

\qquad
"

N

COMPARATIVE ANATOMY.

B Y
C. TH. v. SIEBOLD AND H. S'TANNIUS.

TRANSLATED FROM THE GERMAN,
AND
EDITED WITH NOTES AND ADDITIONS RECORDINGTHE

RECENT PROGRESS OF THE SCIENCE,

B Y
WALDO I. BURNETT, M.D.

VOLUME I.

LONDON:
TR Ù BNER \& CO.,
12 PATERNOSTER ROW.
13OSTON, U.S.:
 59 WASHINGTON STREET.
1854.
"The Copyright of this work is secured according to Act 5 and 6 Victoria, and any infringement thereon will be dealt with according to law."

TRÙBNER \& CO.

ANAT0MY

INVERTEBRATA.

B Y
C. TH. v. SIEB0LD.

LONDON:
TRUXNER \& CO.,
12 PITERNOSTER ROW.
(

MY ESTEEMED FRIEND,

LOUIS AGASSIZ, professor of zoology, \&o., I N
 等ararar lunibersity,

 whose welirknown relations to comparative anatomy require no mention here, and whose splendid genius has done so much to awaken, In this country especially,* A LIVEIY interest in objects of natural history,
 WITH ADMIRATION AND SINCERE GRATITUDE.

WALDO I. BURNETT.

NOTICE OF THE TRANSLATOR AND EDITOR.

In issuing an English translation of the Lelirbuch der vergleichenden Anatomie of Von Siebold and Stannius, any formal account of the work is cquite unneeessary. To all Anatomists it is a treatise already well and favorably known, and it has justly been regarded as the most complete and comprehensive work of its kind now extant in any language. The high position and distinguished reputation of its authors have been fully sustained by this portion of their labors.

But there are several features in this work whieh should be mentioned, since by them it is favorably distinguished from all other treatises of the kind that have preceded it.

In the text will be found a lucid yet sueeinet exposition of the anatomical strueture of organs, arranged as far as practieable under distinct types. The details on whieh this typieal summary is based, are comprised in notes whieh are as remarkable for their crudition as for their eopiousness; indeed, the utmost care has been taken in the literature of the various subjects treated, and the student will here find the most reliable and at the same time the fullest reference to the bibliography of nearly every subjeet in Comparative Anatomy. In this way, the work as a whole furnishes a eomplete dietionary of the seienee, and will prove invaluable even as a work of suggestion and referenee, to those who would pursue any special line of inquiry and researeh in this department.

It may be truly said that the Microscope lies at the foundation of all our best knowledge of anatomy, and cspeeially that of the Invertebrata. This is the case, not only on aecount of the small size of most of the animals, but because, as Von Siebold has said in his preface, the anatomy of these lower forms is searccly reliable unless based upon histological investigations.

Hence, that part of the work treating of the anatomy of the Invertebrata, by Von Siebold, is rich in the results of microscopical researches; and their value in the elucidation of the subject will be readily appreciated. This plan of proccdure has not the same urgency with the higher animals, where the character of an organ or part can generally be ascertained from its position, \&c. ; and, in the second part of the work, on the Anatomy of the Vertebrata, by Stannius, details of microscopical structure are comparatively little insisted upon. But, within a few ycars, the histological composition of organs, even though their character and function is well known, has become of great and increasing intercst ; and details of this kind, as far as they would be understood without the aid of figures, I have sought to add in their regular order and place.

As to the notes and additions generally, they stand by themselves with Ed. affixed, and almost invariably refer to some point treated of in the text or notes of the original, and for the most part relate to the correction, confirmation, or extension of some statements there madc. These notes were drawn from all the sources accessible to me; but from the many difficulties in the way of the early receipt of foreign works in this country, they are not as complete a record of the recent progress of the science as would be desired.

As to the translation, I may say, that not being a German scholar, but having read the German language chiefly for scientific purposes, I trust that any inelegances of diction or idiom will be excused. But, throughout, I have endeavored to give a faithful rendering of the author's meaning, and to express this in as simple and terse a form as possible.

In conclusion, I wish to express my gratitude to my friends who have kindly aided me in this work; - prominent among these is $M r$. Edward Capen of this city, who has been of invaluable assistance to me in the labor of passing the sheets of this volume through the press;- of others, such as Professors Agassiz, Dana, Leidy, and Wyman, their names will be found honorably recorded by their own important labors in science, to which I have so frequently referred in these volumes.
W. I. B.

Boston, Nov. 1853.

PREFACE.

As latterly, Zootomists have given much grcater attention to the invertebrate animals than formerly; and as, with these investigations they have united, as much as possible, others upon the generation and devclopment of these animals, such a mass of material, composed, in part, of entirely new and very remarkable facts, has accumulated, that the manuals of Zootomy hitherto published are of a scale quite inadequate to receive them. It is unnecessary, therefore, for me to offer further reason for the task I have undertaken of arranging these materials and reducing them to a systematic form. But the order in which I have disposed them may not meet with general approval, for, hithcrto, in works of comparative anatomy, the organs, and not the zoologieal classes, have served as the basis of the order pursued.

But, in the present state of Seience, and at least provisionally, it appears to me that the anatomical order should not be followed, for, the types, which, until now, have been recognized in the developmental serics of the several organs, appear no longer valid and permanent. Indeed, extended rescarches made upon a great number of animals, have shown that these types, hitherto regarded as cxpressive of fundamental laws, may almost be taken as the exceptions. Such genera as Hydra, Lumbricus, Hirudo, Unio, Astacus, \&c., ean now no longcr be regarded as the representatives of certain animal classes or orders, for their organization is far from affording the requisite type of that of allied animals. It appears now clearly detcrmined that the types of the development and disposition of the various organs of the Invertebrata are more numerous and varicd than hitherto supposed, and that, in this respect, a rule wholly different from that of those of the Vertcbrata must here be applied. But as the numberless details which we now possess upon the organization of the Invertebrata, have not been thoroughly worked out and systematized in all the orders, it is really a task too difficult to here distinguish the rule from the exception, and the type from that which is only a secondary modification.

I have especially devoted myself to the collecting and collating as completely as practicable, the numerous new and important facts in the organization of the invertebrate animals, which have as yet been developed. And as occasion presented, I have verified with my own eyes the particular results; and when I have been obliged to refer to the discoveries and observations of others, I have cited exactly their works.
I could not exclude Embryology and Histology from this work, for, in these branches, often lies our only means not only to ascertain the true nature of many larval forms among the lower animals, but also to arrive at the correct interpretation of many organs which, in form, position, and arrangements, have no analogues among the higher animal forms. It is only by the aid of Histology that we are able to show that this or that organ is a branchia, a liver, a kidney, an ovary, or a testicle; while, in the Vertebrata, which are organized after a fow principal types, the signification of most of the organs can usually be easily determined by their position and connection.

In order to avoid long descriptions, I have, when practicable, referred to plates and figures; but in so doing I have always endeavored to cite the good and original representations, for I am convinced that many figures which are transferred from one book to another, become, at last, so changed as to be quite dissimilar to the original.

The elaboration of this work having been commenced in 1845, but its completion having been delayed by my change of residence from Erlangen to Freiburg, and partly by a pretty long sojourn of mine on the Adriatic Sea, I have been unable to use the important works which have been published during the last few years, except in the form of a Supplement [additional notes] which will serve to complete, to confirm, or to rectify what has been advanced in the body of the work.

I take this opportunity to publicly express my gratitude to A. Kölliker, H. Koch, A. Krohn, C. Vogt, and H. Stannius, for the friendly and important aid they have rendered me in the completion of this difficult task - not only by the transmission to me of interesting and rare marine animals, but also in the communication of important manuscripts and letters, the contents of which they have allowed me to freely use for my work.

Freiburg (in Breisgad), Feb. 27, 1848.

C. Tr. v. SIEBOLD.

TABLE OF CONTENTS.

Classification of the Invertebrate Animals,
section
Bibliography, 2
Introductory Note to the Infusoria.
I. THE INFUSORIA AND RHIZOPODA.
Classification and Bibliography, 3-5

1. External Covering, 6
2. Muscular System, and Locomotive Organs, 7-8
3, 4. Nervous System, and Organs of Scnse, 9-10
3. Digestive Apparatus, 11-15
6, 7. Circulatory and Respiratory Systems, 16-18
4. Organs of Secretion, 19
5. Organs of Reproduction, 20-23
Introductory \mathcal{N} Note to the Zoophyta.
II. THE POLYPI.
Classification and Bibliography, 24
6. Cutaneous Envelope and Skeleton, 25-28
7. Muscular System, and Organs of Locomotion, 29-32
3, 4. Nervous System, and Organs of Sense, 38-34
8. Digestive Apparatus, 35-36
Digestive Cavity of the Anthozoa, 37
Digestive Cavity of the Bryozoa, 38
6, 7. Circulatory and Respiratory Systems, 39-41
9. Organs of Secretion, 42
10. Organs of Generation, 43-52
III. THE ACALEPHAE.
Classification and Bibliography, 53
11. Skin and Cutaneous Skeleton, 54-56
12. Muscular System, and Organs of Locomotion, 57-58
13. Nervous System, 59
14. Organs of Sense, 60
15. Digestive Apparatus, 61
16. Circulatory System, 62
17. Respiratory System, 63-64
18. Organs of Secretion,
section
19. Organs of Generation, 65 65 66-70
IV. THE ECHINODERMATA
Classification and Bibliography, 71
20. Cutaneous Envelope and Skeleton, 72-75
21. Muscular System, and Organs of Locomotion, 76-78
22. Nervous System, 79-80
23. Organs of Sense 81
24. Digestive Apparatus, 82-86
25. Circulatory System, 87-88
26. Respiratory System, 89-93
27. Organs of Secretion, 94
28. Organs of Generation, 95-98
V. THE HELMINTIIES.
Classification and Bibliography, 99
29. Cutaneous System 100-101
30. Muscular System, and Organs of Locomotion, 102-103
31. Nervous System, 104
32. Organs of Sense 105
33. Digestive Apparatus, 106-109
34. Circulatory System, 110-111
35. Respiratory System, 112
36. Organs of Secretion 113
37. Organs of Generation, 114-119
VI. THE TURBELLARIA.
Classification and Bibliography 120
38. Cutaneous System, 121
39. Muscular System, and Locomotive Organs 122
3, 4. Nervous System, and Organs of Sense, 123-124
40. Digestive Apparatus, 125
6, 7. Circulatory and Respiratory Systems, 126
41. Organs of Secretion 127
42. Organs of Generation, 128-129
VII. THE ROTATORIA.
Classification and Bibliography, 130
43. Cutaneous System, 131
44. Muscular System, and Locomotive Organs, 132-133
3, 4. Nervous System, and Organs of Sense, 134-135
45. Digestive Apparatus, 136
6, 7. Circulatory and Respiratory Systems, 137-138
46. Organs of Secretion 139
47. Organs of Generation, 140-141
VIII. THE ANNELIDES.
Classification and Bibliography, 142
48. Cutaneous System, 143 143
49. Muscular System, and Locomotive Organs, 144-145
section
section
50. Nervous System, 146-148
51. Organs of Sense, 149-151
I. Organs of Touch 149
II. Organs of Vision, 150
III. Organs of Hearing, 151
52. Digestive Apparatus, 152-155
I. Organs of Deglutition and Mastication, 153
II. Intestinal Canal, 154
III. Glandular Appendages, 155
53. Circulatory System, 156-157
54. Respiratory System, 158-160
55. Organs of Secretion, 161
56. Organs of Generation, 162-169
IX. THE ACEPHALA.
Classification and Bibliography, 170
57. Cutaneous System, 171-175
58. Muscular System, and Organs of Locomotion, 176-180
59. Nervous System, 181-184
60. Organs of Sense, 185-187
61. Digestive Apparatus, 188-190
62. Circulatory System, 191-192
63. Respiratory System, 193-195
64. Organs of Secretion, 196
65. Organs of Generation, 197-200
X. THE CEPHALOPIORA.
Classification and Bibliography, 201
66. Cutaneous System, 202-203
67. Muscular System, and Organs of Locomotion, 204-205
68. Nervous System, 206-209
69. Organs of Sense, 210-212
70. Digestive Apparatus, 213-215
71. Circulatory System,
219-222
72. Respiratory System,
220
220
I. Branchiae,
221
221
III. Aquiferous System, 222
73. Organs of Secretion, 223-224
I. Urinary Organs, 223
II. Organs of Peculiar Secretions, 224
74. Organs of Generation, 225-229
XI. THE CEPHALOPIODA.
Classification and Bibliography 230
75. Internal Skeleton 231-232
76. Cutaneous Envelope,
236-238
77. Muscular System, and Organs of Locomotion,
239-242
239-242
78. Nervous System,
243-247
243-247
79. Organs of Sense,
80. Organs of Sense, 248-250
81. Circulatory System, 251-552
82. Respiratory Organs, 253-254
83. Organs of Secretion,
seotios 255-256
I. Urinary Organs,
II. Organs of Special Secretions, 256
84. Organs of Generation, 257-261
Introductory Note to the Crustacea.
XII. THE CRUSTACEA.
Classification and Bibliography, 262
85. External Envelope, and Cutaneous Skeleton, 263-266
86. Muscular System, and Organs of Locomotion, 267-269
87. Nervous System, 270-273
88. Organs of Sense, 274-277
89. Digestive Apparatus, 278-281
90. Circulatory System, 282-284
91. Respiratory System, 285-287
92. Organs of Secretion, 288-289
I. Urinary Organs, 288
II. Organs of Special Secretions, 289
93. Organs of Gencration, 290-294
I. Hermaphrodite Crustacea, 291
II. Female Crustacea, 292
III. Male Crustacea, 293
XIII. THE ARACHNOIDAE.
Classification and Bibliography, 295
94. External Envelope, and Cutaneous Skeleton, 296-397
95. Muscular System, and Organs of Locomotion, 298-299
96. Nervous System, 300-302
97. Organs of Sense, 303-305
98. Digestive Apparatus, 306-308
99. Circulatory System, 309-310
100. Respiratory System, 11-313
101. Organs of Secretion, 314-315
I. Urinary Organs 314
II. Organs of Special Secretions, 315
102. Organs of Generation, 316-320
I. Hermaphrodite Arachnoidae, 317
II. Female Arachnoidae, 318
III. Male Arachnoidae, 319
XIV. THE INSECTA.
Classification and Bibliography, 321
103. External Envelope, and Cutaneous Skeleton, 322-323
104. Muscular System, and Locomotive and Soniferous Organs, 325-327
105. Nervous System, 328-331
106. Organs of Sense, 332-336
107. Digestive Apparatus, 337-339
108. Circulatory System, 340
109. Respiratory System, 341-344
110. Organs of Secretion 345-347
I. Urinary Organs 345-346
II. Organs of Special Secretions, 347
111. Organs of Generation, 348-355
I. Female Genital Organs, 349-351
II. Male Genital Organs, 352-354 352-354
Index,

CLASSIFICATION

OFTHE

INVERTEBRATE ANIMALS.

§ 1.

The invertebrate animals are organized after various types, the limits of whieh are not always elearly defined. There is, therefore, a greater number of elasses among them than among the vertebrates. But, as the details of their organization are yet but imperfectly known, they have not been satisfaetorily elassified in a natural manner.

There are among them many intermediate forms, which make it diffieult to deeide upon the exaet limits of various groups.

The following division, however, from the lowest to the highest forms of organization, appears at present the best:

ANIMALIA EVERTEBRATA.
 INVERTEBRATE ANIMALS.

Brain, spinal cord, and vertebral eolumn, absent.

FIRST GROUP. protozoa.

Animals in whieh the different systems of organs are not distinctly separated, and whose irregular form and simple organization is reducible to the type of a cell.

Class I. Infusoria.
Class II. Rhizopoda.

SECOND GROUP.
 ZOOPHYTA.

Animals of regular form, and whose organs are arranged in a ray-like manner around a centre, or a longitudinal axis; the eentral masses of the nervous system forming a ring, which eneireles the œesophagus.

Class III. Polypi.
Class IV. Acalephe.
Class V. Echinodermata.

THIRD GROUP.
 vermes.

Animals with an elongated, symmetrical body, and whose organs are arranged along a longitudinal axis; so that right and left, dorsal and ventral aspects may be indicated.

The central nervous mass consists of a cervical ganglion, with or without a chain of abdominal ganglia.

Class VI. Helminthes.
Class VII. Turbellarit.
Class Vili. Rotatorii.
Class IX. Annulati.

FOURTH GROUP. MOLLUSCA.

Animals of a varied form, and whose bodies are surrounded by a fleshy mantle. The central nervous masses consist of ganglia, some of which surround the œesophagus, and others, connceted by nervous filaments, are scattered through the body.

Class X. Acephala.
Class XI. Cephalophora.
Class XII. Ckiphalopoda.

FIFTH GROUP.
 arthropoda.

Animals having a perfectly symmetrical form, and articulated organs of locomotion. The central masses of the nervous system consist of a ring of ganglia surrounding the eesophagus, from which proceeds a chain of abdominal ganglia.

> Class XIII. Crustacea. Class XIV. Arachnida. Class XV. Insecta.

BIBLIOGRAPHY.

\square
Besides the various ancient and modern works upon general comparative anatomy, - such as those of Blumenbach, ${ }^{(1)}$ G. Cuvier, ${ }^{(2)}$ F. Meckel, ${ }^{(3)}$ İ. Home, ${ }^{\left({ }^{(4)}\right)}$ Blainville, ${ }^{(5)}$ Delle Chiaje, ${ }^{(6)}$ Carus, ${ }^{(\pi)}$ Grant, ${ }^{(8)}$ Rymer Jones, ${ }^{\left({ }^{(1)} \text { Strauss }\right.}$

[^0]5 De l'Organisation des Animaux, ou Principers d'Anatomie comparée. Tom. I. Paris 1832.
${ }^{6}$ Istituzioni di Auotomia e Fisiologia Comparata.
Napoli, 1832.
7 Lehrbuch der vergleichenden Anatomie. 2nd ed. Leipzig, 1834.

8 Outlines of Comparative Anatomy. London, 1841.
${ }^{9}$ A General Outline of the Animal Kingdum, and Manual of Comparative Anatomy London, 1841.

Dürckheim, ${ }^{(0)}$ R. Wagner, ${ }^{(1)}$ - there exist various contributions upon the relations of these animals in the physiologieal works of Treviranus, ${ }^{(19)} \mathrm{Ru}$ dolphi, ${ }^{(13)}$ Dugès, ${ }^{(4)}$ Burdach, ${ }^{(25)} J$. Müller, ${ }^{(6)}$ R. Wagner, ${ }^{(17)}$ and in the Medieal Zoology of Brandt and Ratzeburg. ${ }^{(8)}$

The ieonographie illustrations by Carus and Otto, ${ }^{(9)}$ and by R. Wagner, ${ }^{(50)}$ eontain many plates representing these animals; and in Guerin's Iconographic, ${ }^{(21)}$ and Cuvier's ${ }^{(29)}$ Régne Animal, edited by several French naturalists, are many illustrations of their internal structure.

The following are some of the anatonical works which treat speeially upon these animals:

Schweigger. - Handbueh der Naturgesehichte der skelettlosen ungegliederten Thiere. Leipzig, $\mathbf{1 8} 20$.

Delle Chiaje. - Memorie su la Storia e Notomia degli Animali senza Vertebre del regno di Napoli. 4 vol. Napoli, 1823-29. 109 tavole.

A seeond and enlarged edition of this memoir has been published under the following title: Deserizione e notomia degli animali invertebrati della Sieilia eiteriore. J-5, vol. Napoli, 1841. Con tavol. I.-CLXXII.

Sars. - Beskrivelser og Jagttagelser over nogle moerkelige eller nye i Havet ved den Bergenske Kyst levende Dyr af Polypernes, Acalephernes, Radiaternes, Annelidernes og Molluskernes Classer. Bergen, 1835.

Lamarck. - Histoire Naturelle des Animaux sans Vertèbres. Deux. édit., par Deshayes et Milne Edwards. 11 vols. Paris, 1835-45.

Milue Edwards. - Flémens de Zoologie, ou Leçons sur l'Anatomie, la Physiologie, la Classifieation, et les Mœurs des Animaux. Deux. édit. Animaux sans Vertèbres. Paris, 1843.

Richard Owen. - Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals. London, 1843.
H. Frey and R. Leuckart. - Beiträge zur Keuntniss wirbelloser Thiere mit besonderer Berüeksiehtigung der Fauna des norddeutsehen Meeres. Braunschweig, 1847.
'Ihese same naturalists have prepared the seeond part of Wagner's Lehrbueh der Zootomie, under the special title of: Lehrbueh der Anatomie der wirbellosen Thiere. Leipzig, 1847.

Stef. Andr. Renier. - Osservazioni postume di Koologia adviatiea pubblieate per cura dell' istituto veneto di scienze, lettere ed arti a studio del Prof. G. Meneghini. Venezia, 1847. Con tavol. I.-XVI.

[^1][^2]
INTRODUCTORY NOTE TO TIIE INFUSORIA.

Constant labors in the whole department of mieroseopy, and that, too, with greatly improved instruments, during the past few years, have materially ehanged the faee of the elass Infusoria sinee the issue of this work. There have been numerous and signal researches among all the lower forms of animal life; and the imperfect and undeveloped forms of others, whieh are higher, have been wrought out with an aeeuraey and detail before unknown.

These movements have all tended to diminish the numbers of the soealled Infusoria, and it remains to be seen how large the proper elass will be when these researehes shall have been further extended. By some even it is believed that it will be entirely resolved into other elasses; this view, however, would appear far from being warranted by our present knowledge ; for, while, on the one hand, whole genera have been shown to be only larval worms (Bursaria, Paramacium, \&e., from Planaria),* yet, on the other, some forms have manifested phenomena and ehanges leading us to plaee them almost unhesitatingly among individual animals. In its best aspeets, however, the subjeet has many perplexing points; and, in its present unsettled state, it is almost hazardous for a seientifie man to entertain anything like positive views thereon.

I need seareely allude to the vegetable, algous eharaeter whieh whole seetions of the Polygastriea have reeently assumed; and the limits of this work will not allow me to discuss in detail this and other interesting points. But there are two or three topies of the highest physiologieal import, whieh are prominently introdueed by these studies. These are, What is a plant? What is an animal? and, Are the animal and vegetable kingdoms on their lowest eonfines separate and distinet from eaeh other?

As is well known, all the older eriteria by whieh animals were separated from plants have long sinee been regarded invalid; and some of those whieh in late years have been regarded among the most eonstant, have, quite reeently, been deelared as equally unsound. Cellulose has been shown to be a eomponent of animal as well as of vegetable struetures, and Kolliker \dagger has insisted that some forms which have neither mouth nor stom-
*Agassiz, Ann. Nat. Hist. VI. 1850, p. \dagger Kcilliker. Siebold and Kölliker's Zeitsch. 156. I. 1849, p. 198.
aeh, but eonsist of a homogeneous mass, are true animals. If these premises are eorreet, nothing will remain, as I eonecive, for a distinctive eharaeteristie, but voluntary motion. This, when positive, is indubitable evidenee of any given form being of an animal eharaeter; and it must remain for each individual observer to determine what is, and what is not, voluntary aetion, in each particular ease. Moreover, even should Killiker's view of a stomaehless animal prove eorreet, the inverse eondition of a true stomaehal eavity being present, must, I think, be regarded as positive evidenee of the animal nature of the form in question; for this must always be a distinctive eharaeteristic of the two kingdoms, when present.

In regard to the other point, What eonstitutes an animal? observers are very far from being agreed. Siebold, Killiker, and others, have taken the ground that individual animal forms may be unieellular; or, in other words, that an animal may be eomposed of only a single eell.* This view is prineipally due to Kïlliker's observations and statements upon Gregarinae.t The faets are indeed striking, but the evidenee does not appear to me suffieient, as yet, to settle sueh a vexed and important question; and more espeeially so sinee Bruch \ddagger has raised the point of their belonging to the Worms. But, aside from sueh grounds, I was led, some time since, after eonsiderable study of infusoria-forms, to venture an opinion quite ar varianee with that just mentioned of Siebold and Kicliker. I then made the following statement: In regard to the question, What eharaeteristic in organie animal matter shall constitute an individual? I feel satisfied of this mueh, - that eell proeesses, however elosely interwoven they may be with the expressions of individual life, eannot be eonsidered as eonstituting the ground-work of its definition.\$ This statement was made more than two years sinee; and subsequent observations, some of then of a speeial elaraeter, have not led we to a ehange of opinion. True individual animal life seems to involve a eyele of relations not implied in simple eells; in other words, these last must always lose their eharaeter as sueh, in a definite form whieh belongs to the individual.

On this aeeount I regard the Infusoria proper, or those whieh have been shown to be of an undoubted animal eharaeter, as in a eompletely transition state; and, although it may be well to arrange these forms systematieally, for the sake of eonvenienee, yet they eannot be eonsidered as lolding fixed zoölogieal positions. Further researeh in this direetion, and upon " Alternation of Generation," will, I think, widely elear up this obseure, yet most interesting field of study.

Editor.

* Siebold. Sicbold and Kölliker's Zeitsch. \ddagger Bruch. Siebold and Kölliker's Zeitsoh.
I. p. 270 . II.p. 110.
\dagger Kolliker. Siebold and Kölliker's Zeitsch. I. p. l.
§Burnett. Procecd. Boston Soc. Nat. Hist. V. p. 124.

B00K FIRST.

 INFUSORIA AND RHIZOPODA.

 INFUSORIA AND RHIZOPODA.}

CLASSIFICATION.

$\oint 3$.

Trie Infusoria, using this word in a restricted sense, are far from being the highly-organized animals Ehrenberg has supposed. In the first place, on account of their more complicated structure, the Rotifera must be quite scparated from them, as has already been done by Wiegmann, Burmeister, R. Wagner, Milne Edwards, Rymer Jones, and others. The same may be said of the so-called Polygastrica. In fact, a great number of the forms included under Closterina, Bacillaria, Volvocina, and others placed by Ehrenberg among the anenteric Polygastrica, belong, properly, to the vegetable kingdom. Indeed, this author has very arbitrarily taken for digestive, sexual, and nervous organs, the rigid vesicles, and the colored or colorless granular masses, which are met with in simple vegetable forms, but which are always absent in those low organisms of undoubtedly an animal nature. Cell-structure and free motion are the only two characteristics in common of the lowest animal and vegetable forms; and since Schwann ${ }^{(1)}$ has shown the uniformity of development and structure of animals and plants, it will not appear strange that the lowest conditions of each should resemble each other in their simplc-cell nature. As to motion, the voluntary movements of Infusoria should be distinguished from those which are involuntary, of simple vegetable forms; a distinction not insisted upon until lately. Thus, in watching carefully the motions of Vorticellina, Trachelina, Kolpodea, Oxytrichina, \&c., one quickly perceives their voluntary character. The same is true of the power of 'contracting and expanding their bodies.

But in the motions of vegetable forms other conditions are perceived; and there is no appearance of volition in cither change of place or form, their locomotion being accomplished either by means of cilia, or other physical causes not yet well understood. Cilia, therefore, belong to vegetable as well as to animal forms, and in this connection it is not a little remarkable that in animals they should be under the control of volition. With vegetable forms these organs are met with either in the shape of ciliated epithelium, as upon the spores of Vaucheria, ${ }^{(2)}$ or as long, waving filaments, as upon che earlier forms of many confervæ, ${ }^{(3)}$ in which last can

[^3]often be seen the so-called organization of Ehrenberg's Monadina and Volvocina. Until the fact that eiliated organs belong to both animals and vegetables was decided, the real place of many low organisms had to remain undetermined. ${ }^{(4)}$ However, notwithstanding their free motion from place to place by means of cilia, the vegetable nature of many organisms seemed clearly indicated by the rigid, non-contractile character of their forms. It is from a misapprehension of the true nature of these facts, that some modern naturalists have denied the existence of limits between the two kingdoms. ${ }^{(5)}$

With Bacillarce and Diatomacea, this question has another aspect. Many of these organisms have been taken for animals from their so-called voluntary movements, which truly entirely want the character of volition. In the movements of the rigid Diatomacer, for instance, the whole plant has oscillatory motions like a magnctic needle, at the same time slightly changing its place forward and backward. When small floating particles eome in contact with such an organisin, they immediately assume the same motion. This may be well observed with the Oscillatoria. There are here, undoubtedly, no ciliary organs; in fact, they could not, if present, produce this kind of motion. According to Ehrenberg, ${ }^{(6)}$ the Navicule can protrude ciliary locomotive organs through openings of thcir carapace; but this has not been obscrved by other naturalists.

§ 4.

The Rhizopoda, whose internal structure is as yet imperfectly known, are closely allied to the Infusoria. Like these last, their bodies are cellular, containing nuclear corpuscles, but no system of distinct crgans. These two classes of Protozoa differ, however, in their external form, and the structure of their locomotive organs. The body of the Infusoria, notwithstanding its contractility, has a definite form, and moves chiefly by means of vibratile organs. That of the Rhizopoda, on the other hand, although equally contractile, has no definite form ; their movements also are not due to ciliated organs, but to a change of the form of the body by various prolongations and digitations.

$$
\S 5 .
$$

Owing to the present incomplcte dctails upon the organization of these animals, little can here be said about them; and thercfore, instead of devoting to them a scparate chapter, it will be proper to treat of them with the Infusoria in gencral.

As the division of the Polygastric Infusoria, by Ehrenberg, into two

[^4][^5]orders, Anentera and Enterodela, appears unfounded, the following classification scems more natural:

PROTOZOA.

Class Infusoria.

 Organs of locomotion chiefly vibratile.ORDER I. ASTOMA.
Without an oral aperture.
Family: Astasiaea.
Gcncra: Amblyophis, Euglena, Chlorogonium.

Family : Peridinala.
Genera: Peridinium, Glenodinium.

Family: Opalinaea.
Genus: Opalina.
order II. Stomatoda.
With a distinct oral aperture and øesophagus.
Family: Vorticellina.
Genera: Stentor, Trichodina, Vorticella, Epistylis, Carchesium.
Family: Ophrydina.
Genera: Vaginicola, Cothurnia.

Family: Encielia.

Genẹa: Actinophrys, Leucophrys, Prorodon.
Family: Trachelina.
Genera: Glaucoma, Spirostomum, Trachelius, Loxodes, Chilodon, Phialina, Bursaria, Nassula.

Family: Kolpodea.
Genera: Kolpoda, Paramacium, Amphileptus.
Family: Oxytrichina.
Genera: Oxytricha, Stylonychia, Urostyla.
Family: Euplota.
Genera : Euplotes, Himantophorus, Chlamidodon.

Class Rhizopoda.

Organs of locomotion eonsisting of eompletely retractile, ramifying prolongations of the body.

ORDER I. MONOSOMATIA.

Family: Amoebaea.
Genus: Amoeba.
Family: Arcellina.
Genera: Arcella, Diffugia, Gromia, Miliola, Euglypha, Trinema.

ORDER II. POLYSOMATIA.

Genera: Vorticialis, Geopomus, Nonionina. ${ }^{(1)}$

BIBLIOGRAPIIY.

O. F. Müller. Animaleula Infusoria. Hafıix, 1786.

Ehrenberg. Die Infusionsthierehen als vollkommene Organismen. Leipzig, 1838. Also his numerous and important memoirs upon the Infusoria and Rhizopoda in the Memoirs of the Berlin Aeademy, and its Monthly Bulletin.

Andrew Pritchard. A History of Infusoria, living and fossil, arranged aceording to the "Infusionsthierchen," of Ehrenberg. Illustrated by nearly 800 eolored engravings of these curious creatures, highly magnified. London, 1841.

Kutorga. Naturgesehiehte der Infusionsthierehen, vorzüglieh naeh $E h$ renlerg's Beobaehtungen bearbeitet. Calsruhe, 1841.

Dujardin. IIstoire Naturelle des Zoophytes. Infusoires, Paris, 1841. This work treats also of the Rhizopoda.

ADDITIONAL BIBLIOGRAPIT.

Besides the various articles quoted in the additional notes I have made, the following are among the more important reeent writings on this subjeet :

Cohn. Beiträge zur Entwiekelungsgeschiehte der Infusorien, in Siebold \& Kölliker's Zeitsch. III. IIft. 3, and IV. Hft. 3.

Ecker. Yur Entwiekelungsgesehiehte der Infusorien, in Siebold \& Köliker's Zeitseh. III. IIft. 4.

Stein. Neue Beitr. zur Kenntn. d. Entwickelungsg. u. d. feineren Baues d. Infusionsthiere, in Siebold \& Killiker's Zeitsch. III. p. 475.

Pritchard. A History of Infusorial Animaleules, living and fossil, \&e., with illustrations, new edition. London, 1852.

See also numerous notes in the Annales des Seienees Naturelles, sinee 1847. - Ed.

[^6]
CHAPTERI.

EXTERNAL COVERING.

§ 6.

The Protozos are surrounded by a very delicate cutancous envelope, which is sometimes smooth, ${ }^{(1)}$ and sometimes covered with thickly-set cilia. ${ }^{(2)}$ Generally these cilia are arranged in longitudinal rows; ${ }^{(3)}$ but in Actinophrys they consist of long contractile filaments of a special nature.

CHAPTER II.

MUSCULAR SYSTEM AND LOCOMOTIVE ORGANS.

§ 7.

With the Protozoa a distinct muscular tissue cannot be made out, but the gelatinous substance of their body is throughout contractile.

It is only in the contractile peduncle of certain Vorticellina, that there can be perceived a distinct longitudinal muscle, which, assuming a spiral form, can contract suddenly like a spring. ${ }^{(1)}$

§ 8.

The Vibratile Organs on the surface of Infusoria serve as organs of locomotion.
With many species they arc found much developed at certain points, and are arranged in a remarkable order and manner.

With Peridinium, a crown of them cncircles the body; with Stylonychia, they are quite long, and surround the flattened body like a fringe; while the Vorticellina have the anterior portion of their body surrounded by retractile cilia, arranged in a circular or spiral manner. In Trichodina there is, upon the ventral surface, besides a crown of these cilia upon the back, a very delicate ciliated membranous border, which is attached to a ring which is dentated, and composed of a compact homogeneous tissue. With Trichodina pediculus this border is whole and entirc; but it is broken or ragged with Trichodina mitra. ${ }^{(1)}$

By means of this organ these animals swim with facility, or invade with skill the arm-polyps and Planaria. ${ }^{(2)}$ With many Infusoria, the vibratile organs are situated at the auterior extremity of the body, as simple or double non-retractile filaments, which move in a manner to produce a vor-

1 Euglena, Amoba, \&c.
${ }^{2}$ Trachelius, Paramœcium. Nassula, \&c.
3 Amphileptus, Chilodon, Opalina, \&c.
1 The peduncle is simple with Vorticella, but ramified with Carchesium. With Epistylis it is not muscular.

1 This Infusorium was discovered by me as a parasite in many Planarieae.

2 Ehrenberg has entirely overlooked the ciliated border of Trichodina peciiculus, and has regarded the stiff serrations of the ring as movable hooks. See "Die Infusionsthierchen," p. 206.
tieal action of the water. ${ }^{(3)}$ But with others the loeomotive organ is a long retraetile proboseis. ${ }^{(4)}$ With the Oxytriehina and Euplota, there are fleshy movable points (overini) upon the ventral surface, by which these animals move about as upon feet. During these movements with the Oxytriehina, the posterior portion of the body is supported by many setose and styloid proeesses, whieh point baekward.

The singularly varied and branehing locomotive organs of the Rhizopoda are short, and digitated with Amabba, Diffugia and Arcella. ${ }^{(5)}$ But in the other genera they are elongated and filamentous. ${ }^{(6)}$

CHAPTERS III. AND IV.

NERVOUS SYSTEM AND ORGANS OF SENSE.

§ 9.

Although the Infusoria elearly evinee in their aetions the existence of sensation and volition, and appear suseeptible of sensitive impressions, yet no nervous tissue whatever has as yet been found in them. If Ehrenberg supposed the Polygastrie Infusoria to possess a nervous system, he did so beeause, having deeided that the red pigment points of these animals were eyes, he inferred that they neeessarily had a nervous ganglion at their base.

§ 10.

With the naked Infusoria the sense of toueh exists, undoubtedly, over the whole body. But beside this, it appears speeially developed, in many speeies, in the long eilia forming vibratile eireles, or in those movable foot-like and snout-like prolongations of the body. In the same manner, it is probable they have the sense of taste also; for they seem to exereise a ehoiee in their food, although no gustatory organ has yet been found.

All speeies, whether they have red pigment points or not, seem affected by light. Without doubt, therefore, their vision eonsists simply in diseriminating light from darkness, whieh is aceomplished by the general surfaee of the body, and without the aid of a speeial optieal organ.

The simple pigment point of many Infusoria, ${ }^{(1)}$ and whieh Ehrenberg has generally regarded as an eye, ${ }^{(2)}$ has no cornea, and eontains no body eapable of refraeting light; there is, moreover, eonneeted with it no nervous substanee.

Ehrenberg attaehes here too great an importanee to the red eolor of the

[^7]Sc. Nat. Zool. IV. 1835, p. 343, pl. IX.; also, V. 1836, p. 196, pl. 1X. fig. A. See, also, his Histoire des Infusoires, 1841, p. 249, pl. I. fig. 14-17; pl. II. fig. 1, 2, 7-10; pl. IV. fig. 1); Geoponus stella bortalis, Nonionina germanica, according to Ehrenberg. Abhand. d. Berliner Akar. 1839, p. 106, Taf. I. II.

1 Amblyophis, Euglena, Chlorogonium, \&c.
${ }^{2}$ Abhandi. d. Berliner Akad. 1831, p. 12 ; also, "Die Infusionsthierchen," p. 491.
pigment, ${ }^{(3)}$ for the blue, violet and green pigments, seen in the eycs of insects and crustacca, show clearly that the red pigment is not essential to the eye.*

CHAPTER V.

DIGESTIVE APPARATUS.

§ 11.

The Infusoria are nourished, either by taking solid food into the interior of their body, or by absorbing by its entirc surface nutritive fluids which occur in the media in whieh they live.

This last mode is illustrated in the Astoma, whieh have no distinct oral aperture or digestive apparatus. By the ingenious experiment first performed by Gleichen, ${ }^{(1)}$ of feeding these animals with eolored liquids, no trace of these organs could be found.

Ehrenberg, who also had obscrved that they did not cat, regarded their internal vesicles as stomaehal organs, which were in eonnection with the mouth by tubes. The eorrectness of this opinion, however, has not been vcrified. Indeed, the genus Opalina ${ }^{(2)}$ refutes it ; here the species are quite large and visible to the naked eye, yet an oral apcrture can be deteeted upon no part of their body, and never do they admit into its interior colored partieles. Solid substanecs found in them cannot be regarded as food. That fluids are here introduced by surfacc-imbibition is shown by Opalina ranarum; this animal is found in bile in the rectum of frogs, and assumes a green color. When Opalina requiring only a eertain quantity of liquid are plaeed in water, they quickly absorb it, become greatly swollen, and shortly after die. In such eases, the absorbed liquid is seen as clear, vesicular globules under the surface, and thesc globules have been taken by Ehrenberg as stomachal vesicles (ventricult), and by Dujardin as vacuolae.

§ 12.

Those Infusoria which are nourished by solid food have a mouth at a certain place, and an œsophagus traversing the parenchyma of the body. Through this last the food is received, and is finally dissolved in the semi-liquid parenehyma of the body, without passing through stomaehal or intestinal cavitics. In many eases there is at the end of the body opposite the mouth an anvs, through which the refuse material is expelled. But, when this is

[^8][^9]wanting, its function is often performed by the mouth. According to Ehrenberg, the Infusoria polygastrica, such as we have just been describing, differ from the Infusoria rotatoria, in having a great number of stomachs, which connect by hollow peduncles with the mouth in the division Anentera, and with the intestine in that of Enterodela. This organization, which, from its ligh authority, has generally been admitted by naturalists, is not, however, met with in any infusorium. ${ }^{\text {a) }}$

The vesicular cavities in the bodies of these animals, and which have been regarded by Ehrenberg as stomachal-pouchcs, never have a hollow peduncle, either connceting with the mouth (Anentera) or with the intcstine (Enterodela). Indeed, it is doubtful if a digestive canal can be made out in these Infusoria.

The vesicular, irregular contracting cavities of their body contain a clear liquid, evidently the same as that in which they live, which, with the Astoma, has been absorbed through the surface of the body. But, with those having a mouth and œesophagus, it is received through them, and taken up by the yielding parenchyma of the body.

If the methods of feeding of Gleichen and Ehrenberg are employed, the colored particles are taken in by a vortical action of the water, caused by the cilia surrounding the mouth. This water, with its molecules, accumulates at the lower portion of the oesophagus, and so distends there the parenchyma as to cause the appearance of a vesicle. Thus situated, the whole has much the aspect of a pedunculated vesicle. But when, from contractions of the œesophagus, this water escapes into the parenchyma, it appears there as an unpedunculated globule, in which the colored particles still float. When the Stomatoda are full-fed in this manner, there appear many of these globules in various parts of the body; and thus substances previously ingested are taken up and disseminated throughout the body.

If the globules thus containing solid particles are closely aggregated, it sometimes happens that they fuse together; a fact which proves that they are not surrounded by a special membranc.

The solid particles of food of the Stomatoda, which are often the lower Algae, such as the Diatomacce and Oscillatoria, and often other Infusoria, are sometimes deposited in the parenchyma without being surrounded by a vesicular liquid.*

Froin observations made upon Amabba, Arcella and Diflugia, it appears that the Rhizopoda ingest their food like the Stomatode Infusoria.

[^10]neck. (Mitller's Areh. 1839, p. 80 ; also Monatsbericht der Berliner Akad. 1841, p. 10\%.) But, detailed as they may be (see Ehrenberg Abhandl. d. Ber. Akad. 1830, Taf. III.; 1831, Taf. I1I.; also "Die lufusionsthierchen," Taf. XXX11. XXXV1. ama XXX1X.), they are not representations of nature.
the organ which in Trachelius ovum las been taken by Ehrenberg ("Die Infusionsthierchen," p. 323 , Taf. XXX1II. fig. xiii. 1) for a branching digestive tube, has always appeared to me only as a solid fibrous conl, traversing the soft parenchyma of the body, and by its ramifications presenting a coarse meshed aspect.
imagine a bag madc of some soft extensible material, so thin as to be transparent like glass, so soft as to yield readily to extension when subjected to internal pressure, and so small as to be microscopic ; this bag, filled with particles of sand, shells of

§ 13.

If the vesicular cavities containing the liquid and colorless food of the Stomatoda be examined under the microscope by a horizontal central incision, their contents appear colorless; but by changing the focus, viewing alternately the convex and concave surfaces of the vesicle, the points of junction between the colorless globules and the parenchyma appear colored pale-red. This appearance, duc to an optical illusion, might easily deceive one into the opinion that the vesicles which are really colorless are colored.

From this it is probable that Ehrenberg has described Bursaria vernalis and Trachelius meleagris as having a red gastric juicc. ${ }^{(1)}$

The violet points which are found upon the back and neck of Nassula elegans and Chitodon ornatus are only collections of pigment grauules, which, in the first case, are often absent, and in the sccond are often partially dissolved.

This last violet liquid has been regarded by Ehrenberg ${ }^{(2)}$ as a gastric juice resembling bile.

§ 14.

The solid particles of food, whether surrounded by the parenchyma or enclosed in a liquid vesicle, are moved hither and thither in the gelatinous tissuc of the body, during the contracting and expanding movements of the animal. In some, the parenchyma with its contained food moves in a regularly circular manner, like the liquid contained in the articulated tubes of Chara. ${ }^{(1)}$ In Loxodes bursaria ${ }^{(2)}$ this circulation is remarkable, and of much physiological interest. Its cause is yet quite unknown, for in no case is it due to cilia, and it may be observed in individuals entirely at rest. Ehrenberg, ${ }^{(3)}$ therefore, is incorrect in regarding it as due solely to a contratile power of the parenchyma, displacing the molecules. Much less is his explanation ${ }^{(4)}$ satisfactory, since the digestive tube of an infusoriun can be extended at the expense of its stomachal pouches, so as to fill the whole body, giving it the appearance of having a circulation of molecules throughout its entire extent.

[^11]Diatomacer, portions of Algae or Desmidieae, and with fragments of variously colored cotton, woolen, and linen fibres, will give a picture of the animal ; to complete which, it is only necessary to add a few loose strings to the bag to represent the variable radiant processes which it possesses around the mouth." This animal, which is often found with bits of cotton protruding from its mouth, assumes the most hizarre shapes. They appear to multiply by fissuration and gemmation even when filled with these heterogeneous particles, and, on the whole, present characteristics as remarkable as

1836, p. 786 ; also Meyen, Muller's Arch. 1839, p. 75.
${ }_{2}$ Focke loc. cit.; also Erdl, Müller's Arch. 1841, p. 278.
${ }^{3}$ Loc. cit. p. 262.
${ }^{4}$ Müller's Archiv. 1839, p. 81.
those of any animalcule with which we are alc quainted. - Ed.

* [§ 13, note 2.] In this connction should be noticed the experiments of Will (Muller's Arch. 1848, p. 509). He found evidences of a biliary apparatus, with Vorticella, Epistylis, and Bursaria. These evidences are bascd on chemical reäction, and he describes no anatomical apparatus. I mention this fact here, although Vorticella helongs truly to the Bryozoa, and Bursaria to the Planaria. - Ed.

§ 15.

The round or elongated oval mouth of Infusoria varies as to its position. Sometimes it is in front, sometimes behind; and in some eases, near the middle third of the body. Rarely naked, ${ }^{(1)}$ its borders are generally ciliated, ${ }^{(2)}$ and often its cireumference is provided with a very remarkable ciliary apparatus. By the aid of this, these animals not only move about, but when quiet produce vortical actions of the water, which are felt at quite a distance; and all minute particles within its reaeh are quickly drawn towards its mouth, and then swallowed or rejected according to the option of the individual. ${ }^{(3)}$

It is rare that this oral aperture is provided with a dental apparatus. ${ }^{(4)}$ The oral cavity, generally infundibuliform, extends into a longer or shorter, straight or curved esophagus, which is lined throughout by a very delicate ciliated epithelium. ${ }^{(\text {B) }}$

The anus, situated usually upon the dorsal surface of the posterior portion of the body, is sometimes, though rarely, indicated by a slight external projection. ${ }^{(6)}$

CHAPTERS VI. AND VII.

CIRCULATORY AND RESPIRATORY SYSTEMS.

§ 16.

A vaseular system entirely distinet by closed walls from the other organs is not found in the Protozoa. But with very many (with all the Stomatoda, without exeeption) there are contractile pulsatory cavities, the form, number and arrangement of which is quite varied.

They are situated in the denser and outer layers of the parenehyma of the body, and during the diastole they become swollen by a clear, transparent, colorless liquid, which, during the systole, entirely disappears.

[^12][^13]
Abstract

whilc it is long and arcuatc in Bursaria truncatella and cordiformis.

6 The undigested matters accumulate about the anus, and when this opens are expelled from the parenchyma with a ceriain force. With Nassula plegans, the greater or less pordions of the Oscillatoria gracillima (Kîtzins) upon which it feeds, and which are of a blue-green color, dissolve into granules of this color. But these, during the process of digestion, gradually assume at brown color, and form irregular masses in the posterior portion of the body, and are from time to time expelled as brown fueces. These green granules are not thcrefore eggs, as Ehrenberg (loc. cit. p. 339) has supposed. This Nassula when young is perfectly colorless, with the exception of a beautiful blue spot.

[^14]These movements succeed each other at more or less regular intervals. When these cavities are numcrous, a certain order in the succession and alternation of their contractions cannot always be observed. It is very probable that their liquid contained during the diastole is only the nutritive fluid of the parenchyma, and to which it returns during the systole. In this way it has a constant renewal, and all stagnation is prevented. This arrangement constitutes the first appearance of a circulatory system, and the first attempt at a circulation of nutritive fuids.

From an optical illusion similar to the one mentioned as belonging to the vacuole ($\left(13\right.$) the liquid of these pulsating cavities has a reddish hue. ${ }^{(1)}$

§ 17.

A round, pulsating cavity is found in the genera Vorticella, Epistylis, Loxodes, and in the following specics:-Amceba diffluens, Paramocium kolpoda, S/ylonychia mytilus, Euplotes patella, \&c. With Actinophrys, Bursaria, Trichodina, there are from one to two ; with Arcella vulgaris, three to four ; with Nassula elegans, there are four placed in a longitudinal line on the dorsal surface. With Trachelius meleagris, there is a series of eight to twelve upon the sides of the body, and with the various species of Amphileptus there are fiftecn to sixteen arranged more or less regularly. With Stentor, there is a large cavity in the antcrior portion of the body, and many similar cavities appear upon the sides, united sometimes into one long canal. A similar canal traverses the entire body of Spirostomum ambiguum, and Opalina planariarum. With Paramacium aurelia, the two round cavities present a remarkable aspect, being surrounded by five or seven others, small and pyriform, the top of which being directed outward, the whole has a star-like appearance. ${ }^{(1)}$ During the pulsation, often the entire star disappears, sometimes only the two central cavities, and in some cases the rays only.

These cavities, entirely disappearing in the systole, reäppear in the diastole, and usually in the same place and with the same form and number. This would lead us to conclude that they are not simple excavations in parenchyma, but real vesicles or vessels, the walls of which are so excessively thin as to elude the highest microscopic power.

In some individuals, as, for instance, with Trachelius lamella, there appear, during the diastole, two or three small vesicles at the extremity of the body, which, after having increased in size, blend into one which is very large. These are probably only globules of nutritive fluid, separated from the parenchyma. Similar phenomena are observed in Phialina vermicularis and Bursaria cordiformis.

It sometimes happens with thesc animals that a forcible contraction of the whole body divides an elongated cavity into two spherical portions, as

[^15][^16]though it were a drop of oil. The observation of these phenomena would make it doubtful whether or not these eavities are true vesicles or vessels.

These eavities have been met with in only a few of the Astoma, and these are, Cryptomonas ovata ${ }^{(2)}$ and Opalina planariarum.

§ 18.

The Infusoria appear to respire solely by the skin. In those species whose bodies are covered with vibratile eilia this function is promoted by the vortieal aetion of the water caused by these organs. In others, the eontractile cavities just described are situated immediately under the skin, and the opinion may be entertained that the water so communicates with their liquid contents as to perform a respiratory function. In this repcet Actinophrys sol is quite remarkable, for its contractile eavities are so superficial that when filled they raise the skin in the form of aqueous vesieles, ${ }^{(1)}$ which, however, are so elastic as cntirely to disappear in the parenehyma. Here it is plain that a mutual relation between the external water and the contents of these eavities might easily take place.

CHAPTER VIII.

ORGANS OF SECRETION.

§ 19.

No special organ of secretion has been found in the Protozoa; their skin, however, has a power of seereting various materials, which in some species harden and form a carapace, or a head of a particular shape; while in others it serves to glue together foreign particles, forming a ease, in which the animal retreats.

Among those having a earapace, may be mentioned Vaginicola, Cothurnia, and Arcella. This more or less hard envelope does not resist fire, and is probably of a corneous nature. In the Rhizopoda, however, it is usually calcareous, like the shells of Mollusca, and is not affected by heat. The Difflugiae carry about with them an envelope of this kind, eomposed of grains of sand.

[^17]
CHAPTER IX.

ORGANS OF REPRODUCTION.

§ 20.

The Infusoria propagate by fissuration and gemination, and never by eggs. ${ }^{(1)}$ They have therefore no proper sexual organs.

This fissuration occurs longitudinally with some, ${ }^{(2)}$ transversely with others, ${ }^{(3)}$ and in many of them by both at once. ${ }^{(4)}$ Gemmation, on the contrary, is very rare. ${ }^{\left({ }^{(3)}\right.}$

$\S 21$.

Nearly all the Infusoria and Rhizopoda have in their interior a nicelydefined body, a kind of a nucleus, which is quite different, in its compact texture, from the parenchyma by whieh it is surrounded. This nucleus, which, in different specics, varies mueh in number and form, performs an essential part in the fissuration. For, every time the individual divides either longitudinally or transversely, this nueleus, whieh is usually situated in the middle, divides also. So that, in the end, each of the two new individuals has a nueleus. When an animal is about to undergo fissuration, there is gencrally first perceived a change in the nucleus. Thus, in Paramocium, Bursaria and Chilodon, the nucleus is sulcated longitudinally or transversely, or even entirely divided, ${ }^{(1)}$ before the surfaec of the body presents any constriction.

This nueleus, whieh is of a finely granular aspect and dense structure, retains perfectly its form when the animal is pressed between two plates of glass, and the other parts are spread out in various ways. By direet light its color appcars pale yellow. It appears to lie very loosely in the parenehyma, and sometimes individuals may be observed turning their bodies around it as it rests motionless in the centre. From all this, it eannot be supposed that this nucleus attaches itself to other parts of the animal, and especially to the pulsatory cavities (Vesicula seminales of Ehrenberg). ${ }^{(2)}$

§ 22.

A simple, round, or oval nucleus is found in Euglena, Actinophrys, Arcella, Amaba, Bursaria, Paramecium, Glaucoma, Nassula and Chilodon. But there are two which are round, and placed one after the other in Amphileptus anser and fasciola, in Trachelius meleagris, and Oxytricha pellionella. With Stylonychia mytilus, there are four.

[^18]${ }^{3}$ This may be easily obscrved with Stentor, Leucophrys, Loxodes, and Bursaria.
${ }^{4}$ Bursaria, Opaina, Glaucoma, Chilodon, Paramacium, Stylonychia and Euplotes.
s Vorticella, Carchesium and Epistylis.
1 Ehrenberg, loc. cit. Taf. XXXVI. fig. vii. 13 to 19 , Taf. XXXIX. fig. ix. 4, 5, 11-13.
${ }_{2}$ Ehrenberg, from a strange fancy, has taken this nucleus for a seminal gland. (Abhandl. d. Berliner Akad. 1835, p. 163. Also, loc. cit.)

It is not rare that a variable number of these round nuelei, arranged in a row, traverse the body in a tortuous manner. This is so in Stentor coeruleus and polymorphus, in Spirostomum ambiguzm, and in Trachelius monitiger. In many instanees the nucleus has the form of an elongated band, which is slightly curved in Vorticella convallaria, Epistylis leucoa, Prorodon niveus and Bursaria truacatella. In Stentor Reseselii, it is spiral, and in Euplotes patella and Trichodina mitra, it is shaped like a horsc-shoe. In Loxodes bursuria, it is kidney-form, and eneloses in one of its extremities a small corpuscle (nueleolus).

The round nucleus of Euglena viridis has in its centre a transparent dot. In Chilodon cucullulus, the nucleolus has a similar dot, and thus the nueleus as a whole resembles a eell.

$\S 23$.

These nuclei, which make Infusoria resemble cells, descrve a speeial attention, sinec they do not die with the animal. Thus the nucleus of Euglena viridis, which, according to Ehrenberg, ${ }^{(1)}$ is globular when dying, and surrounded by a kind of eyst, remains unchanged a long time, or even inereases in size, having no appearanee of a dcad body. It may be that the life of this animal, under these eireumstances, is not finished, but only assumes another form. ${ }^{(2)}$

[^19]That the nucleus contained in Infusoria plays an important part in the propagation of those animalcules, is supported also by a recent observation of Focke, who witnessed the development of several young individuals in the nucleus of Loxodes bursaria. See Amtl. Bericht uber die 22 tr . Versaaml. deutsch. Naturforscher. in Bremen, Abth. ii. p. 110.

INTRODUCTORY NOTE TO THE ZOOPHYTA.

Wiruin the past six or seven years the Zoophytes have received more attention from naturalists than any other division of the animal kingdom. The labors of many, if not most of 'our ablest naturalists, have been direeted towards an investigation of the humblest forms of animal life. This fact, combined with the reeent improved methods and means for research, would alone be prophetie of the most signal advances in this group; indeed, our knowledge of all these forms has been so modified, as well as inereased, that previous writings need rather to be re-written than revised. Dana, Agassiz, Milne Edwards, Forbes, Dalyell, Müller, Busch, and others, not to mention the eontinued labors of older observers, have effeeted these changes in this group.

The work of Dana is most exeellent, and will remain a standard of authority in this department for a long time to come. Aside from the many details of structure, in it may be found the first and best philosophical exposition of the relations of organie development with these lower plantlike forms. Had this work been better known in Europe, there would have been saved the constant repetition of the most grave errors. On the labors of Agassiz no eomment need be made; those who are in this department, whether as minute Anatomists or philosophical Zoologists, will not fail to understand and appreeiate him. In the same field is Busch, who was extended his brief though exeellent labors over the three elasses of this whole group; as for the remaining authors mentioned, excepting Muller, their position in this department has long been established. Muiller's researches have been mostly on the Echinoderms, and the eareful tracing of the ${ }^{\text {rhases }}$ of their development and metamorphoses; but where so much has been done, I fear the limits of this book will preclude full details with this class.

This note would be unnecessary, were it not to show that I do not ignore the changes and advance whieh have been made in this group within the past few years ; and more especially so, as I have allowed, in this edition, the elassification to stand as in the original. Any great ehanges of this
kind I eould not think of making without the eonsent of the authors, who, although they would, undoubtedly fully sanetion them, are not sufficiently aecessible to me just now, as these pages are going to press. So, however mueh the present elassification may offend the eye of the Zoologist, yet the Anatomist will find under eaeh head the proper details. Thus, he will find as full a deseription of the anatomieal struetures of the Bryozoa and liydroid Polypi, as though they were referred to the Mollusea and Aealcphae, where truly they respeetively belong.

Editor.

BOOK SECOND. P 0 L Y PI.

CLASSIFICATION.

$\oint 24$.

The Polypi are either immovably fixed, or seated on a locomotive foot. Their soft body is in part enveloped by a solid support, the polypary. This last is often, for the most part, horny or caleareous; and by it numbers of these animals are united into greater or less groups. The eentral mouth is always surrounded by a coronet of eontractile tentaeles. The digestive apparatus is organized after two different types, upon which is based a division of these animals into two orders. The sexual apparatus is always without copulatory organs.
order I. ANTHOZOA.
The digestive eanal is without an anus, and opens into the general eavity of the body.

Family: Madreporina.
Genera: Oculina, Millepora, Madrepora, Caryophyllia, Astraea, Desmophyllum, Maeandrina, Monticularia, Agaricia, Favia.

Family: Gorgonina.
Genus: Gorgonia.
Family : Isidea.
Genera: Corallium, Isis.
Family: Tubiporina.
Genus: Tulipora.
Family: Alcyonina.
Genera: Alcyonium, Lobularia, Alcyonidium.
Family: Pennatulina.
Genera: Veretillum, Pennatula, Virgularia.

Family: Sertularina. Genera: Sertularia, Campanularia.

Family : Zoanthina.

Genus: Zoanthus.
Family: Hydrina.
Genera: Hydra, Eleutheria, Synhydra, Coryne, Syncoryne, Corymorpha.

Family: Actinina.

Genera: Actinia, Eumenides, Edwardsia.
ORDER II. BRYOZOA.
The digestive eanal is elosed from the general eavity of the body, and opens behind through an anus.

Family : Reteporina.
Genera: Eschara, Cellepora, Flustra, Bicellaria, Retepora, Telegraphina, Tendra.

Family: Alcyonellina.
Genera: Cristatella, Alcyonella, Bowerbankia, Vesicularia, Lagenella, Plumatella, Lophopus. ${ }^{(1)}$

BIBLIOGRAPHY.

Ellis. Essai sur l'Histoire naturelle des Corallines et d'autres productions marines du mêmc genre. La Haye, 1756.

Pallas. Elenchus zoophytorum. Hagae 1766.
Cavolini. Memorie per servire alla storia dei polipi marini. Napoli, 1785.

Rapp. Ueber die Polypen im Allgemeinen und die Aktinien insbesondere. Weimar, 1829.

Ehrenberg. Die Corallenthiere des rothen Meeres, in the Abhandl. d. Berliner Akad. 1832.

Johnston. A History of the British Zoophytes. Edinburgh, 1838.
Besides the important work of Dana, which will be often quoted in my notes, the additions to the literature of the true polyps have been few since the issue of this work, and have generally been published in the form of artieles in the various periodieals, to which reference will be made in my notes. But the Bryozoa have been speeially studied, and particularly in the following papers:

[^20]Van Beneden. Recherches sur l'Anatomie, la Physiologie et le developpement des Bryozoaires. Mém. Acad. Brux. Tomes XVIII. XIX.

Recherches sur les Bryozoaires fluviatiles de Belgique. Ibid. Tom. XXI.
For further literature on the Bryozoa, see the writings quoted in my notes, and especially those of Allman.

Ed.

CHAPTERI.

CUTANEOUS ENVELOPE AND SKELETON.

§ 25.

The Polypi are composed of cither entirely soft parts, ${ }^{(\alpha)}$ or have for their support a solid frame, which may be calcareous, corneous, or coriaceous. This frame is always the product of the general skin, and ought therefore to be compared to a cutaneous skeleton.* This skeleton, known by the name of polypary, is formed partly internally, and partly externally, by these animals. In the first case it is called an axial, and in the second a tubular polypary.
The axial polypary consists, with some polyps, ${ }^{(2)}$ of a dense substance, apparently unorganized and composed of carbonate of lime; with others, ${ }^{(3)}$ of a corneous substance, equally unorganized. When the polypary is coriaceous, it is often covered by a variable number of calcareous, fusiform eorpuscles, usually bossed or dentated. ${ }^{(4)}$ With some calcareous polyparies ${ }^{(5)}$ this is also true, and then the corpuseles are arranged in compact reticulated masses. The tubular polyparies serve as a refuge for the animals living in them, and in many cases, being common to many individuals, these last are in direct relation to each other by the canals which traverse the branching tubes. In the axial polyparies there are often cavities or depressions of a variable size, ${ }^{(6)}$ in which the animals can conceal themselves. When, however, these are wanting, (7) they retire, as is the case with many soft polyps, ${ }^{(8)}$ beneath their mantle. Sometimes, ${ }^{(9)}$ these cavities are closed by a movable operculum.

§ 26.

The skin of polyps is very transparent, and should be carefully distinguished from the parenchyma which it envelops. It is smooth, or it is covered with ciliated epithelium. And, since it has been shown that many

[^21]> p. 403 , Taf. I.-II.) has described and figured these spicula under the names of Spongolithis and Lithostylidium.
>
> 6 The Millepora, Madrepora, Oculina and Astraea.
> 7 Gorgonia, Isis and Corallium.
> 8 The Actiniae.
> G Eschara and Cellepora.
with Madrepora, Astraea, \&c. For the formation of Coral, see Dana, loc. cit.; and for the relations of the corallium carried out in detail, see Edwards and Haime, Ann. d. Sc. Nat. 1849, '50, '51. - Ed.

Anthozoa have the skin, and especially the tentaeles, eovered with cilia of this nature, ${ }^{(1)}$ these last eannot be regarded as forming a differential eharacteristie between them and the Bryozoa, as has been done by Ehrenberg. ${ }^{(2)}$

§ 27.

The skin of many polyps is quite remarkable in having net tling or poisonous organs, to whieh it is only of late that the attention bas been direeted. They consist of transparent vesieles, having a dense membrane, of a round, oval, or eylindrieal form, eontaining a clear liquid, and a very delieate filament of variable length, whieh is usually spirally coiled. By the least irritation of the skin, the filament is thrown out of the vesiele, of which it appears to be only a prolongation. These filaments adhere to objeets eoming in contaet with the skin, and in this way the vesieles in question are separated from it. ${ }^{(1)}$ These organs are probably the eause of the nettling sensation felt when eertain polyps are handled.

§ 28.

Still more interesting are organs analogous to those just mentioned, and whieh belong to various species of Hydra. ${ }^{(1)}$ They are found not only on the arms, but also upon the skin of the body and foot. They eonsist of oval vesieles, having a very long and delieate filament, whieh is slightly swollen and viseous at its free extremity, while the opposite one is direetly continuous with the conieal neek of the vesiele. The neek of each vesicle is surrounded by three hooks eurved baekwards. These are always elevated when the skin of the animal is irritated, and espeeially that of the arms when they seize their prey. This last is then wound about by the free, viseous end of the filament, and the attached vesiele being torn from the body, the whole is often entangled in the arms of adjacent polyps. When this oeeurs, the vesieles hang by their hooks to the arms of the polyps; and it is this that has given Ehrenberg the opinion that the vesieles are detaehed by their round extremity, that these animals wateh their prey with the hooks ereeted, and that the vesieles and filaments ean return into the interior of the arms. ${ }^{(2)}$ But it is probable that they (the hooks) act more as poisonous than as prehensile organs; for if those from the arm of a Hydra seize upon a Nais, a Daphnia, or a larva of Chironomus, these last quickly die, even if they eseape immediately after being taken.

[^22][^23]These poisonous and prehensile organs are destroyed by use, which is also true of the nettling organs. But this loss is probably repaired by their speedy reproduction. This last eireumstance may explain the various deseriptions given them by different authors, for, probably they have been observed at dissimilar stages of development. ${ }^{(3)}$

3 Erdl, who has discovered a great number of these nettling organs, saw, in some cases, the thread directly continuous with the neck of the vesicle; in athers, these necks appeared furnished with spines directed baekwards; exaetly as Wagner had before deseribel, and as Külliker had often ob-

* [§28, note 3.] These nettling organs of the Polypi have recently been very sueeessfully studied by Agassiz, who has enjoycd the most enviable adrantages with the Polypi and Acalephae of the North Ameriean coast. He has changed the cntire sapect of the suhject, hesides almost exhausting it for future research. His special studies were made on the coral polyp of our southern coast, the Astrangia Danae, Agass. The complexity of strueture of these lasso-cells, as he has very appropriately termed them, is truly wonderful for such minute forms. As I have also studied these forms, I will use my own language, in the description of what Prof. Agassiz has seen. There are several varieties of these cells or capsules, depending upon the arrangement and structure of the lasso; sometimes this last is a simple ooil, sometimes it is coiled ahout a staff which is erected from the hase, but which is also a part of the projeetile apparatus. In the first case, the lasso is much the longer and may be fifty or seventy-five times the longth of the vesiele; while, in the second case, it rarely exceeds the length of this last hy more than sixteen or twenty times. In all cases, the essential feature of these organs is the tasso or internal coil, whieh is of a most curious structure. In the first place, it is, in general terms, only an inverted portion of the vesicle or cell itself, an internal instead of an external cilium, coiled up in a regular manner. When thrown out, therefore, it is wholly inverted, and its projectiou consists of an instantaneous turning of the whole inside out. But the lasso, delicate as it is, has still more delicate structures on its surface. These consist of barhels arranged in regular spiral rows, which extend to the very extremity of the lasso. At this last
served (Beiträge z. Kemntniss d. Geschlechtsverhaltnisse u. d. Samenflussigkeit wirbelloser Thiere, 1841, p. 44, fig. 14). Erdl asks if these variations of form are not coincident with an increasing or decreasing activity of the sexual organs (see Muller's Arch. 1842, p. 305). *
point, they almost elude the highest and hest microseopic powers. These barbels all point backtrards when the lasso is extcnded, and serve, no doubt, is teeth, to prevent it from slipping on the ohjects over whieh it is thrown. But these most delicate structures, which in beauty transcend that of all other tissues, can be better appreciated by figures than by the most minute description ; see Agassiz's Memoir on Astrangia Danae (forthcoming in the "Smithsonian Contributions to Knowledge"), P1. VI. These observations, however, were made in 1848 ; see Proceed. Amer. Assoc. Advancem. Sc. 1848, p. 68.
From my own ohservations there would, indeed, be nothing to add on the special points studied hy Agassiz ; but a remark or two may be made as to the development of thesc forms.
The lasso-vesicle is, originally, only an epithelial cell, of a spheroidal shape. It soon elongates, its contents become cloudy, after which, the coil is seen, very faintly marked, lying on the inner wall. It would seem probahle, therefore, that its formation was somewhat similar to that of the spiral vessels in plants, although it is true that the lassocoils and these spiral vessels are analogous only in form and position, and not in structure. The details of the formation are unknown.
These lasso-cells are more widely distributed among the Radiata than hitherto supposed. Agassiz (as he has informed me hy letter) has observed them on most of the Polypi and Acalephae, and even with some of the Mollusea, and although their general structure is the same, there are points of difference of even a zoological value.

Edrtor.

CHAPTER II.

MUSCULAR SYSTEM AND ORGANS OF LOCOMOTION.

§ 29.

The movements of Polyps are performed, partly by eontractions of the sides of their body, in which are found no museular fibres, and partly by a true muscular tissue. The fibres of this tissue have not regular transverse striæ, although during their contractions there are sometimes, though rarely, seen irregular transverse bands. ${ }^{(1)}$

§ 30.

In those Polyps having a true muscular system, this tissue is eomposed of interlaeed fibres, forming a layer bencath the skin. A coarse net-work of this kind is scen in the arms of Hydra, although in the foot and rest of the body there is searce anything comparable to muscular fibres. ${ }^{(1)}$ Under the skin of Synhydra ${ }^{(2)}$ and in the arms of Eleutheria ${ }^{(3)}$ this muscular system is much more apparent. A similar layer, very distinct, is observed in Actinia, which, in their mantle, is composed of both longitudinal and circular fibres, the contraction of which draws the tentacles together, and this, eombined with that of the radiating fibres of the foot, gives rise to the various forms of these animals. ${ }^{(4)}$
The Bryozoa have the muscular system more apparent; in the eavity of their body completely isolated fasciculi are seen, composed of parallel fibres, serving espeeially for the withdrawal of these animals into their cells. These fasciculi arise from the internal surface of the body, and are inserted partly into the base of the tentacles, and partly into the neck and digestive eanal, - thus serving almost cxelusively as retraetors of these last. ${ }^{\text {(3) }}$

[^24][^25]2 Quatrefaces, Ann. d. Sc. Nat. XX. 1843, p. 238, pl. IX. fig. 3-5
3 Quatrefages, Ibid. XVIII. 1842, p. 281, pl. VIII. fig. 3 .

4 Berthold, Beitr. zur Anat. u. Physiol. 1881, p. 16 ; also in the body of Eduardsia, Quatrefares has found longitudinal and circular tibres (Ann. d. Sc. Nat. XVIII. p. 84).
${ }^{5}$ Similar muscles have been observed by Farre (Phil. Trans. 1837, p. 387) in Bowerbanhia, Vesicularia, Lagenella and other Bryozoa. Milne Edwards has seen them in Tubulipora and Eschara. (Ann. d. Sc. Nat. VIII. 1837, p. 324 ; VI. 1836, p. 23, pl. I. fig. 1, e, 1, d ; pl. II. fig. 1, a.) Coste has given a very detailed description of the
cies examined no such form of muscle is present. Quite lately, however, the subject has been carefully examined by Allman (Rep. Brit. Assoc. 1850, p. 318), and his descriptions are such as to leave no douht upon the existence of the striated fibre with the specics he has examined, among which are the Paludicellae.-ED.

With Eschara there are, moreover, two fasciculi in each cell, which move its operculum, and thus close the entrance of this cavity. ${ }^{(6)}$

§ 31.

Loeomotion is performed by the Polyps in various ways.
With the Hydrae, by their long-stretching arıs; with Actiniae, by the contractions of the dise of their foot; ${ }^{(1)}$ while the Edwardsiae, having clongated bodies which are not attached by a foot, progress by vermiforin movements. ${ }^{(2)}$ With Cristatella mirabilis, the whole colony moves itself along by the foot-like basis, like the Actiniae. ${ }^{(3)}$

Some Polyps, at a certain period of their devclopment, move frecly in the water by discoid contractions of their body, like the pulmograde Acalephae. ${ }^{(4)}$

§ 32.

A very remarkable peculiarity is the presence, in certain Bryozoa, of organs shaped like a bird's head, and which swing to and fro at the base of their cells. In some speeies, these organs have the form of lobster's " claws, being composed of both a fixed and a movable piece. This last is corncous, and moved by a muscle which arises from a cavity in the first. It is not yet known by what means either this beak is opened, or the whole organ moves to and fro. ${ }^{(1)}$

Equally unknown is the function of these singular organs, the movements of which persist after the death of the animal, and of which, thereforc, they are independent. ${ }^{(2)}$ They are perhaps organs of defence or prehension, and analogous to the Pedicellaria of the Lehinoderms.
muscles of Plumatella (Comp. rend. XII. 1811, p. 724 ; Muller's Arch. 1842, p. ccx).*
${ }^{6}$ Milne Edwards, Ann. d. Sc. Nat. loc. cit. p.
24, II. I. fig. 1, e.
1 Berthold, loc. cit. p. 14.
2 Quatrefages, Ann. 1. Sc. Nat. XVIII. p. 7t; also forbes, Ann. of Nat. Ilist. VIII. 1842, p. 243.
3 I have been able to confirm the observation of Dalyell (Froriep's Notizen 183t, No. 920, p. 276) upon this motion in Cristatella. Trembtey, also, has observed that the corallum of Plumatella cristata moved half an inch in eight days (see his Mémnire pour servir a l'Ilist. des Polypés d'eau doucc, 1 1i55, p. 298).
4 See the observations of Steenstrup (Ueber d. Generationswechsel, 1842, p. 20) upon Coryne fr i itillaria; also those of Van Reneden (Mém. sur les Campanulaires, 1843, p. 29, or Froriep's neue Notizen, 1841, No. 663, p. 38) upon Campanularia gelatinosa.

* $\$ 30$, note 5.] Allman (Report Brit. Assoc. 1850, p. 314) has described a very complete muscular system in the fresh-water Bryozoa. In the species with bilateral lophophores, there are seven distinct sets: 1. Retractor muscles of the polypide; 2. The rotatory muscles of the crown; 3 . The tentacular muscles ; 4. The elevator muscle of the valve; 5. Superior parieto-vaginal muscles; 6. Inferior parieto-vaginal museles; 7.Vaginal sphincter. The walls of the stomach also contain circular muscular fibres.

1 These organs were first described by Ellis (Essai surl'Ilist. Nat. des Corall. 1756, p. 51, pl. XX. fig. A). Nordmann (Observ. su: la Faune Iontique, 1810, p. 679, pl. III. fig. 4) has descrihed and figured them with much accuracy. In Cellaria avicularis, Bicellaria ciliata and Flustra avicularis, they are formed like lobster's claws. In Retepora cellulosa they are pincer-like, and in Telegraphina they are articulated stings. See also Krohn in Froriep's Notizen, 1844, No. 533, p. 70.

For the organs having the form of a bird's head and a lash, and which are present in certain Bryozoa, see also I'an Beneden, Recherch. sur l'anat. \&c., des Bryozoaires, in the Nouv. Mém. de Bruselles, XVIII. 1845, p. 14, pl II. III., and Reid in the Ann. of Nat. 11 ist. X VI. 1845 , p. 385 , pl. XII.
2 Darwin's Voyage of the Beagle, 184t, pt. I. p. $252 . \dagger$

With Paludicella, the muscular system is somewhat different ; there are here five sets, - the 1st. 5 th, 6 th , and 7 th of the preceding, and the parietal muscles. But with the Ist there is here only a single instead of a double fasciculus. - Ed.
$\dagger[\S 32$, note 2.] See Hincks (Ann. Nat. Ilist. VIII. 1851, p. 353), who regards these avicularia as organs of defence, and has ohserved them seizing and retaining foreign bodics. - Ed.

CHAPTERS III. AND IV.

NERVOUS SYSTEM AND ORGANS OF SENSE.

§ 33.

As yet only a very rudimentary and imperfeetly distinguished nervous system has been made out in the Polyps; this eonsists of round masses, which are regarded as composed of nervous matter (ganglia), situated in the parenchyma. A ganglion of this kind has been supposed to have been observed about the mouth. ${ }^{(1)}$

§ 34.

Investigations upon their organs of sense have not been more sueeessful. However, the sense of touch appears developed over the whole surface of the body, but speeially so in the extremely irritable arms and tentaeles. But, as yet, no taetile nerves have been found in these parts. In the same manner, light, to which these animals show a greater or less sensibility, is pereeived rather by the general surface of the body than by special organs.

There are, however, in some speeies, at partieular stages of development, during whieh they swim freely about, eertain nicely-defined bodies situated upon the sides of the body, and whieh may be regarded as speeial organs of light and sound. This is the ease with Syncorype ; ${ }^{(1)}$ and Coryne ${ }^{(2)}$ has in their place four red organs whieh correspond exaetly to those found on the border of the dise of the pulmograde Aealephr, and which have been regarded as organs of sense.

The organ seen at the base of the six arms of Eleutheria dichotoma has quite the appearance of an eye ; that is, there ean be distinguished in

[^26][^27]> Nat. XIV. 1840, p. 223). Coste asserts the presence of a nervous system in Pennatula (Froriep's neue Notizen, 18t2, No. 450, p. 154). That which Spix pretended to have disesvered in the foot of Actinia (Ann. d. Mus. d'llist. Nat. 1809, p. 443, pll. XXXIII. fig. 4) has been properly rejected by most modern zootomists, as au illusion. See Berthold, loc. cit. p. 6.*

> 1 Loven, Wiegmann's Arch.1837, I. p. 323.
> ${ }_{2}$ Steenstrup, Ueber den Qencrationswechsel, p. 23.
uted in the substanec of this last organ. And, finally, another set of filuments were distributed to the organs about the mouth. See Report of the same, for 1849, p. 72. According to a late Report, this observer appears to have been able to make out a distinet nervous system in all the fresh-water Bryozoa, cxcept Paludicella. He has, however, been able to detect no certain organ of special sense. See report of the same for 1850 , p. 319. - KD.
it a cornea, a crystallinc lens and a red pigment layer surrounding the whole. ${ }^{(3)}$

Furthermore, there are upon the border of the dise of the campanulate Campanularia, colorless corpuscles, containing a calcareous nucleus, which is transparent as a crystal and soluble in acid.

These organs should probably be regarded as the most simple form of the auditory organs, for they have only a simple vestibule with its single otolite. ${ }^{(4)}$

CHAPTER V.

DIGESTIVE APPARATUS.

§ 35.

The digcstive apparatus of Polyps is formed after two different types. With the Anthozoa it consists of a mouth and a simple stomachal sac without an anus. But with the Bryozoa, there is a mouth and anus, and a digestive canal which may be divided into the sections of oesophagus, stomach, small intestinc and rectum.

$$
\text { § } 36 .
$$

The mouth of Polyps is usually surrounded by a circle of long, very contractile tentacles or arms. These tentacles are tubular, and connect with the cavity of the body. ${ }^{(1)}$ They are simple, ${ }^{(2)}$ or pennate, ${ }^{(3)}$ and may be disposed around the mouth in a single ${ }^{(4)}$ or a multiple ${ }^{(5)}$ circle; they are also frequently covered with cilia. ${ }^{(6)}$

Thus, the cylindrical tentacles of Actinia are entircly covered by ciliated epithelium. With the Bryozoa, on the contrary, the slightly-flattened ten-

[^28]does not open outwards at the extremity of these organs. 1 doubt, in fact, if the Actinina are an exception to this. It therefore appears slngular that Rymer Jones (A Qeneral Outline of the Animal King. p. 41, fig. 13), and Lesson (Duperrey, Voyage autour du Monde. Zoophytes, p. 82, No. 1, fig. 1), expressly mention and distinctly figure these openings ; the first with an Actinia, the second with an Eumenides. According to Van Beneden (loc. cit. p. 15) the tentacles of Campanularia are without these cavities. But this is contradicted by Lovén (Wiegmann's Arch. 1837, Bd. 1, p. 252). In Hydra the cavities open distinctly into the stomach, as is probably the case with many other Hydrina. Frey and Leuckart likewise doubt the constant presence of an orifice at the apex of the tentacles of the Actiniae.*
${ }_{2}$ Actinia, Hydra, Flustra and Campanularia.
3 Veretillum, Lobularia, Isis, Gorgonia, and Zoanthus.
${ }^{4}$ Hydra, Flustra, Zoanthus and Veretillum.
5 Actinia and Caryophyllia:
6 Veretillum, Flustra, Eschara, Cristatella and Tubulipora.

Structure and Classitication of Zoophytes. Phil. 1846, p. 32. - ED.
tacles have only a single row of cilia, which move regularly and voluntarily, like the rotatory organs of the Rotatoria.

By means of the currents produced by the cilia of their tentacles, many Polyps draw towards their mouth light particles of food; ${ }^{(i)}$ others make use of their ciliated arms to seize larger portions. ${ }^{(8)}$ This act is aided by the nettling and various prehensile organs, which are more ustally found upon those Polyp-arms having no cilia. ${ }^{(9)}$ These organs are found upsn the tentacles of Actinia, Edwardsia, Veretillum and Alcyonium, and without doubt serve for the seizing of the prey as well as its retention until death.

But these should not be confounded with special prehensile organs found on the tentacles of certain species. These consist of a small coriaceous capsule, from which the animal can project a kind of sting. ${ }^{(0)}$ By means of these organs, the animal can attach itself like a bur to external objects, and not by suction, as is generally supposed.
The circular or oval mouth is always situated in the centre of the anterior extremity of the body; it is often surrounded by a lip formed of circular fibres. ${ }^{(1)}$ In a few specics, the mouth projects like a cone at the base of the tentacles. ${ }^{(12)}$ With the Plumatellae ${ }^{(13)}$ the mouth is topped by a tonguelet covered with rapidly moving ciiia. Some of the Anthozoa, which capture animals of considerable size, can, in swallowing them, dilate their mouth to an astonishing width. ${ }^{(14)}$

DIGESTIVE CAVITY OF ANTHOZOA.

- § 37.

The simple stomach of Anthozoa, which is of a variable length, opens in general directly external by means of the mouth, ${ }^{(1)}$ and with a few species, only, is there a muscular oesophagus. ${ }^{(2)}$

With some, the stomach blends with the walls of the body, ${ }^{(3)}$ but usually it is more or less isolated. There remains, therefore, a cavity of the body of variable size, and which is directly continuous with the cavities of the arms. In those Polyps living in colonics, it is prolonged into canals traversing the corallum, and in this way the cavities of the bodies of all the

[^29]ment is still unprojected (see his Memoir in the Nov. Act. physico-medica. XVIII. p. 300, Tab. XV. fig. $5,9,10$). Perhaps the organs which Erdl (Müller's Arch. 1841, p. 424, Taf. XV. fig. 3) has seen upon the tactile lobules of Verctillum cynomorium are of this kind.

11 Actinia and Edwardsia.
12 Hydra, Coryne and Campanularia.
${ }^{13}$ Alcyonella and Cristatella.
14 Actinia and Hydra.
1 Veretillum, Alcyonium, Actinia and Hydra. ${ }_{2}^{2}$ Edwardsia. See Quatrefages (Ann. d. Sc. Nat. XVIII. pl. I. fig. 2 ; ${ }^{\text {lil. II. fig. }} 1,2$).

3 Hydra. The stomach of the arm-polyps is not, as has been formerly supposed, a simple excavation in the body. It has proper walls distinct from those of the body, by which, however, they are closely embraced.' There is, therefore, in Hydra no cavity of the body, and the cavities of the tentacles open directly into the stomach. This is also true of Eleutheria (Quatrefages, Ann. d. Sc. Nat. XVIII. p. 283).

Polyps are placed in direct intercommunication. It is not rare to find this general cavity divided into chambers by mesenteric membranes stretching longitudinally from it to the external surface of the stomach. ${ }^{(4)}$
The base of the stomach of many, and perhaps all of the Anthozoa, is pierced by one or more valvular openings, which communicate with the cavity of the body. ${ }^{(5)}$ These animals, by controlling at will these orifices, can allow to pass into the cavity of the body the proper materials, which are probably water and liquid chyle. ${ }^{(6)}$ This digestive apparatus thus communicating with the cavity of the body, reminds one of the organization of the Iufusoria. ${ }^{(7)}$
The cavity of the stomach is lined by very delicate ciliated epithelium, which is continuous through the orifices upon every surface of the cavity of the body and arms, and even into the intercommunicating canals of the corallum.
The color of the walls of the stomach is quite varied, and is due to certain pigment cells which very probably perform the function of a liver; for these animals are entirely wanting in any other glandular appendix of the alimentary canal, analogous to a liver. ${ }^{(8)}$

Abstract

4 There are often eight of these longitudinal chambers, as in Veretillum, Alcyonium and $A l$ cyonidium (see Icones zoot. Tab. XXXIV. fig. 2 ; also Ann. d. Sc. Nat. IV. 1835, pl. XVI. fig. 3, and pl. XII. fig. 3, 4). In Actinia there are seven more. With Edwardsia the eighth mesenteric divisions do not reach the sides of the body (Quatrefages loc. cit. pl. I. fig. 2).*

5 These orifices were long ago obscrved by the elder anatomists upon various Polyps. Afterwards their existence was incorrectly doubted by other naturalists; for latcly they have bcen distinctly made out. Thus, in Veretillum cynomorium (Rapp, Nov. Act. physico-medica XIV. 1829, p. 650), in Alcyonidium and Alcyonium (Milne Edwards, Ann. d. Sc. Nat. IV. p. 325, pl. XV. fig. 6), and in Edwardsia (Quatrefages Ann. d. Sc. Nat. XVIII. p. 91).

In Sertularia and Campanularia there are openings between the stomach and the tubulous cavities of the corallum (Lister, Phil. Trans. 1834, p. 371, and Van Beneden, M'm. sur les Campanufaires, loc. cit. p. 17). There must be direct communication of this kind with the Actiniae, since they regularly reject by thicir mouth nettling filaments, from the cbambers of their body. With Hydra, the stomach communicates, by an orifice bituated at its base, with the narrow tubulous cavity of its cylindrical foot. But at the extremity of this tube there is no oval opening, and the tube itself carnot be regarded as a rectum, for it receives neither feces, nor fragments of food, and is not affected by the frequent enormous dilatations of these animals from surfeit. Corda therefore is incorrect in assigning an anus to these animals. (Nov. Act. phys-ico-medica XVIII. p. 302, Tab. XIV. fig. 2, E.) 1Ie appears to have entirely neglected the foot of this animal, which, however, has bcen well figured by Ehrenberg (Abhandl. d. Berl. Akad. 1836, p. 134, Taf. II. fig. 1); and since Roesel (Insekterbel. III. Taf. LXXVIII, and LXXIX. fig. 2 , and LXXXVI. LXXXVIII. fig. 6) has perceived it in all unmutiLated arm-polyps. Sars (Faun. littoral. Norveg, p.

* [§37, note 4.] With all the Actinaria the lameilme of the visceral cavity are the multiples of six ; all the Alcyonaria have eight of these lamellæ. See Dana loc. cit. p. 49. - Ed.
$\dagger[\$ 37$, note 5.] With the Actinoidea, recent researches have shown that the stomach communi-

21) has found with a Lucernaria a stomach opening inferiorty, and communicating directly with the cavity of the body. This communication has been observed also by Frey and Leuckart (Beitr. p. 3) with the Actiniae and several other Anthozoa. \dagger

6 Quatrefages (Ann. d. Sc. Nat. XYIII. p. 87, 91) has seen the stomach of Edwardsia entirely filled with Spirorbis, and other solid food, without any of it passing into the cavity of the body.
7 With Infusoria, the lower end of the gesophagus is free, so that the food passes directly from it into the parenchyma of the body, where it forms a carity ; but with thic Anthozon, there is a stomach, from which chyle alone can pass into the cavity of the body.
\checkmark These cells are white in Edwardsia, yellow in Alcyonidium and Alcyonium, and brown in Veretillum and Hydra. In the last, the brown is distinctly due to irregular pigment granules of that color, floating in the clear liquid of the celt. Probably these cells, by bursting, empty their contents into the stomach ; at least, I have been able to find no exeretory duct, such as Corda has figured with the Mydra fusca (Nov. Act. Acad. physico-medica XVIII. p. 302, Tab. XV. fig. 15-17; or Ann. d. Sc. Nat. V1II. p. 366, pl. XIX. fig. 15-17).

In Hydra viridis, thesc brown cetls of the stomach can easily be distinguished from the layer of green pigment belonging to the parenchyma of the body. Moreover, if a transverse section of this animal is made, there appears a wide difference of organization between the internal and external surface of the stomach; the first has ciliated epithelium and hepatic cells, the second a barc skin with prehensile organs. This being so, how can these animals be cverted like the finger of a glove, as some naturalists have affirmed, and yet live? for the two surfaces of the stomach, so different, conld not replace each other, and then again the cavities of the arms would open directly outward. Indeed, it is not possible to return unmutilated an everted Polyp, since the inextensible cavity of its foot cannot leave the body with impunity. The gastric
cates with the cavity of the body by a single orifice only, which may be closed by muscles. See Dana, loc. cit. p. 40,44 , pl. XXX. fig. 3, a, b, c, d. It has been since vcrified by Cobbold, Ann. Nat. Hist. XI. 1853, p. 121, with figures. - Ed.

DIGESTIVE CAVITY OF BRYOZOA.

§ 38.

The very complicated digestive canal of the Bryozoa floats frcely in the, spacious cavity of their body. It is composed of an cesophagus which, at its lower extremity, dilates into a round or oval muscular crop; ${ }^{(1)}$ upon this immediately succeeds a cecal stomach, from the upper portion of which a small intestine arises and passes upwards in front. This, after a coursc of variable length, ends by a constriction in a short but large rectum, which opens in the vicinity of the mouth, at the external side of the base of the tentacles. ${ }^{(2)}$ The digestive canal here, therefore, is not in communication with the cavity of the body. Its whole inner surface is lined with very active, ciliated epithelium, which keeps its contents in motion, and especially the foces of the rectum. The sides of the stomach are often colored brown, jellow or green, from the presence of hepatic cells.t

CHAPTERS VI. AND VII.

CIRCULATORY AND RESPIRATORY SYSTEMS.

$\oint 39$.

A vascular system has yet been found only with a few Polyps; but there it is so apparent that its presence in others may be inferred. The bloodvessels exist upon both the sides of the body and of the stomach, and are in part longitudinal, in part circular, ending in a capillary uet-work. They are not simple canals excavated in the parenchyma, but have proper walls, and circulate a liquid containing a great number of white (blood) globules. ${ }^{(1)}$
juice of the Anthozoa must have a very great digestive power, since the Actinia eat hard-shelled crustacea, and even the soft Hydrae quickly dissolve the larvæ of Nais and Chironomus. But the inligestible parts of these animals, such as epidermis, hristles, hooks and jaws, are afterwards ejectel by the mouth.
${ }^{1}$ In Bowerbankia (Farre, Phil. Trans. 1837, p. 392, Pl. XX. fig. 5 ; Pl. XXI. fig. 7) this crop is oomposed of pyramidal corpuscles, with the apices pointing inward, so as to act like teeth. I have observed a very simitar structure in Alcyonella stagnorum.
\& In Bowerbankia and Vesicufaria the small intestiac is very long (Farre. loc. cit. Pl. XX. and XXII). I have obscrved it very short with Cristatella mirabilis.*

[^30]1 Milne Edwards has perceived a vascular network of this kind in the sides of the boly, with Alcyonidium elcgans, and Alcyonium palmatum and steltatum (Ann. d. Sc. Nat. IV. p. 338). Quite recently, Will has described the vascular system of Alcyonium palmatum (Froriep's neue Notizen, 1843 , No. 599, p. 68). According to him, white vessels may be perceived, even with the naked eye, upon the longitulinal furrows of this animal. These enter the lobuks on the border of the body, and there form a dense net-work, from which a branch is sent to cach arm, and this last gives off laterally a twig to each tactile lobule. The principal trunk of the longitudinat vessels contimucs upon the sides of the stomach to the base of the tentacles. At the point where the bories of the Polyps eontinue with the corallum, there are
wide at first, passes along the side of the cardiac cavity and oesophagus, and rapidly decreases in diameter, until it terminates in a distinct anus just below the mouth. - ED.
\dagger [Note at end of § 38.] See in this eonnection my note under § I3, note 2. - Ed.

§ 40.

All Anthozoa and Bryozoa have a proper circulation; for there rises and falls in the cavity of their body a liquid, which is usually clear, and often contains round and colorless corpuscles. This rises cven to the end of the cavity of the tentacles, and then returns into that of the body generally. In the colonial Polyps, these currents, by traversing the canals of the corallum, thereby pass from one animal to another. This movement is caused by ciliated cpithelium, which, as we have just seen, lines all the cavities of these animals.

With the Bryozoa, the cavity of whose stomach does not communicate with that of the body, these currents are continuous. regular, and have a definite direction. But with the Anthozoa they are changed by the reciprocal action through the stomachic orifices of the liquids of the stomach and cavity of the body. These currents are perccived in the arms, even when the cavities of these organs open directly into the stomach. ${ }^{(1)}$

§ 41.

Nothing can yet be positively said as to the nature of this circulating liquid. for it is still doubtful whether this whole phenomenon should be regarded as an aqueous or a sanguincous circulation. If we refer to the fact that the Anthozoa can introduce water into the system through the apertures of the stomach, it should be admitted that this system has an aqueous character, performing, perhaps, the function of an internal respiratory apparatus,

Abstract

given off from the eight principal longitudinal vessels numerous lateral branches, which anastomose frequently in the canals of the corallum, and finally form a capillary net-work. The white, semi-transparent corpuscles contained in thin blood have, according to Will, a diameter of about 1-1200 of an inch, and out of the vessels have a globular aspect. According to this same observer, there is a similar vascalar system in Actinia.* 1 The circulation in question has been observed by many investigators. Trembley (Mem. pour servir à l'Histoire des Polyps, p. 219) has perceived it in Plumatella cristata. Dumortier (\$ém. sur l'Anat, et la Physiol. des l'olypes, p. 47) has confirmed this observation. Cavolini (see his Hemoir on the Anthozoa, p. 56, 87) has seen it in the tubes of several Sertularina. There are various opinions as to the cause of these currents. Gruithuzsen (Isis. 1828 , p. 506) studied them in the arms of Hydra, and regarded then due to a communication with a circular vessel surrounding the mouth. But, according to the observations of Meyen (Brown's Miscellaneous Botanical writings, 1V. p. 490), of Ehrenberg (Mittheil. aus. d. Verhandl. d. Gesellsch. naturf. Freunde z. Berlin, 1836 , p. 27) and myself, the cavities of the arms open directly into the stomach. The movements of the liquid in the arms of Hydra are due not only to the general contractions of the body, as Gruithuisen and Meyen have supposed, but also to the cilia covering these parts. This

* [§39, note 1.] Subsequent researches have failed to detect any true circulatory system with the real Polyps, and there now can be but little doubt that no such system exists. As with the Acalephs,
was first pointed out by Grant (The new Edinb. Phil. Jour. 1827, p. 107 ; or Outl. of Comp. Anat. 1841, p. 430), who observed these currents in Flustra, Lobularia, Virgularia and Pennatula. Nordmann, who has examined this circulation in the body and tentacles of Alcyonella diaphana, and Plumatella campanulata, and other Bryozoa, did not find any cilia. He compared the currents to those seen in the joints of Chara (Microg. Beitrag II. p. 75, or Obser. sur la Foune Pontique, p. 709). I feel positive abont the presence of cilia in the body of Cristatella mirabilis and Alcyonella stagnorum. Lister has carefully described this circulation with Tubularia, Sertularia and Campanularia; and finding no adequate cause, has likened it to that of Chara (Phil. Trans. 1834, 1. 366, et seq.). Ehrenberg (Abhandl. d. Berl. Akad. 1832, p. 239) and Lovén (Wiesmann's Arch. 1837, I. p. 251) atribute these currents in Sertularia and Campanularia to a peristaltic movement of the canals of the body ; which, however, Van Beneden (Mem. sur les Campan. loc. cit. p. 18) has been nable to sec in these Polyps. Erdl (Miller's Arch. 1841, p. 426) attributes it in Veretillum cynomorium, to cilia; and Will (Froriep's meue Notizen, 1843, No. 599, p. 69) has found all the cavities of the body and corallum of Alcyonium palmatum lined with cilia. It is, moreover, certain that the currents observed by Erdl (Muller's Arch. 1841, p. 428) and Dumortier ($M \mathrm{~mm}$. loc. cit. p. 52) in the tentacles of Actinia are due to ciliary action.
their nutritive and digestive systems are combined; and, as with them also, the circulating, nutritive liquid is chyme. See also Dana loc. cit. 11. 35. - ED.
while the tentacles, in the cavities of which are regular currents, serve as external organs of respiration, similar to branchiae.

But, if we regard the whole as a truc circulation, the contained liquid with its corpuscles will be analogous to blood. But this view is opposed by the fact that, with Alcyonium, with Actinia, and perhaps many other Polyps, there is a true vascular sanguineous sy.stem. ${ }^{(1)}$

We ought, therefore, to compare the liquid in question to chyle, which passes from the stomach to the general cavity of the body, in the Bryozoa by exosmose, but in the Anthozoa by the orifices of the stomach. ${ }^{(2)}$
The opinion that these currents form a vascular system, moreover, is not reconcilable with the fact that the Anthozoa can at will empty the contents of their stomach into it, or in the same way shat off from it the water.

We are obliged, then, to regard all these cavities as constituting a vascular aqucous system, performing a respiratory function, by which, in the Anthozoa, all the internal parts are constantly bathed with fresh water. This renewal of water is cffected by its alternate ingress and egress through the stomach, ${ }^{(3)}$ during which chylc-corpuseles could casily, by being mixed with water, be carried into this aqucous system.

With the Bryozoa, where this system is, without doubt, equally one of respiration, we shall have to sect for the openings by which this renewal of water takes place. These are situated near the anus, and place the cavity of the body in dircet communication with the external water.*(t)

1 See $\$ 39$, note 1.
2 Ebrenberg and Loven regard the canals of the corallom of Campanularia ant Sertularia as direct prolongations of the stomach, and designate them as intestinal tubes, and cheir contents as chyme.

3 This alternate ingestion and egestion of watcr has been positively obscrved by Lister, Love'n and Van Beneden, in Sertularia and Tubularia.

4 By an opening of this kind, Meyen (Isis 1823, p. 1228) saw escape the eggs of Alcyonella starnalis, which were free in the cavity of the body. Van Beneden (Ann. d. Sc. Nat. XIV. 1810 , P. 222) declares that he has observed at the base of the tentacles of Alcyonella a series of orifices,

* [End of § 41.] In this conncction sloould be mentioned branchia-like organs, described by Dana (loc. cit. p. 42) with the Zoanthina. A pair of them is attached to cach of the larger lamellæ. He remarks, "The structure of thesc organs is such that we can hardly doubt their branchial nature; yet no circulating fluid was detected within them." I find no other mention of these parts, cxcept by Lesueur (Jour. Acad. Nat. Sc. Philall. I. 183-185, PI. VIII. fig. 1, 5, 9), who regarded them as of an hepatic nature. - Ed.
\dagger \§41, note 4.] The true nature and relations of the respiratory and circulatory systems of the Bryozoa are yet imperfectly understood. There can be but little doubt that water is by some means introduced into the general cavity of the body, and there mingles with the nutritive fluid, which trans-
which may be called aquiferous mouthe, for by them the water enters the cavity of the body. This is perhaps the casc with Actinia, also; for Rapp (Ucb. die Polypen u. die Aktinien, loc. cit. p. 47) has here found numerous small orfices scattered over the whole surface of the body, and through which are cmitted jets of water when the animal is squeezed, thus showing that they belong to an aquiferous system. It is quite improbable that the hollow tentacles of Actinia are open by an orifice at their apex for the circulation of water, as many naturalists have supposed. Quatrefages (Ann. d. Sc. Nat. XV1II. p. 96) is quite opposed to this opinion. See also above § 36, note $1 . \dagger$
udes through the walls of the alimentary canal. But the apertures for the introduction of this water have not yet been clearly secn. It is true that Van Beneden thinks he las found "Bouches aquiferes," as above mentioncd, but their existence there has not been fully verified, and is even denied by Allman. At present, therefore, it cannot be said that the Bryozoa have a true aquiferous system, the the Anthozoa. The perigastric fluid is, separated from the water, most probably the elaborated product of digestion, and the corpuscles therein contained chyle-corpuscles. Allman's view, therefore (Report Brit. Assoc. 1850, p. 319), appears the most correct: "The perigastric circulation, therefore, unites in itself the triple function of a chyliferous, sanguiniferous and respiratory system." - Ed.

CHAPTER VIII.

ORGANS OF SECRETION.

§ 42.

Nothing like urinary organs have yet been found in Polyps. Perhaps the borders of the mantles of the cellular Polyps should be regarded as organs of special secretion, since by them the increase and production of these cells take place. ${ }^{(1)}$

CHAPTER IX.

organs of gleneration.

$\oint 43$.

Polyps reproduce by gemmation, fissuration, and by eggs.

1. Fissuration is comparatively rarc ; it takes place nearly always longitudinally, and the division may or may not be complete. ${ }^{(1)}$
2. Gemmation is their most common mode of reproduction. The new individuals may be completely detached, or may remain connected with the parent corallum.
a : In gemmation, complete separation of the young individual is, on the whole, rare. It is best known in Hydra, with which the buds always appear upon a certain part of the body, - that is, at its union with the foot. ${ }^{(2)}$ A bud of this kind consists always of a simple fold of the wall of the stomach and the skin, so that the stomach of the young individual is in direct communication with that of the parent, and the chyme can pass freely from one to the other. When the foot of this new being has acquired a proper development, it is completely detached at its inferior extremity.
b : Gemmation without separation of the new beings is quite common with Polyps, and occurs with very various modifications. The buds are formed sometimes upon the sides, sometimes upon the base of the body. In the first case, the coralla have a dendroid aspect; in the second, they are more lamelliform, spherical or lapidescent. These variations are not limited to certain genera or species, being often due to external influences,

[^31]and Caryophyllia; but, when incomplete, the cells are branched, lobulated, and of irregular contour, as in Agaricia, Maeandrina, and Monticularia, \&c.
2. Roesel (loc. cit. III. Taf. LXXXV. fig. 2, 3, 5, Taf. LXXXYI. and LXXXV11l. fig. g. h. and Taf, LXXXIX. fig. 4). The exceptions to this rule, which are sometimes observed, are probably due to lesions of an accidental nature.
and especially the nature of the soil upon which the eolony may have been fixed.* ${ }^{(3)}$

§ 44.

3. It is probable that all Polyps reproduce by eggs. This requires two kinds of organs, one to produce the egg, the other the semen. Both kinds, ovary and testicle, have already been deseribed in many species.

Their distribution is quite varied. In some, the sexes are united in the same individual, ${ }^{(1)}$ in others they are distinct; ${ }^{(2)}$ with the colonial polyps the sexes are separate, and each colony ${ }^{(3)}$ may be composed of individuals which are androgynous, or those of one sex alone. ${ }^{(t)}$

Some species are sexless, and remain so ; but they produee by gemmation individuals of a partieular character, which have sexual organs. ${ }^{(5)}$ These last, whieh have usually either a campanulate or discoid form, are separated from the corallum often before the sexual organs have been formed, and whieh they do not acquire until an advaneed period of their lives. During this time they swim freely about, like the pulmograde Acalephae, ${ }^{(6)}$ for whieh, as well as for young Polyps, they are often taken. ${ }^{(7)}$

$$
\S 45
$$

That the relations just deseribed really exist, may be learned from the following facts: In Coryne cchinata and vulgaris, there are formed at their base, quadrangular and campanulate individuals, which lay numerous eggs. ${ }^{(1)}$ In like manner also, ovigerous capsules are formed about the base of Syncoryne ramosa. ${ }^{(2)}$ In Coryne fritillaria, ${ }^{(3)}$ the new iudividuals are completely detached and swim freely about, closely resembling Medusae. In this condition they are developed, and their eggs come to maturity. ${ }^{(4)}$

[^32]4 Aceording to Erdl (Froricp's neus Notizen, 1839, No. 249, p. 101) the eoralla of T゙eretillum cynomorium and Alcyonium have always either male or female individuals aloue. Irohn has perceived the same of Sertularia (Mruller's Arch. 1843, p. 181).
${ }_{5}^{5}$ Coryne, Syncoryne and Campanularia.
G' Coryne and Campanularia.
7 Very striking, at least, is the resemblanee of Ían Beneden's (Mém. loc. eit. M. II.) figure of a free female of Campanularia gelatinosa and those of Sars (Beskrivelser. loe. cit. p. 28, Taf. VI. fig. 14) ol' small Acalephae, nancd by him Cytacis ortopunctuta, and by Will (Horac tergcstimae, 1844, p. 68, Taf. II. fig. 5) as Cytacis polystyla.

1 R. Wagner. Isis, 1833, p. 256, Taf. Xl.; also Icones zoot. Tab. XXXIV. ©ig. 16.
${ }_{2}$ Lowern. Wicsmann's Archiv. 183̊, 1. p. 321, T'af. VI. fig. 19-25.
${ }_{3}$ Steenstrup. Ueber d. Generationswechscl, p. 20, Taf. I. fig. 41-47.

4 According to Sars (Beskrivelser: loc. cit. p. 6, Taf. I. fig. B), these remarks are also true of Corymorpha nutans.

Laguncula, \&cc., Mém. Acad. Royalc de Bruxelles, XVIII.; also, Recherch. sur l'Anat. la Physiol. et le développement des Bryozoaires, \&e. Tbid. XIX.). Sec also Allman, Report Brit. Assoc. 1850, 1) 320 . - ED.
\ddagger [§44, note 2.] According to my own observations, the Actiniae have both individuals which are hermaphrodites and those of one sex alone. —Ed.

The Campanulariae and Sertulariae produce at the end of their pedicle and branches elongated sexless individuals. But in the angles of these branches cells of another form, and containing many spherical individuals, are developed. In these last sexual organs are formed, which, in Campanularia geniculata, occurs without a separation of the new individuals from the corallun, while in Campanularia gelatinosa it is after detachment has taken place. ${ }^{(5)}$

§ 46.

In the eggs of polyps both a germinative vesicle and dot may often be seen. Frequently, however, both disappear at a very early period. The envelopes of the egg are usually of a simple, ${ }^{(1)}$ though sometimes of as complicated structure. The spermatic particles are very active, and in some species are filamentoid, in others composed of a solid body or head, to which is appended a very delicate tail. Water does not appear to affect either their form or motion. ${ }^{(2)}$

5 According to Krohn (Müller's Arch. 1843, p. $17 \pm$), it is probable that in Campanularia and Sertularia both sexes are developed in this way. From Ellis' description of Campanularia dichotoma (Essai sur l'Hist. Nat. des Corallines, p. 116, pl. XXXVMI. fig. 3), it may be eoncluded that the females, mistaken by these naturalists for eggs, separate in this way from the corallum. Meyen (Nov. Act. physico-medica. XVL. Suppl. I. 1834, p. 195, Tab. AXX. fig. 3, 4) has also taken the medusoid females of this species for spawn.
[Additional note to § 5 .5.] The series of those polyps, the sexless (nurse-hke) individuals of which produce sclf-dependent, medusa-like young, has been increased by several more recent researches. Sce Van Beneden, Rcch. sur l'embryol. d. Tubulaires, 1841, pl. I. IV. (Tubuturia and Eudendrium) ; Sars, Faun. bittoral. Norveg. p. 7, Tab. I. (Podocoryna and Perigonimus); Dujardin, Ann. d.Sc. Nat. IV 1845, p. 25T, pl. XIV. XV. (various inydrina). It is true that the developusent of the genital organs has not been observed in these medusi-like individuals; but they have indeed in the medusiform individuals of Syncoryne ramosa and Coryne fritillaria, and therefore it may be proper to infer that the same is true of other Mydrita and Sertularina. If it is correct to regard as the perfect state that in which the individuals resomble Medusx, and as the imperfeet state that in which they are polypoid, then should we, as has been done already by many, remove these animals from the elass of the Polypi, and place them with the Acalephae.*

1 In most Anthozoa. Eggs of this Kind, belonging to Actinia, Coryne and Veretillum, have been figured hy Wagner (Wiegmann's Arch. 1835, I. Taf. III. fig. 2 ; Prod. II ist. Gener. hom. atque anim. Tab. I. fig. 1, and Icones zoot. Tab. XXXIV. tig. 5, 17, 23).

2 With most Bryozoa the spermatic particlas are filamentous. Both from their size and their

[^33]motions, they have been taken for parasites. Kölliker (Beitr. zur Kennt. d. Geschlechtsverhalt. u. d. Saanten. Müssigkeit wirbellos, Thiere, p. 41, Taf. II. fig. 17) has seen the spermatic particles of a thread-like form, of Flustra carnosa, developing in eells, and has seen them moving in the cavity of the body. I have seen similar ones in Cristatella mirabilis and Plumatella campanulata. Those whiell were seen by Farre (Phil. Trans. 1837, p. 403 , pl. XXIIX. fig. 5, g) in the cavity of the body of Valckeria cuscuta, and were regarded by him as intestinal worms, have an oval body, to which is attaehed a delicate tail. Nordmann (Faune Pontique loc. cit.) has found those of Cellaria avicularia having the same furm. Those of Actinia have also a similar form (see Erdl Muller's Arch. 1842, p. 301, and Kölliker, loc. eit. p. 44 , fig. 13). One should be eareful and not eonfound the spermatie particles with the nettling organs having a similar form ; and especially as the development of these last has apparcutly some connection with that of the sexual organs (see Erdl loc. cit. p. 305). Aceording to Kolliker, the spermatic particlcs of Alcyonidium gelatinosum have a lanceolate body, with a hair-like tail (loc. cit. fig. 11).
Spermatic particles of a ccrcaria-form have been observed by Wasner (Icon. zoot. Tab. XXXIV. fig. 7, 12) with Veretillum and Hydra; by Van Beneden (Reeh. sur l'organisat. d. Laguncula, and Rech. sur l'anat. d. Bryozoaires, pl. V. in the Nouv. Mém. de Bruxelles, \&c. XVIII.), with Laguncula and Halodactylus; by Rathke (Wiegmenn's Arch. 1844, I. p. 161, Tat. V. fig. 6) and Steenstrup (Untersuch. üb. das Vorkommen d. Hermaphrodit. p. 66, Taf. I. fig. 18, e) with Coryme; finally by Kölliker (Nene Denkschr. VIII. p. 48, fig. 20, 21, 22, 21) with Pennaria, Eudendrium and Sertularia. In Crisia, on the other hand, Kolliker found the spermatic particles perfectly filiform. \dagger
sæ. Sce Lectures on Comparative Embryology, 1848; also Proceed. Amer. Assoc. for the Advaneement Sc. 1849 (" On the Plan of Structure and Homologies of Radiated Animals"), and Mem. Amer. Aead. loc. cit. p. 225. - Ed.
\dagger [§46, note 2.] I have been able to traee the development and character of the spermatic particles of many of the true Polyps and the Bryozoa. The development occurs in special daughter-cells,

§ 47.

I. With those polyps which are not scxless, and whose alimentary canal hangs free in the cavity of the body, the sesual organs are situated in this last. They often escape attention, since they are scarcely at all developed except at the sexual epoch. Both ovaries and testicles frequently appear as riband-like bodies, which, being attached by one extremity alone to the stomach, move frecly in the gencral cavity of the body. Sometimes, howcyer, they are attached longitudinally by one of their borders, like a mesentery, the opposite border being frec. In other cases, again, they are attached directly to the sides of the body.

The eggs and spermatic particles pass dircetly from the sexual organs into the cavity of the body. In Coralla having individuals of both sexcs, fecundation takes place in the cavities of their bodics, which connect with each other. ${ }^{(1)}$ With the others, however, the individuals of which are of one scx alone the surrounding water is the medium of fecundation, by transporting the spermatic particles unaffected to the cggs ; and this being performed by the aqueous circulation before mentioncd, impregnation takes place in the cavity of the body.

$$
\S 48 . *
$$

The variations of the internal genital organs in the different families are as follows:

1. With the Bryozoa, a riband-like ovary and testicle are suspended from the extremity of the stomach. In these organs are developed only two to four eggs or fasciculi of spermatic particles, from cells arranged like a string of pearls. ${ }^{(1)}$

The eggs, of which the germinative vesicle and dot disappear at a very early period, are detached from the ovary beforc their shell is well formed, and are set in motion by the cilia of the cavity of the body. Usually they are flattened, and at first enveloped by a thin and colorless membrane, which soon becomes thicker and darker, and has upon its borders a clear,

1 With Tendra zostericola, which is allied to
Flustra, the Polyps are contained in cells closely
bound to each other, But the cells of the males
communicats with those of the females by an open-
ing, through which the spermatic particles pass
into the cavity of the body of the female (see
Nordmann, Ann. d. Sc. Nat. XI. 1839, p. 191).
and the particles themselves are the metamorphosed nuclei of these cells, exactly as in other and higher animais. They have invariably, as far as I am acquainted, a cercaria-form consisting of a solis head, to which is attached a most delicate tail. The shape of this hcad, when studied carefully with the best powers, presents differences of zoological import. Sometimes it is pyriform (Tubularia, Actinia), sometimes conical (Astrangia), while among the Bryozoa it is long-oblong with Alcyonella. I cannot therefore agree with Kolliker (Cyclop. Anat. Art. Semen. 1849, p. 497) as to the mode of development of these particles with these animals. - ED.

1 See, for Alcyonclla stagnorum, Meyen (Isis, 1823, Taf. XIV. fig. 1), for Plumatella cristata, Dumortier (boc, cit. pl. I. fig. 3, u, u) and for Cellaria avicularia, Nordmann (Obs. sur la Faune Pontique, p. 679, fig. 4, A. n). \ddagger

* [§ 48.] In an cmendatory note at the end of the volume, the author remarks: "Sections 21 and $3 d$ of this paragraph should be omitted, since the genital organs, with all the Anthozoa, are attached on the internal surfuce of the visceral cavity. See Frey and Leuckart. Beitr. \&c. p. 13." I have, however, allowed them to remain, for the sake of their notes. - Eb.
\dagger [$\$ 48$, note 1.] My own researches in 1851 have shown me that with Alcyonclla the sexes are separate. The testicles and ovaries consist of pedurculated sacs, closed at first, but which are ruptured on the mature development of their contents. - Ed.
transparent ring. In Alcyonella and Plumatella, the eggs are of an oval shape, and of a dark-brown color. In Cristatella mirabilis, Dal. (Cristatella musedo, Cuv.), they are lenticular and clear brown, and have this remarkable peculiarity: (2) Upon both sides of the encompassing ring are a number of double-pointed hooks, which, at first, are imbedded in a gelatinous substance ; but as this last is dissolved by water, they become free, and adhere to plants and other bodies. ${ }^{(3)}$

2. With many Anthozoa, having a cavity of the body, the sexual organs are attached in the form of bands along the external face of the stomach. These are numerous, and during the epoch of reproduction their free borders are often plicated, and have a botryoidal aspect. This form is quite apparent in the Actiniae, where these organs are contained in separate chanbers of the cavity of the body. ${ }^{(4)}$ The same is true of the Edwardsiae. ${ }^{(5)}$ With Veretillum ${ }^{(6)}$ and Alcyonium ${ }^{(7)}$ these organs form mesenteric divisions which descend deep into the cavity of the body.
3. In Alcyonidium elegans ${ }^{(8)}$ and Tubipora musica ${ }^{(9)}$ these organs are attached to the internal surface of the cavity of the body, and have a plicated mesenteric form. ${ }^{(10)}$

§ 49.

The laying of the eggs takes place in different ways with those Polyps having internal sexual organs. With the Bryozoa it probably occurs through the openings near the anus. ${ }^{(1)}$ With the Anthozoa, however, they pass into the stomach through its abdominal orifices, and thence are ejected through the mouth. In the viviparous Actinia, the young, developed at the base of the stomach, are expelled in the same manner. (2)

§ 50.

