S Y NO PS IS

CONTENTS OF THE MUSEUM

OF THE

ROYAL COLLEGE OF SURGEONS

OF ENGLAND.

LONDON:
PRINTED BY TAYLOR AND FRANCIS, RED LION COURT, FLEET STREET:
SOLD AT THE COLLEGE.
1862.

VISITORS ARE PARTICULARLY REQUESTED NOT TO TOUCH ANY OF THE PREPARATIONS.

CONTENTS.

Page
History of the Museum 2
General Arrangement 4
WESTERN MUSEUM.
Ground Floor.
Skeletons of Vegetables 6
,, Radiata 9
,, Mollusca 14
,, Articulata 18
,, Man 21
Crania of different varieties of Man 22
Dried Preparations of Discases and Injuries of Bones 22
,, , Monsters and Malformations 23
,, Vascular Prcparations 25
Mummies 26
Surgical Instruments 28
Wax Models 28
Calculi and Concretions 29
Human Skeletons on pedestals 30
Sclect Pathological Specimens in glazed Cases 31
Staircase 39
Galleries.
Pathological Preparations in Bottles:
General Pathology 40
Pathology of special Tissues and Organs 42
Monsters and Malformations 62
Page
MIDDLE MUSEUM.
Ground Floor.
Fossil remains of Animals and Plants :
Large Specimens on platforms and pedestals 65
In Wall Cases and Floor Cabinets :
Plants 68
Invertebrata 69
Pisces 70
Reptilia 70
Aves 72
Mammalia 73
Galleries.
Zoologieal speeimens in spirit 82
EASTERN MUSEUM.
Ground Floor.
Skeletons of Vertebrate Animals:
Large Specimens on platforms and pedestals 84
In Wall Cases and Floor Cabinets :
Pisces 87
Reptilia 89
Aves 91
Mammalia 92
Galleries.
Physiologieal Preparations in bottles 99
Wax Models of the Torpedo 105
Summary of number of Speeimens in Museum 112

MUSEUM

THE ROYAL COLLEGE OF SURGEONS.

SYNOPSIS.

The Collection of The Royal College of Surgeons is designcd to facilitate the study of the phenomena of Life, both in health and disease, as the true foundation upon which the rational practice of the healing art is based.

With this view, the Collection is divided into two chief departments.

The first, The Physiological Series, contains examples of every important modification of the different structures or organs, by which the functions of Life are carried on, throughout the whole range of organized beings, in a natural condition.

The second, The Pathological Series, exhibits the same structures or organs, under the influence of injury, disease, or malformation.

Bcsides these two principal departments, therc is a small collection of objects of historical or general interest to the profession, such as the various forms of instruments which have been used in the practice of Surgery; the different methods of embalming and preserving the dead, \&c.

Thc Hunterian Collection, which forms the basis, and still a large proportion, of the contents of the present Muscum of the Royal College of Surgeons of England, was originally arranged in a building which its Founder, Joun Hunter, erected for it in 1785, behind his housc in Leicester Squarc. In 1787 he had completed its arrangement, the principle of which is still adhered to; and the Museum was opened for inspection during the month of October to the Medical Profession, and in May to non-professional Patrons, Cultivators, or Lovers of Physiology and Natural History.

John Hunter died October 16th, 1793, aged 64. By his will he directed his Museum to be offered in the first instance to the British Government, on such tcrms as might be considered reasonable, and in case of refusal, to be sold in one lot, either to some Foreign state, or as his Executors might think proper.

In the year 1799 Parliament voted the sum of $£ 15,000$ for the Museum, and an offer of it being made to the Corporation of Surgeons, it was accepted on the terms proposed by Government*.

[^0]In 1806 the sum of $£ 15,000$ was voted by Parliament in aid of the ercetion of an cdifice for the display and arrangement of the Hunterian Collection; a second grant of £12,500 was subsequently voted, and upwards of $£ 21,000$ having been supplied from the funds of the College, the building was completed in Lincoln's Inn Fields, in which the Museum was opened for the inspection of Visitors in the year 1813.

From the number of the additions, the Museum, completed in 1813, became too small for their adequatc display and arrangement; and more space being at the same time required for the rapidly increasing Library, the greater portion of the present building was erected, wholly at the cxpense of the College, in 1835 , at a cost of about $£ 40,000$, and the Hunterian and Collegiate Collections were re-arranged in what arc now termed the Western and Middle Museums, which were opened for the inspection of Visitors in 1836.

Further enlargement of the building having become neccssary by the continued increase of the Collection, the Collcge, in 1847, purchased the extensive premises of Mr. Alderman Copeland, in Portugal Street, for the sum of $£ 16,000$, and in 1852 proceeded to the erection of the Eastern Museum at the expense of $£ 25,000$, Parliament granting $£ 15,000$ in aid thereof.

[^1]The entire amount expended by the College in maintaining and increasing the Collection up to the present time has exceeded $£ 250,000$.

The superintendence of the Museum is confided by the Council of the College to a Committce of its Membcre, who, as opportunities offcr, recommend the purchase of specimens desirable for the Collection. A valuable portion of the additions has been by liberal donations from various Fellows and Members of the College ; and numerous specimens havc been received from distinguished cultivators of Natural Science, not members of the medical profession. The name of every Donor will be found recorded in the Catalogues.

GENERAL ARRANGEMENT OF THE COLLECTION IN THE THREE MUSEUMS.

The Collcction is contained in three apartments, named the Western, the Middle, and the Eastern Museums. The Ground Floor of cach apartment is devoted to skelctons and hard parts of animals, and other preparations in a dry state; those of large size being placed on pedestals in the body of the room, the others in glazed cases round the walls, and in cabinets on the floor. The Galleries are appropriated to the preparations contained in bottles.

The apartment first entered is the Western Museum. The Ground Floor is assigned to the Pathological Preparations in a dried state, including the diseases and injuries of bone, calculi and other concretions, as well as injected preparations, anatomical models in wax, mummies, and surgical instruments. It also contains a portion of the series of Natural Structures, viz. the skeletons or hard parts of Plants and Invertebrate Animals, and of Man. The two Galleries are devoted cxclusively to the Pathological Preparations in bottles, including monstrosities and malformations.

The Middle Museum contains on the Ground Floor
the fossil remains of extinct Animals and Plants; and in its two Galleries, the Colleetion of Natural History (undisseeted animals) in spirit. The Invertebrata are arranged in the Lower, and the Vertebrata in the Upper Gallery.

The Eastern Museum is entirely appropriated to the Physiologieal Series. The Ground Floor is devoted to illustrations of the Osteology of the Vertebrate Animals, and the Galleries contain preparations in spirit exhibiting the most remarkable modifications of every other portion of the organization throughout the animal kingdom. In the rail-cases attaehed to the Galleries, dried specimens belonging to the series are placed.

In this Synopsis the contents of eaeh Apartment are deseribed separately, and in the order in which they arc arranged in the Museum; but direetions arc given by whieh the visitor will be enabled to make an uninterrupted examination of any natural series. For further facility of reference to any particular part of the Museum, a ground plan, with the distinguishing numbers of the Wall Cases, and letters of the Floor Cabinets, is placed at the end of the work.

WESTERN MUSEUM.

Ground Floor.

The Wall Cases and Floor Cabinets on the eastern side (the left hand on entering) of this Museum, as far as the door into the Middle Museum, contain some of the more remarkable and durable parts of Plants, and the skeletons of Invertebrate Animals. The larger specimens are placed in the Wall Cases, and the smaller ones in the glazed tops of the Floor Cabinets, but as they form a consecutive series they will be described together. Many of these, brought home by Cook, Banks, White, and other voyagers, were formerly the property of Mr . Hunter; and numerous and valuable specimens have been added, both by donation and purchase, since the Collection was entrusted to the care of the Council of the College. A full description of the specimens in this part of the Museum will be found in the ' Catalogue of Plants and Invertebrate Animals in a dried state,' of which several copies are placed on the cabinets for the use of visitors.

Wall Case I. and Floor Cabinet A, Compartments 1, 2, and 3 , contain select examples of the more durable portions of members of

THE VEGETABLE KINGDOM.

These specimens embrace some of the lowest, as well as of the highest forms of plant life, and many of them are of peculiar interest from having formerly been in the possession of some of the earliest cultivators of botanical science.

Amongst the Thallogens, the Water-net (Hydrodictyon), No. $8[F \cdot]$ *, is worthy of notice ; and Nos. 10 and $11[F$.$] are$ examples of similar plants so matted together as to produce a flannel-like substance, which under treatment is capable of conversion into paper.

The marine productions termed 'Corallines' (which are not

[^2]animals, as was formerly supposed, but lowly organized plants, thiekly coated with ealeareous matcrial) are here represented by many speeimens, which formerly belonged to Mr. Ellis, who devoted so large a portion of his time and fortune to the description and illustration of these beautiful produetions. The original drawings of Mr. Ellis's work on Zoophytes arc preserved in the Museum, and some of the speeimens (Nos. $17,41,42,43,44, \& e$. [F.]) have their names in his handwriting still attached to them.

Nos. 116 to 127 [F.] are Fungi which grow in the bodies of the larve of Inseets, producing the combination of plant and animal called "vegetable caterpillar" or "rush-eaterpillar" by the colonists of New Zealand. In the most common kind, the eaterpillar belongs to a moth of the genus Hepialus, and Spheria Robertsii is the botanical name of the parasitie fungus. The caterpillar, after feeding for some weeks on the leaves of the tree on which it was hatched, drops to the ground and burrows in the earth, there to undergo its final transformation. In the process of moulting, the minute germs of the Spharia get aecess to the interior of the body, and germinate at the expense of the fatty matter whieh has been accumulated beneath the integument. In this rieh nidus the growth of the plant is rapid; the materials for the development of the parts of the perfeet insect are exhausted, and the eaterpillar dies. The growth of the plant proeeeds; all the soft parts of the eaterpillar are progressively eonsumed or assimilated by the plant, which, after thus filling and distending the integument of its prey, bursts forth at the weakest point, whieh is usually that thinner and more flexible skin which allowed the free movements of the head upon the trunk. The plant then secks the light, aseends, rises above the surface, and developes the minute germs or spores which are dispersed in the air and fall to the soil, prepared to take advantage of any similar nidus in whieh they may be aecidentally introduced.

Nos.116, 117 [F.]. Spharia sinensis is eaten by the Chinese, being brought to the market of Canton tied up in bundles with silk.

The Acrogens, to which class the Ferns belong, arc largely represented. Some of these, as seen in the transverse sections of the trunk, Nos. 171 to 174 [W.], from New Zealand, attain the size of large trees.

In the next Class, the Endogens, there are many objects of interest, as in it arc included the Grasses and Palms, both of which orders are represented by well-marked specimens. No. 186 [W.], which occupies the centre of the Case, is a very fine panicle of the Sugar-cane (Saccharum exaltatum). This mass of inflorescence was cut from a plant about 12 feet in height, which grew in the marshes in the delta of the Ganges. There are also sections of the stem of S. officinarum (Nos. 184 and 185 [$W \cdot]$]. Adjoining the W all Case in the corner is a tall glazed frame (No. 193) containing two tine specimens of Papyrus antiquorum, the Bulrush of the Nile, in ancient times largely used in the manufacture of paper. Sections of the stems of Palms (Nos. 205 [W.$] and others) show the peculiar$ arrangement of the bundles of woody and vascular tissue of which they are composed. No. 209 [$W_{\text {. }}$] is the fruit of Elais guineensis, which yields the Palm-oil of commerce. No. 213 [F.] is the Coquilla-nut (Cocos lapidea), and No. 217 [F.] the Ivory-nut (Phytelephas macrocarpa), in constant use by the turner. No. $233[F$.$] is a transversc section of a branch$ of the Dragon-tree of Teneriffe (Dracena draco), supposed to bc one of the oldest of the living inhabitants of the surface of the globe. No. 234 [W.] is a leaf of the singular Latticeplant (Ouvirandra fenestralis) from Madagascar. It is madc up of a series of parallel veins connected together at nearly equal distances by transverse bands of green fibres, thus forming a square open network, without any trace of upper or under cuticle.

After some illustrations of the Class of Gymnogens, to which the Pines belong, follow specimens of the largest class in the Vegetable Kingdom, viz. the Exogens. The plants composing it are all characterized by a well-marked central pith, surrounded by zones of wood, which during growth arc adder to the outside of those previously developed.

Some curious examples are contained in the Collection of the growing over, or enclosing of foreign bodies, climbing plants, \&c., within the substance of trees. Nos. 334 and 335 [W.] show a branch of Ivy embracing the trunk of an Oak so firmly, that the latter in its growth has completcly buried the Ivy. No. 279 A [W.] is a horseshoe, which had become impacted, apparently between two branches of an Oak, and was so completely surrounded by the wood that no trace of it was visible externally, and it was only discovered on sawing the tree into planks.

Instances of the peculiarities of the bark of Exogens are seen in Nos. 274 and 275 [W.], from the Cork-tree (Quercus suber) ; Nos. 293 and $294[W \cdot]$, from the Lace-bark tree of the West Indies (Lagetta lintearia) ; and Nos. 357, 358, and 359 [W.], pieces of cloth from the South Sea Islands, prepared by macerating in water, and then beating with a mallet, the inner bark of a tree, probably Morus papyrifera.

Among roots, the Mandrake (Mandragora officinalis), No. 321 [W.], will be observed with interest on account of the numerous allusions to the superstitions connected with it found in the writings of the old poets. Nos. 329 to 333 [F. and W.] are examples of the so-termed Rice-paper, which consists of fine slices of the pith of a plant (Aralia papyrifera) which grows in China. In glazed frames at the back part of the Case (Nos. 365 and 366), and under the glass shade (No. 362), are to be seen some very perfect specimens of the leaves and seed-vessels of various plants, prepared by maceration and careful washing in water, so as only to leave the fibrous structure forming their framework.

ANIMAL KINGDOM.

Subkingdom RADIATA.

Class Protozoa.

In this Class are associated a group of organisms exhibiting the general characters of animal life in the lowest or simplest
degree; so much so, indeed, that many of them have been ranged by naturalists in the Vegetable Kingdom. The series of hard parts of these creatures commences (Floor Cabinet A, Compartment 4) with a collection of the calcareous shells of the Foraminifera, many of them remarkable for elegance of form and the beauty of the sculpturing of their surface. When first discovered, they were considered to be chambered shells of animals allied to the Nautili; but more accurate investigations into their structure and habits have resulted in placing them in their present low situation in the scale of organized beings. They are widely distributed, oecurring both in shallow and deep seas; and are also abundantly found in the fossil state, large tracts of rock and earth in many parts of the world being composed entirely of the remains of Foraminifera. Being mostly of minute size, the speeimens exhibited are so placed that they can be examined through the glass top of the Cabinet by means of a pocket lens of an ineh foeal length.

Class Porifera.

Wall Case II. Floor Cabinet A, Compartments 5, 6, 7.
The Porifera or Sponges are widely distributed over all parts of the globe, and are nearly all marine, a very few species only being found in fresh waters. Their hard supporting framework or skeleton is in most cases composed of a network of keratose or horny fibres, generally strengthened by siliceous, and occasionally (as in Grantia, B 183 [F.]) calcareous, spicules. In some the skeleton is composed entirely of silica, as in Dactylocalyx, B 189 to 190 [F.].

In the upper part of the Wall Case may be scen some large specimens of the common officinal Sponge, several of them attached to the rock on which they grew. In the bottle marked B 12 [W.] is one of the variety known as "Turkey Honcycomb" mounted in spirit, with its fleshy coating preserved. Examples of Turkey Sponges of different qualities will be found in the Floor Cabinet, as also some of the

Bahama or West Indian Sponges (B 17 to 20 [$F \cdot]$), which are so coarse in their fibres as to be of very little commercial value.

Some of the finest representatives of the Class are to bc seen in the Cup-shaped Sponges (Raphyrus patera), 13128 , 129 [W. .], from the Eastern seas, often known by the name of "Neptune's Goblets." One of these is as much as 3 feet in height and 18 inches in diameter. Contrasting with these are the parasitic Sponges (Cliona), B 156 to 165 [F.], which have the power of excavating a dwelling-place in such hard substances as shell and stonc. Several examples of shells almost honeycombed by the ravages of members of this genus arc placed in the Cabinet. Reference must be made to the Catalogue for the description of the numerous other interesting varieties of this group.

Class Polypifera.

Wall Cases II. III. IV. Floor Cabinet B.

The animals of this Class, often from their plant-like form termed " Zoophytes," are almost exclusively marine. They are sometimes simple, each polype being a separate and perfect animal in itself, as the common Hydra and Sea Anemone, but more often compound, a number of such polypes being organically connected together by their bases. The hard supporting parts or skcletons of such compound forms often attain a considerable magnitude, and are remarkable for their beautiful arborescent form, and in many cases for their vivid colouring. These skcletons arc in some instances flexible and horny, but more often of a calcareous nature.

The Order Hydroida contains many genera common on the British coast, as Tubularia (C 2 [F.]), Sertularia (C 4 to $14[F \cdot]$), Plumularia (C 22 to $25[F$.$]), of which the delicatcly$ branched transparent horny sheaths or slicletons (polypidoms) are preserved in Floor Cabinct B, Compartment 1. When living the polypes are placed in little cup-like cells, gencrally disposed along the sides of the main stem or of the branchlets.

In the Order Asteroida the skeleton consists of a central axis or shaft, and the polypes (whieh have invariably eight tentacles) are located in a soft fleshy crust, generally containing abundant calcareous spicules, investing it. Among the simpler forms, laving a long, straight, unbranched axis, are Virgularia (C 35 to $42[F$.$]) and Pavonaria (C 43$ [W.], 44 [F.]). Some specimens of the latter exceed 2 feet in length. Antipathes, or Black Coral (C 45 to 61 [W. and F.]), has an axis, composed of concentric layers of a dark-brown horny material, of glossy surfaee, and often elegantly branched. One specimen in the Wall Case is of remarkable size, as when in its perfect state it must have exceeded 6 feet in height.

The large family of Gorgoniada, including the Fan-Corals, or Venus's Fan (Gorgonia flabellum, C 62 to 71 [W. and F.]), are well represented, the rich collcction of the late Charles Stokes, Esq., F.R.S., having greatly enlarged this department of the College Museum. Many of the specimens, which there is not space to exhibit, are deposited in the drawers of the Cabinet. To this family belongs the true Red Coral (Corallium rubrum), C 235 to 239 [W. and F.], the central axis of which is exceedingly hard, and susceptible of a very high polish, whence its value for ornamental purposes.

In the Order Helianthoida the polypes are gencrally of large size, and have one or more circles of tentacles surrounding the mouth, their number being some multiple of six. In some cases, as the common Actinia or Sea Anemone, they arc soft and fleshy, without any trace of a calcareous skeleton, whilst others secrete within their tissues the beautiful stony structures known as Corals. These, after the removal of their fleshy coating, are almost always white, and are composed principally of carbonate of lime. The animals of this Order are all marine, and attain their finest development only in the warmer seas, where the stony skcletons of innumerable individuals, accumulating through ages, form immense reefs and even islands.

Many fine examples of the principal varieties of White Coral are seen in Wall Cases III. and IV., and Floor Cabinet B, Compartments 4,5 , and 6 . Among them may be parti-
cularly noticed,-C 290 [W.]. Pocillopora grandis. C 325 [W.]. Madrepora spicifera. C 344 [W.]. Dendrophylla ramea. C 354 a. [W.]. Pavonia explanulata. C 367 [W.]. Fungia Ehrenbergii. C 395 [W.]. Meandrina cerebriformis. C 437 [W.]. Millepora alcicornis.

Class Echinodermata.

The morc durable parts of animals belonging to this Class are contained in Floor Cabinet C. They have all, as an external skeleton, either a tough, leathery skin, strengthencd by earthy particles, or a series of calcareous plates, articulated together so as to form a more or less rounded case or shell, the surface of which bears numerous moveable elongated spines.

The first family, Pentacrinide, were once abundant in our seas, as will be seen by an inspection of their fossil remains in the Middle Museum. Their finest representative at present existing is the extremely rarc Pentacrinus Caput Medusce, $\mathrm{D} 1[F$.$] . It consists of an animal something like a star-$ fish, mounted on a long stalk composed of thin discs or joints of pentagonal figure. This specimen was found alive at Barbadoes, and was bought by Mr. Hunter at the salc of the museum of the late Duchess of Portsmouth, for the sum of fiftecn guineas. Nos. D 2 to $\mathrm{D} 7 \mathrm{i}[F$.] form an interesting series, exhibiting the transformations of a beautiful species, common on our coasts, called Comatula rosacea, which in its early condition is stalked like the Pentacrinite. The families Ophiuridla, Asteriada, Solasteria, and Goniasteriac contain the various animals commonly known under the name of Sea Stars or Star-fish. After thesc follow the Echinida, gencrally known as Sca Eggs or Sea Urchins. Some of the foreign examples are remarkable for the great size and peculiar form of their spincs. The structure of the complicated oral apparatus (jaws and tecth) of the common British species (Echinus sphecria), which has rceeived the name of "Aristotle's Lantcrn," is well cxhibited by sevcral preparations (D 98, 102, \&c. [F.]). The serics of animals of this Class concludes with specimens of the family Holothuriadle, or Sea Cucumbers. D 211 [F.]
is a large example, Cucumaria frondosa, mounted in fluid. D 215 [F.], the Trepang (Holothuria edulis), arc in the condition in which they were offered for sale in the China market, in which country they are employed in the preparation of nutritious soups.

Subkingdom MOLLUSCA.

Wall Cases V. and VI. Floor Cabinet D.
The Mollusca are animals with soft bodies envcloped in a muscular skin or mantle, commonly (but by no means universally) protected by one or more calcareous plates callcd shells. Their alimentary system is complete, and they are provided with a heart and respiratory organ. The nervous system consists of a medullary ring surrounding the œesophagus, and giving off nerves, sometimes unsymmetrically, to different parts of the body.

