
Arthropots, il
"Artiticial fertilisations," bartheno-cene-is, 112 f .

- merogeny," $16 i$ is
- pronluctinn of nomal larvar, 1 亿o
- sulectim, \quad llff.

Artillury of fact and rataon, 215
Arti-t, 21: 11.
Artintic feeling, 2 gon

- temperament, :int
hentris (the lomut-worm), "maturatinn" and sprematogenic divisions rif, 1:2
Atcomyertis, Ascomyortoms loungi, 67, 14:1, 171
Ascomyertons loungi, reduction in, 13.511.

Asenplyyllum, 1:! 1:31, 135, 1:51
A-(xttal fenmeration, as)

- reproluction, 1!!, 1:3i
- spores of Arehegoniates, 131, 133

Asemblage, machine an, 221
Ar-emt, particles of, sum
Assimilation, 4 , 2!
Asoociaterl cells ($=$ prugametes) of (imgarines. 172

- muclei. fusion of, 16 f

Association, cell as ant, an 2

- ul germination and syngame, 165
- primeiple uf, 2s:!
- prolonged, of cell and molens, 2.1 f .

As-mmed "entity," 21!
As-umption, Jenk:nsis, 26i5

- of hamarckian factor, 193

Assumptioms of Wicismannism, 19 fif.
Astimmatic, 1.3
A-ter, astral raty, ! 9 , ! $1,102,115$, $117,12: 3,168$

Astronomer，（ierman，i：3
Atavistic process，progamic liswion ：m， 15！
－Atlas of Fertilisation and Kiaryo． kinesis，＂17
Atmosplicre，301
Atrojly and growth of chromatin， perionlic，13：9
Attack on lamarckianism，20．
Attempts，carly，at Niaturc－sturly， 2！13 f．
Attention，cliillis $30!$
Attiturle，mechaninatic，22：
－vitalistic，262
－of Encrlish \％oolorists．20）
－of plysiologist，っ1！
Attraction，112
－－（contre，！ 1 ；
Anslösungr，2．2！！
Anthoritices，（rhucational，：3n？
Autobiography of（＇．1．Jarwin，214 1.

Antomilif，illtomatont，Hroiningis of， 22：
－connlination，2！！

－mathincs．こご 5
Automntism，22s，2：3
Antumn（hirls）sontior，ill｜
Antumnal chancres． 311
Averion，lintleros．ōt
－Dr．Reidls，212

Axial sections of ficlds， 112
Axolotl，oosperm of， $11 \% \mathrm{f}$ ．
Baby girl＇s feeling for language， $2!2$
Backgronnd， 311
Bacon，lortl， 217
＂Packwiard path of vitalism，the，＂ こう！
Backwarl，the，301
Backwork，2が，
Bacteria， 186
Bain， $7:$
Baker，Henry，35 n．
－T．（i．， 301
Balance（in cyclingr）， 296
－feclingr for， 290
－of matter and cherg！in organism， 217
Dialdwin，Prof．James Mark，270f．， 279
Balfour，lrancis Maitland， 151

Balloon，squeaking，315
lanniacear，zygote of，I 1
lanninlmant of mind from maiverse， $\because 4!$
Barbatisms，311
Parbauld，Aikin and， 2 2．15
Disomuter，：3If
Diaratck－workhonse girl，1s1
Disrett，Sir W．F．， 12211.
Barrier，2！！！
Batrier（s）（to children＇s（onrio－it？）， 299，$\because 02$
Hars of typewriter，2я5
Bisce：： 013
－－linc，2． 87 f．，2！$!(1,2!11$

Basidindolus．Int；

Basidinm（fusion－coll of cortiln Finngi promucing 2 or 1 spores borne on statks），İI

＂－ol National Strengti．，＇lhe，＂ 30！！ 11.
Bates，ilif

liattle of Wiaterloon，30）
＂Heaglr，＂2181．

Bratere，20 S
Buad for plants，：31（i）
Berls，Irocrustean，16il
lieef teas，a stimulant to l．afusionia， 2111.

Bec＇s Irunk，：112
liegonlia，lia
Belaviour，chancrea，a Mendelian unit chameter，I！ 0
＂－vital，＂＂I！
－of chains of force． 111 f ．
＂－of lowel orginisms，＂ 271 n ．
－of orqunisms，217，2：31．20．i3，20．！！， 2ヶ！f．
－of non－liviner beings，225
Beings，living 217 f．
＂Belief，mild $=$ extrenc doubt，＂ 256
Relly－canal－cull，10， 158
Bult，Richard，316
Bencolicial condition，mosements， stimulations， 270
－variations， 210 n ．
Ienelit，acenstomed， 32
13c土mol，2：3t
13essunts（kr．）， 238 n.
"Between the me of to-dar:" ete., 280 n.
Bias, 201
"Bibliugraphy" of s. Butler, $2 t 4 \mathrm{n}$.
—of "Fertilisation." 170
Bilateral symmetry, 199 n .
Billiard player, 291
Binary sexual differentiation independent of exogamy, 13, 31, 132 n .. 16.5

Biological, i:s

- iogma, 178
"- energy." 242
- problenis, 218
- thought, 264
" - units," 76
Bioligisches r'int ralblatt, 2103
1 Hiologist(s), $\because 05,216,235,267$ f., 281, 317
- distinguished, 2bil
- Euglioh, 206
- majority of, 17T, 212
- of Butler's day, 2:54
- of eminence, $1!\%$
- profescional, 215

13iology, 216

- domain of, 916
- unified, 2li

Bionomices, 315
"Biophore(s)," iuf., 1!1:3, 1:17
" Biotic energr:" 2 2 2
isird(s). 22 4,314

- egg. !1, 14!
- nest, 225
- zygote of, $17: 3$

Bisexual syngany, lis f.

- reproduction ($=$ amphimixis, annpligony, (1.x.), 257
* Missonrs (lat.), 235 n .

Bjacrknes, father and son, 122 n .
black races, 179

- Salamander, 1s8

13ladler-Wrack, 154
13istoderm. 91
BIastula, 237
Blight (potato), 19
Blind (variation), 177
Blistered skin, 179
Blobbed centrosome, 115, 11s, 121
Blocked line, 239
Blood, transfusion of, 7
13lood-corpuscle infested by malaria parasite, 38 f .

- - vessels, 2:31

Blue Book, 213

- Monlds (Eurotium), 1itn.

Ruards (of studies). 302
Boat, analogy of, 113
Bodies, 241
Body = soma, 25 S

- colls, 198
- nutrition of, 200
-relations to germ, 180 f., 260
Bond, unifying, $27 \pm$
Bone $-190{ }^{\circ}$., 231
Bunn, 221 n .
" l3ook of the Machines," 21:
Botanical side "f Nature-studs, 301
- syilabus, Irish, 30:3

Botamist:, 2fis, 308

- Engli:1, 1!!!
" Butany. Lestums in Elementary," 301
- alescriptive, iut f.

Bottles, $311 ;$
Bottom (of a hanging whoot), 369
Hommlaries of "menory," 273
Boveri, Prof. The olur, 29, 101, liU f., $14!, 1!9$
Rower, 1'rof. 1 . Orpen, $15,60,199$
" loox and Cox," 71
Hoxes. 316
Boy, steam engine, 221
Buss an ! butany teaclingr, 301
" Mrachemeiosis," 135 n .
13ratysechist, ss, 10
1:rain, 1*1, 240
Branchine, $2: 30,2.5$
Brather, l'usf. A., difo
Break at billiards, 2!!
Breaklown, $2: 9$
Breaks in sucecesion of rocks, 219
Breathing, 312
Breeding ". in and in," 30 f .

- of Hyfex, 190
— of 心alam:mbers, 193
liret llate, 21!)
lirewer, Dr. A., 300
"Brilliant ideas," 2-8
Brinc-shrimp (Artemia), 160
Bristle-like stalk of Noss-urn = seta, 5if
British Assoeiation, Dundee meeting, 301 n .
- Cardiff meeting, Southport meeting, $1 \cdot 10$
——Dublin meeting. 279f.
- Manchester meeting, 213
- physiologists, distinguished, 220

[^123]Brittleworts = Charace:e, 157,173
Bronk. 3, 12, 117 f .
Brood-cell, division, formation, 3,10 , $: 38$, 40 f., 5ij f., 73,73 f., 135 n .

- formation, abortive, in Conjugates and Infusoria, 156
- - modes of, classifierl, 88 §.
--mother-cell, :3, 81
Brown, T. Graham, 185 n .
Brown-Séquard, 185
Brown paper, 311
Brush, 311
Budding, 51
- animal, 50
- in Higher Animals, 47 f.

Buls, 230

- of Flowering-plants, 65 f .

Buffッ, 19 f., 219
Puilding materials, 305
Bulbs, 82,143
lulk of sperm, 16 is

- to surface ratio, 7 ? £., 127 f., 2:30

Bullotins, 215
Bungr, :̈ll
Burbank, Luther, 26 6it
Burdon-Simderaon, sir J., geof.
Ihurial position, 1!1
 $211,243 \mathrm{f}$.
" - - Not chooks of," 22y, 24!
Calendar, School, 314f.
Calf, growing, 85,
Calkins, (iary N., on Infusoria, 21
Callus, 66
Caloric. :302
Cambium, (ji) £., 232
Cambridge, $2.48,265 \mathrm{f} ., 302$
Cambridge Plsilosoplical society, 280

- University Press, 280

Camera, 25!
C'ampaign, 215
('anatda balsam, 9 I
Comal, 221
Canal, alimentary, 234
"Canal-cells," 9f., 61 (fig. 17), 158
Candles, 316
Canine tecth, 212
Camon assumed by Neo-Darwinians, 181
Caontchoue apparatns, 23.1
Capacity for imprints, 277

- of nervons system, 275
- respiratory, 231

Capsule of moss, 51 f .

C'ard player, 29:3
-- -shmflling analogy of A mphimixis, 17
Caricature, 206, 290
Carpenter, Dr. W. 13., $2 \cdot 17$
('astes, sterile, 46 n .
('asuallaws, 221, 238f.
Cat, breed of, 12
-- front of, 309
C'atiabolism, $8: 3 \mathrm{f}$.
C'ataclysmic principles, 267
Catastropharianism, 248
C'ategories of eases of lamarchian transmission, 199

- of kincl, of magnitude, 2sif

Category of memories, 288 f .
Caterpillars, 312
Caul of (wins, 235 n .
Causa, vera, ralustr, rores; sec alsn callse(s), 17f, 27!) f.
C'ausality, 222
('ause(s), 73 f .
"Causes actuclles. Thiorie des," i: development. isn.
Cause, antecedent, 221
-- linill, 226

- - of karyokinesis, 126, 138
('ituses, proximate, 127, 232, 2339 f.
- of vogue of rival views of lite, 216 f.
Cavity(ies), chemical processes in, e:口1
Cavity, alimentary, 2:36
Celebrations, Darwin, 27!
Cell, canal-, 9 f., (61, 158
- diagram of, 25, 97
- dividing, 138; working, 138

C'ell(s), organic, 2,25 n., 35 n., $9711 .$, 212, 235 f., 2in 8

- broorl- (see Brood-cell)
- eleavage, segmentation, $2: 6 \mathrm{f}$, $23!$
- collared, 42 f.
- colonial, 5!?, 67
- compared to great industrial house, 27
- coupled (= see also \%ygote, Fusioncell, Oosperm, Fertilised egg). 5 n., 35 n .
— diagram of "resting," 2.5, 97
-- embryonic, 47 f.
--- epiblastic, epidermic, 46 f .
- fusion- (see Fusion-cell, Zygote)
- yerm- (=reprorluctive), 1 so f., 2.7 f.
"- in Development and Inheritamer, The," 198

Cell(:), pairing (see l’airing-cell, Gumete), 45
— physiology of, 233

- reproductive, $58,180,186,263$
- rhythm of growth and division of, 80 f .
- segmentation- (= cleavage-cells,子.v.). 236 f .
- sexual (= gametes, q.r.), 64
- of accumulator, 227

Cell-body ($=$ cetoplast, \quad. \because, , 93, 124

- -differentiation. 261
--division, 41, (?! f., 10?, 10:3, 124, 139, 166,194 f., 23:2 f., 261
— - ficld, 0% n., $101 \mathrm{f}, 112,222$
- fusion (see also fertilisation, syngamy), 1:36, 114, 19.5 f .
- -life imp:ired bey continued anoriciation, 2.
- -protophasm, ligation in, so
—-sulstaner, 2:3f.
- wall, ilf.
- .- formed by funion-cell, 11.5 f.
('cllular differentiation, 193
- filiation, 23:9
- peligree, 31. :31 f., $1.5 \mathrm{f} ., \mathrm{fi:3}, 69$. Chap. 1I, passim, 12?
- kinnhip; relationship, 37, $11: 3$ f.
- remganis:nion, 16:3f.
-transmiswion, law: of, 1! f., fit f.
- collateral (ser Collatemal rellular transmission), 201, 2.07
('ellulose, b 1
C'emented shell, 20s
Centenary of Charles Darwin's lirth, 280
"Central-cell" of archegone. 158
Central controlling apparatus, nervous system, $1 \times 2 \mathrm{n}$., 181f,
- (nervous) organ not known in rlants, 259
Contres of fickls of force, 112 f , $116 \mathrm{f}, \mathrm{l}, 12 \mathrm{f}$.
- remembering, $26!$

Centriole, division in telophase, 99 f., 103. 105, 124, 16 (
"Centro-épigénere," 24:9
Centropyzis, zygote of, 172
Centrosomes(s), $95.97 \mathrm{f}, 104 \mathrm{f}$.

- blobberl, clongated. 115, 121
- stparation of, explained, 118
- centrosphere, in syngamy, 119 f , 166 f.
Core:le, 1sif fe, 10:3, 30.

Cessation of the depressing conditions, 2 O 0
Chain of proximate causes, 239 f .

- of reasnming: 2-1

Chains of force, material, 111, 12:3
"Cla alkstuff cas." is11
Chambers, M., II. Fraser and, 1 io
Champion (billiards), 2!!1

- potato, 19

Clance. laws of, 293
Chances, future, 211
Chamre, extermal (stimulus), 229

- permanent, $27{ }^{-1}$
- in conditions, nutritive psychian, 188
- in organism, 264i
- "f character in thyroid discase, 1 ! 2
- of habit or of host, 20
- of opimion to monism, liutler:-, 2.50 f.
- rest and, :3:;
('hangerl times, $3(\%)$
C'lange (s), ablaptive, 200
- internal physionqienl, 272

Changes, at surface and extemities, $21!$

- :nutumazl, 311
- setsonal uf games and dress. 31:
Chantic, 2-1
Characese or Brithewnts, 1iñ. 17:
('harater, chanechl, 192
- of Dehaviour, 2-1
- of living being, 222 n., 23.4
of machines, 22: n., ":
- of organs: deturmination of, 104
- of self-inljustment. 22^{2}
- unconscious, of continuous memory, 28911.
Characters, acquired, transmission of, (hin)ter Vh, 173f., passim, 2.50, 268, 2s.
- alaptive, $1 \mathrm{mrtful}, 185 \mathrm{n}$.
- evoked he conditions, 20 12
- nerve, 18.5
- of pistil, 308

Charge (electric, ctc.). 107

- of chromosomes, 119 f .
- (')arles barwin and samued Butler, a step towarts heeonciliation,"

('hates, Sir thandock, l!of.
(hart, temprature, $2 \times 7 \mathrm{f}$.
Charts, wenher, 315
Checker of fuctory, 22 1
＂Cheerful and optimistic tempera－ ment，＂ 216
（thela（＝disciple）， 218
C＇hemical and plysical nature of liviug things， $2 s 1$
－change in orlerly iloflımic：suc－ cession，78， 26.1
－composition，22li，25（；
－coneeptions（sce also plivico－ chemical），256
＂－fertilisation，＂ 142 f．， 197711 ．
－Hrocesses in cell－firlıl， 123
－processes of mganisul，2：3：3 f．
－stimulation（fertilisation）of exrer． 142 f．
— substinces，slefinite。21i3，2i．），2（i．1
－transformations，2：3i）
Chemico－plyssical grounts， 271
－－selonol，2ti2，27（） 1 ．
＂Chemische Entwioklmonsorrogumg des＇liarisclent Eias，＂IJu
Chemist，12isf．，＂3！f．
－achicvencmits of．218
（＇hcomistry． 2 lif f．，20．3，2．）．
－organice，12：
（＇hicages selomol，112
＂Clicf biolocric：al thinkirs athal in－ vestigators，＂＂201
Child（rent），206；31．i，f．
－younse 20゙す
－celncation of，2Sl
－（Suffolk），：3on
Childish inthropomorplsism，225
Clildren＇s lısbit， 181
Chinese white， 311
Chip，Hint，2：2
＂Clives＂（ $=$ stamens）， 310
Chlamydoylirys，17：
Chlorochytrixm，171
Chloroplyeere（ $=$ Green Seaweerls， ๆ．v．）， 171
Chmielewsky， 156
（＇luistchurclı（N．／．）， 26.9
Chromatic network，25， 97 f．， 10.3
Chromatin gramules， $17 \mathrm{f} ., 124,138$
－mechanical function of，！ 7 f ．， 13！f．
Chromatomeres（ $=$ cluromosomes）， 133
Chromosomes， 98 f．， $10 ; 3 \mathrm{f} ., 107 \mathrm{f}$. ， 119 ， 120
－number of $1: 30 \mathrm{f}$. li：2
－of Liliacere， 108
Clirvsanthemums，67
Cienkowsky， 22
Cigar－box camera， 259

Ciliate Infusoria（see also Infusoria）， lifr－cucle of，20 f．
＂Cirentar rearetion，＂ $270 f ., 277$
Civilisation，2016f．
（＇ivilised life，21－1
－mations， 2 （1）
（Tullophora（ceer），1i1， 173
C＇lam to roymatic nuthorloxy， 216
－of Wéeismannists，2U．）
（＇lisis（is）of mistecrites of matter， 2.11

Clasis demonstrations， 30 s
－hours， 31.1
－teachingr．30．t
（＇latsilic：ation of facts， 208
－of momories， $2 s$
－primeiples of，＂lis
（＇lassrooms，300）
C＇learingr for action，212
－（tisshes，etc．），！ 1
Clearago of oovpermin（＝icgmentation， （1．5），237
（＇lork－Maxwell，J．， $11: 3,21 ; 1$
（＇lnb－mossics，spures of， $11: 3$
（＇lnster－r＂up，15：（） $11,17.111$.
（＇Onl，combustion of， 227
 somes to form itholoi，10．3
Coocilliacere（see also Syoro\％ni） ！ $10,15!11 ., 172$
－zygotes of，172
Crelenterates，proparation in，\％（）

Cohesion of eggs of $A / y /(e s, 189$
Coiled spring， 223
Coincirlence，frrquent，of wornt：oic and reduction divisions， 131,152
Coincidences of rifferent phenomena， 277
Collar of cells of Iroterospongiet， 42 f．
Collateral celluliut tiansmission，1！f．， $67 \mathrm{f} . \mathrm{1} 129,2(1], 257$
Collecting－box， 317
College of Preceptors， 314
Colloids substance of cell，23．1f．
Colloils，2：3\％
Colonial form， 135
－organism，fis
－propagition of Flowering－plants， （65f．
Colony（ies）， 2
－l＇rotistic formation of， 11
－of I＇andoriua，1－1， 15
— of Proterospongia， $1: 3$

Colour，fceling for， 290
Coloured protoplasm（chromoplastids） of vegetal l＇rotists， 51
Columbia Unisersity，19．
Combination，chemical， 2 la 2
－mental，of memories movement． ricurds，categuries， 2×5 f．， 293 f ．
Combinations of germs on Lmphimixis hypothesis the source of variation， 17 f ．
－of variations produced lie syn－ gamy， 161
Combustion， $8: 3$
—of conal， $2=7$
－luw－temperature，his n．
（＇ommemoration（l）arwin）volnmes． 2゙は1）f．
C＇ommerce（l＇ritish），3（K）
＂（ommon deseent with divergence，＂ $211 ;$
（＇ommon good，1s！
Commmmication，caty，32
（ ompunsat ion，vital，2l＂
－for imp：imment，： $2: 1$
－for wear and tuar，ge：
Competition， 211
－of detwminants，I！！
＂（＇omplete and Irmgrenate＂met hod－ 203
－amimal from incompletic cmbryo． き3tif．
－organisms， 187 n ．
（＇mmpleteness，3013
－of Wrismantsm，sui
＂Comples and unrewolved，the，＂as datum，2テ！！
－heings， 250
－charactir of Lamarekian thans－ mission， 197
－chemical changes， $\mathbf{\text { s }}$ ，261
－instruments，2．59
－mathines，seg
－organism，2．0．～f．
－pirchical＂ouipment，2T～
－referred to simple， 2 es
Complexions，1：！
Complexity of forces， 195
－of germ－plasm theory， 198
Comprostion，chemical，202；
－interchanges of materiat， 23
－（loyieal），301，31：3
Compressed eqg，embryo， $2: 36$ f．
Compressing sku！l，： 210
＂（ionceived system of reality，the，＂ $\because 12$

Cincentation action， 270
Coucept（ C ） $2 \mathrm{Z} \boldsymbol{5}$
C＇oncept of memory enlarged， 27.1
—of＂mmeme＂defined，2T． f ．
Concepitm，interpolation， 293
— of memory，oraf．
－of mature of matter， 2.50
Conesptims，unitary，关家
（＇oncertenlaction（of inorganic world）， 2.53

Comblusion，logieal， 205
－of＂lack or C＇muning，＂2．55
Comditioned by antecalemts only， 21
－trp，2！3sf．
fomlitions，mextem，17fif．
－ill，enfor blinge，：丷天；

－miform，2－5
－tif wetmination，14； 172
of rearimer，linf．
Concheting heat，2：－5
（＇ombluctor of heat， $11: 3$
Conferv：に，15．5．， 157
Confumion，30：，

－cmal，$\because-1$
Combrlation，2：3
（imsenital ipnalition，こ̈（1）
Comifer，lsin．
Conjugater，conjngater，13．j，list
Compugate maclei， 1 in．
 16.5

Comet tion of clement of organism， 1～i
Conseriention lemather，sut
－Concriuns antmata，＂ $2 \underline{2} \mathrm{f}$ ．
－allowaner，evaluation，julgment， 2！！ 1 f ．

－alution，2！11

（omsensis（appirent）of physiolo－ gists，201
－uf scientitic upinion，205
Conserpmence of cell－fusion，nuclear reluetion a．135
Conservation of energy，of matter， 217
＂Consermative＂actions，233
Constany，hereditary，13！
comstant reaction，2：\％
＂Constants＂＂：hilliards，291
Constitution as rilued to genn－plasm， $1!7$

Constriction, division of mutens by, ! 14
Constructive changes, 23t;
Contempuram Rericu, 196
Contest between osmotic and mitokinetic furee, 11 s
Continuance of the beneficiat, 270
Contimmed personality, $2 \tilde{4} 4$
Continuity, 289
Continuons enrve, 247
-- homogencity of stirp, $21 ; 0$

- interpolated memory, 2s?
- personality, $26!$
- whole of incmories, oxf

Continuomaly st.rentuons, :30f
Continuum, stirp a, 260
Contour-lines, 303
Contractile vacuole. $1: 3$
"Contributions to the situdy of the Behavior of Lower Animals," :271
('ontrivance (merlanism=).921
Control of boly, nervons. 2tiz
Controlling appasitus of l'pats, rentral, 152 11.
('ontroversial vialuc, 202. 2e, 22

- prost-Darwintan, 261

- betwern vitalistsadedmechanicists, 221
('ooking wards off patasiles, 32
('o-operatiom, 143, 187 11., 211
Co-nperative propagration, law of, 5,0 f.
- work and growth, 26;3

Co-ordinated response, 294
Co-orlination, 2.9.9

- in Plants, 182 n., 259
"-somatic," 135
Cope, Irof., 2 (2
Cork, cork cambimm, womncl-cork, ti f., (i.) f.
-formation, 73
Corks, 316
Correct intonation, 291
- lerminoloyy, 308

Correlated facts, 202

- phenomen?, 263 f.