II. Many Anthozoa, which have no general cavity of the body, have external sexual organs. This is especially true of Hydra, where in the

[^34][^35]of Alcyonidium melatinosum, Johnst. (Halodactylus diaphanus of Farre), is quite remarkable; for he found them wanting in the isolated individuals, but scattered here and there, in the form of small round sacs, in the fleshy substance of the corallum - some being ovaries, others testicies. But he is in doubt whether or not their contents are emptied into the cavity of the body or upon the outer surfaces (Beitr. loc. cit. p. 46).*
1 See, for Alcyonella stagnorum, Meyen (Isis, 1828, p. 1228).
2 Rathke has often found spawn in the stomach of Actinia (Reise Bemerk. aus Taurien, zur Morph. 1837, p. 10, and Beitr. zur vergleich. Anat. u. Physiol. in the neuesten Schrift. d. naturf. Gesellsch. zu Danzig, III. IIft. IV. I842, p. II2).
which are situated the ovaries. With the Zoanthidae the relations are of the same general nature; but with the Tubipora, Dana found six spermatic to two ovarian lamellae. See Dana, loc. cil. p. 43, pl. XXX. fig. 3, b, c, d, e, f, and pl. LLX. fig. 1, b. -ED.
same individual during the time of heat both ovaries and testicles are developed upon the external surface of the body.

In the place where the eggs are to appear, ${ }^{(1)}$ the transparent and colorless skin rises in the form of swellings, under which the vitelline mass gradually forms. These end each in the form of an excrescence, which, being constricted at its base and rounded, has the shape of an egg. At the point of constriction there is formed from the body of the Yolyp a kind of cupel, in the cavity of which the vitellus rests by a simall portion of its surface; at this point the skin becomes thin, and ultimately appears like an arachnoid membrane enveloping the egg. In this last neither a germinative vesicle nor dot has been discovered. Its separation is preceded by a thinning of its surrounding membrane, after which the vitellus is immediately clothed by a gelatinous substance. In Hydra vulgaris its whole circumference is covered by obtuse prolongations of this kind, which, after an increase in length, divide, each once or more, at their extremity, and so present a dentated appearance.

The arachnoid membrane finally bursting, the detached egg becomes fixed to some body, whilst the gelatinous coat entirely disappears. This is equally true of Hydra viridis, with the exception that here the vitelline prolongations are very short and compact. ${ }^{(2)}$

In these sanc individuals testicles are developed also. Between the base of the tentacles and the place of the appearance of the egg, there are developed small conical prominences, on the aper of which is a papilla. This has an orifice which leads into an internal cellular cavity. This is the real testicle, wherein are found spermatic particles composed of a body, or head, to which is attached a very movable tail. These particles easily escape through the orifice, and circulate in the water surrounding the Polyps filled with egrgs. ${ }^{(3)}$ The number of these testicles in a single individual is not definite. ${ }^{(\dagger)}$ *

1 In the arm-polyps, gemmation always precedcs propagation by egrs.
2 The eggs of IIydra were long ago observed by Bernhard Jussieu (Abhandl. d. schwed. Akad. 1746, V1II. p. 211). But afterwards they were regarded as exanthemata of this animal (see Roesel, Insektenbelust. Th. III. p. 500, Taf. LXXXIII. fig. 1, 2). Their true nature was lately first pointed out by Ehrenberg (Abhand. d. Berliner Akal. 1336, p. 115, Taf. II.).

3 The testicles of Hydra were known to the elder naturalists, but were taken for an eruptive disease (Trembley Abhandl. zur Geschicht. einer Polypenart, p. 26t, Taf. X. fig. 4, and Roesel, loc. cit. p. 502, Taf. LXXXIII. fig. 4). Latterly this same error has been continued (Laurent in Froriep's neuen Notizen, 1842, No. 513, p. 104). To Ehrenberg is due the first description of their true nature (Mettheil. aus den Verhaudl. d. Gesellsch. naturf. Freuade in Berlin, 1838, p. 14).

4 Wagner, Iconcs zoot. Tab. XXXIV. fig. 10, b, b. In Hydra vulgaris I have counted fifteen testicles; another individual liad seven egrs and eleven testicles; and a third, four eggs and twolve testicles.
[Additional note to $\$ 50$.] Other examples of Anthozoa having external genital organs in the form of egg or sperm capsules have been obsorved by Van Beneden (Rech. sur l'embryog. d Tubul. pl. V. VI.), Rathke (Wiegmann's Arch. 1814, I. Taf. V.), and Sars (Faun. littoral. Norveg. p. 7, Tab. II.), with Mydractinia, Coryne and Podocoryne. See also the facts collected by Frey and Leuckart (Beitr. \&c. p. 28). These egg or sperm capsules may, moreover, be regarded as imperfect male or female individuals, and then the porters of these capsules may be considered, being sexless individuals like those mentioned in $\$ 45$, in the category of uuse-like penerations which, after a more or less complete development, produce generations with sex.
particles for their development. It is alse worthy of remark, in this connection, that these ova sprout from the same part of the body in which eggs are developed. Thomson, however (Edinb. New Philos. Jour. 1847, p. 287), speaks of having observed the granular mass contained within these so-called eggs divide and subdivide like a proper vitellus, and this while still within the capsule, and attached to the parent animal. This does not

[^36]
§ 51.

III. There are Polyp-colonies which contain two kinds of individuals, those which are sexless, and those having sexual organs only at certain epochs. These last are campanulate or medusoid, and their sexual organs are developed in various parts of their body.

In Coryne ${ }^{(1)}$ and Syncoryne, ${ }^{(2)}$ the cggs appear upon the cxternal surface of the stomach, then fall into the cavity of the mantle, through the openings on the border of which they escape into the water. In the medusoid individuals of Coryne fritillaria and Corymorpha nutans, the sexual organs appear to be formed in the angles of the borders of the dise, ${ }^{(3)}$ and in Campanularia in the dise itself. *

$$
\text { § } 52 .
$$

As to the embryonic developments of Polyps, it is. probable that in a great number (perhaps all) there is a metamorphosis.

The development commences by the usual segmentation of the vitellus, ${ }^{(1)}$ by which it is ultimately converted into an ovoid, contractile body; this turns upon its longitudinal axis by means of cilia, with which it is entirely covered, swimming about like many Infusoria. These embryos, often developed in the mother, have sometimes been taken for swimming eggs. ${ }^{(9)}$ Afterwards they attach themselves to some body, and usually lose their cilia; the free extremity of their body opens, allowing the escape of the Polyp, which, in the mean while, has been developed in the interior, with its arms in front. Many of the Polyps thus produced multiply by gemmation, and thus become the foundation of new Polyp-colonies. ${ }^{(3)}$

1 Wagner (Isis 1833, Taf. XI. fig. 8).
2 Loven (Wiegmanu's Archiv. 1837, I. Taf. VI. fig. 19,20)

3 Steenstrup, Ueher d. Gemerationswechsel, p. $23,24$.
1 It is indeed singular that with Hydra the division of the vitellus takes place before the eggs are either detached from the body, or are surrounded by a dentated eavelope. I do not yet know at what epoch the development of the cmbryo commences, for I have never seen the young come forth. It is impossibse for me to say whether or not these Polyps experience a metamorphosis. Pallas (Karakteristik d. Thierpflanzen p. 53) has seen the young Polyps come for th from the egg, but he gives no description. Laurent, also, only says that the young animal escapes formed from the egg, without describing the embryo (Froriep's neue Notizen No. $513, \mathrm{pl} .101$). I'he segmentation of the vitellus has been ohserved by Van Beneden in the eggs of Pedicellina. See his Rech. sur l'anat. d. Bryozoaires (suite) loc. cit. X IX. p. 18, pl. II.

2 As would be inferred from his description, Cav olini (loc. oit. p. 47, 50, Taf. IV. fig. 7-10 and 1315) has observed similar embryos to those of Gorgonia and Madrepora. His descriptions of various eggs of Sertularia leave no doubt that they also
make the mattcr any more clear ; for, even admitting that they are proper ova, it is difficult to conceive how the impregnation (of which the segment ation for a definite result is the sequela) could take place while the ova are thus buried in the capsules.

The subject requircs further research. See also Steenstrup, Untersuch. üb. Hermaphroditismus, p.
were embryos (Ibid. p. 56, 80 ct seq.). Grant also has taken for eggs the contractile, ovoid emhryos of Lobularia digitata, which he has seen issue from the uouth of this animal (Froriep's Notizen 1823 , No. 440, p. 340). Meyen has well described and figured the ciliated epithelium of those of Alcyonella stagnorum (Isis 1823, p. 1223, Taf. XIV. fig. 4, 5). Loven has observed the elongated embryos of Campanularia genic ulata, and has taken the division of the vitellus for a spontaneous fissuration of the embryos (Wiegmann's Archiv. 1837, I. p. 260, Taf VI. fig. 13, 14). According to Rathke, who has seen movable lenticular embryos in the stomachs of Actinia, these polyps experience a metamorphosis (Reise Bemerk. aus Taurien zur Morph. p. 10, Taf. 1, fig. 12).
${ }^{3}$ This metamorphosis has already been ohserved by Cavolini (loc. cit. p. 261, Taf. VI. fig. 7) with Sertularia racemosa, and more lately by Lowen (loc. cit. p. 261, Taf. VI. fig. 15-17) with Campanularia geniculata. There are always developed in the interior of the emhryos of Alcyonella stagnorum two Polyps, even before the first have escaped from the egg; when the escaped embryo has become fixed, its skin bursts, and the Polyps escape, hut are ahle to return again as into a mouth.

116, and Hancock, Ann. Nat. Hist. 1850, V. p. 282. - Ed.

* [End of \$51.] See Schultze (Muller's Arch. 1850, p. 57), who has found with Campanularia seminal capsules corresponding to those for eggcapsules pointed out by Lovén (loc. cit.). - Ed.

This metamorphosis is completed when the skin is covered by a brown and solid layer, and new individuals are developed by gemmation from the two Polyps (See Meyen, Isis, loc. cit.). I have seen the development of the corallia of Cristatella mirabilis and Plumatella campanulata occur in the same way. With the Cristatellac, gemmae of new Polyps are often seen to arise from the skin, cven after the escape of the two Polyps, and before the young colony has become at all fixed. At this epoch of development these Polyps have been taken by Cuvier for a distinct species, and called Cristatella mucedo. See Roesel, loc. cit. p. 559, Taf.

* [\$52, note 3.] The embryonic development of the Bryozoa has heen carefully wrought out by Van Beneden. See Rechcrch. sur les Bryozoaires,
XCI. ; and T'urpin, Ann. d. Sc. Nat. VII. 1837, p 65 , pl. II. and III.

Infusoria-like embryos have been observed also by Steenstrup (Untersuch. loc. cit. p. 66, Taf. I. fig. 21) with Coryne squamata, and by Sars (Faun. littoral. Norveg. p. T, Tab. II. fig. (i-11) with Podocoryna carnea. 'She round eygs moving about hy means of cilia, which Reid (Ann. of Nat. Ilist. XVI. p. 392, 397, pl. XII. fiy. 9, 13) has observed in the visceral cavity of Pedicellina echinata, and in special capsules with Flustra avicularis, were probably embryos also.*
\&c., Mém. Acad. Bruxelles. XIX. See also All man, Report, loc. cit. 1850, p. 322 - Ed.

BOOK THIRD.
 A C A LEPII A.

CLASSIFICATION.

§ 53.

Tue body of Acalephae is composed of a transparent, gelatinous substance, quite resembling the Corpus vitreum of the cyes of vertebrata. By desiccation it almost entirely disappears, there remaining only a dry cellular tissue, by which the form of the animal is imperfectly preserved. These animals swim freely in the sea after having attained their development.

In the arrangement of their organs in ray-like processes radiating from a common centre or a longitudinal axis, and where also is situated the digestive apparatus, the quaternary system prevails. Copulatory organs are always wanting. The classification is based, according to the system of Eschscholtz, upon difference of external form, and upon the structure of their digestive and locomotive organs.

ORDER I. SIPHONOPHORA.

They take in their food by means of numerous tubes, which exist in place of a stomach. Locomotion is aided, gencrally, by certain cartilaginous capsules.

Family: Diphyidae.
Genera: Diphyes, Ersaea.
Family: Physophoridae.
Genera: Physophora, Stephanomia.

> Family: Piysalidae.
> Genus: Physalia.

Family: Velellidae.
Genera: Rataria, Velella, Porpita.

ORDER II. DISCOPHORA.

They have a simple eentral stomaeh, and move by means of discoid or campanulate contraetions of their body.

Family: Aequorina.
Genera: Aequorea, Polyzenia.
Family: Oceanidae.
Genera: Oceania, Cytaeis, Thaumantias.
Family: Geryonidae.
Genus: Geryonia.

Family: Rhizostomidar.

Genera: Cephea, Cassiopea, Rhizostomum.
Family: Medusidae.
Genera: Pelagia, Cyanea, Chrysaora, Medusa, Aurelia, Ephyra, Sthena nia.

ORDER III. CTENOPHORA.

Their mouth and stomaeh is simple and eentral, and they move by means of eilia arranged in longitudinal rows.

Family: Berotdat.
 Genera: Beroë, Lesueuria, Medea.

Family: Mnemindae.
Genus: Eucharis.
Family: Callianiridae.
Genera: Cydippe, Cestum.

BIBLIOGRAPHY.

Eschscholtz. System der Aealephen. Berlin, 1829.
Lesson. Histoire naturelle des Zoophytes. Aealèphes. Paris, 1843.
Will. Horae tergestinae oder Besehreibung und Anatomic der im Herbste, 1843, bei Triest, beobachteten Acalephen. Leipzig, 1844.

Ehrenberg. Ueber die Aealephen des rothen Meeres und den Organismus der Medusen der Ostsee, in the Abhandlungen der Berl. Akad. 1835.

Mertens. Beobachtungen und Untersuehungen über die beroëartigen Aealephen, in the Mémoires de l'Aeadémie des Seienees de St. Petersburg, 6me series, Tom. II. 1833, p. 479. Also, in Isis, 1836, p. 311.

Brandt. Ausfürliehe Besehreibung der von C. H. Mertens auf seiner Weltumsegelung beobaehteten Schirmquallen, nebst allgemeinen Bemerkung-
en über die Schirmquallen überhaupt, in the Mém. de l'Aead. des Se. de St. Petersburg, 6 ser. Tom. IV. 1838, p. 239.

Milne Edwards. Observations sur divers Aealèphes, in the Ann. des Sc. Nat. 2de Nér. Zoologie. Tom. XVI. 1841, p. 194.

ADDITIONAI BIBLIOGRAPIY.

Forbes. A monograph of the British naked-eyed Medusae, with figures of all the species. London, Ray Soeiety, 1848. Contains many anatomical details.

Agassiz. Contributions to the Natural History of the Acalephae of North America.

Part I. - On the Naked-eyed Medusae of the shores of Massaehusetts, in their perfect state of development.

Part II. - On the Beroid Medusae of the shores of Massachusetts, in their perfect state of development. See the Mem. Amer. Acad. Arts and Sc. vol. IV. 1850.

Also, Twelve Leetures on Comparative Embryology, delivered before the Lowell Institute, Boston, 1848-49.

Busch. Beobachtungen über Anatomie und Entwiekelung einiger wirbellosen Seetnere. Berlin, 1851.
[The above are among the most important larger works; but see, also, many papers of great value, to which I have referred in my notes.- EdiTOR.]

CHAPTER I.

SKIN AND CUTANEOUS SKELETON.

$$
\oint 54
$$

Generally, the body of the Acalephac is of a gelatinous substance, eomposed of polyhedral cells. In some species eertain parts of the body have a cartilaginous hardness, but it is only in a few that there is found a eartilaginous or calcareous nueleus, comparable to a rudimentary skelcton.
With the Diphyidae a large portion of the body has a cartilaginous density, and with the Physophoridae it is often surrounded by plates of a similar nature. The Velellidae have a nuelear skelcton, which in Rataria is a simple, elongated dise; but in Velella this dise, whieh is horizontal and of an elongated oval form, is surmounted by a vertieal erest. The dise is composed of four picees joined together by two sutures which cross each other obliquely. The crest, united to the dise along the whole length of the two sutures, and resembling the segment of a circle, is composed of two main picees, joined in the middle by a third, which is shaped like a wedge. (1)

The dise situated under the skin of the upper surface of Porpita, and

[^37]which encloses between its two lamellae numerous aërial canals, is said to be of a ealeareous nature. ${ }^{(2)}$

All these dises have upon their surface markings of concentric rings and diverging rays.

§ 55.

The Acalephae are surrounded by a very delieate epidermis. Upon various portions of the body, and espeeially upon the arms, the tentacles, the prehensile filaments and the eirri, there exist cilia and peeuliar nettling and prehensile organs. In those species having active irritating properties the nettling organs are situated in a mass under the cpidermis. ${ }^{(1)}$

§ 56.

These nettling organs are gencrally composed of an oval eapsule, containing a spiral filament whieh is thrown out from the slightest disturbance, and, together with its capsule, is detached from the skin. ${ }^{(1)}$

In sonie speeies, there exist in plaee of these nettling organs others of a prehensile nature, eonsisting of an oval eapsule in which is a stiff bristle. These last eause no burning sensation, but are the means by whieh these animals attaeh themselves to eontiguous objects in a bur-like manner. They are situated, grouped in small masses, under the skin of most of the non-nettling Diseophora, and their bristles project upon the eirri situated upon the border of the dise, upon the tentacles, the arms and the sexual organs. ${ }^{(3)}$

2 Eschscholtz, loc. cit. p. 176, and Lesson, loc. cit. Pl. X11. fig. 3 ; also, Duperrey, luc. cit. No. 7 , fig. 3.
'I Wagener (Miller's Arch. 1847, p. 183, Taf. vin. fig. 4, 5) has describet the peculiar hairlike productions on the sides of Beroe and Cydippe. They have, near their free extremity, a multitude of pedunculate small buttons, inserted on a clavate sweiling.
1 Warner (Icon, zoot. Tab. XXXIII. fig. 8, 10,11, A. B. C. and Ueber den Bau der Pelagia noctiluca, 1841. ; also, in Wiesmann's Archiv 1841. Th. l. p. 39) has found in Pelagia noctiluea that the nettling capsules are situated among the pigment cells beneath the epithelium of the disc. According to this author, Oceania, which has feeble nettling powers, has these capsules only upon the marginal filaments.
Ehrenberg (Wiegmann's Archiv 1841, Th. I. p. 71, I'af. III.) has failed to find these organs upon the non-nettling disc of Cyanea capillata, although they are found among their prehensile cirri, which have irritating power.

With these, as with the hooked organs of $M y d r a$, he thought the capsule was detached before the filament. Will (lloræ tergest. pp. 62, 65) did not find these organs in Ccphea, except on the tentacles of the genital organs; and in Polyxenia only on the marginal filaments. Kölliker (Beiträge, loc. cit. P. 41) has seen them also about the genitals of Chrysaora and Aequorea.

The Siphonophora have only the preliensile filaments covered with them. Thus in Stephanomia, according to Milue Edwards (Ama. d. Sc. Nat. XVI. p. 223, 11. VIll. fig. 9), they cover the whole surface of these last; white in Physophora, Diphyes and Ersaea, they exist only upon their enlarged portions, according to Philippi (Muller's Arch. 1843, p. 62, Taf. V. fig. 9), and Will (loc. cit. p. 79, 81 , Taf. 11. fig. 23-25). 火

2 Siebold (Beitrage zur Naturgesch. der wirbellosen Thiere, 1839, p. 10, 91, Taf. II. fig. 39) ; also, Ehrenberg (Ueber die Acalephen d. rothen Meeres, dec. \&x., in the Abhandl. d. Berl. Akad. 1835, p. 205, Taf. IV-V1II.). IIe has compared these prehensile organs to suckers.

According to Milne Edwards (Ann. d. Sc. Nat. XVI. p. 215), and Will (loc. cit. p. 80, Taf. II. fig. 24), they are found also upon the body of Beroë, and at the extremity of the prehensile filaments of Diphyes and Ersaea.

According to Will, also (loc. cit. p. 51, Taf. I. fig. 19, A. B.), the prehensile filaments of the Ctenophora have two kinds of capsules; one, which upon the least touch bursts and discharges a liquid; the other, of a somewhat different appearance, and which contains a delicate, viscons filament. Similar filaments, he says, are found upon the warts on the body of Eucharis.

* For these nettling organs and their intimate structure, see my note under § 27, note 1. - Eb.

CHAPTER II.

MUSCULAR SYSTEM AND ORGANS OF LOCOMOTION.

§ 57.

The Acalephae have a distinct muscular system. Their contractile substance is composed of a nct-work of elongated, slender filaments and bands; these, in the utriculoid species, are arranged in a longitudinal and annular manner, but in those of a discoid and campanulate form they are disposed in a circular and radiate manner.

In the extremely irritable tentacles and tactile filaments, the longitudinal fibres abound. ${ }^{(1)}$
Each fibre is smooth when relaxed, but during contraction appears transversely wavy and plicated. ${ }^{(2)}$

$$
\text { § } 58 .
$$

The contractilc and aërial natatory vesicles, which are found in the Physophoridae, ${ }^{(1)}$ and the movable lamellae of the Ctenophora, may well be regarded as accessory organs of locomotion. These last, which are arranged in rows upon the sides of the animal, and which by some anatomists have been regarded as respiratory organs, are not simple cutaneous lobes, but are composed of very long cilia closely united together, and the motion of which is voluntary with the animal. ${ }^{(2)}$

1 Will (loc. cit. p. 48, Taf. I. fig. 11) has ohserved in the contractile excrescences of the Eucharis, not only circular fibres and numerous longitudinal muscles, but large transversely-flattened ones, which were bound together by oblique hauds.

2Hill, loc. cit. p. 47, 63, Taf. I. fig. 13. According to Wagner (Ueber dea Bau, \&c. ; and Icou. zoot. Tab. XXXIII. fig. 30), the muscles of the Discophora have always the transverse striae.
The cartilaginous natatory pieces of the Siphonophora play a completely passive part in the act of locomotion. The swimming is exclusively per formed by the energetic contractions of the muscular membrane which lines their cavity, constitnting, therefore, a true natatory sac. See Sars Faun. littoral, Norveg. p. 42.*
I Lately, it has been doubted if the Physophoridae can sink and rise in the sea hy means of their natatory bladders, becausc they cannot exhaust the

[^38]contained air. According to Olfers (Ahhandl. d. Berl. Akad. 1831, p. 157, 165, Taf. I.), there are two of these bladders in Physalia, one of which only has an opening. Philippi (Müller's Arch. 1843, P. 63) has fouud neither internal nor external opening to the bladder of Physophora tetrasticha. In Stephanomia it would not appear, according to the description of Mime Edwards (Aun. d. Sc. Nat. XVI. p. 218, Pl. VIfI. fig. 1. b. 2), that this organ had an external opening. Couch (Froriep's nenc Notizen, No. 275, p. 129) denies that Physalia has the power to control the air of its bladder. See also blow, $\$ 65$.
2 Grant, Trens. Zool. Soc. London, I. 1835, p. 9.; Sars, Beskrivelser loc. cit. Pl. VIII. fig. 18, e. Milne Edwards, Ann. d. Sc. Nat. XV1. p. 201, 216, Pl. IV. fig. 2, 3, 1.l. VI. fig. 1. c.; and Will, loc. cit. p. 9, 56, Taf. I. fig. 5.

In regard to the structure of these muscles, Agassiz remarks: "With all the power of the best Oberhäaser Microscope, I have been unable to discover the slightest indication of striae on the muscular cells; nevertheless, it cannot be doubted that they are voluntary muscles." To this view I may add my own of the same nature. - Ed.

CHAPTER III.

NERVOUS SYSTEM.

$\$ 59$.

A nervous system has been found in many Acalephae. With the Ctenophora the cesophagus is surrounded by a ring formed of eight ganglia, ${ }^{(1)}$ and at the opposite extremity of the body there is a simple ganglion. Five nervous filaments pass out from these ganglia, and along the sides of tho body are nervous fibres, whieh ultimately divide into delieate threads. ${ }^{(2)}$

The tentacles of Medusae are supplied with nervous filaments which issue from a ganglion situated at their base. ${ }^{(3)}$

CHAPTER IV.

ORGANS OF SENSE.

§ 60.

With many Acalephae, there are, upon the borders and extremities of

1 These eight ganglia, which are connected together by delicate cords, were first onserved by Grant (Trans. Zool. Soc. Lond. I. p. 10) in Cydippe pileus. Compare, also, Wagner, Icon. zout. Tab. XXXIII. fig. 37, A. B. From each of these ganglia two nerves pass off to the side, white a third, traversing the interior of the body, and having two or three swellings, is finally distributed to the intestine. Patterson (The Edin. new Philos. Jour. XX. p. 26), and Forbes (Ann. of Nat. 11 ist. 1839, p. 145), have also observed the asophagea! ring in Cydippe, but did not perceive the ganglia.

2 Milne Edwards (Ann. des Sc. Nat. loc. cit. p. 206, Pl. IV. fi\%. 1) has observed at the posterior extremity of the body of Lesueuria vitrea (a new Beroid) a ganglionic body which sends

* $\lfloor\S 59$, note 3.] The nervous system of the Acalephae has been successfully studied by Agassiz upon several genera (Hippocrene, Tiaropsis, Staurophora). His results are new, and different from those of previous observers. I cajant do better than to quote his words: "There is, unquestionably, a nervous system in Medusae, but this nervous system does not form large central masses, to which all the activity of the body is referred, or from which it eroanates. There is no regulet communication by nervous threads between the centre and peripbery and all intervening parts; and the nervous substance does not consist of heterogencous elements, of nervous globules and nervous thrcads, presenting the various states of complication and combination, and the internal structural differences, which we notice in the vertebrated animals, or even in the Mollusca and Articulata."
out in front four filaments ; and upon the sides of this animal a nervous cord, from which pass of delicate branches at regular intervals. At the posterior extremity of the body of Cydippe, Eucharis and Medea, Will (Froriep's neue Notizen, No. 599, 1843, p. 67, and IIore tergest. p. 44) has likewise olsterved a round, yellowish ganglion, with fom prolongations, from which pass off tiventy-five or thirty nerves.

3 Ehrenberg has found along the entire border of the dise of Medusa aurita, and between each two tactile filaments, a bifid nervous gangliou. He alirms to have seen also two others smilar, at the base of each tentacle surrounding the genital organs. See Abhandl. d. Berl. Akad. 1835, 3. 203, Taf. IV. fig. 1, x.; and Milller's Arch. 1834, p. 561.*
"In Medusae the ncrvous system consists of a simple cord, of a string of ovate cells, forming a ring around the lower margin of the animal (P1. V. fig. $11,2,4,5$, extending from onc eye-specis to the other, following the circular chymiferous tubc, and also its vertical branches, round the upper portion of which they form another circle. Tbe substance of this nervous sfstem, however, is throughout cellular, and strictly so, and the cells are ovate. There is no appearancs in any of ity parts of true fibres" (loc. cit. p. 232). That this is the nervous system seems placed beyonl all controversy; for, in a private letter, Agassiz has informed me that in a new genus (Rhacostoma), living on the shores of Massachusetts, he has seen this systern at night as an illuminated diagram. Ed.
their body, button and tongue-like organs, which, as they are connected with neighboring ganglia, may well be regarded as organs of sense.

Their essential structure is a membranous capsule, containing a clear liquid, in which are suspended crystalline eorpuscles.

These organs, having sometimes a red pigment, have been taken for eyes; but, as most of them are without pigment, and as the crystalline corpuscles behave in acid like the Otolites of the higher animals, they have more recently been better designated as organs of hearing.

The eight marginal, tongue-like bodies, found upon the dise of Medusa aurita, have been regarded as eyes. ${ }^{(1)}$ The sole fact for the support of this opinion is the presence of pigment; for the small hexagonal crystals, irregularly seattered in the interior of these bodies, would searcely allow them to refract the light like a crystalline lens.

The Ctenophora have only a single organ of this nature, and which is situated near the ganglion at the posterior end of the body. It has been regarded both as an eye and as an organ of hearing.(2)

With many Discophora, these organs appear as pale-yellow, or even colorless marginal corpuscles, having more or less calcareous bodies. ${ }^{(3)}$

It is yet doubtful whether the otolites of the Acalephae perform the same movements as those of the acephalous and gasteropod mollusca. ${ }^{(4)}$

Abstract

1 These marginal corpuscles, already obscrved in the Medusae by Gacde (Beitrage zur Anat. u. Phys. der Medusen, 1816, p. 18, 28), and by Rosenthal (Zeitsch. f. Physiol. Bd. I. Hit. 2, 1825, p. 326), were first described as eyes by Ehrenberg. See Muller's Arch. 183士, P. 571 , and Abhandl. d. Berl. Akad. 1835, p. 190, Taf. IV. V. 2 Milne Edwards has called this body, in Lesueuria vitrea and Beroe Forskalii, "Organe oculiforme" (Ann. d. Sc. Nat. loc. cit. p. 206, 211, Pl. IV. fig. 1, k. and Pl. V. fig. 4, i.). According to Will ('roriep's neme Not. No. 599, p. 67, and Hore tergest. p. 45, Taf. I. fig. 2, 4, 20, b.), the red pigment of these organs is entirely wanting in Beroé, Eucharis and Cydippe, while the hexagonal calcareous corpuscles are very numerous - a fact leading him to conclude that these organs are auditory vesicles. 3 According to Warner (Ueber den Bau, \&c., and Icon. zoot. Tab. XXXIII. fig. 31, g. 23, c. and 25), these corpuscles are pale-yellow in Pelagia noctilucr, and colorless in Oceania, Cassiopea and Aurelia. In Cephea, Will has observed only pale-yellow corpuscles, filled with crystals. And, according to him (loc. cit. p. 6t, 68), the colorless pedunculated marginal vesicles of Polyxenia leu. costyla contain, each only a single round otolite, while those of Cytae is polystyla contain numbers, colorless or yellow, and of irregular forms. Ile has also observed (loc. cit. p. 72, Taf. H. fig 9, 10) that in Geryonia the number of these otolites varies from one to nine. Milne Edwards (Ann.

d. Sc. Nat. XVI. p. 196, Pl. I. e.) has observed upon the margin of the disc of Aequorea violacea vesicles containing two or three spherical corpuscles, and which, probally, are auditory organs. According to Sars (Wiegmann's Areh. 1841, Th. 1. p. 14, fig. 60), and Will (loc. cit. p. 75, Taf. II. fig. 21, A. B.), these marginal corpuscles are found upon young Medusae belonging to Ephyra.

4 Will has never olserved with the Otolites of Acalephae similar movements to those of mollusca. Kölliker (Froriep's neue Not. No. 534, p. 82) has observed vibratile cilia upon the inner surface of the marginal corpuscles of Pelagia, Cassiopea, Rhizostomum and Oceania, which are pyriform, and contain many calcareous crystals. In the perlunculated vesicles of Geryonia, which contain only a single crystal, these cilia are absent. In none of the Medusue has he found collections of pigment, and in Oceania (nov. spec.) only he has ohserved a mass of brown pigment cells upon the external and superior surace of the base of these corpuscles; in the centre he perceived a round transparent body, and upon the upper surface a circular opening, so that the whole closely resembles an eye, there being, moreover, a kind of pupillary opening, and the traces of an optic nerve from a ganglion.

According to the observations of Frey and Leuckart (Beitr. \&c. p. 39), the group of otolites contained in the auditory organ of a Cydippe perform oscillatory movements, due evidently to vibratile cilia situated on the auditive capsule.*

* [§560, note 4.] The organsof sense of the Acalephae have been the ohjects of much study of latc, and to Agassiz we are indebted for the most minute researches on these obscure points. He has shown the eye-specks to be undoubted organs of sense, from their connection with the nervous system. With the naked-eyed Medusae, he regards them light-perceiving instead of auditory organs. In regard to the single organ found with the Ctenophora, and which Frey and Leuckart have re-
cently declared to be of an auditory nature, he remarks: "I am inclined to consider this organ, or this speck, as something similar to the central colored speck which occurs in the middle of the disc in Discoid Medusae, and which is particularly distinct in young animals soon after they have been detached from the polyp-like stem on which they grew, as a remnant of the connection which exists between the mother-stem and its progeny in those Medusae which multiply by alternate generations."

4

CHAPTER V.

DIGESTIVE APPARATUS.

§ 61.

The digestive apparatus of the Acalephae is formed after several very different types. The mouth is sometimes single and central, or there may be many of them. It is often surrounded with arms and retractile filaments, which are endowed with the prehensile and nettling organs just described.
The digestive cavity, which is always lined with ciliated epithelium, has distiuct walls, which are united immediately to the parenchyma of the body, leaving, therefore, no surrounding cavity.

With those having a single mouth the stomach is of a variable size, and has often caecal appendages. With Beroë, ${ }^{(1)}$ the mouth is very large and free from tentacles, and opens into a very spacious stomach which occupies nearly the whole body. But with Cestum, Cydippe and Lesueuria, the stomach is small, and appears like a cavity in the body; ${ }^{(2)}$ and with Cytaeis, Thaumantias and Geryonia, it is likewise small, and has the shape of a tubular projection. ${ }^{(3)}$

That of Medusa hras four saceular folds, ${ }^{(4)}$ that of Pelagia ${ }^{(5)}$ six, and that of Cyanea thirty-two. ${ }^{(6)}$

When the mouths are numerous, either, as in the Rhizostomidæ, ${ }^{(\pi)}$ there are many canals which conduct the food through the arms upon which the mouths are situated into the central stomach; or, as in the Siphonophora, each mouth opens into a particular tubular stomach. With these last, however, a certain number of their tentacles are hollow, and have a mouth at the extremity. As it has been observed that these suck in food and digest it, their orifices have been regarded as mouths, and their cavities as stomachs. ${ }^{(8)}$

1 Milne Edwards, Ann.d.Sc, Nat. XVI. pp. 5, 6.
2 Eschscholtz, loc. cit. Taf. I. II. ; and Milne Edwards, loc, cit. Pl. III.
3 Will, loc. cit. Taf. II.
${ }^{4}$ Baer, in Meckel's deutschs. Arch. VIII. 1823, Taf IV. fig. 2; also, Ellenberg in Abhandl. d. Berl. Akad. I835, Taf. III. fig. 1.
${ }^{5}$ Wagner, Icon. zoot. Tab. XXXILI. fig. 5.
${ }^{6}$ Gacde, loc. cit. Taf. II.
7 Eysenhardt, Nov. Act. physteo-med. X. part II. p. 39I, Tab. XXXIV. fig. I (Rhizostomum Cuvieri).

8 This is so, for examples, in Diphycs (Will, loc. cit. Taf. 11. fig. 22) ; in Physalia (Olfers Abhandl. d. Berl. Akad. 1831, p. I62, Taf. I.) ; in Stephanomia (Milne Edwards, Ann. d. Sc. Nat. XVI. Pl. V11. IX. X.) ; and in Physophora (Philippi, Müller's Arch. 1843, Taf. V. fig. I, 4).
(Joc. cit. p. 316.) On a preceding page he says: "That this may be the case seems probable when we consider the relation of the two sorts of apparatus in the two types. The upper nervous ring in Sarsia bears the sane relation to the central alimentary cavity, and to the pigmented disc, that the ganglion and eye-speck of Beroe bear to the chy-

Philippi, howcver, affirms that in this last genus thesc canals are organs of absorption, and that the true stomach, which has a simple mouth, is concealed at the base of the tentacles (loc. cit. p. 63, 'Taf. V. fig. 10).

I think, however, that this opening belongs to the respiratory system, as also does a similar opening in Iclella and Porpita, which Lesson (Voyage de Duperrey, loc. cit. p. 49,56, No. 6, fig. B. ; and No. 7, fig. C. C.) has regarded as a mouth.

The tubular tentacles of these animals are nothing but stomachs ; and Lesson himself has calsed them "poches stomacales," since they digest food. It would, moreover, be strange that these organs, which, in Physalia, have been admitted to be stomachs, should perform another function in Physophora, I'elella, and Porpita, where their structure is the same. But further researches are
miferous system, which opens above its gelatinous disc, notwithstanding these openings." (p. 248.) This point, fully as interesting from its zoological importance as from its morphological relations, can be settled only by a knowledge of the embryology of these animals. - KD.

The Acalephr have no true digestive tube. But, as such, has been regarded a system of vaseular eanals filled with water, and which, departing from the stomaeh, traverse the whole body. But these, although sometimes seen to contain feees, seem to belong more properly to the respiratory system. ${ }^{(9)}$

In none of the Aealephae has there been found anything like an hepatic organ. ${ }^{(10)}$

CHAPTERVI.

CIRCULATORY SYSTEM.

$$
\text { § } 62 .
$$

Until lately, the longitudinal and eircular canals whieh, in some Aealephae, are spread out through the entire body, have been regarded as belonging to a vascular, sanguineous system. But more recently these have properly been considered as aquatie-respiratory organs, there having been found, moreover, other vessels of exceedingly thin walls, and of a sanguineous nature.

These last eonstantly aecompany and surround in a tubular manner the aquiferous canals; and it is quite rare that small branches are distributed to the general parenehyma.

The delieate walls of these vessels have neither longitudinal nor eireular * Gibres; neither are they lined with eiliated epithelium. They cireulate a

Abstract

required to thoroughly settle this point. See helow, the respixatory organs. See also Hollard, who unhesitatiugly regards the canals, which, with Velella, communicate externally by a central opeuing, as a digestive cavity, and thinks he has ohserved in their walls brownish spots representing the hepatic cells; sce Ann. d. Sc. Nat. III. 1845, p. 249 , Pl. IV. bis.

9 The aquiferous canals of the respiratory system having been regarded as intestinal tubes, theu orifices, which in the Ctenophora are situated at the extremity of the body, and in the Discophora upon the borders, have been considered as aual oponings; and especially so, since iu these two order's, accidental freces in these canals are expelled through these orifices. See Will, loc. cit. p. 28,

and Ehrenberg, AbLandl. d. Berl. Akad. 1835, p. 189, Tuf. I. 1V. fig. 2, z.*
10 Acalephre possess an extraordinary digestive power, which is the more singulan as no secretory oryan has been found on the sides of their stomach Mertens (MCm. d. l'Acad. de St. Petersburg, loc cit. p. 490 , Taf. I. fig. 5,6, a. ; and p. 518 , Taf. VIII. fig. 4, Taf. IK. lig. 1, f.), however', afiirms to have seen in Cestum and Cydippe four vessels in this situatiou, which are perhaps hepatic organs. The oranye-colored cords found upon the sides of the stomach of Stephanomia, and which Milne Edwards (Ann. d. Sc. Nat. XVI. p. 222, Pl. VH. LX. X.) has taken for genital organs - may they not also be hepatic organs ? |
their importance is rather in Zoology. See Agas-
siz for the details of Sirsia, Hippocrene, Tiaropsis, Staurophora, Pleurobranchia, Bolina. Ed.
í [\& 61, note 10.] Küllifer (Siebold and FölliKer's '/eeitsch. IV. Hft. 3, 4, p.313) has observed with Velella and Porpita a glandular mass, corresponding most probably to a liver. It had before leen regarded as such by Delle Chiaje, but Kölliker has given it a special description. It consists of a brown mass which communicates with the hottom of the stomachal cavity by branched, anastomosing ducts. - Ed.
> * [\& 61, note 9.] Upon the nutritive system of the Acalephae, see Forbes (loc. cit. 1). 4), but especially Agassiz (loc. cit.), who has studied the subject with conscientious care. Therc is no distinction between the alimentary canal proper and the vascular system, for the one opens hy large tubes into the other. The Acalephs, therefore, circulate chyme, and here we have the rudest form of circulation. If this idca is once well considered, the relations of their nutritive a"paratus in general will be quickly appreciated.

> The variations in the shape and form of the digestive apparatus are wide and numerous, 'but
colored fluird and colored corpuscles; and these corpuscles are not found except in those vessels surrounding the aquiferous canals.

There is no regular circulation, but the shifting motion of the blood hither and thither is due to irregular contractions of various parts of the body. ${ }^{(1)}$

chapter VII.
 a
 RESPIRATORY SYSTEM.

§ 63.

The entire body of the Acalephae is traversed by canals which receive water from the stomach, or directly from without, and which is ejected through openings upon the extremity of the body and on the margin of the disc.

These aquiferous canals are lincd with a delicate, ciliated epithelium, by means of which accidental particles of food or fecees are quickly removed. They have been regarded both as digestive and as sanguineous organs. But that they are respiratory organs is highly probable, not only from their structure, - the cilia producing a constant renewal of water, - but also from the fact that they are surround cd by real sanguineous vessels.

This aqueous circulation is oscillatory from one side of the body to the other, being interrupted only by those contractions of the boly which occur when fresh water passes from the stomach into the canals. ${ }^{(1)}$

Abstract

1 These new details upon the sanguineors system of the Acalcphae are due to Will (11oree tergest. p. 3t, and Froriep's neue Not. No. 509,1843 , p. 66). In Beroc, he has been able to clearly distinguish the sides of these vessels from those of the aquiferous canals contained in their interior, for the first are covered will numerous red pigment cells. The blood of this animal has a greenislr hue, and contains spherical or slightly elongated red conuscles, with large nuclei. But, besife these, If ill has found in Cydipne other nucleated cells of a greenish color. In Polyxenia, there is no sanguincous system separate from the aquiferous canals, which, in Cytacis and Geryonia are quite surrounded by them. The vessels of Cepheat contain brown corpuscles; and Witl has concluded that the reldish threads fond along the aquiferous canals of this animal, and which E/henterg (Abhandl. A. Berl. Akad. 1835 , p. 195, Taf. VI. tig. 3 , 9 , and Müller's Arch. 1834, p. 56s) has taken for striated muscles, are really blood-vessels. l'rofound reseurches mast decide the real relations of the arniferous canals to the senguineous system filled with a violet liguid of Velclla, as described by Costa (Ann. d. Sc. Nat. XVI. p. 188, 11. XII1. fig. 3). It should be mentioned that the bood-system of the Acalephae,

[^39]which Will has described with so much positiveness, is not verified either by Bergmann or Frey and Leuckart (Beitr. p. B8), after numerous special researches.

1 If, and especially with the Discophora, these canals have been taken for digestive tubes, it is bectuse faces and particles of food have been here fomen, and which have been ejected through the openings on the borders of the body. But the real function of these openings is to discharge the water unfit for respiration ; aad it is only during the ingestion of this liquid that these foreign particles are thus introduced. This communication between the respiratory and digestive systems reminds one of the Polyps, where (as in the Anthozoa) the openings in the stomach allow its contents to pass into the cavity of the body, which last may be likened to the aguilerous system. On the other hand, the opinion that these canals are blood-vessels would be supported by the Ctenophora, since here they are filled with a red liquid; but, according to Will (Horaz tergest. p. 34), this licquid is not in these cunals, but in proper blood-vessels surrounding them. Ht denies, also, that these blood-vessels of the Ctenophora open upon the surface of the hody, or that the blood escapes outward mixed with fieces.
u. Entwick. einiger wirbellosen Seethiere, 1851, p13). It may, therefore, be concludel that these animals have no system of this kind, and especially so as Agassiz failed to notice it after the most intimate research upon the Beröid Mcdusae (loc. cit. p. 313), which were the objects of Will's study. - Ed.

§ 64.

With the Ctenophora, this respiratory system eonsists of an infundibuliform cavity, eommunieating with the stomach by two orifices, situated at its base and surrounded by sphincters.

Numerous aquiferous canals pass out of this cavity, traverse the body in a longitudinal direction, and finally anastomose with an annular vessel surrounding the mouth; but, beside these, there are two short canals which pass directly to the posterior estremity of the body, where they open externally.

With Eucharis and Cydippe, these canals are differently distributed; thus, two go to the tentacles, two to the sides of the stomach, and four to the sides of the body. The same is true with Beroë, excepting that those to the tentacles are wanting. The lateral canals divide, at a short distance from the eavity, into as many branches as there are sides. With Cydippe, the excretory eanals are simple; with Eucharis they are provided with vibratile lamellae, and with Beroë with branching appendages. ${ }^{(1)}$

With the Discophora, numerous aquiferous canals pass from the stomach or its appendages, traverse the dise in a radiating manner, sometimes bifurcating, and terminate at the borders of the dise in an annular vessel which opens externally by numerous orifices.

In Cytaeis, Geryonia and Thaumantias, there are four of these canals, arranged in a crucial manuer; ;(2) and in Aequorea there are seventy-four disposed in a ray-like way. ${ }^{(3)}$

In Medusa aurita, there pass from the four folds of the stomach sixteen of these eanals, eight of whieh are simple, and eight bifurcating numerously before reaching the marginal vessel of the disc. ${ }^{(4)}$ With Sthenonia and Aurelia ${ }^{(5)}$ they are very numerous and widely branched.

With Medusa aurita, the terminal openings of the annular vessel are eight, and regularly alternate with the organs of hearing there situated. ${ }^{(6)}$ But in Cephea these openings are said to be directly beneath these lastnamed organs. ${ }^{(7)}$

With the Siphonophora, an aqueous system has not yet been well made out. There is, however, with some, an elongated cavity which is perhaps respiratory, and which, in some species, opens into the stomach, and in others directly upon the outer surface. ${ }^{(8)}$

1 Will (Horæ tergest. p. 30, Taf. I.) has made very minute researches upon the aquiferous system of Eucharis, Cydippe and Beroë. That of Beтoé ovatus, Forskalii, and of Lesueuria vitrea, has been carefully described and figured by Milne Edwards as a circulatory system (Ann, d. Sc. Nat. XII., p. 320 ; XV1. p. 203, 213, Pl. III.-TI.).

2 Will, 100. cit. Taf. II. fig. 5, 7, 8, 14, 16.
$\$$ Milne Edwards, Ann, d. Sc. Nat. XVI. p. 197, Pl. I. fig. 1.

4 Rosenthal, Zeitsch. f. Physiol. I. Hft. 2, Taf. X1. ; also, Ehrenberg, Abhand. d. Berl. Akad. 1835, Taf. I. bis. III.

5 Eschscholtz, loc. cit. Taf. IV.; also Brandt, Mém. de l'Acad. d. Sc. de St. Petersburg, IV. 1838, PI. IX. X. XI.

6 Ehrenberg, Müller's Arch. 1834, p. 566; also, Abbandl. \&c. loc. cit. p. 188, Taf. I. fig. I, pr. and Taf. IV. fig. 2, z

7 Will, loc. cit. p. 60.
8 In Diphyes, this canal terminates in this way by an oval dilatation, lined with ciliated epithelium, and has perhaps properly been regarded by Will (loc. cit. p. 78, Taf. II. fig. 22, a.) as a respiratory organ. A similar cavity, with a cecal appendage, is found in Ersaea (Will, loc. cit. p. 81, Taf. II. fig. $27-31$, d.e.), If the arms provided with openings, of the Physophorae, are really stomachs, then the cavity beneath them, which has a canal passing along the axis of the animal, should be taken as belonging to the aquiferous system, for it rcceives water by an opening at the base of the anus. This same opening has been taken for a mouth by Philippi (Müller's Arch. 1843, p. 63, Taf. V. fig. 10). According to Lesson (IJuperrey, Voyage. loc. cit. No. 6, fig. B.), there is between the suckers of Velella an orifice which Ieads from before backward into a large branching canal. This structure, bitherto regarded as a digestive

CHAPTER. VIII.

ORGANS OF SECRETION.

§ 65.

The air-cavity of certain Siphonophora, which is surrounded by a double membrane, ought probably to be regarded as an organ of sccretion; for, according to many naturalists, the air contained could not have been derived from without, and consequently was seereted by the sides of the internal membrane. ${ }^{(1)}$

CHAPTER IX.

ORGANS OF GENERATION.

§ 66.

Reproduetion by fissuration and gemmation with the Acalcphae has been observed only in the youngest states of certain Medusae. ${ }^{\text {(1) }}$ But repro-
cavity, belongs probably to the aquiferous system. That which in Porpita has been taken for a mouth, belongs probably, also, to the same system. I would not, however, deny that another signification may be given to the so-called respiratory and digestive organs of the Siphonophora.
If one prefers, with Philippi, to regard the opeuing between the tentacles of Physophora, Velella and Porpita, as a mouth, then the cavity of these tentacles should belong to the aquiferous system. Moreover, these tentacles, as to the form and mobility, remind one of the pedicles of the Echinoderms; but it is remarkable that they can absorb food.
Sars (Fann. Nittoral. Norveg. p. 34, 42, Tab. VI. fig. 3, gg. and Tab. VII. fig. 3, e.) has observed in the interior of the cartilaginous, natatory pieces of the Physophoridae and Diphyidae, aruiferous canals which are probably of a respiratory nature.
Hollard, likewise, regards the hollow and tubuliform tentacles of Velella as aquiferous tubes, and in this way, as the tentacular feet of the Echinoderms, includes them in the aquiferous system. See Ann. d. Sc. Nat. III. 1815, p. 250.

1 Many naturalists entirely deny the presence of openings in these aerial carities, and do not admit that they are filled with gas. Thus Philippi (Müller's Arch. 1813, p. 63) affirms to have found neither external opening nor air in the pouch at the end of the longitudinal canal of Physophora tetrasticha. Olfers (Abhandl. d. Berl. Akad. 1831, p. 165) has not been able to find in Physalia the opening of the internal sac, said to be near the one of the external sac. In fact, Bennett (Proc. Zool. Soc. London, 1837, p. 43; and Wiegmann's Arch. 1838, II. p. 332), with the same species,
has not seen an opening of this cavity, and was unable to force air from it. Future researches must determine if these pouches have not a respiratory function.

1 See, upon this subject, the Embryology of these animals, below. It is not yet demonstrated that adult Acalephae reproduce by fissuration; and although Mertens (Mém. d. MAcad. de St. Petersburg, II. p. 494, Pl. I. fig. 2-4, and p. 527) has observed detached corpuscles from the body of Cestum and Cydippe swim freely about, and rapidly enlarge, yet his observations are here limited.
In the same way, Will (Hore tergest. p. 42) has seen analogous bodies detached from Eucharis, and has found in the water others supposed to belong to the Ctenophora, but has not traced their further condition.

Propagation by buds has also been found with the Acalephs, through the excellent researches of Sars (Fauna littoral. Norveg. p. 11, Tab. IV. fig. 8-12), for this observer has seen on the exteraal surfuce of the tubuliform stomach of Cytaeis octopunctata, and upon the four ovaries of Thaumantias multicerrata, small campanuliform Acalephs resembling their parent, in the process of development, and which were finally detached. In the genus Agalmopsis which is allied to Agalma, Sars has observed (Tbid. p. 38, Tab. VI. fig. 11-17) campanuliform bodies sprout out between the prehensile filaments and the tubuliform stomach, and which were finally detached, swimming freety like the Discophora. According to Sars, also (Ibid. p. 43 , Tab. VII. fig. 11, b. 13, br and 14), there is, likewise, an analogous mode of propagation with Diphyes.*

* [§66, note 1.] See also Huxley (Ann. Nat. Hist. VI. p. 394), who has described the reproductive processes of the Diphyidae, and shown that
they multiply by gemmation as well as by ova. See, also, Muller's Arch. 1851, p. 280, Taf. XVII. -Ed.
duction by eggs, and consequently by the means of proper genital organs, has been observed in all the families.

With the Ctenophora, ${ }^{(2)}$ both sexes are combin ${ }^{2}$ in the same individual; but with the Discophora, the individuals are of oi sex alone. ${ }^{(3)}$

§ 67.

The cggs are spherieal, © ` . The vitellus is of a whitish violet or jullow color, and contains a germinative vesicle, and germinative dot. ${ }^{(1)}$

The spermatic particles, whieh have generally the form of Cercaria (that is, a head and a filiform tail), are very active, and suffer no change in water. ${ }^{(2)}$

In some Siphonophora, they appear to have a linear form, and attain a very great size. ${ }^{(3)}$

§ 68.

The genital organs are not developed except at the epoch of procrea tion, and this period is very brief. On this account, their existence has ofteni...\quad 'reaped the notice of observers.

The male and female organs so closcly resemble each other, as to color ${ }_{3}$ form and position, that they are easily confounded. They eonsist either of elongated pouches, or of riband-like bands, whiel are situated in different parts of the body. In the first ease, the sperm and eggs escape through particular exeretory eanals; in the sceond, they escape directly outwards from the ovaries or testicles, or pass first through large cavities which eommunieate externally.

As they have no copulatory organs, the water is the medium of fecundation. In this way the unaffected spermatic particles are brought in direct contact with the eggs.

> 2 Will, Froriep's ncue Not. No. 599, p. 66.
> 3 Siebold, Froriep's neue Not. No. I081, 1836 , p. 33 .*
> 1 Wagner (Prorlrom. loc. cit. Taf. I. fg. 2 ; and Icon. zoot. Tab. XXXII. fig. $15-I 7$) and Siebold (Beitrage z. Naturgcsch. wirbelloser Thiere. loc. cit. Taf. I. fig. A. B.) have figured the eggs of Cyanea pelagia, and of a Medusa.
> 2 The sperinatic particles of Eucharis and Beroë consist of a round body, having a delicate and very movable tail (Will, loc. cit. Taf. I. fig. 6, 24). In Cydippe they aue similar. (Krohn, Froriep's neue Not. No. 356,1841, p. 52). This is likewise true of those of the Discophora; see Siebold, Beiträge loc. cit. Taf. I. fig.c. (Medusa); KolliKer, Beiträge loc. cit. Taf. I. fig. 8, 9, io; and Milne Edwards, Ann. d.. Sc. Nat. XVI. Pl. I. fig. I, d. (Rhizostomum, Chrysaora and Aequorea);

[^40]Wagner, Icon. zoot. Tab. XXXIII. fig. 20, and Will, Horæ tergest. Tab. II. fig. I2 (Pelagia and Geryonia).
\cdots the spermatic particles of the Discophora, see "\quad "lliker in the Neue schweiz. Denkschr. VILI. p. .. Taf. II. fig. 18 (Cassiopeia). \dagger
3 It may be that the stout linear and active bodies, seen by Will (loc. cit. p. 78, 81, Taf. 1I. fig. 26) in the respiratory cavity, the stomach and the general cavity of the body of Diphyes and Ersaea, and which he was inclined to regard as Entozon, are the spermatic particles of these animals, since they quite resemble those of Alcyonella and Cristatella.

According to Surs (Faun. littor. \&c. p. 38), the spermatic particles of Agalmopsis have a cerca-ria-form. \ddagger
form, like those of the Polyps, and like which, also, they are developed in special daughter-cells. - Ed.
$\ddagger[\S 67$, note 3.$]$ These bodies mentioned by Will as spermatic particles have since been examined by Huxley (loc. cit.), who thinks they are not of this nature, a view which is otherwise probable from the fact that he found no male gencrative sacs, and also because, as I have shown (see my note after § 46, note 5), these particles with Alcyonella have a cercaria-form. - ED.

§ 69.

The position of the sexual organs varies in the different orders, in the following manner:

1. With the Ctenophora, which are hermaphrodites, they are situated along the sides, under the form of elongated utricles, the testicles being on one side and the ovaries on the other. They have a nodulated appearance, and from the lower part of each passes off an excretory duct, which runs toward the mouth, but the terminal opening of which has not yet been well made out. ${ }^{(1)}$
2. With many Discophora, these organs are arranged like rays, passing from the centre to the border of the disc. In Oceania, Cytaeis, Geryonia and Thaumantias, the four saccular ovaries or testicles form at the centre of the dise a cross, which is traversed by fonr aquifcrous canals. ${ }^{(2)}$ Their excretory ducts pass towards the base of the stomach, but their terminal openings are not distinct. ${ }^{(3)}$ In the dise of Aequorea violacea, seventy-four ray-like bands are spread out, and the free plicated borders of these hang beneath the inferior surface of the disc, thus permitting the frce cscape of the cggs and sperm into the water. ${ }^{(4)}$
3. Another group of the Discophora have at the base of their tentacles four large openings, which lead into as many cavitics in the disc. ${ }^{(5)}$ At the base of these cavities, which formerly were regarded as respiratory organs, the genital organs are situated in the form of plicated bands. These as four bands (testicles or ovaries) are bent eithcr into an angle or the are of a circle, forming sometimes a star with four rays, ${ }^{(6)}$ and sometimes a four-lobed rosette. ${ }^{(7)}$ If thesc cavities increase in number, the genital organs increase in the same proportion. ${ }^{(8)}$ The border of these organs is generally provided with numerous tentacles which project into the cavity. ${ }^{(9))}$ In the ribandlike testicles numcrous small sacs are observed; each one of these opens separately into the genital cavity, while the eggs, on the contrary, are scparated from the similarly-formed ovary only by a gradual constriction of the latter. ${ }^{(10)}$
4. With the siphonophora, all the relations of these genital organs still recquire mucl: investigation. With the Diphyidac, they consist of sacs communicat g with the general cavity of the body. ${ }^{(1)}$ During the epoch

[^41]of procreation, the females of some Discophora are easily distinguished from the males by the numerous pouches of their tentacles, and in which eggs and newly-hatched young are carried for a short time. ${ }^{(2)}$

§ 70.

As yet, the development of a few only of the Acalephae has been traced. It is attended by a remarkable metamorphosis.

After the usual segmentation of the vitellus, ovoid embryos rescmbling infusoria are developed; these turn freely on their axis, and swim about in the water by means of ciliated epithelium. ${ }^{(1)}$. Shortly after, they become attached by the anterior extremity to some object. Upon the opposite free extremity tentacles appear, and between them the mouth. The animal has then the form of a Polyp. ${ }^{(2)}$ It is during this period that the young animal reproduces by gemmation, ${ }^{(3)}$ and sometimes by transverse fissuration. This last mode occurs in the following remarkable manner:

The polyp-like animal increases in length, and its body divides transversely into many segments. Around each of these segments eight bifid processes are developed; after this, each segment is successively separated from before to behind, and they float about for a time as cight-rayed Acalephae, but soon attain, however, their adult condition. ${ }^{(4)}$
seen genital organs of the same form between the tentacles of dgalmops is; but he found at the same time (loc. cit. p.38, 43), in the campanuliform individuals produced from buds, testicles with A galmopsis, and ovaries with Diphyes. It may thcrefore be justly supposed that these various Siphonophora are compound, sexless individuals, which, like the Hydrina and Sertulariua, reproduce hy alternation of gencration, - that is, by buds, - individuals having sex.
12 Medusa aurita, and Cyanca capillata; see Ehrenberg, Abhandl. \&c. loc. cit. Taf. III. fig. I, 2, Taf. VIL. fig. 1 ; also, Sars in Wiegmann's Arch. 1841, I. p. 19.

1 The development and metamorphosis of Medusa aurita and of Cyanea capillata have been observed by Siebold (lseiträge loc. cit. p. 21, Taf. I. II. ; and Froriep's neue Not. No. 166, 1838, p. 177) ; and by Sars (Wiegmann's Arch. 1841, I. p. 19, Taft I.-IV.). In the first stage of development (see Ehrenberg, Abhandl. \&c. loc. cit. Taf. VII.. fig. $15-18$; also, Sicbold, Beitrăge loc. cit. Taf. I. fig. 17-I9; and Sars, Wicgmann's Arch. loc. cit. Taf. I. fig. 1-6), these infusoria-like Medusae have heen regarded by Baer as the larvæ (Meckel's Deutsches Arch. VIII. 1823, p. 389).
2 Siebold, Beitrage loc. cit. p. 29, Taf. I. fig. 25-33, Taf. M. fig. 34 ; and Sars, Wiegmann's Arch. loc. cit. Taf. I. fig. 7-31. During my last visit at Trieste (autumn of 1847), I convinced myself that the young of Cephea Wagneri are developed wholly like those of Medusae, by passing from infusoria-like forms to polypoid young animals.*
8 The reproduction of the polyp-form Medusae hy buds has heen ohserved hy Sars in Cyanea

* [§70, note 2.] See, also, for recent researches on the development of Cephea, Ecker, Bericht üb. die Verhandl. d. naturf. Gesellsch. in Basel. VIII. 1849, p. 51; Busch, Beohachtungen üb. die Anat. \&c. Berlin, 1851, p. 30 ; and Frantzius, in Sie-
capillata. He has also seen them develop pedicles from the end of which new individuals would appear, which resembled Polyps. See Wiegmann's Arch. loc. cit. p. 26, Taf. I. fig. 37, 41, 42, 38, 39, 40. 4 These young Mcdusae, whilst composed of rings, have beeu taken for a new genus (Scyphistoma) of Polyps by Sars (Isis. 1833, p. 222, Taf. X. fig. 2). Steenstrup (Ueber d. Generationswechsel, 1. 17) has regarded them as nurses of the Medusae. At a latter period, when the rings have been separated and have acquired the bifid prolongations, Sars (Isis. 1833, p. 224, Taf. X. fig. 4 ; and Beskrivelser, \&c., p. 16, Pl. III.) has descrihed them as a new species of Medusae (Strobila octoradiata). But lately he has perceived that they are the young of Medusa aurita (Wicgmann's Arch. 1837, I. p. 406) ; it did not occur to him, however, that these young constitute, very prohably, the genus Ephyra of Eschscholtz (see Wiegmann's Arch. 1841, Th. I. p. 10). It will probably be discovered that many small campanulate or discoid Medusae are only the young of other Acalephae; for it is very likely that they all undergo a similar metamorphosis. It may also prove that many naked Polyps are only transitionary forms of known species of Acalephae. In this connection the observation of Dujardin (Comp. rend. 1843, p. 1132) deserves the attention of naturalists. In tracing the development of one of the Discophora allied to Oceania, he observed that this animal in its early condition separated from a corallum resembling that of Syncoryne, and was of a form quite like an Eleutheria. However various these developing forms may he, that one must he regarded as the real one wlich cxists during the development of the testicles and ovaries. \dagger
bold and Kolliker's Zeitsch. f. Zool. IV. p. 118, June, 1852. - Ed.
\dagger [$\$ 70$, note 4.] In regard to the development of the Acalephae, it may he mentioned that recent researches, few as they are, have verified some
of the hypotheses suggested in the above note. Hitherto there has been much confusion on this subject, from the want of complete series of observations ; even now the whole class can be regarded only in a some what transitionary state, in a zoological point of view. Many genera which have hitherto been regarded good and permanent will no doubt, as Siebold has remarked, prove to be only undeveloped forms of well-known species. As already stated, Agassiz regards the Hydroid Polypi as true Acalephae, and the analogy which exists between
the embryos of Medusae and Polypi may he the foundation of many other important changes. At present, however, broad generalizations must be deferred untd we have extensive and serial researches in the embryology of these animals. For separate details on the development of some forms, see Busch, loc. cit. (Sarsia, Lizzia, Cephea, Eudoxia, Diphyes) ; Huxley, loc. cit. (Diphyidae, Physophoridae); Agassiz and Desor, loc. cit. (Medusidae), - ED.

BOOK FOURTH.

ECHINODERMATA.

CLASSIFICATION

§ 71.

Tine Eiminoderms have a more or less eoriaceous envelope, filled with ealcareous, reticulated corpuseles. These last are sometimes so numerous that they form a real shell, composed of plates, movable, or tightly bound together. In the ray-like, symmetrieally-arranged systems of organs, the quinquenary number prevails.

In many speeies the digestive eanal is asymmetrieal. All are marine, and most of them move by means of particular, ereetile suckers. Others progress by vermiform motions, and some swin freely by moving their rays like oars. Only a few are stationary. All are without eopulatory organs.

ORDER I. CRINOIDEA.

The ealeareous shell, eomposed of movable pieces, forms a true eutaneous skeleton. The body is ray-like; the digestive eanal, asymmetrieal.

> Family: Encrinidae.
> Genus: Pentacrinus.
> Family: Comatulinae.
> Genus: Comatula.

ORDER II. ASTEROIDEA.

The ealeareous shell, eomposed of movable picces, forms an internal skeleton. The eutaneous eovering is sometimes eoriaceous, and sometimes ealcarcous. The body is ray-like, and the digestive eanal symunetrical.

Family: Ophiuridae.

Genera: Astrophyton, Ophionyx, Ophiothrix, Ophiomastix, Ophiocoma, Ophiolepis, Ophioderma.

Family: Astmotidae.
Gencra: Luidia, Astropecten, Ctenodiscus, Archaster, Stellaster, Astrogonium, Oreaster, Pteraster, Asteriscus, Culcita, Ophidiaster, Chaetaster, Solaster, Echinaster, Asteracanthion.

ORDER III. ECHINOIDEA.

The calcareous shell forms a spherical or discoid shield, composed of im. marable plates. The digestive canal is asymmetrical.

Family: Echinidae.
Genera: Echinus, Cidaris.
Family: Clypeastridae.
Genera: Laganum, Scutella, Encope, Rotula, Lobophora, Echinocyamus, Mellita, Echinanthus.
Family: Spatangidae.
Genus: Spatangus.

ORDER IV. HOLOTHURIOIDEA.

In place of a calcarcous shell, the cutaneous cnvelope contains a greater or less number of calcareous reticulated corpuscles. The essophagus is surrounded by a calcarcous ring, constituting the rudiment of an internal skeleton. The body is cylindrical. The digestive canal, generally asymmetrical.

> Family: Holothurinae.
> Genera: Holothuria, Pentacta, Bohadschia, Cladolabes.
> Family: Synaptinae.
> Genera : Synapta, Chirodota.

ORDER V. SIPUNCULOIDEA.

The cutaneous cnvelope is coriaceous, and frec from calcareous corpus. cles. There is no calcarcous ring about the oesophagus. The body is cylindrícal; the digestive canal, usnally asymotrical.

Faifily: Sipunculidae.
Genera : Sipunculus, Phascolosoma.
Family: Echiuridae.
Genera: Thalassema, Echiurus.

BIBLIOGRAPHY.

Tiedemann. Anatomie der Röhrenholothuric, des pomeranzenfarbigen Seesterns und Steinseeigels. Landshut, 1816.

Sharpey. Cyclop. of Anat, and Physiol. Art. Echinodermata, vol. II. p. 30. London, 1839.

Agassiz. Monographies d'Échinodermes vivans et fossiles. Neuchatel, 1838, 1-3, Livr.

Valentin. L'Anat. du Genre Echinus. Neuchatel, 1842. 4° Livr. des Monographics d'Echinodermes.

Forbes. A History of the British Star-fishes, and other animals of the class Echinodermata. London, 1841.

Müller und Troschel. System der Asteriden. Braunschweig, 1842.

ADDITIONAL BIBLIOGRAPIY.

Mïller. Ucber die Larven und dic Metamorphose der Ophiuren. In the Transact. Berlin Acad. 1846.

Ucber die Larven und die Metamorphose der Echinodermen. Ibid. 1848.
Ueber die Larven und die Metamorphose der Holothurien und Asterien. Ibid. 1849-50.

Anatomische Studien über die Echinodermen. Müller's Arch. 1850. Hft. II.

Berichtigung und Nachtrag zu den Anatomisehen Studien über die Echinodermen. Ibid. Hft. III.

Fortsetzung der Untersuehungen über die Metamorphose der Echinodermen. Ibid. Hft. V,

Ueber die Ophiurenlarven des Adriatischen Meeres. Tbid. 1851. Hft. I.
Ueber die Larven und die Metamorphose der Echinodermen, vierte Abhandlung. Read to the Berlin Acad. 7, Nov. 1850; 28 April and 10 Nov. 1851, and published in 1852.

Agassiz. Twelve Lectures on Comparative Embryology, delivered before the Lowell Institute, in Boston, Dec. and Jau., 1848-49. Boston, 1849.

Busch. Beobachtungen über Anatomie, und Entwickelung einiger wirbellosen Seethiere. Berlin, 1851.

These writings relate chietly to development; but, for many special points of Anatomy, see the writings of Müller, Krohn, Peters, and others referred to in my notes. - Ed.

CHAPTER I.

CUTANEOUS ENVELOPE AND SKELETON.
§ 72.
With the exeeption of the apodal Sipunculidae, the Echinoderms have a cutaneous skeleton modified in the different orders in the following manner:
I. In the Holothurioidea, irregular calcareons corpuscles, which often have reticulated openings, are scattered through the skin. ${ }^{(1)}$
II. In the Echinoidea, the calcareous substance is separated from the soft skin, and composed of plates of a definite form, pierced by openings. These plates are immovably united together by means of sutures. These last are easily scen in the Echinidae, but are indistinct in the Clypeastridae; they entirely disappear with age in some species. ${ }^{(2)}$ Among these plates which are arranged in a regular scries, those called ambulacral should be mentioned; these are perforated, having upon their outer surface the pedicles, and upon their inner the ambutacral vesicles. They form, usually, five double rows, so placed between the other plates that their openings form, sometimes five longitudinal rows extending from the mouth to the arm, ${ }^{(3)}$ sometimes a rosette of five lobes ${ }^{(4)}$ on the dorsal surface of the skeleton. ${ }^{(5)}$
III. The coriaceous skin of the Asteroidea, like that of the Holothurioidea, contains numerous calcareous corpuscles, of which the smallest are irregular, the largest porous: But beneath this is a cutaneous skeleton, composed of porous calcareous pieces, movably articulated, and extending on the ventral surface from the mouth to the end of the rays.

In many species, the larger corpuseles, pressed together, form a reticulated support, which is either simple ${ }^{(0)}$ or composed of plates. ${ }^{(7)}$

With the internal skeleton, each articulation is usually composed of many pieces, the intervening lacunae of which are the ambulacral pores. The principal middle pieces unite at an obtuse angle, thas forming an abdominal furrow. ${ }^{(8)}$ The Ophiuridae have also an articulated internal skeleton, but the articulations are simple. But the external envelope of their arms consists of calcareous scales, closely lonit together, and which so tightly close up the internal skeleton that the cavity of the body does not extend between the skin and the internal skeleton into these appendages, as in the Asteroidae.
IV. In the Crinoïdea, the skin is soft only on the ventral surface; that of the back is wholly calcareons, and converted into an articulated skeleton, which extends upon the arms and lateral branches. The mobility of these articulations is due to an elastic, interarticular tissue. They constitute dises or short cylinders, which, joined together, form arms, lateral branches (pinmulae), cirri, and in some species a peduncle. ${ }^{(9)}$

There is a canal in axis of all thesc parts of the skeleton, and upon the

1 These irrequiar and usually perforated calcareous corpuscles are mixed with the sand of the sea, after the death and decomposition of the animal, but càn then easily be distinguished with the microscope. Quatrefages (Anu. d. Sc. Nat. XV1I. $18 \pm 2, \mathrm{Pl}$. 11I. IV.) has figured many of them belonging to Synapta. Similar microscopic corpuscles, of various forms, are found in the soft parts of most of the Echinoderms. It is very desirable that, as has already been commenced by Ehrenberg. (Abhandl. d. Bcrl. Akad. 1841, p. 408), they should be subjected to careful investigation; for by this way alonc can correct views be obtained upon many enigmatical hodics of this kind seen by the naturalist.

For the calcereous corpuscles imbedded in the skin of the Ilolothurinae, sec Koren in Froriep's nene Not. XXXV. p. 18, fig. 6-9; and in the Arch. skandin. Beitr. f. Naturg. I. p. 449.

2 Scutella and Clypeaster.
3 Echinus and Cidaris.
4 Encope, Rotula, Scutella, \&c.
5 A very detailed description of the shall of Echinus will be found in Meckel's System der vergleich. Anat. 11. Abth. 1, 1824, p. 31 ; and in the monograph of Volentin, Anat. du genre Echiuus, 1841, p. 5. He has also published very exact researches, with figures, upon the intimate structure of the calcareous platcs of this animal (1bid. p. 17, Pl. 11.).
${ }^{6}$ Asteracanthion, Solaster.
7 Asteracanthion, Oreaster, Solaster, \&c.
8 See the figure by Sharpey, Cyclop. Anat. and Phys. loc. cit. p. 31, fig. 8, 9; and Meckel's vergleich. Anat. 11. Alth. 1, p. 10.
4 Pentacrinus.
ventral surface of the arms and pinnulae, a furrow, over which the soft skin (perisoma) passes in a bridge-like manner. ${ }^{(10)}$

§ 73.

In many Echinoildea the buceal cavity is provided with processes pointing perpendicularly into the interior of the shell. and which are the points of attachment of the masticatory muscles and ligaments.
This osseous circle is most developed in the Echinidac. ${ }^{(1)}$ and is composed of five processes. Between each of these is a smaller one, corresponding to as many ambulacral ones. each of which is perforated by a large opening. ${ }^{(2)}$ In the Clypeastridac. there are five siuple processes only ${ }^{(3)}$ and in the Spatangidae they are wholly absent.
The sub-cutaneous osseous ring about the oesophagus, in the Holothurioildea, corresponds probably to this circle. Usually composed of ten pieces, it may be regarded as a rudimentary internal skeleton, for it is the point of attachment of both muscles and tentacles.

In Holothuria tubulosa its auterior border is denticulated; () ${ }^{(1)}$ and in Synapta it is composed of twelve pieces, five of which have oval openings for the free passage of the aquiferous canals. ${ }^{(2)}$

§ 74.

The general envelope of many Asteroidea is more or less covered with various calcareous productions. These have the forms of lamellae, knobs, callosities, granules, immovable rays both sharp and blunt, rough and smooth movable points, double hooks, \&c. ${ }^{(1)}$

In the Echinoidea, there are points of very variable size united to knobs which are scattered over the external surface of the shell. These points project through the thin skin covering this shell, having at their base a kind of capsular articulation. ${ }^{(2)}$

Remarkable cutaneous organs are found in Synapta. These are small anchor-like hooks, by which these animals attach themselves to objects. Wach of them is obliquely inserted under a small sub-cutancous scale, which is perforated by a canal. ${ }^{(3)}$

[^42]hristled points, projcet from the surface of Solaster and Chaetaster. With Ophiocoma and Ophiomastix, the margins of the arms are eovered with smooth 'points, which in Ophiothrix are spinous. In Ophionyx these spinous points have movable double hooks; see the beantiful figures of Miiller and Troschel (System d. Asteriden).

2 The spines of the Lichinoilea have, over their whole extent, numerous, denticulated ribs; see Valcntin, Monogr. loc. cit. Pl. III. fig. 26. In Spatangus the spines are spatulate, and in the Clypuastridae (Mellita, Encope, Laganum) they are clavate. The minute researches of Valentin (Monogr. loc. cit. p. 2t, Pl. 111) have shown the structure of the spines of the Echinoindea to be very complex.
${ }^{3}$ The burr-like roughness of the skin of Synapta has ahrealy been observed by Eschschottz (Zool. Atlas, 11ft. 2, 1823, p. 12). Jaeger (De Holothuriis dissertatio, 1833, Tab. I. fig. 3) first figured the cutaneous books of Synapta Beselii. Quatrefuges (Aun. d. Sc. Nat. XVII. p. 33, 11. 1LI.) has given a vory exact description of those of Synapta

$\S 75$.

A peeuliar ealeareous plate (the madreporie plate) is observed upon the eutaneous skeleton of the Asteroidea and Eehinoidea. In the last it is always situated in the eentre of the dorsal surfaee, but in the first its position varies. In the proper Asteroidae there are often several, having an. exeentrie dorsal situation; while in the Ophimidae ${ }^{(1)}$ it is found upon the ventral surfaee, and espeeially in the angle formed by the junetion of the two arms with the tortuous mouth. In some Asteroidae a membranous sae (stony eanal), filled with organized caleareous particles, is attaehed to this plate; in others, an artieulated caleareous eord stretches obliquely aeross the body towards the border of the mouth. The use of these parts is not yet positively known. ${ }^{(2)}$

CHAPTERII。

MUSCULAR SYSTEM AND ORGANS OR LOCOMOTION.

§ 76.

In the Echinoderms the museular system is well developed. Its primitive fibres are flat, and without transverse striae. ${ }^{(1)}$

In the ventral surfaee, and between each joint of the arms and pinnulae of the Crinoidea, there are one or two small maseles, antagonistie to whieh, upon the opposite surfaee, is an interartienlar elastie tissue. ${ }^{(9)}$

In the Asteroildea, the interartienlar laeunae of the internal skeleton are filled with muscles. ${ }^{(3)}$ The skin of these animals does not aid the motions of the arms, exeept by its elasticity. But in the Eehinidae the skin

[^43]183t, p. 580) has shown that they do not contain ordinary calcurcous matter, but vather that which is organized and perforated in a reticulated manner. A calcareous cord of a special structure is found in Asteracanthion ; see Siebold, Mullar's Arch. 1836, p. 291, Taf. X. fig. 14-18; and Sharpey, Cyclop, Anat. \&c. loc, cit. II. p. 35 , fig. 12,18 , s.*
1 Accordiag to Wragner (Müller's Arch. 1835, p. 319), the Echinoderms do not have transwersely striated muscles. This las been confirmed liy Muller (Ahhand. d. Berl. Alad. luc. cit. p. 214, Taf. IV. Hig. 9) in the genera Pentacrimas and Comatula. For my own part, I have failed to perceive them in Echinus, Asterias, Ophiurus, Hotothuria, ank Sipunculus. Falentin (Monogr. loc. cit. p. 101, Pl. Vill. fig. 153-155) asserts to have seen striz upon the fibres of the masticatory, spinous and anal muscles of Echimus; and Quatrefages (Amm. de. Sc. Nat. loc. cit. p. 43, 1'l. IlI. fig. 17) has ulserved transverse wrinkles during the contraction of the longitusinal muscles of Synaptr.
23 Muller, Abhand. d. Berl. Akatl. loc. cit. 1. 2 It, 220 , Taf. II. fig. 8, 12.

8 Ithe intranticular muscular layer of the Astroidae has been achuratyly described by Breckel (System d. vergleich. Anat. III. p. 14).

* [$\$ 75$, note 2.] See, for further details on this stone-canal with the Ophiuridae, Muller, Arch. 1850, p. 122. - ED.
eovering the shell has distinct museular bands for the motions of the points. ${ }^{(4)}$

In the Holothurioïdea and Sipuneuloildea there is a very thiek subeutaneous museular layer. This is itself composed of two layers, - the first and upper being made up of eireular, the seeond and lower of longitudinal fibres. In the Holothurioidea, ${ }^{(5)}$ these fibres form five large, thiek, widely-spread bundles, which are inserted into the osseous ring. In the Sipuneuloidea, these bundles are more numerous, but more eompaetly bound together. ${ }^{(6)}$

The muscles of mastication, of the digestive canal, and of the tentacles, will be treated hereafter.

$\S 77$.

With the exeeption of the Synaptinae and Sipuneuloidea, the Echinoderms have speeial, tentacular, locomotive organs (ambulacra). These are hollow and very contraetile prolongations of the skin, and eommunieate through the ambulaeral pores with small eontraetile saes (ambulacral vesicles), found upon the internal surfaee of the coriaceous or ealeareous envelope of the body. The ambulaera and their vesieles have transverse, longitudinal fibres, and contain a elear liquid, whieh, from contraetions, oscillates from one to the other through the pores. In this way the ambulaera are eapable of ereetion and elongation, and the animal uses them as feelers to find a proper objeet of attaehment; and on this aceount, also, they have in some speeies a suetorial extremity.

These organs, whieh are sometimes loeomotive, sometimes prehensile, have the following variations of strueture and form :
I. With the Crinoïdea they are small, delieate and cylindrical, and are found upon the borders of a furrow, which runs from the mouth along the soft perisoma eovering the arms and pinnulae. Each one of them is eovered with small eylindrical, elavate tentaeles. ${ }^{(1)}$
II. The Ophiuridae have upon their arms, and between the plates, pores which eonnect with small eylindrieal ambulaera; these last, from numerous small warts, present a studded aspeet. ${ }^{(2)}$
III. With the Asteroidae they are situated in a double or quadruple row, in the ventral furrows whieh extend from the mouth to the end of the rays. They form compaet eylinders of considerable size, the aeute or truneated cxtremity of eaeh of whieh has a sueker. ${ }^{(3)}$
IV. With the Eehinoïdea they are situated upon an elongated stalk, and have a sueker. They are found both upon the ambulaeral plates and immediately around the mouth. ${ }^{(1)}$ Being extremely movable, they are

[^44]dae are attached to surrounding objects; see Erdl in Wiegmann's Arch. 1842, I. p. 58, Taf. II. fig. 1, a.

3 Beside the very correct description given of these organs by Tiedemann (loc. cit. p. 56), see Rymer Jones (A Gen. Outh. of the Anim. King. p. 148, fig. 65). It appears that in Astropecten the cxtremity of the ambulacra can be inverted, thus compensating for the sucker found in Echinaster, Asteriscus, and Asteracanthion.

4 With Echinus the suckers, which exactly resemble the other ambulacra, are fixed upon the contractile membrane surrounding the mouth.
With Spatangus aud Echinanthus there is
ehiefly loeomotive; for from them numerous points are prolonged, by whieh they adhere to objeets, and to whieh they beeome afterwards fixed by their sueker. They are covered with eiliated epithelium, and their suekers are made firm by a coarse ealeareous network. Elongated ealeareous corpuseles of the same nature are found also in their walls, some branehing and others hook-like. ${ }^{(5)}$
V. With those Holothurioidea which have them, they have a more or less complete sueker, and are seattered irregularly over the entire surface of the body, or disposed in regular rows. Usually very short, they ean be retraeted deeply in the skin; but they are eapable of equal prolongation, and thus perform well the function of suekers. ${ }^{(6)}$

The ambulaeral vesieles, which are intimately eonneeted with the circulatory and respiratory systems, will be fully treated hereafter.

§ 78.

With the Eehinoïdea, and Asteroidae, there are other movable organs (pedieellariae), whieh, seattered over the surfaee of the body, are prehensile, and used in a pineer-like manner. With the Asteroidae, they usually eonsist of two delieate foreeps-like pieees (pedieellariae forcipatae), or of two large valvular flaps (pedieellariae valvulatae). Generally they are not pediculated. ${ }^{(1)}$ Those of the Eehinoidea have been earefully studied in Echinus. They are numerous, and oeeur for the most part about the mouth, presenting three different forms: 1. Those eomposed of three short, lentieular pieees (pedieellariae gemmiformes). 2. Those formed of three long delieate pieees, laterally dentieulated (pedieellariae tridaetyli). 3. Those with three laterally dentieulated spoon-like pieces (pedicellariae ophioeephali). They are supported by a base of caleareous, reticulated substanee; and in the Echinoildea, always rest upon a stalk, the lower part of whieh eontains a eylindrical, ealeareous nueleus, while the remaining portion is soft, and eapable of a spiral contraction. ${ }^{(2)}$ Here also they are covered with eiliated epithelium, and ean, by means of movable proeesses, seize hold of objeets, whieh, being passed along, may be eonveyed even from the dorsal surfaee to the mouth.
near the mouth, and opposite the ambulacral rosette, a row of ambulacra having special pores.

5 See Valentin, Monorr. loc. cit. p. 37 , PI. IV V., and Erdl in Wiegmann's Arch. 1842, I. p. 55 , Taf. II. fig. 10. The corpuscles found by Ehrenberg (Abhandl. d. Berl. Akad. 1841, p. 324, Taf. IlI. No. V1I. fig. 37 , a. b.) in the marine sand of Vera Cruz, and figured under the name of Spongolithis uncinata, are only the cruciform parts of the skeleton of Echinus. This will be evident from comparing them with the calcareous corpuscles figured by Valentin (Monogr. loc. cit. Pl. V. fig. 65).
6 Catalogue of the Physiol. series of Comp. Anat. contained in the Royal Coll. of Surgeons, London, IV. 1838, p. 196, Pl. XLIX. fig. 3-5.
I With Luidia, there are, however, three tonguelike pedicellariae. In Asteracanthion, they have a soft pedicle. In Asteropsis, Stellaster, and

Astroganium, they are valvular and without a pedicle; see Muller and Troschet, loc. cit. p. 10, Taf. VI. fig. 3-6.
2 The pedicellariae of Echinus were, at first, taken for parasitic polypi by O. F. Müller (Zool. Dan. I. 1777 , p. 16, Tab. XVI.). See Lamarck, 1List. Nat. des Anim. sans Vertébres, II. p. 75. More recently, Agassiz (Vatentin's Monogr. loc. cit. p. 51) has expressed the opinion that they were young individuals. The researches of Delle Chiaje (Memor. sulla storia e notom. degli Anim. senza Vertebr. 1I. 1823, p. 324, Tab. XXIII.) and of Sars (Beskrivelser, \&c., p. 42, Tab. IX.) upon Echinus, Cidaris, and Spatangus, have dispelled all doubts as to the real nature of these organs. Very correct descriptions of them have lately been published by Valentin (Monogr. loc. cit. p. 46, PI. IV.), and by Erdl (Wiegmann's Arcb. loc. cit. p. 49. 'Taf. II. fig. 1-9).*

* [8 78, note 2.] See Adams (Ann. of Nat. Hist. VIII. 1851, p. 237), whe has found what he regards as Podicellariae on the skin of Voluta
vespertilio; be thinks, therefore, that they are independent parasitic organisms. $\mathbf{-} \mathbf{E d}$.

CHAPTER III.

NERVOUS SYSTEM.

$$
\text { § } 79 .
$$

The central portion of the nervous system consists of a ring which is usually pentagonal, and surrounds the commencement of the oesophagus. The main nervous branches are given off from this, and pass to the other end of the body along the median line of the rays, or their corresponding parts. The form of this ring is mainly due to that of the mouth; and therefore, with the reniform mouth of Spatangus, it is unequally pentagonal. ${ }^{(1)}$ Ganglia have not yet been found in it. But in Echinus and Holothuria, the nerves passing from it have betwecn their fibres, violet, green, or red pigment granules. ${ }^{(2)}$

The principal neryous trunks have a longitudinal furrow, as if composed of double cords, and give off from each side, during their course, branches which go to the ambułacra. ${ }^{(1)}$

With the Crinoildea, a nervous cord passes beneath the furrow formed by the perisoma on the ventral surface of the arms; this has a slight swelling opposite each pinnula, to which it sends off a branch. ${ }^{(2)}$ With the Asteroidae, the nervous trunks which pass off from the oesophageal ring are lodged in the ventral furrows of the rays. ${ }^{(3)}$ Bat in the Ophiuridae, they pass in a canal, concealed by the ventral plates of the arms. The five nerves, analogous to those of the Echinoidea, pass along the internal surface of the ambulacral plates, between the vesicles, even to the centre of the dorsal region. In Echinus, there are, morcover, special nerves directly from the cesophageal ring, for the organs of mastication and digestive canal. ${ }^{(4)}$ In Holothuria, this ring is situated directly on the anterior border of the osseous circle, and sends off five nerves which pass along the median line of the longitudinal muscles, even to the end of the body; ${ }^{(3)}$ it sends off also special nerves to the oral tentacles. ${ }^{\left({ }^{(5)}\right.}$

[^45]furrows of the articulations of the rays, in Asteracanthion rubens, and glacialis, are probably only tendinous fibres.
4 Krohn, who has studicd the nervous system of Echinus and Spatangus, has traced the filaments given off from the main trunks, across the ambulacral pores, to the suckers of the ambulacra. See also Valentin's figures of this system, in Echinut (Monogr. loc. cit. p. 98, Pl. VIII. IX.).
5 The cesophageal ring of Holothuria, observed by Krolen (Huller's Arch. 1841, p. 9, Taf. I. fig. 5), sends off its principal nerves across the fissures of the dentations of the five great pieces of the osseous rings. Their lateral filaments, going to the ambulacral vesicles, are so fine that Krohn could scarcely find them.
6 Grant, loc. cit. p. 184.*

* $\{\$ 80$, note 6.\} Miuller has furnished some valuable contributions on the nervous system of the

Holothurioïdea; see Arch. 1850, p. 226. Me makes this statement, which is worthy of remem-

With the Sipunculidae, as with the other worm-like Echinoderms which approach the Amelids, the arrangement of the nervous system is quite different. Here, the nervous ring is a simple, aganglionic thread extending to the posterior end of the body, and may be regarded as the first trace of a ventral cord. ${ }^{(7)}$

OHAPTER IV.

ORGANS OF SENSE.

§ 81.

The sense of touch is well developed with the Echinoderms, and seems to have its seat in the oral teutacles, the ambulacra, and pedicellariae.

With the Asteroildea, and Echinoildca, no organs of vision have yet been found. As such, however, have been regarded the red pigment dots situated, with the former, at the extremity of their rays, ${ }^{(1)}$ and with the latter, in the middle of the dorsal region upon five ocellary plates which alternate regularly with those of the genital organs. ${ }^{(2)}$ These occllary plates are pcrforated each by a very fine canal, through which passes a delicate filament from the main nerve for the pigment dot. ${ }^{(3)}$ Although these pigment dots have thus a nervous connection, no proper organ to refract the light has yet been found in them. ${ }^{\left({ }^{(2)}\right.}$

7 According to Krohn (Muller's Arch. 1839, p. 348), the œesophageal ring of Sipunculus nudus has two super-œesophageal ganglia blended together. These had already been observed by Delle Chiaje (Memor. loc. cit. I. 1, 15, Tav. I. fig. 6. i.); but more lately Grube had taken them for: cartilaginous rudiments of the osseous circle (Afüller's Arch. 1837, p. 244). ILe has also confounded with the muscular system the two lateral nerves of this xing, and its abdominal branch which in its course sends off laterally branches to the muscular layer and to the skiu, and terminating at the end of the body in a swelling. Then, on the other hand, the filaments surrounding the digestive tube, and takeu by him for nerves, appear to be only cellular fibres (lgc. cit. p. $24 t$, Taf. XI. fig. 4).

According to Forbes and Goodsir (Froriep's neue Not. No. 392, 1811, p. 279), the nervous system of Echiurus is composed of an eesophageal ring, with an abdominal cord, from which pass off asjumetrical branches.
brance: "It is a noticeable fact that the nervous trunks of these animals throughont are contained in a sheath, which, after the maceration of its contents, has exactly the aspect of a blood-vessel." The nervous system of these animals cannot, therefore, be properly studied from alcoholic specimens. - Ed.

* [§ 80, note 7.] See also Blanchard (Anu. d. Sc. Nat. 1819, XIX. P. 57), who has well madc out the nervous system with Sipunculus rufo-fimbriatus. It consists of two cerebral ganglia

According to Quatrefares, Echiurus Gaertneri has an abdominal cord which possesses ganglia, and hy this chrracter the Echinidae approach the Ammelida; see Ann. d. Sc. Nat. VII. 1817, p. 332, Pl. VI. fig. 4.*

In the Clypeastridae and Echinidie.
2 These dots, which Fahl (Maller Zool. Dan. Tab. CXXXI.) had already observed in Pteraster militaris, were first regarded as eyes by Ehren berg (Miller's Arch. 1834, p. 577 , and Abhand. d. Berl. Akad. 1835, p. 209, 'Taf. VLII. fig. 11, 12). He has seeu in istcracanthion violaceus, a small swelling at the extremity of the nerve of the ocellary dot. Forbes (Hist. of the Brit. Star-Gishes, 1811, p. 152) first noticed these dots in Echinus, and their presence has been confirmed by igassiz and Valentin (Monogr: loc. cit. p. 10, 100, Pl. II. fig. 12, Pl. IX. fig. 188, 189).

3 Valentin, loc. cit. Pl. IX. fig. 190.
4 Valentin has failed to discover in these organs a crystalline lens. Although in Echinus they are upon the back, and therefore favorable to vision;
united so as to form a single cordiform mass - the brain, which is situated under the muscles of the proboscis. lirom this brain passes off a cord on each side, forming a collar about the oesophagus ; these unite below, and then continue as a ventral cord to the posterior extremity of the body. This cord has slight swellings aloug its course, which may le regarded as ganglia; they send nerves to the integrmeats.
This anatomist has also observed here a very distinct splanchnic system of nerves. - Ed.

CHAPTER V.

DIGESTIVE APPARATUS.

§ $\$ 2$.

The alimentary canal is situated in the cavity of the body, isolated, but is retained in its place by a kind of mesentery which is composed of fibres, ${ }^{(1)}$ or of a thin membrane. ${ }^{(2)}$

The mouth, which is usually central, is often surrounded by a circle of tentacles. ${ }^{(3)}$ In the Asteroïdea, the digestive canal is a large central pouch, an anus and appendages extending into the rays being present in some ${ }^{(4)}$ and wanting in others. ${ }^{(5)}$ In the other Echinoderms, the digestive canal has usually thin walls, is of a variable length, and tortuous quite to the anus.

The position of the anus is quite varied. In the Echinidae, and Asteroidae, it is in the centre of the back, exactly opposite the mouth. In the Holothurioidea, it is at the postcrior end of the body; while in the Clypeastridae, and Spatangidae, it opens latcrally upon the margins of the shell. In the Crinoildea, it is near the mouth upou the ventral surface, and in the Sipuneuloïdea, it has a similar position.

The internal surfaee of this canal has gencrally been found lined with ciliated epithclium. ${ }^{(6)}$

§ 83.

With the Asteroïdea, and Echinoïdea, the pedieellariae already described, are used to seize the food and convey it to the mouth. Their ambulacra are perhaps sometimes used in the same way: In the Crinoidea, the furrow of the tentacles, aided by the tentacles themselves, serves well to conduct the food from the arms and pinnulae to the mouth. ${ }^{(1)}$

In the Holothurioidea, and Sipunculidae, there are completely retractile tentaeles of a special nature. In the first, they are hollow, pinnated or branched, and, arranged in a circle around the mouth, are attached by their base to the osseous circle and to the elongated vesicles which projeet into the cavity of the body. These tentacular vesicles contain a liquid,

[^46][^47]which, by their contraction, is pressed into the cavity of the tentacles for lubrication. ${ }^{(2)}$

The retraction of the tentacles is due in part to their own contractility, and in part to the numerous museles, which, arising from the internal surface of the cavity of the body, are inserted into the osseous circle. By these means, it, together with the tentacles, can be retracted into the body. ${ }^{(9)}$ With the Sipunculidae the tentacular apparatus consists of a fringed border on the margin of the mouth, which is also provided with vesicles. ${ }^{(4)}$ In Sipunculus, and Phascolosoma, there are four long muscles, which, arising from the internal surface of the body, pass on to the mouth, and are retractors of the tentacular membrane. ${ }^{(5)}$ It is possible that these oral tentacles serve not only as prehensile organs of food, but also as those of locomotion and respiration. ${ }^{(6)}$

$$
\text { § } 84 .
$$

The mouth of the Comatulinae presents nothing remarkable; but with the Asteroidae, it is covered with hard papillæ, projecting from its corncrs and angles. In the Ophiuridæ, the inverted angles are covered with hard papillæ, while the cverted ones have calcareous teeth, between which are concealed soft cylindrical tentacles. Immediately behind all of these, the entrance of the stomach is indicated by a membranous sphincter. In the Asteroidae, however, this is wanting, there being a short cesophagus leading directly into the stomach.

With the Echinoidea, and Holothurioildea, the mouth has a soft circular lip, between which, with the Echinidae, and with the Clypeastridae, project the points of enamelled teeth.

The mouth of the Echinidae, and Clypeastridae, has a very remarkable masticatory apparatus. In the first, the calcareous basis which supports the teeth has long been known as Aristotle's lantern. This conical basis is divided into a base and summit; the first being the superior part of the animal itself, while the second is formed by points of teeth projecting from the mouth. It is, morcover, composed of fifteen picecs, five of which are threc-sided, hollow pyramids, and so adjusted that they touch each other by their plane surfaces, presenting externally the third surface which is convex. This last has internally a longitudinal furrow, in which is fitted a very long, narrow and slightly-curved tooth. Beside these five principal pieces, which form the jaws of Echinus, there are two other kinds, much

[^48][^49]smaller. Of these, five are elongated quadrilateral plates, placed at the base of the lantern, between each two pyramids. The other five, smaller and longer, are curved upon the first.

All these pieces a mivir united by many tendons and muscles to each other, and to the neighboring osseous circle which projects inwards from the shell.

The muscles of mastication are in ten pairs; five of these arise from the longest processes of the osseous circle, and are inserted on the pyramids below the summit' of the lantern. The other five, on the other hand, pass from the shortest processes of this circle to the base of the pyramids.

By this arrangement, when the first five contract and separate the summits of the pyramids together with their tecth, the second five, contracting also, carry the points of the teeth again together, by separating the bases of the pyramids. ${ }^{(1)}$

In the Clypeastridae, the masticatory apparatus is more simplc. It is eomposed of ten uncqual, triangular pieces, joined together, V -form, two and two. Each of these picces has in its projecting angle, a furrow in which a tooth is fitted. These five jaws are so arranged around the mouth that their angles and the points of their teeth meet together in its centre. ${ }^{(2)}$

$$
\S 85 .
$$

The digestive eavity of the Ophiuridae is only a simple stomaehal sac, occupying the centre of the hollow dise of their body.

It is divided by walls projecting inwardly, into many caeca, which never extend into the rays. ${ }^{(1)}$

There are usually ten of these eaeca, which in Astrophyton are subdivided into numerous smaller caeca. ${ }^{(2)}$

With the Asteroidae, the stomach is large and has a similar situation; but it sends off radial caeca into the rays.

In those species which have an anus, the digestive eanal may be divided into three parts. The stomach is separated into two chambers by a circular, projecting fold. The first of these is the true stomach, and the second sends off the radial caeca. A narrow, short rectum, passing off from the stomach, forms the third part of this canal, and terminates in an anus, situated upon the back of the animal and concealed among points, callosities, \&c. This rectum has folds which, of a variable length and sometimes branched, are called the inter-radial caeca, and are situated between instead of in the rays. ${ }^{(3)}$

In the Comatulinae, this canal consists of a coecum situated at the end of, a short œesophagus, and which, after a spiral course about the axis of the body, terminates in an anus having the form of a short tube projecting from the ventral surface not far from the mouth. ${ }^{(4)}$

In Comatula europaea, the axis, around which the digestive canal passes

[^50]2 Meckel, Syst. d. vergleich, Anat. IV. p. 50.
3 See also Tiedemann (loc. cit. Taf. VII.), whose beautiful figures have been copied everywhere; and the original designs of the digestive cavity of Asteracanthion, Archaster, and Culcita, by Müller and Troschel (loc. cit. Taf. XI. XII.).

4 Upon the digestive canal of Comatula, see Heusinger, Zeitschr. f. d. organische Physik. III. 1829, p. 371, Taf. X. XI.
spirally, consists of a spongy substance, from which projects a lamina like the lamina spiralis of the conch of a snail shell. ${ }^{(9)}$

In Spatangus, the toothless mouth opens into a delicate æsophagus which passes insensibly into a long tube of nearly the same size. This last makes two convolutions in its course, and sends off at about its anterior fourth a very long caccum. The digestive canal, situated between the origin of this caecum and the œesophagus, is of a dark color and has transverse plicae, while the remaining portion below is smooth and of an orange hue. ${ }^{(6)}$

In the Clypeastridae, the numerous spiral turns of this canal are supported by many calcareous laminx situated upon the interior of the shell. ${ }^{\text {a }}$

In many species of Clypeaster, this caual has at its commencement, transverse folds, and further on numerous lateral caeca, which are separated from each other by laminæ like those just described. ${ }^{(8)}$

In the Echinidae the pharyngx has very thick muscular walls, and is surrounded by masticatory organs. Upon it succeeds a proper cesophagus, which, after a few convolutions, passes to the anus situated in the centre of the back. The digestive canal is a caecum given off by this last, and has many spiral turns in the cavity of the body. ${ }^{\text {(9) }}$

In the Holothurioidea, the very muscular pharynx is surrounded by the osseous circle. In the Holothurinae, the intestinal canal, which is long and equal throughout, has many turns from behind forwards, ending at last in a large cloaca situated at the posterior part of the body. But in the Synaptinac, it is short and nearly straight, and terminates in an anus having no cloaca. ${ }^{\text {(0) }}$

In the Echiuridae ${ }^{(1)}$ this canal closely resembles that of the Synaptinae.
In the Sipunculidae it is long, making its first turn about the middle of the body, and its second near the posterior extremity. The ascending and descending portions of this last pass spirally around each other on their way to the anus which is situated on the ventral surface of the body. ${ }^{\text {(12) }}$

§ 86.

As to the glandular appendages of the alimentary canal, the salivary organs are perhaps entively wanting in these animals.

In the Holothurinae alonc, are there particular appendages opening into its anterior portion, which could be regarded as organs of this nature. In the different genera, specics, and even individuals of this family, these appendages widely vary as to form and number.

[^51]In Holothuria tubulosa, they are cylindrical, pure white, and very numerous, being united in bundles whieh are attached to the digestive canal near the pharynx by short white pedieles. ${ }^{(1)}$

In Pentacta doliolum, there is usually only one of these organs, - a small, white, eurved horn, which sends to the pharynx a very tortuous canal, which is widely renoved from the exeretory duet of the genital organs.
The whiteness of these organs in Holothurinae is due to a retieulated calcareous skeleton in their walls. ${ }^{(2)}$

The radial caeea of the Astcroidae ought probably to be regarded as hepatie organs. They are often quite developed, extending as a double canal from the stomaeh into each ray. Their walls have numerous small botryoidal vesicles, whieh secrete a yellow liquid. Usually each of these ten liver-like organs arises from the stomaeh by a proper canal ; ${ }^{(3)}$ but in some, two of them conneet with this organ by a single eanal. ${ }^{(4)}$

With those Asteroidae which have an anus, there is another series of glandular appendages, the inter-radial eaeca, which pass off from the rectum. Their funetion is not yet known. They contain a brownish liquid, in whieh, with Asteracanthion rubens, no uric acid has been found. In Astrogonium, Solaster, and Asteracanthion, these organs are branehed, and only two in number. ${ }^{(5)}$ In Archaster, and Culcita, there are five; but in Culcita coriacea, each of these is divided diehotomously into two other long botryoidal caeca, which, separated by a septum, are spread out between the rays. ${ }^{(6)}$

In Astropecten, ${ }^{(7}$ whieh is without an anus, there are sometimes found two short, analogous eaeea, whieh open into the base of the stomaeh by a common orifiee. But in Luidia, whieh is also without an anus, these organs are entirely absent. ${ }^{(8)}$

In the other Eehinoderms, which are entirely without these glandular appendages, the walls of the alimentary canal probably seerete the fluid requisite for digestion, and thus supply also the want of the hepatic organ. ${ }^{(9)}$

1 It has already been shown that the cylindrical vesicles of Holothuria taken by Cuvier and other naturalists for salivary organs do not communicate with the digestive canal, but rather with the tentacles. The white appendages of Holothuria tubulosa were first described as testicles by Delle Chiaje (Memor. \&c. I. p. 97, Tav. VIIF. fig. 1. o.), and Tiedemann (loc. cit. p. 29, Taf. II. fig. 6, p.) assigned to them the same function. It is certain that they have no testicular character, although I cannot affirm that they are salivary organs. They have been figured, in Holothuria atra, by Jaeger in his dissertatiou: De. Ilolothuriis, Tab. III. fig. 2, e. e.

2 This calcareous tissue has been observed by Jaeger (loc. cit. p. 38, Tab. III. fig. 7), by Wagner (Froriep's neue Not. No. 249, 1839, p. 99), and by Krohn (Ibid. No. 356, 1841, p. 53). This last observer, who affirms that these organs are in connction with the great circulatory vessel surrounding the digestive canal, compares them to the stony canal of the Asteroidae.
${ }^{13}$ In Astropecten aurantiacus, according to

Tiedemann (loc. cit. Taf. VII. or, Wagner, Icon. zoot. Tab. XXXII. fig. I). It is the same, also, in Archaster, Culcita, and Luidia; see Muller and Troschel, loc. cit. p. I32, Taf. XI. fig. 2 ; Taf. XII. fig. 1.
4.Asteracanthion; see Konrad, De Asteriarum fabrica, fig. 1; and Müller and Troschel, loc. cit. Taf. XI. tig. 2.
5 See Muller and Troschel, loc. cit. p. 132, Taf. XI. fig. I (Asteracanthion rubens); an entire group of these rectal coeca of Asteracanthion glacialis, has been figured by Kontad, loc. cit. fig. $1, \mathrm{~d}$.
6. Muller and Troschel, loc. cit. p. 132, Taf. XI. fig. 2, Taf. XII. fig. 1.
7 Tiedemann, loc. cit. Taf. VII.
8 Muller and Troschel, loc. cit. p. I32.
9 According to I'alentin's figure of the intimate structure of the digestive membranes of Echinus, they are lined with hepatic epithelium, like that of the Lumbricinae, and that of the Polyps, already mentioned (Monogr. \&c. Pl. VLI. fig. 126, 13I, 133).

CHAPTER VI.

CIRCULATORY SYSTEM.

§ 87.

The vascular, sanguineous system of these animals is yet imperfectly known. The eonstant eonfusion and imperfection of its deseriptions are probably due to the fact that it has not been carefully distinguished from the respiratory system ; and also, as was true of the Acalcphae, beeause it has been confounded with the aquiferous system, whieh is usually present. ${ }^{(1)}$

From all the old and new researehes upon this subjeet, it is evident that all the Eehinoderms have an isolated system of this kind, composed usually of both an arterial and venous trunk, between which there is, in some species, an organ like a heart.

§ 88.

In the Crinoidea, there is, at the base of the, calyx, a heart-like sacculus, from which pass off vessels into the eentral cavity of the arms, the cirri, and the pediele when it is present. From its eentre, another vessel is given off for the spongy axis of the eavity of the body. ${ }^{(1)}$

The Asteroidae have three vascular rings, one of whieh is under the skin of the back, whilc the other two are beneath, around the moutl. Between these vascular rings there is a long muscular heart, whieh, united to the calcareous pouch or cord, extends from the madreporal plate to the mouth.

It is probable that the Astcroidac, which have many of these plates, have also many ealeareous cords and hearts. ${ }^{(2)}$ From these vascular rings numcrous other vessels are sent off, some to the stomaeh and its appendages, and the genital organs, and others to the ambulacra and their vesicles. ${ }^{(3)}$

1 The extended, and in some respccts contradictory works of Tiedemann and Delle Chiaje (loc. cit.; see, also, Meckel, Syst. d. vergleich. Anat. V. P . 25 ; and Sharpey Cyclopæd. \&c. I1. D. 4I) have not, for reasons which may be stated, cleared up this point. The same may be said of what relates to the blood of these animals, for it has becn confounded in part with the ambulacral liquid belonging to the aquiferous system. See Warner, Z.ur vergleich Physiol. der Blutes, 1833, p. 28.

The observations of Delle Chiaje Memor. \&c. II. p. 345) and of Carus (Analekt zur Natur. u. 1 eilkunde, 1829, p. 132, and Lehob, d. vergleich. zoot. 1834, p. 673) do not give correct ideas upon the mode and direction of the circulation of these animals; for it is evident that they did not see it, but only the vibratde phenomena of the aquiferous system.

1 The vascular system of Comatula and Pentacrinus has become known through Heusinger (Zeitsch. f. organisch. Physik. III. 1828, p. 373, Taf. X. XI.) and Muller (Abhandl. d. Berl. Akad. 1841, p. 198, 236, Taf. V.). The membranous canal,
situated beneath the nervous branches of the arm, and directly above the calcarcous articulations, and the passage of which through the arm into the calyx Muller (loc. cit. p. 233) has not been able to clearly make out, is probably a blood-vessel. It is yet unknown how the blood of these vessels is distributed to the organs.

2 As in Echinaster solaris, and Ophidiaster multiforis; see Müller and Troschel, Ioc. cit. p. 134.
${ }^{3}$ According to Tiedemann (loc. cit. 1, 49, Taf. VHI.), the lower extremity of the heart of Astropecten aurantiacus opens into the vascular ring which surrounds the mouth. This last sends arterial branches to the stomach, the coeca, and the genital organs; the superior cxtremity of the heart communicates in like manner with another vascular ring upon the back, and which receives the veins of the organs just mentioned. From a third and reddish vascular ring, situated directly under the skin of the mouth, Tiedemann has seen pass into cach ray a vessel placed superficially in the furrow of the ambulacra, but he did not ascertain

In the Eehinidae, the heart is long, ${ }^{(4)}$ and attached to the œesophagus.
In Echinus, it has several saccular enlargements, and internally has a cavernous aspeet, due to numerous irregularly arranged septa. At eaeh of its extremities there are two vaseular rings. The two below are situated on the top of the lantern and surround the cesophagus, while the two above surround the anus; all belong probably to the arterial and venous systems. One of these last sends off five branches to the genital organs, while the other receives one of the two trunks which pass along the whole length of the intestinal eamal. Two longitudinal vessels, whieh send off branches right and left, pass between caeh of the five pairs of ambulacral organs. These are, probably, a branehial artery and vein. ${ }^{(5)}$

In the Holothurinae, the vascular system, which is without a heart, is very distinet. An aortal trunk arises from the vaseular ring, whieh surrounds the cesophagns, and ramifies upon the intestine and the genital organs. By a reünion of these ramifieations, a seeond trunk like a vena cava, is formed. This divides into two arteries, whieh ramify upon the branchiae, and from which arise two branchial veims, which return to the aorta. ${ }^{(6)}$ With the Sipuneulidae, and Echiuridae, there is a main vaseular trunk, whieh, after sending off laterally small branches, passes along the ventral median line, above the digestive canal. ${ }^{(7)}$
its relations with the rest of the vascular system. Moreover, he has taken for an isolated, special sanguineous system belonging to the ambulacra, the aquiferous system, which communicates directly with the ambulacra, and which forms at third riag, situated between the two sanguineous ones of the mouth.

Volkmann's description (Isis 1837, p. 513) is wholly different. According to him, the vascular trunks of the superficial ring, and which are located in the furrows of the arms of Asteracanthion violuceus, seud off laterally ambulacral branches; the oral ring, situated more deeply, sends off branches, which, passing through the cavity of the body, go to the rays and ambulacra, and freely communicate with the cavity of these last. This same ring has also an anastomotic comnection with that of the back. According to this, the circulation occurs, he thinks, in the following manner : The heart sends the blood iuto the superficial oral ring; theuce it passes by the vessels in the furrows of the urns into the cavity of the ambulacra; these last, acting as venous hearts, send it, by the vessels iu the interior of the rays, to the second oral ring, from which it passes to the third and dorsal ring, and thence to the heart.
It is crident that Volkmann has taken a part of the aquiferous system for that of the sanguineous one; and it is probable that he did not observe the second oral ring. No correct idea can be formed of the distribution of the arteries and veins of tho Asteroidae, or of their vascular system in general, except by carefully separating it from the aquiferous system, and considering the fact that the bloodvessels do not open into the ambulacral vesicles, but probably are spread as a capillary net-work upon their walls.

4 The heart of Echinus, which is accurately described by Valentin (Honogr. \&c. p. 92, Pl.
VIII.), is attached to the œesophagus by a kind of mesentery.
5 These details are supported by Vatentin (loc. cit. p. 93), who has already added much to the labors of Tiedemann and Delle Chiaje upon the sanguineous system of Echinus, although, tike his predecessors, he has been deceived as to its connections.

The received opinions upon the circulation of these Echinoderms are, therefore, hypothetical. The nature of the five glaudular organs, which Valentin has seeu communicate with one of the two vascular rings situated upon the lautern, is very problematical (Mlonogr. \&c. p. 95, PI. VM. fig. 119 , i. 120).
${ }^{6}$ See Tiedemann, loc. cit. p. 15. The sanguineous system of Synapta Duvernaca, as described by Quatrefages (loc. cit. p. 58), corresponds, properly, to the aquiferous system of Holothuria, which Tiedemann also has taken for a special sancuineous system of the skiu and ambulacra. Hereafter we shall notice further both of these systeins.*
7 For the sanguineous vascular system of Sipunculus, and Echiurus, see Grube and Krohn (Müler's Arch. 1837, p. 248 ; 1839, p. 350), also Forbes and Goodsir (Froriep's neue Not. No. 392, loc. cit.). The vascular trunk cumbraces there the nerve so closely, that care is necessary not to overlook one, or confound both together.

Quatrefages has found in the anterior part of the body of Echiurus Gaertneri three heartshaped swellings of the blood system, namely, a ventral heart upon the ventral vessel, a dorsal heart upon the dorsal vessel, and a mesenteric heart situated beueath the digestive tube. This last commumicates with the ventral heart by a flexuous vascular canal, and with the dorsal vessel by a suall vascular ring ; see Ann. d. Sc. Nat. loc. cit. p. 324, Pl. VI. fig. 4.
tion above quoted as to the general distribution of the vessels, and especially as to the presence of a splanchnic system, which, as is well known, Quatrefages has supposed to be wanting. - Ed.

CHAPTER VII.

为 RESPIRATORY SYSTEM.

§ 89.

The respiration of the Echinoderms is performed in various ways. These are: 1. By exclusively respiratory branchiae. 2. By organs serving at the same time other funetions. 3. By means of water passing through the openings of the skin into the eavity of the body, and aeirating the blood through the eapillary vessels of the viscera.

With the Asteroildea, Synaptinae, Sipuneulidae and Eehiuridae, every individual has always two of these modes of respiration, and sometimes all three, as with the Eehinidae and Holothurinae.

$$
\S 90
$$

I. Organs whieh are exelusively respiratory are found in the Eehimidae, Holothurinae, and Echiuridae. They eonsist of external branehiae in the first, and internal in the last two.

The extermal branchiae of the Eehinidae are situated upon the soft membrane of the mouth, being formed of five pairs of arboreseent, hollow lobules. ${ }^{(1)}$ They are contractile, but cannot be retraeted within the body. They are covered both internally and externally with eiliated epithelium.

The cavity of each eommunicates with that of the body by a large orifice situated on the internal surfaee of the oral membrane. ${ }^{(2)}$ By this means they are bathed with water apon both of their surfaces. Their walls contain a eoarsely reticulated caleareous skeleton, ${ }^{(8)}$ and without doubt, also a eapillary net-work belonging to the branchial vessels.

The internal branehiae of the Holothurinae arise as two tubes from the cloaca of the intestinal canal, and send off, through the whole eavity of the body, numerous eoecal branches. ${ }^{(4)}$ In Holothuria tubulosa, one of these tubes is closely connected with the turns of the intestine, while the other is attached to the inner walls of the body. With the first, especially, may be pereeived the ramifications of the branchial vessels. They are also covered with ciliated epithelium, and their contraetile and expan-

[^52]sive power, united with the action of the cloaca, cnables them to receive into and expel from their interior the water of the sea. ${ }^{(5)}$

The internal branchix of the Echiuridae consist of branchless tubes. In Echiurus vulgaris, the two branchiæ, which are very movable and open into a kind of cloaca, have, on their exterior, infundibuliform, ciliated protuberances; and to each of these there is interhally a corresponding ciliated sac, capable of being inverted. The very bright-red, vascular network which is spread over these branchiae, commanicates with the great ventral vessel at the postcrior extremity. ${ }^{(6)}$

$$
\text { § } 91 .
$$

II. Among the organs which are not exclusively respiratory, are the ambulacra of the Echinodermata pedata, and the oral tentacles of the Holothurioidea and Sipunculidae, - organs which are used also for prehension and locomotion.

These ambulacra and tentacles have always a cavity which communicates directly with the proper vascular, aquiferous system. Their whole interior is covered throughout with ciliated cpithclium.