Class Bryozoa (Polyzoa, Thompson).
The Bryozoa are a group of minute composite animals, inhabiting both sea and fresh water, which from their general external features werc formerly arranged with the Hydroid Polypes. But in the conformation of their digestive apparatus, and in the presence of a nerve-ganglion between the buccal and anal orifices, they present strong affinitics to the Ascidian or Tunicated Mollusks. They are numerous and widely distributed, and have a grcat range in timc, being found in the oldest sedimentary rocks and throughout all the fossiliferous strata. Their skelctons are sometimes flexible and horny, sometimes calcareous, and in form are either branching, foliaceous, or encrusting. They consist of an aggregation of minute cells, in which the polype-like creatures are seated. Examples are seen in Floor Cabinet D, Compartment 1, among which the morc remarkable are the Salicornaria, E 5 ; Flustra, or Sca Mat, one of the commonest objects of our sea-coasts, E 19; Eschara, E 27; and Retepora, E 28.

Class Tunicata.

The Tunieata are unsymmetrical shell-less molluseous animals of somewhat lower organization than the Mollusea generally. Their body is envcloped in a coriaeeous integument or tunie, whence their name. They are exelusively marine, and widely distributed from the arctic to the tropieal seas, and veeur both fixed in the shallow zones and floating in the open seas. Some are simple, and others united into compound organisms. Owing to the soft nature of the animals of this class, there is little in illustration of them in this department of the Museum; but the appearanee of some of the more interesting forms can be studied in the Lower Gallery of the Middle Museum (Series of Natural History in spirit).

Class Brachiopoda.

The Braehiopoda are bivalve Mollusks, whieh by their organization eonnect the Bryozoa and Tunieata on the one hand, and the Lamellibranchiata on the other. The valves of the shell are plaeed, one upon the dorsal, the other on the ventral surfaee of the animal. The dorsal valve is usually the smallest, and the ventral valve the largest; the latter generally having a prominent beak by which it is attaehed to some rock or other submarine objeet, as in Thecidium and Crania, or else a perforation through which a pedicle for attachment passes. The general form and the resemblance of this orifiee to the hole through which the wiek protruded in the antique lamp, has eaused the name of "Lamp-shell" to be given by the old naturalists to several members of this elass. See Terebratula and Waldheimia, E 44, 45, and 46 [F.].

The Brachiopoda are widely distributed in spaee, being: found both in the polar and tropical seas; they range from shallow water to the greatest depths, but are mostly found in the deep sea. They are as equally distributed in time, being found throughout all the sedimentary dcposits, from the oldest to the most reeent. Upwards of 1000 fossil speeies have been deseribed, of whieh the greater number belong to the British
strata, while not more than 70 species are known to exist now upon the surface of the globe. The genus Lingula is one of the oldest known forms of organic life, and is interesting as having survived all the changes which have taken place since the deposition of the lowest fossiliferous rocks, as witnessed in one of its present representatives, L. anatina, B 53 [F.], from the Indian Ocean.

Class Lamellibranchiata (Conchifera, Lamarck).
This very large Class includes the greater number of mollusks provided with bivalve shells. The valves are placed one on each side of the animal's body, by which character, and other important structural differences, they are separated from the Brachiopoda. The elegance of form and beauty of colour of the shells of animals of this Class are well illustrated in the Collection. Among them may be noticed the large Pinna, E 102 [$W \cdot$], which is attaehed to submarine roeks by a tuft of silky fibres, called a byssus, so abundant and fine as to be oceasionally used for economical purposes. E 163 [W.] is a pair of valves of the Tridacna gigas from the South Seas, which measure 2 feet 10 inehes across, and weigh together 165 pounds. The single valve of another individual (E 164 [W.]) weighs as much as 143 pounds; and a pair of shells of this giant among mollusks has been known to attain the weight of 500 pounds. A curious modification of the bivalve form of shell is seen in Aspergillum (E 332 to 334 [F.]), where the extremely small valves are imbedded in a large shelly tube, formed at one end something like the rose of a wateringpot. The Pholades (E 335 to 341 [F.]) are borers into wood and stone; and the nearly allied Teredines commit great ravages in ships' bottoms, and submersed pieces of timber, used in docks, piers, \&c., as seen in E 345 and 346 [W.]. The specimens marked E 349 [W]] are portions of the shelly tube of a gigantic Teredo from the East Indies.

Class Pteropoda.

The Pteropods are delicatc pelagic animals abounding in both the tropical and arctic seas, forming in the latter loea-
lity the principal food of the whalc. They swim by means of a pair of fins developed from the side of the neck. Some species are shell-lcss; but others are provided with a fragilc, translucent, and symmetrical shell, of conical, ventricose or spirally coiled form, scveral cxamples of which are seen in Floor Cabinet D, Compartment 4, E 350 to 355.

Class Gasteropoda.

The animals of this large and important class have a distinct head, and move by means of a flat, broad muscular dise on the under surface of the body, called the foot. Some arc aquatic in their habits, and respire by means of gills; while others (as the common Snail, E 446 [F.]) breathe by means of a pulmonary sac. The shell, when present, is generally univalve, although in some (as the Chitons, E 456 to 472 [F.]) it is composed of several pieces (multivalve). In many the mouth of the shell is closed when the animal retires within it, by an operculum or lid. This is attached to the dorsal surface of the posterior part of the foot, and is composed of horny material (as in E 1037 to 1041 [F.]), or of a dense shelly substance (E 1042 to 1050 [F.]). It always exhibits more or less of a spiral development, and by some authorities is considered to be the analoguc of the dextral valve of the Lamellibranchiata. The principal modifications of structure and mode of growth of shells of Gasteropoda are well illustrated by the series of sections (E 1067 to 1098 [F.]).

Class Cephalopoda.

The Cephalopoda are the most highly organized of the Mollusca, and are distinguished extcrnally by the arm-like tentacles-organs of motion and prchension-placed like a crown around the head. The form and situation of the shell in animals of this class vary excecdingly. In some it is external and chambercd, as in the Pearly Nautilus (Nautilus pompilius), E 1051 [F.], and its allies the cxtinct Ammonitcs. In others it is cxternal, but not chambered, as in the Paper Nautilus (Argonauta argo), E 1056 to 1059 [F.], in which
genus the female alone is provided with this covering. In Spirula (E $1060[F$.$]) the shell is internal, but ehambered and$ eoiled. The internal shell of Sepia, in the form of an orai: caleareous, laminated plate (E 1061 [$F \cdot]$), is well known under the name of "Cuttle-bone." In Loligo it is horny, and consists of a shaft and two lateral expansions or wings (E 1064 [F.]).

In Wall Case VI. is a specimen of the entirc animal (soft parts and shell) of the Pcarly Nautilus : a portion of the shell has bcen removed to show some of the ehambers, and the membranous tube or siphon whieh traverses them. The organization of this living representative of the extensive series of extinet Cephalopods with chambered shells, whieh range through the seeondary roeks, is deseribed in a quarto volume (published by the College), entitled "Deseription of the Pearly Nautilus." In the same Case is a speeimen of the Argonaut or Paper Nautilus, suspended as when floating, with the expanded membranous arms (erroneously supposed to scrve as sails) in their natural position, spread over the exterior of the shell, whieh they form and repair.

In the Floor Cabinet whieh contains the shells of Mollusca, is a serics (E 1110 to 1153 [F.]) of specimens illustrating the nature and mode of produetion of Pearls, whieh are fully deseribed in the Catalogue.

Subkingdom ARTICULATA.

Wall Case VII. Floor Cabinet E.

The animals composing this division are eharaetcrized by having the body enclosed in a more or less hard integument, eonsisting of a series of rings, segments, or joints, "articulated " together by a flexible membrane.

Class Insecta.

This Class is not only far more extensive than any other in the Animal Kingdom, but probably contains as many speeies
as all the other classes together*. Insects are distinguished externally from other Articulata by having three pairs of jointed legs, one pair of antennæ, and the body divided into head, thorax, and abdomen.

Selected examples of the principal modifications in their external form are placed in Floor Cabinct E, Compartments 1, 2, and 3. Among them may be observed, in the first Order, Coleoptera, some which are distinguished for the great brilliancy of the metallic lustre of thcir wing-cases or elytra (Sternocera sternicornis, F 60; Entimus imperialis, the Diamond Beetle, F 133 ; Agestrata luconica, \&c.). Others are remarkable for their great size ; the Dynastes hercules, F 86, Goliathus Drurii, F 93, and G. cacicus, F 94, being the giants of the class. Acrocinus longimanus (F 165) will be noticed for the great length of its antennæ and anterior pair of legs, and for the singular disposition of colours on the elytra, which has procured for it the name of Harlequin Beetle.

It is in the Order Orthoptera that the most fantastic forms of insect-life occur, as seen in certain members of this group, which have obtained the popular names of Walking-leaf (Phyllium siccifolium, F 185), Walking-stick (Cyphocrania goliath, F 183), and others. To this order also belong the Locusts (F 189-91), Grasshoppers, Crickets (F 186), and Cockroaches (F 181). Several beautiful examples of the Order Neuroptera, so called from the delicate nerve-like veining of the wings, are to be seen in the Case, of which the Dragonflies (Libellulide) are perhaps the best known; and the Order Lepidoptera (Butterflies and Moths) are represented by some specimens very remarkable for their great size and the splendour of their colours.

In the third compartment of the Floor Case are dissections of insects, displaying the various parts forming their tegumentary skelcton; and the adjoining Wall Case has some of

[^3]the principal forms of nests, built chiefly by social insects of the Order Hymenoptera (Bces, Wasps, and Ants).

Class Crustacea.

The Crustacea arc articulated animals, provided with jointed limbs; they brcathe by gills, and have generally two compound eycs and four antennæ, three pairs of jaws, and the same number of foot-jaws, and five pairs of fcet. The skin is usually a solid crust, morc or less calcareous, and is cast off at intcrvals during growth. In the carly moultings they sustain a true metamorphosis.

The animals of this class are contained in Floor Cabinet E, Compartments 7 and 8 , and in Wall Casc VII. Here will be found various forms of Crabs and Lobsters, ineluding fine examples of the Robber Crab (Birgus latro), G 46 and 47 [W.], from the East Indian seas; the Spiny Lobster (Palinurus homarus), G 55 [$W \cdot$.], from the British coast ; the claws of some gigantic specimens of the edible Crab and Lobster, G 69 [W.] and 70 [F.]; and also two specics of King Crab (Limulus), G 80 and 81 [W.], the former from North America, the latter from the Moluccas.

Class Cirrhitpoda.

These animals are so nearly allied, in the more important parts of their organization, to the Crustacea, that by many authors they are considercd to form an order of that great class. When young, they swim freely about the sea, but finally attach themselves by the anterior extremity of the body to some roek, or floating submarine substance, and remain fixed for the remainder of their lives, developing in most cases a shell composed of several calcareous plates. The presence of this shell caused them to be classed by oldcr naturalists among " multivalve" Mollusks.

The Cirrhipods are divided into two groups-the Scssile and Pedunculated. Among the former is the Balamus, or Acorn Shell, of which a large group is seen in Wall Casc VII. H 1; and others in Floor Cabinet E, Compartment 6, where
also may be observed Chelonobia (II 9), found attachcd to the surface of Turtles, and Turbinella (H13), imbedded in the skin of Whales. The pedunculated Cirrhipods include the creatures commonly known as Barnacles, and are placed in the same compartment.

The remainder of Cabinet E , Compartments 4 and 5, arc occupied respectively by cxamples of the Classes Myriapoda and Arachnida; the former including the Centipedes, and the latter the Scorpions and Spiders, which differ from Insects in having eight legs, and the body divided into two parts (a ccphalothorax and abdomen) instead of three. There will also be seen in this compartment some spccimens of silk spun from the cocoons of Spiders, two purses made of the web of a Jamaica spider (L 19), and nests of the Mason Spider ($\mathrm{L} 22,23$). Many other forms of nests of these animals will be found in the Natural History Series in spirit (Nos. 356 to 366), in the Lower Gallery of the Middle Museum.

Should the visitor wish to make a complete examination of the skeletons of animals in an uninterrupted series, he must now pass through the Middle and enter the Eastern Museum. In this apartment the series of skeletons of recent animals is continued (page 84), the first Case (on the left hand of the door) containing the lowest Vertebrate forms, and the last the Anthropoid Apes. Then he must return through the Middle Museum, and, on re-entering the Western Museum, will find in the Cases next the cloor (to lis left on entering) the completion of the series, in the osseous framework of Man, the highest of oryanized beinys on earth.

Wall Cases XCVI. to XCIX. are occupied by the collection of Skeletons and Crania of different varietics of mankind.

Case XCVI. contains in its upper part a series of feetal skeletons of various ages, to illustrate the progressive development of the different boncs. There will also be observed in it, entirc articulated skelctons of-

5184*. A female Mustralian.

[^4]5357. An adult male Boschisman, or Bushman, from South Africa. The height of this skelcton is 4 fcet 5 inches, which is the average stature of the males of this diminutive race.
5372. A malc African Negro.
5386. A male Polyncsian, a native of Tahiti.
5569. A male European.

Case XCVII. contains several European skeletons, and one of a man who was lately exhibited in London as the "American Giant." It measures 6 feet 9 inches in height.

On the floor of the Case are plaster casts of -
The right hand of Patrick Cotter, an Irish giant, whose height, in the year 1802 , was 8 feet $7 \frac{1}{2}$ inches.

The left hand of M. Louis, a French giant, whose hcight was 7 feet 4 inches.

The right hand of an English giant (Bradley).
The right hand of a Lapland giant.
Cases XCVIII. and XCIX. contain the Crania of various races of mankind, arranged in the following order :-

Melanian (dark brown or black) variety.
Australian, Papuan, African.
Xanthian (yellow, olive and red) varieties.
Polynesian, Américan, Esquimaux, Asiatic, Egyptian.
Leucanian (white and light olive) variety.
European.
Further illustrations of normal Human osteology and dentition will be found in the adjoining Floor Cabinet F, Compartments 4,5 , and 6 .

Wall Cases C., CI. and CII. belong to the Pathological Section, and contain specimens of Injuries and Diseascs of Bones, preserved in a dry state. Among them may be noticed-

2879 в.* The skeleton of an adult Spaniard affccted with rickets.

[^5]3489 A. The skelcton of a boy, twelve years old, showing the effects of hydroeephalus and riekets.
3223. A Tibia and Fibula with a large osseous tumour. The tumour' has grown almost entirely from the anterior and lateral parts of the upper two-thirds of the tibia. It is of an irregular oval form, and measures 10 inehes from above downwards, about 14 inches from side to side, and exaetly a yard in its ehief eireumference. Its surface is for the most part smooth, evenly rounded, and covered by a very thin layer of compact osseous tissue. Its interior and certain parts of its surface are formed of coarse eaneellous tissue, about as heavy as that of healthy bone. Its exterior is smoothly continuous with that of the tibia, the walls of which are expanded and drawn out around its base of attachment. The fibula is pushed outwards, and so compressed by the growth of the tumour, that it is in some parts nearly two inehes in width and only two lines in thickness.

Presented by William Long, Esq. The limb was amputated at St. Bartholomew's Hospital by Mr. Gay, and weighed with the foot, \&e. forty-two pounds. The preparation is engraved, of half the real size, in Cheselden's ' Osteographia,' tab. 53. figs. 1, 2, 3.

Select specimens belonging to this division, ineluding some striking illustrations of the healing of sabre-wounds of the cranium received on the field of battle, and some specimens of gun-shot injuries, from the Crimea, arc placed in Floor Cabinets G and H , Compartments 4, 5, and 6 of caeh.

Wall Case CIII. contains the dried preparations, and easts and models of Monsters and Malformations, those in spirit being on the Upper Gallery (See page 62). Among them may be noticed,-

No. 322*. A east in wax of the Band uniting the bodies of the Sianese Twins, who were born in the year 1811, and exhibited in London in 1830. The band of union is formed in the following manner :-At the lowest part of the sternum of each boy, the cnsiform eartilage is bent upwards and forwards,

[^6]meeting the other in the middle of the upper part of the band, where movcablc joints exist, which admit of vertical as well as latcral motion; eaeh junction appearing to be connccted by ligamentous struetures. During the period of infancy, this band was mueh larger in proportion to the size of their bodies than it is at the present time : it had then no hard cartilaginous feel at its upper margin; it was also larger in circumference, and the bodies of the twins were nearer in contact; but from continued stretching it has become elongated, and its circumference has diminished. At the time when the cast was made (1830), the band was remarkably strong, and possessed little sensibility. One of the twins fell out of bed while asleep and hung by the band for some time, and when both awoke, they alike stated that they experienced no pain in the band from this accident. An attendant has lifted one of them from the ground, allowing the other to hang by the band with his feet raised from the floor ; yet the whole weight of one of the boys thus suspended did not occasion pain to either, or even excite their displeasure. Under the cartilage, while they stand in their ordinary posture, are large hernial sacs opening into each abdomen, and into which, on coughing, congenital herniæ arc forced; probably, in each boy formed by a portion of the transverse arch of the colori: generally, however, and under ordinary circumstances, these herniæ are not apparent.

No. 323 is a coloured Model of A-ke, a Chinese twinmonster, born in a district about two days' journey from Canton, in the year 1804. The principal or perfect twin was born with another male child of nearly the same size united to the pit of his stomach by the neck, as if the head were plunged into the breast of the more complete twin. The skin of the principal twin here joins that of the upper part of the neck of the parasite, quite regularly and smoothly, excepting the superficial blood-vessels, which appear somewhat turgid. The sufferings of the mother were so great that she survived the birth of this monster only two days.

Since that time the parasite has not much increased in
size, and at present is not much larger than new-born infants usually are; but the bones are completely formed.

The attachment of the neek of the parasite to the chest of the principal twin admits of a semi-rotatory motion. The natural position of the bellies is towards each other; but A-ke can turn his brother so far round, that he can bring either side towards his own belly. He also shows that his brothcr's arms can be moved freely: The pulsation of the carotid arteries could be fecbly felt in the neck of the parasite.

A-ke was about 4 feet 10 inches high when this model was taken, of a feeble frame and sickly appearance ; but, save the attachment of the acephalous twin, perfectly formed.

In the lower part of the Case is a dried injected preparation of the principal thoracic and abdominal viscera of a Man, in whom their normal situation was transposed: thus the apex of the heart is turned to the right, and the aorta arches over the right bronchus; in the abdomen, the spleen and great end of the stomach occupy the right hypochondrium, and the larger lobe of the liver with the gall-bladder are on the left. The cæcum and appendix vermiformis are on the left, and the sigmoid flexure of the colon (which is not here preserved) was on the right side. This transposition of the parts did not affect the hcalthy performance of their functions.

Wall Case CIV. and part of CV. contain dried vascular preparations from the human subject, partly natural, and partly in an abnormal condition.

3472 A. Part of a lower extremity, in which the femoral artery had been tied fifty years before the death of the patient, for the cure of a popliteal aneurism, by John Hunter. The fourth case in which he tied the artery at a distance from the ancurism, and the first in which the vein was not included in the ligature. Presented by T. Wormald, Esq.

The remaining Wall Cases in this apartment, part of CV. and CVI., are chiefly occupied by examples of the various artifieial modes adopted by different nations for the preservation of dead bodies. Among them will be obscrved-

No. 742 *. The body of a malc Pcruvian, which was found in onc of the native sepulchres, or guacas, in somc calcareous hills in the district of Caxamarca, in Peru. Tradition, prcserved among the inhabitants of the country, stated the spot in which the body was found buried, to have been the site of a voluntary sacrifice of the life of a Curaca, one of an order of noblcs immediately following in dignity the Incas, or reigning family. The body was found ten feet below the surface, in a dry calcareous soil, to which, and to the dryness of the air, is to be attributed its preservation in an undecomposcd state. Throughout the highlands of Peru, desiccation procecds so rapidly as to arrest the putrefactive process; animal substances becoming eompletely dried up by mere exposure to the air. The bodies are not found wrapped up in linen, as amongst the Egyptians, but they are sometimes covered with the skin of the Vicugna or Peruvian camcl, bound closely to the body with ligatures. Prescnted by His Majcsty King George the Fourth.

No. 743. The body of a Guanche, or Mummy, from the ancient scpulchres in the island of Tencriffe. This specimen is in a similar statc of desiccation to that of the Munmy from the guaca at Caxamarca.

The Natural Mummy of a Boy, about twelve years old, who was found ercct, with remnants of his ordinary clothes on, under St. Botolph's, Aldgatc old church, in the year 1742. He was supposed to have been shut in at the timc of the Plague in London in 1665, as the vault had not been opencd from that period until the time of the discovery of the body, when the church was pulled down. The dricd carcase weighs about eighteen pounds. Presented by the Zoological Society of London.

A Mummy from Adelaide, South Australia, one of a tribe in which the practice exists of drying the corpse and preserving it above ground. Presentcd by Governor Sir G. Grey.

The skull of a native (a Papuan Black) of New Guinea, singularly travestied by rude artificial represcntatives of pro-

[^7]minent eyes, nose, and bcard. This skull was found suspended from a frame attached to a pole reaching from the floor to the roof of a native dwelling-housc, and was presented by Captain Blackwood, R.N. (See Jukes's Narrative of the Surveying Voyage of H.M.S. Fly, 1847, vol. i. p. 274.)

No. 738. An Egyptian Mummy. Horsiesi, son of Naspihiniegori, an Incense-bearing Priest in the Temple of Ammon at Thebes, unwrapped, with a portion of the original bandage about the loins.

No. 739. An Egyptian Mummy, partly unwrapped; taken out of onc of the sepulchres at Thebes, by the late Captain Hayes. Presented by Sir David Dundas, Bart.

No. 740 a. The internal case out of which the Mummy No. 738 was taken. It immediately enveloped the swathed body, and partakes of its form : it appears to be composed of many layers of cloth, cemented together, and faced or covered externally with a white composition, affording a smooth and uniform surfacc, upon which divers hieroglyphical deviccs and figures are drawn, the colours of which are well preserved.