Correlation of variation. 177
Corresponding modilications, 27.1 f .
Cosmic, 2si
Costers' barrows, :31:
Counting to slee p, 2!)
Compled-cell = fusion-ecll, z.Tgote, q.V., $5 \mathrm{n},{ }^{3}, 3 \mathrm{n}$.
Conrse laken by organisms, $26 i 6 \mathrm{f}$.

Court of science, 213
Consin-nuclei, 15%
Crab-apple, 310
Cramp, William, 121 f.
Craving for unifieation, 2.11 n .
Creations (neecssitaterl by catast rophes), 249
"Credunt quia impossibile," 177
Cretan Fern, $6: 1$
Critical power. Butler's keen, 281
Criticism of hering's nse of "memory," 273 f.

- of lamarek's laws, lankester's, $2(11 \mathrm{f}$.
Cross-fertilisation of hermaphrodites, 30 f .
- pollination, 307
"Crossed figurc," 11:3, 111
(Crucial tests, 210
Crumpled paper lon stopper. 311i
Crustacea, cope of errtaill, 172
('ryptogamic: I'lats, 10.5
('restallime, 302
Crystallisation, 2:3-1
('nltivation, motes of, lsti
Cuiture liquid, 1 Sk
"Cuming, late or," 211,253
('muinglam, Dr. .I. T., is n., $1!2 \mathrm{n}$ n., 24i2, 26.1
('nratorship, 316
Current electricity, 11!
Curve, interpolation, ¿2sfif.,
- of tides, 299
- statistical, 246 f .
- temperature. 314
curves of antomatic draughtsinan, 293
Cut. to, 22.1
Cutting, 26
Cyatcer, $1: 59 \mathrm{n}$.
Cive (life) of I'rotist, cellnlar, 161
- of Ferns, 60 f .
- of Infusoria, 厄1
- of Mosses, 5sf.
— of L'luthrix, 52
Cyeles of organic raees, 3:3
- of reprolluctive processes, 38

Cycling, 296
Cyelists, 2! 5
Čist-wall of aggotes, 171 f .
Cytoramy, 96, 150
Cyological (study of fertilisation), 151
C'rtologists, 130
Cytophore of sperms, of malaria parasite, $39 \mathrm{f} .87,124$

Cytoplasm, 2, 87, 90, 93 f., 97, 141 162 f., 167

- parental around zygote, lit
- working, 87
- alveolar strueture of, $117 \mathrm{f} ., 168 \mathrm{n}$.
- most affected in differentiation of gametes, 6
- of male eell and female cull compared, 2 s
- of sperm, 167 f .
- proportions in male and female gametes, 161
- róle of, 162
- structural whanes in, iluring mitosis, 99, $101 \mathrm{f} ., 103 \mathrm{n}$.
C'ytoplasmic investment of sperm, 160
- network of Radiularians and Foraminifers, st;
Cytoplast, 24, 93, 121
Dallinger, Rer. WV. 11., 1־2
1ham, beaver's, 224
Damaye 1 İ9, 230 f .
- effective, 21:

Hamped (oscillations), 22:3
Darwin, (harle-, 19, 31 n., $75,176,1!16$, 211, 213, 245 f., 215, 2ifif, 2., 7 f., $264 \mathrm{f}, 2647,27!, 316$

- celebration, commemoration of, $204 i$
- Erasmus, 218
- Francis, 216. 21:3, 2.50, 27af.
"1)arwins, the," 304
1)arwinians. $7 \geq$
" Iharwinism," 19t;
" D:arwinism, Deadlock in," 2 āt f.
Dates of matmral plomomena, 311
- of Butler's works, : 11

Diatum, the complex and mure:olven as, 2 - !
Dangliter-cells, 3 f., 37 , 87

- centrosomes, 99 n .
- eliromusomes, 99 f., 103
- -1utlei, 91 f., 130 f .
- reorganisation of, 124

Daybook, phenological, 31-1
Days, long northern, 18 i .
" Deadluck in Darwinism, The," 2.14, 256 f.
Death, colonial, Fintrox, 5i3; Mosses, 58
-- effect on tissues, 9.4 f.
De Bary, lrof. Anton, 308
Deeay of mechanicism, 220
Decoration, flower-painting for, 312
" Decussate," 309
Deduction(s), 306

- mathematieal, 265
- memorised. 293

Decluctive inference, 212
Defenders of Lamaretian views, 261 f .
Deficiency, transmission of, 178 f .
Definiteness in heredity and variation, $2 \$ 1$
Definition(s), 221

- of machines, 22.2, 208
- of 'Things at Large, 22?
1)eformity, $23 t i f$.

Dettuess, 311
Degeneration, 20, 200
Degralation of race, 20

- of Infusoria, 21
- of parents supposed be Strasburg to be eliminated in conjugation, is
lelage, I'rof. l'ves, is u., $16 \div, 170$, $197,213,264$

1) hayed brood-formation, 90 f .

- karyogamy in špyrog! ra, 156
- union in syngany, lüo

Deliberate actions, 224
Demon, sorting, 2til
lemonstrations, 308
Demly, Arthur, l'rof., 19.5 11.
lhensity plant, 126
Depatment of Asrionttrre and Technieal liclucation, 315
Departure of migrant birls. 311
Dependence of stirp on soma for murishment, $1: 2$
"Depularised" thonght, 252
Depressing conditions, movements, stimulations, 270
Depression in 1 nfusorian evele, 21 n . Descartes, 2es
Descent with divergence, 216

- hypotheris(es), theory(ies), 31, 156, 1Ni, 218, 24! , 250 f ., 26's
Description, 225
- of plants, 307 f .

Descriptive botany, 300
Desiceation, 81 n .
"Design "argument, Paley's "watelı and," 226
De:igncel (automata), 223
Designer of programmes of tuition, 295
Desire to shine, 30.4
Desmids, syngamy in, 1 GG
Despatcher (tiain), 240
Despotism of nncleus, 162

Destroyed parts, 227
Destructive ehanges, 23.
bétente, ation á, 2e!!
Detcrioration, 1! f., 2(10, 20fi, $21: 3$
"Determinants," 70 f., 1 !: f f.
Vevelopment, $145,2633,263$
"- ind Evolntion," 270

- embryonic, 18.1
- of germ, 1.44
"- of doginas:," 1 !! 11.
- of indisidual and of race, 2s0

Deviations, indisidual from norm, $1 f 1$
De Vries, Hugn, 2 fil f.
Diastatic femment, 81
Diatomacese, Jiatoms, symgimy of 10% f., 172
"Diatomen-litteratms," 170
"Dice-box" thenry, 72
Jicotyledons ($=$ lixogens: q.v.) , 6.i)
Dietionary equivalents, 29:3
Difference in use of symonyms, 292
lifferences of mutrition, $\because 0^{\prime}$)
Differential staininer, ! ! f.
Differentiation, binary, of gametes, 147

- latent, 118
- reflected sexual, 161
- amoner cells of a colony, 11 f.
- of ganmetes into two or three catcgories, 1 f .
- of machines, 22. 4

Differentiations of embryonic cells, 233 , 257 f .
1)ifficulties, geometrical, 229

- in Weismannism, 16, 1919

Difliculty in class-t earhing, 30.4

- in mechanism of transmission, 205
- of technical terms, 310

Digestion by sperm in eqge, 167 f .

- in cell protoplasm, 82 f .

Digestive ferment, process, 81 f .
Digby, 11., 98 n .
" Liploid," 137 n.
Direet brood-formation, s, f.

- division of eytoplasm, 10.5 f .
- cxcitability, 275
-reaction, 259
Directing qu:llity, 268
Direction of machine ly organism, 227
Directors of education, 279
Disadvantages of position, 195 n .
Disa ppearance of fooch-stuffs, 315
Diseession of chromosomes, 103 f ., 106
Diseharge, energy of projectile, 229

Disciples of Darwin, 2 19

- of spencer. 128

Discontint, organie, 267

1) iscontimoma memories, esfi
"— Variations," 2fit f., 241
Discovery of new foree, $9: 3$
Discase of thyroid insufficiency, 1.91 f .
Discase(s), 2:31

- microbic, 182 f .
- new and old, 211

Dislikes, likes and, 271
Dislocations, 190
Disorder in cell-cyele, 26

1) isparity of surfice alld bulk, 230
hivplecement of nervous syatem, $1: 1 f$.
Disproof, experimontal, 21ュ

- of Lamarck, 202

Disruption of muctes, 15! n.
Disscetion, inimal, 312

- 1lant, 307, 311

Disuipation of (energy, 227
Dissip:ative chamges. $2: 31$
Dissmanee of fumetion between eytoplasin :mal nucleus, 2\%) i.

1) istance, jultying, 28.5

Distinction (s) between goometrical "lines of forec" and miterial "elians of force," 111 f.
1)intinctions between machines and organisms, 227

- between machines (on lools) ind Things at Latrge, 252
- hotween organic and inorganic, 252
- of elasses of aggregates of matter, 2.11

Distinetness of ecell-division amd of muelear elivision, 10:

- of progamic and of rednetion divisions, 152
Distress, 2:30 f.
Distribution of determinants, 19.1
- of muclear elements, 195

Distributive (= " Erbsungleich ") division of germ-plasm, 70
Disyllabie numbers, 294
Divergence (of species), 240

- of centrosomes, 99

Diversity of evidence, 21 4
"Dividing Cell, Dual loorec of the," Cliap. VI, 138
Divination of meming, 291
livine, to, the past, 258
livision(s), direet and indireet, of cytoplasm and mucleoplasim, 108

Divisiun（s），distributive（erbsungleich）， 70
－muclear， 91 f．，172， 195
－partitive，109， 195
－into like machines， 29
－meiotic，of cells， 1330 f ．
－multiplication，reproduction by，3T， 232， 258
－of centriole，09，102，103
－of centrosome， $18,10 \geq \mathrm{f}$ ．
－of orgnnism，23！
－of egg－semmentation．1．11
Dixon，A．，and Hartug，se
＂10I wake！Dol（Irean，＂etc．，21！
1）netrine of cirentar reation，of（＇11－ grann：2プン
－of common descent， $216 ;$
－of continnous pervonality，2ы；
Dodel，Prof．Arnoted，ę
Dotlein， $1 \overline{0}$
bog．2it；
Hogran（s），biologrical， 178
－Neo－Darwinian， 1 is
＂Dogmas，development of，＂ 191 n ．
Dogmatic orthorloxy，Q14；
Homain of Liology， 216
Homestic races， 263
Wominamt， 190 n ．
＂Dormant＂determinants．germ－1）：asm． i：3 f．， $1: 11$
Dor－al，3u9
Double purentage，il in．
－sac（gast rula），233；
1）marhltsman，2！（1）
－antomatic， 293
Drawing，30：3
－of plants， 307
Drawings．llower，31；architectural， 312
Dress．reformer， 210
Hriesclı，Hans， 267 f．， 271,279
1rinkers， 911
lhat fiedt，arigin of， 12 s
Dual force（s），11：3f，12！
－－louree of the l）ividing（＇ell，（＇lı．VI
Dublin，27！
Dull，the， 301
Dullards，211，：31．1
1）unctin．269
1）upliention of chromatingranules，es f． －（of inventions），$\because 20$
Jyer，Sir Willian Thiselton，199， 213
Dye－stuffs， 91
l）ymuic agency of cell－fichld， 101
－Cherey ol determinants，19t；
＂Ear，gnod，＂ 291
Earlier thought，Butler＇s， 246 m ．
Early embryonic stages， 236 f．
－ripening， 187
－Victorian education，302
liarth，inovements of， 211
Fasy fatiguc． 230
Echinits，Echinodermata，Echinn－ derms， $99.10: 3,143,149,161$ f．， 150
Ecnumic views，social and， 200
Eennomy，principle of， 74 n ．
Ficphorin， 276 n．f．
1：ctocarpua，1：32，143
Letorlerm（ $=$ epidermio layer of em ． bryu，epiblitit，（q．w．）， 14
Bumeworth，Miss Maria，299
Dititions of＂Oripin of species，＂2fil
lducation of children，ご늘
＂Education and the Fullness of Life，＂ ：30！n．
Effect of picture， 290
Effects of alcoholism，2It
Bifference，2itin．f．
Fillicieney，231
－restoricd，2．27
Fiffort，independent，30：5
＂ligg，＂various meanings of， 115
Heg（s）（ece also oosphere，on：prm）， if．， 111 f．， $1+4 \mathrm{f} ., 1 \mathrm{~A}, ~ 2.5 \mathrm{~s}$
－entiproned， $2: 34$ f．
－fertilised，4ī，133， 1.11
－matured， $145,151,153$
－merogonic，of Ale？onarians，lisis
－－non－mucleated frayments of，（n－ tered by sperm，29， 161 f ．
－ovarian， $10,-\overline{5}, 115 \mathrm{f}$ ．
－parthenogenctic，143，165， 172
— segmenting，$\varepsilon 2 f ., 85,!0$
－stmmer， 1 关
－winter， 1 i 2
－Alytes，1smf．
ligotism of organism， 241
Flastie network（Rhumbler＇s）： 11 I
Elasticity，291
－of gases， 301
lilder pith，twirs， 301
Electric arc， 179
－plant，2e7
－spark，229
Electrical accumulators，227， 269
Electricity， $92 \mathrm{n} ., 118 \mathrm{f} ., 231 \mathrm{f}$ ．
－current， 119
－statical， 115 f．， 301
Electrolyte，solutions of， 23.4
Electromannet， 112

Eilcetronagnetic plant, 126
Electrostatic charec, 12.1

- field, formation of, 123
- force, 122. 125, 233
- induction, 101
- model, 112
- speet run, 109

Elementary chucation, 302
Element(s), nuclear, 195

- of germ plasm, 192
- of organism, individual, 182
" Elements of Metaphysics," 222 1.
Etimination by matural selcetion: 164, 177, 180, 211, 256
"Elimination" explanation of polar borlies, 12, 152
Eliminator, 214
Elongated (=blubbed, (f.x.) centrosomte, 115 n .
Emancipated mother-cells of cancer, 135
Embankment, 224
Embryo, 145, 183. 23s, 239, 260
- compressed, 23!
- development of, 233 f .
- -sic, 1832, $135 \mathrm{no}$,

Rimbryolugists, expurimental, 1 !es
Embryology, 23: 5 [., 210

- experimental, 187 n .
- study of, 233

Embryonic cells, 17 f., 59 f., $2: 31 \mathrm{f}$.

- primary, segmentation cells, 257 f .
- development, 184
- layers, 45 f.
- stages, carly, 238
- tissue, 6\%) f., 187 11.

Euincnt judges in scicnce, 21:3
"Einotions, The Expression of the," 211 f .
Empirical methods of teaching, 295
"Encyclopredia Britannica," 201
Encystment of zagote, 171 f .
Find-shoot (=leader) of Conifer: 18711.
Endogamous Algie, 30 f .
Endogany, 22 n .
Euclokaryogamy, 160, 174
Endothermic, 83
Energy, 222

- Biotic, Biological, 2.12
- conscrvation of, persistence of, 217
- directed by entelechy, 268
- discharge of, dissipation of, liberation of, 227, 229, 23.4
- forms of, 269

Linergy of determinants, dynamic, 194

- of teacher, 316
- stored by organisms, 227, 241
- transformation of, 217, 262

Eufecblement, enfeebling conditions, 206
Fingine, 23 ?
English, masterly, 2.48

- biologists, 206
- botanists, 199
- vitalists of the serenties, 2185.
- \%.oologists, 199 f .
"Engram," engraphic, 272, 274 5 .
Enlarged concept of memory, 271
Enlargement of rygote, 171
Sintamaba, zygote of, 172
"Entelechy"," 268
" Entianon sunt multiplicanla preter necessitatem." 242
" Entity," assumed, 242
kintomostracan, eggs of, 1.45
Entrance of sperm, 151
Enumeration of alleged "reduction processes," 131
Envelope, eytoplasmic, of sperm, $16 i 7$ f.
Environment, atrion of, 178 f., 210
Epiblits1, see Ectorlerm, 47
" Epicycles," 71
Epiderm, general, of cmbryo, 18.
- of vertebrates, 48 f .

Epidermic layer of cells (- cetodum, "epiblast"), 17
Epigynous, $30!$
Epilepsy, acquired, 210
Epiplasm, 87
Episodesin Dr. G.A. Reid's cssay, ,20)f.
Equal pairing-cclls, 112
Equatorial plate, 99, 10:3 f.
Equilibriun, 222 f.

- labile, of organism, 76

Eguipment of elementary orgrinism, 278
Equivalent(s), dictionary, 29:3
Eipuivalent transuission of elements of nucleoplasm, 101
" Erasmus Darwin, , ife of," 25.3
Erbsungleich (=distributive nuclear (livision), 70
"Erewhon," 219, 244
"Error, trial and," 271
Essaycttc on facts, 208
" Essays on Lifc, Science, and Art," by S. Butter, 24t
Essentials of "Life and Ilabit," 262
Ether, pulsations in, 121 f .

Fton, 299 f .
E'udorina elegans, 6
Europe, Central, 186 f .
European, 3:, 191

- Salamanders, 193

Eurotium, zygote of, 174 n .
Euthyschist, 91
Evalation, conscious and unconscious, $2!4 \mathrm{f}$.
Evaporation, 234
"Evenings at Home," 298
Evidence, 214
Evolution, factors in, 204 f ., 213,

- of adult from cell, 235
- of binary sex, 14 f .
"- of Sex," 8j
"- Old and New," $2: 4,247 \mathrm{f}$.
- Wallacian view of, 203
- theory, 24 f .
"Evolutionary Biology, Principles of," 195 n .
Evolutionists, older, 254
Examination papers, 308
Exarninees, $\$ 13$
Examiner, The, 266
- external, in botany, 313

Exceptional variations, $26{ }^{\circ}$
Excitability, direct, 275
Exconjugate, 21
Excretiou, physiological, 12

- processes in gametogeuy, 131

Exercises, technical, 307
Exoganous gametes of Trichospherrium, 155
Exogamy, 13 f., 31, 147
Exogens = Dicotyleduns, 65
Exothermic, 83
Experience(s), 255, 290, 293
Experiment, 209, 212

- transfusion, Galton's, 75 f.
- teaching, Henslow's, 301

Experimental and laboratory facts, 209

- disproof, 212
- embryologists, 198

Experiments on transmission, 273
Expert, literary, 246
Explanation, Balfour's, Neo-Darwinian, 185, 256

- Hacckel's, 235
- scientific, 218
-by final canse, 226
- of "hands-off" cycling, mathematical, 296 n .
- of living processes, 271
- of organic world, 268

Explanation of origin of nervous system, 184
Expression, feeling for, 290

- of discontent, organic, 267
"- of the Emotions, The," 211 f .
Expressions, impressions and, 286
Exteuded conceptions of interpolation, 293
- definition of nature-study, 305
- knowledge, 287
- meaning of "memory," 273 f .