This aquiferous system has, until recently, been taken by anatomists as a special vascular one, or confounded with it. Its water serves partly to distend the ambulacra and tentacles, as shown above ($\$ 77$), and partly for respiration, which is performed by the vesicles over which ramify the branchial vessels. These vesicles are therefore like internal branchix, their vessels being bathed by the water of the sacs, and that of the cavity of the body. Usually this system consists of a ring situated between the vascular rays of the mouth, which sends canals to the oral tentacles and to the sides of the body. These canals always pass along by the rows of ambulacral vesicles, with which they communicate by lateral branches.

$$
\S 92 .
$$

In the Echinodermata pedata, this aquiferous system has the following modifications:

In the Crinoïdea, and Ophiuridae, ${ }^{(1)}$ only traces of it have been found.
In the first, there is an apparently aquiferous canal for the tentacles, situated directly under their furrow. This may be regarded as forming a part of such a system. In Pentacrinus, it is simple, but in Comatula, it is divided at several points by simple septa. ${ }^{(2)}$

In the Asteroidae, this system is highly developed, the central ring being provided with pediculated and often elongated vesicles. ${ }^{(3)}$ The main

[^53]trunks from this oral ring pass along the furrows of the rays close to their external surface. The ambulacral vesicles into which their lateral branches open, are sometimes simple, ${ }^{(4)}$ or, from a kind of suleation, have a heart-like form. ${ }^{(5)}$

In the Eshinoïdea, the oral ring wants the pyriform appendages, ${ }^{(6)}$ and its main trunks pass along the internal wall of the shell. The ambulaeral vesicles of the oral membrane are eonieal ; but the others are flattencd, overlap each other in a tile-like manner, ${ }^{\text {T }}$ and have a distinct branchial, vascular network. ${ }^{(8)}$

The aqueous oral ring of the Holothurinae has hollow appendages (tentacular vesicles) projeeting into the cavity of the body. ${ }^{(9)}$ It has also, in many species, a larger, longer, and somctimes double, coecal vesscl (Ampulla Poliana) (10) Opposite the tentaeular vesieles, the ring sends off to the oral tentacles, vessels which are often arboreseent and comparable to external branchiac; ${ }^{(11)}$ while, between these vesicles, arise five other vessels which deseend along the internal surfaee of the body. As usual, they send off latcral branches to the gencrally very small ambulaeral vesicles. ${ }^{(12)}$

In a few species only of the Synaptinac, the aquiferous ring has hollow appendages. ${ }^{(12)}$ From it pass off vessels both to the tentacles and to the sides of the hody. As the ambulaera are here absent, the five main trunks do not give off lateral branches. ${ }^{(a)}$

In the Sipunculoildca, the aquiferous system is least developed. As yet there has been found only a liquid moved by vibratile cilia in the doublylaminated eavity of the lobulated tentacles of the Sipunculidac. With this cavity, two vesicles of Poli commumieate, thus indieating the presence of an aquifcrous system. ${ }^{\left({ }^{5}\right)}$
last species they are only slightly developed; in Astropecten aurantiacus therc are three to seven vesicles, openiag by a common duct into each of the five angles of the aqueous vascular ring ; sec Delle Chiaje, loc. cit. II. p. 296 ; Tiedemann, loc. cit. p. 52, Taf. VIII. ; Konrad, loc. cit. fig. 3 ; and Meckel, Syst. d. vergleich. Anat. V. p. 32 . ITere should be mentioned also the glandular corpuscles which are attached to the aqueous vascular ring, and which resemble in some respects the glandular organs of the vascular sanguineous rings of Echinus, pointed out by Valentin; see Delle Chiaje, loc. cit. I1. Tav. XXI. fig. 12, 14 ; Tiedemann, loc. cit. Taf. VIII. o. o., or Wagner, Icon. zoot. Tah. XXXII. fig. $2, \mathrm{~m}$.

4 Ophidiaster, Asteracanthion. Luidia; see Müller and Troschel, loc. cit. Taf. XI. fig. 4.
${ }^{5}$ Astropecten ; see Konrad, loc. cit. fig. 4. I am not yet settled upon the question whether the aquiferous system of the Asteroidae is filled by the extremity of the ambulacra, or by the oral ring. I have not been able to convince myself of the presence of an opening at the extremity of these first.
6 Delle Chiaje (loc. cit. Tav. XXVI.) has given very detailed figures of the aquiferous system of Echinus and Spatangus; but he has confounded it with the sanguineous vessels of the intestinal canal. 7 Valentin, Monogr. \&c. Pl. CXXXIV.OXXXVI.
8 The branchial vessels ramifying upon the flattened ambulacral vesieles appear to have been seen by Monro (Vergleichung des Baues und der Physiol. der Fische, 1787, p. 91, Taf. XXXIII. fig. 13-15; or Cyclopredia of Anat. and Pliysiol. II. p. 35, fig. 14). Krohn (Muller's Arch. 1841, p. 5) has accurately described them. It is affirmed that the imbulacra of Echinus can be filled with water through an opening of the sucker at their
extremity, and that it is discharged from the aquiferous system through ten opeuings between the teeth ; see Tiedemann, loc. cit. p. 81 ; Valentin, Monogr. \&c. p. 84, or Repertor. f. Anat. 1843 , p. 237 ; and Monro, loc. cit. 1. 92.
9 Tiedemann, loc. cit. Taf. II. fig. 4, e. e. fig. 6, m., and Delle Chioje, loc. cit. Tav. VIIT. IX. 10 Tiedemann, loc. cit. Taf. TI. fig. 4, a. a. fig. 6, g. ; Delle Chiaje, loc. cit. Tav. IX. fig. 6, f. (Holothuria tubulosa).
11 The position of the tentacular vesicle seems exactly adapted to enable them to force, during their contraction, their water into the tentacles, thus causing the prominence and development of these last. I am yet uncertain if they are not aided by the vesicles of Poli. With some Ifolotharinae, as with Cladolabes spinosus (Atlas zool. du Voyage de l'Astrolabe. P!. VII. fig. 3, f.), and with Pentacta doliolum according to my own observations, the aquiferous ring has only one vesicular appendage, and it would be questionable whether this is analogous to a tentacular vesicle, or to one of Poli.
Thyone and Cuvieria have, according to Koren (loc. cit. p. 20, 36, fig. 2, 11), only a single large, vesiculiform appendage upon their aqueous ring.
${ }^{12}$ See Delle Chiaje, loc. cit. Tav. LX. fig. 6 (IIolothuria tubulosa) ; but here also the aquiferous is confounded with the sanguineous system.
${ }^{13}$ In Chirodota Doreyana, and fusca, theso hollow tentacular vesicles are very apparent; see Atlas zool. du Voyage, \&c., loc. cit. I'l. VII. fig. 16, Pl. VIII. fig. 3.
14 Quatrefages, loc. cit. P. 58, PI. IV. fig. 1, II. V. fig. 5 .

15 That the tentacular memhrane of the Sipmculidae has the function of a branchia, is indicated

§ 93.

III. In nearly all the Eehinoderms, as has been seen, all the viseera are bathed with water which eertainly affeets their delicate blood-vessels. It is very probable that from eiliated epithelium eovering the entire eavity of the body and the viseera this water eireulates in a definite manuer. It is rejected at last through many respiratory openings, through whieh also fresh water is introdueed.

In the Ophiuridae, there are in eaeh inter-radial spaee two or four large openings of this kind, leading into the eavity of the body. ${ }^{(1)}$

In the Asteroidae, water passes freely in and out the cavity of the body, through small contractile trachean tubes, which have been known for a long time, and whieh are very numerous upon the baek. They are eovered within and without with eiliated epithelium, and have an opening at their extremity. ${ }^{(2)}$ As yet it is unknown how the eavity of the body of the Eehinoildea and Holothurioidea receives the water. Only in Synapta Duvernaea, have there been found proper respiratory openings; these are four or five papillæ, covered with eilia, coneealed at the base of the oral tontaeles, and connceting with the cavity of the body through a narrow canal.(3) In the Sipuneulidae, the water is reecived through an opening at the posterior end of the body. ${ }^{(+)}$*

CHAPTER VIII.

ORGANS OF SECRETION.
§ 94.
The Eehinoderms appear to have special organs of seeretion. In different parts of the body there are glandular organs, the real nature of whieh, however, has not yet been determined. ${ }^{(1)}$
by the presence of delicate and tortuous vessels, observed by Grube (Muller's Arch. 137, p. 253) upon that of Sipuncutus nudus. The same conclusion might be drawn from the liquid moved by cilia observed by myself in the interior of the tentacular lobules of Phascolosoma granulatum. Grube (Muller's Arch. 1837, p. 251, Taf. XI. fig. 2, P.) has seen in Sipunculus nudus the two vesicles of Poli, communicating with the cavity of the tentacular membrane.

1 Müller and Troschel, loc. cit. Taf. IX. X.
2 Ehrenberg, Abhandl. d. Berl. Akad. 1835, Taf. VIII. fig. 12, e. 3 anal Sharpey, Cyclopædia of Anat. \&ic. I. p. 615, fig. 298, C.

* [End of § 93.] In Echinarachnius and Clypeaster Agassiz has observed that trachean tubes, similar to those of the Asteroidae, perform the function of carrying the water in and out of the body. They are situated chiefly along the margin
${ }^{3}$ Quatrefages, Ann. d. Sc. Nat. loc. cit. p. 64, Pl. V. fig. 7, f.

4 The manner in which the water caters into the interior of the Echisuidae is not quite clear to me from the description of Forbes and Gondsir (Froriep's neue Not. No. 392, p. 277).

1 The attention has already been dirccted to these glandular organs, when speaking of the parts to which they are attached. The calcareous sac, or stony canal as now understood, of certain Asteriae, canscarcely be regarded as organs of secretion.
of the disc, emptying first into a circular tube, analogous to the circular tube of the Discophora, from which extend ramifications into the main cavity of the body; see Compt. read. 1847. - Ev.

OHAPTER IX.

ORGANS OF GENERATION.

§ 95.

Although most Echinoderms lave extraordinary powers of reproduction, yet this, apparently, is not for the multiplication of the individuals, for they do not reproduce cither by fissuration or by buds.

The Holothurioidea alone, perhaps, form the exception. ${ }^{(1)}$ All propagate by the sexual organs of separate male and female individuals, and hermaphroditisn is very rare.

The eggs which are usually round, are covered by a thin chorion, and contain beside a little albumen, a variously colored vitellus with its germinative vesicle and dot. ${ }^{(2)}$ The sperm is always milky, and the spermatic particles which are unaffected by sea-water, are nearly always composed* of a round or oval, rigid body, to which is attached a delicate, very active tail. ${ }^{(3)}$

§ 96.

Externally, the organs of both sexes oxactly resemble each other, and especially during the interval of procreation ; but at the sexual epoch they often differ in color. Their situation is very varied, and they are composed of simple or branched tubes, with proper excretory ducts. These last, however, are sometimes wanting, and then the contents of the former escape by rupture, and, falling into the cavity of the body, pass out through the respiratory openings.

Here, as in the Polyps and Acalephs, the copulatory organs being absent, the water is the medium of the fecundation of the eggs, by briaging the spermatic particles in contact with them.

1 The Holothuria, which, when eaptored, discharge all their viscera through the mouth, can, according to Dalyell (Froriep's neuc Not. No. $331, \mathrm{p} .1$), not only reproduce all thesc. but also can divide spontaneously into two or more parts, each of which becomes a complete indivilual. This multiplication by fissuration occurs also, perhaps, with Synapta Duvernea; see Quatrefeges, loc. cit. p. 26.

2 Sec the eggs of Comatula Europaea (Muller, Ahhand. d. Berl. Akad. 1841, Taf. V. fig. 17), of Asteracanthion violaceus (Wagner, Prodromus, dc., Tab. I. fig. 3, or Carus and Otto, Erlatuterungstafein, Hit. V. Taf. I. fig. 1), of Echinus Iividus and sphaera (Valentin Monogr. \&c. fig. 167, 169), of Holothuria tabulosa (Wagner, Icon. zoot. Tab. XXXIL. fig. 12), and of Synapta Duvernaea (Quatrefages, loc. cit. PL. V. fig. 1).

[^54]3 See, for the spermatic particles of Asteracanthion, Solaster, and Echinus (Kölliker, Beiträge, loc. cit. fig. I-4, and Valcntin, Monogr, \&c. tig. 168), of Holothuria and Synapta (Wagrer, Icon. zoot. Tab. XXXII. fig. 13, and Quatrefares loc. cit. Pl. V. fig. 2). 'Those of similar form have been seen in Comatula by Aliller Alonatsbericht d. Berl. Akad. 18 ± 1, p. 189, or tho Abhandl. of the samc, loc. cit. p. 285). According to Falcatin (Repertorimn, 1841, P. 301), those of Spatangus violaceus have an elongated body, pointed in front, with a very dehicatc hair-like tail. Those of Ophioderma longicauda, and Ophiothrix fragilis, according to my own observation, hitve a round body, with an cqually delicatc hair-like tail.*
are wide, and of zoological import. Thus it is sometimes roud (Asterias, Urastes), sometimes pyriform (Echinocidaris), and sometimes longconical (Mellita). - ED.

§ 97.

In the Crinoildea, thesc organs, in the form of tubes, are situated under the soft perisoma of the pinnulae, and probably are without proper excretory duets. ${ }^{(1)}$

In the Ophiuridae, they consist of lobular, pedunculated sacs, which are suspended in pairs in the inter-radial spaces of the disc.

These ten organs are usually deeply fissured, and the lobules thus formed appear as so many proper sacs attached to the peduncle. ${ }^{(2)}$ Thesc last are sometines subdivided also. ${ }^{(3)}$

Sometimes each organ, divided in its whole length into lobules, is turned in the shape of a ram's horn. ${ }^{(t)}$ The pedunele of these organs is directed towards the mouth, but it is yet uneertain whether their contents eseape this way or fall into the cavity of the body. In the first case, the peduncle would be the excretory duct; ${ }^{\left({ }^{()}\right)}$and in the sceond, the eggs and sperm would escape through the respiratory openings. ${ }^{(6)}$

In the Asteroidae thesc organs consist of varioose lobular sacs, situated in the angles of the inter-radial spaces. ${ }^{(7)}$ In those species which are without *an anus, there are no proper genital openings ; ${ }^{(8)}$ these openings are also wanting in those Asteroidae which have an anus. ${ }^{(9)}$ In these last, the sperm and very small cggs pass into the cavity of the body, and probably have their escape through the respiratory openings. ${ }^{(0)}$

But in some specics, ${ }^{(11)}$ there are upon the back and near cach angle of the inter-radial spaces two small approximated plates, perforated by small openings (Laminae cribrosae). These are the simple openiags of these organs, which here consist of multi-ramose sacs, situated all along each side of the inter-radial septa, to the common duct which opens through one of the plates.

The number of these genital sacs varics widely in the different gencra of the Asteroidae. In many, a single trunk of them hangs on each side of the inter-radial septa ; ${ }^{(22)}$. in others, there is a whole row of them; ${ }^{(13)}$ and in others still, there are two rows attached to the dorsal surface of the cavity of the body, and extending into the rays. ${ }^{(1))}$

In the Echinoidea, these organs descend along the internal surface of

[^55]8 As in Astropecten and Luidia.
9 As in Ophidiaster.
10 According to Sars, the ventral surface of the disc and arms of the female Echinaster sanguinolentus and Asteracanthion Mülleri have at certain times a kind of incubating cavity, in which the eggs remain during their development. Ile thinks they get there from the cavity of the body, through particular openings upon the ventral surface of this last; see Wiegmann's Arch. 1844, I. p. 169, Taf. V1. fig. $1,2$.
The genital parts of Echinaster sanguinolentus have been described with much detail by Sars, Faun. littor. Norveg. p. 48.
11 Asteracanthion rubens, and Solaster papposus; see Müller and Troschel, loc. cit. T'af. XII. fig. 2-4.

12 Echinaster, Astrogonium, Asteriscus, and Ctenodiscus.
13 Astropecten, Oreaster, and Culcita; see Tiedemann, loc. cit. p. 61, Taf. VIII. L. L.
14 Archaster, Chuetaster, Luidia and Ophidiuster; see Miller and Troschel. loc. cit. Taf. X1I. fig. 5.
the shell, filling the empty spaces between the double rows of ambulacral vesicles.
They consist of widely ramified, deeply interlocked cocca, having always proper excretory ducts, which open upon the genital plates of the back of the shell. ${ }^{(2)}$ There are here always five of these organs, and the genital plates, alternating with the ocellary oncs, surround the anus. ${ }^{(6)}$ In some specics of the Clypeastridae, and Spatangidac, there are, perhaps, only four of these organs, judging from that number of the plates. ${ }^{(17)}$ In the Holothurinac, these organs have a very different arrangement. They consist of widely-branched cocca, ${ }^{(18)}$ floating, as loose clusters, frecly in the cavity of the body, and opening through a single common excretory duct, situated below the osseous circle, and between the oral tentacles.

The testicle, which is of a whitish color, consists of a cluster of cylindrical sacs, branched and interlocked with each other. ${ }^{\text {(19) }}$ But the ovary is pale red, very long, branched, a little flattened, and extends cven to the posterior end of the body. ${ }^{(90)}$

As the only exception among these animals, the Synaptinac are hermaphrodites. But it should be stated that we know of them only through Synapta Duvernaea. It is said that here the testicles and ovarics are united in one and the same organ. ${ }^{(27)}$ Threc or four long cylindrical sacs float in the cavity of the body, and have an excretory duct which opeus back of the osscous circle. At the epoch of procreation, vesicular prolongations appear on their interior surface, in which are formed spermatic particles. The spaces between thesc prolongations are filled by a pultaceous mass, in which appear eggs. ${ }^{(22)}$

In the Sipunculidae, and Echiuridae, there are only two or four simple cylindrical contractile pouches attached to the ventral wall. It is yet undetcrmined whether their contents cseape by rupture, or through special openings. ${ }^{(23)}$

[^56]is something so remarkable, that one cannot but believe that Quatrefages has here taken the parent sperm cells for the cggs.
23 In Sipunculus, and Phascolosoma, there is observed on each sidc, a little front of the anus, a sac attached to the side of the body (see Delle Chiaje, loc. cit. Tav. I. fig. 5, s. s. and Grube, Miller's Archiv. 1837, Taf. XI. fig, 1. vo).

These have been regarded as genital organs. In Sipunculus mudus, Grube has found eggs not only in these sacs, but in the cavity of the boly also. It may, thercfore, be questioned if the eggs escape from the sacs into the cavity of the boly, whence they are expelted through an opening at its posterior extremity, or if they are accidentally introduced from withont with the water, during respiration. In this last case, these sacs should have excretory ducts; and there are, indeed, in Sipunculus nudus, two external fosse opposite the point of insertion of the sacs (see Delle Chiaje, loc. cit. Tav. I. fig. 2, f.), and in which it is said, there are two very small openings. According to Forbes and Goodsir, the genital sacs of the male Echiurus vulgaris contain a seminal liquid, with very active spermatic particles, while those of the female are filled with eggs ; see Fro riep's neue Not. loc. cit. p. 281, fig. 20, 22, 12, f. f.*

[^57]
§ 98.

The few observations hitherto made upon the embryology of the Echinoderms belong solely to the Asteroidae. Here, the vitellus undergoes the usual segmentation, and then is changed into a long, cylindrical, infusorial embryo, eovered with cilia.

A lew days after, four papillae are formed upon the anterior part of the body, and by these the embryo is attached to the walls of the ineubating cavity (Bruthöhle). It then begins to be flattened laterally, and upon one of these lateral surfaces, ray-like tentacles appear, while the margin of the body forms five angles, upon the extremity of each of whieh is a red pigment dot. Then the eilia upon its surfaee disappear, and the young individual, deprived of its papillae and set free, moves about by its ambulaera. ${ }^{(1)}$

1 These interesting observatious of Sars (Vienmann's Arch. 1837, I. p. 40 k, 1844, 1. p. 169, Tuf. VI. fig. 4-22) were made upoa Echinaster simguinolentus, and Asteracanthion Mulleri. 1le has also observed that during the development, the point of attachment is gradually change l, until it reaches the back; thus supporting the view that the madreporal phate is the relic of this last, which, in Comatula, has been well compured by Muiller and Troschel (Syst. d. Asterilen, D. 13t), to a button, since from- it the young individuals are attachell by a pedicle, as Thomson has shown upon (formerly) Pentacrinus Europaeus; see Zeitscli. f. die Orgunisch. Physik. 1823, p. 55, and the Edinb, new Pliilos. Jour. 1838, p. 235, or Froriep's neue Not. No. 1057, 1836, p. 1. The assertion of Sars (Wiegmann's Arch. 1814. 1. p. 176) that the animal which he formerly called Bipinnuria asterigera (Beskrivelssr, \&c., D. 37, Tab. XV. fig. 40) is probably only a developing As teroil endswed with a great swimming apparatus, deserves to be cousidered. The remark of Dalyell (Froriep's neue Not. No. 331, p. 2) that the youns of Hololthria are of the size of bar-ley-corns, and resamble white maggots, is not one that affords us any data upon the development of these animals. There remains, therefore, a vast field open to observers concerning the development of the Lehiaoderms.

Sars (loc. cit. p. 47, Taf. VIII.) has furnished numerous data ou the development of Echinastcr. It appears, moreover, that all the Asteroidas are not develped after this type; for, Koren and Dinielssen (1mn. d. Sc. Nat. VII. 1847, p. 347, Pl. VIf. fig. $7-9$) have shown that Bipinnaria asterigera first observed by Sars, is a young Asteroid which moves by means of a particular
appendage, which is very complicated, and provided with numerous oars, - an appendage which is subsequently detachea, but which continues then to executs natatory movements. There were, perhaps, similar appendayes detached from young Asteroids that Muller and Wagner found at IIelgoland, and which they have described and figured under the name of Actinotrocha branchiata; see Miller's Arch. 1846, p. 101, Taf. V. fig. 1, 2, and 1817, p. 202, Taf. IX. fig. 1~6.

Various naturalists have noticed interestiug facts on the development of the Echinidae in endeavoring to produce artificial fecundation. In the first of these experiments, by Baer, in 1845 (Bull. de. A Classe plyysico-math. de l'Acad. des Sc. de St. 1'etersburs, V. p. 234, Froriep's neue Not. XXXIX. p. 36), the eggs of Echinus esculentus, and lividius, thus fecundated, were transiormed, after a complete segmentation of the vitellus, into a round, infusoria-like boxly, covered with cilia. Dufossé and Derbés (Ann. d. Sc. Nat. VII. 1817, p. 4if, and VIII. p. $80, \mathrm{Pl}$. V.) followed still further, with Echinus esculentus, the development of these infusoria-like embryos. They gradually became pyriform, and acquired a peduncle at their smatler anal extremity; while at the larger, oral end, tentacles and several loug catcareous spines were developed. At the same time the digcstive canal was formed in the interior of the body.

A small marine animal, first described by Mäller (Arch. 1846, p. 103, Taf. V1. fig. 2, 3, and 1847, p.160) under the name of Pluteus paradoxus, has been recently found by this same naturalist to be the young of an ophiura. This animal swims by means of vibratile cilia, and is supported hy a frame composed of ten diverging, calcareous prolongations, resemhling a painter's easel.*

382, Taf. IV. fis. A-II), and Krohn (Ibid. 1850, p. 36S, Taf. XVI.).

Peters has found that the fine whitish line described by Grube as lying contiguous with the blondvessel of the intestine is an oviduct, heing filled with ova, which move along by the action of the cilia with which it is lined. Connecting with this oviduct are botryoidal appendages, situated on the intestine, and filled with eggs; these are the ovaries. The eggs, when matured, escape into the general cavity of the body, and thence are transferred outwardly through two brownish tubes, which open externally, and whose intarnal extremity is not slosed, as has hitherto been supposed, but opens
into the general cavity of the body. These tubes, or oviducts, have been regarderl hitherto as respiratory or secreting organs. Krohn's observations confirm those of Peters on this point. - Ed.

* [$\$ 93$, note 1.] The development of the Echinoderms has been much and successfully studied of late, and chiefly by Muller, who, by several successive memoirs (see loc. cit.), has changed the zoological face of this class, beside making himself the great authority on all that relates to its emhryology. The writings of Agassiz and others furnish also many details, hut in any account I may give I shall depend mainly on the first-mentioned authority.

The first condition of every Echinoderm is the same, - an oval, ciliated body, resembling an infusorial animalcule, and without external organs, or distinction of parts. This is the starting-poiut, and $u_{p o n}$ it succeed variations according to the diferent families. Upon this ciliated body are developed, at one part, peduncles for its attachment to other bodies, while the rest of the germ increases in size, and assumes a star-fish form.

The larve thus formed may be divided into two groups:

1. Those of the Ophiuridae and Echinidae.
2. Those of the Astervidue and II blotburidae.

The first are somewhat hemispherical bodies, with one citge of their truncated side prolonged into a single flat and wide process, which carries the mouth and cosophagus; while from the opposite extremity project rods, of four, eight or more in number, and which form the internal skeleton. (See Ueb. d. Ophiurenlarven d. Adriat. Meeres. Taf. I. II.) These larva have a globular stomach in their hemispherical portion, and from which proceeds a short intestine terminating in a circular anus. They have, inreaver, a ciliated fringe, which consists of a ridge covered with large cilia, passing above the mouth and before the arms, completely encircling the body in an oblique manner.

With the second group there is no internal calcareous skeleton, and they form Miller's Auricularia (of the IIslothuridae), and Bipinnaria (of the Asteroidae).
The first of these are concavo-convex beanshaped bodies, with an irregular transverse fissure answering to the hilum of the bean, in which the mouth is placed. The margins of this fissure are ciliated; the anus opens on the ventral surface.
The Bipinnaria closely resemble these last, but they have a distinct ciliated circle in front of the mouth; as they increase in size, the anterior part of their body is covered with long processes, which vary ace ording to different forms.

Out of these larve, all of which have a strictly bilateral symmetry, the more or less radete adult Echinoderms are developed by a process which is a sort of internal gemmation.
The changes and variations of this metamorphasis I will give in Maller's own words:
"1. The change of the bilateral larva ints the Echinolerm takes place when the larva yet remains an embryo, and is universally covered with cilia, without a ciliated fringe. A part of the body of the larva takes on the form of the Echinoderm; the rest is absorbed by the latter (a part of the Asteroidae, Echinaster, Asteracanthion, Sars).
" 2 . The change of the bilateral larva into the Echinoderm takes place when the larva is perfectly organized ; that is, possesses digestive organs and a special ciliated fringe.
"The Echinoderm is constructed within the Pluteus like a picture upon its canvas or a piece of embroidery in its frame, and then takes up into itself the digestive organs of the larva. Hereupon, the rest of the larva vanishes (Ophiura, Echinus), or is thrown off (Bipinnaria).
"3. The larva changes twice. The first time it passes out of the hilateral type with lateral ciliated fringe into the radial type, and receives, instead of the previous ciliated fringe, new locomotive larval orgaus, the ciliated rings. Out of this pupa-condition, the Echinoderm is developed, without any part being cast off (Holothuria, some Asteroidae).
"If we call embryonic type the condition in which the animal leaves the cgg, and when the internal organs are not ${ }^{\text {h }}$ t developed, we have four stages or types, - the cmbryonic type, the larval type, the pupa type, and the Echinoderm type. The animal may pass from either of the first three forms into the Echinoderm, or maty ruu through them all." See Ueber. d. Larven u. d. Metamorph. d. Holoth. u. Aster. p. 33. See, also, a review of Muller's researches, by Huxley (Aun. Nat. IIist. VIII. 1851, p. 1), and by Dareste (Ann. d. Sc. Nat. XVII. 1852, p. 349).
These results are highly interesting in hoth a zoological and a physiological point of view, and I need only suggest their inportant relations to the doctrine of "alternation of generations."
In this counection, it may be proper to allude to another point. It is well known that Vogt (Naturgesch. d. lebend, u. uutergegang. Thiere. 1. Liefer. 3, p. 251) has removed the Beroil Medusue from the Acalephae to the "Molluscoida," regarding them bilateral animals. In a private letter from Agassiz, there is a passage bearing directly on this point. He says: "The young Echinoderms are structurally and morphologically homolagous with Beroill Medusae, showing that Beroïls are genuine Radiates, and truly belong to the class of Acalephae, and camot be referred to the Molluscoids. These relations will be plain by comparing Taf. I. fig. 6, of Muller's Larven und d. Metamorph. d. Ophiuren und Seeigel. 1818, with the figures of Pl. VIII. of A rassiz' Memoir on the Beroil 1 Medusae, in the Mem. of the Amer. Acad. of Aits and Sc. Vol. IV."
For further writings on the development of the Echinoderms, see Muller's papers, published in his Arch. 1848, p. $113 ; 1849$, p. 84,364 ; 1851, p. $1,272,353$; bat these papers are all included iu his large memoirs already given. Sce, also, Krohn, Beiträg. zur Entwickelungsgeschichte der Seeiglelarven, 1849, and in Muller's Arch. 1551, p. 338, 344, 363; and Desor, Müller's Arch. 1849, p. 79. - Ed.

BOOK FIFTH.

HELMINTIES.

CLASSIFICATION.

$\S 99$.
Ir is very diffeult to eharaeterize the elass Helminthes, for it contains animals having widely dissimilar organization. On this aeeount, the separation of its groups, and their distribution among the other elasses of the invertebrata, has been attempted. But sueh various difficulties have arisen from this, that for the present, it is best that all these animals should remain together. If a eommon eharaeter is not furnished by their strueture, it must be sought for in their manner of life; for nearly all are parasites, ${ }^{(1)}$ and during their whole life, or at least during some of its periods, seek their abode and nourishment in or upon other living animals.

ORDER I. CYSTICI.

The body is swollen in the form of a bfadder, and filled with a serous liquid. Digestive and genital organs are wanting. ${ }^{(2)}$

> Genera: Echinococcus, Coenurus, Cysticercus, Anthocephalus.

ORDER II. CESTODES.

The parenehymatous body is riband-like, having often incomplete transverse fissurations ; often it is wholly divided transversely into rings. Digestive organs are wanting. The genital organs of both sexes are eombined in the same individual, and generally are often repeated. Copulatory organs are present.

Genera: Gymnorhynchus, Tetrarhynchus, Bothriocephalus, Taenia, Triaenophorus, Ligula, Caryophyllaeus.

[^58]
ORDER III. TREMATODES.

The body is parenchymatous, and usually flattened. The intestinal canal, which is often branching, has a mouth, but nearly always is without an anus. The genital organs of both sexes are combined in the same individual. Copulatory organs are present.

Genera: Gyrodactylus, Axine, Octobothrium, Diplozoon, Polystomum, Aspidocotylus, Aspidogaster, Tristomum, Monostomum, Holostomum, Gasterostomum, Pentastomum.*

ORDER IV. ACANTHOCEPHALI.

The sack-like body is flattened, transversely striated, and swollen cylindrieally by the absorption of water. Digestive organs are wanting. The genital organs are situated in separate individuals. Copulatory organs are present.

Genus: Echinorhynchus.

ORDER V. GORDIACEI.

The body is filiform and cylindrieal. The digestive organs are without an anus. The genital organs are situated upon separate individuals. Copulatory organs are sometimes present.

Genera: Gordius, Mermis.

ORDER VI. NEMATODES.

The body is sack-like and cylindrical. The digestive eanal has a mouth and an anus, and passes in a straight line through the eavity of the body. The genital organs are situated upon separate individuals. Copulatory organs are present.

[^59]"Besides the ring of nerves, the sub-œesophageal ganglion, and the eords which represent the ganghonie ehain, the Linguatulae are provided with different ganglia representing the great sympathetie. I deteeted four perfeetly distinct ganglia spread over the sides of the lower surface of the cesophagus in the new speeies from the Mandrill. In another speeies M. Blanchard detected these ganglia and stomato-gastrie nerves; but he referred them to the system of the nerves of relation or those of animal life, judging, at least, from the name whieh he has assigned to them.
"Another point, whieh, however, had not escaped the attention of naturalists, is that the museles exhibit in their primitive fibres the transverse lines which are not met with in the lower animals."
See Bull. de :'Aead. Royale de Belgique, 1848, XV. No. 3. See also Blanchard, Comp. Read. 1850, XXXI. p. 629. - Ed.

Genera: Sphaerularia, Trichosoma, Trichocephahss, Filaria, Auguillula, Physaloptera, Liorhynchus, Lecanocephalus, Cheiracanthus, Gnalhosoma, Ancyracanthus, Spiroptera, Hedruris, Strongylus, Cucullanus, Oxyuris, Ascaris.

BIBLIOGRAPPHY.

Goeze. Versuch einer Naturgeschichte der Eingeweidewürmer. Blankenburg, 1782.
Zeder. Erster Nachtrag zum vorhergehenden Werke. Leipzig, 1800.
Brera. Vorlesungen über die vornehmsten Eingeweidewürmer des menschlichen lebenden Körpers. From the Italiau by Webcr. Leipzig, 1803.

Rudolphi. Entozoorum Historia Naturalis. Amstclacdani, 1808-10, and Entozoorum Synopsis. Berolini, 1819.

Bremser. Ueber lebende Würmer im lebenden Menschen. Wien, 1819. Translated into the French under the title: "Traité zoologique et physiologique sur les Vers intestinaux de l'Homme, par Brenser, traduit par Grundler, revu et augmenté de notes par De Blainvillc. Paris, 1824." To this Leblond has added a new Atlas. Paris, 1837.

Bremser. Icones Helminthum. Vicnnae, 18\%4.
Cloquet. Anatomie des vers intestinaux Ascaride lombricoilde et Échinorhynque géant. Paris, 1824.
Creplin. Observationes de Entozois. Gryphiswaldiae, 1825 ; and Novae Observationes de Entozois. Berolini, 1829.
Mehlis' excellent remarks upon this work in the Isis, 1831, p. 68, 166.
Bojanus. Enthelminthica, in the Isis, 1821, p. 162.
Nitzsch. In Ersch's and Gruber's Encyclopædie, articles: Acanthocephala. Acephalocystis, Amphistoma, Anthocephalus, Ascaris, \&c.
Creplin. In the same work, articles: Distomum, Echinococcus, Echinorhynchus, Eingewcidewürmer, Enthelminthologie, \&c.

Delle Chiaje. Compendio di elnintografia unana. Napoli, 1833.
Leuckart. Versuch ciner naturgemässen Entheilung der Helminthen. Heidelberg, 1827; and his Zoologische Bruchstücke, Hft. I. Helmstädt, 1820, and Hft. III. Freiburg, 1842.

Baer. Beiträge zur Kentniss der niederen Thiere, in the Nov. Act. Acad. Leop. Carol. Vol. XIII. p. 525.

Nordmann. Micrographische Beiträge zur Naturgeschichte der wirbellosen Thiere. Berlin, 1832.
E. Schmalz. XXIX. Tabulae Anatomiam Entozoorum © illustrantes. Dresdae, 1831. These contain mostly copies.
C. Th. E. Siebold. Helminthologische Beiträge und Jahresberichte über die Helminthen, in Wiegmann's Arch. für Naturgeschichte.

Diesing. His excellent Monographs in the Annalen des Wiencr Museums.
F. J. C. Mayer. Beiträgc zur Anatomie der Entozoen. Bonn, 1841.
R. Owen. His excellent article, Entozoa, in the Cyclopædia of Anatomy and Physiology.

Dujardin. Histoire naturelle des Helminthes. Paris, 1845.

ADDITIONAL BIBLIOGRAPIY.

The following are among the more important contributions to the Anatomy of the Hellininthes which have been published since the issue of the original work. I should mention, however, that I have not had very much access to recent German contributions in this department, from the tardiness with which such matters reach this country. However, I am happy in not being ignorant of the late publications of Siebold, who is truly at the head of Helminthology.

Blanchard. liecherches sur l'organisation des Vers., in the Ann. d. Sc.. Nat. VII. 1847, p. 87, VIII. 1847, p. 119, 271, X. 1848, p. 321, XI. 1849, p. 106, XII. 1849 , p. 1.

Van Beneden. Rechcrehcs sur l'organisation et le developpement des Linguatules (Pentastoma, Rud.), \&c. in the Mém. de l'Acad. de Bruxclles, 1848; also, in Am. d. Sc. Nat. 1849, XI. p. 313.

Note sur le developpement des Tétrarhynques, in the Bull. de l'Acad. de Belgique, XVI. 1849.

Recherches sur les Vers Cestodes, in the Mém. de l'Acad. de Belgique, 1850, XXV.

Siebold. Ueber den Generationswechsel der Cestoden nebst ciner Revision der Gattung Tctrarhynchus, in Siebold and Killiker's Zeitsch. II. 1850, p. 198.

Ueber die Verwandlung des Cysticercus pisiformis in Taenia serrata Ibid. IV. p. 400.

Ueber die Verwandlung der Echinococcus-Brut in Tacnieu. Ibid. IV. 1853, p. 409.

Sce, also, various valuable though small contributions, in the form of letters to Siebold, in Siebold and Kölliker's Zeitsch. IV. p. 52, 116, 451, 454 ; as well as the references in my notes. - Ed.

CHAPTER I.
cutanfous system.

$$
\S 100 .
$$

The body of the Helminthes is generally surrounded by a firm skin. which may be scparated into a thin epidermis, and a pretty hard dermis. The epidermis of the adults is never ciliated; but not unfrequently it has horny spines pointing backwards, whieh sometimes are limited to the anterior part of the body, and sometimes spread over a large surface, in transversely serrated rows. ${ }^{(1)}$ In the first ease, the spines serve to attach them

[^60]to other animals, and therefore will be specially described with the locomotivesorgans.

With most of the Nematodes, the epidermis has very fine and closely approximated transverse folds, which are but occasionall so prominent that the body appears annulated. ${ }^{(2)}$ Sometimes, but rarely, the body is also plicated in a longitudinal manner. ${ }^{(3)}$ The dermis has a fibrous structure, consisting of two fibrous layers, - one longitudinal and the other transverse, - which cross each other at right angles; and of two other layers, which intersect each other more acutely. (4) The skin of these animals has a great absorptive power which during life is voluntary, but which continues to a certain extent after death, so that then these worms often swell enormously, and sometimes burst. ${ }^{(5)}$

§ 101.

Directly beneath the skin of the Cystici, and Cestodes, are found hard corpuscles containing carbonate of lime, and which may be regarded as the vestige of a cutaneous skeleton. But, as they are scattered here and there more deeply in the parenchyma, they certainly may be compared to the spicula and calcareous net-works found in the skin of many Polyps and Echinoderms. Oval or discoid, they are usually of equal size in the same individual. Sometimes, however, they present irregular and unequal forms. Always colorless and transparent, and composed of concentric layers, they refract the light like small vitreous bodies.

In Taenia, Triaenophorus, Bothriocephalus, and the young of Echinococcus, they are subcutancous, and more or less scattered; but in the wrinkled and resicular body of Coenurus, and Cysticercus, they are so very abundant that they form quite thick layers. They are absent in the caudal vesicle of Cysticercus, but in Coenurus, and Echinococcus, they are found in the vesicular walls beneath the delicate epithelium which lines the interior of the body. ${ }^{(1)}$

[^61]is quite different. Here no epidermis can he separated from the dermis or the sac of the body; aud the whole is a thick membrane, resembling coagulated albumen and composed of numerous very thin layers, tightly bound together.
5 This absorbent power of the skin is particularly prominent with the Acanthocephali. It is here really a vital act; for Echinorhynchus, which naturally absorbs only a little liquid into its constantly flattened and wrinkled body, swells and relaxes alternately when in contact with water, This has been observed with many species by Creplin (Nov. Obsery. de Entozois. 1829, p. 44 , and in Ersch and Grube's Encyclopedie XXX. 1838, p. 381), by Mehtis (Isis. 1831, p. 167), and by myself. With the Nematodes it is otherwise. These cannot voluntarily govern this absorbing power, and when, thercfore, they are put iu water, they swell to bursting and die. With the Gordiacei this power is purely physical, so that the dead and dried individuals of Gordius aquaticus, when placed in water, quickly become round again, and perform very active hydroscopic motions.

I These calcareous corpuscles, which are always without an envelope and are scattered through the whole body of these Melminthes, have been taken by Pallas, Goeze, Zeder, and by most Helminthologists until lately, for egys, and as such were often figured.

CHAPTER II.

MUSCULAR SYSTEM AND ORGANS OF LOCOMOTLON.

§ 102.

The muscular system is well developed with the Helminthes; its primitive fibres are flattened, and never transversely striated. In the Cystici, and Cestodes, the muscles are least distinct, although in Cysticercus there can be no question as to the muscular fibres which traverse in every direction the walls of the caudal vesicle. ${ }^{(1)}$ Equally distinct is a subcutancous layer of longitudinal fibres in the rings of Bothriocephalus and Taenia. ${ }^{(2)}$ Moreover from the great contractility of the rings, and especially those of the cephalic portion of the Cystici and Cestodes, there must be muscular fibres concealed in the parenchyma, but which from their tenuity escape our observation. In the Trematodes, having also an extreme contractility, a large portion of the parenchyma of the body is composed of a muscular reticulated tissue, the transverse and longitudinal muscles of which embrace the various organs in a retiform manner. ${ }^{(3)}$ In the Acanthocephali, the Gordiacei, and Nematodes, the general movements of the body are due to a subcutaneous muscular layer, which surrounds the visceral cavity in a saclike manner. Its longitudinal and transverse muscles are quite distinct from each other ; and their fibres, although parallel, communicate with each other by angular anastomes, and in this way form a net-work. ${ }^{(4)}$

In most of the Nematodes, the longitudinal muscles form four, large bands, two upon the ventral, and two upon the dorsal surface. These

[^62]the nucleus; and sometimes there are two nuelei thus enclosed, and then the eorpuscles have cxactly the aspect of the precions stones of Imatra.
Those of Taenia cucumerina, Bothriocephalus solidus, and Cysticercus fasciolaris, are usually of an oval form, sometimes irregular, and of a variable size. Tschudi (Die Blascnwürmer, 1837, p. 24, Taf. II. fig. 21) has figured those of the last species as eggs.
1 I have casily scen these muscular fibres in the caudal vesicle of Cysticercus cellulosae, and tenuicollis. But they are wholly absent in the parent-vesicle of Echinococcus hominis, and veterinorum. This vesiele, thereforc, has probably no spontaneous movements, whilst the embryos it contains at certain times have distinct locomotive organs.
2 The longitudinal fibres of the subcutancous muscular layer, have been observed in Bothriocephalus tatus, by Eschricht (loc. cit. 1. 55) and in Taenia angulata, lanceolata, nasuta, and villosa, by myself.
3 The retieulated muscular parenchyma of the Trematodes (Amphistomum giganteum) has been represented by Diesing very beantifully (Ann. d. Wiener Museums I. Abth. 2, Taf. XXII. fig. 4-8),

4 In Ascaris lumbricoides, as in most Nematodes, the muscular fibres are so closely approximated that the meshes of their net-work are not seen except by tearing asunder the muscles ; see Bojanus, Isis 1821, Taf. III. fig. 48. The reticulated form of the longitudinal museles is very distinct in Cheiracanthus gracilis; see Diesing, Annal. d. Wiener Muscums, II. IIft. 2, p. 225, Taf. XVII. fig. 1, 2.
bands are separated by the same number of longitudinal lines, the two narrowest of which are above and below; while the others, which are large and riband-like, are on the sides. ${ }^{\left({ }^{()}\right)}$

In the Aeanthoeephali the transverse museles are more supericial than thé longitudinal, ${ }^{(6)}$ while in the Nematodes and Gordiacei the inverse is true. ${ }^{(\pi)}$

§ 103.

There are with the Helminthes a great variety of organs for the movements of the body. With the Cystici, Cestodes, and the Trenatodes, there are often sucking-cups and cavities; the first of these are more or less alveolate, being formed of numerous layers of eireular and radiated museular fibres, ${ }^{(1)}$ while the second are only excarations in contractile parenchyma of the body, and are divided into many chambers by septa, or have very variable lobular appendages. ${ }^{(2)}$ Many of these suctorial organs have, - some at their bottom, others on their borders, hooks with a horny support, by whieh these animals can firmly attaeh themselves to objects. ${ }^{(3)}$

5 Bojanus, Isis, 1821, p. 186, 'Taf. III. fig. 49, 55,13 . (Ascaris lumbricoides).
${ }_{0}$ In Acanthocephalus the transverse muscles intercommunicate with each other by short and narrow anastomoses, and form a complete ring, which surrounds the longitudinal ones like a large girdle. See, in reference to this, Echinorhynchus gigas. In Echinorkynchus gibbosus these annular muscles have been found only above the swelling of the body.

7 The transverse muscular bundles of the Nematodes, which are not so closely united as the longitudinal ones, do not form closed rings, but produce four segments, which are separated from each other by the crossing over of the longitudinal muscles. At least, this is soin Ascaris lumbricoides, Strongylus zigas, and most of the species of this order. Bojanus (Isis, 1821, p. 187, Taf. III. fig. 51, 5t) and Cloquet (Anat. des Vers intestin. p. 35, P1. II. fig. 3) have taken these transverse muscles for vessels; and Diesing has made the same mistake with the ramified muscles of Cheiracanthus and Ancyracanthus (Ann. d. Wiener Museums II. Abth. 2, Taf. XVI. fig. 1, and Taf. XVIII. tig. 2).
In Ascaris inflexa, and Filaria attenuata, I have seen the transverse muscles ramificd in the same manner. In Ascaris spiculigera they have a peculiarity; their more or less long fibres pass off from the longitudinal muscles at a right angle, and are inserted into one or the other of the two narrow longitudinal rays. In the Gordiacei, the longitudinal layer is not broken by any ray of this kind, hut forms continuous tubes which have thin walls and a satin aspect, and where the flattened and riband-like fibres are bound together by their faces, and at the same time anastomose with each other.

This would at least appear to he so, judging from the net-work with long meshes which is produced by a little traction. I have not found the transverse muscles in Gordius ; but in Mermis nigrescens, there is, under the longitudinal muscular layer, a net-work like the preceding, but with very large meshes. Dujurdin appears to have ohserved it, hut he regarcled it as connected with the egrs of this worm (Ann. d. Sc. Nat. XVIIL. 1842, I'l. VI. fig. 13).

1 The young Echinococcus, the Coenurus, Cysticercus, and Taenia, have usually upon the cephalic extremity four imperforate cup-like cavities, which can serve only as suckers. It must have heen an oversight of Nitzsch (Ersch and Gruber's Encyclopedie XII. 1824, p. 95), who regarded these in Taenia as so many oral orifices
leading into the alimentary canals. It is only with Distomum, Amphistomum, Polystomum, and other Trematodes, that this sucker, which is situated in front, is perforated at its bottom, and scrves also the function of mouth.
The ventral sucker of Distomum, and that found at the posterior extremity of $\Delta m p h i s t o m u m$, and Polystomum, as well as the numerous analogous orrans upon the back of Momostomum verrucosum, and upon the terminal dibatation of Aspidocotylus mutabilis (Diesing, Ann. I. Wiener Mus. II. Ahth. 2, 1. 234, Taf. XV.), are all imperforate. 'That upon the posterior' extremity of Amphistomum subclavatum, and unguiculatum, is remarsable ; it has a small duplicate at its hottom, which Diesing (loc. cit. 1. Abth. 2, p. 25t, Taf. XXIV.) has erroneously regarded as the opening of the genital organs. In Polystomum, six large muscles pass from the interior of the body, and are spread upon the convex surfaces of as many suckers, situated at the posterior extremity, and which they properly move during the animal's creeping.

2 Upon the head of Bothriocephalus, Tetrarhynchus, and Anthocephalus, there are two to four simple cup-like fossae ; with Tristomum, Polystomum, and some other Trematodes, there are two on each side of the mouth, and with Axine, Octobothrium, and Diplozoon, there are two which are subcervical and behind the mouth.

With Bothriocephalus tumidulus (Bremser Icon. Ilelminth. Tah. XIII. fig. 21, or Leuekart, Zool. Bruchstäcke. 11ft. I. Taf. I. fig. 4, 5), there are four, which are divided into chamhers by many septa; ind with Aspidogaster (Baer, Nov. Act. Acad. Leop. Carol. Vol. XIII. pt. 2, Tab. XVIII.), the whole ventral disc is divided by septa into quadrangular suctorial fossae. The head of Bothriocephalus auriculatus has a singular aspect, due to numerous partly crenulated lobes, which thank its four suckers (Bremser, loc. cit. Taf. XIII. fir. 17, 19, and Leuckart, loc. cit. Taf. I. fig. 6-11). A very simple structure is found upon the head of Bothriocephalus tetrapterus, mihi (from the intestine of the scal); here the points of junction of the fossac are prolonged into four triangular lobes, by which the animal can udhere tightly to its object. Holostomum, whicb lives in the intestines of birds and mammals, has analogous appendages around the cavity which is situated at the anterior extremity, and which it fastens to the intestinal villosities; see Nitzsch, in Ersch and Gruber's Encyclop. III. p. 393, IX. 1822, fig. 1.
3 This condition of things is found especially in

The young of Echinococcus, Coemurus, Cysticercus, and many of the Taenia, have their head armed with a circle of single or double hooks, which were known to the oldest Helminthologists. Each hook consists of a strongly-curved point, situated upon a round, straight pedicle, of variable length. At the point where the curve ceases, there is, upon the concave side of the organ, a small conical process. When this circle of hooks is unfolded, the points project around the anterior part of the head, whilst the pedicles point towards the inner and their processes towards the posterior portion of the body, and are buried in the parenchyma. Both are surrounded by muscular substance. When, therefore, the muscles of the pedicles contract, the hooks are drawn downwards and outwards, and their points are brought together upon their convex surface in the long axis of the head; but when, on the other hand, the muscles of the processes contract, these last are depressed, the pedicles are again elevated, and the hooks project outward. With many Cestodes, this circle of hooks is situated upon a particular proboscis (rostellum), which can be retracted into a sheath which is concealed between the four suckers of the head. ${ }^{(t)}$

With Anthocephalus, Gymnorhynchus, and Tetrarhynchus, there are upon the head four long and completely retractile probosces, which are armed with an extraordinary number of small, backwardly-curved hooks which are attached by a large base to the external surface of the organ, and are without special muscles; by these, these animals can penetrate the most compact animal tissues. Each proboscis is a hollow muscular tube, which can be voluntarily retracted within a sheath of the same nature, and then the hooks, with their points directed in front, are drawn together in its axis. The length of the sheath, which is usually enlarged at its base, depends upon that of the proboscis. In many species of Tetrarkynchus, they reach far into the neek of the animal. ${ }^{(5)}$
'The Acanthocephali have only one of these organs, and the hooks, which are without special muscles, form rows arranged one after another. Both the number of these rows and the form of the hooks vary in different species. Usually their size decreases from before backwards, so that those

[^63]of which Nitzsch (Ersch and Gruber's Encyclopred. VI. p. 49, IX. Taf. II. A.) has made a separate genus; the females have a protrusive sting in the sucker situated at the posterion extremity.

4 With Echinococcus, Coenurus, and Cysticercus, the number of hooks is twenty to thirty; and I have seen as many with Taenia scolecina, and infundibuliformis; but I have found only eightsen with Taenia angulata, ten with Tacnia setisera, and eight with Taenia lancoolata.

Taenia scolccina, crassicollis, and Cysticercus, have an equal number of large and smatl hooks alternating with each other, and, at a certain point, forming a double circle.

With Taenia, and especially those which have these organs on the proboscis, they may be partly or even wholly detached.

Rulolphi lias regarded Tacnia gracilis, angulata, infundibuliformis, setigera, and stylosa, as naturally without these organs, but I have often found them having a complete circle.

With Tacnia cucumerina, the structure is different; its seven rows of hooks are in all respects like those of Echinorhynchus.

5 See Leblond, Ann. d. Sc. Nat. VI. 1836, Pl. XVI. fig. $5,6,7$; and Goodsir, Froriep's neue Notiz. 1841, No. 429, fig. 18 ; also Mayer, Muller's Arch. 1842, Taf. X.
of the last row are only rudimentary. The sheath of the proboscis is rery muscular, and terminates behind in a caecum; it extends across the neek of the animal even into the cavity of the body, and its movements are aided by some special inascles. In all the species whatever, there are three muscles which act as retractors of the sheath and neck. Two of these arise as delicate cords at the anterior extremity of the body from both sides of the internal surface of the subcutaneous muscular sac; they traverse thence the cavity of the body obliquely, and are inserted, in Echinorhynchus acus, angustatus, fusiformis, and proteus, upon the sides of the sheath; but in Echinorhynchus gigas, haeruca, polymorphus, hystrix, and strumosus, the insertion is at its inferior extremity. Between these two muscles, and below their points of origin, there is a third, which divides from the subcutaneous muscular sac; this is simple, riband-like, and is inserted at the lower extremity of the sheath. In Echinorhynchus polymorphas, and proteus, its form is pyramidal. In Echinorhynchus gigas, and gibbosus, two thin muscles arise from the anterior extremity of the body, and are inserted upon the sides of the sheath; they serve, probably, for the protrusion of this organ and the neck. ${ }^{(6)}$

There are, moreover, upon the different parts of the body of some Helminthes, horny hooks and spines, which serve for their creeping about and permanent attachment to objects. ${ }^{(7)}$

CHAPTER III.

NERVOUS SYSTEM.

$$
\text { § } 104 .
$$

The apparently quite feebly-developed nervous system of the Helminthes is yet but very incompletely known.
Our whole knowledge is limited to that of a small obscure ganglion found in some species, which, as it sends off several nerves, may be regarded as

[^64]
Abstract

a sting which projects from the back above the oral sucker (and not from the mouth itself, as Warner has supposed, Isis. 1834, p. 131), and which serves to open a passage through the parenchyma of the animals they infest. An entire group of Distomum, as Distomum eckinatum, militare, uncinatum (Bremser, Icon. IIelminth, Tab. X. fig. 5), which Rudolphi has designated as Echinostomata, have around their oral sucker an annular collar, upon which are numerous straight spines arranged in a circular manner. An armature of this kind is found upon a Cercaria. These spines are as easily detached as the hooks of the armed Taeniae. With Spiroptera crassicauda, I have found on each side of the mouth a doubly-pointed sting pointing backwards, and behind this two others three-pointed. A still more lemarkable form is seen in the four penniform stiags, which project behind the mouth of Ancyracanthus pinnatifidus (see Diesing, Ann. d. Wiener Mus. II. Abth. 2, Taf. XIV. XVIII.). These Nematodes undoubtedly use these instruments for piercing the stomachal membranes of the animals they infest.

a eentral nervous organ. There are, however, various other parts whieh have been taken for nerves, but some of these, eertainly, do not belong to this system.

In the Cystiei, no nervous system has yet been found, and the researehes made upon the Cestodes have ended equally unsatisfaetory. A single observation upon a Tetrarhyncus would lead us to think that in these last the nervous system is situated at the eephalie extremity.

In Tetrarhynchus attenuatus, there is a small flattened swelling between the sheaths of the four probosees, and from whieh pass off filaments to both of these organs. ${ }^{(1)}$

The observations upon the nervous system of the Trematodes are more numerous and positive. Immediately behind the oral sueker, and upon the sides of the œsophagus, are two nervous swellings, eomeeted by a transverse eord, whieh passes beneath this eanal. Among the branehes given off in all directions from these, there are two, large and long, extending from eaeh side of the body to its extremity, and whieh give off in their course many lateral branehlets. ${ }^{(2)}$

In Pentastomum, the eentral portion of this system eonsists of a single large ganglion, sub-cesophageal, and due perhaps to the fusion of two lateral ganglia. From this, filaments pass off in every direetion; two of these surround the œesophagus in a ring-like manner, while two others, analogues of the two main trunks of the Trematodes, pass to the very extremity of the body, giving off on their way, very fine filaments. ${ }^{3}$

1 Müller, not without reason, regards this organ as the nervous system of Tetrarhynehus (Arch. 1836, p. CVI.). New observations are needed to decide if, as Lereboullet (Institut. 1839, No. 812, p. 118) supposes, there can be ineluded in this system the two longitudinal stripes, which, with Ligula simplicissima, extend along both sides of the ventral surface, and from which I, at least, have seen pass no filaments.*

2 Our very exaet knowledge of the nervous system of Amphistomum subtriquetrum, and conicum, and of Distomum hepaticum, we owe to the researches of Bojanus (Isis 1821, p. 168, Taf. II. fig. 14, 15, 19), of Laurer (De Amphistomo eonico, p. 12, fig. 21, 26), and of Mehlis (De Distomate hepatieo, p. 22, fig. 13).

By eontinuing the methods of these helminthologists, this system will undoubtedly be found in other Trematodes. Diesing (Ann. d. Wiener Mus. I. Abth. 2, p. 246, Taf. XXII. fig. 9) has found in Amphistomum giganteum, and I have done the same in Distomum duplicatum (which is properly only a larva of a species of this genus) the same disposition noticed in Amphistomum coni-
cum. In Distomum holostomum, I have found also a similar strueture, exeept that the two cesophageal ganglia are widely separated, and united by a very long eord-like eommissure. Laurer alone affirms to have seen enlargements upon the prineipal nervous trunks of the Trematodes. But their existence may be yet doubtful for no other anatomist has mentioned them, and in no ease have I myself been able to see them.

3 Miram (Nov. Act. Aead. XVII. pt. 2, p. 632. Tab. XLVI. fig. 8) did not, apparently, notice in Pentastomum taenioudes the nervous ring which surrounds the oesophagus ; although it had ahready been notieed by Cuvier (Règne Anim. III. 1830, p. 251), and by Nordmann, in a work in common with Mehlis (Microgr. Beitr. Ift. 2, p. 141). The existence of this ring has been placed beyond a doubt by the figures of it as found in Pentastomum taeniozdes, and proboscideum, given by Owen (Trans, of the Zool. Soe. I. p. 325, Pl. XI. fig. 13, or Cyelop. Anat. and Phys. II. p. 130, fig. 78), and Diesing (Ann. d. Wiener Mus. I. Abth. I, p. 13, Taf. I. II.). \dagger

[^65]The central nerrous system of the Acanthocephali is very distinct. It is always concealed at the bottom of the sheath of the proboscis, which this last, being never in a state of complete retraction. docs not fill. It consists of a dense mass of ganglionic, cellular globules blended together, and here and there may be seen through the cell-membranes their nuclei and corpuscles. This comparatively large mass sends off nerves in every direction, but the tenuity of these prevents their being traced, especially aftor they have entered the muscular walls of the proboscideal sheath. ${ }^{(t)}$

With the Gordiacei, ${ }^{(\sqrt{3})}$ and Nematodes, a nervous system has been found with certainty only in Strongylus gigas. Here a cord arises from a swelling in the head, traverses the whole length of the body upon the median ventral line, and terminates at the posterior end of the body in another swelling. It sends off in its course lateral filaments, thus resembling the nervous system of the Sipunculidae. ${ }^{(6)}$

4 I have thus found the nervous system of the Acanthocophali in Echinorhyncus giras, angustatus, haeruca, and proteus. It can be casily observed by carefully pressing or tearing the proboscideal sheath. In thus tearing, you sometimes completely expose the ganglionic mass with the roots of the nerves. In no species tbat I have dissected bave I been able to find the ganglionic ring mentioned by Menle (Froriep's neue Not. No: 235, p. 330, and Müller's Arch. 1840, p. 318) as found about the genital orifice of Echinorhyncus nodulosus.
Dujardin also (Mist. Nat. d. Melm. p. 495, 491, Pl. VII. fig. D. 4), has not observed it, but he distinctly percsived the central mass at the base of the proboscis, and has figured and named it as un corps glanduleux ou ganglionaire.

5 As yet no nervous system has been found in the Gordiacei. Berthold (Uber den Bau des Gordius aquaticus, $18!2, \mathrm{p} .12$) has been inclined to rogard as nerves two delicate filaments which traverse the cavity of the body of Gordius ; but, as these give off no lateral brancbes, this opinion cannot be admitted.*
6 Many Ilelminthologists have erroneously taken for acrves tbe delicate projecting lines wbicb, situ-
gus, which he regards as a brain ; these observations have since been confirmed by Van Beneden (Ann. d. Sc. Nat. XI. 1849, p. 319), wbo, however, regards this mass as belonging to the sympathctic system. But, however vicwed, an cesophageal collar has been distinctly made out, tbus confirming the views of Cuvier.
In regard to the splanchnic system of nerves witb these animals, Van Beneden (loc. cit.) describes it as consisting of two ganglia lying on the œsophagus back of the œesophageal collar, and from which pass off two filaments, which run along the cesophagus, and enter the collar laterally. Ile thinks the two ganglia are united by a transverse
ated directly subcutancous and often blended with the skim, traverse the whole length of the body of many Nematodes, and have been called the ventral and dorsal lines. Theirlateral branches, as already observed, are only transverse muscular bands. Quite different from these is the longitulinal cord, which Otto (Magaz. d. Gesellch. naturf. Freunde 211 Berlin, ${ }^{2} 1 \mathrm{l}$ Jahrg. 1816, p. 225, Taf. V.) has described and figured as belonging to the nervous system ; a view which I am disposed to adopt, in spite of Nitzsch (Ersch and Gruber's Encyclop. VI. 1821, p. 45) and otber Flelminthologists.

In a large female Strongylus gigas, now under my eyes, there is a simple longitudinal cord beneath the muscular envelope, and therefore in direct connection with the skin, and which extends along the ventral surface. In its course it sends off numberless lateral branches, which in their intimate structurc are quite different from the transverse muscular bands. But ncither here nor upon the nerves of other worms have I ever seen the enlargements spoken of by Otto. Grant's figure of a double nervous filament traversing the body of Ascaris is probably imaginary ; see Outlines of Comp. Anat. p. 186, fig. 82, A.
commissure. Further behind is another and larger ganglion on each side, and from which pass off filaments to the digestive cavity. See also my note under § 99 . - En.

* [§ 104, note 5.] This view of Berthold is supported also by Blanchard (Ann. d. Sc. Nat. 1849, XII. p. 6), who affirms that he has observed on both sides of the body a doublc longitudinal cord, which is usually very distinct. This, examined microscopically, appeared to be composed like the nerves of the other Helminthes. Blanchard, however, did not succeed in tracing these cords to any cephalic centres. Nothing of special valuc, tberefore, is known ou tbis subject. - Ed.

CHAPTER IV.

ORGANS OF SENSE.

§ 105.

The sense of touch is probably the only one well developed with the Helminthes. The granulations, warts, papillac, filaments, and retractile lobes, found upon the head of some species, ${ }^{(1)}$ are, without doubt, the organs of this function. The red and black points upon the baek of many, both adults and larve, and which have been regarded by some naturalists as organs of vision, appear to be only pigmentary spots; for they contain nothing like a light-refracting body. ${ }^{(2)}$

CHAPTER V.

DIGESTIVE APPARATUS.

§ 106.

The digestive organs with the Helminthes have a variable degree of development in the different orders.

In the Cystici, Cestodes, and Acanthoeephali, neither mouth nor alimentary eanal is pereeived. In the first two orders, there is, however, a system of vessols which may be regarded as a digestive apparatus; but these are designed for eireulation, rather than for digestion, since their walls are eomplete throughout and have no openings, as has erroncously been supposed, which communicate with the suckers of the head; and their contained nutritive material is reeeived by them through the skin in an endosmotic manner. ${ }^{(1)}$

[^66]The food enters the cavity of the body of Echinorhyncus probably in the same manner, for their skin has great power of absorption. ${ }^{(2)}$

The Acanthocephali have this peculiarity, that between the skin and the muscular walls of the eavity of the body there is a thin layer of finelygranulated parenchyma, often of an orange or yellow eolor, which is traversed by longitudinal and transverse eanals.

These eanals, having no proper walls, form a eontinued vascular system, and contain a liquid filled with granules and vesicles. As this system is eompletely elosed, and eannot therefore receive nutritive substances from without, it must be regarded as nutritive or eireulatory, and not digestive, as it has been by many naturalists.

§ 107.

In the other groups of the Helminthes the digestive organs are pretty generally well developed.

The Trematodes have a mouth situated usually upon the border of the cephalie extremity, and where there is a sueker occupying its bottom. From this there passes along the middle line of the neck a thin-walled oesophagus, which is often of an S-like form. Direetly behind the mouth or oral sucker, but sometimes a short distance removed from it, the œsophagus is surrounded by a round or oval museular pharynx. ${ }^{(1)}$ From the extremity of this pass off, usually, two blind intestinal tubes, whieh, passing along both sides of the body, extend generally to its posterior extremity. ${ }^{(2)}$ The other forms of the digestive eanal are as follows: in Monostomum mutabile, ${ }^{(3)}$ and flavum, the two intestinal tubes, instead of ending eoceally, form the are of a eircle ${ }^{\left({ }^{(1)}\right.}$ in Aspidogaster, a simple and uniform intestine sueeeeds upon the pharynx, and ends in a coecum at the posterior extremity of the body; ${ }^{(t)}$ in Gasterostomum fimbriatum, this eanal is very short, and terminates in the same way, but there is a mouth in the middle of the ventral surfaee; in Bucephalus polymorphus, ${ }^{(6)}$ the structure is similar; and in Pentastomum,
similar error in regarding these organs as mouths, not only in Taenia and Cysticercus, but also in Bothriocephalus. I have been unable to find a mouth upon the cephalic extremity of the Cestodes, as bas Mehlis (Isis, 1831, 1. 131), or upon that of Taenia solium, as has Owen (Leet. on tbe Comp. Anat. \&ic. p. 48, fig. 21, a.). The fossa sometimes found upon this last, is due to the retractiou of the circle of hooks, or of the proboscis, within the sheath.

2 Most Melmintbologists admit that Echinorhynchus receives its food through it small orifice at the extremity of the proboseis, the sheath of the last aiding in suetion and deglutition. I bave been unable to convince myself of the existence of this orifice, and never have found food in the cavity of the sbeath. On the other hand, I have often, like Creplin and Mehlis, seen Echinorhynchus receive and reject liquids through the skin.
1 With Distomum globiporum, the pharynx is somewhat removed from the oral sucker ; see Burmeister, in Wiesmann's Arch. 1835, II. fig. Taf. 1, 3. In 7)istomum echinatum, mititare and allied species, the oesophagus is usually very long. But in Distomum oxycephalum, it is very short; and in Distomum appendiculatum, it is entirely wanting, and consequently the intestinal bifurcation is directly bebind the pharynx.

2 Ln Monostomum, Amphistomum, IIolosto-
mum, Distomum, and Polystomum, the intestinal bifurcation extends to the posterior extremity of the body. With Distomum chilostomum, and many other species of this genus living in the Neuroptera, the whole intestine is reduced to two sbort right and left cocca, which are given off from tbe end of the resophagus.

3 Creplin, Nov. Observ. de Entozois, fig. 10, 11.
4 This arrangement has been also, but crroneously, assigned to Distomura tereticolle ; see Wasner, Lehrbuch der vergleichenden Anat. 1834, p. 75, and Creplin, in Ersch and Gruber's Encyclop. XXIX. 1837, p. 314.
This error is probably due to the inaceurate copying of figures; sce Ann. d. Se. Nat. II. 182t, p. 493 , Pl. XXTII. fig. 4, 5 ; and Schmatz, Tabulae Anat. Entozoorum, Tab. VIII. fig. 2,3. By referring to the original figne in the Mcmoir of Jurine (Mém. de la Sue. de Phys. et d'Hist. Nat. de Genève, II. pt. $\mathbf{1}, 1823$, p. 149, fig. 4, 5), from which these have been copied, there is found no trace of a closed, areuate intestinal canal behind. Moreover, Jurine expiessly says that he has seen tbe intestinal tubes of Distomum terreticolle, as coeca.
5 Baer, in Nov. Act. Acad. \&c. XIII. pt. 1, p. 536, Taf, XXVIII. ; also Diesing, Med. Jahrbuch. d. k. k. österreichischen Slitates. XVI. 1834, p. 423, fig. 8-11.
6 Bucephalus polymorphus is probably a larval
this canal is simple, straight, and ends posteriorly in an anus. ${ }^{(n)}$ In many Trematodes, the intestinal tubes have in all their course simple or ramified eaeca, and in some, these caeca are so fully developed that the intestinal canal appears to fill the whole body. ${ }^{(8)}$ 'The intestinal walls here are very thin, but this docs not prevent peristaltie and anti-peristaltic movements, by which their contents move backwards and forwards, and are often rejected through the mouth. ${ }^{(9)}$

§ 108.

In the Nematodes, and Gordiacei, the intestinal canal passes straight from the mouth which is at the anterior extremity, through the cavity of the body to the anus, which, in the first, opens front of the caudal extremity. ${ }^{(1)}$ In very nany Nematodes, the mouth has nodosities and swellings, but it is scldom that its cavity has horny, tooth-like processes. ${ }^{(2)}$

From the mouth cxtends a long and very muscular eesophagus, which is usually dilated claviform at its lower extremity. When the oesophagus is very long, it has one or more constrictions. ${ }^{(3)}$ It is nearly always composed of three longitudinal muscles which are united by longitudinal seams. The triangular cavity circumscribed by these muscles is lined by a very firm epithelium, which is sometimes horny, and in some species so thickly set in the clavate dilatation that it resembles a masticatory apparatus. ${ }^{(t)}$ The intestine consists of a straight tube, with thin walls and without dilata-

Gasterostomum ; and the species ahove mentioned I have discovered in the intestinal canal of Perca fluviatilis, and Lucioperca.

7 See Miram, Owen, and Diesing, loc. cit. The opening at the posterior extremity of many Trematodes, and by many Helminthologists taken for an anus, belongs to a special secretory organ, which will be mentioned hereafter.

8 In many species allied to Monostomum trigo nocephalum, the two intestinal tubes have simple caeca upon hoth sides of their entire length. In Octobothrium lanceolatum, the structure is the same; see Mayer, Beitr. p. 21, Taf. TII. fig. 3. These lateral caeca are more or less ramified in $O c$ tobothrium palmatum, sagittatum, Merlangi, Polystomum appendiculatum, and Tristomum eiongatum (Leuckart, Zool. Bruchstucke, IIft. 3, p. 26, 54, Taf. I. fig. 4, c. h. Taf. II. fig. 5, 1.; Nordmann, Microgr. Beitr. IIft. 1, p. 79, 81, Taf. V1I. fig. 2, Taf. V. fig. 6 ; and Baer, Nov. Act. Acitd. Leop. XIII. pt. 1, p. 665, Taf. XXX11. fig. 2). With Distomum hepaticum, these ramifications are very fully developed; see Mehlis, Observ. de Listomate, fig. 1, 2, 7,8. In the very remarkalle genus Diplozoon, the digestive canal consists of a single tube which traverses the whole body upon the median line, and sends off laterally ramificd caeca, while at the point of junction of the two bodies of the animal it dilates into a stomachal cavity; see Nordmann, loc. cit. 11ft. 1, p. 67, Taf. V. fig. 2. The hlackish ramifications of Polystomum integerrimum, and which have been regardel by Baer (Nov. Act. Acat. Leop. loc. cit. p. 682, Taf. XXXII. fig. 7, 8) and other authors as a digestive canal, belong to the subeutaneous pigmentary net-work already mentioned.

9 The digestive canal of Trematodes is nsually partly flled with blood which they have absorbed, and partly with brown or yellowish chyme; it is therefore evident how, from the thinness of its walls, it would, when empty, entirely escape thic ohservation.

1 Among the Nematodes, and Gordiacei, there
arc, moreover, species which have very rudiment ary digestive organs. In Sphacrularia bombi, there is neither mouth nor anus, and in the place of the intestinal canal there is a row of long sacs clinging together, and around which the genital organs are coiled (Wiegmann's Arch. 1838, I. p. 305). In Filaria rigida, living in the intestine's of Aphodius fimetarius, I have found no digestive canal whatever (Muiller's Arch. 1836, p. 33). In the various species of Mermis, there is a distinct mouth, œesophagus and intestine, but this last ends in a caecum. I have been unable as yet to positively determine a mouth with Gordius aquaticus; the anus is certainly wanting, and it might be questioned if the two tuhes which traverse the hody should be regarded as an intestinc; see Wiesmann's Arch. 1843, II. p. 305.

2 With Strongytus armatus, hypostomus, dentatus, and tetracanthus, the entrance of the month is provided with a circle of horny teeth, which are moved by special muscles; see Mehlis, Isis. 1831 , 1. 78, Taf. II. fig. 5, 6. With Spiroptera strongylina, I have seen the entire internal surfuce of the mouth provided with a spiral, horny swelling. In Cucullanus, there is a very complicated apparatus for opening and closing the mouth, composed of solid, horny pieces.
${ }_{3}$ With Anguillula fuviatilis, Oxyuris vermicularis, Ascaris acuminuta, brevicaudata, dactyluris, oxyura, and vesicularis, the aesophagus has this enlargement. But it is divided into two portions by a prominent constriction with Cucullanus elegans, Physaloptera alata, Spiroptera anthuris, europtera, obvelata, and crassicauda. In Trichocephalus, it is very long, and has behind very many constrictions, which are successlve at short intervals; see Mayer, Beitr. \&e. 'Taf. 1. II. With Trichosoma falconum, it is equally long and flivided into many sections, which give it an articulated aspect.
4 By many Inelminthologists this tube has been called œsophagus, and its ddatation stomachus.
tions, and which terminates in a short muscular rectum. The proper intestine is of a brown, greenish, or dirty yellow color, which is due to its walls being formed of compact cells filled with colored granules. The loose and cellular walls, having very feeble peristaltic movements, are surrounded externally by a kind of dense peritoneum, and lined internally by a very fine epithelium. ${ }^{(5)}$. In some species of Ascaris, the intestine is lengthened into a caecum at its junction with the cesophagus. ${ }^{(6)}$

$$
\text { § } 109 .
$$

There are observed, here and there, only traces of appendant organs of the digestive canal.

In many Trematodes, there are upon each side of the neek, two more or less developed cords or canals, of a cellular aspect, and of a pale yellow color by dircet light. They pass towards the mouth, open perhaps into its cavity, and have a function, probably, like that of salivary organs. ${ }^{(1)}$ In many Nematodes, two or four caeca exteud from the cephalic extremity along the cesophagus, and as they open distinctly into the oral cavity, it is, therefore, the more probable that they should be regarded as salivary organs. ${ }^{(2)}$ The same signification should be given to the coecal appendage found in many species of Ascaris, which extends from the constriction of the oesophagus to the beginning of the intestine. ${ }^{(3)}$

Hepatic organs have been found nowhere but in the Nematodes; but it may be that the granular cells in the thick walls of the intestinal canal, take their place.

[^67]cates with it directly, and also with two cords accompanying the resophagus. According to him, there is also a similar disposition with stiongylus hypostomus, and tetracanthus.
Similar appendages, analogous to salivary organs, occur, according to Owen, in the new genus Gnathosoma, as four caeca surrounding the wesophagus, and opening int the mouth (Wiermann's Arch. 1838, I. p. 134). With Cheiracanthus, and Ancyracanthus, there are four similar organs, and Diesing is certainly in error in regarding them as analogous to the ambulacral vesicles of the Echinodmm (Ann. d. Wiener Mus. I1. Abth. 2, p. 22t, 226, 223 , Taf. XVII. fig. 8, 9, Taf. XVIII. fig. 3). I am disposed to regard as salivary organs, also, the two long caeca which pass from the mouth along the cesophagus of Strongylus striatus.
3 I have discovered a similar cesophageal appendage in a group of Ascaris known as Filaria piscium (Wiegmann's Arch. 1838, 1. p. 303); such are, Ascaris mucronata, angulata, osculata, spiculigera, aucta, acus, and labiata. It is remarkable that with the exception o the last two all these have also a catecum upon the intestine.
lustomum appendiculatum, there is this peculiarity, that the intestine commences by a broad, deeply sinuate, cordiform dilatation, which rapidly narrows to a short, cylindroid portion, and then sends off a long, capacious, gourd-form receptacle, or diverticulum, and afterwards proceeds backwards to the rectum, and in its course, in the vicinity of the generative aperture, performs a single short coavolution. - ED.

CHAPTER VI.

CIRCULATORY SYSTEM.

§ 110.

Most of these animals have a vascular system. The eirculating liquid is usually wholly eolorless, and often contains vesicular or granular eorpuscles, which are difficult to perceive from their delicacy and transparency. The circulation is due to the general eontractions of the body or of the walls of the vessels.

In the Acanthocephali, the vesscls have no proper walls, but are spread out, as has already been said ($\$ 106$), in the subcutaneous parenchyma. There are two larger, lateral canals, which pass from the neck to the caudal extremity, sending off laterally numerous small eanals, which anastomose with each other. A similar net-work is found in the proboseis through its whole length. ${ }^{(1)}$ These two canals eonnect also with the lemnisci, upon each side of the neck. These last, of which there are always two upon the sides of the proboscis, passing from the neck to the cavity of the body, are usually riband-like, and composed of a finely-granulated parenchyma, whieh, like the cutaneous one, has a system of vascular canals. ${ }^{\left({ }^{(1)}\right)}$

In most species of Echinorhynchus, this system consists of a main canal upon the border of the lemniscus, from which are sent off inwardly, numerous small branches. These last form the net-work which fills the parenehyma of the proboscis. ${ }^{(3)}$

In many, ${ }^{(4)}$ the lemnisci are surrounded by muscular fibres, which, converging to the posterior extremity of these organs, form two short muscles, which, in their turn, are blended with those passing obliquely to the proboscideal sheath. The point of junction is at a short distance from the place where they are detached from the subcutaneous muscular layer. Each lemniscus is constricted into a narrow neck at its base, which passes into the skin at the base of the proboscis. The junction of the eutaneous with the lemniscian vascular system occurs at this point, as is indicated by the contained liquid passing backwards and forwards between the two from

1 This vascular system, taken by many Hlelminthologists for a digestive canal, has been figured by Westrumb (De Helminth Acanthocephalis Tab. If. fig. 10, 11t. fig. 10, 12, 21), and Burow (Echinorhynchi strumosi Anat. 1836, fig. 1, 8), The movements of the nutritive liquid may be distinctly seen by placing these animals alive and undilated as natural under the microscope. One will then be quickly convinced that the circulation is due to the general movements of the body. If Echinorhynchus is placed in much water, the absorption distends not only, the body, but the canals of the vascular system are so filled that the subcutaneous parenchyma is swollen, and the skin is raised here and there into vesicles.
2 With Echinorhynchus angustatus, acus, fusiformis, proteus, and polymorphus, the two lemuisci have a riband-like form. In Echinorhynchus gigas, they are very long ; and in Echi-
norhynchus claviceps, they are longer than the body, and lie coiled in its cavity. In Echinorhynchus gibbosus, hystrix. and strumosus, they are discoid and very short.
3 Efhinorhynchus angustatus, haeruca, polymorphus, proteus, and gibbosus. As a wide exception, the principal canal occupies the median line of the lemniscii, and sends off laterally sinall branches, with Echinorhynchus gigas. 1lere and there its course is broken by oval, voluminous, transparent and apparently vesicular hodtes ; see Westrumb loc. cit. Tab. 11. fig. 7. Similar bodies in the lemnisci and subcutaneous parenchyma, are found with Echinorhynchus claviceps; see Müller, Zool. Danica. Tab. LXI. fig. 3. These bodies are, moreover, regular neither as to their number nor position, and I have not learned their nature.
4 Echinorhynchus acus, angustatus, fusiformis, and proteus.
the peristaltic actions of the body and the alternate retraction and protraction of the proboscis. ${ }^{(5)}$

In the Gordiacei, and Nematodes, no vascular system has as yet been found. Only in a group of species described as Filaria piscium, has there been found a riband-like organ concealed in the cavity of the body, and traversed by a net-work of canals, which resemble those of the lemnisci of the Acanthocephali. ${ }^{(6)}$

§ 111.

In the Cystici, Cestodes, and Trematodes, the vascular system is well developed. Its canals have proper walls, the contraction of which produces the circulation. In the first two orders, it consists of two pairs of longitudinal canals, which pass along the sides of the body and head, and intercommunicate occasionally, by transverse canals. These four vessels open, in the head, into an annular ring which surrounds the proboscideal sheath; there is here, therefore, a completely isolated system. ${ }^{(1)}$ In the Trematodes, this system consists of a contractile net-work spread over the whole body; and in which are two larger trunks, which pass along the sides of the neck and body. ${ }^{(2)}$

5 Mehlis (Ssis, 1831, p. 82) affirms to have seen on tbe neck of Echinorhynchus gigas two small orifices by which the lemnisci open outwards. But I have been unable to see them in this species, or others of this same gems. If they really exist, they will shed light upon the doubtful functions of these organs. From what we know of their structure, it is not improbable that tbey belong to the nutritive system, and transude a liquid which bathes and nourishes tbe organs in the cavity of the body.*
6 Witb the Nematodes, the hquid appears to transude through the walls of the intestine into the cavity of the body, and there bathe, without a vascular system, all the organs. Tbe riband-like organ found in the Filaria piscium (sce Wiegmann's Arcb. 1838, I. p. 310), and whieh I have also found in Ascaris osculata, has the same vascular ramifications as the lemnisci of Echinorhynchus gigas, and tbe vesicle-like bodies are not wanting upon the course of the principal canal. Perhaps they also transude the nutritive hquid, for I have not found any communication between them and the intestinal canal.
The two lateral enlargements also, which, as already mentioned ($\$ 102$), are extended between the longitudinal muscles of the skin, have often been regarded as sanguineous vessels ; but I have observed witb them neitber longitudinal nor lateral canals. \dagger
1 These lateral vessels, regarded by some Helminthologists as intestinal tubes, give off in their course no lateral branches, except these transverse canals. Witb the articulated Cestodes, these last are always situated at the posterior extremity of the articulations, thus giving a ladder-like aspeet to the entire vaseular system. Tbey are also found, however, in Caryophyllaeus mutabilis, which is not articulated.

* [\& 110, note 5.] The observations of Westrumb and Burow on the circulatory system of the Acanthocepbali, have recently been tborougbly verified by Blanchard, who has illustrated it with excellent figures ; see Ann. d. Sc. Nat. 1849, XII. p. 21, and Régne animal, nouv. Édit. Zoophytes, Pl. XXXV. fig. 2. - ED.

Platner (Müller's Arch. 1838, p. 572, Taf XIII. fig. 4, 5) affirms to have seen semilunar valves at the orifices of the transverse canals of Taenia solium.

The four lateral cervical vessels which I have observed not only in Taenia, but also in Bothriocephalus, and Cysticercus, may be traced with perfect distinctness in Taenia cyathiformis, and serrata, to the vascular ring which surrounds the proboscideal sheath. With Caryophyllaeus mutabilis, and Taenia ocellata, which are without a proboscis, this vascular ring does not exist any more than with Bothriocephalus; here also the four lateral vessels svidely ramify in the head, and form by anastomoses, a distinct net-work. Bothriocephalus claviceps has a similar organization. It should, moreover, be here observed that from the contraction of its very thin walls the vascular system will easily eludc the observer.

2 The vessels of the Trematodes are remarkable for their prominent flexures ; see Distomum cirrigerum, tereticolle, duplicatum, and the varjous species of Diplostomum (Nordmann Microgr. Beitr. IIft. 1, Taf. Il. fig. 8, IV. fig. 5, 6). One should not confound with the sanguineous vessels, as has often been done, the very finely-ramified canals of the excretory organ, which will hercafter be mentioned. Thus I think that the vascula net-work of Distomum hepaticum described by Bojanus (Isis, 1820, p. 305, Taf. IV.) belongs to this excretory organ. Laurer also (de Amphistomo conico. p. 10, fig. 22), has not earefully distinguished them ; and Nordmann appears to have fallen into the same error (loc. cit.).

With Diplostomum, the vessels open cach side into a large reservoir situated at the extremity of the body. Between these two receptacles, the excretory organ passcs to the extremity of the body, and Nordmann has taken its orifice as
\dagger [§ 110, note 6.] Berthold (Ueber den Bau des Wasscrkalbes. \&c. loc. cit.) has described a vascular system with tbe Gordiacei; but Blanchard (Ann. d. Sc. Nat. 1849, XII. p. 7) has failed to confirm his statements after very careful research. -Ed.

CHAPTER VII.

RESPIRATORY SYSTEM.

§ 112.

A respiratory system has not yet been found with certainty in the Helminthes.

The pedunculated vesicles of many Nematodes, situated under the skin, and projecting into the cavity of the body, and which have great absorptive power, have been compared to trachean pouches and branchiae; but their structure is so little known, that any opinion as to their function ought to be deferred. ${ }^{\text {(1) }}$

A remarkable fact is the presence in some Trematodes of extremely active vibratile lobules, situated intermittingly on the inncr surface of the walls of the vessels. ${ }^{(2)}$ It may be questioned if these vessels have a special function, different from that of the others. They somewhat resemble the aquiferous system of the Polyps, Acalephs, and Echinoderms, and like it, belong, perhaps, to the respiratory system. They differ, however, in not having openings which communicate outwardly; but, probably, they receive by endosmosis, water absorbed by the skin. ${ }^{(3)}$ But another objection to this view, is, that in this order there has been found nothing like blood-vessels.

Abstract

beionging to the nutritive vessels. The nutritive liquid of the vascular system differs from the coarsely-granulated excretion of the excretory organ, by its homogeneous and colorless aspect.

It is remarkable that in Distomum tereticolle this liquid has a reddish color, which, in the finest capillaries has a yellowish cast ; see Wiegmann's Arch. 1835, I. p. 53. H. Meckel, likewise, thinks that the above-described vascular system of the Trematodes, is in direct communication with the secreting organ peculiar to these Helminthes; see Müller's Arcls. 1846, p. 2, Taf. I. fig. 2.* 1 Bojanus (Isis, 1821, p. 187, Taf. III. fig. 5155) affirms to have observed in Ascaris lumbricoides these pedunculated vesicles, which are found also in Ascaris depressa, and Strongylus gigas, in connection with the lateral swellings but this throws no light upon the nature of these vesicles, for we are yet ignorant of that of these swellings. The stigmata which he affirms (loc. cit. p. 187, Taf. III. fig. 56) to have observed upon these lines with Ascaris acus, are, according to my own observations, only subcutaneous cell-like bodies. 2 I have quite distinctly seen these vessels with Diplozoon paradoxum, Aspidogaster conchicolu, Distomum echinatum, and an allied species of this last from the intestine of Falco apivorus.

* [§ 111, note 2.] Van Beneden (A.m. d. Sc. Nat. 1852, XVIII. p. 23) has recently expressed doubts upon the presence of a circulatory system

I am yet uncertain if the vibratile organs found in the neck of Distomum globiporum and nodu $=$ losum (Wiegmann's Arch. 1836, 1. p. 218), and in the parenchyma of Distomum duplicatum behind the ventral sucker, are of the same nature.

Ehrenberg (Wiegmann's Arch. 1835, II. p. 128) was the first who observed this ciliary movement in the vessels of Diplozoon. When the motions of these lobules are free, there is a rapid current of the liquid, as Nordmann has remarked (Microgr. Beitr. 1fft. I. p. 69). But if an animal is compressed between two plates of glass, and their motions thus impeded, it will be quicily seen that these last are the cause of the circulation ; in fact, when the lobules cease moving, the colorless, homogeneous, and, without doubt circulatory liquid, is no longer perceived.
3 Burmeister (IIandbuch d. Naturgesch. 1837, p. 528) compares, not without reason, this system to the trachean system of insects, the first being aqueous, and the second aerial respiratory organs, thus confounding this vascular system of Melminthes with the excretory organ and duct found in most Trematodes. There may be, however, a comparison between these two systems, if we except the insects with stigmata, and take those which are aquatic and have a completely closed trachean apparatus (see below), admitting no air from without.
with the Cestodes and Trematodes, but see the beautiful plates of Blanchard, Ann. d. Sc. Nat. 1848, X. Pl. XI. - ED.

CHAPTER VIII.

ORGANS OF SECRETION.

§ 113.

No organs of secretion have been found, except in the Trematodes and Nematodes. In most of the Trematodes, there is, upon the median line of the posterior part of the body, a contractile sac, which usually opens outwards, ${ }^{(1)}$ at the caudal extremity, and seldom at the postcrior part of the back. ${ }^{(2)}$ This sac is single, ${ }^{(3)}$ bifurcate, ${ }^{(4)}$ or multiramose. In the last case, its branches are spread usually over the whole body. ${ }^{(5)}$ Its walls are quite thin, and therefore, it is scen with difficulty when wholly contracted or empty. It contains a colorless liquid filled with numerous granules or vesicles, which, during the contractions, pass up and down, or escape through the external opening. ${ }^{(6)}$ This organ is sometimes so crowded with clear, solid corpuscles, composed apparently of earthy matter, that examined by reflected light, it has a cretaceous aspect. ${ }^{\text {(7) }}$

In many Nematodes, there is on the ventral surface and at a variable distance from the head, a small oblique opening surrounded by a sphincter. In some species, two canals pass from it and run backwards on each side of the intestinal canal; and in others, there are also two other canals which extend forwards in the same way. The use of the colorless and homogeneous secretion of these organs is yet unknown. ${ }^{(8)}$
1 This opening, known as the Foramen caudate
with Distomum, Holostomum, Monostomum,
Aspidogaster, and Diplostomum, has formerly
been empared to an anus by Nardo (Heusin-
ger's Zeitseh. für organisehe Phys. 1827, I. p. 68),
and by Baer (Ibid. II. p. 197). Mehlis (Observ.
de Distomate, p. 16) having shown that it belonged,
in Distomuix hepaticum, to a partieular organ
which is ramified like a vessel, has properly re-
jected this analogy ; see Isis, 1831, p. 179. With
the larvae of Trematodes, known as Cercaria,
Bucephalus, and Distomum dupticatum, the
base of the tail is thrust into the excretory opening
of this organ, and its contents cannot escape until
the animal has lost the tail.
${ }_{2}$ Amphistomum.
3 Monostomum faba, Distomum cirrigerum,
Gasterostomum fimbriatum, aud Bucephalus
polymorphus.
4. Distomum chitostomum, clavigerum, lima,
maculosum, tereticolle, variegatum, and many
species of Monostomum, - where the two closed
ends of the sac often extend to the cephalic ex-
tremity. With Distomum appendiculatum, the
two branches of the excretory organ unite directly
hehind the oral sucker. With Aspidogaster con-
chicola, it divides into two canals near the Fora-
men caudate, which extend to the anterior ex-
tremity. In Amphistomum, two similar eanals
wind from the head along each site of the body, to
the middle of the posterior lyack, where they open
outwards, after having formed by reünion a pyri-
form reservoir. Laurer (De Amphistomo conico.
p. 10, fig. 22) has given a figure of this reservoir,
in which he has confounded the secretory canals
with the nutritive vessels.

5 Beside Distomum hepaticum, Hotostomum urnigerum, the Distoma also with a spinous head, have a widely-ramified cxcretory organ ; see Mehlis, Isis,1831, p. 182.
6 With the spinous-lieaded Distomum militare, and echinatum, this organ is often so redueed in substance, that here and there are perceived only isolated groups of the ramified canals.
\boldsymbol{i} The solidity of these corpuseles may have been the reason why Ehrenberg (Symb. Physic. Anim. Evertebr. Ser. I. Phytozoa entozoa) has taken those of Cercaria ephemera for eggs, and the two canals of the excretory organ for ovaries; and why Nordmann (Microgr. Beitr. Hft. 1, p. 5t, Taf. I. fig. 7) has regarted their eseape from the body with Distomum annuligerum, as an aet of oviposition.

The corpuseles of this kind found in the excretory orran of eertain 'Trematodes, as for instance in a larva of Monostomum known as Cercaria ephemera, remind one from their aspect, of the small calearcous subcutancous bodies of many 'Tacniae, and it may be asked if they are not an effete material, which, not being contained in proper organs, is with these Helminthes thus subeutaneously deposited.

8 This organ, to whieh I first called the attention in the dissertation of Bagge (De evolutione S:rongyli aurieularis et Ascaridis acuminatae, 1841, p. 13), is composed of two eanals whieh run backwards in Strongylas auricularis, Ascaris brevicaulata, and acuminata (Bagge, loe. cit. fig. 30, A. B.) ; and in Ascaris dactyluris, and paucipara, mihi (from the intestine of Testudo graeca), of two anterior and posterior canals, the common opening of whieh is near the middle of the body.

CHAPTERIX.

ORGANS OF GENERATION.

§ 114.

Although most of the Helminthes propagate by means of genital organs, yet there are a few species whieh multiply by fissuration and gemmation.

The fissuration is always transverse, and differs from that of the Protozoa and Zoophytes in the fact that complete individuals are not produced, there being only a separation of eertain organs from the perfect animal, as, for instance that of the segments of the body in the Cestodes. This fissuration is complete or incomplete. In the first ease, occurring in the Taenia, the segments are detached from the body, and continue to live independently, without, however, ever forming a new individual. ${ }^{(1)}$

Gremmation has been observed in the sexless Coenurus and Echinococcus.
In Coerurus cerebralis, it is incomplete. The buds are formed on the internal surface of the parent-vesicle, and never separate from it, nor become perfect individuals. They have only a head and neck which project outwardly after the eomplete development. In Echinococcus, however, the gemmation is complete. The buds appear as in Coemerus, but the young animals are sooner or later detached and fall into the liquid of the parent vesicle. When completely developed, this vesicle bursts, and thoy are set at liberty. That their development occurs in this way is shown by their hanging by a eord, which, like the tail of Cercaria, is inserted into a fossa at the posterior extremity of the body. Like this last, also, this eord subsequently disappears, and the young animal moves ficcly about, by the aid of its double circle of hooks and its four suekers. ${ }^{(2)}$

§ 115.

In those species whieh reproduce by male and female genital organs, these last are sometimes upon a single animal, and sometimes upon two scparate individuals. The eggs and spermatic particles are formed after very different types. In all, the copulatory organs are extraordinarily developed.

The Cestodes and Trematodes are hermaphrodites. ${ }^{(1)}$ 'like structure of

1 The imperfect fissuration with Ligula and Triaenophorus is limited almost to a constriction of the latcral borders. With Bothriocephalus punctatus, it is only here and there that a ring is detached, and over most of the body the transverse and opposite sulcations do not extend near to the median line. With Bothriocephalus tetrapterus, the fissuration is more complete; but even here, there are only some incompletely limited rings among numerous others which are completely so.

Of all Ilelminthes the Taeniae have the most complete fissuration; here not only is the separation of the rings indicated by a complete furrow, but the rings are sometimes detached and live thus independently. The separated rings of Taenia solium, cucumerina, and others, move freely, and are so individualized, that they resemble some Trematodes.

2 See Chemnitz, De Mydatibus Echinococci hominis commentatio, 1834; Müller, in his Arch. 18:86, p. CVII. ; and Sicbold, in Burdach's Physiol. 11. 1837, p. 183.
1 According to Nordmann (Microgx. Beitr. Ift. 2, p. 141), Diesing (Ann. d. Wiener Mus. 1. Abth. 1, p. 9), and Miram (Nov. Act. Acad. XVII. pt. 2, p. 636), the male and female genital organs of the genus Pentastomum, classed by many modern Ilelminthologists among the Tremotodes, are situated mpon different individuals. But Owen affirms to have observed the opposite (Trans. of the Zool. Soc. of London, 1835, I. 1. 325). The only way to settle this point is by analyzing accurately the contents of these organs; a method pursued by Valentin (Repertorium III. 1837, p. 135), who found filamentoid spermatic particles in the organs of an apparently female
the genital organs of the first is yet imperfectly known; while that of those of the second is well understood. The female apparatus of the Trematodes consists of a germ-forming organ (ovary), with its excretory duct; then, two others for forming the vitellus, which have also excretory ducts; and then a simple uterus with its vagina. The male apparatus consists of testicles with their excretory canals, an internal seminal vesicle, a cirrhus-sac, an external seminal vesicle, and a penis. ${ }^{(2)}$

The ovary consists of a round or pyriform ${ }^{(3)}$ reservoir, situated, usually, upon the median line of the body, ${ }^{(3)}$ from which it is distinguished by its pale color and transparency. It is filled with simple round cells - the egg-germs. The nucleus of these cells is the germinative vesicle, and the nucleolus, the germinative dot. ${ }^{\text {(5) }}$

The short and small excretory duct of the ovary opens at the commencement of the uterus. The organs which secrete the vitcllus are two in number, of variable length, and situated upon cach side of the body near the dorsal surface ; they occupy cither the cervical, the central, or the posterior portion of the animal, and sometimes extend over them all. They are nearly always composed of ramified caeca filled with white, granular. vitelline corpuscles. By reflected light these cacca appcar through the skin as a white, ramified, botryoidal mass. ${ }^{(6)}$ and from each of them, pass off inwardly, numerous excretory ducts, which reünite opposite the ovary into two common canals. These last approach cach other transversely, and form a single canal upon the median line, which, after a short course, opens at the bottom of the uterus by an orifice which is common to it and the ovary. ${ }^{(7)}$

Pentastomum taenioides, organs which are re garded by Diesing as caeca for secreting the envelope of the eggs.

Since all the parts of the genital organs of Pentastomum have not been examined with this same precision, I can give no opinion as to their use.*

2 See Siebold, in Wiegmann's Arch. 1836, I. p
217, Taf. VI., and in Muller's Arch. 1836, p. 232, Taf. X. fig. 1.

3 The ovary here is always smaller than the testicle, and sometimes as to form very closely resembles it, as in Distonum globiporum, and longicolle, mihi (from the urinary bladder of Cottus grobio); consequently it may easily be taken for a third testicle.
4 With Monostomum, it lies wholly at the posterior extremity.

5 In Polystomum, Octobothrium and Diplozoon, the germs are so large that they may easdy be taken for perfect eggs.

There is here, moreover, between the cell-wall and the nucleus (the germinative vesicle), quite a thick layer of albuminous substance, somewhat

* [§ 115, note 1.] See upon this subject Van Beneilen (Ann. d. Sc. Nat. XI. 1849, p. 326), who has described in detail the sexual organs of Linguatula Diesingii, and has shown the sexes to be separate. See also my note under § 99. - En.
\dagger [§ 115, note 7.] To say that certain organs secrete vitelline cells, is a dittle obscure, and no doubt Siebold intended to convey the meaning that they secreted the plastic material out of which these cells are formed. I make, this perhaps seemingly unnecessary reference to the matter, since it concerns the subject of the development of the orurn. In the Ascaris, where the origin and development of the orum can be satisfactorily
representing a vitellus. But in the other Trematodes it is so thin as scarcely to be perceived.
6 With the following Trematodes there is a wile deviation from this usual arrangement. In Distomum longicolle the organs producing the vitellus are two simple round caeca located behind the ventral sucker; in Distomum cygnoides, they are two very small deeply-fissured bodies ; and in Distomum gibbosum, there is one only, which is star-shaped and located at the middle of the body.

7 These organs, until now regarded as ovaries, secrete only vitelline cells. With most Trematodes their nuclei are clear, and lave been taken for eggs. In eggs recently formed, one can always distinguish these cells from the germs. In passing the excretory canals they are compressed and elongated, but never run into each other. When these canals are crowded, they have the aspect of white cords, which have often been taken for nerves. But when they are empty, they, as well as the vitellus-secreting organs, are almost invisible. \dagger
studied, you first notice the germs as nucleolated cells, of which the pucleus is the future germinative vesicle and the nucleolus the germinative dot. These cells increase in size, and as they move along there appear in the liquid which lies between the nucleus and the cell-wall minute granules which ultimately become cells ; in this way the vitellus is formed, the formation being endogenous and not exogenous. These special organs or tubes therefore are vitellus-forming organs, in virtue of their secreting the formative material out of which the vitellus is formed within the original. nucleolated germ-cell. - En.

The neck of the internal seminal vesicle (Vesicula seminalis interior), diseharges its contents at this same plaee into the uterus, through a spccial Vas deferens from one of the testieles. The Uterus commences as a narrow tube, which may be regarded as a Tuba Fallopii. Its dilated portion, which has powerful peristaltic motions notwithstanding its thin walls, is throughout of nearly an equal diameter. It winds through a large portion of the body and terminates in a narrow, more or less straight, muscular vagina, which always opens externally by the side of the penis. ${ }^{(8)}$

The testicles, of whieh there are usually two, ${ }^{(9)}$ are generally of a round or oval form, ${ }^{(10)}$ and located in the posterior region of the body, nearly always one before the other. ${ }^{(1)}$ They are transparent and colorless, and the filiform spermatic particles are extremely small and activc. ${ }^{(12)}$ The two Vasa deferentia open into the cirrhus-sae, whieh is perforated at its bottom to eommunieate with the Vesicula seminalis exterior. ${ }^{(13)}$ From each testicle there passes off, also, a third Vas deferens whieh opens into the neck of the Vesicula seminatis interior. ${ }^{(14)}$ The cirrhus-sac is pyriformby elongate, or round, ${ }^{(15)}$ and the Vesicula seminatis exterior is always situated at its base. This last is prolonged, opposite the openings of the vasa deferentia, into usually a very long, tortuous Ductus ejaculatorius, which opens into a tubular penis. ${ }^{(6)}$ (There is one common genital opening for the penis and ragina which are usually side by side, and out of which the penis often considerably projects. ${ }^{(12)}$ In most Trematodes, these two organs are located at the anterior extremity of the body, and ouly in Holostomum, and Gasterostomum, are they removed to the other extremity. ${ }^{(8)}$

[^68]In the terminal, constrieted portion of the uterus, eggs, vitelline cells, and spermatic partieles are often found mixed together. It is probably here that the egrs are formed, their fecundation oceuring without copulation, and by means of the Vesicula seminalis interior. The suceeeding folds of the uterus eontain already, nicely-defined, oval eggs containing a germ and many vitelline cells. Their recently-formed envelope is still colorless, and so thin and flexible, that the peristaltic contractions of the uterus give it a variety of forms. But in passing from the uterus they lose this flexibility; their envelope becomes more solid, - of a yellow and then a brown color; and the whole, at the same time, undergoes a decrease in size, due probably to a condensation of 湤heir substanee. The eggs of most of the Trematodes have an opereular opening at one extremity. ${ }^{(19)}$

In the Cestodes, the walls of the genital organs are so very thin, and so intimately blended with the parenehyma of the body, that their strueture and relations have not yet been well made out.

With the exeeption of in Caryophyllueus, ${ }^{\left({ }^{(9)}\right)}$ these organs are repeated many times one after another, having in the same individual different ded ${ }^{2}$ es of development. They are always most eomplete in the posterior portion of the body, being only rudimentary near the neek, while in the neek itself they do not exist at all. In the artieulated Cestodes, eaeh ring eontains both male and female sexual organs; and in their two Groups, the arrangement of these is the same as in the Trematodes. It is probable that the ovaries and the seereting organs of the vitellus are separate. ${ }^{(21)}$ In Ligula, Triaenophorus, and Bothriocephalus, the uterus eonsists, exaetly as in the Trematodes, of a very tortuous tube filled with oval eggs. ${ }^{\left({ }^{(2) 2}\right)}$ But in

Abstract

the posterior extremity of the body. Its position is indieated, even when the penis is not protruded, by a small papilla.

With Octobothrium, and Potystomum, there is a round museular sae eoneealed direetly behind this opening, which eontains a eirele of delieate horny rits, the lower extremities of which are bifid and form a support like a bownet. Mayer (B itr. loe. cit. p. 21, Taf. III. fig. 3, 6) has seen ten similar ribs with Octobothrium lanccolatum. I have found eight with Polystomum integerrimum, and frrty with Polystomum ocellatum. Their use is whily unknown to me. 19 The egrs of the Trematodes have apparently only a single envelope. Among the normal eggs in the uterus may often be found others whieh are malformed, also very irregular bodies of a yellowish or brown culor, formed almost entirely of the substanee of these envelopes. These bodies were most probably ssereted by the walls of the uterus (the Tuba Fallopii) at a time when the ovaries and the seereting organs of the vitellus were inactive, s, that the substanee of the envelopes was hardened bof re reeeiving their nsual contents. With Amphistomum subclavatum, Octobothrium tanceolatum, Polystomum integerrimum, and ocellatum, and Diplozoon paraloxum, the egrs are very large, and in the last-named species their extremities are narrowed and lengthened into a spiral filament, wherefore one of these eggs has been taken for a testicle and penis ; see Nordmann Mierogr. Beitr. 11 ft . 1, p. 73, Taf. V. VI. fig. 1, h.; also Vogt, in Muller's Areh. 1841, p. 34, Taf. II. fig. 11. The eggs of Monostomum verrucosum, and some other speeies of this genus whieh live in the intestine of Chelonia esculenta, have a very dif-

ferent form ; they are oval and colorless, and at each extremity have two papillae, which are gradually developed into very loner, strarp appendages; see Dujardin, Ilist. Nat. d. Helminth. Pl. VIII. fig. G, B. 3.*
20 With Caryophyllaeus mutabilis, there is only a single cirrhus-sac upon the ventral surface of the posterior body, and from which a delieate long penis often protrudes.

21 I think I have seen an ovary in each of the segments of Bothriocephalus punctatus, and Tacnia ocellata. As such, ought, perhaps, to be regarded those or cans which E.schricht (Nov. Act. Aead. Leop. X1X. Suppl. 2, Tab. I. fir. 2, e, e) has considsed with Bothriocephatus latus to be ovaries. The organs seereting the vitellus are a mass of irregularly arranged granulations situated upon both the dorsal and the ventral surfaces, and which have very fine excretory ducts. This mass, ealled by Eschricht (loe. eit. p. 25, Tab. T. fig. 5) the ventral and dorsal granules, eannot, together with its excretory duets, be made out, except when filled with the vitelline substanee. With Tatnia ocellata, the vitelline organs are limited to the siles of each segment, at the anterior border of whieh two main excretory duets are easily seen; these form a single short eanal in the mildile of the body. In this same place are lwo transversclyplaced oval saes, and whieh are probably the two ovaries.
22 The uterine eonvolutions are gencrally in the middle of the body, and when filled with mature eggs, appear through the skin as a brown rosette ; see Eschricht loc. eit. Tab. I. II. (Bothriocephalus latus).

* [§ 115, note 19.] See also for the strueture of the genital organs Thaer, Miller's Arch. 1850,
p. 602, Taf. XX. fig. 17 (Polystomum appendi-culatum).-Ed.

Taenia, it is a reservoir, composed of numerous ramified coeca, and intimately blended with the parenchyma of the body. ${ }^{(23)}$ The vagina is a narrow, muscular canal, which usually opens close to the penis by a special orifiee (Vulva), or by a common genital opening (Porus genitalis).

It is diffieult to decide whether the testicles, which always form the middle layer of the body, consist of a collection of inter-opening eaca, or of a single spirally-rolled tube. The cirrhus-sac with the Vas deferens opening at its bottom, is always very distinet. As in the Trematodes, it has a Vesicula seminalis, with a Ductus ejaculatorius and a muscular penis. ${ }^{(24)}$ The contents of the different canals, the seminal vesicle and the ejaculatory duct, are always very aetive, filiform spermatie partieles. ${ }^{(i)}$. The genital openings are upon the middle of the ventral surface, or on the lateral borders of the body; but in those species where the sexual openings are separate, they are lateral for the male, and ventral for the female. ${ }^{(3)}$

The eggs of the Cestodes, situated like those of the Trematodes in a spiral, pouch-like uterus, have also a similar strueture. Their simple, oval, brownish-yellow envelope, has also, sometines, an operculum. The eggs of Taenia have a very different structure ; the envelope is eolorless, and of a very variable, and sometimes quite remarkable form. ${ }^{(27)}$
${ }^{23}$ With most Taeniae the borders of the cellular uterus are very difficult to distinguish. But its lateral caeca with Taenia ocellata, and its arborescent divisions with Taenia solium, are very easily seeu; see Delle Chiaje, Compendio di Elmintografia umana, Tav. III. fig. 10.

24 The cirrlas-sac is either short and pyriform, or very long. With very many Taeniae, as with Taenia anaphitrica, lanccolata, multistriata, scolecina, and setigera, the penis has numerous small spines pointing backwards; see Dujardin, Hist. d. Helm. Pl. IX.-XI. That of Tacnia infundibuliformis is surrounded with very large bristles; and according to Dujardin (loc. cit. Pl. IX. B. 210) this is also true with Taenia sinuosa.

25 By very slight pressure, the spermatic particles contained in the Vesicula spminalis of the cirrhus-sac are pressed out through the pems; this is so with Bothriocephalus punctatus, latus, Taenia cucumerina, planiceps (from the intestine of Hirundo urbica), inflata, pectinata, serpentulus, and villosus. As with the Trematodes, the spermatic particles here cease to move when put in water, and are twisted into loops.*

26 With Ligula, Bothriocephalus nodosus, latus, claviceps, ditremus, punctatus, and tetrapterus, the two genital openings are situated on each side of the ventral surface, while the penis protrudes from a special opening directly in front of the vulva; see Mehlis in Isis, 1831, 'Taf. I. fig. 1, 2, and Eschricht, loc. cit. Tab. I. fig. 5.

With Bothriocephulus punctatus, there are two pairs of these openings upon each segment, one under the other, but in Bothriocephalus tetrapterus, these are side hy side. With Triaenophorus, nodulosus, and Taenia ocellata, the vuiva is upon the ventral surface, and the penis upon the lateral border. With Bothriocephalus fra-

[^69]gilis, proboscideus, rusosus, and with most Taeniae, the cirrhus-sac and the vagira open by a common genital orifice upon the lateral border, and usually through a papilla. With Tuenia cucumerina, and bifaria, mihi (from the intestine of Inas leucophtholnus), 1 have found an orifice of this kind upon the two lateral borders of each segment, and behind which were the genital organs. ${ }^{\text {t }}$
-7 Although I have not seen cither the germinative vesicle or dot in the egres of the Cestodes, probably from their delicacy, yet I do not for a moment doubt their presence there, since hölliker (Müller's Arch. 1843, p. 9:, Taf. VII. fig. 44) has seen them in the eggs of a Bothriocephulus. Many species of this genus produce oval eggs which have a simple brown envelope. Of an oval form, but colorless, are those of Caryophyllaeus, Ligula, Triaenophorus, Taenia literata, and scolecina. Those of Tapnia amphitricha, bifaria, mocrorhyncha, serpentuhs, and serrata, are round, and have two colorless envelopes; this is truc also of the oval eggs of Tacnia angulatu, villosa, \&c. There are three of these envelopes with the round or oval egrgs of Bothriocephatus infundibuliformis, proboscideus, Taenia porosa, lanceolata, ocellata, setigera, and solium. With Taenia infundibuliformis, and pluniceps, each extremity of the envelope is lengthened into a long and delicate appendage. Two similar but fibrillated appendages exist upon those of Taenia variabilis. With Taenia cyathiformis, the cxternal pyriform envelope of the eggs has, at its attenuated extremity, two round, bladder-like appendages. Dujardin (Hist. d. Helm. Pl. IX.XII.) and I (Burdach's Physiol. 1837, II. p. 201) have seen many other forms with the eggs of Taenia. The round and doubly-enveloped egga
years, by Blanchard (Ann. d. Sc. Nat. X. 184S, p. 321) and Van Beneden (Mem. Acad. Belgique, 1850, XXV.) and the sexual parts pretty clearly made out. They both agree that, internally, the male and female organs are wholly distinct, and therefore that impreguation of the ova must be by self-copulation. - Ed.

§ 116.

In the Acanthocephali, the genital organs occupy a large portion of the cavity of the body. They arise in the posterior portion, and are supported by a Ligamentum suspensorium, ${ }^{\text {abhich }}$ extends from this last to the base of the proboscideal sheath.

In the females, there are neither proper ovaries, nor an uterus; but in their place there are numerous oval, or round, flattened bodies of considerable size, which float freely in the liquid of the cavity of the body ; they have nicely-defined borders, and are composed of a vesicular, granular substance, and, as eggs are formed within them, they may be regarded as so many loose ovaries. ${ }^{1)}$

When the cogs have reaehed a certain size, they fall from the ovaries into the cavity of the body. At this time they are ovo-elongate, have only a single envelope, and contain both a vesieular and a finely-granular substance, but no trace of a germinative vesiele. They continue to increase in size, and two new envelopes are formed about them. ${ }^{(2)}$ The muscular canal which passes off from the simple vuiva which is situated at the posterior part of the body, may be regarded as a uterus.

At the point where it is attached to the Ligamentum suspensorium, it beeomes a campanulate or infundibuliform organ, whose borders float freely in the cavity of the body, and thus the whole is comparable to a Tuba Fallopii. The botton of this bell-shaped organ communicates with the superior extremity of the uterus by a narrow, valvular opening, which presents a lateral, semilunar fissure.

This whole organ is endowed with very active peristaltic motions, by whieh the loose contents of the cavity of the body are absorbed; and while the larger ovaries are thrown out, the little immaturc cggs are returned into the cavity of the body by the lateral fissure, - the more mature oncs only, reaching the uterus. ${ }^{(3)}$ This uterus, which is of variable length, opens outwardly through a very short and narrow vagina.

The males of Echinorhynchus have usually two oval or elongated testicles, one before the other, and attached to the Ligamentum suspensorum.
of Taenia cucumerina (Crcplin, Observ. de Entozois tig. 12, 13) and crateriformis, have the remarkable arrangement of being grouped in tens to twenties, and each group is surrounded by a gelatinous envelope.*

1 The ovaries of Echinorynchus were formerly taken both for mature eggs, and for cotyledons ; and to this is due the very inaccurate figures of them by W'estrumb and Cloquet (loc. cit.). Dujardin, however (Hist. d. Helm. Pl, VIL. Gg. D. 6), perceived their true nature.

A state of development which I have observed with many females of Lchinorhynchus giblosus, would appear to throw some light upon the question as to the part of the body where the ovaries are first formed. IIere the Ligamentum suspensorium had, over most of its extent, large granular globules, while the cavity of the body contained neither ovaries nor eggs. I think, therefore, that this ligament is the elementary material from which the ovaries are developed under the form of globules, which, being subsequently detached, continue their development in the liquid of the cavity of the body.

* [§ 115, note 27.] See Van Beneden (loc. cit. p. 67), who has obscrved the eggs of the Cestodes

2 The long eggs of many Echinorhynchi are formed by the same process. They are all colorlcss, and may be distinguished by the peculiar aspect of their middle envelope which at both extremities is constricted like a neck. But those of Echinorhynchus gigas form an exception; for they are shorter and oval, their middle cavelope is yellowish, and, like the two others, has extcrnally numberless small obtuse spines. With Echinorhynchus strumosus, hystrix, angustatus, and proteus, the external envelope of the eggs presents the peculiar phenomenon that when presscl between two plates of glass, it separates into very fine fibrillae.
3 The nature of this campanulate Tuba Fallopii has been wholly mistaken by Bojanus, Westrumb and Cloquet. Burow (Echinorhynchi strumosi Anat. P. 22, fig. 1. g, fig, 6) was the first to describe it, without however conveying the correct idea. See my description (Burdach's Plyysiol. loc. cit. p. 197), which has been confirmed since by Dujardin (Hist. d. IIelm. p. 495, Pl. VII. fig. D. 5).
composed like those other animals, - with a germinative vesicle, \&c. - Ed.

They send off two varieose Vasa deferentia to the posterior portion of the body, where, after uniting very probably with the neek of an odd elongated vesiele (Vesicula seminalis?), they are prolonged into a eopulatory organ. ${ }^{(t)}$ There are six pyriform bodies, which seerete a finely-granular substanee, and are attaehed behind the testieles to the Vasa deferentia. Their six exeretory duets sueeessively unite, ending finally in two whieh open into the eopulatory organ. ${ }^{(5)}$ The penis is usually folded inward, but when projeeting outwardly, it is a museular, eup-shaped appendage, whose fossa receives the posterior portion of the body of the female during eopulation. ${ }^{(5)}$

The spermatie partieles are developed after the usual mode; they are filiform and very aetive, and quiekly die in water, interlooping and twisting together. ${ }^{(7)}$

The very adhesive, viseous, yellowish-brown wax-like substanee, often found about the vulva, is apparently the seeretion of the pyriform bodies during eopulation. ${ }^{(8)}$

$\S 117$.

With the Nematodes, the genital organs eonsist of a long, simple or partly double eaceal tube, whieh winds around the straight intestine.

In the female it has the following parts: Ovarium, Tuba Fallopii, Uterus, and Vagina; and in the male, Testes, Vas dcferens, Vesicula seminalis, and Ductus ejaculatorius.

With Trichosoma, Trichocephalus, and Sphaerularia, the genital tube is simple in the females, and usually so in the males. But in Fitaria, Ascaris, Strongylus, Spiroptera, Oxyuris, and Anguillula, the ovary, Fallopian tube, and uterus, are double. ${ }^{(1)}$ In the females, the ovary is the posterior portion of this genital tube, and in its terminal portion are small round

4 With Echinorhynchus strumosus, these two round testicles are side hy side. Having always found the odd, long vesicle empty, I cannot decide whether or not it serves the function of a seminal vesicle.
5 These six pyriform bodies were formerly taken for seminal vesicles; see Westrumb, de Helminth. Acanthocephatis, p. 55, Tah. 111. fig. 24; and Nitzsch, in Ersch and Gruber's Encyclop. VII. 1821, plate for the Acanthocephata, fig. 2, 3, i. With Ecninorhynchus claviceps, I have found only one of these bodies.
6 The copulatory organ, which protruded has mostly an oblique direction, has been very exactly figured hy Dujardin (IIist. d. IIelm. p. 493, Pl. VII. figt. D, 1, D, 2).