No. 744. The embalmed Body of the first wife of the late Martin Van Butchell, which, at his request, was preparcd by Dr. William Hunter and Mr. Cruikshank, in January 1775. The method pursued in its preparation was, principally, that of injecting the vascular system turgid with oil of turpentine and camphorated spirit of winc, and the introduction of powdered nitre and camphor into the cavity of the abdomen. Presented by Mr. E. M. Van Butchell, August 24th, 1815.

No. 745. The embalmed Body of a female subject, aged twenty-four, of the name of Johnson, who dicd of phthisis in the Lock Hospital, about the year 1775. In a letter which accompanied the specimen it is stated "that much camphor was used, that all the arteries and veins were filled with injection, and that spirit of wine was used as well as camphor; that the heart and intestines were taken out, and injected and replaced, as was also the brain." It was prepared by

John Sheldon, Esq., Professor of Anatomy to the Royal Aeademy.

Fioor Cabinets on the Western side of the Museum.

The first from the entranee-door (K) contains some of the older and more eurious forms of instruments which have been used in the praetiee of Surgery; many of them of special interest, from the names of their former possessors.

The second (I) eontains, in the compartments on the side facing the centre of the Museum, preparations in wax, displaying the normal strueture of various portions of the human frame, some (Nos. 727, 728, 729, and 729 A) exeeuted by the Florentine artist, Clemente Susini. Also some dried injeeted preparations of the nerves and arteries of the upper and lower extremities, and the entire cutiele of the hand (cheirotheca) and foot (podatheca) of a Man, shed during a febrile attack ; and portions of the Human eorium or true skin, tanned. The durability of this tissue is exemplified by some portions of human skin which had been attaehed to churchdoors from the period, aeeording to tradition, of the Danish ineursions in the ninth and tenth eenturies. They are aseribed to pirates taken in the aet of saerilegiously plundering the saered edifices.

The contents of the same side of the remaining three Cabinets (H, G, and F) have already been notieed.

On the side facing the Wall Cases, of Cabinets I, H, G and F, arranged in a continuous series, is the eolleetion of Calculi and other Coneretions from the Human subject and the lower animals. Special deseriptions and analyses of the speeimens will be found in the quarto 'Catalogue of the Caleuli and other Animal Coneretions,' in 2 vols.

The following is the arrangement adopted :-

PART I. DIVISION I.

Calculifrom the Urinary Organs of Man.
Caleuli of
which the
nueleus
consists of $\left\{\begin{array}{l}\text { A. Urie aeid. } \\ \text { B. Urate of ammonia. } \\ \text { C. Oxalate of lime. } \\ \text { D. Cystie oxide. } \\ \text { E. Xanthie oxide. } \\ \text { F. Phosphatc of limc. } \\ \text { G. Phosphate of magnesia and ammonia. } \\ \text { H. Mixed phosphates. }\end{array}\right.$

DIVISION II.

Calculi from the Urinary Organs of the Lower Animals.
P. Urie acid and its eompounds.

Urate of ammonia.
Urate of potass.
Caleuli
eonsisting of
P. Uri Uride
Q. Oxalate of lime.

Cystic oxide. Xanthie oxide.
R. Diphosphate of lime.
S. Phosphate of magnesia and ammonia.
T. Mixed phosphates.
V. Carbonate of lime.

PAR'II.
 DIVISION I.

Calculif from the Digestive Tract of Man.

I. From the Biliary Organs.

Calculi consisting of -
@. Cholesterine.
25. Colouring matter of the bilc, \&e.
©．Fatty acids．
［iD．Carbonate of lime．
II．From the Salivary Oryans．
\mathscr{C} ．Phosphate with carbonate of lime．
III．From the Stomach and Intestines．
指．Animal hairs．
3．Vcgetable hairs．
牴．Various amorphous substances．

DIVISION II．

Calculifrom the Digestive Tract of the Lofer Animals．

I．From the Biliary Organs．
99．Colouring matter of the bile．
II．From the Salivary Organs．
$\sqrt[3]{2}$ ．Carbonate with phosphate of lime．
III．From the Stomach and Intestines．
（1）．Animal hairs．
習．Vcgetable hairs．
D．Ellagic acid（Oriental Bezoar）．
现．Rcsino－bezoardic acid（Occidental Bezoar）．
§．Phosphate of magnesia and ammonia．
\mathbb{C} ．Diphosphate of lime．
TI．Diphosphate of magnesia．
del．．Oxalate of lime．
ZE．Carbonate of lime．
習．Ambergris．
Beyond the Floor Cabinets，at the southern end of the Mu－ seum，are three pedestals，on which are placed－

I．Two Human skeletons，male and female，the former five feet six inches，the latter five feet two inches in hcight．
II. No. 5905. The skeleton of Charles Byrne or O'B:ian. The following reeord of his death is extracted from the 'Amual Register Chronicle,' June 1783, vol. xxvi. p. 209: "In Coek-spur-street, Charing-cross, aged only 22, Mr. Charles Byrne, the fanous Irish Giant, whose death is said to have been preeipitated by exeessive drinking. In August 1780 he measured eight feet; in 1782 he had gained two inehes; and after he was dead, he measured eight feet four inehes. Neither his father, mother, brother, nor any other person of his family was of an extraordinary size." The skeleton measures eight feet in height.

No. 5906. On the same pedestal, under a glass shade, is the skeleton of Caroline Craehami, the Sieilian Dwarf, born in or near Palermo in the year 1814. She was exhibited in various parts of England; and in Bond-street, London, during the summer of 1824 , where she died in the tenth year of her age. The skeleton measures twenty inehes in height.

In the bottom of the glass shade are wax models of her arm and foot; and a plaster-east of her face is to be seen in the adjoining Wall Case XCVII.
III. A plaster-east of a young male African negro, taken from the life, by Sartini.

Behind the pedestals are three glazed eases eontaining respeetively (beginning with that on the left), -
I. No. 3367. The skeleton of a Man, thirty-nine years of age, whieh is very remarkable for the production of osseous growths from many parts, of various dimensions and extent; some forming exostoses merely, whilst others pass from one part of the skeleton to another, and have thus produeed anehylosis or immobility of most of the members. The exostoses may be observed on the os frontis, mastoid proeess, and oeeiput, and in other parts of the skeleton where museles are inserted; as near the angle of the lower jaw, where the masseter is inserted; at the extremities of the spines of the vertebre; at the coronoid processes of the ulnæ; in the femur, at the part where the glutæus maximus is implanted, \&e.

The seeond, and more extensive kind of ossifieations, have
in general followed the course of the larger museles; and may be seen, on the right side, in the situation of the deltoid, joining the elavicle and acromion of the seapula to the humerus; in the situation of the supra-spinatus; and passing from the inferior angle of the scapula to the humerus, in the situation of the teres major and latissimus dorsi. On the baek, more extensive ossifications of the museles appear, whieh affix the scapulæ on both sides to the sacrum and ilium, and to the spines of the lumbar and dorsal vertebræ. On the left seapula, the ossifieation of the teres major has not extended quite to the humerus, but the dorsum presents a singular process or ossification with smooth sides, and a flattened overhanging margin, like an auxiliary or second spine. From the pelvis, ossifications extend from the saerum and ilium in the direetion of the glutæus magnus; and from the tuber isehii and os pubis, in the eourse of the biceps and trieeps adduetor museles. These extend to the right femur.

Ossifications of the tendinous and ligamentous parts appear to be still more common: producing anehylosis of the vertebre; of the left elbow-joint; of the tibia and fibula to eaeh other, on both sides; of the ankle-joints; and general coaleseence of the bones of the tarsi.
II. In the eentral ease are placed some very rare and interesting pathologieal speeimens. Among them will be observed, -

No. 264. Two skulls united by their vertiees, of a doubleheaded male Child, born in May 1783, at Mungulhaut, in the province of Burdwan in Bengal : the child was healthy and was more than four years old at the time of its death, which was oceasioned by the bite of a Cobra de Capello. When born, the body of the child was naturally formed, but the head appeared double, there being, besides the proper head of the ehild, another of the same size, and to appearance almost equally perfect, attached to its upper part. This upper head was inverted, the two being united together by a firm adhesion between their erowns, but without any indentation at their union, there being a smooth eontinued surface from one
to the other. The faee of the upper head was not over that of the lower, but had an oblique position, the eentre of it being immediately above the right eye. When the child was six months old, both of the heads were eovered with blaek hair, in nearly the same quantity. At this period the skulls seemed to have been eompletely ossified, exeept a small spaee between the ossa frontis of the upper one, like a fontanelle. The eyelids of the superior head were never completcly sliut, but remained a little open, even when the ehild was asleep, and the eyeballs moved at random. When the child was roused, the eycs of both heads moved at the same time ; but those of the superior head did not appear to be direeted to the same objeet, but wandered in different directions. The tears flowed from the eyes of the superior head almost constantly, but never from the eyes of the other cxcept when crying. The superior head seemed to sympathise with the child in most of its natural aetions. When the ehild cried, the features of this head were affeeted in a similar manner, and the tears flowed plentifully. When it sucked the mother, from the mouth of the superior head the saliva flowed morc copiously than at any other time, for it always flowed a little from it. When the ehild smiled, the features of the superior head sympathised in that aetion. When the skin of the superior head was pinehed, the child seemed to feel little or no pain, at least not in the same proportion as was fclt from a similar violenee being committed on its own head or body.

A full aceount of this remarkable ease of monstrosity, with figures, may be found in the 'Philosophieal Transactions,' vol. lxxx. p. 296.

No. 3093. The Skull of a Peruvian, in whielı all the bones of the faee, as well as the frontal and adjaeent parts of the sphenoidal and parietal bones, are in a remarkable manner enlarged and thiekened. The nasal fosse and the orbits are nearly elosed up, the superior maxillary bones and the orbital portions of the malar and frontal boncs having grown into great knobbed and tubereulated masses, in which their ori-
ginal form ean hardly be diseerned. The adjaeent smaller and thinner bones, namely the laehrymal and the orbital and vertical plates of the ethmoid, are diseased in the same manner and in a corresponding degree. Of all the bones seen in the anterior aspect of the faee, the left nasal bone and the orbital processes of the malar bones are alone unaffeeted. The hard palate is similarly diseased; its arch and nearly all the alveoli are obliterated. The posterior part of the vomer is half an inch in thiekness, and the affeetion has extended in a slight degree to the pterygoid proeesses of the sphenoid bone. The great alæ of the sphenoid, all the frontal portion of the frontal bone, and the anterior parts of the parietal bones are similarly diseased, but the posterior half of the skull is healthy. The lower jaw is enormously enlarged at its right angle, and in the greater part of its right half it measures upwards of five inehes in its eircumferenee, and all but three of its alveoli are closed up.

The external surface of all the boncs thus diseased is more or less eoarsely knotted and tubereulated; it is hard and dense, and minutely perforated for the passage probably of numberless blood-vessels. A section has been made of the lower jaw, and shows that its interior is eomposed of an almost uniformly hard and eompaet but porous bone. Purchased at the sale of Mr. Brookes's Colleetion.

No. 3236 a. The bones of a Face with bony Tumours. The latter eonsist of two large masses of almost exaetly symmetrieal form and arrangement, but which have partially eoaleseed in the median line. They are of an irregularly rounded form, deeply lobed, and somewhat nodulated; they are nearly as hard and heavy as ivory, and their surfaees are perforated by numerous small apertures, apparently for the transmission of blood-vessels. Their interior, as far as it is exposed, consists of a very elose eaneellous tissue, bearing a general resemblanee to that of true bone. They projeet more than three inches in front of the face, and an ineh on eaeh side beyond the malar bones: they completely fill both orbits, the eavities of the nose, and probably both the antra, and they
extend backwards as far as the pterygoid plates of the sphenoid bone. There is scarcely any vestige of the form of the face, except in the deep groove which separates the two ehief masses of the tumours, and at the bottom of whieh a part of the septum of the nose is seen, and in the alveolar arch of the upper jaw, whieh remains perfect with several teeth implanted in it. The adjacent bones, in all the parts on whieh the tumours have eneroached, are eonsiderably thiekened, so that some of them, as the left malar and the left orbital portion of the frontal bone, appear to form part of the morbid growths. From the Museum of Mr. Langstaff.

No. 3254 A. A Skull with the osseous base of a large Tumour conneeted with the bones of the right side of the jaw. The tumour had its origin in the antrum ; it was five years in progress, and in its growth it has destroyed all the right orbit exeept its roof, and has involved or destroyed the whole of the right malar, palate, and superior maxillary bones. The part whieh has remained after maeeration eonsists of an oval mass of light cancellous bone, about 5 inches in its ehief diameter, and very slightly eonnected with the remaining bones of the face. At its lowest part it preserves somewhat of the form of the alveolar border of the upper jaw, and the ineisor, eanine, and bieuspid teeth are implanted in it. A cireular portion of the frontal bonc, just above the right temple, is thin and perforated by several small apertures, apparently in consequenee of the growth of a tumour from the dura mater. Purehased at the sale of Mr. Heaviside's Collection.

No.3472. A popliteal aneurismal sae, from a man on whom John Hunter operated in St. George's Hospital, in December 1785 .

This was the first suceessful ease where the operation was performed according to Hunter's new method, for the cure of popliteal aneurism, by tying the vessel in the anterior part of the thigh, at some distancc from the diseased part, "thereby to diminish the risk of hæmorrhage, and admit of the artery being more readily secured, should any aecident happen :"

Huntcr being also of opinion "that the force of the circulation being thus taken from the aneurismal sac, the progress of the discase would be stopped: and he thought it probable, that if the parts were lcft to themselves, the sac with its contents might be absorbed, and the whole of the tumour be removed; which would render an opening into the sac unnccessary."
"The patient was a coachman, forty-five ycars of agc. The disease had first been perceived three years previous to his admission into the hospital, and had gradually increased during the wholc of that period: he recovered from the operation and returned to his employment, but died from fever fifteen months afterwards. On examination, the cicatrix on the anterior part of the thigh was scarcely discernible: the ham had no appearancc of tumour, and was, to the eyc, exactly like that of the other limb; there was, however, a solid tumour perceptible to the touch, filling the hollow bctween the condylcs. The femoral artery was impervious, from its giving off the arteria profunda as low as the part included in the ligature ; and at that part there was an ossification for about an inch and a half along the course of the artery, of an oval form, the rim of which was solid, becoming thinner towards the centre, and not bony but ligamentous. Bclow this part the femoral artery was pervious down to the aneurismal sac, and contained blood, but did not communicate with the sac itself, having become impervious just at its entrance. What remained of the aneurismal sac was somewhat larger than a hen's egg, but more oblong, and a little flattencd, extending along the artery for some way. The sac was perfectly circumscribed, not having the smallest remains of the lower orificc into the popliteal artery. The sac contained a solid coagulum of blood which adhercd to its internal surface, and appeared to be composed of concentric lamellæ uniform in colour and consistence."

For a full account of the operation, see the 'London Medical Journal' for 1786, vol. vii. p. 391, and vol. viii. p. 126.

No. H 2. A Calculus taken after death from the bladder of

Sir Walter Ogilvie, Bart. It weighed forty-four ounces troy, and measured 16 inches around its long axis, and 14 inches around its short axis. This calculus was examined by Dr. Powell, and found "to consist of the triple phosphate of ammonia and magnesia with phosphate of lime and a large quantity of animal matter." The central portion was less fusible before the blowpipe than the general mass, and appeared to contain a large proportion of phosphate of lime.

An account of this enormous and very characteristic specimen of the Fusible Calculus is given by Sir James Earle in the 'Transactions of the Royal Society' for 1809, p. 303.

The third Case contains
No. 3489. The skeleton of an individual who died at the age of twenty-five, of Chronic Hydrocephalus with Curvature of the Spine. The cerebral cavity is enormously enlarged: the cranial bones, especially those of the right side, are much expanded and attenuated : the circumference of the skull is 48 inches. Innumerable ossa triquetra have been developed, especially in the course of the lambdoidal suture. The sagittal suture terminates before reaching the coronal suture, and the bregma is obliterated : in the situation of the coronal suture the cranium is somewhat protuberant, especially on the left side. The bones composing the base of the skull are not much increased in size. The outer periphery of the orbits is much increased; the deeper parts of these cavities are much diminished in consequencc of the displacement of those portions of the bones of the cranium composing them. The bones of the face are unusually large. The curvature of the spine towards the right side diminishes the right cavity of the thorax, and causes the elcvation of the right shoulder. The ribs and bones of the infcrior and superior extremities are remarkably slender. The scapula and ossa ilia are diaphanous. There is considcrable distortion of the pelvis, the right os innominatum being smaller and higher than the left. There is an irregular depression on the upper margin of the left thyroid foramen, between the left anterior inferior spinous process of the ilium
and the commencement of the os pubis, formed in consequence of dislocation of the head of the femur on that point. The posterior part of the head of the femur, which had occasionally occupied this new acetabulum, is flattened and irregular from absorption : there has also been occasional dislocation backwards of the right femur. The right trochanter minor and the left linea aspera are unusually prominent; the inferior extremities are bent and inclined towards the left side. There is imperfect union between the left tibia and fibula a little above the ankle-joint, and distortion outwards of the left foot. The patient was a male: at birth the head appeared larger than usual, and the skin was of a bluish colour. The size of the head rapidly increased till he attained the age of nine years, afterwards the increase became more gradual : the skin of the head was uncommonly smooth, and the eyebrows were elevated about an inch. The eyeballs appeared forced from their sockets. Sudden loss of sight took place at eight years of age, at which time the senses of hearing, smelling, and tasting were very acute, and the intellectual faculties not much impaired. His memory was good: he was subject to extreme irritability, starting from the slightest noise. He slept little, and was subject to occasional febrile attacks: he chiefly complained of the great wcight of his head. Vide 'Annals of Medicine,' Edinburgh, vol. viii. p. 364. From the Museum of Mr. Liston.

Staircase and Galleries.

A Staircase at the South end of the Museum leads to the Galleries.

On the first landing is placed the iron pivot of a try-sail mast, and two views of a seaman, through whose chest the blunt end of the pivot was driven. The following are the chief circumstances of this case:-John Toylor, a Prussian by birth, aged twenty, on board the brig Jane of Scarborough, in the London Docks: on Saturday, February 26th, 1831, whilc guiding the pivot of the try-sail mast into the main
boom, the taekle gave way ; the pivot passed obliquely through his body, apparently between the heart and left lung, in the course represented in the drawings, and penetrated the deek : the try-sail mast was 39 feet long, and about 600 lbs . in weight. He at the same time sustained various other injuries: his sealp was laid open; his lower jaw and four ribs fraetured; parts of all whieh exfoliated. He was carried to the London Hospital, where in five months he had so far reeovered from the effeets of these injuries as to be enabled to walk from the Hospital to the College and baek again. He ultimately returned to his duty as a seaman, and has twiee, at intervals of about a year, revisited the College in a robust state of health.

On the second landing are two coloured plaster figures of Bosehismen from South Afriea, male and female, modelled from life. A small room, opening on to this landing, is appropriated to a collection of easts, exhibiting various abnormal eonditions of the human body.

The Galleries in the Western Museum are entirely oceupied by the speeimens of Pathologieal Anatomy contained in bottles.

This Colleetion is arranged in two ehief Scetions. In the first are placed the specimens which illustrate the processes of Disease and of the Repair of Injuries in general ; in the second, those which illustrate the corresponding processes in eaeh ehief organ and texture of the body.

The following is an outline of the elassifieation adopted in this department of the Museum, with referenees to the distinguishing numbers of the preparations contained in each division, and to the page of the Catalogue in whieh they will be found deseribed. The series commenees at the left-hand of the entrance to the Lower Gallery.

South Side.		
Section I.-General Pathology.		
Hypertrophy	$\begin{gathered} \text { Page*. } \\ 1 \end{gathered}$	Number.
By growth	2	1 to
By development	5	5
Series II.		
Atrophy	6	
By decrease	7	7,8
By degeneration of tissue	8	9, 10
Series III.		
Repair and Reproduction:		
Sub-Scries A.--Organization of Blood	9	11 to 14
B.--Process of Healing: a. Formation and Struc-		
ture of Granulations . b. Formation and Struc-	12	15 to 27
ture of Cicatrices	16	28 to $42 \dagger$
C.-Reproduction of Parts	22	43
D.-Transplantation or Grafting of Parts	22	44 to 58
E.-Effects of Forcign Bodics	27	59 to 70
Series IV.		
Process and Effects of Inflammation.	33	
Increased Vascularity		71 to 73

* This has reference to the First Volume of the Pathological Catalogue, placed in the Gallery for the use of Visitors.
\dagger No. 40 is the fore-part of the thorax or chest of a man who was imspaled by the shaft of a chaise, which entered the chest under the left arm and came out under the right arm, being thrust throngh, by the violence of an unruly horse, as far as the first tug-hook, which also penetrated the chest and wounded the left lung. The portions of both lungs, condensed and agglutinated to the inner openings of the wounds by the effects of the inflammatory processes, are shown on the opposite side of the specimen. This accident occurred on the 13th of June, 1812 : on the 25th he had so far recovered as to be pronounced out of danger, and the external wounds had healed at the end of nine weeks after the accident. He soon recovered his former health and strength, and lived eleven years after the injury.