External change (stimulus), 229

- conditions, 176 f .
- examiner, 313
- (erubryonic) layer =ectoderm, epiUlast, 47, 184
- world, 181, 29 ?

Extinction of Infusorian cycle, 21
"Extracts from the Notebooks of the late Samuel Butler," 244, $258 n$.
Extra-ovate, 162
Extrapolation, 287 n.
Eye, defects of, 183 f.
"Eyes and No Eyes," 299
Facets of squatting races, 193
Fact(s), correlation of separated, 302

- in science, value of, Dr. Archciall

Reid ou, 2u4, 208 f., 212

- proven, 260

Factors kuown and unknown, $28 j$

- Lamarckian,17tif., 192
- in evolution, in variation, 211, 213
- of behaviour, 260
- of life, 127
- of natural selection, 211
- of tilal curve, 294
- of variation, causal, 176

Fuctory, metaphor of, 221
l'acnlty, 296 f.
Fatdlist, 240 f .
Fair skiu, 178 f .
" Faith, mild expression of," 256
Fall of Howers, 31.4
Fallacy(ies), 214
" - inductive," 73

- of "original research," 306

False brood-formation, 90
Familiarity with plants, 308
Family- and cell-descent in Higher Animals compared, 46

- governess, 300
"Fanciful system of Weismann," 198
Faraday, Michael, 109 f.
liarmer, J. Bretland, l'rof., 98n., 129
"F'ascinating," of workmanship, 293 n .
"Fastness" at billiards, 291
Fatigue, 230 f .
Fécondation, 141
"Fécondation Chimique ou Parthénogenèse," 170
Fecundation, 140
"Feeble-minded, Report of the Royal Commission on the Care and Cuntrol of the," 213
Feeder (rays), 168 n.
Fecding, 312
Feeding with thyroid, 192
"Fecling," artistic, 290
Fcelings of parents, 312
Fellows of the Royal Socicty, 247, 274
Female (see also Oospbere, Egg), 27 f., 161, 190 f .
- eggs of Rotifers, 145̃ n.
- of Alytes, 18!)
- pelvis, 190, 198
- "fertilised " by, 140

Ferment(s), 168 n., digestive, 81 f .

- organic, 234
- formation of, 144
- starting development, 166

Fern(s), 8 f., 10, 60 f., 71, 131 f., 301
Fern, arcliegone (flask-organ) of, 10, 61 f., 158

- life-cycle of, table iii. p. 63

Ferns, spores of, 132, 135 n., 143
Fertilisation, fertilise, Chap. VI, passim, 7, 22, 28, 31, 39 f., 132 n., 140,196 f.

- chemical or physical, 197 n .
- cross, 31
- merogonic, 161 f .
- of malaria parasite, 39 f .
- of Mosses, 55
- an ambiguous term, 164
- bibliography of, 170
- disadvantages of term, 7, 146 f., 164

Fertilised egg (=00sperm), 45, 132, $133,141,145$
"- -" of Rotifer, Greenfly Entomostracan, 145

- germ-ccll, 210
" Festschrift, zu Mendel," 189
Fever-patient, 287
Ficld, cell-, 112
- bipolar, 107
- crossed, 114
- electrostatic, 123

Field, hyclrodynamie, 120

- magnetic, 112
—mitokinetic, 121, 124
- of tension, 116 f .
- osmotic, 115 f .
- spindle, 114, 120

Filament, nuclear, 98 f., 171
" Files of granules," 95 f .
Filiation of segmentation cells, 238, 2!!!
Film-fern, 64
Filtration, 2:34
" Final cause(s)," 101, 127, 138, 226

- of karyokinesis, 138

Fine ladies, 240
Finger pressure, 22̄
liire, to strike, 224
lish(es), 312, 315

- ovoviviparous, zygote of, 173

Fishing villages, close breeding in, 31
Fission (see also Division), 3, 25

- multiple (see Brood-formation, Chap. III, p. 79 f., passim), 131
- progamic, $140,151 \mathrm{f}$.
- of centriole, of chromatin granules, of cell-body, 124
Fittest determinants survive, 198
- survival of, 176 f .
lixing process, 95
Flagellate(s, -it), 287
- Green, 2
- zygote of, 171
- character of sperm, 7

Flagellum, 2, 155; of Ulothrix, 4
Flasks (=archegones of Mosses, Ferns, etc.), 10,61 , 62
Flat-licad Indians, 240
Flatworms (= Planarians), 11 11., 50
Fledging, 314
Flemming, W., 97, 130
" Flesh" of fruit, 310
Flexible inductors, 108, 111
Flexions of disceding chromosomes, 108
Flint chip, 222, 224
" Flora," 307
"-, The Origin of a Land," 197
Florider (Red Seaweeds), 132, 152

- progamic fissions in, 157
- zygote of, 173

Flower(s), 314 f .

- lateral, 199 n.
— winter, 33
- of the ficld, 300 f .

Flower(s), deseription of, 308

- exogamy superimposed on sex in, 13
- fail to ripen all their seed, S
- fall of, 314
- self-sterility of, 30
- painting, 311
- pots, 316

Flowering-plants, 135 n ., $14 \tilde{\mathrm{u}}, 18 \mathrm{~m} \mathrm{n}$.

- absence of centrosome in, 149
- alternation of generations in, $6 \cdot 1 \mathrm{f}$.
- mitosis in, 10\% f.
- progamic fissions of, $1: 58 \mathrm{f}$.
- propagative bedies of, 143
- reduction in, 131 f .
- 2ygote of, 173

Fluctuations, 264 f .
Foam-structure, 116 f .
Foes, 211
Fol, Hermann, 96
Food, 194

- disposal of, 229
- materials, 187 n .
- supply of borly and germ-plasm, 18:
- utilisation of, 2:30

Foot, stump of Newt's, 17?

- joint, 191

Foraminifer(s, a), s6

- shell of, 195,208
- zygote of, 171
"- lores, new," 129, 226
- dual heteropolar, 124
- polarised and centred, Newtonian, 105
- strain, $2: 33$
- vital, 125, 217, 212
- in cell-field, analysis of, 124
- of uncertain significance, 124
- without clear analogics clsewhere, 124
- use of term, $92 n$.

Foresight, 226,304
Form and function, 28

- feeting for, 290
- of answers, 313

Formal explanation, 278

- hepothesis, 257

Formalin, 316
Formation of ferments, 144

- of mitokinetic field, $12 \cdot 1$

Formula, interpolation, 160
Fortnightly Revicu, 200
Fossils, 267
Foster, Michael, 126, 220, 232

Foundation, objective, of W"eismannism, 195
Fowl, 312
Fractures, 190
Fragment, animal, 50
Fragments, leaves, of Moss, propagation by, $58,6 \pm$ f., 73

- non-nucleated, of egg entered by sperm, 161
Francotte, 153
Fraser, Dr. Helen (Mrs. GwynneVaughan), 98 n., $14 \times \mathrm{n}$., 170
Fraser, 11., and M. Chambers, 170
Freethinkers, 218
" lirench lievolutionary School," 249
- Schoul of Mechanicists, 197

Frequency, relative, of anaphases and metaphases, 106
"Frestu blood" in cell-life, 2S
Freshmess from fission of gamet.nnuclei, lüt f., 166
Friction, 291
F'rog, 312

- embryo, 239
"-hybrid between needle and," 142 n .
- segmenting eggs of, 82 f .
"Front" (of a eat), 309
Fructification, -Xicidium, of Rusts, 150 n., 174
Fruit, 31.5
- mature, 308
- ripening of, 31 t
- trees, 1!)

Fry, Sir Edward, 64 n.
Fucacere (\quad the large Olive Seaweeds or IVracks) ; F'ucus, 8, 9, 134f., 153,154
Function, form and, 280

- of centrosome in syngamy, 149
- of chromatin granules, 101, 138 f.
- of developing germ-cell, 236
- of sperm, digestive, 168 n .
- of syngams, 163 f.
- phissiological, of nuclear reduction, 137
——of progamic fissions, $12,152 \mathrm{f}$.
"Fiundamental l'rinciples of Heredity," Chap. II, passim, 129, 192 n ., 263
Fungi, 22, 1 $50,160,17 t$
- Ascomscetous, reduction in, 135 n .
- endogamous, 31 n .
- parasitic, 23
- reproduction of, 145

Fungi, resting-spores of, 143
Fusion ($\boxed{0}$ yngamy, q.v.), 152

- nuclear, 165
- sexual, 258
- of associated nuclei in Saprolegnie, etc., 160
- of sperm with cgg, 141
- cell (=zygote, q.v.), 4 f., 38 f., 45, 132 n., 146 f .
- of Mosses and Ferns, a parasite, 55, 60
- nucleus ($\mathrm{i}=$ gametonuclei, q.v.) of Urerlincw, 174 n .
- proccescs (=syngamy, q.v.), 132 n., 148
Future as determining cause, 240
- nceds, 232
- purpose, 222, 224, 252
- the, a factor of life, 127
- variations determined by, 211

Gallardo, Prof. Angcl, 109
Galton, Francis, 75, 180 f., 238, 260 , 286
Game, jewcl, 303
Gametc(s), (=pairing-cells, q.v.), 4 f., 90, 156 f.

- equal, of $A \lg x, 30 \mathrm{f}$.
- unequal, of Eudorina, 6
- potential, 144
- of Gregarinacere, 172
- of threcfold differentiation in Pandorina, 14
- fusion of more than two, 6
- parentage of, 164
- mother-cell, 40
- essentially zoospores, 153, 166

Gametogonia (parents of a brood of gametes), 131
Gametonuclci, 156 f.

- of Ustilagineæ, 157

Ganctophyte, 57, 59

- of Flowering-plant, 65

Gaps in knowledge, 209
Garden, school, 314, 316
Gardener, 304
Gas(cs), clasticity of, 301
Gascous, 223
Gaskell, A. Milnes, 83
Gastrula, 45 n., 236
"Gedächtniss," 275
"- als allgemeine Funktion der organisirter Substanz," 250
Geddes, Patrick, 8 n. f.
Gegenbaur, Carl, 317

Geikie, Sir Archibald, 248 f.
"Gemma," "Gcmmaria," of Haacke, 76
Genimules in Pangenesis, 75, 84 n .

- of sponges, 145

Generation by insect mother, 241

- present, 216

Gencrations, 181

- alternation of, is 9 f .
- antithetic alternation of, 166
- in respect of nuclear reduction, 136
- successive, 179

Gencrative nuclei of pollen-tube, 159
Genic, guiding, 261
Geniuses, 301
Genus, 207
Geocentric lispothesis, 71
Geography, 303, 305
Gicology, 305
Geometrical coustruction, 293

- description, 225
- difficulties, 229

George Sand, 238 n .
Geranium, 262
German astronomer, 73
Germ, 141, 145, 194, 25 5

- to borly, relation of, 260
- cell, 257
- -layers (= embryonic layers), 45 f.
- plasm, 17 n., 69 f., 180 f., 186 f., 191 f., 198, 200, 210 f., 254
Germany, 317
- " made in," 310
"Germinal sclection" theory, 17 n ., 69,194 f.
Germinating sceds, 82, 316 f .
Germination, 84 f., 135, 143 f., 150 , 161, 164
- a physiological process, 146
- of small zoospores or male gametes, 161
— of zygote, 171, 173 f .
- acceleration or precocity of, 150
- reduction sometimes associated with, 135 u.
Geryonia, egg of (fig. 23), 95 f .
Gesncriacere, 67
Gestaltung und Vererbung," 76 n .
"Gets rid of what it wants to," 220
"Gets the range," 285
Giard, Prof. Alfred, 11, 151
Gifford Lectures, 268
Gift for meaning, 292
Gills, 188

Gingko (Maidenhair Pine), sperms of, 153 n .
Girl, workhouse, 181
Girls' sehools, 300, 316
Glasgow, 199
Glass apparatus, 234

- jars, 316

Gloxinias, 67
Gnat, spotted, 39 f .
Gnawed stiek, 226
"God the Known, and God the Unknown," 260
Goebel, Karl von, 199, 213
Goethe, 247
Goitre, 191 f.
Gold-ferns, 132

- sovereign, 111

Good, common, 187
" - ear," 291

- of race, 154
- of the organism, 264 n .
"- species," 317
- teacher, the, 206

Gorged cells, 84
Governess, 300
Grades in stone-throwing syllabus, 283
Graeisms, 276 n.
Granules in chromatin, $97 \mathrm{f} ., 124,138$

- in cytoplasm, 25
- starch, 168
- yolk, 168

Gravity, 112
Greed of energy and matter, 229 f .
Greck, 310
Green Algre ($=$ Cblorophyeer, q.v.), 83

- cell, 67 f., 82
- Flagellates, 2 f., 14
- (s) (=Chloropyceae, q.v.)
- fly (Aphides), eggs of, 145
- Scawced, zrgote of, 171

Greenwood, Miss, 82
Gregarinacere, zoospores of, zygotes of, 172
" Grind," 304
Grinders. 308
Grosser chemical actions, 2:34
Growing body, 2:30

- l10int, 5t, 65
"Grows itself," 241
Growth, 230
- mental, 225
- renewed after rest, 141
- limit of, 37, 80
- and atrophy of ehromatin, periodie, 139

Growth after plastogamy, 174 n .

- in anabolism, 84
- of chains of force, 123 f .
— of knowledge, 235
- of pollen-tube, 159
- of sperm in egg, 167 f .
- of the living, 228 f .
- spindle fibres formed br, not segregation, 111 f .
Guidance, 259
- to reproduetive cells, 263
"Guide to Seience," 300
Guiding genie, 261
Guignard, A., 97
Guinea-pigs, 185
" Gulliver's Travels," 247
Guru, 2.48
Gwynne-Vaughan, Mrs. (Dr. Helen Fraser), 148 n.
Gymnogramme (Gold and Silver Ferns), 132
(isinnosperms, z5gote of, 173
Haaeke, Dr. Wilhelm, 76
Habit(s), 204
- human arlaptive, 193
- modified, 188 f.

Habit, change of, 202 f .
Habitual actions, 245
Haeckel, Prof. Ernst, 196, 241 n., 245 , $250 \mathrm{f}, \mathrm{g}$ 2 $2,267,317$
Hremosporidia (sce also Malaria parasite), 161,171
Hairs of plants, 68
Halves of body, lateral, 236
Hand(s) (of time-pieec), 223
"— off," cyeling, 296
Hlandkerehief, 181
Hanging shoot, 309
" Hantle," 292
Hapliazard of the future, 210 f .
"Mrploid," 137 n .
Hardiness of habitually self-fertilisod organisms, 21
" Harrer and Lucy," 299
Hartmann, Edward von, 251
Hartog, I'rof. Mareus, anticipated Iy Butler, 252 n .

- - Dr. Ieid on, 206
llatehing of birds, 314
-- of Alytes, 189
Head masters, 302
"Headstone of the corner," 3041
Heat, 302
- for germinatica, 145

Heat, coulucting, 235

- flow of, 113
- liberation of, 234
- source of, 113
"Hedged" on ribration hypothesis, 256
Heels, squatting on, 191
Heirs of Charles Darwin, 177
Heliozoan, (see also Actimphrys, Actinospherium), 2(n., 155 f., 168
Hen, segmenting eggs of, 82 f .
Henslow, Rev. l'rof. George, jun., 248, 262, 299
————scn., 300 f., 307
Herbarium, 316
Hereditary character, 190
- constancy, 139
- transmission, 260
"Hérédité, l'," by Delage," 78 n., 20.4
"Heredity," by J. A. Thomson, 74 n. 170, 190
Hercdity, 68, 202, 205 n .
"- and Variation in Modern Lights," 281
- due to unconscions memory, 269
- Ilornmene theory of, 78, 2fi4
"- Laws of, The," 209 n.
- problem of, :31, 261
- processes of, 220
- study of, 233
- theory of, 273

Hering, Prof. Ewald, 77 f., 245, 250, $259,262 \mathrm{f},, 277 \mathrm{f}, 280 \mathrm{f}$.

- and Butler, theory of, 254, 257, 269

Hering's omission, 274

- vibration hypothesis, 255

Hermaphrodites, 30
"Hero," 31 n.
Hertwig, Prof. Oscar, 29, 142, 160, 170, 196 f., 213

- Prof. Richard, 26 n., 142, 170

Heteropolar (force), 113, 124
Heterotype, 130
Heuristic school, 308
Hickson, Prof. Sẏdney, 29 n., 139; 163
High latitudes, $18(6$ f., 193

- pitch (of attention), 307

Higher Animals (= Metazoa, q.v.), 146, 150, 208, 272 f. .

- - cycle of, 133
—— reproduction in, 4.4 f .
- resting reproductive bodies of, 143
- kingdoms, problem of heredity, 68
- organisms, 161, 192, 257 f.

Higher organisms, ancestors of, 197 f

- plants, cyeles of, 133, 150

Jimanthalia, 39, 88, 134 f., 154
Hip, 190 f .
Hindrances, meehanical, 236
Historians (of biology), 262
History, past, 201, 252, 268

- explanation of, 271
- of the race, 202, 275

Hiteham, 300
Hoekey, 315 n .
Holmes, Oliver Wendell, 282
Home, 299
Homcotype, 130
Homogencity of medium, 110

- of stirp, 260
"Homoiogamy," 148 n .
Honeycomb, 299
Honeycombed structurc, 102, 115, 117
Hoop, 315
Hopelessness (of physico-chemical explanation), 268
Horace, 207
"Hormonc Theory of Heredity," 78 n ., 26411.

Host of Sporozoa, 171

- .plant of Chlorachytrium, 171

House, 299
Housekceper, 289
"How ?" 127, 225, 252
Human adaptive habits, 193

- being, intelligent, 225
- race, 179

Hurley, strect, 315
Hurtful character, transmission of, 185 f.
Hutton, Prof. Frederick Wollaston, 269
Huxley, Thomas Henry, 93, 219, 228
"Hybrid between a needle and a frog," 142 n.

- (word), 310

Hybridisation, 28
Hybridity, Butler on, 278
Hydrodynamic fields, 120 f .
Hydrolysis, 83
Ilygiene, 312
Hypnosis, hypnotic (blindncss, practicc), 261
Hypnozrgote, 172

- of I'hycomycetes, 174

Hypoblast ($=$ stomach layer of embryo), 48
Hypothesis(-es), 187

- descent, 268

Hypothesis(-es), theistic, 218

- (formal), of pangenesis, germplasm, 76, 257
- Hering's subsidiary, 78, 251
- Lamarckian, 205 n., 208, 213
- physiological, of nuclear reduction, 135
- transmission, rival, 260 f.
- Weismann's, 195 n ., 205 n.
- of centro-epigenesis, 269
- of persistent vibrations, 251, 269, 282
"I believe they are both substantially truc," 255 f.
Iccland spar, 303
Ideas, 11 ering's, 262
- physical, 217

Identical twins, 238
Ids, $74,100,195 \mathrm{n}$.
"Idioplasm"(=germ-plasm), 193, 199
Ignorance of psychological mechanism, 259
"Ill-conditions," 20tif.
Illicit, illogical practice, 283
Illusory explanations, 271
Images, mental, 2,4
Imbedding, or infiltration with paraf. fin-wax, 94
Imitation, 183
Immediate reaction, $2 \pi 0$
Immortality, 2 (il
Immunity, 32, 182 f., 212 f .
Inpairment, 231
Impatience, youthful, 268
Impenetrability of matter, 310
Implement ($=$ tool, machine), 226
Importance of discuntinuous variation, 26:
Impossibility of direct reaction explanations, 279
Impression (mental), 294
Impressions from without, received, stored, 2:5 f .
"Inprint" (of memory), 258, 272, 27.4 f.

Impulses, casual, 186
"In and in " breeding, 31 f.
Inaccurate tone production and good car, 291 n .
Inactive zygotes, 172
Inadequate nutrition, 183

- observation, 200
- premises of faddist, 2.11
- theory, 254

Inarticulate, the, 304
Incomplete embryo, complete animal from, 236 f .

