$$
32132 / A
$$

Digitized by the Internet Archive in 2015

> A

POPULAR HISTORY

OF

BRITISH SEA-WEEDS,
 COMPRISING

THEIR STRUCTURE, FRUCTIFICATION, SPECIFIC CHARACTERS, ARRANGEMENT, AND GENERAL DISTRIBUTION, WITH NOTICES OF SOME

OF THE

FRESH-WATER ALG

BY THE

REV. D. LANDSbOROUGH, A.L.S.,
 Member of the Wernerian Society of Ediuburgh, and Author of
 "Excursions to the Isle of Arran."

LONDON:

REEVE, BENHAM, AND REEVE, KING-WILLIAM STREET, S'゚KANI.
1849.

REEVE, BENHAM, AND REEVE,
PRINTERS AND PUBLISHERS OF SCIENTIFIC WORKS, KING WILLIAM STREET, STRAND.
ROBERT KAYE GREVILLE, M.D.,EDINBURGH,

WILLIAM HENRY HaRVEY, M.D., PROFESSOR OF BOTANY, DUBLIN,

THIS LITTLE WORK,

IN WHICH THEY HAVE KINDLY AIDED HIM, IS,
WITH MUCH RESPECT AND ESTEEM, DEDICATED
BY THEIR GRATEFUL FRIEND,

THE AUTHOR.

" Not lost the time in sea-side ramble spent.
Braeed is the frame; and mental health is gained;
Knowledge is gained of Him who made the deep,
And blissful love acquired of nature's works, Of whieh eaeh questioned 'minim' soothly says:
'The plastic power that formed us is divine!'
Launch then the skiff; ply well the seraping dredge!
Or, if it like thee better, seareh the shore :
Each rock-pool has its treasure, every tide
Strews on the yellow sand, from Oeean's lap,
Weeds, than our flowers more fair, and fitted more,
By Lady's gentle fingering displayed,
To beautify the album's tasteful page,
Than aught that deftest pencil e'er devised
Of graceful symmetry, or lovely hue:
For 'who can paint like Nature ?' quoth the Bard."-D. L.

PREFACE.

Though British Algology has for several years at lcisure hours been a favourite study of mine, I should have been afraid to undertake this introductory work had I not been encouraged by Dr. Greville of Edinburgh, and Professor Harvey of Dublin. The former lent me books, gave me advice, and allowed me to avail myself of his published works; the latter gave me council, allowed me to take aid from his publieations, and solved my doubts respeeting plants I sent to him.

In describing the Corallines I was glad to avail myself of the aceurate descriptions given by my exeellont friend Dr. Johnston. In the fresh-water department, I was happy to draw on my friends Mr. Ralfs and Mr. Hassall. Mrs. Griffiths, with her charaeteristic kindness, granted me the
mueh-valued privilege of eonsulting her respecting marine Algre; and was ready at all times to favour me with speeimens. The preliminary chapters, extending to a greater length than I antieipated, will not, I trust, be regarded as altogether minteresting. In the body of the work, I ean safely recommend the deseription of genera, being ehiefly taken from the valuable works of Dr. Greville and Professor Harvey. The plates are by Mr. Fiteh, whose talents in this department are too well known to need praise from me. The plates add greatly to the value of the work, by making verbal deseriptions mueh more easily understood:-
> "Segnius inritant animos demissa per aurem, Quam quæ sunt oculis subjecta fidelibus."

Though the work is intended for beginners, I shall venture to hope that some portions of it may not be quite devoid of interest to profieients in seience. The savans of the south may not disdain to listen even to a sciolist of the north-west, when, without pretension, he records his orn observatiolls.

British Algology is making as rapid progress as any other branch of natural science. Many of those persons who spend a month or two in summer on the sea-coast, have discovered that there is great beauty in sea-weeds, and have found that there is great pleasure in preparing little collections of these marine paintings, to gratify thcir inland friends on their return, and to afford to themselves pleasant reminiscences of happy hours spent in healthful recreation on the sea-shore ; and often, we trust, in devout musings on Him whose path is in the deep waters; whose hand has formed all the wonderful works they contain, and whose voice may be heard in the gentlest whispcrings of the waves, or in the mighty noise of the great sca-billows.

The gentleness of Heaven is on the Sea:
Listen! the mighty Being is awake, And doth with his eternal motion make A sound like thunder-everlastingly,-Wordsworth.

Rockvale, Saltcoats, May, 1849.

ALPHABETICAL LIST

OF

SPECIES.

Marine Alga.

Page
Page
Callithamnion affine 170

- arbuscula 164
- barbatum 168
- Brodiei 165
——byssoideum 169
-_ eorymbosum
(Plate VI. fig. 23) 172
- cruciatum 164
-_Daviesii 175
—— floccosum (Pl.VI.f.22) 167
—— floridulum 173
gracillimum
(Plate VI. fig. 21) 170
- Harveyanum 169
- Hookeri 165
-_ pedicellatum 173
Page
Callithamnion pluma. 167
plumula 163
- polyspcrmum 169
roseum
(Plate VII. fig. 26) 166
—— Rothii 174
- sparsum 175
- spongiosum 172
- tetragonum 168
—— tetricum(Plate VII. fig. 25) 166
—— thuyoideum 171
- tripinnatum 176
-_ Turneri 167
Calothrix confervicola 316
Carpomitra Cabrerex 124
Catcnella opuntia(Plate X. fig. 39) 234Ceramium acanthonotum(Plate X. fig. 38) 187
—— botryocarpum 190
__ ciliatum 186
-Deslongchampsii 189
- diaphanum
(Platc VII. fig. 27) 186
-_ cchionotum 187
Page
189
Chlorosiphon fastigiatum 189
gracillimum 188
- nodosum $i b$.
- rubrum
(Platc VIII. fig. 29) 185
- Laminariæ 139
- pusillus ib.
Chondrus crispus (Plate IX. fig. 33) 208
- Norvegicus 209
Chorda filum
(Plate III. fig. 9) 140
-_ lomentaria 142
Chordaria divaricata 160
—— flagelliformis 159
Chrysimenia clavellosa (Plate XIV. fig. 56) 255
Chylocladia articulata(Plate XIV. fig. 53) 260
kaliformis
(Plate XV. fig. 57) 258
_- ovalis $i b$.
- parvula 259
- reflexa $i b$.
Cladophora arcta
Page

Page
Corallina officinalis
(Plate XIV. fig. 54) 261

- squamata 262
Crouania attenuata 194
Cruoria pellita 202
Cutlcria multifida
(Plate II. fig. 6) 126
Cystoseira ericoidcs 99
Dasya arbuscula 290
- coccinea 288
- occllata 290
- venusta ib.
Delesseria alata. 242
- angustissima 243
- hypoglossum 244
- ruscifolia
(Platc XIII, fig. 49) 245
- sanguinea
(Platc XIII. fig. 50) 237
- sinuosa 241
Desmarestia aculcata 122
-_ ligulata
(Plate I. fig. 3) 120
- viridis 121
Diatoma marinum 319
Dictyosiphon freniculaccus 133
Page Page
Elachistea velutina $i b$.
Enteromorpha compressa (Plate XVI. fig. 62) 311
- erecta(Plate XVIII. fig. 71) 312
intestinalis
(Platc XVIII. fig. 72) 310
Exilaria fulgens 319
Fucus canaliculatus 108
__ ceranioides 105
—— Mackaii 108
__ nodosus $i b$.
Fucus serratus
(Plate I. fig. 1) 106
___ vesiculosus 104
Furcellaria fastigiata. 207
Gelidium cartilagincum 220
- corneum $i b$.
Gigartina acicularis
(Plate XI. fig. 42) 218
-_ tomentosus
Elachistca attenuata 156
- curta ib.
__ flaccida $i b$.
—_ fucicola 155
- scutulata 156
_ stellulata $i b$.

Page

Gracilaria compressa 226
confervoides (Plate XI. fig. 44) 225
_—erecta 224227
Grateloupia filicina 221
Griffithsia barbata 181
_ corallina $i b$.

- Deroniensis 180
- equisetifolia 179
- secundiffora 183
- setacea. $i b$.
- simplicifilum 180
Gymnogongrus Griffithsiæ 208
plicatus 207Halidrys siliquosa(Plate I. fig. 2) 100Halymenia ligulata(Platc XIII. fig. 52) 214
Halyseris polypodioides
(Plate III. fig. 10) 127
Hildenbrandtia rubra 212
Himanthalia lorea(Plate IV. fig. 13) 109Hypnea purpurascens(Platc X. fig. 37) 223PageIridæa edulis
(Plate IX. fig. 35) 203
Isthmia obliquata 318
Jania rubens 263
Kalymenia Dubyi 213
-_ reniformis ib.
Laminaria bulbosa 116
——digitata 112
- fascia 119
-_ phyllitis
(Plate XIX. fig. 76) ib.
- saccharina 118
Laurencia dasyphylla 255
- hybrida iv.
- obtusa $i b$.
Laurencia pinnatifida (Platc XIV. fig. 58) 254
- tenuissima 256
Leathesia Bcrkelcyi 157
- tuberiformis $i b$.
Lichina confinis 96
——pygmæa ib.
Licmophora flabellata 320
- splendida. ib.
Lyngloya Carmichaclii 31%
Mcsogloia Griffithsiana 159
Page Page
Padinella parvula 130
Pcyssonclia Dubyi. 212
Phyllophora Brodiæi 210
- rubens
(Pl. IX. fig. 34) $i b$.
Plocamium coccincum
(Plate XII, fig. 46) 235
Polyides rotundus 206
Polysiphonia atro-rubescens 279
- Brodiæi
(Pl. XV. fig, 60) 281
——byssoides 287
- clongata 285
- elongella
(Platc XT「. fig. 55̆) 286
——fastigiata 280
_ fibrata 283
-_ fibrillosa 282
- formosa 285
Polysiphonia furcellata 280
- nigrcscens 279
- parasitica
(Platc XII. fig. 47) 276
- pulvinata 284
—— Richardsoni 281
- spinulosa 279
Page Page
Rhodymenia membranifolia 231
- palmata 232
—— palmetta 230
Rivularia atra 316
Rytiphlæa complanata 274
- fruticulosa 275
- pinnastroides 274
—— thuyoides
(Plate XV. fig. 59) 275
Sargassum bacciferum (Plate III. fig. 12) 92
- vulgare $i b$.
Schizonema helminthosum 322
- obtusum ib.
Seirospora Griffithsiana (Plate VI. fig. 24) 1.76
Sphacelaria cirrhosa 147
- filicina 144
- fusca 147
- olivacea $i b$.
- plumosa 14.6
- racemosa 147
—_radicans ib.
- scoparia
(Pl. IV. fig. 15) 145
- scrtularia ib.
Page
Sphærococcus coronopifolius
(Plate XII. f. 48) 227
Sporochnus pedunculatus
(Plate V. f. 17) 123
Spyridia filamentosa 184
Stilophora Lyngbyæi 133
__rhizodes 132
Striaria attenuata(Platc II. f. 8) 134
Page
318
Striatella arcuata
314
Ulva lactuca
-_ latissima
(Plate XIX. fig. 73) 313:
- linza
(Plate XVI. fig. 61) 314
Vaucheria submarina 296
Wrangelia multifida 178
Fresh-Water Alya.
Page
Batrachospermum atrum 335
moniliforme
(Plate XX. fig. 77) 334
Cladophora glomerata
(Plate XX. fig. 78) 328
Draparnaldia clongata 34]
_ glomerata 339
- nana

LIST OF PLATES.

Plate I.
Fig. Page
1 Fucus serratus. 106
2 Halidrys siliquosa 100
3 Desmarestia ligqulata 120
4. Alaria esculenta 111
Plate II.
5 Dictyota dichotoma 131
6 Cutleria multifida 126
7 Asperococcus Turneri 137
8 Striaria attenuata 134
Plate IlI.
9 Chorda filum 340
10 Halyscris polypodioides 127
11 Myriotrichia claveformis 153
12 Sargassum baccifcrum 92
Plate VII.
Fig.
25 Callithamnion tetrieum 166
2 ——roseum $i b$.
27 Ceramium diaphanum 186
28 Ptilota serieea 192 192
Plate VIII.
29 Ceramium rubrum. 185
30 Ptilota plumosa 192
31 Chyloeladia kaliformis 258
32 Mieroeladia glandulosa 191
Plate IX.
33 Chondrus erispus 208
34 Phyllophora rubens 210
35 Iridea edulis 203
36 Rhodymenia laciniata 229
Plate X.
37 Hypnea purpuraseens 223
38 Ceramium aeanthonotum. 187
39 Catenclla opuntia 204
40 Dumontia filiformis 216
Plate XI.
41 Bostriehia seorpioides 273
42 Gigartina aeieularis. 218
4.3 Rhodymenia jubata 231
+4. Graeilaria eonfervoides 225
Plate Xif.
Fig. Page
45 Bonnemaisonia asparagoides 251
46 Ploeamium eoeeineum 235
47 Polysiphonia parasitiea 276
48 Spherroeoceus eoronopifolius 227
Platite XIII.
49 Delesseria ruseifolia 245
50 - sanguinea 237
51 Nitophyllum punetatum 246
52 Halymenia ligulata 214
Plate XIV.
53 Chyloeladia artieulata 260
54 Corallina offieinalis 261
55 Polysiphonia elongella 286
56 Chrysimenia elavellosa. 257
Plate XV.
57 Chyloeladia kaliformis 258
58 Laureneia pimatifida 254
59 Rytiphlea thuyoides. 275
60 Polysiphonia Brodiæi 281
Plate XVI.
61 Ulva Linza 313
62 Enteromorpha compressn. 311
63 Codium tomentosum 293
6. 1 Bryopsis plumosa 294

Plate XVII.
Fig. Page
65 Cladophora lanosa 299
60 ——arcta 300
67 ——rupestris 298
68 - icetangularis ib.
Plate XVIII.
69 Conferva tortuosa 303
70 ——melagonium ib.
71 Entcromorpha erecta 312
72 - intestinalis 310

Plate XIX.

Fig. Page
73 Ulva latissima. 313
74 Padina pavonia 129
75 Porphyra laciniata 305
76 Laminaria phyllitis 119
Plate XX.
77 Batrachosperm. moniliforme 334
78 Cladophora glomerata 328
79 Draparmaldia nana 340
80 Microsterias denticulata 347

PLATES OF FRUCTIFICATION.

(Figures more or less magnified.)

A.-Polysiphonia urceolata.

Fig. 1. Portion of a branch.
2. Capsule more highly magnified.
B.-Polysiphonia urecolata.

Fig. 1. Portion of a branehlet, showing granular fruit (tetraspores).
2. Tetraspore, highly magnified.
C.-Ptilota plumosa.

Fig. 1. Involuere containing favellac.
2. Lacinia with tetraspores on short pedicels.
D.-Plocamium coccincum.

Fig. 1. Branehlet with a lateral tuberele eontainiag spores.
2. Branehlet with stiehidia containing letraspores.
E.-Odonthalia dentata.

Fig. 1. Capsular fruit.
2. Stichidia, containing telraspores.
(Observed in abmadance in early winter.)
F.-Rhodomenia bifida.

Fig. 1. Portion of frond with imbedded tubercles (coccidia), containing spores.

Nitophyllum punctatum.
Fig. 2. Portion of frond cxhibiting one of the sori, consisting of an assemblage of tetraspores.
G.-Callithamnion Borreri.

Irig. 1. Brauch with capsular fruit.
2. Branchlet with a bilobed favella.
H.-Phyllophora rubens.

Fig. 1. Wart, with one leaf remored to show the nemathecia.
2. Moniliform filameuts, composing the nemathecium.

INTRODUCTION.

The time is not very far gone past, when a book on the study of Sea-weeds, would have been the very reverse of popular in any ease. About fifty years ago, in some aeademie chairs, they were treated with disdain. We have heard of a student about that period who, having eolleeted some beautiful $\Lambda l g æ$ on the shore, shewed the eontents of lis vaseulum to the Professor of Botany whose leetures he attended, expressing a wish to get some information respeeting them. The Professor looked at them, and putting on his speetaeles, again looked at them, when pushing them from him, he exelaimed: "Pooh! a pareel of Seaweeds, Sir; a pareel of Sea-weeds!" The Newhaven fishermen seem to have eaught the spirit of this learned Professor, for to this day do they denominate all the finer Sea-weeds,--chaff. They are weeds: and what are weeds? Dr. Johnson, the famous lexieographer, tells us that they are plants that are noxious and useless. Oh, but they are sea-
weeds, we say in mitigation. And does that mend the matter? Horace and Virgil knew that right well, and as with all their poetie genius they knew not a word of English, they gave them the outlandish name of Alga:--nay more, Horace speaks of them as "inutilis Alga," useless Seaweeds! And tasteful Virgil goes even beyond his friend Horaee, for when speaking of something which he regards as worthless and filthy, he says that it is "Algá projectâ vilior," viler than the Sea-weed east out on the shore. Its very ealamities are turned against it: "Refunditur Alga," says another poet, the sea loathes it and flings it out on the land!--Alas! for the poor Sea-weeds, when the Princes of Poetry in the Augustan age are against them! But as there were no Sea-weeds in the streets of Rome, or in the yellow Tiber, they may have spoken thoughtlessly, and without any maliee prepense, and we would therefore appeal from the aneient eourt of the Muses, and consider what charaeter they sustain in the present day.

In Seotland, Sea-weeds go very generally under the name of wrack, or in the south and west of Scotland wreck, and not unfrequently vreck ; and in this we have one of the numberless instanees of the effect whiel the great intercourse in aneient times betwixt Franee and Seotland had
on our Seottish language; -for what is wruck or wreck or wreck, but the Freneh word varec, whieh signifies sea-weed. Fraic is the word employed in the Chamel Islands, in Guernsey and Jersey, and is evidently of Freneh extraetion ; and they who read Inglis on the Channel Islands will find that vraic is not a thing to be spoken of eontemptuously! But more of this anon.

In the list of names we may mention that they often go under the name of sea-ware; henee we have kelp-ware; and even hen-ware, and honey-ware. Among the learned, Plante marina, marine plants, is often employed, but this term is too eomprehensive, for it would inelude Zostera marina, sea-ribbon, whiel is a flowering plont. Thalassiophytes, a still more learned name has often been given them, derived from two Greek words signifying sea-plants.

As many of them at one time were ranged under the Linnæan genus Fucus, te have learned volumes deseriptive of numerous genera and species then ineluded in that comprehensive genus.

Fucus is the Latin form of a Greek name given to sca-weeds, and as the word signifies paint, it may have been rpplied to them beeause of the fine colour whieh some of them yicld.

CHAPTER I.

HISTORY OF ALGE.

_- Non ego te meis
Chartis inoruatum silebo,
Totve tuos patiar labores
Impunc--earpere lividas
Obliviones.-Horace.
We shall mention very briefly some of those authors whose works have greatly helped to promote this department of botanical science, and with one exeeption we shall confine ourselves to writers of our own country. The justly celebrated Linnæus is the exception. His attention was chiefly direeted to plænogamous or flowering plants. His situation at a distance from the sea was not favourable for the investigation of Marine Algæ; his Herbarium contained comparatively few species; his division of this order of plants was a simple one, for he ranked all aquatie Algæ, whether from the sea or from fresh-water, under four great genera, Iremella, Fucus, Ulva, and Conferva. In our own country we can boast of Ray, that great and good man, Those works were of so much service in almost every branch
of seience, and who enumerated a good many Algæ in his Synopsis. Dillenius deserves to be mentioncd whose figures of many of the Conferve arc good. Hudson is worthy of mueh praise, and I have a regard for him because his Flora Anglica, whieh is remarkable for its accuraey, was the first botanieal work I ever saw, with the exception of Lee's Introduetion. One of the next I fell in with was Lightfoot's Flora Scotica, a very interesting book, and the more valuable as many of the speeies he describes were gathered and figured by himsclf. Stackhouse's Nereis Britannica, whieh appearcd in numbers at the end of the last, and beginning of the present century, though now rather rare, is a work of eonsiderable merit. For this and other valuable botanical works, I have becu indebted to Dr. Robort Kaye Greville. The publication of Dr. Greville's own works at a later period, formed an era in the history of Marine Botany. They are exceedingly good, and have been highly lauded by all subsequent writers on this department of Seienec. His deseriptions are admirable, and his exquisite plates in his Alga Britannica, his Scottish Cryptogamic Flora, and his other publications, were well fitted to lay the foundation of his recently aequired fame as a first-rate landseape paintcr.

Previous however to the publieation of Dr. Greville's
works, there were other publieations that ought not to be passed over; an exeellent aceount of the method of Dr. Walker, the well-known Professor of Natural History in the University of Edinburgh, is given by my worthy, kind-liearted friend Dr. Patrick Neill, in his very able article, in the Edinburgh Eneyelopædia, on Fuci, whieh has reeeived the most unquestionable praise by being largely quoted by all subsequent writers on the subjeet, to which as a rieh quarry I have already had recourse, and to whieh I am sure the author will make me welcome again and again to return.

Of another voluminous work at present lying before me, it would not be easy to speak in terms of too high approval, we mean Mr. Dawson Turner's Historia Fucorum, illustrated by eoloured engravings ehielly by Mr. (now Sir William) Jackson Hooker, who has by his peneil and by his pen not only sustained, but greatly inereased his fame thus early aequired. Respeeting the deseriptions and the illustrations, Sir James Edward Smith remarks, "never was there a more perfeet eombination of the skill of the painter and the botanist, than in this work."

Nor mnst Miss Hutchins be omitted, whose name will long be honoured by Algologists. Mr. Dawson Turner, who was so well able to appreeiate her worth, pays a beautiful and
tender tribute to her memory. "But few, if ally besides myself, ean appreeiate her many amiable qualities; her liberality, her pleasure in eommunieating knowledge, her delight in being useful, the rapture she felt in traeing the works of the Divine Haud, and the union in her of those virtues whieh embellish and improve mankind. Three years have now elapsed sinee she died, and every suceeeding year makes me feel more deeply what I have lost, and how with her is gone a great part of the pleasure I derived from these pursuits.

> "In every season of the beauteous year
> Her eye was open, and with studious love Read the Divine Creator in his works. Chiefly in thee, sweet spring, when every nook Some latent beauty to her wakeful seareh Presented, some sweet flower, some virtual plant. In every native of the hill and vale, She found attraction, and, when beauty fail'd, Applauded orlour or commended use.
> "Heu! quanto minus est
> Cum reliquis versari
> Quàm tui memiuisse!" *

Mr. Dillwyn's History of British Confervæ eannot but be prized by all who are aequainted with it, as it las so mueh to reeommend it, both in the plates and deseriptions.

[^0]Great also were the serviees rendered to Algology by the late Captain Carmichael of Appin, the value of whose MISS. has been amply aeknowledged by Sir W. Jaekson Hooker into whose possession they eame. There are several others deserving of great praise, that we are eonstrained to pass over; but there are two whom it would be altogether unjustifiable to omit in this limited list. The one is a lady who, so far as we know, has published nothing in her own name, -but who yet may be said to have published mueh, as slie has so often been consulted by distinguished naturalists who lave been proud to aeknowledge the benefit they have derived from her seientifie eye and sound judgment. We mean Mrs. Griffiths of Torquay of whom we may speak as facile Regina, the willingly acknowledged Queen of Algologists. The other to whom I refer is Professor W. H. Harrey of Dublin, who is so well known by his works and to us, best, by his exeellent Manual of British Algæ, which since its publieation has been our favourite vade-meeum, till it has in some measure been supplanted by a still greater favourite, his splendid Phycologia Britannica, in progress of publication, and whieh comes to us as a monthly feast with its aeeurate deseriptions and magnifieent illustrations.

CHAPTER II.

STRUCTURE AND SUBSTANCE.

He that enlarges his euriosity after the works of Nature, demonstrably multiplies the inlets to happiness; and therefore, the younger part of my readers, to whom I dedieate this vernal speeulation, must exeuse me for ealling upon them to make use at onee of the spring of the year and the spring of life, and to aequire while their minds may be impressed with new images, a love of innoeent pleasures, and an ardour for useful kuowledge; and to remember that a blighted spring makes a barren year, and that the vernal flowers, however beautiful and gay, are only intended by Nature as preparatives to autumnal fruits.-Dr. Johnson.

Alge form part of that great elass to which Linnæus has given the name of Cryptogamia, beeause they are flowerless; but like ferns and mosses, and other plants of the same great elass, they have what answers the purpose of flowers. The portion of Algæ of which we mean more partieularly to treat, are called Sea-weeds, and, as their name implies, either grow in the sea, or in plaees where they are, oceasionally at least, eovered by the tide, washed by the waves, or moistened by the spray. Though very different from eaeh other, in form, eolour, and general appearanee, they are all similar in so far as they are eom-
posed of eellular tissue. They have not eontinuous vessels like the phænogamous plants, but eonsist of eells differently arranged, or of gelatine, membrane, and endoehrome. They have no woody fibre, though there is eertainly the approach to it in appearance, as in the stems of the great Tangle. Lamouroux indeed thinks that the stem of Laminaria digitata is formed of four distinet parts, analogous in situation, size, and organization to the epidermis, bark, wood and pith of dicotyledonous plants. That marine Algæ are not furnished with eontinuous vessels like land plants, is obvious from the well-known fact, that if one part of a sea plant is plunged in water, and the remainder is exposed to the air, only what is in the water remains fresh, the rest withers and becomes dry. And in the same manner if a dried speeimen of Sea-weed is in part immersed in water, while the part that is immersed beeomes filled with the fluid and assumes a fresh appearance, the part that is not in the water, remains dry as before.

The fronds of Algæ are not only variable in form but also in substanee. Some are like masses of Jelly, sueh as the freshwater Batrachospernum and Draparnaldia; others are very gelatinous, sueh as the marine Mesogloia; others are like silk threads, others are so filmy and membranaceous that by
children they are called Sea-silk; others are cartilaginous as gristle and elastic as indian-rubber, a quality which I partieularly observed in a Micromega that I found in Arran; some are tough as leather, others firm as wood. The leaves of some are delieate and transparent, while those of others are thiek and opake; some are finely veined, others are without nerves; some of the filamentous kinds have joints and longitudinal siphons ; some are destitute of both. The Diatomacea, both fresh-water and marine, have an organized eovering of flint whieh withstands the action of fire, so that they are found abundantly in a fossil state in the substanee ealled Bergmeal or mountain-meal, extensive strata of which occur on the continent; and the microscope detccts them also in a portion of Bergmeal in my possession from a stratum of it lately discovered in Rasay, one of the islands of the Hebrides.

No part of the structure of Sca-wceds has more universally attracted attention, than the inflated portions of the stem or frond resembling bladders. These are seen in many native speeies, and they are very conspicuous in Fucus vesiculosus and Freus nodosus. They are called vesicles, and sometimes air vesscls: those on 7 . nodosus are very remarkable and escape not the attention of ehildren, who valuc
them the more, beeause they enable them to play off a practical joke on their inland friends who visit the shore, and whom they delight to startle by the explosion whieh the heated air oceasions, when the vesieles are east into the fire.

It is generally supposed that the vesieles are intended to give buoyaney to sea-plants, and the wisdom of God is beautifully manifested in making them at once useful and ornamental. It has been stated that the plants that are furnished with them, eease to float when the vesieles are cut off. Mr. Darwin, that remarkably seientifie observer and sound reasoner, mentions, in his most interesting Joumal of the Voyages of the Beagle, some Algæ that grow on the roeks in the Aretie Seas, whieh though of prodigious length, instead of being spread along the bottom, as otherwise they would be, are in part floated on the surface by means of the numerous air-vessels they eontain. A portion of one of these gigantie sea-plants, said to be at times 1,500 feet in length, is now in my possession. A section of it is so full of vesieles that it looks like a honey-eomb, or like a pieee of wood perforated by that indefatigable borer, Xylophaga dorsalis.

CHAPTER III.

COLOUR.

Not a flower

But shews some toneh in freckle, streak, or stain, Of His umivalled peneil. He inspires Their balmy odours, and imparts their hues, And bathes their eyes with neetar, and ineludes In grains as countless as the sea-side sands The forms, with whieh He sprinkles all the earth.
Happy who walks with Him! Whom what he finds
Of flavour, or of seent in frust or flower,
Or what he views of beautiful or grand
In Nature-from the broad majestie oak
To the green blade that twinkles iu the sun,
Prompts with remembrance of a present God.
His presenee, who made all so fair, pereeived
Makes all still fitirer.-Cowper.
The goodness of God is remarkably manifest in the variety of sweet and beautiful eolours whieh he has imparted to lis works. This is observable in the prismatic colours of the eovenant-bow, in the purple streakings of the sky, in the orient tints of the morning, and in the splendid drapery of evening elouds, when the sun seems retiring to his slumbers in the west. It is seen also in the green pastures,
in the rosy flowers, in the verdant foliage of the groves in spring, and in the rieh and mellow eolouring of the woods in autumn. The Almighty, no doubt, could have preserved us in life, though all nature had worn a dull monotonous aspeet. But mark the surpassing kindness of Him,

"Who not content

With every food of life to nourish man, Hath made all Nature beauty to his eje, And musie to his ear."
"The works of the Lord are great, sought out of all them that have pleasure therein;" and as if to encourage us to seek them out, and to traee Him, whose way is in the sea, and whose path is in the great waters, and whose footsteps are but little known, He shows us by the lovely eolouring which He imparts to the denizens of the deep, that even the deep feels his benignant presence; -that if we could take the wings of the morning and dwell in the uttermost parts of the sea, there would his hand lead us and his right hand hold us, and the tiviest plant that grows in the abyss would say to him, who in humility seeks it out: "Behold the wonders of thy God."

To speak after the mamer of men, the Most High seems so set on recommending to our notiee the plants of the sea
by their great beauty, that He issues, so to speak, a new law of nature. Looking at land-plants, we would say that it is a law of nature (that is, the appointment of God), that the full light of the sun is neeessary to bring forth their beautiful tints. Shut out almost all the light of the sun from a rose-bud eoming into flower, and if it expand at all, how pale and sickly does it look,-
"Like saddest portrait painted after death."
Exelude altogether the enlivening sun-beams from plants of the sweetest verdure, and they become quite blanched, as if white robes were with them, as among some nations, the weeds of woe. How different is the case with marine plants! Humboldt mentions a Fucus of a fine grass-green colour, brought up from the great depth of 192 feet where it had vegetated, though the light that reached it at that depth could have been equal only to lhalf the light of an ordinary candle; and aeeording to his own experiments, eommon garden-cresses exposed during vegetation to the brilliant light of two Argand lamps aequired only a slight tint of green. Sea-plants of a red colour, it is well known, aequire their richest red in the deepest water ; and at depths to whieh, it is known, the rays of the sun do not reach, there are many species of Algæ of different liués, as fully
eoloured as those that eome under the full influenee of solar light.

Thus in a way that we eannot explain does the Lord work wonders in the deep, adorning his handiworks.
> "For not to use alone did Providenee
> Abound, but large example give to man
> Of grace, and ornament, and splendour rich, Suited abmidantly to every taste, In bird, beast, fish, winged and creeping thing, In herb and flower."

The prevailing eolours that sea-weeds exhibit are green, olive, and red, in all their variety of shades. Those of a green-colour generally grow in shallow water, the olive in deeper, and the red in deeper still; but there are many exeeptions, for while the darkest olive plants are at times found iu very deep water, I have seen in slallow pools Sphacelaria plumosa, for instanee, of the darkest olive that I have ever observed in any Alga in a fresh state. And while plants of the richest red or purple are at times brought up from depths profound, Bangia fusco-purpurea beeomes of the riehest dark purple on rocks faeing the sum, and but a little within high-water mark. Brownish-olive and greenisholive eoloured plants are generally found about half-tide level. Those again that in deep water are red or purple,
sueh as Ceramium rubrum and Laurencia pinnatificta, lose their fine colour when growing near high-tide mark, the former becoming a dirty white or yellow, and the latter a kind of olive green. The same may be said of Chondrus ${ }^{\text {a }}$ crispus, whieh is purple in deep water, and green when growing in shallow pools. I have often observed the iridescenee of this plant. This irideseence, I understand, is still more remarkable in Cystoseiva ericoides, but it is rarely found on our western shores.

Having spoken of the laws of nature, allow me to remind my young friends of the great danger of putting Nature in the place of God, and of forgetting that the God of nature is also the God of graee. It would not avail us that we admired his manifold works of nature, if we were not interested in the greatest and most wonderful of all his works -the work of Redemption through his Son, Jesus Christ.

[^1]
CHAPTER IV.

VEGETATION OF SEA-TVEEDS.

Aequaint thyself with Nature. Nature's God Exelnde not from his works. Know and adore, Yea, love Him as a Father: -with Him walk.
Then, sweet to roam and trace the tiny brook
To where it bubbles from its parent fonnt,
And mark, as it meanders throngh the vale,
How the rath primrose smiles on sunny brae,
And drooping hyaeinths perfume the dell.-
Sweet, too, to climb the mountaiu's heath-elad brow,
To cull mid cliffs, the haunt of ptarmigan,
Rare alpine flowers that seorn the lowly vale.-
But sweeter far to float upon the deep
And gaze with wistful eye on all below, 一
On groves of olive tangle, intertwined
With bright festoons of gayer, gentler algues, Subundaue drapery, so rieh and fair, That, like the pearl-diver, one is prone To eleave with downward plunge the sea-green wave, To grasp, and bear aloft the tempting prize, As trophy gained from mermaid's gay parterre.-D. L.

Land plants are divided into amual, biemial, and perennial ; and this seems to be the case also with marine plants. Many of the more tender kinds are evidently anmal, may,
some of those that appear early in spring, have answered the purposes for which they were ereated, and have passerl away before summer is far advanced. Others, though of a delieate fabrie, are more enduring. They outlive the summer, and though they die partly down on the approaeh of winter, they send out, when spring returns, fresh fronds from the old stumps; the old and the new, though courjoined, retaining a marked difference of appearance during the early part of the season. Those of a woody fabrie, like the great Tangle, often bear considerable evidenee of having weathered several winters. The mode of growth in Laminaria saccharina, the sweet Tangle, and in L. digitata is very remarkable. The new growth begins at the base, and pushes the old portion before it. This strikes us as curious, and yet it should be familiar to us, for it is the way in which the nails of our fingers and toes are renewed.

Very interesting information respecting the rapidity of the growth of some of the large sea-weeds is recorded in Dr. P. Neill's artiele on Fuci, from whieh, like my predeeessors, I an glad to borrow the faets observed in the course of the arduous undertaking of ereeting a beacon on the Carr Rock in the Frith of Forth. The observer was that highly respectable eivil engineer, Mr. Stephenson, and the C 2
observations were made at the request of his friend Dr_{1}. Neill, to whom speeimens of the sea-weeds were transmitted. The Carr Rock is at the entranee of the Frith. It is about twenty feet broad and sixty feet long, and it is uneorered only at the lowest ebb of spring tide. When the operations were begun, it was elothed with large sea-weeds, espeeially with the great Tangle, Laminaria digitata, and Alaria esculenta or Badderloeks. In the course of 1813 the workmen sueceeded in clearing and levelling a considerable portion of the foundation of the intended building, but in the beginning of November operations were neeessarily abandoned for the winter. At this time the roeks by piek and axe had been made quite bare; the sea-weeds had been eut away, the roots trampled, and mueh of the roeks had been ehiselled, so that the very stumps had been eleared away. On returning to the roek in May 1814 to resume operations, it was matter of no small surprise to find the rock as completely covered with large sea-weeds as when they first landed on it, though little more than six months had elapsed since they left it quite bare. In partieular, it was observed that many recently produced speeimens of Alaria esculenta (Badderloeks) measured six feet in length, whieh is above its average length at full size, and they were furnished with
the pinnated appendages at the base whieh eontain the seed of the plant. The speeimens of eommon Tangle were generally only about two feet in length, whereas when fully grown they may be four feet and upwards. The speeimens of both these Algæ were taken from that part of the roek whieh had been dressed with the piek and ehisel, before the workmen left it in autumn, so that they had evidently grown from the seed; and indeed it was observed that the seaweeds had grown more luxuriantly on the reeently dressed sandstone roek, than on those parts where the stumps had been only trodden down. It appears, therefore, that the seeds floating in the waves must have attaehed themselves to the roek after the middle of November, and must have vegetated and inereased thus rapidly during a winter whieh many are old enough to remember was one of great severity.

It is wonderful that so few have attempted the growth of sea-weeds from seed, espeeially as Mr. Staekhouse more than fifty years ago set the example, and shewed that it is quite practieable. The aeeount of his experiments, were it not rather too long, I would willingly extraet from his Nereis Britannica now before me. The substanee of part of it is as follows:-He got wide-mouthed jars with a siphon to draw out the water without shaking it. On the

7th of September, 1796, he placed plants of Fucus canaliculatus in the jar with their bases downwards. On the following morning he decanted the water into a basin. He then poured a fresh cjuantity of sca-water on the plants, and plaeed the jar in a window facing the south. On the following morning the plants discharged a few yellowish grains which proved to be the actual seed of the plant;these seeds, however, were not in eontaet with the water, but each enveloped with a bright mucilaginous substanee, which, from being heavier than the water, made it sink and caused it to adhere to the rock. Watching these seeds he had the pleasure of seeing one of them explocling so as to agitate the water, from whieh he learned that some seaweeds, when ripe, seatter thieir sporules by the bursting of the capsules without waiting for the decay of the frond.

He next got pebbles from the sea-beaeh, and haring drained off the greater part of the water, he poured the remainder on the pebbles and left them to dry for some time that the seeds might adhere to them. He then fastened strings to the pebbles, and alternately sank them in the jar, and drew them out and left them exposed to sun and rain, in imitation of what would have been experienced by them by ebb and flow at mid-tide mark, had they been ins
their natural situation on the shore. In less than a week a thin film was discoverable on the surface of the pebbles. It gradually increased in breadth and thickness, until at last he observed buds arising from the membrane. These central shoots increased in size, but not rapidly after the first efforts; and as he had not an opportunity of placing them in a rock-pool, owing to his being miles from the shore, he discontinued the experiments.

More recently Algæ have been raised from seed by J. A. Agardh and by some naturalists in our own comntry, but still much remains to be done. Even young Algologists might make experimeuts in this department. I confess that I have done little in this way myself, and the little that I have done has been conducted in such a manner as to lead to no practical results. Yet it has not been without interest, and I shall therefore mention it as an encouragement to my young friends, who may have more time on their hands and more dexterity.

In the very end of September, 1848, D. Landsborough, Jun., had brought from the sea some rare Nudibranchs, which he put in a tumbler of sea-water and placed in a window with a south-east exposure. They lived there for several weeks, and when they began to look feeble, they were
returned to the sea as a reward for their good behariour. Before I granted manumission to the beautiful Nudibranehs, I had observed at the bottom and on the sides of the tumbler the growth of young Algæ. The first that I observed were grass-green, consisting of simple filaments without any visible joints. Many of these at the end of five montlis are still alive, but during the eold winter months they have not inereased in size, and though they are visible by the naked eye, they are not above a line in length. There are one or two of the same size of a reddish-purple eolour. There were also a number of little dense tufts of a brownish-olive colour, the erowded filaments of which were like those of Sphacelaria, but terminating in white hairs longer than the filaments, but so fine as to be invisible to the naked eye. They answered in some degree the deseription in Harvey's Manual of Chetophora Berkeleyi; yet if the name means bristle-bearing, it would not eorrespond, for the fine white tippings of the filaments are too flexible and waving to be ealled setaceous. In the body of the water there were a few long filaments almost eolourless, finer than human hair, and so limber that they bent under the weight of the almost invisible infusoria, when they rested from their sportive gambols. Then there were others that were just
perceptible, as small dots, by the nakcd eyc, but when seen through a pretty powerful leus they were perfectly eireular and of beautiful workmanship, and not unlike some of the figures of Desmidica. These in general were green, but a few were reddish-brown; and last of all there wore a number of very minute branehed Algæ, just pereeptible as a faint haze by the naked eye, but when examined by a lens they werc more like exceedingly diminutive specimens of Sphacelaria filicina than anything I remember, though I do not at all think that they were the young of this plant. The branches adhere closely all along to the glass, spreading in all direetions from a eentre though not with very uniform regularity. The more advanced branches secm to lose their pinnæ towards the point; they, and most of the others, are still alive in the tumbler whieh would form a studio not unworthy even of Mr. Ralfs. The diffienlty with me, besides want of time, is how to remove such exccedingly minute and delieate structures so as to bring them under the field of the mieroseope. Mueh do I wish that they were in the hands of a good microscopist, to examinc them, and still more minute Vorticellee which in beautiful tufts are mingled along with them, but so small that a tuft of thirty is not pereeptible, even as a haze, by the nakci eye. I

may mention that once a fortnight I pour off the water and give a fresh supply from the sea.*

* As my object is to aid in rendering my youug fricnds not merely Algologists, but diligent observers of the phenomena of nature, I shall not cousider myself bound to adhcre rigidly to one department of 山aturc's works. To encourage them in their researches I may mention that a single tumbler of water will furnish a rich field for their bright young eyes. This very tumbler wbich shewed me the germination of Algre from seed, and which cxhibited also the beautiful Vorticellee, coutained numberless infusoria of many kinds, merrily dauciug in all directions, and shewing that He who made them, blessed them with happiness. These animalculites I had seen before, but in watehing tbeir sportive gyrations, I was gratified with appearances that I had never before observed. Perceiving what I thonght a little hazy spot on the glass, I applied a lens, and found that it did not adbere to the glass, but was moving up and down. Afterwards more than a score were obscrred, some of them little semi-pellueid, and, I think, hollow balls;-others more like broad flattened bonnets, such as are worn at times by carriers; -with an aperture for the reception of the head. The largest, however, were less than a line in diameter, and of a light gray-colour. Wheu the tumbler was allowed to remain mmored, they lay invisible at the bottom; but when it was gently agitated, they momuted up like little balloons to the surface of the watcr, and then gradually descended. How they moved I could not tell. The surfaee of the balls iu certain lights scemed a little hiusute, but I could observe nothing like the motion of cilia. When they werc all in motion, some ascending and others deseending, the mystic movements of these little spheres presented a very animated speetacle.

But what were my little peripatetic puffi-balls? At furst I despaired of being able to tell; but fortumately I had beside me Sir J. G. Dalycll's reeent publication, and turuing orer its pages aud plates I was delighted to find that what I had contemplated with so much interest was the progeny of Medusa, for in his plate xxi. his figures quite eorrresponded with what 1 had observed.

As Sea-weeds grow, -how and whonee do they obtain nourishment? Land plants, it is known, derive nourishment partly by their roots from the soil, and partly from the air by their leaves. There ean be no doubt as to their

I then tried an experiment ou them whieh Sir John does not mention haviug done. I took the tumbler into a darkened apartment, and giving the glass a smart pereussion, instantly my little pulf-balls sent forth a very brilliant flash of phosphoreseent light, showing me that in all likelihood they play no very seeondary part in that beautiful phosphoresecnce of the sea, whieh in the wake of a vessel I had so ofteu admired in a summer evening.-I continued to wateh them in the hope of seeiug them transformed into Medusa bifida, but frost of unusual inteusity for the seasou, set in after the middle of October, and my ILedusettes sank under it. On trying to rouse them, only one attempted to rise, and next day it had vanished,- like another creature of greater pretension, "flecing also as a shadow and contiuuing not."-On coutemplating the wonderfnl works of God even in this little world of water, one is led to exclaim in the singularly beautiful and truly eloquent words of Hedwig :-
"Tere magna et longe puleherrima sunt etiam illa, profundissimâ sapieutiâ bie exstrueta opera tua, Of Jemovaf! quae non nisi benc armatis nostris oeulis patent! Quadia auten crunt denique illa, quere sublato hoe speculo, remotâ mortalitatis caligine, daturus es tuis, Te vere sincero peetore colentibus! Eheu qualia!"
"Truly great aud transceudantly beautiful, On Jenovan! are these thy works even here below. Tramed they are in profond wisclom, disclosing all their charms only to our leus-aided eyes! How grand then will those be which-when this glass has been removed in which we see darkly-when this mist of mortality has beeu seattered-Thou art pletged to reveal hereafter to thy servants, that have worshipped Thee here in sineerity aud truth ! Ah me! how graud!"
bcing nourished by their roots, for manure applied to the roots soon tells upon the plants; and they extend far in search of nourishment. Many think, however, that seaplants derive all their nourishment from the water, or the air when exposed to it, by means of their general surface, and that the roots are scarccly of any use except to attach them to the rock or other substance on which they grow. In confirmation of this opinion they mention that Sargassum bacciferum or Gulf-weed, which Gloats in such mighty masses in some seas, not only seems to grow in this floating state, but that this floating species of Sargassum has never been found attached by roots. It may nevertheless yet be found in a young state attached by roots, though it may still be true that it can grow in this floating statc. Take a branch of Cladophora glomerata from a plant adhering by roots to a stonc in frosl-water, and place the branch in a vase of fresh-water, and it will grow and increase considerably. Though a land-plant suspended in the air without getting nourishment by the roots would soon wither, yct you know that some of the Epidendia, air-plants as they are called, are cxecptions from this, for if they are hung up in a room they will grow for ycars, though they get no mourishment except what they derive from the air by their surface. Wc
doubt not, then, that in some instances, such as the floating Sargassum, sea-plants grow without deriving any nourishment by roots, but we are disposed to regard such cases as exceptions from the general rule. Wc cannot persuade ourselves that they draw no nourishment from the substances to which they arc attached. They shew a decidch preferencc for certain kinds of rocks and Algæ, and their growth is more luxuriant when they are found on those they prefer. Limestone seems a great favourite with some, and the abundance of limestone rock on many parts of the Irish coast, is probably one reason why many of the Irish specimens put to shame the English and Scottish dwarfs of the same species. It is well known also that there are several species that grow both on rocks and on large Algæ, and it is as well known that, in the same habitat, those growing on rocks and those on Algæ differ considerably in appearance, and this seems to be owing to different nourishment by roots, as other circumstances are the same.

CHAPTER V.

FRUCTIFICATION OF SEA-WEEDS.

Dices * * * quod temporis et studii in eam impendendi jaeturam compenset? Respondeo, Voluplas illa et deleetatio innoeens et honesta que ex operum Dei contemplatione oritur.-Raius.

Thy desire whieh tends to know
The works of God, thereby to glorify
The great Work-master, leuds to no exeess
That reaehes blame, but rather merits praise, The more it seems exeess; * * *
For wonderful, indeed, are all his works, Pleasant to know, and worthiest to be all Had in remembranee always with delight.-Mriton.
When Dr. Patriek Neill wrote his excellent article on Fuci about twenty years ago, he said that till within these few ycars the fruetifieation of the Fuci was little known, and cren yet it is not by any means understood. Sinec that period, however, very great progress has been made in this department. The importanee of the fruit in determining the genus or specics to which a plant belongs, is now fully aeknowledged, and our most distinguished Algologists, aided by rastly improved microscopes, having prosecuted their researehes

with great diligence, have, both by accurate descriptions and by magnificent figures, given us much morc accurate ideas respecting the different kinds of fructification. Many Sea-weeds are furnished with a double system of fructification, called for convenience primary and secondary, though it is acknowledged that the latter is as capable of producing a nerr plant as the former. The greater part, if not all, of the red series is furnished with this double fructification, the primary, or capsular, on one plant, and the secondary, or granular, on another plant. Though the capsules of two different genera and specics bear no resemblance to cach other, yet there are many modifications of shape, so that they are at once like and unlike, and to become acquainted with the minor differences, requires time and attention.

That our young friends may at one glance have a view of several of the forms which the fructification of Algæ assumes, we have introduced some figures of them, chiefly taken from the elcgant plates in Dr. Harvcy's Phycologia Britannica, and Dr. Grcville's Algce Britannicce, as both these gentlemen kindly allow me to avail myself of their works. At letter A, fig. 1, there is a small portion of a branch of Polysiphonia urceolata with a capsule considcrably magnified ; and fig. 2, a capsule of the same greatly mag-
nified. This elegantly urn-shaped eapsule is also ealled a ceramidium, a name applied to a eapsule furnished with a terminal pore or opening, and containing a tuft of pearshaped spores. Now by looking at the greatly magnified capsule or eeramidium, you will see that it is open at the top, and that it eontains the tuft of spores or seeds. This Polysiphonia with its capsular fruit is very common everywhere. We next exhibit, at B, the granular fruit of this same P. urceolata, no less common. Figure 1, is a portion of a branchlet, with the granules imbedded in the upper half; and these are ealled tetraspores, because, when much magnified as in fig. 2, they are found each to consist of four spores or seeds. You observe also in the branehlet, the joints and the longitudinal tubes or siphons.

At C, is the representation of two kinds of fruetifieation found on a very common, but beautiful plant, Ptilota plumosa. Fig. 1, is an involucre containing favellæ; fig. 2, a lacinia, with tetraspores on short pedieels: magnified.

At D, two kinds of fructifieation of the beautiful Plocamum coccineum are represented. Fig. 1, a branehlet with a lateral tuberele containing spores; fig. 2, a branehlet with stichidia containing tetraspores: all magnified.

At E, are figures of two kinds of fructification obscrved

E	
G.	H

in abundance on Oclontralia dentata in carly wintcr. Fig. 1, capsular fruit; and fig. 2, stichidia.

On flat membranaceous Algæ, two kinds of fructification are common. At letter F, fig. 1 represents a portion of the frond of Rhodomenia bificla, with imbedded tubercles, called also coccirlict. These contain spores or seeds: magnified. Fig. 2 represents a portion of the frond of Nitophyllum punctatum, or rather it is one of the sori with which the frond is spotted. These sori consist of an assemblage of tetraspores: magnified.

The genus Callithamnion has two kinds of fructification. At the letter G, fig. I represents the capsular fruit of a Callithamnion, sessile on the upper side of the pinna. Fig. 2, a branchlet with a bilobcd favella. The favcllæ have sometimes only onc lobe.

There is another kind of fructification, called by Agardh nemathecia. These nemathecia or warts are concealed undcr leafy processes ; and at letter HI, fig. 1 , is a wart on Phyllophora rubens with one of the lcaves removed to show the nemathecia. Fig. 2 represents the moniliform filaments, much magnified, which compose the nemathecium.

The only other kind of fructification of which I shall give a figure, is that callcd antheritia. These are not un-
common. They are found in so great abundance on Polysiphonia fastigiata at times, as to give a yellow colour to the plant quite observable by the naked eyc. At letter I, fig. 1 represents the tip of a filament of Polysiphonia fibrata with antheridia among the spiral fibres.
"The seed," says Professor Harvcy in his Manual, "appears to consist of a single ccllule or bag of membrane, filled with a very dense and dark-coloured granular or semifluid mass, ealled the endochrome. This seed, or germination, produces a perfeet plant, resembling that from whieh it springs. Its growth may be watched from the commeneement, when what we may eall the ovule, or germ of the future seed, begins to swell. But nothing whatever has been ascertained that throws the smallest light on the process of fecundation."

There are remarkable circumstances comected with the fructification of many of the Chlorospermea, but I shall reserve what I have to say on that subject till I come to treat of some of the fresh-watcr Algr.

CHAPTER VI.

GEOGRAPHICAL DISTRIBUTION.

Поуть $\omega \boldsymbol{\tau} \tau \boldsymbol{\kappa v \mu a \tau \omega \nu}$ àmpıӨнор $\gamma \in \lambda a \sigma \mu a$.-Asch. Prom.
"Countless laughing gleams of deep sea-waves."
To diseuss this subjeet properly, even though I were equal to it, would require far more spaee than this little work eould allow. After a few remarks I shall gladly refer to Dr. Neill, Dr. Greville, and Dr. Harvey, and to the able essay on the subjeet by Lamouroux, to whom they express their obligations.

Algæ, or Sea-weeds, have a wide geographieal range, for I suppose wherever there is sea, sea-weeds of some kind are found. To a eonsidcrable extent, they seem to obey the same larrs as land plants. Every zone presents a peeuliar system of vegetation. It is said that after a spaee of twentyfour degrees of latitude, a nearly total change is produeed in the species of organized beings; this, it is thought, is very mueh owing to temperature. It is very interesting to observe the different appearanees that Sea-weeds exhibit in

$$
\text { 1) } 2
$$

different seas, and also in different depths of the same sea. How very dissimilar are Algæ of the Aretie Seas from those of Australia and New Zealand! How remarkable are the immense masses of floating Sea-weeds, sueh as those proverbial wanderers the Sargassa, ealled also Gulf-weed!

Great accumulations of Sea-weed are found floating on each side of the equator. The MLar cto Sargasso of the Portuguese stretehes between the 18 th and 32 nd parallels of north latitude, and the 25 th and 40 th meridians of west longitude. It is often ealled the Grassy Sea, for in it the surfaee of the oeean for several days' sailing, is literally eovered with plants. Barrow mentions them in his Voyage to Coehin-China; Humboldt also mentions them in his Personal Narrative. The most extensive bank is near the Azores ; vessels returning to Europe from Monte Video or the Cape of Good Hope eross it. Columbus, it is well known, eneountered most extensive banks, that impeded in some degree the progress of his vessels. If, however, we eonsider the general distribution of the three great series, namely, the olive, the red, and the green, we learn that the first inereases as we approaeh the tropies; that the seeond ehiefly abounds in the temperate zone; while the green Algre greatly predominate in the Polar seas. The

Creator has assigned to eaeh the peeuliar kinds best suited to the elimate and other cireumstanees.