The shaft which caused the wound is by the side of the preparation.
Page. Number.
Sub-Scries A.-The Adhesive Inflamma- tion 34
a. Effusion of Lymph and Blood 34 74 to 89
b. Organized Lymph, Ad- hesions,Thickening, \&ce. 40 90 to 106
B.-The Suppurative Inflam- mation 45 107 to 119
C.-The Ulecrative Inflam- mation 50 120 to 129
Series V.
Mortification 56
a. From mechanical injury 56 130
b. From heat 56c. From cold57
137
d. From chemical action and escha- rotics 57 138 to 140
e. From obstruction of large blood- vessels 59 141
f. Dry gangrene 142
Specific Diseases, refercnces to examples of 60
Series VI.
Tumours and other allied Morbid Growths 62
Sub-Series A.-Cysts, or Encysted Tu- mours 62

1. Simple Cysts with li- quid contents 63 143 to 152
2. Cysts containing Air . 66 153 to 154
3. Cutaneous Cysts 155 to 165
4. Compound Cysts 165 to 166
5. Cysts containing Vas- cular Growths 72 167 to 178
6. Cysts with uncertain contents 79 179,180
7. Various Contents of Cysts 79 181
Page. Number.
8. Cysts with Bone-like deposits in their
walls. 79 . . 182 to 184
Sub-Series B.-Solid Tumours s0
9. Fatty Tumours 81 .. 185 to 196West Side.
10. Cartilaginous and Os- seous Tumours 85 .. 197 to 207A
11. Fibro-cellular Tumours 91 207 в to 216
12. Fibrous, Fibro-eystie,
and Fibro-ealcare-
ous Tumours 96 . . 217 to 227
13. Osteoid Tumours 103 228 to 230
14. Epithelial Tumours 104 231, 232
15. Scirrhous Tumours 106 233 to 251
16. Medullary Tumours 113
a. The Firm Variety . 113 252
b. Spongy or Pulpy Variety 115 .. 253 to 272
e. Brain-like Variety . 123 273 to 276
d. Cystie Variety 125 277 to 281
e. Bloody Variety 281A
f. Melanotie Variety 128 282 to 292
17. Alveolar Tumours .. 133 293, 294
18. Tubereles 134
Tubereulous Tumours 135 294a
Circumscribed Infil-
tration 135 .. 295 to 297
Diffused Infiltration . 137 .. 298, 299Uleeration, Degene-ration, \&c. 138299A to 301Appendix A.-Tumours of uncertain nature 139 .. 301A to 307 AB.-Pendulous and loose Growths 142 . . 308 to 320
Section II.-Pathology of Special Tissues and Organs.
Series VII.
Norbid Conditions of the Blood 1** Second Volume of the Pathological Catalogue.
Page. Number.
19. Clots formed of Blood diawnfrom the body 11 . . 321 to 325
20. Clots formed of Blood effused in the Body during life

$$
2 \quad \ldots \quad 326,327
$$

3. Clots formed in the Heart and Vessels after death

2 .. 328 to 331
4. Clots formed in the Heart and Vessels during life 3 . . 332 to 340
Series VIII.
Injuries and Diseases of Museles 9
341 to 347
Sertes IX.
Injurics and Diseases of Tendons 11
348 to 363
Series X.
Diseases of Bursæ, Sheaths of Tendons, and similar parts 13
A.-Diseased Bursæ, Synovial Sheaths, \&e. 13 .. 364 to 368
B.-Loose Bodies removed from the same 14 . . 369 to 376
Series XI.
Injuries of Cartilage 15 377,378
Diseases of Cartilage referred to 15
Series XII.
Injuries and Diseases of Bones:
Sub-Series 1.-Hypertrophy 16 379,380Sub-Series 2.-Atrophy (including FattyDegeneration, Riekets, and MollitiesOssium) . 1616 .. 381 to 404
Sub-Series 3.-Section A.-Repair ofFractures in general39
a. The ordinary and simplo pro- eess of the Ropair of Fire- tures ${ }^{-}$. 39 405 to 432
b. Strueture of Callus 44 433 to 436

	Page.	Number.
c. Deviations from the ordinary process	44	437 to 459
d. Fraetures whieh have remained long unrepaired. . . .	50	460 to 470
e. Gun-shot, and other similar injuries	55	471 to 479
Sub-Scries 3.-Section B.-Fraetures of partienlar Bones:		
Bones of the Skull.	57	480 to 484
Ribs	59	485, 486
Pelvis	59	487 to 490
Seapula and Claviele	61	491 to 493
Humerus	61	494 to 497
Radius and Ulna	63	498 to 502
Bones of the Hand.	65	503, 504
Femur	65	505 to 534
Patella	78	535 to 545
Tibia and Fibula	80	546 to 551
Sub-Series 4.		
Seetion A.-Inflammation of Bone with formation of New Bone. . . .	82	552, 553
Sub-Section a.-With superficial formation of New Bone	83	554 to 592
Sub-Section b.-Inflammation producing expansion of the Walls of a Bone, and subsequent induration.	97	593 to 600
Sub-Section e.-Inflammation producing consolidátion of eaneellous tissue	103	601
Section B. -Inflammation with suppuration in bone	103	602, 603
Section C.-Inflammation with ulecration in bone.	104	
Superficial ulecration.	105	604 to 606
Uleeration of articular parts of bones.	106	607 to 617
Carious ulceration	109	618 to 625
Rheumatie uleeration	111	26, 627, 62

North Side.

Sub-Series 6.-Tumours of Bones:

1. Cartilaginous Tumours........ 164 . . 772 to 781
2. Cartilaginous Tumour ossified:
a. Cancellous and with Medulla 160 . . 782 to 792
```
    Page. Number.
    b. Compaet and hard........ 171 .. }793\mathrm{ to 796
        c. Growths liko Osseous Tu-
        mours . . . . . . . . . . . . . . . 173
        3. Fibrous Tumours . . . . . . . . . . . }17
        4. Osteoid Tumours . . . . . . . . . . . I76
        5. Hard Canecr . . . . . . . . . . . . . . . 182
        6. Medullary Caneer . . . . . . . . . . . 184
        7. Alveolar Caneer . . . . . . . . . . . 197
        8. Tubercle .................... 197
        9. Bones altered by the Growth of
        Tumours
            198
        10. Various growths and deposits .. 200
    Sub-Series 7.-Entozoa in Bone .. .... 201
        Series XIII.
Injuries and Diseases of Joints:
    Sub-Series 1.-Dislocations by External
        Violenee:
            Upper Extremity .......... 202 .. }865\mathrm{ to }87
            Lower Extremity ........... }20
        879 to 884
    Sub-Series 2.-Diseases . ............ 211
        Seetion A.-Diseases of the Synovial
        Membrane ..................... . }21
        855 to 899
    Seetion B.-Diseases of Articular Car-
        tilages.
        215 . . 900 to 927
        Suppurative Diseases of the
            Hip-Joint
            225 . . 928 to 941
            Fibrous Degeneration of Ar-tieular Cartilage
                            231 . . }942\mathrm{ to }95
    Section C.-Tumours in Joints . . . . . 234 . . }95
    Seetion D.-Pendulous and Loose
        Bodies in Joints. . . . . . . . . . . . . . }23
        953 to 957
    Section E.-Gouty Deposits in Joints 237 . . 958 to 965
    Section F.-Osseous Anehylosis .... 239 .. 966 to 970
    Section G.-Dislocation after Disease . 241 .. 971 to 974
        Sfries XIV.
Injuries and Diseases of the Vertebral Co-
    lumn:
        Atrophy . . . . . . . . . . . . . . . . . 243 .. 975,976
```


LOWER GALLERY.

	Pago.	Number.
Fracture and Disloeation	243	977 to 986
Ulecration	248	987 to 999
Necrosis.	254	1000

Serifs XV.
Injuries and Diseases of the Teeth 1* .. 1001 to 1026

1. Fractures 1 .. 1001
2. Deeay 2 .. 1002 to 1009
3. Enlargement of tho Fangs 3 .. 1010 to 1012
4. Gum-boil 4 .. 1013
5. "Seurvy in the Gums " 4 .. 1014
6. Tartarous deposits 5 .. 1015 to 1018
7. Irregularity and Malformation. . 6 .. 1019 to 1022
8. Transplantation 6 .. 1023 to 1026

Series XVI.
Tumours of the Jaws 8 .. 1027 to 1059

1. Epulis, or fibrous Tumour of the Gum 8 .. 1027 to 1032
2. Cystie Tumours of the Jaws .. 11 .. 1033
3. Cartilaginous and Osseous Tumours 11 .. 1034 to 1039
4. Fibrons Tumours 13 .. 1040 to 1052
5. Medullary Tumours 19 .. 1053 to 1059

East Side.
Series XVII.
Injurics and Diseases of the Lips and
Cheoks 22 .. 1060 to 1063
Serits XVIII.
Injuries and Diseases of the Tongue 23 .. 1064 to 1069
Series XIX.
Injuries and Diseases of the Palate, Tonsils,
and Fauces 25 .. 1070 to 1073

* Third Volume of the Pathological Catalogue.

Sermes XX.

	Page.	Number.
Injuries and Diseases of the Pharynx and		
UEsophagus	26	1074 to 1108
Hydrophobia	26	1074, 1075
1. Foreign bodies	28	1076, 1077
2. Simple Stricture	28	1078 to 1085
3. Dilatation	31	1086
4. Ulecration	32	1087 to 1089
5. Polypi and Innoeent Tumours	33	1090, 1091
6. Caneer	33	1092 to 1108
Series XXI.		
Injuries and Diseases of the Peritoneum .	39	1109 to 1138
1. Dropsy	39	1109
2. Peritonitis and its eonsequences	39	1110 to 1120
3. Cysts and Tumours	45	1121 to 1131
4. Entozoa	48	1132 to 1138

Series XXII.

Injuries and Diseases of the Stomach . . . 51 . . 1139 to 1175

1. Digestion after Death. 51

1139
2. Foreign Bodies 51

1140, 1141
3. Effects of Poisons 53

1142 to 1147
4. Ulceration 56

1147 a to 1158
Superficial 56
1147A
Hæmorrhagie
1148, 1149
Perforating 1152 to 1158
5. Tumours and Caneers 1159 to 1175

Fibrous Tumours 1159
Hard Caneer 61 .. 1160 to 1164
Soft Cancer 62 . . 1165 to 1175

Series XXIII.

Injuries and Diseases of the Intestines . . 67 . . 1176 to 1252

1. Simple Strictures 67 .. 1176
2. Dilatation 67

1177
3. Injuries by Violence 68

1178 to 1181
4. Foreign Bodies 70

1182 to 11875. Inflammation of tho MucousMcmbrane 721188 to 1190
6. Effusion of Lymph and other effects of Inflammation 73 1191 to 1193
7. Ulceration 74Hæmorrhagic751194 to 1196
Supcrficial 76 1197, 1198
Follicular 761199
Perforating 77Dysenteric78
1202 to 1210
Typhous 8184S. Cancer
1220 to 1226
86
9. Tubercle 1227 to 1233Appendix.-Peculiar Diseasesof certain parts of the In-testines:
a. Discascs of the Peyer's and Solitary Glands 88 1234 to 1246
b. Diseases of the Meo- Cæcal Valve 93 .. 1247 to 1249
c. Diseases of the Cæcum and its Appendix, and of parts of the Colon 94 .. 1250 to 1252
Series XXIV.
Diseases of the Rectum and Anus 951. Simple Stricture of the Rcctum95
1253 to 1256
2. General thickening and indura- tion 97 1257
3. Abscess and Fistula 99 1258 to 1263
4. Warts andother Innocent Growths 101 1264
5. Cancer 101 1265 to 1276
6. Hæmorrhoids 109Series XXV.
Hernia 111Section I.-Anatomy of Herniain gencral :
a. Of the sac 111 1285 to 1293
b. Of the contents of the sac 115
1294 to 1311
Page. Number.Scetion II.-Anatomy of particularformsof Hernia :
A. Of the parts concerned in In- guinal Hernia 120
1312 to 1315
B. Inguinal Hernia 122
1316 to 1344
a. Incomplete 122
b. Obliquo 124
c. Direct 125
1316 to 13191319 to 13231324
d. Various 126
c. From Animals 1271325 to 1330
f. Complicated with other dis-cases127
g. Congenital 130
C. Femoral Hernia 130
D. Umbilical and Ventral Hernia. 132
E. Obturator Hernia 135Section III.—Internal Strangulation . . 1351331 to 1334
Sertes XXVI.
Introsusception and Prolapsus Recti 137
1364 to 1382
Series XXVII.
Artificial Anus 146
1383 to 1390
Series XXVIII.
Injuries and Diseases of the Liver 152

1. Injury by Violence 152
2. Fatty Degeneration 152
3. Induration and Contraction, Cir- rhosis 153
4. Abscess 154
5. Cancer 156
a. Hard Cancer 156
b. Medullary Cancer 157
c. Melanosis 158
6. Tubercle 159 1412 to 1415
7. Entozoa 160
1391 to 1439
1391
1392
1393 to 1396
1397 to 1399
14001400
1401 to 1408
1409 to 1411
8. Diseases of the Blood-vessels of the Liver 163
1416 to 14371438,1439

Serifs XXIX.

Discases of the Gall Bladder and Ducts	Pago.	Number.
	164	1440 to 1461
1. Hypertrophy .	164	1440
2. Effects of Inflammation	164	1441 to 1443
3. Effects of Calculous Concretions	165	1444 to 1461
Serims XXX.		
Diseases of the Pancreas	169	1462 to 1462в
Series XXXI.		
Diseases of the Lacteal and Lymphatic		
Vessels and Glands	170	1463 to 1477
1. Enlargement and Induration	170	1463 to 1466
2. Calcareous deposits	170	1467 to 1470
3. Cancer	171	1471 to 1473
4. Tubercle	172	1474 to 1477
Series XXXII.		
Injuries and Diseases of the Spleen	173	1478 to 1494
1. Injury by violence	173	1478 to 1480
2. Abscess	175	1481
3. Cysts	175	1482, 1483
4. Cancer	175	1484
5. Tubercle	175	1485 to 1487
6. Entozoa	176	1488 to 1490
7. Diseases of the Capsule of the		
Spleen.	177	1491 to 1494

Series XXXIII.
Diseases of the Thyroid Gland 177 .. 1495 to 1506

1. Enlargement: Bronchocele .. 177 .. 1495 to 1504
2. Cancer

181
1505,1506

South Side.

Series XXXIV.

Diseases of the Pericardium and of the Heart and its Valves

182 .. 1507 to 1564
Sub-Series A.-Diseases of the Pericardium 182

1507 to 1516 E 2
Page. Number.
Sub-Series B.-Diseases of the Substance of the Heart 185 1516 a to 1536

1. Hypertrophy 185 1516 a to 1516 c
2. Atrophy 186 .. 1517 to 1519
3. Rupture 187
1520 to 1522
4. Anenrysm 188
1523 to 1526
5. Tumours and various morbid deposits 190
1527 to 1533
6. Entozoa 193 . . 1534 to 1536
Sub-Series C.-Diseases of the Valves of the Heart 194 . . 1537 to 1563
7. Superficial deposits of Lymph :
Vegetations 194 .. 1537 to 1540
8. Thickening, Adhesion, Contraction, \&c.
195 . . 1541 to 1549
9. Earthy Deposits 200 . . 1550 to 1557
10. Uleeration 202
1558 to 1563
SubSeries D.-Diseases of the BloodVessels of the Heart 204
1564
Series XXXV.
Injuries and Diseases of Arteries 205
1565 to 1718
11. Wounds and other Injuries by External violence 205
1565 to 1571
12. Rupture by Foree from within 208 .. $1572,1572 \mathrm{~A}$
13. Healing of Wounds and other similar Injuries 209
1573 to 1577
14. Effeets of Ligatures on Arteries 211 . . 1578 to 1585
15. Failure of the proeess for the
elosure of a tied Artery 213 .. 1586 to 1590
16. Restoration of the Cireulation after the obliteration of an Artery
215 . . 1591 to 1596
17. Thickening of the Internal
Coat, with deposits of fatty
and earthy Matter 221 .. 1597 to 1620
7A. Illustrations of this Disease in particular Arteries
231 . . 1621 to 1633

The remainder of the Pathological Collection is arranged in the Upper Gallery, commencing on the left hand of the entrance door.
South Side.
Page. Number.
S. Aneurysms and Ancurysmal Dilatations 234 1634 to 1712
A. Cylindriform Aneurysmal Dilata- tion 235
1634 to 1638
B. Sacculated Ancurysmal Dilatation 237 1639 to 1642
C. Ancurysms 2391643 to 1647
D. Aneurysms and Aneurysmal Dila- tations of particular Arteries :

1. Of the Intra-pericardial portionsof the Arch of the Aorta 241 . . 1648 to 1651
2. Of the Extra-pericardial portion 244 1652 to 1672
3. Of the Thoracic Aorta 2554. Of the Abdominal Aorta2561676 to 1679
4. Of the Innominate Artery 258
1680 to 1684
2601685 to 1690
5. Of the Subclavian and AxillaryArteries, and their Branches . . 264 . . 1691 to 1697
6. Of Branches of the Abdominal Aorta 267 1698
7. Of the Miac Arteries and their Branches 268
1699 to 1701
8. Of the Poplitcal Artery 270
1702 to 1712
9. Contractions and obliterations of Artc- ries by the effects of Disease 273
1713 to 1716
10. Tumours 274
1717, 1718
Table of References to other specimens ofDiseases of Arterics275
Series XXXVI.
Injurics and Diseases of the Veins 277
1719 to 1746
11. Enlargement and Dilatation 277
1719 to 172].
12. Effcets of Inflammation 277 1722 to 1736
13. Morbid states in connexion with Tumours 285 .. 1737 to 1741
14. Concretions: Phlebolithes 286
1742 to 1746

West Side.

Series XXXVII.

	Page.	Number.
Injuries and Diseases of the Pleura and Lungs	1*	1747 to 1820
Seetion A.-Of the Pleura	1	1747 to 1761
1. Wounds	1	1747
2. Effeets of Adhesive Inflammation	2	1748 to 1755
3. Suppuration: Empyema	4	1756 to 1760
4. Caneer	6	1761
Section B.-Of the Lungs	6	1762 to 1820
1. Wounds and other Meehanieal Injuries.	6	1762 to 1768

2. Emphysema:
a. Vesieular Emphysema 10 .. 1769 to 1777
b. Subpleural and Interlobular.. 12 .. 1778, 1779
3. Hæmorrhage : Pulmonary Apoplexy 12 .. 1780 to 1785
4. Effeets of Pneumonia 14 .. 1786, 1787
5. Gangrene 14 .. 1788
6. Tumours and allied Morbid Deposits :
a. Osteoid 15

1789
b. Caneer 15

1790 to 1796
7. Tuberele : Phthisis pulmonalis 18 .. 1797 to 1811
8. Entozoa 24 .. 1812 to 1814
9. Uncertain diseases 24 .. 1815 to 1820

Series XXXVIII.
Injuries and Diseases of the Laryox, Traehea,
and Bronehi . 26
1821 to 1864

1. Wounds 26 .. 1821, 1822
2. Foreign bodies 26 .. 1823, 1824
3. Diseases of the Cartilages 27 .. 1825 to 1833
4. Diseases of the Mucous Membrane :
a. Edema 28 .. 1834 to 1836
b. Thiekening and Induration .. 30 .. 1837
c. Superficial deposits of Lymph :

Croup 31 .. 1838 to 1848
d. Uleeration. 34 .. 1849 to 1858
5. Tumours and allied morbid growths 38 .. 1859 to 1864

[^8]
Series XXXIX.

Series XL.