- knowledge, 235

Inconsistencr, 209
Independence of cell division and nuclear division, 12.4
Independent effort, 305
Inclexed ledger, 306
Indians, Flathead. 240
Indication of purpose, 220
Indifferent state, 272, 274
Indignant nother's protest, 312
Indirect division of nucleoplasm, 108
Individual, 161

- development of, 260, 267, 280
- the, and change of habit, 202
- aptitude, 304
- memorics, discontinuous, 286

Individualised units ($=$ cells), 257
Induced parthenogenesis, 143, 197
Induction, clectrostatic or magnetic, 101
Inductive particles, 110

- fallacies, 73

Inrluctors, 107, 111
Industrial house and new blood, 27
Industry (13ritish), 300
Inference, deductive, 212
Inferred memory, 20!
Infiltration with paraflin-wax, 94
Inflamed skin, 179
Influence of Hering and Butler, 269
$\operatorname{lnfusoria}$ (see also Ciliate Infusoria), 22, 135 n .
Inheritance, Mendelian. 170
Inhibitions of the painful, 271
Initiative of cell, 12 f
Injuries of guinea-pigs, nerve-, 185 f .
Injurious conditions, 200
1 nnate, 295

- instincts, 186

Inorganic and organic. 252
Insect-mother, $2 \ddagger 1$
Insects, eggs of certain, 172

- social, 46 n .

Insect's nest, 228

- limbs, 179
— tails, 179
- visits, 33

Insemination, 140
" Inside, her," 312
Insight, Butler's, 281
Installation, clectrical, 226

Instantaneous judgments, mentations, actions, 295
" Instinctive," 295
Instinct(s), 186, 204
Instrument of precision, 265
Instruments, complex, 259
Insulator, 234
Interest in Nature-study, 301
Intake of energy, 212
Intelligence, 205, 272 f .
Intelligent being, 225 f .
Interchanges of composition, 223
Intercommunication, 260
Intermediate Board, Irish, 30ñ, 313 n .

- Education course (Ireland), 301

Internal ferments, 84

- food supplies (=reserves), 228 f.
- karyogamy, 165
- machinery, 223
- machines, organs, 23, 219, 252
- physiological changes, 272
- secretion, 264 n.
- workings, 220
"Interpolation in Memory," 283 f.
- curve, 286 f., Chap. X, passim.
- formula, 160

Interpolations in the English edition of the life of Erasmus Darwin, 253
Interpretation of facts, 208
Interpretations of nuclear reduction, 133 f.
Intervals (on violin), 291
Intervening " something," 286
Intervention of organism, 226
Intonation, correct musical, 291
Intracellular reserves, 144
Introduction to Ewald's address, 251

- of Nature-study into schools, 300
- to Nature-study methods, 302

Intruder, 217
Invention, 306

- of machine, 221

Invertebrates, regeneration in, 179
Investigations, Jennings's, 271 f .
Investment of zygote, maternal, 173
Invocation of psychology, 271
Involuntary memory, 273
Ipomæa (= garden "convolvulus,"), 31 n.
Ireland, 301
Irish Intermediate Board, 301, 305, 313 n .
Iron-dust in magnetic field, 96
Irony, Butler's, 247

Irreconcilability of monism with Butler's characteristic doctrine, 253
"Irritability," 229
"Islet of truth," 212
Isngainous, 142

- organisms, 155

Isogamy, combination with exogamy, 147
Isolated cells, 233

- organs, 219
- segmentation cells, 236 f .

Isolation, chemical, 234

- of single cmbryonic cells, 71

Jiager, 260
Jam-crocks, pots, 316
Jars, glass, pickle, 316
Jelly-fish, scyphistoma, larva of, 145
Jenkin, Fleeming, 264 f.
Jennings, H. M., 279, 297
"Jewel-game," 303
Joints, 190 f.
Joly, Prof. John, 229
Jones, H. Festing, 244, 253, 267 n ., 280 n .
"Journal of a Naturalist," Darwin's, 316
Journal, phenological, 314
Jubilec of "Origin of Species," 280
Judges in science, 213
Judgment, conscious, sane, 296 f.
Jumeaux (Fr_{r}), 238 n.
Junctions (railway), 239
Jungfrau, 246
Justice, wounded, 248
Kammerer, Prof., 189
Karyogamy (= nuclear fusion, q.v.), $156 \mathrm{n} ., 165$

- freshness from division a condition of, 166
Karyokinesis (= mitosis, q.v.), final cause of, 138
Kelvin, Lord, 73, 109 n.
Keynote of machine iden, 224
Keys of typewriter, 225
Kidd, Benjamin, 178
Kidney, 231
- cell, 220

Kiel, 199
Kinematic arrangement, 225
Kinship, cellular, 37, 46 n., 163 f.

- Metazoan, 164

Kittens, 341
Klebahn, Prof., 170

Knapper, 224
Knife, steel, 222
Knowledge, best and highest, 247

- incompletc, 235
- of physies and chemistry, 268
- growth of, 235

Krause, Prof., 253
Krukenberg, 82
Laboratory, 217

- and experimental facts, 209
- apparatus, 234
- method, 212
- physiological, 233, 241

Lake, 22.4
Lamarck, Jean de, 201 f., 245,248 , 278

- laws of, 201 f .

Lamarckian, 282

- Factor, 176 f., 193 f., 196 f.
- hypothesis, 219
- transmission. 187 f., 195 n., 213
- views, 261 f.

Lamarckianism, 212
Lamb, Arthur B., 122
Lancashire operative, 26
"Land Flora, the Origin of $a, " 199$
Language, feeling for, 291 f.
Lankester, Sir E. Ray, 161, 1S4, 200 f. 213, 245, 250, 260
Laudice, segmentation of, 237
Lapse of time, 84 n .

- between syngamr and germination, 165
Larva, 237
Larve from fusion of sperm with nonnucleated fragments of $\mathrm{egg}, \quad 29$ (see also Merngony)
Iatency of persistent memors, 245
Latent differentiation, 148
- inemory, 269

Latin, 310
Law(s), causal, 238 f .

- Lamarck's, 201 f.
- of causality, 222
- of arrangement of memories, 288
- of cellular transmission, 49 f., 67
- of chance, 293
" - of ITeredity, The," 209
- of living and non-living, 217
- of non-living things, 216
- of reflection, 291
- physico-cliemical, 232

Layer (of cells), 45 f .

- external embryonic, 184 f .

Layers, embrronic, 45

- nutritive aud reproductive, in Proteraspongia, 43
"Leader" of conifer, 187 n .
Leaf-buds, 314
— -fall, 314
- fragments, 73
--Mlosses, 54 f., table ii, p. 57
Leaning to mask defective ere, $1 \$ 3 \mathrm{f}$.
Learning, 296
Lectare, 312 f .
- form, 312

Le Dantec, Felix, 82, 193, 262
Ledger, indexed, of arts and sciences, 302
Left eye, hand, temple, 183 f .
"Lehrbuch der Protozoenkunde," 175
Leighton, Lorl, 290
Lens, pocket, 312
Lesson, object-, 302 f .
" - of Evolution, The," 269
"Lessons in Elementary Botany." 301

- on plants, 316

Leuckart, Rudolf, 79
Liberation of stored energy, 229, 234
Library, Nature-study, 316
Life, 216 f .

- civilised, 214
" - and Habit," 28 n., $77 \mathrm{n} ., 92 \mathrm{n}$., 244f., 262, 269, 272, 278
- and matter, 92 n .
- modern social, 32 f.
" - is adaptation," 226
"— of Erasmus Darwin," 258
" - persistence of, 208
"- Plysical Basis of," 93
" - the l'hilosophy of," 268
" - Science, and Art, Essays on," 244
"- the Abundance of," 229
"- the Nature and Origin of," 198
- factor of, 127
- habits of, 191
"- mechanism, \&c.," Chap. VII, 216 f.
- views of, 216

Life-cycle, 130
—— in Ferns, table iii, p. 63

- - in Mosses, table ii, p. 57
—— in Sponges, table i, p. 47
- - of malaria parasite, 38,39 f.
- - Ulothrix, 52

Light, ordinary, 264

- scattered by dust, 110
- more refrangible rays of, 178
- stimulus of, 51
"Like " attractions, forces, 100,113
Likeness, 290
Likes and dislikes, 271
Liliacere, chromosomes of, 108
Lilies, 301
Lillie, Ralph R., 119
Limbs, Inscets', 179
Limit of growth, size, $37,80 \mathrm{f}$.
Limitation by vocabulary, 309 n .
Limitations of habitual use, 272
Line, railway, superintendent of, 239
Line(s) of foree, geometrical, 110 f.
Lines of probable truth, 268
Linin, 97 f., 138
Link of reasoning, 294
Linkage in typewriter, 225
Liquids, 222 f .
Literary taste, 309
- temperament, 304

Liverworl, 60
Living an attribute of the inorganic world, 253

- and non-living, 253
- beings, 74, 217 f., 268
- being, molecule as a, 252
- cell, matter, 168, 276
- likeness, 290
- organism, 126 f., 270 f .
- processes, 271
- things, 281

Lizard's tail, 179
Local chemical changes, 234
Locality, stimulated, 270
Locomotion, 227

- improved, 32

Lodge, Sir Oliver, 92 n .
Loeb, Jacques, 142, 168 n., 170
Lorical basis, 283 f .

- composition, 304
- form of answers, 313
- programmes, syllabus, 295

Long-established conditions, 202
"--formulated unaccustomed views," 213

- words, 309

Longevity, Butler's treatment of, 278
Longitudinal splitting, 101 f .
Lop-sided, 208
Loss of conjugating process, 22

- of facets, 198
- of ground, 300

Lost parts, 227
Louisiana, 262
Lower Animals, 208, 295

Lower limbs, 190 f .
"- Organism, Contributions to the Study of the Behavior of, 271 n .
Lowest motile organisms, 231 f .
Low-temperature eombustion, 168 n .
"Luck, or Cunning ?" $244,254 \mathrm{f}$.
Lueretius, 73
Lungs, 188, 236
Luxiry, beneficial, 31
Lyell, Sir Clarles, 19 f., 248 n. f.
Lying down, 191

- and squatting races, 193

Machiavellian cunning, 254
Machine, tide-predicting, 291
Machines, 126, 222, 241

- as external organs, 252
- - internal organs, 219
" - Book of the," 243
"Made in Germany," 293, 310
" - - Amcrica," 295
Magnesium powder, 109
Magnetic dust, 109
- field, 96, 112, 121 .
- induction, 101
- iron, 106
- model, 112 f.
- spectrum, 109

Magnetism, 92 n .

- impossible explauation of cellfield, 114 f.
Magnitudes, 286 f .
"Mahomet's coffin" ($=$ equatorial plate), 106 f .
Maidenhair Pine, sperms of, 159 n .
Maintenance of the beneficial, 276
Majority, 206
- of working biologists and psychologists, 178, 242
Malaria parasite, 38, 39, 87, 161
Male (sec also Sperm, Spermatozoon, Spermogamete), 7, 28, 161, 190 n .
- nueleus, 167
- of Alytes, 189
- oosperm, of Aleyonarians, in merogony, 166
- parthenogenesis of, 161 f .

Maleness, 169
Mammals, zygote of, 173
Man, 210, 224, 275

- and habit, 203
- and his makings, 282
"- in the street, the," 289
- of science, professional, 247
- identical twins in, 237

Man intelligence and foresight of, 127

- ovam of, 230
- works of, 29 f .

Man's zoological allies, 212
Manchester Meeting of Britislı Association, 219
Mangroves, seeds of, 144
Manifestation, $276 \mathrm{n} . \mathrm{f}$.
Manipulation, 223, 306
Manufacture, $30 \overline{5}$

- of protoplasm, 218

Map-drawing, 303
Marble, statuary, 303
Marbles, 215
Marcet, Mrs., 300
Marcus Aurelius, 2.47
Marine Foraminifera, zygote of, 171
Mark, Prof. L., 11, 151
"Martin " (in "Tom Brown "), 299
Mask, 18"3
Mason, Charlotte, 309 n.
Mass, conservation of, 217
Masses, 22f
"Master," the, 201
Mastigolla, zegote of, 171
" Material(s) for the Study of Variations," 260

- aggregation, 242
- for Natural Selection, 266
- processes, 264

Materiality of atmosphere, 301
Maternal-cell, 17.4

- investment of zygote, 173 f .

Mathematic(s), 264 f .
Mathematical deduction, 265

- explanation of cycling " hands off," 296 n.
- powers, 291
- tyro, 296

Matter, 222, 268
-living, 276

- aggregates of,'classified, 241
- conservation of, 217
- nature of, 255
- stored by organisms, 241
"Maturation" of the ege, 11, 151 f ., Pl. I; in Alcyonaria, 29 n., 151, 163
"Mature(d) egg," $14 \overline{5}, 151,153$
Mature fruit. 30 s
Maturity (of cell), 98
Maupas, E., on Ciliate Infusoria, 20 f., 161
- on dissonance of function between cell and nucleus, 26 n .

Maximum thermometer, 314
Meanings of fertilisation, 164 f .
— of mechanism, etc., 221

- feeling for, 291 f .

Measuring glass, 265
Mechanical basis, 271

- function of chromatin, 139
-- plant, 127
- stimulation ("fertilisation") of egg, 142
- tension, 124
- view of life, 216
" Mechanics," science of, 222
Mechanician, 222, 241
Mechanicism, l'italism versus, 125
Mechanicist, 197, 235
Mechanicists, French school of, 197
Mechanism psychological, 259
"- and Life," Chap. VII, passim, 216 f., 25211.
- of development, 260
- of Lamarckian transmission, 181

191, 193, 204, 213, 260

- of memory, 263 f .
- of reproduction, 35
- of transmission, 75

Mechanistic iden of life, 127
Mechanisticism, 279
Medical Investigator to Royal Commission on the Feeble-miuded, 214
Medicine man, 247
Mediocre, the, 301
Medium, changes in, 186

- reactions to, 183

Medusa, 237
Meiosis (= nuclear reduction), 129
Meiotic (- reduction) divisions, 130, 152
Melon, division of, 108
Membrane, vitelline, 162

- forined by zygote (= cyst-wall), 171 f.
Memorised deductions, 293
Memory(ies), 204, 25!), 263, 286 f.
- latent, 7 if f .
- patent, 70
- persisting in offspring, $24 \overline{5}$
"- Unconscious," 242 f., 250 f .
- descriptions from, 308
" - " extended use of, 273 f .
" - mechanism of," 221, 26.
- vibration hypothesis of, 78, 251 255, 278
- and inheritance, 77 f .
"Memory as a Unirersal Function of Organised Matter," by Hering, 77 n., 200
Men, 223
- of science, 225
"Mendel, Festsehrift zu," 189
Mendeléjeff, 2056
Mendelian Inheritance, 170
- segregation, 74 n .

Mendelising aequired characters, 190
"Mendel'sche liegeln und Vererbung erworbener Eigensehaften," 189
Mental apparatus, 23.4

- growth, 225
- images, operations, 294
- processes, 264
- working-out, 294

Mentation, 294
Merogony, a type of syngamy, 29 n ., 161 f., 165,170

- bibliography, 170

Mesoblast, mesoderm (= middle layers of embryo), 46
Metabolism, 83
Metakinesis, 104
Metamorphosis, 188
Metaphase, 99, 103, 104
Metaphysics, 222 n .
Metaphyte(s) (= Higher Plant, q.v.), 36, 54 f .
Metatrophism, 85
Metazoa ($=$ Higher Animals of complex structure), 2,10 f., $30,63 \mathrm{f} ., 103$, $133,135,144,152$ f., 157, 162, 164 f.

- age of, 144, 157
- reduction in, 135
- reproductive processes in, 164
"- the Rôle of the Sperm in the," 166 f.
- sperm of, 162

Metazoan oosphere, degeneration of centrosome in, 149
Metazoon, Proterospongia a simple, 43
Meteorologieal Office, 315
Meteorology, 314
Method(s), 306

- laboratory, 212
- in work, 303
- of Butler \& Pauly, 279
- of Neo-Darwinian school, 20.4
"- of Regulability in Behaviour and
other Fields," 271 n., 273
- of rearing changed, 188
- of tenching, 295
- of trial and error, 271
" Metists," suggested to comprise Metazoa and Metaphytes, 36
Microbic diseases, 182 f .
Mierocoeci, 99
Mieroseope, 299
" - made Easy, The," 35̃n.
- improvement in, 93

Mieroseopieal demonstration, 312
Microscopists, early, 35
Mierotome, 95
Middle layer of embryo ($=$ mesoderm, mesoblast), 46
Mid-Victorian, 302
Midwives, 200
Migration of chromosomes to anode, 119 f.

- of embryonic cells, 258

Migrations of nervous system, 184 f .
Migratory birds, 316
Mind of cell, of embryo, 240

- uneonscious, 293 f .

Mindless view of organic universe, $\because 49$
Minimum temperature for germination, 84 n .

- thermometer, 314

Minority, 207
Minot, Sedgewiek, 151
Minuteness of reproductive cells, 230
" Misled," mislead, 292
Misunderstanding of Darwin, 248 f .
Misunderstandings, past, 280
Mitokinctic ficld, 12.4
—— early figure of, 95 f .

- foree, mitokinetism,
"Mitokinetism, The New Force," Chap. IV, passim, 92 f .
Mitosis, 104
- fresh from, 157

Mitotic fission in Trichosphrerium, 155
Mivart, I'. St. George, 246
Mixed formation of a colony, 41
Mixture of parents, 210
"Mmm" (particle of assent), 292
"Mnhme (Die) als erhaltende Prinzip im Wechsel des organisehen Geschehens"; "-a Principle of Conservation in the Transformations of Organic Existence," 274 f.
Mnemic phenomenon, 275
Mnémonique, phénomène, 269
Mode(s) of cellular reproduction, 81
— of brood formation, 86 f .

- of colonial formation, 41

Mode(s) of expression, 211 f .
Model, magnetic, of mitosis, 106, 108 - osmotic, 115, 116

Models physical, 123

- working, of animals, 223
- of cell-field, 112 f.
- of protoplasmic movement, 271

Modern naturalints, 201
"Modificability in Behaviour," 271
Modification, remedial, 26π

- corresponding, 266

Modus operandi (of transmitted memory), 263
Moisture (for germination), 145
Molar, 223
Molecular, 223
"- structure of living protoplasm." 235

- vibrations, 78, 263 f.

Molecule as a living being, 252 f .
Molluses, 51
Monadinex, 22 f.
Monistic views, 241 n , 252, 250., 266

- Butler's adoption of, 252

Monopoly of reaction, 275 f .
Monosyllinbic numbers, 294
Montreal, 222n.
Moore, Prof. Benjamin, 242

- J. E. S., 129

Morel, Dr., 214
Morel(s), 87
Morphological unit, $23{ }^{\circ}$

- process of cell-fusion ($=$ "fertilisation "), 165
"Morphologie und Biologie der Algen," 175
Morphology of "maturation," progamic fissions, polar bodies, 153
Morula, 236
Moselcy, H. N., 316
Mosquito, 39 f .
Moss(es), $5+$ f., 60, 71, 131 f., 143
- life-cycle of, table ii, p. 5 it
- oosphere and cannl-cells of, 8 f .
- reduction in, 131
- spore of, 182
- tetraspores of, 135 n .
- plant, 60, 71, 132 f.
- -urn, 56, 71, 133

Mother, 212
Mother-cell, 37
Motile organisms, belıaviour of lower, 231 f .
Motions of animals, Man, 223
Moulds, 186

Mountain-shading, 303

- talus, 224

Movement(s), 271 f., 285

- of Amœba, 232
— of earth and watcr, 211
- of liquids and solids, 222 f .
- protoplasmic, 271 f .

Moving kodies, 291
Mrázek, A., 167
Muddle and order, 303
Mulberry mass of cells (= morula), 236
Multicellular (reproductive) bodies, 143

- embryo or plant formed by zygote, 171 f .
- investment of zugote, 173
- parts detaclied for propagation, 37

Multinuclear structure, 88, 89, 105
Multinucleate, 155
Multiple cell-fission (=brood divisions, q.v.), 80 f., 131 n .
Multiplication, 229

- by simple division, 38
- of organism, 230
- organic, 128
- undue, of chromosomes, 133
- sums, 307

Munich, 274
Murchisnn, Sir Roderick, 19 f .
Tuscle, 2:30 f.
Musele-cells, 210
Musenm, sehool, 31: f.
Music, 28:3

- pupils, 302

Mutations, 264 f .
Mutilation, 179, 202, 212

- character, 273

Myopic, 1\%3
Myxoedema ($=$ diseasc of thyroid insufficiency), 191 f .