In the Botany of the Antaretie Expedition of Sir James Clarke Ross, Dr. Hooker has given a miniature representation of a submarine forest of Lessonia and Macrocystis, inlabiting the south eircumpolar seas, in whieh the trunks of the former growing under water in an erect position, are from five to ten feet in height and of the thiekness of the human thigh. Thousands of these aquatic trees, uprooted by the eurrents, are not unfrequently mistaken for drift-wood, and colleeted for fuel. As an example of the gigantie growth of Sea-weeds in this region, Dr. Hooker observes that the Macrocystis luxurians in its horizontal growth at the surface of the ocean, rauges between 200 and 700 feet in length, and that at the Falkland Islands the beaeh is lined for miles with entangled eables of this plant, much thieker than the human body.

We have mueh to learn respeeting the inhabitants of the deep water, animal as well as vegetable, espeeially in foreign climes. The surpassing riehness and variety of submarine seenery in favoured seas, must have an almost overpowering effect on the intelligent observer, during a voyage of seien-
tifie research. Respeeting submarine seenery in general at Macao in China, Mr. Adams of the Samarang, writes:"Dendritie zoophytes, having their branehes loaded with coloured Polypi, like trees eovered with delieate blossoms, riehly uprose from the elear bottom of the bay, distinet and eharaeteristie in their speeifie forms, and contrasting strangely and powerfully with those most apathetie and stone-like eombinations of the plant, the animal, and the roek, -the Madrepores, the Millepores, and the Nullipores. Flat, and immovably extended on the sand, in the bare spots between the Corallines, were impassive large, blue, five-fingered Asterias; and erawling with an awkward sluffling movement, like an Octopus, were numbers of the slender Opliura, with their snaky arms, groping their way among the weeds, and striving to insinuate their writhing forms among the eoral masses. Fixed flower-like Actinice were expanding their fleshy petals on the roeks; the slender Nereis, the long-armed Comatula, and the languid, slowmoving Holothuria, together with numerous fish and erustaeeans, eontributed to prove that nature is ever weaving the subtle woof of existence beneath the surfaee of the waves."

CHAPTER VII.

RANGE OF BRITISH SEA-WEEDS.

O Lord, how manifold are thy works! Iu wisdom hast thou made them all. The earth is full of thy riehes: so is this great and wide sea.Psalm CIV.

> Almighty Being!
> Cause and support of all things! Can I view These objeets of my wonder? Can I feel These fine sensations, and not think of Thee? Thou who dost through the eternal round of time, Dost through the immensity of space exist
> Alone, shalt Thou alone exeluded be
> From this thy universe?-Stillingfleet.

Sorl and elimate are the ehief causes that influence the distribution of land plants; and we doubt not they are also the ehief eauses that operate in the distribution of seaplants. Their influenee, however, is less in sea-plants, because they reeeive mueh less nourishment by means of their roots, and also beeause the temperature of the sea is mueh less variable than the temperature of the air. Some of our British Sea-weeds are so widely spread in various climates and seas, that they may be regarded as eitizens of
the world, and therefore are little likely to be influenced by any pereeptible differenee of temperature betwixt the most southerly and the most northerly portions of our British seas. As we do not expect to hear the nightingale in the northern forests of Seotland, or to see the Alpine plants of Ben Nevis blooming in the rich sheltered plains of the south of England, so there are Sea-weeds that are abundant in England that are never found in Seotland, and others that are plentiful in our Seottish seas that are never met with on the genial shores of Devonshire. Dr. Greville in his admirable Algæ Britannieæ, observes:-
"On the shores of the British Islands it is easy to perceive that some speeies, Gelidium corneum, Phyllophora rubens, and Sphcerococcus coronopifolius, for example, become plentiful and more luxuriant as we travel from north to south; and on the other hand, that Ptilota plumosa, Rhodomela lycopodioides, and several others, oecur more frequently, and in a finer state, as we approael the north. Odonthalia dentata and Rhodymenia cristata are confined to the northern parts of Great Britain, while the Cystoseire, Fucus tubcrculatus, Haliseris polypodioidcs, Rhodomenia jubata, R. Tcedii, Microcladia glandulosa, Rhodymonia pinastroides, Laurencia tcnuissima, Iridca reniformis, and many
others are confined to the southern parts. Others again, such as the Fuci in general, the Laminariea, many Delesseria, some Nitophylla, Laurencia, Gastridece, and Chondri, possess too extended a range to be influeneed by any change of temperature between the northern boundary of Scotland and England."

Even in those that are found only in the north or in the south, we are not always able to account for their abundanee in some seasons, and for their scarcity in the same localities in others. The case is the same with Mollusca and Zoophytes. Nor can we always account for the abundanee of the last mentioned very interesting creatures in some loealitics, and their utter absenec in others where the elimate is quite the same.

Dr. Neill mentions that on our shores Algre generally occupy zones in the following order, beginning from dcep water:-F. filum, I. esculentus, and bulbosus; F. digitatus, saccharinus, and loreus; F. serratus and crispus; F. nodosus and vesiculosus; I.canaliculatus; and last of all F. pygmeus, which is satisfied if it be within reach of the spray.

42

CHAPTER VIII.

THE USES OF SEA-WEEDS.

How wondrous is the seene! where all is formed With number, weight, and measure! all designed For some great end! Where not alone the plaut Of stately growth, the herb of glorious hue, Or food-full substanee; nor the labouring steed, The herd and flock that feed us; nor the mine That yields us storcs for elegance and use; The sea that loads our table, and conveys The wauderer, man, from elime to elime, with all Those rolliug spheres, that from ou high shed down Their kiudly influence; nor these alone Which strike e'eu eyes ineurious, but each moss, Each shell, each erawling insect, holds a rauk Important in the scale of Him who framed This scale of beiugs; holds a rank, which lost, Would break the chain, and leave a gap behiud Which Nature's self would rue!-Stillingfleet.
No person, now-a-days, will renture to pronounee Seaweeds useless. Had we known no eeonomical purposes to which they could be applied, still we should have been bound to adore the goodness of God in clothing the rocks and chamel of the sea with so much beauty. Mueh of this
bcauty may be seen from dry land, but submarinc scencry is viewed to far greater advantage during the leisurely movements of a row-boat in a summer day. How rich and various thcir colours ; and how graccfully do the branches of these submerged forests wave in the decp! And though there are no birds to cnliven the scone, there are thousands of fishes and crustaceans, whose movements arc not less intercsting than those of birds. If few see thesc things, does it not magnify the condescending kindness of God that he makes so rich a provision for the happincss of these few?
> "Full many a gem of purest ray serene
> The dark unfathomed eaves of oeean bear;
> Full many a flower is born to blush unseen, And waste its sweetness on the desert air."

And yet even in the desert air the swectness is not wasted, for the "little busy bee" can cnjoy it; nor is its beauty always unscen by man. Who lias not heard of the effect which the sight of a littlc plant produced on Mungo Park, the African traveller? When, ready to perish with hunger and fatiguc, he had laid himself down to die in the desert, even in thicse cireumstanecs he could not help contemplating a little moss (Dicranum bryoides) which attracted his attention, covering the ground on which he lay ; and so
mueh struek was he with its exquisite beauty, that he felt eonstrained to say: "Can He who gave so mueh beauty to that diminutive plant, and who thus eares for it in the desert, be forgetful of me?" Cheered by the thought, he started up, pushed on with renewed vigour, and soon reaehed the leabitations of men.*

We may remark, however, that if Mungo Park had not been an acute observer, the beauty of this little plant would have been unseen by him, even when it was elose to his eyes. The eye requires training. Many have eyes and jet no eyes, beeause they have not been aeeustomed to make a right use of them. This little plant whieh had so eheering an effeet on the observant traveller, is not uneommon in our own country; and a bank eovered with it in a state of fruetifieation is one of the most lovely speetaeles on whieh we ean look. Though small, it is not so minute but that its beauty ean be perfeetly seen by the naked eye; and jet so little do we in general attend to those things that have no great magnitude to reeommend them, that were we to take at random ten thousand persons from either town or

* Sir William Hooker in his British Flora says: "The moss which engaged Mungo Park's attention so mueh in Africa as to revive his drooping spirits when sinking under fatigue, was this speeics (Dicramum bryoides); as I have ascertained by means of origiual specimens giveu to me by his brother-inlaw, Mr. Dieksou."
country, and march them along a bank carpeted with myriads of this beautiful fork-moss, when cvery frond is surmounted by its lovely fructification, not ten out of the ten thousand would take notice or say, "Is not that charming?" The majority would also sec it, and not see it; yet if their attention were specially directed to it, they would almost all wonder that they had not before greatly admired it.* We deprive ourselves of much innocent pleasurc if we are not observant of the wonderful works of God. And how much may the mind be enlarged by the devout and intelligent contemplation of what He has so wonderfully made? "The more we extend our rescarches," says Dr. Greville, "into the vegctable kingdom, the more will cvery susceptible mind bo excited to proceed. We shall find the most delicate and elaborate processes in ceaseless progrcssion on the mountains and in the valleys, the meadows and the reccsses of our woods, on the rocks of our friths and seas-all subject to immutable laws. We shall find colours unrivalled, odours inimitable, and forms exhaustless in variety and grace, daily developed in the * I may mention to my young friends that what is called fructification in mosses and sea-weeds and other eryptoganie plants, answers the same purpose as flowers in phenogamous plants.
grand laboratory of nature, demanding only to be seen to extort our unqualified admiration, and lcading us irresistibly to contemplate the glory of that Almighty being from whom so many wouders emanate."

The direet and indirect uses of Sea-wecds already known, are so numerous that we eannot venture to mention them all. There is a respectable class of wholcsale dealcrs in Sea-weeds who arc very far from despising them, -we mean our agriculturists. It is intercsting, even on our Ayrshire eoast, to contemplate the busy scene whieh the sea-shore exhibits aftcr a breczc, when young and old are actively cngaged in gathering up the treasure which the bountiful ocean has spread out for them. There we sec the farmer's eart, and the cottager's loaded barrow; the industrious boy has also his bagful, whieh he offers for a penny; and even children, though thcy have ncither bag, basket, nor barrow, eontrive to fasten a load on the broad-fronded Tangle, and using the stem as the pole, the little urclins drag it along in triumph. In the Island of Arran, oppositc to the Ayrshire coast, the value of Sca-weed as manure is well known; and lest there should be any dispute respecting its appropriation, the faetor for the Duke of Hamilton rery judiciously assigns to cach who has an interest in the adjoining land,
the portion of the shore from whieh at will he may eolleet Sea-weed. Great, indeed, is the avidity with whieh seawrack is gathered as manure on all parts of the British coast. In Treland it is still more valued, as it is the ehief manure for thousands of acres of potatoe-ground. "On many of our coasts," says Dr. Harvey in his Manual, "as along the west coast of Ireland, the poorer elasses are almost entirely dependent for the eultivation of their potatoes on the manure afforded by their roeky shores and frequent gales." And Mr. W. Thompson of Belfast in the Annals of Natural History, says: "Of this we had a notable example at the town of Galway, some years ago. Turf-boats were diseharging their eargoes of Sea-weed at the quay, and on enquiry whenee it was brought, we learned that it was from Slyne Head, a plaee distant between fifty and sixty miles, and that some of the purchasers were, for the purpose of manure, about to eonvey it inland thirty miles!"

Nor is it in Britain alone that the value of Sea-weed is known. Inglis, in his Channel Islands, gives a most interesting aeeount of the use made of this production of the sea in Jersey and Guernsey. The name whieh the inhabitants of these islands give to Sea-weed is wraic, evidently a eorruption of varec, the Freneh word for Sea-weed.

According to Inglis, collecting vraic is so important a matter in the Channel Islands that the seasons when the operations of cutting and collecting it begin, are appointed by law. The seasons are two, usually the 10th of March, and the 20th of July, and they continue about ten days. When the vracking scason has comc, if a family be not sufficicutly numerous for the work, they are joined by some of their neighbours, and the parties consisting of eight, ten, or twelve, sally forth betimes from all parts of the island to their laborious, but cheerful work. Though a time of labour, it is also a season of merriment,--the "vraicking cakcs," made of flour, milk, and sugar, are plentifully partaken of. On the cart which, accompanies the party to the sea-beach, there is gencrally shung a little cask of something to drink, with a suitable supply of eatables. Every individual is provided with a small scythe to cut the weeds from the rocks, and with strong leg and foot-gear. The carts procced as far as the tide will allow, and boats carry the vraicker's to those more distant rocks which are not approachable in any other way.
"It is truly a busy and curious sccuc," says Inglis; "during this season at half-tide or low water, multitudes of carts and horses, boats and rraickers cover the beach, the
rocks, and the water ; and so anxious are the people to make the most of their limited time, that I have often seen horses swimming and earts floating, so unwilling are wraicker's to be driven from their spoil by the inexorable tide." The vraick is used as manure either fresh from the roeks, or after it has been burnt as fuel. Inglis mentions the remarkable faet of whieh I was before ignorant, that in these islands vraick is the ehicf and almost the only artiele used as fuel. For this purpose it is colleeted at other times than the regular vraicking seasons, and then it eonsists of what has been detaehed from the roeks by the waves, and earried to the shore by the tide. At all times men, women, and children, but ehiefly the latter, may be seen at this employment. They use a rake or three-pronged pitch-fork, and a wheel-barrow in whieh it is earried above high-water mark, to be spread out and dried. It makes a hot, if not a eheerful fire. Scareely any other fuel is used in these islands; a little wood, though rarely, is mixed with it; and it is only on feast-days and family festivals that a eoal fire is lighted in the best parlour.

Early in the morning, if a person is strolling abroad, he is apt to suppose that the Jersey farmer and his houschold have been astir before day break, for the smoke is seen
rising from the eottages, But the fires have been burning all night; there would be no thrift in extinguishing the vraick-fires, as the eonsumption of fuel is the manufaeture of manure, the burnt vraic answering better for their fields under crop, than the fresh wraic whieh is employed as a topdressing for their green-fields.

We see that Sea-weeds are very valuable as manure, and as fuel; are they not also employed as food? Though not so mueh used in this way as they onee were, there are some kinds that are still mueh eaten by the Highlanders and by the Trish, and to some extent by the Seotel Lomlanders. "Wha'll buy dulse and tang?" was one of the euphonious eries whieh tiekled my ears, when from an inland part of the eountry, I eame as a young student to the University of Edinburgh. It was muelı eaten by the Highlanders till it was supplanted by that nauseons lierb, tobaeeo ; and well would it have been for both purse and person, if they had eontinued to prefer it to a eostly nareotic. Its very wholesomeness was one of its great reeommendations; long before it was known to contain iodine, and before iodine itself was diseovered, it was thought very effieneious as a sweetener of the blood, and in rarding off, or euring, seorbutie and glandular affections. The stick whieh is
chewed by the inhathitants of thes $A l_{\text {pes }}$ affected with grathere, a disease of the gegands of the meck, is said to loe the stem of a kind of 'Tangle. 'There is, says Jor. Neill, a common saying in Stronza that "He who eats of the Doblose of (Suertie:
 cexcept black death." liven poule death (foublider mors) laughe at the prescriputions of the onost skiffu] physicians, and bleche death, it would appear, is not in the Jeast morese merciful. A writer in the Quarterely Review says, " Dubse to the Ice-landers is a plant of considerable impertancer. 'Thesy prefeare it by washing it woll in fresh-water and expossing it to dry, When it gives out a white powdery substance, which is swect and palatable, and covers the whole plant. They then pack it in casks and keep it from the air, and thus preserved, it is ready to, bee caten either in this state, with fith and buttoce ; or according to the practice of wesatilies tables, bejided in milk, and rnixed with a litale flour of rye." Wre doubt mot that the white powdery sulstance which it gives out in Mennite, which weshall afterwards shew is pretly abundann in several of our Sea-werds. (Batite alse are very fond of this Searwerd, ande sherep are said to sectl it with such avidity that they are ofiten lost, by geging tors far from tand at lowwater in suatch of it, and beerming surroumeded bẹ the E: 2
returning tide. The Norwegians, therefore, call it sou-soell, and Bishop Gunner, translating this into Latin, ealls it Fucus ovinus, Sheep's-weed.

But Dulse is not the only Sea-weed useful as food for cattle. In the Western Hebrides, Fucus vesiculosus, or Lady $W_{r a c k}$ as it is often ealled, forms a eonsiderable part of the winter food of eattle and sheep. Even in the island of Cumbrae, only a few miles from the eoast of Aryshire, the minister of the island told me that during winter his man-servant went regularly to the shore at every ebb-tide to eut from the roeks a fresh supply of this Sea-weed for his cows, who neither snuffed nor turned up their noses at it, but relished it and throve upon it.

But while the Ieelanders make a savoury dish of Dulse, the Irish peasantry have taught us to make a truly delieious dish of another very eommon Sea-weed, well-known by the name of Carrageen or Trish moss. This is Chondrus crispus or, what answers the purpose equally well, Chondrus mamillosus to whiel the name of Gracilaria mamillosa has now been given. These two plants abound on all our roeky shores, but it is ealled Irish moss, beeause it was first turned to aeeount in Ireland. Being reeommended as a palatable food, and partieularly as light and nourishing for invalids, it
became a fashionable dish; and the dried material sold at one time as high as $2 s .6 \%$. per pound. It is now to be got at a much cheaper rate in apothecaries' shops, but as many would prefer a repast direct from the sea, we may mention that it is bleached in the samc manner as linen or cotton, and when dry it can be kept for years. When used, a tea-cup full of it is boiled in water, the water being strained is boiled with milk and sugar and some seasoning such as nutmeg, cinnamon, or cssence of lemon. It is then put into a shape in which it consolidates like blancmange, and when eaten with cream it is so good that many a sweet-lipped little boy and girl would almost wish to be on the invalid-list to get a share of it. Therc is a Chinese Sea-weed lately imported for commercial purposes, which is used very much in the same way as the Irish moss, and forms even a daintier dish: the native name is Agar-Agar or Agal-Agal. It is thought to form a component part of the celebrated nests of a species of swallow, Hirundo esculenta, * regarded as such a luxury that they sell for their weight in grold.

There were several kinds of Sca-wceds formerly used for

* The following is from that rich and interesting publication, "Thee Voyage of H.M.S. Samarang."
"About the rocky parts of the const of Borneo, the Firundo esculente swims backwards and forwards all day long, uttering its little checrful chirp
food, that are not now mueh eaten, though they may still retain the speeifie name of edulis. Tastes change: what was eaten with relish by our forefathers may not always be regarded as a bonne bouche by their posterity. The time has been when the tongue of a porpoise was reserved as a speeial dainty for the Royal table; we suspeet that the tongue of a stag, or peradventure of an ox, would be more to the taste of our good Queen Vietoria. Some of our Seaweeds that were onee weleome at the festive board, we surmise get no higher than the tribes whose names they rejoiee to bear, sueh as Swine-tang: nor are they without their value, if they ean furnish a feast, eren to a greedy porker. Some however are still prized at the tables of the great. Porphyra is gathered for eulinary purposes, in England under the name of Laver, in Ireland under the name of Sloke, and in Seotland as Slaak. In Scotland it is seldom used, exeept as a luxury by the affluent under the
as it cagerly pursues its insect prey. I have taken the nests in nearly every state from the sides of hollow eaves, where they adhere in numbers to the walls like so many watch-poekets.
"The Malays frequently assert that the nests are formed from the bodies of certain sea-suakes, but there is no doubt that Agal-Agal, a marine ecllular plant, is the material employed in forming those much prized eatable nests."

English name of Laver. It is prepared in different ways: sometimes it is boiled for hours, and when redueed to a pulp, eaten with lemon juiee; at other times it is well boiled and seasoned with spiees and butter. So far as our' experience goes, it requires them all; with these applianees, however, it is tolerable, verifying the good Seottish proverb, "If you boil stanes in butter, you may sup the broo."

Some however are of opinion that by proper management our Sea-weeds might yield in time of need even the neeessaries of life. A distinguished and well known ehemist of our own eountry says in the Edinburgh Philosophieal Journal, that a gum might easily be proeured from them, that would serve all the purposes of gum arabie, and which by reason of its cheapness might be applied to a host of other purposes. How is it, argues he, that gum is so little used as an artiele of diet in this eountry, seeing that its nutritious qualities are so well attested by the faet, that the Moor of the desert can.subsist on six ounees of gum a day for weeks together? Why do so many of our eountry bcar the signs of famine in their eyes, and are eonstantly exposed to so many moral and politieal evils, while treasures of sueh wholesome food, lie seattered in the greatest profusion on our shores?

In a commereial point of view, our British Sea-weeds rise
to national importanee on aecount of kelp, whieh is made from them, and which was mueh employed for many years in the manufaeture of soap and glass, though of late ehiefly valued on aecount of the iodine it yields. In the last part of the Proeeedings of the Glasgow Plilosophieal Soeiety, there is an exeellent artiele by Mr. Glassford on the manufacture of kelp, from whieh my space will allow me to glean mueh less than I eould wish. The rise in priee of kelp about the begimning of the present eentury, from $3 l$. to $20 l$. or 22l. per ton, eaused the Highland proprietors to devote mueh of their attention to the manufaeture of kelp; and not only earefully to eolleet the Sea-weeds that the roeks yielded, but to make artifieial plantations in some eases for Sea-meeds, by eovering the beaeh visited by the tide, with large stones whieh soon bore a erop eonvertible into kelp. The supply eould seareely keep paee with the demand; the manufaeture was pushed to the farthest limit, and for years continued to flourish. Barilla however from abroad entered the market, and redueed the priee of $k e l_{p}$ to about ten guineas a ton. Barilla contained more soda, and was preferred even at a ligher priee. The duty however was taken off barilla and salt, and then kelp fell to less than $3 l$. per ton. It then yielded nothing dircetly to the proprictor ; but the manufacture ras
to a eertain extent eontinued; for it afforded employment to the tenants and helped them to pay their rents, and kept them from being a burden.

Highland estates that had beeome so valuable during the flourishing state of the kelp manufaeture, now experieneed a monderful depression. Mr. Wilson, in his very interesting and amusing aeeount of his Voyage round the eoast of Seotland and the Isles in 1842, says, that in 1812, in the island of North-Uist, the elear proeeeds from kelp alone, after dedueting all expenees, was $14,000 \mathrm{l}$. and fell little short of that sum for several years after; but that the alteration of the law regarding the duty on barilla, redueed the ineome of that island and its dependenees from $17,000 l$. to 3,500l. When Maeeulloeh visited the Hebrides in 1818, the total produet of kelp from these islands was estimated at 6,000 tons, whieh at 20l. a ton must have realized the sum of $120,000 l$. At present there is reason to believe that not much over 3,000 tons are annaally manufaetured, from whieh not above $6,000 \ell$. are realized, after deducting the wages of the kelpers and the expenee of neeessary apparatus. This small remuneration, however, is owing in part to the Highlanders' perseveranee in manufaeturing their kelp from the yollow wrack (Fucus nodosus),
which, from growing in shallow water, and being less thoroughly a marine plant, yields mueh less iodine than the kelp manufaetured from the black vorack, sueh as Laminaria digitata, the great-stemmed Tangle; and Fucus serratus, the serrated Sea-wced. Trish kelp prepared from drift weed from deep water, is rieh in iodine, yielding above twelre pounds per ton, and eonsequently, earefully and honestly prepared Irish kelp brought in some cases 10l. per ton, in 1845 , when Highland kelp would not bring above the half of that sum. The rise whieh, after twenty years of depression, took place lately in the price of kelp, was owing to a great adiditional demand for iodine.

Who knows what virtues we may yet diseover in the drapery of the deep? The book of nature is like the book of graee, the wonders they contain must be "sought out." Iodine, it would appear, eontributes in some way to the health of marine plants, for they all have the power of extraeting it from the waters of the deep. Or is this power given them for the good of living ercatures, and especially of man, who often derived benefit from it in the use of Sea-weeds, though he knew not of its existence? And has its existenee and the way of extraeting it been diseovered so late in the day as 1812, to make us grateful for blessings uneonseiously
reeeived, and to stir us up to more diligent research into God's works of nature, by the rieh remuneration so unexpeetedly bestowed? It will give us some idea of the value of the kelp and iodine manufactures, when we state that from July 1845 to July 1846, it is ealeulated that upwards of 10,000 tons of kelp were manufaetured on our British shores, whieh, on an average of 5 ? per ton, would amount to 50,000 .

It would be far from uninteresting to tell how the weed is colleeted by hardy fellows, leading a kind of amphibious life, every day drenched in sea-water, and not unfrequently deluged with rain, constantly oeeupied for three months in eolleeting and drying the weeds, and redueing them to kelp in the kiln; their almost only food during all that time being their hastily prepared meals of oatmeal porridge with buttermilk, or treaele and water, followed by a bannoek and a draught of water from the erystal brook; yet on that simple diet they continue healthy and hearty.

> "Sons of the roek and nurslings of the surge, Around the kiln, their daily labours urge, O'er the dried weed the smoky volume coils, And deep beneath the preeious kati boils.*"

* Is it necessary to tell our Seottish readers, that koli does not mean kale?

But we pass over all this, and follow the material to Glasgow ; and it will give some idea of the employment that it there gives, when we state that there are at present twenty establishments in Glasgow, some of them very extensive, for the lixiviation of kelp and manafacture of iodine, \&c., working up in Glasgow alone about 3,000 tons a year.

From the ample materials furnished by Mr. Glassford, who has had opportunities of obtaining great practical as well as scientific knowledge of all the proecsses from first to last, I shall select some brief notices. The object of the chemical manufacturer or Lixiviator, as he is eallcd, is to separate the various salts which the kelp contains. The most insoluble are those which arc first scparated, consisting of the Sulphate of Potash, the Carbonate, Muriate, and Sulphate of Soda, and the Murriate of Potash. The most soluble remain in the solution. In the solution, the Iodides and other very soluble salts are found, and it is from this liquor, ealled the mother liquor, that Iodine is extracted. This is easily done by the cmployment of manganese and sulphuric acid, which reaet on cach other and produce oxygen, whieh again combines with hydrogen, and libcrates the iodine, till now in union with the lydrogen. The iodine escapes from the liquor as a most beautiful violet-coloured vapour, which ou
eooling eondenses into a black, solid, erystalline body, in large glass balloons arranged for the purpose.

Iodine is extensively used as a medieine, combined with potassium, with mereury, arsenic, \&e. It is used also as a tineture dissolved in aleohol, and in eombination with oils it is mueh used as a limiment. Till some way of fixing it is discovered, it is too evaneseent to be used in dying or ealieoprinting. In one respect the vapour of iodine is more wonderful than the mysterious mist that we have all read of, whieh, when liberated from the sealed box by the fishermanl, consolidated and beeame a gigantic genie. Our violetmist, whieh, like that of Arabia has been dragged from the sea, when artfully employed by man, ean make the sun a portrait-painter. The sun is a painter from the beginning; but the ingenuity of man, availing itself of iodine as an obedient yet powerful genie, ean at will make the sun a limner. My young friends know that for the wonders of Calotype and Daguerreotype, the vapours of iodine are indispensably neeessary.

I dare not enlarge by telling how mueh use is made of the materials derived from kelp in the manufaeture of soap, of alum, of green bottlc-glass, \&e., I shall merely mention that oven the kelp waste is servieable as manure. And if
the waste be servieeable-how mueh more the kelp itself, if used in a pulverized state? They who know its eomponent parts are eonfident that it would be more nutritious as the food of plants, than many manures that are purehased at a high price and brought from afar.

Before elosing a statement of the direet uses of Seaweeds, we may quote the words of Professor Burnett in his Outlines of Botany. "Alga inutilis, exelaims an aneient poet; vilior Algâ est, in a tone of contumely he adds; refunditur Alga, repeats another Bard. The sea itself spurns forth the nathless flag-that flag the gathering of whieh for years enriehed both peer and peasant on our northern eoasts ; - the very flag that now affords the iodine, which really does relieve that evil, whieh the manus regalis, the boasted royal toueh (if it ever benefitted the superstitious) so long has failed to eure."

Time and spaee would fail us were we to attempt to enumerate all the uses of Sea-weeds, but we shall not enlarge mueh more. I eannot, however, forbear quoting the following passage from the very interesting Toyage of the Samarang lately published. In the Island of Borneo, "Tanjong Agal-Agal derives its name from the Sea-reed of that name, whieh is eolleeted in large quantities upon
these rcefs extending nearly two miles towards Batommande. There are several species of this Fucus, all soluble in water, forming a very nutritive mucilage, which, when mixed with acid, fruit, or made into jellies, produces a very grateful beverage for invalids. It forms a considerable article of tradc with the Chinese, partieularly in the northern provinces of Chin-chew, where it is manufaetured into a bright substantial transparent ycllow jclly, and is scnt in boxes of about ten pounds each to Canton. The gum or pastc made from it, is supposed to possess the advantage of being unpalatable to insects and worms. It is from this gum that their fancy-lanthorns are fabricated, by spreading it over gauze skeletons; it thus resemblcs, and is very frcquently mistaken for, highly transparent horn. It is peculiarly britite, even more so than glass, craeking under very slight changes of temperature."

We doubt not that it is this Agal-Agal of which a kind friend has sent us specimens from Glasgow undcr the name of Agar-Agar. The specimens bore a great rescmblance to our British Alga, Gracilaria compressa, and was probably Gracilaria lickenoides, though several spccies and pcrhaps gencra answer the same purpose, as is the easc with our native mucilaginous Algr. Some say that Gigartina tenax
is the kind used by the Chinese for glue and faney-lanthorns. I learn from Glasgow that Agar-Agar began to be imported about two years ago, under the belief that it would prove highly serviecable in many respeets. The main object in view, however, was to employ it as a substitutc for sago flour, which is used by manufaeturers to starch and stiffen webs, and for this, on account of its gelatinous qualities, it seemed admirably fitted. It has not yet been sufficiently tried. The difficulty of completely dissolving it, has hitherto been the obstaele to its extensive use. Were this overcome, it would be of great service. As it is not costly, it may come into repute as an agrecable article of food. We have already mentioned that the blane-mange whieh is formed from it, is exceedingly palatable, and being the same in substanee, must have all the nutritions virtues of the eelebrated Swallow-Nests so mueh prized by the Chinese.

Even in our own most common Sea-wraek there are substanees which may yet be turned to good account. One of these is Mamite, the eharaeteristic prineiple of Manna, mhich my friend Dr. John Stenhouse has detected in many of our eoarse Sea-weeds, but in greatest abundanee in Laminaria saccharina, which we doubt not took its specific name from this eireumstanee. A quantity of this Sea-weed was by

Dr. Stenhouse repcatedly digested with hot-watcr, which formed with it a brownish, sweetish, mueilaginous solution. When evaporatcd to dryncss on the water-bath, it left a eonsiderable quantity of a saline scmi-erystalline mass; this was reduced to powder and treated with boiling alcohol, by which a considerable portion of it was dissolved. The alcololic solution on cooling became nearly solid from the quantity of long transparent prismatic crystals with which it was filled. When purified by a second crystallization these were deposited in large hard prisms of a finc silky lustre. By analysis it was found that this was Mannite. The quantity of Mannite contained is very considcrable; one thousand grains of the Sea-weed treated in the way described gave above 12 per cent. of Mannite. It is very beautiful-as purcly white as loaf sugar, and almost as sweet. Since I wrote the above I have examined and tasted Mannite whieh I got from Dr. Stenhousc about four ycars ago, and it is as white and sweẹt as evcr. Surely some use may be made of this swect marine treasurc. No doubt it has been serving some good purpose already, werc it only by sweetening the repast and adding to the happiness of the multitude of God's creatures that live on Sca-wceds in the decp. He who by a word clothed the rocks and channel of the
sea with so much riches and beauty, and who said respeeting the miraculous supply of food in the wilderness, "gather up the fragments that remain, that nothing be lost," allows not even the fragments of Sea-weed to be lost. Man has learned the wisdom of gathering up those that are within his reach, but a kind Providenee allows not to be lost the immense masses that are buried at the bottom of the sea. He who in primæval ages stored up the remains of ancient forests, eonverting them into coal for the succeeding generations of the ehildren of men, to give light and heat in their habitations; at the same time stored up the rreck of marine matter in the form of stone of which the palace and the cottage might be built. We cannot examine a lime-stone quarry without seeing that it must have been eonsolidated in the depths of the sea. Our marble jambs are a mixed mass of marine organie remains. Though Sea-wceds, being more perishable than the shelly coats of animals, are less frequently observed in marble or limestone, yet they are oceasionally seen, and about a year ago in a limestone quarry near Ardrossan I saw numerous dark impressions of a large Sea-weed, resembling Malidrys. Nay, we have practical proof that the disjecta membra of Sea-rrecds buried in the mud, are well-fitted to contribute to its consolidation.

Mrs. Marshall, a talented and seientific lady of my acquaintanee, after attending a meeting of the British Assoeiation, was led to ponder on the formation of rocks, and being a chemist, she thought she would try to construet thern artifieially. Many roeks, she observed, had been formed by stratification, -some at the bottom of fresh-water lakes, others in estuaries, or at the bottom of the sea. What then must have been the eomponent parts of the latter-of limestone, for instance? They are full of the organic remains of Mollusea and Zoophytes, whose habitations were formed of earbonate of lime, which they had the power of extraeting from the sea. These shelly abodes of Mollusks, with the polypidoms of Zoophytes, sueh as corals, would often be broken in pieees and ground into powder by the mighty turmoil of the sea, and subsiding from time to time, would form strata of caleareous mud in whieh shell-fish and other marine animals would be buried. Along with these, there would eonstantly be mixed immense masses of Sea-weeds torn by storms and currents firom the submerged roeks. When these had hardened in process of time, and had beeome solid stratified rock, by great eonvulsions they were upheaved and kindly brought within the reach of man. Since it is evident, thought she, that both animal and vege-
table matter must be eopiously mixed in the soft mass converted into rock, may not sueh substanees be in a manncr neeessary in such formations? And if I ean hit on the right proportions, may I not, in my little laboratory, form miniature resemblanees of those mighty masses, fabricated in the great laboratory of nature? She set to work with eharacteristie zeal, mixing earbonate of lime, now with one proportion of marine vegetable and animal matter, and then with another, till after numerous failures she at last discovered the right proportions, by which in the course of a fcw days or at farthest a few weeks, she ean form artificial rocks of the firmest structure. She saw that her diseovery could be turned to excellent aceount in many ways, but ehiefly by forming a cheaper and a superior substitute for lath and plaster and ornamental cornices in drelling-houses. She has taken out a patent for it under the name of Intonaco, and as it harbours no vermin, is impervious to damp, and lessens greatly the risk of destruction by fire, it is beginning, I believe, to yield her a well-merited remuncration.

But though Sca-weed were utterly unservieeable to the human raee, would it therefore be uscless? Has the Crcator no other creatures but thee, vain man? Ycs, he has in every sea, living creatures, myriads of myriads of times more
numerous than all the men, women, and children, that live and move upon the face of the earth. And does not God care for them? Yea, verily, -"The earth is full of thy riches, O Lord, so is this great and wide sea, wherein are things creeping innumerable, both small and great beasts. There is that Leviathan which thou has made to play therein. These wait all on thec that thou mayest give them their food in duc season." Now, though the monsters of the deep live not on Sea-wecds, thcy live on crcatures, which in their turn live on those minute animals that fix on Sca-weeds, both as their food and habitation. I was greatly struck with what is said on this subject by the acute and philosophical Mr. Darwin, in his exeeedingly interesting journal of the Voyage of the Bcagle.—"In all parts of the world a rocky and partially protectcd shore perhaps supports, in a given space, a greatcr number of individual animals than any other station. There is onc marine production which from its importance is worthy of a particular history; it is the Kelp or Macrocystis pyrifera. This plant grows on every rock from low-water mark to a great depth, both on the outer coast (of Tierra del Fuego) and within the channcls. I believe during the voyages of the Adventure and Bcaglc, not one rock near the surface was discovered,
whieh was not buoyed by this floating weed. The good service it thus affords to vessels navigating near this stormy land is evident; and it eertainly has saved many a one from being drowned. I know few things more surprising than to see this plant growing and flourishing amidst those breakers of the Western Ocean, whieh no mass of rock, let it be ever so hard, can long resist." Though the stem of this plant is not above an inch in diameter, it is of great strength and surprising longitude. Captain Cooke says that some of it grows to the length of 360 feet and upwards. And yet it is mueh surpassed in this respect by another, D^{\prime} Urvillcea utilis, I think, whieh grows to the amazing length of 1500 feet. Mr. Darwin adds: "The number of living creatures of all orders whose existence intimately depends on the Kelp, is wonderful. A great volume might be written describing the inhabitants of one of these beds of Sea-weed. Almost all the leaves, excepting those that float on the surface, are so thickly incrusted with corallines as to be of a white colour. We find exquisitely delieate structures, some inhabitcd by simple hydra-like polypi, others by more organized kinds, and beautiful compound Ascidia. On the leaves, also, various patclliform shells, Trochi, uncorered mollusks, and some bivalves are attached. Innumerable
erustaeca frequent evcry part of the plant. On shaking the great entangled roots, a pile of small fish, shells, cuttle-fish, erabs of all orders, sea-eggs, star-fish, beantiful Holothurice, Planaria, erawling nereidous animals of a multitude of forms, all fall out together. Often as I reeurred to a branch of the Kelp, I never failed to diseover animals of new and eurious struetures. - I ean only eompare thesc aquatic forests of the Southern Hemisphere, with the terrestrial ones in the intertropieal regions. Yet if in any country a forest was destroyed, I do not believe nearly so many species of animals would perish as would herc, from the destruction of the kelp. Amidst the leaves of this plant numcrous species of fish live, whieh nowhere else could find food or shelter; with their destruetion, the many cormorants and other fishing birds, the otters, scals, and porpoises, would soon perish also; and lastly the Fuegian savage, the miserable lord of this miserable land, would redouble his cannibal feast, decrease in numbers, and pcrhaps ceasc to exist." If such be the amount of animal lifc and cnjoyment on a single bed of Sea-weeds in the Antaretic Ocean, how vast must be the amount of life and cnjoyment to whiell they are neecssary in all seas, and how much must they eventually add to the wcalth, eomfort, and happiness of man?

After all that has been said of the uses of Sca-weeds in agriculture, in medicine, in culinary purposes, in the fine arts, and in various manufactures, I would reeommend the study of this department of natural science to my young friends, chiefly on aecount of the intellectual pleasure it will yicld them, and because of its tendency to eherish devotional sentiments in their hearts.
"There is something positively agreeable," says Lord Brougham, "in gaining knowledge for its own sake. There is also a pleasure in seeing the uses to whieh knomledge may be applied,-It is another gratification to extend our enquiries, and find that the instrument or animal is useful to man, even though we have no chance ourselves, of ever benefiting by the information." "But how mueh more vivid," subjoins Mr. Paterson of Belfast, "this emotion becomes, when we lave the pleasure of seeing the beneficial cffeets of one animal or plant in giving employment to thousands, and mutiplying the comforts of the whole eivilized world. Is it needful to adduce, as an example, the silkworm or the cotton-plant?" Great also is the pleasure in studying the physiology of plants, in watehing their growth; in cxamining their structure, in observing the cvidences of design in the adaptation of one part to another, and the arrangement of means to an end.

The naturalist knows nothing of that tectium vite, --that vampire, ennui, which renders life a burden to thousands. To him every hour is precious. He may have little leisure for his favourite pursuits; but even those scraps of time which occur in the busiest life, and which many allow to be lost, he gathers up as precious fragments. Habits of observation, of patient research, of accurate discrimination, and ordcrly arrangement are gradually acquired. Wherever hc is-on the wild moor or on the shore of the sea, he learns to sec thousands of beautiful, wonderful things which the untrained, uninitiated eye ncver observes. Ts he healthy? His rural rambles are conducive to the continuance of health. Is he in scarch of health? Health flees from the man who sets out in the direct pursuit of it. But let him have an interest in the wonders of nature-in the works of God's hand, -meditating on them, he forgets his ailments, and health, which he ceases to pursuc, by the blessing of God often comes as it were of its own accord. His mind is soothed and rofreshed, and the salutary influence is felt by the enfeeblcd body.
> "There is a pleasure in the pathless woods, There is a rapture on the lonely shore, There is society where none intrudes, By the deep sea, and music in its roar."-Byron.

The greatest advantage, however, of this study is, that if rightly proseeuted, it keeps us continually mindful of the presence of God. "These are thy glorious works, Parent of good,--Almighty!" Were we to regard the phenomena of nature with a eonstant referenee to the great Creator, the world, says Paley, would beeome a temple, and life itself one continued net of adoration.

But let us beware of expecting too mueh from the study of Natural Seienee. The book of nature is one of God's books, and it is worthy of Him,-very precious, and fitted to teaeh us mueh. But there is another and a better,--the volume of inspiration. They are from the same Author, and let both be earefully consulted, if we would be wise and happy and good.

Among the advantages arising from the study of Algology, we would mention the great additional enjoyment whieh it gives to a person who has at any time an hour to spend on the sea-shore, especially if the locality be new to lim. We ean easily suppose that it must greatly lessen the tredium of a sea voyage, and I am glad to be able to give the following statement from my exeellent friend Professor Seouler of Dublin, who ean speak from experienee on the subjeet. "As to my own experience there is one thing whieh makes
me always bear a kindly rcgard to Algæ. When at sea for months, the capturc of a mass of floating Sca-weed has often given me pleasant occupation for days. Such masses of Algæ may be considered as a marine zoological garden, rich in various animals of every invertebral family. Indeed the variety of living beings supported in a handful of Seaweed is truly wonderful. At first sight we select Serpule, several corallines, such as Sertularice and Flustric. We observe that interesting mollusk, the Hyalaa, climbing branches by means of its beautifully-adapted grooved foot, and grazing upon the fronds. As the animal climbs by means of its abdominal foot with its back often undermost, it has a resemblance so far to the Slotlı of the forests of South America. Towards the root of our Sea-weeds we find sponges of small size and curious forms ; and here we arrive at a region of still greater activity: we shall probably detect sea-stars and sea-urchins, and amidst them many restless isopode crustaceans; and probably many kinds of articulated worms. Even the sandy matter mingled with the roots is not to be neglected. It must be carefully collected and examined by the microscope, when we shall not fail to discover many beartiful polythalamous shells, and a rich supply of still more strange Infusoria."

There is yet another advantage arising from the study of Algology, and indeed of Natural Science in general, which it would be unpardonable to omit. It is of great importanee that the young in partieular, should be armed against the artifices of those who, by a plausible mixture of facts and fiction, try to sap the foundation of our holy faith, and too often succeed in throwing stumbling-bloeks in the way of the unwary. Religion has nothing to fear from facts, but it rejeets fietion, and it is well to be able to separate the chaff from the wheat. By their theory of developement, provided you'unwittingly swallow all their pretended faets, they will trace the progress of a rational ereature, from a little almost invisible monad floating in the sea, till the monad becomes a monkey, and the monkey a man. And they will tell you that the oak, the monareh of the moods, has arrived at its dignity by almost imperceptible steps, being, some thousands of ages ago, only an liumble sea-weed in the universal oeean, it may be a Malidrys, whieh signifies Sea-oak, or D. simosa, whieh is ealled the Oak-leared Sea-weed. If they are less successful now than they once were, it is because Natural Seienee is now more generally cultivated than when the theory of developement was brought forth by Maillet, and fostered by Lamarck. That you may
not be imposed upon by their bold assertions and cunning artificcs, it is your duty and your interest to study Natural Science, that you may meet and master these deceivcrs on their own ground. I am sure that I shall be pardoned for giving a quotation from a work now in the course of publication, by Mr. Hugh Miller, the author of 'Old Red Sandstone,' \&c. Could I give the wholc passage, the reasoning would be found unanswerable :-
"When Maillet first promulgated his hypothesis, many of the departments of Natural History cxisted as merc regions of fable and romance, and in addrcssing himself to the Muscadins of Paris in a popular work as wild and amusing as a fairy tale, he could safely take the liberty, and he did take it very freely, of greatly cxaggcrating the marvellous and adding fresh fictions to the untrue. And in preparing them for his transmutative thcory of a marine into a terrcstrial vegctation, he set himself in accordance with his gencral character, to show that really the transmutation did not amount to much. 'I know you have resided a long time,' his Indian Philosopher is madc to say, 'at Marscillcs. Now you can bear me witness that the fishermon there daily find in their nets, among their fish, plants of a hundred kinds, with their fruits still upon them, and
though these fruits are not so large and so well nourished as those of our earth, yet the species of thesc plants is in no other respect dubious. They there find clusters of white and black grapes, peach trees, pear trecs, prune trees, apple trees, and all sorts of flowers. When in that eity, I saw in the eabinet of a eurious gentleman a prodigious number of those sea produetions of diffcrent qualities, especially of rose trees, which had their roses very red when they eame out of the sca. I was there presented mith a eluster of blaek sea-grapes. It was at the time of the vintage, and there were two grapes perfectly ripe.' Now all and mueh morc of the same nature addressed to the Parisians of the reign of Louis the Fifteenth, passed, I doubt not, wondcrfully well, but it will not do now, when almost cvery young girl in town and country is a botanist, and works on the Algæ have become popular."

I cannot elose these introduetory chapters more appro. priately than in the eloquent words of Professor Harrey of Dublin. "If Naturalists too often neglect the true use of this knowledge, and rest satisfied with the knowledge itself, the fault and the loss is their own, and must not be charged to science. It is enough for her if she but furnish food whieh is eapable of nourishing the well-dirceted heart ; it is
not her province either to eleanse that heart, or to give it power of digestion. For this she must refer her votary to a higher and holier voiee; and if she ever speak of looking 'through nature up to nature's God,' she does so with an humble deference to her elder sister, whose provinee it is to lead the heart to that eontemplation. Seienee and Religion must not be eonfounded: each has her several path, distinet but not hostile; eaeh in her way is friendly to man ; and where both unite they will ever be found to be his best proteetors:-the one a 'light to his eyes,' opening to him the mysteries of the material universe ;-the other, 'a lamp to his feet,' leading him to the immaterial, and ineorruptible, and eternal. The 'eye,' it is true, will grow dim when the light of this world fails; and happy is he who then has 'a lamp' lighted from heaven, and trimmed on earth, to guide him through the hours of darkness. But the eye must not be blamed, beeause it is not the lamp; nor should seienee be disdained, beeause she leaves us far short of just eoneeptions of the invisible world. Her highest flight is but to the threshold of religion; for what a eelebrated writer has said of philosophy generally, is equally applicable to every branch of seientifie enquiry. 'In wonder all philosophy began : in wonder it all ends:
and admiration fills up the interspace. But the first wonder is the offspring of ignorance; the last is the parent of adoration. The first is the birth-throe of our knowledge, the last is its euthanasy and apotheosis.' '"
" - If His word once teach us, shoot a ray
Through all the heart's dark chambers, and revcal Truths undiscerned but by that holy light, Then all is plain. Philosophy baptized
In the pure fountain of eterual love, Has cyes indeed; and, viewing all she sees As meant to indicate a God to man, Gives Hır his praise, and forfeits not her own." - Cowper.

CHAPTER IX.

A LIST OF THE BRITISH MARINE ALGA.

[According to the systematic arrangement in Professor Harvey's Phycologia Britannica.]

The names are good, for how, without their aid, Is knowledge gained by man, to man conveycd? But from that source shall all our pleasure flow?
Shall all our knowledge be, thesc names to know?
Then he with memory blest, shall bcar away
The palm from Grew, and Midieton, and Ray :
No! let us rather seek in grove and field,
What food for wonder, what for use they yield;
Some just remark from Nature's pcople bring,
And some new source of homage to their king.-Crabbe.
Species in which the native locality is doubtful are marked with an asterisk (*) ; those which are doubtful as species and require further examination are marked with a cross (\dagger).

Series 1. MELANOSPERMEA.

Fam. 1. FUCEs.
I. Sargassum.

* 1. vulgare, $A g$.
* 2. bacciferum, id.
II. Cystoseira.

1. cricoides, $A g$.
2. granulata, $i d$.

* 3. barbata, id.

4. fœniculacea, Grev.
5. fibrosa, $A g$.

III. Halidrys.

1. siliquosa, Lyngb.
IV. Pycnophycus.
2. tuberculatus, Kg .
V. Fucus.
3. vesiculosus, L.
4. ceranoides, $i d$.
5. serratns, $i d$.
6. nodosus, $i d$.
7. Mackaii, Terrn.
8. canaliculatus, L.
Vi. Himanthalia.
9. lorca, Lyngb.

Fam. 2. LAMINARIE无.
VII. Alaria.

1. esculenta, Grev.

Vili. Laminaria.

1. digitata, $L x$.
2. bulbosa, id.
3. saccharina, id.

+ 4. Phillitis, id.

5. fascia, $A g$.

Fam. 3. SPOROCHNOIDEE.
1X. Desmarestia.

1. ligulata, $L x$.
2. viridis, id.
3. aculeata, id.
X. Sporocinus.
4. pcdunculatus, $A g$.
XI. Carpomitra.

* 1. Cabreræ, Kg.
XII. Arthrocladia.

1. villosa, Duby.

Fam. 4. DICTYOTEモ. Xiti. Cutleria.

1. multifida, Grev:
XIV. Haliseris.
2. polypodioides, $A g$. XV. Padina.
3. Pavonia, $L x$.
XVI. Padinella.
4. parvula, Aresch.
XVII. Dictiota.
l. dichotoma, $L x$.
5. atomaria, Grev.
XVIII. Stilophora.
6. rhizodes, J. $A g$.
7. Lyngbyæi, $i d$.
XIX. Dictyosiphon.
8. fonniculaceus, Grev.
XX. Striaria.
9. attcnuata, Grev.
XXI. Punctarta.
10. latifolia, Grev.
11. plantaginca, id.
12. tenuissima, id.
XXII. Asperococcus.
13. compressus, Griff.
14. Turncri, Hook.
15. cchinatus, Grev.
XXIII. Chlorosiphon.
16. pusillus, Harv.
17. Laminariæ, id.
XXIV. Chorda.
18. Filum. $L x$.
19. lomentaria, Grev.

Fim. 5. ECTOCARPEE. XXV. Cladosteplus.

1. verticillatus, Lyngb.
2. spongiosus, $A y$.

AXVI. Spifacelaria.

1. filicina, Ag.
2. Scoparia, Lyngb.
3. scrtularia, Bonn.
4. plumosa, Lyngb.
5. cirrhosa, $1 g$.
6. fusca, id.
7. radicans, IIarv.
\dagger 8. olivacca, $A g$.
\dagger 9. raccmosa, Grev.
XxVif. Ectocarpus.
8. littoralis, Iyngb.
9. reticulosus, $i d$.
10. fasciculatus, Hurr.
11. Hincksir, $i d$.

* 5. scorpioides, Hart.
* 6. spinescens, $i a^{3}$.
* 7. longifructus, $i d$.
* 8. amphibius, $i d$.

9. tomentosus, Lyingb.
10. crinitus, Carm.
11. pusillus, Griff:
12. simplex, $A g$.
13. villum, Harv.

* 14. distortus, Carm.

15. granulosus, $A g$.
16. sphærophorus, Carm.
17. brachiatus, Harv.
18. Mertensii, Ag.
19. Landslurgii, Harv.
XXVIII. Myriotrichia.
20. claveformis, Harv.
21. filiformis, id.

Fam. 6. CHORDARIEA.
xilix. Myrionema.

1. strangularis, Gree.
2. Leclancherij, Harv.
3. punctiforme, $i d$.
4. clavatum, id.

XXí. Elachistea.

1. fucicola, r.
2. flaceida, id.
3. curta, Aresch.
4. pulvinata, IIare. (attenuata.)
5. stcllulata, id.
6. scutulata, Fr .
7. velutina, $i d$.
XXXI. Ralfsia.
8. deusta, Berk.
XXXII. Leathesia.
9. tuberiformis, Gray.
(Corynephora marina, Ag.)
10. Berkleyi, Harv.
XXXIII. Mesogloia.
11. vermicularis, $A g$.
12. virescens, Carm.
13. Griffithsiana, Grev.
XXXIV. Chordaria.
14. flageliformis, $A g$.
15. divaricata, $i d$.

Series 2. RHODOSPERME无.

Fam. 7. CERAMIEE.
XXXV. Callithannion.

1. Plumula, Iyngb.
2. cruciatum, $A g$.
3. floccosum, id.
4. Turueri, id. (repens, id.)
5. Pluma, id.
6. barbatum, J. Ag. (?)
7. Arbuscula, Lyngb.
8. Brodixi, FIarv.
9. tetragonum, Ag.
10. Harveyanum, J. Ag.
11. tetricum, Ag .
12. Hookeri, $i d$. (spinosum, Harv.)
13. roseum, $i d$.
14. byssoidcum, Am.
15. polyspermum, $A g$.
(Grevillii, Harv.)
\dagger 16. fasciculatum, Harv.
16. Borreri, Ag.
17. tripinnatum, $i d$.

* 19. affinc, Harr.

20. gracillimum, Ag .
21. thuyoideum, id.
22. corymbosum, icl. (versicolor, id.)
23. spongiosum, Harv.
24. pedicellatum, Ag.
25. floridulum, $i d$.
26. Rothii, Lymgb. (purprereum, Harr.)
27. mesocarpum, Carm.

* 2S. sparsum, Hare.

29. Dariesii, $A g$.
(secundatum, id.)
(lanuginosum, Lrugh.)
XXXVI. Semospora.
30. Grifithsiana, Harr.
XXXVII. Wrangelia.
31. multifida, J. Ag.
XXXVIII. Griffithsia.
32. cquisetifolia, $A g$.

* 2. simplicifilum, icl.