7 For the spermatic particles of the Acanthocephali, see my observations in Mullcr's Arch. 1836, p. 232.
8 This waxy substance incrusts sometimes the whole caudal extremity of females; this is so with Echinorhynchus gigas, and globocaudatus; see Cloquct (Anat. \&c. \&c. p. 100, Pl. VIII. fig. 4,5) and Nitzsch (Wiegmann's Arch. 1837, 1. p. 64.*
${ }^{1}$ For the simple genital tube with its various parts of the female of Trichocephalus dispar, see Mayer, Beitr. \&e. Taf. II. With Filaria rigida,

[^70]
Abstract

and Ascaris paucipara, I have found the female organs likewise simple. When these organs are double, either one utcrus with its ovary and oviduct passes in front from the simple vagina, while the other passes behind, as is the case with Ascaris trevicaudata, nigrovenosa, Oxyuris vermicularis, Spiroptera anthuris, Strongylus auricularis, and striatus; or loth pass side by side behind, as in Ascaris aucta, mystax, lumbricoides (Cloquet, Anat. \&c. PI. I. fig. 2) and ausculata. With Cucullanus elegans, and neicrocephalus (from the intestine of Emys lutaria), the uterus alone is double; one horn terminating posteriorly in a caccum without an ovary or Fatlopian tube, white the other, which has these parts, passes in front. There are, moreover, species of Ascaris into whose vagina open three or four genital tubes. Thus with Ascaris microcephala, I have seen the uterus divide upon reaching the vagina into three tubes, each having an ovary and aviduct. According to Nathusius (Hiegmann's Arch. 1837, I. p. 57), the uterus of Filaria labiata, which is at first simple, divides at its posterior extremity into five tubes. The double uterus of Strongylus inflexus has, posteriorly, numerous constrictions, giving it a mondiform aspect. . 2

animal nouv. edit. Zoophytes, Pl. XXXV. fig. s_{b}, 3c, 3d, $3^{\text {c }}, 3$). - Ed.
cells; in the anterior portion, these cells are more numerous and begin to be surrounded by a granular vitelline substance, in which the primitive nucleated cells are still seen; these cells therefore, ought perhaps to be regarded as germinative vesicles. In front, these eggs, which are of a discoidal form, are arranged in a row, or are groupcd closely around a rachis which traverses the axis of the ovary. In the Fallopian tube, which may be known by its less diametcr, the eggs become more mature, and, having been surrounded by a double colorless envelope, pass into the base of the uterus. ${ }^{(2)}$ This last is the largest portion of the genital tube, and is distinguished by its well-marked power of peristaltic action. The vagina, which is distinguished from the uterus by its narrowness and its muscular walls, opens at very different points of the body. Generally, as for instance in Ascaris, S'piroptera, Strongylus, Oxyuris, Cucullamus, and Trichocephatus, the Vulva, consisting of a transverse fissure, and often surrounded by a very remarkable fleshy swelling, is situated either a little in front of, or near the middle of the body; but sometimes it opens just in front of the anus. ${ }^{(3)}$ The sperm is usually so accumulated in the bottom of the uterus, that this is probably the locality of fecundation. ${ }^{(4)}$

In the males, the posterior portion of this tube is the testicle; another portion of it, which is short and constricted, is the Vas deferens, which passes into a dilated portion,- the Vesicula seminalis. Usually this last is separated by a constriction from the Ductus ejaculatorius, which opens into another muscular tube (sheath of the penis). ${ }^{(3)}$ At' the antcrior portion of this last, is a horny, copulatory apparatus. The simple or double penis is of variable length, and in protruded by the muscular contractions of its sheath through the external opening, which is always situated at the poste-

borders of the rulva appear quite swollen. With Trichosoma, this swelling is so attached to the vulva as to resemble a prolapsus of the vagina (I)॥jardin, Illist. d. Helm. Pl. I.).

With Filaria attenuata, inflexo-caudata, mihi firom the pulmonary cysts of Dctphinus phocaena), and papillosa (see Leblond, Quelques materiaux pour servir a l'histoire des Filaires et des Strongles, 1836 , P1. II. fig. 1), the vulva is at the side of the mouth.
With Strongylus paradoxus, it is swollen to the form of a bladder, and is situated ncar the caudal extremity; while that of Ascaris paucipara is directly upon the anus.

4 See Barge, loc. cit. p. 12; and Kölliker, in Muller's Arch. 1843, p. 72.
5 For the male genital tulse, see Mayer, Beitr. Tif. I., and Cloquet, Anat. \&c. PI. I. fig. 5, 11. 11. fig. 8. As yet I have observed only a few excoptions to this typical form with male Nematodes.

With Filaria attenuata, the posterior portion of the testicle is bifurcate, and with Ascaris vesicularis, there are two moderately targe cuecal prolongations which arise from the Vesicula scminalis at the place where it empties into the Vas defercns.

[^71]become developed into cells, and in this way the mature ova are formed. Probably no better opportunity is afforded to perceive that morphologically the ovum is at first only a nuclealated or nucleated cell ; see Leidy, loc. cit. p. 43, Pl. VII. fig. 14, c. - Ed.
rior portion of the body. ${ }^{(6)}$ It has a great variety of forms, and from its sheath arise two antagonistic muscles, which are inserted at its base. ${ }^{(7)}$ The spermatic particles, which are always motionless, have usually a cell-form, or, at lcast, are never filiform corpuscles. ${ }^{(8)}$ For aiding the union of the sexes during copulation, the males have lobular appendages, papillae. and suckers, situated about the genital opening. Without doubt, the spiral posterior extremity also of the animal, is often used for the same purpose. Moreover, in many instances, there is secreted a wax-like substance intended to fasten the two sexes together. ${ }^{(9)}$

6 According to Leblond (loc. cit. p. 20, Pl. III. fig. 1), both the male and female genital openings with Filaria papillosa are quite near the oral orifice. I have been unable to confirm this observation, at least with Filaria attenuata, inftexo-caudata, and another species found in the thoracic cavity of Sturnus vulgaris.
7 With Trichocephaius, and Trichosoma, the penis is simple and very long, and, beside the muscular sheath, has another which is membranous, and sometimes covered with small spines pointing backwards. This sheath, being folled outwards when the penis is protruded, is comparable to a Praeputium; see Mayer, Beitr. loc. eit. Taf. I., and Dujardin, Mist. d. Helm. Pl. I.-III. With ncarly all the other Nematodes the penis is double. It is very long with Ascaris acuminata, brevicaudata, depressa, spiculigera, and Strongy/us paradoxus; but is very short with, Ascaris ensicaudata, semiteres, Cucullanus elesans, Filaria attenuata, inflexo-caudata, Spiroptera anthuris, and Strongylus inflexus. With Spiroptera, the two penises are of unequal length, and with Ascaris paucipara, brevicaudata, and Strongylus, there is an additional homy piece like a third penis.
With most Nematodes, the penises are sulcated, and those of Strongylus have a singular form due to the presence of numerous appendages. The two delicate, retractor muscles of this organ, arise from the internal surface of the cavity of the borly, and when the penis is double there are two pairs.

With Ascaris osculata, veszcularis, and spiculisera, I bave found these four muscles very long. See upon the penis of the Nematodes, Mayer, Beitr. Taf. 1., and Dujardin, Hist. d. Helm. Pl. I.-VI.

8 For the spermatic particles of the Nematodes, see Bagge, Dissert. de Strongylo, \&c., p. 12, fig. 27,23 . The development of these cell-1ike spermatic particles may be easily observed with Ascaris paucipara, where the parent-cells are very large. In the posterior end of the testicle the

* [§ 117, note 8.] The statement here made that Reichert has observed the development of the spermatic particles of an Ascaris by fours in each cell, deserves attention from its histological relation According to my own observations, the histological formative conditions of the development of the spermatic particle are exactly analogous to those of the development of the cmbryo. The nucleus of the sperm-cell divides or segments like the vitellus of the ovum, and this process continues until the sperm-cell which has now attained a large size, is filled with numerons small nucleated cells (daughter-cells) ; and the nucleus of these last is changed into the spermatic particle.
I think, therefore, that, invariably, the spermatic particle is only a metamorphosed nucleus of a
nuclei with their nucleoli are first formad ; afterwards these nuclei are surrounded by a finelygranular substance around which the cell-membrane is formed.

In this state the testicle exactly resembles an ovary filled with germinative vesicles and eggs. Still later", the parent-cell membrane increases more and more. and the granular substance is found only upon the internal surface of the cell. During these changes, the nucleus which resembles a germinative vesicle; is transformed into a por, sulid, and neatly-circumscribed corpuscle. With Stromewlus auricularis, the spermatozoal [daughter ?] cells are pyriform; and with Oxyuris ambirua their form is similar (Kolliker, loc. cit. 1. ${ }^{23}$, Taf. VIII. fig. 26).

It is very probable that Moyer's assartion (Neue Untersuch. aus dem Gebiete der Anat. u. Plhysiol. 1812, p. 9) that he had seen thread-like spermatic particles with Oxyuris vermicularis, has led Kolliker to regard these pyriform culls as so many bundles of filamentoid spermatic particles. But never have I seen filaments of this kind in the Nematodes.

The pyriform spermatic particles of Stronsylus auricularis, which have a short perluncle, as well as the round, cell-like, and nucleated ones of $d s$ caris acuminata, have been figured by Reinhert (Beitr. zur Entwickel. der Suamenkürp. bei den Nematoden). This same naturalist has shown that these spermatic particles arise by endogenous generation, by fours in cach cell; see Muiller's Arch. 1847, p. 88, Taf. VL.*
9 The large caulal valve of the male Strongylus: and the spiral tail of the male Spiroptera, may be here instanced. With very many male Ascaris, there are two rows of papillae upon the sides of the genital opening, and with Ascarts vesicularis, and inflexa, I have found a copulatory sucker directly in front of this opening. The male of Hedruris androphora winds limself about the female during copulation, and the caudal vilve of the male Strongylus trachealis glues itself so
daughter-cell (see my Memoir, The Origin, Development, and Nature of the Spermatic Particles in the four classes of Vertehrata, in the Mein. Amer. Acad. of Arts and Sc. V. 1853). The view of Reichert, therefore, that four spermatic particles are here formed in one cell, does not appear to me admissible, although I have no observations upon the instance in question. It appears to me explicable in this way: the nucleus of the parent sperm-cell underwent here only a seconl segmentation, thereby only four daughter-cells being produced. The nucleus of each of these became a spermatic particle, and these four particles passed into the cavity of the parent-cell. Reichert therefore, probably saw four spermatic particles in a parent and not in a daughter cell. - Ed.

The few observations hitherto made upon the genital organs of the Gordiacei have shown that they are wholly tubular as in the Nematodes. But their intimate structure, and the development of their spermatic particles are so strikingly different, that this point alone would justify their separation from the Nematodes. ${ }^{(10)}$

§ 118.

With the exception of the Nematodes, and Gordiacei, the development of all Helminthes, which reproduce by means of genital organs and eggs, is metamorphotic. A complete series, from beginning to end of these metamorphoses has yet never been observed with any species. From the separate parts of it here and there which have been observed, there appears the remarkable fact, that the embryos after escaping the egg, are not always changed at the end of the metanorphosis, into individuals like the parent, but appear as larva-like animals, capable in their turn of producing other larvac. These last larvae alone, change into individuals, which arc like the parent.

This particular kind of transformation and development which is quite common among the Trematodes, has received the name of Alternate Gicneration. ${ }^{(1)}$ Whether it occurs among the Cestodes and Acanthocephali, cannot now be stated positively, for as yet we are unacquainted with the first period of their metamorphosis, - the embryo as it escapes from the egg. ${ }^{(2)}$ In many Cestodes and Trematodes, the embryos are developed before the eggs are cast, and in some of the last order, they make their escape while the eggs are in the uterus.

The development of the Cestodes occurs as follows: After the disappearance of the germinative vesicle, large, transparent embryonic cells appear in the midst of the vitellus, which undergoes fissuration. These multiply by division, increasing at the expense of the vitellus, which in the
tightiy to the vulva of the female in this act, that they cannot disengage themselves (Siebold and Nathusius, in Wiegmann's Arch. 1836, 1. p. 105, Taf. III. 1837, 1. p. 60, 66), With many other species of Strongylus, and Ascaris, it is not rare to find a brownish gum about the vulva, and in wbich there is, sometimes, the very distinct impress of the malc caudal valve (Mehlis, 1sis,1331, p. 87).*

10 In the genus Mermis formed by Dujardin, the tubular uterus, the muscular vagina, and the vulva situated far from the caudal extremity, -all remind one much of the Nematodes. The eggs of Mermis nigrescens, like those of Ascaris dentata, have long fibrillated appendages (Dujardin Ann. d. Sc. Nat. 18 ± 2, XVIII. p. 133, Pl. VI., and Siebold, in Wiegmann's Arcb. 1843, II. p. 309); and at the caudal extremity of the males of Mermis albicans, mihi (Entom. Zeit. 1843, p. 79), there are, as in most Nematodes, two horny penises.
But with Gordius, the structure of the genital organs is very different (see Siebold, and Dujardin, loc. cit.). In both sexes the cavity of the body is completely filled with a double genital tube, straigbt, and simple posteriorly, the sides of which are formed of large cells. Tbe genital

* [§ 117, rote 9.] For many details of the reproductive organs of Ascaris infecta, with beautiful illustrative figures, see Leidy, A Flora and Fauna, \&c., loc. cit. 4 B. Pl. VII. 14, 16, b. 19.ED.
\ddagger [§ I18, note 2.] Tbe view here suggested of
opening is always at the posterior extremity of the body. The testicular tubes of Gordius aquaticus contain anteriorly, cell-like bodies; but posteriorly there are others, staff-like, and which, being fount among the eggs in the uterine tube, I have regarded as perfect spermatic particles. The genital opening of the male Gordius is between the two more or less prominent lobes of the caudal extremity, and is witbout copulatory organs. The simple, round, colorless eggs, are bound together at the posterior part of the uterus by an albuminous substance, and are deposited in a very long row. It is this row of eggs which Léon Dufour has described as Filaria filariae (Ann. d. Sc. Nat. XIV. 1828, p. 222, P1. XII. fig. 4).

1 See Steenstrup, Ueber den Generationswechsel, \&c., 1842.
2 In varions marine fish there is a trematode larva of a Tetrarhynchus (Miescher, Bericut ueber die Verhandl. d. Naturforsch. Gesellscb. in Bascl. 1840, p. 29, and in Wiegmann's Arch. 1841, II. p. 302), which would lead one to conelude that alternate generation exists also with the Cestodes. \dagger
the alternating generation of the Cestodes, has recently been eonfirmed most thoroughly by Sicbold, who bas treated the subject in a most comprehensive manner, in a Memoir in Siebold and Kölliket's Zeitsch. II. 1850, p. 198.-ED.
end they completely replace. When this has taken place, there is a mass of extremely small cells, which, being covered with a delicate epithelium, form a round or oval embryo, upon one extremity of which there are gradually formed six small horny hooks. ${ }^{(3)}$

The embryos of the Acanthocephali are perhaps developed in the same manner, but they have only four hooks. ${ }^{(1)}$

The Trematodes are developed exactly like the Cestodes, excepting that their oval embryos have usually ciliated epithelium, and there is an oral sucker in place of the hooks. ${ }^{(5)}$

Beside this first period of development, or embryonic state, there are other more advanced or larval states, during which many Helminthes have been described and figured as separate species in the science. ${ }^{(6)}$ Among these may be especially noticed two forms of the Trematodes - the cylindrical and the cercarian larvae. The first (the germinative tubes of Baer), form one of the phases of the alternate generation, and have a more or less complete organization. In the cavity of thcir body, germinative corpuscles are formed; these consist of a vesicular, granular substance, and resemble eggs neither by their structure nor mode of development.

These corpuscles produce larvae of a cylindrical or cercarian form, which, dcprived of their tail, are changed into perfect animals which have genital organs; and thus the series of metamorphoses is terminated. ${ }^{(\sigma)}$

3 For the embryonic development of Bothriocephalus, and Taenia, see Siebold (Burdach's Phys. loc. cit. p. 200), Dujardin (Ann. d. Sc. Nat. X. 1838, p. 29, Pl. I. fig. 10, also XX. 1843, p. 341, Pl. XV., and his Hist. d. Helm. Pl. IX.XII.), and Fölliker (Müller's Arch. 1843, p. 91, Taf. VII. fig. 44-56).

The small hooks which the cestoid embryos so actively protrude and retract, somewhat resemble those which are circularly arranged with the adult Taenia.*

4 As yet, with Echinorhynchus gigas alone have I succeeded in liberating the embryos from the egg by compression. The four hooks of these embryos resemble, by their form and position, those of the Cestoid embryos. It does not appear, however, that the embryos of all Echinorhynchus have them; at least Dujardin has not found them with those of Echinorhynchus transversus, and globocaudatus (11ist. d. 11 elm . Pl. VII.).

5 For the embryonic development of Monostomum, and Distomum, see Siebold (Burdach's Phys. loc. cit. p. 206), and Kölliker (Muillcr's Arch. loc. cit. p.99). The embryos which swim about like Infusoria by means of ciliated epithelium, and which escape the egg while yet in the uterus, have been observed of Distomum hians, by Mehlis (1sis 1831, p. 190); of Distomum nodulosum and globiporum, by Nordmann and Creplin (Mlicrogr. Beitr. Hft. 2, p. 139, and in Ersch and (${ }^{\prime}$ ruber's Encyclop. XXIX. 1837, p. 324) ; of Distomum cygnovdes, longicolle, Amphistomum subclavatum, and Monostomum mutabile, by myself (Wiegmann's Arch. 1835, I. p. 66, Taf. I.). See also Dujardin, in the Ann. d. Sc. Nat. VIII. 1837, p. 303, Pl. IX. fig. 3. I have seen the embryos of Distomum tereticolle, aud Aspidogaster conchicola, without the ciliated epithelium.

[^72]Those of Distomum longicolle, cygnoídes, Monostomum mutabile, and Aspidogaster conchicola, have an oral sucker. In this last species, there is another sncker also, at the posterior extremity of the body (Dujardin, 11ist. d. Ilclm. p. 325).
${ }^{6}$ In this category are the genera Cercaria, Histrionclla, Bucephalus and others, which as yet have been founded only upon different species of Trematode larvae. The flelminth described by Leblond (Ann. d. Sc. Nat. VI. 1836, p. 289, Pl. XVI. fig. 3) as Amphistomum ropaloides, is ouly a larva of a Tetrarhynchus. The species forming the genus Scolex are certainly only imperfect Bothriocephalus ; and the Gryporhynchus pusillus of Nordmann (Micr. Beitr. Ilft. I. p. 101, Taf. VIII. fig. 6, 7), is probably only a young Taenia. Tbere may also be a doubt here, if the Cystici can be considered as real species.
It is very probable that they are imperfect Cestodes whose genital organs are to be afterwards developed, as with Cysticercus fasciolatus, while the Rodents in which it lives are devoured by carnivorous animals. Taenia crassicollis is, perhaps, to Cysticercus fasciolar is, what Bathriocephalus nodosus is to Bothriocephalus solidus; sec Creplin, Nov. Observ. \&c. p. 90.
7 The cylindric larvae of the Trematodes have been termed by Steenstrup (loc. cit. p. 50) nurses (Aminen). They are yet known only as living parasitically upon Mollusks, as for instance, upon Paludina, Lymnaeus, Planorbis, Ancylus, Succinea, Anodonta, and Unio; also upon Helix pomatia, and Tellina baltica, according to Bojanus, Baer, Carus, Steenstrup, and myself. The cylindric larvae of Bucephalus polymorphus, are very long tubes, varicose here and there, sometimes ramified, and which do not exhibit any
development is not from true eggs but rather from buds, a view which is the more worthy of attention from the recent developments made by siebold with Gyroductylus; see below, my note nnder § 118 , note 7. - ED.

§ 119.

With the Nematodes, of which very many are viviparous, the embryos are developed within the egg in two different ways: Either the embryo-
movements (Baer, in the Nov. Act. Acad. Leop. XIII. pt. 2, p. 570, Tab. XXX.). Those of Distomum duplicatum have sinple, oval, and rigid germinative utricles (Baer, Ibid. p. 55s, Tab. XXIX.). Those of Cercaria ephemera, are also very simple, but of a cylindrical form (Sieboid, in Burdach's Phys. loc. cit. p. 187, and Steenstrup, loc. cit. p. 78, Taf. ILI. fig. 1-6). Those of Cercaria furcata are simple and cylindrical, but very long and endowed with quite active peristaltic motions (Baet, loc. cit. p. 626, Tab). XXXI. tis. 6). The curtous animal, Leucochloridium paradox$u m$, consisting of only a cylindrical sac with a tail, is only a trematode larva (Carus, in the Nov. Act. Acad. Leop. XVII. pt. 1, p. 85, Tah. VII.). With the slow-moving, cylindrical, orange-colored nurses of Cetcaria ephemera, there may be easily seen a mouth, a pharynx, and a simple coecal intestiue (Siebold, in Burdach's Phys. loc. cit. p. 187). Those of Cercaria echinata, are similar, but they have also two short oblique prolongations in front of the obtuse caudal extremity (Baer, loc. cit. p. 629 , Tab. 31, fig. 7, and Steenstrup, loc. cit., p. 51, Taf. 1I. fig. 2-1). The germinative bodies from which Cercaria is developed, have nothing comparable to a chotion or germinative vesicle. Their larvae have always a tail, which is simple (Cercaria armata, ephemera, Distomum duplicatum), or bifurcated (Cercaria furcata), or double (Bucephalus polymorphus). The movements of this tail are very slow with Distomum duplicatum, but extremely lively and vortical with Cercaria. With Bucephalus, the two filiform tails lengthen and shorten considerably, at the same time jerking all about.

When the larvae are developed, they leave the corpuscles and pass into other animals to complete their final metamorphoses. Many Cercariae appear to prefer the larvae of insects whose bodies they enter by means of their cephalic hooks. In this way I have seen the Cercaria armala easily enter the larvae of Ephemera, Nemura, and Perla. By the aid of its sting it can perceive the intersegmental membrane of these larvae. Frequently it loses its tail in passing through a narrow opening it has made.

Immediately upon reaching the cavity of the body of the larva, it is surrounded by a vesicular membrane, in which the sting is rejected, and the animal enters upon its final metamorphosis. But I have a doubt whether it is there completed, for among the numerous similar parasites which I have found in the most different insects whose larvae are

* [§ 118, note 7.] In this connection should be noticed the remarkable phenomena of reproduction with Gyrodactylus as recently observed by Siebold (Siebold and Kölliker's Zeitsch. 1. 1849, p. 345). Individuals are here developed viviparously as in the so-called alternating generations, and Siebold has observed a mother in which was a daughter and in this last a grand-daughter, the series being therefore three-fold. These viviparous individuals contain no sexual organs proper, but the new individual is developed out of a group of cells situated within the body. The whole reproductive conditions which Siebold has detailed with his usual care appear to me to closely resemble those of the viviparous Aphides which I have
aquatic, as of Libellula. Agrion, Ephemera, and Phryganea, I have never mot with one whose genital organs were in a state of advanced developwent.

The full development of these organs, the delicate contours of which may be seen while the parasites are in the bodies of these animals, is not perhaps attained, until the insects have been swallowed by birds and other animals, - being thereby furnished with more proper conditions for their complete formation
Some Cercariae lose their tail and are surrounded with a capsule without leaving the Mollusks which are their first habitat. This is probably so, because these Mollusks are liable to be eaten by aquatic birds, in which these parasites may properly reach their final development. It should, lowever, be remarked that when these larvae become chrysalides, their investing capsule or cyst, is a secretion from their bodies, and not a product of the animals in which they live. It is probable that very many of these larvae never attain a perfect state, for, in their migrations, they fail to reach their destined and final habitat.

These migrations undoubtedly occur with many Cestodes while young; at least Miescher (loc. cit.) has observed it with Tetrarhynchus. But although we have followed these in their migrations, and the trausformation of many of them into Monostomum and Distomum has been observed, and therefore the completion of their metamorphoses, yet we are but slightly informed as to their beginning by the alternation of generation.
There is yet little known as to the manner in which these embryos are changed into the cylindric nurses. There are now only two isolated facts throwing light upon this point. According to my own observations (Wiegmann's Arch. 1835, I. p. 75, Taf. I.), each embryo of Monostomum mutabile contains a germinative tube, which, at thic death of the embryo, is freed and quite resembles the nurse of Cercaria echinata. I have also observed in the embryos of Amphistomum subclavatum a tubular body, but I could not satisfy myself of its germinative nature. According to Steenstrup (loc. cit. p. 98), there is an animal like a Paramaecium, and probably an embryo of a Distomum, living in Muscles, and which finally is deprived of its epithelium, and changed into the rigid, germinative tube of Distomum duplicatum; see upon this, my Jahresbericht in Wiegmann's Arch. 1843, 11. p. 300.*
recently investigated; and I believe this mode of reproduction to be only a peculiar form of gemmiparity or budding suited to some ulterior, economical purpose of the animal's life. On a future page I shall speak more fully on this point and attempt to show that the whole set of phenomena known under the name of "Alternation of Generations" is, when divested of its paraphernalia, only a kind of Gemmiparity.
See also for furtiner details on that curious animal Leucochloridium paradoxum, Piper, in Wiegmann's Arch. 1851, I. p. 313, but especially Siebold, in Siebold and Kölliker's Zeitsch. IV. 1853, p. 425, Taf. XVI. B. This last-named observer has shown that this animal form is only a
nic cells present the same successive phases as in the Cestodes and Trematodes, without the appropriated vitellus undergoing any segmentation; or, the whole vitellus after a complete segmentation, is changed into an embryo. ${ }^{(1)}$

In both cases, the embryo has the parent's form. A muscular eesophagus and straight intestine appear in its body in the midst of the refuse vitelline granules; and thus the young animal attains its perfect state by simple increase and by the development of its genital organs, but without any metamorphosis. ${ }^{(2)}$

From the few observations hitherto made upon the development of the Gordiacei, it appears that the cmbryos exactly resemble the parents. ${ }^{(3)}$

1 Kolliker was the first to call the attention to these two types of development with the Nematodes (Muiller's Arch. 1843, p. 68, Taf. VI. VII.). Witb Ascaris dentata, Oxyuris ambigua, and Cucullanus elegans, free embryonic cells are formed in the vitellus without its fissuration. But tbere is a complete segmentation witb Ascaris nigrovenosa, acuminata, succisa, osculata, labiata, and brevicaudata, Strongylus auricularis, dentatus, Filaria inflexo-caudata, rigida, and Sphaerularia bombi. After I bad already noticed this vitelline segmentation with tbe Nematodes (Burdach's Phys. loc. cit. p. 211), whicb Bagge (Dissert. loc. cit.) described very fully, Kolliker (loc, cit.) attempted to reconcile it with the cell-theory, hy regarding tbe cells wbich appear in tbe segmented, vitelline globules, as tbe embryonic cells, and in the multiplication of which by segmentation, the enveloping vitellus participates.
2 It appears that, as with the Trematodes, so in the Nematodes, a migration of tbe young precedes tbeir complete development.
In tbe tissues of the most different insects and vertebrates, there are found small Nematodes without genital organs, and contained in a cyst. They could not get there except by a migration, and tbey canuot attain the full development of
kind of nurse of a Distomum, containing peculiar germ-hodies which are developed into Distomum. But the most important result obtained is that all Distomum are not developed by means of a cercarian, larval stage,-the economy of some making it seemingly requisite tbat the developmental process should be more direct. - Ed.

* [§119, note 2.] In regard to Trichina spiralis, the various researcbes upon its structure, made in Engtand and America, would show that it is a true animal having genital organs. The following are some of the references upon this subject : Owen, London Med. Gaz. April and December, 1835, or Transact. Zool. Soc. London, IV., or Cyclop. Anat. and Phys. Art. Entozoa; Wood, London Med. Gaz. May, 1835 ; Farre, Ibid. December, 1835; Harrison, Report of the Brit. Assoc. for the Advancem. of Sc. 1835 ; Knox, Edinh. Med. and Surg. Jour. 1836, XLVI. p. 86 ; Hodg-
their genital organs or their bodies in general, except through a transplantation upon other animals ; exactly as occurs witb the trematodal larvae. (See the observations of Creplin and myself upon the sexless 'Trematodes, in Wiegmann's Arcb. 1838, I. p. 302, 373.)
Tbe Trichina spiralis of man is undoubtedly an encysted and imperfect form of one of the Nematodes, and in whicb one may seek in vain for genital organs. Some of these Nematodes appear to increase in their cysts without their genital organs being developed in tbe same proportion. Thus, tbe Filaria piscium are sometimes found very large, while their genital orgaus are very little developed; and these last do not probably attain their perfect state, until, as with Bothriocephalus solidus, these worms have passed into other animals. For the same reason, I agree with Steenstrup (loc. cit. p. 113), who doubts that the Filaria piscium become, as Miescher has affirmed (loc. cit. p. 26), a globular capsule out of whicb there afterward appears an animal at first resembling a Trematode, but which finally becomes a Tetrarhynchus.*

3 See Dujardin (Ann. d. Sc. Nat. XVIII. loc. cit. Pl. VI. fig. 15, 16) upon Mermis nigrescens, researches which I have been able thoroughly to confirm. \dagger
kin, Lect. on Morhid Anat. of Serous and Mucous Mlmbranes, I. p. 212 ; Curling, London Med. Gaz. February, 1836 ; Bowditch, Boston Med. and Surg. Jour. April, 1842; Luschka, Siebold and Kölliker's Zeitscl. III. 1851, p. 69, Taf. III., and Gairdner, Edinb. Monthly Jour. of Sc. May, 1853. The subject is one that deserves especial attention from Iclminthologists. - ED.
\dagger [§119, note 3.] Grube (Wiegmann's Arch. für Naturgesch. 1849, p. 358) and Leidy (Proc. Acad. Sc. Philad. V. 1850, p. 98) have observed the development of Gordius. It corresponds pretty closcly with that of Ascaris as described by Bagge ; but the cmbryo on escaping from the egg is annulose and tentaculated, and differs much from the adult form. Nothing is known of the history of the animal between these two conditions. - Ed.

BOOK SIXTH.

TURBELLARIA.

CLASSIFICATION.

§ 120.

The Turbellaria receive their name from the eiliated epithelium, which covers their whole body. Their flattened, or eylindrical, non-articulated body, is formed of a loose parenchyma, in which lie hid the viscera. The nervous system appears very little developed, and when visible, consists only of a cervical ganglion, from which there never extends a ventral cord. The multiramose intestinal canal is always without an anus. The genital organs are either very much developed, or cntirely absent. ${ }^{(1)}$ In the first case, these animals are always hermaphrodites, and have copulatory organs.

The Turbellaria have been shifted from one zoological system to another, but their organization has suffieient peculiarities to entitle them to a special, class by themselves.

Ehrenberg was the first to found the group Turbellaria; but he has included therein many different animals; and we are, therefore, indebted to Örsted, for a late revision of this group.

ORDER I. RHABDOCOËLI.

The alimentary canal is simple and eylindrical; the œesophagus, nonprotractile; loeomotion, mostly natatory.

Genera: Vortex, Derostomum, Gyratrix, Strongylostomum, Mesostomum, Typhloplana, Macrostomum, Microstomum.

ORDER II. DENDROCOËLI.

Intestinal canal dendritically ramified; œesophagus completely protractile; locomotion reptatory.

[^73]Genera: Polycelis, Monocelis, Planaria, Leptoplana, Eurylepta, Planocera, Thysanozoon.

BIBLIOGRAPHY.

Baer. Ueber Planarien, in the Nov. Act. Acad. Leop. XIII. 1826, p. 691.

Dugès. Recherches sur l'organisation et les moeurs des Planariées, in the Ann. d. Sc. Nat. XV. 1828, p. 139; and XXI. 1830, p. 72. See Isis 1830, p. 169, or Froriep's, Not. 1829, No. 501.

Mertens. Ueber den Bau verschiedener in der See lebender Planarien, in the Mém. de l'Acad. de St. Petersbourg, $6^{\text {eme }}$ Sér. Tom. II. 1833, p. 1.

Ehrenberg. Phytozoa turbellaria, in the Symbolae physicae, Ser. I. 1831.

Focke. Ueber Planaria Ehrenbergii. in the Ann. des Wiener Mus. I. Abth. 2, 1836, p. 193.
F. F. Schulze. De Planariarum vivendi ratione et structura penitiori nonnulla. . Dissertatio. Berolini, 1836.
A. S. Örsted. Entwurf einer systematischen Eintheilung und speciellen Beschreibung der Plattwürmer. Copenhagen, 1844.

ADDITIONAL BIBLIOGRAPHY.

Beside the writings referred to in my notes, see the following:
Schmidt. Die rhabdocoëlen Strudclwürmer des süssen Wassers. Jena, 1848.

Neue Bciträge zur Naturgesch. der Würmer. Jena, 1848. Erster Abschnitt, Turbellarien.

Handbuch d. vergleich. Anatomic, 1849, p. 294.
M. S. Schultze. Ueber die Microstomeen, eine Familie der Turbellarian, in Wiegmann's Arch. 1849, p. 280, Taf. VI.

Beiträge zur Naturgesehiehte der Turbellarien. 1851. - Ed.

CHAPTERI.

CUTANEOUS SYSTEM.

$$
\text { § } 121 .
$$

The whole body of the Turbellaria is eovered with ciliated epithelium, under which lies a loose cellular parenchyma. In this parenchyma, and directly beneath the epithelium, there are found, in many specics, particular eell-like bodics, which sometimes remind one of the nettling organs of eertain zoophytcs, and sometimes exaetly rescmble the prehensile organs 12
of the arms of Polyps. ${ }^{(1)}$ These bodies contain six or eight, or even more, staff-like, colorless corpuscles, which are parallelly arranged side by side, or curved a little spirally. With their further development, the envelope disappears, and they then remain free under the skin, but sometimes projecting through it. ${ }^{(2)}$

CHAPTER II.

MUSCULAR SYSTEM AND LOCOMOTIVE ORGANS.

§ 122.

Although their parenchyma is extremely contractile, yet the Turbellaria have only a very feebly-developed muscular system.

In many small species of the Rhabdocoëli, the parenchymal muscles may be made out; and in the larger Planariae, when the muscles are visible, their fibres appear unstriated.

The small Rhabdocoëli swim by means of their ciliated epithelium, like many Infusoria, their bodies revolving on its longitudinal axis; while the flattened Dendrocoëli crawl along like the Gasteropoda. ${ }^{\left({ }^{(1)}\right.}$ Many larger species of the first order, ${ }^{(2)}$ appear to float from place to place by means of their epithelium, thus really neither creeping nor swimming.

[^74]hystrix, are probably of the same nature, as may also be said of the delicate short bristles found everywbere under the skin of Derostomum leucops, Dugès.

Quatrefages, in his monograph on marine Planariae (Ann.d. Sc. Nat. IV. 1845 , p. 146, Pl. VIII. fig. 9,10), also mentions various formations whicb, partly as spines, partly as nettling organs, are found in tbe skin of certain Dendrocoèli.
1 The mode of locomotion by wbicb these animals move over solid bodies, or upon the surface of the water, bas not yet been satisfactorily explained. The ciliated epithelium cannot bere be the principal agent. According to Schulze, loc. cit. p. 32, the staff-like corpuscles projecting from the back of these animals, and whicb be terms bristles, are used as oars.
According to Mertens (Mém. de l'Acad. de St. Petersbourg, beme, sér. II. 1833, p. 5), Planaria lichenoides moves by means of the protruded lobes of its pharyngx.
2 For example, Mesostomum.

CHAPTERS III. AND IV.

NERVOUS SYSTEM AND ORGANS OF SENSE.

§ 123.

The nervous system with the Turbellaria, is quite indistinct, for it has not yet been observed in the small species, and in the larger ones its disposition is yet doubtful. A double ganglion in the cervical region appears to form its central part, and from this nerves pass off in different directions. ${ }^{(1)}$

§ 124.

Among the organs of sense, those of vision are the most developed with very many species.

The red, brown, or black spots on the anterior extremity, two or more in number, are not always simple pigment cells, ${ }^{1)}$ but may be regarded as eyes, for they have a cornea, - a light-refracting body surrounded with pigment, and a nerve-bulb. ${ }^{(2)}$

As to the sense of touch, no special tactile organs have yet been found, but the whole surface reäcts sensitively from the lightest contact; and this sensibility appears particularly prominent at the anterior extremity, which, with many Dendrocoëli, is furnished with lobular and other appendages. ${ }^{(3)}$

[^75]p. 37. With Monocelis, these organs are very remarkable, being composed of two eyes blended into one, and the simple and spherical ball of the eye is filled, according to Örsted, with a transparent vitreous body, in which two conical crystalline lenses are buried with their apices pointing inwards (loc. cit. p. 6, 56, Taf. I. fig. 1, 2, and in the text, fig. 10). Orsted has distinctly seen two optic nerves passing lateraily to this organ. It is quite remarkable that with one of the three known species, the Monocelis unipunctata, the eye is entirely without pigment. Ehrenberg affirms that Le has observed with Polycelis, many star-like ganglia in the middle of the anterior part of the body, which are for the long row of eye-duts (loc. cit. p. 243).

For the eyes of the marine Planariae, see also Quatrefages, loc. cit. p. 178, PI. III. The organ which with Monocoelis has been taken for an eye by orsted, appears to lee, according to the researches of Frey and Leuckart (Beitr. p. 83, Taf. I. fig. 18), an auditory organ. That which Örsted regarded a vitreous body, is an otolite, and his two crystalline lenses, are two semicircular prolongat tions attached loop-like to the otolite. Frey and Leuckart are also convinced that Convoluta paradoxa Örst., has a single auditive capsule, situated on the median line of the cervical region, and containing an otolite which floats in a lilac-colored fluid ; see Beitr. loc. cit. p. 82, Taf. I. fig. 17.*

3 There are contractile and antenniform append-
question as visual organs. Schmidt has often failed to find anything like an otolite; but, on the other hand, has often found with various Derostomum a complete visual apparatus. This point, therefore, is still unsettled, unless, as Schmidt ingeniously suggests, it may be that one organ serves the functions of two separate senses. - Ed.

CHAPTER V.

DIGESTIVE APPARATUS.

§ 125.

With the two orders of Turbellaria, this apparatus is formed upon very different types. But in both orders, the location of the mouth yaries so much, that it serves as the basis of genera, according as it is at the anterior extremity, or a 1 tle behind it, - or, at the middle of the belly, or a little behind that also. The walls of the intestinal canal are always intimately blended with the parenchyma of the body.

With the Rhabdocoëli, the mouth leads to a muscular øesophagus, which is either an annular sphincter, or a longer or shorter tube, but which, in no case, can be everted from the mouth. The intestinal canal is a simple caecum extending from the oesophagus to the posterior extremity; but with those species which have the mouth situated more or less posteriorly, it stretches forward as a coecum to the anterior portion of the body. ${ }^{(1)}$ With the Dendrocoèli the mouth opens into a large throat, containing a protractile and very movable deglutitory organ (Pharynx).

This organ, which can be protruded entirely out of the throat while the animal is eating, is either a tube composed of longitudinal and transverse muscles, or a collection of lobular and ramified tentacles circularly arranged about the mouth.

Its base is prolonged into the proper intestine, whose dendritic ramifications extend over the whole body. ${ }^{(2)}$
Scarcely a trace of salivary or hcpatic organs have here been found with these animals. ${ }^{(3)}$
ages on the anterior part of the body of Planaria tentaculata, and Eurylepta cornuta, and upon the neck of Planocera. With the last, they support a part of the eye dots.

I The mouth and cylindrical eesophagus of Gyratrix hermaphroditus, and Vortex truncata, are at the cephalic extremity (Ehrenberg, Abhandl. d. Berl. Akaul. 1835, p. 178, Taf. I. fig. 2, 3). But the mouth and annular cesophagus of Derostomum is situated just back of this extremity, into which, however, the coecal intestine extends. The osophagus is also annular with Mesostomum, and Typhloplana. In the first, the mouth is at the middle of the ventral surface; and in the last, a little bchind this point, while the intestine projects coecally far into the anterior extremity (Orsted, loc. cit. Taf. II. fig. 26, 31, and Focke, loc. cit. 'iap. XVII.).

2 The genus Planaria has become fumous for its movable organ of deglutition, which, being separated from the body, still continues for a while to swallow all presented to its mouth (Baer, loc. cit. p.

* [§ 125, note 2.] With Phagocata (Planaria) gracilis, Leidy (Proceed. Acad. Nat. Sc. Phil. III. 1848, p. 248) found, instead of a single sucker, twenty-three, in the full-grown animal. These are all protruded when the animal feeds, but when not in use, are closely packed together within the animal. They all connect separately with portions of the dendritic alimentary cavity. - Ed.

716, Tab. XXXIII. fig. 8-11, and Dugès, loc, cit. XV. p. 152, PI. IV. fig. 18, 19).

The large and plicated cesophagus of Planaria tremellaris, constitutes the transition to the tentacular form of the deglutitory organs (Duges, loc. cit. XV. Pl. IV. fig. 20, 21), Fully ramified tentacles are found with Planocera sargassicola, pellucida, and Leptoplana lichenoïdes. When collected in the throat, they present exactly the aspect of a ramified intestine (Mertens, loc. cit. Taf. I. fig. 2, 3, 6, Taf. II. fig. 3, 4, and the Isis, 1836, Taf. IX. fig. 3, b. 3, c.). The ramified intestine of many Dendrocoéli has been figured by Baer, Duges, and Mertens, in their works already cited.*
${ }^{3}$ Focke (loc. cit. p. 196, Taf. XVII. fig. 11, c. f.) is inclined to regard as salivary and hepatic organs, two large lateral vessels, and a glandular organ which he has discovered near the œesophagus and intestine of Mesostomum Ehrenbergii; but he himself admits that this view is not yet well founded. \ddagger
\dagger [§ 125, note 3.] Will (Müller's Arch. 1848, p. 508) bas shown that the brownish layer covering the whole extent of the intestine of Planaria is composed of hepatic glands (Dendrocoezlum lacteum, Planaria torva, and nigra). - Ed.

CHAPTERS VI. AND VII.

CIRCULATORY AND RESPIRATORY SYSTEMS.

§ 126.

As yet, only a very imperfect vascular system has been observed in the parenchyma of these animals. With the Dendrocoëli, there are constantly two principal vessels, extending along each side of the body, which give off many lateral branches and anastomose together at their two extremities.

This system has no central heart-like organ, and the walls of the vessels not being contractile, the circulation is probably effected through the general contractions of the body. ${ }^{(2)}$. The contained homogeneous and colorless liquid ought therefore to be considered as a nutritive fluid.

With the Rhabdocoëli, the disposition is different. In many there are one or two vessels which traverse the body and loop at its extremities, without either giving off branches or diminishing in size. The movement of their colorless liquid is due to isolated vibratile lobules situated here and there in the vessels.

This organization reminds one more of an aquiferous than a sanguineous system. ${ }^{(2)}{ }^{2}$
Special respiratory organs are here wholly absent, if we do not regard as such the aquiferous system just mentioned. There remains, therefore, only the conjecture that the ciliary epithelium upon the entire surface of the body is subservient to a general cutaneous respiration, by constantly bringing the water in contact with the skin.

* [§ 126 , note 2.] See for these two systems, Schmidt, Die Rhabdoc, Strudelw. \&c., p. 11, and 12*
dal extremity, they approach so near to the cutaneous surface that it is impossible to decide whether they terminate there by a loop, or open externally. Ehrenberg (Abhandl. d. Berl. Akad. loc. cit. p. 178, Taf. I. fig. 2) has figured two pairs of such vessels with Gyratrix hermaphroditus, and which loop at the posterior extremity, but in front terminate indistinctly. The trembling in the interior of thesc vessels observed by Ehrenberg, indicates certainly the presence of vibratile lobules, and which Orsted (loc. cit. p. 17, Taf. III. fig. 48) has distinctly found in the vessels of Mesostomum Ehrenbergii, while Focke (loc. cit. p. 200) could see only their effects. These are the very vessels which this author supposes connect with the pharynx ; but this is not so according to my own observations.*

Neue Beitr. zur Naturgesch. d. Würmer, \&c., p. 15. - Ed.

CHAPTER VIII.

ORGANS OF SECRETION.

§ 127.
No special organs of secretion have yet been found with the Turbellaria, although these animals, and especially the Dendrocoëli, scerete from their cutaneous surface an extraordinary quantity of mucus. ${ }^{(1)}$

CHAPTER IX.

ORGANS OF GENERATION.

§ 128.

The Turbellaria propagate by transversc fissuration, and by the means of genital organs.

In the smaller Rhabdocoëli, which have no trace of genital organs, the transverse fissuration is the rule. ${ }^{(1)}$ It is, however, probable that at certain epochs of their lives, genital organs are developed, and therefore, that they multiply also by eggs. ${ }^{(2)}$

With both the larger Rhabdocoëli, and the Dendrocoëli, the genital and copulatory organs of both sexes are situatcd upon one and the same individual, so that they are capable of self-impregnation ; but there is generally a reciprocal copulation. ${ }^{(3)}$ This genital apparatus is very complex, and as the contents of its various parts have not yct been subjected to a careful analysis, it is not positively certain that the right interpretation of them is given.

> 1 It is yet undecided whether the subcutaneous cell-like bodies of the Dendrocolli have any relation to this secretion

> 1 Dugès (Ann. d. Sc. Nat. XV. p. 169, Pl. V. fig. 15) has observed a voluntary transverse fissuration with Derostomum leucops. I have been able to follow the very regular fissuration of Microstomum lineare, where each unseparated half of the body began to halve again, and then these four pieces also each divided, and so finally the body appeared worked by seven transverse furrows, into eight divisions.

> I must here remark, to prevent an error, that I, contrary to Örsted (loc. cit. p. 73), regard these two mentioned species as distinct; for Derostomum leucops, Dug., is without the reddish brown eye-dots and the prehensile organs, which are found with Microstomum lineare, Örst. The wonderful reproductive power of the sexless Planariae,

[^76]and which can be multiplied artificially by divisions in all directions, would lead us to infer that they propagate also from accidental divisions, to which their vulnerable nature is constantly exposed.*
2 Örsted (loc. cit. p. 21, Taf. IIf. fig. 53) and Ehrenberg (Abhandl. ©. Berl. Akad. loc. cit. p. 178, Taf. I. fig. 2,3) affirm to have seen ovaries, testicles, copulatory organs, and eggs with Microstomum lineare, and many other allied Rhabdom coii, such as Gyratrix, Vortex, and Strongylostomum ; but the details they have given are too imperfect to allow definite opinions upon this organization. I must here ask if these animals have not been confounded with the sexless larva which multiply by fissuration like those of Medusae.

3 Coition has often been observed with Planaria and Mesostomum, and has been figured by Baer, Duges, and Focke.
this subdivision could not be carried successfully beyond three or four parts. - ED.

The following are the parts usually found : an ovary or organ of vitelline secretion, which is double, and, extending into the parenehyma of the body, opens by a common exeretory duct into a large cavity, - a vagina or oviduet; a double testiele sends its seminal liquid, full of filamentoid and motionless spermatie partieles, into the scminal vesicle through two tortuous vasa deferentia; to this seminal vesicle is attached a very erectile penis, situated by the side of the vagina. There is a common genital opening, situated always behind the mouth, for the protrusion of this penis and the escape of the eggs.

With Planaria, there are, beside, two speeial, hollow organs, with narrow exeretory ducts, whieh open into the vagina. Of these, one very probably sccretes the envelope of the egg, while the other serves as a Receptaculum seminis. ${ }^{(4)}$

§ 129.

The embryonic development of the Turbellaria is yet unknown exeept with the Planariae.

It differs wholly from anything yet known with other Invertcbrates. Many of these embryos are developed, always simultaneously, in one large egg; but it is impossible at first to deternine their number, since

Abstract

4 See, for the genital organs of Mpsostomum Ehrenbergai, Focke (loc. cit.); for those of Planocera, and Leptoplana, Mertens (loc. cit.); and for those of Derostomum, and Planaria, Dugès, Baer, and Orsted (loc. cit.). But the interpretation here given of the different parts of these organs must he much changed. For, to speak here only of the genus Planaria, what Baer has regarded as the ovaries and oviducts, are certainly the two testicles with their vasa deferentia, since I have always found them filled with spermatic particles (loc. cit. Tah. XXIII. fig. 18, a. h.). The two seminal canals open into a hollow, flask-shaped body like a Vesicula seminalis or a Ductus ejaculatorius, the neck of which is continuous with a very contractile and erectile tube (Penis). This penis is in a cavity separated hy a septum from the large vulva, with which, however, it communicates by a special orifice, and consequently can be protracted through the common genital opening. There is, beside the intestinal canal, another ramified organ in the hody of Planaria, and which very probably is an ovary, or at least a vitellussecreting organ. But its caeca contain only simple vesicular hodies, which have no germinative vesicles. The canal which Duges (loc. cit. XV. Pl. V. fig. 4, b.) has taken for an oviduct, helongs probably to the ramifications of this organ. The other two organs which this author (Ihid. Pl. V. fig. 4, 8 , c.) has described as Vesicule copulatrice ou réservoir du sperme et des oeufs, do not appear to me to exist in all Planariae. They consist of two hollow, pyriform organs, not hlended together as Duges has figured them, hut distinet ; one opens hy a long, and the other hy a shorter canal, into

* [§ 128, note 4.] See, for many details on the sexual organs of the Turhellaria, and illustrated with figures, Schmidt, loc. cit. (Protostomum, Vortex, Hypostomum, Detostomum, Mesostomum, Opistomum, Macrostomum, Microstomum, Stenostomum, Schizostomum, Typhloplana; according to this author, Dinophilus vorticoides is separate-sexcd, - the exceptional instance among the Rhabdocoeli. The suhject of the
the vulva. As I have found many spermatic particles iu the first of these, I am led to regard it as a Receptaculum seminis. But in the other, which Baer (loc. cit. Tab. XXX1II. fig. 18, e.) has taken for a penis, I have never found either eggs or germs, but always only a grauular substance; from this I am inclined to think that this organ secretes the material which envelops the vitelline cells grouped in the vulva. With the Planariae, one eggy at a time is always formed in the ronnd vagina; this is very large, and when it is deposited others succeed it in the same way. This is not true, however, with Mesostomum Ehrenbergii; here the vagina is short and narrow, and receives various organs whose nature is not yet well determined. One of these contains, according to my own researches, a confused mass of active, filamentoid spermatic particles, and may therefore be regarded as a Receptaculum seminis. Two canals which pass off right and left from the vagina, bifurcate into two simple coeca, one of which passes forwards, and the other backwards, and in which very large eggs remain for a long time. This therefore nay be regarded as an uterus. See Focke, Taf. XVII. fig. 1, 11, g. g.

According to the very minute researches of Quatrefages (loc. cit. p. 163, Pl. IV.-VIII.) made upon various marine Planariae, both the male and the female organs of these Dendrocotli have two distinct orifices situated in the ventral region, one behind the other. The posterior is a vulva and opens into a more or less long coccum (vagina or copulatory pouch) upon which are laterally inserted two oviducts. The anterior orifice is for the protrusion of the protractile penis.*
spermatic particles of the Planariae is little understood. They probahly have not a hair-like form as mentioned in the preceding note, hut are Cercarialike ; see Kölliker, loc. cit., Quatrefages, loc. cit. PI. VIII. fig. 5-9, and Schmidt, Die Rhabdoc. Strudelwurmer, \&c., p. 16 ; this author, however, describes those of Opistomum pallidum as somewhat different, there heing a filament beyond the head (Taf. V. fig. 14 ${ }^{\text {b }}$). - Ed.
their chorion contains only loosely-arranged vitelline cells, among which there is seen no trace of one or more germinative vesicles. The vitelline cells always contain, beside a finely-granular albuminous substance, a round nucleus which has a nucleolus. Both the nucleus and the granular substance are shifted from one side to the other of the cell by the very remarkable peristaltic movements of the cell-membrane. After a time, these movements cease, the cell-membrane disappears, and the contents mix with those of other cells which have been affected in the same way: by these means, little collections of vitelline substance here and there are formed, which increase by the addition of other cells, - and finally are transformed into roundish, nicely-defined embryos which become covered with ciliated epithelium. From this time the embryos do not increase as before by the external fusion of cells, but there is a muscular, discoid œesophagus formed upon their periphery, and through this the remaining cells are ingested and assimilated within the animal.

Still later, the embryo, hitherto spherical, becomes flat and elongated at two opposite points;-ultimately, and upon the appearance of the eyespecks, it assumes exactly the form of the adult Planariae.

The size of the young Planariae depends upon the number of embryos developed in the same egg, for the smaller this number, the larger the embryos at the time of their hatching, and vice versa.

The cause regulating the number of embryos in an egg is yet unknown.* (1)

1 See my details upon this subject in the Bericht. ueber die Verhandl. d. Berl. Akad. 1841, p. 83. During the development of Planaria, one can, after a while, ascertain the number of vitelline cells assimilated by fusion and deglutition, by counting their nuclei which are easily seen in the parenchyma of the body. According to Focke (loc. cit. p. 201), the eye-specks, and the œesophagus are developed very early in the young Mesostomum Ehrenbergii; - a species with which each egg contains a single embryo only, and which is developed while the egg is in the uterus.

The remarkable movements of the vitelline cells in the eggs of the Planariae, and which I was the first to observe, have since been confirmed by Kölliker, with Planaria lactea; see Wiegmann's Arch. 1846, I. p. 291, Taf. X. I am unable to say whether or not the spontaneous movements obscrved by Quatrefages (loc. cit. p. 169, Pl. VII. fig. 6-9) upon the larger portions of the vitellus of Polycelis pallidus while in the oviducts, are of the sane nature ; this naturalist himself supposes that these portions were the embryos of this Planaria. \dagger

[^77]doc. Strudelwürmer, \&c., p. 17; by Agassiz (Proc. Amer. Assoc. Advancem. of Sc. 2nd meeting, 1849, p. 438), who made the interesting observation that the Infusoria-genera, K olpoda and Paramaecium, are only larvæ of Planaria; by Girard (Ibid. p. 398), and by Müller (Müller's Arch. 1850, p. 485). Müller has here some interesting remarks on the relations of the study of these forms to the class Infusoria. - Ed.

BOOK SEVENTH.

R0TAT0RIA.

CLASSIFICATION.

$§ 130$.

The body of the Rotatoria is covered with a smooth, hard epidermis, and, from transverse incisions, at least at its posterior portion, usually appears articulated; while its anterior portion has vibratory retractile partsthe so-called rotatory organs. The very indistinct nervous system is almost wholly comprised in a cervical ganglionic mass. The fully-developed digestive canal lies in the large cavity of the body, and its antcrior portion is provided with masticatory organs, while posteriorly, it terminates in an anus. Female genital organs alone have as yet been found with certainty.

No one would deny that the Rotatoria, whose organization is so high, ought to be separated from the Infusoria, whose structure is scarccly advanced above that of a simple cell-nature. One can be in doubt only as to their other and proper place in the animal kingdom;- whether, with Burmeister, they are to be placed among the Crustacea; or with Wiegmann, Wagner, Milne Edwards, Berthold, and others, among the Worms. But the choice here between these two classes will not be difficult, for, as will soon be shown, they differ widely from the Crustacea. Aside from the absence of a ventral cord and of striated muscular fibres, these animals have vibratile organs upon the surface of their body, as well as upon their respiratory and digcstive organs - a structure not found with the Crustacea, nor with the Arthropoda in general.' Their development is non-metamorphotic, and they do not have articulated feet when they escape from the egg; while the Crustacea, and even those which, from a retrograde metamorphosis, become verniform, have at least three pairs of articulated legs when hatched. On the other hand, they have, in common with most worms, an articulated body, internal and external vibratile organs, absence of a ventral cord, and, with all, the want of articulated feet.

Although the uniformity of their organization does not admit of these animals being divided into orders, they can at least be considered as a separate class in the great section of Worms.

Familx: Monotrocha.
Genera: Ptygura, Ichthydium, Chaetonotus, Oecistes, Conochilus.
Family: Schizotrocha.
Gencra: Megalotrocha, Tubicolaria, Stephanoceros, Lacinularia, Melicerta, Floscularia.
Family: Polytrocha.
Genera: Enteroplea, Pleurotrocha, Hydatina, Notommata, Synchaeta, Polyarthra, Diglena, Triarthra, Eosphora, Cycloglena, Theorus, Masiigocerca, Euchlanis, Salpina, Stephanops, Squamella.

Family: Zygotrocha.
Genera: Rotifer, Actinurus, Philodina, Noteus, Anuraea, Brachionus.

BIBLIOGRAPHY.

Sce the works already cited under Infusoria.

ADDITIONAL BIBLIOGRAPHY.

Besides the writings of Brightwell, Huxley, Leydig, and others, quoted in my notes, see the following:
O. Schmidt. Versuch einer Darstellung der Organisation der Räderthiere, in Wiegmann's Arch. 1846.

Frey. Ueber die Bedeckungen der wirbellosen Thiere. Göttingen, 1848.

D'Udekem. Bull. de 'l'Acad. Roy. des Sc. de Belgique, XVIII. 1, 1851.

See also the new edition of Pritchard's Infusoria, given under Book first. - Ed.

CHAPTER I.

cutaneous system.
§ 131.
Nearly all the Rotatoria are covered with a smooth, hard skin, ${ }^{(1)}$ which is thrown into folds by the contractions of the subcutaneous parenchyma; at the anterior extremity only, it is very delicatc, and covered with vibratile organs, which also move to and fro with the parenchyma. With many,

[^78]the annular sulcations of the skin, partial, or over its whole extent, give the body an articulated aspect. ${ }^{(2)}$ Many others have a skin so hard and stiff, as to be like a carapace. ${ }^{(3)}$

考

CHAPTER II.

MUSCULAR SYSTEM AND LOCOMOTIVE ORGANS.
§ 132.
The muscular system of the Rotatoria is quite distinct in many parts of the body. There can at once be observed, distinctly separated from the general parenchyma, unstriatcd muscles, of which some are transversely annular, and many others narrow and longitudinal. ${ }^{(1)}$ The first, subcutaneous and widely scparated from each other, are usually upon the borders of the segments of the body. The second, divisible into dorsal, ventral and lateral portions, arise from the internal surface of the skin, and arc inserted at the cephalic or opposite extremity. ${ }^{(2)}$

The posterior extremity of those species which move freely, has two stiff points of variable length, which are moved as tentacles by two cylindrical, or clavate, caudal muscles. Some have long, movable bristles or pedicles, by which they row along or move by quick leaps. ${ }^{(3)}$

§ 133.

The prominent characteristic of the Rotatoria is the retractile, vibratile apparatus at their cephalic extremity, known as the rotatory organs. By these, they swim frecly about, revolving upon their axis, or, when at rest, produce vortex-like motions of the water. The form, number, and arrangement of these organs varies much according to the genera, and may bc used even to characterize families.
The rotatory organ is either single, double, or multiplc. Often it consists of a disc, supported by a pedicle of variable length, upon whose borders are successive rows of regularly-arranged cilia, the motion of which gives the appearance of rotation to the disc itself. This apparent motion

[^79]cles of Euchlanis triquetra are transverscly striated like those of the higher animals (Die Infusionsthierchen, p. 462, Taf. LVII. fig. 8).
2 For the muscles of the Rotatoria in general, see Ehrenberg, loc. cit. and his description of the ffydatina senta, in the Abhandl. d. Berl. Akad. 1830, p. 47 .

3 Many Rotatoria use their caudal pincers as a fulcrum when creeping along. Plilodina moves along in a leech-like manner, using its mouth and tail as suckers. Polyarthra has many bundles of bristles upon the sides of its body, which it uses as oars. Triarthra has under the throat and at the posterior extremily of the body, long stiff bristles, articulated with the body, and by which these animals can leap like a flea.
is quite remarkable with those species whose single or double dise is not crenulate, but entire. ${ }^{\text {(1) }}$ With those whose organs are more numerous, but smaller, this appearance is not observed. ${ }^{(2)}$
With Floscularia, and Stephanoceros, the rotatory organs have quite a different form. With the first, there are five or six button-like processes about the mouth, covered with very long bristles; these bristles produce usually but very feeble motions, and rarely give rise to vortexes. But Stephanoceros reminds one much of the Bryozoa, for its rotatory apparatus consists of five tentacle-like processes covered with vibratile cilia ${ }^{(3)}$ The rotatory organs differ, moreover, from the ordinary vibratile cilia of cpithelium, in being under the animal's control, - that is, moved or kept at rest, at will. ${ }^{(4)}$

CHAPTERS III. AND IV.

NERVOUS SYSTEM AND ORGANS OF SENSE.

§ 134.

Notwithstanding the transparency of the Rotatoria, and the distinctness with which their organs are separated from each other, yct their nervous system has not yet been made out with certainty, for their bodies are so small that their peripheric nerves elude the microscope, and their principal nerves and ganglia cannot be distinguished from the muscular fasciculi, the ligaments, and the contractile parenchyma of the body.

It appears certain, however, that in all, there is, as a nervous centre, a group of cervical ganglia, from which pass off threads in various directions. ${ }^{(1)}$

1 Conochilus, Philodina, and Actinurus.
2 Hydatina, Notommata, Synchaeta, and Diglena.
${ }_{3}$ See Ehrenberg, Die Infusionsthierchen, Taf. XLF。
4 According to Ehrenberg, there are, at the base of each cilium of the rotatory organs, many striated muscles, which, acting antagonistically, produce the motion (Abhandl. d. Berl. Akad. 1831, p. 34).
But neither Dujardin (Infusoires, loc. cit. p. 579), nor Rymer Jones (Compar. Anat. \&c. p120), has been able to perceive this apparatus. The contractile parenchyma on which the virbratile discs are situated, appears to be destined only for the protrusion and retraction of the rotatory organs.*

1 Ehrenberg, to whom we are indebted for our chief information upon the nervous system of these animals, first took for a cerebral ganglion the gland-

* [§ 133, note 4.] Dobie (Ann. of Nat. Hist. 1848) speaks of two kinds of cilia with Floscularia; " one of the usual short vibratile kind, covering the interior of the alimentary tube; the other extremely
uliform body found upon most Rotatoria, and in the neck of Hydatina senta, and Notommata collaris (Abhandl. d. Berl. Akad. 1830, p. 52, Taf. VIII. 1833, p. 189, Taf. IX., and, Die Infusionsthierchen, p. 386, \&c.). Besides this ganglion, he has mentioned with Mydatina, Synchaeta, and Dislena, many others scattered through the anterior part of the body, and connecting with the cerebral one by nervous filaments. Likewise, with Enteroplea, Mydatina, Notommala, and Diglena, he has regarded as a nervous loop, the two filaments which pass off from the cercbral ganglion, and go to the cervical respiratory orifice. Finally, he refers to the sensitive system, a white sacculas, single or double, and situated behind the cerebral ganglion, with Notommata, Diglena, and Theorus (Die Infusionsthierchen, p. 425). Grant's description of the nervous system of the Hydatina, as being composed of many ganglia and a ventral cord.
long and filiform, of uniform thickness, and not vibratile under ordinary circumstances." They are slowly moved, being spread out by the contractile substance of the lobes of the rotatory organ. - ED.

§ 135.

Beside the sense of touch, apparently located ehicfly in the rotatory organs and their tentaculiform processes, ${ }^{(1)}$ these animals have also an organ of vision. Usually this consists of a singlc or double eye-speck upon the neck; and sometimes, though rarely, of threc or four red specks upon the forchead. ${ }^{(2)}$ These specks are usually very small, but nicely defined, and covered by a kind of cornea. They are situated immediately upon the cerebral ganglion, or are directly connceted with it, by nervous filaments. ${ }^{\text {(") }}$

CHAPTER V.

DIGESTIVE APPARATUS.

§ 136.

The digestive apparatus is well developed with the Rotatoria, and has the following parts:
The mouth opens into a muscular pharynx which has two horny, masticatory organs, which move laterally upon each other. Suceeeding this pharynx is a narrow oesophagus of variable length, which leads to a stomachal
(Outlines, \&c., p. 88, fig. 82, B.), is founded, undoubtedly, upon supposition, and not upon real observation.*
1 The vibratile dise of Conochilus has upon its centre, four cylindrical processes, terminating usually by a bristle, and quite resembling antennae. The two or four styles projecting from the front of Synchaeta, are probably of the same nature.
2 The eye-speck is simple with Euchlanis, Notommata, Synchacta, Cyctorlena, and Brachionus ; double with Conochilus, Megalotrocha, Diglena, Rotifer, and Philodina; with Eosphora, theresare three, and with Squamella, four ; while Hydatina, Enteroplea, Ptygura, Tubicolaria, and the whlt Flosculariae, have none at all.
3 Ehrenberg, who was the first to regard these red dots as eyes, has given their intimate structure in none of his writings; this is the more to be

* [§134, note 1.] Gosse (Ann. Nat. Mist. 1850, p. 21) deseribes the nervous system of Asplanchna priodonta as follows: "Each of the three eyes rests on a mass that appears ganglionic ; the clubbed masses at the lateral apertures are probably of the same character; and the interior of the body contains a number of very delicate threads, floating freely in the contained fluid, which have thickened knobs herc and there, especially where they anastomose."
Leydig (Zur Anat. und Entwickelungageschichte der Lacinularia socialis, in Siebold and Këlliker's Zeitsch. Feb'y, 1852, p. 457) deseribes a very pecu liar nervous system with Lacinularia, consisting of: "1. A ganglion behind the pharynx, composed
regretted since Dujardin has not regarder them as visual organs (Infusoires, p. 591). He supports this view by the fact that they disappear with the adult individual ; bitt this objection will appear valueless when it is remembered that this is also true of certain parasitic Crustacea. At all events, the small ocular dots of Conochilus, Rotifer, and Philodina, are nicely-defined organs surrounded with a solid capsule, and appear to me wholly different from the defrused masses of red pigment which Ehrenberg has erroneously taken for eyes with the Infusoria. The disproportionate size of the red dots which Ehrenberg (Die Infusionsthierchen, Taf. LI. LIII. LV'T.) has figured with Notommata forcipata, Synchacta battica, Cycloglena, and Eosphora, lead one to suppose that they are only collections of pigmentary granales.
of four bipolar cills with their processes. 2. A ganglion at the beginning of the caudal prolongation, similarly composed of fonr larger ganglionic cells and their processes." But, that these parts holong to the nervous system, appears by no means positive ; for, as, this olserver candidly observes, and it is, I think, a capital comment on this whole class of stndy : "That these cells, with their radiating processes, are ganglion globules and nerves, is a conclusion drawn simply from the histological constitution of the parts, and from the impossihility of making anything else out of them, unless indeed, organs are to be named according to our mere will and pleasure." - Ed.
dilatation. This dilatation is continuous into an intestine which opens externally by an anus.

The mouth is always between the rotatory organs, so that it reccives what is drawn in by their vortical action, - the animal swallowing or rejecting the particles at will. ${ }^{(1)}$

The pharyngeal masticatory apparatus is round, and composed of two jaws having one or scveral teeth, which are brought together laterally by the action of special nuscles. ${ }^{(2)}$

Usually thesc jaws are formed of two knce-shaped divisions (Processus anterior and posterior). The posterior division gives insertion to the masticatory muscles, but the anterior terminates with a tooth, ${ }^{(3)}$ or as a multidentate apophysis. ${ }^{(4)}$ With some which have this last arrangement, ${ }^{(5)}$ the two jaws arc formed of three horny arches, and noted for their stirrup-like form. Two of these arches (Arcus superior and inferior), form the arched portion of the stirrup, pointing inwards, while its base is formed by the third arch (Arcus externus), pointing outwards. The masticatory muscles are inscrted upon the inferior arch, and move against each other - the transversely-arranged teeth passing over the other two.

With the multidentate Monotrocha, and Zygotrocha, the pharynx rests always in the same locality; but with the unidentate Polytrocha, it can move up and down, and even be protruded through the mouth. In this last case, the teeth serve as pincers for the seizure of food. The intestine usually traverses the cavity of the body in a straight linc, rarely looping, ${ }^{(6)}$ and is lined throughout with ciliated epithelium.

From the stomachal dilatation to a point near the anus, its walls are very thick. The walls of the stomach and intestine are formed of large cells with a colorless nucleus, and which, as they contain a brownish or greenish granular substance, are of an hepatic nature.

With most species, two caeca, rarely more, with thick walls and lined with ciliated epithelium, open on the right and left of the beginning of the stomach. Their walls are also composed of large cells, which, as they differ widely from the hepatic ones by their colorless contents, may perhaps serve the function of salivary glands or pancreas. ${ }^{(7)}$

The term Rectum has been given to a short and terminal portion of the intestine, which has thin walls, capable of being widely distended by fæces. Its orifice is excretory not only of the fæces, but also of the contents of the genital organs and of the aquiferous system - and may therefore be regarded as a cloacal as well as an anal opening. It is nearly always at the base of the caudal extremity.

1 The teataculiforw, rotatory organs of Stephanoceros, are also used for the seizure of food; see Ehrenberg, Abhandl. d. Berl. Akad. 1832, Taf. XI. fig. 1, e., also, Die Infusionsthierchen, Taf. XLY. fig. II. 5.
2 For the structure of the teeth, see Ehrenberg, Abhand. d. Berl. Akad. 1831, p. 46, Taf. III. IV.
${ }^{3}$ Pleurotrocha, Furcularia, and many species of Notommata, and Diglena.
4 Hydatina, Euchlanis, Salpina, Anuraea, Brachionus, and many species of Notommata, and Diglena.
${ }^{5}$ Philodina, Lacinularia, Melicerta, and Conochilus.
6 With Euchlanis, and Brachionus, the stomach is separated from the intestine by a constriction, and with Philodina, the intestine is of equal
size throughout, except the rectum which is dilated. But it is coiled, especially with those which are enclosed in a carapace, as with Tubicolaria, and Melicerta, since here the anus is far in front.
7 These two pancreatic caeca are nearly always present, being wanting only with some species ol Ichthydum. With Notommata clavulata, am: Diglena lacustris, there are, besides these cace: which are long, attached to the stomach many smaller sacs, which are colorless and perhaps of the same nature.

With Megalotrocha albo-flavicans, there are also two like caecal appendages entering the base of the stomach, and which are independent of the short pancreatic ones of the same locality ; see Ehrenberg, Abhandl. d. Berl. Akad. 1831, Taf. 1II. and, Dic Infusionsthierchen, Taf. L. LIV.

CHAPTERS VI. AND VII.

CIRCULATOKY AND RESPIRATORY SYSTEMS.

§ 137.

As no sanguineous system has yet been found with the Rotatoria, it must be admitted that all the organs are bathed directly by the nutritive liquid which transudes through the intestine. ${ }^{(1)}$

§ 138.

The vessels observed with the Rotatoria belong probably to the aquiferous system, which, from its structure and limited distribution, must be regarded as of a respiratory nature. In most species, a straight and riband-like organ is seen upon eaeh side of the body, which contains a stiff, tortuous, vasculiform canal. At the anterior extremity of these two lateral bands, their canals connect with many short lateral vessels which open into the cavity of the body, - their orifices being furnished each with a very active, vibratile lobule. ${ }^{(1)}$

These lateral orifices have the appearance of pyriform, or oval corpuscles, in the interior of which, the vibratite lobule, produces the aspect, when its motions are diminished by pressure between plates of glass, of a small, flickering flame.

The number of these organs varies with the species, and also, it would appear, even with different individuals of the same species. Usually there

[^80][^81]
Abstract

tions, or muscles. From their extreme tenuity, it is dificult to determine the nature of the other filiform organs in the body of the Rotatoria, and which Ehrenberg has also referred to the sanguincous system. But, equally well might they be taken for muscular fasciculi, ligaments or nerves.*

1 Ehrenberg was the first to point out these vibratile organs, and designated them as the internal gill-like respiratory organs (Abhundl. d. Berl. Akal. 1833, p. 183).

or appendices, whose free extremities are directed towards the interior of the animal, and are affected by a tremulous, apparently spiral motion, like the threads of a screw. This is undoubtedly due to cilia arranged round these minute appendices. The tags are from eight to twelve, or even twenty, in number, varying in lifferent specimens." He thinks these organs fulfil their function by the ciliated tags producing currents in the fluid which fills the body of the animal.
These observations are curious and deserve further attention. - Eb
are two or three on each side, and sometimes there are from five to eight pairs, ${ }^{(2)}$ but rarely more. ${ }^{(3)}$

The lateral bands approach each other at the posterior extremity, and their canals join in a common, highly-contractile vesicle with thin walls, which emptics externally its aqueous contents through the cloacal opening. ${ }^{(4)}$

An orifice, situated usually upon the neek, and sometimes pedunculated, serves probably to introduce the water into the cavity of the body. This water enters the aquiferous system through the lateral vessels which float free in this cavity, and at last is expelled through the contractile vesicle. In this way, a constant renewal of water can occur, and the opening upon the neck may therefore be properly termed a respiratory orifice or tube. ${ }^{(5)}$

There can be but little doubt that the rotatory organs also, have a respiratory function, for their surface is covered with thin epithelium, and their cilia produce a eonstant change of the water.

CHAPTER VIII.

ORGANS OF SECRETION.

§ 139.

Some of the Rotatoria secrete a gelatinous substance, which, hardening, forms the cells and tubes into which they can partly or wholly withdraw themselves. The organ of this secretion is yet unknown; but the secretion appears to be derived from the posterior extremity, and especially from the cloacal opening. ${ }^{(1)}$

> 2 Notommata copeus, and syrinx.
> 3 With Notommata clavulata, and myrmeleo, the numher of these organs is remarkahe; each tateral band has thirty-six to forty-eight; see Ehrenberg, Die Infusionsthierchen, Taf. XLIX. L.
> 4 Ehrenberg was the first to direct the attention of naturalists to these two lateral bands and their contratile vesicles; but he regarded them as two testicles with their vesiculac seminales (Abhandl. d. Berl, Akad. 1830, p. 51). The incorrectness of this opinion, and which he has maintained in his grand work, cannot be doubted, if it is considered that these two bands with their appendages are already developed and in activity with the young animals, and this even before they have escaped the cavity of the parental body.
> In all Ehrenberg's published figures, one notioes nothing of thc flexuous canals of these organs, and which, therefore, he does not appear to bave observed.
> 5 The respiratory orifice is cervical with Enteroptea, Hydatina, Diglena, and many species of Notommata; but, with Rotifer, Philodina,

Brachionus, and some species of Salpina, Euchlanis, and Notommata, it is replaced by a tuhe.

With Actinurus, exceptionably, a simple respiratory tube is placed under the throat ; and with Tubicolaria, and Melicerta, there are two in the same region.
1 With Conochilus, and Lacinularia, where several individuals are attached hy their tails around a common centre, the nucleus of one of these colonies is formed by a loose, gelatinous sul)stance, in the cells of which these animals can partially withdraw themsctvcs. With Oecistes, T'ubicolaria, Stephrenoceros, Floscularia, and Limnias, each individual occupies an isolated and more or less hard gelatinous tube (Ehrenberg, Die Infusionsthierchen). The tukes of Melicerta, of which Schaffer has given an excellent figure (Die Blumen-polypen der süssen Wasser 1755, Taf. I. II.), are very remarkable, and according to Ehrenberg, are composed of brown polygonal cells which are excreted through the cloacal opening and glued together (Die Infusionsthicrehen, p. 406).

CHAPTER IX.

ORGANS OF GENERATION.

$§ 140$.

Althcugh it is certain that the Rotatoria propagate only by genital organs, yet the female organs only are yet well known. These eonsist of a single or double ovarian tube of variable length, situated upon the sides of the intestinal eanal at the posterior part of the eavity of the body, and opening into the cloaeal eavity through a short oviduet. These ovaries never develop but a few eggs at a time. The mature eggs are always oval and surrounded by a simple, solid, eolorless envelope. They eontain a finely granular and usually colorless vitellus, in whieh there is a distinct germinative vesicle. Many species are ovigerous, but a few only are viviparous. ${ }^{(1)}$

It would be naturally supposed that these animals, whieh have sueh distinet female organs, would have also those of the other sex. But as yet the most minute researches have failed to deteet them. It is therefore doubtful whether these animals are hermaphrodites or of separate sexes. $\dagger^{(2)}$

> I For the various forms of the ovaries sce the classical works of Ehrenberg. With Philodina roseola, Brachionus rubens, and Mastigocerca carinata, the vitellus of the eggs as well as the parenchyma of the body is of a reddlish color. With those speeies whieh live in the tubes, the eggs are usually deposited in the cavity of these last. But with Triarthra, Polyarthra, and Brachionus, they remain glued to the cloacal opening.
> With Philodina, the young are often hatehed in the cavity of the parental body, and are, accord-

[^82]ing to Ehrenberg (Die Infusionsthierehen p. 483), always surrounded with an extensible membrane of the ovary (uterus). But it has always appeared to me that the mature eggs of the viviparous Philodinae, are detached from the ovaries and fall into the cavity of the body, where afterwards the hatched young move about. Perhaps oviducts are here wanting and the young cseape from their parent through an orifiee near the cloaeal opening.*
2 Admitting that there are here male genital organs, the respiratory tube upon the neck of
thinks also that he observed a well-defined intromittent organ connceted with the testis, and a passage for its extension from the body of the animal.
In verification of this observation it may be mentioned that Brightwell observed the actual coitus between the sexes, and Gosse (loc. cit. 1? 22) has witnessed the development of the males from the ovum.

Huxley, on the other hand (Quat. Jour. Mic. Se. No. I. Oet. 1852, p. 1), has found with Lacinularia no trace of a male indivilual, but in some specimens he observed singular bodies which answered precisely to Kolliker's description of the spermatie particles of Megalotrocha. He says, "They had a pyriform head about 1-1000 in. in diameter by which they were attached to the parietes of the body, and an appendage four times as long which underwent the most extraordinary eontortions, resembling however a vibrating membrane

§ 141.

Their embryonic development occurs, as in most invertebrate animals, through a complete segmentation of the vitellus; and the embryonic cells then appear in the segmented portions.

The newly-hatched embryo has already rotatory and masticatory organs, eje-specks, \&c., and the general form of the adult animal. ${ }^{\dagger}{ }^{(2)}$
nany specics was formerly taken for a penis. But ton incurrectuess of this view has since been seen, fis no one has here observed the copulatory act. At:urding to Chrenberg, who regards these animals as lemaphrodites, certain parts of the atquiferous system represent the male organs. He reyarts the two lateral bands as testicles, and their inferior extremities as vasa deferentia, while the contractile vesicle is the vesicula seminalis. liut these organs contain only an homogeneous oqueous fllid, an which there is at no time anything l'to spermatic particles; moreover they are fully acveloped in the young individuals which the lave no trace of fenale or grans.
it would be wholly anomalons that these animals should constantly secrete spern during their whole life. One would therefore wholly assent to the doubts of Dujardin (Infasoires, p. 587), upon this view of Ehrenberg, and some contradictions into which this last has fallen upon this subject, liave been noticed by Doyere (Aun. d. Sc. Nat. XVII. 1842, p. 199). Kölliker has also thought this view unfounded, and has sought to remove the doubts by a search after the spermatic particles. He regards as such, with Megalotrocho albo-flavicans, the pecuhiar trembling bodies which he has seen in the cavity of the body, since they are composed of a pryiform body, to which is attached a movable tail. These bodies he affirms are developed in round cells, often nucleated, and he has often counted ten to twenty in the same individual. As hc also asserts to have seen eggs at this time in the same individual, this would certainly be a proof of the hermaphroditism of these
more than the tail of a spermatozoon." Ble very justly concludes that they cannot at present be dehnitely regarded as spermatic particles. - Ed.

* [§ 140, note 2.] The subject of the form and character of the spermatic particles of the Rotatoria is quite interesting, as it may perhaps throw some light on the position of these animals in the animal kingdom. As yet, however, we have very few observations, and even these are not fully definite.

Schmidt (Vergleich. Anat. \&c. p. 268, note) speaks of the spernatic particles of Euchlanis macrura, as being cercaria-form.

Leydig (Siebold and K̈lliker's Zeitsch. I以. Hft. 4, p. 471) has given those of Lacinularia as composed of a nuclear body from which radiate many tails, like these particles with the Decapods. See Taf. XVII. fig. 2. - Ed.
i [End of § 141.] We are indebted to Leydig (Zur Anat. u. Entwickelungsgesch. d. Lacinularia sucialis, in Siebold and Källiker's Zeitsch. ILI. p.
animals (Froriep's neue Not. No. 28, 1843, p. 17). But this whole observation is somewhat suspicious, for Kílliker has very probably confounded the vibratile lobules of the aquiferous system with the spermatic particles, and of which there are foux with Megalotrocha in the anterior extremity.
The observation of R. Wagner (Isis, 1832, p. 386, Taf. IV. fig. 1, 7) is particularly worthy of attention, for followed out, it might lead to the discovery here of male genital organs. He has described peculiar eggs, found frequently by him with Hy datine senta, and whose whole surface is covered with very fine, thiekly-set hairs. He has regarded these as in their first stages of development, although Efrenberg (Abhandl. d. Berl. Akad. 1835, p. 154, and, Die Infusionsthierchen p. 415 has taken this villous envelope for an alga of the genus Hygrocrocis. But these villous envelopes have always reminded me of the masses of spermatic particles in the testicles of leeches and which have been figured by Henle as whitish felt-like globules (Muiller's Arch. 1835, p. 584, Taf. XIV. fig. 6. a).
[Additional Note.\} Kölliker (Neue Schweiz. Deakschs. VIII. Taf. II. fig. 31, a.) having since figured the spermatic particles of Megalotrochos albo-flavicans, my former view that he had confounded these with vibratile organs, is incorrect.*

1 Kulliker was the first to observe the complete segmentation of the eggs, with Megalotrochas (Froriep's neue Not. loc. cit.). It wholly escaped. the observation of Ehrenberg amid his numerous researches upon the eggs of these animals; see Abhandl. d. Berl. Akad. 1835, p. 152.
452) and to Ifuxlry (loc. cit. p. 11-15), for extending our knowledge in this direction. Whey have carefully observed the development of Lacinularia, and the phases correspoud exactly with those of Megalotrocha as described by Kolliliez. But beside this ordinary mode of reproduction, they have observed another which is a sexual and analogous if not identical with what has been observed with some of the lower Crustacea (see infra § 292 - - propagation by the so-called hibernating eggs. Their observations throw light on the whole of this interesting subject, and have fully confirmed me in my previous conjectures that these "Ova" are only gemmae having their exact representative in the bud-like eggs of the wiviparous Aphides. - Ea.
$\ddagger[\S 141$, note 1.] Kölliker's observation abovementioned on Megalotrocha, has since been confirmed by Leydig (Isis, 1848, p. 170) who has observed it likewise with Notommata and Eucho lanzs. - Eb.

ANNELIDES.

- Classification.

§ 142.

The Annelides are distinguished from all other worms by their ventral, ganglionic cord, and by their annulated body, at the two extremities of which there is a mouth and anus. They resemble the Arthropoda, but at the same time differ from them in having a completely closed vascular system, and in wanting articulated, locomotive organs. The epithelium of their body is not ciliated except where it covers the external branchiae.

The Nemertini, which have hitherto been classed among the Turbellaria, belong more properly to the Annelides, since their body is more or less distinctly articulated, and its parenchyma closely resembles that of the Hirudinei. Moreover, the power which many of them have to divide spontanegusly into many scgments, is another affinity with various Annelides. It will therefore appear proper to unite the Nemertini with the other Annelides in the following manner : ${ }^{(1)}$

ORDER I. APODES.

Body without bristles.

SUB-ORDER I. NEMERTINI.

Posterior extremity of body without a sucker ; cephalic extremity often provided with lateral respiratory fosse.

[^83]Genera: Tetrastemma, Polystemma, Micrura, Notospermus, Meckelia, Polia, Nemertes, Borlasia.

SUB-ORDER 1I. HIRUDINEI.
Posterior extremity of body provided with a sucker.
Genera: Branchiobdella, Piscicola, Clepsine, Nephelis, Haemopis, Aulacostomum, Sanguisuga, Pontobdella.

ORDER II. CHAETOPODES.
Body provided with bristles.
SUB-ORDER III. LUMBRICINI (ABRANCHIATI.)
Body without feet.
Genera: Chaetogaster, Enchytraeus, Naïs, Lumbriculus, Euaxes, Saenuris, Lumbricus, Sternaspis.

SUB-ORDER IV. CAPITIBRANCHIATI.
Body provided with feet; branchiae situated upon the cephalic extremity.

Genera: Siphonostomum, Chloraema, Amphicora, Serpula, Sabella, Amphitrite, Terebella.

SUB-ORDER V. DORSIBRANCHIATI.

Body provided with feet; branchiae situated upon its segments.
Genera: Arenicola, Ammotrypane, Chaetopterus, Aricia, Aricinella, Cirratulus, Peripatus, Glycera, Goniada, Nephtys, Alciopa, Syllis, Phyllodoce, Hesione, Lycastis, Nereïs, Oenone, Aglaura, Lumbrinereïs, Eunice, Amphinome, Sigalion, Polynoë, Aphrodite.

BIBLIOGRAPHY.

Pallas. Miscellanea zoologica. Hague, 1766, p. 72.
O. F. Müller. Von den Würmen des süssen und salzigen Wassers. Copenhagen, 1771.

Savigny. Description de l'Egypte. Histoire Naturelle. Tom. XXI. 1826. Annelides. Also, Isis, 1832, p. 937.

Moquin-Taudon. Monographie de la famille des Hirudinées. Paris, 1827.

Morren. De lumbrici terrestris historia naturali, nec non Anatomia. Bruxelles, 1829.

Andouin et Milne Edwards. Classifieation des Annélides, et description des espèces qui habitent les eôtes de la Franee, in the Annales des Seiences. Tom. XXVII.-XXX. 1832-33, but published separately under the title, Recherches pour servir à l'histoire naturelle du littoral de la France. Tom. II. Paris, 1834.

Ehrenberg. Symbolae physieae. Phytozoa turbellaria.
Milne Edwards. Cyelopaedia of Anatomy and Physiology, vol. 1, 1836. Art. Annelida.

Grube. Zur Anatomie und Physiologie der Kiemenwürmer. Königsberg, 1838; also, Aktinien, Echinodermen und Würmer des Adriatischen und Mittelmeers. Konigsberg, 1840.

Örsted. Grönlands Annulata dorsibranehiata. Kjöbenhaven, 1843. Annulatorum Danieorum conspeetus. Fasc. I. Maricolae. Hafniae, 1843. Entwurf einer systematisehen Eintheilung und speeiellen Besehreibung der Plattwürmer. Copenhagen, 1844.

Hoffmeister. De vermibus quibusdam ad genus lumbricorum pertinentibus. Berolini, 1842.

Rathké. Kur Fauna der Krim. St. Petersbourg, 1836, p. 117. De Bopyro et Nereỉd. Rigae, 1837. Beiträge zur vergleiehenden Anatomie und Physiologie ; in the Neuesten Sehriften der Naturforsehenden Gesellsehaft in Danzig, III. Hft. 4, 1842, p. 56. Beiträge zur Fauna Norwegens; in the Nov. Act. Acad. Nat. Cur. XX. pt. 1. 1843, p. 149.

ADDITIONAL BIBLIOGRAPHY.

Besides the references in my notes, see the following writings:
Moquin-Tandon. Monographic de la Familic des Mirudinées. Nouv. Ed. revue et augmentée, aecompagnée d'un Atlas de 14 planches gravées et eoloriées. Paris, 1846.

Schmidt. Neue Beiträge zur Naturgeschichte der Würmer. Jena. 1848. (zweiter Absehnitt, Ringelwürmer).

Quatrefages. Etudes sur les types inférieurs de l'embranchement des Annéles, containing: Mcnoire sur la Fanilie des Mermelliens, Ann. d. Se. Nat. 1848, X. p. 1.; Sur la Cireulation des Annélides, Ibid. XIV. 1850, p. 281 ; Sur la Respiration des Annélides, Ibid. XIV. 1850, p. 290 ; Mémoire sur le Système Nerveux des Annélides, Ibid. XIV. 1850, p. 329 ; Mémoire sur le Système Nerveux, et les affinities et les analogies des Lombries et des Sangsues, Ibid. XVIII. 1852, p. 167; Mémoire sur le Branchellion de D'Orbigny, Ibid. XVIII. 1852, p. 279. Note sur le Système Nerveux et sur quelques autres points de l'Anatomie des Albiones, Ibid. XVIII. 1852, p. 328.

- Mémoire sur l'Embryogénie des Annélidcs. Ibid. X. 1848, p. 153.

Leydig. Zur Anatomie von Piscieola geometrica mit thcilweiser Vergleichung anderer einheimiseher Hirudineen, in Siebold and Killiker's Zeitsch. I. 1849, p. 103.

Anatomisehes über Branehellion und Pontobdella. Ibid. III. 1851, p. 315.

Leidy. Deseriptions of some American Annelida abranchiata, in the Jour. Aead. Nat. Sc. Philad. 1850, II. p. 43 [contains many anatomical details]. - Ed.

CHAPTER I.

CUTANEOUS SYSTEM.

§ 143.

The skin of the Annelides consists of a very thin, non-ciliated epidermis, ${ }^{(1)}$ and a more or less compact dermis composed of solid, but delicate fibres obliquely intertwisted.

The iridescence and often splendid colors of many of the Chaetopodes, are not due to a pigment, but to an optical effcet produced by the reticulated union of the dermic fibres.

But the Apodes, on the other hand, owe their many colors to a pigment net-work and cells. Usually the epidermis is separated with difficulty from the dermis, but with many Capitibranchiati, and Dorsibranchiati, the opposite is true. With the Apodes, the skin is closely united with the subjacent muscular layer.

With many Dorsibranchiati, the skin has filiform or lamellar appendages sometimes so much developed that they overlap each other like scales. ${ }^{(2)}$ With some Chaetopodes, there are, beside the bundles of locomotive bristles and hairs, numerous appendages of this kind covering most of the body. ${ }^{(3)}$

CHAPTER II.

MUSCULAR SXSTEM AND LOCOMOTIVE ORGANS.

§ 144.

The muscles of the Annelides, although highly developed, are never striated.

The whole body is enveloped by a subcutaneous muscular layer divisible into three sheets : an external, of circular fibres; an internal, of longitudinal fibres; these are the most developed. Then a middle one composed of obliquely intertwisted fibres; this is less distinct, and sometimes entirely wanting. ${ }^{(1)}$

[^84][^85]With the Apodes, this muscular envelope so closely embraces the viscera, that the cavity of the body is made very small. But with the Chaetopodes, this cavity is larger.

With many of the Branchiati, the muscular fibres form distinct fasciculi - so that instead of a common muscular envelope there are longitudinal and annular muscles distinct from each other. ${ }^{(2)}$

With many Chaetopodes, the internal surface of this envelope sends off annular muscular septa into the cavity of the body, at the junction of the segments, - thus dividing this last into as many chambers as there are segments; sometimes these septa bind the intestinal canal so closely, as to regularly constrict it. ${ }^{(3)}$

§ 145.

Besides the common subcutaneous muscles, which produce the vermicular motions of the body, there are other groups: 1st. For the auxiliary locomotive organs, and 2nd, for many other organs.

1. The Hirudinei are distinguished, as is well known, by a sucker situated at their posterior extremity, which contains both circular and radiating muscular fibres. This sucker scrves both to move and to attach the body.

All the Chaetopodes have short, horny stings (aciculi), and long bristles (setae), united in fasciculi of various forms, which they use as fulcra when they creep, or as oars when they swim.

With the Branchiati, these organs are niost fully developed, and are nearly always situated laterally upon a double row of fleshy knobs; and those of the two inferior rows may be regarded as rudimentary feet.

The Lumbricini have short and usually S-shaped stings which are arranged in many rows upon the belly, and may be wholly withdrawn into the abdominal cavity.

Beside these last, Nais has also a row of bristles cach side of the body. ${ }^{(2)}$

2 These separate muscles are found in Aphrodite, Polynoë, and Nereis, witb wbicb the longitudinal ones especially, are seen separated into dorsal, ventral and lateral layers. See for the subcutaneous muscles of the Branchiati in general, Rathké, Dc Bopyro et Nereïde, p. 29, Tab. II., and in the Danzig. Schrift. loc. cit. p. 62, Taf. IV. fig. 6 ; also Grube, Zur Anat. und Physiol. d. Kiemenwürmer, p. 4. et seq.

3 When these septa are largely developed, and embrace closely the digestive canal, as in Lumbricus, Sabella, Serpula, and Eunice, there are always foramina iu these diaphragms or septa, througb which the contents of the cavity of the body can pass from one chamber into another.*

JThe stings and bristles of the Abranchiati, upon whose various forms see Orsted (Conspectus generum specierumque Naĭdum, in Kröyer's Naturhistor. Tidskrift. IV. 1842, p. 128, Pl. III.), are easily lost from use, but are as easily reproduced.

[^86]The number of these organs may therefore vary very much upon the different segments of the same individual. It is remarkable that with the Lum bricini the stings are often detached interiorly, and falling into the cavity of the body form there tough masses which are glued together by a viscous substance lodged in the posterior chambers of the body ; see Hoffmeister, De vermibus quibusdam loc. cit. Tab. IL. fig. 3, and in Wiegmann's Arch. 1843, I. p. 196. These agglutinated masses in which are lodged usually various kinds of vibrioid parasites, have been taken by Montegre (Observ. sur les Lombries, in the Mem. du Museum I. p. 246 , fig. $5,6, g)$ for the eggs and foctuses of the Lumbricini. Morren (loc. cit. p. 195, Tab. XXV.XXLX.) has gone even further, by taking these stings for the chrysalids, and their enclosed vibrios for the embryos of these animals.
of these elementary parts. Tbe fibre is not transversely striated, and is composed of a structureless envelope or sheath which is filled with a fine granular substance; see loc. cit. Taf. VIII. fig. 13-23.

See also Holst, De struct. Muscul. in genere et annulat. musculis in specie, Diss. Dorpate, 1846. — En.

With the Branchiati, these organs are often of a cultrate, lanceolate, or sagittate form. Often too, they are denticulated, or barbed upon one or both of their sides, and sometimes they appear articulated. ${ }^{(2)}$ These stings and bristles are moved by a special, muscular apparatus, consisting of many short muscles which arise from the internal surface of the cavity of the body and pass obliquely front and behind to the bases of these organs. These bases project into the cavity of the body, and as their fasciculi are surrounded by a common membranous sheath, when all the muscles contract at once, these organs are thrust out; but they move in various ways, when the muscles contract separatcly. The other transverse muscles which pass either from the median line of the belly, or from the anterior and posterior parts of the body, and are inscrted at the base of these organs, retract them anew into the cavity of the body. ${ }^{(3)}$
2. With many Branchiati, there is a group of longitudinal muscles at the cephalic extremity, which, arising from the internal wall of the anterior segments, act as elevators and depressors of the œesophagus, ${ }^{(4)}$ as well as retractors and protractors of the fasciculi of the cephalic bristles and tentacles. ${ }^{(5)}$

CHAPTER III.

NERVOUS SXSTEM.

§ 146.

The nervous system is highly developed in all the Annelides excepting the Nemertini.

The central is distinctly separated from the periphcric portion. The first is usually composed of a row of ganglia, joined together by nervous cords upon the median line of the body.

The most anterior ganglion, and which in some respects may be considered analogous to the brain of the higher animals, rests upon the oesophagus, although the rest of the ganglionic chain which is situated on the median line under the digestive canal, may be regarded as a ventral cord. This cerebral ganglion differs from the others in its larger volume, and appears to be the product of a fusion of two or more symmetrically-arranged unequal-sized ganglia. These ventral ganglia are of uniform size, although not always of the same number with the segments of the body. Strictly, each of them is composed of two ganglia blended together either very perfectly, or very incompletely. The cercbral ganglion is joined to the first of the ventral chain by two cords which surround the œesophagus

[^87]laterally, thus forming a ring (the œesophageal ring) through which the œesophagus passes.

§ 147.

The histologieal elements of the nervous system of these animals, are arranged in the following manner: ${ }^{(1)}$

The central mass of the nervous system is enveloped by a fibrous tissuc (Neurilemma), of longitudinal and transverse fibres which are often covered with speeial pigment cells.

The nervous eords and filaments are composed of extremely fine, primitive fibres, between whieh in the ganglia are situated various-sized cell-like ganglionic globules. ${ }^{(2)}$ Some of these primitive fibres pass from the cerebral ganglion through all the ventral ganglia, while others pass off from the central ganglia to the peripherie nerves. Many of the ganglionic globules of the brain and abdominal cord are remarkable for their longer or shorter prolongations which may be traced even into the roots of the nerves. ${ }^{(3)}$

$\oint 148$.

The nerves are given off usually from the ganglia, and rarely from the interganglionie cord. The cerebral ganglion sends off nerves to the organs of sense in the head, and to the labial, proboscideal, and masticatory organs about the mouth. Its development therefore corresponds exactly to the more or less complicated condition of the cephalic extremity.

The ventral ganglia send off from each side usually two or three sym-metrically-arranged main nerves to the muscles and skin.

It is with the Annelides that there have been found the first traees of a vegetative or splanchnie nerve (Nervus splanchnicus). This consists of delicate filaments whieh are distributed upon the intestinal canal, with here and there enlargements, and which anastomose, some directly with the œsophageal

Abstract

1 Our knowledge of the intimate structure of the nervous system of the Annelides is as yet based upon researches of that of the IIirudinei only; see Helmholtz, De fabrica systematis nervosi evertebratorum dissertatio. Berol. 1842, p. 12 ; Hannover, Recherches microscopiques sur le systeme nerveux, Copenhague, 1844, p. 72; Will, Vorlaufige Mittheilung über die Struktur der Ganglien und den Ursprung der Nerven hei wirhellosen Thieren, in Müller's Arch. 1844, p. 82 ; Ehrenberg, Beobachtung einer auffallenden, bisher unerkannten Struktur des Seelenorgans hei Menschen und Thieren, in the Abhandl. d. Berl. Akad. 1834, p. 720, Tab. VI. fig. 7 ; and Valentin, Ueher den Verlauf und die letzten Enden der Nerven, in the Nov. Act. Acad. XVIII. 1836, p. 202, Tab. VIII.

2 Valentin declares that he has seen in the brain

[^88]and ventral ganglia of the leech so regular and symmetrical an arrangement of the ganglionic globules, that those of the two lateral halves corresponded exactly as to number, volume and position ; see Valentin, loc. cit. p. 208, Tab. VIII. fig. 62, \&c. This symmetry must appear highly astonishing.
3 These prolongations give the ganglionic globules a clavate aspect, as already seen and figured by Ehrenberg (loc. cit. Tab. VI. fig. 7, aud fig. 7.11., 7.12.).

Further researches must decide if these prolongations are really continuous with the primitive nervous fibres, as Helmholtz (loc. cit. p. 15), and Hannover (loc. cit. p. 73, Tab. VI. fig. 78), affirm to be the case; for, Valentin in his apparently so careful researches, has never seen any trace of a clavated or pedunculated ganglionic globule.*

Leydig, an excellent observer, confirms the general vicw here advanced of the direct connection of the ganglionic globule with the nerve-tuhe; see loc. cit. p. 130, Taf. X. fig. 67 (Piscicola). See also Bruch, Siebold and Kölliker's Zeitsch. 1849, p. 175, Taf. XII. fig. 7, 8, 9. - Ed.
ring, and others with the cerebral ganglion by means of other small ganglia near the eephalic extremity. ${ }^{(1)}$

With the different orders and sub-orders of the Annelides, the nervous system has the following modifieations:

1. The Nemertini differ remarkably from the other Annelides in this respect; for their ventral cord is without ganglionic enlargements, and composed of two separated cords, one on eael side of the body, which send off, right and left, lateral branehes along their course. These two cords arise at the anterior extremity in two ganglia blended together above the œesophagus, which represent the eerebral ganglion, and send off many nervous branches in front. ${ }^{(2)}$
2. With the Hirudinei, the ventral ganglia are much fewer than the segments of the borly, and are bound together by two eontiguous cords. The first and last of these ganglia are remarkable for their size. The first sends filaments to the lips, the second to the eaudal sueker. ${ }^{(2)}$

The Splanchnic system is eomposed of a small ganglion situated in front of the cerebral one, and with which it is connected by two filaments. By its side are two others, which are also small and conneet with the eerebral by delieate threads. All three send branches to the oral parts, while a delicate filament goes to the inferior surface of the intestinal canal, and represents an inner splanchnic nerve. ${ }^{(4)}$
3. The ventral nedulla of the Lumbricini consists of two nervous cords

1 Brandt, Bemerkungen über die Mundmagenoder Eingeweide-nerven der Evertebraten. Leipzig 1835, p. 37.
2 Rathke (Danzig. Schrift. loe. cit. p. 100, Taf. VI. fig. 10, 11) has thus described the nervous system of Borlasia striata.
He has seen particularly two pairs of ceplatic nerves arise from the cercbral ganglion. One and the larger of these is principally distributed to the respiratory fossae of the head, while the other, the smaller, passes directly in front, probably for the vermiform organ upon the cephalic extremity. Örsted (Beschreib. d. Plattwürmer loc. cit. 1. 5, 18), appears to be wrong in suspecting that Rathke has taken the vascular for the nervous system, for Quatrefages (lcon. du Règne anim. de Cuvier. Zoopliytes, Pl. XXXIV. fig. 1) has figured by the side of the vascular system, the nervous system of Nemertes Camillae, exactly as it is described by Rathki.

* [§ 148 , note 3.j Leyrlig (loc. cit. p. 129) has found the structure of the cerebral nervous centre of Piscicola, quite different from that as described by Leo. The cerebral mass is composed of capsules containing ganglionie globules; these capsules are symmetrically situated on each side of the median line, but are connected by a wellmarked transverse commissure composed of nervefibres; see Taf. X. 67, 68, 69. See also upon the nervous system of the Leeches, Bruch (Ueber das Nervensystem des Blutegels: Ein Beitrag zur topographischen Histiologie des Nervensystems, in Siebold and Kölliker's Zeitsch. 1849, p. 164). This memoir is principally histological, and bears upon that disputed point, - the alleged direct connection between the ganglion-corpuscles and the nerve-fibres. It has, however, some topographical anatomical details, and the accompanying figures would make the whole subject very clear. - En.

3 See Brandt and Ratzeburg, Med. Zool. II. p. 250, Tab. XX1.K. 13. (Sanguisuga medicinalis), and Leo, in Muller's Arch. 1835, p. 422, Taf. XI. fig. 10 (Piscicola geometra). Wagner has found an arrangement quite different from the above, in Pontobdella muricata (1sis, 1834. p. 131, Taf. 1. fig. 3). He saw here the ventral ganglia united by a single cord which sends off from each sile only a single nerve. This nerve, after a short course, has a ganglion, and then divides into lateral branches. Aceording to Stannius, these lateral branches are not united together by longitudiaal cords as is the case with the $\Lambda \mathrm{m}$ phinome.*

4 See Brandt, Med. Zool. II. p. 251, Tab. XXIX. B. fig. 7, and, Bemerk. uber die Mundmagennerven loc. cit. p. 39 (Sanguisuga medicinalis). \dagger
\dagger [§ 148, note 4.] See, for some further remarks on the splanchnic system of the Hirudinei and Lumbricini, Quatrefages, Ann. d. Sc. Nat. VHI. 1847, p. 36. According to him that of the Hirudinei resembles that of the lnsects, and is composed of a chain of ganglia from which pass off filaments, some to the abdominal chain, others to the jaws, and others still to the walls of the œesophagus. There is also a frontal ganglionic chain which forms in front a real arcade, and from which filaments are given off anteriorly.

With the Lumbricini it is considerably different, and lie thinks unlike that which has yet been described of all the other Annelides.

See further, Anm. d. Sc. Nat. XIV. 1850, p. 282. and XVILI. 1852, p. 167.

See also Leydig, Siebold and Kölliher's Zeitsch. III. Hft. 3, p. 315, and Quatrefuges, Ann. d. Sc. Nat. XVIII. 1852, p. 316 (Branchellion). - Ed.
which are nearly blended together into one, and whose closely-successive ganglia correspond numerically with the segments of the body. ${ }^{(\text {(3) }}$
4. With those Chaetopodes which have extcrnal branchiae, the nervous system is most highly developed, but has wide variations as to its whole or its details, according to the more or less complicated structure of the ecphalic extremity and scgments of the body. With those species which are without antennae and cyes, the ventral medulla is composed of two contiguous cords the enlargements of which are indistinct and not sharply defince. ${ }^{(6)}$ These two cords are separated at the cephalic extremity, and terminate either, by a ganglion on each side without apparently forming by a commissure an cesophageal ring, ${ }^{(7)}$ or by encompassing the eesophagus, and forming a ring through a ganglion lying upon it. ${ }^{(8)}$

With some, the two parallel cords are without ganglia but are reünited at each segment of the body by two transverse threads. ${ }^{(9)}$ With others, this connection occurs through transverse threads and ganglia. ${ }^{(10)}$ There are many Branchiati with which the two cords are so closely contiguous that they are scparated only by a longitudinal furrow. Their round or elongated ganglia are then common, and succecd each other at longer or shorter intervals. ${ }^{(1)}$ With an entire serics of the Dorsibranchiati, the ventral ganglia are so closely approximated that the interganglionic cords appear wholly wanting. ${ }^{(12)}$

The brain is composed of only two ganglia, which are more or less blended into one with the Capitibranchiati, and with those Dorsibrancliati whose head is very slightly developed; ${ }^{(3)}$ while with the other Dorsibranchiati whose head is distinct and the eyes and tentacles very much developed, it is the product of the fusion of many ganglia. ${ }^{(14)}$

5 See Gruithuisen, in the Nov. Act. Acad. XIV. 1828, p. 412, Tab. XXV. fig. 3-5 (Chaetogaster diaphanus); Henle, in Muller's Arch. 1837, p. 85े, Tuf. VI. fig. 2, 3, 8, x, y (Enchitraeus); Roth, De Animalium invertebratoram systemate nervoso. Wirceburg, 1825, fig. 3 ; and Alorren, loc. cit. p. 117, Tab. XIX.-XXIII. (Lumbricus terrcstris).
In the common Lumbricus, two pairs of nerves (Nervi annulares) pass ofl laterally from the centre of the ganglionic eulargements; and between every tivo ganclia, exceptionally, there passes of another pair (Nern interannulares) which are distributed to the trimbverse muscular septa; see Marren loc. cit. The neryous system of Sternaspis thalassemozdes is quite different, and apperrs retrograded to the type of that of the sipunculidae, for the ventral medulla cousists only of a simple cord which is enlarged at the caudal extremity ; see Will, in Muller's Arch. 1842, p. 427.
${ }^{6}$ Arenicola, Ammotrypane, and Terebella.
7 Arenicola; see Grube, Zur. Anat. d. Kiemenwürmer, P. 17, Tah. I. fig. 7 ; and Stannius, in Muller's Arch. 1840 , p. 379 , Taf. XI. fig. 15.
8 Ammotrypane; see Rathled, in the Nov. Act. Acad. XX. p. 197, 'Tab. X. fig. 14, 19.
9 Sabella; see Wagner, Isis, 1832, p. 657, Taf. X. fig. 14 ; and Grube, Zur. Anat. d. Kiemenwurmer, p. 30, Taf. II. fig. 16.
10 Phyllodoce. Here, the transverse threads commence ouly at the border of the $7^{\text {th }}$ or 9 th ganglion. They alternate regularly with these and disappear towards the last segments of the body ; see Quatrpfages, Ann. 1. Sc. Nat. II. 1844, p. 95, Pl. II. fig. 2,3
11 Siphonostomum, Amphitrite, Amphinome, Aricinella, Potynoë, aul Aphrodite. With Si-
phonostomum, the ventral ganglia are very long; see Rathké, Danzig. Schrift. loc. cit. p. 90, Taf. VI fig. 3. Here, the peripheric nerves are given off from the interganglionic cords and not from the ganglia themselves.

With Amphitrite, the ventral ganglia are long also, but from the fifth segment of the body they alternate with others that are round, so that each segment has two ganglia. Both of these ganglia furnish exclusively the peripheric nerves, but in front where the round ganglia are wanting, they are furnished alsoby the interganglionic cords; see Rathke, loc. cit. p. ${ }^{5} 5$, Taf. V. fig. 7, 15. With Aricinella (quatrafages, loc. cit. p. 96, Pl. II. lig. 5), and Amphinome (Treviranus, Beobacht. aus d. Zoot. a. Physiol. 1830, p. 83, Taf. X1. fig. 72), the ganglia are very closcly set together. With A_{i} hrodite, and Polynoe, the number of ventral ganglia exceeds that of the serments of the body; see Grube, loc. cit. p. 6 it.

12 Nereis, Eunice; Glycera; see Wagner, in Isis, 1834, p. 133, Taf. I. fig. 11; Müller, in the Ann. d. Sc, Nat. XX1I. 1831, p. 22, Pl. 1V. fig. 10 ; Rathke, De Bopyro et Nereille p. 41, 'Tab. II. fig. 13 ; Grube, Zur. Anat. d. Kiemenwürmer, p. 43, Thf. 11. fir. 9 ; and Quatrefuges, Amm. d. Sc. Nat. loc. cit. 1'I. I. fig. 1, 2, 3 .

13 Amphitrite, Siphonostomum (Rathke, Danzig. Schrift. loc. cit. Taf. V. fig. T, 14, Titi. VI. fig. 3), and Glycera (Quatrefages, Ann. d. Sc. Nat. luc. cit. p. 96, Pl. I. fig. 3).*

1t Nereäs, Eunice, and Phyllodoce; see Müller, Ann. (1. Sc. Nat. luc. cit. [l. IV. fir. $10 ;$ Rathke, De Bopyro et Nereide, p. 43, Tab. II. tig. $4,5,13$; and quatrefages, loc. cit. p. 81, Pl. I . fig. 1, 2, PI. II. fig. 1.

* [§ 148, note 13.] See Quatrefatres, Ann. d. Sc. Nat. X. 1848, p. ± 7 (Hermella), and XII. 1849, p. 300 (Chloraema). - Ed.

With the Dorsibranchiati, the many delicate threads which arise from the cerebral ganglion by special roots and pass to the different portions of the digestive canal with a ganglion here and there upon their course, may be regarded as splanchnic nerves. ${ }^{(1)}$)

With the Amphinomae, Enniceae, Nereideae and Ariciae, there arise from the posterior border of the cercbral ganglion two roots which may be regarded as Nervi pharyngei superiores, and which unite near their origin into a Ganglion pharyngeum superius. From this last pass off posteriorly delicate threads which form many ganglia upon the cesophagus, and afterwards spread over probably many other parts of the digestive canal.

Beside this Plexus splanchnicus superior, there is sometimes a Plexus splanchnicus inferior - formed by other roots which pass off inferiorly from the brain; part of these form under the oesophagus a Ganglion pharyngeum inferius, while others, passing backwards, constitute Nervi pharyngei and asophagei. ${ }^{(16)}$
The Amphinomac have on each side of the abdomen a very remarkable ganglionic chain. Their ganglia intercommunicate, not only by longitudinal, but also by transverse anastomoses, with the central mass of the nervous system. Ainong these last, those which are given off from the anterior lateral ganglia, join the connceting filaments of the œesophageal ring; while the others, arising from the posterior lateral ganglia, go to the various ganglionic enlargements of the ventral cord. ${ }^{(17)}$

It has not yet been possible to ascertain the signification of these lateral ganglionic chains.

CHAPTER IV.

ORGANS OF SENSE.

I. Organs of Touch.

§ 149.

With the Annelides, the sense of touch is particularly developed at the cephalic extremity. ${ }^{(1)}$ With some Lumbricini, this extremity is prolonged into a kind of tentacular proboscis. ${ }^{(2)}$ The Branchiati have special and

[^89][^90]often very prominent tactile organs, in the form of processes of variable number and shape, whieh are situated prineipally though not entirely upon the eephalie extremity of the body. Those upon the head have been named Antennae, and the others Cirri. These last are often very numerous upon the first segment of the body. Both are eontractile and usually unarticulated, though sometimes having very distinet joints. ${ }^{(3)}$ The antennae receive their nerves directly from the eerebral ganglion, ${ }^{(4)}$ while those of the eirri of the first segment, are given off from the base of the two lateral eords of the œesophageal ring, and from the first ventral ganglion. ${ }^{\text {(j) }}$

II. Organs of Vision.

§ 150.

With nearly all the Capitibranehiati, ${ }^{(1)}$ and with many Nemertini, and Lumbricini, the eyes are wanting. But, as visual organs, have been regarded the brown or blaek dots, whieh are two in number with many Naïs, four with Tctrastemma, but are iunumerable and arranged irregularly or in rows upon the neck, with Polystemma and Nemertes. But these are seareely more than sinuple pigment dots. ${ }^{(2)}$

With the two to ten eye-speeks of the Hirudinei, ${ }^{(3)}$ however, the structure is quite different. Here the eye ${ }^{(4)}$ is composed of a transparent eylindrical body, a little attenuated and rounded at its inferior extremity, while the opposite one causes the skin to bulge out like a eornea. Its remaining portion is

[^91]appear, two eyes not only at the cephalic extremity, but at the opposite one also. ${ }^{+}$
2 Gruithuisen (Nov. Act. Acad. Nat. Cur. XI. 1 . 242) has described the two eyes of Nais proboscidea as particles of pigment enveloped by a sensitive parcnchyma. But this is not based upon observation, and is an hypothesis only, as Muller has very judiciously remarked (Ann. d. Sc. Nat. XXII. 1831, p. 20). The assertion of Quatrefages is of more weight (Comp. rend. XIX. 1844, p. 195). He affirms that the pigment specks of many Nemertini and of a marine species allied to $N a b s$, contain really light-refracting bodies, and connec: with the nervous centre by particular nerves. The last of these Annelides has similar pigment specks also upon each side of the segments of the body, which receive each a distinct nerve from the ventral marrow. Is not this species identical with the Nais picta described by Dujardin (Ann. d. Sc. Nat. 1839, X1. p. 293, Pl. V1I. fig. 9) ? \dagger
3 Clepsine bas two, four or six eyes; Nephelis, eight ; and Haemopis and Sanguisuga, ten ; while with Branchiobdella, they are wanting. With this family (the 11 irudinei), these organs are always symmetrically arranged upon the neck.

4 At least with Sanguisuga officinalis.

[^92]Dec. 31, 1849) has found very perfect eyes with Torrea vitrea, consisting of a crystalline lens, a choroid coat, a vitreous humor, a transparent cornea, \&c. IIe thinks also that he has discovered witl Sabella cyes situated on the branchiae '-. Ed.
enveloped with a layer of black pigment. ${ }^{(5)}$ Each of these bodies receives a nerrous filament from the cerebral ganglion. Undoubtedly, these filaments are optic nerves, and the cylindrical bodies are light-refracting and light-concentrating organs. ${ }^{(6)}$

Many of the Dorsibranchiati are entirely without cyes, having only the eye-specks ; but others, belonging to the Anıphinomae, Nereïdeae, Euniceac, and Aphroditae, have two to four very distinct eyes. ${ }^{\text {(i) }}$ In these, there is an eye-ball invested with a black or brown pigment layer: and this layer often has, above, a very distinct round pupillary opening, covered by the skin, which bulges out like a cornea. At the central portion of this layer, there is conccaled a transparent body, which is very probably surrounded by a retina-like expansion of the optic nerve. The optic nerves which are given off usually from the upper surface of the brain have, after a short course, and before entering the pigment layer of the eye, an enlargement. It is said that with some the light-refracting body and the pupillary opening are wanting. In such cases, the eyes could only distinguish light from darkness. ${ }^{(8)}$

III. Organs of Hearing.

§ 151.