Injuries and Diseases of the Urinary Bladder 73 . . 1962 to 2045

1. Hypertrophy 73 .. 1963 to 1965
2. Rupture and over-distention 74 .. 1966 to 1968s
3. Hernia 75 1969, 1970
4. Partial dilatation :
a. Of all the Coats 75 .. 1971 to 1978
b. Of the Mucous and Cellular Coats 81 .. 1979 to 1985
5. Inflammation and Ulceration 83 .. 1986 to 1994
6. Inflammation of the tissucs around the Bladder 85 . . 1995 to 1998
7. Tumonrs :
a. Polypi 87 .. 1999 to 2001
b. Cancer 91 . . 2002 to 2009
c. Tubercle 96 2010
8. Bladders containing Calculi 96
2011 to 2030
9. Bladders after Lithotomy and Litho-trity103 . . 2031 to 2040
Page. Number.
10. Bladders tapped for Retention of Urine 106 2041 to 2045
Series XLI.
Injuries and Diseases of the Brain 109
2046 to 2095
11. Injuries by violence 109 2046 to 2049
12. Effusion of Blood: Apoplexy 110
2050 to 2058
13. Condition in Fever 112
2059, 2060
14. Suppuration 112
2061 to 2067
15. Cancer 114
16. Tuberele 118 . 2068 to 2078
17. Entozoa
119
119 2084 to 20902079 to 2083
18. Uncertain discases 120
19. Diseases of the Cerebral Blood- vessels 122
2093 to 2095
Series XLII.
Injuries and Diseases of the Membranes of the Brain 123
2096 to 2153
20. Injuries 123
2096 to 2106a
21. Effusion of Blood: Apoplexy 125
2107 to 2113
22. Inflammation 128
2114 to 2120
23. Tumours and allied morbid growths :
a. Cysts 129
b. Osseous or bone-like growths . 130 2123 to 2132
c. Fibrous Tumours 132 2133
d. Cancer 133e. Uncertain Tumours135 .. 2142,2143Appendix A.-Diseases ofthe Cerebral Ventricles .. 137 . . 2144 to 2146
Appendix B.-Diseases ofthe Choroid Plexus139 . . 2147 to 2153
Series XLIII.
Injuries and Diseases of the Spinal Cord and its Membranes 140 . . 2154 to 2159
Serles XLIV.
Injuries and Diseases of the Nerves 1421. Atrophy1422160 to 2162
Page. Number.
24. Injurios 143 2163 to 2175
25. Effects of Inflammation 146
2176 to 2182
26. Pretil or
27. Pretil or 148
t. Partial or gangliform Enlargement149 . . 2186 to 2192
Serids XLV.
Discases of the Nose 153
2193 to 2210A
28. Syphilitic Ulceration 1532. Glanders1542196 to 21983. Polypi and other Tumours1552199 to 2210a
Sertes XLVI.
Discases of the Ear 158
2211 to 2217
Series XLVII.
Injurics and Diseases of the Eyc 159 . . 2218 to 2266
29. Diseases of the Conjunctiva 159 . . 2218 to 2220
2.,\quad Cornea and Sclerotica 160
2221 to 2223
30. :, Iris 161
2224, 2225
31. „, Choroid Membrane 161 2226
32. ,, Retina 1622227 to 2231
33. ,, Vitreous Humour 163 2232
7.,\quad Lens and its capsule 164
2233 to 2237A
34. ", whole globe 165 .. 2238, 2239
35. Cancer of the Eyc 167
a. Mclanosis 173 . . 2253 to 2259
36. Tumours in the Orbit 175 . . 2260, 2261
37. Uncertain discases 176 2262
Sub-Series A.-Discases of the Append-ages of the Eyc177 . . 2263 to 2266
Series XLVIII.
Diseases of the External Integuments, theSkin, and its Appendages178
2267 to 2323
38. Edcma 178
22671782268 to 22703. Ulceration.1791792271, 2272
39. Small-pox 179 . . 2273 to 2277a
40. Warts 180
2278 to 2282

	Page.	Number.
6. Cutaneous and Adipose growths, including Hypertrophy		2283 to 2290
7. Sebaceous and other Cysts	182	2291 to 2299
8. Horn-like growths	183	2300
9. Caneer	184	2301 to 2304
10. Confervoid growths	185	2305
11. Gouty and other unorganized deposits		2306, 2307
Appendix A.-Diseases of the		
Epidermis	矿	2308 to 2315
1. Pityriasis	85	2308, 2308A
2. Corns	186	2309 to 2315
Appendix B.-Diseases of theHair	187	2316, 2317
$\begin{aligned} & \text { ". C. Nails } \\ & \text { and their Matrices } \end{aligned}$		2318 to 2323
Series XLIX.		
Diseases of the Testiele and its Coverings . . Sub-Series A.-Diseases of the Membranes of the Testicle		2324 to 2465
		2324 to 2370
1. Hydrocele		324 to 2334
a. Varieties and Complications of		
b. Effeets of Operations for $\mathrm{Hy}-$ drocele		2338 to 2342
North Side.		
2. Hrmatocele	195	2343 to 2350
3. Inflammation	198	2351 to 2364
4. Cysts.		2365, 2366
5. Loose bodies in the Tunica Vagi-		
Sub-Series B.-Diseases of the Testicle.		2371 to 2435
1. Atrophy	202	2371 to 2374
2. Effeets of Inflammation	203	2375 to 2378
3. Protrusion ; Fungus Testis		2379 to 2383
4. Tumours and allied morbid growths:		
a. Cartilaginous Tumours		2384 to 2386
b. Fibrous and Cystic		2387 to 2392

Page. Number.
c. Modullary 208 .. 2393 to 2417
d. Tuberclo 217 . . 2418 to 2429
5. Uncertain disenses 220 . 2429A to 2435
Appendix A.-Diseases of the Epi-didymis
222 . . 2436 to 2454

1. Enlargement and Induration 222 . . 2436 to 2441
2. Cysts and Pedunculated Growths 223 . . 2442 to 2450
3. Caneer 2244. Tuberele225 . . 2452 to 2454
AppendixB.-Injuriesand diseases of the Spermatic Cord 225 2455 to 2465
4. Injuries 225 2455
5. Cysts226 . . 2456 to 2459
6. Hæmatoecle 227 2460
7. Tumours 227 . . 2461 to 2463
8. Varicocele 229 .. 2464, 2465
Series L.
Diseases of the Serotum 230 . . 2466 to 2470 *

- Series LI.
Diseases of the Vesiculæ Seminales 231 .. 2471, 2472
Series LII.
Diseases of the Prostate Gland 232 . . 2473 to 2527

1. Enlargemont:
a. Uniform 232 . . 2473 to 2477
b. Affecting especially the lateral lobes 234 . . 2478 to 2485
c. Affeeting especially the middle lobe 238 . . 2486 to 2498
d. Affecting especially tho anterior part 245 . 2499

* No. 2466. An enormous enlargement of the scrotum and of the integuments of the penis and prepuce, removed by operation. The mass before its removal measured 42 inches in cireumference; after removal it weighed $44 \frac{1}{2} \mathrm{lbs}$. It had been growing 12 ycars. The patient was 22 years old. He recovered rapidly and completely after the removal of the parts.-Fiom the Muscrum of R. Liston, Esq.
Page. Number.
c. With peculiar deformity 245 . . 2500 to 2505
f. With wounds by instruments 2492. Abscess and ulceration253 . . 2514 to 2516

3. Tumours and allied morbid growths 2554. Calculi in the prostatic ducts2562519, 2520
4. Effects of Calculi in prostatic part of the Urethra 256 . . 2521 to 2527
Series LIII.
Injuries and Diseases of the Urethra 260 . . 2528 to 2581
5. Stricture 260 . . 2528 to 2536
a. Accidental Complications of Stricture 264
2537 to 2541
6. Ulccration in consequence of Stric- ture of the Urethra 267 . . 2542 to 2548
7. Inflammation in the parts surround- ing the Urethra 270 . . 2549 to 2552
8. Fistulæ in Pcrinæo 273 . . 2553 to 2560
9. Effects of the treatment of Strictures 276
2561 to 2574
10. Ulceration 281 .. 2575,2576
11. Morbid growths 281 . . 2577 to 2580
12. Calculi 282 2581
Series LIV.
Diseases of the Pcnis 283
2582 to 2615
13. Phimosis and Paraphimosis 2832. Discascs of the Præputial Secretion. 2842588 to 2590
14. Syphilitic eruptions and Ulcers 284
2591 to 2605
15. Warts2872606
16. Cancer 287 . . 2607 to 2615
Sertes LV.
Diseases of the Ovaries 289 .. 2616 to 2642A
17. Simple Cysts 289 . . 2616 to 2620
18. Compound Cysts 290 . . 2621 to 2623
East Side.
19. Cysts containing fat, hair, tccth, \&c. 291 2624 to 2632
20. Enlargement of Ovisacs 293 .. 2633, 2634
21. Tumours 204 . . 2635 to 2642A

Sertes LVt.

Page. Number.
Discases of the Fallopion Tubes or Viaducts 296 . . 2643 to 2652

1. Obstruction and Dilatation 296 . . 2643 to 2646
2. Cysts and Tumours 297 . . 2647 to 2652
Series LVII.
Discases of the Uterus 298 .. 2653 to 2705
3. Displaccments 298 .. 2653, 2654
4. Obliteration of the Orifice or of the
Carity 302 . 2655,2656
5. Cysts . 302 . . 2657 to 2659
6. Polypi and other Tumours:
a. Mucous or Gelatinous Polypi . . 303 . . 2660 to 2663
b. Fibrous and Fibro-calcarcous
Tumours 304 . . 2664 to 2695
c. Cancer 312 . . 2696 to 2705

Series LVIII.

Diseases of the Vagina and Extcrnal Organs
of Generation in the Femalc
of 316 . . 2706 to 2717

Series LIX.
Injuries and Diseascs incidental to Gestation and Parturition

319 . . 2718 to 2740

1. Malposition of the Fotus 319 . 2718,2719
2. Retention of the Fœotus 319 . . 2720 to 2733
3. Retention of the Placenta. 323 . . 2734
4. Rupture of the Utcrus 323 . . 2735 to 2737
5. Fistulæ . 324 . . 2738 to 2740

Series LX.
Diseases of the Brcast 326 . . 2741 to 2812

1. Obstruction and Dilatation of Lacti-
ferous Ducts 326 . . 2741 to 2748
2. Simple Cysts 328 . . 2749 to 2757
3. Cysts containing growths ; Sero-
cystic Sarcoma 329 .. 2758 to 2771
4. Fibro-Cellular (Chronic Mammary) Page. Number.
Tumours 334 .. 2772 to 2783
5. Caneer:
a. Hard Caneer 338
2784 to 2794
b. Medullary Cancor 341 .. 2795, 2796
e. Uneertain Tumours 342 .. 2797 to 2809
6. Entozoa 343 2810
7. Diseases of the Blood-vessels of the Mammary Gland 344 .. 2811, 2812
Series LXI.
Anatomy of Stumps after Amputation of Limbs 344 .. 2813 to 2833
The remaining shelves of this Gallery are occupied by thespecimens in spirit of
MONSTERS AND MALFORMATIONS.
Series I. Preternatural Situation of Parts. Nos. of
Sub-Series 1. Without defieieney Preparations.
8. With defieieney 7 to 12
Series II. Addition of Parts.
Sub-Series 1. Head 13 to 14
9. Trunk and Extremities 35 to 50
10. Organs of Cireulation 51
11. Organs of Digestion 52 to 53
12. Urinary and Generative Organs 54 to 63
Series III. Deficiency of Parts.
Sub-Series 1. Head 64 to 91
13. Trunk and Extremitics 92 to 125
14. Organs of Cireulation 126 to 133
15. Organs of Digestion 134 to 135
16. Urinary and Generative Organs 136 to 146
17. Brain and Nerves 147 to 158
18. Defieiency with Addition 159 to 181
19. Defieieney with Union, or Præter- natural Connexion 182 to 227
20. Vegetable Monstrosity 228 to 235
Series IV. Hermaphroditical Malformation 236 to 263

In this Department the following specimens arc particularly worthy of attention.

No. 7. A Female monstrous fotus, found in the abdomen of Thomas Lane, a lad bctween fiftecn and sixtcen years of age, at Shcrborne in Dorsetshire, June 6th, 1814. The partieulars of the casc, as recorded by Nathaniel Highmorc, Esq., the donor of the specimen, are given in the Catalogue.

No. S. An imperfectly formed Male foetus, found in the abdomen of John Hare, an infant between nine and ten months old, born on the 8th of May, 1807. The history of the case is given at length in a paper in the Medico-Chirurgieal Transactions, vol.i. p. 234, by the donor, George W. Young, Esq.

No. 195. A Human female twin-monster, the bodies of which are united crosswise, sacrum to sacrum; the mother was between sixteen and seventeen years of age, and was delivered of the above in the year 1815, without any partieular difficulty. A detailed account of the case, and the anatomy of the monster are given in the Quarto Volume, entitled "Catalogue of Monsters and Malformations," which is placed near the speeimens for the use of Visitors.

The dried preparations belonging to this series are contained in Wall Case CIII. of this Museum (see p. 23).

MIDDLE MUSEUM.

Ground Floor.

The Ground Floor of this apartment is entirely devoted to the Fossil Remains of extinet Animals and Plants. This eolleetion is a section of the great department of physiologieal or natural struetures, whieh originated in Hunter having clearly seen that a complete exposition of the laws of Life must inelude examples of the mode in whieh they are manifested, not only at the present moment, but at every period since the earth first beeame peopled with living beings. Although fossil remains of animals exhibit only eertain portions of their organization, in many eases quite sufficient has been preserved to enable the seientific anatomist to deduee inferenees as to their gencral strueture, habits, food, \&e., and also to derive important eonelusions as to the condition of the earth's surface in the period at which they lived.

In order to give a complete illustration of all the more remarkable forms, wherever original specimens eould not be proeured, eoloured easts of the best-preserved and most eharacteristic examples in other museums are exhibited.

A full description of the speeimens will be found in four volumes of the Catalogue, entitled respeetively "Catalogue of the Fossil Organie Remains of Plants," "- of Invertebrata," "- of Reptilia and Pisees," "- of Mammalia and Aves," plaeed in the room for the use of Visitors.

In the doorway from the Western Museum is
No.428. A large slab of New Red Sandstone, which shows on the under surface (as it lay in situ) many casts in relief of eavities which had been impressed on the argillaeeous shale on whieh it rested, and on which it had been deposited in the condition of moist or disintegrated sand. Most of the impressions are foot-prints of animals, some apparently of a fivetoed web-footed reptile, others like those of a small watertortoise; and there are a few well-marked impressions of the
hind and fore foot of a large and probably Labyrinthodont Batrachian. Presented by J. Cunningham, Esq.

On entering the room, the large skclcton to the lcft* is that of the Megatherium Cuvieri, the most gigantic species of that peculiar extinct family of American quadrupeds which appear to have subsisted by uprooting trees and feeding on the leaves and smaller branches. The Sloths, which at present inhabit the same regions of the globc, are their nearest allies among existing animals. This skeleton is in part a restoration, the supplied portions (taken from authentic sources) being marked with a red star. The real bones were principally obtained from recent tertiary deposits in the province of Bucnos Ayres, and were presented to the College by Sir Woodbine Parish.

On a neighbouring platform is placed the almost perfect skeleton of the Mylodon (Mylodon robustus), a large extinct quadruped, allied to the Mcgatherium. It was dug up out of the newer tertiary fluviatile deposits, seven leagues north of the city of Buenos Ayres, in the year 1841, and was purchased by the College. The description of this skeleton, with an explanation of the food and habits of the animal when living, will be found in Professor Owen's ' Memoir on the Mylodon,' published by the College. For the sake of comparison, a skeleton of the Two-toed Sloth (Cholapus didactylus) is placed on the upper part of the tree which supports its extinct gigantic congener.

In the corner of the room, behind the Mylodon, is a coloured plaster-cast of an unusually perfect fossil cranium of the great Mastodon of North America (Mastodon giganteus), the original of which is in the British Museum, by the Trustecs of which Institution this cast was presented to the College.

In the centre of the room is the bony carapace or armour of an extinct gigantic Armadillo (Glyptodon clavipes, No. 541),

[^9]with part of the skull, the tail, and some of the bones of the cxtremities, of which those of the left hind foot are most complete. This very remarkable example of the extinct quadrupeds of South America was discovcred 12 feet below the surface, in tertiary deposits in the vicinity of the city of Buenos Ayres, and was purchased by the College in 1842. For a description of the various parts of this specimen, sec the 'Catalogue of Fossil Mammalia,' pp. 107-117, Nos. 516541 , inclusive. On comparing its bony carapace with that of one of the existing species of Armadillo (in Floor Cabinet F, Eastern Museum), the analogy of the armour is seen in its tessellated composition and the sculpturing of the external surface of the numerous component ossicles; but the jointed bands which permit the small Armadillo to roll itself into a ball, and inclose its extremities within its carapacc in time of danger, are not present in the fossil, such additional mechanism not being required for the defence of so large an animal. Portions of the bony armour of other species of Glyptodon are shown in the Floor Cabinet in this Museum.

Beyond the Glyptodon is seen the skelcton of the male gigantic extinct Deer (Megaceros hibernicus), commonly, but erroneously, called the ${ }^{6}$ Irish Elk.' This skeleton resembles that of the Fallow Deer in the bones of the trunk, the number of ribs, and also in the form of the skull; but the bones of the extremities are stouter in proportion to their length. The cervical vertebræ are proportionally much larger, in rclation to the great weight which they were destined to support when the antlers were fully devcloped. The subgeneric character and chief peculiarity of the present extinct species are manifested by the extraordinary development and the form of the antlers.' The span of the antlers, measured in a straight line between the extreme tips, is eight feet; the length of a single antler following the curve is seven feet three inches. The height of the skeleton to the top of the skull is seven feet six inches; to the highest point of the antlers ten feet four inches. The weight of the skull and antlers is seventy-six pounds. The specimen was dug up from a bed of shcll-marl beneath
a peat-bog near the town of Limeriek, and was purchased by the College in 1844.

Other examples of the skull and antlers of this fine animal are attached to the rails of the lower gallery; and in Case LXXXVIII. is a skull of the female or Hind of the same extinct species (No. 1127), which shows that this sex, as in most other speeies of Cervus, had no antlers.

In the eorner of the room, behind the Irish Deer, is a pedestal supporting a plaster-east of the skull of Sivatherium giganteum, an extinet four-horned Antelope of immense size, diseovered by Sir P. Cautley and Dr. Faleoner in the tertiary deposits of the Sewalik or Sub-Himalayan Hills.

Near to this will be seen the original and unique fossil specimen of a seeond speeies of gigantic four-horned Antelope (Bramatherium perimense), from the tertiary strata of Perim Island in the Gulf of Cambay, presented by the diseoverer, A. Bettington, Esq.

On the left-hand side of the room, near the entranee-door, is a eoloured plaster-cast of the skull of a very rare and remarkable extinct earnivorous animal (Machairodus neogeus), the original of whieh was diseovered in a limestone eavern in Brazil, and is now in the Museum of the Jardin des Plantes at Paris. Remains of the same species have been found associated with those of the Megatherium, Mylodon, and Glyptodon, in the same deposits of the Pampas of Buenos Ayres as those from whieh the speeimens in the Museum were obtained. The Machairodus was most nearly allied to the Lion or Tiger, whieh it equalled or surpassed in size ; it differs from the genus Felis chiefly in the disproportionate length of its formidable upper canine teeth, the erowns of which deseended outside the lower jaw when the mouth was shut. With these weapons it must have attaeked and destroyed its prey by an action like that of stabbing and cutting, the canines being trenehant and finely serrated behind, as well as sharp-pointed. The lower canincs are smaller than usual and blunted, and are plaeed on a line with the lower ineisors. The strength of the zygomatie arches and the expanse of the
temporal fosse indicate the great size and power of the muscles of the jaws. This cast was presented by the ' ProfessorsDirectors of the Jardin des Plantes,' 1847.

Under the glass shade which covers the cast is also placed (No. 103) the canine tooth of another Machairodus (M. latidens), found in the ossiferous cavern called Kent's Hole, near Torquay, and presented by the Earl of Enniskillen.

On the same side of the room, beyond the Floor Cabinet, is a pedcstal supporting casts of some of the bones (the lower extremities, pelvis, and part of the vertebral column), articulated in their natural position, of a gigantic extinct Struthious bird from New Zealand (Dinornis giganteus). The real bones from which these casts were taken are in the WallCase, No.XXXVI. This bird would seem to have bccome extinct in comparatively recent times, and examples of the eggs as well as the bones have been found. One of these is placed in the adjoining glazed case, wherc also will be seen two casts of the enormous eggs of an extinct bird (\not piornis maximus) found in Madagascar.

On the top of the case containing these eggs is a stuffed specimen of the Apteryx, the small living representative of the once numerous race of wingless birds of New Zealand.

Suspended to the rails of the lower gallery, above the Mylodon, is a fine specimen of the entire tusk of a Mammoth, showing its great size and extensive double curvature. The length of this specimen, measured along the outer curvature, is ten feet two inches; it was found in the tertiary deposits of the Ohio, North America. Near it is suspended the less curved tusk of a young Mastodon.

Wall Cases of the Middle Museum.

Commencing on the left hand of the entrance-door, the first two Cases (Nos. VIII. and IX.) contain the fossil organic remains of Plants. These consist of woods, impressions of stems and leaves, and fruits, the greater number of which, as well as those of the Invertebrate animals, formed part of the original

Hunterian Collection. The principal external charaeters of the specimens, and the appearances exhibited by each under the microscope, arc fully described in the Catalogue.

The remaining Cases as far as the door into the Eastern Museum (X. to XVIII.) are devoted to the fossil Invertebrata, arranged in the following classes:-Porifera, Foraminifera, Polypi, Echinodermata, Annulata, Cirrhipoda, Crustacea, Insecta, Bryozoa, Brachiopoda, Lamellibranchiata, Pteropoda, Gasteropoda, Cephalopoda. The leading characters of the classes have already becn exemplified by their recent representatives in the Western Museum.

The fossil Porifera and Foraminifera are illustrated by numerous examples, and among the Polypi are some fine and instructive specimens of palæozoic Corals.

The class Echinodermata is richly represented. Amongst the numerous specimens of Crinoidea may be noticed the interesting genus Encrinus (Nos. 1820-1827) and the free erinoid Marsupites (Nos. 1828, 1829), exemplified by fossils in fine preservation.

Most of the principal extinct types or families of the class Crustacea are represented. Amongst the Malacostraca there are some remarkable forms of Macrophthalmus from China (Nos. 1553-1556), and a finc scries of specimens belonging to the Macrurous, Brachyurous, and Anomurous sections-as Hoploparia, Zanthopsis, and Basinotopus, from the Eocene deposits called 'London clay.' The various forms of Trilobites (Nos. 1579-1601) were obtained by Hunter from the Silurian strata of Sweden, Francc, and Bohemia, as well as from localities where the same ancient formation occurs in England and Wales.

The class Brachiopoda is exemplified by the palxozoic genera Orthis, Spirifer, and Productus, and the singular little shell Calceola (Nos. 1523, 1524). The families Rhynchonellide and Terebratulidee exhibit, in the abundance of specics which inhabited the seas of the sceondary cra, a striking contrast to the paucity of those at present existing.

Amongst the Lamellibranchiata, the species of Trigonia (Nos. 1153-1165) are peculiarly worthy of attention, the genus having but two or three known living representatives. There are also good illustrative series of the genera Lima, Pecten, Gryphcea, and Ostrea.

The fossils of the class Gasteropoda are chiefly remarkable for the large proportion from the tertiary deposits of the Paris basin, and for the fine series of the extinct genus Pleurotomaria (Nos. 956-986).

There are probably few collections in Europe that cxhibit so great a variety of the structure of the complex and beautiful shells of the class Cephalopoda, as the original Hunterian series does. The specimens themselves are for the most part remarkable for their fineness and good state of preservation, and no pains appear to have been spared by Mr. Hunter in exhibiting their organization, and consequently rendering them as useful as possible in advancing this department of the science of animated nature. Almost every specimen of the chambered shells of the Ammonites, Orthoceratites, Nautilites, and their allies, has been bisected by a skilful lapidary, and carefully polished. The specimens (Nos. 29-33) exemplifying the organization of a Belemnitic Cephalopod, through the extremely rare instance of the fossilization and conservation of the soft parts of the animal, are also especially worthy of notice. They were found in the Oxford clay, at Christian Malford in Wiltshire, and were mostly presented to the College by the late Marquis of Northampton, P.R.S.

The remaining Wall Cases of this apartment are devoted to the fossil remains of the Vertcbrated classes.

In Case LXXX. are displayed some singularly perfect specimens of rare fossil Fishes.

The five following Cases contain examples of the class Reptilia.