3. barbata, id.
4. Deroniensis, Harv.
5. corallina Ag.
6. secundiflora, J. Ag .
7. setacea, icl.
XXXIX. Spyridia.
]. filamentosa, Herv.
NL. Ceramiuat.
8. ciliatum, Ducluz.
9. acanthonotum, Carm.
10. echionotum, J. Ag.
11. flahelligerum, $i d$.
12. nodosum, Grev. \& Harv.
13. pellncidum, $i d$.
14. strictum, $i d$.
15. gracillimum, $i d$.
16. diaphanum, $A g$.
17. fastigiatum, Harv.
18. Deslongchampsii, Chazv.
19. decurrens, Grev.\& Harv.
20. botryocarpum, Gr.
21. rubrum, $A g$.
XLI. Microcladia.
22. glandulosa, Grev.
XLII. Ptilota.
23. plumosa, $A g$.
24. serieca, Harv.

Fam. 8. GLOIOCLADIA. XLiti. Crouania.

1. attenuata, J. Ag .
XLIV. Dudresnaia.
2. coccinca, Bon
3. divaricata, J. Ag. XLV. Nemalion.
4. multifidum, J. Ag.

XLTII. Gloiosiphonia.

1. capillaris, Camn.
2. ? purpurca, Harv.

XLVII, Naccaria.

1. Wigghii, Endl.
XLVIII. Cruoria.
2. pellita, Fries.

Fam. 9. NEMASTOMEX.
XLIX. Iridea.

1. edulis, Bory.
L. Catenelea.
2. Opustia, Grev.
lam. 10. SPONGIOCARPE iI. Polyides.
3. rotundus, Grev.

Lil. Furcellaria.

1. fastigiata, Grev.

Lili. Gymnogongrus.

1. plicatus, Mart.
2. Griffithsiæ, id.
LIV. Chondrus.
3. crispus, $L x$.
4. norvcgicus, id.
LV. Phyllophora.
5. rubens, Grev.
6. Brodiæi, J. Ag.
LVI. Peyssonelia.
7. Dubyi, Crouan.

LVif. Hildenbrandtla.

1. rubra, Menegh.

Fam. 11. GASTROCARPEE.
LVIII. Kalymenia.
I. reniformis, J. Ag.
2. Dubyi, Harv.
lid. Halymenia.

1. ligulata, $A g$.
LX. Ginannia.
2. furcellata, Mont.
LXI. Dumontia.
3. filiformis, Grev.

Fam. 12. COCCOCARPEÆ. LXII. Gigartina.

1. pistillata, $L x$.
2. acicularis, id.
3. Tecdii, $i d$.
4. mamillosa, J. Ag.
LXIII. Gelidium.
5. corneum, $L x$.

* 2. cartilagincum, Gaillon.
LXIV. Gratilloupla.

1. filicina, $A g$.

17am. 13. SPH EROCOCCOIDE.モ.
LuV. Hypnea.

1. purpurascens, Harv.
LXVI. Gracilaria.
2. erecta, Grev.
3. confervoides, $i d$.
4. compressa. id.
5. multipartita, J. Ag.
LXVII. Spherococcus.
6. coronopifolius, $A g$.
LXVIII. Rhodrmenia.
7. bifida, Greo.
8. laciniata, id.
9. Palmetta, id.
10. membranifolia, J. Ag.
11. cristata, Grev.
12. ciliata, id.
13. jubata, id.
14. palmata, Grev. (sobolifera, id.)

Fam. 14. DELESSERIEA. LXIX. Plocamium.

1. coccineum, Inngb.
LXX. Delesseria.
I. sanguinea, $L x$.
2. sinuosa, $i d$.
3. alata, $i d$.
4. angustissima, Griff:
5. Hypoglossum, Lx.
6. ruscifolia, id.
LXXI. Nitophyllum.
I. punctatum, Grev.
7. Hillix, idt.
8. Bonuemaisoni, id.
9. Gmelini, id.
10. laceratum, ict.

* 6. versicolor, Harv.

Fam. 15. CHONDRIE画. LXXIl. Bonnemaisonia.

1. asparagoides, $A g$.
LXXIII. Laurevcia.
I. pinnatifida, $L x$.

* 2. hybrida, Lenorm.

3. obtusa, $L x$.
4. dasyphylla, id.
5. tenuissima, $i d$.
LXXIV. Chrysimenia
6. clavcllosa, J. Ag.
LXXV. Chylocladia.
7. ovalis, Hook.
8. kaliformis, $i d$.

* 3, reflexa, Lenorm.

4. parvula, Hook.
5. articulata, $i d$.
l'am 16. CORALLINEA.
LXXV1. Corallina.
6. officinalis, L.
7. elongata, Ell. \& Sol.
8. squamata, Ell. \& Sol.

LXXV1I. Jania.

1. rubens, $L x$.
2. corniculata, id.

LXXVIli. Melobesia.

1. polymorpha, L.
2. calcarca, Ell. \& Sol.
3. fasciculata, Lam.
4. agariciformis, $i d$.
5. Licheniformis, Dne.
6. membranacca, $L x$.
7. farinosa, id.
8. verrucata, $i d$.
9. pustulata, id.

Fam. 17. RHODOMELEA.
LXXIX. Odonthalia.
I. dcutata, Iyngb.
LXXX. Rhodomela.

1. subfusca, $A g$.
2. lycopodioides, id.
LXXXI. Bostrichia.
3. scorpioides, Mont.
LXXXII. Rytiphlea.
4. pinastroides, Ag.
5. complanata, id.
6. thuyoides, Harv.
7. fruticulosa, $i d$.
LXXXIII. Polysiphonia.
8. parasitica, Grev.
9. subulifcra, Harv.
10. spinulosa, Grev.
11. atro-rubcscens, $i d$.
12. nigrescens, icl.
(purpurascens, Hook.)
(atro-purprerea, Moorc.) (affinis, id.)
13. furcellata, Harv.
14. fastigiata, Grev.

* 8. Richardsoni, Hook.

9. Grifithsiana, Harv.

* 10. Carmichaeliana, id.

11. Brodixi, Grev.
12. fibrillosa, $i d$.
13. violacca, id.
? 14. variegata, Δg.
14. Grevillii, Harv.
15. fibrata, $i d$.

* 17. stricta, Grev.

18. pulvinata, $A g$.
19. obscura, id.
20. formosa, Suhr.
21. urccolata, Grev.
22. elongata, $i d$.
23. elongella, Harv.
24. byssoides, Grev.

LXXXXIV. Dasya.

1. coccinea, Ag .
2. ocellata, Harv.
3. Arbuscula, $A g$.

Series 3. CHLOROSPERMEX.

Fam. 18. SIPHONE.

LXXXV. Codium.

1. Bursa, Ag.
2. adhærcus, id.
3. tomentosum, Stack.
4. amphibium, Moore.
LXXXVI. Bryopsis.
5. plumosa, $L x$.
6. hypnoides, $L x$.
LXXXVII. Vaucherta.
7. submarina, Berk.
8. marina, Lyngb.
9. velutina, $A g$.

Fam. 19. CONFERVEE. LXXXVIII. Cladophora.
I. Brownii, Harv.
2. pellucida, Kg.
3. rectangularis, Griff:
4. Macallana, Harv.
5. Hutchinsire, id.
6. diffusa, Kg.

* 7. nuda, Harv.

8. rupestris, Kg.
9. lætevircns, $i d$.
10. Aicxuosa, Dillw.
11. gracilis, Griff.

I2. Rudolphiana, Kg.
13. refracta, id.
14. albida, Huds.
15. lanosa, Kg.

I6. uncialis, Harv.
17. arcta, id.
18. glauccscens, Griff.

* 19. falcata, Harv.
LXXXIX. Rhizoclonium.

1. riparium, $K g$.
XC. Conferva.
2. arenicola, Berk.
3. arenosa, Carm.

* 3. litorea, Harr.

4. Linnm, Roth.
5. sutoria, Berk.
6. tortuosa, Dillu.
7. implexa, $i d$.
8. melagonium, $W . \& \sim M$.
9. ærea, Dillw.

I0. collabens, Ag .
II. bangioides. Harv.
12. Youngana, Dillw.

Fam. 20. ULVACEs.
XCI. Porphyra.

1. laciniata, $A g$.
2. vulgaris, id. (linearis, Grev.)
3. miniata, 1 g .
XCII. Bangia.
4. fusco-purpurea, Iyngb.
5. ciliaris, Carm.
6. clegans, Chawv.

XCLII. Enteromorpha.
I. Cornucopia, Carm.
2. intestinalis, Link.
3. compressa, Grev.

* 4. Linkiana, id.

5. crecta, Hook.
6. clathrata, Grev.

* 7. Hopkirkii, Af'Calla.
* 8. ramulosa, Hook.

9. percursa, id.
xClV. Ulva.
10. latissima, L.
11. Lactuca, id.
12. Linza, id.

Fam. 21. OSCILLATORIEA. xCV. Rivularia.

1. nitida, Ag.
2. applanata, Carm.
3. atra, Roth.
4. plicata, Carm.
XCVI. Schizothrix.
5. Cresswcllii, Harv.

XCV11, Cajothrix.

1. confervicola, $A g$.
2. luteola, Grev.
3. scopulorum, $A g$.
4. fasciculata, $i d$.
5. parnosa, id.
6. hydnoides, Harv.

* 7. cæspitula, id.
XCVIII. Microcoleus.

1. marinus, Harv.
2. auguiuus, Harv. XCIX. Lyngbya.
3. majuscula, Harv.
4. fcrruginea, $A g$.
5. Carmichaelii, Harv.
6. flacca, id.
7. speciosa, Carm.
C. Oscillatoria.
8. littoralis, Carm.
9. spiralis, $i d$.

Cl. Spirulina.

1. tenuissima, Kg ,

Fam. 22. NOSTOCHINE玉.

CII. Monormia.

1. intricata, Berk.
CIII. Spherozyga.
2. Carmichaclii, Harv.
3. Thwaitesii, id.
4. Broomei, Thro.
5. Berkclcyi, id.
6. Ralfsii, id.
CIV. Spermosira.
7. litorca, Ḱg.

P O P ULAR

BRITISH SEA-WEEDS.

The Sea! the Sea! the open Sea!
The blue, the fresh, the ever free!
Without a mark, without a bound,
It runneth the earth's wide regions round;
It plays with the clouds, it mocks the skies,
Or like a eradled ereature lies.-Barry Cormoall.

Series I. MELANOSPERMEA.

Family I. FUCEs.
Genus I. SARGASSUM, Agardi.
Generie Charaeter. Frond leaved. Leaves stalked, with a mid-rib. Air-vessels simple, axillary, stalked. Reeeptaeles small, linear, tubereulated (mostly in axillary clusters, or raeemes). Seeds in distinet eells.-The generie uame is from Sargazo, the

Spanish term for the masses of Sea-weed found floating in the ocean in some latitudes.-Greville.

1. Sargassum vulgare, Ag.
2. -—— bacciferum, id.

Plate III. fig. 4. S. bacciferum, with its berry-like vesicles, which have sometimes been ealled Sea-grapes.

- Habitat. Though both of these have been found cast on the shores of the Orkney Islands; and the latter by Mr. W. Baekhouse on the English shores, they have no just claim to take rank in our British Flora. But though they came to us only like shipwreeked marimers of another eountry, who could feel in his heart to east them out? If we lay hold of them, it is not to treat them roughly as intrusive aliens, but to give them a kindly welcome as interesting strangers. We treat them in the same manner as our ornithologists treat a rare and beautiful straggler, whieh in some of its long migratory flights has been driven by stress of weather to make our island a temporary resting-place.

This wandering Sea-weed has, however, been a very interesting plant to us, and we doubt not to many, simce school-boy days, when we read with all the fascinating charm of novelty, the discovery of a new world by the magnanimous Columbus. "When about 400 leagues to
the west of the Canaries, he found the sea so covered with weeds, that it resembled a meadow of vast extent, and in some places they werc so thick as to retard the motion of the vessels. This strange appearance occasioned now alarm and disquiet to the sailors. They imagined that they were now arrived at the utmost boundary of the navigablc ocean, that these floating weeds would obstruct their further progress; and concealed dangerous rocks, or some large tract of land, which had sunk, they knew not how, in that place. Columbus endeavoured to persuade them that what had alarmed, ought rather to have cncouraged them, and was to be considered as a sign of approaching land. At the same time a brisk gale arose, and carried thom forward. Several birds werc seen hovering about the ship, and directcd their flight towards the west. The desponding crew resumed some degree of spirit, and began to entertain frcsll hopcs." *

Sargassum is found over a wide extent of ocean, but because it was early observed to be vcry abundant in the gulf of Mexico, it has very generally bcen called "gulf-weed." It seldom fails to attract the attention of landsmen, passengers to or from foreign countries; and cven sailors, who are less disposed to attend to such appearances

[^2]than naturalists could wish, not unfrequently bottle up some of the gulf-weed as a curiosity for their friends at home. One might at first think that floating meadows of many miles in extent could be of no serviee in the middle of the ocean ; but they probably support a greater number of living ereatures than the riehest and most extensive meadows in Britain. They afford both food and shelter to myriads upon myriads of Mollusea, Radiata, Fishes, Crustaceans, \&e., many of whieh are seen playing about, making excursions into the surrounding deep, returning to wanton and hunt amongst the branches, or to rest on them as their home. Many, however, of these living things are parasitical, and attach themselves to the Sea-weeds "for better or for worse." So long as the Sargassum floats, they are safe, and are without any effort on their part transported by it from plaee to plaee; when the gulf-weed by currents and tempests is wreeked, they perish along with it. When specimens of gulf-weed come in their way, let my young friends serutinize them, if they admire zoophytes. Not unfrequently have I observed the whole of the berry-like airvessels covered with the finest lace-work, the produetion of little Polypes, forming a much more delieate Flustra than any found in our British seas. I have often seen also the
leaves and branches fringed with Laomedea volubilis, or something so like our British zoophyte of that name, that without minute examination it could not be distinguished from our own tiny elimbing eoralline; and at times, though seldom, I have deteeted a very beautiful Plumularia, very like our own no less beautiful P. cristata, or podded coralline.

Some of my young friends may know that our native eoralline of whieh I speak, is like a graeeful tuft of ereamcoloured feathers, and that it is the work of thousands of little aetive polypes,-a eireumstance that renders it still more interesting than our beautiful Sea-weeds. "Each plume," says Lister, " may eomprise from 4,00 to 500 polypi. Many speeimens, all united by a common fibre, and all the off-shoots of one common parent, are often loeated on one Sea-weed, the site then of a population which neither London nor Pekin eall rival!"*

Though only two speeies of the gulf-weed have been found on the British shores, the number of speeies in the genus is very great. In Agardh's Synopsis there are ninetyfive speeies enumerated, and several new and beautiful kinds

* Sce Dr. Johnston's admirable Mistory of British Zoophytes, page 92, plate xxiii. fig. l-3.
have lately been described and figurcd by Dr. Greville, in the Annals of Natural History.

The gulf-weed is eaten in China. In the East it is used in salads, and with vinegar it furnishes a picklc.

LICHINE.

LICHINA, Agardll.

Generic Character. Frond cartilaginous, blaekish green, dichotomous. Fructifieation, roundish eapsules of the same colour, eontaining radiating moniliform lines of pellucid seeds imbedded in a gelatinous mass of filaments.-Greo.

```
1. Lichina pygmea.
2. - —— CONFINIS.
```

As I have adoptcd the systematie arrangement given by Professor Harvey in the first volume of his Phycologia Britannica, and as Lichina is not found in it, these tro little plants are introduecd as*interlopers, without any regard to system. Acharius and Sir J. E. Smith ranked the lattcr one among licheus. Dr. Greville says: "In regard to habit, the Lichinea touch closely on the boundary of the lichens." Beautiful and very instructive figures of

4.

10.
both may be seen in Dr. Greville's Algæ Britanmicæ, pl. vi., where it may be learned how mueh the two speeies differ in fructifieation, the capsules of Lichina pygmea bcing subglobose and sessile upon the frond; whereas the eapsules of L. confinis are oval and terminal. The generic name implies its resemblanee to lichens, among whieh Prof. Harvey, it is probable, means to plaee it, as he has omitted it in lis catalogue of Algæ.

To whatever department these little plants may be found to belong, insignificant though they may seem, they arc far' from being useless. They give variety to the appearance of the otherwise barren-looking rocks on the sea-shore. We are not always sufficiently aware how mueh our kind Creator consults the happiness of man, even in making what would be offensive, or at least unpleasing, all "beauty to the eye." Look at an old ruinous stone wall by the roadside, under the shade, it may be, of some overhanging trees. Werc it a bare ruin, it would be a disagreeable object, but it is covered with mosses and liehens of all shapes and hues, whieh so change its aspeet that it really gives pleasure even to those who think not how the effect is produced, and know nothing about the mosses and lichens by which the mural ruin is enriched. Now our little Lichince
play their part in effeeting this benignant purpose, on the rocks upon the shore. Though rather lurid in hue, as is also their neighbour Grimmia maritima, they form a good eontrast with the natural colour of the rocks, and with the grey and yellow lieheus with which they are frequently intermingled; and feeble though they may seem, they form some defence to the roeks themselves against the wasting effieacy of the beating surge and the grinding sand; and though many of them may be exhausted by a winter's eampaign, by the breath of spring being quiekened they return " once more unto the breaeh."

And then what a snug refuge do these eromded tufts of Lichine form to imnumerable little Mollusca, whieh lurk under them, enjoying at one time the overflowing tide, during which they feast on what the tide brings them; and then, it may be, enjoying little less the seeurity and total ease which fall to their lot during the hours of ebb-tide. Let any person serape off. a handful of Lichince, and he will find on examination, that he has got along with it numerous speeimens of Spharia depressa, Montacuta purpurea, minute Littorince, and other Mollusks. The have only to add that Lichina are found on all our sea-side rocks.
"Calm "Roll on, thou deep and dark blue ocean, roill !"
"Calm or convulsed, in breeze, or gale, or storm, Icing the pole, or in the torrid clime Dark heaving." -

Gemus II. CYSTOSEIRA, Agardth.

Generic Character. Frond furnisbed with braneh-like leaves, beeoming more filiform upwards. Air-vessels simple, arranged consecutivcly within the substance of the branch-like leaves. Receptaeles cylindrical, more or less laneeolate, tubereulated, terminal. Sceds in distinct cells.-The name is from two Greek words signifying a little suc, and a chain.-Grev.

1. Cystoseira ericoides, Agardh.

Habitat. Rocks in the sea. Perennial. Summer and autumn. Devonshire, Mrs. Griffiths; Cornwall, Mr. Ralfs; Yarmouth, Miss Turner; Bantry Bay, Miss Hutehins. It was onee found by me on the eoast of Ayrshire at an early
 being new to me, I sent it to Sir W. Hooker, who fanned my incipient zeal by marking it Cystoseira ericoides, new to Scotland! It was found also by my talented friend, Daniel Curdie, M.D., on the shore of the Island of Gigha, off Kintyre. It takes its speeific name from its resemblanee to heath. It has in a very remarkable degree the property of being irideseent when under water in a growing state. H 2

In drying it becomes nearly black, and does not adhere to paper.

I shall morcly name the other British species of which I have specimens, but have never seen in a growing state. So far as I know, not onc has been found in Scotland.
2. Cystoseira granulata, Ag. 4. Cyst. foniculacea, Grev. * 3. barbata, Ag. 5. - fibrosa, Ag.

Genus III. HALDDRYS, Lyngb.

Generic Character. Frond compressed, coriaceous, linear, pinnated with distichous branches. Air-vessels lanceolate, stalked, divided by transverse septa. Reecptacles lanceolate, stalked, compressed. Sceds in distinct cells.-The name is from tro Greek words signifying sea and oak.-Greville.

1. Halidrys siliquosa, Lyngbye. (Pl. I. fig. 2. Portion of frond.)

The frond is narrow, compresscd, branches distichous, altcrnate, vcsicles stalkcd, oblong; receptacles stalkcd, pod-likc, and hence the specific name ; percnnial. In fruit in summer ; colour olive; the root is an cxpanded disk, which attaches itsclf so firmly to the rocks that it requircs a man's strength to pull it off; and when torn off by the strong billows, it frequently brings a scurf of the rock
along with it. The disk at the base is often eonsiderably more than an ineh in diameter; the stem above this disk is half an ineh and uprwards. The branehes are often four feet in length, and they are numerous and bushy.

Habitat. In pools among the roeks between low and high-water marks. Common on all our shores. Found also in the North Sea and the Northern Atlantie. Something like it must have existed in the aneient world, for in a limestone quarry at Ardrossan I found dark impressions on the roek very like a bushy Hatidrys.

Hatidrys siliquosa is a very eommon, but it is also a very handsome plant. It will be regarded with greater interest by my young friends, when they learn that it is often instrumental in bringing within our reach beautiful zoophytes, which are even more attraetive, as we have said, than Sea-weeds, beeause they are living ereatures. They form ealeareous habitations, whieh in many eases resemble little shrubs, and hence the name Zoophyte, whieh is derived from two Greek words, the one signifying a living creature, and the other a plant; for though they do not vegetate like plints, the habitations formed by the numerous little polypes are in not a few eases plant-like. These attaeh themselves to roeks and shells and Sea-weeds, and IIalidrys silignosa is a speeial favourite with rich silvery tufts of Cellularia reptans. Occasionally also you may observe on it a zoophyte whieh is like an elegant tuft of feathers, and which I have already deseribed, viz., Plumularia cristata, or podded Coralline. At other times you may see the branehes of Halidrys intertwined with another zoophyte of great beauty; this is Valkeria cuscuta, taking its speeifie name from its resemblanee to the plant called Dodder. In its eollapscd state it is apt to be disregarded by the inexpericneed, but when you have seen it spread out on paper, you will not willingly let it slip. I could enumerate as many more that are often parasitical on Halidrys. Who would think that on a singlc bunch of Sea-weed there is so much real enjoyment? Whole eolonies of happy living ereatures, all rejoieing in life, and showing forth the praises of Him by whom they have been kindly and wonderfully madc!

———Look who list thy gazeful eyes to feed

With sight of that is fair; look on the frame Of this wyde universe, and therein read The endless kinds of ereatures which by name Thou canst not count, much less their nature's aime, All which are made with wondrous wise respeet, And all wilh admirable beauty deekt.

Spenser: Hyma on Heavenly Beauty.

Genus IV. PYCNOPHYCUS, Kiutz.

Gen. Char. Root composed of branching fibres. Frond cylindrical, dichotomous. Air-vessels, when present, innate, simplc. Receptacles terminal, cellular, pierced by numerous pores, which communicate with immersed, spherical conccptacles, containing in the lower part of the receptacles, parietal, simple, spores, and in the upper, tufted anthcridia.-The name from two Greek words signifying thick Sea-weed.-Harvey.

1. Pycyophycus tuberculatus, Kiitz.

Hab. In roek-pools. Perennial. Summer and auturnn.
This is better known by the name of Fucus tubcrculatus. Those tho have examined it see that it is vcry different in many respeets from Fucus proper. The generic name whieh Kützing has given it, has reference to its strueture, being compounded of two Greek words, the one signifying thick, and the other a Sea-weed. It is not uncommon in some parts of Ireland ; it is less common in England; and we know not that it has cver been found in Scotland. As I have seen it only in a dricd state, I shall not attcmpt partieularly to describe it.

Gcnus V. FUCUS, Limn.

Generic Charaeter. Frond planc, compressed, or cylindrical, linear, dichotomous, coriaceous. Air-vessels, when present, in-
nate in the frond, simple, large. Receptacles terminal (except in Fucus nodosus), turgid, containing tubercles imbedded in mucus, and discharging their seeds by conspicuous pores.-Grev.

1. Fucus vesiculosus, Linn.

Hab. Common on all the sea-shores.
It is the Sea-ware, Bladder Fucus, Kelp-ware, Black-Tang of Seotland, and sometimes, for what reason I know not, Lady-wraek: In Gothland, aeeording to Limnæus, it is SwineTang, beeause boiling it, and mixing it with a little eourse dried flour, they give it to their hogs. In the Hebrides, cheeses are dried without salt, being eovered with the ashes of this plant, whieh abounds in salt. In Seania it is used as thateh and fuel. The root is a hard flat disk. The fronds are from two to three feet in length. The air-vessels, as large as nuts, are in pairs; the receptaeles in pairs and often forked, terminate the bronches.

There is a variety of this whieh is sometimes ealled Fucus Balticus. It is found among grass and moss in marshy ground oceasionally overflowed by the tide. It is not attaehed by roots to anything, and yet like floating gulf-wecd it grows. In a very pleasant exeursion in the island of Arran in the summer of 1847, with Dr. Greville and Prof. Balfour of Edinburgh, and other friends, Dr. Greville
pointed it out to me in abundanec on the shore at Brodrock near the quay, on ground saturated with fresh-water, but overflowed by high tides. In this state it is very diminutive; but the full-grown plant is exceedingly useful. We have already mentioned that it is cmployed as winter food for eattle. Lightfoot mentions that during snowstorms in the Highlands, the red deer descend from the wild mountains to the shore to feed on this Sea.weed. He mentions also that Dr. Russell has reeommended the saponaeeous mueus of the vesicles as very effeetual in removing glandular swellings, and says that by ealcining the plant in the open air, a black salt powder is proeured, having the same medical virtues, and answering well as a dentifice, by not only removing tar'tar from the teeth, but also correeting laxity in the gums.

The great use, however, now-a-days, of this weed along with others, is in the manufacture of kelp and iodine, but of this we have already spoken.
2. Fucus ceranoides, Linn. This is sometimes ealled horned Fucus. It resembles the preeeding, but it is mueh thinner, and more transparent; the mid-rib is more distinet, and the leafy part is narrower; although it is a more graceful plant than Fucus vesiculosus. Some have thought
that it is only a variety of F. vesiculosus eaused by its growing where there is a copious admixture of fresh water; but I have seen it where there was no supply of fresh-water.

It is eommon in many plaees in Seotland. It is less common in England; it grows on roeks in sheltered bays. It is peremial.
3. Fucus serratyus, Linn. Serrated Sea-weed. (Pl. I. fig. 1. Portion of frond.)

This is very eommon also on all our shores. It is perennial. The frond differs from the preeeding by being serrated. In Seotland it gets the name of blaek wrack or priekly Tang: it is not so rieh in kelp and iodine as the others. It is useful as manure, however. In Norway it is used as food for eattle, mixed with meal. The Duteh use it to eover their erabs and lobsters to keep them alive and moist, preferring it to any other, because it is destitute of that mueus which eauses them to ferment and putrefy. It is a handsome speeies, the fronds on both sides being dotted with pencil-like elusters of whitish eapillary fibres, and the fronds being often broad; Dr. Greville has seen them in the Isle of Bute two inelies and a half broad.

Like the other Fuci, it furnishes liding-plaees for mollusks and erustaceans. With eertain zoopliytes also it is a
favourite. The fronds are often partially covered with beautiful lace-work produced by Flustra, now called Membranipora pilosa, and generally in very finely stellated figures. And still more frequently it is invested with Sertularia pumila, the Sea-oak Coralline. The riehest specimens I ever saw of Sertularia pumila were on this Fucus at Leith,--the frouds were quite shaggy with it and completely eovered.

We may mention that both these zoophytes are very phosphoreseent. When roughly shaken in the dark they display brilliant coruscations. Mr. Hasell says: "I lately had an opportunity of beholding this novel and interestiug sight to great advantage, when on board one of the Devonshire trawling-boats. The trawl was raised at mid-night, and great quantities of corallines were entangled in the meshes of the net-work, all shining like myriads of the brightest diamonds."

While thus with pleasing wonder you inspeet
Treasures the vulgar in their seorn reject,
See as they float along th' entangled weeds,
Slowly approaeh, upborne on bladdery beads;
Wait till they land, and you shall then behold
The fiery sparks those tangled fronds unfold,
Myriads of living points; the unaided cye
Can but the fire, and not the form, desery.*-Crabbe.

* Vide Dr. Johnstone's History of British Zoophytes, p. $92-93$.

4. Fucus nodosus, Limn. Knobbed-wrack. The root is a large, hard, eonieal mass, from whieh spring several branches, from two to four or six fect in length. It is mueh used in making kelp, though not so produetive as some other kinds of wraek. It is called in some places yellow-wraek. In England it goes sometimes by the name of sea-whistles, in consequence of the eustom which ehildren have of converting the vesieles into whistles. The vesieles serve to buoy up the plant amidst the waves. It is of an olive-green eolowr; the receptaeles are yellow; but the whole plant beeomes black in drying, and does not adhere to paper. The air-vessels are called crackers, and when cast into the fire, they soon shew that they deserve the name by a startling explosion when heated.

Hab. Sea-shores. Common. Perenmial. Winter and spring.
5. Fucus Mackait, Tum. This was so named by Mr. Turner in honour of my worthy fricnd, Dr. J. T. Mackar of Dublin, whose botanieal diseoveries have been numcrous and valuable. It is found in Connemara, and also in the west of Scotland ; but I have never fallen in with it, and it is known to me only by dried specimens.
6. Fucus canaliculatus, Limn. Channelled Fucus. This is abundant on roeks on the sea-shore, near high-water

mark. Perennial. Summer and winter. "Cattle are execedingly fond of this plant, and never fail to browze on it in winter, as soon as the tide leaves it within their reaeh. At this season it is peeuliarly wholesome as counteracting the eostiveness induced by their ordinary straw-eommons." Carmiehael in Sir W. Hooker's British Flora.

Genus VI. HIMANTHALIA, Lyngbye.

Generic Charactcr. Frond coriaceous, orbicular, pezizæform. Vesicles none. Receptacles elongated, strap-shaped, compressed, dichotomously divided, springing from the centre of the frond, containing immersed tubercles, furnished with a porc.-Greville.

1. Himanthalia lorea, Lyugb. (Pl, IV. fig. 13.)

Hab. On rocky-shores common. Annual? Perennial?
High authorities give different answers on this point. Some regard it as amual, as the thongs are produeed every year: but others say that the long thongs are only reeeptaeles; that the eup-shaped dise is perennial, and that this part is truly the plant. The eup-shaped frond which adheres firmly to the roek, is more than an ineh in diameter. The branches or receptaeles with us are not more than six feet in length. In Cornwall they are at times even twenty feet long. Himanthalia is from two Greek words,
of whieh the English name sea-thongs is a translation. The fruit eonsists of tubereles immersed in the frond, and these tubereles diseharge their seeds by pores, which give the thongs a spotted appearance. This is remarkably the case, when, after lying on the shore for some time, every pore is eovered with a yellow dot, whieh is the mueus of the plant discharged in the death-struggle whieh goes on, when, torn from the roek and tossed out by the waves, it lies withering in the open air. Dr. Neill mentions that in the north of Seotland a kind of sauce for fish or fowl resembling ketehup, is made from the cup-like or fungus-like fronds of this seaweed.

Family II. LAMINARIE.

The water is calm aud still below,
For the winds and waves are absent there,
And the sands are bright as the stars, that glow
In the motionless fields of upper air ;
There with its waving blade of green,
The sea-flag streams through the silent water, And the erimson leaf of the Dulse is seen
To blush like a banuer bathed in slaughter:-Percival.
Genus VII. ALARIA, Greville.
Generic Character. Frond membranaceous, furnished with a
percurrent cartilaginous mid-rib, the stem pinnated with distinct leaflets. Fructification, pyriform seeds, vertically arranged in the incrassated leaflets.--Greville.

1. Alarla esculenta, Grev. Eatable Fucus. (Pl. I. fig. 4.)

Hab. Roeky eoasts, in deep water, frequent. Ammual. Winter and spring.

The name given to it by Dr'. Greville is from Ala, a wing, from the winged base of the frond. In Seotland in the Lowlands, it is by some ealled badder-loeks, and hen-ware, whieh may be a eontraetion of honey-ware, the mame given to it in the Orkney Islands. In some parts of Ireland, Dr. Drummond says that it is ealled murlins. The portion of it that is eaten is the mid-rib stripped of the membrane. We lave not heard of its being eaten in the west of Seotland. It is a handsome plant, and very tasteful figures of it may be found in Turner's Hist. Fueorum, Greville's Alg. Brit., and Harvey's Phyeologia Brit. We lave found it in great abundanee on the roeky parts of the eoast of Ayrshire, the Island of Arran, and at Maerihanish bay and Southend in Kintyre. It is in fruetifieation about midsummer. In favourable eireumstanees it grows to a great size, from twelve to twenty feet in lengtli. The best speeimens for the Herbarium are found in roek-pools. It retains
in drying its light olive green colour, and when young adheres well to paper.

Genus VIII. LAMINARIA, Lamour.

Generic Character. Frond stipitate, coriaceous, or membranaccous, flat, undivided, or irregularly cleft, ribless. Fructificatron, clouded spots of spores, imbedded in the thickened substance of some part of the frond. The name Luminaria (Lam.) is from lamina, a thin plate, in allusion to the flat frond.- Harvey.

1. Laminaria digitata, Lame. Sea-girdles, Tangle, Seastaff, or Sect-wand of the Highlanders.

Hab. In the sea, generally in deep water. Perennial. Common.

The root is composed of thick clasping fibres; the stem which is woody, is from two to six feet in length, and from half an incl to nearly two inches in diameter. It is solid, tough, and in old plants woody, expanding into a frond of from two to six, and oceasionally eight feet and upwards in length, and two feet in breadth, deeply cleft into several segments. The colour is olivaceous brown. In its young state it has no woody stem, and the frond is entire, resembling young plants of Luminaria saccharina, but thicker
and less elegant. The reproduction of the frond in old plants is very curious; but for this I refer to the plate and description in Phycologia Britannica.

In its native state it is well entitled to rank, in Europe at least, among the giants of the marine forest. When a full-grown plant has by stress of weather been torn from its moorings, and strauded on the shore never more to wave in the deep, it is a kind of treasure-trove, a well-stored cabinet to the naturalist. If he is a conchologist, he is almost sure to find the beautiful Patella pellricirla on the slimy frond ; and at the very centre of the stout fibrous roots he is still more sure of Patella cernulea, snugly ensconced in a cave which it has dug out for itself, where it is quite safe from everything but an uprooting storm. When the tangle has come from deep water, it frequently brings with it some rare Nuctibranchs,-those elegant little creatures so well. figured and described in that admirable monograph with which my friend Mr. Alder and Mr. Hancock are happily engaged. The stem is often adorned with sea-hair (Serlularia operculatat); and various kinds of corallines may be found on the roots. After the young naturalist has collected all that can be seen, let him put the tangled root into a basin of sea-water, and in the course of an hour or so he

114

will be astonished to sec the Protean tribes of little crabs, aunclides, and other strange creeping things that issue forth to reeonnoitrc their new limited loeality. But it is more to our present purpose to mention that the stems are very generally fringed with smaller Algæ, some of which are rare, such as Delesseria ruscifolia and Callithamnion pluma. But of what use is this great Alga? Can it be eaten? We have never tasted it, but the young stalks and leaves are eaten along with dulse; and old Gerard tells us that when well boiled, and eaten with butter, pepper, and vinegar, it makes good food. Can the woody stems be turned to good aeeount? To very good account; though we cannot rank high in the list of useful purposes, an amusing one mentioned by Dr. Neill, -that of making knife-handles:"A protty thick stem is selected, and eut into pieees about four inches long. Into these while fresh are stuck blades of knives, such as gardeners use for pruning and grafting. As the stem dries, it contracts and hardens, elosely and firmly embraeing the hilt of the blade. In the eourse of some months the laudles become quite firm, and very hard and shrivelled, so that wher tipped with metal, they are hardly to be distinguished from hart's-horn." Neither do we enny the inhabitants of Orkney, Shetland, and the Chamel Tslands,
the use of the plant as fuel. Having abuudance of good pit eoal at hand, we are very thankful that we need not have recourse to tangle. Were it converted into peat, we should not be unwilling to use it; and we have seen it thus metamorphosed but on too small a seale to be useful. This was among sandlills on the eoast of Ayrshire, where it had-been drifted a eonsiderable way inland by some unusually high-tide, and having been deeply eovered with driven sand, it had lain, it may be for ages, and had beeome a layer of peat about two inehes thiek, in whieh the stout tubular rind of the tangle-stem in a compressed state was quite distinguishable.

But far from unimportant are the purposes to whieh it has been put in the formation of kelp, to whieh the stems, and indeed the whole of this plant, greatly eontribute. Who would have thought that burnt Sea-weed would ever have been found useful in the manufaeture of sueh a substance as glass? And yet till lately the materials out of whieh the best window-glass was formed, were two parts of kelp, and one of fine white sand. The kelp was substituted for the "fossil alkali," whiel, aceording to a probable aeeount, was accidentally found to contribute to the formation of glass. Aeeording to Pliny, " a merchant-vessel loaded with nitre or
fossil alkali having been driven ashore on the eoast of Palestine, near the river Bolas, the erew went in search of provisions, and aeeidentally supported the kettles on which they dressed them, upon pieees of the fossil alkali. The river sand above which this operation was performed, was vitrified by its union with the alkali, and thus produeed glass. The important hint thus accidentally obtained, was soon adopted, and the art of making glass was gradually improved." Though kelp till lately was chiefly employed in Britain in the manufaeture of glass and soap ; it is now, as we have already stated, prineipally manufactured for the iodine it eontains, and no Sea.weed is so rich in iodine as this great tangle, especially its woody stems.
2. Tiaminaria bulbosa, Lamour. Bulbous-rooted Tangle; Sea-furbelows; Furbelowed-hangers.

Hab. In the sea, in deep water. Peremnial.
When in a young state, the frond is plane and undivided, the stem short, with a knob near the root, which is composed of fibres. As the growth of the plant proceeds, the stem becomes flat, and when fully grown it is wared and curled in a eurious manner, which renders it stout, and gives the plant a spring to resist the billows. The knot enlarges and beeomes hollow, eovering the roots whieh strike into
the clefts of the rock, and fibres procceding from the bulb, strengthen thc support, and enable the large plant bettcr to withstand the impulse of the waves. The bulb boing thickly covercd over with longish-shaped tubercles, is not unlike a plum-pudding stuck over with cloves or almonds. The bulbs arc often cast ashore in winter and spring. The largest bulb with us is about the size of a man's head, and though it would not be sufficiently elegant as the head-gear of a mermaid, -a mere-man might do worse than clap it on his pate as a bonnet, when he raiscs his head out of the water in a brecze. Some tender little mollusks arc wise enough to take up their abode in the hollow of the ball, where all is calm even when the storm is raging outside.

It is strange that this plant escaped the notice of Linnæus, and that cven Ray did not distinguish it from L. digitata. Mrs. Griffiths has paid particular attention to it, and has measured the size of onc which was a sufficient load for a man's shoulders. The bulb was about a foot in diametcr. When the fronds were spread out on the ground, they formed a circle of at lcast twelve feet in diamcter. It is the largest of all the European species, and it is precious for all the agricultural and chemical purposes for which L. digitata is so uscful. It is not rare on the coast of Ayrshire, and
we have seen large bulbs east ashore on the eoast of Argyleshire, near the Mull of Kintyre.
3. Laminaria saccharina, Lamowr. Sweet Tangle; Sea-Belt.

Hab. In the sea. Perennial. Very eommon.
The root is eomposed of elasping fibres. The stem from an ineh to a foot in length. The frond is from a foot to twelve inehes in length, and from an ineh to sisteen inches in breadth. The young plants make fine speeimens for the Herbarium, keeping their eolour, and adhering pretty well to paper. The full.grown plants are not only beautifully waved at the margin like the young plants; but they are frequently bullated and rugose and thiekened at the eentre. The substanee varies from eartilaginous to leathery. The eolour is olive brown, tinged with yelloा. It is mell deserring of the name of Saeeharine, for as I mentioned before it has been proved, by my friend Dr. Stenhouse, to be rieh in mannite whieh is nearly as sweet as sugar. Mith all this, however, to sweeten it, it is not relished as food ; indeed, the Norregians we are told esteem it so lightly that the: call it Toll-tare, implying that it is fit food for the Fiend. But He who made all things very good, made it for good purposes. It is not despised by the farmer who finds that it
yields nourishment to his crops. It is a great favouritc with some of the beautiful " minims of naturc," and the young naturalist will find that he is amply repaid for the careful examination of its fronds. Bcautiful mollusks may be found gliding along them, and they are the fixed habitation of many zooplytes: Flustra membrancea covcring it to a grcat extcnt with its fine silvery lace-like web; and less spreading zoophytes, such as Lepralia hyalina and Lepralia anmulata, richly dotting it. The latter is considered rare, but it is often found abundantly here on L. saccharina, and I have scarcely cver seen it on any other Alga.
"Huge ocean shews within his yellow strand, A habitation marrellously planned, For life to occupy."
4. Laminarta Phyllitis, Lamour. (Pl. XIX. fig. 76.) Hart's tongue Laminaria.

It has been questioned by high authorities whether this be more than a varicty of L. saccharina. It is more graceful in appearance than the young of I. saccharina generally is.
5. Laminaria fascia, Ag. This is found in England, Scotland, and Ireland, on rocks and stones near low-water mark. Annual. Summer. Professor Harvey in his Phycologia

Britannica, Pl. xLV., ineludes under it also L. debilis, as a broader and limberer variety.

Family III. SPOROCHNOIDE ※.

Je erains que la prineipale utilité que l'on doit retirer de cette étude se trouve dans les goûts simples qu'elle inspire à ecux qui la eultivent. Le jeune homme qui s'y applique avee ardeur, se derobe par son moyen aux passions turbulentes du premier âge, et fortifie sans cesse la santé par des exereises agréables.- Taucher.

Genus IX. DESMARESTIA, Lamour.

Generic Character. Frond lincar, either filiform, compressed, or flat, distichously branched, cellular, traversed by an internal, single-tubed, jointed filament ; producing, when young, marginal tufts of byssoid branching fibres. Fructification unknown.Named in honour of A. G. Desmarest, a celebrated French naturalist.-Marvey.

1. Desmarestia ligulata, Lamour. (Plate I. fig. 3.) Strap-leaved Desmarestia.

Hab. In the sea; generally in deep water. Annual. Summer. Frequent in the south of England and in the south and west of Ireland. Not common in Scotland. Orkney, Clouston. Frith of Forth, Lightfoot. TVe have got it, and know that it is not uncommon at Southend,

Kintyre, Argyleshire. It has a wide range ; it is found in Jersey; from the coast of France to the Faroe Islands; and at Cape Horn.

The frond is from two to six feet long; substance at first eartilaginous, beeoming flaecid when exposed to the air ; colour, when growing, olive brown, becoming green in the air, and yellowish in the Herbarium. The fruetifieation is unknown.

This is a remarkably elegant plant. It was first described by Lightfoot who gives an exeellent figure of it. A good eoloured figure of it may be found in Phye. Brit. (Pl. cxv.) When young it adheres to paper, but not afterwards. Sittle peneils of filaments are prodtreed at the axils of the spines when in a young state, but they soon fall off.
2. Desmarestia viridis, Lamour.

Hab. In the sea, on roeks and stones, often in shallow water.

This is Dichloria viridis, Greville; so named from its singular change of hue when taken out of the water. It seems to be pretty generally diffused in England, Seotland, and Treland. It is very common on the Ayrshire coast. Colour olivaccous when growing, though in shallow water it often has that foxy colour mentioned by Dr. Drummond.

Its appearance is very delieate and beautiful. Dr. Greville mentions that it has no pencil filaments. In a very young state the main branches are beset with fine filaments, but they are not poneilled.
3. Desmarestia aculeata, Lamour. Spined Desmarestia.

Hab. In the sca. Common. Pcrennial.
The root is a hard disc. The frond is without a mid-rib. From one to three feet long. When young, the branches are beset with distinct peneils of fine green filaments; when these fall off they are sueeeeded by stiff spines, so that it appears quite a different plant. When old, it beeomes harsh and woody. "It is seareely possible to eoneeive a more beautiful object than this plant waving its young and delicately feathered fronds in the water." When it has lost its fine green ornamental pencils, the colour is dark olive. It is mentioned as a remarkable thing of these Sporochnoidea, that they change the eolour of other Algre when put into the same basin of water with them, and cause speedy decomposition when they eome in eontact with them.

The branches are at times adorned with delicate parasitical Algæ, and still more frequently with Tubutipora serpens and other zoophytes. On the eoast of Ayr the large tults of it that are east out upon the shore arc often hoary with Crisia

geniculata, a rare zoophyte, though not showy; somewhat like the very eommon Crisia eburnea.

Genus X. SPOROCHNUS, $A g$.

Generic Character. Frond filiform, solid, ce'lular, the axis more dense. Fructification lateral, crested, stalked ; receptacles composed of horizontal, branching filaments, whorled round a central axis, and producing obovate sporcs.-The name is from two Greck words, signifying a secd and wool, because tufts of fibres accompany the fructification.-Harvey.

1. Sporochnus pedunculatus, Ag. (Pl. V. fig. 17.)

Hab. On submarine roeks in deep water. Rare. Annual. Summer and autumn. Anglesea, Rev. II. Davis. Bantry Bay, Miss Hutehins. Killiney, Professor Harvey. Belfast, Mr. Wm. Thompson. Roundstone Bay, Mr. M‘Calla. Jersey, Miss White. It does not seem to have been got in Seotland, except by Mr. Hasell at Prestonpans. It is found in the Atlantic and on the shores of Franee.

Stem 6-1. 8 inches long, set with long, filiform, horizontal branehes, simple and mostly alternate. The colour yellowish green, and becoming brownish in age. "Few objeets," says Professor Harvey, "are more attraetive to the eye of a
botanist than a fine frond of this specics, as it waves its feathery branches in the water." He adds, that if the use of the dredge were more general, this and many others would probably ccase to be thought rare.

Genus XI. CARPOMITRA, Kütz.

Generic Charactcr. Frond lincar, dichotomous, flat, and midribbed (or filiform), olivaceous. Fructification, mitriform receptacles terminating the branches, composed of horizontal branching filaments, whorled round a vertical axis, and producing ellipticoblong seeds.-The name is from two Greek words signifying mitre-fruit.-Harvey.

1. Carpomitra Cabreref, Kütz.

This is extremely rare. Found by Miss Ball in 1813, at Youghal. We believe that it has been lately obtained by the Rcv. Mr. Hore at Plymouth. It was discovered at Cadiz, and described by Clemente in his list of Spanish Algæ, and the specific name is in honour of his friend, Don Antonio Cabrera.

Genus XII. ARTHROCLADIA, Duby.

Generic Character. Frond filiform, cellular, with an articulated, tubular axis, nodose; the nodes producing whorls of delicatc,
jointed filaments. Fructification, pedieellate moniliform pods, borne on the filaments, and containing at maturity, a string of elliptieal spores.--The name is from two Greck words, signifying a joint and a branch.-Harvey.

1. Arthrocladia tillosa, Duby.

Hab. On submarine roeks, shells, \&e., and on Zostera in deep water. Rare. Annual. Summer and autumn. South of Eugland. Yarmouth, Mr. Turner. Anglesea, Rev. H. Davis. Frith of Forth, Mr. Hasell. Ardthur, Capt. Carmiehael. Wieklow, Prof. Harvey. Malahide, Mr. M‘Calla. Jersey, Miss White and Miss Turner.

This elegant plant was formerly ineluded in the genus Sporochnus. It was afterwards made the type of a new genus under the uame of Arthrocladia by Duby in Franee, and Elaioncma by a highly distinguished British botanist, the Rev. M. J. Berkeley. The Freneh naturalist had rather the priority.

Dr. Greville mentions that Mr. Hasell, the diseoverer of it in Seotland, observed that fresh speeimens when spread upon paper, rendered it trausparent as if it had been touehed with oil, henee the generie name Elaionema, whieh signifies oily thread. Desmarestia ligulata, and some other Algæ have the same property. Like the Desmarestia, it changes
its colour when exposed to the air, and hastens on the dccomposition of other delieatc Algæ that are put along with it in the same basin. In drying, it adheres well to paper. It is found in the Atlantic, Baltic, and Mediterranean Seas.

Family IV. DICTYOTE E.

Remote from busy life's bewildered way, O'er all his heart shall taste and beauty sway; Free on the sumny slope, or winding shore, With hermit steps to wander, and adore!

Pleasures of Hope.
Geuus XIII. CUTLERIA, Grev.
Generic Character. Root, a mass of woolly filaments. Froul flat, vcinless, somewhat fan-shaped, irregularly cleft. Fructification, minute tufts of capsulcs pedicellate, containing several distinct granules.-Named Cutteria by Dr. Greville in honour of Miss Cutler of Sidmouth, a distinguished British Algologist.

1. Cutleria mulififida, Grev. (Plate II. fig. 6.)

Hab. On rocks and shells in decp water. Rare. Ammual. Summer and winter. Found in England by Mrs. Griffitls, Miss Cutler, Mr. Turner, Mr. Wigg, Mr. Borrer, Rev, Mrr.

Hore; in Ireland by Miss Hutehins, Miss Ball, Professor Harvey, Mr. M‘Calla.

I am not aware that it has yet been found in Seotland. Substanee betwixt eartilaginous and membranaceous; eolour reddish olive ; erisp when fresh, but soon beeoming flaecid. Dr. Greville mentions that the eapsules or utrieles are very like the little blaek fungus found on the leaves of rosebushes in our gardens.

Genus XIV. HALISERIS, Tozzetti.

Generie Charaeter. Frond flat, linear, membranaeeous, with a mid-rib. Root, a mass of woolly filaments. Fruit, ovate seeds, forming distinet sori, or groups, mostly arranged in longitudinal lines.-Named from two Greek words, signifying the sea and endive.--Greville.

1. Haliseris polypodioides, Ag. (Plate III. fig. 10. Portion of the frond with sori along the midrib.)

Hab. In the sea. Biennial? August and Oetober.
It was first figured as British by Staekhouse in his Nereis Britauniea. It is rare. Found in England by Mr. Stackhouse and Mr. Winch ; in Ireland by Prof. Harvey, Miss Ball, and Mr. M‘Calla. It has not been observed in Seotland. Tn

Jersey it has been found by Miss White and Miss Turner; and is found in the warmer parts of the world, in Europe, Asia, Afriea, and Ameriea. It is said to have a disagreeable odour when fresh; but nevertheless we sliould be glad to find it, as it is a handsome plant. Its specific name is from the resemblanee of its fructification to that of the fern called Polypodium. It is often proliferous at the mid-rib. Mrs. Griffiths first diseovered that it had two kinds of fruetifieation.
"Art's finest pencil could but rudely moek The rich grey liehens broidered on a roek, And those gay watery grots he would explore --Small exeavations on a rocky shore, That seem like fairy baths or mimie wells, Riehly embossed with choieest weed and shells,
-As if her triukets Nature ehose to hide Where nonght invaded but the flowing tide."

Jane Taylor.

Genus XV. PADINA, Allanson.

Generic Character. Root coated with woolly fibres. Frond flat, riblcss, fan-shaped, marked at rcgular distances with concentric lincs, fringed with articulated filaments; apex involute. Fructification, linear concentric sori, bursting through the cpidermis of the frond, containing at maturity, numcrous oborate,
utricles or tetraspores, fixed by their base, and containing four sporules.-Harvey.

1. Padina Pavonia, Lamour. (See Plate XIX. fig. 2. Portion of the frond.)

Hab. On rocks in shallow pools at half-tide level. Annual. Summer and autumn. Several plaees in the south of England; abundant at Torquay. Very abundant in the Mediterranean. There is a tradition mentioned by Lightfoot that it was found by Dr. Cargill at Aberdeen. Professor Harvey after stating the tradition adds": "but it has not been found in Scotland in modern times, and I fear there has been a mistake ; yet it is diffieult to imagine what could have been mistaken for it, so different in appcarance is it from all other Algæ."

Dr. Greville says: "we have few Algæ more singular or beautiful than this." Dr. Harvey says : "its general resemblanee to the expanded tail of the peaeock has been noticed by all authors. When viewed growing under water this rescmblanee is peeuliarly striking, the fringes of capillary fibres which adorn it, decomposing the rays of light, and giving rainbow eolours to the surfacc." Sce a showy figure of it in Phycologia Britannica, Pl. xci.

Genus XVI. PADINELLA, Areschoug.

1. Padivella parvula, Aresch.

Hab. Roeks in the sea, on shells and on larger Seaweeds. Rare. Annual? Spring and summer. Found by Dr. Greville and Miss Cutler at Sidmouth.

The frond is proeumbent, attached to other substanees by whitish fibres. The eolour is an olivaeeous green. I do not think that it is rare in the west of Seotland, but as it is rather minute it does not attract notiee. The first time I observed it was on a shell dredged near the island of Greater Cumbrae. I did not then know it, but on sending it to Professor Harvey, he told me that it was a rare native, then going by the name of Padina parvula. During the months of January and February, 1849, I have often observed it in a young state on the roots of Halidrys siliquosa and Laminaria digitata, but more frequently on the former, on the solid dise of the base. No fructifieation has jet been observed. The substanee is membranous, somewhat transparent, and highly retieulated; the eells quadrangular; colour olivaceous-green. In drying, it does not adhere to paper, and beeomes a little darker.

Genus XVII. DICTYOTA, Lamour.

Nihil inutile, nihil vanum, nihil supervacaneum in Natura.-Bacon.
Generic Character. Frond flat, reticulated, membranceous, dichotomous, or irregularly cleft (palmato-flabelliform in D. atomaria). Root, a mass of woolly filaments. Fructification composed of scattered or variously aggregated, somerwhat prominent seeds, on both surfaces of the frond.--The name signifies network, in allusion to the reticulations of the frond.--Grev.