Although it has never been doubted that the Annelides can perceive sounds, yet it is of late only that the attention has been directed to the locality of the auditory organs. The two vesicles, which, with some Chaetopodes, are situated near the œesophageal ring, and contain crystalline bodies, may be regarded as simple Vestibula, containing many otolites. ${ }^{(1)}$

5 Weber was the first to show that the black specks of Sanguisuga officinalis were really eyes (Meckel's Arch. 1827, p. 301, Taf. III. fig. 24). This has been confirmed by Brandt (Med. Zool. I. p. 251, Taf. XXIX. A. fig. 10-12), and more recently, Wagner has discovered in the interior of the pigment layer, a transparent body, composed, he thinks, of two parts, a crystalline lens and a vitreous portion; see Wagner, Lehrbuch, d. vergleich. Anat. 1835, p. 428 ; also Lehrb. d. speziellen Phys. 1843, p. 383, and, Icon. physiol. 1839, Tab. XXVIII. fig. 16.

6 Brandt has been able to trace the ten optic nerves of Sanguisuga officinalis from the brain even to the eyes (Med. Zool. loc. cit. p. 250, Taf. XXIX. B. fig. 2).*

7 With Gilycera, Aricia, Arenicola, and Cirratulus, the eyes are wanting. With Goniada, and Nephtys, there are only simple pigment specks upon the head. With Eunice, Phyllodoce, and Alciopa, there are two eyes; and four with Nereis, Syllis, Hesione, and Amphinome. The genus Alciopa is well suited, from its large size, for the dissection of these organs.

8 For a most detailed description of the eyes of Nerers, we are indebted to Muller (Ann. d. Sc. Nat. XXIL. 1831, P. 22, Pl. IV. fig. 6 10), and Wag-

* [$\$ 150$, note 6.] For further details on the ocular organs of the Hirudinei, see Moquin-Tandon, loc. cit. Ed. 1846, p. 80, Pl. VIII. fig. 11. AccordIng to him, they contain neither a lens nor a vitreous humor, and are only light-perceiving organs. See also Leydig (loc. cit. p. 129) who makes the following statement upon the nature of these hodies
ner (Lehrb. d. Plysiol. p. 383, and Icon. physiol. Tab. XXVIII, fig. 15). Wasner, who, formerly (Zur vergleich. Physiol. d. Blutes, 1833, p. 55), conld not, any more than Muller, perceive the light-refracting body, has at last seen it distinctly. For my own part, I can confirm its presence in the two eyes of Eunice gigantea, which have a circula' pupil. According to Rathke (De Bopyro et Nereide, p. 44 , Tab. II. fig. 4,5$)$ the eyes of $N e-$ reis pulsatoria and lobulate want the pupil, although it is present with those of Nereis Dumerilii. According to Wagner, the pupil is wanting with the two posterior eyes, but is present with the two anterior ones, with most of the Nereideae.
${ }^{1}$ I have compared the swellings noticed upon the œesophageal ring of Arenicola, by Grube and Stannius (see Wiegmann's Arch. 1841, I. 166), to the auditory vesicles of Mollusks, and their contents to otolites; since then, Quatrefares has recognized the presence of similar auditory organs containing many otolites with two species allied to Amphicora (Compt. rend. XIX. 1844, p. 195 , and Ann. d. sc. Nat. 1844, II. p. 94). Frey and Leuckart (Beitr. \&c.p. 81), after a very careful examination of the organs of Arenicola, which I have regarded as auditive, have confirmed this opinion.
with Piscicola: "They receive no nerve, neither do they contain a light-refracting body. I regard them as simple ornaments, wholly analogous to the corresponding pigmeut dots on the pedal shield, with which they also correspond in color and dis-tribation."-KD.

CHAPTER V.

3

DIGESTIVE APPARATUS.

§ 152.
The digestive canal of the Annelides, which is organized after very different types, opens always at the anterior part of the body by a mouth, and at the posterior part by an anus. It is situated upon the axis of the body, and is usually straight, rarely having convolutions. Often it is divided into many sections, to which the names of pharynx, œesophagus, stomach, and intestine, may be given. The mouth is usually surrounded with thick lips, and, with many Capitibranchiati, it has very erectile tentacles and cirri, which may be not only tactile but prehensile organs. ${ }^{(1)}$ With others of this group, the food is taken in by the action in the water of the ciliated branchial rays which surround the mouth in an infundibuliform or spiral manner. ${ }^{(2)}$ But usually the food, both soft and solid, is seized by the protuberant lips, and swallowed by the very muscular pharynx. Many Annelides can also suck in liquid food through their organs of deglutition. ${ }^{(3)}$ The stomach and intestine is lined with ciliated epithelium. The intestinal canal, whose walls are in general very thin, is either closely embraced by the parenchyma of the body, ${ }^{\left({ }^{(1)}\right.}$ or, when there is a eavity of the body, is supported and eonstrieted by numerous muscular septa. ${ }^{(5)}$

I. Organs of Deglutition and Masticution.

§ 153.

The mouth of the Nemertini is situated upon the ventral surface, and usually at some distance from the cephalie extremity. It is a longitudinal orifice opening into a long, muscular and very spacious pharyngeal tube. ${ }^{(1)}$ This tube is intimately united with the parenchyma of the body, and after passing a short distance back ward, joins directly with the intestinal canal. ${ }^{(2)}$ With many Hirudinei, the mouth is at the auterior extremity. Its anterior border projects so as to form a kind of lip, which the animal ean voluntarily change into a sucker. Other specics have a complete oral sucker,

[^93][^94]entirely distinct from the rest of the body. ${ }^{(3)}$ These suckers serve not only as locomotive organs, as the one, for instance, which is situated at the posterior end of the body, but also for the drawing in of liquid food, and particularly blood. For this purpose; many Hirudinei have a short and spaciouspharynx, possessed of muscular walls, which are blended with the parenchyma of the body, and which are armed with horny teeth, by which they cause the wounds necessary for sucking the blood. With Branchiobdella, the pharynx has horny upper and lower jaws, of a pyramidal form. ${ }^{(4)}$. With Sanguisuga, and Haemopis, on the contrary, the base of the pharynx has three Heshy swellings, the projecting arciform border of which is edged with bicuspid teeth. ${ }^{(5)}$ In this respect, Clepsine is quite different. The pharyngeal tube is very long, and from its base a movable fleshy tube can be protruded out of the mouth, and which the animal can use as a proboscis. ${ }^{(6)}$ With the Abranchiati, and Capitibranchiati, the pharyux is simple, short and muscular, and presents nothing remarkable. With the Dorsibranchiati, it is very muscular, of variable leugth, and stretches freely into the cavity of the body. By the aid of special museles, it may be folded upon itself, and project far out of the mouth. (i) With many Anuelides, the pharynx has a torny, masticatory apparatus of sometimes a very complicated structure, and which, when the pharynx is protruded, often extends out beyond it, and serves as a prehensile organ. ${ }^{(8)}$ These two, four, seven, eight or nine jaws always move laterally upon each other. They are usually curved like hooks, and denticulated upon their concare side. When numerous, they are of dissimilar forms with the same individual. ${ }^{(9)}$

II. Intestinal Canal.

The intestinal canal of the Nemertini passes dircctly from the mouth to the anus, without forming a stomachal dilatation. Its walls are closely united with the parenchyma of the body, and its internal surface throughout is thickly set with annular folds, which, projecting far into the canal, form there pouch-like divisions. ${ }^{\text {(1) }}$

3 Piscicola, and Pontobdella.
4 See Henle, Müller's Arch. 1835, p. 575, Taf. XlV. fig. 1.

5 Sec Moquin-Tandon, Jonog. des Ilirud. p. 43, Pl. I. fig. 2. 11, Pl. IV. Y. ; Brandt, Med. Zool. II. P. 245 , Taf. XXIX. A. fig. 13-18, 21, Taf. KXIX. B. fig. 13-17. The swellings of these lueches are carried in front during suction, so as to resemble a three-rayed star - the form of the wonnd which they produce.
6 See Moquin-Tandon, loc. cit. Pl. IV. This proboscis quite reminds one of the pharyngeal tube of the Planariae, which also can be protruded from the mouth, but witbout bcing reversed.
7 This pharyngeal tube is short with Amphinome, Nereas, Eunice, and Peripatus; but very long with Aphrodite, Polynoë, Hesione, Phyllodoce, Glycera, and Goniada; sce Audouin and Milne Edwards, Rccherches, \&c., loc. cit. That of Aphrodite, Polynoë, Amphinome, and others, has been regarded as a stomach ; see Treviranus. in Tiedemann's Zeitsch. f. Phys. III. p. 161. Taf. KII. fig. 9. 10, k; Grube, Zur Anat. d. Kiemenvürmer p. 5t, et 8cq. and Stannius, Isis, p. 982. But the position, structure and muscular appara-
tus of this organ are against this view, and quite in favor of its being a pharynx.

8 The juws are wanting with Amphinome, Phyllodoce, Aricia, Chaetopterus, and Arenicola.
y There are two strongly-curvell jaws with $N e$ reïs, Lycastis, and Peripatus; four with Polynoé, Aphrodite, and Glycera; and cinht with Lumbrinerets. Of the seven with Exulice, therc are four, one on one side, and three on the other. The same asymmetry exists with those of A selaura and Oenone ; see Audouin and Milne Ldwards, Recherches, \&c., loc. cit.

1 According to Rathiké (Danzig. Schrift. loc. cit. p. 96), these transverse folds do not exist with Borlasia striata, except when the body is shortened by contraction, and they disappear when it is again extended. But it did not appear thus to me with the numerously folded intcstine of Meckelia annulata. Delle Chiaje had already observed these folds with Polia sipunculus, but figured them as isolated pouches (Memorie, loc. cit. II. p. 407, Tav. XXVILI. fig. 3, 6, or Isis, 1832 , Taf. X. fig. II. 3, 4). According to Quatrefages (Ann. 1. Sc. Nat. V1. 1846, P. 243), the intestinal canal of the Nemertini, which occupies the axis of the body,

With the Hirudinei, the intestinal eanal varies very much, especially as to the number and volume of its appended cocea. ${ }^{(2)}$ Its very narrow anal opening is upon the back directly above the pedal sueker. ${ }^{(3)}$ With Nephelis, the eanal is simple and gradually enlarges from before baekwards, but has no coeca.

With Branchiobdella, it is deeply constricted in several places. ${ }^{(4)}$ With Pontobdella, it is simple with its two anterior thirds, but there is a caecum on each side of its remaining portion. ${ }^{(5)}$ This last is also true of its posterior third with Haemopis, Clepsine, and Sanguisuga. ${ }^{(6)}$ With this last genus, the other portions of the canal are divided by ten or eleven eonstrictions into as many parts whieh send off on each side short caeca; ${ }^{(\pi)}$ while that of Clepsine has on each side five or six coeca, all of which may be ranufied. There is a kind of valve direetly behind the last two caeca, and so the part of the intestinal canal in front of this may be regarded as a stomach and a small intestine, while the remaining portion behind it, represcnts the rectum, ${ }^{\text {(\%) }}$

With the Abranehiati, the intestinal canal is short, and its cesophagus. whieh is usually narrow passes into a muscular pharynx, which leads into a stomachaf dilatation. Upon these parts follow the remaining portions of the intestine which are separated from each other by the transverse septa of the body and often resemble the stomach. With a few species only, the stomach is remarkable for its thick, muscular walls. ${ }^{(9)}$

With some of the Capitibranchiati, the digestive canal arises directly behind the cesophagus and has bulging portions like those of the colon. ${ }^{(0)}$ assuming, posteriorly, sometimes a spiral form. ${ }^{(11)}$ With others, the oesophagus is continuous dircctly into the intestinal canal, which, free and unattaehed by diaphragmatic septa, makes many turns in the cavity of the body, and by constrictions is divided into a stomach, small intestine, and reetum. ${ }^{(12)}$

With many Dorsibranchiati, the intestine follows directly upon the œesophagus, and is either straight and divided by constrictions, ${ }^{(13)}$ or assumes a spiral form ${ }^{(14)}$ or is without constrictions and irregularly tortuous. ${ }^{(17)}$ With others, the portion of intestinal eanal between the pharyns and in-

[^95]testine, reccives the excretory ducts of glandular appendages and is therefore, more properly a stomach than an cesophagus. ${ }^{(16)}$ With many, the stomach and its appendages are wanting, but then the entire canal stretching directly across the cavity of the body has on both sides long analogous appendages which sometimes consist of dilated sacs, so that these appendages have wholly the aspect of caeca. ${ }^{(17)}$

III. Glandular Appendages.

§ 155.

The glands appended to the digestive camal of the Annelides may be divided into the salivary and hepatic organs. The first of these are sometimes absent, but the last are never wanting.

The organs regarded as salivary glands are attached eithes to the pharynx or to the begimning of the intestinal canal. With the Nemertini, they are absent. But with Sanguisuga, as abdominal salivary glands, may be regarded the many groups of round corpuseles which surround the commencement of the intestine, and whose excretory ducts open into it by many orifices, after anastomosing together. ${ }^{(1)}$ With Lumbricus, there is a long lobular body on each side of the pharyngeal tube which secretes a whitish liquid, and which is analogous perhaps to an oral salivary gland. ${ }^{(2)}$ The four pairs of transparent vesicles, which, with Enchytraeus, open at the inferior extremity of the esophagus, are possibly of the same nature. ${ }^{(3)}$ With Siphonostomum, there are two riband-like caeca which pass along the œesophagus and open separately into the oral cavity. ${ }^{(4)}$ With many Dorsibranchiati, the commencement of the intestine has two glands of probably a panercatic nature. ${ }^{(5)}$ It is difficult to decide as to the hepatic or salivary nature of the numerous and usually white appendages, which belong to both sides of the whole alimentary canal of the Aphroditac. With Polynoë, thesc consist of six cylindrical, caecal, and sometimes bifid tubes, lying between the muscles of the walls of the body. ${ }^{\left({ }^{(6)}\right.}$

With Aphrodite hystrix, there are twenty of these tubes on cach side

[^96]${ }^{4}$ Rathké, Danzig. Schrift. loc. cit. p. 87, Taf. Vfig. 5, c. c.
${ }_{5}$ With Nereris, these two salivary glands communicate by two narrow duots with that portion of the intestinal canal which should be regarded as a stomach; see Rathké, De Bopyro et Nereñle, p. 38, Tab. I1. fig. 7, g. 8. Grube has found these two appendages at the beginning of the intestinall canal with Aremicola (Zur Anat. d. Kiemenwürmer, p. 6, Taf. I. fig. 1, 5, h.), and with Ammotrypane (Nov. Act. Acad. XX. p. 197, Tab. X. fig13, 19, h.). See also Milne Edwards, in the Ann. d. Sc. Nat. X. 1838, 11. XIl. fig. 1, j. (Nereis), and Pl. XIII. fig. 1, e. e. (Arenicola); and Wagner, Icon. zoot. Tab. XXVII. fig. 18, g. g. (Nereas).f
6 Grube, Zar. Anat. d. Kiemenwümer, p. 62, Taf. II. fiğ. 13 (Polynoé squamata).
† \{ § 155, note 5.\} For the salivary glands of Branchellion, see Leydig, Siebold and Kölliker's Zeitsch. III. Ilft. 3, p. 315, and Quatrefages, Ann d. Sc. Nat. XVIII. 1852, p. 296, Pl. VI. fig. 3, c c. —ED.
of the intestinal eanal; these are narrow and their botryoidal extremities lie in the interstiees of the dorsal wall of the body.

With Aphrodite aculeata, the structure is analogous but differs in that these appendages have more the aspect of eoeca with thin walls, and have not the ramified diverticula except in their eentral part and between the already-mentioned saceular dilatations. ${ }^{\text {(7) }}$

As an hepatie organ may be regarded with more eertainty a partieular tissue eolored in part brownish yellow, and partly greenish yellow, whieh elosely surrounds the whole intestinal eanal of most Annelides. Carefully examined, this tissue is found eomposed of elosely-aggregated glandular saes whieh empty their contents into the intestine either direetly, or by many common exeretory duets. ${ }^{(9)}$ This eontained liquid is, with most species a transparent fluid in whieh are suspeaded brown granules, and it resembles the bile of the higher animals.

CHAPTER VI.

CIRCULATORY SYSTEM.

§ 156.

This system is highly developed with the Annelides. The blood is usually eolored, and the vaseular system, remarkable for many peeuliarities, is complete and elosed.

This system may be divided into a central and a peripherie part.
The first eonsists of large contraetile vessels taking the plaee of a Heart. There are also various heart-like organs in the shape of varicose dilatations upon the eourse of the eontractile vessels. The prineipal vessels have a longitudinal course, oecupying the whole length of the median line of the body, - one as a dorsal, and the other as a ventral vessel.

With many Ilirudinei, there are also lateral vessels. The dorsal and ventral vessels unite at both extremities, beside auastomosing by transverse branches in the separate segments.

When there are lateral vessels, these also conneet with the median ves-

[^97][^98]XXIX. A. fig. 28, 29. With many, this hepatic layer envelops also the hlood-vesscl upon the dorsal surface of the intestine. It is passible that the yellow canal described by Morren, with Lumbricus terrestris as Chloragogena, is only this hepatic mass (loc. cit. p. 142, Tal, XV. XVI.). Another canal which is traversed by blood-vessels and closed at both extremities, and which is contained in a longitudinal enlargement upon the internal surface of the intestinal canal, and is called by Morrem, Typhlusolis (loc. cit. p. 138, Tab. XI, Xll. XVI. XVII.) may perhaps be regarded as a roceptacle of chyle.*
(Lumbricus, Nais), and the long, thread-like and coccal glands (Hirudo, Hacmopis, Auiacostoma, Helluo, Piscicola, Clepsine) which sneround the intestinal canal, to be organs of this nature. - Ed.
sel by transverse anastomoses. The peripherie vessels arise by means of a eapillary net-work, from the most various points of the longitudinal and transverse vessels. The circulation has on the whole a determinate direetion, - the dorsal vessels force by a kind of peristaltie movement the blood from behind forwards into the ventral vessel, which returns it into the dorsal vessel. The blood ean, however, pass from the dorsal to the ventral vessel by a mueh shorter way,-by traversing the capillaries, or directly through the transverse anastomoses. It is, moreover, very probable that the eourse of the blood in the transverse vessels is not always in the same direction, and that it may under eertain eireumstanees pass from the ventral into the dorsal vessel. This nakes it difficule to deeide which of these vessels are arteries, and which veins. The respiratory organs, which usually form the limit between the venous and arterial systems, are, with most Aunelides connceted with the transverse vessels; and therefore throw no light upon this doubtful point. From the multitude of these transverse anastomoses, it must appear impossible to distinguish the arterial from the venous blood, and the distinction of veins from arteries with most Annelides must be wholiy arbitrary.
The blood of the Annelides, although red like that of the vertebrates, is, however, quite different. It is eomposed of a liquid containing globules. These last, which are always eolorless, of unequit size, and of a spherieal form, are granulated on their surface. ${ }^{(1)}$ The blood liquid is either colorless, or eontains a eoloring matter, whieh is usually red, but sometimes yellow or green.

§ 157.

With the Nemertini, whose blood is red ${ }^{(1)}$ but as yct imperfeetly known, the eireulation appears to be due to two cardiae dilatations eoneealed in the eephalic extromity. ${ }^{(2)}$
The Hirudinci have, beside the two median ressels, two lateral ones also, which intereommunicate by very numerous transverse vessels. ${ }^{(3)}$ From the contraetions of these vessels, the blood is driven sometimes forwards, and

[^99]hearts are divided into two chambers, the anterior having deep-colored blood, while that of the postetior one is more clear. This arrangement has led this naturalist to regard as hearts the bodies described by Rathké. with Borlasia striata, as cerebral ganglia, and as blood-vesscls, the nerves which are given off from them laterally (see ahove, $\$ 148$, note 2). But if Quatrefages' figures of the nervous and vascular systems of Hemertes mandilla are examined (Rèrne anim. de Cuvier ed. illustr, Zaophytes. Pl. XXXIV. fig. I), it will be seen that there are here three main truaks, a median and two lateral. These last accompany the lateral nerves, while is bifurcating vessel which passes from the median to the two lateral trunks, embraces closely, in a looplike manner, the two cerebral ganglia, so that they easily escape observation. This is perhaps true also of Borlasia.
3 The sanguineous system of Sanmuisugga has been very carefully described liy Brandt (Med. Zool. II. p. 247, Taf. XXIX. B.) ; see also Bojanus, in the Isis, 1818, p. 2089, Taf. XXVI. fig.3.4. With Nephelis, there are only two lateral vessels and in abdominal one, lying along the ventral me-* dulla ; see Muller, in Meckel's Arch. 1828, p. 24, Taf. I. fig. 1.
sometimes backwards and oseillates from one side to the other, through the transverse vessels. ${ }^{(4)}$ With most genera, the blood is red, being colorless with a few only, and it is always poor in eorpuseles. ${ }^{(5)}$ The Chaetopodes bave no lateral vesscls. Their circulation is often due to pulsatory organs, and there is a great variety in the disposition of their vaseular trunks and sinuses.

With the Abranchiati, the dorsal vessel lies close upon the intestinal eanal, and is almost wholly enveloped in the hepatic tissuc. At the anterior cextremity, it divides in many bifurcating branches, which, after eneompassing the pharynx, unite below it, and form the ventral vessel. ${ }^{(6)}$. This vessel accompanies the ventral cord to the postcrior cxtremity, and connects with the dorsal vessel by bifurcating branches, as before. ${ }^{(7)}$ The transverse anastomoses eonneeting the dorsal and ventral vessel, form at each segment simple, or torose eanals. ${ }^{(8)}$ With the sinall Lumbricini, these are usually

4 The irregularity of the blood-currents has, undoubtedly, given rise to the numerous different opinions upon the eirculation of these animals; see Duges, Amm. d. Se. Nat. XV. 1828, p. 303 ; Weber, in Meckel's Arch. 1828, p. 393 ; Muller, Mbil. p. 24 ; and in Burdach's Physiol. IV. 1832, p. 143; and Wåner, Isis, 1832 , p. 635 . If the valves whieh Leo (Muller's Arch. 1825, p. 421, Tat. XI. fig. 9) has found in the dorsal and ventral vessels of Piscicola, should be foumd also with other Hirudinei, it would throw some light upon the real course of the cireulation.*

5 With Sanguisuga, Haemopis, Pontobdella, Nephelis, Piscicola, and other's, the blood is red; it is colorless with some Clepsine, according to Filippi (Lottera sopra l'Anat. e lo sviluppo delle Clepsime, 1839 , Pavia, p. 11); it is also brown, violet or red, according to the species. He also declares (loc. cit. p. 8), that with Clepsine and Piscicola, which live wholly upon the blood of the lower animals, the

* [§ 157, note 4. ${ }^{1}$ The memoir of Gratiolet (Mem. sur. Morganisation du systeme vasculaire de la Sangsue médiciualc et de l'A ulostome vorace, pour servir à l'histoire des mouvements du sang dans les Hirudinees blellieunes, in extract in the Comp. Rend. 1850, XXXI. p. 633), is worthy of a special reftrence in this eonnection. IIe says: "The lateral vessels, whose walls are very muscular. are the principal organs for the movement of the blood; they contract alternately, as lias been well observed by Dugets, Weber and Muller, and their eontained blood moves in a circular manner, sometimes one way, sometimes the opposite.
"The branches given off by these lateral vessels are of two kinds :
"A. Those destined for the skin, and which are ramified in the respiratory net-works; they never anastomose with those of the opposite side. Before their final and minute ramifieations, they form a large varicose net-work under the skin, which hith erto has been regarded as a plexus of hepaiic vessels, but which is positively an interlacement of blood-vessels.
"B. The other branches are destined for the amall intestine, and its spiral valve for the testicles, the eopulatory apparatus, to the loops and to the muciparous vesicles.
"All these branehes arise from the branehes or the hirge arehes which form a free anastomosis between
vascular system communicates directly through small canals with the coeca of the direstive canal, so that the contents of this last may pass into the blood without being ehanged. \dagger
6 See Hen/e, in Miller's Arch. 183t, p. 83, Taf. VI. fig. 5 (Enchytraeus), and Hoffmeister, De vermibus quibusdam, \&c., loc. cit. p. 14, 'Taf. II. fig. 4 (Saenuris variegata).

7 With Lumbricus, there are, beside the principal ventral vessel, three others smaller, and in direct conneetion with the ventral cord. Two of these pass off laterally, and the third underneath; see Leo, De Structura Lambrici terrestris, p. 27; Duges Ann. d. Se. Nat. XV. 1823, P. 298 ; and Morren, loc. cit. p. 152, Tab. XXI.-XXIV. fig. 5, who especially has carefully described the vascular systcm of Lumbricus terrestris.
8 The transverse anastomoses are simple with Lumbricus, but torose with Saenuris ; see IIoffneister, loc. cit.
the two lateral vessels. The consequences of this form of structure may be easily summed up. The blood oscillates from the alternate contractions from one pulmonary net-work to another. It circulates in the prineipal organ of the intestinal absorption, in the testieles, and in the muciparous glands.
" This eirculation, very different from that which Duges admits in the alleged pulmonary vesicles, shows how various are the means employed by nature. Here she determines the course of the blood by means of valves and stoppers; while elsowhere she aecomplishes the same end by eausing certain blood-enrrents to prevail over others."

The valvular structure of the vessels with Piscicola, as mentioned by Leo, has since been confirmed by Leydig (loe. cit.), who has found it also with Clepsine. Leydig calls the attention to another kind of cireulatory system in Piscicola; see loc. cit. p. 116. But this point has not yet been well made out; see also Moquin-Tandon, loc. cit. p. 133, Pl. X. fig. $10,15,16$, and Pl. XII, fig. 13. -Ed.
\dagger [§ 157, note 5.] The recent observations of Leydig (loc. cit. p. 119), have shown the blood of Piscicola to be always eolorless. This view is probably the eorrcct one, since it better accords with the histological relations of the blood of these animals: - Ed.
only in the anterior segments of the body. ${ }^{(9)}$ With the genus Lumbricus, the cardiac organs consist of five to nine pairs of moniliform, transverse canals, situated above the stomach, and whose pulsations are very distinct. ${ }^{(10)}$ With all the Abranchiati yet examined, the blood is red.

With the Capitibranchiati, there are often two dorsal vessels, one immediately subeutaneous, the other lying, as usual, on the intestine. ${ }^{(1)}$ This duplicity of the dorsal ressel is observed particularly with those species which have a coiled intestinal canal. ${ }^{(12)}$ In this case, there is also a second ventral vessel accompanying the coils of the intestine. All these longitudinal vessels interanastomose very frequently, and send many transverse branches to the intestine and the walls of the body, where they blend with the capillary system. Not unfrequently, the dorso-intestinal vessel is dilated at its anterior extremity, above the pharynx, into a large, pulsatory, heartlike canal, which sometimes has two lateral arcuate, sinuses situated at the commencement of the intestine. ${ }^{(13)}$ The extremity of this vessel sends off, right and left, many branches to the branchiae, which are situated in this region. Leaving these organs, these vessels are distributed, some in front to the tentacles, and to the other organs surrounding the mouth; while others pass below to unite with the ventral vessel. As the blood is thrown from behind forwards in the dorsal vessel, and thence passes into the branchiae, this vessel may be called a dorsal vein, and its dilatation a branchial heart; while the ventral vessel. which receives the returning blood from the branchiae, would be an abdominal aorta. But there are other reasons for this view. The dorso-intestinal vessel, from its intimate connection with the liver, might well serve the function of a Vena portarum, while the close union of the ventral vessel to the ventral cord, is undoubtedly for the purpose that the latter, as a central nervous mass, may receive arterialized blood directly from the branchiae. With these animals (the Capitibranchiati), the blood is red in some, and green in others. ${ }^{(14)}$

The Dorsibranchiati often have double dorsal and ventral vessels, two of which belong to the intestinal canal, and two to the walls of the body. ${ }^{(15)}$ With some, these longitudinal vessels are divided into two or three branches. ${ }^{\text {(6) }}$ The principal dorsal vessel is sometimes dilated at its antcrior extremity, above the pharyngeal tube, into a cardiac sinus, to which, at the beginning of the intestine, there are added two lateral, arcuate dilatations. ${ }^{(17)}$

9 Enchytraeus, Chaetogaster, and Nats. The vascular system of Euaxes and Lumbriculus is very remarkable in this respect. Instead of trausverse anastomoses, there are, in each segment of the body, two vessels which pass off from the dorsal trunk, and divide into many coecal branches; see Treviranus, Beobacht. aus d. Zoot. loc. cit. p. 60 ; and Grube, in Wiegmann's Arch. 184t, I. p. 205, Taf. VII, fig. 1, 2, d.

10 See Dugès, loc. cit. PI. VIII. fig. 1, and Morren, loc. cit. p. 162, Tab. XX.-XXILI., XXL.XXIV. fig. 1.

11 Milne Edwards has made very beautiful researches upon the vascular system of the Capitibranchiati; see Ann. d. Sc. Nat. X. 1838, p. 193, PI. X. XI.
12 Amphitrite and Siphonostomum; see Rath$k c$. Danzig. Schrift. loc. cit. p. T6, 88, Taf. V. fig. 4,5.
13 With Terebella, there is a vascular heart and two lateral sinuses; see Milne Edwards, loc. cit. Pl. X. XI. fig. 1. With Siphonostomum, there is a similar cardiac dilatation upon the pharynx, and it is divided into two chambers by a well-marked
constriction at its posterior part; see Rathke, loc. cit. p. 89, Taf. VI. fig. 5, f. g.
14 With Terebella, Amphitrite, and Serpula, the blood is rad ; with Siphonostomum, Chlorac$m a$, and some species of Sabella and Serpula, it is green.
15. We are indebted to Milne Edwards for very detailed accounts of the vascular systsm of the Dorsibranchiati ; see Ann. d. Sc. Nat. loc. cit. Pl. XII. XIII.; see also, for that of Arenicola, Stannius, in Muller's Arck. 1840, p. 35 :.
16 With Eunice sanguinea, there is a double dorso-intestinal vessel (Milne Edwards, loc. cit. Pl. XII. fig. 2, 3i); and a double ventral one with Nephtys Hombergi. With Arenicola, there are three ventral vessels accompanying the ventral cord (Muller, in Burdach's Phys. loc. cit. p. 147). and with Amphinome, Grube has found three dorsal ones beside, all widely separated from each other.
17 Eunice; see Milne Edwards, loc. cit. PL. XII. fig. 2. The vascular system here resembles that of Terebella.

These last are sometimes found alone. ${ }^{\text {(18) }}$ With many of these Annelides, the transverse vessels are dilated, before branching, into real branchial hearts. ${ }^{(9)}$ As their branehiae are variously situated among the transverse anastomoses, the distinetion between the arterial and venous blood is not as marked as with the Capitibranchiati; it must be arbitrary, as with the Hirudinei and Abranehiati. The blood is usually red, but sometimes is yellow or nearly eolorless. ${ }^{\text {(in) }}$

CHAPTER VII.

RESPIRATORY SYSTEM.

§ 158.

With the various families of the Annelides, the respiratory organs are formed after wholly dissimilar types.

With the Nemertini, they are least developed, for, exeepting two longitudinal fossae upon the sides of the eephalie extremity, ${ }^{(1)}$ there are no organs whieh ean be regarded as of this nature.

These two respiratory eavities are of variable depth, and their lateral borders are so approximated as to have the aspeet of a longitudinal opening, and with some they are situated so far out on the cephalie extremity as to be blended together. ${ }^{(2)}$ They are lined with a delicate eiliated epithelium, quite different from that eovering the rest of the body, ${ }^{(3)}$ and by the vortex aetions of whieh, fresh water is brought eonstantly in eonneetion with the blood. ${ }^{(+)}$Considering the smallness of these organs, it is very probable that the whole skin has also a respiratory function.

[^100][^101][^102]
§ 159.

With the Hirudinei, and Lumbrieini, the peeuliar canals found in the abdominal eavity may be regarded as internal branchiae, or as aquiferous vessels.

The intimate strueture of this aquiferous system is diffieult to unravel with the Hirudinei. It is most easily observed with the Branchiobdella; here there are only two pairs of curved eanals whose inner surfaee is ciliated. One of these pairs opens upon the ventral surface at the beginning of the second third of the body, while the other opens at the extremity near the median line. Each of these four eanals is dilated just before its external opening into a round, yellow eavity, from which pass off many loop-like vessels. ${ }^{(1)}$ With the other Hirudinei, thesc organs in pairs are more numerous, and situated one after another from the second third to the extremity of the body.
数 It is remarkable that the ciliated epithelium lining these canals with BranWhiobdella, is absent in all the other speeics. ${ }^{(2)}$

The strueture of the respiratory system of the Lumbrieini is not less difficult to be understood. With all the genera there are, at the commencement and on each side of the intestine, very tortuous canals which open upon the ventral surfaee, by a narrow orifice near the median line. These eanals are lined with long cilia which have an undulatory movement; ${ }^{(3)}$ they also are eolorless and sometimes have dilatations before opening externally, but they never eontain air, so that the terms traeheae or pulmonary cells, have been erroneously applied. ${ }^{(4)}$ Often they float loosely in the eavity of the body, and their free extremity has an orifice surrounded by long vibratory cilia. ${ }^{(5)}$ With some, however, they terminate by thickly-

1 See Henle, in Muller's Arch. I835, p. 576, Taf. XIV.fig. 1. This epithelium woull hndoubtedly favor the constant renewal of water iu these canals.
2 With Sanruisuga, there are seventcen pairs of these organs. They have been taken by Brandt (Med. Zool. II. p. 251, Taf. XXIX. A. tig. 55-53) for organs of special secretion, since he has seen a whitish liquid escape from their ventral orifices. The riband-like organ of these Annelides is not, moreover, as is usually supposed, a simple canal, but is composed of numerous interwoven and frequently interanastomosing canals, having no trace of ciliated epith lium.
From Duges' remark (Inn. d. Sc. Nat. XV. 1828 , p. 303, Pl. VIII. fig. 2), I think it probable that this net-work is formed of blood-vessels whieh are occasionally emply, for I have always found them colorless.
In this case, the real aquiferous canals are probably concealed in the net-work, and from their want of ciliated epithelium not easily seen.

With Nephelis vulgaris, I have seen the same number of internal branchiae as with Sanguisuga. Here, the aquiferous system appears as a knot of

* [§ 153, note 2.] See, upon the circulatory system of Branchellion, Quatrefages (Ann. d. Sc. Nat. XVIII. 1852, p. 3It). According to him, the general cavity of the body here, is represented by a collection of canals which are lacunae. This forms a vascular lymphatic systern which circulates cliyle to the branchite ; these last are, therefore, "branchies lymphatiques."
colorless, non-ciliated canals connecting with a vesicnlar poueh which is filled with red blood; so that in the posterior two-thirds of the body there is a double row of seventeen sanguineous simuses, inside the lateral vessels. These sinuses, already carefully described by Muller (Meckel's Arch. 1828, Taf. I. fig. 1), take no part in the pulsations of the main vessels, and are not alternately emptied and filled during the transverse eirculation of these animals.

A very interesting fact to me, is the existence with this Nephelis, of a multi-lobulate, rosetted, ciliated, colorless organ in the interior of these sanguineous sinuses.*
3 sce Henle, in Müller's Arch. 1837, p. 81, 'Taf. VI. fig. 7, 8, v. w (Enchytraeus) ; and Gruithuisen, Nov. Act. Acad. Nat. Cur. XI. 1823, p. 238 Tab. XXXV. fig. 1, i., XIV. I823, Tab. XXV. fir. 5 (Nais and Chaetogaster).

4 An aqueous respiratory fluid circulates in these canals undoubtedly by the aid of cilia. The terrestrial Lumbrieini which live only in the damp earth obtain this fluid therefrom.

5 I have observed this with Saemuris variegata, Lumbriculus variegatus, Nais elinguis,

He also states as conclusions :
I. The non-communication of the abdominal vessals with the branchiae.
2. The existence of a subcutaneous lymphatic vessel.
3. The origin from this vessel of trunks which go to the branchiae. - Ed.
arranged loops. ${ }^{(\sigma)}$ With Lumbricus, these aquiferous eanals are surrounded by a very distinct vaseular net-work, which has a botryoidal aspeet from its numerous peduneulated, vesicular dilatations which are filled with blood. ${ }^{\text {(2) }}$

§ 160.

With most of the Capitibranchiati, and Dorsibranchiati, the respiratory organs eonsist of external branchiae, which are very apparent, although having variations in their development. They always consist of lobules or filaments covered with eiliated epithelium, and in which are very eonsiderable vessels as branehial arteries and veins. ${ }^{(1)}$ The branchiae are here always situated between the venous and arterial systems, so that a portion only of the whole blood is made to pass through the respiratory organs.

It is possible that the two bundles of tentacles which are found with many Capitibranchiati, as infundibuliform, ${ }^{(2)}$ or spiral ${ }^{(6)}$ tufts, are also respiratory; for their vibratory organs not only draw in food, but also produce a constant change of the water.

Other Capitibranchiati have distinet and exelusively respiratory organs in the eervical region, which are either dendritic, ${ }^{(4)}$ or semi-pinnate. ${ }^{(5)}$

With the Dorsibranchiati, nearly every segment of the body has branchiae upon both sides of its dorsal surface. These are so simple and rudimentary with the Ariceae, and Nercildeae, that they consist only of simple lobules, exaetly resembling the cirri of the feet. ${ }^{(6)}$

Enchytraeus albidus, and others. Those canals thus situated remind one of the trembling organs of Rotatoria, connecting the two lateral canals with the cavity of the body ; see above, $\S 138$.
6 With Lumbricus terrestris, and its allicy speeies, I have as yet been unable to find any orifiees of the aquifcrous canals. Henle also (Muller's Arch. 1835, p. 580) has always found them looped upon themselves. They may however exist, although they have eluded the notice of Henle and myself, for the respiratory organs of Lumbricus are so difficult to study that there is yet no deseription or figure giviag any idea of their complexity; see the poor figures of Lumbricus terrestris by Leo (loc. eit. p. 25, Tab. I. fig. 4), and Morren (loc. cit. p. 53,148 , Tab. XIV, XV.). Those of Hoffmcister, although more detailed, are scarcely less unsatisfactory (loc. cit. p. 15, Tab. I. fig. 35,36). It now remains to inguire as to the relations existing between these aquiferous canals and the glands at their base whieh have been taken by many for mueous pouehes. I cannot, for my own part, perceive that these glands with the Lumbricus terrestris, excrcte any liquid whatever upon the ventral surface. On the other hand, I have often seen escape from the back of this animal, a watcry liquid which was only the contents of the cavity of the body, issuing through small orifiees upon each side of the median line between the segments of the body. Although I do not know, yet I suppose, that similar orifiees exist with the other Lumbricini, and thus, by these orifices and by those of the internal branchiae, the necessary renewal of water for these last, can take place. This hypothesis appears admissible sinee the cilia of the aquiferous canals always move in the same way.

[^103]* [§ 159, note 7.] See, for many details on these parts, Gegenbaur (Ueber d. sogenaunten

It is remarkable that the branchiae are perhaps entirely wanting, with the Aphroditae, ${ }^{(7)}$ while they arc often highly developed, partly in a pectinatc and partly in a fasciculate manner, with the Euniceae, Amphinomae, and Arenicolac. ${ }^{(8)}$
with Glycera, Nereäs, Lycastis, Nephtys, and others; but with Cirratulus, they are very long. With Phyllodore, and Alciopa, there are flattened lobules. But with Lumbrinere is, Aglaura, and some other allied genera, these are wholly wanting; see Milne Edwards, Classif. loc. eit. The question here arises if the Dorsihranehiati wheh have atrophied branehiae, have not therefore internal respiratory organs. It is at least probable that the two pairs of remarkable networks surmunding the pharyax of Nereis aud whieh have given rise to various interpretations (see Rathké, De Bopyro et Nereide, p. 48, Tab. II. fig. 5 , ble, fig. $8, f, g, h$, aud Tab. 1II. fig. 14 ; also Milne Elwards, Ann. U. Sc. Nat. X. 1838 , p. $210, \mathrm{ll}$. X1I. fig. $1,0, \mathrm{p}$) are properly internal branchiae. They reeeive the blood from the dorsal versel through two lateral vessels, and it is returned to the median ventral vessel by two others which are also lateral. Moreover, aceording to Rathke (loe. cit. p. 40), there is, between every two feet upon both sides of the segments of the hody, a small orifiee opening into the cavity of the body and through whieh water for respiration can pass.
7 Different observers have equally different opinions upon the branchiae of these mimals. For my own part, I have found no traee of these organs, either internal or external with Aphrodite aculeuta, and hystrix. I suppose, therefore, that water enters the cavity of the body by orifices whieh are very small and difieult to be seen, and eomes in contaet with the entire vaseular system.

Milne Elwards (Rérne anim. illustr. Annélides, Pl. XVIII. fig. $\mathbf{2}^{\text {i }}$, e) has figured rudimentary branchial lobules with Aphrodite aculatea, which are erenulated and eoneealed between the scales, and are, perhaps, invisible, when the animal is in a fresh state. Moreover, Sharpey (Cyelop. Anat. and Phys. I. p. 618), having observed with the same species a very active eiliary motion espeeially upon the external surface of the intestine and its eoeca, it is very probable that here, as with
the Asterondae, the respiration oceurs by water entering the eavity of the body and bathing the intestine.

8 With Onuphis, and Eunice, the hranchiae are pectinate or semi-pinnate; see Milne Edwards, Classific. loc. cit. With Diopatra, and Chloëza, each branchia eonsists of a single ramified Pasciculus; but with the Amphinomae, and Arenicolae, there are several fascieuli ; see Milne Edwards, loe. eit. and his plates aunexed to Regne anim. de Cuvier, Annelides; also Stannius, Isis, 1831, Taf. VI. With Eunice, the blood of the median dorsai vessel passes first into the inferior lateral vessels which have the form of eardiae sinuses, and by the pulsations of whieh it passes into the branchial vessels, whence it returns into the other two dorsal vessels by the superior lateral ones; see Milne Edwards, Ann. d. Sc. Nat. X. 1838, p. 207, Pl. XII. fig. 2.

With Amphinome, there is at the base of each branehial faseieulus, in the cavity of the body, a Plexus branchialis, closely resembling the wonderful net-works of Nereis, and from whieh the blood passes into two lateral vessels whieh here exist ; see Catal. of the Physiol. Ser. \&e. II. Pl. XIV. fig. 10, or Rymer Jones, Outlines, \&c., p. 218, fig. 93.

With Arenicola piscatorum, only the thirteen middle segments of the body have branehial faseiculi. These communieate with the ventral and dorsal vessels by simple lateral vessels.

As there exist here at the extremity of the body between the two dorsal and ventral vessels, two eardiae sinuses, it is probable that these force the blood from before baekward into the ventral vessel, and thence by the lateral vessels into the branehiac; so that these inferior lateral vessels would be called arteries, and the superior lateral vessels whieh return the blood to the dorsal vessel, veins ; see Milne Edwards, Ann. d. Se. Nat. loc. cit. p. 215, Pl. XIII.*

* [$\S 100$, note 8.] The respiratory organs of the Annelides have been mueh studied by Quatrefages (Ana. d. Se. Nat. XIV. 1850, p. 290), and the following is his résumé :
" 1 . The respiration is at first general and entirely eutaneous (Lumbrinereis, Lysidice, Hesione, \&c).
"2. It is still eutaneous, but is eonfined or eoneentrated upon particular rings of the body (Chaetopterus).
"3. It is loealized upon certain points of eaeh ring, without the strueture of these points being sensibly modified (Nereis).
" 4 . The first degree of the specialization of the respiratory organ appears under the form of a simple eul-ds-sae, or an ampulla into which the blood flows (Glycera).
"5. The brauchiae become gradually character-
ized by the formation of a eanal which communieates with the more or less spacious lacunae.
"6. These true hranehiae may be distributed all along the body (Eunice sanguinea).
" 7 . They may be coneentrated upon a certain number of tings situated near the middle of the body (Eunice Bellii, Arenicoia, Mermella, Polydora).
" 8 . They may be concentrated towards the anterior extremity of the animal, and oceupy only a few rings (Terebella, Pectenaria).
"9. Finally, they may be loeated wholly at the extremity of the body, and form only a double tuft (Sabella, Serpula).
"10. In eonsidering sometimes the entire hody, sometimes eaeh ring separately, a real distinction between the venous and the arterial system may nearly always be made out."- Ed.

CHAPTER VIII.

organs of secretion.

. \quad § 161.
Many Annelides are covered with a mucus which is secreted by small, simple follicles situated in the skin. ${ }^{(1)}$
The calcarcous tubes of the Serpulini, appear to be secreted by a collar surrounding the first segment of the body. ${ }^{(2)}$ It is not yet decided that the leathery tube in which many other Branchiati are concealed, ${ }^{(3)}$ is secreted by an analogous organ.
Those Capitibranchiati which form tubes with grains of sand, bits of sheils, \&c., have, perhaps all, an opening close behind the mouth upon the ventral surface. This opening is in connection with many glands situated at the anterior extremity of the body, which probably secrete a substance for the gluing together of the materials of these tubes. ${ }^{(4)}$

OHAPTER IX.

ORGANS OF GENERATION.

§ 162.

The Annelides reproduce partly by a transverse fissuration, and partly by a sexual apparatus.

[^104]with Amphitrite, upon the ventral surface of the first and second seginent of the body, and opening by a common canal at the first segment; see Danzig. Schrift. loc. cit. p. 71, Taf. V. fig. 6, aa. fig. 2, d . With Tercbella, and $S a-$ bella, the two glands near the cephalic extremity, are perhaps of the same nature. Grube, however, thinks them male genital organs ; see, Zur Anat. d. Kiemenwürmer, 1.31, Taf. 11. fig. 12, y.; and Milne Edwards, Ann. d. Sic. Nat. X. 1838, Pl. X. n. Pl. XI. fig. 1, h. fig. 2, f.

With Piscicola, these are situated in the cephalic and pedal shield, but in Clepsine, and Nephelis, they are also present in the skin throughout; see loc. cit. 'Taf. VIII. fig. 23. This structure is remarkable from its rescmblance to some of the cutaneous glands of the ligher animals. - ED.

Spontaneous transverse fissuration oceurs partieularly with the Abran(hiati, ${ }^{(1)}$ but has also been observed with the Nemertini, ${ }^{(2)}$ and Branchiati. ${ }^{(3)}$

It occurs usually at the middle portion or at the border between the second and third segments of the body. Very often there may be pereeived at this point, when this process has somewhat advanced, the plaee where, with the two future individuals, there will be a new fissuration. If the animal has a proboscis, tentaeles, or eyes, these organs are developed with the posterior individual before its final separation. ${ }^{(4)}$
These animals have no trace of genital organs, while this process of division lasts. The individuals thas produeed, re-divide, and this division eontinues until a eertain time of the year. It then ceases, and genital organs being developed, reproduction takes place by eggs.
The extreme vulnerability and reproductive power of many Chaetopodes, give rise to their frequent multiplication by artifieial and aceidental division. The fragments thus produced are finally developed, and the mutilated animal ultimately regains its lost parts. ${ }^{(5)}$ Some have the power of voluntary division from the least handling of their body, ${ }^{(6)}$ and these separated parts are probably developed to new individuals.

§ 163.

Most of the Annelides reproduee by sexual organs, and the few Lumbrieini which, as just observed, multiply by fissuration, have probably, like their allied species, genital organs at eertain seasons of the year. ${ }^{(1)}$
The eggs of the Annelides present nothing remarkable; they are always spherical, and have a ehorion aud thin vitelline membrane containing a finely-granular vitellus with a germinative vesiele and dot. ${ }^{(2)}$ This

[^105]* [§162, note 4.] See in this connection, Schultze (Ueber die Fortpflanzung durch Theilung bei Naïs proboseidea, in Wiegmann's Arel. 1850, p. 293). He has carefully described this form of multiplication with this animal, and according to him it is a true fissuration, and uot a gemmation, as that of Syllis, described by Frey and Leuckart. See fur-
gle individual of Myrianida fasciata, which is allied to Phyllodoce, produces six young by as many successively disposed divisions. According to Frey aud Leuckart (Beitr. \&c. p. 94, Taf. II. fig. 1), there are with Syllis prolifera also, several young developed simultaneously, one after the other, at the caudal extremity.*
5 See the experiments upon this subject with the Lunbricini by Réaumur, Bonnet, Trembley, and Roesel. Dalyell (Froriep's neue Not. No. 331, 1840, p. 1) has observed a shnilar mode of reproduction with Sabella.

6 This has been observed by Grube, with Polia delineata (Zur A nat. 1. Kiemenwürmer, P. 58). Meckelia annulata has also the same property.

1 Aeolnsoma.
2 See Wagner, Prod. 1Iist. gener. loc. cit. Tab. 1. fig. 9, 10 (Sanguisuga and Nephelis) ; Stannius, in Müller's Areh. 1840, Taf. 11. fig. 1, 2 (Arenicola piscatorum) ; Milne Edwards, Ann. d. Sc. Nat. 1II, 1845, I'. V. fig. 2, 3, Pl. IX. fig. 43,44 (Terebella and Protula); and Sars, in Wiegmann's Arch. 1845, I. Taf. I. fig. 13 (Polynoë cirrata). If the bodies which H. Meckel has figured (Muller's Arch. 1844, p. 481, Taf. XIII, igg. 1323) as the eggs of Lumbricus terrestris, are really such, which I think is doubtful, they differ much
ther Leuckart, Ueber die ungeschlechtlichte Vermehrung bei Nais prohoseidea, in Wiegmann's Arcl. 1851, p. 134, Taf. II. fig. I.-III. ; and Krohn, Ueber die Erscheinungen bei der Fortpflanzung von Syllis prolifera und Autolytus prolifer. 1bid. IS54, p. 66. - Ed.
vitellus is usually whitish or yellowish, but rarely of a more marked eolor. ${ }^{(3)}$

With the Hirudinei and Lumbricini, the spermatie partieles are filamentoid and very aetive, while with the other Annelides they have the form of Cercariae. ${ }^{(4)}$

§ 164.

With the Hirudinei, and Lumbrieini, the two sexes are always united in the same individual. The sexual organs consist of testieles, vasa deferentia, and vesieulae seminales; then, ovaries, oviducts, and the male and female eopulatory organs. The female eopulatory organs are upon the ventral surface of the anterior part of the body and behind the mate organs - so that two individuals by plaeing together their anterior ventral surfaces in an inverse position, ean be mutually impregnated. ${ }^{(1)}$

The exeretory ducts of both sexes are of ten lined with a very delieate ciliated epithelium.
from the egrs of other Annelides, in containing between the vitellus and vitelline anembrane a layer of caudate cells. These cells, of variable number and size, but always of uniform size in the same egg, have often been compared, from their form, to Naviculacae; see Henle, in Müller's Arch. 1835, p. 591, note, and Boffmeister, be vermibus quibusdam, \&x., Tab. II. fig. 14-17.

3 Tbe vitellus is rose-colored, or grecnish, with Clepsine, and violet with Polynoe.

4 The develonment of the spermatic particles of the Hirudinei and Lumbricini is very remarkable. The cell-membrane of the parent cells, in which the spermadic particles are usually developed, disappears before these last are developed. There are then small cells grouped around a discoid nucleus. These cells lengthen out, and finally become spermatic particles, and they remain attached to the clise uttil fully developed. If a bunde of these is placed in water, they separate and become intertwisted in the ustal manner ; sec Hen/e, in Muller's Arch. 1835, p. $58 \frac{1}{4}$, Taf. XIV. fig. 4, 6, 7, 9 ; Kolliker, Beitr. zur Kemintn. d. Geschlechtsverhaltnisse, p. 17, Taf. II. fig. 16, 18, 19 ; H. Meckel, Muller's Arch. 1844, p. 477, Taf. XIIl. fig. 2-10 (Sanguisuga, Pontobdella, and Branchiobdella); and Hoffmeister, De vermibus quibusdam, \&c., Tab. II. fig. 6-10. From Stannius' description and figures of the sperm of Arenicola (Muller's Arch. 1840, p. 375, Taf. XI. fig. 3-6); and Rathhe of that of Amphitrite auricoma (Danzig. Sehrift. loc. cit. p. 67, 'Laf. V. fig. 13); and Quatrefages, of that of Nemertes mandilla (Rêgneanim. illustr. Zooph. Pl. XXXIV. fig. 3-5), we can conclude that the spermatic particles of the other Annelides are de-

* [§163, note 4.] For the spermatic particles of the Hermella, see Quatrefares (Ann. d. Sc. Nat. X. 1848, p. 167) ; he describes them as being of a cercaria-form. My own results on the spermatic particles of the Annelides and their development, do not agree with the view above expressed. Here, as elsewhere, I have found them to be the metamorphosed nucleus of the daughter-cells. It is true that with the Lumbricini they present some peculiarities, but these are apparent only. The mul-berry-like mass to which they are here found adherent, is composed of the remains of the development, and the spermatic particles which seem to radiate from it in all dircetions present this appear-

Veloped like those of the Ifirudinei and Lumbricini. While in the excretoryducts of the sperm, the spermatic particles are found in bundles; and when, as at the procreative period, many of these bundles are collected together, their very active, undulatory movements give a most wonderful appearance beneath the microscope ; see Morren, luc. cit. p. 17S, Tab. XXIV.-XXVIII., and myself in Müller's Arch. 1836, p. 42 . Among the filamentoid spermatic particles of Mirudinei, those of Branchiobdella are worthy of special mention. One of their extremities is delicate and spirally turned (see my observations, Müller's Arch. 1836, p. 42, Taf. 1I. fig. 8), and terminates, according to Kolluiker, by a small vesicle (loc. cit. p. 18, Taf. II. fig. 16, f.). With the Branchiati, the eercarian-form predominates, according to Quatrefages (Comp. Rend. XVII. 1843, p. 424). With the Nemertini, they are cither simply filamentoid (Notospermus, according to Örsted, Entwurf. eince Einth. cl. 'lattwirm. luc. cit. Taf. III. fig. 54) or more cercarian-form (Nemertes, according to Quatrefages, Rembe anim. illustr. Koopht. Pl. XXXIV. fig. 6 ; and Kobliker, Verlandl. d. schweiz, naturf. Gescllselh. Dei ilirer Versammlung zu Chur. 184t, p. 91).

For the spermatic particles of the Annclides, see especially Kolliker in the Neue schweiz. Jealischr: V III. p. 33 .*

1 Sce Bojanus, Isis, 1818, Taf. XXTI. fig. 1 ; Brandt, Med. Zool. IL. Taf. XXX. fig. 25 (Sanguisuga morlicinalis) ; Leo, Muller's Arch. 1835, Taf. XI. IIg. 3 (Piscicola geometra) ; Morren, loc. cit. Tub. XXVII.-XXXI.; and Holfmeister, De vermibus quibusdam, \&c., Tab. I. tig. 29, 30 (Lumbricus and Enchytraeus). \dagger
ance because they arc then just escaping from the daughter-cells, and the more or less adherence of the membrane of these last to the particles, gives the appearances above mentioned in the note. I have observed the same appearances with some of the Coleopterous insects, where the divelopment occurs umistakably in special cells. These particles are, according to my own observation, haillike with the Hirudinci, and Lumbricini, bat are pin-shaped with some of the Capitibranchiati.-DD.
\dagger \§ $16 \frac{1}{2}$, note 1.] See also Leydie, Siebol dand Kölliker's Zeitsch. III. 11ft. 3, p. 318, and Quatrefages, Ann. d. Sc. Nat. XV1II. 1852, 1. 290 (Branchellion).-ED.

With the Nemertini, and Branehiati, the sexes are upon separate indiyiduals, and the genital organs are composed simply of testieles and ovaries.

§ 165.

The strueture of the genital organs of the Nemertini is yet quite obseure. The few researehes hitherto made only furnish the general result that the sexes are separate.

There are numerous glandular follieles situated laterally in the parenehyma of the body between the skin and the intestinal eanal, which are closely aggregated and serially arranged.

With some individuals, these follieles eontain eggs, and with others, sperm. They ought, therefore, to be regarded as ovaries and testieles. Each folliele opens separately upon the surface of the body. ${ }^{(1)}$ There are very contradietory statements as to whether these animals have, or have not, eopulatory organs.
Aeeording to some Naturalists, the worm-like organ, eoneealed in a eanal extending along the baek, and whieh, with both sexes, is often protruded and moved aetively about, ought to be regarded as an excitatory organ, although no eomection between it and the testieles or ovaries, has as yet been found. Aeeording to others, it is a proboseis uneonneeted with the genital organs. ${ }^{(2)}$

§ 166.

The disposition of the genital organs of the Hirudinei and Lumbrieini, is essentially different.
The first have only two simple genital openings, - one male, the other female, both situated, one after the other, upon the median line of the ven-

I See Dusts, Ann. d. Sc. Nat. XXI. 1830, p. 76 , 1'l. II. fig. 5 (Polystemma (Prostomum) armatum) ; Johnston, Mag. of Zool. I. p. 532, P1. XYII. fiz. $2^{\circ}, 6^{\circ}$, Pl. XVIII. fig. 3^{*} (Nemertes and Borlasi($)$; Örsted, Entwurf. einer Beschreib. d. Plattwürm. p. 22, Taf. III. fig. 41 (Tetrastemma varicolor) ; Küliker, Ferhandl. d. schweiz. naturf. Yersamml. zu Chur. p. 91 (Nemertes); and Rathke, Danyig. Schrift. loc. cit. p. 98 (Borlasia striat (a). This last author has not seen the orifices of the genital organs. Quatrefages (Regne anim. illustr. loc. cit. Pl. XXXIV. fig. 1, n. n.) did not sec them with Nemertes Camilla, and Johnston is also silent on this subject. According to Orsted (Entwurf. \&c. loc. cit. P. 25, Taf. III. fig. 47, of Notospermus flaccidus) the Nemertini secrete from the whole surface of their body, a gelatinous mucus, which surrounds the eggs, and thus forms an envelope into which they can draw their bodies. Something similar to this cecurs with the Lumbricini and 11 irudinei. See helow.
2 The Nemertini being of distiact sexes, this organ can be regurdod neither as a penis, nor as an everted spermatic vessel, as Huschke has done (Isis, 1830, p. 682, Taf. \II. fig. 5). More properly could it be considered, with Örsted (Entwurf. \&c. p. 25), as an excitatory organ; although Rathké (Danzig. Schrift. loc. cit. p. 100, and Nov.Act. Acad. Nat. Cur. XX. p. 233) regards it as of a tactile, and Kolliker of a prehensile nature (Verhandl. d. schweiz. P. 90). Other ohservers agree with Ehrenberg (Symb. phys. loc. cit.) that it is wn intestine and an everted cesophagus, its orifice heing a mouth ; but this is uvdoubtedly erroneous. With

Polystemma armitum (Duges, Ann. a. Sc. Natloc. cit. p. 75, Pl. II. fig. 5) Tetrastemma varicolor (Örsted, Entwurf. ©c. p. 23, Taf. Ill. fig. 41), and Nemertes (Johnston, Mag. of Zool. I. p530 , fig. 2 ; Quatrefages, Règne anim. illustr. loc. cit. PI. XXXIV. fig. 2, and Hulliker, Verhandl. I. schweiz. \&c.) there is at the ceutre of this organ is dart pointing firward; which is horny, according to Duge is, and calcoreous, according to Orsted. On each side of this dart, there is a reservoir of many others, smaller and yet imperfect, destined, probably, to replace the former when lost. Duges. Johnston, and Quatrefages, who regard this organ as an intestinal canal, and Kolliker, who considers it prehensile, all regard these darts as a kind of teetl? ; but Örsted thinks they serve to excito the genital organs. For my part, they involuntarily remind me of the darts of the IIelicina.
[Additional Note.] - I have now satisfien myself upon living individuals of Tetrastemma, that the eggs can escape from the visceral cavity through numerous lateral openings in the wall of the body I am also satisfied that with the Nemertini, the walls of the direstive canal (the midule body-cavity according to Quatrefages) are not the points of departure of the genital organs, as Quatrefages thinks, and who also would regard as a digestive tube the snout of these animals, an organ which is yet enigmatical. The very detailed figures which this uaturalist has given (loc. cit.) of the walls of the digestive canal of these animals, present nothing like an ovary, and show no trace of the preseuce of germs.
tral surface. The posterior opening eonneets with a short muscular canal which may be regarded as a reservoir of eggs.

From the base of this reservoir, a narrow spiral eanal passes off, and bifureating into two oviduets, terminates with two round ovaries. ${ }^{(1)}$

From the anterior opening, a long filiform penis may be protruded, which, when not erected, lies spirally conecaled in a bulbous museular sheath. A Ductus ejaculatorius extending from the seminal vesicles, opens into each side of this sheath. These seminal vesicles are formed each by a kind of continuation of the vas deferens into a varieose tortuous canal, which lies in the midst of a dense cellular tissue. The Vasa deferentia are narrow, and passing backwards along the sides of the body, reecive upon their internal surface the short exeretory ducts of the five, nine, or twelve pairs of round isolated testieles, which form a double row near the ventral cord. ${ }^{(2)}$

With many Hirudinei, a portion of the skin is comnected with the sexual function. Such is the ease with Nephelis, with which numerous cutaneous glands are developed upon the back and belly near the feurale genital opening. The skin soon has a bloated, transparent appearance, so that the animal appears to have a girdle about its anterior extremity. Before the deposition of the eggs, these glands secrete a substanee which hardens in water, and surrounds the body of the animal like a horny belt. ‘This beit is filled with a greater or less quantity of eggs; the animal then withdraws, or slips out from it, while its two extremities are closed up by its own elasticity; but the embryos developed in this egg-eapsule are not thereby prevented from making their eseape. ${ }^{(3)}$

The Sanguisugae form cocoons in a similar manner; but they are surrounded with a very thiek, spongy substance. ${ }^{(4)}$ The various species of Clepsine form sac-like eapsules for their eggs, and which they usually carry about with them, attached under their belly, - shielding them with their body at the appreach of danger. (9)

[^106][^107]five pairs of these organs; with Haemopis, eight ; and with Aulacostomum, twelve (Moquin-Tandon, Monog1. loc. cit. 11. 11I. fig. 8 ; Pl. I. liy. 3, P1. 11. fig. 10). With Neqhelis, the arrangement is different, there being on each side of the posterior part of the body, numerous testicular vesicles united in a botryoidal manner; see Moquin-Tandon, Monogr. loc. cit. Pl. III. fig. 4.*
3 Sce Rayer, Ann. d. Sc. Nat. IV. 182t, Pl. X. fig. 1-6, and Moquin-Tandon, loc. cit. Pl. V1. fig. 4, e-h. Thesc cocoons are often found as brown scales, glued to aquatic plants. Piscicola forms similar cocoons, but they never have more than onc egg each ; see Leo, loc. cit. p. 425, Taf. XI. fig. 6 . and Brightwell, Ann. of Nat. Hist. IX. 1842, ? $11 . \dagger$
4 Sce Rayer, loc. cit. Pl. X. fig. 10, and MoquinTandon, loc. cit. Pl. V. According to Wedelis (Froriep's neue Not. No. 452,1842, 1. 183), the medicinal leech cjects from the mouth as a scum, the spongy envelope of these cocoons.
s̀ sce Grube, Untersuch. äber die Entwick. d. Clepsinen, $1844, \mathrm{p} .1$.
\dagger [§ 166, note 3.] Sce, for an histological examination of these genital glands in Piscicola, Leydig, loe. cit. p. 122, Taf. IX. fig. 43, e. 49, a. b. c. —Ed.

§ 167.

The genital organs of the Lumbrieini are very difficult of disseetion; for often those of both sexes are intimately united together into a eommon mass. It is eertain, however, that the male and female orifiees are always in pairs and situated at the anterior extremity of the body, near the ventral median line. ${ }^{(1)}$
These orifiees eommunicate with more or less numerous glands, saes, and pyriform or eylindrical vesieles.

Their nature as testieles, ovaries or sperm-reeeptacles, is known only by their contents. As yet it has been possible to traee only very imperfectly their excretory ducts. With some, two of these caccal organs have been observed intersuseepted in eaeh other. The internal one contained spermatic partieles, and should therefore be regarded as a testicle; while the outer one eontained at its base, eggs and egg-germs, and ought therefore to be taken for an ovary. ${ }^{(2)}$

The larger Lumbricini appear to be without eopulatory organs, the eollar situated baek of the genital orifices, taking their plaee. With many, it is situated ehiefly on the back, but terminates on the belly with two long lateral swellings, whieh, during coition, seize those of the other individual. ${ }^{(3)}$ This eollar, moreover, is composed of a mass of glandular follieles, whieh eopiously seerete, during the sexual period, a white, viscous liquid. It is then very fully developed, but at other periods it is scarcely visible. The belt whieh is developed near the genital openings of the smaller Lum-

[^108]bundles of spermatic particles, but never their cells of development. Duges has made a similar observation with his Nais filiformis (Ann. d. Sc. Nat. loc. cit. p. 320, Pl. VII. fig. 2), only he does not specify the contents of the organs. Menge, also, has observed these two caeca with Euaxes: but he unhesitatingly regards them as testicles (Wiegmann's Arch. 1845, 1. p. 32 Taf. 111. fig. 2, aa. tig. 3). Never having seen any connectiou between these caeca and the testicles behind them, 1 am disposed to think that the two posterior genital opeuings of some Lumbricini, are the eommon orifices of the invaginated testieles and ovaries, while the anterior caeca, which are filled at certain times with sperm, are two isolated Receptacula seminis. During the mutual copulation, the sperm will pass from the testicles into these reservoirs, in order to be used during the subsequent deposition of the cggs.
From Hoffmeister's description (Die bis jetat bekannt. Arten aus der Familic der Regenwürmer, 1845, p. 15) of the copulatory act with Lumbricus agricola, it would appear that the sperm remains equally distant from the female organs, being received into special fossae, whieh correspond perhaps to the Receptaculaseminis. Nais proboscidea, although having a pair of genital openinus, has only one testiculo-ovarian canal, both of which although invaginated, have a very active and imber pendent peristalticaction. They are bifureated anteriorly. See Gruithuisen (Nov, Act. Acerd. Nat. Cur. XI. p. 246, Tab. XXXV. fig. 4, 5), who has very correctly perceived the eggs in the bottom of the ovarian sac, but not the nature of the invaginated testicular canal.
3 With Lumbricus olidus, the two copulatins individuals seize each other so tightly by their cullars, that taeh of these animals completely envelops the other by this organ ; see Hoffmeister, in Wiegmann's Areli. 1843, 1. p. 190, and, De vermibus quibusdam, Tab. I. fig. 30.
bricini at this period, is of an analogous nature. It is also composed of numerous cutaneous glands, closely aggregated, and extending completely over many scgments of the body. ${ }^{(4)}$ The secretion of this collar is like that obscrved with the Hirudinei, probably for the formation of cocoons. But these cocoons differ from those of the Hirudinei in having the place of their opening prolonged into a long, narrow neck. ${ }^{(5)}$

§ 168.

The Branchiati resemble the Arthropoda in their annulated body, their distinct head endowed with organs of sense, the structure of their nervous system, and the dcvelopment of their locomotive organs; but, from the simplicity of their locomotive apparatus, and the complete absence of copulatory organs, they would be carricd towards the Zoophytes.

Here the sexes are scparate, and the genital organs of both the Capitibranchiati, and Dorsibranchiati, appear as simple glandular bodics, ovarics or testicles, which project from the ventral surface into the cavity of the body between the fasciculi of the cutancous muscle. ${ }^{(1)}$ At the sexual period, they are filled with eggs, or spermatic particles, although at other times they can scarcely be secn. ${ }^{(2)}$
Neither the testicles nor the ovaries have excretory ducts which open upon the surface of the body. The sperm and eggs cseape into the cavity of the body, which, during this period is thereby filled throughout. ${ }^{(3)}$

It is possible that the scarcely visible orifices said to be conccaled be-

Abstract

4 Saenuris, Nais, \&c.; see Gruithuisen, loc. cit. Tab. XXXV. Gg. 5, b.b. os With the large spccies of Lumbricus, each cocoon has from onc to six eggs (L. Dufour, Ann. d. Sc. Nat. XIV. 1823, p. 216, Pl. XII. B. or, Froriep's Notiz. No. 472, 1825, P. 149, fig. 13-16; and Hoffmeister, De vermibus quibasdam, Tab. I. and Die Arten aus der Familie, \&c., p. 16, 25, 42). With the smaller Lambricini, as with Saenuris, Euaxes, Nais, \&c., the cocoons contain nearly always five to eight eggs (Dugets, loc. cit. XV. Pl. VII. fig. 5, Nais). Mlost of these cocoous have appendages hy which they are attached to vegetables and other bodies. Hoffmeister (Die Arten aus der Fam. \&c. p. 42, hg. 9, c.) has figured a very remarkable husk-shaped cocoon of a new species, Criodrilus lacuит.

1 Sec Treviranus, Zeitsch. f. Physiol. III. 1827, p. 165, Taf. XIII. fig. 17, 18 (Aphrodite) ; Rathke, De Bopyro et Nereide, p. 39, Tah. II. fig. 12, 1. (Nereis), and Danzig. Schrift. loc. cit. p. 66, Taf. V. fir. 6, hh. fig. 11, aa. (Amphitrite); Grube, Kur Anat. d. Kiemenwurmer, p. 16, Taf. I. fig. 1, 2, in. (Arenicola), p. 4t, Taf. II. fig. 6, y. z. (Eunice); also, Nov. Act. Acad. XX. p. 201, Tab. X. fig. 13,15 , m. (Ammotrypane). Rathke's and Grube's opinion upon the presence of both male and female organs with the same individual is only an uncertain supposition, founded upon no histological examination of the parts. 2 This condition of the genital glands after the procreative season, is the reason why, as yet, we posscess so few facts as to their structure. Most observers, and among them Rathie and Grube, are

* [§ 168, note 2.] According to Quatrefages (Ann. d. Sc. Nat. X. 1848, p. 46) the sexes are separate with the Hermella. Both the testicle and the ovary consist of a delicate areolar tissue adherent to the infcrior internal surface of the general cavity of the body. These genital organs are evidently tem-
of the opinion that the Branchiati, like the Lumbricini, are hermaphrodites. But Quatrefages, from his knowledge of the development of the spermatic particles, has recognized separate sexes with the most different species, thus: Terebella, Sabella, Aricinella, Nephtys, Syllis, Glycera, Eunice, Sigalion, Phyllodoce, Nereis, and Aphrodite; see Coup. Rend. XV1I. 184\%, p. 423. But before this, Stannius had concluded that the sexes were scparate with Arcnicola, from a difference in the contents of the cavity of the bodies of different individuals (Muller's Arch. 1840, p. 375). The glands at the cephalic extremity of the Branchiati which live in cases, and which Grube has regarded as male genital organs, are certainly not such, for they occur with both sexes, and do not change in size during the procreative season. (See § 161, note 4.)* 3 According to Quatrefages (Compt. rend. XVII. 1843, loc. cit.), the parent sperm-cells leave the testicle before the formation of the spermatic particles, which occurs in the cavity of the body. This is confirmed with Arenicola, by Stannius (Mialler's Arch. 1840, loc. cit.). According to Krohn (Wiegmann's Arch. 1845, I. p. 182), the eggs and the sporuatic particles, with Alciopa, are developerl free in the visceral cavity, without the intervention of special organs, ovarics and testicles. Frey and Leuchart (Beitr. \&c. p. 88) think they have observed the same fact with Nereis, Syllis, Phyllodoce, Aonis, Ammotrypane, Ephesia, Hermella, Fermilia, Fabricia, and Spirorbis; they speak of the presence of ovaries and testicles in certain Auuelides (Aphrodite, Arenicola) as the exccptiou.
porary, for they are not found in many individuals, having, probably, quite disappeared from atrophy after the procreative period. This fact should be remembered in the study of the genitalia of other Annelides. - Ed.
tween the feet of many Branchiati, serve for the escape of the sperm and eggs. ${ }^{(4)}$ With others, the cavity of the body opens outwardly, probably by a loss of the last segment, especially with those which are viviparous. ${ }^{(5)}$

The water is undoubtedly the medium of fecundation, and receives the sperm from the males, probably through orifices like those which serve for the escape of eggs with the fenale.

With the viviparous Branchiati, water filled with sperm can enter the body and fecundate the eggs through these same openings.

§ 169.

The development of the Annelides as far as yet known, occurs after two different types; but it always commences with a complete segmentation of the vitellus.
I. With the Hirudinei, after the vitellus has divided into many large eells, a central one becomes distinguished from the others by its still further division; this becomes the digestive tube. The others, still dividing, form a primitive embryonic part in which appears the future ventral and nervous portion.

The embryo is at first spherical, and ultimately is covered with a delicate eiliary epithelium. A kind of sucker is then developed upon a certain point of its surface; this comnects with the stomach, and through it is received, for food, the albumen surrounding the embryo. It then gradually lengthens, and, losing its ciliary epithelium before the escape from the egg, a sucker appears upon the posterior extremity, and it finally becomes fully developed without a Metamorphosis. ${ }^{(1)}$
II. With the Branchiati, there is a complete metamorphosis. The segmentation of the vitellus is uniform throughout, and this last is finally changed into a round embryo - which, escaping from the egg, swims freely about like an Infusorium, by means of the ciliated epithelium which covers its whole body. The embryo then lengthens, and the epithelium disappears

> 4 According to Milne Edwards' observations upon several Capitibranchiati, as Terebella, Serpula, Protula, \&c., the eggs are glued together in masses by an albuminous substance, aurl attached to the stones of the anterior border of their cases ; see Ann. d. Sc. Nat. III. 1845, p. 148, 161, Pl. V. fig. 1, Pl. V1I. fig. 25, Pl. 1X. fig. 42 . With Polynoe cirrata, on the other hand, masses of ergs are attached and borne about on the soales of their body; see Sars, in Wiegmann's Arch. 18t5., I.p. 13, Taf. I. fig. 12. With the females of Exogone and Cystonereis, the eggs are situated in longitudinal rows upon the ventral surface; see Örsted, in Wiegmann's Arch. 1845, I. p. 21, Taf. 1I. fig. 4, and Kölliker, in an as yet unpublished memoir for the IIelvetic Society, titled: Einige Worte zirr Entwickelungsgeschichte von Eunice, von H. Koch in Trieste, mit einem Nachwort von Kölliker.
> [Additional note.] The often-quoted memoir of Koch and Kulliker on the development of the An-

[^109]nelides has recently appeared in the Neue Schwei/. Denkschr. VIII.*
${ }^{5}$ According to my friend H. Koch of Trieste (in the MS. just indicated), the eggs of a species allied to Cunice sanguinea, are developed in the cavity of the female body, whence the young escape through a rupture of its posterior extremity.
1 See F. de Fitippi, Lettera sopra l'Anatomia, e Io sviluppo delle Clepsine, l'avia, 1839, Tav. II. ; Grube, Untcrsuch. uber die Entwick. d. Clepsine, p. 15, Taf. I., and Frey, Zur Entwickel. von. Nephelis vulgaris, in Froriep's neue Not. No. 807, 1846, p. 228. The old observations of E. II. We ber (Meckel's Arch. 1828, p. 366, Taf. X. X1.) and R. Wagner (Isis, 1832, p. 398, Taf. IV.) agree very well with those of Filippi

As yet, we possess nothing upon the development of Lumbricini, whose young, as is known, like those of the Hirudinei, leave their cocoons without undergoing any metamorphosis. \dagger
servation, from its singularity, requires confirmation. - Ed.
\dagger \§ $\mathbf{1 6 9}$, note 1] For the embryology of $N e$ mertes, see Desor, Boston Jour. Nat. Ilist. VI. p. 1. The general facts accord with those mentioned in the text. - En.
exeept upon the belt-like parts of the two extremities. The future anterior extremity is direeted in front during the motions of the aumal, and eyes appear upon it; while the other extremity is gradually divided into segments upon whieh bristles and feet appear. ${ }^{(2)}$

While the embryos are thus aequiring the adult form, there appear upon the cephalie extremity and upon the sides of the body, tentaeles, eirri, and branehiae, of forms which vary aeeording to families, genera and speeies. The development of the digestive and eireulatory organs oeeurs also with equal paee. ${ }^{(3)}$

2 See Loven in Wiegmonn's Areh. 1842, I. p. 302, Taf. VII. (Nereis); sars, Ibid. 1845, I. p. 12, Taf I. fig. 1-21. (Polynoé); Orsted, Ibid. p. 20. Taf. II. (Exogont); and Milne Edwards, Ann. d. Sc. Nat. IIl. 1845, p. 145, Pl. Y.-IX. or, Froriep's neue Not. No. 721, p. 257 ('Terfbella, Protula, and Nereis). Kolliker (in MS. already cited) has also oiserved the development of an Exogone, and of a Cystonereis, an allied genus. Lere the embryo is not formed through a complete and uniform segmentation of the vitellus, but, as with the Mirudinei, the formation is preceded by an irregular division of that portion to be the ventral and neavous parts. He, at the same time, calls the attention to a figure of Milne Edwards, representing the development of Protula, from which it would appear that other Branchiati also are developed like the Ilirudinei ; sce Ann. d. Sc. Nat. loc. cit. P'I. IX. fig. $47 .{ }^{*}$

3 One ought therefore to be careful about forming distinct genera from these larval Branchiati. Thus, Sabellina brachycera, described by Dujardin (Anu. d. Sc. Nat. XI. 1839, p. 201, Pl. VII.

* [§ 169, note 2.] For the cmbryology of Polynoë, see Desor, loc. cit. p. 12. It arrees closely with that of Nemertes; see also Max Muller, in Müller's Arch. 1851, p. 323. - Ev.
fig. 6), is only a larval Terebella, as will be seen by referring to Milne Eduards' figures of the development of Tcrebella nebulosa (Ann. d. Se. Nat. loc. cit. PI. VII. fiq. 24, 25). Anisomelus uteus, of Templeton (Transact. Zool. Soc. II 1841, p. 27, Pl. X Y. fig. 9-14), is perhaps only a young Serpula.
The absence of branchiae and blood-vessels which Quatrefages has noticed with many snall Branchiati of which he has made new generit (as Aphlebine, and Doyeria, dc.), would lead one to suspect that they are only larvac; see Am. it. Sc. Nat. I. 1841, p. 18, or Froriep's neue Not. No. 726, p. 341. H. Koch (see ahove, $\$ 168$, note 5) has lately observed that the yomg individuals found in the body of Eunice are identical with the Lumbrinereis of De Blainville.
The new animal described by Muller and Busch (Muller's Arch. 1846, p. 10t, Maf. V. fig. 3-5, and 1847, p. 187 , Taf. VIII. fig. 1-3) under the name of Mesotrocha sexoculata, appears likewise to be only a young larva of an Annelid. +
\dagger [§ $\mathbf{1 6 9}$, note 3.] Sce Quatrefares (Sur l'Embryogenie des Annelides, in Aun. d. Sc. Nat. X'. 1848, p. 153). - ED.

BOOK NINTH.

ACEPHALA.

CLASSIFICATION.

$$
\S 170
$$

The Acephala are principally characterized in having a headless body, and a very large mantle, which so envelops the body, that there is a spacious and more or less closed cavity in which the oral and anal orifices are often entirely concealed.

Their body is either wholly asymmetrical, or divided into a right and a left side. In this last case, the organs, excepting the digestive canal, are in pairs; and the two sides are perfectly symmetrical, or one is developed at the expense of the other. All Acephala are aquatic ; many are permanently attached during life; others creep about, and a fow only can swim freely. Copulatory organs are wanting throughout.

ORDER I. TUNICATA.

Body wholly asymmetrical and so cnclosed in the mantle, that there are only two narrow openings.

Family: Ascidiae.

Genera: A. Compositae.
Didemnum, Diazona, Aplidium, Botryllus, Botryllö̈des, Leptoclinum, Eucoelium, Synoecium, Polyclinum, Sigillina, Perophora, Pyrosoma. B. Simplices.

Clavelina, Phallusia, Rhopaluea, Boltenia, Cynthia, Chelyosoma.
Family: Salpinae.
Genus: Salpa.

ORDER II. BRACHIOPODA.

Animals which are symmetrical and bivalved, and whose widely-open mantle encloses two fringed, arm-like, protractile tentacles.

Genera: Orbicula, Terebratula, Lingula.
ORDER III. LAMELLIBRANCHIA.
Animals which are symmetrical and bivalved, and whose more or less closed mantle encloses two pairs of lamelliform tentacles and branchiae.

SUB-ORDER I. MONOMYA.
Family: Ostracea.
Genera: Ostrea, Anomia.
Family : Pectinea.
Genera: Pecten, Spondylus, Lima.
Family: Malleacea.
Genera: Malleus, Perna, Crenatula.
SUb-ORDER II. DIMYA.
Family: Aviculacea.
Genera: Avicula, Meleagrina, Pinna.
Family: Arcacea.
Genera: Arca, Pectunculus, Trigonia, Nucula.
Family: Naiades.
Genera: Anodonta, Unio.
Family: Mytilacea.
Genera: Mytilus, Modiola, Lithodomus, Tichogonia.
Family: Cifamacea.
Genera: Chama, Isocardia.
Family: Cardiacea.
Genera: Cardium, Lucina, Hiatella, Cyclas, Piscidium, Tellina, Psammobia, Venus, Cytherea, Venerupis, Mactra, Lutraria, Ungulina.

Family : Pyloridae.
Genera: Mya, Solen, Solenomya, Panopaea.

SUB-ORDER III. INCLUSA.
Family: Teredina.
Genera : Pholas, Teredo.

Family: Aspergillina.
 Genera: Aspergillum, Clavagella.

BIBLIOGRAPHY.

Poli. Testacca utriusque Siciliae corumque historia et anatome. 1791-95.
J. Rathke. Om Dammuslingen, in the Skrivter af Naturhistorie-Selskabet, IV. Kjöbenhavn, 1797, p. 139.

Cuoier. Mémoirc sur l'animal de la Lingulc, in the Ann du Mus. d'Hist. Nat. I. 1802, p. 69. Mémoire sur les Thalides ct sur les Biphores, Ibid. IV. 1804, p. 360. Both of these are included in his Mém. pour servir à l'histoire et à l'anatomie des mollusques. Paris, 1817.

Schalk. De Ascidiarum structura, Disscrt. Mal. 1814.
Savigny. Mémoires sur les animaux sans vertèbres, Pt. II. 1816. Recherches anatomiques sur les Ascidies eomposées et sur les Ascidies simples. Also, Isis, 1820 , lit. Anz. p. 659, Taf. XI.-XXI.

Carus. Beiträge zur Anatomic und Physiologie du Seescheiden (Ascidiae), in Meckel's deutsch. Arch. 1816, p. 569, and Nov. Act. Acad. Leop. Carol. X. 1821, p. 423, Tab. XXXVI. XXXVII.

Cuvier. Mémoires sur les Ascidies et sur leur Anatomie; in the Mém. du Mus. d'hist. Nat. II. 1815, p. 10; also Isis, 1820, p. 387, Taf. 8, 9.

Chamisso. De animalibus quibusdam e classe vermium Linnaeana. Fasc. I. De Salpis. 1819.

Bojanus. Ueber die Athem-und Kreislaufwerkzeuge der zweischaligen Muscheln. Isis, 1819, p. 42, Taf. I. II., 1820, p. 404, and 1827, p. 752, Taf. IX.

Eysenhardt. Ueber einige merkwürdige Lebenscrscheinungen an Ascidien, in the Nov. Act. Acad. Leop. XI. 1823, p. 250, Tab. XXXVI. XXXVII.

Pfeiffer. Naturgeschichte deutscher Land-und Süsswasser-Mollusken. Abth. II. 1825.

Unger. De Anodonta anatina. Dissert. Vindobon 1827.
Carus. Neue Untersuchungen über die Entwickelungsgeschichte unserer Flussmuschel, in the Nov. Act. Acad. Leop. XVI. 1832, pt. I. Tab. I.-IV.

Meyen. Beiträge zur Zoologie. Abhandl. I.; Ueber dic Salpen. Ibid. p. 363, Tab. XXVII.-XXIX.

Owen. On the Anatomy of the Brachiopoda, in the Trans. Zool. Soc. I. 1835, p. 145, Pl. XXII. XXIII.; also, in Isis, 1835, p. 143, and Ann. d. Sc. Nat. Ill. 1835, p. 52.

Deshayes. Conchifera. Cyclop. Anat. Phys. I. p. 694. London, 1836.
Eschricht. Anatomisk-physiologiske Undersögelser over Salperne. Kjöbenhavn, 1840 ; also, in Isis, 1842, p. 467, Taf. II. III., and : Anatomisk Beskrivelse of Chelyosoma Mac-Leayanum. Kjöbenhavn, 1841.

Milne Edwards. Obscrvations sur les Ascidies composées. Paris, 1841.
Garner. On the Anatomy of the Lamellibranchiate Conchifera, in the Trans. Zool. Soc. of London, II. 1841, p. 87, Pl. XVIII.-XX.

Neuwyler. Die Generationsorgane von Unio und Anodonta, in the Neuen Denkschrift. der allg. sclweizerisehen Gesellsch. f. die gesammten Naturwissensch. VI. 1842, p. 1, Taf. I.-III.

Vogt. Anatomie der Lingula anatina. Ibid. VII. 1843, p. 1, Taf. I. II. Van Beneden. Mémoire sur l'Kmbryogénie, l'Anatomie et la Physiologie des Ascidies simples, \&e., in the Bullet. de l'Acad. royale de Belgique, XIII. No. 2.

ADDITIONAL BIBLTOGRAPMY.

Kolliker. Ueber das Vorkom. d. Holzfas. im Thierreich., in the Ann. d. Sc. Nat. 1846, p. 193, Pl. V.-VII.

Van Beneden. Recherches sur l'Embryogénie, l'Anatomic, et la Plysiologie des Ascidies simples, in the Mém. de l'Aead. Roy. de Belgique, XXX. 1847.

Frey and Leuckart. Beiträgen zur Kenntniss der wirbellosen Thiere mit besonderer Berucksichtigung der Fauna des Norddentschen Meeres. Braunsehweig, 1847, p. 46, Anatomie des Pfahlwurmes (Teredo navalis).

Deshayes. Exploration scientifique de l'Algérie, pendant les années 1840, 1841, 1842. Histoire naturelle des Mollusques, avee un Atlas de 117 Planches. Paris, 1847.

Ed. Forbes and Hanley. A ITistory of British Mollusea and their Shells. 4 vol. London, 1853. [Contains many anatomical details.]

Dalyell, T. G. Rare and remarkable animals of Scotland, represented from living subjects, with practical observations on their nature. Vol. II. London, 1848, p. 138-173, Pl. XXXIV.-XLIII. (Ascidiae).

Lovén. Om utveeklipgen af Mollusca acephala, Oversigt af k. Vet. Akad. Förhandl. 5te Argangen, Dec. 1848. Stoekholnı, 1849, p. 233-257; or, its translation in Muiller's Arch. 1848, p. 531; or, in Wiegmann's Areh. 1849, p. 312.

Quatrefages. Mémoire sur le Genre Taret (Teredo Lin.), in the Ann. d. Sc. Nat. XI. 1849, p. 19.
__ Mémoire sur l'emhryogínie des Tarets. Tbid. p. 102.
T. Rupert Jones. Cyclop. Anat. and Physiol. IV. p. 1185, Art. Tunicata.
G. A. F. Keber. Beitrüge zur Anatomic und Physiologie der Weiehtheire, Königsberg, 1851. [Devoted to the nervous, cireulatory, and respiratory systems of the fresh-water Bivalvia.] - Ed.

CHAPTER I.

CUTANEOUS SYSTEM.

§ 171.

The body of the Acephala is enveloped in a speeial mantle, which, with the Tunicata, is composed of a leathery, cartilaginous, or gelatinous substance, searcely at all irritable. ${ }^{(1)}$ But with the Lamellibranehia, and Brachiopoda, it is composed of a contractile, fleshy membrane. With the Tunicata, it eom-

[^110]pletely surrounds the body and has only an oral and anal opening; ; ${ }^{(2)}$ and with the compound specics, it is continuous with the common substance which contains the individuals and binds them into more or less regular groups, and is, therefore, analogous to a corallum. With the Lamellibranchia, and Brachiopoda, it is more or less open, or even may be wholly divided into halves ; ${ }^{(3)}$ it has here the property, especially upon its borders, of secreting calcareous matter for the formation of the shell.

§ 172.

With the Tunicata, the mantle is remarkable both for its histological structure, and its chemical composition. Recent investigations have shown that, with the Ascidiae and Salpinae, it is composed of Cellulose and therefore of a non-azotized substance. ${ }^{(1)}$

Its anatomical structure is quite complicated. Usually it can easily be separated into two or threc layers, the internal one of which is composed, in some species, of a lamcllated epithelium formed of a single layer of polygonal nucleated cells. ${ }^{(2)}$

Its principal mass in both the compound and simple forms of this order. is formed of a single, or a double confluent layer of a homogeneous transparent substance, through which are seattered granules, nuclei, groups of pigment molecules, cells, fibres, and crystals of carbonate of lime, - all varying according to genera and species, and often differently arranged in one and the same species. ${ }^{(3)}$ But in cach species, they are variously arranged in the inner portion of this mantle-substance. ${ }^{(t)}$ In some species

[^111]3 This basement substance is homogeneous, and has tbe same chemical properties as cellulose.

4 Kölliker has made very detailed investigations upon the structure of this mantle. He has kindly allowed me to communicatc his results, and authorized me to make use of them without waiting for the publication of his work in common with Löwig (Ueber das Vorkommen von Ilolzfaser im Thierreich). According to them, the middle layer of the mantle of Phallusia monachus, and sulcata, Clavelina. lepadiformis, and Aplidium gibbulosum, contains numerous nuclei and starlike crystals lodged in a transparent structureless substance. But the external layer of this organ is filled with very large round cells with very tbin walls, containing no nucleus, but filled with a transparent liquid. With Clavelina lepadiformis, the peduncle and branches of the whole mantle are so crowded with non-nucleated cells, some round and others elongated, that the basementsubstance is apparently absent. It has therefore quite the aspect of a vegetable tissue. With Aplidium gibbulosum, and Botryllus violaceus, the cells of the external layer contain carbonate of lime which uitimately so increases that it gives them a petrified aspect. With Didemnum candi$d u m$, these petrified cells have calcigerous rays and are so numerous that the whole mass of this compound Ascidian appears filled with white starlike corpuscles.

According to Milne Edwards, this is true also of Leptoclinum maculosum (Observ. sur les Ascidiés composées, p. 81, I'l. VIII. fig. $2^{\text {') }}$.

With Diazona violaceum, Pyrosoma giganteum, Botryllus polycyclus, Salpa maxima, and bicaudata, the mantle is without these elegant cells, and in the basement-substance are found only granules and nuclei, and with Diazona, in addition, are pigment-granules, aud crystalline points, or calcareous concretions.

of this order, the mantle receives, moreover, numerous blood-vessels, or ramified prolongations of the body of the animal. ${ }^{(5)}$

These last are spherical or star-like, with Salpa maxima, and dendritic with Salpa bicaudata; with these species they are not soluble in hydrochloric acid, and are therefore probably composed of silex. In the mantle of Botryllus, there are, in certain places, peculiar fiexuous fibres running in all directions. If these are treated with potassa they will appear evidently composed of cellulose.
Accorting to Folliker, the structure of the mantle of Cynthia payillata is still more complicated. Its middle layer is composed of longitudinal and circular flexuous non-azotized fibres. Between these lie granules, nuclei, crystals and cells; these cells are nucleated, and contain, sometimes pigment granules, and sometimes daughter-cells which gives them the appearance of those of cartilare.
folliker was unable to determinc the structure of the third and external layer which is horny, for he had at his disposal only alcoholic specimens of this Cynthia. He saw however that it united with the middle layer to form the spines which project from the surface of the skin.

In the mantle of Cynthia pomaria, the longitudinal fibres predominate, and between them lie crystals, round pigment-cells, and other cells which

* [\$ 172, note 4.] The presence of cellulose in animal tissues is a fact of no inconsiderable importance in animal and vegetable physiology. The subject has recently received much attention from Schacht (Muller's Arch. 1851, p. 176), and his conclusions are sufficiently interesting to be presented in full.
"1. In the mantle of the Ascidiae there is a substance insoluble in caustic potass, but soluble in sulphuric acid, which is turned to a beautiful blue by iodinc and sulphuric acid, and which therefore consists entirely of cellulose. This substance constitutes the interstitial substance of the cells; in the mantle of Phallusia it is homogeneous, but in Cynthia it occurs for the most part in a fibrous torm.
" 2 . The mantle of the Ascidiae contains besidc this cellulose, another material which is soluble in caustic potass, but insoluble in sulphuric acid, and not colored blue by iodine and sulphuric acid, and which consequently is not cellulose ; in the mantle of Phallusia it is only sparingly present, but in Cynthia and the new Chilian Ascidian, it is much more abundant and alone constitutes the corneous epidermis of their mantle.
" 3 . The membrane of the cells in the mantle of Phallusia does not consist of cellulose, it is colored brown by iodine and sulphmic acil ; it is soluble in caustic potass, and behaves exactly like an animal membrane as do the nuclei and vessels.
"4. In the mantle of Phallusia, cells abound in a homogencous, interstitial substance composed of cellulose ; it is only at the inner margin of the mantle that fibres composed of cellulose, with nuclei among them, make their appearance. In Cynthia, \&c., there are scarccly any traces of cells, while the nuclei and cellulose fibres abound.
" 5. A tessellated epithelium, containing no cellu-
are peculiar and filled with yellow corpuscles ; and finally, a third variety arising from the transformation of the pigment-cells, whose walls are gradually thickened and ultimately split up into filaments, forming concentric layers around the cellcavity. When subjected to potassa, these celluembranes are decomposed, like the principal fibres, into an insoluble, non-azotized substance, while all the other elements of the mantle entirety disappear under the action of this agent.

The researches of Kölliker and Lowig upon the mantle of the Tunicata, have been \because cently published in the Ann. d. Sc. Nat. V. 18:6, p. 193, Pl. V.-VII.*

5 Blood-vessels are found in the mantle of var:ous Phallusiae ; they are spread out in a reticulated manner, especially in the external layer. See Cuvier, Mém. sur les Ascidiés; \&c., p. 15, Pl. III. fig. 1 (Phallusia mamillaris) ; Suvign!, Mém. \&c. p. 102, PI. IX. fig. 1. B. (Phallusia sulcata); and Delle Chiaje, Descrizione e notumia decli animali invertebrati della Sicilia citenor. Tom. III. 1841, p. 33, Tav. LXXXIV. fig. 2 (Phatlusia monachus).
lose, covers the inner surface of the three Ascidiae which I cxamined ; the outer surface of the manthe of Phallusia appears to have a similar epithelium.
" 6 . There are two essential points of difference between the modes in which cellulose occurs in the Ascidiae and in the vegetable kingdom :
"(1.) In Phallusia, the cellulose constitutes the inter-cellular substance, but does not, as in plants form an integral part of the cell-wall itself.
"(2.) In Cynthia and other species, the cellulose forms free fibres, a form in which it is never observed in the vegetable kingdom.
" 7 . The substance of the mantle of the Ascidiae is not disintegrated by boiling with caustic potass and nitric acid, like the vegetable cellular tissuc, into its clementary parts; therc is in it none of the inter-cellular substance universally present in vegetable tissues, and by which the cells are connected but which inter-cellular material is ncver composed of cellulose, as it resists sulphuric acid, but is soluble in caustic potass, as well as by maceration;" see loc. cit. p. 197, 198. This valuable paper is accompanied with three colored plates representing sections, \&c., of the mantle-tissues, drawn by the camera lucida.
From this it is clear that this discovery of cellulose in animals is very far from confounding the animal and vegetable kingdoms, for whatever else may be said, the previously established law that the animal cell-membrane always contains nitrogen, retains its force.
Sce, also, the report of Payen on Kölliker and Läwig's paper, before the Institute, in the Compt. Rend. 1846, XXII. p. 581.

But see for some dissenting views on this subject, Huxley (Quarterly Jour. of Microscop. Sc. Nor 1, Oct. 1852, p. 22). - Ed.

§ 173.

With the Bivalvia, the mantle exhibits (especially near its free borders), contractile motions upon the slightest touch. These are due to numerous muscular fibres which traverse in every direction its granular parcnchyma, but are most abundant in the borders. It contains here, moreover, nerves, blood and aquiferous vessels, and in some species, even genital organs. The borders of the mantle of the Lamellibranchia are often provided with very sensitive contractile tentacles; ${ }^{(1)}$ these are rarcly wanting around the anal opening, -an orifice which serves also for the respiration. ${ }^{(2)}$ In many, this anal opening is divided by a septum into a round, superior and inferior orifice. ${ }^{(3)}$ The borders of these two orifices are often prolonged each into a longer or shorter fleshy tube (Sipho). These two tubes, which are often blended together, project considerably out beyond the mantle and shell, but usually can be wholly withdrawn. ${ }^{(4)}$

With the Brachiopoda, the border of the mantle has, instead of retractile tentacles, - hyaline, radiating filaments, which are hollow and deeply inserted in the substance of the mantlc. ${ }^{\text {(j) }}$

With the Lamellibranchia, and Brachiopoda, the internal surface of the mantle is covered with ciliated epithelium, which extends also upon the abdomen, foot, oral tentacles, and branchial lamellae.

This epithclium is of great importance, since it constantly directs currents of water into the mantle, and thereby food is brought to the mouth, fresh water to the branchiae, the eggs and sperm are carried away from the genital openings, and the faeces are rejected outwardly. The cxistence of this epithelium makes it clear how these animals can continue to live when buried in wood or stone.

$$
\oint 174 .
$$

The mantle of the Bivalvia is covered by two shells, whose infinite variety of form serves for their zoological classification into genera and species. These shells are composed for the most part of carbonate of lime so closely

[^112]blended in a homogeneous organic base, that this last is not apparent except by the aid of acids. In a few only, does this organic base predominate over the caleareous matter. ${ }^{(1)}$

The intinate structure of shells is quite varied, ${ }^{(2)}$ but nearly always an external fibrous, and an internal lamellated layer may be distinguished by aid of a simple lens. The external layer appears to have a crystalline texture, being composed of thickly-set, calcareous prisms, attached perpendicularly or obliquely upon the internal layer. These prisms, however, are not the result of a crystallization, but, as is shown from their development, ${ }^{\text {(3) }}$ are only cells filled with lime, and if dissolved in acid, delicate prismatic cells remain as the organic base. The internal layer is made up of numerous superposed, non-cellular lamellae composed of the organic base, and arranged intricately in various ways. To the plicae thus formed, and between which the carbonate of lime is deposited, is due the pearly aspect of this internal layer. The relative thickness of these layers varies, sometimes one, and sometimes the other, being the greater. ${ }^{(4)}$ The external layer is undoubtedly secreted by the borders of the mantle, while the internal is formed by a secretion of its external surface.

The growth of the shell is not continuous, but occurs only at certain periods of the year; hence the formation of concentric lines and furrows upon its surface, analogous to the yearly rings of trees.

The external layer is often colored, either uniformly throughout, or only in spots; while the internal one rarcly coutains any pigment. By examining the cicatrized wounds which these animals accidentally present, it will appear plain that this pigment is secreted by the borders of the mantle. For, if these wounds are situated at a distance from these borders, the shell is never filled except by a layer of colorless matter. ${ }^{(5)}$

In the shells of some Bivalvia there are, moreover, special, narrow canals, which are either simple and traverse the shcll obliquely from within outwards, or branched in a reticulated manner throughout its whole extent. ${ }^{(6)}$

The shells are not attached to the animal exeept by muscular insertions along their borders, and by an epidermis belonging to the borders of the mantle. This epidermis, composed of a horny, yellowish-brown substance, stretches from the borders of the shell over its whote external surface, ${ }^{(\pi)}$ and

[^113]and Cardiacea, and with Anomia, the fibrous tayer appears to be wholly absent.

5 The formation of pearl occurs only upon the inner surface of the mantle. It has, theretore, the same tamellated structure and iridescent property, as the natural layer of shells.
6 With Terebratula, these cands are quite distinet - occupying the whole thickness of the shell. I have observed the same arrangement with Cyclas, while with Lingula, they are contined to the internal layer. By drect higlit they appear blaek. I am yet uncertain whether this color is due to their extreme tenuity, or to calcareous matter in their interior. If the first, they would be comparable to the canaliculi of the dentine of teeth ; but if the seeond, to the corpuseles of bone. Carpenter (Annals of Nat. Hist. luc. cit: p. 384, Pl. XIII. fig. 5), has observed that in the shells of Lima rudis, those eanats are divided and form a kind of network.

7 See Mytilus, Anodonta, Unio, Solen, Lutraria and Mya.

* [\$ 174, note 2.] For the complete labors of Carpenter in this dircetion, see Cyclop. Anat. and

Physiol. Art. Shell, IV. p. 656. 1t is replate with figures. - Ko.
in some species covers even the whole of the siphon. ${ }^{(8)}$ Very often, however, this epidermis is worn away upon old portions of the shell, which is quite striking with those which have lamelliform or pilous prolongations around the borders of the shell. ${ }^{(9)}$

The two shells are joined together partly by a hinge (Cardo), and partly by an elastic tissue (Ligamentum). ${ }^{(10)}$ This last, either external or internal, is antagonistic to the adductor muscles of the shell. It is composed of elastic fibres, the internal of which, when the shell is closed, are compressed between the borders of the hinge, while those which are external are lengthened out. In both eases, their natural action is to open the two shells. ${ }^{(11)}$

$\S 175$.

The Terebratulae have a very remarkable internal calcareous support situated upon the inner surface of the two shells. It consists, first of two delicate outwardly curved peduncles, which arise from the sides of the two cardinal teeth situated upon the non-perforated valve ; then there are two other peduncles which are shorter, and arise from a longitudinal ridge upon the centre of the same valve; these pass in front and unite in an arcuate manner. The two branches thus formed are abruptly recurved after a short course, and unite, forming a common are behind the centre of the shell. ${ }^{(1)}$ With many, this structure is much more simple, consisting only of a median apophysis, from which pass off two alar prolongations which are curved at their extremity. ${ }^{(2)}$ This structure serves principally for the insertion of the tentacles. ${ }^{(3)}$

CHAPTER II.

MUSCULAR SYSTEM AND ORGANS OF LOCOMOTION.

§ 176.

The muscles of the Acephala are composed of simple, smooth fibres.

[^114]reous formation which constitutes, with the two united valves, the singular tube of these animals.
11 The ligament is internal with Pecten, Spondylus, Mya, Lutraria, and Pholas; but external with the Chamacea, Cardiacea, Arcacea, and Naïades. It is half external and half internal with Malleus, and many other species.

1 Terebratula chilensis, dorsata, dentata, and Sowerbyi ; see Owen, loc. cit. PI. I. fig. 4.
${ }_{3}^{2}$ Terebratula rubicunda, and psittacea.
3 According to Owen, in those species which have this apparatus highly developed and bent backwards, these arches, notwithstanding their calcareous nature, are somewhat elastic; and when the valves are closed, they are slightly depressent, and thus may serve in the absence of the elastic ligament, for the opening of the shell.

But Salpa presents a remarkable exception to this, for here the fibres are striated. ${ }^{(1)}$

With the Tunicata, the muscular system is most simple, being limited to a subcutaneous layer, which, with the Ascidiae, envelops like a sac the body of each individual, and is attached to the skin only at the two openings of the cavity of the body. It is formed of numerous circular and longitudinal interlaced muscles, among which there are, here and there, oblique fasciculi. ${ }^{(2)}$

With Salpa, this cutancous muscle consists only of a few isolated bands bound together by a thin, homogeneous membrane. These bands, which vary much in number, distance apart, and direction, surround the cavity of the body, usually in a belt-like manner. They are sometimes straight, sometimes curved, and their extremities never meet upon the ventral surface so as to form a complete belt, but terminate loosely, or are blended by anastomoses with adjoining bands. Around the two openings of the body, they form real sphincters. ${ }^{(3)}$

By means of this muscle, the Tunicata can enlarge or diminish the cavity of the body, and thus cause the necessary renewal of water for nutrition and respiration, beside ejecting the faeces and products of generation. The Salpa, by rhythmical contractions of their body (its anterior superior opening, being closed by a membranous valve), eject water through its posterior opening, and thus are propelled along.

§ 177.

With the Bivalvia, the muscular system is much more complicated. Not only are muscular fibres seattered through nearly the whole body, but in certain points, they are so aggregated as to form distinct isolated muscles.

The largest of these muscles are the Adductores of the valves. With the Lamellibranchia, these consist of a single or a double mass of thicklyset, parallel fibres, the ends of which are inserted at opposite points of the two valves. Those species which have two of these muscles are called Dimya; here one of these muscles is antcrior, and the other, larger, posterior. With the Monomya, there is one muscle alone; this is large and situated near the centre of the valves.

With Brachiopoda, these muscles are more complicated, there being four pairs. Part of these, only, are doubly inserted to the valves, ${ }^{(1)}$ while the rest, which arise from one of the valves, are inserted upon the peduncle.

1 See Eschricht, Over Salperne, \&c., p. 64, Tab. III. fig. 16. These striae are due to a zig-zag plication, as I have satisfied myself from a specimen of Salpa zonaria preserved in alcohol. Will has observed the same in the muscles of other invertebrates (Miller's Arch. 1843, p. 359). The muscular fibrillae of Salpa are bound together in primitive riband-like fasciculi which are plicated during contraction bike the frill of a shirt; this is easily seen when one of these fasciculi is observed in an edgewise position.
2 See Savigny, Mém. \&c. Pl. V. fig. 1, 2 (Boltenia and Cynthia) ; Delle Chiaje, Descriz. \&c., III. p. 23, 'Lav. LXXXIV. Gig. 3, 5 (I'hallusia); and the Catal. of the physiol. Series, \&c., I. Pl. V. (Phallusia).
3 Salpa cordiformis and zonaria have from five to seven isolated and equi-distant muscular girdles ; see Eschricht, loc. cit. Tab. 1. III.

17

Salpa cylindrica has ten or eleven of these yirdles, the anterior of which converge upon the lack and are curved from before backwards; see Cumer, Mém. sur les Thalides. loc. cit. fig. 9 ; and $\operatorname{Sarigny}$ Mém. loc. cit. Pl. XXIV. fig. 1. With Salpa mucronata, and maxima, these girdles are benkt il together upon the back ; see Meyen, Uebre dic Salpen, Joc. cit. Tab. XXVIII. fig. 5, Tab. XXIX. fig. 2. Salpa pinnata (cristata) is remarkalle for having mumerous anastomoses uniting the wirdles upon the sides of the body and presenting : trellis-like aspect ; see. Chamisso, De Salpa, fig. 1, G. II., and Cuvier, loc. cit. fig. 1, 2.

1 Several of these muscles do not always arise directly from the shell, but from the visectal satc ; so that here their action is not solely for displacing the viscera, but also for the movement of the valves, to which this sac is attached.

As the points of the insertion of these museles do not always correspond with the two valves, ${ }^{(2)}$ their direction is often oblique, or, they sometimes even cross each other. ${ }^{(3)}$ Orbicula and Lingula, which want both the ligament and hinge, have this disposition of the adductors which terminate usually by a delicate tendon, and the contraction of either of these muscles alone, produces the lateral movements of their valves.

The spirally-pointed tentacles of the Brachiopoda are moved by a particular apparatus. The fringes of these organs are inserted upon a cartilaginous tubular prolongation which tapers to a point. This is closed at buth extremitics and contains a liquid, which, by the contractions of the circular muscular fibres, is propelled from the base to the extremity, thereby unrolling the spiral turns. ${ }^{(t)}$ These tentacles here certainly take the place of the elastic ligament of the bivalves, for their extension probably tends to slightly open the valves.

With the Lamellibranchia, the tentacles which are not rolled, are arranged quite differently. Like their branchiae, they are searecly at all irritable, - this being due to the fewness of their muscular fibres. But ins the mantle thesc fibres are very abundant, and especially near their free borders. This is true also of the Siphon, in which both longitudinal and circular fibres can be easily seen; here, two very distinct flattened muscles wrise from the base of the siphon and are inserted upon the two valves, external to the posterior adductor muscle : these serve as a Retractor siphonis.

§ 178.

Very many of the Lamellibranchia have a highly-developed organ of locomotion, - the foot. ${ }^{\text {(1) }}$ This is a muscular prolongation from the ventral surface, which passes obliquely forward to be inserted upon the internal surface of the back of the shell, by four, rarely more, tendinous cords. ${ }^{(2)}$

These cords surround the abdominal viscera, and bccoming gradually thicker and more muscular, finally blend with numerous, interlaced muscular fasciculi which compose the foot. This last varies considerably as to its size and form, and can be protruded a long way out through the open shells, but may also be wholly withdrawn. ${ }^{(3)}$

[^115]visceral sac to the valves. With Lingula, there are, beside the principal adductor, four pairs of interlaced muscles, which pass obliquely through the centre of the cavity of the valves, and are attached by their two ends to the visceral sac.

4 Owen, loc. cit. ; and Vogt, Anat. d. Lingula, p. 8, 'Tab. II. fig. 16-18.

1 The foot is absent, particularly with those mollusks which are fixed to rocks and other solid bodies, by a calcareous cement.

2 Usually one pair of these delicate cords passes above, and another below, and are inserted upon the valves, quite near the four points of insertion of the two adductor muscles. This is so with Anodonta, Unio, Cardium, \&c. With Lsocardia, I have found a thitd pair of cords inserted upon the posterior extremity of the summits of the shell. These serve not only as Retractores of the foot, but when this last is fixed to some point, draw the animal towards it.
3 The laterally-compressed foot of Anodonta, and Unio, arises, by a large base, from the abdomen, and has carinated borders. That of Pectuncutus and Venus, is guite similar, but its free border is hollowed by a furrow, and is therefore bi-carinated.

Most of these animals use this organ to dig in the sand, or to creep along on soft surfaces. For this purpose, they reach it out in front, and then by alternate contractions and elongations, drag their body after it. Some species can in this way glide freely along like the Gasteropoda, or even seize hold of aquatie plants. ${ }^{(4)}$ Sometimes this foot is truneate and hollow at its extremity, and probably, therefore, aets like a sueker. ${ }^{(5)}$

$\S 179$.

With many of the Lamellibranehia, ${ }^{(1)}$ the foot appears imperfeetly developed, and has a seeretory organ of the Byssus, a part by which these animals are attached to wood, stone, and other bodies. In this case the foot is a delieate, protruetile, tongue-like body, ${ }^{(2)}$ capable of a stiffiness suifficient for creeping, but used ehiefly as a feeler to find the points of attachment by the byssus. ${ }^{(2)}$ It always points towards the oral extremity, and upon its inferior surface there is a longitudinal furrow which has a cavity at its base. The walls of this furrow and cavity secrete the byssus. From their glandular aspect, they differ much from the rest of the organ, whieh is formed of numerous interlaced muscular fibres. ${ }^{(4)}$

The botton of this eavity from which the furrow arises, is regularly divided by numerous delieate, parallel lamellae, from which arises the compaet root of the byssus. ${ }^{(5)}$ This byssus is, therefore, inserted into the base of the cavity as are our finger-nails into their matrix. Its base has a fibrous, or lamellated strueture, and passes into a longer or shorter trunk composed of numerous eylindrieal, or flattened filaments, ${ }^{(6)}$ whose extremities are sometimes diseoid. ${ }^{(7)}$

§ 180.

Many Bivalvia, whieh are likewise wanting in locomotive organs, and have, moreover, no organs of the byssus, attaeh themselves to bodies in another and peeuliar way. Thus, with Anomia, one of the valves is marked by a deep fissure, aeross whieh, like a short peduncle, a portion of the ad-

[^116]4 I do not yet clearly understand the true natare of the walls which secrete the byssus. A. Mullet has designated them as Glandula byssipara, composal of round cclls. He atbirms to have seen at the basc of the furrow of Mytilus edulis, orifices of the excretory ducts of this gland; see Wies mann's Arch. loc. cit. Taf. I. fig. 6. On the other hand, neither J. Muller (Dc glandul. structura, p. 39), with Tridacna; nor R. Wagner (Lehrb. d. vergleich. Anat. 1835, p. 271), with Arca, and Pinna, has been ablc to tind these glands.
5 Soc A. Muller, in Wiegmann's Areh. loc. cit. Taf. I. fig. 5, c. (Tichogonia), and Poll, loc. cit. II. P. 132, Tuh. XXIV. fig. 5-7 (Area).

6 For the intimate structure of the byssus see the Mcmoir of A. Muller, loc. cit. With Arca, its form is very remarkable, consisting of a solid, lat-erally-compressed trunk, carinated above and below, and having filaments upon no portion. With that of Pinna, on the contrary, its filaments remain ununited cven to the very root.
7 Avicularia and Mytilus; see Poli, loc. cit. Tab. XXXI. (Mytilus edulis), zul Tals. 犬XXiV. -fig. 2 (Pinna muricata).
ductor muscle of the other valve ${ }^{(1)}$ passes, in order to be attached to foreign bodies by its smooth, calcareous extremity.

With the Brachiopoda, there is a real peduncle which constantly projects through an opening near the hinge. It is a soft tendinous or muscular tube, which is, perhaps, only a prolongation of the mantle. ${ }^{(2)}$
*

CHAPTER III.

NERVOUS SYSTEM.

§ 181.

The nervous system, whieh has been observed in all the orders of the Acephala, consists of a central and a peripheric portion.

The first is composed of one, or several (usually three) ganglia ; the seeond consists of nervous trunks of variable size, which pass off in the most diffcrent directions. When the number of these ganglia is considerable, they are arranged in pairs which are situated more or less near the median line, aceording to the different regions of the body. The ganglia of eaeh pair intercommunicate by a transverse commissure of variable length. They connect, moreover, with others, which are even far removed. by anastomosing filaments. It is diffieult to decide which of these ganglia is the brain. Many species want a eomplete ganglionic ring surrounding the buccal eavity.

§ 182.

From its extreme softness, the internal structure of the nervous system of the Acephala is very diffieult of study. Its primitive fibres are very delicate, and are surrounded, in the nervous trunks, by a distinet and very thin neurilemma. In the ganglia, through whieh orange-colored granules are usually seattered, ${ }^{(1)}$ these fibres pass into a very loose tissue eomposed of sinall transparent vesicles, which probably take the place of the ganglionic globules which are so distinct with other invertebrates. ${ }^{(2)}$

§ 183.

1. The nervous system is most simple with the Tunicata. It here consists of a single ganglionic mass, which is subcutaneous, and situated betwcen the two respiratory tubes.

[^117]the very short, sucker-like one of Orbicula. Externally, it is composed of a thick cartilaginous tissue, while its interior is occupied by a hollow, muscular cord, composed of longitudinal filaments ; see Owen, loc. cit. (Terebratula), and Vogt, loc. cit. Tab. I. fig. 1-6 (Lingula).

1 These orange-colored ganglia are quite distinct with Unio, and Anodonta.

2 Although the Naiades have very large ganglia, yet their microscopic examination has furnished no further results, for neither by the compressorium, nor by chemical means, can these globules be separated from the intervening tissue.

With the Salpinae, the eentral nervous mass is upon the dorsal surface in front of the middle of the body. It eonsists of many closely-aggregated, yellowish ganglia, from which nerves pass off in all directions. ${ }^{(1)}$

With the Ascidiae, it consists of a single large ganglion, which is easily found within the muscular envelope, in an angle formed by the oral and anal tubes. The nerves which pass off in different directions from this ganglion, belong chiefly to the muscular envelope. Some of them, however, pass to the organs of sense situated near the two respiratory tubes, and form arond the orifice of that one of them which is buccal also, a eomplete eircle which corresponds perhaps to an œesophageal ring. ${ }^{(2)}$
2. The nervous system of the Brachiopoda is as yet little known. Lowever, from the presenee, in some species, of two or three ganglia about the cesophagus, it may be coneluded that it is analogous to that of the Lamellibranchia. ${ }^{(3)}$
3. With the Lamellibranchia, the nervous system is the most distinct. ${ }^{(4)}$ Its very symmetrieal arrangement is prominent, except in the unequivalved specics.