In the upper part of Case LXXXI. will be seen a coloured plaster-cast of the entire skull of Labyrinthodon salamandroides (No. 403), a huge Batrachian reptile from the Keuper

Sandstone of Gaildorf in Wirtemberg. No. 429 is a cast of the relief of an impression of the hind foot of a similar creaturc, from the New Red Sandstone of Cheshire.

No. 316 is a cast of the skull of a gigantic marinc Lizard (Mososaurus) discovered in the Chalk formations at Macstricht, the original of which is in the Museum of the Jardin des Plantes at Paris.

No. 222 is a cast of the skeleton of a Plesiosaurus, an extinct Lizard with a head like that of a Crocodile, a long neck like that of a Swan, four paddles constructed like the fins of a Porpoise, and a moderately long tail. The remains of many species of this most singular form of cxtinct reptile have been discovered in the strata of the Oolitic and Cretaceous periods. The original of the present species is in the British Museum, and was obtained from the lias of Somersetshire.

No. 172 is the actual skeleton, imbedded in lias, of an Ichthyosaurus. This extinct reptile had a very short neek, and the vertebre hollowed out at both ends, like those of a fish; the paddles or fins, of which two are pectoral and two ventral, had more numerous and smaller ossicles than in the Plesiosaurus, and exhibit a structure intermediate between the fin of a whale and that of a fish; but the skull and teeth resemble those of a Crocodile; the eye, which was very large, was provided with a ring of bony plates or scales at the border of the anterior aperture of the sclerotic, as in birds and a few reptiles, and the tail was of great length. The sclerotic plates are well shown in the present skeleton, which is of the species called Ichthyosaurus tenuirostris, and was discovered in the lias of Leicestershire.

No. 156. A slab of lias, from Lyme Regis, in which is imbedded the entire skeleton of a young Ichthyosaurus intermedius. This was the first skeleton of the Ichthyosaurus discovered, and is the subject of the paper by Sir Everard Home in the 'Transactions of the Royal Society' for 1819, where it is figured of the natural size (pl .15), under the name of Proteosaurus.

No. 119 A is a east of a very perfect specimen of a Ptero-
dactylc, or winged Lizard. Nos. 119-133 arc bones of scveral species (chiefly Pterodactylus Bucklandi) of thesc extraordinary creatures, found in the oolitic slatc of Stonesficld, Oxfordshire. The name 'Pterodactyle' is derivcd from the Greck words meaning a wing and a finger; becausc the wings arc mainly supported by the outer finger of each fore limb, enormously lengthencd and of proportionate strength, which finger neverthelcss answers to the little finger of the human hand. The wings consisted of folds of skin, like the leather wings of the Bat; and the Pterodactyles were covercd with scales, not with feathers; the hcad, though somewhat resembling in shape that of a bird, and supported on a long and slender ncck, was provided with long jaws, armed with teeth; and altogether the structure of these extinct members of the reptilian class is such as to rank them amongst the most extraordinary of all the creatures yet discovered in the ruins of the ancient earth.

No. 95 is a femur of the Iguanodon Mantelli, presented by the late Dr. Mantell. The remains of this gigantic extinct Saurian are found chicfly in the Wcalden formations of England; and the present magnificent specimen is from the submerged beds of that formation at Brook Point, Isle of Wight.

The fossil remains of the class Aves, which chiefly include those of the different species of Dinornis and Palapteryx, from New Zealand, are arranged in Wall Casc LXXXVI.

In the lower part of the Case are placed casts of the Footprints of analogous birds, discovercd in the New Red Sandstone of Connecticut, and described by the donor, Professor Hitchcock, under the name of Ornithichnites.

No. 1551. Casts of the head and foot of the Dodo (Didus ineptus) of the Island of Mauritius; and No. 1593 b, casts of some of the leg-bones of the Solitaire (Didus solitarius) of the Island of Rodriguez. Both of thesc have become extinct within very recent pcriods, as seems the inevitable fate of bulky birds unable to fly, when exposed, by the dispersion of the human race, to the attacks of man.

The remaining Cases are appropriated to Mammalian remains.
The order Marsupialia (Wall Case LXXXVII.) is reprcsented by remains of the genera Diprotodon, Nototherium, Macropus, Hypsiprymnus, Phascolomys, Dasyurus, and Thylacinus, all from Australia, to which country the living species of the order are almost restrieted.

Among the Cetacean fossils in the same Wall Case is a series of tympanie bones of extinct Whales, or "eetotolites," from the Red Crag at Felixstow, Suffolk.

In the order Ruminantia (Wall Cases LXXXVII. and LXXXVIII.) will be noticed, besides the remains of the gigantie Irish Deer already mentioned-

No. 1254. A part of the skull and bony cores of the horns of the great extinct Aurochs (Urus priscus). This fine specimen was dug out of a stratum of dark-coloured elay, below layers of briek-earth and gravel, thirty feet from the surface, at Woolwieh. The bony eores of the horns extend outwards, with a slight curvature upwards: from the midline between their bases to the extremity of one core, in a straight line, measures two feet five inches.

Skulls and bones of two other speeies of Oxen, formerly inhabitants of this island (Bos primigenius and Bos longifrons), are also contained in the Colleetion.

No. 1119. A east of the lower jaw of an extinet species of Giraffe (Camelopardalis Bituriyum), discovered in 1843, in the miocene strata of the South of France, and deseribed by the donor, Professor Duvernoy.

The order Pachydermata is very rich in extinet animals, mostly of great size. They are arranged in Wall Cases LXXXIX. to XCIII. Among the more interesting speeimens are-

Nos. 924 to 952 . Bones of the Macrauchenia, a large quadruped eharacterized by very long eervical vertebre, with imperforated transverse processes, like those of the Llama; but with three toes on eaeh foot. These fossils were discovercd by the donor, Charles Darwin, Esq., in the tertiary deposits of Port St. Julian, Patagonia, and are unique.

The same Case contains specimens of fossil remains of extinct species of Horse, Hog, and Hippopotamus, and of the extinct genus Anoplotherium.

No. 923. A cast of half the lower jaw of the Elasmotherium, an extinct Pachyderm between the size of a Rhinoceros and an Elephant, with molar teeth resembling those of the Rhinoceros in the pattern of the grinding surface, and those of the Horse in the great length of the undivided crown, but peculiar for the undulatory plications of the enamel. The original is unique: it was discovered in the superficial deposits of Siberia, and is preserved in the Museum of Moscow.

No. 847. A cast of the cranium of the Rhinoceros tichorhinus, Cuv. The original was discovered in the drift formation in Siberia, and is figured in Cuvier's 'Ossemens Fossiles,' ed. 1822, pl.12. The skull of the extinet two-horned tichorhine Rhinoceros surpasses in length, not only absolutely but proportionally to its breadth, that of any known existing species; the nasal bones are morc espeeially produeed; and the rugose surface for the anterior horn which they support is an oblong ellipse, traversed by a median longitudinal ridge, whilst in the African two-horned Rhinoceros it is a semicircle, and is impressed by a median longitudinal furrow: the intermaxillary bones are longer than in the existing species. But the most important anatomical character of this extinct Rhinoceros is the extension of the bouy septum of the nose to the anterior extremity of the nasal bones, which, instead of standing out freely, bend down, and become confluent with the vomer and the intermaxillary bones. The specific name tichorhinus has reference to this peculiarity, whieh adds so much solidity and strength to the support of the anterior horn. Presented by the Rev. Dr. Buckland.

No. 847 A is a cast of the right ramus of the lower jaw of the same species.

Numerous remains of this species have been discovered in the more recent geological strata of this country, examples of
which are Nos. 877 to 915 , portions of a skclcton of a tichorhine Rhinoceros, discovcred by Joseph Whidbey, Esq., Civil Engineer, in a limestone cavern at Oreston, ncar Plymouth, during the formation of the great Breakwater of that port.

In Esscx and some other parts of England there have also been discovered remains of a second extinct specics of twohorned Rhinoceros (Rh. leptorhinus), of which Nos. 848 to 852 are casts. No. 850, a cast of part of the lower jaw of the leptorhine Rhinoceros, demonstrates the shortness of the symphysis claracteristic of the species, by which it approaches the two-horned Rhinoceros of the Cape, and differs from the tichorhine Rhinoceros of Siberia. Presented by John Brown, Esq., F.G.S.

In Wall Case XCI. are suspended coloured casts of the lower jaw of the male and female Dinotherium, an extinct proboscidian quadruped, as large as the Mastodon, in which the two tusks of the lower jaw were not only retained, but developed to the extraordinary proportions exhibited in Nos. 797 and 798. The identity of structure of the molar teeth in these specimens indicates the larger proportions of the symphysis and tusks to have been a sexual character, and most probably peculiar to the male. The original of the jaw, No. 798, was discovercd, broken across in front of the first molar, but the two parts were near each other, in the tertiary deposits at Eppelsheim. They were originally restored by Dr. Kaup, according to the ordinary analogies, the symphysis and the tusks curving upwards towards the upper jaw, as in the figure given in the 'Ossemens Fossiles du Muséum de Darmstadt,' tab. iv. The subsequent discovery of the original of No. 795 showed that the symphysis and the incisive tusks were naturally bent in the opposite direction, as they are restored in the present specimen. All the above casts of the teeth and jaws of the Dinotherium were presented to the College by Dr. Kaup.

An original tooth of this singular genus, No. 800, the third deciduous molar, right sidc, upper jaw, formed part of the Hunterian Collcetion of Fossil Remains.

No. 819 is a coloured cast of both rami of the lower jaw of a smaller species of Dinotherium (D. Cuvieri). The right ramus contains the four posterior molar teeth; the left contains the three posterior molars and the socket of the fourth in advance. The original was discovered in the tertiary deposits of the South of France: the cast was presented to the College by the Professors of the Museum of Natural History, Paris.

In the samc Case are the fossil remains of the extinct pachydermal quadrupeds of the genera Lophiodon, Coryphodon, Paleotherium, and Tapirus.

The peculiarities of the extinct genus Mastodon are shown, by numerous examples. Of these may be noticed No. 665, the right half of the lower jaw of the Mastodon elephantoïdes, and No. 666, a coloured cast of the left half of the lower jaw of the same species, originally described by Mr. Clift in the 'Geological Transactions,' second series, vol. ii. part 3. The remains of this interesting species have hitherto been found only in the newer tertiary deposits of India and Ava. (See.' Catalogue of Fossils,' pp. 161, 164.)

No. 695 is a very remarkable cast of a considcrable proportion of the superior maxillary bone of the narrow-toothed Mastodon (Mastodon arigustidens). It exhibits the whole of the palate, and the molar series as it is reduced by age. This series consists, in the present example, of two teeth on each side, viz. the penultimate molar and last molar. The penultimate, which is the fourth of the permanent series, well demonstrates the modification of the grinding surface, from which the generic name, which signifies "udder-toothed," of these huge extinct quadrupeds has bcen derived: it supports four pairs of mastoid or udder-shaped tubercles, all of which have had their enamelled summits removed by mastication, and the two anterior pairs are worn down to their common dentinal base. The last molar has five pairs of similar tubercles, and a large posterior ridge which is subdivided into three or four small tubcrcles. The summits of the anterior tubercles only have been worn by mastication.

From the tertiary formations at Eppelsheim in Gcrmany. Presented by Dr. Kaup.

No. 705. A cast of the lower jaw, wanting the ascending rami, of a young Mastodon giganteus: it demonstrates the sockets of the two incisive tusks which characterize the immature state of the gigantic individuals of this extinct genus. One of the tusks, and sometimcs, but more rarely, both, are retained in the lower jaw of the male Mastodon, but both are shed at an early period in the female. Both sexes have large tusks in the upper jaw, as in the Elephant. The original of this specimen is preserved in Peel's Museum, New York, and was first described by Dr. Godman as a type of a new genus of Proboscidians to which he gave the name of Tetracaulodon, in the third volume of the New Series of the 'Transactions of the American Philosophical Society.'

No. 706 is the symphysis of the lower jaw of a young Mustodon giganteus, showing the remains of the alveoli of the two deciduous incisors. From the tertiary deposits of the Ohio, North America.

No. 714 is a portion of the right ramus of the lower jaw of this Mastodon, containing the penultimate and antepenultimate molars, and the socket of the last large molar. The crown of the antepenultimate molar supports three transverse ridges, and each of the ridges is divided into two mastoid tubercles.

No. 779. The fossil femur or thigh-bone of the gigantic Mastodon of North America. It differs from the femur of the Elephant in being shorter in proportion to its breadth and thickness, and is a stronger bone.

Nos. 566 to 661 . An extensive series of the molar teeth and various bones of the great extinct Elephant or Mammoth (Elephas primigenius). Most of the teeth, which exhibit some remarkable varieties of structure, have been discovered in the superficial deposits of the Diluvial and Tertiary periods in this island; they are described in the Catalogue at pp. 133160.

Abstract

In the Floor Cabinet in this Muscum are placed some specimens which will be observed with great interest in connexion with these fossil remains. They are portions of the integument of the great Mammoth which was discovered entire in the frozen soil of the banks of the river Lena, in Siberia, near the 70th degree of north latitude.* One tray contains

[^10] by Mr. Adams in the 'Journal dı Nord,' printed at St. Petersburg in 1807, and in the 'Memoirs of the Academy of Sciences at St. Petersburg,' from which the following account has been abridged:--" A Tungusian hunter and collector of fossil ivory, who had migrated iu 1799 to the peninsula of Tamul, at the mouth of the Lena, one day perceived, amongst the blocks of ice and frozen soil, a shapeless mass, which in the following year was more disengaged and showed two projecting' parts. In 1803, part of the ice between the earth aud the observed body, which was then recognised as that of a Mammoth yielding the tusks commonly found in the soil of that coast, having melted more rapidly than the rest, the plane of its support became inclined, and the enormous mass fell by its own weight on a bank of sand. Of this, two Tungusians, who accompanied Mr. Adams, were witnesses. In the month of March 1804, the discoverer came to his Mammoth; and having cut off the tusks, exchanged them with a merchant for goods of the value of fifty rubles.
"Two years afterwards, or the seventh after the discovery of the Mammoth, Mr. Adams visited the spot, and found the Nammoth still in the same place, but altogether mutilated: the Jakutski of the neighbourhood had cut off the flesh, with which they fed their dogs during the scarcity. Wild beasts, such as white bears, wolves, wolverines, and foxes, also fed upou it, aud the traces of their footsteps were seen around. The skeleton, alnost entirely cleared of its flesh, remained whole, with the exception of one fore-leg (probably dragged off by the bears). The spine, from the skull to the os coccygis, oue scapula, the pelvis, and the three remaining: extremities, were still held together by the ligaments and by parts of the skin. The head was covered with a dry skin; oue of the ears, well preserved, was furnished with a tuft of hair. The point of the lower lip had been gnawed ; and the upper one, with the proboscis, having been devoured, the molar teeth conld be perceived. The brain was still in the cranium, but appeared dried up. The parts least injured were one fore-foot and one hind-foot; they were covered with skin, and had still the sole attached. According to the assertion of the Tungusian discoverer, the animal was so fat, that its belly hung down below the joints of the knees. This Mammoth was a male, with a long mane on the neck; the tail was much mutilated, only eight out of twenty-eight or thirty caudal vertebrie remaining; the proboscis was gone, but the places of the insertion of its muscles were visible ou the sloull. The skin, of which about three-fourths were saved,
a portion of the thick corium or true skin, with some of the elose under woolly covering of the animal still adherent; this curled hair is of a light reddish colour: a second tray contains a mass of the same kind of woolly hair ; and a third tray some of the long dark eoarse hair which formed the outer covering of the extinct animal : the small tuft of long black bristles is part of that whieh grew from the extremities of the ears.

No. 560. A skull of Toxodon platensis, an extinet quadruped of the size of the Hippopotamus, and apparently of similar aquatic habits, but remarkable for possessing teeth like those of the Rodents. This unique specimen was diseovered in the bed of the Tarandis, a river in the province of La Plata, South Ameriea, and was presented to the College by Charles Darwin, Esq., F.R.S. A full description of the peculiarities of this cranium will be found in the 'Catalogue of Fossil Mammalia and Birds,' p. 121.

Wall Case XCIV. and the upper part of XCV. contain fossil remains of the large extinet Edentate animals of Ameriea, including Glyptodon, Megatherium, Megalony.x, Mylodon, and Scelidotherium, the latter remarkable for the great breadth
was of a dark-grey colour, covered with a reddish wool and eoarse long blaek hairs. The dampness of the spot where the animal had lain so long had in some degree destroyed the hair. The entire skeleton, from the fore part of the skull to the end of the mutilated tail, measured sixteen feet four inehes; its height was nine feet four inches. The tusks measured along the eurve nine feet six inehes, and in a straight line from the base to the point three feet seven inches.
"Mr. Adams collected the bones, and had the satisfaction to find the other scapula, which had remained, not far off. He next detrehed the skin on the side on which the animal had lain, which was well preserved: the weight of the skin was such that ten persons found great difficulty in transporting it to the shorc. After this, the ground was dug in different places to ascortain whether any of its bones were buried, but principally to collcct all the hairs which the white bears had trod into the ground while devouring the flesh, and more than thirty-six pounds' weight of hair werc thus recovered. The tusks were repurchased at Jakutsk, and the whole expedited thence to St. Petersburg: tho skeleton is now mounted in the museum of the Petropolitan Academy."
of the femur (No.501). It was discovered in the cliffs of Bahia Blanca, near Patagonia, and presented to the College by C. Darwin, Esq.

A few specimens belonging to the order Rodentia, and a series of fossil remains of Carnivora, occupy the remainder of Case XCV. Among the latter will be seen boncs and teeth of the large extinct Lion or Tiger, callcd Felis spelea, of the Cave Hyæna (Hyœena spelea), and somc fine skulls (Nos. I to 4) of the great Cavc Bear (Ursus speleus), all former inhabitants of this island.

The following summary of the genera of Mammalia and Aves, from which the specimens described in the Catalogue of Fossils have been derived, may assist the scientific visitor in the study of this department of the Collection.

> Class MAMMALIA.
> Order CARNIVORa.

Nos. of Specimens.
Genus Ursus . 1 to 60
,, Gulo. 61 to 64
„ Putorius 65
,, Canis 66 to 102
," Machairodus . 103 to 104
,, Hyænа............ 105 to 166
,, Felis. 167 to 210
Order RODENTIA.
Genus Castor . 211 to 212
, Trogontherium . 213
„ Ctenomys.................... 214 to 217
Order EDENTATA.
Genus Megatherium 218 to 347
, Megalonyx . 348 to 376
,, Mylodon . 377 to 485
, Scelidotherium . 486 to 515
, Glyptodon 516 to 559

Order PACHYDERMA.

Nos. of Specimens.
Genus Toxodon 560 to 565
Elephas 566 to 662
", Mastodon 663 to 790
," Dinotherium 791 to 821
," Lophiodon 822 to 825
,, Coryphodon 826 to 827
Tapirus 828
,, Palæotherium 829 to 846
," Rhinoceros 847 to 918
,. Aeerotherium 919 to 922
,, Elasmotherium 923
," Macrauchenia 924 to 952
," Equus 953 to 1031
,. Hippopotamus 1032 to 1067
," Hexaprotodon 1068 to 1075
,, Anthraeotherium 1076
,, Sus 1077 to 1079
,, Chœropotamus 1080 to 1081
," Hyracotherium 1082 to 1083
,, Anoplotherium 1084 to 1117
," Diehobune 1118
Order RUMINANTIA.
Genus Camelopardalis 1119
,, Cervus:
Subgenus Megaceros 1120 to 1176
", Elaphus 1177 to 1236
," Tarandus 1237
," Dama 1238 to 1240
, Capreolus 1241 to 1244
Genus Palæomeryx 1245 to 1246
," Nicrotherium 1247 to 1250
,, Sivatherium 1251 to 1253
,, Bos:
Subgenus Urus 1254 to 1409
," Bos 1410 to 1428
," Ovibos 1429 to 1430

Order CETACEA.
Nos. of Specimens.
Genus Delphinus 1431 to 1438
, Monodon 1439
,, Hyperoodon 1440 to 1441
, Zeuglodon 1442 to 1444
,, Physeter 1445
,, Balæna 1446 to 1459
Order MaRSUPIALIA.
Genus Diprotodon 1460 to 1504
Nototherium 1505 to 1509
Macropus 1510 to 1535
Hypsiprymnus 1536 to 1539
Phascolomys 1540 to 1542
Dasyurus 1543 to 1547
Thylacinus 1548 to 1549
Class AVES.
Order RAPTORES.
Genus Lithornis 1550
Order CURSORES.
Genus Didus 1551
, Dinornis 1552 to 1593
," Ornithichnites 1594 to 1620

Galleries.

The Galleries of the Middle Museum are entered from those of either of the other Museums, there being no staircase leading directly to them. They contain the Series of Natural History specimens in spirit. This Collection originated in numerous and valuable specimens transmitted from all parts of the world to Mr. Hunter for the purpose of dissection, which, as the requisite time for their examination was wanting, were preserved to illustrate the most remarkable differences in the outward forms of the Animal Kingdom.

They are now arranged in the following order, the numbers in both Galleries commencing on the left hand of the entrance from the Western Museum.
Lower Gallery.
Nos. of Preparations.1 to 14
ANLILALS:
Subkingdom RADIATA.
Polypi 15 to 63
Acalephæ 64 to 84
Echinodermata 85 to 114
Subkingdom MOLLUSCA.
Tunicata 115 to 128
Acephala 129 to 137 в
Gasteropoda 138 to 159 a
Pteropoda 159 в to 161 д
Cephalopoda 162 to 167
Subkingdom ARTICULATA.
Entozoa 167 a to 234
Annelida 235 to 257
Cirrhipoda 258 to 282 E
Crustacea 283 to 331 в
Myriapoda 331c to 339
Arachnida 339a to 374
Insecta 375 to 614
Upper Gallery.
Subkingdom VERTEBRATA.
Pisces 1 to 387
Amphibia 388 to 441
Reptilia 442 to 691
Aves 692 to 755
Mammalia 756 to 862The individual specimens are described in the "DescriptiveCatalogue of the Specimens of Natural History in Spirit," intwo volumes.