1. Dictyota dichotoma, Lamour. (Pl. II. fig. 5, the broad var., and the small figure to the left is var. β.)

Hab. In the sea, on Algæ, and in rock-pools; vcry common. Annual. Summer and autumn.

This plant is widely distributcd over the world. On the Ayrshire coast and in the islands of Arran and Cumbrae, var. β is very common, the frond of which is narrow. I have had very beautiful broad-fronded specimens from the coast of Argyleshire, gathcred by Rcv. Mr. Lambie at the south end of Kintyre. Both kinds are woll represented in Plate ciri. of Phyc. Brit., but with us the var. β is of a much darker olive.
2. Dictyota atomarla, Greville.

Hab. On rocks in the sea. Annual. Summer. Found in England by Mrs. Griffiths, Mrs. Fowler, Mr. Wigg, Mr. к 2

Borrer, Mr. Dillwyn ; in Ircland by Miss Ball ; in Frith of Forth by Dr. Greville: very rare. I have never seen a Scotch specimen. Therc is a splendid figure of it forming Plate I. of Phycologia Britannica.

Genus XVIII. STILOPHORA, J. $A g$.

Generic Character. Root, a small disc. Frond filiform, solid or tubular, branched. Fructification, convex, wart-like sori scattered over the surface, composed of obovate sporcs nestling among moniliform, vertical filaments.-The name from tro Greck words signifying a point, and to bear, in allusion to the dot-like fructification.--Harvey.

1. Stilophora rhizodes, J. Agardh.

Hab. Near low-water mark on roeks and Algæ. Annual. Summer. Common in the south of England and in some parts of Ireland. Got in Jersey, and in the Baltic sea and Atlantie shores.

This is Sporochnus rhizodes of Alg. Brit. and of Harvey's Manual. As it differs from the truc Sporocthe in fructification, it has been made the type of a nerr genus. The warted fructification is denscly disperscd over the whole frond. Substance when fresh, cartilaginous, when kept, soft and slimy. Colour yellowish-brown.

2. Stilophora Lyngbyei, J. Agardh.

This is the var. β of British authors, whieh has now been ranked as a distinet speeies, though Professor Harvey still seems to demur. He has not altogether departed from the belief that it is a deep-water variety. It has been found drifted ashore on the Ayrshire eoast, and also dredged in deep water in Lamlash bay, Island of Arran.

Genus XIX. DICTYOSTPHON, Greville.

Gen. Char. Frond filiform, tubular, continuous, branched. Root minutely scutate, naked. Fructification, ovate, seattered seeds lying beneath the epidermis.-The name is from two Greek words, signifying a net-worl and a tube, the frond being tubular and reticulated.-Greville.

1. Dictyosipion feniculifeeus, Grev.

Hab. In the sea, on Chorda fitum and other Algæ. Annual. Spring and summer. Anglesea, Dillenius; Cornwall, Hudson; Ireland, Miss Hutehins, Dr. Drummond; Frith of Forth, Dr. Greville. On the Ayrshire eoast, very eommon.

It resembles in appearance Dichloria or Desmarestia viridis. Within the tube the surface is lined with pellucid oblong cellules. Colour, when young, pale yellow or olive-
green ; when old, it is of a rusty-brown colour, and the plant is then several feet long, and has a eoarse appearance.

Genus XX. STRTARIA, Greville.

Gen. Char. Frond filiform, tubular, continuous, membranaceous, branched. Root naked and scutate. Fructification, groups of roundish sceds forming transversc lines. -The name is from the transverse strice, formed by the lines of fructification.

1. Striaria attenuata, Greville. (Pl. II. fig. 8.)

Hab. Parasitical on the smaller Algæ, generally beyond tide range.

Genus XXI. PUNCTARTA, Grevilte.

Gen. Char. Frond simple, membranaceous, flat, with a naked scutate root. Fructification scattered over the whole frond in minute distant spots, composed of roundish prominent seeds, intcrmixed with club-shaped filaments. - The name is from Punctum a dot: the fruit being in dots scattered over the surface of the frond.-Greville.

1. Punctaria latifolia, Gieville. (Pl. IV. fig. 16.)

Hab. On rocks in the sea. Amnual. April and May. Found by Mrs. Griffiths at Torquay ; Dr. Drummond, near Belfast; Professor Harvey, west of Ireland.

We have found it very large in the island of Arran in the month of June, when the broad palc fronds were partly decomposed. The colour of the frond is pale olive-green, tender, suddenly tapering at the base.
2. Punctaria plantaginea, Greville.

Hab. On rocks and other Algæ. Found by Mr. Turner at Cromer ; Dr. Drummond, Belfast ; Dr. Greville, Frith of Forth. It is found during summer at Saltcoats.

So late as the month of Septcmber I found it east out on the shore in great abundanee near Brodick in the island of Arran ; it was narrow and dark-eoloured, and I at first mistook it for Porpluyra linearis in an old state, wondering that it should be found so late in the season: as on the opposite coast of Ayrshire it disappears very early. The fronds in this instanee werc very mueh attenuated at the base. The dots of fructification instead of being round, as in the preceding species, are in this oblong and larger. There is a fine figure of it with magnified fruit, \&e., in Alga Brit. Pl. ix. fig. 2.
3. Punctaria tenuissima, Greville.

Hab. In the sea, parasitic on Zostera marina. Annmal. Summer. Found by Captain Carmichael at $\Lambda_{\mathrm{p}} \mathrm{p}$ in ; Dr. Greville, in Bute. When in a row-boat off Little Cumbrae
we have seen it growing abundantly on Zostera marina. It is often got on Zostera marina by Major Martin at Ardrossan. These Punctarica seem to be favourite food of some of the mollusks, as the fronds are often, when found, greatly perforated. Even for the creeping things imnumerable in the sea, He who made them provides suitable food. "These wait all upon Thee that Thou mayst give them their meat in due season. That Thou givest them they gather. Thou openest thy hand and satisfiest the desire of every living thing."

Genus XXII. ASPEROCOCCUS, Lamour.

Gen. Char. Frond simple, tubular, cylindrical, or (rarely) compressed, continuous, membranaceous. Root minutely scutate, naked. Fructification, distinct spots composed of imbedded seeds, mixed with erect club-shaped filaments. - Name from two words signifying rough and seed.-Grev. \&. Harv.

1. Asperococcus compressus, Griffiths. (Pl. V. fig. 1S.)

Hab. Parasitieal on Algæ in rather deep water. Annual. Summer. Found by Mrs. Griffiths, Torquay ; Mr. Ralfs, Mount's Bay; Miss Warren, Falmouth; Miss Turner, Jersey; Cape of Good Hope, Professor Harvey. It has not beeu found in Scotland.

It was diseovered by Mrs. Griffiths at Sidmouth in 1828. Kiitzing proposes that it should be the type of a new genus, in whieh ease, as Professor Harvey says, Griffithsianum may very deservedly be adopted. See an exeellent figure of it in Phyeologia, Pl. Lxxir.
2. Asperococcus Turneri, Hooker. (Pl. II. fig. 7.)

Hab. In the sea on stones, and the larger Algæ. Fonnd also in rock-pools. Annual. Summer and autumn. Found in England in various parts by Mrs. Griffiths and Mr. Borrer. In Ireland by Miss Hutehins; Professor Harvey; Mr. W. Thompson ; Mr. Ball; Miss Ball; Mr. Andrews. In Scotland by Captain Carmiehael, Appin; Dr. Greville, Arran. It has been repeatedly dredged off Bute by Mr. W. Gourlie of Glasgow. We have dredged it in Lamlash bay.

The first time I found this in the island of Arran it was in a tide-pool on the rocky shore near Claekland point. There was a fine large tuft of it, but being filled with water it was diffieult to distinguish it from the element in whieh it was growing. The next time, it was found by Dr. Greville, on the same roeky shore but nearer Brodiek. He was glad to lay in a good supply, and three or four more of us who were with him, helped ourselves as liberally, and yet mueln
of it was left in the pool. I looked in vain for it, however, the succeeding season. The spccimens were very good, about six inches in length, and nearly an inch in brcadth; better fitted for the Herbarium than gigantic spccimens of it, found in Ireland by Mr^{1}. William Thompson, three feet and a half in length, and two inches and a half in diameter ! See a very good figure of it with fruit, \&c., in Phyc. Brit. Pl. xi.
3. Asperococcus echinatus, Greville.

Hab. Roeks in the sea. Common. Annual. Summer and autumn.

This is not so beautiful a plant as the preccding. It is much darker in eolour, and gencrally much smaller, at least in diameter. I have, howcver, seen it betwixt two and three fect in length; this was in the island of Arran, where it had a tomentosc appearance in the water, as if the frond werc woolly. The same thing scems to have been observed by Captain Carmichael on Asperococcus (?) pusillus, " beset," he says, " with pcllucid fibres so closely covering the frond ou which they grow, as to give it the appcarance of a bottle brush." This appearance was very remarkable on the very large speeimens which I saw in Arrau; but as they
were growing in deep water, I could not at the time get hold of them for examination.

Genus XXIII. CHLOROSIPHON, Harvey.

1. Chlorosiphoy pusillus, Harv.

Hab. In the sea, parasitical on Chorda filum and other Algæ. Annual. Autumn.

This is what was formerly ealled Asperococcus (?) pusillus. It has now been made the type of a new genus by Professor Harvey. It is got on the coast of Ayrshire, and is far from being uneommon in the island of Arran.
2. Chlorosiphon Laminarle, Harvey.

Hab. In the sea, parasitical on Alaria esculenta and Ulva lactuca. It has been found by Drs. Grevillc and Professor Walker Arnott in the Frith of Forth ; by Mr. Ball and Mr. Thompson in Clare ; Mr. Moore, Antrim ; Capt. Carmiehael, Appin.

Mr. Moore liad said that it was more like A. (?) pusillus than Bangia, and that a genus might be formed of the two, whieh has aeeordingly been done by Professor IIarvey.

Genus XXIV. CHORDA, Stackhouse.

Gen. Char. Root seutate. Froud simple, eylindrieal, tubular, its eavity divided by transverse, membranous septa, into separate ehambers. Fruetifieation, a stratum of obeonieal spores, mueh attenuated at the base, covering the whole external surface of the frond. Among these are found elliptieal antheridia?-The name signifies a cord.--Harvey.

1. Chorda filum, Lamour. (Pl. III. fig. 9.)

Hab. In the sea, on rocks and stones, very eommon. Annual? Summer, autumn, and winter.

The strueture of this Alga, whiel seems cylindrical, is very remarkable, being composed of a fillet spirally twisted into a filiform tube. The colour is olive green, becoming dark in drying. It is elothed with pellueid hair-like fibres, whiel, with the mueus of the plant, give it a slippery feel. The length to which it grows in favourable circumstanees is very great, even thirty, and at times forty feet. Like Sargassum, it forms at some places extensive sea-meadows; but though floating, it is always under the surfaee. Dr. Patrick Neill says: "Iı Orkney we have sailed through meadows of it in a pinnaee, not without some diffieulty, where the water was between three and four fathoms decp, and where, of eourse, the waving weed must have been
from twenty to thirty feet long. This, too, was the growth of one summer, for the storms of winter eompletely sweep it from the bay every year." He joins with Lamouroux, however, in thinking that it may not be strietly annual, and that its duration may depend on the uature of the plaee where it grows. I do not think it is annual, for there is no month, either in winter or spring, whel some of it is not floated out on the eoast of Ayrshire in stormy weather, and it is often adorned both in winter and spring with a pretty zoophyte, Laomedea geniculata, giving it a bottle-brush appearance ; the zoophyte is very phosphoreseent in the dark. In winter it seems to eome from deep water, bringing with it Millepora polymorpha, and at times Tenus aurea, not found on our Ayrshire coast exeept in this way, though abundant in Loek Ryan.

Lightfoot mentions that the stalks skinned and twisted when half dry, aequire suel toughness as to be used for fishing lines, like Indian grass, whieh grass, Dr. Neill informs us, is an animal substanee attaehed to the ovaries of the small foreign sharks. Something similar is found at the eorners of the ovaries of our eommon dog-fish, by whieh they anchor themselves to marine plauts.

Chorda filum goes by various names. In England it is often
ealled Sea-laces; in Orkney, cat-gut; in Shetland, lucky Minny's lines; in Ayrshire, dead men's ropes, and we know an instance in whieh it proved too deserving of the name: a fine young man in bathing being entangled by it and brought out dead. For an exeellent figure with the hairlike fibres; for a part of the eylinder untwisted; and for the different kinds of fructifieation, see Phyc. Brit. Pl. crim.
2. Chorda lomentaria, Greville.

Hab. Roeks in the sea. Annual. Common.
Dr. Greville deseribes this well by saying that it is like the intestine of an auimal tied at eertain intervals.

> Family V. ECTOCARPE Æ.
> "Not a tree,
> A plant, a leaf, a blossom, but contains
> A folio volume. We may read, and read, And read again, and still find something new;
> Something to please, and something to instruct."

Genus XXV. CLADOSTEPHUS, $A g$.

Gen. Char. Fronds inarticulate, rigid, cellular, whorled, with short, jointed, subsimple ramuli. Fructification, elliptical utricles, furnished with a limbus, pediccllate, bornc on accessory ramuli.
-The name from two Greek works, signifying a branch, and a crown.-Harvey.

1. Cladostephus verticillatus, Iyngb. (Pl. IV. fig. 14, a braneh of C. verticillatus, natural size; and at the base on the left a small portion of a braneh with a whorl, magnified.)

Hab. In the sea, on roeks and stones. Perennial. Fruiting in winter. It is pretty eommon in most plaees. It is not eommon, however, on the eoast of Ayrshire, but when I say the eoast of Ayrshire, I generally mean that part of it with whieh I have the opportunity of being best aequainted, viz., some dozen miles or so, in the neighbourhood of Salteoats and Ardrossan. The sea-eoast of Ayrshire strietly speaking extends nearly ninety miles. On the opposite coast of Arran, this speeies is pretty eommon.

The filaments are from three to nine inehes in length; the eolour olive brown, beeoming browner in drying. It does not adhere to paper.
2. Cladostephus spongiosus, $A g$.

This is a eommoner, and a elumsier plant than the preeeding.

Genus XXVI. SPHACELARIA, Lyngbye.

Gen. Char. Filaments, jointed, rigid, distiehously pinnated, rarely simple, or subdichotomous. Apices of the branches distcnded, membranous, containing a dark granular mass. Fructification, elliptieal utrieles, furnished with a limbus, borne on the ramuli.-The name from a Greek word signifying a gangrene, alluding to the withered tops of the branches.-Harvey.

Spluacelariece are divided in two classes, viz., * Those whose fronds are beset with woolly fibres at the base or lower part.

* Those whose stems arc naked at the base without woolly fibres.
* Stems clothed at the base.

1. Sphacelaria filicina, Agardh.

Hab. On rocks and Nullipores near low-water mark, and on the roots of Laminarice, \&c. Very rare. Found in England by Mrs. Griffiths, Mrs. Harc, Mrs. Wyatt, Mr. Sconee, Mr. Ralfs, Dr. W. Arnott, and Mr. Borrer. In Ireland by Miss Ball and Mr. W. Thompson, and Dr. R. Harvey; and in Jersey by Miss Turner and Miss White. Not found in Seotland.

From two and four inehes high. Pinnæ alternate; colour greenish olive; substance rigid. Professor Harvey

says: "there are few more beautiful plants among the filiform Algæ of our eoasts, and not many more rare." It is a speeies of the south of Europe, where it is found mueh larger than in Britain. Miss Turner, however, has found in Jersey a specimen fully equal in size to those of the south of Europe. (See a fine figure in Phye. Brit. Pl. cxlit.)
2. Sphacelarta sertularia, Bonnem.

This, though more diminutive, is even more beautiful than the last. It is finely figured in Phye. Brit. Pl. cxliti, though Professor Harvey is seareely disposed to allow that it is any more than a deep water variety of Sphacelaria filicina.
3. Sphacelaria scoparia, Lyngbye. (Pl. IV. fig. 15, in its summer state, natural size; the figure to the right is a branchlet, magnified.)

Hab. Submerged rocks, and in tide-pools.
In its summer state, it is a fine bushy broom-like plant, as the speeifie name implies. In its winter state it is so bared of its shaggy branehlets that it might well be taken for another plant. The differenee of appearance is well represented in Pl. xxxvir. of Phyeologia. Dr. Greville finds it in the Frith of Forth. It is not eommon on the Ayrshire eoast, but found in several plaees in the island of Arran.

* Stems naked at the base.

4. Sphacelaria Plumosa, Iyngbye.

Hab. On rooks at low-water mark, and in roek-pools. Perennial. Found by Mr. Borrer at Beaehy Head ; Sir J. Richardson and Dr. Greville, Frith of Forth ; by Mr. Ralfs in England and Wales; by Mr. W. Thompson, Belfast bay; Miss Gower, Howth; Rev. Mr. Pollexfen, Orkney ; Major Martin, Ayrshire ; D. L. island of Arran; D. L., june., Joppa, Frith of Forth.

Professor Harvey says that this beautiful plant is peenliarly a northern one. The figure given in Phys. Brit. Pl. Lxxxvir., is taken from a Welsh specimen, and though true, I doubt not, to nature, is greatly inferior to those we get in the west of Scotland. Those found at Ardrossan and in Arran are finer in colour and broader in the frond. However, D. L., junr., sent me speeimens gathered by him in a rock-pool, at Joppa, near. Edinburgh, which though very different from those got by us on the west coast, will stand a comparison with them in beauty. The fronds are numerous; they are seareely so large as the western ones, but they are beautifully feathered; and instead of being light olive, they are so dark as to be almost black: while the Ayrshire ones were light olive and almost as broad as the feathers of a robin's wing; those from the Frith
of Forth were like the greenish black of a starling's wing. In some specimens the greenness was increased by Striatella arcuata, as a parasite.
5. Sphacelaria ctrrhosa, Iyngbye.

This is a very common kind, parasitical on larger Algæ. It is very variablc in appearance. The most common kind, however, may be seen about the end of summer, cletaehed from the othcr Algæ, and floating in great abundance, like little round balls. It does not adhcre well to paper.
. 6. Sphacelaria fusca, Ag.
This is a rare specics, found in the south of England and in Wales; it is beautifully figured in Phye. Brit. Pl. cxlix.
7. Sphacelarta radicans, Harvey.

Rather rare, found in England and Treland.
8. Sphacelarta olivacea, Harvey.

Marked by Dr. Harvcy as a doubtful speeies. We have a spceimen thus named for us by Sir W. Hookcr many years ago. We have often got the same plant sinee, and it is always parasitical on Des. aculeata. It is smaller than S. cirrhosa and of a greener olive, beautifully tufting the Desmarestia.
9. Sphacelaria racemosa, Greville.

This is described as allicd to the last, but larger. Prof. Harvcy marks it as a doubtful spccics.

Genus XXVII. ECTOCARPUS, Lyngb̆ye.

Gen. Char. Filaments eapillary, jointed, olive, or brown, flaceid, single-tubed. Fruit, either spherical, or laneeolate capsules, borne on the ramuli, or imberded in their substanee.The name from two Greek words, meaning external fruit.Harvey.

They are divided into two classcs :-

* Sccondary branches alternate, flaccid, or secund. * Sceondary branches and ramuli opposite.
* Secondary branches alternate.

1. Ectocarpus littoralis, Lyngbye.

Hab. In the sea, and parasitieal on any Alga that comes in its way, preferring, however, the Fuci and Laminarice. It is very common.

The shaggy tufts are from 6-12 inches long. It is of a brownish-olive colour, and often rust-coloured, in which case it stains the paper to which it adheres. If any prefer a good green to its natural colour, they have only to dip it for a moment in boiling water, and it comes out a pleasant grass-grecn. This may please the eye, but it is apt to lead the naturalist astray, as it then approaches nearer to E. siliculosus: though even in its scalded state it is coarser and more robust.
2. Ectocarpus siliculosus,* Lyngbye. (Pl. V. fig. 19, natural size; on the left, a branehlet magnified.)

Hab. On Algæ, \&e. Common.
It is finer than the last, though sometimes larger. The eolour is generally a pale olive, sometimes greenish, and sometimes yellowish. It adheres well to paper, and makes a beautiful speeimen. It is best distinguished from the preeeding by the fruit, whieh is podded (henee the speeifie name), and on short stalks, whereas the fruit of the former is imbedded in the branehes, and subglobose.
3. Ectocarpus fasciculatus, Harvey.

This is rather a rare plant.
4. Ectocarpus Hincksie, Harvey.

This is rare also. Found by Miss Hinks at Ballyeastle, and named in honour of her. We have only onee found it in Ayrshire.
5. Ectocarpus tomentosus, Lyngbye.

Hab. On roeks and Algæ. Not uneommon.
From 1-8 inehes long; frond sponge-like ; colour sometimes brownish, and at other times a greenish olive. * 6. Ecto. scorpioides, Harv. * 8. Ecto. longifructus. * 7. -- spinescons, Harv. * 9. ——amphitius, Harv.

[^3]These, according to the asterisk prefixed, require examination.

* 10. Ectocarpus distortus, Carmichael.

Having dredged in Lamlash bay something that puzzled me, I sent it to Professor Harvey, who at first thought that it was Ectocarpus distortus of Carmichael; but having afterwards dredged it himself in Roundstone bay, he wrote to me that he thought it a different plant from Captain Carmichacl's, and as I had first found it he named it
11. Ectocarpus Landsburgit, Harvey.

It has not much beauty to recommend it, but it is a little curiosity. Like the Scotch thistle it is armed at all points, and says as plainly as a hundred drawn dirks can say it, "sha claur meddle wi' me?" Phyc. Brit. Pl. coxxxui.
12. Ectocarpus crinitus, Carmichael.

Hab. Muddy sca-shorcs, "spreading over the mud in extensive fleeces of a bright bay colour." Found by Capt. Carmichael at Appin, and by Mrs. Griffith in Devonshire.
13. Ectocarpus pusillus, Griffiths.

Found by Mrs. Griffiths, Torquay ; and by Mr. Ralfs, Land's End. This I know only by the beautiful figure in Phys. Brit. Plate cliff.
14. Ectocarpus simplex, Ag. 15. Ectocarpus villum, Harv.

Ectocarpea.]

* * Secondary branches opposite.

16. Ectocarpus granulosus, Agardh.

Hab. In rock-pools on other Algæ. Not uneommon in England and Ireland, and I find that it is pretty common on the coast of Ayrshire.

It is a landsome plant, as may be seen by Pl. cc. in Phycologia Britannica. It differs from its British eongeners, by bearing dark-eoloured elliptical eapsules or utricles on the upper side of the opposite branehes and branchlets. The fruit is often very abundant and is cuuite visible by the naked eye.
17. Ectocarpus spherophorus, Carmichael.

Hab. On Ptilota sericea or Cladophora rupestris. This has been found in England, Seotland, and Ircland, by Capt. Carmichael, Mrs. Griffiths, Mr. Ralfs, and Miss Hutehins.

It is not a common plant, and where it is found, Mr. Ralfs observes, that "it is not diffused through the bay, but is confined to the space of a few roeks, on which it forms, as it were, a eolony, or is gregarious." It seems also to eonfine itself to P. scricea and C. rupestris. See a fine figurc of it in Phycologia, Pl. cxxvi., in which may be secn also the globose fruit, eithcr in pairs opposite to eaeh other, or opposite to a branehlet.
18. Ectocarpus brachiatus, Harvey.

Hab. On Rhodomenia palmata. It has becn found by Sir Wm. Hooker and Mrs. Griffiths in England; by Miss Ball and Mr. Wm. Thompson in Ireland; and by Miss Mac Leish and D. L. on the coast of Ayrshire. It is rare, Lowever. The Ayrshire labitat is at Seamill, some miles north of Ardrossan.

By the fine figure of it in Pl. Iv., Phycologia, it may be seen that the fruit is imbedded in the stem where two opposite branchlets meet.
19. Ectocarpus Mertensil, Agardlo.

Hab. On mud-covercd rocks near low-water mark. Annual. April and May. Rare.

This fine plaut, though found by most of our distinguished naturalists in England and Ireland, has been got in Scotland only by the Rev. Mr. Pollexfen in Orkney.

It was named by Mr. Turner in compliment to Professor Mertens of Bremen, a distinguished Algologist. It has a fine feathcry appcarancc. The colour is a clear olive, and it bears its fruit on the oppositc ramuli. See the beautiful figure of it in Plyyc. Brit. Pl. caxxin.

Genus XXVIII. MYRIOTRICHIA, Harvey.

Gen. Char. Primary filaments olivaceous, flaccid (simple), beset on every side with simple, spine-like ramuli, which bear from their tips colourless, dichotomous, long-jointed fibres. Fructification, ovate capsulcs, containing a dark mass of secds.The name is from two Greek words, signifying a thousand hairs, from the innumerable hair-like fibres which spring from the ramuli.-Harvey.

1. Myriotrichia claveformis, Harvey. (Pl. III. fig. 11, plant, natural size, on Chorda lomentaria, and on the left a frond magnified.)

Hab. This is found parasitieal on Chorda lomentaria. It is got in England and Ireland; and has been gathered at Ballantrae, in Ayrshire, by Mr. W. Thompson, who lets nothing eseape his observant eye.
2. Myriotrichia filiformis, Harvey.

Hab. Also parasitieal on Chorda lomentaria. It is not uneommon in England and Treland ; and on the eoast of Ayrshire, and in the island of Arran.

By comparing our figure of the preeeding with the figure of M. filiformis in Phyeologia, Pl. clvi., we see that the ramuli in the former regularly inerease in length from the base, so as to give it a elub-shaped appearanee, while in
this they are nearly of the same length, and are eollected in oblong elusters, leaving bare spaces.

Family VI. CHORDARIE压.

"Rerum Natura tota est nusquam magis quam in minimis."
On this family I shall not dwell long; not beeause they are devoid of interest, but beeause I hasten on to other families whose beauty is more evident and attractive.

Genus XXIX. MYRIONEMA, Greville.

Gen. Char. Mass gelatinous, (exceedingly minute,) effused, composed of very short, elavate, ereet, mostly simple filaments, "fixed at their base and at their expansion." Fruit, eapsules at the base among the filaments.-Name from two Greek rords signifying ten thousand filaments.-Greville.

1. Myrionema strangulans, Gieville.

Hab. In the sea, parasitieal on scveral Ulvac. Forming dark brown spots, and when on Enteromorpha, forming a ring round it. I was unacquainted with this till it was pointed out to me by Dr. Greville in the island of Arran, growing on Enteromorpha in a roek-pool.
2. Myrionema punctiforme, Harvey.

On Chylocladia clavellosa at Appin; on Ceramium rubens, Mrs. Griffths, Torquay. A beautiful microscopic object.
3. Myrionema clavatum, Harvey.

A thin purplish crust, covering the pebbles at half-tide level, requiring the microscope to detect it.
4. Myrionema Leclancherii, Harvey.

The figures of this species and of M. punctiforme, in Pl. xli. of Phyc. Brit., give a better idea of them than any verbal description.

Genus XXX. ELACHISTEA, Duby.

Gen. Char. Parasites composed of simple, vertical, or radiating, jointed filaments, issuing from beneath the surface-ccllules of other Alge: the lower part of the filaments hyaline, and compacted together into a tuberele; the upper half coloured (olive), free. Spores oblong, mostly stalked, affixed to the tubercular basc.-The name seemingly from a Greek word, signifying the least.-Harvey.

1. Elachistea fucicola (Conferva fucicola), Fr.

This and the following were formerly Conferve. This one is very common on Fucus nodlosus and F. vesiculosus, forming olivaceous tufts.
2. Elacieistea flaccida, Fr. Parasitic on Fucus and Cystoseira.
3. Elachistea curta, Aresch. On Fuci.
4. Elachistea attenuata, Havvey, sp. nov. On Cystoseira evicoitles. See Phycologia Britannica, Pl. xxviII., for this species and the following.
5. Elachistea velutina, Fries. Parasitical on Himanthatia lorea.
6. Elaciistea stellulata, Marvey. On Dictyota dichotoma.
7. Elachistea scutulata, Fries. On Himanthalia lorea.

Gcnus XXXI. RALESTA, Berkeley.

Gen. Char. Frond coriaceo-crustaceons, fixed by its inferior surface, orbicular, conccntrically zoned; eomposed of densely paeked, vertical, simple filaments. Fructification, depressed warts, scattcred over the upper surfacc, containing obovate spores fixed to the bases of vertical filaments.-Ralfsia, in honour of John Ralfs, Esq., of Penzance, a most acute botanist, whose discoveries among the minute Algæ, especially the Diatomacere, have thrown great light on that little known branch of botany. Harvey.

1. Ralfsla deusta, Ber⿸丆.

Hab. Common on the rocky shores of the British Islands. Peremial. Winter. Though very eommon on the Ayrshire coast, and still more so in Arran, it is not generally known; as it attracts not notice by its beauty.

Genus XXXII. LEATHESIA, Gray.

Gen. Char. Frond globose or lobed, flcsly, composed of jointed, colourless, dichotomous filaments, issuing from a central point; their spines, which constitutc a fleshy coating to the frond, coloured and tufted. Fructification, oval spores attached to the colourless tips of the filaments.-Named Leathesia, in honcur of the Rev. Mr. Leathes, a British naturalist.-Harvey.

1. Leathesia Berkleyi, Harvey.

We shall briefly say of this in the words of Professor Harvey: "a small plant more eurious than beautiful, first noticed by the Rev. M. J. Berkeley, on roeks at Torquay."
2. Leathesia tuberiformis, Gray.

This differs from the former, which is a dense and solid substance, by being at first floeculcnt within, and then hollow. With this speeics I had long been familiar, without knowing its name, till it was pointed out to me in the island of Arran,
by Dr. Greville, as the Corynephora marina of Agardh. It is of a light yellow colour, and after a breeze in summer it may be seen in heaps in the little bays, not unlike bunehes of hops, were it not for irregularity in size.

Genus XXXIII. MESOGLOIA, Ag.

Gen. Char. Frond filiform, much branched, gelatinous. Axis composed of loosely packed, longitudinal, interlaced filaments, invested with gelatine; the periphery of radiating filaments, whose apices produce clusters of club-shaped, moniliform fibres. Fructification, obovate spores, seated among the apical fibres.Named Mesogloia, from two Greek words, signifying viscid and middle, from the gelatinous axis.-Harvey.

1. Mesogloia vermioularis, Ag.

Hab. On roeks in the sea. Annual. Summer. Common. No beauty; though the fruit is attraetive, as represented in Pl. xxxi. of Phyeologia Britanniea.
2. Mesoglota virescens, Carmichael. (Pl. V. fig. 20, a frond of the natural size; on the left, a small portion of the frond magnified.)

Hab. On roeks, stones, and Algæ. Annual. Summer. Common. Found in England by Mrs. Griffiths; in Ireland by Mr. W. Thompson and Mr. M‘Calla. It is very com-
mon in the west of Scotland, much more so than the preceding, and it is much more handsome.

Even to the naked eye, when skilfully spread out, it is beautiful ; the colour being a sweet yellowish green, and its appearance being villous owing to the length of the filaments, which are set in a loose gelatine. The appearance of a branch under the microscope is singularly interesting.
3. Mesogloia Griffithsiana, Greville.

This, which is said to be of a much firmer and more compact substance than M. virescens, I have not seen.

Genus XXXIV. CHORDARIA, $A g$.

Gen. Char. Filiform, much branched, cartilaginous, solid. Axis composed of densely packed, longitudinal, interlaced, eylindrieal filaments; the periphery of simple, club-shaped, horizontal, whorled spores, scated among the filaments, and long byssoid, gelatinous fibres. Fructification, obovate spores, seated among the filaments of the periphery.-Chordaria, from the Latin word signifying a cord.-Harvey.

1. Chordaria flagellifornis, $A g$.

Hab. Attached to rocks and stoncs in the sea. Annual. Sumncr. Common on all our British shores. In some
places it grows to the length of three fect, but it is seldom found more than the third of that length in the west of Scotland. It is not thicker than small twine, and henee is generally known by the name of whip-cord. When in the water it is secn to be thickly sct with very finc fibres, giving it a whitish appearancc, and these, along with the mueus, render it very slimy to the touch, though the dark-coloured filaments themselves are firm. In drying it generally stains the paper of a rusty colour.
2. Chordaria divaricata, Ag.

This specics was known only as an inhabitant of the Baltic sca, till it was found by Mr. M‘Calla, in Oct., 1845, thrown up in great abundance from decp water at Carriekfcrgus. I know it only by the figure given in Phye. Brit. Pl. xvit.
"Il y a dans chaque plante bien examinée une preuve virante de l'existence du grande Etre qui gouverne eet univers. Les divers arraugements qui présenteut les organes sont autant de petits problèmes proposés par la grande Intelligence à notre faible intelligenee, qui en dérive. J'avoue, an moins, pour moi-même, que je n'examine pas une simple fleur sans être étonné de la sagesse qui en a disposée les diverses parties; et sans apereevoir dans le détail ou dans l'eusemble, le texte de méditations les plus profondes." - Faucher.

Series II. RHODOSPERMEA.

"Call us not weeds,-we are flowers of the sen, For lovely, and bright, and gay-tinted are we; And quite independent of culture or showers ; Then call us not weeds, -we are Ocean's gay flowers." *

Family VII. CERAMIE 正.

We have now come to a most interesting portion of our little work, in which we have to treat of the Floridece, so attractive by the loveliness of their hucs, the delicacy of their structure and substance, and the grace and elcgance of their forms. When well preparcd and placed in an album, they arc often taken for exquisite paintings. And no wonder, for

> "who can paint

Like Nature? Can Imagination boast Amid its gay creation, hues like hers?
Ore can it mix them with that matchless skill, And lose them in each other, as appears
In every bud that blows?"
Thesc hidden beautics would almost make us wish that

* Motto on the title-page of a pretty album, called 'Treasures of the deep,' containing abont fifty specimens of Scottish Algæ, prepared by the author's daughters, and sald for charitable purposes.
we could occasionally take a morning walk in the rocky submarine valleys where they grow ; or that we could not only call, but bring up from the "vasty deep," some of these splendid treasures. Had we this power, however, there are other treasures far dearer to the heart which many would wish to evoke.

What hid'st thou in thy treasure-eaves and cells, Thou hollow-sounding and mysterious Main?
-Pale glistering pearls, and rainbow coloured shells, Bright things that gleam unreek'd of, and in vain.

Yet more, -the billows, and the deeps have more!
High hearts and brave are gathered to thy breast !
Give back the lost and lovely 1-those for whom
The place was kept at board and hearth so long; -
The prayer went up through midnight's breathless gloom, And the vain yearning woke 'midst festal song !

To thee the love of woman has gone down;
Dark flow thy tides o'er manhood's noble head ;
O'er youth's bright locks and beauty's flowery crown, -Yet must thou hear a voice, --Restore the dead!
Earth shall reclaim her precious things from thee-
Restore the dead, thou Sea 1-Mris. Hemans.

Genus XXXV. CALLITHAMNION, Agardi九.

Gen. Char. Frond rosy or brownish-red, filamentous; stem either opake and eellular, or translucent and jointed, branehes jointed, one-tubed, mostly pinnate (rarely diehotomous or irregular) ; dissepiments lyyaline. Fruit of two kinds on distinet plants ; l, extcrnal tetraspores, seattered along the ultimate branchlets, or borne on little pediecls; 2, roundish or lobed, berry-like receptaeles (favellæ) seated on the main branches, and containing numerous angular spores.-Callithamnion is from two Greek words signifying beantiful and a little shribb.-Harvey.

1. Callithamnion Plumula, Lyngbye. Peathery Callithamnion.

Hab. In the sca, on every shore of Great Britain and Irelaud, and yet far from being common on many shores.

It was first figured by Ellis more than eighty ycars ago, and then it does not seem to have been again observed till it was figured and deseribed by Dillwyn, who got it at Swansea in 1802. His figure of it is good, but the colour is not suffieiently lively. It seems a deep-water plant, being got by dredging off the eoast of Ayrshire and Arran. It is floated out in fruit in summer, and also so late as September. It is a eaptivating little Alga, the colour being a fine rosyred, and the branehes being beautifully pectinated, giving
it a very feathery appearanee. The eapsules are small, but it is often dotted with large dark red favellæ.
2. C. cruciatul, Agardh.

Hab. Mud-eovered rocks in the sea ; rare. In England, by Mrs. Griffitlis, Mrs. Wyatt, Mr. Ralfs, Rev. Mr. Hore; in Ireland by Dr. J. R. Harvey, Mr. W. Thompson, Mr. Andrews; and var. β. by Professor Harvey at Miltorm Malbay. Not got in Seotland.

It is a lovely plant, as may be seen by glaneing at Plate clxiv. in Phye. Brit. It is easy to distinguish it from others by the tufts of branehlets at the top of eaeh branch. By the aid of a lens the tetraspores at the base of the branehes appear divided like a cross, whenee the speeifie uame.
3. C. Arbuscula, Iyngbye.

Hab. On roeks and stones in the sea. Peremrial. Common in many places. Rare on the east eoast of Scotland, though found by Drs. Greville and Arnott. Not eommon on the west eoast, though found in some abundanee at Ballantrae. It seldom makes a good speeimen for the Herbarium, being in general too elosely matted and too dark in eolour.

When I had dismissed Miss Dasya Arbuscula with rather a frowning countenanee, I was rebuked by looking at

Dillwyn's figure, Pl. lxxxv. of British Confervæ. It is lovely; and I am glad to make the amende honorable. He says: "Among the various additions that lave of late years been made to the list of British Conferve, there is probably no speeies more beautiful or interesting than the present, which was diseovered by Mr. Brown in the north of Ireland so long ago as 1800 . The colour of this speeies when fresh appears to be a deep red brown; when dry it turns to a dull brown, tinged with green, wholly devoid of gloss." I must say that those few specimeus I have gathered in a fresh state from the rock, had not the lovely eolour here spoken of ; but I think I have seen speeimens from other localities whiel were beautiful even when dried.
4. C. Brodiel, Harvey.

Hab. On other Algæ, rare. Found at Forres by Mr. Brodie of Brodie; Torquay by Mrs. Griffiths and Miss Cutler; Cornwall by Mr. Ralfs; and by us at Saltcoats, though rarely.

Colour a brownish red. The general outline of the frond is ovatc, bearing a resemblanee to the following.
5. C. Hookeri, Agardh.

Hab. On rocks and Algre in the sea. Annual. Spring and summer. It is one of the most common on the Ayrshire
eoast growing on coarse Algæ, and also on sand-eovered rocks. It is found in grcatcr beauty on rocks in Arran.

It is from 1-3 inches high; eolour brownish red; branches spreading; a finc plant when the specimen is good.
6. C. tetricum, Ag. (Pl. VII. fig. 25, a portion of the frond, natural sizc ; and on the left, a plumule with a favella, and under it a plumule with tetraspores, both magnified.)

Hab. In the sea, on pcrpendieular faces of roeks, at halftide lcvel. Percnnial. Common on the roeky eoasts of England, and west and south of Ireland. I have not heard that it has ever been got in Seotland.

It is a large, rigid, shaggy plant, of a dull brownish-red colour. It is onc of the coarsest of this family.
7. C. roseum, Lyngbye. (Pl. VII. fig. 26, a branch, natural size ; to the right a branchlct with tetraspores, magnified.)

Hab. On mud-covcred roeks, and on Algæ. Annual. Summer. Yarmouth, Messrs. Turncr and Borrer ; Torquay, Mrs. Griffiths; Bantry bay, Miss Hutchins; Co. Clare, Dr. Mackay.

This I think is rare in Scotland. I found a little scrap of it which was named Callithamnion roseum for me by Sir

William Hooker, when I was beginning to collect Algæ, and I have got no more of it since. It is a beautiful plant.
8. C. floccosum, Agardh. (Pl. VI. fig. 22, a portion of the frond, natural size ; undcr it, on the right, a plumule with tetraspores, and on the left, a branchlet, both magnified.)

Hab. On submarine rocks, near low-water mark. Annual. Spring. Very rare.

This is a fine red, loosely branching plant, got only in the north of Scotland and in Norway. It was at first named in this country C. Pollexfenii in honour of the Rev. Mr. Pollexfen, who found it in Orkncy; but it was afterwards discovered that it had been named C. floccosum by Agardh. It has bcen gathered at Aberdeen by Dr. Dickie, to whose kindness I am indcbted for some fine specimens.
9. C. Turneri, Agardh.

Hab. Parasitical on several marinc Algæ.
Very large tufts of it are common in the island of Arran, on Furcellaria fastigiata. It was namcd C. Turneri, in honour of Mr. D. Turner, the author of Historia Fucorum, by whom it was discovcred. The fructification approaches to that of Griffithsia. C. repens is a variety of this plant.
10. C. Pluma, Agardh.

Hab. Gencrally on the stcms of Laminaria digitata.

Miss Hutchins, Bantry bay; Captain Carmichael, Appin; Professor Harvey, Miltown Malbay.

A small plant, from a quarter to half an inch in height. A fine rose red. It is rare. I have never seen it.
11. C. barbatum, J. Agardle.

Hab. On mud-covered rocks. Peremial and very rare. A small tufted plant, found in Britain only by Mr. Ralfs and Rev. Mr. Berkeley.
12. C. tetragonum, Agardh.

Hab. On the larger Algr. Annual. Summer. On the shores of England, Ireland, and also Scotland. It is occasionally found on the Ayrshire coast, and in the island of Arran.

Professor Harvey says in his Phyc. Brit., Pl. cxixvi., "when fully grown, (four or five inches in height,) this is one of the largest and most robust and shrubby British species of this charming genus, and seen under the water is an object of much beauty. In drying, though it sufficiently retains its form, it loses considerably in clegance, from the pressing together of the delicate quadrifarious ramuli, which become confounded with each other." It rapidly changes colour in fresh-water, assuming a brilliant orange tint, and giving out a rose-coloured powder.

13. C. Harveyanum, J. A. Agardh.

This I have never scen. It is named, I doubt not, in honour of the author of Phyc. Brit.
14. C. byssoideung, Arnott.

Hab. On other Algre. Whitsand bay, Dr. Walker Arnott; Devonshire, Mrs. Griffiths ; Salcombe, Mrs. Wyatt ; Strangford Lough, Mr. W. Thompson. We do not know that it has been found in Scotland. Wc have fine specimens of it from Mrs. Owens and Major Martin, got by them in Lough Swilly.

The stems are very slender, and the whole plant has a fine byssoid appearance. The colour is reddish brown.
15. C. polyspernum, Agardle.

Hab. Rocks in the sca. Annual. Spring and summer. In England by Mrs. Griffiths, Mr. Borrer, Dr. W. Arnott ; in Ireland by Miss Ball, Mr. R. Brown, Dr. Drummond, Mr. W. Thompson, Mr. Moore; Appin, Capt. Carmichacl.

Though this is the only Scottish habitat given in the Manual, it is by far the most common Callithamnion in the west of Scotland. It is found on almost all the rocks within tidc-mark. It is very abundant on the piers at Ardrossan, Salteoats, Milport, and Largs. It is of a dull red colour; the tufts are globose; the filaments slender ; the capsules very numerous, lining the inner faces of the
pinnæ. The most interesting specimens I ever got of it, were on the pier at Largo in Tife; they were not much above half an inch in height, but they were riehly studded with the largest favellæ that even Mrs. Griffiths had ever seen on this spceies. Our Ayrshire speeimens adhere very well to paper.
16. C. tripinnatum, Agardh.

Hab. On the perpendicular sides of steep roeks at lowwater mark.

It is extremely rare, having been found in Britain only by Mr. M‘Calla at Roundstone bay. It has been found in France. It is as beautiful as it is rare. There is a lovely figure of it in Phyeologia Britanniea, Plate Lxxtit. It would not be very easy to distinguish it from one or two of the greatest beauties of this genus, were it not for a eurious little pinnule at the axil of the pinnæ.

* 17. C. affine, Harvey.

This we have never seen. The locality is doubtful.
18. C. gracilimum, Agardh. "Fem-leaved" Callithamnion, Mrs. Griffiths. (Plate VI. fig. 2l, a tuft; oll the left, a plumule, magnified ; and under it a branehlet with a tetraspore, and another with a favella, both magnified.)

Hab. On mud-eovered rocks. Mis. Griffiths, picr at

Torquay; Miss Warrcn, Falmouth; Mr. Ralfs, Milford Haven.

Finely branched, with the tetraspores on the tops of the branehlets, and the favellæ at the base.

In looking at these bcautiful works of God's hands, onc would require an additional stock of cpithcts of admiration. Hear what Professor Harvey says respecting it:-"This extremely clegant plant, perhaps truly the most graceful of the vcry beautiful genus to which it bclongs, was first gathered on the shorcs of France by M. Gratcloup, who communicated specimens to the clder Agardh, by whom it was published in the ycar 1828. Shortly aftcrwards the indefatigablc Mrs. Griffiths diseovered magnificent speeimens growing along the mud-covered base of the harbour pier at Torquay, in which loeality it may bc found in more or less plenty cvery summer. From Mrs. Griffiths it reecived the very appropriate name of 'Fern-leaf,' aptly expressing the finely pinnatcd character of the branches, which do indced closely resemble fairy ferns, so dclieatc, that it is altogether impossiblc in a figure to do justiee to their beauty."
19. C. thuyoldeum, Agardh.

Minute and bcautiful and rarc. I have a protty littlc serap of this from Mr. W. Thomson, got at Portaferry.
20. C. corymbosum, Agardh. (Pl. VI. fig. 23, a branch, natural size ; on the loft a branchlet with tetraspores, magnified.)

Hab. On Algre in the sea. Amnual. June to Scptember. Not rare ; from one to three inehes high; frond with more or less prineipal stems, with long alternate branches, the branchlets of an obovate shape, though on the whole the plant is well marked by a level top or corymbose appearance of the branehlets. The capsules generally on the sides of the ramuli, the binate and large in the axils; the eolour rose-red. It is a vcry handsome plant, adhering well to paper, and having, when dricd, a glistering appearance. The finest speeimens I have seen were got by Major Martin and mysclf, some of them on the wooden pier at Ardrossan, and others on numerous specimens of Ascidia rustica, which had attached themselves to the walls of the wet dock. It is found floating in the sea in Arran in September.

21. C. spongiosum, Harvey.

Hab. On rocks and Algæ. Annual. Summer. In England, by Mrs. Griffiths, Miss Warren, Mrs. Wyatt, Rev. Mr. Hore and Mr. Rohloff, and Mr. Ralfs ; in Ircland, Mr. Templeton, Dr. Drummond, Profcssor Harvey ; in Scotland, by Major Martin, West Kilbride ; at Salteoats and Largo in Fife, by D. L.; by Miss Thite in Jersey.

This is dark-coloured and elosely matted, and not very interesting in the state in whieh it is generally got by us in the west, but I have good speeimens from Mrs. Griffiths.
22. C. pedicellatum, Agardli.

Hab. On roeks in the sea. Not uneommon. Summer. It has been found in many plaees in England and Ireland. In Seotland it is rarer ; it has however been found by Rev. Mr. Pollexfen, in Orkney ; by Major Martin and D. L. in Ayrshire, by D. L., junior, in Nov. 1848, in fine fruetifieation, in a roek-pool at Joppa, near Edimburgh.

The tetraspores are on little pedieels. It is a stately plant, as may be seen in Phye. Brit., Plate ccxir. Professor Harvey in his exeellent Manual states that he regards C. interruptum as a var. of C. pedicellatum; but when I sent him speeimens found on seallops dredged in Lamlash bay, he wrote to me that he thought them specimens of "the long-lost Cal. interruptum." They looked of a finer texture than Cal. pedicellatum.
23. C. floridulum, Agardh.

Hab. On sand-eovered roeks at all seasons. Abundant on the eoast of Galway, where it was first observed by Dr. J. T. Maekay; by Rev. Gilbert Laing, in the north of Ireland.

The fruetifieation was diseovered by Mr. Ralfs on speei-
mens found at the Land's End. It is very abundant in the west of Ircland, forming on rocks little cushions, which when washed ashore in the end of summer, are called figs by the country people, and collected as manure.
24. C. Rothm, Lyngbye.

Hab. On roeks in the sea. Perennial. Winter. Not unlike the preeeding, but smaller, and well distinguished from it by different fructifieation, as exhibited in Phycologia Brit., where both plants are figured in Plate cxx. It is found both at Salteoats and Ardrossan. At the former place the tufts are crowded, and nearly eover the roeks near high-water mark.

One is almost sorry, though he must own the justice and propriety of it, that in Phye. Brit. Callithamnion Rothii is allowed to swallow up Callithamnion purpureum of Harvey's Manual. It had a pleasant elassieal intercst attaehed to it. I have before me a little scrap of it whiel accompanied the following note from my kind friend Mr. Keddie of Glasgow. "Last time I was in Iona, I made diligent seareh for Conferva purpurea of Macculloeh, the Byssus purpurea of Lightfoot, and the Callithamnion purpureum of Harvey ; and was delighted to find it still growing where Lightfoot and Macculloch saw it, near the Abbot Mackinnon's tomb. It
occurs in purple patches, staining the lower part of the walls of the cathedral." It is also the Conferva purpurea of Dillwyn, whose figure is not so good as that in Phyc. Brit.

* 25. C. sparsum, Harvey.

Hab. On old stems of Laminaria saccharina at Appin, Capt. Carmichael ; at Miltown Malbay, on Conferva rupestris.

Even more minute than the preceding.
26. C. Daviesil, Ag.

Hab. Parasitical on the smaller Algæ, such as Cer. rubrum.

This forms clegant, poncilled tufts, which give a richly dressed appearance to the plant on which it fastens. Though it is a little fcllow of only thrce lines in hcight, it is quitc a gourmand, and has in Phyc. Brit. devoured, not only Callithamion lanuginosum and my little favourite Cal. secundatum, but also Callithamnion virgatulum, though larger than itself. It is not uncommon on the west coast, especially at Portincross, in rock-pools on Ceramium.

Gcnus XXXVI. SEIROSPORA, Harvey.
Geu. Char. Frond rosy, filamentous; stem articulated, one-
tubed, the articulations traversed by jointed filaments; branches jointed, one-tubed. Fruit, oval tetraspores disposed in terminal moniliform strings. Favelle?-Seirospora is from two Greek works signifying chain-seed.-Harvey.

1. Seirospora Griffithsiana, Harvey. (Pl. VI. fig. 24, a fine braneh, natural size; at the base on the right a branchlet with terminal tetraspores; and on the left the tetraspores removed, more or less magnificd.)

Hab. On rocks and stones and shells, in deep water. Annual. Summer. Rarc. Mrs. Griffiths, Torquay; Mrs. Wyatt, Saleombe ; Mr. W. Thompson, Portaferry ; D. L. in Lamlash bay, Arran.

Seirospora Griffithsian was formerly Callithamnion seirospermum, Griffiths. Itswas diseovered by Mrs. Griffiths in the autumn of 1833. It has, however, bcen found to differ so mueh in fruit from Callithamnion as to lead Professor Harvey to form a new genus for its reception. In Callithamnion the tctrasporal fruit is borne laterally along the branchlets: in this the tops of the branchlets are converted into tetrasporcs. It is from onc to thrce inches in height; colour a fine rosy-red ; substance soft, gelatinous, adhcring well to papcr. It was found by us while dredging in Lamlash Loch, growing on living specimens of Pecten
opercularis.* It has been dredged by Major Martin on the Ayrshire coast. A glance at our figure and at Phye. Brit. Plate xxi., will lead you to say, "it is a lovely plant."

* Our boatmen were surprised at the avidity with whieh we grasped at whatever was growing upon the seallops. Among other things there were beautiful specimens of Plumularia Catherina and Plumutaria pinnata, zooplytes which eertainly had nothing in their appearanee to recommend them in their state of collapse when removed from their native element. Taking one of the finest fronds of P. pinnata, I dipped it in water, and told then to look at it now. It had spread out into an clegant white plume; and regarding it with surprise, they said, they did not think that there was anything so bonnie to be got in the bay. Another Arrau fisherman, however, having hronght up from the deep a fine speeimen of Plumularia myriophyllum, Pheasants's tail Coralline, took it home as a curiosity to his wife; and she heing no less tasteful than her husband, planted it in earth in an old teapot, and earefully. watcring it eaeh day with fresh water, had the satisfaction of imagining that it grew a little under her fostering care. Be that as it may, it eame unwithered into my possession, and its vesicles are embalmed in my friend Dr. Johnston's exeellent History of British Zoophytes, as being the first vesicles of this speeies that had ever been observed.
I am sorry that the scallops whieh gielded such rich erops of sea-weeds and zoophytes, have disappeared from the bay. The fishermen finding that they made exeellent bait, had in their greed, I suppose, exhausted the bed. There arc different ways, however, of aeeounting for their disappenrance. "Is Donald getting any clans (seallops) this year?" said I to a fisherman's wife. "Na, Na," auswered she, "the clams and the fish have a" left our shore. Some bad men shot their nets on sabbath morning, and the fish and clams lave a' forsalien the eoast ; and nae wonder," added she. "Nae wouder," responded

Genus XXXVII. WRANGELTA, J. Agardh.

Gen. Char. Frond purplish or rosy red, filamentous, jointed; filaments single-tubed. Fructification of two kinds; 1, tetraspores affixed to the inner sides of the ramuli (not confined to involucres); 2, gelatinous receptacles (favellæ) terminating the branches, surrounded by in involucre, and consisting of several clusters of pcar-shaped spores, composted together. The name in honour of Baron Ton Wrangell, a Swedish naturalist. Harvey.