1 Meyen was the first to describe with eare this nervous mass with Salpa; for, before him, many other parts of the animal had been erroneously taken by Savigny (lím. \&e. II. p. 127), and Chamisso (De Salpa, \&e., $\mathrm{P}, 5$), for the nerves and franglia; see Meyen, Nov. Act. Acad. Leop. loc. cit. 1, 394, Tab. XXVII. fig. 5, d. 18 (Salpa pinтuta), Tab. XXVIIL. fig. 5, h k. 12 (Salpa mucronata). Quoy and Gaimard have also observed a central nervous system in the dorsal region of sevtral Salpa; see Voyage de l'Astrolabe, Zool. III. 1. 554, and the Atlas zoologique of the same, Mollinsques, PI. LXXXVI.; or Isis, 1836, p. 113, Tab. 11.

Eschricht's description is still more minute ; but he has taken for the ventral surface that portion of the body in which this lobulated ganglionic mass is situaterl; see his Memoir, Over Salperne, \&e., p. 12, 'Tab. II. lig. S, 10, u, v. (Salpa cordiformis), and Tab. III. Hi\& 22 (Salpa zonaria). See, also, Delle chiaje, vescriz. \&c. III. p. 45, Tay, LXXFIII. fig. 3, n. 12 (Salpa maxima). I am yet undeciled whether the nervous ring, which, according to Eschricht, is formed by the junction of the two nerves surrounding the anterior respiratory orifice, really corresponds to the cosophageal ring.

2 a very detailed description accompanied with figures of the nervous system of the simple Ascidiae, may be found in the works of Cuvier (sur les Ascidiés, \&c., loc. eit. p. 2t, Pl. I1. fig. 2 e. 5 , g. III. fig. 2, 3 c. (Cynthia and Phalhusia)); Eschricht (Beskrivelse af Chelyosoma, loc. cit. p. S, lir. 4, c.) ; Delle Clainje (Descriz. \&c. III. P.
 (Phallusia)); and Savigny, who has included also the componnd Ascidiae (Mem. \&e. p.32, PI. IX. fig. 22. XI. fig. 11. D*. (Phallusia); also Pl. XXI. fig. 1^{5}. XXII. fig. 1^{*}. XXIII. fig. $1^{8} . \mathrm{D}^{*} . \mathrm{d}^{*}$ (Botryllus and Pyrosoma)).

The prineipal ganglionic mass is always nearer the anal than the oral tube, and does not give off branches execpt at its extremities. The nervous ring of the Ascidiae, has been ohserved by both Cuvier, and Delle Chiaje.
The last of these authors has also mentioned a particular qanglion which he has observed with Phallusia mamillaris, in this ring, and which he
regards as the brain; while he has given the name of Ganglion sympathicum to a principal ganglionic mass, lying near the anal tube.
3 Cuvier (Sur la Lingula, loc. cit. p. 8) thinks he has observed two ginglia at the base of the arms, but which give off 110 nerves. Owen (loc. cit.) has found two ganglia in frome of the œesophagus of Orbicula, and one behind it ; and also two nerves arising from the two anteriol gangha attended with two arteries which go to the two hearts.
4 The nervous system of the Lamelibranchia was discovered by J. Rathed. In 1797, he hial well represeuted the anterior pair of ganglia of $A n$ odonta (loc. cit. p. 162, Tab. IX. fig. 10, 11). Poli, it is true, had already fipured the nervous system of several species of this order (loc. eit. Tab. XXXVI. fig. 1, n. (Pinna); Tab. V1II. fig. 1, i. (Ploolas) ; Tab. IX. tig. 10, a. (Unio); Tab. X. fig. 15, Tab. XI. tig. 1, Tah. XIII. fig. 6, (Solen) ; Tab. XXV. fig. 1, (Lrca) ; Titb. XXXII. Hig, 18, r. (Mytilus)). But he erroneonsly took it for a lymplatic system.
The following works nay be consulted upon this system: Mangili, Nuove ricerche zoot. Sopra alcune specie di conchiglie bivalvi, hilano, 1804 (translated in Reil's Arch. IX. 1809, p. 213, Taf. x^{b}. (Anodonta)); Brandt, Medizin. Zool. II. P. 310, Taf. XXXVI. fig. 10,-12 (of the Oyster) ; Garner. On the Nervous System of Molluscous Animals, in the Trans. of the Linn. Soe. XVII. 1837, p. 485, Pl. XXIV. (Osirea, Pecten, Modiola, Mactra, Mya, and Plolas); and, On the Anatomy of the Lamellibranch. loc. eit. P. 89, PI. XIX. fig. 5 (Ve nerupis); Keber, De Nervis Concharum, Diss. Berolini, 1837 ; Duvernoy, Sur l'animal de IOnguline, in the Am. des. Sc. Nat. XVIII. 1842, p. 118, Pl. V. B. fig. 8 ; and, Sur le Système nerveux des Mollusques Acéphales bivalves, in the Comp. rend. 1844, Nos. 22, 25, 1845, No. 8 ; or in Froriep's neue Not. 1845, No. 731 ; Bfanchard, Observ. sur le Système nerveux des Mollusques Acéphales testacés ou Lamellibranches, in the Ann. des Sc. Nat. ILL. 1844, p. 321, Pl. X1I. and in Froriep's neue Not. No. 741 (Solen, Mactra, and Pecten); and John Anderson, Art. Nervous System, in the Cyclop. of Anat. IIL. P. 604.*

* [\$ 183, note 4.]. See, aiso, Duvernoy (suite) Compt. liend. XXXIV. 1852, p. 665, and XXXV. 1852, p. 119 ; also, frey and Leucliart, loc. cit.

1. 46 ; Deshayes, loc. eit. p. 69, PI. VIII. DX.; and Quatrefages, loc. cit. p. 63, PI. I. fig. 3, 6 (Teredo). - Lns.
A. The eentral nervous mass is composed of three pairs of principal ganglia, as follows: Par anterizs or labiale, Par posterius, and Par inferius or abdominale. This last pair is extraordinarily developed with those species whieh have a foot, and has, therefore, received also the nanc of Par pedale.

The ganglia of the Par anterius are situated one on each side of the digestive canal, and are conneeted by a filament which extends arcuately over the circumferenee of the oral cavity. ${ }^{(5)}$ They send off two long nerves, which pass along the back to the Par posterius, whieh is the largest of all and usually situated upon the anterior surface of the posterior adductor muscle. Its two ganglia are either blended together, or eonnected by a transverse eommissure. ${ }^{(6)}$ In this way, the anterior and posterior pairs with their eommissures form a kind of cesophageal ring whieh surrounds the base of the abdomen.

The inferior or pedal pair is situated at the point where the base of the foot is joined to the abdomen. Its ganglia are eontiguous upon the median linc, or are blended togcther into one. ${ }^{(6)}$ They eonneet also with the labial ganglia by two nerves, thus forming a seeond oesophageal ring. ${ }^{(8)}$

Besides these prineipal ganglia, there arc others, smaller, and situated in various parts of the body. But these are not eonstant, for their presence is always due to an unusual development of the museular system.
B. The peripherie nerves arise almost exclusively from the three pair of prineipal ganglia, for the nerves of eonnection do not usually give off branehes. The fcw and very delicate filaments which sometimes pass off from these last, belong, probably, to the splanchnic system, for the prineipal ganglia appear to furnish only sensitive and motory nerves; these are usually distributed in the following manner :

The Par anterius sends nerves to the anterior part of the mantle, ${ }^{(9)}$ to the anterior adductor musele, and to the tentaeles of the mouth and its circumference.

The Par posterius sends two very large trunks to the branehiae; also other nerves to the lateral and posterior part of the mantle, ${ }^{(10)}$ to the posterior adductor musele, and delieate filaments to the heart and reetum.

5 The length of the arc of this filament of connection depends upon the position of the two labial ganglia. Thus with Pecten, where these ganglia are situated unusually in the rear, it is very long and very arched; while with Pholas, and Solen, where they are close upon the oral opening, it is short. With Venus, and Mactra, these ganglia lie so close to each other, that this anastomotic filament is replaced by a very short, transverse commissure.

6 The Par posterius, which, from its relations to the hranchiae, is also called the Par branchiale, is blended into a single ganglion in those species whose hranchiae are united at their lower part; as Unio, Anodonta, Mactra, Mya, Solcn, and Pholas. On the other hand these ganglia are separate, and connected simply by a transverse commissure, with those whose brancliae are isolated; as Ostrea, Pecten, Avicula, Mytilus, Lithodomus, Modiola, and Area.

7 According to the earlier Zootomists, the Par pedale was wanting in those species which have no foot, although careful investigation has shown that there is a pair corresponding to the Par inferius. I refer to that found with Ostrea (Erandt, loc. cit. Tab. XXXVI. fig. 11, a. o.), directiy hehind the labial ganglia, and with Perten (Grube, Mul-
ler's Arch. 1840, p. 33, Taf. Ifs. fig. 3, g.; and Blanchard, loc. cit. p. 336, Pl. XII. fig. 3, a. b.), between these ganglia with which it is in connection hy commissures.

8 Of these three ganglia, the Par anterius has often been regarded as the brain. But others have rather taken the Par posterius for the principal nervous mass. For my own part I think that all three, together with their commissures, correspond to the pharyngeal system of Gasteropoda.
${ }^{9}$ The anterior nerves of the mantle of Solen, which is prolonged far beyond the oral opening, and is strengthened by a muscular mass-have: ten to twelve ganglia lying along the border of the mantle. With Pecten, the mantlenerve has also a small ganglion upon the muscular mass which is found upon each side of the anterior border of this organ ; see Blanchard, loc. cit. p. 333, PI, XII. fig. 1, f. (Solen), fig. 3, c. (Pecten).

10 In the mantle of Ostrea, Spondylus, Pecten, Lima, and in general those species in which its horders have numerous sensitive organs, the hranches of the anterior and posterior mantlenerves unite and form a common marginal nerve whose size depends upon the number of the sensitive organs to which it sends filaments.

The siphon and its muscular apparatus receive their nerves also from this same pair. ${ }^{(1)}$.

The nerves of the Par inferius being destined chiefly for the foot, correspond in number and size with the degrce of development of this organ. This number, however, varies between two and six for cach side.

§ 184.

The Accphala have, certainly, a Splanchnic nervous system, but as yct it has been found only with the Lamellibranchia; ${ }^{(1)}$ and even here it is seen with difficulty and imperfectly on account of the extremc tenuity of its filaments.

With some species, delicate, lateral filaments pass off from the nerves of communication, which connect the Par gangliorum inferius and posterius with the Par anterius; these may be properly termed sympathetic nerves, for they are distributed partly to the walls of the digestive canal, and the heart, and partly to the liver, the gland of Bojanus, and the genital organs. ${ }^{(2)}$

CHAPTER IV.

ORGANS OF SENSE.

$\S 185$.

Of the organs of sense with the Accphala, those of Touch are the most highly developed. They usually consist of conical, or flattencd, protractile prolongations of the skin, which are extremely irritable, covercd with ciliated cpithelium, and often of a deep color.

[^118]Lamellibranchia. He has observed (loc. cit. p. 15) that the commissural filaments, which pass into the Par posterius, give off branches to the intestinal canal, to the liver, and gland of Bojanus; and that those of the Par pedale give off similar branches to the genital organs; aud also, that these nerves form several Plexus between these organs, and from which are given off filaments to the heart. From this disposition, he ought to conclude that these are real organic nerves.

If this is so, the same signification would be given to the nervous filaments which Blanchard (loc. cit. p. 335, Pl. XII. fig. 1, e.) has seen arise with an Arca, and a Solen, from the two small ganglia which belong to the commissures of the Par posterius. More profound researches upon the destination of their nerves, must determinie whether the two ganglia situated between the labiad ganglia, with the apodal Iamellibranchia (see above § 183 note 7), realiy correspond to the Par pedule, or do not rather belong to the syinpathetic system.

* [§ 183, note 11.] See Quatrefages (Mém. sur le genre Taret. iu Ann. d. Sc. Nat. 1849, XI. p.

63, Pl. I.), who has described in detail this system with the Teredina. - Eid.

With both the simple and the eompound Ascidiae, there are, at the base of the oral tube and at the entrance of the respiratory cavity, numerous filiform and sometimes fringed tentaeles inserted upon a kind of ring. ${ }^{(1)}$ With the Lamellibranchia, there are often conical tentaeles around the respiratory and aral openings of the mantle, ${ }^{(2)}$ and the orifice of the siphon. ${ }^{(3)}$ Among those which have an open mantle, there are many the borders of whose mantle, either wholly, or only posteriorly, ${ }^{(4)}$ are provided with thickly-set conical tentacles. ${ }^{(5)}$ These reeeive all their nerves from those of the mantle.

Instead of these retractile teutaeles, the Brachiopoda have long radiating bristles upon the borders of their mantle. ${ }^{(6)}$ These projeet a considerable way beyond the borders of the valves, and having perhaps sensitive nerves at their base, they are thus tactile organs like the vibrissae of some Mammatia.

The oral opeying of all the Lamellibranchia is provided, moreover, with two pairs of contractile, foliated lobes, pointing backwards, whieh are perhaps oral tentaeles. ${ }^{(7)}$ Each pair is eomposed of two lobules, an internal and an external, which are united at their base, and whose surfaces lie against each other. Behind, the border of these four lobes is somewhat thinned, while in front, the two on the same side usually pass into each other, the external being above, and the internal below, the oral opening. ${ }^{(8)}$ The frec surfaces of the lobules are smooth and covered with a very thin epithelium, while the other and opposite surfaces are furrowed transversely throughout, and the borders of these furrows are fringed with very large vibratile cilia. ${ }^{(9)}$

As tactile organs, may be mentioned the two remarkable arms which, with the Brachiopoda, are spirally rolled up near the oral opening. The long, pectinate fringes upon their borders are united at their base by a soft, hollow membrane which is probably eontractile, and is provided with vibratile eilia. ${ }^{(10)}$

> 1 See the figures in Savigny, Mém. \&c. loc. cit.
> ${ }_{2}$ Cardium, Chama, Tridacna, and Isocardia.
> 3 Solen, Pholas, Aspergillum, Mactra, Venus, Donax, \&c. With Donax trunculus, the respilatory tube is remar.abler for its ramine tentacles; see Poli, loc. cit. Tab. XIX. fig. I5-20.

> 4 Unio, Anodonta.
> 5 With Donax, Mactra, and Tellina, this row of tentacles is single ; but it is multiple with Avicula, Anomia, Ostrea, Pecten, Spondylus, and Lime.
> G Sce Owen, and Vort, loc. cit.
> 7 As to the oblong organ which, with Salpa cordiformis. projects into the cavity of the body as two parallel cutaneous foldsbetween the anterior respiratory opening and the central mass of the nervous system, I am yet undetermined whether or not it corresponds to the tactile lobes of the Lamellibranchia. It appears smooth upon its free border, and receives, at its transversely striated base, two nerves from the principal ganglia. With Salpa zonaria, a similar organ lies directly in front of the central nervous mass; see Eschricht, Over Salperne, loc. cit. p. 14, fig. 8, 10, 22, t. With Salpa mucronata, this singular organ is situated in front of the nervous centre, and has been taken by Meyen for a male genital organ; see Ueber die Salpen, \&c., p. 397, Tab. XXVIII. Gig. 5-10.

> 6 Avicularia, Lsocardia, Pinna, Cardium,

Pectunculus, Mactra, Anodonta, Aspergillum, \&c. But Spondylus and Pecten form, in this respect, an exception. Here, the lobes upon each side, instead of being continuous, are separated by numerous curiously-branched tentacles which surround the oral orifice and strikingly resemble those surrounding the mouth of certain Holothurioidae when contracted; sec Poli, loc. cit. Tab. XXII. fig. 8, 13, 1k, XXVII. fig. 6, 10.
9 The branchial lamellac of the Lamellibranchia have these furrows upon all their surfaces, and in their outward aspect closely resemble thinse tiuctile lobes. It is therefore probable that, like the oral tentacles of the Polyps and Holothurians, they have a varied function. Thus, they could serve not only as gustatory organs for the food cutering the mouth, but also as those of ingestiou, beside taking a part also in the respiration.
10 The researches of Cuvier, Owen, and Vogl (loc. cit.) upou the arms of the Brachiopoda, were mate upon specimens preserverl in alcohol.

The relations, therefore, of these organs and their fringes during life are not known. Müller also (Kool. Danica, 1. p. 4), and Poli (loc. cit. II. p. 190, Tab. XXX. fig. 22, 23), say nothing upon the motions of the fringes of Orbicula and Terebratula. If they are really contractile and ciliated, the whole apparatus is quite analogous to that of the Alcyonellae.

§ 186.

As yet, organs of hearing with the Aeephala have been found only among the Lamellibranchia. They are here feebly developed, consisting only of two simple round capsules filled with a transparent liquid. Their very thick and somewhat solid walls are homogeneous and transparent; they enelose a vitreous spherieal otolite, of a erystalline strueture, ${ }^{(1)}$ and composed of earbonate of lime. These otolites eonstantly keep up very singular swinging and rotatory motions, which instantly cease, however, when the eapsule is ruptured. ${ }^{(2)}$ These auditory eapsules when present, are situated in the foot in front of the pedal ganglia with whieh they always communieate, ${ }^{(3)}$ cither contiguously, or by two auditory nerves which they reccivc. ${ }^{(4)}$

§ 187.

Organs of vision are very common with the Acephala, and always many in number. With some, they oeeupy a large portion of the borders of the mantle; with others, they are confined to the external orifiees of the longer or shorter mantle-tubes. ${ }^{(1)}$

1 These organs were first noticed by me with the Naïades, Cardiacea, and the Pyloridae; but were regarded as of a doubtful nature. Since then, after comparing them with the auditory organs of the embryos of fish, I am satisfied that they are really very simple organs of hearing ; see Müller's Arch. 1838, p. 49, and Wiegmann's Arch. 1841, I. p. 148, Taf. VI. fig. I, 2 (Cyclas cornea) ; or, the Ann. d. Sc. Nat. X. I838, p. 319, XIX. 1843, p. 193, Pl. II. B. It appears, moreover, that similar corpuscles are found in other orders of these animals. Thus, Delle Chiaje mentions with Salpa neapolitana, an organ situated above the nervous centre which exactly resembles the auditory capsules I have discovered in the foot of Cyclas. Unfortunately he has neither figured nor carefully described this organ (Descriz. \&c. III. p. 45, Tav. LXXVI. fig. 1, 1.). Eschricht (Anat. Beskriv. af Chetyosoma Macleayauum, p.9, fig. 4, 6, d. $\%$ and fig. 5) fias also regarded as an auditory organ a remarkable apparatus which he found near the nervous centre of a simple Ascidian. This consists of a pyriform vesicle filled with whitish matter, and of a clavate body which has, upon its large end, a fis sure and two lateral depressions.

Delle Chiaje's figure (Descriz. \&c. III. Tav. LXXXII. fig. 4.), of the principal ganglionic mass of Cynthia papillata, reminds me of the clavate body of Chelyosome and leads me to think that this anthor has confounded it with the nervous centre. I think that this organ exists generally with both the simple and compound Ascidiae, for Sangny has noticed with Cynthia, Phallusia, Aplidium, Polyclinum, Botryllus, Eucoelium, Synoecium, Pyrosoma, \&c., two tubercles near the nervous ring which surrounds the respiratory tube ('Iubercuie antericur et posterieur). And, to judge from his figure (Mém. \&c. Pl. VI. fig. 1, 2 , 4, h. Pl. VII. fig. 21), of one of these tubercles, with Cynthia, these organs appear analogous to the clavate boly just mentioned. At all events, these subercles deserve, with Zootomists, more attention than has hitherto been given them.

2 These motions are probably due to the ciliated epithelium liniug the cavity of the capsui-s; see, below, the auditory organs of the Gasteropoda

3 I have heen unable as yet to find these capsules with the apodal Lamellibranchis, - at least, with T'ichogonia, and Mfytilus. They appear to cxist, Bowever, for recently Deshoyes has fuund them both in T'eredo. llere they were situated at the extrem-
ity of the septa lying letween the pericardium and the elevator of the anus, and upon which the anterior extremity of the branchiae is inserted; sce Comp. rend. 18 46 , X'SII. No. 7 ; or Froriep's neue Not. No. 813, p. 323.

4 With Cyclas, and T'ellina, the auditory capsules are contiguons with the ganglia of the Par pedale. With Anodonta, Unio, Cardium, and Mya, they are a little removed.

It is remarkable that these organs appear very early in the enbryos of certain Lamellibranchia (Cyclas), white in obers (Anodonta and Unio), no trace of them is seen during the embryonic life.

1 Poli (loc. cit. II. p. 153, 107, Tab. XXH. fig. 1,4 ; and Tal). XXY11. fig. $5,1 \pm, 15$), was the first to comprare to human cyes these remarkable bodies, which, briliant as diamonds, lie upon the borders of the mantie of Pecten and Spondylus, with this expression: Orelli smaragdino colore coruscantes. Nevertheless, it is only of late that these organs have received much attention. Garner (On the Anat. of the Lamellibr. Conchifer. \&c. 11. XIX. fig. I, c. 3) was the first to notice anew the Ocelli of Pecten. Grant (Outlines, \&c., p. 258) has described those of Pecten and Spondylus as organs long Known. Grube (Muller's Arch. 1840, p. 2t, Taf. 1II. fig. 1, 2), and Krohn (Hid. p. 3s1, Taf. IX. fig. 16) have described the structure of these organs, and, quite recently, Will (Froriep's neue Not. 184t, No. 622, 623) has treated this subject most profoundly.

Deshayes is not satisned of the existence of (mgans of vision with the Pectinea, while Duvernoy regards as such the bodies situated on the bordir of their mantle (Instit. 1845, p. 52, 88). It is astonisl:ing that Deshayes shouk have denied eyes to the Pectinea, where they are so complete. He enuld have better denied them to Phallusia, Arca, Ostrıa, ahi other Acephata. buring tuy last visit at Venice and at Trieste, I examined living individuats of the genera Arca, Ostrea, Pinna, as well as other Lamellibranchia and variuus Ascidiae; but with all possible care, I was unable to verify Will's description (loc. cit.) of the eyes of these anmats. fan most cases, the bodies which he has described ats eyes, have appeared to me only as simple cxerescences of the mantle, which are variously colored, but are wholly without the indispensable optic ap,paratus for a visual organ.

Each eye is composed of a ball formed of a fibrous Sclerotica, which is situated upon a small eminence, or is sunken in a contractile prolongation of the mantle from which projects a cornea, eovered by the general skin. Within the selcrotica there is a reddish-brown pigment which is continuous in front into a brownish or bluish-green Iris which has a circular pupil ; while behind, at the base of the eye, it has the appearance of a kind of Tapetum. This is eomposed of staff-like corpuseles, which produce that beautiful emeraldgreen appearance of the eyes of certain species.

The Retina surrounds a vitreous body, composed of non-mucleated celts, and which receives in front a very flattened crystalline lens. The optic nerves which enter the eyc-ball at its posterior part, are, together with those of the tentacles, receised from those of the mantle, and especially from the marginal branches. ${ }^{(2)}$
The following are the modifications which have already been observed with the cyes of these animals:

With the Ascidae, there are eight eyes at the entrance of the respiratory tube, and six of a decp-yellow color at the entrance of the anal tubc. They are situated in the special fissures around the openings, and in the midst of a mass of orange-colored pigment. ${ }^{(3)}$

With Pholas, Solen, Venus, and Mactra, these organs are very numerous and non-pedunculated, and are situated at the base of the tentacles surrounding the two orifices of the siphon. With Cardium, the borders of the orifices of the short siphons have an extraordinary number of protractile tentacles which can be protruded througl the open valves, each of which bears an eye of diamond brilliancy. ${ }^{(4)}$

With Tellina, the two borders of the mantle have small, reddish-yellow, pedunculated eyes, which are quite numerous at the postcrior portions.

With Pinna, the anterior part of the mantle near the adductor muscle has, on each side, about forty brownish-yellow eyes situated upon short peduncles. But with Arca, and Pectunculus, the numcrous reddish-brown eyes, usually sessile, are scattered irregularly over the borders of the mantle. ${ }^{(5)}$

Anomia has about twenty brownish-yellow sessile eyes concealed among the tentacles, upon each border of the mantle. With Ostrea, the number is still larger; for, for more than a third of the length of the mantle, there is a very small short-pedunculated yellowish-brown eye between every second tentacle.

But the beautiful emerald-green eyes of the Pectinea are the most remarkable. They are pedunculate and situated between the tentacles of the marginal fold of the mantle, being very much more numerous upon the side of the plane, than upon that of the convex valve. ${ }^{(6)}$

[^119][^120]
CHAPTER V.

DIGESTIVE APPARATUS.

§ 188.

The digestive canal of the Acephala is formed, throughout the class, upon a single plan. It always consists of irregular convolutions which are separated with difficulty, for their walls are generally not covered by a peritoneal envelope, but are intimately blended with contiguous organs and especially the liver and genital gland. The oral and anal openings, which are always present, are not upon the surface of the body, but are situated in a cavity circumscribed by the mantle. ${ }^{\text {(1) }}$
The mouth has always tumid lips and often tentacular appendages. Its cavity has neither distinct muscular walls, nor any trace of a masticatory apparatus. It passes either directly, or by a short œesophagus, into a kind of stomach which gradually contracts into a longer or shorter iutestine, scarcely different from it in its intimate structure. The extremity of the intestine often projects into the cavity of the body, as a kind of papilla; upon the end of whieh the anus is situated. Internally, this eanal is lined throughout with a very distinct, ciliated epithelium.

The food of these animals, which eonsists of slime and small organized bodies, is taken into the cavity of the body with the water, and is eonducted to the mouth by the ciliated epithelium which lines this last. In a similar manner the faeees are rejeeted with the refuse water.

$$
\text { § } 189 .
$$

The very feebly-developed digestive eanal of Salpa consists only of a small knob (Nucleus) situated in the posterior part of the cavity of the body. It connects with a furrow formed by two narrow folds situated along the ventral median line.

This furrow may become a canal by the joining of its borders, and its posterior extremity, which is a little lateral, opens directly at the entrance of the intestinal canal which is surrounded with a lip, and ought therefore to be regarded as a mouth. The folds of this furrow arise directly behind the anterior respiratory orifice, and are very probably covered with cilia, by which, solid particles of food taken into the body during respiration, are borne towards the mouth. ${ }^{(1)}$

[^121]1, 2, 1.), and Eschricht (Over Salperne, p. 26, fig. $4,8,18, \mathrm{~m}$.) ; but they describe it as a dorsal furrow and a dorsal foll, for they have taken the abdominal cavity of these animals for the back. That of Salpa sibbosa is quite distinctly figured in the Catalogue of the Physiological Scries, \&cc, I. Pl. VIL. fig. 1, k. This furrow corresponds, probably, less to an open cesophagus, than to the ten-tacle-furrow which, with all the Lamellibratich$i a$, is situated upon the two sides of the mouth.

The intestinal canal is short, without a distinct stomach, and somewhat spirally convoluted. ${ }^{(2)}$ Its extremity opens by a large anal orifice near the mouth. ${ }^{(3)}$

With the Ascidiae, the intestinal canal is quite distinct. The mouth is situated in the respiratory cavity, far removed from the so-called oral tube, or more properly speaking, the respiratory orifice. It is surrounded with thick lips, and has at its posterior extremity with many species, a semi-canal closely resembling, and undoubtedly of the same signification as the ventral furrow of Salpa. This canal is formed by two narrow folds arising below the circle of tentacles which surround the interior of the oral cavity ; it passes along the large curvature of the respiratory cavity, and rising upon its opposite side, ends, after a longer or shorter course, below the oral cavity. ${ }^{(4)}$ The mouth opens into a short cesophagus, and this last ends in a long or round stomach, which is often quite circumscribed and plicated longitudinally on its inner surface. ${ }^{(5)}$ The intestine passes first towards the base of the body by a short arch, then by a longer one it rises towards the mouth, and thence passes to the anal tube, opening, by a fringed anus, sometimes close behind the mouth, and sometimes further below it. ${ }^{\text {(t) }}$

With the Brachiopoda, the mouth is simple and concealed between the base of the two tentacular arns. With Terebratula, the œesophagus is very long and eurving, opening into a large stomach; ${ }^{(7)}$ but with the other Brachiopoda, the stomachal dilatation is wanting, and the intestine is simply convoluted. With Orbicula, and Terebratula, the intestine is short, and has only a single convolution which passes to the right and terminates in a lateral anus hidden between the lobes of the mantle. But with Lingula, it is much longer, and its turns are quite numerous; the anus here is lateral also, and opens through a smill papilla which projects from the cavity of the body into that of the mantle. ${ }^{(s)}$

With the Lamellibranchia the intestinal canal is highly developed, but always buried in the midst of other abdominal viscera. The mouth, situated at the bottom of the cavity of the mantle, and beneath the anterior adductor muscles, is surrounded by two pairs of tentacles in the form of tactile lobes ; these often form a furrow leading to the mouth, and along which pass the particles of food drawn in by the cilia. ${ }^{(9)}$ The mouth opens, either

[^122]With Phullusia intestinatis, there is, opposite this cunal and upon the side of the respiratory cavity corresponding to the anal tube, a longitudinas row of very long thickly-set filaments, extending cven to the oral aperture. Eschricht has seen a row of similar tentacles with Chelyosoma; see loc. cit. p. 10, fig. 4, 6 , z.

5 The stomach is elongated with Boltenia, Phallusia, Cynthiu, Sirillina, and spherical with Aplidium, Eucoelium, \&c. Its lonyitudinal fonds are often very distinctly marked externally by deep grooves, as is the case with Sigillina, Aplidium, and Botryllus; see for this, Savigny, loc. cit. According to him also there is a small caecum at the base of the stomach with Botryllus Schlosseri, and polycyclus; see Mém. \&c. p. 201, 11. XX. fig. 5^{2}, Pl. XXI. fig. 1^{4}, c.
G Upon the course of the intestine with the Ascidiae, sce Cuvier, Savigny, and Home, loc. cit, Pl. LXXIV. and the Catal. of the Phys. Ser. I. PI. V. (Phallusia).
${ }_{8}^{7}$ Sce the figure given by Owen, loc. cit.
8 For the intestinal canal of several Brachiopoda, see Cuvier, Owen, and Vogt, loc. cit.
4 With Cardium, Isocardia, Avicula, \&c., these two pairs of gustatory lobules are very distinctly seen passing towards the mouth by as many lateral
directly, or by a short osophagus, ${ }^{(0)}$ into a large stomach lined with numerous papillae and apparently perforated by many biliary canals. The intestine, when short, forms a single arch only; but when long, it has many convolutions; it terminates in a rectum which lies along the dorsal surfaee of the abdomen, ${ }^{(1)}$ and passes between the lobes of the mantle, under the hinge and above the posterior adductor muscle, finally terminating above in a ciliated anus, situated upon a small prominence. ${ }^{(12)}$ With the majority of this order, the rectum traverses the heart. ${ }^{(13)}$ There is often, ucar the pylorus, a long caecum ${ }^{(1)}$ extending between the convolutions of the intestine to the lower extremity of the abdomen, and which eontains, through its whole extent, at cylindrical transparent eartilaginoid body - the so-called crystalline-stalk. ${ }^{(1)}$ A longitudinal fold extends along the inner surface of the entire intestine and a large part of that of the reetum, and thereby the intestinal surfuce is increased.

§ 190.

The anterior portion of the digestive canal of the Acephala is entirely without a Salivary gland. ${ }^{(1)}$ The Liver, however, is always present; it is
grooves, whose borders as alrealy mentioned ($\$ 185$) are blended above and below with the or'al orifice. With Pectunculus, and Arca, there is a still more remarkahle arrangement.

Their lobules of this kind consist only of two narrow folds upon each side of the mouth, and between which is a transverse furrow, resembling the ventral-groove of Salpa, or the semi-canal of the Ascidiae. The important part which this apparatus serves in the prehension of food, can be seen by covering those of Anodonta and Unio with a powdered colored substance.
This powder is carried by cilia from the surface to the borders of the tentacles, thence upon their transversely grooved internal surfaces even into the angle formed by these last, thence into currents of the grooves, and so direct into the wouth.
10 A distinct but short oesophagus is found with Arca. Chama, Pinna, Cardium, and Mactra.
11 The intestine is short and has a single arch with Spondylus, Pecten, Arca, and Chama. It is long and has many turas with Pholas, Tellina. Cardium, Mactra, Pinna, Ostrea, \&c.
12 The anus is short and situated directly behind the anal fissure of the mantle witl Unio, Anodonta, Cardium, Isocardia, \&c.; while with Aspergillum, Lutrario and Solen, it is situated far removed from the siphon. With Arca, Pectunculus, Pinna, and Avicula, the rectum passes around a large portion of the adductor muscle and ends in front in a papilla, which, in the last two genera is quite long. With Lima, it ascends a little way along the anterior surface of the adductor musele, and with Pecten and Ostrea, it leaves the median linc upon the back of this muscle and passes obliquely towards the smaller valve.
${ }^{13}$ To this, Arca, Ostrea, and Teredo, form an exception, and especially with the last, where the intestinal canal is distinguished for severat other peculiarities. Thus, the stomach is double and anteriorly divided to its base by a longitudinal septum; see Home, Lect. \&c. Pl. LXXX., and Deshayes, Comp. Rend. 1846, XXIH. No. 7 ; or Frorep's ncue Not. No. 813.
${ }^{14}$ For the caecum of Solen, Mactra, and Cardium, see the figures of Garner, On the Anat. of the Lamellibr. \&c. Pl. XV11I. fig. $8-10$; and for the disposition of the intestinal canal in general, see the Plates of Poli, loc. cit.

According to Owen (Anat. of Clavagella, \&c.-, Pl. XXX. fig. 16, r.), Clavagella has a very short and rudimentary caccum.

10 With the exception of Anomia, the crystalline stern is wanting in all the Munomya (Garner, loc. cit. p. 89). But it exists with many Dimya, as Pholas, Solen, Arca, Mactra, Donax, Cardium, Tellina, Anodonta, Unio, Mya, \&c. ; see Poli, loc. cit. Tab. VII. XIIL. XIV. XVI. XIX. XX. XX1V. With many of these, there is no caecum and the crystalline stem is situated in the intestine itself. It has always a cylindrical form, and is of a decreased size at its lower end, while at the opposite one it is usually divided in several irregular lobes which project into the cavity of the stomach and appear to close up the orifices of the biliary caoals. With the Naiades, where the caecum is wanting, I have found this singular body, which extends from the stomach into the intestine, composed of a cortical and a medullary portion. The first which forms a kind of tube, is homogeneous, transparent, and formed of concentric layers of the consistence ol the white of an egg. The second is equally homogeneous and transparent, but is of a more gelatinous nature and contains a quantity of small granules (Unio), or batons (Anodonta), insoluble in acid, which, at the points where most aggregated, give this organ a whitish color when examined by reflected light. According to Poli's description and figure of this organ with Pholas dactylus, it has an analogous structure with the other Lamellibranchia (loc. cit. I. p. 47, Tah. VII. fig. 11). As yet nothing positive can be said of the function of this organ. It may be also added that often with some individuals it is looked for in vain, while with others it is very distinct though variahle as to its development and the number of layers composing its cortical portion. Hence it seems that it disappears at certain times, to be develuped anew.

That of Anodonta as figured hy Bojanus (Isis, 1827, Taf. IX. fig. 9, 10) was undoubtedly in the state of being formed, or disappearing.

1 Cuvier (Sur la Lingule, luc. cit. p. 7, fig. 10, 11, a.), and Vogt (loc. cit.) have regarded the glandular mass which, with Lingula, opens into the digestive canal, as a solitary organ. But Owen (loc. cit.) is opposed to this view aud says that all the
eonnected with the walls of the intestine, almost inseparably, and opens into it through numerous canals.

With the Tunicata, its strueture is quite simple, being composed of small, single, or ramified glandular follicles, thickly-set together and eovering a large portion of the stomaeh and intestine. ${ }^{(2)}$

With the Braehiopoda, there are groups of green follicles removed from the digestive eanal but communieating with it by exeretory eanals. ${ }^{(3)}$

With the Lamellibranchia, this organ is voluminous and eomposed of lobes which oeeupy the upper part of the abdominal cavity. These lobes are made up of distinet Aeini formed of brownish-yellow hepatie cells. ${ }^{(4)}$

The biliary ducts whieh open into the stomach or the anterior part of the intestine, are always few in number.

CHAPTER VI.

CIRCULATORY SYSTEM.

§ 191.

This system with the Aeephala, as well as that of the Mollusea in general, is of a higher grade than that of the Zoophytes and Worms, in having the movement of the blood due always to a contractile eentral organ, or Heart. This heart is, it is true, very simple in some, but then with others it is so developed as to contain bothaurieles and ventrieles. It reeeives the blood from the respiratory organs and distributes it over the body, and is therefore an Aortic heart. As to the blood-vessels themselves, the hitherto received opinions have been of late quite seriously objected to; and it appears very probable that all these animais have only arteries and veins,

[^123]follicles opening into the stomach; with Orbicula, these are replaced by a mass of long hepatic ones; and with Lingula, by three principal glandular masses, opening at different points into the intestinal canal; see Owen, Cuvier, and Vogt, loc. cit.
4 Poli (loc. cit. Tab. XI. XV. XVI.) has given a good representation of some hepatic lobes with their interanastomosing ducts of several species. See also Bojanus' figures of the liver and its ducts of Anodonta (Isis, loc. cit. 1p. 757, Taf. IX.). As to the intimate structure of this organ, I have found with Cyclas cornea, lacustris, and rivicola, Unio pictorum, and Tichogonia polymorpha, short, cylindrical, transparent filaments, a little flexed, but projecting stifly from the base of the follicles into their cavity. I am yet ignorant as to their function, but have in vain sought for it, with Unio batavu, tumida, Anodonta unatina, cygnea, Mya arenaria, Cardium elule, and Mytilus dults.
For the intimate structure of the liver of Lamellibranchia, see M. Meckel (Muller's Arch. 1846, p. 9, Taf. I.) and Karsten (Nov. Act. Nat. Cur. XXI. p. 302, Tab. XX.).

[^124]which arc connected by no eapillary net-work except that situated in the respiratory organs. The blood leaving the open ends of the arteries passes into the interstices (Lacunae) of the parenchyma of the body; thence it is taken up by the open mouths of the venous radicles. ${ }^{\text {(1) }}$

The Blood is colorless and contains many pale, granular globules, whieh are indistinetly nuclauted. ${ }^{(2)}$

§ 192.

With Salpa, the circulatory system is composed of two main trunks, one upon the dorsal, and the other upon the ventral median line. At the anterior extremity of the body these trunks connect by two areuate vessels; and at the posterior extremity by a single slightly-dilated canal situaterl dircetly in front of the intestinal nucleus. This last-mentioned canal is divided into several chambers by two or three constrietions, and, from its whythnical contraetions, may be regarded as a heart. ${ }^{(1)}$ It is surrounded with a delicate perieardium, ${ }^{(2)}$ and by its pulsations the blood is thrown across the walls of the body in differcet ways, ${ }^{(3)}$ thus forming cxtra-vascular currents. But it will here be observed that the heart, thus foreing the blood alternatcly in one direction and then in another, will regularly change the arterial into a veuous current, and vice versa. ${ }^{(4)}$

With the Ascidiae, this system is equally feebly developed. The blood passes for the most part out of the vessels into the lacunae which often consist of ramificd canals resembling vessels. The Heart is always present, and is surrounded with a very thin perieardium. It consists of a long canal, which, at both extremities, passes into a vessel which lies loop-like between the vaseular sac and the intestine at the lower part of the cavity of the body. ${ }^{(5)}$ Its pulsations quite resemble the peristaltie movements of the

1 This effusion of the blood into the parencliyma of the body and its return into the veins without the intervention of capillaries, or in general without walled canals, has been maintained recently, especially by Milhe Edwards (Observ. et expér.' sur la circul. chez les Mollusques, Comp. Rend. XX. 1845, p. 261), and by Vatenciennes (Nouv. observ. sar la constit. de l'appareil de la circul. chez les Mollusques, Ibicl. p. 750). Their observations were not limited to Salpa, and the Ascidiae, but were extended upon Ostrea, Pinna, Martra, Venus, Cardium and Solen. See also Anu. d. Sc. Nat. 1II. 1845, p. 289, 307, 'or Froriep's neuc Not. Nos. 732, 733, 743.

Milne Edwards is about to publish an extended work on the circulation with the Mollusca. ILe has figured from his beautiful injections the partly lacunal circulatory system of Pinna; see Aan. d. Sc. Nat. VIII. I847, p. 77, Pl. IV.
2 For the blood of Phallusia, Cynthia, and Anodonta, see Wagner, Zur vergleich. Mlysiol. d. Blutes IIIt. I. P. 20, II. p. 40. The blood-corpuscles of the Nailades have always appeared to me of an irregular form ; and they run together when placed in a watch-glass. This is probably due to the fibrin cementing them together. When treated with acetic acid they become separated again, their contour becomes very clear and almost imperceptible, and a hitherto invisible nuck us is seen.
1 See Cuvier, luc. cit. p. 10, fig. 2, 9 , \&c. According to Mcyen (luc. cit. p. 375, PI. XXviII. fig. 1, d.) the heart of Satpa mucronata las two constrictions; and, according to Eschricht, that of Salpa cordiformis is divided into four chambers (luc. cit. p. 26, fir. 8, ca).

2 Meyen (loc. cit. p. 376) has denied the presence of a pericardium with Salpa; but Cuvier (loc. cit. p. 10), Savigny (loc. cit. D. 127), and Delle Chigje (hescriz. \&c. III. p. \&3, Tav. LXXVIII.) aflim the contrary.
${ }^{3}$ The direction of these blood-currents in the body of Satpa is satisfactorily shown by the descriptions and figures of Quoy and Gaimard (loc. cit.) and especially of Delle Chiaje (Descriz. \&c.)
Sars (Faun. litt. \&c. p. 66), has also observed with Salpa runcinata, that the blood beyond the aorta and vena cava, circulates in wall-less passages.
4 This remarkable alteration of the hlood-currents which is possible only with a valveless heart, has been observed and described by different observers in a conformable manner. Before the heart changes the direction of its contractions it rematins still for a short time, and this slackens the course of the blood-currents in the body a little, before they receive an impulse in the opposite direction; see Fan Hasselt (Ann. d. Sc. Nat. III. 1824, p. 78). Eschscholtz (Müller's trauslation of the annual report of the Swedish Academy upon the progress of Natural Iistory, \&e., 1825, p. 94), Quoy and Gaimard (luc. cit. p. 559, or Isis. 1836, p. LI1), and Delle Chiaje (Descriz. \&c. 1II. 1. 43).
${ }^{5}$ For the heart and blood-system of the Ascidiae, see especially, Milne Edwrerds (Sur les Ascidies composées loc. cit, p. 4), who has indicated the presence of the heart in Phallusia and Clarelina, as well as in Polyclinum, Botryllus, Didemnum, Pyrosoma, \&\&
intestine; and, as with Salpa, the direction of the eurrent is ehanged so alternately that the two terminal vessels serve in rotation as an Aorta and a Vena cava. ${ }^{(6)}$
The blood not only traverses the laeunae of the intestinal sae, but also penetrates the walls of the mantle, and even passes into the eommon support of the compound forms. In this last case, it cireulates in ramificd canals, which, as prolongations of the cavity of the body, extend even into this portion of the mantle. ${ }^{(7)}$

With the Brachiopoda, this system is quite remarkable. The branchial afferent veins of the mantle do not open into a single heart, but into two hearts which are situated right and left of the intestinal sac. ${ }^{(8)}$

These hearts, by pulsation, throw the blood into the intestinal canal, whieh ought therefore to be considered as a common visceral sinus. ${ }^{(9)}$

With the Lamellibranchia, the heart, situated at the posterior extremity of the baek, is divided, usually into three chambers, and surrounded with a large perieardium. Two lateral, triangular, thick-walled aurieles receive the blood from the branehiae and send it into a simple muscular ventricle which is nearly always traversed by the reetum. Thenee the blood passes into the body by a posterior and an anterior aorta. Its return into the two auricles is prevented by valves. ${ }^{(10)}$ The walls of these aortae disappear after considcrable ramifieation, and the blood passes into a system of laeunae whieh extends through the whole body and forms a net-work of sinuses and anastomosing eanals. ${ }^{(1)}$) The venous blood is received into speeial

6 This change in the direction of the hlood-currents was first noticed by Lister (Philos. Trans. 1834, Pt. II. p. 365, or Wiegmann's Arch. 1835, I. p. 309) with Perophora, a new genus of the compound Ascidiac; and Milne Edwards has since confirmed it with Pyrosoma (Ann. des Sc. Nat. XII. 1839, p. 375), and several other Ascidiae both simple and compound ; see his Observ. sur les Ascidies simples et composées, p. ז.
These inter-alternating peristaltic and anti-peristaltic motions show that the heart of the Ascidiae is valveless. It is therefore surprising that Delle Chiaje has descrihed it with valves; hut this is not the only point in which he differs from other ohscrvers on this suhject, for he describes the heart of the Ascidiae as hifurcated into two auricles; see his Mem. Ace. loc. cit. III. p. 193, Tav. XLVI. fig. 13, ah. (Cynthia papillata), and Descriz. \&c. III. p. 29, Tav. LXXXII. fig. 11, 12 (Phallusia intestinalis).

7 This circulation of the blood in the common Ascidian-stock has been observed hy Lister (loc. cit.). Milne Edwards has seen also the ascending and descending currents in the ramified and coecal prolongations of the peritoneal sac, in Botryllus, Diazona, Didemnum, and Polyclinum; see Savigny, Mém. loc. cit. p. 47 ; Delle Chiaje, Descriz. \&c. III. p. 34, Tav. LXXXIII. fig. 13, 15 ; and Milne Edwards, Sur les Ascidies, loc. cit. p. 41, PI. VII. fig. 1, 1b. 1c. This last-mentioned author has also ohserved that, with Clavelina (Ihid, p. 9. Pl. II.), these canals terminate in caeca which communicate with the cavity of the body, and are extended into digitiform prolongations upon the extremity of the peritoneal sac, and herein the blood moves alternately up and down. The ramified canale which abundantly traverse the mantle of Phallusia, are, according to authors, real blood-vessels; see Cuvier, loc. cit. p. 16, Pl. III. fig. 1 ; Savigny, loc. cit. p. 102, Pl. IX. fig. I, B., and Delle Chiaje,

Descriz. \&c. MII. p. 33, Tav. LXXXXIV. fig. 2. According to Kolliker (Ueber das Vorkommen der Molzfuser im Thierreich. loc. cit.), these multiramose vessels which come directly from the heart and whose extremities are penicillated, appear to be continuous directly bencath the skin with other vessels returning by the course of these arteries.

8 See Cuvier, Owen, and Vogt, loc. cit.
9 Ouen was the first to notice this analogy of the circulation of the Brachiopoda with the extra vascular one of other Acephala; see his Lettresur l'Appareil de la circulation chez les Mollusques de lit Classe des Brachiopodes (Ann. d. Sc. Nat. III. 1845, p. 315, P1. IV., or Froriep's neue Not. No. 793).

10 For the arrangement of this central part of the circulatory system, see Poli, loc. cit. Cab. IX. Ag. 12 (Unio) ; Tab. XIII. fig. 5 (Solen) ; Tab. XXII. fig. 10 (Spondylus); Tab. XXVII. fig. 8, 12 (Pecten) ; Tab. XXXX. fig. 7, 8 (Ostrea) ; Tab. XXXI. fig. 8, 9 (Mytilus), aud Tah, XXXVIII. XXXIX. (Pinna). Also Bojanus, in the Isis, 1819, p. 42, Taf. I. II. (Anodonta) ; Treviranus, Beobacht. aus d. Zoot. u. Physiol. p. 44, fig. 6769 (Mytilus and Anodonta) ; and Garner, Trans. of the Zoot. Soc. II. p. 90, Pl. XIX. fig. 4 (Pecten).

An arrangement quite different from this type is found with Arca, whose two auricles are attached to the two widely-separated ventricles, and send out on each side an anterior and posterior aorta, which mect and join upon the dorsal median linc ; sce Poli, loc. cit. 'Taf. XXV. fig. 2, 3.*

12 This system of lacunae forms, especially in the mantle, a beautiful net-work of delicate canals which, with the Nailades, are visihle to the naked eye. It should not, however, he confounded with another net-work more difficult to be seen, and which probably constitutes a system of aquiferous canals, which is easily seen in the mantle, foot and other parts of the body by inflation. Delle Chiaje has called it Rete lymphatico-vasculosum,

* [§ 192, note 10.] See also Deshayes, loc. cit. p. 63, 64, \&c., Pl. VIII. fig. 1, 2, 3, and Quntrefages, loc. cit. p. 47, Pl. I. Gig. 7 (Teredo). - Ed.
lacunae situated at the base of the branchiac, and into which it thence passes.

CHAPTER VII.

RESPIRATORY SYSTEM.

§ 193.

With all the Acephala, the blood, just before returning to the heart, passes through a branchial, or distinetly respiratory organ, whieh, either simple or multiple in structure, is always hidden in the eavity of the mantle. The renewal of water takes place by special openings of the body, or through the slits of the mantle, which are often prolonged into two respiratory tubes. One of these openings is for the ingress, and the other for the cgress of the water, and their currents earry in and out, respectively, food and facees. In the cavity of the mantle, the water circulates in a definite direction and passes over the branehiae by means of the cilia eovering their external surfaee.

§ 194.

The Branchiae of the A eephala are formed after four different types:-

1. With Salpa, there is one only of these organs which stretches, from above downwards and from before baekwards, across the cavity of the body. The water enters through an anterior orifiee which is usually valvular, and is expelled through a posterior opening by the contractions of the body. ${ }^{(1)}$ The branehia itself, which, near the heart, is bent a little in front at it, lower posterior extremity, consists of a narrow band having upon one of its sides numerous transverse, thickly-set folds. ${ }^{(2)}$. Its remaining portion is flat, ${ }^{(3)}$ or the lateral borders are rolled up like tubes. ${ }^{(4)}$ The branehial vessels are ramified in the interior, eommunieating, at the superior extremity

[^125]posterior orifice, the animal closes the valve of the anterior one, so that the body is thrown forwards. On this account the cavity of the body is often called natatory.
${ }^{2}$ See Cuvier, and Savigny, loc. cit.
Sulpa costata, and maxima.
4 Sulpa pinnata, cylindrica, octofora. When the branchia is contamed in a tube it has often been compared to a Trachea; see Savigny, Loc. cit. Hl. XXiv.
heart, and on the other hand, all the other tacunae and the arterial system beside may be filled by injecting through one lacuna; sce Mémoire, loc. cit. p. 55. - ED.
of the branchiae with those of the boly, and at its opposite one with the heart. Externally, it is covered with large cilia. ${ }^{(5)}$
2. With the Ascidiae, the walls of the body are, for the most part, lined with a membranous branchial apparatus. In the place of respiratory orifices, there are, what are usually called an oral and an anal tube. By the first of these, the water containing food passes directly into that part of the cavity of the body which contains the branchial apparatus, and which is therefore called the respiratory cavity. By the second, this cavity is emptied of the refuse water containing faeces. ${ }^{(6)}$

The branchial membrane, which, in some of the simple Ascidiae, ${ }^{\text {(7) }}$ forms numerous longitudinal folds extending entirely over the respiratory cavity, presents a trellis-like aspect with rectangular meshes. ${ }^{(8)}$ These meshes which form prominent lines, have often small fleshy papillae, ${ }^{(9)}$ and are always provided on each side with a row of very long cilia which produce regular currents of water.

Two longitudinal sinuses pass off from the base of the respiratory cavity and ascend along its greater and lesser curvature even to the oral tube, where they intercommunicate by a circular canal. These sinuses send numerous transverse vessels into the branchial membrane, where they anastomose vertically and thus form a net-work corresponding to the trellis just mentioned.

From the continual changes in the dircction of the blood-currents it is impossible to determine which is the arterial and which the venous of these sinuses. ${ }^{(18)}$
3. With the Brachiopoda, the internal layer of the mantle serves as a branchia. The internal surface of the halves of this organ is occupied with a system of very apparent blood-canals.

With Terebratula, and Orbicula, there are four large canals upon the surface corresponding to the imperforate valve, and two upon the other surface. These arise from two hearts, and are subdivided into numerous minute branches. Parallel to these last, are others, smaller, and which appear to communicate with them on the borders of the mantle; perhaps they are the branchial arteries, while the larger canals are veins. ${ }^{(11)}$

With Lingula, the branchial vessels are contained in collar-like projections, giving the inner surface of the mantle a very peculiar aspect. ${ }^{(12)}$
4. In the cavity of the mantle with the Lamellibranchia, there are two pairs of branchiae, which, as four lamellae, embrace each side of the abdomen, and the foot. ${ }^{(13)}$. The water which bathes them comes in partly through an opening in the mantle, and partly by a particular respiratory orifice upon the border of the abdomen, or by the respiratory tube of the siphon. It passes out through the anal orifice, or by another tube of the siphon. ${ }^{(4)}$

[^126]partly known this arrangement of the branchial vessels.

11 Owen, loc. cit.
12 See Cuvier, Owen, and Vogt, loc, cit.
13 The two external branchial lamellae are usually a little smaller than the two internal ; and this difference is well marked with Cardium. According to Valenciennes (Comp. Rend. XX. p. 1688, XXI . p. 511), there is only a single pair of branchiae with Lucina jamaicensis, and columbella, Cy therea tigerina, Tellina crassa, and Solen radiatus. In this last species, they consist only of two narrow, longitudinal swellings.

14 The ingress and egress of the water through

These four branehial lamellae, whose lower border is free while the other is attached to the viscera, always extend along the abdomen, and not unfrequently come together above. ${ }^{(1)}$

Each lamella is formed, essentially, by a widely-projecting cutancous fold, the two leaves of which are connected by numerous transverse septa, to which correspond externally as many furrows which pass from the base of the branchia to its borders. All these furrows have upon each margin a row of long cilia, which, upon the borders of the branchia, comnect with an ordinary eiliated epithelium. ${ }^{\text {(6) }}$ The compartments formed by these interleaved septa are also lined with a very delicate ciliated epithelium, and connect with the eavity of the mantle at the base of the branchiae. ${ }^{(17)}$

With an cutire group of this order, the branchial structure is quite different from that just described. Externally, these organs appear like ordinary branchiae, but examined more closely it will be found, that, instead of lamellae, they are composed of numerous thickly-set ribands arranged in rows. ${ }^{\text {(18) }}$ These ribands are formed of two lamellae blended together at their extremity. Their circumscribing space is without doubt solely for the lodging of the branchial vessels; for, at their base, there is no orifice analogous to those found in the other species of this order. The blood collects at the base of the branchiae in the longitudinal eanal, from which the lateral vessels are given off, at right angles. Thence it passes into the branchiae, traversing a trellis-like net-work quite resembling the analogous one of the Ascidiae ${ }^{(13)}$ Another series of lateral vessels serves as the branchial veins, pouring the blood into other longitudinal canals, whence it passes into the two auricles of the heart. ${ }^{(29)}$
the different orifices of the mantle may be clearly seen by observing these animals, when they, at rest, protrude between the valves either then siphon or the borders of the mantle and tinge the surrounding water with coloring matter, which makes the currents quite distinct.
15 With Unio, Anodonta, Mactra, Cardium, Isocardia, Lutraria, \&c., the four branchial layers are united at their posterior extremity. But with Pecten, Avicula, Arca, Pcetunculus, and Pin$n a$, they are disconnected and extended backwards by two free prolongations.

16 These ciliary movements tend to carry the water, with the internal branchiae, towards their free border ; and with the external, towards their base,
17 these orifices of the branchial compartments are easily seen at the basc of these organs; excepting, however, those belonging to the two external branchiae, whieh are concealed beneath a kind of canal formed by the mantle. Thesc two canals, closed in front, open behind between the end of the ablumen and the anus into that portion of the cavity of the mantle lcading to the anal fissure or tube, and which may be regarded as a Cloaca; see Unio, Anodonta, Venus, Cardium, Isocardia, Mactra, sce. With many, as for instance with Unio, and Anodonta, the compartments of the external branchiae are much more developed than those of the internal, and their orifices can be closed in a hiplike manner by the vesicular enlargement of the septa which limit them on each side. With Pinna, the branchiae are quite different. Their leaves are united by short filaments instead of by septa; and thus, although not divided into compartments, there are oritices at their base which lead into the interior, and which are situated upon the internal surface of the internal, and upon the external surface of the external branchiae.

18 This pectinated form of the branchiac has been observed by Baer (Mectel's Arch. 1830, p. 340), with Mytitus, and by Meekel (Syst. d. vergleich. Anat. VI. p. 60), with Spondylus, Pecten, and Arca; see, also, the kearne animal de Cuvier, nouv. Edit. Mollusques. PI. LXXIV. fig. 2, a. I have seen similar tranchiae with Pectunculus. Avicula, and Lithodomus. Phitippi (Wiegmann's Arch. 1835, 1. p. 274) has seen them even still more developed with Solenomya.
This peculiar branchial apparatus with Mytilus has been describal with much detail by Sharpey (Cyclop. of Anat. I. D. 621). I have myself, during the autumn of 1847, completely verified the statements of this author, upon living specimens of the genera Mytilus, Arca, and Pecten, and would insist here only on a single remarkable fact. Each riband-like branchial filament has, upon both of its surfaces, several cap-like papillac by means of which these filaments are united together in a trel-lis-like manner. When the branchiae are forcibly distended, the papillae of the filaments are scparated from each other. But this separation is not very extended, for there is a cord composed of delicate fibres, between each two papiltae and bibuing them together ; but sometimes, from undue force, this cord is broken in its midule, and then each broken extremity appears as a bundle of moving vihratile cilia which projects from the cavity of the capsule (see Sharpey, toc. cit. fig. 305, E. a). The function of this apparatus, which ceases to be visible when the papillac are united together, is yet wholly doubtful.

19 Unio, Anodonta, Lima, Pinna, Ostrea, \&c.; sce Treviranus, Beobacht. aus I. Zoot. \&c. fig. 62, 63, 65 (Ostrea and Anodonta) ; and Poli, loc. cit. Tab. IX. fig. 17 (Unio).
${ }_{20}$ For the branchial vcssels, sec, especiaily, Bo-

§ 195.

It now remains to speak of a particular system of eanals traversing in all directions the body of the Lamellibranchia, which as yet has been called the aquiferous system, beeause it is supposed to serve for an internal respiration like that of the traeheae of insects. ${ }^{(1)}$ But, in the first plaee, the existence itself of sueh a system has been denied, although there are certain faets in its favor.

When one of these animals is suddenly taken from the water, numerous fine jets of water are seen to pass from these organs while the animal is withdrawing its foot and the borders of the mantle within the shell. From this fact it is evident that these orifiees conneet with aqueous reservoirs. But these openings are very small and probably are elosely eontraeted, for they eannot be diseovered either before or after the jetting out of the water. ${ }^{(9)}$ Orifiees of this kind have as yet been found in a few speeies only; such are those in the extremity of the foot of Solen, ${ }^{(3)}$ and that singular tube found.above the peduneulate anus of Pinna. ${ }^{(4)}$

The aquiferous canals themselves are not very apparent, being seen only after injeetion. This last is assily performed by blowing through a small tube inserted under the skin. There will then be seen a very beautiful network of eanals, whieh, nearly all of the same size, are spread out under almost the whole skin and enter the interior of the body by larger eanals. These eanals appear to be without walls, and have, in general, the aspeet of simple laeunae traversing the parenehyma of different parts of the body.

By some naturalists, this net-work of eanals is regarded as a system of lacunae eireulating the blood; ${ }^{(6)}$ but when they are inflated, another net-

[^127]* [§ 19t, note 20.] For full details on the branchdal vessels of Teredo, and heautifully illustrated, see Deshayes, loc. cit. p. 63, Pl. VII. and Quatrefages, Mémoire, loc. cit. p. 57, Pl. II. See also Filliams, On the Structure of the Branchiae and Mechanism of Breathing in the Pholades and other Lamellihranchiate Mollusks, in the Report of the Brit. Assoc. for the Advancem. of Sc. for 1851, p. 82, Uis first four conclusions are:
"1. That the blood of all lumellibranchiate moldusca is richly corpusculated.
des organisch. Lebens. I. p. 276). The orifice which Garner has figured upon the middle of the foot of Psammobia and Cardium, and to which he has given the name of Porus pedalis, belongy undouhtedly to this system; see Trans. of the Zool. Soc. II. Pl. XVIII. fig. 2, 13, f.

4 I have easily inflated the reticulated aquiferous canals of this animal by this tube, which, in Pinna nobilis, sometimes protrules far beyond the borders of the mantle, and which Poli (loc. cit. II. p. 241, Tab. XXXV1. fig. 3, N. fig. 7, 7. and Tab. XXXVII. fig. 1, S.) has figured as a Trachea.

5 See above $\delta 192$, note 11 . The vascular network which Poli (loc. cit. I. p. 8, Tab. IX.) has injected with mercury in the mantle of a Uuio, and which he regarded as a lymphatic system, belongs probably to the aquiferous system. The same interpretation ought perhaps to be put upon a sanguineous net-work which he has figured in the mantle of a Pinna (loc. cit. Tab. XXXVIIL.). Delle Chiaje (Descriz. \&c. III. Tav. LXXV. fig. 6, Tav. LXXVI. fig. 3, 6, and XU. fig. 1, 2, LXXXIX. fig.
"2. That the brancline in all species are composed of straight parallel vessels returning upon themselves.
"3. That the heart is systemic and not branchial.
"4. That the parallel vessels of the gills are provided with vibratile cilia disposed in a linear series on either side of the branchial vessel, causing currents, which set in the direction of the current of the blood in the vessels." - ED.
work of much smaller canals is seen expanded between and above them, and which ean be only the blood-eanals that were already visible before inflation. ${ }^{(6)}$ But the existence with these animals of a double system of laeunae having this interpretation, is attended with many difficulties. For then it must be admitted that one of these systems contains only water, and the other blood; and it is difficult to understand how two kinds of wall-less canals can traverse the body without passing into each other. But then, on the other hand, if the aquiferous canals are regarded as veins, and the other canals as arteries, how can this be reconciled with the fact that, in this case, the blood system would open externally and the blood escape through the natural orifices, while the watcr would be mixed with it from passing into the body ? ${ }^{(7)}$ At all events, this portion of the organization of these animals still requires a more thorough investigation.

CHAPTER VIII.

ORGANS OF SECRETION.

§ 196.

The relations of the mantle to the secretion of the shell-substanee and the byssus-forming organ, have already been spoken of. ${ }^{(1)}$ It now only
11) has given very beautiful figures of the aquiferous system of the mantle and foot of Pecten, Pinna, Solen and Mactra, but has regarded it as a Rete lymphatico-vasculosum. Milne Edwards (Compt. Rend. XX. p. 271, or Ann. d. Sc. Nat. III. 1845 , p. 300 , or Froriep's neue Not. No. 733, p. 99), who has seen these canals in Pinna, Mactra, Ostrea, \&c., regarded them simply as a system of tacunae common to all the Acephala.
6 I have seen it thus, at least with Unio, and Anodonta.
' Delle Chiaje (Descriz. \&c. III. p. 53) thinks that, with the Lamellibranchia, the sanguineous system opens externally through special orifices.

* [§ 196, note 1.] The means by which the Teredina penetrate the woody or stony substances in which they live, have received some investigation of late, and I refer here to the subject from its alleged anatomical relations.

According to Hancock (Proceed. Brit. Assoc. fin the Advancem, of Sc. 1848, or Ann. of Nat. Hist. 1848, II. p. 225, Pl. VIII. or Silliman's Amer. Jour. of Sc. 1849, VII. p. 288), "On a minute cxamination of the surface of the foot of $T e$ redo Norvegica it is found under the microscope to be crowded with minute brilliant points which, on being compressed, consist of compratatively large crystalline bodies imbedded within them. These crystals are numerous and of various sizes and slapes, chiefly five and six sided, but not by any means regularly so. They all agree in having one or more clevated points near the centre. 'These

1 See above §̧§ 174, 179. According to Deshaycs, Teredo has, at the anterior extremity of the body, a gland concealed between the valves and which communicates with the mouth of the animal. Its product would serve to dissolve the wood in which this animal bores. This glandular apparatus which, according to Deshayes exists also with other Teredina which live in calcareous matters, demands a further examination; see Comp. Rend. XXII. p. 38, 300, or Froriep's neue Not. XXXVII. p. 32t, XXXVIIl. p. 103.*
bodies are highly refractive, and are for the most part pretty regularly distributed over the whole convex surface of the foot, but are occasionally congregated in masses." This author thinks that this, as also all other boring Mollusks, excavate by means of these parts which rasp down the substance to be removed. See as corroborative of these views, clark Ann. Nat. llist. 1850, V. p. 6. But naturalists are not agreed on this point, and however it may be with Teredo, yet with Pholas, other observers have failed to find these rasping particles in question; see a report on the discussion of Hancock's paper in the Athenaeum No. 1086 ; also Quatrefages, Mémoire sur le Gemre Taret, Ann. d. Sc. Nat. 1849, XI. p. 33, and 11istory of Dritish Mollusca by Forbes and Hanley, p. 105.

After all, it would seem that it is most proballe that this process is effected by the action of cilia
remains to notice a very remarkable organ found in all the Lamellibranchia, and known as the Cland of Bojanus.

This organ, undoubtedly of a renal nature, is always doublc, and consists of a large loug sac with glandular walls, and of a dirty-ycllow or darkgreen color. It is situated each side of the back between the pericardium and the inferior adductor muscle, and extends usually upon the sides of the abdomen to the base of the branchiae.

Quite often these glands are united upon the median line of the back their cavities being separated only by a thin septum. They communicate with the cavity of the mantle by two small opeuings which have swollen borders and are situated sometimes at the upper, and sometimes at the lower end of the sac. ${ }^{(2)}$

The usually very thin walls of these two sacs have numerous folds or plicae, which form compartments or areolae, all of which are covered with a very delicate ciliated cpithelium. The parenchyma of these walls is composed of a very loose tissuc, which, upon the least disturbance, separates into small granular cells. ${ }^{(3)}$ Most of these cells contain a blue-black round nucleus, to which is due the more or less decp color of these organs. ${ }^{(4)}$

2 With Unio, and Anodonta, these orifices are at the superior extremity of the renal sacs close beside the two genital openings; see Bojanus, Isis, 1819, p. 46, Taf. I. fig. 1; Buer, iu Muller's Arch. 18:30, 1. :3I9, Taf. VII. tig. 1, 2 ; Pfeiffer, Naturgesch. deutsch. Land-und Susswasser-Mollusken, Abth. 1I. Taf. 14. fig. 19, b. ; and Newwyler, in the Neue Deukschr. VI. D. 22, Taf. I. II. They lie in, the angle formed by the abdomen and the internal branchiae, and concealed beneath the internat leat of these last. They had already been observed by Poli (loc. cit. 1. j. 6, Tab. IX. fig. I5, i. i.), who, bowever, did not recognize their true nature.

With Pecten, and Spondylus, these renal sacs, which are situated in front of the adductor muscle, have their two orifices at the lower extremity; see Garner, Traus, of the Zool. Suc. loc. cit. Pl. XIX. fig. $2, \mathrm{j}$. (Pecten).

With many, the genital organs open into the urinary ones. This is so according to Garner (loc. cit. p. 92), with Tellina, Cardium, Mactra, Photas, and Mya. I have very distinctly seen with Pinna nobilis, the two orifices common to the kidneys and genital organs. Their borders were swollen, and they were situated upon the anterior surface of the dorsal wall a little in front of the posterior adductor muscle. They opened into a very large sac with thin walls which had no glandular structurc except at their lover extremity near the principal adductor muscle ; see Poli, loc. cit. Tab. XXXiII. fig. $2, \mathrm{D}$.

The genital oritices open into the two sacs directly back of these cxternal orifices. With Mytitus edulis, the kidneys have a yet more singular arrangement; their two sacs situated at the base of the branchiae are opeu their whole length, so
alone. This would seem inefficient did we not re-

- member their unceasing action; and this view is the only one which will explain the exact conformation of the excavation to the shape of the body in all its parts. It is the view of Agassiz, and others, who have specially examined the subject. I have here thus noticed the matter iu a suggestive point of view for microscopical anatomists. - Ed.
that by spreading apart the branchiae, the compartments and cells of these glands can be distinctly seen ; see Treviranus. Beobacht. aus d. Zool. u. Phys. p. 51, fig. 68, b.*

3 It is only recently that the intimate structure: of these organs was known. Veuwyler was quite mistaken in regarding them as two testicles (loc. cit. p. 25). He speaks of tubes in which he attirms that he has seen spermatic particles, but he gives neither a detailed description nor a figure of one or the other. I have never been able to find anything of this kind in the Lamellibranchia. If the walls of these organs are prepared in any way for microscopic examination, a part of their parenchyma separates into a vesiculo-granular mass, the particles of which have a very lively dancing motion. The motions are due to portions of ciliated epithelium adhering to the cells and granules. It is in this way, probably, that Neuwyler has been deceived, taking these moving bodies for spermatic particles.

4 These round nuclei, usually of a deep brown or blue color, can easily be seen in the kidneys of Unio, Anodonta, and Cuclas; but with the young indiviluals their number and size are quite limited, making the kidneys very pale. They rescmble, moreover, perfectly the bodies contained in the renal substance of the Gasteropoda (see below). This analogy is particularly striking with Aspergillum vaginiferum, whose renal sacs are triingular and situated between the heart and the extremity of the rectum, thus resembling in all respects the kidneys of the Gasteropodia, although Leuckart has taken them for the liver (Neue. wirbellose Thiere d. roth. Heeres, loc. cit. p. 46, Taf. XII. fig. 6, g.).

* [\$ 196, note 2.] According to Frey and Leuckart, the bodies of Bojanus are absent in Teredo navalis, but these observers think the kidneys are present in another part of the body; see loc. cit. p. 46. - ED.

These nuclei are very solid and ought to be regarded as the secreting bodies. They are sometimes so large as to be visible to the naked eye as inorganie concretions, and, as they eontain urie acid, they may well be compared to renal ealculi. ${ }^{(5)}$ The walls of these kidneys are surrounded by a distinct net-work whieh arises from the large venous reservoir in which the afferent blood of the body is aceumulated. A small portion of the blood which eireulates in the kidneys passes direetly to the heart; but the rest is emptied into the pulmonary arteries. ${ }^{(6)}$

CHAPTER IX.

ORGANS OF GENERATION.

§ 197.

The Acephala throughout, propagate by genital organs. With the Tunicata only, is there also observed nultiplication by gemmation.

This occurs with the compound and some of the simple Ascidiae, whieh remind one of the Zoophytes and more particularly the Polyps, which they resemble from other conditions of the organization. The buds are always developed at the lower extremity of the body, appearing first as small pyriform projections, covered by the general envelope of the mantle, into which the circulation is prolonged.

Gradually, an Aseidian is developed upon the round summit of this projection, while its peduncle is lengthened and somewhat constricted; this continues until the body of the new individual is entircly separated from

[^128]aside from the fact of their contaming uric acid (Garner, Trans. of the Zool. Soc. loc. cit. p. 92, and Owen, Lect. on Comp. Anat. \&c. p. 284), a point upon which I was not before satisfied.
The chemical composition of these concretions, however, satislies me that these organs are truly kidneys.
${ }_{6}$ This is the mode of circulation of the blood through the kilneys, according to Bojanus, loc. cit. But the opinion of Treviranus is different. According to him all the blood returning from the branchiae traverses the glands of Bojanus before reaching the heart (Beubacht. aus. d. Zoot. \&c. p. 49). As these organs are not easily found, it will be difficult to determine this point positively by direct observation. It is only by following analogy that Bojanus' opinion can be probable in its essential point, - which is, that if the glands of Bojanus are the analogues of the venors appendages of the Cephatopoda, and of which I am persuaded with Van der Hoeven (Meckel's Arch. 1828, p. 502) is the case, tben they connect with the veins which go to the branchiae, and not with the arteries which go from the branchiae to the heart.
The blood-current in the crlands of Bojanus, therefore, ought to pass towards the branchiae and not towards the heart.
that of the parent, and the envelope of the mantle alone is common to both. ${ }^{(1)}$

§ 198.

With the Acephala, the sexes are sometimes separate, sometimes united in one individual. But the genital organs are very fully developed, and, as with the Koophytes, consist of an ovary and a testicle with an excretory duct; but in none are there copulatory organs, or uterinc reservoirs for the eggs.

The eggs are usually spherical, rarely pyriform or elliptical. The pale yellow or reddish vitellus is fincly granular, and surrounded with a vitclline mombrane and a smooth colorless chorion.

The germinative vesicle has usually two nucleoli cemented together. Often there is a layer of white substance interposed between the chorion and the vitelline membrane. ${ }^{1)}$

The sperm is milky, and, at the epoch of procreation, quite full of very active spermatic particles. These always consist of an oblong, oval, or pyriform body, to which is abruptly attached a delicate tail, whose motions are not affected by the water in which these animals live. ${ }^{(2)}$

With the Accphala of separate sexes, the ovaries and testicles so closely resemble each other, not only as to their form and the arrangement of excretory ducts, but also as to their locality in the body, that they are with difficulty distinguished cach from the other, except at the period of procreation.

The copulatory organs being absent, herc, as with the Zoophytes, the water is the fecundating medium.

1 This multiplication by buds has heen observed by Milne Edwards with Botryllus, Polyclinum, Amaroucium, Didemnum, and Perophora. It occurs also, undoubtedly, with other compound Ascidiae, and is the cause of the increase of the Ascidian-stock with the colonies of these animats. With the simple Ascidiae - Clavelina lepadiformis, and producta, the buds take the form of suckers (Stolones), and the new individuals are separated from their parents with the separation of the mantle; see Milne Edwards, Sur les Ascidies composees, loc. cit. p. 41, Pl. III. fig. 23. (Amaroucium proliferum), 1l. VII. 1, 1. ${ }^{\text {² }} \mathbf{1}^{\text {² }}$ ((Botrylloudes rotifera), and Pl. II. fig. 1c. 3 (Clavelina), Eysenhardt (Nov. Act. Acad. Lsop. Carol. XI. p. 263, Tab. XXXVI. fig. 1, \&c.), has also observed these stolons upon a simple Ascidian.

1 These eggs have been figured by Wagner, Prodromus, \&c., p. 7, Tab. I. fig 5 ; Carus, Erläuterungstafeln, \&c., 11 ft . V. Taf. 1, fig. 2, and Nov. Act. Acad. Leop. Carol. loc. cit. p. 26, Tab. 1. (Anodonta and Unio), and by Mi/ne Edwards, Sur les Ascid. comp. p. 25́, Pl. IV. fig. 1-3 (Amaroucium).

* [§ 198, note 2.] The spermatic particles of the Acephala throughout, are according to my own obscrvation, of a Ccrearia-like form, - that is, having a distinct head to which is attached a more or less delicate tail. Their development, which I have traced in many cases, is in special, daughtercells as with all other animals. They may, as indeed they oftell do, assume various groupings afterwards, but the real development appears simple and invariable. The shape of the bead of the

2 The spermatic particles of the Acephala have been described and figured by Warner, in Wiegmann's Arch. 1835, II. p. 218, Taf. III. fig. 8 (Cyclas); Siebold, in Muller's Arch. 1837, p. 381, Taf. XX. fig. 12-14 (Unio, Anodonta, Mytilus, Tichogonia, Cardium, Tellina, Mya and Cyclas); Kolliker, Beitrage, loc. cit. p. 37 (Pholas), and Krohn, in Froriep's neue Not. No. 356, p. 49, 52 (Phallusia und Salpa). Those of Amaroucium described by Milne Edwards (loc. cit. p. $21,{ }^{1} 1$. III. fig. 1°.) differ from the usual type in being fusiform and very long, - their tail not being distinct from the body. Those of a Cynthia have appeared to me of a similar form, - only the tail was much longer and more delicate. With PhalIusia, on the contrary, I have distinctly seen them with an oblong body to which is abruptly attached the tail. The sperm of Polyclinum, Botryllus, Didemnum, Diazona, and Phallusia, contains spermatic particles of a Cescaria-form ; while those of Salpa are filamentoid; see Kölliker, Neue schweiz. Denkschr. VIII. p. 43, fig. 30, 49, 53-57. *
particle 1 have found to differ widely, yet in each case to present an uniformity of a zoological value. Sometimes it is perfectly globular (Polyclinum), sometimes oval (Unio, Anodonta), sometimes ovoglobular (Ostrea), sometimes oblong (Ascidia), sometimes pyriform (Mytilus), sometimes conicopyriform (Mya), and sometimes long-conical (Cyprina). These forms may seem a refinement more ideal than real, but the exact forms are determined by micrometrical measurements. - ED.

§ 109.

The genital organs of Salpa are yet quite imperfcetly known. They cannot be found except at the procreative period, and in a very few species only Ovaries have been discovered.

These consist of two flexuous zigzag cords, situated each side of the median line of the back, between the mantle and peritoneum. Sometines they are prominent from their violet color. ${ }^{(1)}$ The young are always developed near the nucleus, in a cavity circumscribed by the peritoneum, but it is yet not determined whether it communicates with the ovaries by an oviduct, and whether it has distinet walls, so as to be comparable to an uterus.

As to the Male genital organs, we are yet in almost complete want of rcliable researches.

From a single observation, it would appear that there is a testicle conccaled in the nucleus, betwcen the coils of the intestine, and communicating, near the anus, with the cavity of the body. ${ }^{(2)}$ But this still leaves it uncertain whether these animals are hermaphrodites or of separate sexes. ${ }^{(3)}$

The Ascidiae are cvidently hermaphrodites, for the male and female organs, varying as to numbci and position, are found upon onc and the same individual between the walls of the nuscular and branchial sacs.

With the compound forms, as well as with many of the simple ones, the long, compact and usually yellowish ovarian mass is situated at the base of the cavity of the body. From this there arises a large thin-walled oviduct lined with ciliated epithelium, which ascends along the rectum towards the anal tube and opens into the cloaca through a papilla. Along its side and often beneath it, there is another long mass, which is evidently, from its contents, a testiclc. It has a narrow and very tortuous Vas deferens filled with sperm, which runs parallel with the oviduct to its very extremity. ${ }^{(4)}$ Cynthia presents a remarkable exception in this respect. The gen-

[^129]with Salpa pinnata, lies along the intestinal canal, is a V'as deferens.

3 At alt events, the question needs careful examination, whether both the simple and the compound forms of Salpa have male organs, or only one of them. In this last case, these amimats would have some resembtance to the Aphides. Sars (luc. cit. p. ii) having dechared that the solitary individuats of Salpa are sextess, then the agyregate indiviluals ought to be considered as representing the perfect state of these animals; but as yet aeither this authur, nor Krohn (Froriep's neue Nutiz. XL. 1.151, and Ann. d. Sc. Nat. 1846, V'1. 1'. 110) have been able to show the existence of ovaries in these animals. At least thesc two naturatists pass in silence the viotet ovarian striace of Sa/pa, mentioned by other observers.

4 Cavier and Savirny have known, and often figured the femate organs of the Ascidiae. Those of both sexes have been figured by Milne Ldwards (Onserv. sur les Ascid. comp. p. 21, Pl. M1. fig. 1, 2'. II. fig. 1, 3) with Ctavelina, Amaroucium, and Polyclinum. The testicle of Phallusia and Rhopalaea is quite jreculint. It consists of a white multiramose canal widely spread over the hepatic layer of the intestinal canal ; white the wary always lies in a boop of the intestine; see Delle Chiaje, Memor'. 111. p. 192, 'Tav. XLV. fig. 16, i., and lescriz. \&c. 111. p. 27, 'Tav. L.XXXII. fig. TB, LXXXIV. fig. 1, i. (Phallusia intestinatis and
ital organs are situated upon both sides of the body between the branchial membrane and the muscular wall with which they are intimately blended. They form, sometimes several round or angular projections divided into two groups, and sometimes four long crests whose four distinct secretory ducts open, aftcr a short course, into the space included between the branchial membrane and the muscular sac, at a variable distance from the anal tube. ${ }^{(5)}$

With the Brachiopoda, ovaries only have as yet been found. These surround the liver, and stretch upon both valves of the mantle around the minute branches of the branchial vessels. ${ }^{(5)}$

With the Lamellibranchia, there are both hermaphrodites and separate sexcs. But the last are much the more common ; for the first have as yet been confincd to Cyclas, ${ }^{(7)}$ Pecten, ${ }^{(8)}$ and Clavagella. ${ }^{(9)}$ The testicles and ovaries lic directly behind each other on each side of the body, between the liver, intestinc, and kidney. Their excretory ducts have not yet been satisfactorily made out; all that has been observed, is, that with Cyclas, the eggs pass between the lamellac of the base of the cxternal branchiae, and, being here developed, produce sac-like swellings. ${ }^{(10)}$

With those species which arc of separate sexcs, ${ }^{(1)}$ the two ovaries or testicles are situated usually in the sub-hepatic region of the abdomen.
mentula). The same arrangement has been observed by Krohn (Froriep's neue. Not. No.356, p. 49) with the testicle of Phallusia, and by Philippi with that of a Rhopalaea (Muller's Arch. 1843, p. 48, Taf. IV. fig. 9).

5 Carus has distinguished, with acuteness, from the ovarian group, as being a testicle, a collection of projecting angular glands lying with Cynthia microcosmus, upon the internal surface of the muscular sac (Meckel's Arch. П. 1816, p. 577, Tab. II. fig. 1, 2, de.- and, Nov. Act. Acad. loc. cit. Tibb. XXXVII. fig. 1, 2, k. k.). Savigny also (loc. cit. p. 92, PI. VI. fig. 2, 3) has seen with Cynthia microcosmus, and pantex, two glandular groups with their excretory ducts as the sexual organs, but without determining that one of thesc was a testicle; while Cuvier (loc. cit. p. 28, Pl. I. fig. 3. d. d.) who las observed the testicular group with Cynthia microcosmus, did not know what to call it. According to Delle Chiaje (Mcmor. \&c. Tav. XLV. fig. 2, h. h.), the genital organs of Phallusia phusa consist of numerous glandular projections united into two groups, and having two distinct excretory ducts. With Cynthia canopus, the genital glands he upon four long crests, from the upper cxtremity of each of which passes off an excretory duct towards the anal tube (Savigny, Mėm. loc. cit. p. 96, Pl. VIII. fig. 11, 2). With Cynthia papillata, there are two of thicse crests curved in a loop-like manner. (Savir$n y$, loc. cit. p. 92, PI. VI. fig. $4^{1}, 4^{2}$, or Delle Chiaje, Memor. III. p. 191, Tay. XLVI. fig. 1, 1. I. and Descriz. \&c. III. p. 27, Tav. LXXXII. fig. 11, 1. '1.). From the two extremities of each of these 1 . ises off an excretory duct; and in comparing this arrangement with that of Cynthia conopus, it might be inferred that this loop-like disposition is due to the fusion of two glandular crests. As to wlich of these crests are ovaries and which testicles, it would appear from Krohn (Froriep's neue Not. No. 356, p. 50) that all are ovaries, for he has observed, with a species perhaps identical with Cynthia canopus, near the four oviducts, four other excretory ducts not easily seen, and which, as V asa deferentia, arise from the ramified seminiferous tubes spread out over the ovaries.
© \mathbf{H} or the ovaries of Terebratula and Orbicula, sce Owen, loc. cit. The figure of Miller (Zool.
danica, I. p. 4 , Tab. 5, fig 1, 7) of those of an Orbicula is very beautiful; while that of Poli is not as good (loc. cit. II. p. 191, Tab. XXX. fig. 19, 20).
${ }_{7}$ For the hermaphroditism of this genus see my memoir in Muller's Arch. 1837, p. 383.

8 According to Milne Edwards (Ann. d. Sc. Nat. XVIII. 1842, p. 322, Pl. X. Hig. 1), with Pecten glaber, the male gland is situated at the upper, and the female gland at the lower part of the abdomen. The two orifices found at the base of the groove of the byssus belong to the testicles. With another species of Pecten which I have examined, I was unable to confirm this hermaphroditism, for I found in the abdomen only either testicles or ovaries alone. Moreover the orifices just alluded to, appear to me to belong to a gland secreting the byssus ; see above § 179 , note 4 .

With Cluvagella, Krohn found the testicles beneath the liver, while the ovary surrounded it and the stomach (Froriep's neue Not. No. 356, p. 52).

10 These pouches, which, with Cyctas, contain but a single eag, have been figurcl by Carus (Erlauterungstafelı, Hft. III. p. 10, Taf. II. fig. 20.3) after Jacobson.
${ }^{11}$ Leeuwenhoek (Contin. arcan. natur. detec. Lugd. Batav. 1722, Epist. 95, p. 16) had alrealy distinguished male and female individuals with certain Lamellibranchia. Notwithstanding this, he afterwards aflirmed that all these Mollusks were exclusively females, -an opinion still entained by some naturalists (see Deshayes, in the Cyclop. Anat. I. p. 700, and Garner, in the Thans. of the Zool. Soc. II. p. 96). I had, however, several years before, shown that the sexes were separate with Unio, Inodonta, Mytilus, Tichogonia, Cardium, Tellina, and Mya (Müller's Arch. 1837, p. 380). The fact has been confirmed ly Milne Edwards (Ann. d. Sc. Nat. XIII. 1840, p. 375) with Venus, by Owen (Lectures, \&c., p. 287) with Anomia, and by Küliker (Beitragge, lue. cit. p. 37) with Pholas. I can also add to this list, Arca, Pectunculus, and Lithodomus. I have already mentioned ($\$ 196$, note 3) how Neuwyler, in taking the ciliary motions for those of spermatic particles, regarded the kidneys of Anodonta and Unio as the testicles,

They surround the eoils of the intestine, and often aseend along the back, covering the liver with their folds. Their excretory ducts are lined with eiliated epithelium, and open each side of the bottom of the abdomen through a fissure with smaller borders, communicating either with the cavity of the mantle close by the renal opening, or with the renal sacs. ${ }^{(12)}$ With those species which have a very small abdomen, these organs are spread out by numerous ramifieations into the substance of both halves of the mantle. ${ }^{(13)}$

The two external branchiae serve, for the most part, the function of an uterus; for the eggs, having escaped from the oviduct, are lodged in their compartments, and, by the aid of the cilia covering the cavity of the mantle, receive the sperm which is introduced in the water for respiration. ${ }^{(t)}$ The quantity of eggs thus accumulated is so great, that with Anodonta these organs are extraordinarily enlarged during the development of the young; and on this account the shells of the females of this genus are more convex than those of the males. In this way the sexes of these Naiades ean be quickly distinguished from each other by the shell alone. ${ }^{(1))}$

$$
\S 200 .
$$

Most of the Aeephala undergo during their development, whieh always begins by a complete segmentation of the vitellus, a metamorphosis which is quite remarkable in many respects.

Among the Tunicata, the embryology of the Ascidiae is the best known. An oval embryo follows upon the segmented vitellus, ${ }^{(1)}$ and is quickly changed into a Cerearia-like larva. ${ }^{(2)}$ The tail is not formed from a grad-

and therefore considered the Naïades as bermaphrodites.*

12 The genital and urinary openings are contiguous witl the N aïudes; see above $§ 196$, note 3 , and Neumann, De Anodontarum et Unionum oviductu, Diss. Regiomont. 1827. This is the same also with Tichosonia; see Van Beneden Ann. (l. Sc. Nat. VII. 1837, 1. 128. With Pinna nobilis, I have found the graital orifice close behind those of the renal sics. According to Garner (loc. cit. p. 92), a similar arrangement exists with Tellina, Car dium, Mactra, Pholas, Mya, and Pecten. The twogenital orifices which Falenciennes (Arch. du Mus. \&e. 1. Pl. 11. fig. 5) and Delle Chiaje (Descriz. \&c. III. Tav. XC. fig. 2) have seen at the lower end of the abdomen of Panopaea and Solen, belong probably also to the urinary system.

13 Mytilus (Poli, loc. cit. IJ. p. 202, Tab. XXXI. Git. 3), Anomia, Hiatella, Modiola, and Lithodomus (Garner, loc. cit. p. 97). Witb Lithodomus dactylus, I lave, however, always found the abdomen filled with testicular or ovarian masses.

14 It is with the Nairades that the branchiae as reservoirs of eggs, are best known; sce Poli, loc. cit. I. p. 5, Tab. IX. fig. 18 ; Pfeiffer, loc. cit. Abth. I[. p. 11, Taf. II. fig. 16-18; Carus, Nov. Act. Acad. \&c. p. 17, Tat 1. fig. 8 ; and Neuwyler, loc. cit. p. 18, Taf. IIL. fig. 14 (Unio aml Anodonto). While remaining in the compartments of the branchiae the exters are slightly glued together. With Unio, they often escape throngh
the anal fissures under the form of oval dises shaped like the brabchial eompartments. For a long time it was inexplicable how the eggs should always pass exclusively into the external branchiae, when the cavities of the internal oncs were so much nearer the genital orifices, But Baer (Mfekel's Arch. 1830, p. 3l3) has sliown that their route is circuitous; they glide along the base of the intermal branchia to the cloaca, they then ascend by a special eanal of the mantle and pass into the external branchiae. This coursc is the more easily understood from the ciliated structure of these orrans. Will (Froriep's neue Not. No. 620, p. 57) aftums that with Tellina the sperm of the males is evacuated in an andogous mamer through the anal tube, and being there taken up by the females tbrough then respiratory tube is conducted to the external branchiae.

I lave also found embryos within the branchae of T'eredo navalis.

15 At present, this difference in the convexity of the valves appears to me to exist only with Anodonta (Wiesmann's Arch. 1837, I. p. 415) ; but Kirtland (Ibid. 1836, I. p. 236) has suceeedel very well in distinguishing, by this character, the males and females of Unio, of North America.

1 The complete segmentation of the vitellus has been observed by Milne Edwards (Sur les Ascil. de. p. 30, Pl. IV. fig. 1-1) with the egors of Amaroucium.

2 These Cercaria-like foetuses had alrearly been

* [§ 199, note 11.] The hermaphrodite eharacter of the Naīades bas recently been urged, and Kirtland's marks of the different sexes by the shape of the shell called in question ; see article Zoology in the Iconographic Encyclopedia, edited by Spencer 3. Baird, p. 70. Lut see Kirtland's critieism of
this article in the Proeeed. Amer. Assoc. Advancem. of Sc. 5th meeting, Cincinnati, 1851, p. 85. I have examined this subject with some care by the microseope, and have satisfied myself from an analysis of the contents of the organs that the generia in question are of separate sexes. - Ed.
ual clongation of the posterior part of the body of the cmbryo, but is produced by the fusion of a serics of globules whieh result from the vitelline segmentation. These globules lie upon the surface of the embryo and, in their separation from it, assume a tail-like body which is folded in front, and only latterly is extended out behind. With some of the compound forms, it forms also two eye-speeks upon the baek of the larva. ${ }^{(3)}$ At this period of development the eggs are still in the eloaca, or perhaps have been discharged through the anal tube. Subsequently, the embryos rupture their shell, and then swim freely about by means of their very aetive tails. Soon after this, the larvae are completely surrounded by a transparent struetureless envelope, which ultimately beeomes the mantle. They are then fixed by their anterior extremity, - lose their tail and assume their adult form. ${ }^{\text {(1) }}$

With the compound forms, before the larvae have become fixed and deprived of their tails, numerous button-like prolongations arise from the anterior extremity and extend into the mantle; these, after the fivation of the embryo, are changed into as many individuals. ${ }^{(5)}$

The development of the Salpae has yet been ineompletely observed, for its earlier conditions have received no attention. But the later ones present very curious phenomena.

In the first place, it is quite remarkable that the two forms of these animals which are always viviparous, produce young wholly dissimilar. The solitary individuals produce others joined together in a ehain-like manner, ${ }^{(6)}$ while these last give rise again to the solitary forms. But in neither case do the embryos undergo a metamorphosis. This chain of individuals is usually eomposed of two rows joined together by several cords and enveloped in a common membranous tube. The individuals at the anterior extremity of this tube are the more developed, - there being a gradation in this respect to the posterior extremity, where they appear only as simple punetiform bodies. This tube usually surrounds also the nueleus of the parent, inte the cavity of whose body its anterior extremity often widely
observed by Savigny (Mém. \&c. PI. XI. fig. 23, Pl. XXI. fig. I'.) with Clavelina and Botryllus.
Subsequeutly tbey have been described by Audouin and Milne Edwards (Ann. d. Sc. Nat. XV. I828, D. I1); Sars, Beskrivelser, \&c., p. 69, PI. X1I.), and Dalyell (Edinb. new Philos. Jour. Jan. I8̈̈9, p. I53). Latterly Milne Edwards (Sur les Ascidies, \&c., loc. cit.) has furnished an exact embryology of tbese Ascidians, but which has been completed by Van Beneden (Mém. sur l'embryog. l'anat. et la physiol. des Ascid. loc. cit.), and by Külliker (Ueber das Vorkommen der Holzfaser im Thierreich luc. cit.).
[Additional note.] The memoirs cited above Luve since been published, that of Van Beneden in Mém. de l'Acad. de Bruxell. XX. 1847, Pl. II. III.; that of Kölliker in Ann. d. Sc. Nat. V. I816, 2I7, PI. VII.
3'Amaroucium and Aplidium, according to Kolliker, and as confirmed by Van Beneden.

4 For the development of a simple Ascidian, sce Dalyell, loc. cit.
5 According to Milne Eduards (loc. cit. p. 30), these animals use these processes like suckers to fix themselves. But this is contradicted by the observations of Kölliker, and Van Beneden.*

6 This mode of propagation first described by Chamisso (loc. cit.), has been doubted by Eschricht, who thinks that the young Salpae produce solitary foetuses, while those of a more advanced age produce the aggregated form. But, as Steenstrup (Ueber den Generationswechsel, p. 36), has justly ohserved, there is no observation to support this view.

The alternate generation of the Salpae, as first described by Chamisso, has been confirmed in all particulars by Sars, and Krohn (loc, eit.). It is however, singular tbat, according to Krohn, the single egg of the aggregate Salpae is formed in an ovary, while the whole developnient of these saue animals when solitary occurs from an internal gemmation.

[^130]published ; the published portion (loc, cit.) refers more particularly to the formation and intimate structure of the egg. Those of Krohn are chiefly confirmatory of those of Edwards and other olsservers above mentioned. - Ed.
extends, while its opposite end appears attached near the nucleus to the dorsal portion of the walls of the body. ${ }^{\text {a }}$

The solitary individuals, which are produced by the chain-like forms, are also developed near the nucleus, and adhere quite singularly to the dorsal wall of the parent by a peduncle resembling an umbilical cord. These pedunculeted embryos are always few in number, and have a proper vitellus. Often, however, there is only one. ${ }^{(8)}$ It may be questioned, moreover, if these eggs are not gradually developed with their peduncle at their place of incubation, or whether they become fixed at this place after having been developed in, and separated from the ovary. At least, one might almost think that, after all, this is only an intersal gemmation.

With the Lamellibranchia, the Naiades particularly, are those whose embryology has been observed. When the vitellus begins to segment, there are two superficial contiguous vitelline cells that do not participate in this process. ${ }^{(9)}$. These are gradually changed into two three-sided valves, while the remaining portion of the vitellus is transformed into a round embryo eovered with cilia, which turns upon itself in the egg - being partly enveloped by the valves. ${ }^{(10)}$ This rotatory movement, however, soon eeases, and the embryo divides itself into halves, each covered by a valve. ${ }^{(11)}$ Each of these valves has a eiliated mouth near the hinge, and a proper intestinal canal. ${ }^{(12)}$

In the middle of the angle formed by these halves is raised a short, hollow cylinder, - the byssus-forming organ, and out of which projects a very long transparent byssuf. ${ }^{(13)}$
(7) See the figures of Chamisso, loc. cit., of Quoy anl Gaimard (Ann. d. Sc. Nat. X. 1825, p. 226, Pi. VIII. fig. 3-6, and Voyage de 'l'Astrolabe loc. cit.), of Delle Chiaje (Descriz. \&c. III, p. 42, Tav. L.XXVL. fig. 1), atd especially those of Eschricht (loc. cit. 1. 35 , Tab. I. II. IV. V.).
(8) See Chanisso, loc. cit. fig. 1, D. 1, J. (Salpa pinnata, with a very developed foetus), fig. 3, F. (Salpa zonaria with three bitton-like foetuses little developed), Quoy and Gaimard, Isis, 1836, Taf. VI. fig. 12 (Salpa pinnata, with a very large foetus), and Ann. d. Sc. Nat. loc. cit. Pl. Vili. fig. 7-3 (Salpa microstoma, with four buttonlike foetusss); Meyen, loc. cil. p. 393, Tab. XXVII. fig, 9-16 (Salpa pinnata), Tab, XXVIII. fig. 1, 2 (Salpa mucronata), Tab, XXIX. fig. I. h. (Salpa antarctica), fig. 2-1 (Salpa maxima); Eschricht, loc. cit. p. 65. fig. 27, q. 36 (an individual from the chatin of Salpa cordiformis containing five, isolated, perlunculated foetuses ; perhaps here should be mentioned the five pedunculated bodies which he (p. 39, fig. 18, p. 23) has described and figured with Salpa zonaria) ; finally Delle Chiaje, Descriz. \&c. luc. cit. Tav. LXXVIII. fig. 3 (Salpa maxima, with a pelunculated hody), and fig. 8, 13 (Salpa scutigera, with a developed foetus).

9 These may be easily distinguished with Unio and Anodonta, a clear nucleus in each segmented division of the vitellus. Carus (Nov. Act. Acad. p. 43 , Tab. II. fig. $1,3,10$, I1) has seen the vitelline cells nueleated, but he thought that the eggs, which contained the faceted cells out of which are ultimately formed the valves, were diseased and dead.

10 This rotation of the embryo of mollusks had already excitel the astonishment of Leeuwenhoek (Continuat. arcan. nat. Epist. 95). Its cause was explained in a very unsatisfactory manner by Home (Philos. Trans. 1827, pt. I. p. 39, or in Heusinger's Zeitsch. für organische Plysik. I. p. 394),
and by Cqrus (loc. cit. p. 27), for they did not know of the expence of cilia.

11 This division of the embryo with valves often lying entirely open, has perhaps led Rathke (Schrivter af Naturhist. Sclsk. lac. cit. p. 166, Tab. X. fig. 3), and Jacobson (Observ. sur le develop. prétendu des oeufs des Moulettes ou Cnio et des Anodontes dans leurs branchies, An. d. Sc. Nat. XIV. 1828, p. 22, and De Btainville's report upon this work) to regard the young of Natudes for parasites, under the name of Glochidium parasiticum. See also the works of Carus (loc. cit.), and of Quatrefages (Sur la ve interhranchiale des petites Anodontes, Ann. d. Sc. Nat. IV. I885, p. 283, V. 1836, p. 321, P'1. XII.).

Loven informs us that the young of Modiola, and Kellia are formed upon a wholly different type. Their two valves, which are only slightly separated, are overlapped by two lobes (as Mantle ?) which are everted and provided with very active viluratile cilia; the young swim by means of these lobes (Arch. skandinav. Beitr. zur Naturgesch. Th. I. p. I55, Taf. I. fig. 9-1I). I also have observed with Teredo navalis, the emhryos swimming freely about by means of a foot-like organ which protrudes between the valves and presents an active ciliary movement.

12 Quatrefages, loc. cit. P1. XII. fig. 20.
13 Quatrefages (loc. cit.) has figured with each embryo two byssus-organs out of which projects a double byssus. I have been unable to observe this, and, like Carus, have always found a single byssus-organ with a single byssus.
It is quite remarkable that not ouly the Natades, but other Lamellibranchia also, have this hyssusorgan when quite young. Thus in the young of Cyclas cornea, I have distinctly seen a hollow pyriform glandular organ in the foot, and from which projected a long simple byssus.
The embryos of Kellia have also a byssus according to Loven (loc. cit.).

Internally, the embryonie halves have three tentacular, stiff points, whose bases are surrounded by eollars. ${ }^{\text {(1) })}$

Near the hinge a large muscle passes from one valve to the other ; this, from convulsive contractions which oeeur from time to time, gradually approximates the valves, whieh are wide open when the young individual escapes from the egg. These valves are trigonal and slighty eonvex. One of their sides goes to form the hinge, while the two remaining, whieh are a little arehed, unite at an angle opposite. With this angle is artieulated a prolongation eurved downwards and inwards, and whose convex side has several spines. ${ }^{(15)}$ After their eseape from the eggs. these embryos are held together by thcir cntangled byssuses. Subsequently, when the adductor musele has definitcly elosed the valves, the embryonie halves are blended together, probably by a new metamorphosis.*

[^131]
BOOK TENTH.

CEPHAL0PII 0 RA.

CLASSIFICATION.

$\S 201$.
Tree organization of the animals eomposing this elass is quite dissimilar ; and, as in the preeeding elass there were speeies which approached the Koophytes, so here there are those whieh are seareely above the Worms. Thus, it is a question whether the genus Sagitta, which is plaeed at the head of this elass, is really in its right plaee, although all the attempts to plaee it in another group have furnished results no more satisfactory.

Then again, it may be objeeted that the name Cephalophora should have been given to a elass eomposed of the Pteropoda, Heteropoda, and Gasteropoda, sinee it belongs equally well to Cephalopoda; but I have adopted it for the sole reason of being unable to find a better. ${ }^{(1)}$

The sub-order Apneusta with its two families Anangia and Angiophora, has been established by Folliker in opposition to the other Gasteropoda, whieh have distinet respiratory organs. ${ }^{(2)}$ This division, eomposed of small and very interesting speeies, is the more admissible sinee it is based upon the anatomieal structure of these animals; and also as the most recent investigations have shown that the term Phlebenterata used by Quatrefages, is improper.

ORDER I. PTEROPODA.

Animals with natatory organs composed of wing-like or fin-like eutaneous lobes, symmetrieally arranged upon the two sides of the body.

[^132]IIe has placed these, with those which Quatrefages has described under the name of Phlebenterata, in the division of Apneusta which he divides into two sections: 1. Angiophora, having a heart and rudimentary vascular system. 2. Anangia, without either heart or vessets.

Family: Sagittina.
Genus: Sagitta.
Family Hyaleacea.
Genera: Hyalea, Cleodora, Cymbulia, Tiedenannia, Cuvieria, Creseis, Limacina.

Family: Clioidea.
Gencra: Clio, Pneumodermon, Spongiolranchaea.
order II. heteropoda.
Animals whose locomotion is performed by a carinated natatory apparatus situated under the abdomen and provided often with a sueker.

> Genera : Phyllirrhoè, Pterotrachea, Carinaria, Atlanta.
> ORDER III. GASTEROPODA.

Animals which ereep by means of a museular dise situated under the body.

SUB-ORDER I. APNEUSTA.

Without distinet respiratory organs, and without a shell.
Family: Anangia.
Genera: Rhodope, Pelta, Actaeon, Actaconia, Lissosoma, Chalidis, Flabellina, Zephyrina, Anıphorina.

Family: Angiophora.
Gencra: Tergipes, Tenilia (Proctonotus), Calliopoea, Eolidina, Aeolis (Eolidia).

SUB-ORDER II. HETEROBRANCHIA.

The branchiae inserted more or less freely upon various parts of the body. Sometimes there is a very simple patelliform shell.

Pamily: Nudibranciía.
Genera: Scyllaea, Tritonia, Thetis, Doris, Polycera, Plocamophorus.
Family: Inferobranciita.
Genera: Diphyllidia, Phyllidia, Ancylus.
Family: Cyclobranciiia.
Genera: Patella, Chiton.
Family: Scutibranciifa.
Genera: Haliotis, Fissurella, Emarginula.

Family: Tectibranchia.
Genera: Gasteropteron, Umbrella, Doridium, Bulla, Bullaea, Aplysia, Notarchus, Dolabella, Pleurobranchus, Pleurobranchaea.

SUB-ORDER III. TUBICOLAE.
Animals which are enclosed, together with their branchiae, in simple slightly curved or irregularly flexuous tubes.

Family: Cirribranchia.
Genus: Dentalium.
Family: Tubulibranciita.
Genera: Vermetus, Magilus.
SUb-order IV. PECTinibranchia.
Branchiae in a speeial eavity situated at the anterior part of the back. Shell regularly spiral.

Family: Sigaretina.
Genus: Sigaretus.
Family: Purpurifera.
Genera : Buccinum, Harpa, Cassis, Purpura, Eburnea, Terebra.
Family: Canalifera.
Genera : Murex, Struthiolaria, Tritonium, Turbinella, Fasciolaria.
Family: Alata.
Genera: Strombus, Rostellaria, Pterocera.
Family: Cerititiacea.
Genus: Cerithium.
Family: Volutacea.
Genera: Voluta, Oliva, Mitra.
Family: Involuta.
Genera : Cypraea, Ovula.
Family: Conoidea.
Genus: Comus.
Family: Trochoidea.
Genera: Scalaria, Turbo, Trochus, Phasianella, Rotella, Littorina, Janthina.

Family: Neritacea.
Genera: Natica, Nerita.

Family: Potamophlla. Genera: Rissoa, Paludina, Ampullaria, Ceratodes, Valvata.

SUB-ORDER V. PULMONATA.

Family: Ampiifneusta.
Genus: Onchidium.
Family: Lymnaeacea.
Genera : Lymmaeus, Planorbis, Amphipeplea, Physa.
Family: Helicina.
Gencra: Helix, Caracolla, Succinea, Bulimus, Achatina, Clausilia.
Family: Limacina.
Genera : Limax, Arion, Testacella, Parmacella.
Family: Auriculacea.
Genus: Auricula.
Family: Operculata.
Genus: Cyclostoma.

BIBLIOGRAPIIY.

Cuvier. Mémoires pour servir à l'Histoire et à l'Anatomie des Mollusques. Paris 1817. A colleetion of monographs upon Clio, Hyalea, Pneumodermon, Tritonia, Doris, Scyllaea, Aeolis, Glaucus, Thetis, Phyllidia, Pleurobranchus, Aplysia, Bullaea, Bulla, Limax, Helix, Dolabella, Testacella, Parmacella, Onchidium, Lymnaeus, Planorbis, Phasianella, Janthina, Paludina, Turbo, Buccinum, Sigaretus, Haliotis, Fissurella, Emarginula, Patella, Chiton, and Carinaria. Most of these appeared separately in the Ann. du Muséum d'Ilist. Naturelle.

Meckel. Beiträge zur vergleiehenden Anatomie. Bd. I. Hft. 1, 2, Dcutsehes Archiv für dic Physiologie, Bd. VIII. p. 190, and Arehiv für die Anatomie und Physiologie, 1826, p. 13, eontaining anatomieal details upon Thetis, Doris, Diphyllidia, \&c.

Wohnlich. De Heliee pomatia. Wireeburg, 1813.
Leue. De Pleurobranchaea. Diss. Halae, 1813.
Kosse. De Pteropodum ordine. Diss. Halae, 1813.
Feider. De Haliotidum structura. Diss. Halae, 1814.
Stiebel. Lymnaci stagnalis anatome. Diss. Gotting. 1815.
Deshayes. Anatomie du genre Dentale, in the Mém. de la Soc. d'Hist. Nat. de Paris, II. 1825.

Rang. Obscrvations sur le genre Atlante. Ibid. III. 1827, p. 372. An Abstract of both treatises may be found in the Isis. 1832, p. 462, 471.

Treviranus. Ueber die Zeugungstheile und die Fortpflanzung der Mollusken, und über die anatomischen Verwandtschaften des Ancylus fluviatilis, in his Zeitsch. für Physiologic. Bd. I. p. 1, and Bd. IV. p. 192.

Leiblein. Beitrag zu eincr Anatonie des Murex brandaris, in Heusinger's Zeitschrift für dic organische Physik. Bd. I. p. 1, or Ann.d.Sc. Nat. XIV. 1828, p. 177.

Quoy and Gaimard. Voyage de la eorvette l'Astrolabe sous le commandement de Dumont Durville. Zoologie, II. III. 1832; also in abstraet in Isis, 1834, p. 283, 1836, p. 31. Contains many observations on the anatomy of the Ccphalophora.

Rymer Jones. Cyclopædia of Anatomy and Physiology, II. p. 377. London, 1839. Art. Gasteropoda.

Eschricht. Anatomische Untcrsuehungen über die Clione borealis. Kopenhagen, 1838.

Van Beneden. Exerciecs zootomiques, Fasc. I. II. Bruxelles, 1839. Monographs on Amplipeplea (Lymnaeus glutinosus), Pneumodermon, Cymbulia, Tiedemannia, Hyalea, Cleodora, Cuvieria, and Limacina, extracted from the Nouv. Mém. de l'Aead. Royale de Bruselles. That upon Pneumodermon is contained in Milller's Arch. 1838, p. 296.

Vogt. Bemerkungen über den Bau des Ancylus fluviatilis, in Mïller's Arch. 1841, p. 25.

Pouchet. Recherches sur l'Anatomie et la Physiologie des Mollusques. Paris, 1842.

Quatrefages. Mémoire sur l'Éolidine paradoxale, and Mémoire sur les Gastéropodes Phlébentérés, in the Ann. d. Sc. Nat. XIX. 1843, p. 274, I. 1844, p. 129.

Nordmann. Versuch einer Monographie des Tergipes Edwardsii. St. Petersburg (1843), from the Mém de l'Acad. impériale de St. Petersburg, IV.; abridged in the Ann. d. Se. Nat. V. 1846, p. 109.

Krohn. Anatomisch-physiologische Beobachtungen über die Sagitta bipunetata. Hamburg, 1844, also Ann. d. Sc. Nat. III. 1845, p. 102, and Annals of Nat. Hist. XVI. 1845, p. 289.

Hancock and Embleton. On the Anatomy of Eolis, in the Annals of Nat. Hist. XV. 1845, p. 1.

Allman. On the Anatomy of Actacon. Ibid. XVI. 1845, p. 145.

ADDITIONAL BIBLIOGRAPIIY.

Rymer Jones. Cyclopædia of Anatomy and Physiology. Art. Pteropoda, IV. p. 170.

Wilm. Observationes de Sagitta mare germanicum eirca insulam Helgoland incolentc. Berol. 1846. [Refers especially to the sexual and nervous systems.]

Middendorff. Bciträge zu ciner Malaeozoologia Rossica. St. Petersbourg, 1847 (from the Mém. Sciences Nat. Tom. VI.).

- Mollusken, from the author's Sibirischer Riese II. Th. I. St. Pctershourg, 1851. [These works although chiefly zoological eontain many anatomical details.]

Milne Edwards. Observations sur la eirculation chez les Mollusques (Patella, Haliotis, Aplysia, Thetis, Limax, Triton), in the Ann. d. Sc. Nat. VIII. 1847, p. 37.

Blanchard. Recherches sur l'organisation des Mollusques Gastéropodes
de l'ordre des Opisthobranches (Milne Edwards), Teetibranehes, Nudibranehes, Inférobranehes (Cuvier) ; Ann. d. Se. Nat. IX. 1848, p. 172, XI. 1849, p. 74.

Alder and Mancock. A Monograph of the British Nudibranehiate Mollusea with figures of all the species. Part I. 1844. Part V. 1851. Unfinished. [This fine work contains very valuable anatomical details and includes Hancock's eontributions upon these animals given also in the Ann. of Nat. Hist.]

- On the Anatomy of Oithonia, in the Ann. of Nat. Hist. IX. 1852, p. 188.

Hancock and Embleton. On the Anatomy of Eolis (Contin.). Ann. Nat. IIist. 1848, I. p. 105, also 1849, III. p. 183.

Hancock. On the olfaetory apparatus of the Bullidae. Ibid. IX. 1852, p. 188.

- On the Anatomy of Doris, in the Philos. Trans. 1852, Part II. p. 1.

Souleyet. Mémoire sur le genre Aeteon d'Oken, Journal de Conehologie, 1850, No. I. p. 1.

Leidy. The Terrestrial air-breathing Mollusks of the United States, \&e. Described and illustrated by Amos Binney. Edited by Aug. A. Gould, M.D. 2 vol. Boston, 1851. Special Anatomy by Joseph Leidy, M.D. [For beauty of execution Leidy's drawings are unsurpassed.]

Leydig. Ueber Paludina vivipara: im Beitrag sur näheren Kenntniss dieses Thieres in embryologiseher, anatomischer und histologischer Beziehung; in Siebold and Kölliker's 'Keitseh. II. 1850, p. 125.

- Anatomische Bemerkungen üker Carinaria, Firola und Amphicora. Ibid. III. 1852, p. 325.

Koren and Damelssen. Bitrag til Pectinibranchiernes Udviklingshistorie, Bergen, 1851, or its Trausl. into the French, in the Ann. d. Sc. Nat. XVILI. 1852, p. 257.

Gegenbaur. Beiträge zur Entwiekelungsgesehiehte der Landgastropoden, in Siebold and Kölliker's Zeitsch. III. 1852, p. 371.

- Bau der Heteropoden und Pteropoden. Ibid. IV. 1853, p. 334.

Moquin-Tandon. Histoire naturelle des Mollusques terrestres et fluviatiles de la France, 1847, avec un Atlas de 25 Planches, \&e. Anatomie de Aneyle fluviatile, in the Jour. de Conchol. 1852, No. I. p. 7, No. II. p. 121, and No. IV. p. 337.

Rang and Souleyet. Histoire naturelle des Ptéropodes, Paris, 1852.

CHAPTERI.

CUTANEOUS SYSTEM.
§ 202.
The cutaneous envelope of the Cephalophora consists of a dense dermis, of a cellular structure, often containing pigment matter which is free or in cells. It is covered with a delicate ciliated epithelium, which, with
the aquatic speeies, is extended over nearly the whole body, but with those which are terrestrial, is confined to certain spots. ${ }^{(1)}$ With the Gasteropoda, its external surface is striated or tuberculated; on the whole, the skin of these animals closely resembles a mucous membrane and secretes constantly a large quantity of mucus.

It has an extraordinary contractility, due to a muscular layer intimately blended in its texture.

With many species, the skin forms around the neck or back a fold, which is usually circular ; the posterior or the upper part of this fold is dilated into a hernial sack containing a portion of the viscera. This portion of the skin is called the mantle. ${ }^{(2)}$ With many, it can be wholly withdrawn into the body, and then the orifice of the fold acts as a sphincter. ${ }^{(3)}$

$\S 203$.

Very many of the Cephalophora carry upon their back a univalve shell ${ }^{(1)}$ which is formed by the border and external surface of the mantle, and, in a few cases only, in its interior. ${ }^{(2)}$

The border of the mantle is the tissue most concerned in the formation of the shell. The shell's increase depends upon it, and for this purpose it is always in contact with the orifice.

With the majority of the terrestrial Gasteropoda ${ }^{(3)}$ the completed shell has a lip at its orifice, which, in some aquatic species, ${ }^{(4)}$ is repeated several times at regular intervals during the development. In many Pectinibranchia, the border of the mantle has prolongations, which also secrete lime and produce around the orifice of the shell wing-like or spinous processes. ${ }^{(5)}$ With many species of this sub-order, one of these processes has a kind of canal, called the Siphon, which conducts the water into the respiratory cavity. With some, this siphon is contained in an appendix to the orifice of the shell, ${ }^{(6)}$ while, with others, it is protruded through a fissural opening of this last. ${ }^{(7)}$

With some Gasteropoda, the mantle is folded over a large portion of the external surface of the shell, which it covers with a calcareous substance. ${ }^{(8)}$

The borders of the mantle have numerous, short, glandular follicles, whose walls are composed of large cells, some of which contain a finely-granular

[^133]1 With Chiton, exceptionally, the shell is formed of several imbricated pieces so united as to be movable. In some species the organic so much exceeds the calcareous substance, that the shell has a horny aspect, as with Aplysia, Ifyalea, and Cleodora. With Cymbulia, the shell is even cartilaginous; that of Cypraea, on the contrary, is composed atmost exclusively of lime, - the quanitity of organic substanec being very small.