Naked cells of Ulithris, 4

- brood-cells (zoospores) of vegctal Prutists, 51
Names and qualities, 302
Narrowness of official plysiology, 220
National school, 300
"Natural History of Selbornc," 316
Natural order (of plants), 308
- relationship, 246
- science, 263
- - position of, 248
- selection, 34, 72, 164, 176, 180, 210 n., 266, 279, 281
"Natural selection, All-sufliciency," " Omnipotence of," 211
" Naturalist, sound," older, 246
"- "Weismann's " school of," 198
Naturalists, moriern, 201
Nature, 201 f., 250
"Nature abhors perpetual selffcrtilisation," 2, 30 f., $3: 3$
"- and Origin of Life, The," 198
- itself, study of, 300
- of matter, 255
- of protoplasin, 168
- vicws of, 126
- -study, 30 ; the teaching of, Cliap. XI, 298, passin
Neatness, 311
Necessitarian objections, 251
Neccssitarianism, 239
Necessity, aequired, 31
" Neck-canal-cell," 158
Need, acquired, 31
Nceds, racial, 241
- future, of organisms and their offspring, 229, 241
"Needle and frog, hybrid between," 142 n .
Negation, 211
Negative, selection is, 211
- characters of machines, 228
"Nematoden, Ei- und Samenbildung bei," 170
Neo-Darwinians, 176 f., 182 f., 187, 195
- Lamarckians, 278

Neolithic Europeans, 191
Nerve-branches, trunks, 182 n., 184, 260

- -cell, 68
- -centre, nucleus compared to, 25
"- -wave, The," 294
Nerrous changes, 192
- control of body, 262
- reactions, 183
- system, 181 f., 184 f., 259, 275 f.
- - and germ-eells, 181

Nest(s), 228
Nest-building, 314
Network, Rhumbler's, 117
Networks, cytoplasmic, of Radiolarians and Foraminifers, 86

- nuclear, resolution of, into chromosomes, 124
New, what is, in Nature-study, 301 f.
- blood in an industrial house, 27
- characters, 194
- combinations, 286
"New Foree, Mitokinetism, The," Chap. IV, 92 f. passim, 122, 12i, 139
New Quarterly Revicw, 222, 244, 255 f .
New idea, 307
- species, 177
- word, 309
- Zealand, 169

Neweastle, 301
Newcomen's engine, 224
Newlands, 2.56
Newtonian force, 105
Newt's foot, 179
Newts, regeneration in, 49
Niagara lialls, power installation, 126
Nineteentlı eentury, 217
Noctiluca, 87

- zygote of, 171

Norlule (flint), 22.4
Non-existent, 210
Non-living, 216 f., 224, 229, 253
Non-nucleate oosphere of Alcyonarians, 166
Non-nucleated fragments of egg in merogony, 161 f .
Non-pairing resting-cells, 143
Non-transmission of aequired eharacters, 179 f., 212

- of mutilations, 179 f ., 207

Non-Weismannians, 261
North British Hevicu, 264
Northern days, long, 187

- of sperm in egg, 167
"Not-chalkstuff gas," 311 n .
Notebook, 252 n., $2 \overline{5} 6$
"Notebooks of the late Samuel Butler," 222, 244, 255 f.
Note-perfect, 297
"Notes of a Naturalist on the Chal lenyer," 316
Nourishment, indirect, of central cells of Proteraspongia, 42
Nuclear apparatus of Infusoria, 21
- division, 74, 97 f., 172, 195
- fusion, 165, 174 n .
- reduction, Chap. IV, passim, 129, 170
- - physiological function of, 137
- wall, liquefaction and disappearance of, $97,99,102 \mathrm{f}$.
Nuclci, conjugate-, 174 n .
- must (one at least) be frcsh to fuse, 153
Nuclein (= chromatin, q.v.), amount of, function of, 138 f .
Nuclcolc, 25, 97, 98 f., 103

Nucleoplasm, 97
Nucleus(i), 2, 24, 25, 93 f., 141

- approach of, to working cytoplasm, 87
- of germ-cell, 194
- sperm-, 168
- about to divide, 130 f .

Number of chromosomes, 130 f., 133, 136 f., 152

- of Ilagella, 155
- of perpendiculars from base-line, 290
Numbers of determinants, 194
- mono-, disyllabic, 29.

Numerical poll, 209
"Nur mit ein bischen ander'n Wörter," 245
Nurse (of reproductive cells), parent as, 180
Nussbaum, 260
Nutriment, 210
Nutrition, differences of, 200

- germinal struggle for, 195 n .
- inadequate, 183
~ of leaf-fragments, 73
Nutritive substances, 186
- cells, 187 n .

Oaks, 208
Object of machine, 222

- -lesson, 302 f., 305

Objections, refutation of necessitarian, 251
Objective and subjective considera. tion, 2 ï

- foundation of Weismannism, 195
- stuff, 201
"Obscured facts," 209
Observation, simple, 212
Observation(s), 271,306
Observations, "spontancous," 305 f.
- phenological, meteorological, 314

Observed memories, 285
Observers, 262
Obsolete hypotheses, 282
Obstetric T'oad (Alytes), 189 f.
Obstiuacy of organism, 238
Occam, William of, 74, 242
G:dogonium, oogeny in, 107
Official directors of education, 299

- physiologists, 219
- sanction, 213

Offspring, 176, 182, 210
-, effects of alcoliolism on, 214
Oil-paintivg, 290

Old age (of cell), 98
Older evolutionists, 254
Oligochætes (Mud-worms), 167 f .
Oliver, Prol. Daniel, 301
Olive seaweeds (sec Fueacex, Phxophycex; Phaocarpex, Ectocarpex)
Oltmanns, Prof. F., 153,175
Omission, Hering's, 274
Omnipotence of Natural Selection, 211
"On its own," 236
"On their own," 187
"One, thought and thing are," 255
Onion, 137
Oogeny, illustrated, 154
Oogone of Wracks, 9,131 f., 153 f .
Oosperm, 45, 133, 146, 160, 152 (sec also Zygote, Fertilised egg)

- male, 166
- of Axolotl, 117 f .
— of Echinoderm, 99, 103
- of malaria parasite, 39 f .

Oospliere(s), 7, ! f., 130, 132, 143, $153 \mathrm{f} ., 157 \mathrm{f}$., 166,181

- functional and abortive, or rudimentary, $10,105,153 \mathrm{f}$.
- of Cycads and Gingko, 159 n .
- "fertilised" by second polar body, 160 f .
Oospore of malaria parasite, 39 f .
Opalina, zygote of, 171
Opening the mind, 282
Operations, mental, 294
Opinion, Butler's, clanged to monistic, 253
- scientific, 205
"Opposite" centres, poles (= unlike, q.v.), 113

Optic stimulus, 276
Optimistic meehanicist, 235
"Order, natural," 307 f.

- of magnitude. 288 f .
- of presentation, 303
- specitic, in heredity and variation, 281
Orderliness (in living things), 281
Orderly (succession of changes), 264
- cumbination, 293

Organic and inorganic, distinction between, 252 f .

- beings, 263
- diseontent, 267
- ferments, 236
- form and function, 280
- multiplication, 128
- processes and connections, 200
"Organic" substances, chemical, 125, $187 \mathrm{n} ., 218,274$
- universe, mindless view of, 249
- world, 288

Organ(s), 199, 258 f .

- as internal machines, 252
- continuous (of reproduction), 258
- isolated, 219
- machines as exterual, 252
- of reception and transmission, 275

Organisin, 125 f., 177, 182, 192, 240, 272 f., 280

- as a whole, 219, 233
- changed, 266
- colonial, 45
- complex, 258 f .
- essentially purposive, 250
- living, 217 f., 270
- lower, $2 i 1 \mathrm{f}$.
- parent, 177
- action of, 260
- parts of, 178 n., 187 n .
- purpose of, 265
- reaction of, 270
- work and growth of, 263

Orientation of schoolroom, 303
" Origin of a Land Flora, 'The," 199

- of centrosome, 149
- of germ-cell, single or dual, 257
"— of Species," $210 \mathrm{n} ., 264 \mathrm{f}, \mathrm{2} 280$
- - water-colour painting, 311
" - of Variations," $198,210 \mathrm{f}$.
Original rescarch, 306
Ornamentation, 222
Orr, P'rof. Henry P., 262
Orthodoxy, 216
Oscillating field, 120
Oscillations, 223
Osmosis, 115 f., 234
Osmotic action, 124
- currents, field, model, tension, 115 f .
- relations, 220
- stimulation ("fertilisation") of egg, 142
"Outcome reactions," 276 f.
Outgrowths of nervous system, 184 f .
Output of cnergy, 217
Outside hours, 314
Ovarian egg, $10,85,145$
Over-anthropomorphic, 181
Overton, Prof., 131 n.
Ovoviviparous amphibians and fishes, zygote of, 173
Ovum(a) (see Egg)

Ovum(a) of man, 230 f .
Ox, stalled, 85
Oxford, 199
Oxidases, 168 n .
Pain stimulus, 276
Painful movements, 271
Painter, 290
Pairing, 230
Pairing-cells (= gametes, q.v.), 45, 181, 132 n., 135 n.

- equal, 142
- primitive, $1: 3$
- undifferentiated, 143
- -nuclei of A ctinospharium (= gametonuclei, q.v.), 148
- processes, 132 n., 148
- of Protists, Algæ, and Fungi, usually naked, 145
- of sexual Metazoa, 130

Palieontologists, American school of, 262
1'alcy's argument, 226
Paudorina Murum, 14 f., 163
1'angenesis, 75,257
Paraflin oil, 109

- wax, 04, 316
l'aralogism, 202
1'arasite, malarial, 38, 39, 116
larasites, 32, 211
Parasitic zygote, embryo, 55 f., 173 f.
Parasitism of embryo, $55,60 \mathrm{f} ., 65$, 72
1'arent(s), 200, 206, 257, 302
- as nurse of reproductive cells, 180
- Protistic, 241
- alcoholism of, 214
- life of, continued in offspring, 20
- zygote internal to, 173
- -ecll, 3; see also "Mother-cell"

Parentage, doublc, 74

- of gametes, 164

Parental cytoplasm around zygote, 174
Parrot, 226, 228
"Parsimony, principle of," 74
l'arthenogenesis, 144

- appareut, 160
- artificial, induced, 143, 165, 170, 197 n .
- male, 161 f.
- bibliography of, 170

Parthenogenetic eggs, 172

- embryo of Echinoderms, 149

Partial segmentation of zygute, 172
Particles of assent, 292

Partitive division, 101, 109, 195
Past history, 201, 224, 252
Patont facts, 209

- memory, 77, 263

Patience, 30 .
Peace, Dr. Reid proclaims, 214
Pedagogic(R), 295

- theory, 306

Pedestrian, 295
Pedigree(s), 268

- cellular, 34,37
- of compressed cmbrso, 239

Pegtop, 315
Pelted (dog), 276
Pelvetia ($=$ a genus of Wrack), 8 f., 88, 134, 154
Pelvis, female, 190,198
Pencil, 311
Pentimalli's experiment, 119 f.
Peperomias, 67
Peptones, 82
Perception, 278
"Perigenese der Plastidule," 250, 262 Period(s) of repose and activity, 267
Periodic atrophy and growth of chromatin, 139
Permanency of adaptation, I79
Permeable, 107
Permeability, 109 n. f.

- relative, 122 f .

Perpendicular(s), $287 \mathrm{f}, 290,294$
Perry, John, l'rof., 73
Persecutor, 247
Persistence of life, 208
Yersistent vibrations hypothesis, 78, $251,2 \overline{0} \mathrm{f}$., 269
Personal egotism, 241
Yersonality, oneness of, between parent and offspring, 245,254, 268
" - " of chromatin granules, alleged, 100

- of "The Unconscions," 251

Persuasion, 315
Pervious to electricity, 235
Petrol, 234
Pligger, l'rof. Eduard, Pfligger's Archir für die gesammte Physiolugie, 221, 270n.
Phaocarpea, $135 \mathrm{n} ., 152$

- zygote of, 171

Pheoplyycere, zygote of, 173
Phenology, 314f.
1'henomena of consciousness, 270

- of plysiological stimulation, 270
- of variation, 265
"Phénomène mnémonique et le Phénoméne vital, Le," 269
Phenomenon, muemic: 275
"Philosophers," 35
"Philosophy of Life, The," 268
- of the sciences, Dr. Heid's, $20 \pm$
"- of the Unconscious," 251
Plosphorescence, 87
Pbycomycetes, 90, 174
Phylogenetic (significance of reduction), 136
"Pbysical Basis of Life," 93
Pbysical fertilisation, 197 n .
- forces of cell-field, 124
- irleas, 217
- text-books, 111

Physicist, 264 f .
I'hysico-chemical knowledge, 235

- laws, 232
- redescription, 2-12
- relations, 226
- school, 233
- view of life, 216 f .

1'lysics, 209, 216 f., 223, 225

- methods of, 127
l'lysiological changes, interual, 2i2 f.
- character, 178
- excretion, 12
- function of reduction, 137
- - of proganic fissions, 154
- hypothesis of nuclear reduction, 135
- Inboratory, 242
- sense of fertilisation, 165
" - states," 270 f., 277
- stimulation, 270
"- units," 110
Physiologist, 219, 232 f., 238
Physiology, 312
- progress of, 127
- students of, 217
lhytoflagellates, zygotes of, 171
Pianist, 291
l'iano-teacher, 296 f .
l'ickle-jar, 316
Picture, 290
l'igment in skin, 179
Pigmented skin, 179
Pinches, William, 314
l'iston action, 224
lith (of Elder), 301
Place for words, 291 f .
1lan-rlrawing, 303
Planarians, large polar bodies of, II n., $1 \overline{3} 3$
Planes of compression, 239

Planning for rcsults, 224
Plant(s), 186, 231, $257 \mathrm{f} ., 274,317$ (sce also Higher Plants)

- cell-field in, 123
- electric, 227
- bcd for, 316
- Jamarckian Factor in, 193
- lessons on, 316
- purposive co-ordinated reactions of, - 182 n.
- reproduction and propagation in, 51
- study of, 305, 307 f .
- utilisation of reserves in, 81 f .
- life, 305
- physiology, 306

Planula, 237
Plasmatic contents of zygocyst, 172 n .
1'lasmic anabolism (growth), 84 f .
Plasticity of bones and joints, 190
Plastid, 25
Plastogamic union of cytoplasts, 150 n . Plastogany, 174 n .
Player, billiard, 291 ; card, 293
Playgrounds of Eton, 300
Playtime, 306
Pleasure-giving conditions, 270
Pocket lens, 312
Pointed stick, 226
" Pointer" (dog), 186, 232
Polar body(ics), 10, 11 f., 116 f., 130, 149 f., Pl. i, 159 n.

- (of Basidiobolus), 156
— - of malaria parasite, 39 f .
- - sccond, playing part of sperm, $145 \mathrm{n} ., 160 \mathrm{f}$.
Polarised, centred force, 105
Polarity, 7f, 107
- of chromatin granules, 139

Pole(s), 96,100 n. f., 104 f., 124
Polcmic, Butler's, 248, 254
Poll, scientific, 209
Pollen grain(s), 135 n ., 159

- mother-cell, 131
- -tubc, 159

Pollination, 159, 307

- self, 33

Polyzoa, 143

- statoblasts of, 145

Pondworm (Rhynchelmis), 168
Popguns, 301
Position, burial, resting, 191

- ssstematic, 307
- advantages and disadvantages of, 195 n .

Position, strength of, 231
Possibilitics, mnemic, 275
Post-Darwinian, 264
Postures, 190
Potato, 19
Potential gamete, 144
Potter, l'rof., 301
l'otts, Dr. W. A., 214
Poulton, Prof. 1. B., 73,
"Pound stcrling," 111
Powdery, 302
Power of compensation and readjustment, vital, 240
Practice in composition, 313
Practice(s), illogical and illicit, successful, 284
Practices of Flat-heads and finc ladics, 240
Pracger, Dŕ. Lloyd, 299
Prcarranged system of forces, 198
Preceptors, College of, 314
Prccipitation, 234
Prccision of plyysical ideas, 217

- scientific, 307
- lcarning, 285
- instrument of, 265

Precocity of ccrcals, $186 \mathrm{f} ., 193$
I'recursors of Charles Darwin, 248
Predict futurc, 288
Predicting machinc, tide-, 294
Pregnancy, 100
1'remiss, 295
Preparation for gametogenesis, 137
Preparatory sciencc, botany as a, 308
Prcpossessions, religious, theological, 218
Prcsent gcneration, 216
Prcsentation of deseent thcory, Darwin's, 218, 245 f., 249
Presentment(s) of Lamarckianism, 202, 206, 208
Presentment of modern vitalism, 242
Prescration by natural selection, 210 n.
Prcssurc of finger, 225
Presumption and inference, 259
"Pricstleys, thc," 306
Primary indifferent state, 292

- cmbryonic cclls (= segmentation cells), 257 f.
Primitive number of chromosomes ($=$ " haploid"), 136
- organisms, rejuvenescence in, 31

Princeton University, 270

Principal plane in magnetic field, 112 f.
Principle(s), cataclysmic, 267

- scientific, 278
- of classification, 268
"- of Evolutionary Biology," 175 n .
"- of Geology," 248 n .
Priority in interpretation of nuclear reduction, 131 n .
Private herbariums, 317
- schools, 30

Privation, 200
1'robable truth, 268
Problem(s), 294

- biological, 218
- slum, 206
- at billiards, 291
- of heredity, $68 \mathrm{f} ., 264$

Processes, living, 271

- mental aud material, 261
- regulatory, 272 f .
- reproductive, 16 t
- unconscious, 251, 295
- of cell-division, 233
- of growth and repair, 220
- of reproduction and heredity, 220
- of zygote, 174

Procrustean beds, 164
Prodigal display of the uncontroverted, 205
l'roduction of machines, 228
l'rofessional biologist, 245

- botanist, 301
- inan of science, 247
- teacher, 296
- use, 308

Professor of Plyssiology, a, 219
Progametes (see Assuciated cells of Gregarines), 172n.

- of Baxidiobulus, 165
- of Infusoria, 157

Progamio cell-divisions, fissions, 140, - 151 f., 157 f., 166

Programmes of tuition, 295
Progress, 297

- in field of reproduction and heredity, 220
- of vitalism, 128
"Progressive Method" for piano, 296 f.
Proof, 216
Propagation, 19, 36 f., 47, 58, 65 f., 73, 133,141
Propagative cells, 187 n .
Proportionality, 289

Protection, 185
Proteids, 82, 218
Proterospongia haeckelii, 42 f., 52
Protest, indignant mother's, 312
Prothal $=$ Fern-scale, q.v., 60 f .
Protist(s, a), 7, 25, 36, 68, 147, 181, 258, 274

- vegetal, 51 f.
- behaviour of, 271 f .
- cellular cycle of, 161
- colonies of, 41
- digestive ferments in, 82
- inumortality of, 37
- Lamarckian Factor in, 192
- physiology of, 233
- reproduction of, 37, 145
l'rotistic parent, 241
l'rotistoid, multiplication, resumption of, reversion to, 133 f., 151
Protoplasm, 93, 218, 235, 242
1'rotoplasmic movement, 271 f.
- strea ming, 124

Protozoa, 36
"Protozoenkunde, Lehrbucḷ der," 175
Proven fact, 260
l'rovision shops, $31 \overline{5}$
l'roximate causes, $127,232,239 \mathrm{f}$.
P'soudoisiography (" The lair 1Iaven "), 246
" l'seudogany," 148 n., 165
l'seudopods, 168
Pseudospura Lindstedtii, 23
Psyche of l'lants, 266
1'sychical equipment, 278

- side, 289
" Psychoid," 268
Psychological, 29J
- character, 178
- mechanism, 259

Psychologists, 242, 289
1'sychology, 271, 289

- of the child, 307

Ptolemy, 71
Puberty, 190

- Butlers treatment of, 278

Public schools for boys, 316 n .

- shortcomings of our, 300

Pulsating field, pulsators, 120 f .
Pupil(s), 296 f., 304
Purpose, 224, 227

- future, 252
- of machines, 222,241
- of organism, 268
- indication of, 230

Purposive action and rcactions, 182 n , 242, 245, 271, 280

Quaker schools, 301
Qualities, congenital, 200

- names and, 302
- of cleterminants, 104

Quality (in living beings), 268
Quantity (of nuclear matter), 137
"Quartering " the ground, 232
Question(s), scientific, 209

- -paper, 312 f .

Quicker than thought, 295
Quieklime, 311 n .
"Quod ubique, quod ab omnibus," 205

Rabbit(s), 312

- transfusion of blood in, 67

Race, 177, 203

- development of, 280
- human, 179

Races, sitting and squatting, 190 f ., 193 f .

- black, 179
- domeatic, 265

Rucial egotism, needs, 241
Radial symmetry, primitive, 199 n .
Radiating processes, 168
Radiolaria(ns), 86, 168
Rain gauge, 314
Raising of energy to higher type, 227
Range of self-adjustment, 227

- of temperature, 235

Rapidity, 303
Ratio between bulk and surfacc, 127 f., 230
Rational theory, 280
Rays, growth of, 123 f .

- eytoplasmic, 168
- of light, 110
- Röntgen, 263
"Razor," Occeam's, 74 t.
Reaction, 200, 242
- circular, 270, 277
- dircct, 279
- nervous, 183
- outcomc, 277
- spccial constant, 276
- of living beings, of organisms, 220
- of plants, co-ordinated, purposivc, 182 n .
- to stimulus, 271

Realising the future, 240
"Reality, the conceived system of," 212
Rearing animals, 312
Rearrangement of memories, 246
leason, conscious, 223
Reasoning, true, 294 f .
Reception of impressions, 259
—of "Life and llabit," 245

- of stimuli, 275

Recessive characters, 190
Reenguition of Butler, 281

- of naturc-study, 301 f .