1. Wrangelia multifida, J. Ag. (formerly Griffithsia multificla.)

Hab. On perpendicular sides of dep marine pools. Erequant in the south of England and west of Ireland. Rare in Scotland. Caught (floating) by Mrs. R. M. Stark at Salteoats. Found by Major Martin at Ardrossan.

When this plant is seen in the water, it is remarkably beautiful, both in colour and structure. Its fine rose-red colour it soon loses in the open air or in fresh water ; but the beauty of the structure still remains. The first specimen of it I ever saw, was given to me as a zoophyte. It is rare in Scotland. Once or twice during the summer it may be found by us, floating, but the specimens are always exceedingly fine, though not the fourth part of the size of

Irish specimens, some of which would cover a quarto page.

By the rushy fringed bank,
Where grows the willow and the osier dank,
My sliding chariot stays;
Thiek set with agate and the azure sheen
Of Turkish blue, and emerald green
That in the channel strays,
Whilst from off the waters fleet,
Thus I set my printless feet,
O'er the cowslip's velvet head
That bended not as I tread;
Gentle swain, at thy request
I am here.-MIilton's Comus.

Genus XXXVIII. GRIFFITHSIA, Agardh.

Gen. Char. Frond rose-red, filamentous; filaments jointed throughout, mostly dichotomous; ramuli single-tubed ; dissepiments hyalinc. Fructification of two kinds on distinct individuals; 1, tetraspores affixed to whorled involueral ramuli; 2, gelatinous receptacles (favellæ) surrounded by an involucre, and containing a mass of minute angular spores.--Grifithsict, so named by Agardh, in honour of Mrs. Griffiths of Torquay, the most distinguished of British Algologists.--Harvey.

1. Griffithsta equisettrolia, Agardla.

Hab. On rocks at low-water mark. Perenmial. Summer.

Common in several parts of England, Ireland, and Tales; but very rare in Seotland. It was first figured more than seventy years ago by Lightfoot in his Flora Scotica, from a specimen got by Mr. Yalden in the Frith of Forth; it is, therefore, not a little strange that it has not been found in any part of Scotland since. It must lose much of its eolour I think, in drying, for those specimens I have seen were a dirty brown instead of the fine rosy colour of the figure in Phycologia, Plate LxviI. This plate is very instructive, as it not only gives an excellent idea of the plant, but magnificent figures of an involucre containing tetraspores; apes of branch with favellæ ; and also an involucre with antheridia (?) * 2. G. simplicifilum, Agardh.

This is like the preceding, but a more elegant plant. Its branches are attenuated to a sharp point, and it keeps its fine colour in drying, if I may judge from a specimen given to me by Mrs. Ovens, the only one I ever saw. I was told that it was from the Isle of Wight.
3. G. Devoniensis, Harrey.

This elegant little plant was discovered a few years ago by the Rev. Mr. Hore, at Plymouth, and it was afterwards found by Mrs. Wyatt in Devonshire. While I refer you for the figure of it to Phyeologia, Plate xvi., I have great pleasure in quoting the following from that work:-
"This graeeful little plant, whieh appears different from all the species of Griffithsia yet deseribed, was diseovered in the summer of 1840 by the Rev. Mr. Horc, at Plymouth; and in the autumn of the same year, added to the flora of Devonshire, by Mr's. Wyatt. I reeord this latter habitat in the specifie name, beeause it affords me an opportunity of whieh I avail myself, to connect the name of Mrs. Griffiths with that of the eounty whose shores she has so long and so suecessfully explored, where the best part of her life has been spent, and the natural listory of whieh, in all its varied branehes, her researehes have so greatly advanced."
4. G. barbata, Agardh.

Very rare. Found by Mr. Borrer on the beaeh at Brighton.
5. G. corallina, Agardid.

Hab. On roeks at low-water mark, or in deep pools. Annual. Summer. Very generally distributed.

This is one of the most attractive of our Algæ, and aeeordingly we find it noticed by our early botanists,--by Limæus and Dillenius. Its fine red, glossy beads are deeidedly coralline-likc. I suspeet that it is not eommon in Seotland; but when I say so respceting any plant, I wish it to be borne in mind that many of our riehest localities have
not beeu very serutinizingly explored; mueh, for instanee, of the rieh Carriek shores, in Ayrshire ; much of Wigtonshire, about the Mull of Galloway, where my worthy friend the Rev. Mr. Lamb allows no rare land-plant to eseape his notiee, but who has not yet kept so keen a look-out for rare sea-plants ; mueh also remains to be done about the Mull of Kintyre in Argyleshire at Maerihanish bay, and Dunaverty* bay, perhaps the riehest habitats in Seotland, and where some rare plants have already been found by the Rev. Mr. Lambie.

It has been onee got at Ardrossan. The finest speeimens I have of it were found by Mrs. Ovens and by Major Martin in Lough Swilly. I have dredged it in Lamlash bay, where it was found on the perseeuted Pecten opercularis: quite willing was I to return the seallops to the sea after stripping them of their outer furniture. This, instead of being robbery, was merey, for I am sure these sea-weeds and zoophytes must have been a sad ineumbranee to them in those merry evolutions in whiel the seallops delight to indulge, when they skim through the water in mystie danee. \dagger

* Dunaverty means the hill of slaughter, and the mournful passage of history which gave rise to the name may be found in Sir W. Scolt's Tales of a Grandfahter.
* The seallops dance most merrily. When I first saw some of them at their gambols in a tide-pool, I thought they were young fishes; but I found

6. G. secundiflora, J. Agardh.
"This noble species, one of the finest of the scction to which it belongs, was addcd to the British Flora by the Rev. W. S. Hore, who discovered it in August, 1846, on rocks at extreme low-water mark at Bovisłand, near Plymouth." -Phycologia, Plate clxxxy.
7. G. setacea, Agardh.

This is by far the most common of the Griffitisice. It is found in deep roek-pools. It is common in England and Ircland. It is not common in Ayrshire ; but is found in Arran, and vcry abundantly in the south of Kintyre. It is very common in the Frith of Forth, from which speeimens rich in fruit have been sent to me in July by D. L., junr. The first speeimen I got with its involucres raised on clubshaped stalks was found by the Rev. Gilbert Laing, near Portobello. I searcely knew what it was.

It is very rigid when fresh ; but it soon loses this rigidity when exposed to the air, or when put in fresh water. In water it gives all the symptoms of sudden and violent death. The membrane eontaining the fine carminc colouring mattcr that they were the young of Pecten opercularis. By opening and suddenly shutting their valves, they skim rapidly aloug several yards, when they repeat the operation.
bursts with a crackling noise. The plant yiclds its heart's blood, and dics ; yet even in death it is beautiful. Professor Harvey says that it stands confinement well; that a tuft placed in a closed bottle of sea-water, at the end of more than two years' confinement was as fresh and healthy as when taken from the sea.

Genus XXXIX. SPYRIDIA, Harvey.

Gen. Char. Main filaments inartieulate, eartilaginous, beset with jointed ramuli; dissepiments opake. Frnctifieation: 1, trisporous eapsules with colourless margins, clustered round the bases of the ramuli ; stalked gelatinous receptacles, with membranaeeous periearps, often surrounded by an involncre of short ramuli, eontaining two or three masses of roundish granules.The name from a Greek word, signifying a basket, in allusion to the appearanee of the reeeptaeles.-Harvey.

1. Spyridia filamentosa, Haivey.

Hab. Submarine rocks, near low-water mark. Peremial. Summer. Southern eoasts of England ; rare.

Till this was found latcly by Mr. Ralfs in Tales, it was thought to be confined in Britain, to the south of England. It is abundant in the Mediterranean. I have it, through Mr. Smith of Jordan hill, from Miss White, Jersey.

'I received it also from Mrs. Griffiths. The British speeimens are often of a dirty brown. For its true red colour, see the figure in Phycologia, Plate xlvi.

Gcnus XL. CERAMIUM, Roth.

Gen. Char. Filaments articulated, mostly dichotomous, reticulated with veins; dissepiments opake. Fructification double ; l, capsules, with a membranous pericarp, simple or lobed, generally subtended by one or two short ramuli, and containing numerous angular seeds ; 2, oblong granules, partially imbedded in the joints of the lesser ramuli.-Name from a Greek word signifying a little pitcher, in allusion to the shape of the capsules in some of the species.-Harvey.

It is not long sinee our British list eontained only two or threc species of Ceramia, now we have in the Phyeologia fourteen enumerated.

1. Ceramium rubrum, Agardle. (Pl. VIll. fig. 29, is a portion of Ceramium rubrum, natural size, and the figure to the left is a branehlet with a favella magnificd.)

Hab. On rocks and Algæ. Perennial. Summer. Autumn.
This plant is very common everywhere. It is from six to twelve inches long; the capsules are globular, subtended by short ramuli ; colour, from a fine red to a dirty white. So
variable is it that the young botanist thinks he has half-adozen speeies at least in his vasculum, when they all turn out to be this Protean Ceramium rubrum.
2. C. diaphanum, Agardh. (Plate VII. fig. 27, is a very good figure of Ceramium diaphanum, natural size. On the right there is a magnified figure of a joint with whorled imbedded tetraspores. On the left, an involucrated favella, magnified.)

Hab. On roeks and sea-weeds. Winter and summer. Common.

This is a handsome plant, and mueh admired on aeeount of the beauty and regularity of its jointings. It is a smaller and slenderer plant than the preceding; differing from it chiefly in having the joints eolourless, and the dissepiments darkly coloured. The eapsules are near the tips of the branches. It is a variable plant, like the former. Its most beautiful state is when the joints are a fine rose-red, and the dissepiments pure white.
3. C. ciliatum, Ducluz.

Hab. Roeks and eorallines in the sea.
This may be distinguished from Cer. diaphanum by its greater rigidity; by the whorls of priekles with mhieh the joints are furnished, and by the apiees being very involute.

Griffiths, Rev. Mr. Hore, Mr. Rohloff, Miss Ball, Professor Harvey, and Mr. Wm. Thompson.

At the time I diseovered this species on the wall of the pier at Saltcoats, its name was not found in any of the lists of British Algr. It has been sinee deseribed and figured in Phyeologia Britanniea, Pl. cxli.. It is distinguished by having the coloured dissepiments armed with numerous, slender, irregularly inserted, subulate, colourless, one-jointed priekles.
6. C. flabelligerum, J. Ag. 8. C. strictum, Grev. \& Harv.
7. - pellucidum, Grev. \& H. 9. - decurrens, Id.
10. C. gracillimum, Grev. \& Harv.

For deseription and figure of this little beauty, see Phyc. Brit., Plate covi.
11. C. nodosum, Grev. \& Harv.

Hab. Sandy shores, often at the roots of Zostera marina. Annual. Summer and autumn.

Though slender, it is rigid, and its forkings are very patent. The tetraspores are in a row, on the outside of the branehlets, and the favella, whieh are rare, at the tips of the branchlets. In England, by Mrs. Griffiths and Miss Kirkpatriek ; in Ireland, by Miss Ball, Miss Gower, Mrs. Ovens, Professor Harvey, Mr. William Thompson, and

Mr. M'Calla. It has been found occasionally floating in Saltcoats bay.
12.- C. fastigiatum, Harvey.

This is a lovely species. The first specimen I ever saw of it was from Mrs. Griffiths, marked very rare. The next specimens werc from Dr. Greville and D. L., juur., who got them at Joppa, near Edinburgh. It was first eorrectly distinguished by Mrs. Griffiths, who found it at Torquay. The filaments are dichotomous and level-topped ; the colour in England is described as dark purple; in Scotland, the colour is rather light and lively purple. It is decidedly rare.
13. C. Deslongchampsit, Chauv.

Hab. On rocks and Algæ betwecn tide-marks. Annual. Spring and summer. Pretty common in Eugland, Seotland, and Ircland.

This specics is quite common on the coast of Ayrshire. I long thought that it was a dark-coloured variety of Cer . diaphanum. It is distinguisbed from that species by its colour, the straight tips of the branches, and still more by the fruit, those clustered favellce which burst from the stem and branches. It is found in rich tufts in early summer on the pier at Saltcoats. It has becn gathered by D. L., junr., at Leith.
14. C. botryocarpum, Greville.

Hab. On rocks at low-water. Annual?
This was discovered by Miss Amelia Griffiths at Torquay in 1844. It bcars the same relation to Ceramium rubrum, that Ceramium Deslongchampsii docs to Cer. diaphanum. It is distinguishcd from C. vubrum by clustcrs of favellæ without involucres, bursting from the branches and branchlets, like clusters of grapes. It was found by D. L., junr., at Saltcoats, in Septcmber, and I found it at Ardrossan in November, rich in fruit, dark in colour, and retaining its colour in drying and adhering well to paper. This makes me question its being annual. Like C. rubrum, it is a very variable plant, and some of the varieties are beautiful. The finest I have scen were found by Major Martin at Ardrossan, and by Mr. Keddic at Oban.

Genus XLI. MICROCLADIA, Greville.

Gen. Char. Frond filiform, compressed, distichously branched, traversed by a widc, articulated tube, surrounded by large, coloured, angular, radiating cells; extcrnal coat formed of minute reticulated ecllules. Fructification of two kinds on distinct individuals: 1, tetraspores immersed in the ramuli ; 2,
sessile, roundish reeeptaeles (favellæ), haviug a pellucid limbus, containing numerous minute angular spores, and surrounded by several short simple involucral ramuli.- The name from two Greek words, signifying a small branch.-Harvey.

1. Microcladia glavdulosa, Grev. (Pl. VIII. fig. 32, portion of the frond, natural size ; figure on the left, branchlet with favella, magnified.)

Hab. On rocks, and on Algre, at low water. Annual. Summer. Very rarc. Mrs. Griffiths, Torquay ; Miss Warren, Falmouth ; Mr. Ralfs, Teignmouth. Found in France and in Kamtschatka.

Microcladia bears some rescmblanee to Ceramium rubrum, but it has no cxtcrnal joints. The structure of it, as described in Plyc. Brit., Pl. xxix., is vcry curious.

Genus XLII. PTILOTA, Agardh.

Gen. Char. Erond inarticulate, linear, eompressed, or Hat, distichous, pectinato-pimate; the pinnules sometimes artienlate. Fructification of two kinds on distinet individuals; 1 , tetraspores attached to, or immersed in the ultimate pinnules ; 2, roundish, clustered reeeptacles (favellæ) surrounded by au involucre of short ramuli.-Ptilota, from a Greek word, signifying pinnated. -Harvey.

1. Ptilota plumosa, Ag. (Pl. VIII. fig. 30), a braneh, and to the right, a pectinated pinnule, maguified.

Hab. On the stems of Laminaria digitata. Peremial. Summer and autuon. Common.

This is a very handsome plant, and a general favourite. It is very common in Seotland. In England it is rare, and even unknown on the southern shores. How gladly would we exchange with weed-collectors, some of our fine northern Ptilote and Odonthalice, for some of the gentler natives of the sunny south. It is a very variable plant. Some of our finest specimens were brought to us by Rev. Mr. Gilbert Laing from Orkney. Prof. Harvey in Phyeologia Britanniea, Pl. Lxxx., gives a good figure of it with the different kinds of fruit.
2. P. sericea, Gmelin. (Plate VII. fig. 2S, natural size ; to the left a magnified plumule.)

Hab. On the perpendieular sides of rocks, between tidemarks. Rarely on the stems of Fucus serratus. Peremnial. Summer and autumn. Very common. Found also on the Atlantic shores of Europe and on the east const of North America.

The difference betwixt this and P. plumosa may be seen by eomparing the frond and pinnule in Pl. VILl. with the
frond and pinnule in Platc VII. It long ranked only as a variety of P. plumosa, and we are glad that it is restored to its original dignity of a species, the Fucus sericeus of Gmelin. We think it well entitled to the rank. P. plumosa is never found on rocks, always on Laminaria digitata; P. sericea is almost always found on rocks, and never that I know of on L. digitata. Ptilota plumosa is greatly infested by Membranipora pilosa: this zoophyte is scarcely cver seen on P. sericea, though in spring it is often almost covered by Striatella arcuata, a parasite which I have never observed on P. plumosa. "The true differcnce, however, must be placed in the different structure of the ramuli, these being much more simple in the present plant." The specific name sericea, expresses the soft and silky nature of the plant. The colour is naturally a dark blackish brown. It is greatly improved in appearance when it assumes a pinky hue, and this may be helped on by exposure to the air. It is then a beauty.

Family VIII. GLOIOCLADIA.

Thus Nature varies: man and brutal beast, And herbage gay, and sealy fishes mute, And all the tribes of heaven, o'er many a sea.Seareh where thou wilt, each differs in his kind, In form and figure differs.-Lucretius.

Genus XLIII. CROUANIA, J. Agardh.

Gen. Char. Frond gelatinous, filiform, eonsisting of a jointed, single-tubed filament, whose joints are elothed with dense whorls of minute multifid ramuli. Fruetification of two kinds on distinet individuals; 1 , "favellidia, subsolitary near the apex of the ramuli, affixed to the base of the whorled ramelli, and covered by them, containing within a hyaline membranaceous perispore, a subglobose mass of minute spores;" 2, obovate tetraspores of large size, affixed to the bases of the ramelli.-The name in honour of the brothers Crouan, of Brest, celebrated among Freneh Algologists.-Harvey.

1. Crouania attenuata, J. Agardh.

Hab. Parasitical on the smaller Algæ. On Cladostephus spongiosus at Salcombe, Mrs. Wyatt ; near Penzance, MIr. Ralfs. Annual. Summer. Very rare. See fine figures of it, natural size and magnified, in Pliyc. Brit., Pl. CTI.

Genus XLIV. DUDRESNAIA, Bon.

Gen. Char. Frond cylindrical, gelatinous, clastic ; axis composed of lax net-work of anastomosing filaments, coated with a stratum of closely combined longitudinal fibres; the periphery of horizontal, dichotomous, moniliform filaments. Fructification of two kinds on different individuals; 1, globular masses of spores (favellidia) attached to the filaments of the periphery; 2, external tetraspores borne on the filaments of the periphery, generally terminating the ramuli.-The name is in honour of M. Dudrcsnay,-Harvey.

1. Dudresnala coccinea, Bon.

Hab. Southern shores of England and Treland. Very rare.

This is Mesogloia coccinea of Harvey's Manual. The only speeimens I lave ever seen of it are from Miss White, of Jersey.
2. D. divaricata, J. Agardle.

Hab. On stones and shells, not uneommon. Summer.
It is mueh branehed; the eolour pale red, or reddish brown; the substanee tender and gelatinous. Mrs. Griffiths says, "the strueture is very remarkable; the frond appears to be made up of tufts of fibres, radiating from a centre; eaeh tuft, when separated in water under a glass, resembling o 2

196

a double aster, or sea-anemone. In the eentre of the petallike fibres are masses of purplish grains."

This species has been found in England and Wales by Mrs. Griffiths, Miss Warren, Mr. Ralfs; in Ireland by Miss Gower, Professor Harvey, Mr. W. Thompson, Mr. M‘Calla; in Seotland by Mr. Brodie, Capt. Carmichael, Rev. Mr. Pollexfen; it has beeu found also at Salteoats and in the island of Arran. I have had speeimens of it from France, from Jersey, and from Treland, and I have seen several figures of it; but none that equalled in beauty the speeimens that were got in Arran, whieh are firmer in substance, and of a rieher brown eolour than any I have seen from other loealities. It seems a northern plant. About the month of September, it is got in beauty at Whiting bay in Arran.

Genus XLV. NEMALION, J. Agardh.

Gen. Char. Frond eylindrieal, gelatinoso-eartilaginous, elastie, solid, axis columnar, dense, composed of elosely paeked, longitudinal, interlaeed filaments, whose alternate ramuli are moniliform, and coloured. Fruetifieation globular masses of spores (favellidia) attaehed to the filaments of the periphery.-The name signifies a crop of threads.

1. Nemalion multifidum, J. Agardh. See Phycologia Britannica, Plate xxxvi.

Genus XLVI. GLOIOSIPHONIA, Carmichael.

Gen. Char. Frond cylindrical, tubular, gelatinous ; the periphery composed of a thin stratum of longitudinal, interlaced fibres, clothed externally with short, horizontal, branched, moniliform filaments. Fructification, spherical masses of spores (favellidia) immersed in the moniliform filaments to whose base they are attached.-The name signifies a viscid tube.-Harvey.

1. Gloiosiphonia capillaris, Carm.

Hab. On submarine rocks, and in tide-pools, near lowwater mark. Annual. Summer. In England, by Hudson, Mrs. Griffiths, Miss Warren, Sir T. Frankland, Rev. H. Davies, Mr. Ralfs ; in Ireland, Miss Hutchins, Dr. Drummond, Miss Gower, Mr. MrCalla; in Scotland, Captain Carmichael, D. L. and D. L., junr.; Jersey, Miss White and Miss Turncr.

This is still a rare plant, even in England, and yct more so in Scotland, where it had been discovered only by Capt. Carmichael, till it was found on the coast of Ayrshire. To see that it is a beautiful plant, we have only to look at the ad-
mirable drawing of it in Phyc. Brit. Pl. LviI., and to tro execllent figures of it in Turner's Historia Fncorum, all three true to nature in the different phases which it assumes. So rare was it forty years ago, when Mr. Turner published his standard work, that he wrote of it in the following manner:-
"The whole cataloguc of British Fuci does not eontain a single plant that has been so much involved in doubt as F. capillaris, for being known only by Hudson's short and unsatisfactory description, and being a plant of unfrequent occurrencc, even on the British shores, to whieh alone it appears to be confincd, its very existence as a distinct speeies has becn considered so questionable, that neither Dr. Goodenough and Mr. Woodward in their Observations on the British Fuci, nor Mr. Stackhouse in his Nereis Britannica, цио Professor Gmelin in his edition of the Systema Naturæ, have ventured on introducing it; and even at the time of publishing the Synopsis of the British Fuci, I had seen nothing more than two small speeimens, so that I could say little respecting it whieh might be satisfaetory either to my readers or mysclf. I have thercfore felt a particular pleasure at being now enabled to remove it bcyond the reach of doubt, through the kindncss of my fricnds, Sir Thomas Frankland and Rev. H. Davies, both of whom by commu-
nications with Hudson-himsclf, know it to be the plant designcd by that author, and both find it upon their own shores."

It has been found by.D. L., junr., in rock-pools at Corrie and at Corriegills in Arran.* It lias bcen found by mysclf on the Ayrshire coast at Saltcoats and Ardrossan. The first time I observed it was in Saltcoats bay at low water growing on shalc. Λs I was in danger of being surrounded by the returning tide, I snatched in haste a small portion from a large patcl, thinking it was some common thing with rather an uncommon aspect. On floating it in fresh-water, spreading it on paper, and exposing it to the air, I was surprised to sec it changing in a short time from a dull brownish red to a fine bright crimson. One of my family by wading into decp water, and catching the plants with his toes, got still finer specimens, which being treated in the same manncr assumed cveц a richer huc. I soon found that it was this rare plant Gloiosiphonia capillaris. It has been carcfully looked for evcry summer sincc, but it scems unccrtain and capricious. Its season is limited, from the middle of Junc till the middle of July. Immersion in fresh watcr scems to bring sudden deatlı on this as on some other

[^4]sea-plants, but this change, as we see, only adds to its beauty.

Twas death,-and jet, than life more lovely !
The eye turned Heaveu-ward, bcamcd with more than hope;
Yea, told of rapture; gleamed,-and closed in death.
On that ealm brow, as Parion marble pale,
Resis truer dignity than ever elothed
The brow of potent King : peace, too, is there,
The perfect peace of God, for war is o'cr,
Gained is the palm; the victor wears the crown!-D. L.

2. G. purpurea, Harvey.

This we suppose is Mesogloia purpurea, Harvey, found at Sidmouth and Torquay by Mrs. Griffiths and Miss Cutler. We do not know it.

Genus XLVI. NACCARLA, Endl.

Gen. Char. Frond cylindrical or flat, filiform, solid, rose-red; central cellules large, cmpty, those of the surface minute. Ramuli composed of jointed, dichotomous, verticillate filaments. Fructification, groups of spores (favellidia) contained in sroollen ramuli.-The name in honour of F. L. Naccari, an Italian botanist, and author of Algologia Adriatica, and other works. IIarvey.

1. Naccaria Wigghit, Fries.

Hab. On marine rocks at and beyond the limit of the tide. Annual. Summer. Very rare. It was discovcred by Mr. Lilly Wigg (whence the specific namc) on the Norfolk shore about the year 1790, and first described by Mr. D. Turncr. It has since been found by Mrs. Griffiths and Mr. Borrer in England; by Miss Hutchins, Professor Harvey, and Mr. W. Thompson, in Ireland; but this beautiful plant has not yet been met with in Scotland.*

Genus XLVIII. CRUORIA, Fries.

Gen. Char. Frond gelatinoso-coriaceous, forming a skin on the surface of rocks, composed of vertical, tufted, simple, jointed

* "There are few naturalists, indeed," says Mr. Dawson Turner, "to whom the marine botany of England is uuder greater obligations than to my friend and original instructor in this department of seience, Mr. Lilly Wigg. As a proof of which it will be suffeient to mention that six of the plants already mentioned in this work [Historia Fueorum] were first brought to light by his industry and acuteness of observation. It was he who first discovered the subject of the present plate, which I had a particular pleasure in deseribing under his name. It is an elegant species, both as to form and colour, and of remarkably unfrequent occurrence. For many years only three specimens, and those gathered at distant intervals, were known to exist."Turner's Historic Fucorum, page 84.
filaments, set in a gelatinous matrix; one of the joints of each filament greater than the rest. Fructification, tetraspores lying at the basc of the filaments.-The name from the Latin word for blood or gore, because the plant looks like a blood-stain on the rocks.-Harvey.

1. Cruoria pellita, Fries.

Hab. On smooth exposed rocks and stones between tidemarks. Fruiting in February. Perennial.

Though this plant has not been vcry generally observed, it is probable that it is widely distributed on our shores. It is very common on the west coast, and I must have seen it a hondred times, without ever thinking that it was a plant, till it was named by Professor Harvey among other things that I had sent for his inspection. My specimens were chiefly found on the roots of Laminaria digitata, which it often covers to some extent with a fine dark bromnish-red skin, like japan. It takes its specific name, pellita, from its skin-like appcarance. It is well worth while to consult Phyc. Brit., Pl. cxvir., where it is analyscd, for it is surprising to see the curious filaments of which this skin is composed.

Family IX．NEMASTOME 现。 Genus XLIX．IRID 玉A，Bory．

Gen．Char．Frond flat，expanded，earnose，or gelatinoso－car－ nose，more or less of a purplish－red eolour．Fructifieation， globules of roundish seeds，imbedded between the two eoats of the frond．－－Grev．

1．Iridea edulis，Bory．
Hab．On marine rocks near low－water mark．Perennial． Fruiting in winter．Very eommon．When young it makes a pretty good speeimen for the Herbarium，adhering to paper．When old it beeomes very dark in drying，and does not adhere．Staekhouse tells us that it is eaten in the south－ west of England by the fishermen after they have pinched it between hot irons，when it is said to taste like roasted oysters．If at all used in Seotland，it is after being roasted in the frying－pan．But though it should be loathed by men，to many of God＇s ereatures it is very savoury；to crabs，mollusks，\＆e．，it must be dainty food，for I have scareely ever seen a full－grown speeimen that was not per－ forated by these animals，like a flag that had long stood ＂the battle and the breeze．＂

Genus L. CATENELLA, Greville.

Gen. Char. "Fronds filiform, somewhat compressed, creeping, throwing up numerous branches, contracted as if jointed in a moniliform manner, composed interiorly of branched filaments, radiating from the centre."-Greville. "Fructification; 1, spherical spores; 2, solitary, oblong tetraspores immersed in the periphery."--Harvey.-Generic name signifies a chain, in allusion to the chain or neck-lace form of the frond.

1. Catenella opuntia, Greville. (Pl. X. fig. 39, a, frond with fructification, magnified ; b, plant of the natural size.)

Hab. On rocks within high-water mark. Perennial. Not uncommon, in Englaud, Scotland, and Treland. In Scotland we have gathcred it from the rocks at Ardrossan in the west, and on the pier at Kessen ferry, in Ross-shire near Inverness.

This little plant seen on the rocks is rather insignificant, like dwarf speeimens of Chylocladia articulata, though more lurid in colour; ncither docs it make any great appearance in Stackhouse's plate. There is a good figure of it in Turner's Historia Fucorum, a still better in our plate, with one of the kinds of fruit, and an excellent one in Pl. Lxxxiris. of Phyc. Brit., wherein both kinds of fruit, long unknown,
are well represented. It has, howevcr, to Algologists been a very troublesome little fellow, pushing its nose, likc Paul Pry, into not a few of their genera. Driven from one, it took shelter in another, till Dr. Grevillc, in pity for its manifold sufferings under the alien act, gave it a permanent abode. He says in his admirable Algæ Britannicæ, to which we have been so much indebted, and where there is a fine figure of it: "It has successively held the title of Ulva, Fucus, Rivularia, Gigartina, Chondria, Halymenia, Lomentaria, and, lastly, mirabile dictu, of Chondria in Sprengel's Systema Vegetalium. I have endeavourcd,-not I think without sufficient cause,-to afford this almost universal trespasser something more like a 'local habitation and a name.'" Its tetrasporcs were discovercd by Professor J. Agardh, and both kinds of fruit have been detected by the keenly-scrutinizing eye of Mrs. Griffiths. It owes its specific name to its resemblance to the jointed lcaves of Cactus opuntia.

Family X. SPONGIOCARPE.

He looks ahroad into the varied field
Of Nature, and, though poor, perhaps, compared.
With those whose mansions glitter in his sight,
Calls the delightful seenery all his own.
His are the mountains, and the valleys his,
His the resplendent rivers.-Cowper.
Genus LI. POLYIDES, Agardh.
Gen. Char. Frond cartilaginous, filiform, cylindrical. Fructification, naked, spongy warts, of radiating filaments, among which are imbedded roundish clusters of wedge-shaped seeds, surrounded with a pellucid border.-Greville.

1. Polyides rotundus, Grevillc.

Hab. On rocks in the sea. Perennial. Autumn, minter, and spring. Rather rare. Found, however, in England, Scotland, and Treland. In Scotland, by Dr. Greville, Frith of Forth; Dr. Richardson, near Dumfries ; at Ardrossan, by Major Martin ; by D. L., at Saltcoats in May, in fruit.

The root is an expanded disk, and by this, along with the fruit, it is distinguishod from Furcellaria fastigiata. The colour is blackish purple, becoming darker when dry. It does not adhere to paper.

Genus LII. FURCELLARIA, Lamour.

Gen. Char. Frond cartilaginous, cylindrical, filiform, dichotomous. Fructification, terminal, elongated, pod-like reccptacles, containing a stratum of dark oblong pear-shaped secds, in the circumference.-The name siguifies a little fork.-Greville.

1. Furcellaria fastigiata, Lamour.

This is very common. It is often covered with large patches of Callithamnion Turneri, and with Tubulipora serpens. When fresh it has a slight violct flavour.

Genus LII. GYMNOGONGRUS, Mart.

Gen. Char. "Frond cylindrical, filiform, much branched. Fructification, naked warts composed of strings of cruciate tetraspores.-Name from the Greek signifying naked and a war't, in allusion to the appearance of the fruit on the branches."Harvey.

1. Gymnogongrus plicatus, Mart.

Hab. On roeks in the sea. Perennial. Common.
Root, a small dise; fronds very numerous and matted together; they are horny, rigid, and thieker than a hog's bristles. In some localities they are ten inehes in length ; with us from three to five ; in drying they do not adhere to paper. Very common on some parts of the coast of Ayr-
shire ; much more common on the opposite islands of Cumbrac, where they are found on the shore in great reddish tufts.

2. G. Griffitheie, Mart.

Hab. On rocks at low-water mark. Percmial. Winter and autumn. Rarc. It is like a miniature specimen of Polyides rotundus. It was first corrcctly distinguished by Mrs. Griffiths, whose name it bears.

Genus LIV. CHONDRUS, Stackhouse.

Gen. Char. Frond cartilaginous, dilating upwards into a flat, nerveless, dichotomously divided frond, of a purplish, or livid red colour:-Grev. Fructification ; 1, prominent tubercles (nemathecia) composed of radiating filaments, whose lower articulations are at length dissolved into sporcs; 2, tetraspores collected into sori immersed in the substance of the frond.-The name from a Greek work signifying cartilage.-Harvey.

1. Chondrus crispus, Lyngbye. (Pl. IX. fig. 33, two varieties of this very variablc plant, natural size; the larger one with sori, containing tctraspores.)

Hab. Rocks at low-water mark. Perennial. Spring. Very common and very variable. Turner figures ton, and Lamouroux thirty-five varietics.

At one time it was much in repute for furnishing by its

gelatine a light easily digested food for invalids, and as the chief supply at first came from Carrageen in Ireland, it was called Irish moss or Carrugeen. The market price at one time was as high as $2 s .6 d$. per 1 lb . Had it continued at that rate, it would have yielded more to the industrious inhabitants of the sea-shore than even a erop of their favourite potatocs. The fashion however, has gone out, and the price has fallen; but the food, prepared from it is as good as ever, and they who have tasted it once with good rieh eream, will need no eoaxing to partake of it a second time.
2. C. Norvegicus, Lamour.

Hab. Rocky shores. Annual? September to November. This is a pretty little plant; rather rarc. Though called Norvogicus, it is oftener got in the south of England, than in Norway. It is found in England, Scotland, and Ircland; and occasionally only on the Ayrshire coast. For an exeellent figure of it see Phyeologia Brit., Pl. clxxxvil.

Genus LV. PHYLLOPHORA, Greville.

Gen. Char. Frond eartilaginous, or membranaeeous, of a purple rose-red colour, plane, proliferous from the dise, furnished with a more or less imperfeet or obseure mid-rib. Fructifieation ; 1, capsules, eontaining a mass of minute roundish free seeds; 2,
sori of simple granules in little foliaceous processes. (In two speeies nemathecia have been observed, but no granules.)-Grev. 1. Phyllophora rubens, Greville. (Pl. IX. fig. 34, a good figure of P. rubens with fructification on the frond, natural size; and to the right at the base, a tubercle and a lcafy process, with a nemathecium, magnified.)

Hab. In deep water. Percnnial. Winter. It is found very gencrally on the British shores. It is not common on the coast of Ayrshire about Ardrossan, but is very abundant on the shores of the islands of Cumbrae, only a few miles distant.

Though it is not a favourite with me for the Herbarium, because it is so rigid and rambling, and does not adhere to paper when dried, I allow no specimen to pass without strict examination, for it is a peeuliar favourite of many species of zoophytes, and some of them of rare kinds; for instance, Hippothoa catenularia, Hippothoa divaricata, Crisidia cornuta, Crisia chelata, and rare Lepralia, \&c. The oid part of the frond is a dark brownish purple; the young proliferous part of the frond is a lively rose-red.

2. P. Brodiei, J. Agardh.

Hab. Rocks in the sea; rarc. Peremial? Ninter and spring. Lossiemouth, Mr. Brodie; mouth of Bam, Mr. Moorc; Bangor, Mr. W. Thompson; Devonshire, var.,

Mrs. Griffiths; Malahide, Mr. M‘Calla. See Plyyeologia Britannica, Plate Ix.

I cannot refrain from quoting what is said by Mr. Dawson Turncr, respecting Mr. Brodie, in honour of whom this plant has its specific name. "The study of Natural History, independently of the advantages so nobly ascribed by Cicero to polite literature in general, that it nourishes our youth, delights our age, is an ornament in prosperity, and a comfort in adversity, may justly boast of a still superior object, in leading, and, indced, forcing man to the admiration of the wisdom and the goodness of his Divine Creator in the contemplation of the works of his Almighty hand. In addition to this, it mixes itsclf also with the daily occurrcnces of social lifc, and gratifics the bost fcelings of our naturc, by uniting in the bonds of friendship those whose pursuits were already the same; while by pormitting the names of its votaries to be affixed to plants, it records their zcal in its service, and touches onc of the most powerful springs of human action. Among those who eminently deserve to be thus mentioncd, stands forward the name of James Brodie, Esq., of Brodie, in Scotland, a man at once zealous in the pursuit, and liberal in the patronage, of universal scicnce, and especially of the botany of Britain."

Genus LVI. PEYSSONELIA, Crouan.

Gen. Char. Frond membranaceous, orbicular, or lobed, attached by the whole of its under surface.

1. Peyssonelia Dubyi, Crouan.

Hab. On old sleells and stones in deep water. North of Ireland, Mr. W. Thompson; Birturbui bay, Professor Harvey and Mr. M‘Calla. Dredged by D. L. in Lamlash bay, Arran.

After Professor Harvey had detected Peyssonelia in Ireland, he said in a letter with which I was favoured, that I might be on the outlook for it when I went to dredge ; and at the same time sent me specimens of it. On seeing them, it struck me that I had it on some old shells in my possession, and I sent him one which I had dredged in Lamlash bay, with a dark brownish skin on it, which turned out to be true Peyssonelia Dubyi. It had been named specifieally by M. Crouan, in honour of M. Duby. See Pl. Lxixi., Phyc. Brit., which is much too light.

Genus HiLDENBRANDTIA, Menegh. See Plyycologia Britamica, Pl. xcviti.

Family XI. GASTROCARPE I^{E}.

" In Nature's all-instructive book, Where can the eye of reason look, And not some gainful lesson find To guide and fortify the mind?"

Genus LVIII. KALYMENIA, J. Agardl.

Gen. Char. Stem short, cylindrical, suddenly expanding into a roundish, subsimple, or irregularly cleft, somewhat lobed frond; favellidia densely scattered over the frond.

1. Kalymenta reniformis, J. Agardh.

Hab. In deep shady pools at extreme low-water mark. Perennial? Summer and autumn. Diseovered by Miss Everett in the Isle of Wight nearly half a eentury ago, and when described by Mr. D. Turner in the Historia Fueorum, it was regarded as exceedingly rare. Of late, however, it has been found in many places, especially in Ireland. Though found in Orkney by Rev. Mr. Pollcxfen, it seems very rare in Scotland. The splendid figure of it in Pl. xiti. of Phye. Brit. is thought rather dark in eolour.
2. K. Dubyi, Harvey.

This is a rare Alga, found by Miss Warren and by the Rev. Mr. Hore at Plymouth. It has not been mot with in Seotland.

Genus LIX. HALYMENIA, Agardh.

Gen. Char. Frond eompressed or flat, pinky red, gelatinosomembranaeeous, consisting of a dclieate membrane, whose walls are separated by a very lax net-work of jointed fibres; cells of the membrane minute, eoloured. Fructification, masses of spores (favellidia) immersed in the frond, attached to the inner surface of the membranous periphery.-The name from two Greek words signifying the sea, and a membrane.-Harvey.

1. Halymenta ligulata, Agardh. (Pl. XIII. fig. 52, a good representation of two varieties of this plant.)

Hab. On roeks or stones near low-water mark, or more frequently dredged in deeper water. Annual. Summer. Frequent in the south of England, and not rare in the south of Ireland. Got in Orkney, and not very rare in the west of Seotland, where it has been repeatedly dredged off Arran by D. L.; off Ayrshire, by Major Martin, and found east out on the shore by the Rev. Mr. Lambie, at Southend, Kintyre. I have a speeimen gathered by Miss White in Jersey, where it is eommon.

When the eolour is rose-red, as it often is, this is a beautiful plant, espeeially if the frond is broad; but it is very variable in form. At times the frond is quite narrow
and diehotomous. For the fruit and structure see Pl. cxir. of Phyeologia Britanniea.

Genus LX. GINNANIA, Mont.

Gen. Char. Frond tcrete, dichotomous, membranaceo-gelatinous, traversed by a fibrous axis, from which slendcr, dichotomous, horizontal filaments radiate towards the membranons periphery; surface cellules hexagonal. Fructification spherical masses immersed in the frond, affixed to the inncr coating, composed of radiating filaments, whose apical joints are converted into spores.-Name in honour of Connt Gimnani, an Italian botanist.-Hurvey.

1. Ginnania furcellata, Mart.

Hab. On roek and shells in deep water. Annual. Summer. Rather rare.

This fine plant may seem to resemble the dichotomous varieties of Halymenia ligulata, but the strueture and frond are different. Professor Harvey mentions a remarkable feature of its strueture that has been little attended to, viz., an axis or internal rib somewhat like the mid-rib of a Delesseria. This plant has been got in England and Ireland, but in so far as we know it has not yet been found in Scotland. See Phye. Brit., Plate Lxix.

Genus LXI. DUMONTIA, Lamour.

Gen. Char. Frond cylindrical, simple, or branched, membranaceoris, tubular, gelatinous within, of a red, or purplish-red colour. Fructification, globules of seeds attached to the inner surface of the membrane of the frond.-The name in honour of M. Dumont, a French naturalist.-Greville.

1. Dullontia filiformis, Greville. (Pl. X. fig. 40.)

Hab. Stones and roeks in the sea. Annual. Summer. Common. On the eoast of Ayrshire the twisted variety is the most eommon. I remember that it was one of the first I requested Sir W. Hooker to name for me, mentioning its pungent taste and smell as eharaeteristie. See fine representations of the fruetification in Dr. Greville's Algæ Britannieæ, Plate xvir., and in Professor Harvey's Phyeologia Britanniea, Plate Lix.

By mentioning the smell of Dumontia, I have been reminded that Punctaria plantaginea, has generally with us so much of the flavour of slieed cueumbers, as to perfume the apartment into whiel it is brought. I have not seen this noticed in any deseription of that plant.

Family XII. COCCOCARPE.

He who, through nature's various walks, surveys The good and fair her faultless line pourtrays; Whose mind, profancd by no unhallowed guest, Culls from the crowd the purest and the best; May range, at will, bright fancy's golden clime, Or, musing, mount where science sits sublime, Or wake the spirit of departed time.

Pleasures of Memory.

Genus LXII. GIGARTINA, Lamour.

Gen. Char. Frond cartilaginous, cither filiform, compressed or flat, irregularly divided, purplish red; axis or central substance composed of branching and anastomosing longitudinal filaments ; the periphery of dichotomous filaments laxly set in pellucid jelly, their apices moniliform, strongly united together. Fructifieation double on distinct plants; 1 , external tubereles, containing on a central placenta dense clusters of spores (favellidia) held together by a net-work of fibres; 2, tetraspores seattcred among the filaments of the periphery, or aggregated in dense, immersed sori.-The name from the Greek word for a grape-stone, which the tubercles resemble.-Harvey.

1. Gigartina pistillata, Lamour.

Hab. On rocks near low-water mark. Perennial, winter. Very rare. Discovered by the Hon. Dr. Wemman in 1800.

Found by Stackhouse, Brodie, Mrs. Griffiths, Miss Hill, Dr. M‘Culloeh, Dr. Jaeob, Mr. Gilbcrt Sanders; by Miss Turner in Jersey. It does not seem to have been proeured in either Seotland or Ireland.

It is a remarkable plant; the tubercles are large, generally near the point of the braneh whieh projects like a horn ; the eolour is a dull purplish or brownish red; it does not adhere to paper. A person who has seen the very eorrect figure of it in Phye. Brit., Plate ccxxxir., eould not fail to know it, were he to light on so great a prize. I am glad that I have cven better than the figure, having received a speeimen of this very rare plant from Professor Harvey.
2. G. acicularis, Lamour. (Plate XI. fig. 42, plant in fruit.)

Hab. Submarine roeks near low-water mark. Annual. Winter. Rare.

This bears some resemblanee to the preceding; but it is a less robust plant. The tubereles are rarer and smaller, and the dull purple colour beeomes pink in fresh water. It is found in England by Mr. Rashlcigh, Mrs. Griffiths, Miss Cutler ; in Treland by Mr. W. Thompson and Professor Harvey. A single speeimen of it was found in Seotland by Mrs. Ovens near Ardrossan.
3. G. Teedit, Lamour.

Hab. On rocks in the sea; very rarc. Peremial. Ellery Cove, and Tor Abbey rocks by Mrs. Griffiths, to whose kindncss I am indebted for a finc speeimen of this rare Alga. 4. G. mamillosa, J. Agardh.

Hab. Rocks in the sea, near low-water mark. Perennial. Autumn and winter.

This species is as eommon as the others are rare ; the fronds are from 3-6 inches long, cartilaginous, ehannelled; eapsules on little stalks scattered profusely over the dise of the frond. We have found it very large in Arran, rolled up in the form of a ball. The finest specimcus we have ever got were at Gourock ncar Grcenoek. Till we met with it figured and new-namod in Phycologia Britanniea, we regarded it as a Chondrus. It is gathered and employed for eulinary purposes along with Chondrus crispus, or Carrageen. Indeed, the lady who first eollccted Carrageen in Ayrshire, to make blanc-mange, gave the prefcrence to this species, saying, that it was more gclatinous than the other. I have seen the fronds in the Clyde more than an inch broad. The Platc cxcix. in Phyc. Brit. would be very good, if it were darker.

Genus LXIII. GELIDIUM, Lamow.

Gen. Char. Frond, between cartilaginous and corneous, planocompressed, distichously branched, branches pinnate, or bipinnate, pinnæ spreading, or horizontal, obtuse, capsules spherical, immersed in the cxtremities of the ramuli.-Greville.

1. Gelidium corneum, Lamour.

Hab. On rocks in the sea and in rock-pools. Perennial. Summer. On most of the rocky shores.
"The varieties of this specics," says Dr. Greville, "are almost endless, and some of them so singular, that without practical knowledge, to guide us in our investigation, they may be taken for very distinct species." I can vouch for the truth of this, for in a vcry bcautiful variety sent to me by the Rev. Mr. Smith of Borguc, I thought I had got the southern Grateloupia filicina. For good figures and dcseriptions, see Algæ Britarmicæ, Plate xv., and Phycologia Britannica, Plate liif. Dr. Grcville describes about fourteen varieties.

* 2. G. cartitagineung, Greville.

Hab. On rocks in the sea. Percnnial.
A magnificent plant, but a very doubtful native. The frond is from 12-18 inches long ; the colour is a dark purple, but when it begins to be dceomposed, it is shaded with

fine tints of searlet orange, yellow, and green. I remember secing a good speeimen framed as a painting, and exposed for sale in the Cowgate of Edinburgh. I proeured two speeimens of it from Dublim, where, on dit, it is oeeasionally found in the bay.

Genus LXIV. GRATELOUPLA, Agardh.

Gen. Char. Frond flat, more or less pinnate, membranaceous, flexible, solid, composed of densely interwoven, anastomosing, branching filaments, those of the periphery moniliform, short, and very strongly compacted together. Fructification ; l, globular masses of spores (favellidia) immersed beneath the peripheric stratum, communicating with the surface by a pore; 2, cruciate tetraspores, vertically placed among the filaments of the periphery, in sub-defined sori.-- In honour of Dr. Grateloup, a French Algologist.-Harvey.

1. Grateloupia filicina, Ag.

Hab. On roeks and stones in the sea. Very rare. Diseovered by Miss Cutler. Found by Mrs. Griffiths at Barroweane; and by Mr. Ralfs, Mount's bay, Cornwall; plentiful. I have a speeimen of it from Mr. Ralfs. It has not been found in Seotland or Ireland. "The only British plant with whieh this is likely to be confounded is Gelidium
corneum, to some varieties of whieh, especially G. flexuosum, it bears a very strong resemblance. Its softer and more membranous substance will generally distinguish it to the feel; and the mieroscope will point out a difference of structure." Harvey. For good figures see Algæ Brit., Plate xvi., and Phyc. Brit., Pl. c.

Family XIII. SPH ÆROCOCCOIDE \&.

> O! what an endlesse work have I in hand, To count the seas abundant progeny! Whose fruitful seede farre passeth those in land, And also those whieh wonne in the azure sky: And much more eath to tell the starres on hy, Albe they endlesse sccme in estimation, Than to reeount the sea's posterity, So fertile be the flouds in generation, So huge their numbers and so numberlesse their nation. SPENSER's Fairy Queene.

Genus LXV. HYPNEA, Lamour.

Gen. Char. Frond filiform, cartilaginous, continuous, much branehed, eellular; with a dense, more or less evident fibro-cellular axis, surrounded by several rows of angular cells, the innermost of whieh are largest, the outer gradually smaller to the
circumference. Fructification of two kinds on distiuct individuals; l, spherical tubercles (coccidia) sessile, or immersed in the ramuli, containing a mass of small spores on a central placenta; 2, transverscly parted tetraspores imbedded in the cells of the surface.-Hypnea, an alteration of Hypmum, the name of a genus of mosses, in allusion to the mossy characters of some of the original species.-Harvey.

1. Hypnea purpurascens, Harvey. (Plate X. fig. 37, a, branch with tubercles, of the natural sizc; \varnothing, magnificd portion of a branchlet with a tubercle or coccidium.)

For the reasons which have induccd Professor Harvey to transfer this species to Hypnea of Lamouroux, sec Phyc. Brit., Plate cxvi.

Hab. In the sea on rocks and the larger Algæ. Annual. July to November. Frequent on the shores of England, Scotiand, and Ireland. It is got at an early period of the season, and being then without tubcrcles, it is apt to be mistaken for some other plant. In this growing state the branches occasionally terminate in capillary tendrils, which twine around other Algr. Lightfoot says, " the fructification appears like little grains or tubcrcles of a round or oval figure, hardly so big as the smallest pin's head." With us the oval tctraspores arc as big as middle-sized pins'
heads. When full grown, this plant is very bushy, and at times two feet in length; the stem as thick as a crow's quill, thickest at the middle, and attenuating towards each end; substance cartilaginous, but soft, and adhering to paper ; colour brownish or purplish-pink, becoming darker in drying. I preserve a very dark specimen as a memorial of a pleasant half-hour's algologising in the sweet bay of Rosemarkiee, in Ross-shire.

Genus LXVI. GRACILARIA, Grev.

Gen. Char. Frond filiform, or rarcly flat, carnosocartilaginous, continous, cellular ; the central cells very large, empty, or full of granular mattcr ; those of the surface minute, forming densely packed, vertical filaments. Fructification of two kinds, on distinct individuals; 1 , convex tubercles (coccidia) having a thick pericarp, composed of radiating filaments, containing a mass of minute spores on a central placenta; 2, tetraspores imbedded in the cells of the surface.-The name from the Latin word signifying slender.-Harvey.

1. Gracilaria erecta, Greville.

Hab. On sand-covered rocks, near low-water mark. Perennial. Fruiting in winter. Sidmouth and Torquay,

- Mrs. Griffiths ; in Ireland, by Mr. W. Thompson, Mr. D. Moore, and Mr. M‘Calla ; in Orkney, by Rev. T. H. Pollexfen, Lieut. Thomas, and Dr. M‘Bain.

This curious little plant is one of the numerous diseo.. veries of Mrs. Griffiths. When in fructifieation it eannot be mistaken for anything else, as the densely clustcred tubercles on the branches, and the laneeolate terminal pods containing tetraspores, are sufficient to distinguish it. When not in fruit it is like G. confervoides in a young state. As the Scottish specimens were not in fruit, some doubt hangs over them. In Plate xiv. of Algr Brit. there are excellent figures of it, both of the natural size and magnificd, with disseetions of the fruit, \&c.; and the same may be said of Plate clxxvir. of Plycologia Britannica.
2. G. confervoides, Greville. (Pl. XI. fig. 44, branch of the natural size; eonjoined with it there is a small portion of a branch with tubercles, magnified.)

Hab. In the sea on rocks. Perennial. In fruit from August to October. It is said to be of rather frequent occurrence on the British shores, and yct I do not know that it has been gathered in Scotland, except by the Rev. J. Macvicar, many years ago in the Frith of Tay. It is more than a foot and a half in length, and casily known by its
tubercles. Colour deep red. It is cartilaginous, and does not adhere to paper in drying.
3. G. compressa, Greville.

Hab. Cast ashore from deep water, attaehed to eoral, \&c. Very rare. Annual. Summer. Diseovered by Mrs. Griffiths at Sidmouth. Found also by Miss Cutler in the south of England; and by Miss Turner, Jersey.

Substanee when fresh, very tender, and suceulent and brittle, becoming tough when dried; eolour, dull red, becoming brighter when steeped in fresh water. In form, it very mueh resembles Gracilaria lichenoides, bleached speeimens of whieh I have from my friend Mr. Gourlic. Having lost their colour they make no show in the Herbarium, but they appear very well on the table in the slape of blancmange, which is of of a brownish-red colour. Mrs. Griffiths got some of our native G. compressa prepared for the table, and it answered as well as the foreign one; but it is too rare to be so employed, exeept by way of experiment.

Since writing the above, I resolved, with the remainder of Mr. Gourlie's Agal-Agal, or G. lichenoides, to try if it would, by putting it on gauze, form a lanthorn à la mode de Chine. The experiment was quite successful. I have also within these few days seen an edible swallow's nest, whielı
had every appearance of being formed of mashcd Agal-Agal. The form is oval, joined to the rock at onc of the ends, truncated for that purpose, and very like a receptacle for holding a watch. Some feathers of the birds werc adhering to it still.
4. G. multipartita, J. Agardtl.

Hab. On rocks and stones in muddy places in the sea, chiefly in estraries, near low-watcr mark. Annual. August and September.

This is a showy, but rare plant, being as yct found in Britain only on the southern shores of England. It is, howevcr, widely distributed over the world. Its oldest name is Fucus multipartitus of Clemente. For a fine figure and description see Phyc. Brit., Platc xv.

Gcnus LXVII. SPHNROCOCCUS, Agardh.

Gen. Char. Frond cartilaginous, much branched in a distichous manucr, compressed and two-edged below, nearly flat upwards, the branches acute at the apex ; capsules spherical, mueronate on little stalks fringing the,smaller branches.-Greville.