2 With Bullaea, Limax, and Testacella, tis shell is wholly concealed in the mantle. With Arion, the lime secreted in the interior does not unite with the shell, lut forms a mass of loosely juxtaposited granulations.
${ }^{3}$ With the Auriculacea, and nany of the lleliciat.
' Murex, Ifarpa, Scalaria.
${ }^{5}$ Strombus, Pterocera, Murex.
${ }^{6}$ Cerithium, Murex, Rostellaria, Turbinelis, Fasciolaria.
7 Ifarpa, Oliva, Voluta, Buccinum, Dolium, Conus.
8 Ovula, Cypraca.
substance (carbonate of lime) which effervesces with acids, ${ }^{(9)}$ while the others enclose pigment granules. ${ }^{(10)}$ Calcareous cells are also found, but fewer, in the parts of the mantle covcred by the shell. These portions of the mantle serve to increase the thickness of the shell, and to repair the loss of substance in places removed from the mantle-borders.
The intimate structure of the shells of these'animals is much simpler than that of the Acephala. They are homogeneous throughout, and correspond to the internal layer of the Bivalvia. When the carbonate of lime has been extracted, the remaining organic base consists of a homogeneous membrane having numerous folds varying very much as to form and number, according to the genera.

This organie base is produced by the external surface and border of the mantle, in the form of a mucous liquid containing calcareous and pigment granules, and which, hardening, forms the successive layers of the shell. (i)

Usually there is no epidermis connecting the border of the mantle with the orifice of the shell; it can, therefore, together with the body of the animal, be drawn deeply into the shell. With some Gasteropoda, however, the shell is covered with a kind of epidermis, which has even hairlike processes. ${ }^{\text {(12) }}$

Many of this same order have, upon the posterior dorsal surface of the foot, a peculiar plate, by which they can tightly close the opening of their shell after having withdrawn their bodics.
This plate, or operculum, composed, sometimes of concentric rings, and sometimes of lines spirally rolled together in the same plane, is composed of a calcareous, or a horny substance. ${ }^{(13)}$ In both cases its organic base is lamellated or plicated like that of the shell. The operculum (Operculum caducum) with which certain Helicina close their shell at the beginning of winter, is completely structureless, and without rings, spiral lines or lamellae.

Beside these external calcareous products, there are certain species of these animals, which have other deposits of the same nature inside the skin and in various parts of the body, which, in the form of needles, form superposed, reticulated masses. ${ }^{(44)}$

[^134]14 With Paludina vivipara, there are, between the cutaneous layers, numerous globular calcareous bodies formed of concentric lamellae; and with Limax, not only is there a calcareous plate in the mantle, but also a powder of the same nature scattcred here and there in other parts of the skin. The white striae which adorn the sides of the neck and foot of Helix arc composed of short, cylindrical, thickly-set calcareous ncedles.

According to Kölliker, the entire skin of Polycera is crowded with analogous, but ramified needles.

Similar, probably, are the concretions which, with Tergipes, are found everywhere beneath the skin (Nordmann, loc. cit. p. 9, Taf. III. fig. 4 a.), and the calcareous net-work found in the mantle and foot of scveral species of Doris (Lovén, Isis, 1842, p. 361, Taf. I. fig. 3).

CHAPTER II.

MUSCULAR SYSTEM AND ORGANS OF LOCOMOTION.

§ 204.

The muscles of the Cephalophora are composed of smooth, primitive bundles, which are easily separated into short oblong fragments, and often have numerous nuclei scattered through their substance.*

The cutancous muscular system is highly devcloped; it eonsists of a muscular layer made up of obliquc, longitudinal and transverse fibres, which are not divisible into scparate muscles, and are intimately united with the skin. ${ }^{(1)}$ Upon the ventral surface, with the Gasteropoda, this cutaneous laycr is very thiek and forms a long dise, - the foot. The fibres of this foot, by contraction, produce wrinkles which sueeeed each other from behind forwards in a wave-like manner; by this means the whole foot glides easily over solid bodies or on the surface of the water. ${ }^{(2)}$ Many Gastcropoda use their foot for a sucker also, and then there are eireular, tendinous fibres inwoven between those of the muscle proper. ${ }^{(3)}$

With the Heteropoda, there is, upou the ventral surface, a laterally compressed process which has numerous museular fibres. These animals swim upon their back and use this as an organ of locomotion; while a sucker, situated upon its borders, is used, it is said, as an organ for attachment. ${ }^{\left({ }^{(7)}\right)}$ The Pteropoda, Thetis, and Aplysia, have, upon ecrtain places of thcir body, wing-like expansions, which are traversed by numerous museular fibres, and are used as oars for swimming. ${ }^{(5)}$ The horizontal fins which are found

[^135]* [§ 204.] For histological studies on the muscular tissue of the Cephalophora, see Lebert and Robin (Mäller's Arch, 1846, p. 129) and Leydis loc. cit. (Siebold and Kolliker's Zeitsch. II. 1850, p. 191). According to the first-mentioned observers, the intimate composition of this tissue with species they examined (Mytilus edulis, Buccinatum nudatum, and Pecten), is very delicate primitive hitriltae which are either smooth and uniform, or
have had various interpretations as to their nature, from the ease with which they are detached (see Meckel in his progranme; Additamenta ad listorizm Molluscorum, Piscium et Amphibiorum. Iralae, 1832).

Rudolphi (Synop. Entoz. p. 573), and Otto (Nov, Act. Nat. Cur. XI. P. 291, Tab. XLI. fig. 1, a-f.) have taken them for parasites under the names of Phoenicurus varius, and Vertumnus thetidicola.
Delle Chiaje, who formerly described them under the name of Planaria ocellata, has since ooncurred in the opinion of the last two natumatists; but he suggests that they may be the young of Thet is attached to the back of their parents to obtain nourishment ; see his Memor. loc. cit. I. p. 59 , Tav. II. fig. 9-15, II. p. 265, III. p. 1+1, Tav. XXXIX. fig. 1, and his Descriz. \&c. II. p. 37. Although the real nature of these appendages was made known long ago by Macri (Atti della reale academia delle scienze di Napoli. II. 1778, p. 170, Tav. IV.), yet it is only recently that it has been confirmed by $V e$ rani (Isis, 1842, p. 252) and Krohn (Muller's Arch. 1842, p. 418).
are finely punctated through their whole length. With Paludina, Helix, Bulimus, Carocolla, Leydig found the essential element of this tissue to consist of a tube, formed by the fnsion of cells linearly arranged; the nuclei of these cells were often visible.
My own obscrvations on Natica heros agree with those of Leydig - that the essential structure is a fibre and not a fibrilla. - Ed.
upon various points of the body of Sagitta, differ from the loeomotive organs of the other Pteropoda in being composed wholly of parallel, homogeneous fibres, which decrease in size from the base to the border of this organ, but which have not the least resemblance to those of musele. ${ }^{(6)}$

Some Pteropoda have tentacle-like processes situated in bundles about the mouth, whieh have a small sueker at their end; they are, therefore, probably used as organs of attaehment. ${ }^{(3)}$

§ 205.

Beside this eutaneous muscular system, the cavity of the body contains isolated muscles which serve different uses. With the turbinated Gasteropoda, a large muscle arises from the eolumella, and, after dividing into many parts, is sprcad over the sides of the body to be inserted into the foot, and serves as its retractor. Several other muscles of variable size arise also from the eolumella, and are distributed, some to the tentaeles, and others to the pharynx and the penis - serving also as retractors of these organs. With the shell-less Cephalophora, the retractors of these various organs arise from the inner surface of the mantle, or from the foot. ${ }^{(1)}$

CHAPTER III.

NERVOUS SYSTEM.
$\S 206$.
The central part of the nervous system of the Cephalophora consists of a group of elosely approximated ganglia, counected together by several nervous filaments, and whieh surrounds, like a ring, the base of the pharynx or the œosophagus. This œsophageal ring may be divided into several portions; one situated above, one below, and one each side of the cosophagus. The portion lying above eonsists usually of two very large contiguous ganglia, which may be ealled the brain, sinee they furnish nerves to most of the organs of sense, - that is, the tactile organs, the cyes, and sometimes also the organs of hearing.

The portion lying below, varies much in its form and size. It consists, sometimes of a group of ganglia blended together, or circularly united by short conneeting filaments, and sometimes of a simple transverse cord. The two lateral portions eonsist always of two cords connecting the upper and lower parts just mentioned. The lower portion, whieh sends nerves principally to the museles of the foot and to several viseera, is often asymmetrieal. The peripheric nerves are always given off from the ganglia and never from the eonnecting eords, of the oesophageal ring.

[^136]
§ 207.

The nervous system of the Cephalophora is enveloped by a very distinet fibrous neurolemma eontaining often various pigments, whieh, in some species, give it, and espeeially the ganglia, a well-marked eolor. ${ }^{(1)}$ The neurolemma enters the ganglia and forms there numerous septa whieh separate the ganglionie globules into groups. These are very distinet, and although of variable size, always contain a very large nueleus composed of obseure granules in the midst of whieh are seen usually two to four transparent nueleoli of unequal size. ${ }^{(9)}$

These ganglionie globules are very often pedunculated, ${ }^{(3)}$ and then their very slender peduneles or proeesses usually extend far into the nerves which are given off from the ganglion, thus leading one to infer that these globules are the origin or termination of the nervous fibres. ${ }^{(4)}$ Moreover, these primitive fibres whieh traverse the ganglia, are always situated in that portion of them whieh is eontiguons to the osophagus or pharynx, while the opposite portion is oceupied by the ganglionie globules.

$$
\text { § } 208 .
$$

There is a great variety in the form and arrangement of the different parts of the nervous eentre, aeeording to the orders and families, as follows. ${ }^{(1)}$

1. The Heteropoda quite resemble the Lamellibranehia by their widely-separated ganglia eonneeted by very long eommissures. At the anterior extremity of their body, and above the oesophagus, there is a eerebral mass whieh sends baekwards two long nervous eords, whieh, after passing along eaeh side of the intestinal eanal, terminate by entering the inferior ganglionie portion (Ganglion pedale), situated near the veutral surfaee. The eerebral portion furnishes nerves to the organs of sense, to the skin, and to the lips, while the posterior portion sends them ehiefly to the foot, and to the museles of the tail. ${ }^{(2)}$
[^137][^138]4 See Helmholtz, De fabr. Syst. nery. evert. loc. cit. p. 10 ; Hannover, loc. cit. and Will, in Muller's Arch. 1844, p. 76.*
1 For the descriptions and figures of the nervons system of several Cephalophora, see Cuvier, Mem. loc. cit. ; Garner, Trans. of the Limn. Soc. XVIL. p. 488 ; Rymer Jones, Cyclop. of Anat. p. 392, Art. Gasteropoda; Anderson, Lbid. 1II. p. 605, Art. Nervous System; and Van Beneden, Exercises zoot. loc. cit. \dagger
2 See Milne Edwards, Ann. d. Sc. Nat. XVIIl. 1842, p. 326, PI. X1., and Delle Chiaje, Descriz. 1I.
para, \&c., loc. cit. p. 152, Taf. XIII. fig. 49, a. β. (Paludina); Blanchard, Ann. d. Sc. Nat. XI. 1849, p. 78, Pl. III. fig. 1, Pl. IV. fig. 1 (Janus) ; Middendorff, loc. cit. p. 75, Taf. IX. (Chiton); Leidy, loc. cit. PI. I. fig. I. 11-14 (Limax), l'l. IV. fig. V. 15-17 (Vaginulus), Pl. V. fig. I. 32, 33, 34 (Bulimus), Pl. VI. fig. II. 25, Pl. VII. fig. VIil. 20, Pl. IX. fig. IV. 26,27, Pl. X. fig. IV. $24,25,26$ (Helix) ; Pl. X111. fig. IV. (IUelicina), I'l. XIV. fig. IV. I'I. XVI. (Glandina). - Ed.

The nervous centre of the genus Sagitta is in many respects like that of the Hetcropoda. A hexagonal cerebral ganglion lies upon the upper surface of the cesophagus; another quite large is situated in the centre of the ventral surface of the trunk. These intercommunicate by two large, very long cords. The cerebral ganglion gives off two pairs of nerves; - of these the antcrior are distributed to the base of the oral hooks, and the posterior to the organs of vision ; each sends, internally, a filament which passes backwards and joins at the middle of the posterior part of the head with the onc from the opposite side, thus forming a loop. The ventral ganglion scuds off backwards two considerable, diverging nerves, from whose external surface pass off numerous, delicate, cutaneous filaments. ${ }^{(3)}$
2. With some Tcetibranchia, a simple cerebral ganglion above, and two others, quite widely separated, below, are, all three, comnected together by as many cords, thus forming a large œsophageal ring. ${ }^{(4)}$
3. With many Pteropoda the cerebral ganglia are wanting, while the lower portion is highly developed. This last is composed of two or three pairs of ganglia blended together, and from which passes off a simple commissure embracing the œesophagus. ${ }^{(5)}$
4. With very many of the Apneusta and Nudibranchia, as also with several other Heterobranchia, the cerebral mass is highly developed, while the remaining part of the œesophageal ring consists of a simple nervous cord. The two or four cerebral ganglia are either connected by transverse commissures, or intimately blended together. ${ }^{(6)}$
p. 99, Tav. LXIII. (Carinaria). Pterotrachea has a similar disposition. According to Delle Chiaje (loc. cit. Tav. LXIII. fig. 14, Tav. LXIV. fig. 11), a short commissure arising from the cerebral ganglionic mass, embraces, in a ring-like manner, the œsophagus of Carinaria and Pterotrachea; but this is not mentioned by either Cuvier, or Milne Edwards.
${ }^{3}$ See Krohn, loc. cit. p. 12, fig. 2, 5, 13.*
4 With Aplysia, according to Cuvier, Ném. loc. cit. p. 22, l'l. III. IV., and with Pleurobranchus, according to Delle Chiaje, Memor: loc. cit. Tav. XLI. fig. 8, o. v. v. I have found the cesophageal ring arranged in the same way with Pleurobranchaea.
${ }^{5}$ This form is found especially in those species where the eyes and tentacles are abortive or entirely wanting; see Van Beneden, Exercices zoot. Fasc. II. (Hyalea, Tiedemannia, cleodora, Cuvieria, Limacina, and Cymbulia). Probably to the absence of these organs is due, with the Pterapoda, the often confounding of the dorsal with the ventral surface. It is, moreover, interesting that, among the Gasteropoda, Chiton, which is without

[^139]eycs and tentacles, has a transversal row of six sub-œsophageal ganglia, but no cerebral ganglia; see Cuvier, Garner, and Rymer Jones, loc. cit.

For the nervous system of the Pteropoda, see also Souleyet, Comp. rend. XVII. No. 14; or Froriep's neue Not. XXVIII. p. 84. \dagger

6 With Bullaea, Doridium, and Phyllidia, there are two cerebral ganglia united by a more or less long commissure; while with Tritonia, and Scyllaea, there are four united by short commissures; sec cuvier, loc. cit. With dcolis, the cerebral mass is also composed of four ganglia transversely arranged (Delle Chiaje, Descriz. loc. cit. Tav. LXXXVIII. fig. 12, 15, and Hancock and Embleton, loc. cit. Pı. V. fig. 16). With Eolidina, Zephyrina, Amphorina, Pelta, and Chalidis, there are two pairs of fused ganglia which are connected together by a delicate commissure (Quatrefages, Ann. d. Sc. Nat. XIX. 1843 , P. 293 , 리. XI. fig. 3,4 , I. 1844, Pl. VI. fig. 1-4). With Thetis, and Doris, on the other hand, the brain is a single mass, of considerable size, and situated in the neck (Cuvier, loc. cit.). \ddagger

Nervi labiales to borders of the mouth (Taf. IX. fig. 6, β). - ED.
\ddagger [\$ 208, note 6.] Blanchard (Ann. d. Sc. Nat. XI. 1849, p. 78) describes the central ncrvous system of Janus (Eolidia) as consisting of six medullary masses around the œesophagus, - the cercbral, the cervical and the pedal ganglia; see his figures, Pl. III. fig. 1, and Pl. IV. fig. 1. For the Cephalic nervous system of the Nudibranchia, see Alder and Hancock, loc. cit. Part II. PI. II. fig. 9 (Dendronotus, Doto), cerebral ganglia, four, and give off ten pairs of nerves; Part III. Pl. VIII. fig. 3 (Eolis), cerebral ganglia, four, and give off twelve pairs of nerves ; Part IV. PI. V. fig. 13 (Eumenis), cerebral ganglia, four, and give
5. With other Apneusta, the œesophageal ring is eomposed of several eontiguous ganglia whieh elosely bind the cesophagus, but have no apparent eommissures. ${ }^{(7)}$
6. The other Gasteropoda, and espeeially the Peetinibranehia and Pulmonata, have a highly-developed superior and inferior ganglionie mass; the cesophageal ring is formed by these ganglia, being eonneeted on each side by a eord, which is oftener double than single. ${ }^{(8)}$ The superior mass is eomposed usually of two ganglia whieh are eonnected by a transverse eommissure, or are contiguous, and sometimes even blended together. ${ }^{(9)}$

The inferior mass also presents many variations. With some speeies it consists of a eircle of distinet ganglia, eonnected by eommissures; ${ }^{(10)}$ while with others, it is composed of a group of ganglia more or less fused together. ${ }^{(11)}$

§ 209.

With many of the Cephalophora, ${ }^{(1)}$ there is a Splanchnic nervous system. This ean be divided into a Plexus splanchnicus anterior and posterior. The first is eomposed usually of a double Ganglion pharyngeum inferius, eonneeted by a transverse commissure, or contiguous, but rarely blended together. They are situated under the cesophagus and eonnect with the eerebral mass by two filaments; they send off nerves principally to the pharynx, to the essophagus and the salivary glands; and when the posterior plexus is wanting, they send nerves also to the liver and the genital glands. ${ }^{(2)}$

[^140]commissures; see Berthold, loc. clt., and my observations in Wiegmann's Arch. 1841, 1. p. 153, Taf. VI. fig. 3 (Lymnacus stagnalis). Judging from the figure of Van Beneden (Exercices zoot. loc. cit. Fasc. I. Mém. sur le Lymnaeus glutinosus, p. 30, Pl. I. fig. 12, and Amu. d. Sc. Nat. VII. 1837, p. 112, Pl. ILI. B.), of the cesopliageal ring of Amphipeplea, this genus resembles, in this respect, Lymnaeus. With Pneumadermon violaceum (Van Beneden, loc. cit. p. 45, Pl. T. fig. 2), and with Clio (Eschricht, loc. cit. p. 6, Tab. III. fig. 28), the lower portion appears also to consist of a circle of ganglia.

11 Helix, Limax, Arion. With Limax (Pouchet, Recherch. loc. cit. p. 8), there remains in the middle of the fused ganglia only a small opening, which, with several species of Melix, entirely disappears.*
1 See Brandt, Ueber der Mundmagennerven der Evertebraten, loc. cit. p. 43.

2 The two ganglia of the Plexus splanchnicus or Sympathicus anterior, which is situated more or less in front of the inferior portion of the cesophageal ring, have, together with their corresponding nervous filaments, already been regarded by Cuvier as a sympathetic system, with several Gasteropoda; see his Mém. sur le Genre Aply-

With all these genera, the œesophageal ring is formed by lateral commissures which unite with the sub-xsophageal ganglia which are sometimes two (Dendronotus, Doto, Eumenis), sometimes four (Eolis, Doris, Antiopa)- WD.

* [§ 208, note 11.] The nervous system of the terrestrial Gasteropoda has been most carefully described and beautifully figured by Leidy (loc. cit.). The details are so full that I can only indicate the work. - Ed.

The posterior plexus is eomposed of a single mass, rarely of two separate ganglia. It is situated under the digestive eanal or between its coils, and from it pass off nerves to the intestine, the liver, and the genital glands, beside two cords of eommunieation with the lower portion of the cesophageal ring. ${ }^{(3)}$

CHAPTER IV.

ORGANS OF SENSE.

§ 210.

The Taetile organs of the Cephalophora consist of two to four eontractile tentaeles situated upon the head, or the anterior part of the back. ${ }^{(1)}$ They reeeive nerves of eonsiderable size from the cerebral mass, whieh have sometimes a ganglionie cnlargement in the extremity of the tentacle. ${ }^{(2)}$ With some Gasteropoda these tentacles are hollow and button-like at their extremity, and ean be inverted like the finger of a glove. ${ }^{(3)}$ But with the
sia, p. 23, Pl. IV. fig. 1, c. ; sur la Lymnée, p. 9, Pl. I. fig. 11, u.; sur l'Onchidie, p. 14, Pl. I. fig. 6, o. Brandt (Med. Zool. II. p. 323, Tab. XXXIV. fig. 11, 13) has deseribed it with Helix pamatia; Van Beneden (loc. cit.), with Amphipeplea, and Treviranus (Beobacht. aus. d. Zoot. und Physiol. p. 42, Taf. IX. fig. 60), with Limax. See also the rescarches of Schlemm (Dissert. de hepate ac bile crustacemum et molluseorum guormndam, Berol. 184t, p. 22, 'Tab. I. fig. 2, 3), upon the hepatic nerves of Gasteropoda. Delle Chiaje also, has seen this plexus with Doridium and Pleurobranchus (Memor. II. p. 123, Tav. X. fig. 7, p. and III. p. 153 , Tav. XLi. fig. 8, p.). Aeeording to Garner (loe. cit.), there is a double Ganslion pharyngeum inferius with, also, Scyllaea, Doris, and Eolis. With Patella, on the eontrary, he found this anterior Plexus splanchnicus composed of three ganglia, two upon the sides, and the third median and a little behind.

According to Van Beneden (Exercices zoot. Fasc. I. p. 30, Pl. I. fig. 12, c.), there is a similar disposition with Amphipeplea. With the Heteropoda, this plexus is highly developed, composed of two ganglia, from which pass off long eords of communication to the eerebral mass; see Milne Edwards, Ann. d. Se. Nat. XVIII. p. 327, Pl. XI. fig. 1, s. x. and fig. 2, e. f. ; and Delle Chiaje, Descriz. \&c. loe. cit. Tav. LXIII. fig 14, 1. and LXIV. fig. 11, d. (Carinaria and Pterotrachea). The Pteropoda also have this plexus; but its two ganglia are more or less intimately fused, and as the cerebral mass is here replaced ly a simple collar, it does not connect with it, but with the inferior portion of the œsophageal ring ; see Van Beneden, Exercices zoot. Fasc. II. p. 11, et seq. P1. I. fig. 9,10 , II. fig. 8,10 , III. fig. 6,9 , and V. fig.

* [§ 209, note 2.] For the splanchnic nervous system of the terrestrial Gasteropoda, see Leidy, loc. cit. Pl. XIII. fig. IV. 2 (Helicina), Pl. XIV. fig. IV. 3 (Glandina), and PI. XVI. fig. II. 2 (Helix).

See also for that of the Nudibranchia, Alder

13 (Cymbulia, Tiedemannia, Hyalea and Limacina.)*

3 The Plexus splanchnicus posteriar with its two long cords of communication is quite apparent with Iplysia (see Cuvier, loc. cit. p. 23, Pl. IV. fig. 1, R.). Delle Chiaje (Memor. Tav. V. fig. I, m , X. fig. $7, \mathrm{o}$. and XLi. fig. 8, y. y.), has observe (it with Doridium, and Pleurobranchus, beside the genus just mentioned, and in Pleurabranchus, he found it eomposed of two entirely separated ganglia. I'an Beneden (Exere. zoot. Fasc. I. [. 46, Pl. I. fig. 3-5) has found it composed of only a single ganglion with Pneumoderman. Milne Edwards (loc. cit. 1). 329, P1. X L. fig. 1, u. v. 6), has observed in the visceral sac of Carinaria, first, a double Ganglion abdominale, which receives two long cords of eommunieation from the cerebral mass and from the Ganglian pedate, and then a Ganglion anale, communicating with the two abdominal ganglia.

1 There are most usually two tentacles. But with Limax, Arian, Helix, Achatina, Clausilia, and other Melieina, there are four. They are wholly wanting wilh Sagitta, Clcodora, Cuvieria, Hyalea, Pterotrachea, Lissosoma, Rhodope, Phyllidia, and Dentalium.

2 This swelling exists not only with the inferior and eyeless tentaeles, but also the superiur ones bearing eyes, with several Limacina and Melicina. However, no ganglionie globules are seen in it, and only a finely-granular substance lies interposed between the primitive fibres.

3 With the Limaeina and Iflieina, these organs are invested by a muscle which arises upon the columnella or upon the internal suiface of the mantle, and is inserted at the extremity of each tentaele.
and Hancock, loc. cit. (Ealis, Doris, Antio$p a, \& c$.).

According to Middendorff (loc. cit. p. 76), Chiton has a complex splanchnic nervous system which is widely distributed over the digestive organs and their auxiliary glands. - Ed.
majority of the Cephalophora, they are solid and usually conical, and somctimes are replaced by two groove-like, cutaneous processes, which, from contractions of their muscular fibres, can be shortencd, but not inverted. ${ }^{(4)}$
Beside these tentacles, many Cephalophora have also as tactile parts, organs, which consist of two contractile lobes situated on cach side of the cutancous fold which rests over the mouth like a second lip. ${ }^{(5)}$ The prehensile organs about the mouth of certain Pteropoda, and the contractile filaments and processes on the border of the mantle of other Ccphalophora, are also used, probably, as tactile parts. ${ }^{(6)}$

§ 211.

The organs of Hcaring, which as yet have been found in all the orders of these animals, are, as in the Accphala, of a very low order. Like them also they consist only of two simple round auditive capsules whose transparent, solid walls contain sometimes a single, sometines several otolites, suspended in a clear liquid, and which are composed of carbonate of lime. ${ }^{(1)}$ When
\pm With the Pectinibranchia, there are usually two conical tentacles; more rarely are there fou as with Amphorina, Eolidina, Flabellina, and Aeolis. Cutaneous furrow-like prolongations are observed with Notarchus, Dolabella, Pleurobranchus, Pleurobranchaea, and Aplysia. With Doris, Tritonia, and Scyllaea, the two conical tentacles can be withdrawn into particular tubular cxcavations of the mantle.*
${ }^{5}$ Flabellina, Aeolis, Doris, Phyllidia, Doridium, Aplysia, Pleurobranchus, Pleurobranchapa, Dolabella, Ampullaria, Ceratodes. These cutaneous lobes are often so large, that onc is disposed to include them among the real tentacles.
${ }^{6}$ I refer here to the tentacle-like organs by which Clio, Pneumodermon, and Spongiobranchaea fix themselves upon marine bodies ($\$ 204$), to the filaments of the anterior lobes of the mantle of Thetis, Plocamophorus, and Tritomia thetidea, and to the prolongations of the lateral border of the xame organ with Haliotis, Doris fimbriata, and Cypraea erosa.

1 Eudoux and Souleyet (Institut. 1838, No. 255, p. 376, or Froriep's neue Not. No. 174, 1838 , p. 312,) were the first to notice the auditive organ with the Cephalophora. They found with Pterotrachea, Carinaria, Pneumodermon, and Phyllirrhoé, as also Gaudichoud with Atlanta, that the auditive capsules are small round semitransparent bodies attached by a peduncle upon the cerelral mass. Laurent (Append. aux recherch. sur les organes auditifs des Mollusques, in the Ann. franc. et étrang. d'Anat. et de Physiol. Mai, 1839, p. 118, fig. 1-16) has described these organs with their crystaline contents a little more fully, for, besidc the figures of Eudoux and Souleyet relative to IHyalea, Cleodora, and Creseis, he has added others concerning Limax and Helix. Since then these organs with their otolites of different IIeteropoda, Pteropoda, and Gasteropola have been described in detail by Krohn (Muller's Arch. 1839, p. 335, or Froricp's neue Not. X1V. 1840, p. 310, XV1IL 1841, p. 310). In another series of the terrestrial and fresh-watcr Gastcropoda, I

* [§ 210, note 4.] Hancock and Embleton (loc. cit.) regard these tentacles as olfactory organs, a view which is sustaince by their special anatomy, hy their special and comparative relations. Moquin-Tandon also (Bibl. Univer de Genève. Nov. 1851, p. 247) regards this sense as located in the end of the tentacles, with the Gusteropoda
have attempted to show the andlogy of these organs with the auditive organs of the embryos of fishes (Wiegmann's Arch. 1841, 1. p. 148, Taf. IV. or Ann. d. Sc. Nat. XIX. 1843, p. 193, P1. II. B.). Köliher (Ueber das Gchörorgan der Mollusken, in Froriep's neue Not. XXV. 1843, p. 133) also has described them with many marine Meteropoda, and Gasteropoda, so that they may be said to exist in all the Cephalophora which have been subjected to dissection. The following are the genera in which they have been obscrved. Among the Pteropoda: Cymbulia, Tiedemannia, Myalea, Creseis, Pneumodermon, Limacina; Ileteropoda: Carinaria, Pterotrachea, Phyliirrhoë, Atlanta; Gasteropoda: Rhodope, Flabellina, Lissosoma, Amphorina, Pelta, Chalidis, Zephyrina, Actaeon, Actaconia, Acolis, Venilia, Tergipes, Doris, Polycera, Tritonia, Thetis, Diphyllidia, Ancylus, Doridium, Aplysia, Gasteropteron, Umbrella, Notarchus, Pleurooranchus, Pleurobranchaca, Paludina, Lymnacus, Planorbis, Physa, Bulimus, Clausilia, Succinea, Helix, Arion, and Limax. It is remarkable that the auditive organs arc developed so early, for they may be distinguished while the embryo is still in the egg. From the account of Pouchet (Ann. d. Sc. Nat. X. 1838 , p. 64), it appears that he saw the otolites in motion in an embryo of a Lymnaeus, but without knowing their naturc. Loven also, who saw the two capsulcs in the young Eolis (Kongl. Vetensk. Acad. IIandl. 1839, p. 227, or Isis, 1842 , p. 360, Taf. I. fig. 1, o.) did not know what to think of them. Jan Beneden (An. d. Sc. Nat. Xv. 1841, p. 127 , I'I. I. fig. $13,15,17$, d.) mistook them in the embryos of Limax and Aplysia, for nervous ganglia; while Allman (loc. cit. p. 153, PI. VII. fig. $10-12$, d.) rerarded them as cyes in the cmbryos of Actueon. Sars (Viegmann's Arch. 1845. I. p. 8, Taf. 1. fig. 7-11) and Nordmann (loc. cit. p. 44, 87, Tat. IV. V.), on the other hand, very correctly rccognized them as organs of hearing in the embryos of Doris, Tritonia, Tergipes, Buccinum, Littorina, Cerithium,

See also Hancock (Ann. Nat. Hist. 1852, LX. p. 188) on this apparatus with the Bullidae. In thesc, no proper tentacles exist, as is well known, but this author shows that here the head-lobe, which is the result of the fusion of tentacles, is the seat of this sense. - Ed.
single this otolite is spherical and erystalline, but when multiple they are fusiform, a little eompressed, and usually very numerous, there being with some Gasteropoda, thirty or forty, and even eighty in each capsule. ${ }^{(2)}$

The movements of these bodies are even more marked with the Cephalophora than with the Acephala; and the balancing and rotation of eaeh, produeing a kind of trembling of their whole mass whieh oeeupies the eentre of the capsule, is a wonderful spectacle. It has been reeently diseovered that these motions are due to very small cilia upon the internal surface of the eapsule. ${ }^{(3)}$

The situation of these two auditive capsules varies aeeording to the orders, families, and genera. With several Heteropoda, and Apneusta, they lie a little under the skin, behind the eyes, and are connected with the cerebral mass by a longer or shorter auditive nerve. ${ }^{\left({ }^{()}\right)}$In some Nudibranehia, they lie upon the cerebral mass itself, contiguous with the posterior part of the eyes. ${ }^{(3)}$ With the other Cephalophora, they are situated at the lower side of the body, and usually touch the inferior portion of the osophageal ring. In only a very few of the genera are the two auditory nerves separated and distinet from eaeh other. ${ }^{(\text {(i) }}$

Phasianella, and Rissoa. I have myself secn them quite early in the embryos of Vermetus.*
2 There is a single otolite only with the Heteropoda, the Tubulibranchia and several of the Apneusta; see Delle Chiaje, Descriz. \&c. II. p. 100, Tav. LXIII. fig. 5, 6 (Carinaria), and Quatrcfares, Ann. d. Sc. Nat. I. 1844, p. 160, Pl. VI. fig. 8-10 (Actaeon, Pelta, Chalidis). According to Krohn's and my own observations, therc are groups of small fusiform otolites with some Pteropoda, and very many of the Gasteropoda, as Cyinbulia, Hyalea, Doris, Tritonia, Thetis, Aenlis, Venilia, Pleurobranchaea, Paludina, Planorbis, Lymnaeus, Helix, Limax, and many others. It is not rare to find among these fusiform otolites, others composed of two or four calcareous corpuscles. Those of a spherical or spindle shape divide, from pressure, into four to eight fragments in the direction of cruciform lines which may often be seen before division. According to the olaservations of Laurent, Krohn, and mysilf, in the centre of these hodies, a single otolite is first developed, in the capsules which are to contain several, and others are added as the embryo increases; sce Frey, in Froriep's neue Not. XXXVII. No. 801, p. 132, and Wiegmann's Arch. 1845, I. p. 217. Taf. IX.
3 A priori, it might have been inferred that these motions are due to cilia, for the otolites never come in contact with the sides of the capsule, but al-

* $\ \$ 211$, note 1.] See also Alder and Hancock loc. cit. Part II. Pl. II. fig. 11 (Dendronotus), Pl. IV. fig. 18 (Doto) ; Part. III. Pl. VII1. fig. 4, 5, 6 (Aeolis) ; Part V. Pl. II. fig. 15 (Doris); then Leydis, Ueber Paludina vivipara, \&c., loc. cit. p. 139, 155, Taf. XI. fig. 12, k. Taf. XIII. fig. 14-24, 49, R. (Paludina) ; and Leidy, loc. cit. p. 246, P1. IX. fig. VII.-IX. (Helix), PI. XIII. fig. IV. 4 (Helicina). Leydig has furnished valuable contributions in the development of this organ ; in Paludina, it appears, prior to the nervous system with which it is connected, as an almost solid body with a very small, round, central cavity; with the growth of the organ, this cavity increases, and finally the whole becomes a capsular organ in which are developed otolites. - Ed.
ways remain at a little distance from it, and when there are several, they are grouped in the centre; indeed when one has strayed from this central position it is always quickly returncd. Wagner (Lehrbuch der Physiol. ed. II. 1843, p. 463) positively affirms that he has seen cilia in these capsules. They have been very distinctly scen by fulliker also (loc. cit.) with Tritonia, Thetis, Pleurobranchaea, Diphyllidia, Hyalea, Lissosoma, and Rhodope.
4 See Laurent, loc. cit. fig. 1-6, and Quatrefages, Ann. d. Sc. Nat. I. loc. cit. Pl. IV. VI. According to Delle Chiaje (Descriz. \&c. loc. cit. Tav. LXIII. fig. 3, d. 14, f.), and Milne Edwards (Ann. d. Sc. Nat. XVIII. 1842, Pl. XI. fig. I, z. fig. $3, \mathrm{~h}$.), the auditive nerves are very long with Carinaria. With many Cephalophora which are transparent, the auditive organs may be perceived by the naked eye, through the skin, as two white spots \ddagger

5 Doris, Thetis, Tritonia, Aeoles (Frohn, loc. cit.), and Tergipes (Nordmann, loc. cit. p. 44, Tab. II.).
6 According to Krohn (loc. cit. No. 394, p. 311) the two auditive capsules of Pleurobranchaca, and Paludina receive distinct auditive nerves from the inferior portion of the oesophageal ring. He has observed the same with Cymbulia, and IIyatea (loc. cit. No. 306, p. 3II) ; but Van Beneden (Ex-
\dagger [$\$ 211$, note 2.] See, for the auditory apparatus of Aeolis, Hancock and Embleton, Ann. Nat. IIIst. 1849, III. p. 196. The otolites which have hither to been regarded calcareous, they found not to be materially afected by long treatment with acetic acid. - En.
\ddagger [§ 211, note A.] See also Leydig (Anat. Remerk. üb. Carinaria, Fitola und Amphicora, in Siebold and Kulliker's Zeitsch. III. 1851, p. 325). Jis Taf. IX. fig. 4 (Carinaria) gives a very clear idea of the structure and relations of the auditory capsules with these animals. IIis observations upon the cause of the movements of the otolites are confirmatory of those of Milne Edwards with Firola; see L'Instit. Jour. univ. des Soc. sav. XIII. 1845, p. 43. - ED.

§ 212.

The organs of Vision are absent with only a very few genera of the Cephalophora. ${ }^{(1)}$ They are never more than two in number, and their size, compared to that of the body, is usually small; they are smallest with some Heterobranchia, and the largest with the Pectinibranchia. ${ }^{(2)}$
The cyes consist usually of two round bulbs concealed under the skin; this last is colorless at this point, and lies over them like a thin lamella. Wach bulb is limited outwardly by a tissue resembling a Sclerotica, but beneath the skin, this tissue is more convex than clsewhere, and thus forms a kind of Cornea. ${ }^{(3)}$ The selerotica is lined by a dark pigment layer, or Choroidea, which, near the corner, cods in a frec border, forming thus a Pupilla. With some Gastcropoda, the pupillary border has a very thick pigment laycr which serves, perhaps, as an Iris. ${ }^{(4)}$
The internal surface of the choroidea is covered by a whitish pellicle which undoubtedly is a Retina, for the optic nerve enters the sclerotica at a point opposite the cornea. ${ }^{(5)}$ The cavity of the eye-bulb is filled with a gclatinous, vitrcous body, which, in front, envelops a spherical crystalline lens. ${ }^{(6)}$

The Optic nerve arises from the cercbral ganglia, and runs along, for a longer or shortcr distance, in company with the tentacular nerve of the same side. ${ }^{(7)}$
ere. zoot. Fasc. II. p. 13, Pl. I. fig. 8, f. 9, e. 10, Pl. V. fig. 13, x.) affirms that with the first of these genera, and with Tiedemannia, and Limacina, the auditive vesicles lie directly upon the two principal inferior ganglia; this agrees with Delle Chiaje's description of these organs with Cymbulia; see lis Descriz. \&c. I. p. 9t, Tav. XXXII. fig. 2, i. Eschricht (loc. cit. p. 6, Tab. M1. fig. 28, s.) has figured, with a Clio, two ganglia with short peduncles, situated close by the two anterior ganglia of the cesophageal ring. These, I infer, are only the auditive capsules receiving two shor't auditive nerves.
With those Gasteropoda whose inferior cesophageal ganglia are arranged in a circle, as, for examples, with Lymnaeus, Planorbis, Physa, Succinea, Bulimus, Ancylus, these capsules lie upon the posterior' surface of the two large anterior ganglia. But when, on the other hand, these ganglia arc approximated, or even fused into one common mass, as with Ilelix, these capsules lie upon the inferior surface of this mass, and especially upon the nodules correspouding to two large anterior ganglia.
1 Phyllirrhoë, Diphyllidia, Chiton, Dentuli$u m$, and the Pteropoda with the exception of Sagitta and Clio, are blind. In many of the Pteropoda, the auditive appcar to have beeu taken for the ocular organs.
2 Swammerdamm (Bibel der Nat. p. 47, Tab. IV. fig. 5-8) made out very correctly the structure of the eyes of Helix. The later works of Stipbel (Meckel's Deutsch. Arch. 1819, p. 206, Tah. V.), IIuschhe (Beitr. zur Physiol. u. Naturgesch. 1824, p. 57, Taf. III. fig. 8), and of De Blairville (De l'organisat. des Animaux, 1823, p. 445), upon the eyes of Helix, Paludina, and Voluta, have heen much improved hy those of Müller (Meckel's Arch. $\stackrel{1}{s}$

* [$\$ 212$, note 4.] For the visunl organs of $P a-$ ludina, with histological details, and especially confirmatory of Krohn's observations, see Leydig, loe. eit., Siebold and Kölliker's Zcitseh. II. 1850,

1829, p. 208, Taf. V1. fig. 4-8, and Ann. d. Sc. Nat. XXII. 1S31, p. 7, Pl. III. IV., or in the Isis, 1835, p. 347, Taf. VII.), and Krohn (Müller's Arch. 1837, p. 479,1839, p. 332, Taf. X. fig. 6-8) upon the eyes of Hetix, Murex, Paludina, and Pterotrachea.
3 The eyes of the IIeteropoda present a remarkable exception; their very convex cornea is surrounded by a collar of skin; the ocular bulb is very long, and, at its base, the sclerotica spreals out interiorly and posterinly, forming a round promincnce ; see Milne Edwards, Ann. d. Sc. Nat. XVIII. 18 t2, Pl. XI. fig. 1, e. (Carinaria), and especially the description of Krohn (loc. cit. 1839) of the eye of Pterotrachea. 'The ocular bulb of Clio is also very long, but has no prominence; see Eschricht, loc. cit. 1. 7, Tah. III. fig. 29. Those of Artaeon are long and pyriform; see Quatrefages, Ann. d. Sc. Nat. I. 181t, Pl. VI. Gg. 5, and Allman, lice. cit. Pl. VII. fig. 2 .

4 A dark iris is distinctly seen with Paludina and Murex. That of Strombus is very brilliant and multicolored, accorting to Quoy and Gaimard ; see, Voy. de 1'Astrolabe, Zool. III. 1. 56, Mollusques, Pl. L. LI. I am not yet certain whether or not the iris of these Gasteropoda is susceptible of movements of contraction and dilatation. It may be well to ald that the choroidea of the Iteteropoda has several spots of its surface free from pigment.*
${ }_{5}$ Krohn (loc. cit. 1837, p. 482) affirms that he has seen this white layer with a Paludina.
${ }^{6}$ The existence of a distinct vitreous body wis known to Swammerdamm,and has been eonfirmel by K'rohn (loc. cit. 1837).
7 According to Krohn (loc. cit. 1839), the two optic nerves of Paludina, Murex, Aplysia, Cy-
p. 159, Tat. XII. fig. 25, Taf. XIII. fig. 26-29. See also this same author in Siehold and Kolliker's Zeitsch. 1851, III. p. 327 (Carinaria).- I!b.

There is, moreover, a series of Cephalophora with which the eyes are much more simple and often nearly abortive. Such is the case with Sagitta, and many of the Apneusta and Heterobranchia. ${ }^{(8)}$ Here, the eyes are not always nicely limited by a sclerotica, but the light-refracting bodies lie surrounded in a mass of pigment granules, and situated more or less distant from the external surface of the cervical region. The cornea is absent, and often also the optic nerve, in which casc, the cyes lie directly upon the cerebral mass. ${ }^{(9)}$

The most complete eyes are nearly always connected with the tentacles, although their position varies quitc widely. ${ }^{(10)}$ Very often they are situated at the base of the external surface of these organs. ${ }^{(1)}$ With many Pectinibranchia, they are more or less elevated upon the outer side of the tentacle on a protuberance or on a support which exceeds the extremity of the tentacle in length and size. ${ }^{(12)}$ With many Pulmonata, these organs are situated upon the very extremity of the tentacles, and are upon the posterior pair, when these last are four in number. ${ }^{(13)}$
praca, Rostellaria, Buccinum, and Littorina, arise from the cerebral ganglia hy an origin which is distinct from that of the tentacular nerves. I have been ahle to confirm this for Helix, Limax, Caracolla. According to Müller (Ann. d. Sc. Nat. loc. cit. p. 12, PI. III. fig. 5), the optic nerve is only a special branch of the end of the tentacular nerve.
\checkmark The two pretty simple eyes of Saœitta, forming two prominences on the top of the head, are spherical, and rest directly upon the ganglionic enlargement of the optic nerve, see Krohn, loc. cit. p. 13, fig. 5,14 .
${ }^{1}$ According to Quatrefages (loc. cit. I. p. 158, Pl. V I. fig. 6, 7), the eyes of Pelta, and Chalidis, have, instead of a choroillea, a mass of pigment containing neither a sclerotica nor a cornea. According to the observations of Nordmann, and Kölliker, the eyes of Tergipes and Polycera are without optic nerves, and lie directly in contact with the cerebral ganglia. With Doris, Glaucus, Thetis, Aeolis, Doridium, Aplysia, Bulla, Bul-

* [§ 212, note 9.] For the eyes and their intimate structure with the Nudibranchia, see Alder and Hancock, loc. cit. (Dendronotus, Doto, Aeo/is, Scyllaea, Eumenis, Doris, Antiopa) ; with all these, the optic nerves were distinct, and the eye itself was furnished with a well-rounded, black pig-ment-cup, often a spherical crystalline lens (Doris, Aeolis, Antiopa), with an arched cornea in front, and the whole cnveloped by a transparent memhranous capsule. - Ed.
† [§ 212, note 13.] See, in this connection, Lespes (Recherches sur l'oeildes Mollusques Gastéropodes terrestres et fluviatiles de France, Thesis. Toulouse, 1851). His conclusions are :
"1. All the terrestrial and fluviatile Gasteropoda have eyes;
"2. These organs present, as to their position. three different types:
laca, \&c., these organs are comparatively small and appear more or less distinct through the skin, somctimes in front of, and sometimes behind, the tentacles.*

10 This is so with various Heteropoda, all the Pulmonata, Pectinibranchia, and with some of the Heterobranchia; see Lovén, loc. cit. and Isis, 1842, p. 364.
11 The eyes are situated at the base of the tentacles on a small prominence, with Carinaria, Atlanta, Vermetus, with the Lymuaeacea, the Operculata, Patella, Emarginula, Fissurella, Sigaretus, Paludina, Littorina. A kind of peduncle replaces this prominence with Haliotis, Navicella, Phasianella, Trochus, Ceratodes, Ampullaria.
12 The prominences supporting the eyes are situated on thic outer side of the tentacles with Buccinum, IIarpa, Dolium, Cypraea, Murex, Oliva, Turbo ; and at a variable distance from the extremity which they sometimes surpass in breadth and length, as, for example, with Strombus.
${ }^{13}$ Amphipneusta, Helicina, and Limacina. \dagger
"(1.) The eye at the extremity of the tentacle (Ifelix) ;
"(2.) The eye at the internal base of the tentacle (Limnaea) ;
"(3.) The eye at the external hase of the tentacle (Cyclostoma).
"3. These organs present also three types as to their organization :
"(1.) The lenticular crystalline lens, the vitreous humor fluid, non-adherent (Helix);
" (2.) The lenticular crystalline lens, the vitreous humor thick and united to this last ;
"(3.) The crystalline lens thick and slightly convex, the vitreous humor viscous and slightly adherent to the lens."-Ed.

CHAPTER V.

DIGESTIVE APPARATUS.

$$
\oint 213
$$

The highly-developed digestive organs of the Cephalophora always eommence at the anterior extremity of the body, with a round, oral orifiee, which is surrounded with tumid lips, but rarely has special prehensile organs. ${ }^{(1)}$ These lips are quite contractile, and can evert and invert the mouth; with many species, they can be prolonged into a eylindrical proboseis. ${ }^{(2)}$ The walls of the oral eavity are very muscular, and, with the majority of the species, form a round and often very large pharynx. The epithelium of this cavity is frequently developed into collars or callositics which serve as masticatory organs. With some Gasteropoda, this apparatus is composed of two horny, lamelliform jaws, which have a truncate, convex, internal border, and move upon each other in a lateral manner. ${ }^{(3)}$ These jaws are situated, sometimes direetly behind the oral orifice, and somctimes at the base of the pharynx.

Many other Gasteropoda have only an upper jaw cnchased in the roof of the oral carity, and which is easily secn from its deep-brown eolor. It consists of a transverse, semilunar, horny plate, upon whose anterior surface are several vertical crests, which terminate upon the free border by as many tooth-like processes. ${ }^{(4)}$

Nearly all the Cephalophora lave a longer or shorter fleshy mass, adhering to the base of the pharynx, and which is sometimes grooved longitudinally; it is quite comparable to a Tonguc. Sometimes it is very large and eontained in a membranous sheath at the base of the pharynx. It is always armed with horny, denticulated spines and plates, which are very delicate, and arranged in quite elegant, longitudinal and transverse rows. The

1 Such are the tentacular appendages which have a sucker, of Pteropoda (Clio, Spongiobranchaea, and Pneumodermon), alreaty mentioned above (\$ 204).
2 There is a retractile proboscis with Pnenmodermon, Spongiobranchaea, Pterotrachea, Thetis, Buссіиum, Dolium, Cypraea, Murex, Conus, Voluta, and many other Pectinibranchia.

- The cxternal borders of these jaws are easily perceived between the lips, as with Scyllaca (Cuvier, Mem. loc. cit. fig. 6, a. 6, b.), with Tritonia (Savigny, Descript. de l'Egypte, Hist. Nit. II. Pl. 11. fig. $1^{8}-1^{10}$, tnd Delle Chiaje, Descriz. loc. cit. Tav. XLII. fig. 1), a with Diphyllidia and Bulla. They are found also directly behind the lips with Venilia, Acohs, Amphorina, and Tergipes (Alder, Hancock and Embleton, Ann. of Nat. II ist. XIIf. p. 162, PI. I1. fig. 3, 4, XV. p. 4, Pl. II. ; also Quatrefages, Ann. d. Sc. Nat. I. p.
* [§213, note 4.] For many details upon the oral organs of the IIelicina, of an anatomical as well as a zoological import, see Trosehel (Ueber

147, Pl. V. fig. 5, and Nordmann, loc. cit. 1. 12, Tab. 1. Gig. 7). With Dentalium, on the contrary, the jaws are situated at the base of the oral cavity (Deshayes, loc. cit. p. 333, Pl. XV. fig. 11, b. b. 15, 16, or in the Isis, 1832, p. 463, Taf. VI. fig. 15, 19,20).

This upper jaw is particularly developed with the Limacina and Helicina; see Cuvier, Mém. loc. cit, Sur la Limace, \&c., Pl. If. fig. 4 (Limax); Troschcl, in Wiegmann's Arch. 1836, I. p. 257, Taf. 1X. fig. 3-9 (Arion, Limax, Helix, Clausilia, and Succinea), and Erdl, in Mor. Wagner's Reisen inder Regentsch. Algier. III. p. 268, Tab. XIfI. XIV. With Lymnarus, and Planorbis, there are, beside, two small lateral jaws; these exist also with Falvata, and Palrdina, where the upper jaw is wanting. With Zephyrina, there are also three jaws at the base of the pharynx; see Quatrefages, loc. cit. I. p. 132, Pl. V. fig. 1.*
die Mundtheile einiger IIclicien, in Wipgmann's Arcl. 1849 , p. 225). - Eo.
points of these spines turn backwards, and thus the retractile tongue can serve as an organ of ingestion, and as such is used with much address. ${ }^{(5)}$

§ 214.

The intestinal canal has often longitudinal folds and a ciliated epithelium extending from the eesophagus to the rectum, and even into the hepatic ducts. ${ }^{(1)}$ It is usually two or three times the length of the body, and has therefore several convolutions, which, with the specics which have a shell, are contained in its spiral cavity.

It commences at the base of the pharynx by an Esophagus, of variable length, which is sometimes dilated at its posterior extremity into a kind of crop. ${ }^{(2)}$ The stomach, which, from constrictions, ${ }^{(3)}$ is often divided into several portions, consists somctimes of a simple dilatation with thin walls, ${ }^{(\dagger)}$ and at other times of a nicely-defined cavity whose walls are thick and fleshy ${ }^{(5)}$ and provided, sometimes, with thick cpithelium, and even, in certain cases, with plates and horny teeth. ${ }^{(6)}$ The cardiac and pyloric ori-

Abstract

5 See the description and figures of Troschel (loc. cit. Taf. IX. X.) of the tongue of our terrestrial and fresh-water Gasteropoda, and also of Am phipeplea (Ibid. 1839, I. p. 182, Taf. V. fig. 8). For that of the marine Gasteropoda, see principally Quoy and Gaimard (loc. cit.), also Poli, Testacea Siciliae, \&c., I. p. 5, Tab. 111. fig. 9 (Chiton), Savigny, Descrip. de l'Égypte, IIist. Nat. II. Pl. II. fig. $2^{3}-2^{13}$, III. fig. $5^{7}, 5^{6}$ (Aplysia and Chiton), Rang, Ilist. Nat. des Aplysiens, Pl. X.X. fig. 9-13 (Aplysia), Delle Chiaje, Memor. \&c. Tav. XV. fig. 7-10 (Carinaria), and Eschricht, loc. cit. p. 10, Tab. III. fig. 20-23 (Clio). The tongue is very long with most of the Apneusta; see Quatrefages, loc. cit. 1. Pl. IV. V. (Actaeon and Amphorina), Alder, Hancock and Embleton, Ann. of Nat. Ilist. XIII. Pl. II. fig. 5-6, XV. Pl. I. II. (Venilia and Aeolis), Alman, Ibid. XVI. Pl. VI. VII. fig. 5 (Actaeon), and Nordmann, loc. cit. Tah. I. fig. 7-10 (Tergipes). With Patella, this organ nearly exceeds the hody in length, and bends loop-like, near its posterior extremity (Cuvier, Mén. loc. cit. Pl. II.). With Trochus pagodus, it is seven times longer than the body (Quoy and Gaimard, loc. cit., and Isis. 1836, p. 69, Taf. IV. fig. 3). With Pleurobranchaea, there are spines, not only on the tongue, but on a considerable portion of the lateral walls of the oral cavity. To the same category belong the spines which Eschricht (loc. cit. p. 9) found upon the pharynx of a Clio, and described as lateral teeth. This apparatus with Pneumodermon is quite remarkable - being composed of two tongues which are contained in two coecal sheaths (Van Beneden, Exer. zoot. loc. cit. Fasc. I. p. 47, Pl. II. fig. 2). With Pterotrachea, the tongue consists only of a simple transversal row of curved spines. The circle of hooks surrounding the mouth of Sag $\begin{gathered}\text { ta } a \text { may also be regarded as an }\end{gathered}$ abortive tongue (K rohn, loc. cit. p. 7, fig. 3-6), for they are exactly like the lingual spines of Pterotrachea (Delle Chiaje, Mem. loc. cit. Tav. LXIX. fig. 1).

Lebert has given a very detailed description of the parts of the mouth and the tongue of Patella, Buccinum, Doris, Haliotis, Paludina, and Limax; see Müller's Arch. 1846, p. 435, Taf. XII. -XIV.

I The intestine is lined with cilia, with Patelle, Buccinum (Sharpey, Cyclop. of Anat. I. p. 620), Lymnaeus stagnulis, Paludina vivipara, and Nelix cellularis (Purkinje and Valentin, De

Phaenom. motus vibrat. loc. cit. p. 48), aud with the Apneusta (Quatre fages, Ann. d. sc. Nat. I. p. 166).
I have also seen the ciliary motions, with Lymnaeus, Planorbis, and Clansilia; but not with Limax, Arion, and Helix. Valentin may. therefore, be mistakd in affirming (Wagner's Ilandwörterbuch d. Physiol. I. p. 492) that ciliated cpithelium exists generally in the intestiue of the Gasteropoda.

A ciliary movement has also been observed in the intestine of Sagitta by Krohn (loc. cit. p. 8), and by Witms (Observ. de Sagitta, Diss. Berolini, 1846, p. 12).

2 The cesophagus is very long with Buccinum, Paludina, Lymnaeus, and Planortis; but very short with Thetis, Haliotis, Testacella, Helix, and Limax. It has a kind of crop close upon the stomach with Cymbulia, Onchidium, Lymnaeus, and Planorbis, while with Buccinum, and Voluta, a long, crop-like caecum arises from the upper portion of the stomach near the cesophagus.
${ }^{3}$ Aplysia, Dolabella, Notarchus, Ancylus, Pleurobranchus, and Onchidium; see Cuvier, Mém. loc. cit. I am unable to say anything upon the crystalline, gelatinous stem, which, according to Cuvier (Edinb. new Philos. Jour. VII. 1829, p. 225 , and Isis. 1832, p. 815) is found in all the species of Strombus and some of Trochus and Murex, and is contained in an internally projecting appendix of the stomach.
4 Cypraea, Cassis, Murex, Testacella, Limax, Helix, \&c.
$\$$ Lymnaeus, Planorbis, Thetis.
6 There are three horny lamellae in the stomach of Bullaca (Cuvier, loc. cit. fig. 11), and of certain species of Pleurolranchus (Meckel, Beitr. \&c. I. Ift. 1, p. 3I, Tab. V. fig. 36, 37) ; four in that of Cymbulia, Tiedemannia, Hyalea, and Limacina (Van Beneden, Exerc. zoot. loc. cit. Fasc II.).
That of Pelta has fourvinenticulated horny plates (Quatrefages, loc. cit. I. p. 153, Pl. IV. fig. 5, V. fig. 7), as is also true of Lissosoma, according to Kolliker. With Scyllaea (Cuvier, loc. cit. fig. 6, d.), and with Tritonia (Meckel, Syst. d. vergleich. Anat. IV. p. I88), there is a complete row of lamellae with sharp edges. With Dentulium also, the entrance of the stomach has a very complicated dental apparatus (Deshayes, loc. cit. p. 333, Pl. XV. fig. 13, or Isis. 1832, p. 463, 'Taf. VI. fig. 17). But Aplysia, of all the Cephalophora, is best provided for in this respect, for here the second muscular stomach is lined with as triple row of
fices are usually situated opposite each other; but in some they are so approximated that the stomach has the form of a eaecum. ${ }^{\text {a }}$
The intestine, having made more or less numerous ${ }^{(8)}$ convolutions, seldom forms a rectum, but opens, usually, close by the respiratory orifice on the right side of the anterior end of the body, and rarely at the posterior extremity. ${ }^{(9)}$ With the Pectinibranehia, the reetum often projeets widely into the eavity of the mantle, as a longer or shorter prolongation upon whose extrenity the anus is situated.

Sagitta and the Apneusta present wide differences from this justdeseribed type of structure. With the first, the mouth opens into a short cesophagus whieh passes directly, without any stomachal dilatation, into the intestine ; this last runs straight backwards, and, eurving downwards, terminates in the anus situated on the median line of the ventral surfaee at the posterior end of the body. ${ }^{(10)}$ With the Apneusta, on the other hand, there is a stomach with several and often highly-ramified eaceal appendages - which, in some species, extend even into the dorsal appendages. A short reetum follows direetly upou the stomaeh, and ends in an anus, often diffieult to be found, and situated at the anterior part of the right side of the body. ${ }^{(1)}$

[^141]330, P1. X. fig. 2 (Calliopaea), also Quatrefages, Alder, Hancock and Embleton, Allman, and Nordmann, loc. cit. According to a communication from N olliker, that of Rhodope is the most simple ; it consists only of a caecum which extends even to the posterior extremity of the hody, and near the cardia sends off a short caecum which pusses along the teft side of the cosophagus to the pharynx, ant upon the right side of the other end of the body terminates in a short rectum. With Actacon, according to Souleyet (Compt. rend. XX. 1845, p. 94), the intestine, after forming a stomachal dilatation, bends, first forwards, then backwards, opening on the right side of the neck. But the descriptions ani figures of this animal by Quatrefages (Ann. d. Sc. Nat. I. p. 141, Pl. IV. fig. 2, V. fig. 4) aud Allman (loc. cit. p. 148, Pl. VI.), are remarkably contradictory to these statements of Souleyct. According to these authors, the stomach is followed by a short rectum opening upon the right side of the neck, which is attended by two superior and two inferior intestinal tubes which send numerous ramified appendages into the parenchyma of the body. With Chalidis, the oesophagus is followed by four caeca, the two shortest of which extend in front, and the others behind. With Pelta, there is a large intestinal tuhe having many short coecal appendages, situated in the middle of the body. With Acolis, Flabellina, Tergipes, which have only a single intestinal tube clused posteriorly, and with Zephyrina, Amphorina, aud Calliopaert, which have two such, the cacca from this canal extend even into the dorsal appendages. With Eolidina, which has threc intestinal tubes intercommunicating by numerous transversal anastumoses, these last give rise to the caeca of the dorsal arpend ages. Quatrefages (Ann. d. Sc. Nat. XIX. p. 285, PI. XI. fig. 2, c.), who at first declared that the median tube of these avimals opened by an anus at the posterior end of the boly, has since (Compt. rend. XIX. p. 81I) rectified this error ; for here, as also with Actaeon, Acolis, Tergipes, and Rhodope, the anus is anterior and on the right side.

A similar correction will perhaps be made with Venilia, whose stomach, according to Alder and Hancock (Anm. of Nat. Hist. X1II. p. 163, P1. II. fig. 7), not only sends many ramified caeca into the lateral appendages of the boly, hut also is followed by a rectum, opening, they say, at the posterior portion of the back.

§ 215.

With those Cephalophora whieh are nourished by solid food, and which often have, therefore, masticatory organs, there are, almost without exeeption, highly-developed Salivary organs. These are usually eomposed of two lobular yellow glands surrounding the eesophagus or stomaeh, and whieh have in front two exeretory duets whieh are lined with eiliated epithelium. ${ }^{(1)}$

These duets pass, in company with the essophagus, through the cesophageal ring, and, extending over the base of the pharynx, end in the oral eavity on eaeh side of the tongue. With some species, these glands consist of two very long tubes. ${ }^{(2)}$ Some Gasteropoda have two pairs of these organs, one of which opens at the anterior part of the mouth. ${ }^{(3)}$ In a few eases only these organs appear to be wholly wanting. ${ }^{(4)}$

The Biliary organs are always present ; and their glandular follieles eontain hepatie eells filled with a brownish-yellow substanee. ${ }^{(5)}$ Most eommonly, the liver is large and distinetly separated from the digestive eanal; and it is with a few genera only that it is more or less blended with it.

1. This last is the ease with some Pteropoda, and Apneusta, whose intestinal walls, as with the Worms, are partly composed of the hepatie substanee, or furnished with mumerous small follieles which open into the intestinal eavity. ${ }^{(15)}$

* [\$ 2I5, note 1.] See also Leidy (loc. cit.) for the salivary glands and their intimate structure, of Limax, Helix, Tebcnnophorus, Vaginula, Succinea, Glandina.
† [§ 215, note 3.] With Paludina, the salivary glands are highly developed and two in number. They are situated on the upper and posterior side of the pharynx, behind the brain ; their excretory ducts pass under the ccrebral commissure, forwards, and perforate the upper wall of the pharynx. In structure they consist of ramose cace, made up essentially of eylindrical epithelium situated on \& basement membrane; see Leydig, loc. cit. p. 165, Taf. XI1. fig. 10, a. b.
For further details on these organs with the Nudihranchiate Cephalophora in general, see
to be blended with the intestinal walls (Krohn, loccit. p. 8). This is distinctly so with renilia, Acolis, Eolidina, Amplusina, and Zephyrina, and is especially seen upon the coecal ends of the branches of the intestinal canal which terminate partly in the dorsal appendages, and partly in the parenchyma of the body; see Quatrefages, loc. cit. XIX. p. 289, Pl. XI. fig. 5, I. Pl. IV. V. ; Alder, Hancock and Embleton, Anu. of Nat. Hist. XIMI. p. 163, Pl. I1. fig. 9, XV. 1. 80 , PI.IV. According to Nordmann (loc. cit. p. 20, 'Tab. II. III. fig. 3), the liver is isolated with Tergipes ; but as the organ here described appears to open externally by a special duct, it resembles an urinary organ (see bclow, § 223). With Pncumodermon, and Clio, the stomach is lined with a layer of small hepatic follicles (Cuvier, loc. eit. p. 8, fig. 7, p.; and Eschricht, loc. cit. p. I1).
According to a communication from Kölliker, the intestine of Rhodope also has numerous follicles of this kind, which are pyriform and filled with cells having yellow nuclei.

A/der and Hancock, loe, cit. Part II. Pi. IV, fig. I, f. (Doto) ; Part III. Pl. VII. fig. 6, a. (Aeolis); Part IV. Pl. V. fig. I, e. (Scyllaea) ; Part V. l’. II. fig. 1, h. (Doris). - Ed.
\ddagger [\$ 215, note 5.] See also Leydig, Ueber l'aludina vivipara, \&e., loc. cit. p. I43, 166 (Paludi$n a)$; he gives its development and its adult structure. It is developed from cells as an appendage to the alimentary canal ; and its structure, when complete, is follicular, as above described. See furthermore, for the liver of the terrestrial Gasteropoda, Leidy, loc. cit. Of its internal structure, hc says: "The lobuli of the liver are composed of the rounded commencement of the biliary ducts, and are lined with polygonal cells." - Ed.
2. With the other Cephalophora, the liver is wholly isolated, nearly always asymmetrical, ${ }^{(\pi)}$ and often divided into several lobes of a ycllowish-brown or brownish-green color; often, also, it wholly envelops the intestinal convolutions. The biliary canals, which arise from the hepatic lobes, form usually, two, three, or more excretory ducts, whieh empty the bile into the stomach or intestine, rarely into the cesophagus. ${ }^{(8)}$

CHAPTER VI.

CIRCULATORY SYSTEM.

$$
\text { § } 216 .
$$

For a long time it was erroneously supposed that the circulatory system of the Cephalophora was completely closed. But the heart or central portion of this system, is developed in an inverse ratio to the imperfect peripheric part which is without a capillary net-work. This incompletencss is often so great that, in many genera, the arteries are wanting and the veins more or less wholly absent. 廿The circulation is, therefore, extravascular for a longer or shorter course, and passes into cavities (Lacunae) situated in the parenchyma of the body. ${ }^{(1)}$

The blood is colorless, often opalescent, and always very poor in corpusctes. These last are also colorless and consist of smooth cells, with a granular, indistinct nucleus. ${ }^{(2)}$

[^142]with Aplysir, the veins communieate distinctly with the eavity of the body by speeial orifiees, still persisted in the old view, - regarding this as an exception; sec Mem. loc. cit. p. 13. It is only latterly that the circulation of the blood through the lacunae and interstices of the body, has been shown to be the rule, by Pouchet (Reeherehes loc. cit. 1. 13), Milne Edwards and Valenciennes (Compt. rend. XX. 1845, p. 261, 750 , or Froriep's neue Not. XXXIV. p. 81, 257).
Milne Edwards, in his memoir alrealy eited upon the circulation of Patella, Haliotis, Helix, Aplysia, Thetis, and Triton, has abundantly shown that the vascular system of the Cephalophora is also ineomplete, and that the anta terminates in a large lacunal sints eontaining the brain, the salivary glands, the œesophagus with its museles, and the retracted tongue, and which forms a!so a part of the visceral cavity; see Am. d. Se. Nat. V1I1. 1847, p. 37, 11. 1.-111., or Schleiden and Froriep's Not. V. p. 1, fig. 1-4.

2 For the blood of the Gasteropoda, see Carus,
For the liver of Chiton, see Middendorf (Beitrage zur einen Malacozoologia rossica, St. Petersburg, 1847 , p. 63, Taf. V. fig. 2, 1.). Its duets open into the alimentary canal near the stomach. - Ed.

§ 217.

The Heart is wanting in only a few genera of the Cephalophora. ${ }^{(1)}$ Almost always it has a pericardium, ${ }^{(2)}$ and is divided into a simple, very muscular ventriele, and a thin-walled auricle whieh is equally simple, rarely double. ${ }^{(3)}$

The arterial blood passes from the respiratory organs into the auriele, thence into the ventricle, from whieh it is forced through a very short aorta over the body. These two chambers of the heart are usually pyriform, and are joined together at their large extremity by a constrietion in which is sometimes situated a valve, which prevents the return of the blood into the auricle. ${ }^{(4)}$

The position of the heart usually depends upon that of the respiratory organs. It is generally situated at the base of the branchiae, or in the bottom of the pulmonary eavity. It is most often found, therefore, upon the right side of the body. ${ }^{(5)}$

Von den ausser. Lebensbeding. d. weiss-lind Kaltblutigen Thiere. p. 72; Ehrenberg, Unerkamite Struct. loc. cit. Tab. V1. fig. I. 1, Il. 1 (Arion and Patudiua) ; and Erdl, De Meticis algirae vasis sanguiferis. Diss. Monach. 1840, p. 10.

With Planorbis, the blood is red. With the Ceplatophoria in general, there is only a very small quantity of itbrine, at least there is only a trace in the blood of Helix; it forms a kind of a web, scarcely visible, uniting the globules into masses and rows. The nuclei of these blood-globules become very distinct by the addition of acetic acid.*

I Forbes (Instit. 1843, p. 358), and Darwin (Amn. of Nat. 11ist. XIII. p. 3), have been unable to find a heart with Sagitta; although D'Orbigny (Voy. dans I'Amer. mér., or Isis. 1839, p. 501) aflirms that he has seen the movements of this organ in this enigmatical animal, and Darwin (loc. cit. p. 6) has perceived a pulsating organ at the anterior extremity of the embryos. The heart is wanting, according to Quatrefages (loc. cit. I.), in Zephyrina, Actacon, and Amphorina; and according to Kolliker, in Flabellina, Rhodope, and Lissosoma. However, Souleyet (Comp. Rend. XX. 1845, p.73) contradicts, very positively, the assertions of Quatrefages, and assigns a heart to all the Appeusta. The dificulties in the study of these animals, from their non-transparency, are undotatedly the cause of many of these contradictory statements. One should not, also, conclude as to the organization of the adults from the development of the embryos; for it is very singular that the embryos of Actacon are completely developed without it heart (Vogt, Comp. Rend. XXI. No. 14, XX11. No. 9, or Froriep's neue Not. No. 795,

* [§216, note 2.] Leydig (loc. cit.) describes the blocd of Paludina as containing two forms of corpuscles'; one, round, which became granular nucleated cells after the action of acetic acid; the other provided on one side with processes which disappeared upon the action of acid; see loc. cit. p. 170, Taf. XIII. fig. 47, 48. In this connection, sec also for the blood-corpuscles of the Gasteropoda (Buccinum magnum) and thcir development, Wharton Jones, Phios. Trans. 1846, Part II. p. 08, P1. I1. fig. 1-7, of the Crasteropoda division. Jones also mentions the stellate form of the corpuscle (fig. 4). It would appear to me that this: peculiarity is, after alt, only a crenulation due
and 820), while with the other Gasteropoda the heart appears very early in the embryonic development. According to Nordmann (loc. cit. p. 93), the embryos of Tergipes, which has a heart, are developed as tbose of Actaeon, thus showing that the absence of this organ in these last is only a delay of its appearance.

W'ilms (loc. cit. p. 11) has been also equally unable to find a heart with Sagitta.
2 The pericardium is apparently wanting with the Apneusta.
3 Chiton, Haliotis, Fissurella, and Emarginula bave two lateral auricles; the last three of these Scutibranchia resemble moreover the Lamellibranchia in their heart being traversed by the rectum; see Cuvier, loc. cit., and Meckel, Syst. d. vergleich. Anat. V. p. 115.

4 See Cuvier, loc. cit. Pl. I. fig. 2-4, II. fig. 1; Carus, Erlảaterungstafeln Hit. VI. Taf. II. fig. 6 (Helix) ; and Van Beneden, Exerc. zoot. loc. cit. 1'I. III. fig. 11 (IIyalea).

Nordmann (loc. cit. p. 26, Tab. III. fig. 4) found with Tergipes, the auriculo-ventricular valvular apparatus replaced hy a very movable valve situated between the ventricle and the bulb of the aorta. With Limax, and Arion, the valves are wholly wanting (Treviranus, Beobacht. aus d. zoot. u. Phys. p. 40).
5 The heart is situated on the right side of the back, with most of the Tectibranchia, with the dextral Pectinibranchæ, and Pulmonata, and witb all the Limacina; while it is on the opposite side with Aucylus, Ialiotis, and all the sinistral Gasteropoda. That of Carinaria, Clio, Hyalea, and Cleodora, is upon the dorsal median line, a little to the left. \dagger
to an exosmotic passage of the cell-contents - leaving the cell-membrane thus deeply wrinkled, as may often be ohserved also with the blood of vertebrates. - ED.
\dagger [§217, note 5.] With Firola, and Atlanta, the heart is situated near the posterior extremity of the body; its auricle and ventricle are composed of interlaced, striated muscular fibres; both the auriculo-ventricular and the aorto-ventricular orifices are valvular ; see IIuxley, Ann. d. Sc. Nat. XIV. 1850, p. 193.

See also, for the heart its positions and connections, with the Lymnatacea, De St. Simon, Jour de Conchol. 1852, 11. p. 113. - Ed.

It lies upon the median line, and its ventricle and aorta are directed forwards, in those genera whose respiratory organs are symmetrical. or wholly wanting. ${ }^{(9)}$ With many other Cephalophora, they have also the same direetion, without, however, being situated on the median line; but in the turbinated genera, the apex of the ventriele and the aorta are directed baekwards.

§ 218.

The vascular system of the Cephalophora consists almost solely of arteries with their branehes, of large venous canals receiving the blood from the cavity of the body, and of the laeunae in the parenchyma which return it to the respiratory organs.

With Sagitta, ${ }^{(1)}$ and some Apneusta ${ }^{(2)}$ there are no traces of blood-vessels; and, as with the Nematodes, the nutritive liquid transudes directly through the intestinal canal into the cavity of the body.
In another series of the Apneusta, there are rudiments of arteries and veins, in the form of a short aorta, which passes in front from the ventricle, and has a bifurcated extremity, - and two vena cava even shorter, which open each side of the posterior end of the auricle. ${ }^{(3)}$

With the other Cephatophora, the aorta divides, after a short course, into two principal artcries, the anterior of which passes through the oesophageal ring, and, sending branches to the cephalic organs, finally ramifies in the fleshy walls of the body; but the other, posterior, ramifies over the organs in the intestinal sac. These ramifications, which sometimes form a beautiful vascular net-work, never pass into a eapillary system whieh

6 The heart is situated on the median liac of the back in Dentalium, Tritonia, Scyllaea, Thetis, Phyllidia, Fissurella, and Emarginula; upon the posterior part of the body, with Doris, and Chiton, as is also the case with Onchidium which is remarkable in other respects. It is singular that with Patella, whose respiratory apparatus is symmetrically disposed, the position of the heart is in front and on the right side; see Meckel, Syst. d. vergleich. Anat. V. p. 119, and Arch. für Anat. u. Phys. 1826 , p. 19 . Several of the Apneusta have the heart on the dorsal modian line, as for examples, Tergipes (Nordmann, loc. cit. p. 24, Tab. II. T., Tab. TII. fig. 4), Eolidina (Quatrcfages, loc. cit. XIX. p. 288, Pl. XI. fig. 3), Acolis (llancock and Embleton, loc. cit. Pl. V. fig. 16), and Actacon (Allman, loc. cit. p. 149, 1'1. V. fig. 4).
1 Krohn, loc. cit. p. 8.
Notwithstandingo the absence of a heart and a vascular system with Sagitta, Hilms (loc. cit. p. 12), has found in the visceral cavity of these animals regular blood-currents, due, probably, to ciliated organs.
2 Flabellina, Lissosoma, and Rhodope, according to Kolliker; Zephyrina, and Amphorina, according to Quatrefages.
3 Such a rudimentary vascular system situated in the anterior part of the back, has been seen by Nordmann (loc. cit. p. 24), with Tergipes, by

* \§ 218, note 3.] See, for detailed remarks against the doctrinc of Phlebenterism with the Eolididae, Hancock and Embleton (loc. cit. 1849). They have shown here the existence of a pretty

Quatrefages (loc. cit. p. 288), with Eolidina, and Dy Fan Beneden (Instit. No. 627, or Froriep's neue Not. No. 797, p. 68), with Aeolis.

Allman, judging from one of his figures (loc. cii. PI. V. fig. 4, c.), has found it also with Actaeon. Nordmann has observed, that in spite of this imperfection of the blood-vessels, the blood effinsed into the cavity of the body circulates regularly, so that with Tergipes, the whold borly, including the appendages, is traversed by arterial and venous currents which can be traced efen to the two venae cavae which arisc from open mouths. This circulation is quite like that of insects; exeept that here, the blood of the Apneusta continues a longer course in the artcries, for Nordmann, with Tergipes, and Quatrefages, with Eolidina, have been able to trace on each side of the body an anterior and posterior branch of the aorta. Quatrefages, however, commits an crror at the outset conccring this simple circulation of the Apneusta, in declaring that with these Gasteropoda the ramificd intestinal caual serves also the function of a vascular system; this has induced him to give the name Phlebenterata to an entire group of these animals. In the controversy between him and Souleyet on this subject (Comp. Rend. XIX. XX.), and which threatens to be interminable, this last has gone too far in asserting that, not only with the Apneusta, but even with all the Gasteropoda, there is a completely-closed vascular system.*
highly-developed vascular system commencing in a well-formed heart which consists of a ventricle and an auricle, and enclosed in a pericardiam. - HD.
opens into the veins, but gradually disappear, ${ }^{(4)}$ so that it is probable that the blood is effused from their open extremities into the interstices of the parenchyma of the viscera, as well as into the cavity of the body; and is thence taken up through numerous orifices on the inner surface of this last, and conducted to the respiratory organs through the wall-less venous canals which are hollowed in the muscular substance of the envelope of the body. ${ }^{\left({ }^{(7)}\right.}$

CHAPTER VII.

RESPIRATORY SYSTEM.

§ 219.

The respiratory organs are absent with only a few of the Cephalophora; namely: with Sagitta, the Apncusta, and with some of the Pteropoda and Heteropoda. ${ }^{(1)}$ With these, therefore, it may be inferred that the respira-

4 Erdl (De Helicis algirae, \&c., loc. cit.) has, indecd, figured venous net-works on the digestive apparatus of an Helix (see also its copy in Carus ${ }^{\text {B }}$ Erlauterungstafeln, IIf. VI. Tab. II. fig. 5) ; but I regard these as of an arterial nature, and this so much the more, since Erdl, in his dissertation, has nowhere shown a direct communication between the arteries and veins. The abscnce of a capillary net-work and of venous radicles, is quite apparent with Arion, in which the posterior artery forms beautiful ramifications of a white color upon the intestine and liver. If the larger branches of this artery are examined, their muscular walls will he distinctly seen to be internally lined with a granulated layer composed of carbonate of lime and which gives the color just mentioned.
If also the smaller branches are examined, their muscular walls will be found to have gradually disappeared so that the blood circulates inside of the granular layer only; and this last in its turn will also be found to have disappeared leaving no trace of capillaries or venons radicles. For the details of the arterial system of the Cephalophora, see the Mémoires of V'an Beneden, loc. cit. (Pteropoda); Milne Edwards, Ann. d. Sc. Nat. XVIII. 1824, p. 325. Pl. XI. fig. 1 (Carinaria), and Cuvier, Meckel, and Delle Chiaje, loc. cit. (Gasteropoda).

5 Although Cuvier in 1803 (Ann. du Mus. d'Ilist. Nat. IL. p. 299, Pl. II. fig. 1, 3) perceived, on the illner surface of the envelope of the body, the orifices of the venous canals, which as a net-work traverse the fleshy walls of Aplysia even to the base of the branchiae, and although this was confirmed by Treviranus (Biologie, IV. p. 238) and Delle Chiaje (Memor. \&c. I. p. 63), yet it is only lately that the opinion has been recognized that this might be so with all the Cephallophora, for the observation upon Aplysia remained thus long isolated. But now, facis of this kind are so numerous as not to he hased uran exceptional ohservations. It Ehould he understros i, however, that the absence of capillaries and of venous radicles, as well as the presence of numerous orifices opening into the vecous canals, are the rule with all the Cephalophora
which have respiratory organs. These orifices may be easily seen, especially by asphyxing species of Limax and Arion, - by which expcriment, will be appreciated the correctness of Delle Chiaje's figure of Arion which was engraved in 1830 (Memor. loc. cit. Tav. CXX. fig. 16 without text, and Descriz. loc. cit. II. 1841. p. 10, Tav. XXXVII. fig. 16, the same plate with text), witb the exception that there are orifices on their ramifications as well as on the two principal canals. Pouchet (loc. cit. p. 19. has named these Orifices absorbants, and his observations were also made on Arion; but Milne Edwards and Valenciennes (Compt.Rend. loc.cit.) have demonstrated this structure with Aplysia, Doris, Polycera, Scyllaca, Patella, Chiton, Haliotis, Notarchus, Umbrella, Pleurobranchus. Dolabella, Buccinum, Tritonium, Turbo, Ampullaria, Onchidium, Helix, \&c., and therefire with the Nudibranchia, Cyclobranchia, Scutibranchia, Tectibranchia, Pectinibranchia, and Pumenata. I must here repeat that these venous canal.s are only lacrnae excavated in the muscular walls of the body, and are without proper walls, as Meckel (Syst. d. vergleich. Anat. V. P. 128) has pretended is the case with those of Aplysia. 'Iobe convinced of their wall-less structure it is only nuc ssary to examine microscopically a longitudinally incised Arion. Tbey will be found composed whoily of unuscular fibres interlaced in every direction, and some of which surround, sphincter-like, the venous orifices, thus showing that these last are not closed by valves, but by the contraction of these fibres. Souleyet himself could not deny this wall-less structure in the veins of the Gasteropoda, although it is in contradiction with his statements against Plulebenterismus. He declares (Compt. Rend. XX. p. 81, note 3) "que le systéme veineux des Mullusques n'est pas toujours formé par des vaisseux distincts, mais qu'il, se compose en grande partie de ces canaux creusés dans l'épaisseur ou dans l'interstice des organes." See also below \$216, note 1.

1 Lespiratory organs appear to be wholly absent in Sagilla, and Phyllirrhoé.
tion is cutaneous, which, with the Apneusta, is probably favored by ciliated cpithelium. ${ }^{(2)}$ With some of these species, there is an aquiferous system which also serves, perhaps, for respiration. ${ }^{(3)}$

I. Brancliae.

$\oint 220$.
With nearly all the Cephalophora, excepting the Pulmonata, there is a Branchial apparatus; this is usually very contractile, and always covered with very lively cilia. ${ }^{\text {a) }}$ It is composed either of lamellae, or of filaments arranged in rows or in bundles, or of plumose or pectinate ramified prolongations. With some, the branchiae are situated, uncovercd, on the back or on the sides of the body; with others, they are more or less covered by the mantle; but with the majority, they arc contained in a special cavity of this last.

This Branchial cavity eommunieates externally by the Siphon, whieh is simply a canaliculated, contractile prolongation of the mantle itself. ${ }^{(2)}$

1. With the Pteropoda, the respiratory organs are very unequally developcd. In some genera, they appear wholly wanting, while in others, there is a spacious branchial eavity containing one or two groups of fringed lamellae from which pass out as many veins towards the auriele of the heart. ${ }^{(3)}$
2. With most of the Heteropoda, there is, upon the median line of the posterior part of the back, a pectinate or plumose branchial apparatus, which connects with the heart by a short vein. ${ }^{(4)}$
3. This apparatus is most variable as to form and situation with the Gasteropoda, and the different groups of this class are founded upon its modifications. The Cirribranchia have a bundle of small filaments on each side of the neck. ${ }^{(5)}$. The Nudibranchia have on each side of the back, in one or more rows, or in a circle upon the middle of the posterior part

[^143]rior extremity of Pneumodermon, and the circulav cutaneous lobe in the same locality with Spongiobranchaea, arc really branchise; see Cuvier, Hém. loc. cit. p. 7, Pl. 1. fig 1-6, g. ; Van Beneden, loc. cit. p. 49, Pl. 1. fig. 1, d. (Pneumodermon) ; and D'Orbigny, Isis, 1839, p. 497, Taf. I. fig. 1X. 1-3, 11, 12 (Spongiobranchaea). On the other hand, Fan Beneden (loc. cit. p. 17, $40, \mathrm{Pl}$. I. fig. 2, 12, III. 1, 5,6) has distinctly seen branchiac and branchial veins in Hyalea, Cymbulia and Cleodora. In the first of these genera, there tie in a very large respiratory cavity situated on the back of the intestinal sac, numerous branehial limclac arranged in an arcuate mauner, and bound together by a branchial vein. In the other two genera, the cavity of the mantle has, on each side, a fan-shaped branchia. Sec also Delle Chiaje. Descriz. \&c. I. p. 89, Tav. XXX1V. fig. 9, 11.

4 With Atlanta, the single branchia is simple, pectinated, and always concealed in the interior of their cell (Rang, loc. cit. p. 378, Pl. IX. E.g. 12, or 1sis, loc. cit. p. 473 , Taf. VII. fig. 12). With Carinaria, and Pterotrachea, the manchia is also simple, but very developed and demi pinnate, and in the first of these genera it projects outside the shell (Delle Chioje, Mem. loc. cit. Tav. XlV. XV. LXIX., and Descriz. loc. cit. Tav. LX1M.-IV.).

5 Dentalum, according to Deskayes, loc. cit. P. 334, Pl. XV. kig. 12, ol Isis, loc. cit. P. 464. T:uf. V1. fig. 16.
of the body, numerous faseieulated plumose, or dendritie branehiae. ${ }^{(6)}$ With the Cyclobranchia, and some of the Inferobranchia, the lamelliform branchiae are situated on the furrow whieh separates the border of the mantle from the foot, ${ }^{(\pi)}$ under the form of a continuous eord, or of two lateral rows.

With the Seutibranehia, the two pectinal rows, which are wholly eoncealed in the cavity of the mantle, have, nevertheless, a certain symmetry ${ }^{(8)}$ which is wholly absent with the other Gasteropoda. Thus, all the Tectibranchia have only a single lamellate or pinnate branehia situated on the right side, rarely on the left, and which is more or less covered and sometimes wholly concealed by a fold of the mantle. ${ }^{(9)}$ The Peetinibranchia and Tubulibranchia have a pinnate or peetinate branchia, contained in a cavity which is situated upon the anterior portion of the baek and often provided with a siphon on its left side. ${ }^{(10)}$

With many Nudibranehia, the returning blood from the branehiae is emptied by several veins into the simple auricle of the heart, which (the heart) is situated upon the middle line of the back. ${ }^{(1)}$ With only a few Gasteropoda, as also with the Cirribranelia, Cyelobranehia, and Seutibranehia, the branehial veins are united into two trunks which open into the simple or double auricle. ${ }^{(12)}$ With the other Gasteropoda, which have an uneven, lateral branchia, ${ }^{(13)}$ the blood passes from this last, through a short, simple, venous trunk, to the heart situated near its base.

II. Lungs.

§ 221.

The pulmonary eavity, formed in the mantle of the Pulmonata, is situated

Abstract

6 With Scyllaea, there are, on the back, two pairs of cutaneous lobes, between and which are numerous branchial vessels. WithGlaucus, there are, upon the sides of the body, threc pairs of prolongations which have long, digitiform branchial filaments. With Thetis, the back is surrounded by a double row of semi-pinnate branchiae; while with Tritonia, there is on each of its sides a single row of multiramose branchial tufts. With Doris, and Polycera, there are twenty to twenty-five more or less ranilied branchiae, arranged circularly around the arms, and capable, from contraction, of being withdrawn into the mantle.

7 The branchial lamellae form a complete circle with Patella, Chiton, and Phyllidia, and two lateral rows with Diphyllidia. 8 With Fissurella, and Emarginula, therc is a row of branchiae on each side of the cavity of the mantle, while, with Haliotis, there are two rows on the left side.

9 With Umbrella, Pleurobranchuea, and Pleurobranchus, this branchia, situated on the right side and half exposed, is easily seen. On the same side also is situated the branchial lamella often deeply concealed between the folds of the mantle, of Gasteropteron, Aplysia, Bullaca, Notarchus, \&c. But with Doridium, the branchia is on the left side and quite behind. Ancylus, which differs from the other Inferobranchia by its simple branchia, has, moreover, this peculiarity, that this organ has the form of a simple cutaneous enlargement on the left side, con-

* [§ 220, note 10.] See also Leydig, loc. cit. for the branchise and their intimate structure, with Paludina. According to this observer, they

Abstract

cealed under a fold of the mantle (Treviranus, loc. cit. p. 192, Taf. XVII. fig. 1, 2, d., or Vogt, loc, cit. p. 23, Taf. II. fig. $\mathbf{1 - 3}$, p.). 10 With Valvata, there is a single pinnate branchia which projects out of a cavity in which it is contaiued (Gruithuisen, Nov. Act. Acad. Nat. Cur. X. p. 441, Tab. XXXVIII. fig. 2, 3, 5, 12). The branchia is simple and pectinate with Vermetus (Phitippi, Enumer. Mollusc. Sicil. I. p. 169, Tab. EX. fig. 24), Rostella, and Struthiolaria. It is bi-pectinate with Turbo, and Janthina, and tri-pectinate with Paludina. With many Pectinibranchia, as, for cxamples, with Harpa, Cassis, Conus, Buccinum, Terebra, Murex, Foluta, Oliva, \&c., there is, beside a very large unipectinate branchia, another organ of this kind which is smaller and bi-pectinate. The epithelium, which covers not only the branchia, but also the walls of the respiratory cavity, plays an important part in the renewal of the water in the branchial cavity, which takes place through its opening, or by the siphon of these Gasteropoda which is situated upon the neck usually a little to the left sidc.* 11 Scyllaea, Thetis, Doris. 12 Tritonia, Dentalium, Patella, Chiton, Haliolis, Fissurella and Emarginula. Among the Inferobranchia, Phyllidia should also be cited here. But with Diphyllidia, on the contrary, the veins appear to pass each into the auricle of the heart.

13 The Tubulibranchia and Pectinibrancluia.

are unipectinate with Paludina vivipara, and not tri-pectinate, as above mentioned of this genus in general. - Ed.
at the anterior part of the baek, rarely at the posterior part. ${ }^{(1)}$ Its orifiee, whieh ean be closed by a kind of sphineter, is upon the right side; it is upon the left with those species only whieh have sinistral shells, and in one genus alone, it is upon the median line at the posterior extremity of the body. ${ }^{(2)}$ The pulmonary eavity is triangular with those species whieh have a shell, and round with those whieh are without it. ${ }^{(3)}$ Its interior is lined with a raised vaseular net-work whieh, with the aquatie speeies, is covered with a eiliated epithelium. ${ }^{(4)}$ With the naked Gasteropoda, this net-work forms a uniformly-meshed trellis; ; while with the others, there may here be usually seen several large pulmonary veins, whieh, in passing towards the middle principal vein, are spread over the borders of the respiratory cavity, frequently anastomose with eaeh other, and reeeive several other veins of a dendritic form. The prineipal vein opens, at last, into the auricle of the heart at the posterior eorner of the pulmonary cavity. ${ }^{(5)}$

Carefully examined, these veins will be found to be wall-less eanals direetly surrounded by the transverse and longitudinal fibres of the mantle, so that, apparently, they are only a continuation of the venous eanals of the walls of the body.

III. Aquiferous System.

$\S 222$.

Whe existence of aquiferous vessels and reservoirs, with the Cephalophora, is not yet satisfaetorily settled. However, it appears that here, as with the Aeephala, there is an aquiferous system with wall-less eanals, of whieh some are singly ramified, while others form an anastomotie net-work, but all aeeompany the venous canals and open upon the surfaee of the body, - presenting an arrangement analogous to the traehean system of insects.

With some Apneusta, the existenee of this system, whieh may have the function of an internal respiratory apparatus, ean scarcely be doubted;

[^144]nary cavity of the Lymmaeacea, but not in that of Helix or Arion,
¿̄ Onchidium, Limax, de. ; see Cuvier, Mém. loc. cit. Pl. II. fig. 8-10 (Irion).
6 See Cuvier, Ibid. MI. I, fig. 2-4, and Trevifanus, Beobacht. aus. d. Zoot. u. Physiol. Tab. VIII. fig. 57, 58 (Helix pomatia). In the yascular net-work which Erdl (De 11 elicis algirae, \&c., fig. 6, copied in Carus, Erlauterungstafeln, Taf. II. fig. 10) has figured with many details, all the vascular trunks do not run towards the principal vein, but with some their large extremity is directed towards the border of the lungs.
This disposition, however, does not exist in nature. The puimonary vessels of this species are arranged like those of Hetix pomatia, which is also confirmed by Van Beneden's figure of it; see his Anat. de l'Melix alrira, in the Ann. d. Sc. Nat. V. 1836, Pl. X. fig. 3, f.*

[^145]for, upon the back and directly behind the heart, there is a reservoir filled with water, from which ramifying canals pass off in all directions. ${ }^{(1)}$

The older observations upon these aquiferous canals of the Pteropoda, Heteropoda, and Gasteropoda, have been but indifferently increased by more recent labors. With these Cephalophora, the substance of the envelope of the body is permeated by a beautiful net-work of wall-lcss canals, which are filled with water, it is supposed, through several orifices upon the surface of the body. ${ }^{(2)}$ It is, ncvertheless, far from being settled that these canals belong to an aquifcrous system, for the existence of their external orifices is doubtful, and it may be urged that they are only a continuation of the venous system. ${ }^{(3)}$ At all events, this question demands further researches based upon facts observed with the Acephala and Cephalophora.

CHAPTER VIII.

ORGANS OF SECRETION.

I. Urinary Organs.

$\oint 223$.
With most of the Cephalophora, the Urinary apparatus consists of an uneven, lamellate gland, which is usually situated near the branchial or princi-

Abstract

1 According to Souleyet (Compt. Rend, XIX. p. 360 , XX. p. 93), there is, with Actaeon, an aquiferous system, arising from a reservoir of water situated behind the heart, and which he has called Poche pulmonaire, which is spread through the whole of the body. Vogt, as he has written me, lias distinctly seen this system with a canal opening on the right side behind the anus. Allman (loc. cit. p. 143, Pl. V. fig. 4, a. a. b.) has also observed it in the same species, but he took it for a blood system. The canal, which, with Venilia, opens at the posterior part of the hack, and which has been taken by Alder and Hancock (loc, cit. XIII. Pl. II. fig. 1, 7, b.) for the rectum with its anus, belongs also, perhaps, to an aquiferous system, as well as the orifice figured by Delle Chiaje (Descriz. loc. cit. Tav, LXXXVII, hg. 2, d.) in the same region, wtih Aeolis cristata (Venilia ?).

2 Delle Chiaje is as yet the only naturalist who has published quite detailed researches upon the aquiferous canals of the Cephalophora indicated in the text. Io an earlier work, he has described them with Doris, Thetis, Aplysia, Pleurobranchus, Pleurobranchaea, Bulla, Doridium, Diphyllidia, Turbo, Trochus, Nerita, Conus, Cypraea, Voluta, Buccinum, Murex, Cerithium, Rostellaria, Haliotis, and Patella, as canals which traverse the foot, opening, for the most part, on its border's by numerous orifices (see his Descrizione di un nuovo apparato di canalí ac«nozi scoperto negli animali invertebrati marini, is his Memor. \&e, II. p. 253 , Tav. XVII. fig. 1015). Since then, he has described this system, vit.ch, h: says, is wanting with the aquatic l'ulmoLut., is a bexutiful, subcutaneous network. Ife

Abstract

has named it Apparato idro-pneumatico or Sistema linfatico-venoso; see his Descriz. I. p. 88, \&c., Tav. XXXII. XXXIV. XL. \&c. (Cymbulia, Hyalea, Carinaria, Pterotrachea, Doris, Tritonia, Thetis, Pleurobranchaea, Diphyllidia, Doridium, Gasteropteron, Aplysia, Bulla, Sigaretus, and Janthina). With Cymbulia, and Gasteropteron, this aquiferous canal communicates with a large sinus from which passes off a long afferent canal which projects from the surface of the body (see Delle Chioje, Descriz. loc. cit. Tav. XXXII. fig. 1, 2, g. LV. fig. 2, b. f. 4. c. a.).

3 Meckel (Syst. d. vergleich. Anat. VI. p. 72) positively denies the existence of an aquiferous system and its external orifices. But he maintains that the marine Cephalophora can absorb and rejeet simply by their skin, considerable quantities of water, without the need of special orifices. Milne Edwards (Compt. Rend. XX. p. 271, or Froriep's neue Not. No. 733, p. 98) declares that this apparatus, such as described by Delle Chiaje, belongs to the venous system. Me also denies the existence of external orifices, explaining the ingress and egress of water which has been observed with thesc animals, as due to endosmose and exosmose. Fan Beneden, also (Ann. d. Sc. Nat. IV. 1835, p. 250), says that he is convinced that with Aplysia the so-called aquiferous canals are only a dependence of the venous system. On the other hand, he is inclined to admit that, with Aplysia, and Carinaria, \&c., there are small orihees by means of which these animals can mix water with their blood (Compt. Rend. XX. p. 520, and l'Institut. No. 627, or Froriep's neue Not. Nu 727, p. 4, and No. 797, p. 65).

pal pulmonary vein. Its exeretory duct accompanies the reetum and often opens near the anus. ${ }^{(1)}$
The kidney is nearly always of a dirty yellow, or reddish eolor, of a lamellated structure, and its surface is wholly without vibratile organs. It is surrounded by a sac-like envelope whieh is continuous with the internally ciliated, excretory duct. Each renal lamella is composed of thicklyset, delieate cells loosely bound together. In their transparent liquid floats an obscure nucleus which, by direct light, appears brown or violet.

These nuclei, which are round and embossed, have a very dense crystalline structure, and are undoubtedly a product of the renal secretion. ${ }^{(2)}$ Certainly they contain the uric aeid which is found when the whole gland is chemically analyzed. ${ }^{(3)}$ The ramified canals upon the membranous envelope of the kidneys, return, probably, the blood into the respiratory organs. But in the gland itself no blood-vessel has been observed. ${ }^{(4)}$

With Sagitta, and the other Pteropoda, nothing like a renal organ has yet been found. With the Heteropoda, and Apneusta, on the contrary, there are vestiges of eertain organs which further researehes may show to be of a urinary nature. ${ }^{(5)}$

With the Pectinibranchia, the kidney is replaced by a gland which is situated behind the branchia, between the heart and liver, and which, in some marine species, secretes the purple liquid.

It is eomposed of several ramified lamellae, and opens by a large orifice, or by a duct of variable length which acconpanies the rectum, at the base of the branchial eavity. ${ }^{(6)}$ With the other branchiated Gasteropoda, the existence of this gland is yet doubtful, although with most of them, and

1 This is the gland which, with the Gasteropoda, has been considered by the older anatomists such as Swammerdamm, Poli, and Blumenbach, asan organ secreting the calcareous salts, and by Cuvier as a muciparous gland.
2 This gland corresponds, consequently, as to its position and intimate structnre, to the bodies of Bojanus, which, with the Lamellibranchia, have heen considered as kidneys; excepting that they have no ciliated organs. For the intimate structure of the kidneys of Gasteropoda, sec 11. Meokel, in Müller's Arch. 1846, p. 13, Taf. I.
${ }^{3}$ Jacabson (Jour. de Physique, XC1. p. 318, or Meckel's Arch. VI. 1820, p. 370) was the first who showed the presence of uric acid in this gland, with IIelix pamatia, and nemaralis, Limax niger, Lymnatus stagnalis, and Planorbis cornea. But, Aome time previous, Döllinger and Wohulich (Diss. de Helice pomatia, Wircel. 1813, p. 23) had regarded this organ as a kidney. The presence of uric acid can he casily shown in the dried kidneys of IIelix pomatia and Paludina vivipara, for when treated with nitric acid and ammonia, a considerable guantity of murexid is disengaged.

4 According to Treviranus (Beobacht. aus. d. Anat. u. Physiol. p. 39), with Helix and Arion, a portion of the blood of the lungs, instead of going to the heart, passes into the kidneys, and thence enters the great pulmonary vein. Lut it must be very difficult to show the course of this liquid in the interior of the kidneys.

5 'The spongy' substance mentioned hy Delle Chiaje (Descriz. II. p. 96, Tav. LXIII. fig. 3, s.) as existing near the heart and at the base of the branchiae, with Carinaria, is undoubtedly
a winary gland. The long, yellow ciliated body, but without excretory organs, which Nardmanz (loc. cit. p. 24, Taf. 11. Q.) observed with T'ergipes, between the stomach, liver, heart and rectum, is also, perhaps, a kidney; at all events, as such cannot be regarded another and neighboring body, larger, lobulated and of a yellowish color, baving apparently an excretory canal opening externally, and which already has been mentioned as boing an hepatic gland. Perhaps a like interpretation should also be pat upon the yellow bodies observed by Quatrefages in the pusterior part of the boty of Zephyrina, Actacon, and Amphorina (Ann, d. sc. Nat. 1. p. 136 , Pl. IV. tis. 1-3).
6 With Tritonium, and Murcx, this gland opens by a large orifice into the cavity of the mazithe; see Eysenhardt (Meckel's Deutsch. Arch. VIII, p. 216, Taf. lII. fig. 4, r.), and Leiblein (Ifeusinger's Zeitsch. für u. Urgan. Plıys. I. p. 4 , Taf. I. h. i., or Ann. d. Sc. Nat. XIV. 1828, p. 179 , Pl. X. h. i.). A similar urinary gland has been described with Janthina, by Delle Chiaje (biescriz. II. p. 108, Tav. LXV1I. fig. 3, e., LXVIli. fig. 14, i. l.), as an accessory respiratory cuvity. With Paludina, this gland has a quite long eicretory duct; see Cuvier, 3ím. loc. cit. fig. 3, 1. 7, p. q. The kidney has, moreover, heen describel by Cuvier (loc. cit.), and Quay and Gaimari (Voy, de l'Astrolabe Zool. II. or, Isis, I834, p. 28i, 1836, p. 31) under the names of Muciparous gland, Organ of the purple, and Depurating arsan, with Phasianella, Turba, Buccinum, Mitra, Oliva, Capraea, Harpa, Datium, Cassis, Purpura, Fusus, Auricula, \&c.*

[^146]espeeially with the Nudibranehia, and Teetibranehia, there is a glandular apparatus which may perhaps be of this nature. ${ }^{(7)}$

With the terrestrial and aquatie Pulmonata, the lamellated kidney is quite distinet. In the speeies having a shell, it is of riband-like, or triangular form, and situated beside the heart and the large pulmonary vein. Its exeretory duet arises from the anterior extremity and passes, first, backwards to the rectum, near the posterior eorner of the gland, then turns and runs forwards terminating, finally, in the respiratory eavity near the anus. ${ }^{(8)}$ With the Limaeina, on the eontrary, the kidney surrounds the perieardium like an annular collar, and its exeretory duet opens near the respiratory orifiee. ${ }^{(9)}$

II. Organs of peculiar Secretions.

§ 224.

Mention has already been made of the parts of the mantle whieh seerete the ealeareous substanee, ${ }^{(1)}$ and further on, I shall speak of the different glandular appendages attaehed to the genital organs. ${ }^{(2)}$

As to the other organs of partieular seeretions whieh are less eommon, I will mention the following :

1. With those Apneusta whieh have eutaneous appendages, there is, in the dorsal and lateral lobes, a folliele whose exeretory orifiee opens at the extremity of the lobe, and which seeretes a granular mueous substanee, and peculiar eorpuseles whieh resemble the nettling organs of eertain Koophytes. ${ }^{(3)}$

Abstract

f With Doris, there is found between the lobes of the liver a gland, which sends off backwards a long excretory duct which opens cxternally close by the anus and has sometimes near its extremity, a vesicular dilatation. This gland, fommerly talsen for a liver, is probahly a urinary organ ; see Cuvier, luc. cit. p. 16, PI. I. II. ; Meckcl, Beitr. zur vergleich. Anat. I. IIft. 2, p. 9, Taf. VI. fig. 3, 1. and Delle Chiaje, Descriz. II. p. 25, Tav. XLI. fig. 12, n. У. C. fig. 21. The orifice found with Thetis, directly behind the anus in the dorsal region, is also in communication with a gland which may be regarded as a kidney; see Cuvier, loc. cit. fig. 1, e. and Delle Chiaje, Descriz. II. p. 35 , Tav. XLVII. tig. 1, q., XLIX. fig. 3. Dellc Chiaje (Ibid. Tav. XLII. fig. 1,3) has seen wilh Tritonia, a similar gland opening into the rectum ; and with Gasteropteron (Ibid. p. 86, Tav. LIV. a.), another situated betreen the base of the branchiae and the heart.

The large triangular glandular mass, which, with Aplysia, is situated in the cutaneous fold enveloping the shell, and lies in the space between the heart, the base of the branchiae and the anus, se-

* [§223, note 7.] See, in reference to this sland with Doris, Alder and Hancock. loc. cit. Part V. Pl. M. fig. 1, g. y.

For the renal organs of chiton, see Middendorff, loc. cit. p. 72 , Taf. VI. fig. 1, N. and Taf. VII. fig. 5, N. They consist of a velvet-looking substance which stretches on each side of the body, over the tendinous mass of the ventral muscles, and join together horse-shoe-like on the anterior border of the posterior diaphragm. Their intimate
cretes a large quantity of a red liquid ; this also is probably a kidney ; sce Cuvier, loc. cit. p. 11, P1. II. fig. 1, C. D. E. fig. 3, B. C. D., and Delle Chiaje, Memor. II. p. БЈे, Tav. II. fig. 2, r. t. 5, 6. With V crmetus, and Magilus, there is an analogous gland bchind the branchiae. However, this renal apparatus of the branchiferous Gasteropoda demands a more carcful investigation in both an histological and a chemical point of view.*
8 See the figures of the kidney of IIelix and Lymnaeus in Cuvier, loc. cit., and in Treviranus Beobacht. \&c. Tab. VIII. fig. 58 ; see also Paxsch, in Wiegmann's Arch. 1843, 1. p. 78, and, De Gasteropodum nonnullorum hermaphroditicorum, system. genit. et uropoëtico, Diss. Berol. 1842.
9 See Cuvier, loc. cit. Pl. II. fig. 8-10, and Treviranus, Beobacht. Tab. IX. fig. 59 (Arion), and Paasch, loc. cit. p. $82 . \dagger$

1 See § 203.
2 See below, Chapter IX.
3 These glandular follicles which, from spontaneous contraction can empty their contents, communicate, according to Quatrefages (Ann. d. Sc. Nat. XIX. p. 287, 291, Pl. XI. fig. 5, 6), with Eolidina,
strncture consists of arborcscent digitations from a central canal. - ED.
\dagger [$\S 223$, note 9.] For the renal organ and its intimate structure with the terrestrial Gasteropola, see Leidy, loc. cit. p. 239. Sec also for the different varieties of this organ with this order, De St. Simon (Jour. de Conchol. 1851, No. IV. p. 342), Who speaks of it as La Glande praecordiale. Ev.
2. The genus Aplysia has an apparatus of particular seeretion, eonsisting of a group of pyriform follicles situated under the branchia, inside of the skin. Its excretory orifice is behind the female genital opening, and its seeretion is a whitish liquid with attributive eorrosive qualities. ${ }^{(*)}$
3. Many of the Pectinibranchia, and Tubulibranchia, have upon the upper wall of the cavity of the mantle, a row of folds which secrete an extraordinary quantity of viscous mueus whieh is not excreted through any particular duct. ${ }^{\left({ }^{(2)}\right.}$
4. With several terrestrial Gasteropoda, the median line of the foot is occupied by a straight canal lined with eiliated epithclium, which ends in a large orifice situated under the mouth. On each side of this canal, are rows of follieles that secrete a granular mucus whieh, passing into its eavity, is excreted externally, probably by means of cilia. ${ }^{(6)}$

OHAPTER IX.
,
GRGANS OF GENERATION.

§ 225.

The Cephalophora propagate solely by means of male and female genital
by a narrow canal, with the prolongations of the digestive cavity which enter into the dorsal appendages, and their contalned liquid is subjected to a process of respiration. But Nardmann (loc. cit. p. 33, Tab. II. R. R.) has been uable to find any such communication between these two organs, with Tergipes, and he has distinctly seen the granular mucus which is expelled from the follicles from contraction, escape through an oritice on the extremity of each dorsal appendage. With Aeolis, according to Hancack and Embleton (loc. cit. p. 30, PI. IV. V.), the product of these folifies is quite interesting. It contains elliptical vesicles which immediately burst when put in water, exposing a transparent cylinder, out of which a filament, sometimes of a spiral form, is projected as swift as lightning. They compared these bodics to spermatic particles; but ta me, they appear exactly like the nettling organs of Aetinia. Hancock and Embleton have alsa secn and figured with Aealis, a canal of conmunication between these follicles and the prolongations of the digestive canal, but it may be questioned if this was not an artificial formation produced by compression of these organs during the examination.*

4 See Cuvier, loc. cit. p. 4, fig. 2, $\mathbf{\Sigma}$.; Delle Chiaje, Memor. II. p. 56 , Tav. II. fig. 2, O. fig. 3 ; and Rang, Ilist. Nat. des Aplysies, p. 25.
${ }^{5}$ These muciparous organs described by Cuvier, with Buccinum (Mem. loc. cit. D. 5, fig. 3, f.) as

[^147]Feuillets muqueux, are also found with Murex (Eysenhardt, in Heckel's Dcutsch. Arch. V1LI. p. 215, Taf. 1II. m. m.), Terebra, Turba, Valuta, Cypraea, Harpa, Dalium, Cassis, Tritanıum. \&c. (Quay anl Gaimard, Voy. de 'Astrolabe, loc. cit., or Isis. 1836, p. 35, Taf. It. fig. 6, q. Taf. III. fig. 10, X. 18, m.). Carus (Museum Senckenberg. II. 197, Taf. XII. fig. 8, h.) has scen similar nucous folds with Magilus. With Vermetus, on the contrary, I have found only a single, but a very considerable, longitudinal foll which runs along by the side of the rectum and cavers the excretory duet of the genital organs.
${ }^{6}$ This muciparous apparatus af Butimus, Helix, Limax, and Arion, was amounced in 1829, by Klecberg, at the Congress of Naturalists at Ileidelberg (Isis, 1830, p. $57 t$) ; but it had not escapol the observation of Delle Chiaje with many Ilelicina and Limacina (Deseriz. II. p. 10, Tav. XXXVIL, fig. $17, \mathrm{x}$.). It is therefore surprising that it remained thus long unknown to ather naturalists. The assertion of Fleeberg, that with Limax, and Arian, the mucous canal communicates with the venous system, I have been unable to confirm by observations upon Arian. Leydig declares that this mucous canal with the terrestrial Gasteropoda is the seat of the sense of smell ; see Schleiden and Frariep's Notiz. IV. D. 24, or Ann. of Nat. Hist. XX. p. 210.

[^148]organs. These are either combined in one individual, or the sexes are separate. In most species there are copulatory organs. The genital organs have several uneven divisions, which, when fully developed, are arranged as follows: A Tuba Fallopii passes from the ovary into the uterine sao, at whose base is an organ which seeretes albumen, while at the point where it is continuous with the vagina, there is a Receptaculum seminis. The male genital organs consist of a testicle, a Vas deferens, and a Ductus ejaculatorius which opens into a retractile penis. With the hermaphroditie speeies, these two kinds of genital organs are more or less blended together, - the testiele with the ovary, and the Vas deferens with the Tuba Fallopii ; very often also the vagina is united with the Ductus ejaculatorius, forming a. cloaca into which open several partieular secreting organs. These different male and female organs are usually lined internally with eiliated epithelium.

The eggs of these animals have, at their eseape from the orary, a round and sometines an elliptical form, and are eomposed of a thin chorion enclosing a finely-granular vitellus of variable color, which contains a germinative vesicle and dot. ${ }^{(1)}$ The sperm is white and opaleseent, and I fuite erowded with very aetive spermatie partieles. These last are either of the form of Cercaria, or consist of a very long filiform body, one extremity of which is inerassated and often of a spiral form. The trembling, undulatory movements of these particles eease when placed in water, with those species which have eopulatory organs; they beeome twisted into looplike forms and are finally rigid and motionless. ${ }^{(2)}$

1 See Carus, Erlaiuterungstafeln Mft. V. Taf. Π. fig. 4, al. (Limax), and in Müller's Arch. 1835, p. 431, Taf. X1L. fig. 2 (Helix pomatia) ; Wagner, in Wiegmann's Arch. 1835, I. p. 368, and Prodromus, loc. cit. p. 7, Tab. I. fig. 6, 7 (felix and Buccinum) ; and Allman, loc. cit. P. 152, 11. VII. fig. 7 (Actaeon).

2 Wagner and Erdl (Froriep's neue Notiz. No. 249, p. 98) have found with Chiton, Patella, and Haliotis, spermatic particles of a Cercarian-form, that is witl a long body to which is abruptly attached a hair-like tail. I lave seen a similar form with Vermetus gigas and triqueter. Those of Trochus also have this form, according to Kölliker (Beitr. loc. cit. p. 28), but the middle of their bolly has a slight constriction. They are hair-like, and taper at both extremities with Turbo, Buccinum, Purpura (Kölliker, loc. cit. p. 25, Taf. I. fig. 5), and Sagitta (Krohn, loc. cit. p. 10, fig. 12). With other marine Gasteropodi. as for example, Carinaria, these particles are hair-like, but with one of their extremities slightly incrassated (Milne Eduards, Ann. d. Sc. Nat. XVIIL. p. 32t, Pl. X1. fig. 7) ; and with Doris, Tergipes, and Paludina, this thickened extremity has a spiral form (Kölliker, Beitr. loc. cit. p. 35, Taf. I. fig. 6 ; Nordmann, loc. cit. p. 52, T'af. III. fig. 8, 9 , and my observations in Müller's Arch. 1836, P. 240, Taf. X.). With the pulmonate Gasteropoda, the spermatic particles have only a short incrassated extremity of a spiral form ; see my observations loc. cit. 1836, p. 45, Taf. II. ; Paasch, in Wiegmann's Arch. 1843, I. p. 71, Taf. V., and Dujardin, Observ. au Microscope, Atlas, Pl: III.
The development of these spermatic particles takes place in two large cells (Mother-cells), in which are formed others (Daughter-cells) which are changed into the spermatic particles. But the cellmembrane of the mother-cell, disappears quite

* [§ 225, note 2.] My own observations on the spermatic particles of the Cephalophora and their
early and its contents are condensed into a solid nucleus around which are grouped the daughter-cells, ultimately forming a bundle of spermatozoa. See, beside these observations of Kölliker, Nordmann, and Paasch, loc. cit., those of H. Meekel, in Muller's Arch. 184t, p. 483, Taf. XIV. fig. 9-13, and the more recent researches of K olliker, in the Neue Denkschrift. d. allgem. schweizer. Gcsellsch. f. d. gesammt. Naturwissensch. VIII. 1846, p. 4, Taf. I. fig. 1-10 (Helix ponatia).

The presence of two kinds of spermatic particles in the sperm of Paludina vivipara, is a very remarkable fact ; see my ohservations in Muller's Arch. 1836, p. 245, Taf. X.

Beside the hair-like spermatic particles alrealy mentioned, there are long cylindrical bodies, from one of the extremities of which project many delicate filaments having very lively motions. These have been described by Ehrenberg (Symbol. physic. Anim. evertebrat. Dec. I. Plyytozoii entozoa, Appendix) as parasites under the name Phacelura paludinae.
Paasch (H'iegmann's Arch. 1843, p. 99, Taf. V. fig. 8), on the other hand, regards them as hundles of spermatic particles of the normal form, and Kölliker (Beitr. loc. cit. p. 63, and Neue Denkschr. loc. cit. p. 41) considers them only as two forms of the same kind of spermatic particle : the second he regards as elongated mother-cells containing many ordinary spermatic particles.

For my part, I do not know how to explain this fact, and I would willingly place the second form in the category of Spermatophora; but against this opinion, as against that of Kölliker, and Paasch, it can be urged that, with the second form, the extremities are never thickened or spiral, as is true of the first, and that both forms are simultaneously developed in the testicle.*
development, correspond closely with the above account. Their development in special cells I have

§ 226.

Among all the hermaphrodite Cephalophora, the genus Sagitta stands wholly alone, in having all parts of its genital apparatus double.

The ovaries eonsist of two straight, non-eiliated tubes situated at the posterior extremity of the eavity of the body; these open externally by an areuate oviduet, situated upon the baek direetly over the median line of eaeh of the posterior lateral fins.

The two internally eiliated testieles fill the eaudal eavity, which is divided into two ehambers by a longitudinal septum. They send baekwards two short deferent eanals, whieh open in front of the eaudal fin, by two tuwid orifiees, but are without copulatory organs. ${ }^{(1)}$

§ 227.