EASTERN MUSEUM.

Ground Floor.

The Ground Floor of this apartment is occupied by specimens illustrating the various modifications of the osseous system in Vertebrate Animals : a full description of these will be found in the two volumes of the Catalogue devoted to the "Osteological Series."

In the body of the room are placed some of the larger skeletons and skulls.

Suspended from the ceiling are-
No. 2444. The skeleton of a young Piked Whale (Balana rostrata).

No. 2479. The skeleton of the Bottle-nosed Whale (Hyperoödon bidens). The animal from which this skeleton was prepared, was taken in the Thames near London Bridge, in the year 1783, and is described and figured by John Hunter in the 'Philosophical Transactions' for the year 1787.

The specimens on platforms on the floor of the room, commencing with those on the left hand, are-

No. 2866. The skeleton of the Malayan Tapir (Tapirus indicus).

No. 3860. The skeleton of the Walrus (Trichechus rosmarus), an animal allied to the Seals. Its large upper canine teeth or tusks serve as weapons of offence and defence, and to aid it in mounting and clambering over blocks of ice in the Polar Seas which it inhabits. Its food consists of sea-wecd and mollusca, the shells of which, its molar teeth are well adapted to crush.

No. 3133. The skeleton of a Horse (Equus caballus).
No. 3404. The skeleton of the Hippopotamus (Hippopotamus amphibius). On the same platform is placed the skull of a larger individual of the same species.

No. 2969 A. The skeleton of the Indian Rhinoceros (Rhinoceros indicus). This species has a single horn upon its nose. Bencath it are placed skulls of other species of Rhinoceros which have two horns. No. 2935, the Sumatran (R. suma(iensis), and No. 2941, the African Rhinoceros (R. bicornis).

On the platforms on the right side of the room, commencing from the entrance-door, are

No. 3504. Two skulls of the American Elk (Alces malchis, var. americana), from N. Carolina. In fighting, the horns had become so firmly locked together by means of their points or snags, that the animals were incapable of liberating themselves; and in this state they were discovered, starved to death.

No. 3696. The skeleton of the Equine Antelope (Antilope equina).

No. 3825. The skeleton of the Long-horned, or Laucashire variety of the Common Ox (Bos taurus).

No. 3445. The skeleton of the Camel (Camelus bactrianus).
No. 3503. The skeleton of a male American Elk (Alces malchis, var. americana), the largest existing species of the Deer-tribe.

No. 3617. The skeleton of a young male Nubian Giraffe (Camelopardalis giraffa).

At the end of the room is
No. 2654. The skeleton of a male Asiatic Elephant (Elephas indicus). The animal from which it was obtained was brought to England in 1810, of the supposed age of twenty years; it was then so docile as to be exhibited on the stage of Covent Garden Theatre. In 1814 it was purchased by Mr. Cross, the proprietor of the menagerie at Exeter Change, and was there exhibited, under the name of Chunee, until the year 1826, when a return of an annual paroxysm, aggravated, as it subsequently appeared, by inflammation of the large pulp of one of the tusks, produced such ungoveruable violence as to endanger the breaking down of the den, and to compel the keeper to put the enormous beast to death. This was cffected by shooting, but not until the animal had
reeeived upwards of 100 musket- and rifle-bullets*. The height of the skeleton to the summit of the dorsal spines is nine feet; the length from the anterior broken extremities of the tusks to the root of the tail, in a straight line, is fourteen feet.

On the platform supporting this skeleton are the pelvis, femur, humerus, and some vertebræ of a larger individual of the same species of Elephant.

On the platform to the left of the skeleton are placed fine skulls of adult male and female Asiatic Elephants.

On the other side are skulls of the male and female Afriean Elephant (Elephas africanus). The skull of the male was brought from the vicinity of the White Nile, by Consul Petherick. The tusks are of great size, but the bones of the head are unfortunately somewhat mutilated. The differential characters in the conformation of the skull of the two existing species of Elephant are well seen in this series.

In front of the skeleton of the large Elephant is placed the posthumous bust, by Flaxman, of John Hunter, the Founder of the Collection.

In this part of the Muscum will be seen, in separate glazed Cases, four injected and dried preparations of hearts of large Mammalia, viz.:

No. 92. A dried and injected preparation of the heart of an Elephant (Elephas indicus). The arteria innominata gives off the right subclavian and both carotid arteries ; the left subclavian arises by a separate trunk. The termination of the thoracic duct is also shown.

No. 93. The heart of a smaller Elephant.
No. 112. The heart of a Dromedary (Camelus dromedurius), dried and injccted; the vessels of which are left attached to a more considerable length than in the preccding specimen. The course of the thoracic duct, and its termination at the junction of the subclavian and jugular veins, are distinctly shown.

[^11]No. 135. The heart of the Bottle-nose Whale (Hyperoödon bidens), injeeted. The mode of origin of the vessels from the areh of the aorta is the same as in the human body; the arteria innominata giving off the right earotid and subclavian arteries, the left carotid and subelavian arteries arising from the aorta by separate trunks. This preparation was obtained from the animal whose skeleton (No .2479) is suspended from the ceiling.

Wall Cases and Floor Cabinets of the Eastern Museum.

The Wall Cases are ehiefly oceupied by artieulated skeletons and the larger skulls and bones, and the Floor Cabinets eontain the smaller specimens of skulls and detached bones. The same arrangement is preserved in both series, beginning at the left-hand side of the entranee-door with the

Class Pisces.

Wall Cases XIX. to XXVII. Floor Cabinet A, and Compartments a and b of Floor Cabinet B.

Fish are eold-blooded, oviparous or ovi-viviparous Vertebrata, which breathe by means of gills, and have a heart with two eavities. The surface of their body is generally covered with seales. They are divided into two principal groupsthose in which the skeleton is completely ossified, and those in which it remains permanently in a eartilaginous condition.

Cases XIX. to XXV. contain the skeleton and bones of osseous fishes. Among them will be seen several disarticulated skulls, with the bones artifieially connected in nearly their natural relative positions, and numbered on coloured labels, aceording to a Table to be found in the Catalogue. These, with similarly prepared examples from the other classes, are intended to illustrate the unity of plan which pervades the composition of the cranium in all vertebrate animals.

Among the skeletons may be noticed-
No. 46*. The skeleton of a very large Trout (Salmo eriox), prepared from a specimen taken in the River Thame at Drayton Manor, Nov. 1848, and presented by the late Sir Robert Peel.

No. 49. The skeleton of a Pike (Esox lucius).
No. 182. The skeleton of the Halibut (Pleuronectes hippoglossus).

No. 191. The skeleton of a large Sea-Perch (Centropristis gigas), prepared from a specimen taken off the coast of New Zealand, and presented by Captain Sir E. Home, R.N. .

No. 247 A. The skeleton of a very large Tunny-fish (Thynnus communis), taken in the Frith of Forth, August 1850.

No. 248. The skull of a Sword-fish (Xiphius gladius).
In the lower part of the Case is placed a portion of the bow of a ship (H.M.S. Fawn), which has been pierced by the pointed prolongation of the upper jaw of another species of Sword-fish (Istiophorus velifer); this weapon has penetrated the copper sheathing, the felt, the deal, and the hard oak timbers to the depth of 14 inches; and nearly that extent of the 'sword' has been broken off by the force of the blow and is retained in the wood. The fibres of the oak timber have been bent and crushed as by the passage of a swivel-ball. The ship-borers (Teredo navalis) have attacked the outer timbers where the displaced copper has given them access to the wood. This interesting example of the force with which the Sword-fish strikes its blow was presented by Wm. Beech, Esq., of Rotherhithe.

No. 256. The skeleton of the Arthritic Chætodon (Platax arthriticus), from the Indian Seas; very remarkable for the partial enlargements of many of the bones, which resemble tumours or exostoses, but are natural and constant in this species.

No. 309 A. The skeleton of the Angler-fish (Lophius

[^12]piscatorius), conspieuous for the cnormous development of the head.

No. 369. The skeleton of the Pike-hcaded Gar-fish (Lepidosteus lucius), from the rivers of North America. Nos. 371 and 372 are the dried skins of other speeies of Lepidosteus, showing the unsymmetrical or heteroccreal form of tail, and the hard bony scales covered with a smooth shining substance (ganoine) of the density of enamel, with which these fishes are clothed. Both this form of tail and strueture of scales are extremely rare among existing fishes, Lepidosteus being the only genus at present extant known to combine them. These eharaeters, on the other hand, are very eommon among extinct fishes, espeeially those of the older seeondary formations.

Cases XXVI. and XXVII. contain the cartilaginous skeletons of the seeond and more highly organized group of fishes, comprising Sturgeons, Sharks, Skates, and Rays. Among them will be observed a large series of jaws of various species of Sharks; also numerous specimens of the prolonged upper jaw or rostrum, with its row of sharp-pointed teeth on eaeh side, belonging to several species of Saw-fish (Pristis). The mode in which this appendage projeets from the head of the fish is seen in the dried specimen, No. 446.

Class Reptilia.

Wall Cases XXVIII. to XXXIII. Floor Cabinet B.
 Compartments c and d. C. Compartments a, b and c.

The Reptiles are cold-blooded, oviparous or ovi-viviparous vertebrate animals, having a heart with three eavities, and breathing air by means of lungs. The surface of their body is either naked or elothed with scales.

The animals of the Order Batrachia form in their organization a link between the Fishes and true Reptiles. In addition to their lungs, they have, either throughout the whole, or in the carlicr portion of thcir life, a set of gills, for breathing while immersed in water. Ou aceount of this, and other peculiarities of structure, this Order is by many natu-
ralists raised to the rank of a separate Class, under the name of Amphibia. The existing speeies being all of small size, and not numerous, their skeletons are contained in the Floor Cabinet B, Compartment c. Among them will be seen the several varieties of Salamanders, Frogs, and Toads.

Case XXVIII. contains the skeletons of the Order Ophidia, or Snakes.

Under a glass shade in the middle of the Case is a skeleton of the venomous Indian Hooded Snake, or Cobra.

No. 602 is the skeleton of the Tiger Boa (Python tigris). It measures 11 feet 2 inches in length, and has 291 vertebre.

No. 628. The disartieulated skull of a reptile of the same species.

On the floor of this and the following Cases, extended at full length, is (No. 629) the skeleton of a large Afriean Serpent (Python regius), which measured 15 feet 6 inches long. It has 348 vertebræ, 279 of which bear moveable ribs. The skin of the same individual is seen suspended in the upper part of the Cases.

Cases XXIX. and XXX. contain speeimens of the Orders Lacertilia and Crocodilia, embraeing the animals known as Lizards, Chamæleons, Iguanas, Monitors, Gavials, Crocodiles, and Alligators.

Cases XXXI., XXXII. and XXXIII. eontain skeletons of the Order Chelonia, Turtles and Tortoises. Among them may be pointed out, as examples of the three divisions of the Order,-
No. 769A. The skeleton of the Green Turtle(Chelone mydas).
No. 960. The skeleton of the Matamata, or Fimbriated Tortoise (Chelys fimbriata).

No. 1011. The skeleton of the Great Land Tortoise of the Galapagos Islands (Testudo elephantopus).

Class Aves.

Wall Cases XXXIV. to XL. Floor Cabinet C. Compartment d, and Floor Cabinet D.
The Birds are warm-blooded oviparous Vertebrata, having
a heart with four cavities, and breathing air by means of lungs. The surface of their body is covered with feathers.

Cases XXXIV. and XXXV. contain the skelctons of the Order Palmipedes, or Web-footed Birds, such as the Penguins, Albatroses, Gulls, Pelicans, Swans, and Gecse. After these follow (iil Cases XXXV. and XXXVI.) the Grallarores, or Waders, mostly distinguished by the length of their legs. Among them will be noticed the very rare and singular Whale-headed Stork (Baleniceps rex), No. 1312 A. The specimen from which this skeleton was prepared was brought from the upper Nile by Consul Petherick in 1860, and lived some time in the Zoological Society's Gardens in the Regent's Park. Near it will be seen (No. 1311) the much smaller but nearly allied Boat-bill (Cancroma cochlearia), from South America.

Case XXXVII. and part of the following contain the Order Cursores, which, though not numerous in species, has some very interesting forms, mostly of large size, and all remarkable for the rudimentary condition of their wings. Skelctons of the following species are contained in the Collection:-

No. 1355. The Kivi (Apteryx australis).
No. 1356. The Cassowary (Casuarius galeatus).
No. 1358. The Emeu (Dromaius nove hollandice).
No. 1361. The Three-toed or American Ostrich (Rhea americana).

No. 1362. The Ostrich (Struthio camelus). The largest of existing birds, but inferior in size to some of the nearly allied extinct species, as shown by the bones of the Dinornis in the Middle Museum.

The rupper part of the same Case contains the Ordcr Rasores, consisting of the Fowls and Game-birds, mostly having feebly developed wings.

Cases XXXVIII. and XXXIX. contain birds of the Order Scansores (Parrots, Toucans, and Woodpeckers), distinguished by having two toes dirccted forwards and two backwards, instead of three forwards and one backwards as in
other birds; and Passeress, all extensive Order composed of birds mostly of sinall size. Among these are the most diminutive of the Class, the Humming-hirds (Trochilus), of which three very perfect skeletons will be seen suspended under a glass shade (Nos. 1521-1523).

Case XL. contains the skeletons of birds of the Order Accipitres, the birds of prey, such as Owls, Hawks, Eagles, and Vultures, whose powers of flight are denoted by their well-developed breast- and wing-bones. Among them the Sccretary Buzzard (Gypoyeranus secretarius), Nos. 1671 and 1672, from South Africa, is remarkable on account of the length of its leg-bones, causing its general appearance to approximate to that of the Waders.

Class Mammalia.
 Wall Cases XLI. to LXXIX.
 Floor Cabinet E, F, G, aud H.

The Manmalia are warm-blooded, viviparous Vcrtebrata, having a heart with four cavities, blood-corpuscles without nuclei, and which suckle their young; the surface of their body is generally covered with hair.

In Case XLI. will be seen skeletons of the only two known species of the singular Order Monotremata:

No. 1699. The Duck-billed Platypus (Ornithorhynchus paradoxus) ;

No. 1704. The Spiny Platypus (Echidna hystrix); both inhabitants of Australia. A stuffed specimen of the firstnamed will also be seen in the Case.

The remainder of Case XLI. and part of XLII. contain examples of the different divisions of the Order Marsupialia, or Pouched Animals, which vary much from each other in their general characters, dentition, \&c. Among them may be pointed-out-

No. 1724. The skeleton of the Great Kangaroo (Macropus major).

No. 1792. 'The skelcton of the Wombat (Phascolomys vombatus), resembling the Rodents in the characters of its teeth.

The following species have teeth adapted for animal food.
No. 1867. The skclcton of the Virginian Opossum (Didelphis virginiana).

No. 1898. The skelcton of the Ursine Dasyure (Dasyurus ursinus).

Nos. 1903 and 1904. The skeleton of the Thylaeinc (Thylacinus cynocephalus). This, the largest of the carnivorous Marsupials, is a native of Tasmania; but, on aceount of the destructive ravages which it commits on their flocks of sheep, it will probably soon be exterminated by the European settlers of the island.

In Case XLII. are the skcletons of animals of the Order Rodentia, distinguished by tro large curved eutting ineisor teeth in the front of each jaw. These teeth continue growing throughout the life of the animal, and are maintained at their proper length by wcaring against those opposed to them. When, by accident, an incisor is lost, or when, owing to a badly united fracture of the jaw, the lower incisors no longer meet the upper ones, as sometimes happens to a wounded hare, these teeth continue to grow until they projeet like tusks from the mouth, and, following the natural curve of their growth, their points often return upon and penetrate into some part of the head, rendering it impossible for the animal to eat, and causing death by starvation. Several examples of this occurrence will be seen in Floor Cabinet F., Compartments c and d, Nos. 1966-1971, 2203, \&c.

Cases XLIII. and XLIV. contain examples of the singular Order Edentata, so called from the absence or deficiency of their teeth. The skeletons of these animals contained in the collection are-

No. 2290. The Weasel-headed Armadillo (Dasypus sexcinctus).

No. 2296. The Nine-banded Armadillo (Dasypus peta).
No. 2336. The Cape Ant-eater (Orycteropus capensis).
No. 2365. The Tamandua Ant-eater (Myrmecophaga tamandua).

No. 2366. The Great Ant-cater (Myronecophaga jubata).
No. 2367. The Ai, or Threc-toed Sloth (Bradypus tridac-
tylus), remarkable for possessing nine vertebræ in the neck; all other Mammalia having only scven.

No. 2387. The Two-toed Sloth (Cholapus didactylus).
In Casc XLIV. arc also contained specimens of the small Orders Insectivora and Cheiroptera, the latter (the Bats) peculiar for the great extension of the bones of the anterior extremity, which, with the membrane stretched between them, form an organ of flight.
No. 2417 is the skcleton of a large East Indian frugivorous Bat (Pteropus edulis).

Cases XLV. to XLVIII. contain skeletons and skulls of the Order Cetacea, animals which habitually reside in the water, and have much of the external form of fishes, but whose organization in all essential characters conforms to that of other Mammalia.

At the top of the Case is the skeleton of the female Narwhal, or Sea-Unicorn (Monodon monoceros), No. 2521. This species has only two teeth, which in the female (as seen in the skull, No. 2522) remain in a rudimentary condition, concealed in the substance of the intermaxillary bones, while in the male (No. 2523) one tooth remains in this state, and the other is greatly developed and projects in a straight line from the front of the hcad. Some fine specimens of these tusks or 'horns,' showing the peculiar spiral ridges on the surface, are to be seen in the Case.

It may be here mentioned that in the Courtyard adjoining the Eastern Museum is the skull of the Great Whalebone Whale (Balena mysticetus). This animal has no teeth, but their place is supplied in the upper jaw by plates of the substance called 'baleen' or 'whalebone.' The Great Sperm Whale, or Cachalot (Physeter macrocephalus), is abundantly armed with teeth, as seen in the lower jaw, No. 2449.

The Order Sirenia, or Herbivorous Cetacca (the Dugongs and Manatees), occupy a portion of the same Cases as the true Cetacea.

Cases XLIX. to LII. contain a fine series of skulls, teeth, and detached bones of Elephants (Order Proboscidea). The sections Nos. 2657 and 2658 show well the small size
of the cavity for the brain, compared with the magnitudc of the superficial parts of the head, the space between being composed of plates of bone, leaving interstiees fillcd with air, and so arranged as to combine strength with lightness, in affording the requisite extent of surface for the attachment of the muscles necessary to support the ponderous tusks and trunk. The eomplex strueture and peeuliar mode of suceession of the molar teeth are beautifully shown in this series. They replace each other horizontally, trom behind forwards, as they wear away in front. The proecss is continually going on throughout the animal's life; but never more than one wholly, or two partially are in place and use on each side at any given time.

Case LIII. to LVIII. contain the Order Perissodactyla, chiefly eomposed of animals of large size. In the first-named Case is a series of the nasal horns of different species of Rhinoceros. Then follow skcletons of the Sumatran Two-horned Rhinoceros, and of the Horse, Ass, and Zebra.

Cases LIX. to LXVIII. contain the Order Artiodactila. The Non-ruminant seetion of the Order includes the Hogs, Wart Hogs, Peecaries, and the Hippopotamus.

Of the Ruminant division, the family Camelide are represented in the Cases by skeletons of

No. 3482. The Llama (Auchenia llama).
No. 3488. The Paeo, a variety of the same species.
No. 3489. The Vicugna (Aucheria vicugna).
In Case LX. are skeletons of the elegant little Deer of the genus Tragulus, the smallest animals of the Order. The nearly allied Musk-Deer (Moschus moschiferus), No. 3490, is remarkable for the long canine tceth projeeting downwards from the upper jaw.

No. 3509 is the skeleton of a young male European Elk (Alces malchis).

No.3512. The skelcton of a male Reindecr (Cervustarandus).
Nos. 3513 and 3514. Skeletons of female Reindeer. This is one of the few species of Deer in whieh the fcmale developes antlers; whieh, however, are always smaller than those of the male.

In Case LXIII, is a collection of antlers of differcut species of Deer. Thesc ormamental appendages consist of a substance resembling bone in its structure and chemical composition, and are shed and reproduced every year. During their growth they are covered by a soft hairy skin (the so-called 'velvet'), which, when their full size is attained, withers and strips off, leaving the bony tissue exposed.

Antelopes, Goats, Sheep, and Oxcn have hollow horns, covering processes of bone rising from the skull, and having a structure and composition like that of hair and nails. They remain throughout the life of the animal, growing from their base as they wear away at the cnd. In Case LXV. are some fine specimens of such horns from different varieties of Oxen and Buffaloes.

Cases LXX. to LXXV. contain the skeletons of animals of the Order Carnivora.

The first or Pinnigrade division of the Order includes the Walrus and the Seals. Some very fine skulls of the former, distinguished by the two large canine tusks projecting downwards from the upper jaw, will be seen in the lower part of Case LXX. Among the Seals may be noticed-

Nos. 3920 and 3921. Skulls of the great Proboscis Seal (Cystophora proboscidea).

No. 3937. The skeleton of the rare Saw-toothed Seal (Stenorhynchus serridens), prepared from a specimen taken during the Antarctic Expedition under Sir James Ross in 1844, and presented by R. M‘Cormick, Esq., F.R.C.S., Surgeon to H.M.S. Erebus.

The second or Plantigrade division includes the Bears, Racoons, Coati-mundis, Kangaroos, Badgers, Ratels, \&c. ; and among the third or Digitigrade section will be observed the skeletons of the Wolf, Fox, several variéties of Dog, and -

No. 4446. The skeleton of the Spotted Hyæna (Hyena crocuta), prepared from the individual animal noticed by Dr. Buckland in his 'Reliquiæ Diluvianæ,' p. 37, which died in the Surrey Zoological Gardens in 1848, after living in confinement in this country upwards of thirty years.