1. Spherococcus coronopifolius, Agardle. (Platc XII. fig. 48, part of the frond, of the natural size, and a portion of a branchlet with tubcrelcs, magnificd.)

Hab. On rocky shores. Perennial. Summer and autumn. Common on the southern shorcs of England; not uncommon in Ireland. Rare in Scotland, where, however, it has been found by Dr. Grevillc in the island of Bute; by Major Martin at Ardrossan ; by D. L. at West Kilbride, Ayrshire, and in the island of Arran.

From the similarity in colour, and from some resemblance in the outlinc, it may at times, in Scotland, have been passed over as Plocamium coccineum. It is, however, a much larger plant, being a foot and a half in length. It is one of the most beautiful of the British Algæ. When procured fresh, the colour is a fine rose-red. For excellent figures, with instructive dissections, see Plate XV. Algæ Britannicæ of Dr. Greville, and Plate Lxt. of Professor Harvey's Phycologia Britannica.

Genus LXVIII. RHODYMENTA, Greville.

Gen. Char. Frond plane, membranaceous, fine pink or red, quite veinless, sessile, or with a short stem, whieh expands immediately into the frond. Fruetifieation ; 1, hemispherical scattered eapsules; 2, minute, ternate gramules, spreading over the whole, or some part of the frond (not in defined spots). Name from two Greek words signifying red membrane.-Greville.

Hab. (He rocks in the sea, and on Alges. Summer. Annual. Ferequent on the southern shoress of Fingland. In Jreland, where it is sut rare, fine boroad-fronded ajeccirache have been get by Miss Hyndman and Mr. J. Moore. It has bexer get hy Dr. (ireville in Bute. Not uncommon on the catast of Ayrblire, where it has been ,fien found by Major Martin and by J). d. St is most abundant in carly autursm wisen it is cast out iss the forson of roursed tufted balls,

A curious varicty of this plant was gathered by my kind friend Mr. Keddie, reajecting which Jrofessor Harvey said that it was er difierent froms the usual appocarance, that had it come from a distant cepuntry he should have been disposesed
 It is, however, a very variahle plant everywhere. It is as thin as a Nitoyhollum, but, it differs firom Nibroghylturn and even from otther R Rhodymeniag.
2. R. Lacseisata, 'iroviltro. (fl. JX. fig. 9ff, plant of the natural size, with a small formion of the margirn with ernbedded tubereleses os coocidite, magnificed.)

Hatb. ()n rocks, and on Laminariot; generally in deep water. Biennisu. January to July. Frequent in Scotland,

England, and Ireland. It is not common, however, on the coast of Ayrshire about Salteoats and Ardrossan. It is frequent and very fine at Southend, Kintyre, at Dunaverty and Maerihanish bay. The most beautiful specimens I have seen of it were gathered in the island of Mull by Her Graee the Duchcss of Argyll and Lady Emma Campbell, and not thought less lovely becausc prepared by persons whose great worth and numerous aeeomplishments give additional dignity to their high rank and station.

Its substanee being thiek, is very different from R. bifida. When got among rcjectamenta, and partly deeomposed, the specimen is spotted with white, whieh has not a bad effeet. See a finc figure of it, natural size, and magnified figures of both kinds of fruit in Plate cxxi. of Pliye. Brit.
3. R. Palmetta, Greville.

Hab. On rocks, and on Laminaric. Annual. Summer and autumn. Not uneommon on the British shores. Rare in the west of Seotland. Found by Mrs. Gibb at Salteoats ; and by D. L. near the lighthouse, Pladda, off Arran.

Substanee rigid, and imperfectly adhering to paper; eolour a fine pinky red, retained in drying. For cxeellent deseriptions and figures, see Algæ Brit., Pl. xir., and Phye. Brit., Pl. cxxxiv.
4. R. membranifolia, J. Agardh.

Hab. On rocky shorcs, frequent. Percnnial. Oetober to March.

Frond from three to trelve inches high; substance of the cylindrical stem eartilaginous, and of the flat frond, membranaceous.
5. R. cristata, Greville.

Hab. Parasitical on the stems of Laminaria digitata. A northern species. Very rarc. Annual. July. Found by Sir W. Hooker and Mr. Borrer at Wick in Caithncss. In the Frith of Forth, Dr. Greville ; at Berwick, Dr. Johnston.
6. R. ciliata, Greville.

Hab. On rocks in decp water. Annual. Winter. Frequent on the southern shores of England, and in some places in Ireland. Rare in Scotland, where it was found by Lightfoot in Iona; and by Licut. Thomas and Dr. M‘Bain, in Orkney.

Substance thicker than any other Rrodymenia; colour, a deep red. I have a fine speeimen from Miss White, Jersey.
7. R. Jubata, Greville. (Pl. XI. fig. 43, frond, natural sizc, and a magnificd figure of a cilium with a tuberclc.)

Hab. On rocky or gravclly shores. Annual. Summer.

Frequent in the south of England, and in some places in Ireland. Said to be eommon in Seotland, but we have never gathered it. Some dwarf speeimens of it were found by Mr. R. M. Stark at Ballantrae.
8. R. palmata, Greville.

Hab. On roeks, and other Algr. Very eommon. Annual or biennial. Winter and spring.

Instead of giving any further deseription of this plant, it is suffieient to say that it is Dulse, and every ehild who has been brought up on the sea-shore, is able to point it out to the new-fledged Algologist. There is no sea-meed more generally regarded as an artiele of food than Dulse. By the Highlanders it is ealled Duillisg, which we learn on high authority is a word compounded of two Gaelie words, duille, a leaf, and uisgé, water, i. e., the leaf of the water. From uisgé is derived the word whisky; and with the addition of baugh, life, we have the usquebaugh of the Irish (aqua-vitce), the water of life; with how much more propriety might it be ealled the water of death!

In some parts of Treland the Dulse is ealled dillisk, whieh means still the leaf of the water, for esk means water: henee we have so many rivers in Seotland named Esk, sueh as North Esk and South Esk, i. e., North-Water, South-

Water. The Highlanders and Trish, as we have already stated, were mueh in the habit, before tobaeeo beeame so rife, of washing Dulse in fresh-water, drying it in the sun, rolling it up and then ehewing it as they now do tobaeeo. How mueh better had it been for them had they stuek to the use of the less nauseous, less filthy, less hurtful Dulse. Indeed, instead of being hurtful, it is thought wholesome and not unpleasant, especially when it is eaten fresh from the sea, as is the ease in the Lowlands. Dr. Greville mentions that it is the true Saccharine Fucus of the Icelanders. Aeeording to Lightfoot it is used medieinally in the isle of Skye, to promote perspiration in fevers. In the islands of the Arehipelago, it is a favourite ingredient in ragouts, to whieh it imparts a red eolour, besides rendering them of a thieker and rieher eonsistenee. The dried frond, like many other Algæ when infused in water, exhales an odour resembling that of violets; and Dr. Patrick Neill mentions that it eommunieates that flavour to vegetables with whieh it is mixed.

Rhodymenia sobolifera was long ranked as a distinet speeies ; but Professor Harvey in Phye. Brit., mentions it only as a variety, and I know that Dr. Greville regards it
in the same light. We have got it growing on the stems of Fucus serratus in Arran and Ayrshire.

Family XIV. DELESSERIE 玉.

There's beauty in the deep:The wave is bluer than the sky; And though the light shine bright on high, More softly do the sea-gems glow, That sparkle in the depths below; The rainbow's tints are only made When on the waters they are laid; And Suu and Moon most sweetly shine Upon the Oeean's level brine:-

There's beauty in the deep. J. G. C. Brainard.

Genus LXIX. PLOCAMIUM, Lamour.

Gen. Char. Frond filiform, compressed, between membranaceous and cartilaginous, fine pink-red, much branched, branches distichous (alternately seeund and pectinated). Fructification of two kinds; spherical sessile eapsules, and latcral minute processes, containing oblong granules, transverscly divided into several parts by pellucid lines.-The name from a Greck word signifying braided hair.-Greville.

1. Plocamum coccineum, Lyngbye. (Pl. XII. fig. 46, portion of the frond, natural size ; and at the base, on the left, a branchlet with a tubercle, magnified.) *

Hab. Common almost everywhere in the sea. Pcrennial. Summer and autumn. Though generally common, it is rather of unfrequent occurrence on the sca-shore about Ardrossan and Saltcoats, but very frequent at Ballantrae in Ayrshire. So abundant is it on the coast of Kintyre, Argyllshire, that it might be got in cart-loads.

It has generally a peculiar appearancc, according to the place where it grows. At Leith, where it is vcry frcquent, it is more cartilaginous, morc ercet, and of a darkcr hue than the Ayrshire specimens; and the pattern, we would

* "The deseription," says Mr. Turncr, "given of this plant in the "Flore Française,' is so characteristic that I am tempted to trauscribe a part of it.
" 'Sa tige est très rameuse, et toujours dans Ic même plan: l'ordre des ramifications est très remarquable ; chaque ramean cst legèrement flcxueux, ct n' éneet de ramifications que du côté convexe: la première est un filet simple et pointu; la deuxième est un filet qui a trois dents du côté antérieur; la troisièmc est un filct qui a deux dents, et qui an lien de la troisième dent pousse un filet muni d'une dent en dehors; la quatrième est un filct qui n' a qu' une dent, la deuxième dent est devenue un filet à unc dent, et la troisième un filct rameux. Après ces quatre ramifications il y a un espace vide, et la tige émet des rameaux semblables du côte opposé."
say, less genteel.* The Irish speeimens are large and strong, as well-representcd in Phye. Brit., Plate xliv.

It is not easy to account for the variety of form whieh the plant assumes in different loealities. Looking at a pretty specimen got from Miss White, in Jersey, through the kindness of Mr. Smith of Jordan-hill, we were going to aseribe its greater softness of substanee and more flowing ramification, to the more genial elimate; but turning our attention to a rieh specimen from North Ronaldshay, we saw that the Oreadian was as flowing in ramification, and as flaecid in substanee as the native of the Channel Islands. A specimen gathered by Mr. Keddie at Iona, and another found by the Iady Emma Campbcll, in Islay, resemble those found in the north of Ireland. The one from Lady Emma Campbell acquires additional value from having a very rare zoophyte nestling among its lower branehes,-Alecto granulata of Milne Edwards. Dr. Johnston deseribes and figures it in his most interesting History of British Zoophytes. It had previously been proeurcd only by Mr. Coueh, in Cornmall, and by Mr. William Thompson in Treland. Kecp a good

* Since writing the above, I have reeeived from Mrs. R. M. Stark, Edin. burgh, specimens gathered by her at Leith, as beautiful in colour aud as genteel in form as any found in the west.
look-out my young friends, for precious parasites on what comes from decp water, or new localities.

The colour of Plocamium coccineum is beautiful, especially when exposed a little to the sun after a shower of rain; it then bceomes a lovely crimson. "One of the most charming and symmetrical Algæ in the world, extremely common, and a universal favourite," says Dr. Greville. "A wellknown, abundant, and beautiful species, and an especial favouritc with amateur weed-eollectors, and manufacturcrs of sea-weed pictures," says Professor Harvey.

Genus LXX. DELESSERIA, Lamour.

Gen. Char. Frond rosy-red, flat, membranaccous, with a percurrent mid-rib. Fructification of two kinds; 1 , capsules containing a globular mass of sceds; 2, ternate granules forming definite sori, in the frond, or in distinct foliaceous leaflets.The name in honour of a noble French patron of science, the Baron B. Dclessert.-Greville.

1. Delesseria sanguinea, Lamour. (Pl. XIII. fig. 50, plant with leaflets from the mid-rib.)

Hab. On rocks and also. on othcr Algæ. Wc have found it on the roots of Laminaria cligitata. It is bicnnial.

The fruetification of two kinds may be seen on the naked
mid-rib in December and January. The stem is about an ineh in length, eonsiderably thicker than a crow quill. It is oecasionally divided into more thran a dozen fronds, from two to four inehes broad, and from six to ten in length; generally aeute at the tip, but at times rounded. The margin is more or less waved.

A beautiful variety, mentioned by Professor Harvey as sent to him by D. L., was found floating at Salteoats by Miss Mae Leish ; she got it only onee, but it was a great buneh, of a dozen branches, some of the fronds being eight inehes in length, and five and a half in breadth. The peeuliarity of this remarkable variety was, that it was lobed somewhat like Delesseria sinuosa, mith a mid-rib in each lobe. Another speeimen of the same kind was got by Miss Ramsay, of Glasgow, at Gourock. It was a splendid speeimen, of a very rieh eolour, with three large lobed fronds, the largest being nine inehes and a half by five.

There is in the possession of my friend Major Martin of Ardrossan, a magnifieent frond of D. sanguinea, whieh Sir William Hooker said was the largest he had ever seen. The single frond or leaf is thirteen inehes long, and eight inehes broad! This gentleman's colleetion of Algæ is most splendid, and he has almost as muel pleasure in displaying
these rich prizes of peace, as in showing his well-earned trophies of war. He lately received onc of the Peninsular medals as an acknowlcdgment of his eminent services in the Peninsula, during a number of years; he received also a gold medal for laving commandcd the 45 th Regiment at the battle of Toulouse; he was most dangerously wounded at Ciudad Rodrigo, having been shot through the body while fighting at the top of the main breach.

Stackhouse speaks of D. sanguinea as not being common, and as seldom found entirc. On the coast of Ayrshire in spring and carly summer, it may be got on the shore in abundance, and quite entire, after a stiff breezc.* In January it might puzzle the young Algologist, as nothing then remains but the red stem, and mid-rib besct with fruit of both kinds, on separate plants. In February it makes an interesting specimen with young leaves, more than an inch in length, springing from the mid-rib, mixed with the fruit. In March the fruit has disappeared, but the leaves are then three or four inches in length, and almost an inch in breadth,

[^5]of a fine fresh glossy pink hue, and of a lighter and more delicate tint then when they are full-grown. When fullsized, the fronds are gencrally, on the Ayrshire coast, about seven inches long, and an inch and a half in breadth, though often much larger, and the colour is then a splendid rich pinky red. In its spring and summer dress it is a lovely plant, and it is not wonderful that it should be a universal favourite. Mr. Dawson Turner says: "In the elegance of its appcarance, and the exquisite colour of its most delicately-vcined leaves, this bcautiful Fucus so much excels all its congeners, that it carrics away the palm with no less justice from the vegetables of the ocean, than the rose, the flower of the poets, from its rivals in the garden." In Phyc. Brit., Pl. cli., Professor Harvey says: "This fine plant, whether we regard the splendour of its colour or the elegance of its form, is entitled to high rank in the Oceanic Flora, and notwithstanding its common occurrence on all our shores, is never secn without attracting admiration. In favourablc localitics it reaches to a very large sizc,-and such spccimens are among the most beautiful vegetable objects in nature." The substance of the leares is dclicately membranous. They are often plaited along the margin, and this gives additional beauty to dried specimens

by varying the hues of the fine erimson pink. We may mention that the fronds, if allowed to remain long in fresh water, give out mueh of their colouring matter and are eonsequently paler when dried, and have less also of that glossy shining aspeet whieh otherwise characterizes them.
2. D. sinuosa, Lamour.

Hab. On the larger Algæ. Common.
It is questioned whether it is biennial. I have observed it during all the winter on the stems of Laminaria digitata, though it is then in a ragged state, and does not adhere to paper in drying. Mr. Turner in his Historia Fuearum, Plate xxxy., shows it when advaneed to the seeond year of growth. Staekhouse, also, in Nereis Britanniea has a figure of it; but neither of them gives us the plant in its most beautiful state, as found in Ireland and in the west of Seotland. I have before me an Irish speeimen, the frond of whieh is six inehes in length, and as many in breadth, and I have seen them larger. I have also before me a Seottish speeimen gathered at Gouroek, by my friend Miss Ramsay, of Glasgow, which though not the largest, is the riehest and most beautiful one I ever beheld. It eonsists of three fronds of large size, shaped like an oak-laf, the eolour of whieh is a fine dark brownish-purple. It is rather
remarkable, that this and the very splendid Delesseria sanguinea, whieh I have already mentioned, should have been found so far up, where the fresh water of the Clyde must have a eonsiderable effeet. Perhaps they were driven from their moorings in the Holy Loeh, which is nearly opposite, and in the shelter of whieh they might expand themselves; or, as Miss Ramsay thinks, from the roeky point at Port-kill in the parish of Roseneath.

This is a very variable plant in its appearance, aceording to its age; the leaves when very young being oral. The substanee is thin and membranaeeous, adhering tolerably to paper in drying, unless when old; the colour when fresh is red, but not so fine a red as the preeeding; it beeomes mueh darker in drying, unless deeomposition has begun, in whieh ease there is a fine variety of tints, red and green, and yellow and white.
3. D. alata, Lamouroux.

Hab. In the sea, ehiefly on Laminaria digitata.
It is questioned whether it is perennial. I ean answer for it that it is at least biennial. It is got all winter in a ragged, sapless state, when it does not adhere to paper in drying. Early in Mareh it begins to grow, and in a short time the lower part of the frond is dark and rigid, and the
upper is light-coloured, and frosh and limber. In the end of March this year, I got spccimens in this statc, some of them with capsular fruit on the young part of the frond, and others with ternate granules thickly imbedded in little leafy processes at the very tips of the frond, having a rich appearance.

This is by far the most abundant Delesseria on our western shores. Even in its most common statc it is a handsome plant. It is occasionally found on the coast of Ayrshire, -and much more frequcntly on the Trish coast,in such a state as to be truly magnificent. In some specimens collected by Dr. Drummond, Belfast, the frond or winged membranc is half an inch broad. I have a specimen of this description gathered by Mrs. Lyon at Glenarm, and more than onc procured by Mrs. Ovens and Major Martin in Lough Swilly, of which the winged membranes are not only broad, but the whole plant is larger than usual, and the colour a fine rich dark purplc, so that at first a person would take it for a member of a nobler tribe than our evcry-day acquaintance, Delesseria alata.
4. D, angustissima, Griff.

Hab. On the stems of Laminaria digitata. Pcrennial. Winter and spring. Rather rare. Lossiemouth, Mr. Brodic :

Aberdcen, Dr. Dickie; Cornwall, Mr. Ralfs; Orkney, Rev. Gilbert Laing and Rev. J. H. Pollcxfen ; Island of Islay, Lady Emma Campbell.

This is one of the Alga vexatce. When found by Mr. Brodie in the north of Scotland about forty years ago, and scnt to Mr. Turner, they agrecd in considcring it a variety of D. alata, naming it D. angustissima. In defercnce to a person of remarkably sound judgment, and who is seldom mistaken, Professor Harvey described it in his Manual as Gelidium? rostratum; in Phyeologia Britannica, he figures and deseribes it as Delesseria angustissima; in his excellent Plate Lxxxim. the figures of the fruit exaetly eorrespond with those of D. alata, exeept that the tubereles or capsules in his figure are in sharp-pointed, axillary ramuli : whereas in my specimens of D. alata, they are in the rounded or dichotomous tips of the frond. I have beside me a speeimen from Dr. Dickie, Abcrdecn; another from the Rev. Gilbert Laing, Orkney; and a third gathered by Lady Emma Campbell, in the island of Islay : the latter is a finc rambling plant, in which the compressed edge of the frond begins to be membranous.
5. D. Hypoglossum, Lamouroux.

Hab. On rocks and on other Algre. Annual. Summer.

Frequent on the shores of England and Ircland, and not rare in Scotland.

The distinguishing characteristic of this pretty species is the repcatedly proliferous leaflets from the mid-rib. It is very variable. The frond is sometimes half an inch in breadtl, but this is only in Ireland, where it reaches its maximum of beauty. In Scotland it is not uncommon. In somc seasons it is abundant on the coast of Ayrshirc, and the sizc is often about equal to the beautiful figure, Plate II., Phycologia Britamnica. But at times in Ayrshire and in the island of Cumbrae, the frond is remarkably narrow, not above half a linc in breadth. I have rcceived finc spccimens from the Rev. Gilbert Laing from Orkney, and I have onc magnificent specimen procured by Major Martin in Lough Swilly of which the frond is so large that it might be mistaken for a young specimen of Delesseria sanguinea.
6. D. ruscifolia, Lamour. (Plate XIII. fig. 49, plant with tubercles on the leaves and leaflets, natural sizc.)

Hab. On rocks, and sometimes on the stems of Luminaria digitata, and on other Algæ. Annual. Summer and autumn. It is rare in Scotland. It has twiec becn procurcd, floating, in fine condition, by Miss Mac Lcish, in the sea at Saltcoats. Miss White, Islc of Portland.

> "How calm, how beautiful comes on The stilly hour when storms are gone; When morning winds have died away, And clouds beneath the glancing ray Melt off, and leave the land and sea Sleeping in bright tranquillity, Fresh as if day again were born Upon the rosy lap of morn!"

Genus LXXI. NTTOPHYLLUM, Greville.

Gen. Char. Frond plane, delicately membranaceous, rosecoloured, reticulated, wholly without veins, or very slight vague ones towards the basc. Fructification, hemispherical capsules imbedded in the substance of the frond, and ternate granules forming distinct scattered spots.-Greville.

1. Nitophyllum punctatuit, Greville. (Plate XIII. fig. 51, plant with spots of granules scattered over the frond.)

Hab. In the sea, attached to various Alga. Annual. Summer. It seems to be found on most of the shores of England and Ireland, and on the Seottish shores as far north as Orkney.

On the coast of Ayrshire, we would say, that in general
it is rather rare; yet there are seasons when it is very abundant. The summer of 1847 was one of these. In the summer of 1848 it was very rarely observed. It has the property, like Nitophyllum versicolor, of assuming an orange hue in fresh water, and of recovering its original eolour when dried. Fresh water aets also on it, as on Griffithsia setacea. My daughter, Mrs. Stark, when floating a newly-collected specimen in fresh water, cried out "Hear' how it fizzes." In the struggles of death it made this hissing, crackling sound, but it was soon over. The specimens got in the west of Scotland, though very beautiful, are seldom more than five inches in length by four in breadth. With what surprise should we gaze, were a gigantic Irish specimen to be floated over to us, such as those found by Mr. D. Moore at Cushendall bay, in the west of Ireland,five feet long, by three feet wide! We have heard of mermaids reclining on a rock, combing their beautiful flowing locks; were they ever in the pride of their hearts, to thimk of assuming fenale attire, what robe could be more appropriate and becoming than a spotted Nitophyllum? with its finely lobed margin encompassing their neek, and turned back, is la Vandyke, on their shoulders, where is the mer-man who wo uld not be fascinated with their graceful appearanee in this
new eostume? The eolour of this marine mantle is a beautiful pale rose pink. Its beauty is mueh inereased by the darker hued eapsules and sori with whieh it is spotted. It now ineludes Nitophyllum ocellatum. Dr. Greville's Plate xir. Alg. Brit., with fruetifieation is very instruetive. Professor Harvey devotes Plates cir. and ciri., Phye. Brit., to the illustration of the fruit, textures, and varieties, of this interesting and beautiful Alga.
2. N. Laceratum, Greville.

Hab. In the sea, on rocks and Algæ; to which it ean attach itself by its edges, and by little roots from the under side of the frond, so that it ean seareely be torn off without being injured.

It is a very variable plant; the colour is much darker than that of the preceeding, from whieh it is also distinguished by flexuous veins, proeeeding from the base of the frond. It is annual, and fruits in summer. Towards the end of the season, the fronds have beeome dark-coloured, and so destitute of gelatine that they do not adhere to paper. In this state it is very generally spotted with pretty Lepralice. In Ireland it grows to a great size, ten inches or so in length. It is rather a eommon plant in most plaees; but in Ayrshire it oceurs less frequently. It may, however,
generally be got in winter, in a young state, on the roots of Halidrys and Lam. digitata.
3. N. Hillie, Greville.

Hab. In deep tidal pools. Rare. Ammual. Summer and autumn. Miss Hill, Messrs. Rohloff, Hore, Coeks, Ralfs, Mrs. Griffiths, Dr. Jacob, and Dr. Arnott, England ; Prof. Harvey, Valentia Island ; Miss Turner, Jersey ; Miss White, Seilly Islands and Isle of Portland.

It is obseurely veined at the base of the frond, whieh is of a thiekish membranaeeous substanee, "resembling," says Mrs. Griffiths, "soft kid-leather." The dot-like granules are very small; the colour is rose-red; the smell, when fresh, is very disagreeable. See Plate clxix., Pliyc. Brit., for a fine figure of it, of the natural size, and fruit, \&c., magnified.
4. N. Bonnemarsoni, Greville.

This has been got by Dr. Greville in Bute; by the Rev. C. Clouston in Orkney ; by Miss Ball, Miss Taylor, Professor Harvey, Mr. W. Thompson, in Treland; by Mrs. Griffiths in England; by Miss White, Jersey. For figure and deseription distinguishing it from its eongeners, see Phyeologia Britannica, Plate xxıin.
5. N. Gmelint, Greville.

Hab. On rocks in the sea. Annual. Summer. Mrs. Griffiths, Miss Hill, Professor Walker Arnott, Miss White, in England; Miss Hutehins, Mr. W. Thompson, Dr. Drummond, Mr. D. Moore in Treland; Major Martin at Ardrossan.

Substanee membranaceous; colour a purplish rose red.

* 6. N. versicolor, Harvey.

Hab. Found by Mrs. Griffiths and Miss Hill in England; by Miss White, Isle of Portland; not rare.

To Mrs. Griffiths it had long been known under the colloquial name of "Orange Dwarf," from its small size when eompared with others; and from its turning from rosy pink to golden-orange, when exposed even to a shower of rain.

Family XV. CHONDRIE雨.

"How ofteu we forget all time, when lone Admiring Nature's universal throne; Her woods, her wilds, her waters,-the intense Reply of hers to our intelligenee !
Live not the stars and mountains? Are the waves Without a spirit? Are the dropping eaves Without a fecling in their silent tears?
No, no. They woo and elasp us to their spheres, Dissolve this elog and elod of elay before Its hour ; and merge our souls in the great shore."

Genus LXXII. BONNEMAISONIA, Agardl.

Gen. Char. Frond membranaceous, compressed, or plane, filiform, much branched, the branches pectinate with distichous cilia. Fructification, sessile or pedicellate capsules, containing a cluster of pyriform (compound?) sceds, fixcd by their base.Named after Bomnemaison, a celebrated French Algologist.Greville.

1. Bonnemaisonia asparagoides, Agarch. (Plate XII. fig. 45 , a braneh, natural size ; and at the base, on the left, is the top of a braneh, with eapsules magnified.)

Hab. On submarine roeks. Annual. June to September. Found in England by Mr. Wigg, Mr. D. Turner, Mr. Staekhouse, Mrs. Griffiths, Miss Warren, Rev. Mr. Hore, Mr. Ralfs; in Ireland, Miss Hutehins, Dr. Drunmond, Miss Gower, Professor Harvey, Mr. M‘Calla ; in Seotland, Major Martin, Ardrossan ; Isabella L., at Salteoats ; Rev. M. Lambie, Southend, Argyllshire; dredged by Mr. Gourlie, Frith of Clyde, off Skelmorlie.

Dr. Greville (whose Plate xir., Alg. Brit., is very instruetive) ealls this an extremely elegant and beautiful plant. Professor Harvey deseribes it as " Λ highly beautiful speeies, and so unlike any other British Alga that it must be recognised at a glanee. The delieate cilia whieh border every
part of the frond, and whieh are arranged with strict regularity, being always perfeetly distichous, and placed alternate to each other, and opposite either to a capsule or to a braneh, taken in connexion with the cellular frond and brilliant eolour, afford marks that eannot be mistaken." It is interesting to traec the history of beautiful plants, and it shows the rapid progress that the study of Algology is making, when we see that many whieh our most celebrated Algolgists forty years ago spoke of as rare, have been found to be not uneommon on many of our shores. This very plant, as the list of names shows, has been got in many parts of England, Seotland, and Ircland. At Southend and at Maerihanish bay in Argyllshire, it was so frequent last August, that D. L., jumr., almost filled his vasculum in the course of an hour with beautiful speeimens. A packet of undried specimens was sent to me in September by my friend, the Rov. Mr. Lambie, which he had gathered in Dunaverty bay, Kintyre, one of the riehest Algological localities in Seotland.

Mr. D. Turner says:-"For the original diseovery of this intercsting Fucus, we are indebted to Mr. Wigg. It appears to be a speeies of remarkably unfrequent oeeurrence, sinee it is not known to exist beyond the limits of the British

Isles,* and in the ferr places where it has been gathered, has been far from plentiful. Seen floating in the water, nothing ean be more elegantly feathery and delicate, than its general appearanee, the exquisite beauty of which those alone can appreciate who have had the opportunity of observing it reeent, as whatever care may have been employed in the preservation of it, it is, nevertheless, in that state far inferior to what it was before it was dried." Mr. D. Turner's Plate cr. is good, but in this faded state. I have, however, dried specimens of it whose colour is almost equal in splendour to the remarkably fine and correet figure given in Phycologia Britannica, Plate ur. The colour is a fine pellueid crimson.

Genus LXXIII. LAURENCIA, Lamour.

Gen. Char. Frond cylindrical, filiform, between eartilaginous and gelatinous, mostly yellowish or purplish red. Fructification of two kinds; 1, ovate capsules, with a terminal pore, containing a cluster of stalked pear-shaped seeds, fixed by their base; 2, ternate granules, imbedded in the ramuli.-Greville.

[^6]1. Laurencia pinnatifida, Lamour. (Plate XV. fig. 58, a portion of the frond, natural size.)

Hab. Roeks in sea. Annual. June to September.
This is one of the most eommon, and at the same time one of the most variable of our Algæ. It is found at high and low-water mark, and in deep water, its size and colour varying aeeordingly. It is very common on the eoast of Ayrshire, where it ranges from an ineh to upwards of six inches in length. Near high water-mark it is little more than an inch long, with a reeumbent, eurled, matted appearanee, of a dark olive eolour. In roek-pools it is a little larger and yellower. At low-water mark it attains its full size, and is of a darker purplish eolour. As in some states it does not adhere to paper, or stains the paper to whieh it adheres, it is oceasionally treated to a moment's immersion in boiling water. This renders it more pliant, and less apt to stain the paper, but makes it paler in eolour.

It is very interesting to look at the numerous varieties of this plant as figured by our most distinguished Algologists, Stackhouse, Turner, Greville, Harvey. The variety Osmunda, as figured by Stackhouse, is beautiful. Dr. Greville's figures in Plate xiv. Alg. Brit., and Professor Harvey's in Plate Lv. Phye. Brit., are very valuable. It is ealled pepper-
dulse, and it certainly has, especially when young, a very pungent smell and peppery taste, and may form a very comfortable quid for an Icelander. It was formerly eaten in Scotland, but we rather think that now it is not at all used. * 2. L. hybrida, Lenorm.

Vide Phycologia Britannica.
3. L. obtusa, Lamour.

Hab. On the largcr Algæ. Annual. Summer and autumn.

This is common in England and Ircland. In Scotland, rather rare. It has been procured by Dr. Greville in Bute; by Mr. W. Thompson at Ballantrac ; by Major Martin at Ardrossan ; by D. L. at Portincross, Ayrshirc, and in Arran and Kintyre ; by Miss White, Islc of Portland. It is very commonly found in rock-pools. When exposed to the sun, it becomes a dirty yellow ; but when young, or growing in deep water, it is of a finc light pink colour. It is from three to six inches in height. There is a beautiful characteristic figure in Phyc. Brit., Plate cxlviil.

4. L. dasyphylla, Lamour.

Hab. On rocks and stones in the sca. Annual. Summer. Frequent on the eastern and southern shores of England. Found in Ireland by Miss Hutchins, Mr. W. Thompson,

Dr. Drummond ; in Seotland, by Mr. Brodie, Lossiemouth; Dr. Greville, Bute; Major Martin, Ardrossan ; in Arran, by Dr. Greville and D. L. ; Miss White, Isle of Portland.

It is rarer in Seotland than the preceding, and it is a larger and more handsome plant ; but its ehief distinetions are the transverse strix of the branehes, and the tapering of the ramuli towards the base; colour pale pink, becoming yellow when in shallow water.
5. L. Tenuissima, Greville.

Hab. In the sea on roeks. Very rare. South of England and Ireland. Annual. Summer. Miss White, Isle of Portland and Jersey, fine and plentiful.

It differs from L. dasyphylla by the ramuli tapering both towards the base and apex. For good figures and deseriptions, see Phye. Brit. Plate cxlviit. ${ }^{-}$

Genus LXXIV. CHRYSIMENIA, J. Agardh.
Gen. Char. Frond tubular, continuous, (not constricted or jointed,) filled with a watcry juice, and traversed by longitudinal filaments; its scales composed of several rows of cells, the innermost of which are distended, and much clongated, the outer gradually smaller, and the ultimate very minute. Fructification of two kinds; 1 , ovate or conical capsules (ccramidia) containing
a dense mass of angular spores fixed to a central placenta; 2, triparted tetraspores immersed in the ramuli.-The name from two Greek words signifying golden membrane, because the species acquires golden tints if long steeped in fresh water.-Harvey.

1. Chrysimenta clavellosa, J. Agardle. (Plate XIV. fig. 56, a branch, natural size; and to the right at the base a small branch with capsules, magnified.)

Hab. On rocks, stones, shells, and Algæ at low water mark and deeper. Annual. Spring and summer. We have got it on seallops dredged from deep water in Lamlash bay. It is found on all the British shores. On the coast of Ayrshire it is in general rather rare; but in the summer of 1847 it was very abundant, bcing cast out by cvery tidc.

It is a very variable plant, but beautiful in all its phases; some of them remarkably so, with finc arched branches, resembling the Ncw Zealand Chrysimenia secundata, only our British plant is not secund. Howcver, it even surpasses the Now Zcalander in colour, being a finc light pink, which it retains in drying. The figures in Hist. Fucorum are good, but those in Phyc. Brit., Plate cxiv., are still better. Chrysimenia is distinguished from Chylocladia by the absence of internal diaphragms dividing the branches into distinct joints.

Genus LXXV. CHYLOCLADIA, Greville.

Gen. Char. Frond (at least the branches) tubular, constricted at regular intervals, and divided by internal diaphragms into joints, filled with a watery juice, and traversed by a few longitudinal filaments; periphery composed of small polygonal cells. Fructification of two kinds on distinct individuals; 1 , spherical, ovate or conical capsules (ceramidia) containing a tuft of wedge-shaped spores on a central placenta; 2, tripartite tetraspores immersed in the swollen branches near the apices.Name from Greek words signifying juice and branch.-Harvey.

1. Chylocladia ovalis, Hooker.

Hab. On rocks and stones within tide-marks. Annual. Spring and summer. Frequent on the English and Irish shores. Rare in Scotland. Little Isles of Jura, Liglttfoot; Lieut. Thomas and Dr. M‘Bain, Papa Westra; we have it from Miss White, Jersey.
2. C. Kaliformis, Hooker. (Pl. XV. fig. 57, a portion of the frond.)

Hab. In the sea on rocks and on Algr, generally in deep water, but occasionally in shallow water at mid-tide mark. Annual. June to September. It is frequent in England and Ireland, and not rare in Scotland, and is much more common in Arran than on the Ayrshire coast.

It is a handsome plant when dried, though when fresh from the sea it has a clumsy appearance, as in general it is in a bunch of a dozen branches, nearly a foot in length, subgelatinous, and filled with watery juice; when fresh from deep water the colour is purple. When partly decomposed it is at times singularly beautiful, red, purple, and yellow and white, and green tints being richly mingled. More frequently, however, it is a dull bluish purple when driven ashore. There is a magnificent figure of its normal appearance in Phyc. Brit., Plate cxlv.

* 3. C. reflexa, Lenormand.

Hab. On rocks in the sea near low-water mark. Very rare. Found by Miss Amelia Griffiths near Ilfracombe, and Mr. M‘Calla, Roundstone bay. See Phycologia Britannica, Plate xLif.
4. C. parvula, Hooker.

Hab. On larger Algæ. Annual. Summer and autumn. England, Mrs. Griffiths, Mr. Borrer; Ireland, Miss Hutchins, Mr. Templeton, Mr. D. Moore ; at Saltcoats, floating in the sea, by Mrs. R. M. Stark; island of Cumbrae, Rcv. G. Laing.

Colour, a fine, fugitive pinky red. Distinguished from C. kaliformis by the ramification, the uniformly short joints,
and the shape of the eapsules, whieh are ovate. See Phye. Brit. Pl. ccx.
5. C. articulata, Hooker. (Pl. XIV. fig. 53, portion of plant, natural size, and at the base, on the left, is a small portion with capsules, magnified.)

Hab. On roeks, and on the larger Algæ. Annual. Summer.

Common on all our shores, ereeping on the steep sides of perpendicular roeks near low-water mark. Irish speeimens are large, sometimes a foot in length. In the west of Seotland they are seldom above five inehes in length, and more generally not above three inehes. The smaller speeimens are like Catenella Opuntia. Colour reddish purple; substanee membranaeeous, filled with watery gelatine.

Family XVI. CORALLINE

Involved in sea-wrack here you find a race,
Which Science, doubting, knows not where to place.-Crabbe.
Corallinas ad Regnum Animale pertincre ex substantia earum calcarea constat, cum omncm calcem Animalium esse productum verissimum sit.-Linncus.

Mihi vero totum hocce genus Botanicis relinquendum videtur.-Pallas.
Heu que nunc tellus-quæ me æquora possint Accipcre-?
Cui neque apud Danaos usquam locus.-Tirgil.

Genus LXXVI. CORALLINA, Linnaus.

Gen. Char. Frond filiform, articulated, branched (mostly pinnate), coated with a calcareous deposit. Fructification, turbinate or obovate, mostly terminal ceramidia, picrced at the apex by a minute porc, and containing a tuft of erect, pyriform, or clubshaped, transversely parted tetrasporcs. The name from their resemblance to coral. -Harvey.

1. Corallina officinalis, Limmaus. (Pl. XIV. fig. 54, natural size, and on the left, a portion of a branch with eeramidia, magnified.)

Hab. On rocks between tide-marks. Percnnial. Winter and spring. Abundant on all our roeky shorcs.

Dr. Johnston in his well-known History of British Sponges and Corallines, says, rcspecting this species :-"It appears first in the guise of a thin, circular, calcareous patch, of a purplish colour, and in this state is common on almost every object that grows between tidc-marks." It has been deseribed as Millepora lichenoides, while its carlier states constitute Lamouroux's various species of Melobcsia. A very beautiful white light is produced by holding a piece of C. officinalis close to the flame of a eandle. It was once believed to have very powerful vermifuge virtucs. "The colour is a dark purple, soon fading on exposurc. Though
kept dry for years it continues to emit an unpleasant smell.

Professor Harvey says: "The question of the vegetable nature of Corallines, may now be considered as finally set at rest by the researches of Kützing, Philippi, and Decaisne. Whoever macerates a portion of one of these stony vegetables in acid, till the lime it contains be dissolved, will find that he has a structure of a totally different nature from that of any zoophyte, while it is perfectly analogous to that of many Algr." In Plate ccxxir., Phyc. Brit., there is a figure of a portion of the frond after maceration in acids.
2. C. elongata, Ellis and Solander.

Vide Phycologia Britannica; see also Dr. Johnston's History of British Sponges and Corallines, page 221.
3. C. squamata, Ell. and Sol.

Hab. On submarine rocks. Perennial. Summer. South coast of England, Ellis, \&c.; West of Ireland, Professor Harvey ; Youghal, Miss Ball. There is no Scottish habitat given, but we have seen it on the Ayrshire coast; and we have it also from Australia.

Genus LXXVII. JANIA, Lamouroux.

Gen. Char. Frond slender, branched in a dichotomous manner; the joints cylindrical ; the crust calcarcous, unporous; the axis subcartilaginous, solid, constricted at intervals corresponding to the articulations of the crust. Capsular swellings produced in the axis of the branches containing several granules.-Jomaston.

1. Janta rubens, Lamouroux.

Hab. Generally on the smaller Algæ. Dr. Johnston says that it is not found on the eoast of Berwickshire, and that it is rare on the eastern shores of Seotland. It is frequent on the English and Trish shores. It is rare on the coast of Ayrshire about Ardrossan and Saltcoats, but not rare a little farther north at Portineross, and very abundant more to the south at Ballantrae, where I have gathered a seore of speeimens in a quarter of an hour. It is frequently found in the island of Arran.

It grows in dense tufts from an ineh to two inehes in height. Colour pale, but when exposed to the sun, it beeomes whitish or at times greenish. Dr. Johnston says that the strueture of the axis is deeidedly vegetable; and Dr. Harvcy is of the same opinion. For an cxcellent figure of it, natural size, and also for a magnified figure after the crust lias been removed by aeid, see Johnston's

History of British Sponges and Corallines, and Phye. Brit., Plate colit.

Genus LXXVIII. MELOBESIA, Lamour.

Gen. Char. Frond attached or frce, eithcr flattened, orbicular, simuated, or irregularly lobed, or cylindrical or branched (never articulated), coatcd with a calcareous deposit. Fructification, conical, scssile capsules (ceramidia) scattered over the surface of the frond, and containing a tuft of transversely parted oblong tetrasporcs.-Namc from one of the Sea Nymphs of Hesiod.Harvey.

1. Melobesia polymorpha, Limncus.

Hab. On submarine roeks and in quiet bays. We have dredged it in Lamlash bay, where there are extensive beds of it, at the depth of several fathoms. Similar beds are found at Rothesay, and in Loeh Fyne.

It is very hard and very diversified in form as the speeifie name implies. Ray says that it is dredged out of Falmouth harbour to manure their lands in Cornwall. And Mr. W. Thompson informs us that it is dredged in Bantry bay for the same purpose. From Professor John Fleming we learn that it is so abundant in Orkney as to warrant the conclusion

that it might be advantageously cmployed for agricultural purposes and for building, especially as limestone is scarce in Orkney, and gencrally of bad quality. Dr. Walker in in his Essays, says: "Of the cathedral of Icolmkill, (Iona,) the cement is so strong that it is casier to break the stones than to force them asundcr. It is of lime that has been calcined from sea-shells, and formcd into a very gross mortar, with coarse gravel, in a large proportion, and a great quantity of the fragments of white coral, which abounds upon the shores of the island." The colour of this coralline is generally white when it lies bleached on the shore, but when newly dredged in Lamlash bay it is of a reddish purple. At first I was disappointed when the dredge came up full of this Millepore. I soon learned, however, to hail its appearance, for on examining it carcfully, handful by handful, I found many precious things intermingled with the coral. One of these was Lima tenera, which like those persons who built the cathcdral of Icolmkill, employs much of this coral in forming its habitatiou.*

* The most interesting, though not the rarest thing we got was Lima tenera, Turt. I had in my cabinet speeimens of this pretty hivalve, and I had admired the beauty and clegance of the shell, but hitherto I had been unaequainted with the life and manners of its inhabitant. Mr. and Miss Alder of Neweastle, who were of the party; had got it in the same kind of

2. M. agariciformis, Lam.

See Dr. Johnston's History of British Sponges and Corallines, page 24.1, and Professor Harvey's Phycologia Britannica, Plate Lxxili.
coral at Rothsay; so that when Miss Alder got a eluster of this coral, brought up by the dredge, eohering in a mass, she exelaimed: " O , here is the Lima's nest!" and breaking it up, the Lima was found snug in the midst of it. The coral nest is euriously construeted; and remarkably well fitted to be a safe residence for this beautiful animal. The fragile shell does not nearly cover the mollusk-the most delieate part of it, a beautiful orange fringe-work, being altogether outside of the shell. Had it no extra proteetion, the half-exposed animal would be a tempting mouthful, qnite a bonne-bouche, to some prowling haddoek or whiting; but He who tempers the wind to the shorn lamb, teaches this little ereature, whieh he has so elegantly formed, eurious arts of self. preservation. It is not eontent with hiding itself among the loose eoral,-for the first rude wave might lay it naked and bare: it beeomes a marine-mason, and builds a place of abode; it ehooses to dwell in a eoral-grotto, but in eoustrueting this grotto, it shews that it is not only a mason, but a rope-spinner, and a tapestry weaver, and a plasterer. Were it merely a mason, it would be no easy matter to eause the polymorphous coral to cohere. Cordage, then, is necessary to bind together the angular fragments of the coral ; and this eordage it spins, but its mode of spinning it is one of the seerets of the deep. Somehow or another, though it has no hands, it eontrives to intertwine this yarn whieh it forms, among the numerous bits of coral, so as firmly to bind a handful of it together. Externally, this habitation is rough, and tberefore better fitted to elude or to ward off enemies; but though rough externally, all is smooth and lubricous within, for the yarn is woven into a lining of tapestry, and the interstiees are filled up with fine slime, so that it is smooth plaster-work, not unlike the patent Intonaco of my ingenious friend, Mrs. Marshall. Not being intended, however, like her

3. M. fasciculata, Harvey.

Hab. Found by Mr. M'Calla on the sandy bottom of the sea, in 4-5 fathom water.

It is from one to three inches in diameter, irregularly

 raluable composition, to keep out damp, or to bid defiance to firc, while the intertwining cordage keeps the coral walls together, the fine tapestry, mixed with smooth and soft plaster, covers all asperities, so that there is nothing to injure the delicatc fringed appendages of the inclosed animal. Tapestry, as a covering for walls, was once the proud and costly ornament of regal apartments; but ancient though the art was, I shall answer for it, that our little marine artisan took no hint from the Gobelins, or from the workmen of Arras, or from those of Athens, or even from the earliest tapissiers of the East. I doubt not that from the time that Noah's Ark rested on the mountain of Ararat, the forefathers of these bcautiful little Limas, have been constructing their coral cottages, and lining them with well-wrought tapestry in the peaceful bay of Lamlash.When the Lima is taken out of its nest, and put into a jar of sea-water, it is one of the most bcautiful marine animals you can look upon. The shell is elegant, the animal within the shell is beautiful, and the orange fringework outside of the shell is highly ornamental. Instead of being sluggish, it swims about with great vigour. Its mode of swimming is the same as that of the scallop. It opens its valves, and suddenly shatting them, expels the water, so that it is impelled onwards or upwards; and when the impulse thus given is spent, it repeats the opcration, and thus moves forward by a succession of jerks or jumps. When moving through the water in this way the reddish fringe-work is like the tail of a fiery comet. The filaments of the fringe may, for anything we know, be uscful in catching their prey; they are very easily broken off, and it is remarkable that they scem to live for many hours after they are detached, twisting themselves about in a vermicular manner.-Excursions to Arran by D. L., p. 319.
lobed. I have a specimen from Loch Ryan which perfectly corresponds with the first figure of it, given in Platc lxxiv., Plyc. Brit.

After the description of it Professor Harvcy adds: "I have mentioned that the vegctable nature of the corallines is now distinctly proved. The question still remains whether Melobesice are independent vcgetables, or whether they be merely amorphous states of the common Corallina officinalis. This latter is the view of the subject advocated by Dr. Johnston, whose opinion, founded on observation, and as the opinion of an accomplished naturalist who has paid much attention to the lower tribes of animals, and is familiar with variations in form among sponges, nearly as wild as this would be, - must not be hastily condemned." Though he does not fecl warranted to give a direct negative, he is not disposed to agree with Dr. Johnston's views on this point, and he assigns his reasons.

The Ocean heaves resistlessly
And pours his glittering treasure forth;
His waves, the priesthood of the sea,
Kneel on the shell-gemmed earth,
And there emit a hollow sound
As if they murmur'd praise and prayer ;
On every side 'tis holy groundAll nature worships there!"-Fedder.

Family XVII. RHODOMELE风.

The oeean old hath my deep reverence, And I eould wateh it ever:-when it sleeps, And its hushed waves but throb at intervals, Like some fair infant's breath in sad repose, 'Tis strangely sweet to gaze;-or when it starts At voiee of torturing storm, and, like mad age, Tosses its hoar hair on the raving wind, ${ }^{\text {'Tis wild delight to watch it. But I love }}$
To see it gently playing on loose roeks, Lifting the idle sea-weed earelessly ;-
Or hear it in some dreary eavern muttering A solitary legend of old times.-T. H. Reynolds.

Genus LXXIX. ODONTHALTA, Lyngbye.

Gen. Char. Frond plane, between membranaceous and cartilaginous, dark venous red, with an imperfect or obsolete mid-rib, and alternately toothed at the margin. Fructification, marginal, axillary, or in the teeth; 1 , capsules (ceramidia) containing pearshaped seeds, fixed by their base; 2, slender processes (stichidia) containing ternate granules.-Greville.

1. Odonthalia dentata, Iyngbye.

Hab. On rocks in the sea. Perennial. Fruiting in carly winter.

This is a northern species, not being got in England south of Durham ; and it is confined also in Ireland to the north.

It is most abundant in Scotland; very frequent on the coast of Ayrshire, where we have a variety of it rieher than any I have seen figured. The fronds of this variety are rather more limber than the common kinds, and the branches and dentieulations are smaller and more numerous, and more closely arranged. In November, Odonthalia is very frequent on the shore, finely dotted with fruit, whieh is very observable, as the frond at this season is dark-eoloured, and the fresh eeramidia and stiehidia are reddish purple. In the early part of the season, April and May, the joung lightbrown fronds are intermingled with the old dark fronds. The young fronds adhere well to paper ; the old have become rigid, and do not adhere unless coaxed with a little isinglass, or subdued by a hasty dueking in hot water. Dr. Greville's Plate ximr. in Alg. Brit., and Professor Harvey's Plate xxxiv. in Phye. Brit., give much insight as to the structure and fructifieation. The eolour of Plate xxxiv. is bluer than the plant is with us. Mr. D. Turner's is too brown.

Genus LXXX. RHODOMELA, Agardh.
Gen. Char. Frond cylindrical, or compressed, filiform, much branched, coriaceo-cartilaginous (the apex sometimes involutc).

Fructification; 1, subglobose capsules, containing free pearshaped secds : 2, pod-like reccptacles, with imbedded ternate granules.-Greville.

1. Rhodomela subfusca, Agardl.

Hab. In the sea, on rocks and on other Algæ. Pcrennial. Fruiting from the beginning of spring till the beginning of winter, when it bears stichidia. Very common on the English, Trish, and Scottish shores.

It is a very variable plant, in spring beautifully tufted, in summer coarse and bushy, in winter ragged, rigid, and ugly; and yet even then it is far from being without interest, as it is then occasionally ornamented with fresh-coloured stichidia on the old black branches. The colour in summer is a dull reddish brown, which becomes black in drying. I have some fine black specimens from Staffa and Iona. Except in its young tufted state, it does not adherc well to paper.
2. R. lycopodioides, Agardlh.

Hab. On rocks in the sea, and on Laminaria digitata. Perennial. Fruiting in spring and summer. Its capsular fruit is more globose than that of the preceding.

This is a northern specics, frequent in the North of - Englaud and Treland, and found on most of the Scottish shores. In spring it is procured in abundance on the coast
of Ayrshire. The winter and early summer states of this plant are exceedingly different. In winter, when found with perhaps a dozen black branches, more than a foot in length, from one root, closely invested with the numerous stumps of summer branchlets, it might pass for a cluster of black wolves' tails, rather than wolves' fect, as the specific name would lead us to expect, unless the black feet carry the black legs along with them. In early summer it sends forth along the old stem abundance of young branches, which are beautified with numerous feathery tufts of ramuli, causing it greatly to resemble Polysiphonia Brodici. The substance in winter is cartilaginous and rigid, and does not adhere to paper in drying; the colour in that state is very dark. In early summer the branches are quite pliant and rather flaccid; adhere closely to paper, and form a beautiful specimen, of a light brownish-purple colour. In some specimens collected on the coast of Devonshire, the frond is twenty inches long, and the lateral branches from six to fourteen : some of the Scotch specimens are equally large. The figure in Hist. Fucorum is good, in the winter state of this plant, though too light in colour. Plate L. in Phỵc. Brit. is good and instructive.

Genus LXXXI. BOSTRICHIA, Mont.

Gen. Char. Frond dull purple, filiform, much branched, inarticulated, dotted; traversed by a jointed tube surrounded by one or more concentric layers of oblong, coloured cells, which arc gradually shortcr towards the circumference; the surface cells quadrate. Fructification of two kinds on distinct individuals; 1, "lateral capsules" (ceramidia), Roth.; 2, tctraspores, contained in terminal, lanccolate pods.-The name from a Greek word signfying a curl of hair or ringlet.-Harvey.

1. Bostrichia scorpioides, Mont. (Plate XI. fig. 41, branch of the natural size; and small portion of a branch, magnified.)

Hab. On muddy sea-shores, near high-water mark; at the estuaries of rivers ; in salt-water ditehes, and marshes, and even adhering to the roots of flowering-plants. Annual. Summer. In England and Ireland, but in so far as we know, not yet observed in Scotland.

It formerly ranked under the genus Rhodomela. See a beautiful figure of it in Phycologia Britannica, Plate xlviil.

Genus LXXXII. RYTIPHLAA, Agardh.

Gen. Char. Frond filiform, or compressed, pinnate, transversely striate, reticulated; the axis articulated, composed of a circle of large, tubular, elongated cells (siphons) surrounding a central cell; the periphery of several rows of minute, irregular, coloured cellules. Fructification of two kinds on distinct individuals; 1 , ovate capsules (ceramidia) containing a tuft of pear-shaped spores; 2, tetraspores, containcd in minute lanceolate receptacles (stichidia) in a double row.-The name from two Greek words signifying a wrinkle and bark, because the surface is transserscly wrinkled or striate.-Harvey.