Recoil from anthropomorphism, 225
" Recommended by the Faculty," 205
Record, The, 247
Record(s), 306

- of tides, 294

Recorder for sehool calcndar, 314
Recurrence of stimuli, 276
Recurrent negation, 211
Red Seaweeds (lloridex), 135 n .
—— progamic fissions in, 157
——zygotc of, 173
Reducing divisions frcquently coincident with progamic, 166
"Reduetio ad absurdum," 202
Reduction of the harmful, 270

- proecsses (see Nuclear reduction, Chap. IV, passim, 129 f.) in gametogeny 131, 170
- - and progamic divisions, 152
- - not a preparation, but a consequence of cell-fusion, 134 f .
Reflection, 226
- of variations, upon idioplasm, 198
- laws of, 291
- of sex, 161

Refractivity, differcnces in, 94
Refrangible rays of light, more, 178
Refrigerator, 113
Refutation of a neeessitarian, 251
Regeneration, 47 f., 179 f., 207 f., 237, 272
"Regulability of Behaviour, etc., Method of," 271 f.
Regulation ($=$ self-rcgulation of organism), 221
Regulatory processes, 272 f .
Reid, G. Arehdall, 183; "A Rejoinder," Chap. VIl, passim, 204 f.
Reign of mechanism, 220
Reinke, Prof. J., of Kiel, 199, 225 n.
Rejuvenescence, 18 f., 23, 31, 33

- modes classified, 38

Relation(s), Butler's, to biology and biologists, 281

- physico-chemical, 226
- of germ and borly, 260
- study of, 303

Relationship, cellular, 37 f .

- natural, 2.46

Relative suggestion, 289 n .
Relaxation, 306
Release action, 229
Religious prepossessions, 218
"Remainderel," 26 "5
"Remarks on Romanes' Mental Evolution in Animals," 244
Remedial modifications, 2,7
Remembering centres, 269
Renal secretion, 22()
Renewal of the pleasant and beneficial, 270
Renewed growth after rest, 144
Renovation of cell, 30
Reorganisation, cellular, 27 f., 163 f .

- of daughter nuclei, 124

Repair, 207 f., 227 f, 230 f., 237, 240
Hepartitive division ($=$ "Erbsungleich "), 70
Repetition of movements, 270

- of stimulus, 272

Repose, period of, 267
" Report of the Royal Commission on the Care and Control of the Feebleminded," 213
Representation by pencil or brush, 311
Reproduction, 16,36 f., 41, 43, 145, 180, 220,229 f., 232, 257

- (cellular) contrasted with propagation, 37
- true, 41
- nssociated with conjugation, 16
- mechanism of, 3 J
- types of, 145
- of sensations, ideas, perceptions, and efforts, 273 f .
Reproductive bodies in relation to body, 180 f .
- cells, 80 f., $90,180,186,228 \mathrm{f} ., 258$, 260,262 f.
- cells of Protcrospongia, 43
- processes, 164

Reptiles, zygote of, 173
Ropnlsion, 112

- mutual, of chromosomes, 104

Research, original, 306
Researcher, the, 306

Reserve(s), 229

- intracellular, 144
- unorganised, of egg. 167
- proportions, in nale and female gametes, 161
- utilisation of, 81 f .
- yolk granules, 168

Reservoir, 224
Resiliency, 291
Resistance, 291
Resolution of network into chromosomes, 124

- of apoeytes, brood-formation by, S4, 87 f., 155
Respiratory capacity, 2.31
Response, 22!, 242
- adaptive, $179 \mathrm{f}, 206 \mathrm{f}$.
- co-ordinater, 294
- of bones and joints, 191

Rest, 23, 8. $1,171 \mathrm{f}$.

- after syngamy, 146
- and cliavge, 33
- and rejuvenescence, 20
- before germination, 145
- of zygospore of Conjngate, $1 \bar{v} 6$
- of zygote, 171 f .

Kesting-bodies, 145

- -cell, 97, 99, 141, 165
- -cells, non-pairing, 143
- parts of plants, 82
- positiou, 191
- spores, zygote from, 174
- stages, 31
- state of cell, 97
- teleutospore of Rusts, 150 n .

Restoration after damage, 230 f .

- of efficiencr, $2: 27$

Result(s) of physiologists, 219
Resultant effects, 2?3
Resumption of protistoid multiplication, 133
Retentiveness of imprints, 27.5 f .
Reticences, Buffon's, 248
Retrograde changes, 234
"Retrogression from Hering," Butler's alleged, 277, 279
Return to original generation, reduction as, 136
Reversal of piston, periodical, 224
Reversion to protistoid multiplication, 1.1

Reviews in Nature, 241
Rhizopod, 155

- zrgotes of, 171 f .

Rhynchelmis, 115, 167 f .

Rhumbler, I'rof. Lutwig, 116, 117 f .
Rhythmic, chemical changes, 264
Rhythm of ordinary cell-division, 80
Richet, Charles, 221, 294
Right spirit, 299
Rignano, Eugenio, 269, 280
Ripening seeds, 187
River, $2 \because 4$
Rivistà di Scienza, 269
"Robe, the Emperor's Birthday," 201
Rock, The, 247
Rocks, succession of, 219
" Bole of the sperm in Metazoa, the," 166 f .
Romancs, G. J., 185, 196, 213, 254, 282
Röutgen rays, 78,263 f.
Root(s), 231

- of liern, 65
- of Mosscs, 54 f .
- -hair of Fcrn-scalc, 61

Ross, Sir Ronald, 39
Rotifer, eggs of, 145, 172
Roundworm (of Horse), 137
Routine work, 307
Ronx, Wilhelm, 198 f., 213
Rowan berry, 310
"Royal Commission on the liceblcminded, Report of thc," 213
Royal Fibernian Academy, 213 n .
Rugby, botany formerly taught at, 301 n.
Rule, tool-shop, 265
Ruskin, John, 310
Rusts (Uredinex), $150 \mathrm{n} ., 160,176$
Saccharine, 302
Salamanders, 188 f., 193
Salivary glands, 171
Samuel Butler, the BiologicalWritings of," Chap. IX, 244, passim (sec also Butler, Samuel)
Sanction, official, 213
Sapid, 302
Sapling, 231
Saprolegnier, 89, 160
Sarcophyces, 9, 154
Sargent, John, R.A., 290
Sawdust, 316
Scale-moss, 54 f., 60
Scars, 207 f., 212
Schaudinn, Fritz, 148 n.
Schedules (botanical), 307
Scheme of nuclear division, 97

Schizogony, $38 \mathrm{n} ., 81$
School, Butler founded no, 261

- American palæontological, 262
- heuristic, 306
- Mechanical, Physico-chemical, 223, 262, 270
- of De Vries, 266
"- of naturalists," Weismann's, 198
- garden, 316
- -liouse, 305
- -inen, 226
- walks, 316
"Schöpfung der Tierwelt," 76 n .
Scicnce, 208
"- Guide to," 300
- judges in, 213
- terms of, 308
- valuc of facts in, 204
- master, 299

Sciences, Dr. Reid's philosophy of the, 209
Scientia, 269
Scientific explanation, 218
"- facts," 208

- opinion, 205
- principle, 278
-question, poll, 209
Schizogeny, 90
Scratch-back, 226, 228
Screcning of germ-colls, 258
Sculptor(urc), 290
Scum, green, 51
Scyphistoma, resting-body of, 145
Sea Squirts (= 'Tunicatcs, Ascidians); 51
- Urcbin, merogony in (see als, Echinoderms, Green, Olivc seawceds, 2!
Scaweeds (sce also Algæ, Floridere, Fucacex), 135 n., 171
"Second subject," 210
Secondary embryonic cells, 258
Second-hand biology, 178
Secrction(s), 180
- internal, 264 n .
- renal, 220
- thyroid, 191 f.

Sections, microscopic, 94 f .
Scdgwick, Adam, 248
Seed(s), 143

- germinating, 82, 316 f.
- ripening, 187
- of Mangrove, 144
- rest of, 145

Scedlings, 317
"Seen and felt" things, 302
Segment(s) of nucleus ($=$ chromo. somes, q.v.), 130
Segmentation, 38, 41, 45, 53, 81, 237, 239
Segmenting cgg, 82 f., 85
Segregation of chains of force, 111 f ., 128
"Selections from Previous Works" of S. Batler, 244

Selection, artificial, 211

- germinal, 194f.
- natural, 32, 211, 266, 279 f.

Self-adjustment, 227

- -effaccinent, $30 \cdot 1$
- -fertilisation, 30, 33
"- - Nature abhors perpetual," 30, 33
- -fertilised organisms, hardiness of, 31
--moving, 223
- pollination, 33, 307
- -regulation, 221, 210
- -sacrifice, 305 f .
- -teaching, 296

Semitic, 310
Semon, Richard, 141, 176n., 272, 27.4f., 277 f., 282
Sempiternal deity, 211
Senescence, 19 f .

- causes of, 2.4
- of lufusoria, 21

Scnse of colour and tone, 316
Sensibility of nucleus, 28
Sensitiveness of flower, 109 n .
"Sentimental Tomney," 293
Separation, chemical, 218, 234

- of centrosomes, 118
- ($=$ discession, q.v.) of chromosomes, 124
- of cmbryonic cells, 187 n., 236 f.

Set of determinants, 194

- boues askcw, 231

Setter (dug), 186
Seventics, the, 217
Seward, Prof, A. C., 200
Sex, sexual, sexuality, 13 f., 31,132 n., 146 f., 165

- evolution, origin of binary, $14 \mathrm{f}, 161$
- of twins, 238 n .
- cells, protistoid, 134
"Sexual," ambiguity of term, 132 n .
Sexual cells, 123
- pairing-cells of Metazoa, 130, 132
- differentiation, 14 f., 136

Sexual generation, 59

- organs of Fern, 61, 62
"Sexuality of the Fungi, Thc," 147,170
Shaken (embryo), 236
Sharp-edged tint, 224
Sharpened stick, 226
Shaw, Geo. Bernard, 249
Shell, cemented, of Foraminifer, 228
Sheller, 299
Shine, desire to, 304
Shoot, hanging, 309
- of conifer, leading, 187 n .
" Short circuitings," 64 n.
Shortcomings of our army, 300
Shrewsbury (S'chool), 299
Shrubs, $31 / 1$
Shutling lyypothesis, 210
Sickle germs, sickle-shaped zoosp orcs of Sporozon, $39 \mathrm{f} ., 171 \mathrm{f}$.
Side-t racking, 240
"Significance of the polar bodies," 12
Silk threads, 109 f .
Silver Ferns, 132
Simple, complex referred to, 278
Simulation of Lamarckian transmission, 193
Simultancousappearance of mutations, 265
Single individuals, 265
"Sink" (of stream-lines), 113
Siphnner, 87, 171
Sister-cells, 195
- -nuclei, 148

Site of operations, 7
Size of eggs of Alytes, 189

- of sperm, 167

Skein (of nuclear thread), 99
Sketch, 293
Sketches (in answers), 313
Skin, 178 f.

- colour of, 179
- cells (=epidcrmic-,ectoderm-cells, q.v.), 210
- -grafts, 48
- layer (= cctoderm), 185
"Skipping " and progrcss, 297
Skull compressing, 240
- -cap, lined, 236

Sleep, counting tn, 294
Slum problem, 206
"Smorzando," 309
Smuts (= Ustilagincæ), 160

- zygote of, 174

Snarling, sneering, 212

Soakage ($=$ osmosis, q.v.), 234
"Social bvolution," 175
Sociml Insects, 16 n .

- andiconomic riews, 200
- life, modern, 32
- theories, 178

Society, 207
Soles, squatting on, 191
Solids, 220 f.
Sullas, Irof. W. J., 207
Soluble, 302
Solution, conscions, 291
sulvents, 23.
Somn (= body, q.v.) , 182, 186, 258
"-" relation to germ or" stirp," 180 f .
Somatio cells, variation of, 211
"- cooordination," 135
"Some Problems of Reprodnction," Chap. I, 1 f. passim, 131 n .
Song (birds), 314
Songster (hirds), 314
Sorbome, 262
Sorting demon, 261
" Sound naturalist," 24G
"Source" (of streatn-lines), 11:3
South liensington, 283
southport meeting of British Association, 140
Sovereign, gold, 111
Spanish king, 71
Spar, Icelaml, 30:3
Spark, electric, 229
Special creation, 72

- determinants, 194
- organs, 259 f .
- reaction, 276
- substances ($=$ hormones, q.v.), transmission br, 191 f .
Specialised sterility, law of, 60
Species, 265 f., 307
" - good," 317
- new, 177

Specific order in heredity and variation, 281
Specimens, 308, 316
Spectacles, 183
Spectrum, electrostatic, magnetic, 109 f.
Speculations on vibrations, 255
Speech, 225
Spencer, Herbert, 34, 79, 100, 137, 196, 230, 232, 254, 262
Spencer's disciples, 128

- limit of growth, 37, 84f.

Spencerian division, 85

Sperm(s), spermatozoon(a), fif., 28, $130,132,143,149,151 \mathrm{f} ., 157,159 \mathrm{f}$., $166 \mathrm{f} ., 168 \mathrm{f}, \mathrm{a}, 28$
" - the Mole of the, in Metazon," 166 f .

- of Arehegoniate Cryptoganis, 17
- of Eudurina, 6
- of malarin prasasite, 39 f .
- of Man, 230 n.
- of sponge, 12
- of Inlurne 5i3
- early procluction of, in bisexual syugamy, 15π
- -capsules of Fern, fiof.
- motherecell, 12, 144n.
- -meleus, 159, 168

Spermatimm, 157
Spermatoroncsis, 90
"Spin" of ball., $6: 91$
Spimal corl, 184
Spindle, 99, 110, $113 \mathrm{f}, 11 \mathrm{~T}, 12.3$

- distribution, 113 f .

Spirit (alcohol), 316
Split (flint), 204
splitting of chromatin granules and chromosomes, 98 f., 133

- of a viscirl thread, 138 f .

Sponge, 45

- development of gemmules of, 43 f ., 145
- spermitozoa of, 12

Sponges, propagation in, 50
Spontancity of organism, 2.11
"Spontaneons" observation, 305 f .

- variations, 211

Sporange, 89, 90
spore nother-cell, 131
Spore(s), 90

- asexual (of Mosses and lerns) (sce also Oospore, Resting spore, Tetraspore, Zoospore, Zygospure), 132 f .
- formed by zygote, 171 f., 174
- of Fern, 60 f .
- of Flagellates, 172
- of Moss, 54 f .

Sporogonr, 38 n., 81
Sporophyte. 59

- of lilowering plant, 65

Sporozon, 146
אporulation, 38 n., 81
rport (of species), 266 f .
spotted Gnat, 3! f.

- Salamander 188

Spring, coiled, 223

Spring birds, plants, 314
Spyrogyra, syngamy of, 156
Squared paper, 303, 314
Squatting races, 190 f., 198
Squint, 184
Stability, feeling for, 290
Stage(s) at which nuclear division occurs, 130

- early embryonic, 288
- of differentiation of reproductive cells, early, 180
- of hatching, 189
- of reduction in Higber Plants, 131
- of syngamy, 150 n .

Staining pubstance of granules, 100
Stains, basic, 97
Stamens, 30s, 310
"Stand der Frage über die Vererbung erworbener Eigenscliaften," 17 tin.
Standpoint, Dr. Reid's, 208 f.
Starch, 82
-granules, 168
Starfishes, propagation in (see also Echinoderms), 50
"Starlike figure" (centrosome, aster), 95 f.
Starting into cell-life, 165

- into development, 143

State, dejendent on vibrations, 205
" - physiological," 270 f., 279
Statement, answers to be a complete, 313
Statical electricity ($=$ electrostatic force, q.v.), $93,103,118$ f., 301
Statics, 290
Statistical curre, 286 f .
Statoblast, 143,145
Statuary-marble, 302 f .
Status, 290
Stayed tree, 231
Stays (in bones), struts and, 231
Steam laundry, 182

- engines, 224

Steel knife, 222
Steering (cycle), 296
Stem-trees, 268
Step backward, 279
Sterile castes, 46 n .
Sterilisation, sterilised cells, 45, 53, 60 f., 68
Sterility common with "in and in" breeding, 30

- Butler on, 278
- law of specialised, 50
- of object-lesson, 302

Stick, gnawed, pointed, 226
Stigma, 307
Stimulated locality, 270
Stimulation(s), 270

- artificial, of egg, 142
- in plants, 182
- physiological, 279

Stimulus(i), 229, $262 \mathrm{f} ., 272 \mathrm{i}$., 276 f .

- of germination, 84 n .

Stirp(s), 180 f., 200, 258, 268
Stock (or race), 200
Stolidity, ultra-Saxon, 300
Stomacli-cells ($=$ endoderm, hrpoblast), 45
Stones, boy pelting dog with, 276
stone-throwing syllabus and practice, 283 f .
"Stood up of themselves," 290
Stooping, 276
Storage by organisms, 241

- of impressions, 259

Store(s) in cells (see also Reserves), 81
"Store of imprints," 275
Storing of energy and matter, 227 f.
Stout, Prof. G. F., 289 n.
Stowe, Mrs. Harrict Beeclier, 289
Strain on working organism, on machine, 230 f .

- -force, 233

Strasburger, Prof. Eluard, 18, 97, 131 n., 136 f., 164
Strata, 267
Streaming, protoplasmic, 124
Stream-lines, 113
Street hurley, 310
Strengtlı, 230 f., 285
Streagthening, 240
Strenuousness, 306 f.
Stress(es) in bones, 251
Stress force, 112
Strike fire, to, 224
String of eggs of Alytes, 183
Stringis) for steam-cocks, 224

- of soft iron beads, 108

Strokes (at bılliards), 291
"Structure of living protoplasm, molecular," 235
Structure, unit of organic, 36
Struggle for existence, 176
— - - of determinants, 194

- nutrition, germinal, 195 n .

Struts (in bones), 231
Student days, C. Darwin's, 248
Student(s) of physiology, 218

Study (of cytology), 198

- improved metlod of microscopic, 94
" - Nature-, the 'Jcaching of,' Chap. XI, 298 f.
- of nature itself, 300
- of relation, 303

Stump of a limb, 179
Subjective and objective consideration, 274
Submergence, submergerf, the, 207
Sinbsidiary hypothesis, 188
Substance, organic, 276
Suecession of chemical changes, 78, 264

- of rocks, 249

Successive strata, 267
Suffolk, 300
Sugar, luinp of, 302
Suggestion, Doctrine of Relative, 289 n .
Sulphate of quinine crystals, 103
Sum of imprints, 275
Summary of play of forces in dividingeell, 124

- of inodes of broord-formation, 88.
- - formation of protist colonics, 40
- of tables of behaviour of zJgote, 171 f.
— of "Fertilisation," 164 f.
- Chap. VIII, "Mechanism and Life," 241 f.
- of modes of Protistic colonial formation, 41
- view of stagc at which reduction occurs, 135 n.
Suminer eggs, 172
Sunburn, 179
Sunlight, 178 f.
Supcrficial embryonic layer ($=$ epiblast, ectoderm, q.v.), 155
Superintendent of the line, 239
Surface to bulk ratio, 79 f., 127 f., 230, 232
- tension, 124

Survival of fittest, 176 f.
Survivor(s), 211
Susceptibility to imprints, 275 f .

- to strain-force, 110
- to sunburn, 176

Suspended weight ($=$ pendulum), 223
Sutton, J. Bland, 144 n .
Swarmer (= zoosporc, q.v.), 3 f.
Sweet, 302
Switches (railway), 239

Syllabus, art, Iogical, 283 f., 295

- Irislı botanical, 305

Syllogism on Lamarekian Factor, 192
Symmetrical completeness, 263
Symmetry, apparent logical, 201

- of flower, 199 n .

Synchronous ($=$ immcdiatc) reaction, 276
Syngamous, syngamic, syngamy, 7 , 39 f., 74 n., 132 n., 149 f., 155 f., 161 f., 175

Synonyms, 292
System of forces prearranged, 198

- nervous, 182 n., $18 \overline{0}$
"- of reality, the eonceived," 212
"- of Weismann," 198
Systems of struts and stays in boncs, 231
Systcmatic botany, 300 f., 307
- position, 307

Tabloids of thyroid, 192
Tabular view of bchaviour of zygote 171
'Iæuia (= Tapeworm), 32
I'adpole(s), 312

- of Salamander, 188
- of Alytes, 189

Tail, Lizarl's, 179
Tailor-fashion, 190 f.
"Take its place" in a whole, 290
Talus, mountain, 224
Tanning of skin, 179
Tapeworm, 32
Tartarin of 'Jarascon, 246
I'aste, litcrary, 309
T'aylor, A. E., 222 n.
J'caching, 295 f .

- methods of, 295
" - of Naturc-study, The," 298
- of Spencer, Romaves, etc., 254

Technical cxercises (music), 307

- plant-description, 307 f .
- terms, 308 f.
"- workmansliip," 293
T'echnique, artistic, 283
- mieroscopic, 93, 246

Teeth, canine, 212
"Teleologisclie Mcchanik der lebendigen Natur, die," 270 n.
Tclepathic agency, 238
Teleutospore, 150 n .
T'elophasc, 103, 105
Temperament, artistic and literary, 304
Temperature, 84 n ., 189, 287 f.

Temperature chart, 287 f., 288

- curve, 314
- ranges, 234 f .
- of combustion, 227

Templc, left, 183
Temporary (railway arrangements), 239
Tendency to variation, 242
Tension, ficld of osmotic, 116 f .
Tentative character of behaviour, 271
Tcratoma, 144n.
Terminology, 302, 308 \&

- "mneme," 278
- of Jennings, 270 f.
- of syngamous processes, 146 f.