No. 4475. The skelcton of a Lion (Felis leo).
No. 4505. The skeleton of a Tiger (Felis tiyris).
The remaining Cases (LXXVI. to LXXIX.) contain the Order Quadrumana, animals which have both fore and hind limbs with opposable thumbs, likc a hand. They are divided into three families :-

1. The Lemurs, mostly nocturnal animals, and slow in their movements, are inhabitants of the island of Madagascar and the adjacent coasts.
2. The American Monkcys include the little Mamosets (Hapale), the Squirrel Monkeys (Chrysothrix), the Capucins (Cebus), and the Spider Monkeys (Ateles, Nos. 4687 to 4690), very remarkable for the great length of the limbs and prehensile tail, and for the absence of thumb on the fore-hand.
3. The Old World Monkeys comprise the Baboons, Macaques, Vervets, Long-armed Apes, and the group called "anthropoid," from their presenting, more than any othcr animals, a resemblance in their organization to Man. Of these the Collection contains-

No. 5050. The skeleton of an adult male Orang-utan (Pithecus satyrus), an inhabitant of the islands of Sumatra and Borneo.

Nos. 5057 and 5058. Skeletons of younger Orang-utans.
No. 5082. The skeleton of an adult female Chimpanzec (Troglodytes niger), from the West Coast of Africa.

Nos. 5083 to 5085 . Skeletons of younger Chimpanzees.
No. 5178. The skeleton of an adult male Gorilla (Troglodytes gorilla). This species was discovered by Dr. Savage in the Gaboon district, West Coast of Tropical Africa, in 1847. The fine skeleton in the Collection-the first that was brought to this country-was presented to the College by the late Captain IIarris in 1851. Although, from the shortness of its lower limbs, it does not equal an ordinary man in height, the trunk is considerably larger, and the bones of the arm are not only longer, but so developed as to indicate enormous muscular power.

In the back of the Case is a scrics of skulls and casts of
skulls of Gorillas, exhibiting considerable variation in the form of the head and face, and development of the crests of bone, which, as the animal advances in age, increase the surface for the attachment of the great muscles of the neck and jaws.

Numerous examples of the skulls of the Orang-utan, Chimpanzee, and other Quadrumana, showing the changes dependent on age and sex, are seen in the nearest Floor Cabinet (H).

The skeletons of Man, completing the Osteological Series, are placed in the Western Museum, Wall Cases XCVI. to XCIX. (see page 21).

Galleries.

Access to the Galleries of the Eastern Museum is by a staircase at the end of the apartment opposite to that by which the visitor enters. On their shelves are arranged the Physiological Series of Preparations of Human and Comparative Anatomy, preserved in bottles; and dried specimens of the same kind are placed in the glazed Rail Cases.

These series constitute the most characteristic part of the original Hunterian Collection, and contain the preparations by which the Founder designed, in his own words, to illustrate " the several links in the chain of varieties displayed in the formation of the different organs in different animals, ascending in a regular progression from the least to the most perfect; " and by which, so arranged, he practically reduced the previously disconnected facts of Comparative Anatomy to one harmonious and philosophical system.

The specimens upon the shelves are described, and the physiological principles which the several series are designed to illustrate are explained, in the five volumes of the Quarto Catalogue, entitled "Descriptive and Illustrated Catalogue of the Physiological Series of Comparative Anatomy." A description of those in the Rail Cases will be found in the volume called "Catalogue of the Vascular and Miscellaneous Preparations in a dried state."

The following is an outline of the arrangement of the preparations on the shelves. The numbers commence on the left hand of the entrance into the Lower Gallery.
East Side.
Division I. ORGANS IN PLANTS AND ANIMALS FOR THE SṔECIAL PURPOSES OF THE INDIVIDUAL.
Subdivision I. ORGANS OF MOTION.
Nos. of Preparations.
Component parts of Vegetables and Animals 1 to 15
Nutrient fluids, as Sap and Blood 16 to 27
Moving parts of Plants, commonly called 'sensitive'. 28 to 32
", or Museles of Animals 33 to 46
Tendons 47 to 49 A
Applieation of Muscles 50 to 64
Elastie Ligaments 65 to 75
Substanees constituting the Skeletons of Animals 76 to 82
Skeletons of Zoophytes 82 A 93
, or Shells of Mollusks 93 A
,, of Echinoderms 110
,, of Crustaceans 111
Constituents of Bone 112 to 130
Formation of Bone 131 to 162
Formation of Bone, as exemplified in the Antlers of Deer 163 to 187
Growth of Bone, exemplified by experiments with madder 188 to 201
Texture of Bone 202 to 219
External Skeletons 221
Internal ditto 222
Mixed ditto 223 to 224
Skeletons consisting of one piece 226
" \quad, \quad of many pieces unattached 227 to 229
", ", of many pieces articulated by elastic joints. 230 to 239

Nos. of Preparations.
Structure and Growth of Tecth.
Situation of the Teeth, in the Mouth 385 to 399
", the Pharynx 400 to 402 403 to 408
Digestive Cavity, simple, with one orifice, serving as mouth and anus 409 to 435
Digestive Canal with mouth and anus distinct 435 a to 441
Situation of the Stomach 442 to 448
Esophagus 449 to 464 c
Stomachs of Annelides 465 to 470
$\begin{array}{ll}\text {,, } & \text { Insects } \\ ,, & \text { Mollusks }\end{array}$ 479
479 А 499 А
,, Fishes 500 to 507 x
,, Reptiles 508 to 518
,, Birds 519 to 534
Mammals 534 A 581
Gastric Glands 582 to 590 o
Stomachs showing the cffects of the gastric juice after death 591 to 594 a
Intestines of Annelides 595 to 595 в
$\begin{array}{ll}\text { ", } & \text { Insects } \\ , & \text { Mollusks }\end{array}$ 596 to 613 614 to 627
,, Fishes 628 to 652 в
,, Reptiles 653 to 671 в
,, Birds 672 to 692
," Mammals 693 to 743
Small Intestines 693 to 723
Cæcum 724 to 729 в
Large Intestines 730 to 743
Termination of the Intestinal Canal 744 to 756
Intestinal Glands 757 to 763
Salivary Glands 764 to 772 c
Pancreas 773 to 781
Liver 782 to 810 a
Gall-bladder and Biliary Ducts 811 to 825
Spleen and appendages of the Alimentary Canal 826 to 841

Subdivision III. ABSORBENT SYSTEM.

> Nos. of Preparations.

Nutritive Absorbents in Plants. 842
", in Animals 843 to 861 a
Excretive Absorbents, as Lymphatic Vessels 862 to 868 c
",,\quad as Lymphatic Glands 869 to 872
Sobdivision IV. CIRCULATING SYSTEM.
Vessels without a Heart 873 to 878
Hearts in situ . 879 to 890
" consisting of one earity or ventricle 891 to 898 в
," consisting of two cavities, which act as a
systemic ventricle 898 c
consisting of one branchi-systemic ventricle with two auricles

899 to 900
,, consisting of one systemie ventricle and one auricle 900 a
,, consisting of one systemic ventricle, with subdivided branchial auricles

900 в
," consisting of one systemic ventricle and two branchial ventricles, with subdivided auricles

901 to 903
," consisting of one branchial ventricle and one auricle

904 to 911 c
,, consisting of one pneumo-systemie ven--tricle and two aurieles, one pulmonic, the other systemic

912 to 922
,, consisting of a pulmonic auricle and ventricle, and a systemic auricle and ventricle 923 to 934
Valves of Arteries . 935 to 937
Branching of Arteries . 938 to 939
Anastomosing of Arteries . 940
Coats of Arteries . 941 to 962 A
Coats of Veins . 963 to 973
Valves of Veins . 974 to 981
Subdivision V. RESPIRATORY SYSTEM.
Gills or Branchiæ of Acalephes 982 to 983

,	,	Echinoderms		984
	,	Annelides	984 A	
"	"	Crustaceans	991 to	993 F

West Side.
Nos, of Preparations.
Gills or Branchir of Cirrhipods 994 to 997
Mollusks 998 to 1017
", ", Fishes 1018 to 1061
Gills and Lungs combincd 1062 to 1069
Trachcal Breathing Organs 1070 to 1079 a
Allantoic Lung during Incubation 1080
Lungs of Mollusks 1081 to 1087
, Reptiles 1088 to 1123
,, Birds 1124 to 1127
Mammals 1128 to 1140
Siphons 1141 to 1142
Trachex or Windpipes 1143 to 1156
Larynges or Voice Organs of Reptiles 1157
" Birds 1158 to 1165
" Mampals 1166 to 1175
Subdivision VI. URINARY SYSTEM.1176 to 1184
Structure of the Kidney in Oviparous Vertebrates 1185 to 1197
Mammals,showing the Rcnal Vessels. . 1198 to 1207showing the Renal Ducts, in
Kidneys with the tubuli uriniferi terminating-on a concave surface in the pelvis 1208 to 1217
". ", on one mammilla 1218 to 1235
," ,, on a ridge 1236 to 1240 a
," ," on many mammillæ 1241 tọ 1258
Kidney subdivided into distinct lobes or renules 1259 to 1268
Ureters and Urinary Bladdcr 1269 to 1276
Supra-renal Glands 1277 to 1291
Subdivision VII. NERVOUS SYSTEM.
Ncrrous System in Echinoderms 1292 A
Entozoa 1292 to 1294 c

"	"	Entozoa	1292 to 1294 c
"	"	Cirrhipods	1294 D
"	"	Annclides	1295 to 1297
"	"	Insects	1298 to 1299
"	,"	Arachnidans	1300
"	"	Crustaccans.	130] to 1303 в

In the Rail Cases attached to this Gallery, besides the dried preparations illustrative of the above subdivisions of the Physiologieal Series, are twelve Glass Cases containing coloured wax models illustrating the anatomy of the Torpedo, or Eleetric Ray (Torpedo Galvanii), viz.:

No. 1 shows the male Torpedo, with the digestive, circulating, branehial, and electrical organs in situ.

No. 2. The digestive, renal, and genital organs of the male
'Torpedo, removed from the body and displayed so as to show the course of the short and wide alimentary canal.

No. 3. A malc Torpedo dissected to show the subcutaneous muscles, the mucous tubes, and the electrical organs. On the right side the large nerves arc shown in their course to the clectrical organ, which has been removed; but on the left side it is exposed in situ, showing its construction of hexagonal columns placed perpendicularly to the plane of the animal's body, so that their upper ends only are secn in this dissection.

No. 4 shows the internal surface of the integument, with the distribution of the mucous tubes.

No. 5. A female Torpedo, showing the muscles of the gills, the ovaria, and the impregnated uteri.

No. 6. The digestivc, renal, and genital organs of a female Torpedo, with the alimentary canal laid open, showing the rugæ of the stomach and the spiral valve of the large intestine. An ovum is seen entering the common Fallopian aperture of the two oviducts, and a second is shown in its course to the left uterus of this viviparous fish.

No. 7 shows the brain and spinal cord in situ, with the distribution of the principal nerves; and the electrical organs.

No. 8 contains models of the upper surface of the brain and cercbral nerves, magnificd three diameters, and of the internal structure of the brain as shown by a vertical longitudinal section, similarly magnified.

No. 9. Four of the electric columns removed from the body and laid lengthwise, showing their vascular and nervons capsules, magnified twelve diametcrs. A single column with the vascular and nervous capsule dissected off, showing the scmitransparent proper gelatinous tunic of the column, through which may be discerned the transverse septa, or constituent flattened vesicles, analogous to the copper or zinc plates of the voltaic pile. Magnified twelve diamcters. One of the transverse septa is shown magnified thirty-six diametcrs, on which the distribution of the capillary vessels and electrical nerves is shown.

No. 10. This beautiful model rcpresents the appearances in a small part of the surface of the transverse septum or ' electric vesicle,' when viewed magnified 400 diameters. The capillaries, with their single file of blood-corpuscles, are seen passing from the artery to the vein, and the ultimate meshes of the network formed by the electric nerves.

No. 11 contains a view of a group of the mucous tubes, with some of the Savian corpuscles, magnified fifteen diameters. The distribution of the nerves on the bulb of a mucous tube is modelled as seen under a magnifying power of 120 diameters.

No. 12. This Case contains a portion of the fully-developed ovarium : the impregnated uteri removed from the body, and one of them laid open, from which the embryo has been removed, and is separately displayed, together with the appended external yolk-sac. The venous system, with the renal organs and heart, and the base of the brain are also represented of the natural size ; and a group of blood-dises magnified 500 diameters.

These models were prepared by Professor Calamai of Florence; presented by His Imperial and Royal Highness the Grand Duke of Tuscany to Professor Owen, and by him to the Royal College of Surgeons, January 1850.

The continuation of the Physiological Series commences on the left hand of the doorway of the Upper Gallery.

East Side.

Subdivision IX. CONNECTIVE SYSTEM.

Adipose substances in the state of Oil			Nos. of Preparations . 1800 to 1809
,	,	Marrow	1810 to 1812
"	:,	Lard	1813 to 1825
"	"	Tallow.	. . 1826 to 1828
"	"	Spermaceti	1829 to 1831
	"	Adipoeere	1832 to 1832 v
Cellular substance			1833 to 1845

Division II. CONTINUATION OF THE SPECIES IN PLANTS AND ANIMALS.

Subnivision I. ORGANS OF GENERATION.

A. COMBINED ORGANS.

Fissiparous and Gemmiparous Generation in Plants .. 2224 to 2226

"	"	"	Animals 2227 to 2228
Hermaphrodite Organs in Plants			$\left\{\begin{array}{l}2229 \text { to } 2230 \\ 2243 \text { to } 2281\end{array}\right.$
"	"	Sponges.	2231
"	,	Polypi	2232 to 2234
"	"	Entozoa	2282 to 2284
"	"	Cirrhipods .	2285 to 2289
	,	Annelides	. . 2290 to 2296
"	"	Gasteropods	2297 to 2315

Subdivision II. PRODUCTS OF GENERATION.
DEVELOPMENT OF THE OVUM AND FMBRYO.
Development of the Orum and Embryo, in Plants
2858 to 2924
Polypi 2925
Entozoa . . 2925 a
Acalephes.. 2926
Echinoderms 2927 to 2928 a
Cirrhipods . . 2929 to 2930
Annelides . . 2931
Mollusks . . 2932 to 2962 G
Nos. of Preparations,
Development and Metamorphosis of Insects 2963 to 3173
Dovolopment of tho Orum and Embryo inAraclınidans3174 to 3182
Crustacoans 3183 to 3195
, Fishes 3196 to 3263
Development and Mctamorphosis of Batrachian Reptiles 3264 to 3300 a
Development of the Ametabolian or Scaled Reptiles 3301 to 3374
Structure and Formation of the Ovum in Birds 3375 to 3389
Development of the Embryo in Birds 3390 to 3460
", ", Placental Mammals 3462 to 3461 3585
Development of the Embryo in Placental Mammals, with Villosities of the Chorion 3529 to 3558
Cotyledons 3481 to 3528 A
Development of the Embryo in Placental Mammals with Annular Placenta 3652 to 3751
,, Pedunculate Placenta 3463 to 3470
,, Discoid Placenta 3573 to 3581
Bilobed Placenta 3583 to 3585
Modifications of the Impregnated Uterus and Ma- ternal Membranes in the Human Subject 3586 to 3619 A
Human Foetal Membranes and Placenta 3620 to 3659
Progressive Giowth of the Human Fœotus 3660 to 3681
Corpora Latea 3682 to 3714
Fœtal Peculiarities 3715 to 3735
Mammary Organs 3737 to 3757
Marsupial Pouch, Mammæ, and Mammary Fœtus 3758 to 3777
Nidamental Structures 3778 to 3790

In the Rail Cases attached to this Gallery are the dried specimens bclonging to Tegumentary and Reproductive Systems. Among the latter will be seen the injected preparations illustrating the structure of the Human Mammary Gland, formerly belonging to Sir Astley Cooper.

The following is a summary of the number of the Specimens at present contained in the entire Collection.

Physiological Department, or Normal Structures.

Microscopic Preparations.

Normal and Abnormal Structures. $\frac{215}{13,682} \quad \overline{31,019}$
Total number of Specimens 44,701

The Museum is opon to the Membors of the College, to the Trustecs of tho Hunterian Collection, and to Visitors introduced by them personally or by written orders (which orders are not transferable), on the publie days, which aro Monday, Tuesday, Wednesday, and Thursday in ench week, from Twelvo to Four o'cloek; except during. tho month of September, when the Museum is elosed.

The Museum is also open as above to all Fellows and Lieentiates of the Royal Colleges of Physicians and Surgeons in the United Kingdom ; to Peers and Members of Parliament; to the Offieers in tho Publie Service ; to the Members of all the Learned and Seientifie Bodies in the United Kingdom, and to persons introduced by them respectively; and to all learned and Scientifie Foreigners.

The Seeretary and Conservator will exercise their diseretion in the ease of applieations for admission from other persons.

Persons desirous of devoting espeeial study to partieular departments of the Museum, may have aecess for that purpose on Fridays, from Twelve to Four in Winter, and from Twelve to Five in Summer, on making a written application to the President.

Persons desirous of comparing speeimens with those in the Museum, or of having speeimons examined, or of gaining other information, are requested to present themselves on Saturdays between the hours of Ten and One o'eloek.

Visitors are required to insert their names and residences in the Book provided for that purpose.

The several Parts of the Catalogue of the Collection may be obtained at the College, at the following prices, viz. :-

Calculi and other Animal Concretions,-
Part 1. in the Urinary Organs, Human (1842), with plates $\left\{\begin{array}{lllllll}\text { coloured } & 1 & 3 & 0 & & 1 & 11 \\ \text { plain } & . . & 0 & 5 & 0 & & 0 \\ 10 & & 0\end{array}\right.$
Part 2. in the Urinary and Digestive Organs of Animals (1845),

$$
\text { with plates }\left\{\begin{array}{lllllll}
\text { coloured } & 0 & 15 & 0 & 1 & 1 & 0 \\
\text { plain } \ldots & 0 & 5 & 0 & 0 & 8 & 0
\end{array}\right.
$$

Histological Specimens: Vol. i. Elementary Tissues
of Vegetables and Animals, with plates (1850) $1 \begin{array}{llllllll} & 1 & 0 & 1 & 11 & 6\end{array}$
Vol. ii. Structure of the Skeleton of Vertebrate
Animals, with plates (1855) 1 l 1001116
Memoir on the Pearly Nautilus (NautilusPompilius), with plates (1832) 015 0 151 o
Memoir on an Extinct Gigantic Sloth (Mylodon
robustus), with plates (1842) 1 I 1
Hunter's Observations on Geology (1859) $\ldots \ldots . . .$.

[^0]: * The following are the Terms and Conditions on which the IIunterian Collection, purchased by Parliament, was delivered to the late Corporation of Surgeons; which Corporation having become dissolved, the Members thereof were re-incorporated by Charter, dated the 22nd day of March, 1800, under the title of The Royal College of Surgeons in London :-

 1st. The Collection shall be open Four Hours in the Forenoon of two days every Week for Inspection and Consultation of the Fellows of the College of Physicians, the Members of the Company of Surgeons, and persons properly introduced by them; a Catalogue of the Preparations, and a proper Person to explain it, being at those times always in the Room.

 2nd. That one Course of Lectures, not less than twenty-four in number, on Comparative Anatomy and other subjects, illustrated by the Preparations, shall be given every year by some Member of the Company.

 3rd. That the Preparations shall be lept in a state of Preservation, and the Collection in as perfect a state as possible, at the Expense of the Corporation of Surgeons, subject to the annual Inspection and Superintendence of the Trustees.
 4th. That there shall be a Board of Trustees, to consist of sixteen [increased to serenteen by the Lords of the Treasury in 1856] Members, by

[^1]: virtue of their Public Offices, and of fourteen others, to be appointed in the first instance by the Lords of the Treasury, and afterwards to be electcd, as Vacancies may happen, by a Najority of the remaining Trustees.
 5th. That the Museum shall always be open for the Inspection of all or any of the said Trustees, who are to take care that the Corporation of Surgeons perform their Engagements respecting the said Collection. That a day be appointed for the annual Inspection of the Museum, by the Trustees acting collectivcly as a Board; and that they are also to have quarterly Meetings, for the transacting of any Business relative to the Museum, and for the filling up of such Vacancies as may happen in the Number of the Trustees; and that the Corporation of Surgcons shall engage some Person to officiate as Secretary to the Board upon such occasions, and to issue previous Notices to the Members, in which ho is to state particularly whether any Vacancies are to be filled up by now Elcctions.

[^2]: * $[F$.] after the number denotes that the specimen will be found in the Floor Cabinet; [W.] that it is in the Wall Case.

[^3]: * The total number of lenown living Vertebrate animals amounts to about 16,000 ; the Mollusca to very little more: tho number of plants is estimated at 100,000; and the Insect Class is supposed to include not less than 300,000 species.

[^4]: *These numbers refur to the "Descriptive Catalogue of the Ostcological Scries," mol. ii.

[^5]: * These numbers refer to the "Descriptive Catalogue of Pathological Specimens," rol. v.

[^6]: * Catalugue of Monstors and Malformed I'rits.

[^7]: * Catalogue of Vascular and Miscellancous Preparations in a dried state.

[^8]: * Fourth Volume of the Pathological Catalogue.

[^9]: * The terms 'right' or 'left' hand always refer to the position of the visitor when facing the end of the Museum opposite that by which he enters.

[^10]: * The circumstances of this extraordinary discovery have been recorded

[^11]: * A full account of all the circumstances attending the malady and destruction of this fine Elephant will be found in Griffith's translation o Baron Cuviers's Animal Kingdom,' vol. iii. p. 348.

[^12]: * The specimens mentioned will all be found in the Wall Cases, unless otherwise specified. The numbers refer to the 'Descriptive Catalogue of the Osteologrical Series.'