1. Rytipillea pinnastroides, Agardh.

Hab. On submarine rocks near low-water mark. Perennial. Winter. In several places on the shores of the south of England. By Miss White and Miss Turner in Jersey.

Found neither in Scotland nor Ireland. Substance cartilaginous, not adhering to papcr; colour, a dark reddish brown, becoming black in drying. For structure, fruit, \&c., see Plate Lxxxv., Phycologia Britannica.
2. R. complanata, Agardla.

Hab. In rock-pools, among Corallina officinalis. Perennial? Summer. Tery rare. Discovercd in Bantry bay by

Miss Hutchins. Got by Professor Harvey, Ireland; by the Rev. W. S. Hore, Professor Walker Arnott, Dr. Jacob, in England. See fine figure, Phyc. Brit., Plate clux.
3. R. thuyordes, Harvey. (Plate XV. fig. 59, plant of natural size ; and part of a branch, magnified.)

Hab. Rocks in the sea, rock-pools. Pereminial. Summer and autumn. Bantry bay, Miss Hutchins; Prof. Harvey, Miltown Malbay ; Mrs. Griffiths and Mr. Ralfs, Devonshire; Mr. W. Thompson, Ballantrae ; D. L., Portincross ; D. L., junr., Arran.

It is a variable plant, some specimens resembling Polysiphonia nigrescens, and others approaching Polysiphonia fruticulosa. It often bears antheridia in summer ; colour, a brownish red becoming darker in drying.
4. R. fruticulosa, Harvey.

Hab. On rocks in the sca; sometimes in rock-pools, and at other times on sand-covered rocks. Perennial. Summer and autumn. Frequent on the southern shores of England. Got in Ireland by Miss Hutchins, Mr. W. Thompson, Mr. D. Moore ; in Scotland, by Capt. Carmichael, at Appin ; by Miss Ramsay, Spring Bank, Arran ; by D. L., Corrie, Arran ; by D. L., juur., Corriegils, Arran; I know only of one place where it is got on the const of Ayrshirc,-in the little т 2
harbour at Portincross, where it was first found by Mrs. Ovens and Major Martin.

Though cartilaginous, it adtheres to paper, and forms a bcautiful specimen. Colour, brownish, becoming black in drying.

Genus LXXXIII, POLYSIPHONIA, Greville.

Gen. Char. Frond filamentous, partially or generally articulate : joints longitudinally striate, composed internally of parallel tubes, or elongated cellules. Fructification two fold, on distinct plants; ovate capsulcs (ceramidia) furnished with a terminal pore, and containing a mass of pear-shaped seeds; 2, tetraspores imbedded in swollen branchlets.-The name from two Greek words signifying many tubes.-Harvey.

1. Polysiphonia parasitica, Greville. (Pl. XII. fig. 47, plant of the natural size ; to the right, a portion of a pinnule, and to the left, a portion of a pinnule with a capsule, both magnified.)

Hab. Parasitical on the larger Algæ, and morc frequently on TheTobesia on the steep sides of rock-pools. Got also by dredging in from four to fiftecn fathoms mater. Found on all the British coasts, but regardcd as rather rare. Mrs. eriffiths, Devonshire; Dr. Grevillc, Loch Ryan; Major

Martin, Ardrossan ; D. L., Salteoats. Many fine speeimens have been got in the island of Arran, where it was discovered by Isabella I., growing in abundance in roek-pools on Melobesia. The riehest habitat, however, is at Portineross, betwixt Ardrossan and Largs, where in August it is abundant among rejectamenta, in the little ereek that forms the harbour, being drifted from deep water.

Professor Harvcy says that our Ayrshire spccimens are by much the finest he has seen. The numcrous branehes are at times about three inches in length. It is often got with capsular fruit, and the eapsules are larger in proportion to the stem. Λ t times, also, there are spurious capsules,knobs formed by the stinting of the ramuli. Not unfrequently, also, there are clusters of short branches matted together on various places of the frond,-miniature resemblanees of those bunches of twigs like birds' nests oftel seen on birch trees.

But the most interesting specimens, though the most minute, werc got by me after the storms of December, 1848, creeping on the roots of Halidrys siliquosa. Instcad of growing upright, as they usually do, they were repent, not only fastencd by the radical roots (if we may employ this tautological expression), but throwing out roots at intervals
from the stem, and from the branehlets, and so firmly did they adhere by these that it took repeated tugs to disengage them, and you heard a erackling as if you had been slitting out the stiehes of an old garment. In this way they lay quite unaffeeted by ally storm that did not uproot the Halidrys. The largest frond I observed of this creeping variety, was not above an ineh in length; it was mueh more compressed than the ereet kind, and being a darker purple, it bore a striking resemblance to Jungermannia complanata, which ereeps on the bark of trees. I found it also in this state on the roots of Laminaria digitata, but Halidrys was evidently the favourite. Creeping in this way it is much better entitled to the specifie name parasitica, as it resembles ivy, putting out its tendrils to eling tenaeiously to trees.

The eolour is reddish brown, beeoming darker in drying. There is a beantiful figure of it in Phyeologia Britanniea, Plate cxivir.

2. P. subulifera, Harvey.

Hab. In the sea. Rare. Perennial? Found by Mrs. Griffiths, Torquay; Capt. Carmichael, Appin ; by Professor Harvey (who kindly sent me speeimens) in Ireland; got also on the Trish shores by Mr. Templeton, and by Mr. M‘Calla; by the latter abundantly at Roundstone.

It has a very thorny habit, as the specific name implics. To the naked eye it bears some rescmblance to young specimens of Rytiphleea fruticulosa, but it is distinctly jointed and more flaccid. See a good figure of it in Phyc. Brit., Plate ccxxxvir.
3. P. atro-rubescens, Greville.

Hab. On stones and rocks in the sea, near low-water mark. Annual. Summer and autumn. Not uncommon.

It has borne a good many different names, - Conferva sigra, Hutchinsia denudata, Polysiphonia badia, P. Agardhiana, and finally P. atro-rubescens: the specific name was given by Dillwyn. It is got on the coast of Ayrshire. One of the best distinguishing marks, though not constant, is the spiral curving of the tubes. Colowr, a dark-red, becoming brownish ; the substance is somewhat rigid, so that it does not always adherc to paper. See in Phycologia Britannica, Plate clxxir., a very good figurc, natural size, and portions of the stem and fruit magnified.
4. P. spinulosa, Greville.

Hab. Torquay, Mrs. Griffiths; Appin, Capt. Carmichael. Extremely rarc. A good figure of it is given by Dr. Greville in his Cryptogamic Flora.
5. P. nigrescens, Greville.

Hab. On rocks, \&c., in the sea. Perennial. Summer.
Fronds tufted, and from six to eight inehes high; filaments robust, rigid, and generally rough below, with broken branehes, much branehed and bushy above; articulations short, eapsules ovate ; eolour dark brown, becoming black in drying. In a young state it is often very beautifully tufted, and of a purplish-pink colour, which it retains in drying.
6. P. furcellata, Harvey.

This is a very rare speeies. Mrs. Griffiths found it floating in the sea, at Sidmouth. It was got also by Mr. M‘Calla near Carriekfergus in 1846. It is between Polysiphonia fastigiata and Polysiphonia nigrescens, but different from both. See Phyeologia, Plate vir.
7. P. fastigiata, Greville.

Hab. On Fucus nodosus and F. vesiculosus, espeeially the former, forming globose, dense bushy tufts, of a brown, or at times a yellowish colour. It is very common; but eommon as it is, I have a liking for it, as it was the first of the small Algæ I knew by name. I had been eorresponding with Professor John Fleming, of Edinburgh, respecting shells and zoophytes, and meeting with this sea-weed in sueh abundanee, I wished to know its name, and sent a specimen to him, which he returned with the mame it then

bore; so that I am indebted to him for setting me agoing in Algology as in some other departments of natural science. It is eommon at all seasons on all our shores. Many a nice little mollusk nestles among its tufted branches. In summer its tips are often yellow with antheridia. It adhcres well to paper in the early part of the season, and makes a fine speeimen ; it is very polymorphous.
8. P. Richardsoni, Hooker.

Owing to my limited spaee, I shall merely give the name of this and some that follow.
9. P. Grifithsiana, Harv. 12. P. Grevillii, Harv.
10. - Carmichaeliana, Harv. 13. - striata, Grev.
11. - variegata, Agardh. 14. -obscura, Agardh.
15. P. Brodiei, Greville. (Platc XV. fig. 60, branch, natural size, and branchlet with eapsules, magnified.)

Hab. On rocks and corallines near low-water mark. Annual. Summer. Common in Seotland on rocky shores; also in England and Ireland.

Frequent as it is now known to be, it remained unnoticed by naturalists till it was sent by Mr. Brodie of Brodic to Mr. Dillwyn about forty years ago, who dedieated it to Mr. Brodie. It was then ranked as a Conferva. "C. Brodicei, says Mr. Dillwyn, "is among the most magnificent of the
genus, often extending to a foot and a half or two feet in length, and pushing forth from a discoid base, several main filaments as thick as small twine, and of a blackish-purple colour. These are beset with seattered branches of uneertain length. Along the branches at irregular intervals, clusters of slender ramuli are disposed." The colour is generally dark brownish purple ; the substanee is soft, soon decomposing in fresh-water. There is a fine figure of it, and the different kinds of fruit in Phye. Brit., Plate cxct. The plate in Dillwyn's British Confervæ, is both good and interesting, for the drawing from which it was taken was made by Miss Hutehins, and communieated by her to Mr. D. Turner, who sent it to Mr. Dillwyn.
16. P. fibrillosa, Greville.

Hab. Roeks in the sea. Annual. Summer.
This is a pretty speeies, eommon in England, Scotland, and Ireland. It is large, the frond being from 6-10 inehes, the main stem nearly half a line in diameter; the branehes in the upper part elothed with slender, finely divided ramuli, at times straw-coloured, but more generally rosy, becoming purple when dried. Mr. Borrer thinks that it resembles Pol.byssoides; Mrs. Griffiths eonsiders it as more like Pol. Brodici. To us, it seems in a young fresh rosy
state to eome nearer Polysiphonia elongella, but it loses mueh of the resemblanee when it is dried. It is very common in the island of Arran, and not uneommon on the eoast of Ayrshire.

17. P. niolacea, Greville.

Hab. On roeks and stones and Algæ near low-water mark. Ammal. May and June. First diseovered in Britain by Mrs. Griffiths; Falmouth, Miss Warren; Carnarvon, Mr. Ralfs ; Plymouth, Mr. Rohloff; Belfast Lough, Dr. Drummond ; Howth, Miss Gower ; Kerry, Mr. Andrews; Roundstone, by Mr. M'Calla. Got oeeasionally on the eoast of Ayrshire. I have some fine speeimens from Mrs. Griffiths and Mr. Ralfs. See a•beautiful figure of it in Phyeologia Britanniea, Plate cotx.
18. P. fibrata, Harvey.

Hab. On roeks, shells, and Algæ, near low-water mark. Annual. Summer and autumn. Common.

It is articulated throughout, and the joints marked with two strix. At Ardrossan it is found abundantly on Chorda filum at the mouth of the harbour, and, prepared when quite fresh, it makes a beautiful speeimen. In fresh water it very soon deeomposes. There is a fine figure of it in Phye. Brit., Plate coviri., and magnified specimens of three
kinds of fruit, ceramidia, tetraspores, and antheridia, the last of whieh, viz., antheridia, are often clustered round the tips of the branehes, "erowning every branchlet with a tuft of golden fruit."
13. P. pulvinata, Spreng.

Hab. On rocks in the sea, and in rock-pools. Annual. Mrs. Griffiths, Torbay ; Land's End, Mr. Ralfs; Miltown Malbay, Professor Harvey; Miss Gower, Balbriggan; Mr. D. Moore, Port Stewart ; Ardrossan, Major Martin; Salteoats, D. L., jumr.

It resembles Polysiphonia urceolata, in miniature. It is not only smaller but softer, and the branehlets are more closely erowded. See figure in Phye. Brit., Plate cir.
20. P. urceolata, Greville.

Hab. On rocks and on the stems of Laminaria digitata. Annual. Summer. Growing on Laminaria it becomes rigid when full grown, and does not adhere to paper in drying. What grows on roek, is with us less rigid, darker eoloured, and dceomposes more readily in fresh water. When growing on Laminaria the branehlets are often very squarrose, and in this state it has becn callcd P. patens, but it is only a variety. Sce Phycologia Britamiea, Platc clxvir.
21. P. formosa, Suhtr.

Hab. On rocks and Algæ. Annual. Summer. Found in England by Mrs. Griffiths, Mrs. Wyatt, Rcv. W. S. Hore, Dr. Cocks, Dr. Jacob, Rev. R. Cresswell; in Ireland by Mr. W. Thompson, Miss Ball, Mr. Moore, Mr. M‘Calla; in Scotland, by Suhr, Orkney ; Dr. Greville, Butc ; Major Martin, Ardrossan ; Miss Mac Leish, Portincross.

On the coast of Ayrshire it has chiefly been found growing on Halidrys sitiquosa. It is a beantiful plant, much resembling Polysiphonia urceolata, but it is more graceful and delicatc, and its colour is more rosy.
22. P. elongata, Greville.

Hab. In the sea, on stones, shells, and Algæ. Biennial. Spring and summer.

Stems robust, cartilaginous; branches beset at the tips with slender tufted ramuli, which are attcnuated at the base. It is very common and very variable. In its winter state it is stout and rigid, destitute of ramuli, the branches jointed like lobstcrs' horns. In early summer, when the capillary branches in rich tufts adorn the tips of the branches, it is a beautiful plant, especially when the tufts are of a fine rosy-red colour.
23. P. elongella, Harvey. (Plate XIV. fig. 55, portion of the frond, natural size; a, branehlet with capsules; b, a branchlet with tetraspores, both maguificd.)

Hab. On rocks and Algæ; rather rare. Biennial. Spring and summer. England, Mrs. Griffiths, Miss Cutler, Rer. W. S. Hore ; Ireland, Miss Ball, Miss Gorrer, Mrs. Apjohn, Mr. W. Thompson, Dr. Drummond, Mr. D. Moore, Mr. M‘Calla; Orkney, Rev. Mr. Pollexfen; Ardrossan, Major Martin; D. L., Saltcoats ; by Miss II. M. Whitc, Jersey.

This is one of the loveliest of our marine Algæ. In early summer when arranged in its new attire with rich tufts of crimson ramuli, it is extrcmely attractive. These crimson tufts form a good contrast with the darker hue of the stems. The summer specimens we have got on the eoast of Ayrshire are more beautiful than any we have seen, even from Devonshire. In winter it is rigid, and quite in undress. "The winter and summer aspects of a deciduous tree are not more different from eaeh other than are specimens of this beautiful plant collceted at opposite seasons." In winter the abundant peneils of rosy-red ramuli have all fallen away, and the rigid divaricating branches remain in their nakedness. It secms to be one of those that eome by fits and starts. In the carly part of the summer of 1S47,
for nearly a month, it was frequent on the shore at Ardrossan and Salteoats at alnost every tide; whereas in the summer of 1848 very few specimens were got. Professor Harvey says in Pliye. Brit., Plate cxlvi., that though it resembles Polysiphonia elongato in miniature, it may be readily known from it by the pellueid artieulations visible in all parts of the plant, and by the ramuli not tapering to the base; and in his Manual he tells us that it may easily be distinguished by the distinetly jointed brauches, and by the parallel (not reticulated) veins whieh they contain.
23. P. byssoides, Gieville.

Hab. On roeks, \&e., in the sea. Aunual? Summer and autumn. It is said to be abundant on the eastern and southern shores of England and Treland; but rare in Scotland and in the west of Ireland. We ean state that during some seasons it is very frequent on the coast of Ayrshire.

The time of the year when it is most abuudantly got is in the month of August when it is driven out by the tide in large tangled masses, often intermingled with the beautiful zoophyte, Valkeria cuscuta. Neither are we sure that it is annual ; for we have often got it in winter in small patehes of a very dark hue, and stripped of almost all its pretty byssoid ramuli. When got fresh in summer it is of a fine
clear colour. It gencrally loses this when exposed to the air or put into fresh water and dried. Occasionally, however, it retains its clear red colour in drying. We wish we could discover the secret for fixing this fine colour, as it adds mueh to the loveliness of this beautiful plant.

There is a variety at times found both in Arran and Ayrshire in which the branehes are oppositc and horizontal, so that in form the spccimens greatly rescinble larch trees. This variety is generally of a darker hue than the common kind.

Gcnus LXXXIV. DASYA, Agardh.

Gen. Char. Frond filamentous; the stem and branehes mostly opake, irregularly eellular (rarely pellueid, longitudinally tubed), eomposed internally of numerous parallel tubes; the ramuli jointed, single-tubed. Fruetifieation tro-fold on distinet plants; l, ovate eapsules (eeramidia) furmished with a terminal pore, and eontaining a tuft of pear-shaped spores; 2, laneeolate pods (stiehidia) eontaining tetraspores ranged in transverse bands.-The name from a Greek word signifying hairy.-Harvey.

1. Dasya coccinea, Agardh.

Hab. In the sca, frequent. Annual. Summer and autumn.
in England, Mrs. Griffiths, Professor Walker Arnott; in Ircland, Miss Hutehins; in Bute and Frith of Forth, Dr. Greville; said to be rather rare in Scotland, but we do not think so. It is not equally abundant at evcry season ; but is generally frequent during summer and early autumn about Ardrossan, Troon, Ayr, Ballantrae, Portpatrick, in the island of Arran, island of Cumbrae, and at Southend, Kintyre.

The most beautiful speeimens I ever saw werc from Ballantrae. It it is thought to be annual. I question this, having often got it in winter. I found it on the 22nd of last December, full size, covered with Crisia denticulata, and just coming into fruit, some of the red-tipped stiehidia having the granules quite formed. It is one of the most beautiful of our Algre on account of its fine erimson colour and fathery form. It is found here oceasionally in its young state, in whieh at one time it was ealled Ceramium patens.

Therc are very fine figures of it in Dillwyn's British Confervæ, Plate xxyvi. He says: "Few marine productions exceed the present species in bcauty or frequent occurrence, and none mects with more general admiration, or is more
frequently gathered and used in ornamental deviees by the female visitors on our shores."

2. D. ocellata, Harvey.

Hab. On mud-covered roeks in the sea. Rare. Annual. Summer. Diseovered by Mrs. Griffiths on the pier at Torquay; Professor Walker Amott, Whitsand bay; Trevot, Rev. Mr. Hore ; in Ireland by Professor Harvey, Mr. Andrews, Mrs. Grey, Miss Gower.
"The speeifie name was no doubt intended by Grateloup to allude to the cye-like spots eaused by the density of the ramuli at the tips of the branches. The branehes resemble delieate feathers marked with an eyelet."-See Phyc. Brit., Plate xl.
3. D. arbuscula, Agardh.

Hab. Roeks near low-water mark. Annual. Summer.
A beautiful little plant. Rare in England. Not rare in Ireland, and said not to be rare in the west of Scotland; but we have seen only one specimen whieh was got in Ayrshire by Miss Mae Leish. Sce beautiful figure, Pl. coxxyir. Phycologia Britannica.
4. D. venusta, Harvey. (nov. spec.)

Hab. Cast on the shore. Annual. Summer and autumn.

Very rare. Discovered by Miss White and Miss Turner on the shores of Jersey.

This is a plant of surpassing loveliness, and a great addition to our marine flora. For an exeellent deseription and figure I refer to Phyeologia Britannica, Plate coxxv.

Series III. CHLOROSPERME A.

It is the mid-night hour:-the beauteous sen,
Calm as the clondless heaven,- the heaven diseloses, While many a sparkling star in quiet glee,

Far down within the watery sky reposes.
As if the oceau's heart were stirr'd
With inward life,-a sound is heard,
Like that of dreamer murmuring in his sleep;
'Tis partly the billow and partly the air, That lies like a garment floating fair, Above the happy deep.
On! thou art harmless as a chill, Weary with joy, and reconciled

For sleep to change its play;
And now that night has stayed thy race, Smiles wauder o'er thy pleased face,

As if thy dreams were gay,

> Wilson's Isle of Palms.

Family XVIII. SIPHONE

Genus LXXXV. CODIUM, Stackihouse.

Gen. Char. Frond green, sponge-like (globular, eylindrieal, or flat, simple, or branehed), composed of tubular, interwoven, inarticulate filaments. Fruetification, opake vesicles attached to the filaments.--The name from a Greek word signifying the skin of an animal.-Greville.

1. Codium adererens, Agarcllu.

Hab. On marine roeks. Perennial. Summer and minter. Rare. In England, Mrs. Griffiths, Mr. Ralfs, Niss Marren, Mr. Peach ; in Ireland, Mr. D. Moore, and Mr. G. Hyndman. See Phye. Brit., Plate xxxv., A.
2. C. amphibium, Moore.

Hab. On turf-banks at extreme high-water mark. Diseovered by Mr. M‘Calla near Roundstone bay.
3. C. Bursa, Agardle.

Hab. On roeks in the sea. Rare. In England, coast of Sussex, plentifully, Hollas, Turner ; Cornwall, Mr. Rashleigh; Torquay, Mrs. Griffiths; Belfast, Mr. Templeton. See Dr. Greville's exeellent deseription, Algæ Britannice, page 186.
4. C. tomentosum, Stackhousc. (Plate XVI. fig. 63)

Hab. On rocks in the sea, and in roek-pools near ligh.. water mark. Perennial. Said to be eommon on all the British shores; but we do not think that it is so on the western shores of Seotland. My friend Dr. Curdie, now in Australia, sent it to me from the island of Gigha, off Kintyre. We know that it was got by Mr. W. Thompson at Ballantrae, in Ayrshire. Dr. Greville mentions that it was found by Miss Hutehins in Iona. We proeured it onee in Arran betwixt Brodiek and Corric in a roek-pool ; but these are all the Seottish habitats that we know of.

It is not beautiful, but it has an uneommon appearanee, more like a sponge than an Alga. It elings so firmly to the roek that it requires some effort to detach it. I was gratified by finding Codium toruentosum whiel I had never before seen, exeept in a dried state; but I was still more pleased with what I notieed upon it. On taking it out of the water, I observed a greenish gelatinous animal on it, whieh, without examination, I east into the pool again, that it might eontinue to enjoy life. I afterwards saw two more, and observing that they were beautifully mottled with azure spots, I placed them in my vaseulum, along with some branehes of the Coctium, and on afterwards putting them into
a tumbler of sea water, I found that I had got a rare and lovely mollusk, discovered by Col. Montagu on the coast of Devonshire, and described by him in the Transactions of the Linnæan Society. It was Actcon vividis, the Green Aetæon. This is not the place to describe it, but I have attempted to do so elsewhere.* See instructive figures Alg. Brit., Pl. xix., and Phyc. Brit., Pl. xciri.

Genus LXXXVI. BRYOPSIS, Lamour.

Gen. Char. Frond membranaceous, filiform, tubular, cylindrical, glistening, branched, the branches imbricated or distichous, and pinnated, filled with a fine green minute granuliferous fluid. -The name from two Greek words signifying the appearance of a moss.-Greville.

1. Bryopsis plumosa, Lam. (Plate XVI. fig. 64, frond, natural size, and a portion maguified.)

Hab. In the sea on stones and rocks, and in roek-pools. Annual. Summer. Seotland, England, and Ireland. Not very common in Scotland. I first procured it at the Black rocks, Troon, in Ayrshire. I afterwards found at Salteoats the largest and richest speeimens I have ever met with.

[^7]Gathered by Mr. R. M. Stark at Joppa, near Edinburgh ; in Arran by D. L., junr.

This is one of the most attractive of our Algæ. The eolour is a rich glossy green ; the form is symmetrical, and resembles the feathers of a green parrot. The first notiee of this plant is by Hudson, in his Flora Anglica. See grood figures of it in Algæ Britannicæ, Plate xix., and in Phye. Brit., Plate III. ; the latter, though beautiful, is not glossy enough, and the green is lighter than in our Ayrshire speeimens.

2. B. hypnoides, Lam.

Hab. In roek-pools near low-water mark, or on other Algæ in deep water. Annual. Summer. Very abundant in the west of Ireland beyond tide mark on Laminaria saccharina.

This is mueh rarcr in Scotland than Bryopsis plumosa. Found by Sir Wm. Jardine at Southerness, Kirkeudbright ; by Dr. Hascll, Prestoupans ; by Mr. R. M. Stark at North Berwick ; and by Isabella Landsborough at Seamill, north of Ardrossan, in considerable abundance in rock-pools. It is morc branchy, more slender, more flaccid, and of a yellower green than B. plumosa, and on the whole less beautiful. The speeimens got at Seamill were fine large
ones, and eomparing them with the execllent speeimens of B. plumosa found at Salteonts, I had no doubt at the time that they were distinet. The eolour and the branching were very different ; the ramuli instead of being distichous, as in B. plumosa, were irregularly scattered, and proeeeded from all sides of the filaments, having, in the water, a bushy appearanee, like a fox's tail. Afterwards, however, this opinion was considerably shaken, as I found the two running into eaeh other, so that I could not distinguish them.

Genus LXXXVII. VAUCHERIA, De Candolle.

Gen. Char. Fronds aggoregated, tubular, eontinuous, eapillary, coloured by an internal green pulverulent mass. Fructification, dark green, homogeneous vesicles (coryocista, Ag.) attached to the frond.-Greville.-The name in honom of M. Taucher, a distinguished naturalist, author of a standard work, Histoire des Conferves d'eau douce.

1. Vaucheria submarina, Berk. 3. V.velutina, Agardh.
2. —_marina, Lyngbye.

These three Tauchcria have been got only at Appin and in the south of England. See Harvey's Manual of Britisli Algre, page 147.
-

Family XIX. CONFERVEA.

L'onda dal mar divisa
Bagna la valle e 'l monte;
Va passagiera in fime,
Va prigioniera in fonte;
Mormora sempre, e geme,
Fin ehe non torna al mar:-
Al mar, dov' ella naeque,
Dove aequisto gli umori,
Dove da' lunghi errori
Spera di riposar.-Metastasio, Artecerse.*

Genus LXXXVIII. CLADOPHORA, Kützing.

Gen. Char. Filaments green, jointed, attached, uniform, branched. Fruit, aggregated granules or zoospores, eontained

* Waters, from the ocean borne,

Bathe the valley and the hill; Prisoned in the fountain, mouru,

Warble down the winding rill;
But wherever doomed to stray,
Still they murmur and eomplain, Still pursue their lingering way,

Till they join their native main.
After many a year of woe,
Many a long, long wandering past;
Where, at first they learned to flow,
There they hope to rest at last.
Beattir, Translation.
in the joints, having at some period, a proper ciliary motion.The name means branch-bearing, Conferva being retained for the species with simple filaments.

1. Cladophora rupestris, Kützing. (Pl. XVII. fig. 67, branehes, of natural size, and a branchlet, magnified.)

Hab. On roeks in the sea, from high-water mark, and often beyond that. Annual. Summer. Very eommon and variable.

Near high-water mark it is a plain-looking plant, elosely tufted, and of a dirty greyish-green eolour. When got in favourable eireumstanees, in deep roek-pools, or by dredging from deep water, it is truly a lovely plant, of a fine dark green. The only draw-baek to it is that it does not adhere well to paper in drying; and this, we doubt not, is the reason why this beautiful speeies is less frequently seen in eollections than we might expeet.
2. C. rectangularis, Griffiths. (Plate XVII. fig. 68, plant, natural size; to the right, at the bottom of the plate, there is a portion of a braneh maguified.)

Hab. In the sea, in deep water. Annual. Summer. Torquay, Mr. Borrer, Mrs. Griffiths; Galway, Mr. Reilly ; it has not been found in Seotland; in England it is rery rare, and it was thought to be so in Ireland, till it was
diseovered by Mr. M‘Calla in Roundstone bay in such abundance that it was earted away for manure. At the depth of four or five fathoms it eovers the bottom to a considerable extent.

It is about a foot long, and eannot be mistaken for any other speeies, being so easily known by its patent, opposite branehes and branchlets. It is of a light green eolour. It does not adhere well to paper in drying. See in Phyeologia Britamiea, Pl. xir., a good figure of var. β. with longer branehes.
3. C. pellucida, Kïtzing.

Hab. On the bottom and sides of deep roek-pools near low-water mark. Annual? Summer. Not uneommon on the shores of England and Ireland. We do not know that it has been found in Seotland. I have a speeimen of it from Mr. William Thompson.

It is a well-marked speeies, as may be seen from Phye. Brit., Plate clexiv.
4. C. lavosa, Kützing. (Plate XVII. fig. 65, two fine tufts, natural size ; and on the right hand a portion of a filament, magnifier.)

Hab. In the sea on roeks and on other Algæ. Annual. Suminer. Cominon.

The best specimens for the Herbarium are got on Zostera marina. See a fine figure of it in Phyeologia Britanniea, Plate vi.
5. C. arcta, Kiutzing. (Plate XVII. fig. 66, tufts, of the natural size ; and on the left a portion of a filament magnified.)

Hab. On roeks from half-tide level to low-water mark. It is questioned whether it is peremnial; I am disposed to think that it is annual. It is very abundant in spring and summer, and the young plants on account of their lively green, and the fine silky, silvery gloss towards their tips are execedingly attraetive. So early as the 5th of Mareh this year, I gathered beautiful tufts of it at Ardrossan. When dried in this young state it adheres well to paper, and long retains its glistering appearance at the tips; whereas, when more advaneed, it loses its fine colour at the base, and soon eeases to glister in the Herbarium. By the end of summer it is seldom seen, and when found, is so coarse and faded that few would think of retaining it. C. arcta is now understood to inelude C. Taucheriaformis as its young, and C. centralis as its old state. Substanee, when young, tender and flaeeid; when old it does not adhere mell. Sce good figures of it, older and younger, in Phyeologia Britanniea, Plate cxxxv.
6. C. Hutchinste, Harvey.

Hab. On roeky bottoms of elear tide-pools. Annual. Summer. Rather rare. Bantry bay, Miss Hutehins; Larne, Dr. Drummond; Tor Abby, Mrs. Griffiths; Belfast bay, Mr. Wm. Thompson ; Salcombe, Mr. Ralfs; Ardrossan, Major Martin ; Salteoats, Isabella Landsborough.

A beautiful species, diseovered in Ireland by Miss Hutehins, whose name is held in grateful remembranee in all parts of the world. See a fine figure of this species in Phyeologia Britanniea, Plate cxxiv.
7. C. Letevirens, Kuitzing.

Hab. On roeks and on other Algæ at low-water mark, and near high-water mark. Amnual. Summer. Common.

It is frequent in the early part of the summer, on the eoast of Ayrshire. Professor Harvey seems to think that it is the same as C. glomerala, but he yields to Mrs. Griffiths, who is of a different opimion.
8. C. Gracilis, Griffiths.

Hab. On roeks and Algre. Common on the eoast of Ayrshire in early summer, on Algæ; eolour, a yellowish green, beeoming paler in the Herbarium, but retaining a silky gloss.

See a fine figure, Phyeologia Britannica, Plate XVIII,
9. C. refracta, Kiutzing.

Hab. In rocky pools near low-water mark, or in deeper water. Amnual. Summer. Kilkee, Professor Harvey; Ilfracombe, Mrs. Griffiths; Mounts Bay, Mr. Ralfs; Cork, Miss Ball ; Howth, Miss Gower ; Giants' Causerway, Mr. W. Thompson; D. L., Saltcoats.

See a beautiful figure of it in Phycologia Britannica, Plate XXIV. The green is darker in specimens found on the coast of Ayrshire.

Our limits compel us to give only the names of the following, for the descriptions of which I refer to Professor Harvey's Manual of British Algr, and to his Phyc. Brit. 10. C. Brownii, Harv. 15. C. Rudolphiana, Kuitz. 11. - Macallana, id. 16. - albida, Huds. 12. - diffusc, Kütz. 17. - uncialis, Harv.

* 13. - nudu, Harv. 14. - flemusa, Dillw. * 19. - falcata, Harv.

Genus LXXXVIII. RHIZOCLONIUM, Kützing.

Geu. Char. Filaments green, jointed, uniform, decumbent, simple, or spuriously branelied. Fructifieation, granules contained in the cells.-Name from the root-like form of the branckes.-IIarvey.
:
6.9

7n.

1. Rhizoclonium riparium, Kützing.

Hab. Sand-eovered roeks near high-water mark. Annual.

Genus XC. CONFERVA, Plin.

Gen. Char. Filaments green, jointed, attaehed or floating, unbranched. Fructification, aggregated gramules or zoospores contained in the joints, having at some period a proper ciliary notion.-Harvey.

1. Conferva torruos., Dillozn. (Pl. XVIII. fig. 69, plant natural size, and under it one of the filaments, magnified.)

Hab. On submarine rocks; also in salt pools. Mr. Dillwyn at Swansea; Prof. Walker Arnott, and Dr. Greville, Frith of Forth; Professor Harvey, Skerries ; D. L., Salteoats.
2. C. Melagonium, Web. and Mohe. (Pl. XVIII. fig. 70, filaments, natural size ; and to the right, a portion of a fila... ment, magnified.)

Hab. On roeks near low-water mark,
On the coast of Ayrshire it is found at mid-tide level, and it is so rigid that it stands ereet when left by the tide. It is not eommon. though widely dispersed.
3. C. merea, Dillwyn.

Hab. On sand-eovered roeks at mid-tide level.

This resembles the preeeding, but it is smaller, less rigid, and of a yellower green. They are well figured together in Phyeologia Britanmica, Plate xcix.,
4. C. Linum, Roth.

Hab. In salt water ditehes near the eoast.
This speeies has usually been ealled C. crassa, but it is now found that C. limum and crassa are the same. TVe have got it abundantly in braekish water ditehes at Troon. See it and C. sutoria figured together in Phycologia Britanniea, Plate cl.

Family XX. ULVACE 玉.

Before me lay the sea;
Broad heaving billows murmur'd carelessly,
O'er wave-rib'd sands, with lulling peaceful sound;
While snow-white sea-gulls sailed athwart the sky.
The air was motionless, till gentle breeze
Sprang up at sunset; yet luge lumbering wares
Rolled in from distant storm,-wid-musieal !
Wave-music.-Simingion's Ilarebell Chimes.
Genus XCT. PORPIIIRA, Agardh.
Gen. Char. Frond plane, excecdingly thin, and of a purple colour. Fructification, 1, scatterel sori of oval secds: 2,
roundish granules, mostly arranged in a quaternate manner, and eovering the frond.-Grecille.

1. Porphyra laciniata, Agardh. (Plate XIX. fig. 75, frond, uatural size.)

Hab. On rocks within tide-marks. Annual.
From spring till the end of autumn ; indecd, though not in abundance, it is to be found here during all the winter. These winter specimens are vcry dark-coloured, and do not adhere to paper in drying. It has bcen stated that owing to the shrinking of the delicate fronds, this finc plant does not at any time adhcre well to paper ; by proper management none adhcres bettcr, and the mode of effecting it we shall state at the end of this volume, when giving directions for prescrving Alge for the Herbarium. In substance it is very thin and membranaccous, and children call it sea-silk. It varies much in colour ; the most gencral is the bluish purple, in the clegant specimen in Phyc. Brit., Plate xcir. As got with us about Ardrossan and Saltcoats, it is a darkolive when frosh from the sea, and in drying becomes a very light olive. The most beautiful specimens I lave scen of it were found by Miss Mac Leish in the Clyde, at Port Glasgow: in drying they becanc a rich pinky red; this
colour might be owing to the copious intermixture of fresh watcr so far from the sea.

This species, along with the succeeding, is brought to table in England and Scotland under the name of Laver; in Ireland it is ealled Sloke. We have tried it, but though like greens, under the simple cooking of our cuisinière, it had too great a smack of the sea for our taste. Under proper treatment, however, we believe that it ean be rendered a grateful luxury. It requires many hours' stewing to render it sufficiently tender. Lightfoot mentions that "the inhabitants of the Western Islauds gather it in the month of March, and after pounding, and stewing it with a little water, eat it with pepper, vinegar, and butter; others ster it with leeks or onions. In England it is generally piekled with salt, and preserved in jars, and when brought to table, is stewed, and eaten with oil and lemon-juice." Professor Harvey, in Phyeologia Britannien, says: "After many hours' boiling, the frond is reduced to a somewhat slimy pulp, of a dark brown eolour, whieh is eaten with pepper and lemon-juice or vinegar, and has an agreeable flavour to those who have conquered the repugnanee to taste it, which its great ugliness induees, and many persons are very fond of it. It inight bccome a valuable artiele of diet, in the
absenee of other vegetables, to the crews of our whaling vessels sailing in high latitudes, where every marine rock at half-tide abundantly produces it. In its prepared state it may be preserved for an indefinite time in closed tin vessels." We regard this as a valuable hint.
2. P. vulgaris, Agardh.

Hab. On rocks and stones, between tide-marks. Common.

Except that the frond is undivided, this species does not seem to differ from P. laciniata. It is more clegant in form, and sometimes the colour is livelier. It approaeles in shape the frond of Laminaria phyllitis. It is from one to two feet in length, and from two lines to two or three inches in breadth. Professor Harvey, who expressed doubts in the Manual of the distinetness of P. linearis as a speeies, gives now in Phyeologia his deeided opinion that that it is only a narrow-fronded varicty of P. vulgaris in a young state; that though in November they appear distinct enough, by the end of spring it will be diffieult to traee in them the slender ribbons of winter. Hle admits that there are loealities near high-water mark where the frond neves attains any great length or breadth, and therefore remains more true to the name Finearis, but the stunted growth is

$$
\times 2
$$

elearly referable to defieient nourishment. All this may be correet, but I am not thoroughly convineed; and I am unwilling to give up the pretty little linearis. It appears to me more distinet as a speeies than P. laciniatos; and this, perhaps, is not saying much, for with us P. vulgaris and P. laciniata run very elose into eaeh other. With us they are of the same eolour, and this eannot be said of P. linearis, which is always different from both the others; these two are never reddish here, and linearis always is. P. lincaris, for many miles on the eoast of Ayrshire, is got only on one little pateh of roek in early spring, painting it red when the tide is out; P. vulgaris is found at the same season quite near it, as near ligh-water mark, almost as narrow as linearis, but nearly a foot long, whieh is more than the length of linearis; and while linearis is always red, vulgaris at that season is a pale yellow, the one eontinuing red and the other yellow, when dried. P. vulgaris mar be got in abundanee during the summer, beeoming light olive when fully grown. By the middle of April every frond of linearis has vanished, and not one of the little pink sparklers is seen on the roeks till the suceceding spring. There are good figures of P. vulyaris and P. linearis in Phyeologia Britamiea, Plate ccai. With us, however, they are both
mueh more glossy ; and P. vulgaris, espeeially carly in the season, is as light, and even more yellowish than Laminaria phyllitis. I see that Dr. Greville, in Alg. Brit., says that the different arrangement of the granules preeludes P. linearis from being regarded as being a miniature of either of the other two.

Genus XCII. BANGIA, Lyngbye.
Gen. Char. Frond flat, capillary, membranaccous, of a green, reddish, or purple colour. Fructification, granules arranged more or less in a transverse manner.-Named Bangia, in honour of Hoffman Bang.-Greville.

1. Bargia fusco-puripurea, Lyngb.

Hab. On roeks and planks of wood in the sea. Annual. Spring and summer. Brighton, Mr. Borrer; Cornwall, Mr. Rashleigh; Bantry bay, Miss Hutehins; Frith of Forth, Professor Walker Arnott ; Isle of Bute, Dr. Greville ; Isle of Arran, D. L., jumr. ; Portineross, Ayrshire, Major Martin.

Fronds growing in a tufted manner, and gencrally eovering a eonsiderable extent of roek; colour, a fine dark purple which it retains in drying. A eurious eireumstanee water rivers.

It is generally thought that this plant is rare in Seotland. We were once of that opinion, but have since had reason to think that we had been treading upon it every spring without observing it. When the tide is out, it elings so closely to the roeks that it may be passed without notiee. Now that it has been deteeted, it may be seen every April and May at Salteoats in great abundanee on flattish roeks, and also on the face of perpendieular rocks near high-water mark. I first proeured it at Saltcoats in a roek-pool near the mouth of the harbour; Major Martin finds it of a very dark purple at Portineross.

Genus XCIII. ENTEROMORPHA, Link.

Gen. Char. Frond tubular, hollow, membranaeeous, of a green eolour, and retieulated strueture. Fructifieation, three or four roundish granules aggregated in the retieulations.-The name signifies in the form of an entrail.

1. Enteronorpha intestinalis, Limk. (Pl. XVIII. f. 72.)

Hab. In the sea, and also in braekish and fresh-water ditehes. Annual. Summer. Common.

It varies in length and breadth; sometimes short and narrow, at other times two feet long and three ineles in diameter. It is always simple, whereas E. compressa is branehed. It changes from pale green to yellow, and beeomes white in deeay.

The most interesting speeimens I ever got of this plant might be regarded as subfossil. They were found in a sandstone quarry at Ardeer, Ayrshire, about a mile from the sea. When the quarriers had removed about six feet of earth, they came to a thiek stratum of shale, which was perforated in many plaees, and in the mouth of the bore which was about an ineh in diameter, I generally found a pretty entire speeimen of Pholas crispata, the very same kind of mollusk that I had often seen boring the shale in the sea at Salteoats. The perforation was about six inehes deep, and at the bottom of the bore there was in all eases a matted pellet of vegetable substanee. On maeerating this, it spread, and I saw by its puekerings and retieulations that it was Enteromorpha intestinalis. I sent it to Sir William Hooker and he said that it was eorreetly named. Sce a fine figure of this plant in Phyeologia Britanniea, Plate cliv.
2. E. compressa, Greville. (Plate XVI. fig. 62)

Hab. Roeks in the sea. Annual. Spring and summer.

Very common. Very variable in length and breadth. By comparing the fine figure of the preceding in Phycologia with an excellent figure of this species by Dr. Greville in Alg. Brit., Pl. xix., or our own, it will be seen that there is considerable similarity; both are green, but this one is a darker green ; both arc attenuated towards the base, and both arc rounded at the top; but the former is almays simple, and this onc is more or less branched. In drying, it does not adhere well to paper. When it decays it becomes purcly white, and in this state children call it seathread.
3. E. erecta, Hooker. (Plate XVIII. fig. 71, plant, natural sizc, with a branch on the lcft, magnified.)

Hab. In the sea, about half-tide level. Annual. Spring and summer. Appin, Capt. Carmichacl ; Bute and Frith of Forth, Dr. Greville; Torquay, Mrs. Griffiths.

This is one of the finest of the Enteromorphice, when from deep water. There are scveral other Enteromorphe, but the most distinguished botanists are of opinion that they are varictics of onc species. "Few plants," says Professor Harvey, in his Manual, "are so sportive in size and ramification, and if all the varicties were deseribed, the species

Fitil: 13 in
might easily be multiplied till we should have one for almost every marine pool!"

Genus XCIV. ULVA, Limacus.

Gen. Char. Frond membranaceous, of a green colour (in some cases saceate, and inflated in the young state). Fructification, minute granules mostly arranged in fours. Greville.-The name from the Celtic word, ul, water.

1. Ulva latissima, Limu. (Plate XIX. fig. 73.)

Hab. On rocks and stones in the sea. Annual. To be got, however, more or less during all the winter.

Fronds from $4-18$ inches long, and of considerable breadth, of an oblong shape, and waved at the edges. It is tender in substanee, of a deep grcen colour. It adheres well to paper in drying in the early part of the season, the shading produced by the waved margin adding to the beauty of the specimens. It is called oyster-green, because employed to cover oysters. It is also called green laver, as it is employed for culinary purposes when Porphyra cannot be procured, but it is not thought to be so good as that. I learn from M_{r}. Fleming, Reetor of the Academy at Kirkcudbright, that both Porphyra and Ulva latissima grow in the Dee there so
far up the river that aceording to the tide, they are alternately inhabitants of sea-water and fresh-water.

2. U. lattuca, Linncus.

Hab. On rocks, \&e., in the sea. Annual. Spring and summer. Pretty eommon. Devonshire; Bute; Ayrshire.

At first it is saceate, but soon bursts and beeomes eleft. It is mueh tenderer than the former, of a lighter green, and a little gelatinous, so that it adheres well to paper in drying. Dr. Greville, in Alg. Brit., says: "it adheres so closely to paper as to resemble a drawing, and the surfaee shines as if varnished. When preserved in the Herbarium, it is infinitely more beautiful than Ulva latissima." This is not aeeording to our experienee in the west; for in my opinion U. latissima forms the handsomest speeimen, being of a rieher, darker green, and more glossy than U. lactuca, adhering nearly as well when young and recent. See Phyeologia Britanniea, Plate ccxlifi.
3. U. linza, Limncus.

Hab. Roeks and stones in the sea, between tide-marks. Annual. Summer and autumn.

This is a most beautiful and truly elegant plant. The fronds are linear-laneeolate, attenuated at each extremity, and eurled, and waved at the margin. It is very graeeful
in its native element, and scarccly less so in the Herbarium, when well prepared. The shadings produced by the plaiting of the curled margin in drying, add much to the beauty of the plant. In early summer it is of a rich lively green, with a fine gloss, adhering well to paper. In the end of summer the green has become darker, and it is still glossy, but does not adhcre well to paper. The substance is thin, and composed of two closely-united membranes. It is at times eighteen inches in length, and an inch in breadth. It grows in clusters of more than a dozen fronds. See Phycologia Britannica, Plate xxxix.

Without following further Professor Harvey's systematically arranged List, I shall in the close mention a few plants that are not included in his catalogue.

Genus XCV. CALOTHRIX, Ag.

Gen. Char. Filaments destitute of a mucous layer, erect, tufted, or faseiculate, fixed at the base, somewhat rigid, without oscillation. Tube continuous; endochrome green, denscly annulated, at length dissolved into lenticular sporidia.-The name
signifying beautifut hair, the filaments being very slender and delieate.-Harvey.

1. Calothrix confervicola, Agardh.

Hab. On marine Algæ.
This is very common on sea-weeds of the smaller kinds, giving them a bluish-green hnc, only a linc or two high, and forming scattcred or continuous tufts. There are upwards of a dozen species of Calothrix, some of which are rare, and some are found in fresh water. See Phyc. Brit., Platcs lviri. and Lxxvi.

Gcnus XCVI. RIVULARTA, Roth.

Gen. Char. Frond globose, or lobed, rarely inerusting, fleshy or gelatinous, firm, composed of continuous inartieulate filaments, anvulated within, and surrounded by, or set in, gelatine.-Harvey.-The name is in allusion to the fresh-water habitats of many of the species. Many, however, are found in the sea.

1. Rivularia atra, Roth.

Hab. On rocks, stones, corallines, and Algæ, betreen tide-marks. Pcrennial. Very common.

It is probable that many have obscrved it mithout supposing that it was a plant. In some localitics a person can sarcely take up a haudful of Corallina officinalis without
having on it more than one speeimen of R. atra, like little hemispherieal masses of dark green jelly. By the applieation of a porrerful lens it may be seen that these little green pea-like masses are organie, and are made up of filaments radiating from the eentre. Eaeh one when greatly magnified is not unlike a handsome switeh the upper half of whieh is nieely knotted. See Phyeologia Britamiea, Pl. coxxxix.

Genus XCVII. LYNGBYA, Agardh.

Gen. Char. Filaments destitute of a mucous laycr, free, flexible, elougated, continuons, decumbent. Endochrome (green or purple) densely annulated, and finally separating into lenticular sporidia.-Name in honour of H. C. Lyngbye, author of an excellent work on the Alge of Denmark.-Harvey.

1. Lingbya Carmichaelii, Harvey.

Hab. On marine roeks, and on Fuci. Appin, Captain Carmiehael ; Torbay, Mrs. Wyatt; D. L., Saltcoats.

It is very eommon here. As early as the month of April it eovers the rocks, almost at high-water mark with a dense fleeee of dark green filaments, lying flat during cbb, but waving graeefully in the water when the tide returns. See Phyeologia Britannica, Plate claxxyi, 1 .

Genus XCVIII. STRIATELLA, Agardh.
Gen. Char. Stipes very short, filaments curved, pellueid at the artieulations, striated transversely.-It takes its name from the striated joints.

1. Striatella arcuata, Agardh.

Hab. On marine filiform Algæ; on the eoast of Ayrshire this is is very common, espeeially in spring, almost eovering the plant on whiel it grows, and often giving it a greenish tint. When dry, this parasitie eoat has a glistering metallie east.

Genus XCIX. ISTHMIA, Agardh.

1. Isthmia obliqua, Agardh.

Hab. On filiform Algæ. Frequent on the shores of England and Ireland; we know not that it has been found in Seotland. We have numerous fine speeimens of it from Mrs. Lyon, gathered by her on the shore at Glenarm, where it seems very abundaut, rendering Polysiphonia nigrescens quite hoary. The filaments are composed of oblique-angled frustules, curling up in a eurious manner; and when seen through a lons, eaeli portion is elecrantly. reticulated.

Genus C. DIATOMA.

Gen. Char. Filaments composed of reetangular frustules, eohering at the angles, and finally separating.

1. Diatoma marinum, Lyngbye.

Hab. Parasitie on marine Algæ in spring. Greenish when fresh; powdery and pale when dry. Common in most places, but rare on the coast of Ayrshire, where its place is occupied by Striatella.

Genus CI. EXILARIA, Greville.

Gen. Char. Frustules reetilinear, faseieulate, or spreading in fan-shaped series, fixed at the base to a reeeptaele or stipes.Greville.

1. Exilarla fulgens, Greville.

Hab. Parasitic on marine filiform Algæ. Devonshire, Mrs. Griffiths; Appin, Capt. Carmichael ; Arran and Ayrshire, D. L. ; Leith, D. L., junr.

Frustules pale yellow lustre when recent, with a glossy lustre when dry. They radiate from a minute base, in a fan-shaped manner.

Genus CII. LICMOPHORA, Greville.

Gen. Char. Frustules wedge-shaped, united into fan-shaped laminæ, fixed to the summit of a (usually branched) stipe.The name is from two Greek words signifying fan-bearer, highly expressive of the form of these minute but beautiful objects.Hooker.

1. Licmophora flabellata, Greville.

Hab. On marine Algæ. Bantry bay, Miss Hutehins; Appin, Capt. Carmiehacl ; Devonshire, Mrs. Griffiths ; Antrim, Mr. D. Moore ; Strangford Lough, Mr. NT. Thompson; Portineross, Ayrshire, D. L.

Tufts half an inch high, deep green when reeent (with us very light greyish green); when dry, grey and glistering. Dr. Greville's figure of this interesting plant is thought remarkably goood.
2. L. splendida, Greville.

Hab. Parasitic on marine Algre, and on Zostera marina. Appin, Capt. Carmieliael.
"A very fine speeies, nearly allied to L. Alabellata, but smaller, less divided, and the frustules more broadly wedgeshaped. The tufts are two or three lines in height, and often invest the whole surfaee of the plant on which it grows."-Grev. This plant had not been found by any
since its discovery at Appin by Capt. Carmichacl, till it was got in considerable abundance by D. L., junr., in Scptember 1848, at low water mark in a little creek formed by trap dykes, in the parish of Ardrossan. When he brought it to me, I was much struck with its beauty. Hoping that it was L. splendida I sent it to Dr. Greville, and was gratified by his pronouncing it to be that rare plant. Though minute, it is well deserving of the name of splendid; it is like an assemblage of hundreds of bcautiful little fans. Had I believed in the cxistence of fairies as firmly as I did in my childish years, I could have imagined that some marine Queen Mab, and all the ladies of her eourt, were congregated amidst the brauchlets and filaments of the little Alga. "Materiem superabat opus:" every fan was of exquisite workmanship. Raised on a little stem, they were spread out so as to form in some eases more than a semi-cirele, the rays numbering from toll to twenty-six. Each ray or frustule was wedge-shaped, and a little dentieulated at the top ; the upper part was amber-eoloured, and as eaeh ray had a lighter coloured dot in the middle of this portion, these bright dots formed a creseent of sea-gems, adorning the fim. Under this amber-eolourcd portion there was a pellueid band, the lower part of the fan being amber-coloured, like
the upper. Aided by a microseope, the whole was so beautiful that a lady to whom I shewed a portion of Licmophora thus magnified, said she eould not fall asleep for a long time that night, as the lovely fans seemed ever before her eyes; and when she did sleep she dreamed of them. That adds to the wonders of these Diatomacee, is that they are partly formed of flint, whieh they extract from the waters, so that though seemingly frail, they are imperishable!

Genus CIII. SCHTZONEMA, Agardh.

Gen. Char. Frustules in longitudinal series or seattered, and inelosed within a simple or branehed, gelatinous or membranaeeous frond, eomposed of one or several tubes. - The name from two Greek words signifying to divide, and a thread, as the typieal species are formed as it were by dividing the frond.-Harvey.

1. Schizonema obtusum, Greville.

Hab. Parasitie on small Algæ in the sea. Frith of Forth, Dr. Greville; Appin, Captain Carmichael ; Torquay, Mrs. Griffiths; coast of Antrim, Mr. D. Moore ; Leith, D. L., juur.
2. S. helminthosum, Clano.

Hab. On rocks in the sea. Frith of Forth, Dr. Greville; Torquay, Mrs. Griffiths; Saltcoats, D. L.

FRESH-WATER ALG A.