Testis, teratoma in, 144 n .
Tetrads ($=$ members of a broorl of four), 131 f .
Tetraspores, $135 \mathrm{n} ., 152$
Text-books, official phssiological, 270

- pliysical, 111
"The expcriment that has to bc made," 306
"The wan in the street," 246
Theistic hypothesis, 21s
Theological prepossession, 218
Théorie des Ciuses actuelles (in development), 78 n .
Thcorists, 266°
Ihcory(ies), 164, 209
- evolution, 24́
- descent, 34, 256 f., 268
- Gemmaria, 76
- Hering's and Butler's, 263, 280
- inadequatc, 254
- Mutation, 66tf.
- rational, 240
-rival, 216
- social, 17
- of faddists, 240 f .
- of heredity, 273
" - of Heredity, A " (Orr), 262
- of Heredity, Hormonc, 78 n., 264
- of Hering, Butler, Rignano, and Semon, 280
- of Variations, Weismann's, 72
- pedagogic 300
'Thesis on drinkers, Dr. Reid's, 214
"Thing(s) at Large," 22.2, 241 f., 252
-non-living, 216f.
"- not words," 309 n .
- seen and felt, 302
"- and thought, one," 255
Thomson, J. Arthur, 74 n., 85 n., 170, 190

Thought, biological, 264

- specd of, 294
- and thing, 255

Thoughts, unbidden, 267
Tbread, nuclear, 98, 99 f.

- structure of central region of cell, 99, 103, etc.
- viscid, splitting of, 138

Three-mastcr ship, te rminology of, 310
Thyroid, 191 f .
Tide, change of, 216

- -predicting machine, 294

Tight-lacing, 240
Tillage, 207
Tinc, 200,294

- biological, 73
- lapse of, 84 n .
- of mentation, 294
- of ripening, 307
- counter, 223 f.

Times, changed, 300
Times, The, 315
Tissue(s), $36,45,47 \mathrm{f} ., 186,258 \mathrm{f}$.

- embryonic, 187 n .
- cbanges in living, 236
- formation of, 236
- of Higher Animals, 48 f .
- cells, $53,166,153,258$

Toad, obstetric (Alytes), 189
"Tom Brown's Schunldays," 299
"Tom Siawyer," 315
"Iool," undistinguishable from machine, 222 n. f.
Tools, 252
"Top" (of a lunging shoot), 309

- peg, whipping, 315

Topography of schoolroom, 303
Toss-up theory, 72
Touch (of pianist), 2:)1
Town-dwellcr's phenology, seasons, 315
Tradition, 220
'l'raflic, dispatch of, 239
Train(s) (railway), 239
Train of wheels, 223
Training by lecture and examination, 313

- school. 317

Transformation of matter or energy, 222

- chemical, 235
"- and an inspiration," a, 282
Transfusion of blood, 76
- of energy, 222, 242, 262

Transitions between alternating gen-
crations in Mosses and Ferns ; apospory, apogamy, 64
Translation of Hering's Address, 250 f .
Transmission, collateral cellular, 49 f., (67, 204, 257

- Lamarckian, of acquired characters, 75 f., 176 f., 179, 181, 213, 250, 258 f., 268, 281
"- of Acquired Character," Chap. V1I, passim, 176 f.
- of stimnli, 262,275
"Transmissibilite (sur la) des Caractères aequis-Hypothèse d'une Cen-tro-épigenèse," 269
Transmitted immunity, 183
Transmitter of inherited properties is linin, not elıromatin, 139
Transjort, 305
Travel ($=$ locomotion), 231
Travels of Bates and Wallace, 316
Trees, 231, 305, 314
Trend of biologieal thought, $2(64$
"'Irial and error," 232, 271
Trichogyne (reecptive hairlike nutgrowth from Floridean oosphere),157
Trichnsphareium, 155, 171
Trigger-action, 229
Triumph, peans of, 215
True reproduction, 41
- (=identical) twins, 238

Truflles, 87
'Trunk (Bee's, Bntterfly's), 312
Truth, islet of, 212

- lines of probable, 268
- (of a billiard table), 291

Tubers, 82, 84 n., 143, 145
Tuition, 295
Tunicates, 51
Turban-lilr, 137
Turbellaria, cggs of, 172
Turbo-generator, 227
T'urnbull, Dr. R., 305
Turpentine, 109
Tutors, 296
T'wins, identical, 238
Twofold effect of rejurenescence, 33
Types of reproduction, 145

- of brood fission in malaria parasite, 38 f.
Typewriter, 225
Tyro, mathematical, 296
Ulcer: 48
Ulothrix zonata, 3 f.. 13, 51 f., 86, 143
Ultra-Saxon, 300
"Umbildung des Cytoplasma während d. Befruclitung. und Zellteilung," 170
"Unaccustomed riews, long-formulated," 213
Unbidden thoughts, 267
Uneongenial work, 304
Unconscious, the, 251
"- Memory," 77, 235, 243 f ., 250 f., $263,269,273,280 \mathrm{n} ., 287$
- performance of liabitual actions, 245
- processes, 251

Uncontroverted, display of the, 205
Unequal division, 230

- fissions, 157

Unfamiliarity with entemporary biologists, Butler's, 25.4
Unfit, the, 214
Unicellular plants, 186
Unification, craving for, 241
Unified biolory, 246
Uniform temperature of organisms,352
Unifying bond, 274
Uninspired weeding-ont, 234
Uninucleate cell, 141, 150, 153
" Unit(s) biolngical," 76

- morpliological, 235
"- physiological," 100
- of nrganic structure, 36
- cell, 257
- characters, 190
"- lines," 114
Unitary views, 252
"Unlike" (poles), 113
Unlimited growth, 223
Unpopularity of mechanistic school, growing, 23:3
Unproven doctrine, 200
"Unrest "(= vibration), 255
"Unthoronghfaresomeness of Stuff," 310
Untrained observers, 200
Unwillingness to kill, 312
Urea, 126
Uredinere (Rusts), 150 n ., 160, 174
Urine, 126
Urn of Moss, 54 f .
Use of terms, 308 f .
Ustilaginer (Smuts), 160
- zygote of, 174

Uterus, 238 n.
Utilisation of foorl, 230

- of reserves, 81 f .

Utility of Lamarckian Factor, 192

- of organic multiplication, 128

Vacuole(s), ${ }^{\mathbf{2}}$, 86 f., 89,97
Vacuole, contractile, 23, 42, 43
Valuable teaching, 302
Value of facts in science, 204

- controversial, 222, 226
- of nature-study, 302

Variability, 211
Variation(s), 186, 205 n., 264 f.

- beneficial, preservation of, 210 n .
" - de la Parthenogénèse," 170
- discontinuous, 2664 f .
- exceptional, 265
- Dr. Reid's theory of, 210
- existence of, causal factors of, 176 f.
- factor in, 213.
- arising in body, 199 f.
- in chromatin content, 138
"- Materials for the Study of," 265
- of masical touch, 291
"- Origin of, The," 210
- origin of, 198
- - supposed, by amphimixis, 17 f .
- tendency to, 242
- Weismann's theories of (see also Amphimixis, Germinal Selection), 17 f., 22 f.
Variety; 307
Varying conditions of work. 227
-resistance, resohance, 291
Vegetable kingdom, :
Vegetables, 315
Vegetal protestes, 51 f .
Vegetative nucleus (of pollen grain), 159
- organs of Mlosses, 54 f .
"Vegetative" pairing nuclei, 148 n .
Véjdoviký, Prof. Franz, 167
Ventral, 309
Vera causa, verce causc, 176,279 f.
Verbal confusion, 221
Verdict, 213
"Yererbung erworbener Eigenschaften, Stand der Firage, die," 176 n.
Vernacular terms, unrecognised, 310
Vertebrates, $48,51,312$
Vibration (molecular) hypothesis of memory, $78,223,251,25 \overline{5}, 2633$ f., 269, 278,282
Victorian, early, mid-, 302
View, mouistic, 241 n .
" Views, unaccustomed, long-formulaterl," 213
Viguier, C., 170

Vigour, 194

- of self-fertilised Convolvulus, 31 n .

Vigorous, the, 390
Vines, Prof. S. H., 199, 213, 262
Violinist, 290 f .
Virgins, ovary of, 144 n .
Viscid thread, longitudinal splitting of, 101, 138
Viscidity of linin, 100
Viscosity, 124
" Vital force," 125, 217, 242

- powers of readjustment, compensation, 240
" Vital, l'hénomène," 26!
"Vitalism, the backward path of," 279
- versus mechanicism, 125

Vitalistic attitude, 262

- explamation, 219
- view, 269
- school, collapse of older, 217

Vitalist(s), 125, 127, 26 s
Vitalists, English of the, 70 f, 218 f.

- modern, 217 f .

Vitality of tissues, 48
Vitally beneficial, depressing, 270
Visiparous mother, 72
Vocabulary, :02
Vocation, 299
Volition, 278

- of inorganic world, 25.3

Volume of undispmed facts, 202, 212
" Volunteering," 313
Volros, 12, 52 f., 68
Vortices, $1: 20$ f.
Wager, Harold, 170
Walk(s), school, 314, 317
Walker, Charles, 135°
Wallace, Alfred Russel, 176, 202 f. $213,248,255,279$ f., 316
Wallaceism. 256
" Wallacian," view, 20 !
Wall-formation(encystment) offusioncell, 145 f.
"Wanderings of a Naturalist," 316
"Wants to, gets rid of what it," 220
Ward, the late Prof. H. Marshall, 23
Warm-blooded animal, 294
Whaste, 230 f.

- substances, 233

Watch, 223
Water, 302

- movements of, 211

Watercolour, 290, 311 f .

Waterloo, battle of, 300
Waterton, Charles F., 316
Watson, Prof. Morrison, 226
"Wave, the Nerve," 294
Weakening, progressive, of will, 183
Weakness, 183
Wear (of organism), 230 f .
Weather, 211, 314
Web of hypothesis, 201
Weeds, 207
Weeding-out, uninspired, 254
Weft of assumptions, 201
Weight, suspended ($=$ pendulum), 22:3
Weismann, August, 16 f., 34, 37, 69,
$100,182,188,195$ f., 205, 210, 256, 360
Weismann's school. 139
Weiswannians, Weismannist(s), Weismannite, 131, 186, 195, 199, 261, 282
Weismannic explanation, 191
Weismannism, 180, 194 n, 197, 262
Wellington, Duke of, 300
Wetting, 84 n .
Wheels, train of, 223
Whipping-top, 315
Whirls, 120 f .
White of egg (albumen), 82

- paper, 311

Whitening, 303
Whole, organisms as a, 180, 219, 233
"Why 9 " 127 f., 223
Wide and narrow concepts, meanings, 275
Widening of female pelvis, 193
Wild beasts infested by parasites, 32
Wilkes, John, Wilkesite, 220
Will, conscious, 223

- weakening of, 183

William of Occam, 74, 242
Wilson, Prof. E. B., 131 n., 167, 170
Wind, 231
Windle, Sir Bertram, 210 n.
Winter, 215

- birds, 314
- eggs, 172
- flowers, 33

Wobbling, 296
Wöhler, 126
"Woman at Home, the," 289
Wood-cells, 68
Woodruff on Infusorian cycle, 21 n .
Woody fibre, 68
Words, classical, long, new, of English material, 309

- place for, 292
"Words, things not," 309 n.
Work, individual silent, 307
- uncongenial, 304
- in organism, 229
- of the biolonist, 268
"Working "'-cell, 138
- cytoplasm, 87
- models, 223
- out, mental, 294

Workings, internal, 220
Worknanship, techmical, 293
Works of man, 299
World, external, 181, 302

- organic, 268
- living attributes of inorganic, 253

Worlds of microscope, 299
Worms, lowest, iniddle cells of, 48
Worn parts, 227
Wound, 48
Wounded justice, 248
Wounds un Guinea-pigs, 185
Wracks (-Fucace:e, q.v.), 8, 9, 134f., 153 f., 157, 188
Written speech, 225
"Yes!" 292
Yolk-granules, 168
Young, 212

- child(ren), 298, 302

Youthful impatience, 268
Zones, successive, of chromosomes,101
Zoogametes, 155
Zoological allies of man, 212
Zoologist, 262, 276
Zoologists, English, 198 f.
"Zoology," 201
Zoospore(s) (=swarmer or active brood-cell), 3 f., 34 f.

- indifferent, 161
- sickle-shaped, 172
- non-pairing, 155
- germination of small, 161
- segmentation of zygote into, 171 f .
- as gametes, 153, 166
- of Flagellates, 172
- of malaria parasite, 39 f.
- of Saprolegnieæ, 89
- of Trichosphcerium, 155

Zygocyst, 172 f .
Zygospore (= resting fusion-cell) of Conjugate, 135, 156
Zygote, 45, 133, 150, 155), 165

- behaviour of, 171 f .
48

[^0]: ${ }^{1}$ This I have done in the Puatrely Jomernal of Mironowopic Scimare, December 1891) while the present essay represents fairly the spoken acooment of the same paper delivered at Carliff before Section D of the British Asonciation.

[^1]: '[Oripinally I wed the term "coupled cell."]

[^2]: ' The word "erg" lacks scientific precisim.

[^3]: ${ }^{1}$ See also Chapter V'I, P. 147.

[^4]: ' [I leave this discussion as it was written in 189:子 descrihing the views expressed in "Amphimixis " (Fing. 'I':ms. 1892). Weismam modified these views very decidedly in 189:3 in his "(ierm-l'asm" (see infro, p. (i)). "The canse of hereditary variation monst lie deeper than this; it must he due to the direct effect of extemal inflnences on the hophors and determinants [hypothetical components of the supposed personalities or "ids' that constitnte the germ-plasm]" (β. 416). In an mindexed footnote to p. 4.35, Weismann wrote in reforence to a criticism of mine on the Amphimixis theory (Nuture, Dec. 183) , which was treated hy some English Weismamians as presenting a garbled and inomect accomet of the Weismamism of that date: "The deductions made hy this

[^5]: ${ }^{1}$ [While the practical farmers in Ireland lave for decades found it alrantageons to import potato-sets from Scotlind, the Royal Horticultural Society fonnd that Irish sets gave the best results in their trials in Eugland. This points to rejurenescence by clange of external couditions.]

[^6]: 1 [Now Libramian.]

[^7]: ${ }^{1}$ [. Wuch work has heen done in this field, notably by Ciary N. ('alkins and his pupils. 'They have fommd that rhanged conditions, the administration of small doses of beef-extract or of aleohol will tide orer periods of depression which would otherwise emd with extinction; and this confirms Manpass view that cell-fnsion determines rejusenescence, and the present thesis that cell-fusion is one of several remedies for the senescence due to reprodnction throngh a long eycle of monotony. By varying the food from time to time, a series extending over three years and at half, and numbering 2,000 cellnlar generations, has been grown by L. L. Woodruff:]

[^8]: 1 ['his statement requires modification, for a syagamic process has been since made out in many gronps of Fumgi ; but the fusion is usually "emdo-gramons"-that is, hetween muclei enclosed in the same cytoplasm ; and often "autogamous"-that is, hetween muclei of the closest relationship. (lor explanation of cellular relationship) see ('hapter II, p. 37.)]

[^9]: ${ }^{1}$ "() n the Sexuality of the Fungi," in (Zurtery Journul of Microscopicul šeience, 1834. (Reprint, p. 60.)

[^10]: ${ }^{1}$ [The oecurrence of dissonance of function between cytoplasm and nucleus, noted by Manpas, insisted on by me, has heen contirned and developed (from olservations on Heliozoa mainly) hy R. Hertwig.]

[^11]: ${ }^{1}$ [Mr. Samuel Butler has given a similar explanation of hybridisation from a somewhat different standpoint in "Life and Habit" (London, 1877), pp. 17:3-185.]

 2 [But see the note on the Role of the Sperm in Metazon, p. 166.]

[^12]: ${ }^{1}$ [Hickson has since found this process general in the Alcyonarise]
 "[This variation from ordinary "fertilisation" has simec been amply contirmed, and termed "merogony" (see below, p. 161 f.).]

[^13]: ' [Most Fungri are endogamous.]

[^14]: ${ }^{1}$ Among Darwin's many experiments lie found that one seedling from a selffertilised Ipomear ("(omolvulus") was so exceptional in its personal vigour, which it transmitted to its off.pring, that he termed it " Ilero."

[^15]: I'Thus Baker writes in the milllle of the seventeenth century: "Search we further and examine the Anmalenles-many Sorts wherenf would be imposible for an homan bye mutssisted to diseern; those breathing Atmus, so -mall they are ahonst all Wrorkmandip! in them too we shall

[^16]: ${ }^{1}$ See p. 79.

[^17]: 1 The terms "swhisgom!," "sporognin," "sporulntiom," have also heen applied to this process in special groups.

[^18]: ${ }^{1}$ Or Grat: "Mosquito" is the Portuguese term for our good English word.

[^19]: "The "gastrula" stage of the emhryologist.

[^20]: 1 The case we have suggested for comparison is actually found in social lusects with their "sterile castes" in each generation.

[^21]: ${ }^{1}$ In this and the tables to follow we use the signs X to indicate segmentation, $\wedge \wedge$ to indicate hrom-divisions, and || to indicate divisions alternating with growth.

[^22]: 1 A good account of these phenomena will be found in "Regeneration," by T. H. Morgan.

[^23]: ${ }^{1}$ The filamentous Alga Uhothrix zonatu (see Fïg. 1, 1. 4).

[^24]: ['This prophetic suggestion was fulfilled in the supplementary "Theory of Germinal Selection," published, like this Essay, in 1898 !]

[^25]: ' Sec Fig. 38, p. 2:37.

[^26]: 1 Weismann's supplementary hypothesis of germinal selection makes no difference to the present argument.

[^27]: ${ }^{1}$ Later estimates put the time at from $50,000,000$ to $360,000,000$ years.

[^28]: ${ }^{1}$ See "Gestaltnng und Vererbung," Leipzig, 1893, and ' Schöpfung der 'lierwelt," Both these works are written in a German style of exceptional cham, ease and vivacity.

[^29]: 1 "On Memory as a Vniversal Function of Organised Matter" (Vienna, 1870, translated by S. Butler in "Unconscious Memory," p. 97 f.); S. Butler, " Life and Habit," 1878.

[^30]: ${ }^{1}$ This riew is essentially the same as that developed by Delage in his "Thémrie des ('an-es Actuelles" ("lllérédité," p. 7), and by J. T. ('un-

[^31]: 1 Written ancw from a paper read at the British Association (1)over), 1900, and printed as part of "some Problems of Reproduction" Il., in the suarterly Journal of Sicroscopical science, vol. 4T, 1904.

[^32]: ' lïrst published in British Ansorintion lieport, 1900.

[^33]: ${ }^{1}$ The change in circumstances may vary in many ways ; and this statement applies equally to gronps of gorged cells that have gone to rest, such as tubers, seeds, and gemmules. Mere lapse of time, desiceation followed by wetting, a certain minimum of temperature, and, as we shall see, harions other physical and chemical stimnli may be efficient (see p. $1=4 \mathrm{f}$.).

[^34]: ${ }^{1}$ Professors Patrick (iedles and I. Arthur Thomson. 'Ihey regard the female as essentially amabolic amb the male as catabolic. The term unasoric aptly chatacterises the hehaviom of the oogamete ; and the sperm within the age is metutrophic. How fan these characters are reflected on the Protistic cell-cyeles, or Netamin individuals, varies in different cases.

[^35]: ${ }^{1}$ It is necessary to explain that hy "force" I mean what the layman means when he speaks of electricity, magnetism, and steam power as "forces," or what is implied in the current phrase "the forces of nature." I am perfectly aware of the limitations now made by physicists in the use of the term, to designate "an acceleration multiplied by a mass" ; when they can supply any other snitable term, understanded of the people, I will gladly alopt it. As Lodge writes: " Until a term is accurately defined, and even "fteruards for some purposes, it is permissible to use a word of large significance in more than one sence " ("Life and Matter," note on the word "hife"). Of comrse, when such licence is taken, the wide sense in which the term is used should be set forth explieitly at the ontset, as I set it forth here.

[^36]: "The "mikron" of the microscopist, designated ly the (ireek letter μ.

[^37]: 1 The chromosome arratuement of the muclear network is sometimes. apparent in the "resting" nurleus.

 2 A different explanation of the early stages of the splitting has lately been given by foumer, Dighy, and Fraser.

[^38]: 1, Restimecell ; c, centrosome with two nurlei. B, Eirly prophase, the chromosomes apparenty forming a simgle skrin; the centromome has divided, and a small spindle has formed in connection with the two ilholter-centrosomes. (", Diver上ence of centrosomes. D, E, Lite proplases; the muclear wall jivine way on one sitle in 1), on both in E; the chromosomes are spith. F, Larly "metaphase" or equatorial-plate (p) stage. For conjletion of process see Fic. 2f.

[^39]: ${ }^{1}$ Comparable to "like" electric or magnetic poles, as will be explained immediately (p. 113).
 ${ }^{2}$ As postulated in Weismann's theories of heredity (see p. 17).

[^40]: 1 "Ergebnisse über der Konstitntion der chromatischen Substanz dew Zellkerus," 1904.