Let ns then consider the works of God, and observe the operations of his hands; let ns talke notiee of, and admire his infinite wisdom and gooduess in the formation of them: no ereature in this sublunary world is eapable of so doing besides man, and yet we are defieient herein. We content ourselves with the knowledge of the tongues, or a little skill in philosophy, or history, perhaps, and antiquity, and negleet that which to me seems more material,I mean Natural History, and the works of the Creator. I do not discomsmend or derogate from those other stndies; I should betray mine own ignoranee and wealness should I do so: I only wish that they might not altogether* jostle ont and exclude this. I wish that this might be brought in faslion among us; I wish men wonld be so equal and eivil as not to disparage, deride, and vilify those studies which themselves skill not of, or are not conversant in. No knowledge ean be more pleasant than this,-none that doth so satisfy and feed the soul, in eomparison whereto that of words and phrases seems to me insipid and jejnne.-Ray.

Though the limited size of this work will scarcely permit, us enter on this department, we cannot think of fimishing the volume without describing a few of the fresh-water Algæ.

Many may wish to learn something of Algology who are at a distance from the sea, and have no opportunity of collceting sea-plants in a recent state. It is well to let such know that fresh-water Algology opens up for them a wide field, which of late has been very successfully cultivated by British botanists. In 1St5 we were favoured by Mr. Hassall
with an exeellent work on the Mistory of British Freshwater Algæ, in two volumes, one of letter-press and the other of plates; and in 184.8 we have had another admirable work by Mr. Ralfs, on British Desmidier, in one handsome volume, eontaining aeeurate deseriptions and exquisite illustrations, in thirty-five plates. To these two works we refer those who devote themselves to this study; but as many may not be disposed to purehase eostly works, however exeellent, till they know something of what they contain, without attempting to treat of fresh-water plants at all systematically, we shall deseribe a few as a kind of sample of the rieh stores within the reach of the naturalist, however remote from the sea.

One reason, no doubt, why these plants are not more generally studied, is that they are so minute that their beauty eannot be seen by the unaided eye. Even in the ease of those whose filaments may be some feet in length, and which eannot fail to be seen, as they grow in masses of considerable breadth, the filaments are so densely erowded that instead of being regarded as plants they are looked upon as some green impurity, whieh in Seotland goes under the general name of slaak. Then a small portion, however, of this despised slaak is taken, and laid on tale, and examined
by the aid of a mieroseope, or even a hand lens, the person who thus beholds it will be filled with astonishment; he will see that what he regarded as shapeless filth, is of exquisite workmanship, and worthy of the Hand by whieh it was made; and he may learn that what he thought worse than useless, instead of polluting the waters, is one great eause of their purity and wholesomeness ; that without these Algre the waters would soon beeome so putrid and poisonous as to spread malaria over wide distriets of eountry, and lay them desolate.

But these are not the only purposes they serve. They afford shelter to eountless myriads of living creatures, espeeially infusorial animaleules, whieh not only enjoy life, but -minute though they be, and unseen by man,-perform wonderful funetions for his benefit. They are found most abundantly in all stagnant waters :

"Where the pool

Stands mantled o'er with green, invisible Amid the floating verdure, millions stray."
By plaeing a drop of water in the field of the mieroseope and observing the merry evolutions of its multitudinous inhabitants, we see that He who made them blessed them with happiness. It has been long known also, that by
subsisting on the dead bodies of larger aquatie animals, they "thus limit," aecording to Liebig, "to the shortest possible period, the deleterious influenees whiel the produets of dissolution and deeay exereise upon the life of the higher elasses of animals." "The reeent diseoveries," he adds, "whieh have been made respeeting these ereatures, are so extraordinary, and so admirable, that they deserve to be made universally known." The most remarkable faet in these diseoveries is that the funetions of animal life are reversed in these animaleules, and that instead of erolring earbonie aeid gas, as, by breathing, other animals do, they evolve pure oxygen.* The air-bubbles given out by \#ater in which these animaleules abound, eontain such pure oxygen that a small bit of deal mateh-wood in whieh a flame las just been extinguished, will burst into a flame again on being immersed in any one of them. "I myself," says the distinguished German ehemist, "took an opportunity of verifying this remarkable faet upon finding in a trough of water in my garden the fluid eoloured green by the presence of various speeies of infusoria. I filtered it through a very fine sieve in order to separate all Conferve, or vegetable

* See "Blights of the Wheat and their Remedies," published by the Religious Tract Society.
matters ; and then exposed it to the light of the sun in an inverted broken glass, completely full, the aperture of which was eonfined by water. After the lapse of a fortnight, more than thirty eubie inehes of gas had eolleeted in the glass, which proved to be very rieh oxygen."

In the most extensively diffused animaleules, then, namely the green and red infusoria, we reeognise a most admirable eause, whieh removes from water all substanees injurious to the life of the higher elasses of animals; and ereates in their plaee nutritive matters for the sustenance of plants, and the oxygen indispensable to the respiration of animals. We see then that the benignant purposes of God towards man are answered not only by the fresh-water Algæ, but what is more extraordinary and had never been suspeeted till discovered by seienee, that the funetions of animal nature are reversed in the millions of millions of unseen ereatures that dwell among these weeds, that they may all be made subservient to the well-being of man.

After this digression respecting these animalcules, whieh I have often admired without thinking that in their sportive movements they were eontributing to the happincss of the human raee, we shall turn our attention for a little to some of the fresl-water Alga, amidst whieh they are so
plentifully found. We shall select some that are by no means rare, and whose beauty is very evident, even to the naked eye. We begin with one which may be found in almost every stream in all plaees of our land.

CLADOPHORA, Linncus.

Gen. Char. Filaments rising from a seutate root, finely tufted, bushy, somewhat rigid, bright green, branches crowded, irregular, erect; the ultimate ramuli seeund, subfaseiculate; artieulations 4-8 lines longer than broad.-Harvey's Manual.

1. Cladophora glomerata, Linncurs. (Pl. XX. fig. 78, portion of the frond, natural size; and on the left a branehlet, magnified.)

Hab. In elear streams, wells, \&e. It is very eommon, attaehing itself to stones and stieks in streams and pure ponds.

It is a remarkably variable plant. I remember finding a beautiful variety of it in the pool of a little easeade at King's cove, Arran. The filaments were simple, not tufted, of a fine delieate texture, and having, when dried, a soft, silky, glossy appearanee, such as Cladophora gracilis often has. The most beautiful specimens of it I ever saw were
found by D. L., junr., at Corriegills in Arran in the month of September. They were quite of the normal type, beautifully tufted, of a lively green, and retaining all their beauty when dried. The time for getting it in greatest beauty is in early summer, when it is in a young state, or in the autumn, when it sometimes assumes a fresh dress after the seorehing leat of summer.

Mr. Hassall, in his British Fresh-water Algæ, says:"Notwithstanding that its usual resort is the stream and the waterfall, it will flourish and inerease in size amazingly for weeks and months in a vessel, the water of which is oeeasionally renewed. I have thus kept it for many weeks, removing (when by its growth it had filled the vessel,) all but a small portion of it; this, lowever, speedily inereased, and again filled its dwelling-plaee. The tearing away of portions of the plant in no way impaired the vitality of the remainder, as from its aggregation of minute eells, eaeh the analogue of the other, might a priori, have been eonjeetured. After the speeies has been eonfined for some time, if it be examined with a glass, very many of the filaments will be found to be inereased with numerous smaller filaments. These are the young of the plant derived from the growth of zoospores whieh have attached themselves to the parent
filaments. It was the oeeurrenee of a speeimen thus infested, that indueed Vaueher to place this speeies in his genus Prolifera." It is often covered with a parasite, Diatoma vulgare, giving it a rieh brown instead of its natural rieh green eolour.

vaUCHERIA, De Candolle.

Gen. Char. Fronds aggregated, tubular, continuous, capillary, coloured by an internal green pulverulent mass. Fructification, dark-green homogeneous vesicles (concocystre, Ag.), attached to the frond.-The name in honour of MI. Fuucher, a distinguished writer on Fresh-water Conferve. -Greville.

This is a very natural and well-defined genus of plants. The strueture of the frond is like that of Bryopsis and Codium, but there is no appearance of retieulation or eells. It resembles the Conferve in general appearanee, and it is found along with them in ditehes and little waterfalls, and on damp ground. Common as T'aucherice are, they are very remarkable plants, and the investigation of them afforded great delight to the intelligent mind of Vaucher. Their power of resisting eold, and of sustaining high degrees of temperature is very extraordinary. M. Vaueher mentions
that when he was making his experiments at Geneva, an intense frost sct in, and froze the water in a vase, in which his Vaucherice were kcpt. The frost continuing for a fortnight, he fcared that as they werc enveloped in ice all that time, they would be completely destroycd; but when thaw came, he found, to his grcat delight, that they had sustained no injury; and he had the satisfaction of seeing the grains germinating, as if they had never known frost. Were not this powcr granted to them, and especially to the seeds, they would soon be exterminated, as evcry winter they are frozell for wacks together. Thicir power of withstanding great heat is scarecly lcss remarkable, and not less necessary for the eontinuanec of their existence. A very compaet capsule envelopes the spore, and preserves the internal moisture from being dricd up. Their seed in gencral ripens before the drought of summer, and when the shallow pools are dricd up, the sced lies in the mud, till it is called into lifc by the returning heat and moisture of early spring.

What is rccorded by M. Unger respecting Taucheria clavata, is cxceedingly intcresting. He set limself unintcrruptedly to observe onc of the tubereles of fructification, and when he had done so for half an hour, it beeame darker
in its colour, and a little transparent at its extromity; in the middle it was somcwhat contraeted, and had some traces of spontancous motion. Hc eould scarcely beheve his eyes when he perceived the contraction to bccome more dccided, and a cavity to be formed at the base. The contraction at length divided the globule into two smaller globules, which moved spontaneously towards the summit. As the development procecded, thic cavity and the uppermost globule became enlarged, whilc the infcrior globule became diminished ; the latter at length disappcared, and the remaining large globulc escaped by a terminal orifice ascending till it rcaehed the surface of the water. The whole process oceupied about a minutc. On various other occasions he observed numbers of these globulcs swimming freely about herc and there, stopping, and again setting themselves in motion, exactly like animated beings; and he does not scruple to call them infusory animalculcs. We have no doubt that he is eorrect in his statement as to the motion and subsequent germination of the green globules; but motion such as this, however wonderful, docs not prove that they had animal lifc. He found that the motion of the spores was effected by their surfacc being covercd with vibratile ciliary organs; but the difficulty still remains.

What moves these cilia? Cilia are not peculiar to living creatures. Verily there are mysteries in nature which philosophy cannot explain; depths in the organism of a common plant which human intellect cannot fathom!

1. Vaucherla Dichotoma, Agardh.

Hab. Ditches and pools.
The frond of this is dichotomous, as the specific name implies ; it is branehed, about a foot in length; often filling pools with a close matted stratum. The vesicles are solitary globules, and sessile; the colour is green, lighter or darker.

There are a considerable number of Vaucherice which I must pass over. I found one latcly in circumstances which seemed uncommon, and I have not yct been able to ascertain which one it is. It was growing in full fruit in November on the stcep inside mall of a lime-kiln, uncovered above, along with Funaria hygrometrica. It was of a very dark green, the vesicles were abundant, and the filaments fine.

BATRACHOSPERMUM, Bory.

Gen. Char. Filaments invested with gelatine, moniliform, branehed. Fruit, globules of dense filaments scattered throughout in whorls, and to which they are attached by a single fila-
ment.-The name is composed of two Greck words, signifying frog-spawn.

1. Batrachospermum moniliforme, Bory. (Plate XX. fig. 77, filaments of \mathcal{B}. moniliforme, and on the left a portion of moniliform filament, magnified.)

Hab. In pure water, in wells and fountains and gently flowing streams. Not very common. Mr. Ralfs, Devonshire; Mr. Hassall, Cheshunt; Dr. Diekie, Aberdeen; Dr. Greville, near Edinburgh; Mr. Keddie, Dunollybeg, near Oban; D. L., Ballantrae.

The speeimens I got at Ballantrae were as fine as any I had ever seen. They filled a little fountain of water on a hill-side near the sea-shore. When brought out in handfuls from the little spring well, they were truly loathsome, or at least they would have been so to a person unaequainted with them, for they greatly resembled frog-spawn. I knew well, however, what a prize I had got, and with the fine specimens they formed, many friends were supplied. The filaments were about six inehes in lengtl, and the specimens shaded with tints of various colours. When spread on paper, the beautiful beading of the filaments can be seen by the naked eye, but it appears still more exquisitely beantiful when a lens is applied. They are so gelati-

Butrachospermece.] batrachospermum.

nous that in general they must be allowed to dry on the paper before any pressure is applied. Early in April this Batrachosperm makes its appearanee as a light green down on stones, or sometimes on grass, floating from the edge of the pool. At a more advaneed period it becomes detached, and eontinues for a time to grow in a free state.

There must be something peenliar in the water in whieh it grows, for year after year it continues to be found in the same little well, though not got in similar-looking wells for many miles around. I have tried to transplant it into other pools, but without suceess.
2. B. atrun, Bory.

Hab. In wells and little pools.
This is rare in Scotland, and also I think in England. It is more frequently found in Ireland, whenee I have had several speeimens of it from Professor Seouler along with the still more beautiful Batrachospermum vagum. I have speeimens from Mr. Ralfs from Devonshire, and from Dr. Dickie from lrance. It has bcen found by D. L., jumr., in a little well betwixt Ardrossan and Portineross, and I know not any other locality in whieh it has been got in the west of Scotland. It has been found for a suecession of years growing on stones in the same litite well, intermixed with
the mueh more robust B. moniliforme, and from which it differs by being devoid of moniliform whorls, the distant whorls being like the eommeneement of filaments. It has been said to be found in alpine streams; but with us it is got only a few yards from the sea-shore.

OSCILLATORIA, Vaucher.

Gen. Char. Filaments simple, even, clustered closely, striated, and generally lying in a mucous matrix.-The name is from a Latin word signifying to oscillate like the penduhm of a clock, from the motion that the filaments are thought to make.

1. Oscillatoria limosa, Faucher.

Hab. Ditehes and sewers by road-sides. Common.
Stratum rieh dark green, very thin, gelatinous, with short rays; filaments pale green, straight; striæ rather distinet, evident.

It is not easy to determine the species in this genus; even in this one there is uncertainty. It is O. tenuis of Hassall, and O. viridis of Johnston. The family, homerer, of the Oscillatoriece is one of the most distinet and remarkable of the divisions of the Algre. They are distinguished by the rapidity of their growth, the brillianey of their
colorurs, and the peculiar motion or oscillation of their filaments, on which their gencric name is founded. Mr. Hassal does not think that there is anything very remarkable in this motion, which he considers as partly external, and altogethcr physical. Their filaments, he says, are very straight and elastic, and when they are placed for observation on the field of a microscope, they are bent out of their natural straight line, and make an effort to recover it. Currents almost imperccptible in the liquid in which they are immersed, and perhaps uncqual attractions amongst the filanents themselves, are causes amply sufficient to explain any motion, he thinks, that he has ever witnessed amongst the Oscillatoriece. Captain Carmichacl, howevcr, a very accurate observer, is of a different opinion, though he probably makes too much of their motion when he considers it a proof of animal life. "Let a small portion of the stratum be plaecd in a watch-glass nearly fillcd with watcr, and eovcred with a circular film of talc, so that its edge may toueh the glass, the water will be rendered as fixed as if it were a picce of ice. The glass may now be placed under the microscope, and the oscillation of the filaments vicwed without the risk of disturbance from the agitation of the water; by following this course it will be speedily
pereeived that the motion in question is entirely independent of that eause."
2. O. thermalis, Hassall.

This resembles the preeeding, only that it is finer in every respeet. It eannot be ealled common, for I know no other habitat than that in which I found it,-in a eurrent of tepid water, flowing from a boiler at the Turf Dyke eoal-pit, Stevenston. When taken out of the water it is like green jelly. When a small portion of it is placed on paper, and the paper is submerged, it almost immediately begins to put forth its bright green glossy filaments, whieh in the eourse of a few hours extend in all direetions an ineh or an inch and a half in length. It makes a very beautiful speeimen, espeeially if the eentral pateh from which the filaments spring, is removed, and the spaee becomes filled with filaments from the first growth. If the pateh is not removed, it is, when dried, apt to eraek and fall off, leaving an empty space.
3. O. mucosa, Bory.

Stratum gelatinous, dark, æruginous green, glossy ; filaments large ; striæ subdistant.

This, like the former, seems to be a new speeies, as Mr. Hassall had never seen any speeimens but those I sent him.

I found them floating in a pool at the same coal-pit, but the water was not warm, and not very purc. They formed little filmy clouds, which werc almost impcreeptible.

DRAPARNALDIA, Bory.

Gen. Char. Filaments free, not immersed in gelatinous fluid. -Hassall. It is affectionately dedieated by M. Bory to his departed friend Mons. Draparnaud, a distinguished Freneh naturalist.

1. Draparnaldia qlonerata, Agardth.

Hab. In slow strcams and ditches, adhcring to stones, sticks, \&c. Not common in Scotland; more common in England and Ircland. I have got it in sevcral places in Ayrshirc.

Stem round, branched; ramuli in tufts, which are frequently altcrnate, and always ciliated; tufts divergent.

The first time I cver saw it was at Lochranza, in the island of Arran, in a little limpid pool in a stream from the mountain. I found great difficulty in catching it; it was so lubricous that it slipped through my hands like an eel, and so fragile, that when caught it broke by its own 22
weight. When first removed from the water it is like a mass of eoloured jelly without form or organization ; but when placed again in water to be spread on paper, it unfolds itself very beautifully.

The Draparnallice are universal favourites, the colour and the strueture being so lovely. D. glomerata is the largest of the family, and when found in a young state before the zoospores have eseaped, it is truly beautiful. It adheres elosely to paper, but it is so gelatinous that in most eases it must be allowed to dry on the paper before it is pressed, as it adheres to whatever eovers it.
2. D. nana, Hassull. (Plate XX. fig. 79, plant, natural size; on the right, a branch magnified, and underneath, a branchlet still more magnified.)

Filaments highly mueous, ver'y slender, sparingly branched. Branehes acuminate, not usually eiliated. Cells rather broader than long.-Hassall.

Hab. In streams, adhering to grass and weeds, and sticks and stones. Mr. Hassall says that is not uneommon in England in spring. It is rare in Seotland.

The first time I found it, it was adhering to a pieee of wood in a runlet of water pumped from a coal-pit near Stevenston, where the obstrueting wood and stones formed a little
waterfall. The next time I got it in great beauty in October, attached to withered grass, which, though rooted on thic bank, was in part floating in the stream of Stevenston burn, at a place generally affected by the tidc. For scven ycar's I never saw it again, though I often sought it at the same place at the same scason. In May, 1848, however, I got it in great abundance and beauty in the same rivulct attached to pond-wced. The tufts, waving gracefully in the stream, were two or threc inches in length, and when cautiously handled, could be brought out entire. Aided by my youngest daughter (who did not much like the wading, as the littlc flounders werc alrays pouncing upon her fcet) I procured a great number of specimens; and now that I know the habitat, and that it is not an autumnal, but a spring plant, I hope May, 1849, now at hand, will be as produetive as May, 1848, and that, undismaycd by flounders, a good stock may be proeured.
D. nana is very like D. plumosa, but Mr. Hassall thinks it quite different.
3. D. elongata, Hassall.

This, which is regarded as a now speeies, was first found by Major Martin in a quarry pool near Saltconts. It was got by D. L. in April, 1849, in a slow-ruming stream
at the Turf Dyke eoal-pit, Stevenston. It was lying at the bottom, growing on weeds and stones, in inconsiderable masses. The filaments were slender, and could not support mueh of the mass when an attempt was made to lift it out of the water. It bears a eonsiderable likeness to D. nana, though the green is lighter, and the filaments longer. Mr . Hassall says that it is rare ; that he has only twiee got it,-onee growing in a horse-trough near Cheshunt.

ZYGNEMA, Agardlk.

Gen. Char. Filaments articulated, simple, finally united in pairs by numerous transverse tubes. Eudochrome consisting of granules arranged in spiral rings, or in a simple row, which after conjugation, are condensed into a globule in one of the filaments, or in the transverse tubes.-The name from Greek words signifying a yoke and a thread, the threads, though at first separate, being afterwards yoked togcther.-Harvey.

Zygnema is one of the genera of the order Conjugatece. The Conjugatere are undoubtedly the most curious tribe of Conferva. Their filaments are simple, and of uniform diameter. They are mostly unattached, and being the inhabitants of stagnant waters, are in no danger of being
disturbed in their curious process of fructification. The simple filaments are composed of elongated cells, placed end to end, and held together by an enveloping membrane. The interior of these cells is occupied chiefly with endochrome, sometimes like stars, spirally arranged, and at other times filling the cavity of the cells. What follows is very remarkable.

When the filaments are fully grown, as they are in close juxta-position to each other, the cells are observed to send forth little conical processes or tubes, which unite with similar protrusions from corresponding cells of an adjoining filament, thus establishing a passage of communication betwixt the cells. In the meantime if the plant be a $Z_{y g} g$ nema, the endochrome in the spiral tubes becomes confused, and the contents of one cell pass through the connecting tube, and mingle with those of the other, forming a circular or oval body, of a dark green colour. It is remarkable that the cells of one part of the filanent will part with their contents and remain empty, while in another part of the same filament, they will receive the contents of the cells of another adjoining filament.

Some of the species of the genus Zygnema do not thus unite with other filaments; the round dark-green gramular
balls being in these formed by the union of the eontents of two adjoining eells in the same filament. When two eells are thus conjugating, the eell which has the greater portion of the matter reeeives the contents of the other. In the eourse of a few days, the sporongia or globules are formed, and are invested with two or three membranes, to preserve, we doubt not, the vitality of the seed. In a week or tro the filaments separate, and break down at the joining of the eells, and the zoospores bursting from them are disengaged and fall to the bottom to spring up after the rigours of winter, or even during winter, when there is not a continuanee of frost.*

1. Zygnema quininum, Agardh.

The filaments are pale yellowish-green; the spires perform three revolutions in eael cell; the spores are simple. Very eommon in ditehes and pools, in eloudy masses, of a pale green colour ; filaments glossy, and marked with a spiral line resembling a eonstant repetition of the Roman numeral V., or five, whence the specifie name quininum. This is the ehief distinguishing mark from another very common

[^8]speeies, whieh has two spiral lines erossing each other, and thus repeating throughout its whole length, the Roman numeral X., whence it is ealled Zygnema deciminum. This is well represented in Plate xxiri. figs. 3 and 4, of Mr_{1}. Hassall's work, while Zygnema quininiom is figured in Plate axvui. figs. 1 and 2.

DESMIDIEA.

The eharacter of this family is thus given by Mr . Ralfs : "Fresh-water, figured, mucus and mieroseopie Algæ, of a green colour; transverse division mostly eompletc, but in some genera ineomplete; eells or joints of two symmetrical valves, the junetion always marked by the division of the endochrome, often also by a eonstriction, sporangia formed by the eoupling of the eells, and union of their contcnts."

This deseription is taken from an admirable book by Mr. Ralfs, of Penzance, oul British Dcsmidieæ,-a work of great researeh, and illustrated by many beautiful plates. I shall not attempt to lead my young friends into the depths of mieroscopie Algology, yet in touehing at all on freslıwater Algre, I could not refrain from giving a slight notice of this exccedingly interesting tribe. They are all inha-
bitants of fresh-water. Their eolour is green, with the exeeption of a few of one genus, whose outer integument is eoloured, though the internal matter is green, while their most obvious peeuliarities are the beautiful variety of their forms, and their external markings; their most distinguishing charaeteristie, as Mr. Ralfs observes, is the evident division into two valves or segments. Each eell, or joint, of the Desmidiece consists of two similar valves or segments, and the line of junetion is in general well-marked. Mr. Ralfs is deeidedly of opinion that the two valves are but one eell, differing on this point from any other writers on the subjeet, exeept Professor Kützing, who in his Phyeologia Germaniea has arrived at the same conelusion, by independent observations. Mr. Ralfs states that the multiplication of the eells by repeated transverse division is full of interest, both as it relates to themselves, and in the remarkable manuer in whieh it takes plaee, and beeause it unfolds the nature of a proeess in other families; and furnishes a valuable addition to the knowledge of their strueture and physiology. The proeess is very evident in the genus Euastrum, for though the frond is really a single eell, yet in all its stages, it appears like two, the segments being always distinet, even from the eommeneement, being separated
from each other by the length of the connecting tubc, which is converted into two hyaline lobes. These lobes increasing in size, acquire the colour, and gradually put on the appearance of the old portion. Of coursc as they increase, the original segments are pushcd farthcr asundcr, and at last arc disconnected, each new lobe taking with it on old segment to supply the place of that from which it was separated, so that cvery new spccimen of Euostrum is partly new and partly old. A single glance, howcver, at Mr. Ralfs' Plate xi. fig. 2, Euostrum verrucosum, will give a better idea of this than all the words we can employ.

MICROSTERIAS, Agardh.

Gen. Char. Frond simple, lentieular, deeply divided into two lobed segments; the lobes inciso-dentate (rarely only bidentate) and generally radiant.-Ralfs.

1. Microsterias denticulata, Brébisson. (Plate XX. fig. 80, a mature frond, and under it a dividing frond.)

Hab. Penzance, Mr. Ralfs ; Kent, Mr. Jenner ; Henfield, Mr. Borrer ; Bristol, Mr. Broome; Ambleside, Mr. Sidebotham ; Aberdecnshire, Dr. Dickie; Stevenston, Ayrshirc, D. L.

This speeies is not uneommon. It is found in marshy ground, and in ditehes. The frond is large, and nearly eireular, each segment is five-lobed; the eolour is bright green; frequently the margin of the frond is eolourless. Originally the two segments of the frond are united by a narrow tube, as seen in the plate. This eonneeting tube lengthens, expands, and beeomes two young segments, of a lighter green colour, as in the lower figure. When these two segments have become full-sized, they separate, and form two fronds, of eaeh of which one half is old, and the other half new.

HYALOTHECA, Ehrenberg.

Gen. Char. Filaments elongated, cylindrieal, very gelatinous; joints having either a slight eonstrietion, which produees a erenate appearancc, or a grooved rim at one end, which forms a bifid projeetion on cach side; and vein circular--Ralfs.

1. Hyalotheca dissiliens, Smith.

Hab. Penzance, \&e., Mr. Ralfs; North Wales, Mr. Borrer; Kent, \&e., Mr. Jemner; Essex, Mr. Hassall; Bandon, Professor Allman ; Ambleside, Mr. Sidebotham ; Bristol, Mr. Broome; Stoke Hill, Mr. Thwaites; Aberdeen, Dr. Diekie; Ayrshire, D. L.

I have fixed on this species because I do not suppose that it is uncommon. I have got it in several localities; in Ayrshire, in particular, it is very abundant, in a little pond near Turf Dyke coal-pit, Stevenston. It is very beautiful when examined with a mieroscope, or even a good pocket lens. I first knew it under the name of Conferva dissiliens, and in its general appearanee it greatly resembles some of the Conferve proper, unbranched. The filaments are of considerable length, and fine as a human hair. Look at one of the filaments: though you see no difference in the two extremities, you would be disposed to say that one end must be the base and the other end the summit-the former the older, and the latter the younger of the two. You are fairly out; for the two ends are the oldest portions of the filament. At first there were two valves, forming one cell, eonstituting the plant. These two scgments or valves were connected by a tube, which lengthened as we have seen in Dicrosterias, and gradually formed two new valves. These grers and parted asunder the two original valves, and the new joining with the old, formed two eells instead of one. This proeess is repeated till a filament is formed, several inehes in lengtl, and consisting of namerous cells, the two segments at the end of the filament, though now far sepa-
rated, being the two valves or segments of whieh the origimal eell eonsisted.

Mr. Ralfs has a long and able dissertation on a disputed point, whether the Desmidiece are animal or vegetable, and proves very satisfaetorily that they are vegetable.

In eonclusion we may advert to a curious faet mentioned by Mr . Ralfs, of Hyalotheca, and other Desmidiec, being found growing in an old water-butt, in water derived from the elouds alone. Did these plants deseend from the elouds? Yes, but they had previously aseended from the earth. The "High and Lofty One" disdains not to provide for the eontinuanee and wide diffusion of what He has in misdom made. To the seeds of many land-plants He gives what serves all the purposes of wings. To the spores of many minute aquatic plants He gives, by means of cilia, the power of waving to and fro in the waters, till they find a suitable plaee for rest and growth. They are so light that they may be raised up into the atmosphere during the proeess of evaporation, and driven about by the slightest breath of wind.

Directions for Collecting, Spreading out, Preparing, and Preserving Sea-weeds.

Mueh of the pleasure and mueh of the benefit arising from the study of Algology, eonsists in the pursuit. It is in so far like hunting and fishing; there is all the exeitement of hope and all the advantage of exereise; and there is this in its favour, that however great the suceess, there is no life taken, no blood shed, and the subsequent enjoyment is not limited to a short repast, but may be eontinued for many years.

Let the young Algologist provide a tin vaseulum, or an oil-skin bag, in whieh he may deposit his marine stores. As some of the finer Algre soon fade in colour when exposed to the air, it may be well to have a small wide-mouthed flask in whieh they may be earried home floating in seawater. A staff with a erooked head is not a bad aecompaniment. Thus aecoutred, let him proeeed to the shore at ebb-tide, and examine the rejectamenta east out by the sea, turning them over with his staff, that no newly buried beauty may be allowed to perish. Let him then earefully examine the Algre growing on the uneovered roeks, extending the investigation to those roeks or stones that are
still partly under the waves. When the tide is turned, and begins to flow, fine weeds may often be got floating in little bays, or where eurrents betwixt rocks are formed. These may be very easily eaught by the weed-gatherer's staff.

When the vaseulum is filled, or the time is up, or the eolleetor tired, let the spoils of the sea be earefully examined when he reaehes home. There will be mueh uneertainty in many eases as to the contents of the vaseulum, or oil-skin bag, till they are floated and spread out on paper. Then it is that there is seope for fine taste, and for the delieate manipulation of ladies' fingers; nature must be eonsulted as the sure instruetress for laying out the speeimens in the most graeeful manner. Plaee on the table a basisin of freshwater to eleanse the weeds from sand or any impurity. Let only a small portion of the mass at a time be put into the basin, as many species begin to deeompose when placed in fresh-water. If the specimens are of large size, they may, after eleansing, be floated in a shallow tin-tray filled with fresh-water; but if they are only of moderate size, a white soup-plate will answer the purpose: let the plate be nearly filled with luke-warm water. Let a good supply of paper be at hand; and, as much of the beanty of the specimen depends on the quality of the paper, it should be fine,
and at the same time stout, almost as good as drawingpaper. The paper should be eut so as to be quite smooth at the edges, and as this is best effected by the bookbinder's knife, it is well to have it done when the paper is purchased.

Having got the paper neatly cut into square and oblong portions, of different sizes, take a pieee suited to the size of the speeimen, and place it under the weed floating in the water, then putting the left hand under the paper, bring it near the surface, and gently move the sea-weed till it assume on the paper a natural and graceful form; the fingers of the right hand may be employed in helping to arrange the branches of the plant, or some sharp-pointed instrument may be used for this purpose,-a pen-knife, the quill of a poreupine, or what is still better, as being less shar'p, 一the point of a silver fruit-knife. A pair of niee little scissors should be at hand, to remove any superabundant branehes.

When the specimen is properly arranged, let the paper on which it is spread be very cantiously removed from the water, for if the position of the plant is changed, the work may require to be done over again. When the specimen is removed from the water, it may be plaeed for a little
while in a sloping position, to allow the water to run off, and during this time other speeimens may be treated in the same way.

The drying and pressing proeesses then begin. Before any part of the paper is eompletely dry, plaee the speeimens on several folds of blotting-paper, quarto size, and eover them with a fold of muslin, and over the muslin lay several folds of blotting-paper, repeating this operation till all the speeimens that liave been laid down are eovered with a fold of muslin, and several folds of blotting-paper. If a serewpress is at hand, let the whole be placed in it and gently pressed. Strong pressure at first would bruise the plant, espeeially if at all gelatinous. After some hours of slight pressure the whole may be removed, and either treated with a fresh supply of muslin and paper, or those in which they were may be cried before the speeimens are again placed in them. The advantage of being covered with a fold of muslin will then appear; for in general none of them will be found adhering to the muslin, whereas had they been eovered only with blotting-paper, the half of the speeimens would have been spoiled by adhering to it.

The whole may then be replaeed in the press, and considerably stronger pressure applied to them, and under this
they may be allowed to remain for a day and a night. In shifting them the second time, the muslin eoverings may be removed. When permitted to remain till the plants are quite dry, there is danger of their leaving elequered impressions on the speeimens. They may then be replaeed in the press, and very strong pressure applied. They should be shifted once a day for a week, and the paper dried; and at the end of that time thcy may be deposited in the Herbarium, when they will be found adlicring so closely to the paper as to have all the appearanee of a beautiful painting.* Where there is not a press, the want is easily supplied. All that is neeessary is two boards the size of the blotting-papcr, and three weights of stone or east iron. The blotting-paper eontaining the spccimens bcing placed betwixt the boards, one weiglit may be plaecd above them at first, two at the seeond shifting, and all the three afterwards, and let the last be a very heavy one. When the speeimens are taken out of the blotting paper, before they are placed in the Herbarium, the scientifie name, the loeality and the date, should be neatly written at the botlom.

* A learned Professor going abroad asked me to give lim some specimens connected with natural history for the museum of his college. I sent him an albuth filled with sea-wceds, and he wrote to me that he was execedingly obliged to me for the beautiful sketches done by my danghters!

$$
2 \times 2
$$

Though what we have said respeeting laying down and pressing is suitable for plants in general, there are exeeptions; there are some that may be treated in the way we have preseribed, and yet they would not adhere. If they are eartilaginous, or eoriaeeous, or destitute of gelatine, however firmly pressed they will not eling to paper; these require a little gumming, or a little isinglass, whieh leaves not a glare like gum.

Some delieate plants that lose their fine colour when prepared in fresh-water, retain it eonsiderably better when they are floated in sea-water, or, if this is not at haud, in water in which there is a solution of eommon salt.

The great Tangle, and some of the larger Fuci, whieh are not pliant, and which lose their eolour, becoming blaek in the Herbarium, are by Algologists that we know dipped in hot water for a little, whieh both reuders them more pliant, and prevents them, for a time at least, from beeoming blaek. The natural eolour might perhaps be in some degree preserved, if, aceording to the praetiee of other Algologists, a coat of vamish were given them before they are plaeed in the Herbarium.

It is a general eomplaint that the Porphigre do not adhere to paper in drying, but shrink and beeome torn in
eonsequence of starting from the paper. This is very easily prevented: let them be spread out and covered with muslin in the eommon way, but let not the muslin be removed for two or three days; yet though the muslin is to be allowed to remain, let them have, along with the other speeies, a supply from time to time of blotting-paper, not only dry, but heated at the fire. In four or five days they will be quite dry, and they will adhere so firmly to the paper that they will seem a part of it.

Very gelatinous kinds, sueh as Gloiosiphonia, Mesogloia, Batrachospermum, Draparnaldia, \&e., would in some eases be destroyed, if eovered and pressed in the manner we have direeted. They would be bruised by the pressure, and would adhere to the muslin or paper, however lightly laid over them. They must be allowed to lie exposed to the air till they are dry, and then after moistening with a sponge the under side of the paper, strong pressure may be applied to them. But though these eautions are in general neeessary, there are certain states of these plants, in whieh they may be eovered and pressed in the eommon way, aud those that are thus treated make by far the finest speeimens.

There are several ways in whieh collcetions of sea-weeds may be preserved after they have been earefully prepared.

They may be kept loose betwixt folds of paper, and the sheets may be arranged alphabetically aeeording to the names of the plants they eontain. This is found very convenient when referenee is required, or when a seleetion from them is to be made.

When the student of Algology has got speeimens named on good authority, they should be kept separate, and may be attached by fine pins to the sheets in whieh they are plaeed. This in their case is preferable to any permanent fastening, beeausc it may often be necessary to examine their strueture and fructification by placing them under the mieroseope, or by holding them up betwixt the cye and the light that they may be examined with the aid of a good lens.

When speeimens arc plaeed in an album, slits may be made to reeeive the four eorners, and in this way they may easily be removed and replaeed at will. If the colleetion is ehiefly valued for its beauty, - and few things are more beautiful than a good eollection of well-prepared Algæ, -a handsome album should be got formed of stout eoloured paper, and on the pages of this album, the specimens should be tastefully arranged aeeording to their size and form, and then they may be made to adhere to the strong coloured paper by touching the under side of eaeh eorner with well-
made paste; or if there is no wish to remove them, by applying the paste with a camel's hair-brush to the whole of the under side. After a short pressure, they will adhere in the firmest manner, and judging from what I have lately seen, there is no way in whieh a fine collection appears to so great advantage.

GLOSSARY.

The Frond.

Frond, is employed to signify all parts of a sea-weed exeept the root; and in some eases the stem, when it is very distinet from the other parts of the plant.

The Frond may be

Bificl, eleft into two segments; Bilobed, divided into two lobes ; Dichotomous, regularly and repeatedly cleft in two as in Dictyota dichotoma; Irurcate, forked.
Capillary, slender, hair-like as in the Conferve.
Compressed, flattened laterally as in Ent. compressa.
Constricted, drawn together as if tied, at intervals, as in Chorda lomentaria.
Continuous, without interruption, prolonged.
Convolute, rolled together ; Inwolute, rolled inwards; Revolute, rolled baekwards.

Cordate, heart-shaped at the base; Obcordlute, heart-shaped at the apex.
Crenated, notehed.
Cuneatc, wedge-shaped.
Cylindrical, round and elongated.
Denticulated, toothed.
Ensiform, sword-shaped.
Falcated, siekle-shaped.
Filamentous, slender, thread-like.
Filiform, string-like, the size of common twine.
Fimbriated, fringed.
Flabelliform, fan-shaped.
Flexuous, bending to one side or the other, wavy.
Geniculaterl, bent like the knee.
Hastate, shaped like a spear.
Laciniated, eleft more or less deeply.
Lanceolate, shaped like a lanee.
Lenticular, eireumference round, surfaee depressed above and below.
Lincar, narrow, the same width all along.
Linguliform, tongue-shaped.
Ovate, rounded at the base, tapering towards the apex, egisshaped.

Obovate, the preeeding reversed.
Oval, or Elliptical, equally rounded at both ends, the length execeding the breadth.
Palmate, shaped like the hand with the fingers extended.
Pinnatificl, eut transversely into oblong segments.
Plane, level, flat.
Proliferous, when a seeond frond springs from the first.
Roniform, kidney-shaped.
Saccate, in the form of a bag.
Simple, undivided, unbranehed.
Spathulate, rounded at the apex, and tapering at the base.
Tubular, hollow, round like a tube.
The Frond in Substance may be
Camose, fleshy eonsistence.
Cartilaginous, stiff, gristly.
Coriaccous, leathery, tough, and elastie.
Corneous, horny.
Flaccid, soft, collapsing when removed from the water.
Gelatinous, jelly-like.
Rigid, harsh and stiff.
In Structure, the Frond may be
Cellutar, when eomposed of small cells. Fitamentous, when made up of threads.

Gelatinoso-cartilaginous, betwixt gelatinous and membranaccous.
Gelatinoso-membranaceous, betwixt gelatinous and membranaceous.
Punctated, dotted.
Reticulated, veined like net-work.
Striated, streaked with lines.
The smaller divisions of the Frond ealled Ramuli, branehlets, or Ramelli, little branehlets, may be,
Appressed, approaching the stem or braneli, so as to be almost in the same dircetion.
Articulate, jointed.
Byssoid, forming tufts of slender filaments.
Corymbose, level-topped ; the branehlets of different length, but level or nearly so at top.
Distichous, plaeed in two opposite rows.
Divaricatcd, when the direetion is between the patent, or spreading, and horizontal.
Fasciculated, tufted and level-topped.
Imbricated, overlapping eaeh other like tiles.
Inarticulate, not jointed.
Multifud, mueh divided, or eleft.
Patent, spreading.

Pectinate, with the divisions like the teeth of a comb.
Pectinato-pinnate, partaking of both the preceding characters. Pinnate, winged.
Quadrifarious, arising from all sides of the branch.
Setaceous, bristly.
Secund, when the branchlets bear another series on one side. Verticillate, whorlcd, set in a circle round the stem.

The Fructification.

Capsules, small pitcher-shaped bodies containing spores, sporules, or seeds.
Cilia, cye-lash like bodics, with which the spores of many of the Algæ are clothed.
Enclochrome, a dark-coloured mass in the flaments that forms the seed.
Granules, secds in the form of little grains, collected in patches on the frond, called sori, or placed in the tips of branchlcts. Capsular seed is called primary, and granular sced secondary, only by way of distinetion, for they are equally productive of plants.
Involucre, a small cover of the fruit, formed, as in Ceramium rubrum, of short branchlets.
Pericarp, the cover of the sced or fruit,

Receptacles, variously shaped bodies eontaining the seeds. Sori, as we have already said, are patehes either defined or seattered, in whieh the granular seed is placed.
Sporidia, elusters of sporules.
Stichiclia, Antheritia, Cocciclia, Ceramidia, Utricles, Favella, different kinds of fruetifieation, explained in Chapter V. page 30.
Tetraspores, a mass of four spores eonjoined.
Tubercles, small round masses generally eontaining seed.

Colour.

When there is seareely any colour, and the parts are almost transparent like glass, the plants are said to be Hyaline, diaphanous, pellucid. The opposite of this is opake.
Cinereous, ash-eoloured.
Ferruginous, rust-coloured.
Fuliginous, smoke-coloured.
Fuscous, reddish-brown.
Glaucous, mixture of green and blue.
Iridcscent, having the colours of the rainbow.
Olivaceors, a dusky green, inelining to brown.
This is at times very remarkable in Chondrus crispus,
whieh we saw lately having a rieh metallic lustre, the tints being as brilliant as those in the neek of the peacoek. We have also seen Nitophyllum laceratum, very irideseent. Other terms not eomprised in the foregoing. Abortive, not reaching perfeetion.
Aeuminated, with a long tapering point.
Aculeated, pointed like a priekle.
Agglutinated, glued together.
Aggregate, eolleeted, or grouped together.
Anmulated, ringed.
Axillary, in the angle ealled the axil, formed by the junetion of braneh and stem.
Basal, at the base.
Bullated, blistered.
Caulescent, having a stem.
Cirrlose, with tendrils.
Costate, ribbed.
Cryptogamous, plants not having flowers.
Deeiduous, falling off.
Disk, surface of a frond within the margin.
Disk, the flat base by whieh many algw adhere to roeks. Dissepiments, the partitions of the artienlate algw.
Prondlet, a little frond.

Frustules, the joints of whieh dichotomous plants are composed.
Fusiform, spindle-shaped.
Gibbous, the surfaee elevater at a partieular place.
Glanutular, having glands, bodies containng juiees.
Lateral, at the sides.
Limbzus, a border.
Mammillated, hemispherieal, with a wart on its top.
Midrib, a large vein termed pereurrent, when continuing the whole leugth of the frond.
Mucronated, rounded apex armed with a spine.
Nerve, a faint vein.
Obsolete, when wearing away.
Parasite, growing on another plant.
Periphery, an envelope.
Phenogamous, flowering plants.
Pinnce, winged-leaflets or portions of the frond.
Placenta, a pillar often formed by the thiekening of the partitions of the periearp.
Pulvinatc, pillow-shaped.
Pyriform, pear-shaped.
Rotund, round.
Scutate, shaped like a shield.

Segments, divisions of the frond.
Septa, bands, partitions.
Serrated, like a saw.
Sub-rotund, roundish, the prefix meaning that the character does not strietly apply.
Terete, round, eylindrical.
Tortile, twisted. Foluble, twining.
Truncated, cut aeross.
Umbiticated, the surface depressed, surrounded by an elevated margin.
Uncinated, hooked.
Urceolate, expanded at both culs, and eontracted in the middle.
Vesicle, a bladder. Utricle, a little bladder.

THE END.

July, 18 ± 9.

LIST OF WORKS ON NA'TURAL HISIORY, \&c.,

PRINTED AND PUBLISLED BY
reeve, benhail And reeve.

1. POPULAR HISTORY OF BRITISH SEA-TEEEDS; a familiar and technical deseription of the Sea-weeds of the British coasts. By the Rev. D. Landsborough, A.L.S., Member of the Wernerian Society of Edinburgh. One vol. royal IGmo, twenty plates of Figures and two plates of dissections by Fitch. Price IOs. Gd. coloured.
2. POPULAR FIELD BOTANY; a familiar and technical description of the plants of the British Isles. By Agnes Catlow. One vol. royal IGmo, 20 plates of Figures. Price 7s. plain ; I0s. Gd. coloured.
3. POPLLAR BRITISH ORN1THOLOGY; a familiar and tcehnieal description of the Birds of the British Isles. By P. H. Gosse, Author of 'The Oecan,' 'The Birds of Jamaica,' \&e. One vol. royal 16 mo , 16 plates of Figures. Price 7s. plain; 10 s . 6 d . coloured.
4. POPLLAR BRITISH ENTONOLOGY; a familiar aud technical deseription of the Tnsects of the British Isles. By Maria E. Catlow. Oue vol. royal IGmo, 16 plates of Figures. Priee 7s. plain; IOs. $6 d$. coloured.
5. PHICOLOGIA BRITANNICA; or, Ifistory of the British Seaweeds. By Whliaa Flenry Itarvey, M.D., M.r.i.A. Ta monthly mubers, each containing six coloured plates, price $2 s .6 \%$; large paper, $5 s$. Vols. I \& A. price 50s. cach, now realy.
6. Tliougrits on a Pelble ; or, ar First Lesson in Geology. By In. Manemar, 1'.R.S. Eighth Erlition, enlarged, with ilhnstrative notes. lour coloured plates, T'wenty-seven wood-ents, and Portrait of the Anthor on stecl. Priee ass
7. CURTIS'S BRITISH ENTOMOLOGY, being Illustrations aud Deseriptions of the Genera of Inscets found in Great Britaiu and lreland, eomprising coloured figures from nature of the most rare and beautiful speeies and of the plants mpon whieh they are foumd. By John Curtis, F.L.S. Sixteen vols. royal 8vo. 770 eopper-plates, beautifully coloured. Priee £21. (Published at £43 16s.)
8. 'IHE POETRY OF SCIENCE; or, Studies of the Plysieal Phenomena of Nature. By Robert Hunt, Author of 'Researches on Light.' One vol. demy $8 \mathrm{vo}, \mathrm{pp} .487$. Priee $12 s$.
9. EPISODES OF INSECT LIFT. Oue vol. erown 8vo, pp. 320, with 36 illnstrations, Real and ldeal. Priee $16 s$. elegantly bound in faney eloth. Coloured, in silk extra, gilt, 21 s .
10. THE DODO AND ITS KlNDRED; or, the History, Affinitics, aud Osteology of the Dodo, Solitaire, aud other extinet birds of the Islands Manritius, Rodriguez, and Bourbou. By H. E. Strickland, Esq., M.A., F.R.G.S., F.G.S.; and A. G. Melville, M.D., M.R.C.S. One vol. royal quarto, with eighteen plates aud numerons wood illnstrations. Priee 21 s .
11. THE Natural history of ireland. By Thlllam Thompson, Esq., Presideut of the Natural History and Philosophical Society of Belfast. Birds.-Vol. 1. Priee 16s. eloth.
12. THE RHODODENDRONS OF STKKIM-HIMALAYA. By Dr. J.D. Hooker. Iu handsome imperial folio with ten beantifully coloured plates. Priee $21 s$.
13. A CENTURY OF ORCHIDACEOUS PLANTS, the Plates selected from the Butanieal Magazine. The deseriptions re-written by Sir William Jackson Hooker, T.R.S., Direetor of the Royal Gardeus of Kew; with Introduction and instructions for their eulture by Jous Charles Lions, Esq. One huudted colomed plates, royal quarto. Price Iive Guineas.
14. CURTIS'S BOTANICAL MAGAZZNR; by Sir Whminam Jactson Hooker, K.H., D.C.L., \&e. With observations on the culture of eaeh species, by Mr. Jolm imith, A.L.S., Curator of the Roval Gardens, kew. In monthly munbers, each containing six plates, price 3 s . (id. colonred.
15. HOOKER'S JOURNAL OF BOTANY; Or, KEW GARDEN MIScellany. Edited by Sir Milliam Jackson Hooker, K.H., F.R.S., \&c. In monthly umbers, with a plate (coloured wheu possible). Price ls.
I6. THe LONDON JOURNAL of BOTANY. Edited by Sii. W. Hooker. Vol. VII. completing the scries, price 30 s .
16. NEREIS AUSTRALIS; or, Illustrations of the Algac of the Southern Ocean. By Wulham Hevry Haryey, M.D., M.R.I.A. To be completed in Four Parts, imp. 8 vo, price $1 l$. Is. cach. (Parts I and 2 already published.)
I8. CONCHOLOGIA ICONICA; or, Figures and Descriptions of the Shells of Moiluscous Animals. By Lovell Reeve, T.L.S. Demy 4to. Published in monthly numbers, each contaiming cight plates. IOs. coloured.
17. CONCHOLOGIA ICONICA. Uncoloured edition. For geological puposes. In monthly numbers, cach containing six plates, price 2s. 6 d .
18. ELEMENTS OF CONCHOLOGY; or, Iutroduction to the Natural History of Shells and their molluscous inhabitants. By Lovell Feeve, F.L.S. Royal Svo. In twelve parts, each coutaining live plates. Price $3 s .6 \mathrm{~d}$ coloued.
19. CONCHOLOGIA SYSTEMATICA; or, Complete System of Couchology. 300 plates of uprards of I,500 tigures of Shells. By Lovefl Reeve, F.L.S. Two vols. 4to, cloth. Price I0 . colourcd;
20. plain.
21. CONCHOLOGIST'S NOMENCLATOR; or, Cataloguc of recent Shells. By Agese Catlow and Lovell Reeve, F.L.S. Price 21 s.
22. ILLUSTRATIONS OF BRITiSH MiCOLOGY; or, Figures and Descriptions of British Funguses. By Mrs, J. T. Husser. Royal 4to. Plates. Monthly. Price 5s. coloưcd.
23. The esculent funguses of england. By the Rev. Dr. Badiam. Super royal 8vo. l'rice 2Is, colowed plates.
24. NARRATIVE OF THE VOYAGP OF ITM.S. SAMARANG in the

 foloweal Plates, and lit ching. Prime 36s., cloth.
25. ZOOLOGY OF THE VOYAGE OF H.M.S. SAMARANG. Edited by Artiutur Adams, R.N. In parts, priee Ss. and IOs. $6 d$.
26. FLORA ANTARCIICA; or, Botany of the Antarctie Voyage. By Joserif Dalton Hooker, M.D., R.N., F.R.S., \&c. Two vols., rojal 4 to, 200 plates. Price $\mathrm{I} 0 l$. I5s. coloured; 7 7 . I 0 s. plain.
27. CRYPTOGAMIA ANTARCTICA; or, Clyptogamie Botany of the Antarctic Voyage. By Joseph Dalton Hooker, F.R.S., \&e. Royal 4to. Priee $4 l .4 s$. eoloured ; $2 l .17 s$ s plain.
28. NOTES OF A TOUR IN THE PLAINS Of INDIA, the Himala, and Borneo. By Dr. Hooker. Part I. England to Calcutta. Price 2s. $6 d$.
29. TRAVELS IN THE INTERIOR OF BRAZIL. By the late George Gardner, Esq., M.D., F.L.S., Superintendeut of the Royal Gardens of Ceylon. Priee ISs.
3I. CONTRIBUTIONS TO ORNITHOLOGY. By Sir William Jardine, Bart. In parts, eontaining from three to four plates eaeh, price $3 s$.
30. THE BRITISII DeSMIDIE, By John Ralfs, M.R.C.S. Price 3Cs. eoloured plates.
31. CONCHYLIA DITHYRA INSULARUM BRITANNICARUNI. By William Turton, M.D. Reprinted verbatim from the origimal edition. Large paper, price 2l. 10s.
32. THE PLANETARY AND STELLAR UNIVERSE. By Robert Jamles Mann. Priee 5s. eloth.
33. ILLUSTRATIONS of the WISDOM and BENETOLENCE of the Derty, as manifested in Nature. By H. Edwards, LL.D. Cloth. Price 2s.6d.
LON1OON:

RJEVE, BENIAM, AND REEVE, KLNG WLGLAM STLEET, STRANH.
1

[^0]: * From Mr. D. Turner's IIistoria Fucorum.

[^1]: "The Lord of all, Himself through all diffused,
 Sustains, and is the life of all that lives.
 Nature is but a name for an effeet,
 Whose eause is God. He feeds the saered fire
 By whieh the nighty proeess is maintained,
 Who sleeps not,-is not weary; in whose designs
 No flaw deforms, no diffieulty thwarts,
 And whose benefieenee no change exhausts."

[^2]: * Robertson's History of America, vol. i. p. 120.

[^3]: * Erroneonsly printed reticulosus, in Syst. List. p. 83.

[^4]: * Vide "Excursions to the island of Arran," by the Author, p. 274.

[^5]: * This entireness depends on the nature of the shore. Sinee writiag the above, I spent a day in Arran, where I found abondanee of D. sanguinea, appearing very fresh and entire, but when floated, almost every frond was found to be injured by granite roeks and gravel.

[^6]: * It has since been found on several of the European shores, but not out of Europe.

[^7]: * Excursions to Arran, by the Author.

[^8]: * See a fuller and better statement of these matters in Hassall's excellent work on British Fresh-water Alge.