[^41]: ${ }^{1}$ I should say that I have found it so hard to regulate the physical conditions that my morlel rarely hehaves satiafactorily, though all right in theory.

[^42]: " "Permeability" was a term introduced by Lord Kelvin; and, thongh now almost exclusively confined to magnetism, he used it to include the kindred phenomena of the speeific inductive "aparity of dielectries, conductivity to heat, aml cen refractivity to light or radiant eneryy.

[^43]: 1 The centrosomes have yielded and heen drawn out into blobs muder the pull of the spindle against some force pulling them apart (see p. 118).

[^44]: ${ }^{1}$ For a disenssion of the flum fields between pulators and oseillators see V. F. K. Bjacrknes, "Die Kraftfelder," 190!. Vortex fields were especially studied by the elder Bjacernes and hy Sir W'. F. Barrett. Lamb's paper, "A New Explanation of the Mechanic of Mitusis," appears in Journ. Eirp. Zuo., v., 1908.

 * "Comptes Remhus de l'Aculémie des Sciencer," Jme 10, 190.t.

[^45]: ${ }^{1}$ See below, "Mechanism and Life," p. 2925.
 ${ }^{2}$ See pp. 7 ! 80.

[^46]: I I have freely cut out from this chapter pasages which I thought munecesary or out of date in the light of subsequent knowledge．

[^47]: ${ }^{1}$ See above, Pp. 10-11, Fig. is.

[^48]: " "Some Prohlems of Reproduction" in (fart. Jour. Nirer. Sm., rol. xxxii. pp. (iㄹ-3.
 ${ }^{3}$ (1p. cit., 18:)1, pp. ot 8, The sentence closes thas: " but will be found in all mother-cells destined by multiple fission to frive birth to a brood of reproductive cells." ()f comme the latter part of the conjecture has not held frond, lint the former part has maintained itwelf mamely, that rednction

[^49]: 1[Po summarise rery briofly: Nuclear reduction takes phare in all Higher Animals at the gametorenio fionoms. In Arelogroniate Plants it take- place at the formation of tetrapores. giving rive to an altemating type of plant (sor .. The (ellular Pedigree"). In Floweriner Plants it takes place at the formation of the pollen-grame, which corre-pond to the

[^50]: "The "reduced" number of segment- is now termed "haploid," and the "doubled" number "diploid."

[^51]: ${ }^{1}$ [The following pronouncement in Nature of June 22, 1911, over the initials " D. W. 'T.," though undoubtedly ironical, might well be taken as a genuine expression of certain antivitalists and writers on this subject: "In short, we have no doubt at all that what they assert they have actually demonstrated . . . that, so to speak, they have ruised a hylirid between a needle und " frog!" 'The italics are mine, but not the note of adniration.]

[^52]: ${ }^{1}$ ['lhat this is po-sible in the Ihighest Animals- even in man-is shown by the stocalled "teratomatal" which necur in the ovary, even of virgins, and sometimes in the to- The. These are invegular masses contaning all the tissines of the boty and sometimes complete organs surh as teeth. They can only be due to the parthengenetic evolntion of a primitive reproductive cell, whether ovarian ormm or sperm mother-cell. Seed. Bland Sutton, Lancet, May 25, 1912.]

[^53]: 1 The term erg denotes four cells morphologically distinct: (1) the ovarian erge ; (2) its danulter, the sister-eell to the first polar hody; (3) the "matured ergg," sister to the secom polar borly and danghter of (2) ; (4) the "fertilised crge," or oo-perm (see Ilate 1, 191. 14:1, 1.00). But, as all four are nearly identical in ize and eytoplasm, it is convenient to retain the word "egg" to denote them indifferently.
 ? In Rotifers two kinds of eggs are formed: (1) large regse, which always develop at once into femaler ; (\because) mall erges, which if mofertilised ako derelop, at once-into males; but if "fertilised" go to rest and on germination grow into females.
 ${ }^{3}$ (iemmules and statoblasts are argregates of embryonic cells surromuled by a firm envelope to protect them against drought or cold during the resting-period.

[^54]: ${ }^{1}$ [Schaudim and others, who have demonstrated the fusion of closely related nuclei, sisters or cousins, in several groups of Rhizopoda, have introduced the term "autogamy" to designate it. l'rof. Helen Fraser (now Mrs. Gwyme-Vaughan) has further, in the Asconycete liungi, attempted to distinguish between "vegetative" and "sexual" pairing-muclei, and introduced the terms "homoioyam!" for the pairing of two nuclei of the same kind, "hylogamy" for the pairing of different kinds, "preudogumy" for that of two "regetative nuclei."]

[^55]: ${ }^{1}$ In Metazoa the centrosomes of the egg, that are seen in divisions to differentiate the oosphere and the polar boties, undergo degeneration ; and the centrosomes of the first division of the oosperm are formed by the division of one accompanying the sperm, and forming part of it (llate I).

[^56]: ${ }^{1}$ In Uredinete (the Rusts) syngamy takes phace in two successive stages. The mion of cells takes place in the formation of the Cluster-enp (Fcilimm fructification) ; but it is p/astognmir ; the cytoplasts fuse, while the nuclei remain separate. The accidiospores are binncleate; and at each successive fission in the Rust (Uredu) state the nuclei divide simnltaneously. But karyogamy, muclear fusion, only takes place at the end of the Rust state; and its issue are the resting-teleutospores, which on germination grow again to form the type that again eventuates in the Cluster-cup.

[^57]: ${ }^{1}$ (purr\%. Journ. of Micr. sci., Decr. 1891.

[^58]: ${ }^{1}$ In the (yeadacea and in the Maden Hair l'ine ((iangko) the generatise cell divides to form two well-developed sermatozoa; but the female cell here (oosphere) is fresh from division as in the Archeroniate Cryptogams.
 *In many Coccidiacear a partial disrnption of the nuclans of the "egge" and the expmsion of it: fragnents, replaces the unegnal fission with the formation of functional oosphere and rudimentary polar bodics.

[^59]: ${ }^{1}$ In the Wracks (Fucacea) it is not flagellate, but moses by attached sperms that have failed to penetrate.

[^60]: ${ }^{1}$ In Uredineæ (Rusts) the process of syngamy is divided into two stages separated by a long interval. Pfastogamy first takes place-leading to the formation of eluster-cups (Licidium)-by the mion of two cells whose melei remain distinct. In all subsequent divisions during the Rust state the two nuelei divide simultancously as "conjngate nuelei"; finally, immediately after division, each pair of nuclei undergoes fusion, and aromid each of the fusion-muclei the protoplasm aggregates to form a resting-spore. Here plastogamy is followed by growth, karyogamy by rest.
 ${ }^{2}$ In some of the Ascomycetes, such as the Blue Moulds (Eurotium), the zygote germinates at once into a specialised part of the surrounding fungus on which it is parasitic, and within which it finally forms (by brood-formation) resting-spores.

[^61]: ${ }^{1}$ [A great body of additional experimental evidence on this question has grown up during the last three or four years: it is ably summarised and discussed by R. Semon in his essay, "Die Stand der Frage über die Vererhung erworbener Eigensehaften," in Fortschritte des Naturwissenschïftlicher Forschuny, vol. ii., 1911.]

[^62]: ${ }^{1}$ See p. 68 f.

[^63]: ${ }^{1}$ In llants, which show purposive and co-ordinated reactions of the whole to stimulation of the parts, all research has failed to show any central controlling apparatns whatever comparable with the central nervous system of Animals ; or, indeed, to adequately demonstrate a mechanism corresponding with their nerve-trunks and branches.

[^64]: ${ }^{1}$ I should qualify this by noting that the girl a few years later developed slight astigmatism, asymmetrical in both eyes.

[^65]: ${ }^{1}$ [I have always felt some hesitation about these cases as involving the transmission of hurlfiul, not culuptive characters, to which, of course, the reasoning about mutilatious should apply. 'I. Graham Brown, on repeating Brown-Séquard's experiments, has fonnl it possible to put a different interpretation on the results; however, his paper is not, I think, final or couchusive (see Procepdings of the lioyal Society, Series B, vol. Ixxxiv. (1912), p. 555 f.).]

[^66]: ${ }^{1}$ This co-operation is nowhere better shown than in certain facts of experimental embryology; when cells are separated at an carly stage they develop to form complete organisms, insteal of parts of organisms (see p. 23(i, Fig 28). In some Flowering Plants again, the cells of the leaf, mere nutritive cells whose duty it is to form organie substances from the inorganic food materials, if severed more or less completely will at once beget propagative cells and form embryonic tissue whieh may regenerate the complete plant (see pp. (65-(i)). If the emb shoot of a conifer he removed, onte of the first circle of horizontal branches helow will gradually rise up and replace the "lost leader."

[^67]: 1 "Mendel'sche Regeln und Vererbung erworbener Eigenschaften" in "Festschrift zn Mendel," 1911.

[^68]: ${ }^{1}$ Male normal and female modified gives modified character dominant ; male modified and female normal gives modified character recessive: in other words, the character of the male, whichever it be, is recessive.

[^69]: ${ }^{1}$ This is the latest form of Weismannism; but we may still look forward to future modifications of theory and "development of dogma."

[^70]: ${ }^{1}$ [The hymothesis has heen made more complex liy its retention of that of "ids" (see p. 1ff.). Bach id is conceived as a complete set of determinants ; mul Weisman, lucid as he usually is, nowhere defines what share is taken hy the id as a whole, or by the several determinants in each id, in the struggle for untrition on which germinal selection depends. 1'rof. Arthur Dendy in his valuable "Principles of Evolutionary Biology" (1912), puts very clearly what many have funul a difficulty in the hypothesis of germinal selection, even as a mere formal explanation: "There would seem, however, to be a serimes ohjection . . . in the fact that the nuclens of any germ-cell contains many ids, and that similar determinants must as a rule recur in each id. We can harilly suppose that the reeurring determinants in each il are always subject to precisely the same advantages or disadrantages of position. It seems much more likely that variations in this respect in different ids would tend to nentralise one another, the kind of determinant which is unfarourably situated in one id being faroumbly situated in another, so that each kind would, on an anerage, have the same chance of nutrition" (p. 173, note).

[^71]: ${ }^{1}$ [Written in 1908.]

[^72]: ${ }^{1}$ Better known perhaps under the absurd but catchy title of "Chemical (or Physical) lertilisation" (see p. 142).

[^73]: ${ }^{1}$ Die Vererbmg somatogene Variationen ist also ein überans kompliziertes, von den genaner Erfiilhng vieler Berlingmgen abhangiges Geschehen, so dass wir mus nicht wmulern werden, wenn es mur in bestimmen Kiategorien von loillen regehmaissig gescheht (" Festschrift zu Mendel:" 1!11, p. :31.4).

 * [Bower writes (1,207): "The question of symmetry of the flower has been treated so lately and so well by (ioebel that it is mmecessary here to disenss it in detail." Then follows an account of Goebel's views in which we find: "According to the sensitiveness of the former [lateral flowers] to external factors the confignration of the flower will be changed more or less early. Snch changes may be inherited . . ." 'To the reader of the whole passage it is obvious that Bower fully adopts Goebel's view of the aeguisition of bilateral symmetry from primitive radial symmetry throngh the transmission of aequibed characters. I have been challenged as to the accuracy of the statement, and therefore deem this reference necessary.]

[^74]: ${ }^{1}$ Written June 1911.

[^75]: ${ }^{1} \mathrm{Dr}_{1}$. Alfred Russel Wallave was the first to urge Natural Selection without Lamarckiam transmission. He is antecedent to Weismann, and has no responsihility for Weismann's ingenions constructive hypotheses of heredity and variation.

 * All pasages between double ghotation marks (" ") are Dre Reid's, but I ann responsible for the italies.

[^76]: ' [Despite the expansion Dr. Reid has given to these aphorisms in his great book "The Prineiple of Heredity", I see no reason for withdrawing the above opinion.]

[^77]: [I was mistaken in this: as Sir Bertram Windle reminds me, it had been put forward and rejected by Charles Darwin himself as early as 186\%)..."Some have even imagined that natural selection induces variability, whereas it implies only the preservation of such variations as occur and are beneficial to the being under its condition of life" (" Origin of Species," ed. r. 11 . 92 3).]

[^78]: ${ }^{1}$ So a distinguished artist, of the Royal IIhernian Academy, once told me: "You know I never get on with strangers till I've seen a lot of them."

[^79]: 1 The two commas in this and previous line, inserted by me, are necessary to the sense, which without them is not obvious.

[^80]: [To these we must add Ell. Phlïger, so long Professor of Physiology at Bomn, and the founder of the classical physiological periodical Pflüger's. Archir (see 1. 270)].

[^81]: "Though we distinguish the simplest forms of machines as "tools," it is impossible to except the latter from our definition.
 ? Prof. A. W. Taylor, of Montreal, has insisted on the character of machines in his "Elements of Metaphysies" (London, 1903), p. 236 f . [While this essay was in the press, an extract from the "Notebooks of Samuel Butler" appeared (April 1908) contaning the same distinction; it dates from 1884.]

[^82]: 1 This example is borrowed from Prof. J. Reinke.

[^83]: ${ }^{1} I$ may note that Jemings started his experiments and ohservations with the expectation that the movements of Amwba could be explained on purely mechanical lines.

[^84]: 1 See p. 12t.

[^85]: 1 'Twins, generally, are due to simultaneons development in the uterus of distinct eggs, and they may be of opposite sexes; they are comparable to the brood of two or more that most anmals throw in a single litter. "True" or "identical" twins appear to be formed as deseribed above; they are always of the same sex, are singularly alike in form, feature, and constitution, and are surrounded by a single canl. In French, they are distingushed from jumounx as bessons (from the eonjectural Latin, hissones -_" (louhlets"), a term familiar to the readers of (ieorge Samb.

[^86]: ${ }^{1}$ It is true that in his later works, under the influence of the craving for unification, he alopted a monistic view near akin to Haeckel's (see 1. 25:).

[^87]: 1 "E Entia non sumt multiplicanda prater necessitatem."
 ${ }^{2}$ In justification of this assertion I may cite quotations from two unsigned reviews in large type in Noture, vol. 86, May 11, 1911:
 "Since no complete physico-chemical redescription of any vital activity has as yet been given, it seems to us a great pity to give yomig students: a prejudice in firour of mechanistic views " (p.340).
 "Althongle some would hold that the response of protoplasm to external stimuli is simply one of reaction, we think that the author's view of purposive action . . . is borne out by the facts cited, and that this is inlerent in protoplasin just as the tenlency to variation appears to be " (p. 342).

[^88]: ${ }^{1}$ Owing to a misunderstanding this foreword was omitted in the new iscue of "Linconscious Memory," hut "ppeared in the essing as published in Sicience Progress.

[^89]: ${ }^{1}$ This is the date on the title-page. The preface is dated October 15, 1886, and the first copy was issued in November of the same year. All the dates are taken from the Bihliography hy Mr. H. Festing Jones prefixed to the "Extracts" in The New Quarterly Review (1909).

[^90]: 1 Thus, "When I was starting on the voyage of the Beagle, the sagacions Henslow, who, like all other geologists, believed at that time in successive rataclysm=, a lvised me to get and stanly the first volume of the 'Principles' [Lyell's "Principles of (reology"], which had then just

[^91]: been published, but on no account to accept the views therein advocated" (Charles Darwin's Autohiography, in the "Life and Letters of Charles 1)atwin," ed. 1887 , 1. $7 \because 0$).

[^92]: 1 That hehind p. o85: : it hears no mmber of its own!

[^93]: ${ }^{1}$ The distinction was merely inplicit in his published writings, but has been printed since his death from his "Notebooks," New Quarlerly Review, April 1908. I had developed this thesis, without knowing of Butler's explicit anticipation in the essay on "Mechanism and Life," Conlemporary Review, May 1908, which was in the press at the time when Butler's posthumous work appeared ; it forms Chapter VIII in this volume.

[^94]: ${ }^{1}$ It has, since this essay was written, been fully discussed by Mr. H. Festing Jones in a pamphlet entitled "Charles Darwin and Samuel Butler ; a Step towards Reconciliation" (A. ('. Fifield, London, 1911).

[^95]: 1 'The term has recently been revived by Prof. Hubrecht and by myself (Contemporary lieciew, Novemher 1908).

[^96]: ${ }^{1}$ See also Chap. II.

[^97]: ${ }^{1}$ See p. 103 f.

[^98]: ${ }^{1}$ See Fortnighly Revime, Fobruary 1908, and Contemporary lieriew, September and November 1908 [the latter reprinted in this book, Chaps. V, V'I]. Since these publications the hypnosis seems to have somewhat weakened.

[^99]: ${ }^{1}$ A "hormone," the name given by E. H. Starling to an "internal secretion," is a chemical substance which, formed in one part of the hody, alters the reactions of another part, normally for the good of the organism.

[^100]: ${ }^{1}$ "Life and Letters," wol. i. pp. 147-8.

[^101]: ${ }^{1}$ Possibly this book, the blossom of his earlier thonght, was withheid as being in conflict with the monistic views which Butler had developed in or about 1880 ; see p. 252.

[^102]: ${ }^{1}$ Mr. II. Festing Jones first dirested my attention to these passages and their bearing on the Mutation Theory.

[^103]: ' [Now translated into English.]

[^104]: ${ }^{1}$ He says in a mote, "This general type of reaction was described and illustrated in a different comection by P'flüger in Pffüger's Archiv f.d. ges. Physiologie, Bd. XV." The essay bears the significant title "Die teleologische Mechanik der lebendigen Natur," and is a very remarkable one, as coming from an official physiologist in 1877, when the chemicophysical school was nearly at its zenith.

[^105]: " "Contributions to the Study of the Lower Animals" (1904), "Modifability in Behatiour "and " Method of Regulability in Behaviour and in other Fields," in Journ. Experimentul Zoology, vol. ii. (190i)).

[^106]: ${ }^{1}$ See above, Chap. Vil, pp. 178-80, 207-8, "The Hereditary Transmission of Acquired Characters."

[^107]: ${ }^{1}$ Semon's technical terms are exclusively taken from the Greek, but as experience tells that plain men in England have a special dread of suchlike, I have substituted "imprint" for "engram," "outcome" for "ecphoria" ; for the latter term I had thought of "efference," "manifestation," etc., but decided on what looked more homely, and at the same time was quite distinctive enough to aroid that confusion which Semon has dodged with his Grecisms.

[^108]: ' The italies are mine, not Semon's.

[^109]: ${ }^{1}$ [As Mr. Festing Jones recalls (op. cit., pp. 24, 25), Dr. Darwin had in previous scientific publications referred with sympathy to Butler's published views.]
 2 "Between the 'me' of to-day and the 'me' of yesterday lie night and sleep, abysses of unconsciousness; nor is there any bridge but memory with which to span them" ("Unconscious Memory," p. 71).

[^110]: ${ }^{1}$ Read at the Britislı Association at Bradford, 1900 .

[^111]: 1 "Extrapulation" may rank as a special case of interpolation.

[^112]: ${ }^{1}$ I find that Mr. G. F. Stout has approachel these views in his doctrine of "Relative Suggestion" ("Analytic Psychology," 1898). IIc has failed to note the essentially unconscious character of the process.

[^113]: 1 A "good ear" for delicate intervals is not necessarily combined with the power of producing them accurately. I know more than one person whose incorrect singing shocks his own goon ear, the very possession of which would be denied to him hy the average listener.

[^114]: 1 "frascinating" is our nearest equivalent.

[^115]: ${ }^{1}$ Translated in Nature for September 1899.

[^116]: ${ }^{1}$ A mathematical explanation has since been given.

[^117]: - The British Asoriation meets this year (1912) in Dundee for the first time for forty-five yeare () O looking inp ther Report of the 1869 mecting I fomm that Botany was tanght on Hem-low's lanes to every hoy in Rurby as a first year's course in science from the antumm of 186 f ; and that it was prenerally liked and very succer-fing. When and why it wa- dropped 1 do mot know.

[^118]: ${ }^{1}$ See "Interpolation in Memory," 1 . 289.

[^119]: ${ }^{1}$ Compare the following: "Now a peram is limited by the number of thiner: he is able to call by their names, qualify by appropriate cpithets. This is no mere peolantic ruling : it belongs to that unfathomable mystery we call human nature. Sud the modern falion of education, with its: shibholeth of 'things not words,' is infinitely demoralising" ("The Hasis of National Strongth : Edneation and the Fulhness of Life," by (harlotte Mason, Times Pidurational Suplemen). June t, 1912).

[^120]: ${ }^{1}$ L'ureasonable, hecanse the child who sees rlalk resolved by heat intu quicklime and a gas will "onsider the quicklime the "chalk-stuff," if lee is told that sucli a word exists : aud logicolly the carbon dioxide should be to him " not-chalkstuff gras."

[^121]: ${ }^{1}$ My experience since I wrote this leatine as Fxaminer in Botany mader the Intermodiate Education Boand in several sneres-ful years, has amply justified this clam for mature-study-that its practice teaches composition admirably. The "form" of the allswers reached a very. high standard, not ouly in excoptional prapers, but throughout.

[^122]: 1 The eyuivalent of hockey.

[^123]: - The asterisk implles that the Latin worl is not actually found in any writing, but inferred