As for the other hermaphroditie Cephalophora, to whieh belong the Pteropoda and a majority of the Gasteropoda, the genital organs of the Nudibranehia, Iuferobranchia, Tectibranehia, and Pulmonati, have been the most thoroughly investigated. But the different divisions of these organs have been interpreted in a manner so varied and eontradietory, that one ean almost despair of having any positive knowledge of their relations. ${ }^{(1)}$

1 See Kroha, loc. cit. p. 9, fig. 2, 7-9. The ciliated epithelium which covers the male genital organs of Sagitta, from the posterior extremity to the genital orifice, produces a general up-ant-1 own movement of the sperm in the testicle, a phenomanon which Darwin has compared to the motions of the sap in Chara (Ann. of Nat. Hist. XIII. p. 3, 11. 1. tig. 1, or Froripp's noue Notiz. No. 639, p. 3, fig. 62, and Ann. d. Sc. Nat. I. 184t, p. 362, Pl. XV. 13). Fur the genital organs of Susitta, see also the researches of Wilms (loc, cit. p. I2).

1 It has been quite diaitult to reconcile the ract that, with these animals, the testicle and the ovary are united in a single body, - the Itmmphrodile gland. Cuvier, whose opinion has been followed by Meckel, and Carus, in their diferent publica
observed exactly like Külliker. I have found these particles throughout this group, generally, to consist of a delicate thread, one end of which is more or less incrassated and twisted in a cork-serew manner (Eolis, Physa, Lymnaeus, Natica, Hctix, Limax, \&c.) ; in some, however, the form is remarkably different. Thus, with Buccinum, it consists of a thread with a terminal third somewhat incrassated, but which terminates in a delicate filament. This, as will be seen above, Kölliker has also noticed.
As to the romarkable statements made above Fitpon two kinds of spermatic particles with Paludina vivipara, they deserve our especial attention. My own investigations have led me to regard it as a law in Spermatology, that each animal had only one kind of spermatic particle, the shape and size of which in that animal, are invariably the same; this point I have regarded as so well established that I have proposed the basis of an animal classification from spermatological data. I was therefore surprised to find an observer like Leydig who has
tions, regarded this gland, with the Pummonata, as an ovary, and the albumen-secreting organ, as a testicle. Treviranus (Zeitsch. fur Physiol. I. p.3. V. P. 140) was of the opposite opinion ; he considered the hermaphrodite glaud as a testicle and the other as an ovary. This view has been adppted by Prevost (Mém. d. 1. Soc. Phys. de Genére, V. p. 119, and Ann. d. Sc. Nat. XXX. 1.33, 43), and by Paasch (Diss. loc. cit. and W'iesmunn's Arch. 1813, I. p. 71, 1845, 1. p. 31), In Eagland, Rymer Jones adopts the view of Cuvier, and Owen that of Treviranus. Wohntich (loc, cit. p. 32) names as ovary, the albumen gland; and as testicle, the half-canal which runs along the uterus; but he is in doulst as to the function of the hermaphrodite gland. Erdl, who
recently gone over the ground, according his views with those of Siebold and others above-mentioned (see leitragg, loc. cit. in Siebold and Kölliker's Zeitsch. II. 1850, p. 125, Taf. XIMI. fig. 31-43). Leydig, however, has watched their formation from cells; and here I may remark as being evidence against their being spermatic particles, that, according to him, they are produced by the metamorphosis of an entire nucleolated cell, and not, as is the grand law with spermatic particles, from a cell-meleus. From this and from the above-mentioned reasons, based upon analogy, I camnot admit that these peculiar bodies are true spermatic particles. Leydig's observations on their development of course render invalid the hypothesis of Gratiolet that they are modified spermatic particles, having undergonc changes, like those of the Helicina, in the Vesicula copulatrix; see Jour. de Conchol. No. II. 1850, p. 116, and No. MII. p 236, PI. IX. fig. 3-7. - ED.

It is only lately, that, from microscopical analyses of the contents of these parts, this point has been made clear. A peculiarity which distinguishes principally the Pteropoda, Apneusta, Nudibranchia, Inferobranchia, Tectibranchia, and Pulmonata, is the existence of a hermaphrodite gland. An exact knowledge of the structural relations of this gland has been the means of reconciling the hitherto confused opinions upon the genital organs of the Cephalophora.

This gland, which is nearly always buried in the substance of the liver, is composed of digitiform or botryoidal ramose caeca, bound together in groups of variable size forming a lobulated organ. Upon each caccum is an external sac, producing eggs, and an internal one, folded in the first, producing sperm. The walls of these two invaginated follicles are usually in direct contact, and are not separated from each other except at the points where there are eggs which push the ovarian sac outwards and the testicular one inwards. ${ }^{(2)}$

From these sacs pass off excretory canals, which, also, are invaginated, and terminate in two principal ducts, the external of which is the Tuba Fallopui, and the internal the Vas deferens which is usually tortuous. ${ }^{(3)}$
attributes to this last the function of an ovary (Beitr. zur Anat. d. Helicinen, loc. cit.), has expressed no positive opiuion as to the function of the albumen gland. Steenstrup (Under sögelser over IIermaphroditismens Tilvaerelse i Naturen, 1845, p. 76, Tah. II.) has expressed a very singular opinion on the subject of the genital organs of the Pulmonata. He regards the Gasteropoda as of separate sexes with which the different parts of the genital apparatus are double, and that only one side is developed, the other remaining atrophied as in female birds. According to this, the hermaphrodite gland would represent the active ovary, in the individuals wbich Steenstrup regards as females, and the albumen-gland would be the ovary on the other side inperfectly developed. The uterine canal would belong to the active side, the V as deferens would be the abortive uterus on the otber side, and the penis as an abortive analogous vesicle would correspond to the pedunculated vesicle of the active side.
In the other individuals of the same species regarded hy Steenstrup as inales, the hermaphrodite gland would be the active testicle, and the al-bumen-gland, the same organ on the other side, abortive; the uterus would be the developed V as deferens, and the proper Vas deferens the undeveloped organ on the other side. The pedunculated vesicle would have the same signification as with the female individuals, and the penis would be this vesicle imperfectly developed.*

2 After R. Wagner (Wiegmann's Arch. 1836, I. p. 370) had found in various Pulmonata, eggs and spermatic particles at the same time in one and the same genital gland, and I myself had expressed my conviction (Ibid. 1837, I. p. 51) that with these Gasteropoda the ovary and testicle were united in a single organ, H. Meckel was the first who de-

* [\$ 227, note 1.] This structure - a hermaphrodite gland - is not mentioned by Alder and Hancock in their anatomical details of the Nudibranchia ; see loc. cit. Witls those genera (Aeolis, Doris, \&c.) with which they have given in special detail the generative organs, this combination of the two sexual organs is not spoken of.
See especially Hancock and Embieton's Anatomy of Aeolis, Ann. Nat. Mist. I. 1848, p. 93,
scribed exactly the structure of this hermaplrodite gland (Muller's Arch. 1841, p. 483, Taf. XIV. XV).
It is, therefore, astonishing that Steenstrup (U'nder'sögelser, \&e., p. 76 , 'Tab. II. fig. 3, \pm), who knew the researches of Meckel, and who, judging from bis figures, saw distinctly the line of separation between tbe ovarian and testicular follicles, bas determined two fragments of this gland taken from different individuals of Helix pomatia, as being one an ovary, and the otber a testicle. In this last-mentioned fragment, he has called spermatic cells not only those really such of the internal follicle, but also the eggs contained in the external follicle; whilc in the first-mentioned fragment, or the so-called ovary, he has named as eggs not only the real eggs but also the internal spermatic cells. Tbe spermatic particles, which he also saw at the same time, would, according to him, be brought out by coition.
3 Under the l'teropoda, Kölliker (Denkschrift. \&c. VIII. p. 39) has found the hernaphrodite gland with Hyalea. From this, the organs described by Cuzier, Eschricht, and Van Beneden, (loc. cit.), as ovaries and ovilucts with Clio, Cymbulia, Cleodora, Cuvieria, Limacina, \&e., may be regarded as an bermaphrodite gland, and as invaginated excretory canals. Under the Apneusta, this gland has heen seen by Kölliker, with deolis, Lissosoma, and Flabellina. It exists also with Aetaeon, judging from the description of Allmann (loc. cit. p. 152, Pl. VI. VII. fig. 8) of its voluminous and multiramose ovaries, in which, he says there are observed, beside the projecting sacs filled with eggs, others smaller filled with a granular substance. The first are very probably ovarian, and the others lesticular follicles. Tergipes, also, has a similar ramified ovary; but it was incorrectly interpreted by Nordmann (luc.
where the androgynous apparatus is minutely described.

These authors affirm that although self-impregnation is, perhaps, possible, yet there is usually a congress of two individuals, and therefore a reciprocal copulation.

See also upon this point,-the real relations of the hermaphrodite gland, Gratiolet, Jour. de Conchol. 1850, No. II. p. 116. - Ed.

The testicular follicle and the deferent canal are lined with eiliated epithelium, which, however, is wanting in the ovarian follicle.

The disposition of the various parts of the genital apparatus varics very much aceording to the families and genera of these hermaphroditic Ccphalophora. The two invaginated excretory ducts of the hermaphrodite gland either pass to the base of the uterus, or the Vas deferens lcaves the Tuba Fallopii a little way from it, and passes in a tortuous course to the penis. ${ }^{\text {(4) }}$ In the first ease, the Vas deferens leaves the Fallopian tube at the point where it enters the utcrus, and continues its course on the sides of this organ, but as a semi-canal open upon its inner surface. ${ }^{(5)}$

In some gencra, this semi-canal continues on along the vagina to the genital cloaca, ${ }^{(6)}$ while in others, it becomes a complete canal upon leaving the uterus, and passes, after a longer or shorter course, into the penis. ${ }^{(7)}$ The Tas deferens has, at different points of its course, glandular or vesicular appendages, which sometimes contain sperm. These may be compared, on the one hand, to an Epididymis or Vesicula seminalis, and, on the other, to a Glandula prostata. ${ }^{(8)}$

At the base of the uterus there is an Albumen-gland which is usually tongue-shaped, and sometimes very long, being rolled up and bound together by a cellular tissue so as to have a round form. The walls of this gland are composed wholly of cells filled with drops of albumen which is undoubtedly used to envelop the cggs as they pass into the uterus. ${ }^{(9)}$
cit. p. 54, Tab. 11. III. fig. 5, 0. S.). He regarded the testicular follicles containing spermatic particles in various degrees of development, as so many Receptacula seminis ; aud he attempted to sustain this view, in erroneously supposing that the spermatic particles could be produced in the pouches of fecundation. As to the feterobranchid, II. Meckel (loc. cit.) has foum this gland with the Nudibranchia (Doris, Tritonia, and Thetes), the lnferobranchia (Diphyllidia), and the Tectibranchia (Aplysia, Bullaca, Doriliam, Umbrella, Pleurobranchaea, Gasteropteron). Külliker (Denkschrift. loc. cit. p. 40), beside coufirming the existence of this gland in the marine Gasteropoda just mentioned, has also added the genera Notarchus and Plearobranchus. In the separated lobules of the ovary of \& Tritonia figured by Sars (Wiegmann's Arch. 1840, 1. p. 197, Taf. V. fig. c.), there can be easily recognized the hermaphrodite gland, such as has been represented with this animal by II. Meckel (loc. cit. Taf. XV. fig. 14). According to fölliker (lhodope nuovo gen. die Gasterop., in the Giornale dell' Cnst. Lomb. di Scienze, \&c., XVI. Milano, 1847, fig. 2), the testicular and ovarian follicles are grouped scparately, the one above and the others below.
4 'this last case is found with Thetis, Doris, and Pleurobranchaea (II. Meckel, loc. cit. Taf. XV. lig. 1, 2, 5). The fas deferens pursues a similar course with the Apneusta, - at least with Flabellina, and Rlodope, according to the communication from Lölliker; and, from Allman's (loc. cit.) figure of that of detacon, it may be concluded that it there leaves the tube very high up and passes to the penis.

5 Prezost was the first to point out this halfcanal (ilém. dc Genève, \&c., V. p. 123, Pl. l. fig. 12, 11. Kig. 3, and Anu. d. Sc. Nat. XXX.).

* [§ 227, note 8.] This Prostate has lyeen well developed by Leidy (loc. cit.) with the terrestrial Gasteropoda. He regards it as belonging to the male apparatus, notwithstanding its close connection with the ovary, since, in Vaginulus, it cmp-
f Aplysia, and perhaps also, Bullaea, Doridium, \&c. (see H. Mecliel, loc. cit. Taf. XV. ig. 7). With the Iteropoda, also, the Vas deferens does not leave the female canal, until it reaches the genital cloaca.
7 The P'ulmonata.
8 With Ifelix pomatia, Aplysia camelus, Tritomit ascamii, and Diphyllidia lineata there is a Vesicula seminalis at the point where the "as deforens unites with the lase of the uterus (II. Meckel, loc. cit. Taf. X1Y. fig. 8, d. XV. fig. $\frac{6}{6}$ d. 12, c. 16, c). It yet remains to be determined whether the dilatation upon the common exeretory duct of the hermaphrodite gland with the Pteropoda, belongs to the fras deferens or to the Fallopian tuhc. Iu the first case it would represent an epididymis or a seminal vesicle; in the second, perhaps an uterus ; see Eschricht, loc. cit. Tab. 111. fig. 25, 1:* (Clio), and I'an Beneden, Exerc. zoot. loc. cit. Pl. I. et. Seq. (Cymbulia: Hyalea, \&c.). This lastmentioned matuatist has simply, though erroneously, called this dilatation a testicle. A glandular mass, similar tor a prostate, surrounds the deferent canal shortly after it leaves the oviduct, with Thct is, Pleurobranchaea (II. Meckiel, loc. cit. Tai. XV. fig. 1, h. 5, f.), Lymnaeus stagnalis (Treviranus, Zeitsch. f. Physiol. I. Tah. 111. fig. 14, δ, or Paasch, in Wiegmann's Arch. 1843, l. 'Taf. V. Eis. 7, i.), Bulimus radiatus, and Physa fontinalis (Paosch, lhid. 1845, I. 'Taf. V. fig. $121_{1}^{1} .1$ és i.).
According to Leuckart (Zur. Morphol. u. Anat. d. Geschlechtsorg., 1845, p. 128), the hermaphodite ghand of the Gasteropoda has a common excretory duct, and the eggs reach it by passing through the walls of the testicular follicles.*
9 This albumen-gland which formerly has been taken, sometimes for a testicle, and sometimes for an ovary (see above), has kately boen designated
ties solely into the Vas deferens. It is composed of tortuous, tubular, simple follicles, lined with short, thick, pyramidal epithelia, which are densely granular, and contain a round, nucleolated nucleas. - ED.

The Uterus is very often a long, large canal, with transversely plicated glandular walls; it is distinctly separated frem the ensuing vagina, ${ }^{(10)}$ but often, also, it is only a simple dilatation of the oviduct, ${ }^{(11)}$ which is sometimes insensibly continuous with the vagina. ${ }^{(12)}$ This last communicates usually with the excretory duct of a pyriform vesicle, which, as a Receptaculum seminis, is filled with frosh sperm directly after the epoch of procreation. ${ }^{(13)}$ This vesicle has, moreover, sometimes a lateral, caecal deverticulum. ${ }^{(1)}$
as a muciparous or an uterine gland. It is tongueshaped with nearly all the Pulmonata (see the figures of Cwier, Treviranus, Erdl, Paasch, \&c. loc. cit.). It is a round, glandular body with Thetis, Tritonia, Um'relia, and Gasteropteron (H. Meckel, loc. cit. Taf. XV. Ag. 1, 12, 15, 17). According to Lolliker, there is with Rhodope, and Lissosoma, a similar gland amexed to the uterus; and without hesitation I should pronounce as of the same nature, the ghadular borly which dllman (loc. cit. I'I. VI. γ.) has regarded as a testicle with Actacon. With Doris, Aplysia, and Diphyllidia, it is a twisted knotted tube (H. Meekel, loc. cit. Taf. XV. fig. $2,7,16$).*

10 Such is the case with the Pulmonata (see the figures of Cuvier, Treviranus, Erdl, Pacasch, \&c.). Uudoubtedly the glandular walls of this uterus secrete the calcareous crystals which incrust the eggs of many Helicina (see Turpin, Analyse microscop. de l'oeuf du limacon, in the Anu. d. Sc. Nat. XXV. 1832, P. 426, PI. XV.), or which supply the gelatinous substance enveloping in the form of a cylinder or a disc the eggs of the Lymnaeacea (Pfeiffer, Naturg. deutsch. Land-und Susswässer. Mollusken. Ahth. I. Taf. VII. VIII.).
${ }^{11}$ With the Pteropoda, the common excretory duct of the hermarphrodite gland, before passing into the vagiat, has one or two diatations, the inferior of which corresponds perhaps to an uterus (Van Beneden, Exerc. zoot. loc. cit. Pl. III. fig. 18, e. IV. A. fig. 6, d. and B. fig. 4, d. Hyalea, Cleodora, and Cuvieri(). With Clio, Cymbulia, and Limacina, it is not yet determined whether the dilatation which is here found belongs to the deferent canal or to the oviduct, and therefore the name of uterus cannot be giveu to it.

12 The uterus is short and is directly continuous with the vagina with the Nudibranchia, Inferobranchia, Tectibranchia (IF. Meckel, loc. cit. 'Taf. XV.), and perhaps also with tha Apneusta. I am yet usdeciled if i:s this undevel ped uterus are formed the envelopes which, in the form of a riband, a cord, or a capsule, surround the eggs of the Nudibranchia, the Tectibranchia, and the Apncusta. Thus with Aplysia, Doris, Tritonia, Aeolis, \&c., their spawn has the form of a riband or card; and with Gbaucus, and Actaeon, it is wound in a spiral manner about various objects; while with Tergipes, it is attached to marine plants under the form of kidney-shaped capsules with short peluncles. With Tritonia, Aeolis, and Aplysia, there is observed the remarkahle fact that there are geveral vitelluses each surrounded by an albuminous layer, in one and the same envelope; see Sars, in Wiermann's Arch. 1837, I. p. 402, 1840 , I. p. 136, Taf. V.-VII. ; Van Beneden, Ana. d. Sc. Nat. XV. 1841, p. 123, Pl. I. ; and Loven, in Isis, 1812, p. 353.

* [§ 227, note 9.] For the muciparous apparatus with the Nudibranchiata, see Alder and Hencock, loc. cit. Part II. Pl. IV. fig. 15, (Doto); Part Ill. Pl. VIII. fig. 2, g. g. (Eolis); Part IV. PI. V. fig. 8, i. (Eumenis) ; Part V. Pl. II. fig. 7, L. h. 'Doris); also Hancock, Ann. Nat. IIst. VIII. 1851, p. 34, Pl. HI. fig.6, g. (Antiopa). See also

13 This Receptaculum seminis was formerly designated under the name of pedunculated vesicle; although Treviranus rcgarded it as an urinary bladder, and, with drion, erroneously assigned to it a communication with the lidney (Zeitsch. f. Phys. I. p. 10). However, there can now he no further doubt as to its naturc, for if its contents are examined shortly after coition, the y, will easily be found to consist of fresh sperm containing fully-developed, active, spermatic particles. Later than this, when the eggs have been deposited for a time, the sperm will be found to have lost its freshness, and to have changed into a viscous granular substance of a reddish or brown color, containing sometimes traces of dearl, rigid spermatic particles. The resemblance of this matter then to excrement is, without doubt, the reason why this organ has been compared to an urinary bladder, or confounded with the sac for purple (kidney) of other Cephalophora.

With the Pteropoda, this organ is a pyriform vesicle with a short peduncle, -at least with clio (Eschricht, loc. cit. Tab. III. fig. 25, s.), CymUulia, and Limacina (Fan Beneden, Exer. zoot. loc. cit. Pl. I. fig. 17, d. V. fig. 12, A., where this organ is figured as a sac for purple). The Apnuesta, also, have a sac for fecundation; at least I can give no other name to a long-pedunculated, pyriform vesicle which Nordmann (loc. cit. p. 49, Tab. II. L., III. fig. 5, b. d.) Las described as a testicle with Tergipes; and so much the more as he always found perfect spermatic particles, and not developing seminal cells.
The pedunculated vesicle with its semi-liquid contents, which Allman (loc. cit. p. 152, Pl. VI. \$.) has observed with Actacon, is also a Receptaculum seminis.

According to Kölliker, this organ exists also with F'labellina, and Rhodope, as a pedunculatad vesicle communicating with the lower extremity of the vagina. The excretory duct of this organ is short with Thetis (Cuvier, loc. cit. fig. 7, c.; Delle Chiaje, Descriz. loc. cit. Tav. XLVII. fig. 1, s.), Aplysia (Cuvier, loc. cit. Pl. IV. γ; Delle Chiaje, Memor. loc. cit. Tav. IV. fig. 1, p.), and Pleurobranchuea (IF. Meckel, loc. cit. Taf. XV. fig. 5 , n. fig. 1, q. 7.0.). It is longer. with Scyllnea, Bulla, Bullaea (Cuvier, luc. cit. fig. 5,1 . fig. 10, i.), Doridium, Tritonia, Umbrella, Diphyllidia (H. Meckel, loc. cit. Taf. XV.), and Notarchus (Delle Chiaje, Descriz. Ioc. cit. Tav. LXIV. fig. 5, n.). In the Pulmonata. this peduncle is very long with Ifelix, and Clausilia; less so, with Lymnaeus, Planorbis, Bulimus, and Physa, and pretty short with Limax, Arion, and Succinea (see the figures of Cuvier, Wohnlich, Treviranus, Erdl, and Paasch, loc. cit.). \dagger
it This deverticulum exists with many IIclicina.
De St. Simon (Observations sur l'organe de la Glaire des Gasteropodes terrestres et fluviatiles, in the Jour. de Conchol. 1853, p. 1) ; this author is very minute in his details on the color, form and size of this organ, with these animals. - Ed.
\dagger [§ 227, note 13.] This receptacle is the organ called genital bladder by Leidy, and which he

Underneath the point of insertion of this vesicle upon the vagina, are various glandular appendages which open into this last or into the genital cloaca. But as yet their function is unknown. With the Pteropoda, and Heterobranchia, there is a single appendage only, consisting of a simple tube. ${ }^{(1)}$) To this same eategory belongs, also, the dart-sac, - a very remarkable cylindrical organ opening into the genital cloaca. ${ }^{(16)}$ Its walls are quite thick, and on each side of its base is a group of more or less numerous eaeea. $\left.{ }^{(17}\right)$ At the bottom of this sae is a eonical papilla which sesretes a calcareous concretion of the form of a lanee-head with the point downwards, - the Dart. This is projected during copulation, and often remains sticking in the skin near the genital opening. Its loss is subsequently replaced by the secretion of another in the same place. ${ }^{(18)}$

The male copulatory organs consist of a more or less long, projecting Penis, which, when at rest, is cither retracted freely between the other viscera of the cavity of the body, or cnveloped wholly or in part in a proper sheath (Praeputium).

This penis consists, nearly always, of a hollow fleshy cylinder, which is usually closed at its posterior extremity, and has, behind, a long flagelli-

It is very long with Bulimus radiatus, IIelix arbustorum, lactea, and vermiculata; very slort, on the other hand, with Helix pomatia, nemoralis, and candidissima. It is entirely Wankirg with Helix fruticum, strigella, ind rhodostoma. With Helix alsira, it communicates directly with the seminal sac (see the ficures of Erdl, anl Pausch). With Doris, the Receptaculum seminis has a peculiar structure; it is kidney-shaped, and from its concavity arises a Fery large excretory duct, arcuate, and upening into the genital choaca, which has not only a caecal appendage, but also a short canal thot communicates with the base of the uterus (II. Meckel, loc. cit. p. 496, Taf, XV. fig. 2). Fu'ther research must determine if the cunt which Nordmann (1oc. cit. ए. 50, Tab. III. fig. 5, d.) hus observed upou the seminal sac of Tergipes withoat being able to trace it to its extremity, is a simple deverticulum, or a cantal communicating with the female genital organs

I5 An andogous uppendix, of a round form, has been described with Cymbulia, and Limaciua, as a prostate by Vau Benfalfn (Exerc. zout. loc. cit. Pl. I. fig. 17, e. V. fig. 12, B.), and is a testicle by Eschricht, with Clio (loc. cit. Tab. III. fig. 25, 26). There is a long glindular appendix upon the genital claca with Doridiam, Pleurobranchaca, and Diphyllidia (II. Meckel, lwe. cit. Tuf. XV.). As yet the function of this gland is only hypothetical. Purhsps it fumishes the viscid substance enveloping the egrs cluring their deposition, or it may be a copulatory pouch (Bursa copulatrix). But it is quite probabie that the penis enters the peduncte of the Receptarulum seminis during copalition for with most Cephalophora the penis and the peiluncle are of the same length.

If The dart-sac, which is more or less long, is cound with many species of Jelix. It is absent with Ifelix algira, cundidissima, cellaria, and verticillus. It is double with Helix ericetorum,
has so well figured. Me found its contents to be spermatic particles, but, in regard to its being a seminal recepticle, he remarks: "This, however, cannot be consid red wholly as its use; for it secretes a mucoil matter which may probably facilitate the passage of the ova througli the varina and cloaca," p. 25. - ED.
and with Helis strirella, is replaced by two very long coeca; see Wohnlich, Erdl, and Paasch, loc. cit.

17 Two considerable groups of dichotomously ranified caeca are fund with Helix pomatia, adspersa, austriaca, lactea, naticoides, and vermiculata, while with Helix umbrosa, strigella, and striata, there arkoaly fur caecr on each side. With Melsx incarnat x, and nomoralis, there are three, and two onty with Helix lapicids, arbustorum, and personata; see Cwoier, Wohnlich, Erdl, Passh, loc. eit, and Warner, Icon. zoot. Tal. XXX. fig. 11, 13. As t^{-}, the use of these kitadular tubes, I would suggest the view that they secrete a c ragulable substane, which, during the coition, envelops the sperm like a spermitophore t conduct it into the seminal sac. Indeed, I am much inclined to regaril as the duris of a spermat phore tha thin hay bodies of a peculiar aspect, which, with Hetix hortensis, arbustorum, and nemoralis, often project out of the genital cloice after fecunlation, and which, when they have left it, are rolled in a spirt form at both extremities. When curefully examined th y will be found composeal of severil layers of colgulated allumen, and to be involved in the pedurcle of the Receptuculum seminis; see Muschke, in Meckel's Arch. 1823, p. 62), Tuf. VII. fig. 9, and Carus, in Muller's Arch. 1835, p. 435, Taf, XII. fig. 4-7.

Is The dart is hollow and of the form of a cylindrical stylnt with Helix ericetorum, and striata; but with IVelix pomatia, hortensis, anl atspersa, four, sharp, denticulated eldes, extending its whole lencth give it a very elerant form ; see Prevost, in Mém. de Genėve, loc. cit. V. p. 121, Pl. I. fig. 7 , and Carus, in Muller's Arch. 1835, p. 13t, Taf. XII. fig. 9, 13.

It is pr obably an excitatory organ, for the snails reciprocally prick each other bofure cuiton.*

[^149]form prolongation (Flagellum). In many of the genera of the Gasteropoda, the Vas deferens is inserted upon the penis near its base, or at the posterior end of its cavity. ${ }^{(9)}$ The penis has also inserted into it many small retractor muscles which arise from the walls of the envelope of the body, or on the columclla. ${ }^{\text {(ty) }}$

The external orifices of these hermaphroditic genital organs are usually on the right side, and present the following relations: 1. The vagina and penis open into a common genital cloaca which communicates externally upon the sides of the anterior part of the body. ${ }^{(21)} \quad 2$. The two orifices are situated side by side, - that of the penis dircetly in front of that of the vagina. ${ }^{(22)}$ 3. The orifices are quite removed from each other, and then the penis, which is ustually concealed bencath the testicle of the right side, eommunicates with the genital eloaca situated behind, by a groove which runs along the sides of the body. ${ }^{(23)}$ This groove is lined with ciliated epitliclium, and, without doubt, conducts the semen from the genital cloaca. to the penis, during copulation.

$\S 228$.

The Cephalophora with which the sexes are separate, may be divided ints two sections, in onc of which, the copulatory organs are wanting, while in the other, they are highly developed.

1. To the first section, belong the Cyclobranchia, the Scutibranchia, and also, probably, the Tubulibranchia and Cirribranchia; with all of which, the genital glands are easily seen at the epoch of procreation, from the presence of sperm or of eggs. ${ }^{(1)}$

[^150]on the right side, with Aolis, Tergipes, Scyllaea, Doris, Tritonia, Thetis, Pleurobranchus, Pleurobranchaea, and Diphyllidia.
22 With Planorbis, and Physa, the male and female orifices are situated ou the left side of the neek behind the tentacle; with Flabellina, Rhodope, Cleodora, and Cuviera, a little further behind on the right side.
23 With most of the Pteropoda (Clio, Cymbulia, Tiedemannia, Hyrlea, and Limacina), the orifice of the penis is in the neck, and that of the genital cloaca a little further behind on the right side. With Actaeon, and Lissosoma, the two orifices are also on the right side, but even more widely separated from each other. With Gasteropteron, Bulla, Bulluea, and Aplysia, the genital cloaca is very far behind, while the penis is under the right tentacle. With Doridium, the cloaca is also quite in the rear, but upon the left side, and consequently the penis is under the tentacle of the same side. But with Onchidium, these orifices are the widest apart, - the cloaca opening close by the anus, and the penis under the right tentacle. The furrow passing from the cloaca to the penis is found with all these Gasteropoda, and it is very probable that it will be found also with all the other Cephalophora, whose penis is entirely removed from the other male genital organs.
The furrow which Van Beneden (Exerc. \%oot. Fasc. II. p. 46) observed with a Hyalea, between the two genital orifices, shows that there is such a communication with the Pteropoda also.
1 The separation of the sexes with Chiton, Patella and Haliotis, was first shown by R. Wagner and Erdl (Froriep's neuc Notiz. No. 249, 1839, p. 102) It has been confirmed with Patella, by Milne Edwards (Ann. d. Sc. Nat. XIII. 1840, p. 376), and by Robin and Lebert (Ibid. V. 1846, p. 191). With many individuals of Vermetus gigas, I have

In the genus Chiton, the male and female genital gland is long and lobulated; it lies over the other viscera, and, from each side of its posterior extremity, passes out a short excretory duct which opens upon the border of the mantle. ${ }^{(2)}$

With Patella, and Haliotis, this gland is covered by the liver, and its single duct passes in front aud opens near the anus, at the right with the first of these genera, and at the left with the second. ${ }^{(3)}$
2. In the second sectiou, there is a protractile penis with various Heteropoda, all the Pectinibranchia, ${ }^{(4)}$ and operculate Pulmonata.

The Ovary, or the testicle, always lies concealed at the base of the visceral sac between the liver, and its excretory duct, as Tula Fallopii or Vas deferens, passes ou to and accompanies the rectum during the remainder of its course.

The oviduct opens near and often a little bchind the anus, and, with the Heteropoda, bas frequently several glandular appendages; ${ }^{(\sqrt{3})}$ while, with the Gasteropoda, the portion accompanying the rectum is dilated into a kind of uteriue tube which has glandular walls. ${ }^{(5)}$ From the walls of this tube are secreted, without doubt, the often very regular envelopes with which the cags of many Pectinibranchia are surrounded. ${ }^{\left({ }^{(1)}\right.}$ In this last-mentioned order, there has as yet very rarely been found an albumen-gland or a receptacle of the sperm which communicates with the uterus. ${ }^{(8)}$
found, in the posterior region of the borly, and in the greenish-brown liver, a yellowish-brown glandular budy, containing active spermatic particles, and very large caudate cells enclosing undeveloped spermatic particles, from which passed off a long excretory duct opening near the auus, without the appearance of any penis. This apparatus is undoubtedly a male genital organ.

The other individuals, in which I could find no spermatic particles, were the females. The details by Ruppell (Mém. d. I. Soc. d'Ilist. Nat. d̀ Strasbourg, I. p. 3, fig. 4), and by Carus (Museum Senckenberg, II. p. 199, Tai. XII. fig. 8) upon the genital organs of Magilus antiquus, render probable the separation of its sexes also; but it is doubtful if the males have a penis, as Rüppell says, for it is dufficult to comprehend how copulation can take place with this animal which lives buried in the coralla of the Madreporina, any more thau with the Vermetus which are fixed upon stones. But Carus declares that he has seen, instead of a penis, an indistinct papilla ou the neek of Magilus. The ovary, which, according to Deshayes (loc. cit. p. 334, Pl. XV. fig. 8, f., or Isis, 1832, p. 469, Taf. VI. fig. 12, f.), fills almost eutirely the cavity of the body with Dentalium, will probaby, after more careful research, prove, with many individuals, to be a testicle.
2 See Cuvier, Mém. loc. cit. p. 24, P1. III. fig. 10,13 , or Isis, 1819, p. 734, Taf. XI. fig. 10, 13.
3 See Cwvier, Mém. loc. cit. p. ${ }^{12} 18$, Pl. II. fig. 11, e. 14, 15, or Isis, 1819, p. 728, 731, Taf. XI. fig. 1I, e. 1t, 15 .
4 The genus Littorina is the only oue which contains hermaphrodite speoies; here the volumiuous penis, having a longitudinal furrow, projects under the right tentacle (Quoy and Gaimard, Voy. de 1'Astrolabe, Zool., or Isis, 1834, p. 299).

5 The genital organs of the Ileteropoda are yet little known, and what has been said in the text retates only to Carinaria. Aluong the two to four deep-colored appendages of the vagiua of Carinaria mediterranea, may be especially distimguished a spiral tube containing internally transverse glandular folds (see Delle Chiaje, Meruor. 11. p. 208, T'iv. XV. fig. 5, 6, and bescriz. II. p. 97.). These appendages, the existence of which I have verified
with indivituals preserved in alcohol, must be more carcfully studied before it can be decided if they are the analogue of an uterus, seminal sac, \&c,
${ }_{6}{ }^{\text {S See Cuvier, Mém. loc. cit. Hg. } 2,3 \text {, h. ; Tre- }}$ viranus, Zeitsch. f. Plysiol. f. p. 32, Taf. IV. fig. 21 ; Paasch, in Wiegmann's Arch. 1843, I. p. 100, Tuf. V. fig. 8 (Paludina vivipara) and Leiblein, in Heusinger's Zeitsch. 1. \%.32, 'faf. I. fig. 6 (Murex). Quoy and Gaimard have furnished many facts on this poiut (foc. cit., or 1sis, 1834, 1836). With Strombus lambis, they have described a furrow which arises from the femate genital orifice, and passes along the right side of the foot.
7 These envelopes or capsules filled with eggs are cylindrical, pyriform, iufundibuliform, and sometimes pedunculated. They are attached singly or in groups to oljects, and sometimes are aggregated iu considerably-sizel masses around a common axis. Often they open by a special fissure, which, in some species, has a particular operculum; see Luml, in Amn. d. Sc. Nat. I. 1834, p. 84, Pl. V1., or Froriep's Not. No. 881, 882, and D'Orbiony, in Anm. d. Sc. Nat. XVII. 1842, p. I17. Such a mass, arranged around an axis, in which the eggs of Jauthina are depositel, and which is carried about with them a long time attached to their frot, was long regardel as an enigmatical body under the name of Spuma cartilaginea, and, by some naturalists, has been even considered as a modified operculum of the shell ; see Lund, loc. cit. fig. 23 ; Lesson, in the Voy, de la Coruille. Zool. II., or Isis, $1833, \mathrm{p} .134$, Tuf. I. fig. 1 ; and Delle Chiaje, Descriz. 11. p. 10s, Tav. LXVII. fig. 1, 2.

8 With Paludina vivipara, there is an albmengland bencath the last convolution of the intestine (See Treviranus, loc. cit. p. 31 , Taf. IV. fig. 21, u., and my observations in Miller's Arch. 1836, p . 243). In this same species, the bottom of the uterus communicates by a large orifice with a sessilo Receptaculum seminis in which I lave always found, after conulation, numerous active spermatic particles (Muller's Areh. 1836, p. 244). This sac for fecundation appears to be alssent with all the other Pectinibrunchia, and Berkeley (Zool. Jour. II. 1829, p. 278, or Isis, 1830, 1. 1264) could not find it with the females of Cyclostoma.

The course of the seminal duet, and that of the oviduet also, is the same as that of the uterus, until it reaches the extremity of the rectum, when it passes into the penis which always projeets from the right side of the body. With the Heteropoda, the penis is often bifid, but then the seminal eanal does not traverse exeept one of its divisions. ${ }^{(9)}$

With the Gasteropoda, the pems is either very long, ${ }^{(10)}$ tongue-shaped and often flexuous, ${ }^{(11)}$ or short and laneeolate. ${ }^{(2)}$) It projeets under and usually behind the right tentaele, and extends upon the side of the body - rarely being in a wholly retraeted state, but is eapable of being easily folded under the border of the mantle.

With some genera, its extremity has a small hook. ${ }^{(3)}$ With several Peetinibranchia, the seminal canal terminates behind the anus, and then takes the form of a furrow, whieh communicates with the base of the penis, extending even to its extremity, either as an external, or an internal semieanal. ${ }^{(14)}$

§ 229.

The development of the Cephalophora has, as jet, seareely been observed exeept with the Gasteropoda, and in partieular with the Apneusta, the Heterobranehia, and the Pulmonata. ${ }^{(1)}$

All observations coneur as to the faet that the vitellus undergoes a regular and eomplete segmentation, t after which, there appears an usually long, round embryo, one of the poles of which is indented and covered with

9 The penis is double and on the right side at the base of the visceral sac, with Carinuria and Pterotrachea (Milne Edwards, Ann. d. Sc. Nat. XIlI. 1840 ; p. 195, XV111. p. 323, Pl. X. fig. 3). Quoy and Gaimard (Voy. de 1'Astrolabe, Mollusq. P'l. XXVIII. fig. 10, or 1sis, 1834 , Tat. 111. fig. 10) have figured a long bifid penis with Phyllirrhoe amboinensis ; and so, if with the other Heteropoda the penis is not retractile, as appears to be the case with Carinaria, according to Milne Edwards, this species would be a male, while Phyllirrhoë̀ buccphalus, figured by Péron (Ann. du Muséum XV. tig. 1, or Kosse, De Pteropodun ordiue. Diss. fig. 1), apparently without a penis, would be a female, although D'Orbigny (Voy. dans l'Amér. mér., or Isis, 1839, p. 519,) regards this genus as hermaphrudite. With Atlanta, there is a simple, pointed penis on the right side of the neck directly near the arms; but as Rang (Hém. luc. cit. p. 378, PI. 1X. or Isis, 1832, Taf. V11.) has found this penis with all the individuals he has examined, it may be questioned if the sexes are really separate with this Heteropod.

The internal genital organs of Atlanta, and Phyllirrhoë, should be thoroughly studied for the elucidation of this point.*

* [§ 22 §, note 9.] See Gegenbauer (Siebold and Kölliker's Zeitsch. IV. p. 233), who has described some follicular penis-crlands with Littorina, and which serve some purpose in the copulatory act. -Ed.
† [§ 223.] Upon the vitellus of various Gasteropoda, there appears at the time of its segmentation, a small round, colorless body, resembling a vesicle. This was first mentioned by Pouchet (Ana. d. Sc. Nat. 1838, X. p. 63) and has since attracted the attention of Van Bereden in his embryology of Aplysia depilans (Ann. d. Sc. Nat. 1841, XV. p. 126). Quite recently, the subject has

10 For the male genital organs of the Pectinibranchia, see especiaily the works of Cuvier, and of Quoy and Gaimard, loc. cit.

11 Buccinum, Murex, Dolium, Harpa, Ampullaria, Mitra, Littorina, Strombus, Cyclostoma.

I2 Janthina, Eburneu, Conus, \&c.
13 Cassis, Dolium, Buccinum, Strombus, Sigaretus, and Paludina. With Paludina rvipura, the penis is, moreover, so united to the right tentacle, that this last appears to be a detached prolongation from the inferior surface of its apex (T'reviramus, loc. cit. Taf. 1V, fig. 18).
1t With Dolium, Harpa, Ampullaria, Tritoni$u m$, Strombus, \&c, this semi-canal extends even to the end of the penis (Quoy and Gaimard, loc. cit.) ; while with Murex, it ceases at the base of this orgar (Leiblein in Heusinger's Zeitsch. I. p. 31, Taf. 1.).

1 With the Cephalophora, the embryonic development does not generally begin until after the eggs have been deposited. A few only of the Gasteropoda, and among them Paludina vivipara, and Clausilix ventricosa (Held, Isis, 1831, p. 1001), are viviparous.
been brought up by Fred. Müller (Zur Kenntniss des Furchungsprocesses in Schneckeneie, in Wiegmann's Arch. 1848, p. 1) who ascribes to it a great importance in the primitive developmental changes of the ovum, and has called it the drective vesicle (Vesicula directrix, or Richtungsbiaschen). But the special importance of this body seems not yet well made out, and it may be questioned if it is not rather a secondary formation, than a primitive, directive organ. See H. Rathké (Wiegmann's Arch. $18 \nLeftarrow 8$, p. 157) and Gegenbauer (Siebold and Kı́lliker's Zeitsch. IlI. 1852, p. 373). - LD.
a delieate eiliated epithelium. By the means of these eilia, the embryo rotates upon its axis for a long time. From this period, the aquatie differ widely from the pulmonate Gasteropoda. With the Apneusta, and the Heterobranchia, the two lobules producel by the indentation just indieated, enlarge and ehange into round pinions (Vela), upon whose borders very long eilia are gradually developed. A third eminenee is developed between these two pinions, and, ultimately, changed into the foot.

Although the eiliated epithelium is always most widely spread around these two pinions, which should be regarded as situated on the anterior extremity of the body, yet there is formed a thin shell upon the posterior extremity of the embryo, whether this last belongs to a eonehiferous species or not. At the same time, there appears upon the dorsal part of the fuot, an opereulum eorresponding as to size with the opening of the shell.

Among the internal organs, the two auditive eapsules appear first ; and when these have beeome quite distinet, the eyes are seen. Following these, are developed the tentacles, the border of the mantle, and the mouth which appears between the two pinions. At the same time. the stomach, the intestine, and the liver, individually appear in the interior. At this epoeh, the young leave the egg and swim freely about by means of the long cilia which are situated on their extended and rigid pinions. ${ }^{(2)}$ Subsequently these pinions disappear, or are ehanged into two tentaeular prominences situated on each side of the mouth. ${ }^{(3)}$ At the same time, also, the maked Gasteropoda lose their shell and opereulum. From the isolated facts hitherto published upon the embryology of other branchiferous Gasteropoda, it may be coneluded that they experience a similar metamorphosis, only the shell of the embryo, at this time, usually presents some eonvolutions. ${ }^{(4)}$

In the development of the opereulate Pulmonata, there is no analogous metamorphosis. ${ }^{(5)}$ The embryo lengthens a little when it begins to rotate

Abstract

2 The embryology of the Apneusta, and the IICterobranchia owes its progress principally to the following works: Sars, in Wiegmann's Arch. 1837, I. p. 402; 1810, I. p. 196, Taf. V.-VII. 1845, I. p. 4, Tat. I. fig. 7-11 (Tritonia, Doris, Aplysia, an 1 Aeolis); Loven, in the Kongl. Vetensk. Akad. Itamdl. 1839, p. 227, or Isis, 1 S 42, p. 360, Taf. I. (Aeolis) ; Van Beneden, Ann. d. Sc. Nat. XV. 1841, p. 123, P1. I. (Aplysia) ; Nordmann, loc. cit. p. 71, Tat. IV. V. (Tergipes) ; Allman, loc. cit. p. 153, Pl. VII. fig. $10-12$; Vogt, Compt. Rend. XX1. 1845, No. 14, XX1L. No. 9, or Froriep's neu Not. No. 795,820 (Actaeon) ; and Reil, Ann. of Nat. 1list. XVII. 1816, p. 377, Pl. X. (Doris and Polycera). Vogt has since pullished his entire Memoir on the development of Actacon viridis in the Ann. (l. Sc. Nat. II. 1846, p. 5, Pl. L.-IV.; see also Schleidea, and Froriep's Nut. II. p. 77, fig. 1-12. ${ }_{3}^{1}$ These remains of the two pinions are easily seen with Tergipes, deolis, Doris, Tritonia, Aplysia, and other Iletromanchia. The ciliated tobs on the head of Thetis, are only these pinions persisting in an embryonic form ; see Lover, loc. cit.

4 Accurding to Loven (luc. cit. or Isis, $1842, \mathrm{p}$. 366, Tut. I. fig. 23), the young of Rissoa have a very large pini m. Nordmann (loc. cit. p. 98) has confirmed this, and found an analogous one with Littorine, and Phasianella. The small Mollusks with a pinion and it turbinated shell, of which Sors (Beskrivel. loc. cit. p. 77, fit. 38, 39) has formed the genus Cirropteron, have since been found by himself, to be young indivilnals of Turbo, Trochus, or Nerita; this accords with Graut's observations (Edinb. new Plailus. Jour. No. 13, 1827) upon Tur23

bo, Nerita, Buccinum, and Purpura. Judging from Carus' figure (Nov. Act. Acad. Nat. Cur. XIII. 1827, p. 767, Tab. XXXIV. fig. 2) of the embryo of Paludina vivipara, it also has at this age a pinion.
This remark is also applicable to the young animals found by Lund (Ann. d. Sc. Nat. I. 183 t, kl. VI. fig. 9-14) in the egg-capsules of a Murex (?) and a Notica (?). I have found, in the pyriform ovigerous capsules adhering to the orifice of the shell of Vermetus, young with highly-levelopel pinions having bong cilia, and with a regularly convoluted shell, such as has been described ly Philippi (Wiegmann's Arch. 1839, I. 1. 123, 'Taf. IV. fig. 8). Loven has observed similar embryos swimming with two pinions, with the Inetorobranchia of the genera Elysia, Bullo, Bullaea, and with the Pectinimranchia of the genera Lacuna, Cerilhium, and Éulima; see Arch. Skandinav. Beitr. \&c. I. 18 ± 5, p. 151, Taf. I. fig. 1-8.

5 The development of the Pulmonata which have a shell, has often fixed the attention of nituralists. See Stiebel, loc. cit. p. 38, Tab. II, and in Meckel's Arch. deutsch. I. p. 123, If. 1. 557 , Taf. VI.; Hugi, Isis, 1823, p. 213 ; Carus, Von den äusseren Lebenshed. loc. eit. p. 60, Taf. I.; Prevost, Ann. d. Sc. Nat. XXX. 1533, p. 40 (Lymenaeus) ; Pfeiffer, Naturg. deutsch. Lind-und Süsswasser-Mollusk. Mhth. III. p. 70, Tatf. I. (Helix); Quatrefages, Ann. d. sc. Nat. IL. 1834, p. 107, ill. XI. B. (Lymnaeus ant Planorbis), Jacquemin, 1 bid. V. 1836, p. 117, 119, and in the Nov. Act. Acad. \&c. XVIII. 18.3s, 1. G36, Tab, XLLX. L. (Planorbis) ; Dumortier, Nouv. Mém. de l'Acal. Roy. de Bruxelles, X. 1837, Pl. I.-IV. and Ann. d. Sc. Nat.
upon itself; its posterior extremity soon assumes a spiral form and is covered with an alveolate wrappcr, upon which gradually appear the convolutions of the shell, without there being formed, at the same time, an opcrculum. During this period, the eyes, tentacles, border of the mantle, and the foot, appear at the anterior extremity; and, in the interior, the auditive capsules, the intestinal canal, the liver and heart are gradually developed. Here, therefore, the development of the cephalic pinions, which characterize the embryos of the Branchiata, is also incomplete.

The development of the naked Pulmonata is quite different. ${ }^{(6)}$ When the round embryos begin to rotate, two crests appear side by side, upon the previously divided vitellus; one of these is changed into the shield and into the respiratory and circulatory organs situated beneath, while the other goes to form the foot. At its antcrior extremity, appear the eyes, tentacles, and lips; and at the posterior extremity, a peculiar contractile vesicle is formed. This vesicle presses its contents towards the vitelline substance which is still contained in a kind of vitelline sac projecting anteriorly between the two crests, and which, also, becomes contractile. ${ }^{(7)}$ By this arrangement there is an interchange of the contents of the vitelline sac and the caudal resicle, due to their altcrnate contractions. Subsequently, the liver and digestive canal are formed out of the vitelline substance between the two crests. The vitelline sac and caudal vesicle are in this way considerably diminished, and, at last, wholly disappear.

The development of Sagitta, as far as yet known. differs essentially from that of the Gasteropoda, ${ }^{(8)}$ in that its embryo is not formed at the expense
VIII. 1837, p. 129, Pl. III. IV ; Pouchet, Ann. d. Sc. Nat. X. 1838, p. 63 (Lymnaeus); and Rathke, Froriep's netue Not. XXIV. 1842, p. 161 (Lymnaeus, Planorbis, and Helix).
6 See Laurent, in the Ann. d. Sc. Nat. IV. 1835, p. 248 (Limax and Arion); Van Beneden, and Windischmann, in the Bull. de l'Acad. roy. de Bruxelles, V. No. 5, p. 286, Ann. d. Sc. Nat. IX. 1838, p. 366, and in Müller's Arch. 1841, p. 176, Taf. VII. VII. (Limax).*
${ }_{7}$ This contractility shows itself quite early in the

* [§ 229, note 6.] See also O. Schmidt (Ueber die Entwickelung vou Limax agrestis, in Muller's Arch. 1851, p. 278) who differs in many points from $V a n$ Beneden and Windischmann, as to the histological developmeut of some of the organs. See, furthermore, Gegenbaur, Siebold and Kölliker's Zeitsch. I1I. 1852, p. 371. - Ed.
f [\$ 229, note 8.] See, for some of the more recent contributions to the embryology of the Cephalophora, Koren and Danielssen (Bidrag til Pectinibranchiernes Udvicklings histoire, Bergen, 1851, or its Translation into French in the Ann. d. Sc. Nat. XVIII. 1852, p. 257, and XLX. 1853, p. 89), and Gegenbaur (Beiträge zur Entwickelungsgeschichte der Landgastropoden, in Siebold and Köllǐ̌er's Zeitsch. III. 1852, p. 371.) These works are quite complete as far as they go, and that of Gegenbaur, especially, has full details upon the formation of all the organs and their mutual embryological relations. No just résumé can be given in the proscribed limits of my notes.

I cannot here well omit at least an allusion to that
vitellus of the Limacina, for Dujardin (Ann. d. Sc. Nat. VII.1837, p. 374, or, Observ. au Dierosc. Atlas, 1842, Pl. V. fig. 10, 11) has seen in the eggs of Li_{i} max cinereus soon after their deposition, singular vitelline movements exactly resembling the alternate protrusions aud retractions of the parcnchyma of Amoeba.
8 See the observations of Darwin, in the Ann. of Nat. Hist. XIII. p. 4, or Aun. d. Sc. Nat. I. 1844, p. 363.t
most remarkable episode in the embryology of the Mollusca, the development of certain Mollusks iu Holothurioidea. The facts of the case were discovered and announced by J. Müller (Verhaudl. der Akad. su Berlin, 1851, p. 628 (October 23), and Nachtrag, p. 679 (Nov. 13), or in extenso in Muller's Arch, 1852, p. 1), and they are indeed so wonderful that it is well they were first brought out by so reliable a physiologist aud embryologist.

The main facts, briefly stated, are as follows: In certain individuals of Synapta digitata there are found from one to three sac-like bodies in the cavity of the body, and attached by their superior extremity to the head, and by the lower end to the intestinc; but this connectiou of the sac with the abdominal and other organs, is one of simple contiguity and not of very direct communication. The upper portion of the sac is of a yellow, and the lower of a green color ; the lower portion, moreover, is intussuscepted, with a blind end, like an inverted finger of a glove. It is in this sac-like organ that are developed true Mollusks ; in the upper or more ca-

of the entire surfaee of the vitellus, but surrounds the last in a ring-like manner, and is gradually detaehed by its cephalie and eaudal extremities.

pacious portion are found both male, (testes), and female (ovarium) organs in the shape of sacs, which are not attached in any way to the main molluskigerous sac. These genital organs bear no resemblance whatever to ordinary testes or ovaria, except in their products, which are identical. When the ovarium is perfectly developed, it and its capsule burst and discharge the ova which are then contained in the main molluskigerous sac; after this, fifteen to twenty ova become invested with a common capsule, though their fecmodation takes place previous to this investment. Upon this succeeds their development.
The sperm-capsules vary from four to eighteen in number, and lie perfectly free in the main sac, not far from the ovary. The spermatic particles are set fiee by the burstiug of these capsules, and they resemble those of the Gasteropod Mullusizs in shape and form.

The development in the egg here proceeds exactby as with the Mollusea (e. g. Actacon, according to Vogt), and finally it assumes pretty deñite characters indicating rather its relation to the Pectinibranclia. Of its zoülogical character as a Mollusk there can, therefore, be no doubt, and the whole story in a word is, that a true Mollusk is developed within a Synapta, not by gemmation, but by means of the normal sexual products which occur under otherwise amorphous and anomalous parts aud conditions. It should, moreover, be remarked that the connection of this molluskigerous sac is not special or direct with the Symapta, but this last appears to serve as a kind of nest in which the Mollusk carries out its ulterior and remarkable changes.

Such being the facts, the question now arises, What interpretation shall be given these phenomena? The distinct sexual mode of reproluction would seem to remove these phenomena from the category of the so-called alternation of Generation, or. genmiparity as we now understand it. Then argain, the doctrine of "heterogeneous geueration" as suggested by Miller, does not seew to me admissible, beside being particularly unsound, - for if an animal can produce, by true sexual generation, an offspring zoölogically dissimilar to itself, zoölogists may well look about for the stabibity of their seience. If I may be allowed an opiniou or rather a view on a subject on which \mathbf{I} have made no observations, I would say that an approximate solution of this enigma seems obtamed by admitting the possibility of new and hitherto unknown parasitic conditions in the life of the Mollusk in questiou.

Why may not this Mollusk undergo a form of retrograde metamorpbosis during which its life is parasitic and very peculiarly comnected with the life of another and wbolly different animal ? Or agaiu, wby may not the phenomena observed be the final conditions of certain low modes of bfe which are connected witb points in the economy of these animals that we do not yet understand ? I throw ont these remarks in a suggestive way. If we refer for a moment to the historical relations of the Cestodes, it will be perceived that there was a time when the conditions of their life were equally if not more obscure. Siebold, however, has sbown that here, although the path taken by Nature is circuitous and intricate, yet, after all, no new features of a heterogeneous nature are introduced, and that all required for the observer was care and patience. It does not seem to me any more improbable that this Mollusk should bave entered in some of its stages the body of the Siynapta, since the anomalous undeveloped forms of many IIelminthes pursue a similar course. Let the uaturalist also bear in mind the remarkable phenomena of the IIectocotyli، In the Nacherag to this first account before the Berlin Academy, but more especially in a subsequent and more complete account (Ueber die Erzeugung von Schneckeu in IIolnthurien, in Müller's Arch. 1852, p. 1) lately giveu, Muller discusses still further these facts. After some remarlis upou the importance of a careful study of the embryology of this curious form, he says : "I do not give up the hope that we may yet determine at least the genus of this Mollusk ; and I found this hope mainly upou the very characteristic form of the spermatic particles, beside the other features above mentioned. The spermatic particles of Natica and its allies are yet unknown. In studies bearing upou this matter, one should particularly bear in mind the terminal enlargement of the spermatic particles, which up to this time las been observed iu uo Gasteropod, but which with the spermatic particles of the Mollusk in question is never wanting." Although for some time familiar with the details of the spermatic particles of the Gasteropod Mollusks, yet I have very recently reexamined the spermatic particles of Natica (N. heros) with reference to this point. They resemble closely those of the pumonary Gasteropoda (Helix, for instance), and consist of a welldefined cork-screw head to whicb is attached a very delicate tail; they agree, therefore, in gencral with the form given by Muller of the Mollusk iu question. - Ed.

BOOK ELEVENTH.

CEPHALOPODA.

CLASSIFICATION.

§ 230.
The Cerinalopoda present, in their organization both internal and external, so many peculiarities which distinguish them from all the other Mollusca, that it is necessary to consider them in a class by themsclves, although their genera are not numerous.

It is, moreover, neeessary to state why we here regard the different forms of Hectocstylus whieh hitherto have been eonsidered as parasites of these animals, as the males of certain Octopoda. ${ }^{(1)}$ The researehes of Kölizer have led us to make this change. This naturalist founds his opinion upon the following convincing reasons: ${ }^{(2)}$ The speeimens of Hectocotylus have branchiae, and a heart with arteries and veins, and they cannot, therefore, be regarded as Helminthes. On the other hand, they have, in common with the Cephalopoda, the contractile chromatophorie cells of the skin, and the same kind of spermatic particles and suckers ; and the muscular substance of their body is arranged exactly like that of the arms of the Cephalopoda. All of them are males, and the Cephalopoda, with whieh they are eonneeted, are all females; finally, the embryos found in the eggs of certain Octspoda exactly resemble them. Whoever has had the opportunity of examining the species yet known, viz: Hectocotylus argonautae, octopodis, and tremoctopo-

[^151]XVII1. 1829, p. 147, Pl. XI. A. fig. 1 5, or Froriep's Not. XXV1[. 1830, p. 6, fig. 16-19, or 1sis, 1832, p. 553 , Taf. IX. fig. 1-5) should be found in the cavity of the mantle of Octopus granulatus (Lamarck). It is probably identical with Octopus tuberculatus of Delle Chiaje (Octopus Verany, Wogner), which lives in the Mediterranean Sea, anl perhaps, also, with Tremoctopus violaceus. If this last is not so, there is then a third species of Hectocotylus, viz: the male of Tremoctopus violaceus.
2 S 地 Kolliker, On the Mectocotylus of Tremoctopus violaceus, and Argonauta argo, in the Ann. of Nat. IIist. X VI. 1845, p. 414.
dis, as well as the females on whieh they are found, will admit the eorreetness of the preeeding statement, and, alsr, must have perceived the very remarkable abortiveness of the males of Argonauta and Tremoctopus. ${ }^{(3)}$

Family: Nautilina.

Genera: Nautilus, Spirnla.
Family: Octopoda.
Genera: Argonauta, Tremoctopus, Octopus, Eledone.
Family: Loligina.
Genera: Sopia, Loligo, Onychoteuthis, Sepioteuthis, Ommastrephes. Loligopsis (Perothis), Cranchia, Rossia, Sepiola.

BIBLIOGRAPIIT.

Swammerdamm. Zergliederung der spanischen Seekatze (Sepiae mariss, in the Bibel der Natur. Leiprig, 1752, p. 346, Taf. L.-LLI.

Needham. An Aeeount of some new Mieroseopieal Diseoveries. London, 1745 , or the same in Freneh. Leide, 1747. It eontains the anatomy of Loligo vulgaris.

Cuvier. Mémoire sur les Cephalopodes et leur Anatomie, in the Mém. sur les Mollusques, loe. eit. Pl. I.-IV.

Brandt. Medizin. Zool. II. p. 298, Taf XXXI.-II.
Owen. Memoir on the pearly Nautilus. London, 1832 (in the Isis, 1835, p. 1, or in the Ann. d. Se. Nat. 1833, XXVIII. p. 87). Also deseription of some new and rare Cephalopoda, in the Trans. of the Zool. Soe. IL. 1841, p. 103 ; and the Art. Cephalopoda, in the Cyclopaedia of Anatomy, I. p. 517; also the twenty-third of the Ilunterian Leetures, on Cephalopods with ehambered shells, 1843.

Grant. On the strueture and eharacters of Loligopsis, in the Trans of the Zool. Soe. I. 1835, p. 21, Pl. II.; also on the Anatomy of the Sepiola vulgaris, Ibid. p. 77, Pl. XI. (in Isis, 1836, p. 389, Taf. X. fig. 4-10).

Rathké. Perothis, ein neues Genus der Cephalopoden, in the Mém. présentés à l'Acad. inpér. de St. Petersberg, II. 1835, p. 149, Tuf. I. II.

Van Beneden. Mém. sur l'Argonaute, in the Nouv. Mém. de l'Aead. Roy. des Se. et belles-lettres de Bruxelles, XI. 1838, or in the Exer. zoot. Fase. I. 1839, Pl. I.-V.

Férussac and D'Orligny. Hist. nat. gén. et partieulière des Mollusques. Cephalopodes aeétrabulifères. Paris, 1834.

Valenciemes. Nouv. Reehereh. sur le Nautile flambé, in the Arch. du Muséum d'hist. nat. II. 1841, Pl. VIII.-XI.

Kölliker. Entwiekelungsgesehiehte der Cephalopoden. Zürieh, 1844.

[^152]* [§ 230, note 3. \rceil See my note below undcr § 261, note 6. - Ed.

ADDITIONAL BIBLIOGRAPHY.

Reinhardt and Prasch. Om Sciadephorus Mülleri en Nudersögelse. Kjöbenhavn, 1846, mit 5 Tafcln.

Prasch. Nogle nye Cephalopoder, beskrcvne og anatomisk undersögte. (From the Mem. of the Danish Academy 5th ser. I.) Kjöbenhavn, 1847.

Milne Edwards. Règne animal, éd. illustr. Mollusques, Pl. 1. 1 ${ }^{\text {b }}$. 1 . 3 . $1^{\text {e }}$. $1^{\text {f }}$ (Octopus). - ED.

CHAPTERI.

INTERNAL SKELETON.

§ 231.

The Cephalopoda have many cartilages, which, serving as points of insertion for nuscles, and surrounding the nervous centres, may therefore be regarded as the rudiments of an internal skeleton.

Their texture is essentially the same as that of the true cartilages of the vertebrata. There is a homogeneous, usually yellowish base, having the aspect of ground glass, in which are seattered numerous dark-colored molecules. This base contains, moreover, the proper cartilage cavitics, which enclose a mass of granules, and each a more or less distinct nucleus. These cavities are more or less numerous, and are often partitioned each into two by a thin septum.

$$
\S 232
$$

These rudiments of an internal skeleton may be divided into the cephalic, dorsal, articular, branchial, and pinnate cartilages. ${ }^{(1)}$

1. The Cephalic cartilage is concave in front and convex behind. It is perforated in the centre by the cesophagus and by two lateral conchoidal prolongations. At its upper part there is a deep excavation for the reception of the brain; and, at the inferior part, an enlargement containing the auditive organs. It is, moreover, traversed by canals of different sizes for the passage of nerves. The two latcral prolongations cover, by their antcrior and concave surface, the ocular bulbs, and are thus the analogues of a kind of orbits. With Loligo, and Sepia, there are, beside, two lanceolate, cartilaginous lamellae, which join with the anterior and inferior parts of the cartilage, covering the ocular bulb in front, and thus completing the orbit. Nautilus differs very much from the other Cephalopoda in this respect. The lateral prolongations are wanting, and the body, which is incomplete above, is much developed below, and has two prolongations cxtending in front in a forked manner and concealing the auditory organs. ${ }^{(2)}$

[^153]XXIX.; and Van Beneden, loc. cit. Pl. I. (Argonauta).
2 See Owen, On the Nautilus, p. 16, PI. VIII, fig.
1, or Isis. 1835, p. 14, or Ann. d. Sc. Nat. XXV1II.
P, 102, Pl. IV. fig. 1, and Valencienner, loc. cit. p. 271, Pi. IX. fig. 4-6.
2. The Dorsal cartilages are found only with Sepia and Loligo. They are two in number; the inferior is situated in the neck, and the superior in the mantle at the anterior extremity of the internal shell. The eervical eartilage of Loligo is very long, rhomboid, and pretty massive; while that of Sepia consists of a thin, semilunar plate, with the eavity directed baekwards. In both genera, its median line has a longitudinal groove; and in both also, the superior cartilage is only a thin semi-lunar lamella, both extremities of which are extended backwards by a long prolongation.
3. Those are called Articular cartilages, which, with Argonauta, and the Loligina, are found on eaeh side of the base of the funnel, in the form of long eupels whose eavities reeeive, when the mantle is closed, the two cartilaginous prominences of its (the mantle's) internal surfaee. ${ }^{(3)}$,
4. The Brachial eartilage is found only with Sepia. It is a narrow plate, transversely situated directly in front of the superior border of the eephalic cartilage. It has, anteriorly, three short apophyses for the suppor's of the base of the arms. With the Loligina, there is found in the mantle, at the base of the lateral fins of the body, two other narrow lamellae, the lin-cartilages; these serve as points of insertion of the muscles of the fins, and extend more or less along the sides of the body, taking the form of the fins. ${ }^{(1)}$

CHAPTERII。

CUTANEOUS ENVELOPE.

$$
\text { § } 233 .
$$

The Cephalopoda are distinguished from the other Mollusea by a wholly reculiar structure of their skin. The skin is easily detached from the subjuent muscular layer, to which it is united by a loose eellular tissue, the theres of which are interlaced in every direetion. The extremely thin epithelium of the skin is lamellated, but never ciliated, with the adult individuals. The Corium is composed of a eontractile fibrous tissue, in the meshes of whieh are contained the remarkable contractile Chromatophorie cells. ${ }^{(1)}$ These consist of flattened, contractile eavities surrounded by a very

3 See the figures of Ferussac, loc. cit. (Sepia,
Sepiola, and Argonauta). With Argonautc, the
two projections of the mantle are round tubercles,
while with Loligo, Onychoteuthis, and Sepiola,
they are two very long longitulinal rilges, to
which corresponds a groove-like excavation in the
two oppositely situated cartilages of the fumel.
By means of these articular cartilages, together
with the two dorsal, when pressent, the collar-like
lorder of the mantle is exactly fittel about the neck
of the Cephalopodit.
4 The cartilages of the fins are very long with
Sepia (Schultze, loc. cit. fig. C. D., and Owen,

[^154][^155]delicaie elastic membrane; when contracted, their form is round, but it becomes dentate on dilatation. The pigment granules, which they enclose, are always of the same color in each cell, and produce the red, the yellow-ish-brown, the bluc, or violet spots, whose extent and shade vary, according as the cells are contracted or dilated. ${ }^{(2)}$ Usually, adjacent cells have very different colors, and to their alternate contractions and dilatations in groups, are due those magnificent chromatic changes which have long made celebrated the skin of the Cephalopoda. ${ }^{(3)}$

These contractions, and consequently these chromatic changes, are under the influence of the nervous system. This is the reason of their decrease or disappearance, or their reäppearance and increased brilliancy, in certain places, when the neighboring or even the distant skin is irritated. Moreover, the fibres of the corium preserve their contractility after having been detached, so that the chromatic changes may be observed on portions of the skin that have been removed.

§ 234.

Behind the neek of the Cephalopoda, the skin forms a large sac-like mantle, which completely envelopes the trunk, but is adherent only upon the back. Its anterior border is free, and can embrace, like a sphincter, the neck and posterior part of the head. Under the throat, the skin is prolonged in the form of a funnel, the free apex of which extends in front, while the broad base commuicates with the cavity of the mantle, and is

ment, deposited, as he has so well descrihed, in the chromatophoric contractile sacs. The splendid changeable colors of the surface appeared to be due, not to the pigment spots alone, but to the intervening tissue; and the surface color over the pigment spots is subject to the same variations. Thus, a bistre-brown spot will sometimes appear hlue, then green, \&c. These facts may he tested by placing a small portion of the skin on a plate of

Abstract

of a genus of parasites, which he has called Polyporus chamacleon, it is certain that this animal, found on the brauchiue of a marine fish, is only is torn off arm of one of the Loligina. The presence of these celts in the skin of Nautilus seems proved, for $R u m p h$ (Amboinisclie Rarititen-Kammer von Schnecken und Muscheln, p. 7) expressly declares of this animal which he saw living, that "its upper portion is reddish or bright brown with some hlack spots, which, as with the cuttle-fish, become faded." The fragment of the Mollusk, which Quoy and Gaimrord found at the Celcbes islands, and which they thought to behong to Nautilus pompilius (Ann. d. Sc. Nat. XX. 1830, p. 470 , Pı. XIV. A. or 1 sis, 1834 , p. 1146, Taf. XV. A. B.) deserves our attention in various ways. If it really belonged to a Cephalopod, it should have the chromatic cells, a point which may yet, perhaps, be determined from the preserved specimen at l'aris. In the colored figure which these naturalists have given of it, the skin is dotted with red,-a presumption in flvor of the existence of these cells. But, indced, is it not possible that this animal, from its resemblance to the Hcctocotyli, is not \mathfrak{a} mutilated one, but the male of Nautilus pompilius, abortive as to its form and size?

glass, and introducing a little water under it, the evaporation of which, by changing the surface conditions, generally proluces a variety of colors.

The chromatic appearances of these animals appeared to me, thereforc, as due full as much to surface phenomena as to pigment, and I have failed to detect differeut layers of pigment as described by Owen; see Burnett, Proceed. Bost. Soc. Nat. Hist. IV. p. 252. - Ed.
covered by its anterior border. ${ }^{(1)}$ The sea-water, which enters into the interior of the mantle, passes, with its various contents, into this funnel, and is thence expelled through its anterior orifice.

Many Cephalopoda have, on the dorsal wall of this organ directly behind the anterior orifice, a tongue-shaped valve, which prevents the reflux of the water. ${ }^{(2)}$

With the Loligina, the sides of the trunk have variously-shaped cutaneous lobes, which these animals use as fins. ${ }^{(3)}$ The Octopoda, on the other hand, swim by rowing with their arms, which are bound together at their base by a kind of natatory membrane, whose extremities have, each, a broader or marrower cutancous dilatation. ${ }^{(4)}$

$\S 235$.

The mantle of many of the Cephalopoda secretes a shell, which may be either external or internal.

1. An ceternal shell is found with Argonauta and the Nautilina. That of the Paper-Naatilus is very thin and flexible, - and, in its composition, the orgauic base predominates above the calcareous matter, which consists. of thickly-set, small, round masses. The substance of the shell, which, with Argonauta, is nowhere attached to the animal it encloses, is secreted principally by the two large cutaneous lobes of the two median dorsal arnis, which lie upon the external surface of the shell. On this account, the structure of the two surfaces of these lobes is different; - the external surface is quite smooth and has many chromatic cells; while the internal has scarce any of these last, but is covered with numerous reticulated, projecting lines, which become the more prominent when the lobes are contracted, and between which, cell-like depressions are formed. ${ }^{(1)}$

With the Nautilina, the shell has a very complicated structure ; its walls are composed of two distinct layers, clearly separate, the internal of which has a beautiful mother-of-pearl aspect. The cavity of the shell is divided, even to the last spiral turns, by numerous transverse septa, which are all perforated. With Nautilus, ${ }^{(2)}$ a tube traverses the septa, while with

1 With Nautilus, the funncl is composed of two pretty large, cutaneous lobes, placed upon both sides of the throat, and reciprocally covering each othor on the ventral surfuce in a cornet-like manner; sec Owen, On the Nautilus, p. 10, Pl. 1. or Isis. p. 10, or Ann. (1. sc. Nat. loc. cit. p. 93, Pl. I. IIL. ind Valenciennes loc. cit. P. 269, Pl. X. fig. 1.

2 This is so with Sepia, Sepiola, Loligo, Sepioteuthis, Onychoteuthis, and Nautilus. For this last, sec Owen, loc. cit. PI. II. fig. 2, e., and Valenciennes, loc. cit. PL. X1. fig. 4, $\lambda, ~ I$ have souglit for it in vain with Argonauta, Eledone, and Tremoctopus. It is also wanting with Loligopsis and Crunckid; with Octopus, there exists in its place, that is, on the ventral surtace of the funnel, a transversc lidge.
s With Sepia, and Sepioteuthis, both sides of the body are bordered their entire longth with a cutaneous lobe. With Loligo, and Onychoteuthis, the two fins are triangular and inserted on the posterior extremity of the body; they are round and short with Sepiola, Loligopsis, and Craneh$i a$; in the first of these genera, they are situaterl on the middle of the sitles of the body, and in the last two, upon its exiremity.

4 These interbranchial natatory membranes ex ist with Octopus, Eledone, and Tremoctopus; they are particularly developed in this last genus, between the two pairs of dorsal arms.

In this same genus, as also with Argonauta, the two dorsal arms are terminated by a very large cutaneous lobe, and are used not only as locomotive organs, but also for keeping the shell in place by being applied on its external surface; see $F t-$ russac, loc. cit. Argonauta, Il. I. fig. 5, 6, Pl. VI. fig. 2, and in the Mem. de la Soc. d'list. Nit. de l'aris, II. 1825, p. 160, Pl. VI. fig. 2, or Isis, 1832, p. 460 , Taf. V. fig. $2 ;$ Rang, Docum. pour servil a l'Ilist. nat. des Cephaloyodes, in the Magaz. de Zool. 1837, Livr. IV. p. 19, Pl. LXXXV1.LXXXVIIL, or Ann. d. Sc. Nat. VII. 1837, p. 176 ; and Delle Chiaje, Descriz. loc. cit. Tav. TlI. fig. $1,2$.

1 It has been attested by several observers, that these two cutaneous lobes furnish the substance of the shell, and that, also, with which the amimal repairs accidental lesions; sec Rang, Magaz. de Zool. loc. cit.; Jeanette Power, in the Atti dell Acad. di Scienz. Nat. di Catania, XII. 18n! or Isis. 1845 p. 606, or in Wiegmonn's Arelı. 1845, I. p. 369 ; and, Further experiments and observ. on the Argonanta Argo, in the Reports of the Brit. Assoc. 1844, Notices and Communic. p. 71. For the non-parasitism of the nnmal, see, moreover, Fan Beneden, loc. cit. p. 4, aud L'erussac, loc. cit. 1. 114.

2 De Blainville, in the Nouv. Ann. du Museum d'llist. Nat. IlI. 1834, p. 3, Pl. I. II.

Spirula, ${ }^{(3)}$ an analogous calcareous tube extends close upon the inner surface of the shell from one septum to another. The animal, whose trunk occupies only the first chamber, is loosely attached to it by the cartilaginous border of its mantle.

With Nautilus, this border has a lobe which extends along the back of the animal, surrounding the spiral portion of the shell. ${ }^{(4)}$ With all the Nautilina, there is another prolongation in the form of a membranous tube, or Sipho, which arises from the posterior part of the body, - traverses the orifices or calcareous tubes of the septa, and penetrates even into the last chambers of the shell. These chambers are lined with a thin nembrane, and have no external communication except through the Siphon.
2. With the Loligina, an internal shell lies free in the dorsal portion of the mantle. In most gencra, it is composed of a homogencous, horny substance, of a yellowish-brown color, and has a form like a feather (Calamus), or the head of a lance. At one of its extremities is an attenuated sten, and two delicate lateral winglets of variable length. ${ }^{(5)}$ With Sepia, this shell differs very much from that of the other Loligina. Its two surfaces are covered by very distinct calcareous layers, which have erroneously given it the name of Os sepiae. ${ }^{(6)}$ As a whole, it is tongueshaped; its two surfaces are convex and its borders are sharp. Behind, the lateral borders become thinner and are slightly bent toward the ventral surface; and a short conical point projects from the middle of the pos; terior border. The horny substance is reduced to a thin sheet, situated between the calcareous layers, but its borders usually extend out beyond those of these last. The calcareous layer of the dorsal surface is very thin, but quite solid, and its surface in front, is granulated and striated; that of the ventral surface, on the other hand, is very thick, cspecially in the middle, and its very loose tissue contains numerous quite thin, porous lamellae, which, superposed almost horizontally, alternate regularly with layers of small, transversely-striated, dichotomous, vertical prisms. ${ }^{\text {(I) }}$ This ventral layer is truncated obliquely from its middle backwards, and the horizontal layers may easily be counted upon its truncated surface. ${ }^{(8)}$

> 3 De Blainville, lbid. p. 18, Pl. I. fig. 6, A-F.
> 4 Owen, and Ialenciennes, loc. cit.
> 5 See Wagner, Icon. zout. Tab. XXIX. fig. 32 (Loligo), and F'érussac, loc. cit. (Loligo, Lotigopsis, Onychoteuthis, Sepiola, and S'epioteuthis).
> 1 cannot here omit speaking of the remains of an antediluvian animal, which, under the name of Aptychus, has much engaged the attention of palaeontologists, and, up to the present time, beeu the object of discussion.
> Some have regarded it as the operculum of an Ammonite or of another Mollusk (Ruppell, Abbild. und Beschreib. einig. Versteiner, von Solenhofen, 1829, and Voltz, in the Neuen Jahrbuch für Mineralogie, \&c., 1837, p. 304,432) ; other' as a shell of a bivalve (H. von Meyer, in the Nov. Act. Acad. Nat. Cur. XV. pt. II.' p. 125 and in the Jahrouch f. Mineral. \&c. 1831; p. 391) ; and others, finally, as an intermal shell of one of the Cephaloporia (Coquand, in the Bull. de la Soc. Geol. de France, XII. 1840-41, p. 376).
> This last opinion is undoubtedly the correct one. As for myself, I am able to perceive in the different species of Aptychus only shells whose shaft is abortive, and the wings excessively developed. I was therefore quite surprised to hear my collearac, $A t$ exander Braun, express himself is a conversation, tiat, "after af, the animal culted Aptychus
might well have been the male of certain Ammonites." If the relations of the IIectocotyli to certain Octopoda are borne in minl, the idea of Braun, that there have existed Ammonites, the males of which are quite different in form from the females, certainly merits much consideration. For the males of these animals were, perhaps, abortive like those of Argonauta and Tremoctopus, and obliged, therefore, to shelter themselves in the mantle of their females, and this would explain why it is that the specimens of Aptychus are so often fouud at the base of the first chamber of Ammonites.
Judging from the form of the shent, the bodies of these animals must have been very large. There will be an additional analogy in favor of this view, if it is provel that the large and flattened animal found liy quoy and Gaimard is really the male of a Nautilus ($\$ 233$, note 3).

6 The error of Spix (Cephalogenesis, loc. cit. p. 33) in comparing it to a rudimentary vertebral column, is still wider.
7 According to Kolliker (Entwickel, loc. cit. p. 72, Taf. V. fig. 45, 46) these calcareous prisms hegin to be formed in the embryo.
8 A very detailed description of this Os sepiae has been given by Cuvier (Mém. loc, cit. p. 46), Brandt (Mediz. Zool. II. p. 301, Taf. XXXI. fig. 3, 6), Wagner (Icon. zont. Tah. XXIX. tig. 34), and Ferussac (loc. cit.).

Although it must be supposed that the calcareous matter of this shell is secretcd by the internal surface of the dorsal cavity, yet the thin fibrous membrane which lines this last, is without a glandular structure.

CHAPTER III.

MUSCOLAR SYSTEM AND ORGANS OF LOCOMOTION.

§ 236.

The muscular system of the Cephalopoda is highly developed. Its primitive fibres are smooth, but are not so diversely interlaced as with the other Mollusca. These fibres are usually parallel, and the fasciculi which they form, are of equal thickness. When isolated, they often show a zigzag tendency, which, probably, belongs also to their state of contraction. The fasciculi are very compactly bound together in one direction by a cellular tissue, and, in this mauner, form clearly-defined, long, flat muscles.

$$
\text { § } 237 .
$$

The mantle of the Cephalopoda has a very distinct layer of circular Gibres. ${ }^{(1)}$ From the internal surface of the sac which it forms, arise, in the dorsal region, two pairs of large cylindrical muscles. One pair of these passes in front and is extended into the walls of the base of the funnel ; the other pair extends to the posterior part of the neck, and is inserted partly into the cephalic cartilage, and partly at the base of the arms. The other muscles, which are thimer, arise from the sides of the cervical cartilage, and are inserted upon the funnel. ${ }^{(2)}$ By means of a part of this muscular apparatus, these animals ean vigorously contract the cavity of the mantle and the fumnel, and, by tightly embracing the neck and base of the funnel with thetborder of the mantle, can eject, through the orifice of this last, the liquids contained in the cavity of the body. With many species, these muscular contractions serve, also, as a means of a backward locomotion in the water.

$\oint 238$.

The principal locomotive organs of the Cephalopoda are the arms fixed upon the cephalic cartilage; they serve also as prehensile organs. Each of thesc consists of a tubular axis composed of a dense cellular tissue, of muscular fibres radiating towards the surface, between which are inter-

[^156]posed others which are longitudinal, and, lastly, of a layer of circular fibres directly beneath the skin. (i)

Over the entire length of the internal surface of these arms, are suckers, arranged in a single, double, or multiple row. ${ }^{(2)}$ But with the Loligina, these suckers occur in groups of variable extent only at the extremity of the ninth and tenth arms (tentacular arms). These suckers are moved by muscular fasciculi which pass from the arms and are spread upon the former in a ray-like manner, and which form, moreover, with the Loligina, a peduncle.

With Tremoctopus, the suckers are cylindrical and very simple, while with the other Octopoda, their opening is closed by a membrane perforated centrally by an orifice which can be closed by a papilla that projects from the base of the sucker. ${ }^{(3)}$ These organs are applied to objects at the moment when the papilla is withdrawn and removed to the base of the sucker. With the Loligina, the lateral walls of the suckers are very thin, extensible, and have upon their borders a horny and denticulated ring; in this ring the fleshy base of the sucker adjusts itself in an urceolate form, and upon withdrawal, produces a vacuum. With Loligopsis, and Onychoteuthis, nany of the suckers on the two tentacular arms are imperfect, but, on the other hand, some of the teeth of their horny border are disproportionably developed, or the whole is changed into a strong claw. ${ }^{(4)}$

The arm-like processes about the mouth of Nautilus differ very much from the preceding. ${ }^{(5)}$ They have no trace of suctorial organs, and are composed of thirty-eight prismatic filaments, which are a little flattened and transversely curled.

Lach of these filaments is surrounded, at its base, by a contractile sheath into which it can be wholly withdrawn. ${ }^{(6)}$ The whole fasciculus is, moreover, enveloped in a conmon sheath, which, upon the back, is flattened so as to reseuble the foot of the Gasteropoda, and like it, probably, may serve for creeping. ${ }^{(7)}$

The portion of the skin, which extends as a kind of Natatory membrane betreen the arms of many Cephalopoda, contains a very loose net-work of longitudinal and transverse muscular fibres. ${ }^{(5)}$

The fins of the Loligina, have, on the contrary, large muscles composed of parallel, contiguous fasciculi which arise from the cartilages of these organs.

1 This axis is usually of a prismatic form ; consequently if an arm is cut transversely the section presents a quadriateral or rhomboidal spot in its contre; see Sauigny, in the Descript. de l'Egypte, IIst. Nat. Pl. I. fig. I. w.; Ouen, in the Cyclop. 1. p. 523, fig. 214, c, and Ferussac, loc. cit. Octopres, Pl. II. fig. 3, and PI. XV. fig. 11, D. A similar section of the body of an Hectocotylus pre sents a like as pect.

2 The suckers form a single row with Eledone; a double one with the other Octopoda, and with most of the Loligina; hut the rows are multiple with Sepia.

3 Although the double row of suckers on the body of Hectocotylus does not diminish towards the anterior extremity, yet, in other respects, it so closely resembles the suckers of Argonauta and Tremoctopus, that it may $w \in l l$ be asked why this single fact was not sufficient to discover to the older observers the real nature of this pretended parasite.
4 Ferussac, loc. cit. Loligopsis, Pl. IV. and Onychoteuthis, Pl. VI. VIII. \&c.

5 Owen, and Valenciennes, loc. cit.
6 The internal structure of these filaments agrces pretty closely with that of the arms of other (iephalopoda. Owen, On Cephalopods with chambercd shells, loc. cit. p. 8, fig. 131, Cyclop. loc. cit. p. 526, fig. 213, and Annals of Nat. Hist. X1I. 1r. 305.

7 Owen, and Valenciennes, loc. cit.
8 The large cutaneous lobes of the median dorsal arins of Tremoctopus and Aroonauta, have a similar structure. In this last genus, they are not used as oars, nor as sails, but are thrown hack upon the shell to keep it in place (8255 , note 4); they move in the water, moreover, like the other Cephalopoda, by the contractions of the mantle and the funnel (Rans, Magaz. d. Zool. 1837, p. 22. Pl. LXXXVII.). It is therefore astonishing that Jeanette Power (Wiegmann's Arch. 1845, I. p. 373) should have revived the old fable that these animals raise these two large arms ahove the surface of the sea to be used as sails.

With Nautilus, there are two large, partieular museles, which arise from the under surface of the cephalic cartilage, and extend, divergingly, backwards; they serve, by means of a horny plate, to fix the animal to the internal border of the shell. ${ }^{(9)}$

CHAPTER IV.

NERVOUS SYSTEM.
§ 239.
The nervous system of the Cephalopoda attains a very high degree of development. Its central portion, especially, quite resembles the brain of the Vertebrata, in the extraordinary inerease of its ganglionic substance, and by the presence of a cartilaginous cavity containing it, comparable to a cranium. This eavity is ineomplete, it is true, but at its anterior part where the cartilaginous substance is wanting, it is elosed by a tendinous eellular tissue which takes the place of a Dura mater.

The brain itself, which is far from filling the cavity of the eephalie cartilage, is enveloped by a fibrous membrane, which sends off sheaths to the nerves which leave the brain and traverse, in different places, the cephalie cartilage. The cavities remaining between the brain and thiscartilage are filled with a fat-like liquid.

The primitive nerve-fibres are straight, finely granulated, and bound together into fasciculi of variable size by a very distinct neurolemma. ${ }^{(1)}$ The long and oval eorpuscles which are often found in abundanee between them, belong probably to the neurolemma.

$$
\S 240 .
$$

The eentral mass of the nervous system, with the Cephalopoda, forms also an cesophageal ring, which consists of a superior and an inferior ganglionic mass connected by lateral commissures. The superior portion is small and sends some delicate nerves to the parts of the mouth. The inferior portion on the eontrary, is very large, and extends along the sides of the cesophagus in order to be directly continuous with the broad commissures. The olfactory, and the two optic nerves arise from the lateral portions of this ganglion, while the auditory nerves have their origin from its inferior surface.

From its anterior border pass off four or five pairs of large nerves to the arms, and, also, others to the muscles of the head. From its posterior border arise small nerves for the funnel, and also two large truuks for the

[^157](Müller's Arch. 1846, r. 128), the histological composition of the ganglia with the Cephatopoda is very remarkable. They have here found very lat \Rightarrow ganglionic glohules, of even one-twenty-fiftho inch in diameter, and containing, each. sever I nuclei.
back of the mantle. ${ }^{(1)}$ With Sepia, this inferior portion has several swellings; from the two anterior of these, whieh are the largest, arise the nerves of the arms; while the two lateral posterior send off the two optie nerves. ${ }^{(2)}$ With Nautilus, this same portion is divided into an anterior and a posterior transverse band, ${ }^{(3)}$ whieh may be compared, to a certain extent, to the semi-circle of ganglia upon the inferior surface of the œesophagus with certain Gasteropoda.

§ 241.

Among the Peripheric nerves, those of the arms and mantle should be specially mentioned.

The Brachial nerves enter into the axial canals of the arms at the base of these last, and extend even to their extremity after intercommunicating, each ${ }_{2}$ by a transverse anastomosis with the two neighboring nerves. ${ }^{(1)}$ In their course through this canal, they give off numerous filaments to the museular substance of the arms and to the suckers. With the Octopoda, these nerves are eomposed of two parallel cords, each one of which has, alternately right and left, ganglionie enlargements. ${ }^{(2)}$

The two Pallial nerves, whieh are easily scen from their size, pass, at first, between the cervical muscles, and, having reached the internal surface of the back of the mantle, terminate in two very large ganglia (Ganglion stellatum) from the external border of which pass off numerous nervous filaments, which enter, ray-like, the fleshy portion of the mantle. ${ }^{(3)}$ With those Loligina, which have fins, the pallial nerves, before terminating in the star-like ganglia, send off a large braneh, which, at a short distanee from its origin, is joined by another large branch from the pallial ganglion, and is then distributed to the museles of the fin. ${ }^{(4)}$ With the long-bodied species of this family, this nerve pursues a long course by the side of the me-

[^158]* $[\$ 240$, note 1. $]$ See especially the excellent illustrations of Milne Edwards, Rège anim, loc. cit. Pl. Ib. See, for a very detailed description of this system with Ommastrephes, Hancocle (Ann. Nat. Hist. X. 1852, p. 1), who has sought to

2 Van Beneden, loc, cit. p. 14, Pl. II. fig. 3-5, Pl. III. fig. 4, and Pl. IV. (Argonauta). I have found the same organization with Octopus, and Tremoctopus. In this last genus, the ganglia may, from their reddish color, be very clearly separated from the white nervous substance. Both the smooth and the nodulated cords send off nerve-filaments, but with the last, they arise exclusively from the ganglionic swcllings.

I have been unable to dceide if the smooth cords send off filaments only to the muscles, and the nodulated ones to the suckers; or if the first contain only motory fibres, and the second sensitive fibres. I should add that in the axis of Hectocotylus tremoctopodis I have also found a highly-developed, nodulated trunk, the number of swellings of which correspanded with that of the suckers.

3 See the figures of Van Beneden, Delle Chiaje, Brandt, loc. cit., and of Owen, in the Cyclop. I. fig. 232 (Argonauta, Octopus, Loligo, and Sepia).

4 See the figures of Delle Chiaje, and Owen, loc. cit. (Loligo and Sepia).
point out the homologies of the Cephalopoda with the Mollusca. - Ed.
\dagger [§ 241, note 1.] See also the illustrations of Milne Edwards, Régne animal, loc. cit. Pl. I. fig. 3, f. f. (Argonauta). - ED.
dian line of the body until it reaehes the base of the large fin-muscles, situated at the extremity of the body. ${ }^{(5)}$

With Nautilus, numerous filaments arise from the posterior ganglionie band, and, without forming a ganglion, are distributed to the two muscles of the shell. From their origin, they may be regarded as the representatives of the pallial nerves of the other Cephalopoda. ${ }^{(b)}$

Another pair of nerves eorresponding to the Pneumogastrie nerves of the Vertebrata, arises from the middle of the inferior cercbral mass, between the two pallial nerves, deseends along the neck behind the funnel, the posterior wall of whieh it pierees, and thence passes under the peritoneum; here it sends several nerves to the ink-sae, and then ramifies upon the heart, the large vaseular trunks, the branchial hearts, and the branchiae. Both of these nerves have ganglia, here and there, in their net-works, ${ }^{(\pi)}$ and these net-works eommunicate probably with the Plexus splanchnicus pasterior.

$$
\S 242
$$

The Splanehnic nervous system is partieularly developed with the Cophalopoda. It may be divided into an anterior and a posterior plexus. ${ }^{\left({ }^{()}\right.}$

The Plexus splanchnicus anterior consists of a Ganglion pharyngeum inferius, situated under the œesophagus sending filaments forwards to the parts of the mouth, and backwards to the eesophagus, and connecting at the same time with the inferior cerebral mass by two commissures. ${ }^{(2)}$

With the Loligina, there is, beside, opposite this ganglion, a Ganglion pharyngeum superius, whieh, also, sends several filaments to the parts of the mouth, gives off two filaments to the inferior asophageal ganglion, and appears to connect, likewise, with the superior cerebral mass. ${ }^{(3)}$

The Plexus splanchnicus posterior is characterized by a large Ganglion gastricum lying upon thestomach. From this, filaments pass off in different directions to the other viscera, and it receives two filanents of commuaication, which, after having arisen from the inferior pharyngeal gangliou, accompany the cosophagus through the oesophageal ring. ${ }^{(4)}$

[^159]232, c. (Sepia); V(on Beneden, loc, cit. p. 18, Pl. I. fig. $\mathbf{h}_{\text {, h. Pl. HIL tig. } 5 \text {, k. and PI. IV. r. (Argo }}$ nanta) ; Owen, On the Nautilus, MI. VII. fig. 1, No. 15, or, Isis, Tul. IV. 7, fig. 1, ar Anm. d. Sc. Nat. 11. III. hig. 4, No. 16 (Nautilus) ; and Delle Chiaje, loc. cit. Tav. XCV. (25), C. (31), and C11. (29), (Loligo, Sepia, and Octopus).

1 l'or the sympathetic nervous system see Brandt, Ceber die Mundmagennerven der Evertehraten, lue. cit. p. 40.
\& Brandt, Mediz. Zool. II. p. 309, Taf. XXX11. fig. 23, 3; Owen, Cyclop. Hoc. cit. fig. 232 (Sepia); Ian Beneden, luc. cit. p. 16, PI. 1I. fig. 6 (drgoлаиta); Delle Chiaje, loc. cit. Tav. XCV. C.-C1F. ($25,29-31$), (Loligo, Sepia, and Octopus).
${ }_{3}$ Brandt, Owen, and Delle Chiaje, loc. cit. (Sepia and Lolimo).
4 Van Beneden, loc. cit. Pl. IlI. fig. 1-3, and PI. IV. (Argonauta) ; Brandt, loc. cit. Tat XXXII. fig. 3,20 ; and Delle Chiaje, tac. eit Tav. C. (31), and CII. (29), (Sepia and Loligo).

CHAPTER V.

ORGANS OF SENSE.

$$
\text { § } 243 .
$$

The sense of Touch is well developed with the Cephalopoda, and is situated in the whole eutaneons cnvelope, in the fringed labial membranes, and, especially, in the arms. ${ }^{(1)}$ Nautilus is particularly rich in tactile organs, which are situated on the head; and this animal has, beside the thirty-eight tentacular arms, two external, and two median, large, labial prolongations, plaeed about the mouth, the border of which has twelve small, curled filaments, whose internal structure quite resembles that of the arms.

The nerves of the filaments of the two external of these prolongations have an origin eommon with thosc of the arms, arising, eonsequently, from the front border of the anterior cercbral band. Those of the filaments of the median prolongations arise from the same band (but nearer the median line), by two eommon roots which, before dividing, have a flat ganglion. ${ }^{(2)}$) This animal has, also, four other eurled tentaeles, which can be retracted in a sheath, two in front of, and two behind, the eyes. These tentaeles receive a speeial tactile nerve, which has its origin by the side of the optic nerve. ${ }^{(3)}$

§ 244.

With the Cephalopoda, the fleshy point of the tongue is undoubtedly a_{a} Gustatory organ. It is eonecaled in the anterior angle of the lower jaw, and its rounding surface is covered with numerous soft villosities, whieh very probably serve as gustatory papillae. ${ }^{(1)}$

§ 245.

The Olfactory organs of the Cephalopoda are situated in the neighborhood of the cyes, and consist, cach, of a cavity with tumid borders, or of a cutaneous fossa which has an opening, and, sometimes, at the bottom, a whitish papilla. The nerves of these organs arise from the optie ganglion of the oesophageal ring, near the optie nerves. At first, they are elosely united with these last, enter the orbit with them, and extend along its posterior wall, thence to the olfactory papillae, to which they are distributed in a ray-like manner. ${ }^{(1)}$

[^160]tilus this part of the tongue as having all the characteristics of a gustatory organ. With Sepia, the soft papillae have already been figured by Savigny (Descript. de l'Egypte, loc. cit. 11. I. fig. 4, 5 , and in Ferussac, loc. cit. Sepia, Pl. 1V. fig. 2", 33).
1 The cavities here mentioned were for a loner time regarded as the external auditory passages, and the cutaneous folds surrounding them as a Pivilion (Ferussac, loc. cit.), until Külliker (Froriep's neue Notiz. XXVI. 1843, p. 166, and, Litwiekel. d. Cephalopoden, p. 107) discovered a special nerve, and declared, with reason, that the whole was an olfactory organ. The Cephalopodit being poor in vibratile organs, it is quite desirable to ascertain if these olfactory organs are ciliated, for they are so in fishes with which cibiated epithelium is likewise feebly developed.

With Nautilus, the two olfactory papillae are situated, directly beneath the eyes, in a eavity which is surmounted by a wart-like swelling. ${ }^{(2)}$ With the Octopoda, the olfactory organs are coneealed, behind the eyes, in the angle of insertion of the mouth upon the oeciput. With Argonauta, and Tremoctopus, they consist of two naked papillae; and with Octopus, and Elcdone, of two membranous eavities. ${ }^{(3)}$

With the Loligina, these organs are situated behind and a little below the eyes, and consist of fossae having narrow apertures; but they are easily seen from the elongated or round eutaneous swelling with which they are surrounded. ${ }^{(4)}$

§ 246.

The Auditory organs of the Cephalopoda are situated in the lower middle portion of the eephalic eartilage, where they form two more or less large, round cavities, separated by a eartilaginous septum, and without any external communieation. ${ }^{(1)}$ With the Octopoda, the internal walls of these cavities are smooth ; ${ }^{(2)}$ but with the Loligina they have many tubereles or papillae, which are sometimes quite prominent. ${ }^{(3)}$ This portion of these organs may best be compared to the osseous Labyrinthus of the Vertebrata. These cavities are filled with a liquid substanee, and contain, also, eaeh, a small pyriform sae - membranous labyrinth - adhering to the cartilaginous labyrinth at the point where the auditory nerve enters it, and upon whieh this nerve is spread out. This sae contains a single, white, irregular otolite of a crystalline texture. ${ }^{(t)}$

2 Valenciennes (loc. cit. p. 290, Pl. VIII. fig. 2, h. P. IX. fig. 1, h. x., and fig. 3) in I841, and consequently before Kölliker, describel these organs as olfactory with Nautilus; he found not only the nerve which goes to the olfactory papilla, but also an orifice at the base of this last, leading into a cavity lined with a mucous membrane which had two regular rows of folds. Owen (On the Cephalopods with chambered shells, p. 11) has regarded these papillae, which he appears to have completely overlooked in his earlier memoir, as short hollow tentacles. On the other hand, he regards as the olfactory organs a row of twenty membranous lamellae arranged longitudinally at the entrance of the mouth between the two internal labial prolongatious (On the Nautilus, p. 4I, Pl. IV. 1., Pl. VII. fig. I, g. fig. 2, or 1sis, p. 34, Taf. III. IV., or Ann. d. Sc. Nat. p. 14I, Pi. II. fig. 1, l., P'l. Inl. fig. 4 , g. fig. 6); but it would appear to me that these lamellae are tactile lobules, for they receive numerous nerve-filaments from the ganglia of the nerves of the internal labial prolongations (Owen, loc. cit.).

3 With Argonauta, and Tremoctopus, these olfactory nerves have a ganglion lying on the optic nerve (Kolliker, Entwickel. d. Ceph. p. I68); this was seen by Van Beneden (loc. cit. p. I3, PI. I. fig. $5,6, \mathrm{k}$.), but not explained. The olfactory cavities of Octopus dill not, indeed, escape the notice of Rapp (Natmrwiss. Abhandl., von einer Gesellsch. in Würtemberg, 1826, p. 69), and of Delle Chiaje (1)escriz. \&c. Tav. M1. fig. I. k. and Tav. XVIII. fig. I, y), but they did not in the least suspect their nature.

4 Aceording to Owen's account accompanied with a figure (On the Nantilus, pl. VII. fig. 3 , No. 9 , or Isis, I835, Taf. IV., or Ann. i. Sc. Nat. XXVIII. P1. ItI. fig. 5, No. 9, and Cyclap. I. p. 5t9, fig. $232, \mathrm{k}$), the olfactary nerves of Sepia and Loligo appear to arise from a special ganglion situated
near the Ganglion opticum. The entrance, with its tumid borders, of the olfactory cavilies, has often been figured with the Loligina, by Ferussac (loc. cit. Sepia, Pl. XVII. fig. 2. c. Pl. XVIII. fgg. 3, b. Pl. XXVII. fig. I, 6; Loligo, Pl. XX. Af, 7 , Pl. XXIII. fig. $5,17, \mathrm{Pl}$. XXIV. fig. $2, \mathrm{It}$; Sepioteuthis, Pl. VI. fig. 2, b.; Sepiola, Pl. III. fig. $5,15 \mathrm{~b}$.).
1 It has alreudy been seeu ($\$ 245$) that the olfactory organs of the Loligina have beeu taken by some naturalists for an external ear.

A very remarkable organ-a dexuous canal lined with ciliated epithelium, has been seen hy Kölliker (Entwick. d. Ceph. p. 105, fig. 60-63), but, only with the embryos of Sepia and Loliso; departing from the auditive vesicles, it ran in front without opening either upon the surface of the body, or into the cesophagus, so that it could have been neither an external auditory duct, nor a Tube Eustachii
2 See Scorpa, Anat. disquis. de auditu et olfactur, p. 3, Tha. IV. fig. II (Octopus); Delle Chiaje, Descriz. \&c. Tav. XIV. fig. I, d.; and l° an Beueden, loc. cit. Pll. I. fig. 3 (Armonauta)
${ }^{3}$ See Brandt, Mediz.Zool. p. 30, Taf. XXXII fig. It ; Wagner, Ieon. zoot. Tab. XX1X. fig, 3739 ; Owen, Cyclop. I. p 554 , fig. 235 , and Transact. of the Zool. Soc. II. Pl. XXI. hirs. 17; ain Delle Chiaje, Descriz. \&c. I. p. 68, Tav. X1L. fig I2, 21 (Sepia and Loligo). This last-mentioned author has compared some of these cartilagimus prominences to the Ossicula of the ear ; but to me they appear to represent rather the first traces of semicircular canals, which, with the embryos of tishes, appear to consist, likewise, of simple prominences ou the internal surface of the aulitive vesicle.

4 These otolites are composed mostly of carbouate of lime, and vary considerably in their forms. With the Octopoda, they resemble, more or less, is

The auditory organs of Nautitus are somewhat different. They are widely separated from each other, and situated in the prolongations of the cephalic cartilage which extend in front; they consist of a very long, narrow labyrinthian cavity containing a homogeneous, thick liquid without otolites. ${ }^{(5)}$

$\S 247$.

The Eyes of the Cephalopoda are very highly developed and disproportionately large. ${ }^{(1)}$ Although resembling very much those of the Vertebrata, yet they differ from them in many respects. ${ }^{(2)}$ With the Octopoda, and Loligina, each cyc has an ocular Bulb and a Capsule.

The capsule is formed by the cartilaginous orbit, and by a fibrous nembrane attached to the borders of this last, and is blended externally with the cutaneous envelope. This envelope, in the form of a circular swelling, covers the eye, and, being thin and transpareut, takes the place of a Cornea, - a part which, properly, does not exist with the Cephalopoda. ${ }^{(3)}$

The circular swelling often has, above and below, a semilunar fold of skim containing muscular fibres, which, upon contraction, cover the convesity of the cye like an upper and under lid. The ocular bulb, contained in this capsule, is round and a little flattened in front; and, as it is not adberent to its capsule in front nor upon the sides, there is a free space, which, from the absence of a cornea, would coincide with the anterior chamber of the eyc. ${ }^{(4)}$ In most cases, this space contains a transparent liquid, and is lined by a serous membranc covering not only the posterior surface of the anterior part of the capsule, but also the anterior surface of the bulb. It is remarkable that this same space, which contains in part the anterior chamber, communicates, externally, by a circular orifice which, with the Octopoda, is covered by the upper lid, and with the Loligina, is situated upon the anterior border of the cutaneous fold which takes the place of the cornea. Internally, this space can be closed by a kind of fold

[^161]1 The largest eyes are found with the Loligina; the smallest with the Octopoda.

2 For the structure of the eyes of Cephalopoda, see, beside Cuvier, Mém. p. 37, Pl. II. fig, 5, and Pl. HII, fig. 7, and Owen, Cyclop. I. p. 551, fig. 234, -Massalien, Descript. oculorum Scombri Thynni and Sepie, Diss. Berol, 1815, p. 10 ; Soemmerring, De Oculorum hominis animaliumgue sectione horizontali, p. 76, Tab. III. ; De Blainville, Princ. d'Anat. comp. p. 441 ; Mayer, Analekt. f. vergleich. Anat. Hft. I. p. 52 ; Krohn, Nov. Act. Acad. Leop. Carol. XVII. Pt. I. p. 339, Tab, X.XVi, and XIX. Pt. II. p. 43 ; Wharton Jones, Lond. and Edinh. Philos. Mag. 1836, Jan'y, or Froriep's Notiz. XLVIII. p. 2, fig. 1-3; Delle Chiaje, Descriz. \&c. I. p. 70, Tav. XIX. and XXIX. alse Ossurvaz. Anatom, su l'occhio umano 1838, Tav. IX. fig. 111 ; Vatentin's ideal section of an eye of a Cephalopod, in Wagner's Icon. zoot. Tab. XXIX. fig. 42 ; and John Power, Dublin Jour. of Med. Scicnce, XXII. 1843, p. 350.

3 Krohn, Valentin, and others, admit the existcnce of a particular horny substance situated between the cutaneous layers of the anterior part of the ocular capsule.

4 Treviranus (Vermischte Schrift. III. p. 154; says he has observed a thin, transparent, but solid membrane, placed directly in front of the lens, and continuous with the conjunctiva (Argentea), thus forming a completely-closed anterior chamber; but this statement requires confirmation.
or Pupil. The serous membrane just mentioned, whieh is spread over the oeular bulb even to the papillary border of the iris, contains a partieular pigment of a silvery lustre, ealled the Argentea, and comparable to a Conjunctica. ${ }^{\text {(5) }}$

With Onychoteuthis, Loligopsis, and allied genera, the anterior wall of the oeular capsule is entirely wanting, and as there is also no eornea, the crystalline lens is in direet eontact with the surrounding medium (the water of the sea). In the first of these genera, the free border of the eapsule has, in front, a deep fissure eorresponding, perhaps, to a laehrymal canal. ${ }^{(6)}$

The Iris is formed from the argentea, whieh is eovered on its posterior surfaee by a black Uvea, while its anterior surfaee often has chromatie eells.

The pupil is usually of a transverse, or semilunar, rarely of a eircular form, and is eapable of being eompletely elosed. ${ }^{(7)}$ Under the Argentea extends a thin eartilaginous tunie - Sclerotica - whieh, behind, eircumseribes the oeular bulb, and, in front, penetrates a eertain distanee into the iris. It furnishes points of insertion for the museles of the eye, and is eribriform behind for the passage of numerous filaments of the optie nerve.

The eavity of the bulb is filled with a transparent, watery liquid whieh takes the plaee of the vitreous body, and is eontained in a very thin Hyalö̈dea.

The Crystalline lens is spherical, and lodged in a deep depression of the vitreous body. It is of a brownish color, and its anterior surfaee projeets through the pupil, so that the posterior chamber of the eye is only a small eireular spaee. As with the Vertebrata, this organ is eomposed of numerous eoneentrie layers, but has the remarkable peeuliarity of being divisible into halves, the anterior of whieh is less eonvex than the posterior, but both are exaetly joined together; the borders of these halves are quite bevelled, but are kept in plaee by the Ciliary body whieh arises from the selerotiea and iris. One part of this eiliary body embraces the borders of the lens, while the other penetrates between its halves as a thin, transparent septum. ${ }^{(8)}$

[^162]The Optic nerves enter the posterior part of the orbit through a kind of Foramen opticum, after which they swell into a large kidney-shaped ganglion in which a portion of the nerve-fibres are completely interlaced with those from the opposite side. ${ }^{(9)}$ Leaving this Ganglion opticum, the nerve divides into numerous filaments which traverse the cribriform selcrotica, and then unite with the other elements of the Retina. The extcrnal layer of the retina is composed of these filaments; beneath it, is a pigment layer of a reddish-brown color, and picrced by numerous fibres given off rectangularly from the external layer. The internal layer is composed of granules, among which the fibres of the optic nerve probably terminate. ${ }^{(10)}$ The external layer is continuous as a thin membrane upon the ciliary body, and even upon the septum of lens. ${ }^{(11)}$

The two optic ganglia are enveloped by a peculiar white substanec composed of fat-cells, which, perhaps, serves only as a fat-cushion. ${ }^{(12)}$ The eye is moved by several straight and oblique muscles, which arise from the cartilaginous portion of the orbit, and are inserted, usually, upon the middle of the bulb.

But with Nautilus, the eyes differ in many respects from those of the other Cephalopoda. They are supported upon a muscular stalk and project from the head; while with the other Cephalopoda, excepting Loligopsis, they are sunken decply in the head. ${ }^{(13)}$ From the rudimentary lower lid a narrow furrow passes over the antcrior surface of the eye even to the small, circular pupil. As yet, neither cornea nor lens has here been found. ${ }^{(14)}$

[^163]a long time upon dead specimens, it may he suspected that the exceptionable peculiarities observed by Owen, and Valenciennes, are referable to the want of fresh specimens. It is, at first, singular that Owen (On the Nautilus, p. 39, Pl. I. v. w., or Isis, p. 32, Taf. I. 1, fig. 1, v. W., or Amm. des Sc. Nat. p. 139, Pl. I. fig. 1, v. w.) speaks of a ridge, and Valenciennes (loc. cit. p. 289 , Pl. IX. fig. 1, No. 3) of a furrow, running from the border of the lower lid to the pupil. As the cornea is wanting, it might almost be supposed, from examining Valenciennes' figure (Pl. VIII. fig. 2, P.), that Nautilus belonged to the Oigopsides of D'Orbigny, except, that with this animal, instead of a complete absence of the anterior part of the ocular capsule, there exists only a fissure, regarded by one of the authors in question as a ridge, and by the other as a furrow. The lens, not perceived by either Owen, or Valenciennes, escaped perhaps through this fissure, after having been detached by maceration.

As for the pigment layer, spoken of by Owen, as situated upon the concave surface of the retina of Nautilus, this problem will be explained, from researches upon fresh specimens in the same way, as with the other Cephalupoda.

CHAPTER VI.

DIGESTIVE APPARATUS.

Abstract

§ 248. The mouth of the Cephalopoda ${ }^{(1)}$ is always surrounded by the arms,

 (which serve partly as prehensile organs), and by a circular fleshy lip which is fringed or denticulate on its frec border. It is, moreover, covered externally by a thin cutaneous fold having a crucial opening. With the Loligina, there is, beside, a third external lip, arising as a cutaneous fold from the base of the arms; it has an heptagonal, rarely an octagotal, opening, from the angles of which project longer or shorter tentacular prolongations. ${ }^{(2)}$ With Nautilus, this lip is extraordinarily developed, baving four considcrable prolongations provided with long tentacles. ${ }^{(3)}$Behind these lips is a round pharynx, very fleshy, and armed with two blackish-brown, horny jaws, which move against each other vertically.

Upon each of these jaws are two large lateral branches which join at an acute angle, thus forming a hooked point. The edges of these jaws being very sharp, the whole has the form of a reversed parrot's-beak, for, the edges of the lower jaw project far beyond those of the upper. ${ }^{(4)}$ The pharynx is enveloped by a very complicated muscular apparatus, which arises in part from the cephalic cartilage, and moves the jaws as well as serves in producing the protraction and retraction of the pharynx. ${ }^{(5)}$

Between the two branches of the lower jaw is a Tongue, which is fleshy, and resembles a long swelling adherent to the floor of the oral cavity. Upon its anterior extremity are soft gustatory papillae, and over the rest of its surface there are horny lamellae arranged in regular longitudinal rows, and golden-yellow spines which point backwards. ${ }^{(6)}$ Its posterior extremity is often folded over, thereby forming a kind of cavity, the opening of which is directed backwards, and continuous with a semi-canal leading into the œesophagus.

$$
\text { § } 249 .
$$

The intestinal canal of the Cephalopoda is wholly without ciliated epi-

[^164]given by Ferussac, loc. cit. According to Owen (On the Nautilus, p. 20, Pl. VIII. or Isis, p. 18, Taf. I. or Ann. d. Sc. Nat. p.109, PI. IV.), with Nautilus, the extremities of the jaws are covered with a blu-ish-white calcarcous substance, and the border of the lower jaw is denticulated ; but Valenciennes (loc. cit. p. 279, Pl. XI. fig. 1, 2) has not confirmed these obscrvations.
${ }^{5}$ For this muscular apparatus, see Cuvier, loc. cit. Pl. III. fig. 3-5, and Anat. comp. V. p. 9 (Octopus) ; and Owen, loc. cit. (Nautilus).
${ }^{6}$ Needham, Nouv. Decouv., loc. cit. p. 28, P1. III. fig. 1 ; Brandt, loc. cit. p. 305, XXXII. fig. 6-10; Savigny, luc. cit. I'l. I.; Férussac, loc. cit. Octopus, Pl. III. Argonauta, Pl. IV. Sepia, Pl. IV.; Owen, On the Nautilus, p. 22, 1'I. VIII. fig. 6, 7, or Isis, p. 19, Taf. II. or Ann. d. Sc. Nat. p. 113, PI. IV.; and Valenciennes, loc. cit. p. 280 , PI. X. fig. $3,4$.
thelium. It begins behind the pharynx by a straight, long, very narrow œsophagus, whose internal surface is longitudinally plicated. After leaving the annular opening of the eephalic cartilage, it cuters the peritoneal cavity, which is highly developed and divided by constrietions into several chambers. With the Loligina, the cesophagus is of uniform calibre throughout to the stomach; ${ }^{(1)}$ but with the Octopoda, it is abruptly dilated, upon leaving the cephalie cartilage, into a kind of crop, which extends to the stomach. ${ }^{(2)}$ With Nautilus, also, it is dilated, but gradually, into a very large crop, which communieates with the stomach by a narrow, short canal. ${ }^{(3)}$
The Stomach invariably consists of a sac lined with a very solid epithelium, which is plicated longitudinally; the Cardia and Pylorus are situated elose to each other at its upper portion. ${ }^{(4)}$ As soon as the intestine has left the pylorus, it forms a Caeeum which has glandular, plieated walls, and, with many genera, is more or less elongated and spirally convoluted. ${ }^{(5)}$ The rest of the intestine is short, rarely flexuous, and exteuds from the peritoneal sac to the base of the funnel, ${ }^{(6)}$ where it terminates in a small anal prolongation, the borders of whieh are often fringed; sometimes it has two lateral tongue-shaped valves, placed opposite each other, and by whieh the anal opening ean be elosed. ${ }^{(\pi)}$

§ 250.

The Salivary organs of the Cephalopoda are highly developed, and consist of a superior and an inferior pair, the former of which is sometimes, but the latter very rarely, wanting. The superior pair consists of two glandular lobes situated at the posterior extremity of the pharynx, which open by short exeretory ducts behind the root of the tongue. ${ }^{1)}$ The inferior pair lies on each side of the oesophagus at the upper portion of the peritoneal sae, dircetly behind the cephalic cartilage. These organs, usually of a dull-white color, are couposed of numerous inter-

[^165]III. (Argonauta); Delle Chiaje, Descriz. Tav. XIII. XV. XVIII. (Tremoctopus. Sepia. and Loligo) ; Cuvier, Mém. Pl. IV. fig. 1, 2, f.: Wairner, loc. cit. fig. 1t, f. (Octopus) ; Home, Lect. on Comp. Anat. Pl. LXXXIr1. (Loligo sagittata) ; and Ferussac, loc. cit. But, in this respect, Loligo vulraris forms an exception; its caecum is straight, oblong, and its thin walls are without internal plicae: see Mfekel, Syst. d. vergleich. Anat. IV. p. 190, and Delle Chiaje, Descriz. \&c. Tav. XVI. tig. 5 , s.
(f The intestine is straight with Argonauta Loligo, Sepia, Scpiola, and other Loligina ; but it is flexuous with Octopus, Eledone, and Nautilus.
7 Owen (Transact. of the Zool. Soc. II. YI. XXI. fig. 16) has found two lateral valves projectiug into the anal cavity with Sepioteuthis. I have seen two similar with a Tremoctopus, Ruthfie (Mén. de St. Pétersburg, loc. cit. p. 160 Pl. II.) has found them replaced, with Loligopsis, by two tentaculiform prolongations.
1 Cuvier, Mém. 1. 27, Pl. MII. fig. 3, e. (Octopus) ; Férussac, loc. cit. Octopus, P1. XII. fig. 6. n. Pl. XIII. fig. 9, n.; Owen, Cyclop. I. p. 532, fig. 218, i. (Onychotcuthis). With Nautilus, Owen fouud no lower, and only the traces of che upper glands (On the Nautilus, p. 23, II. VIII. fig. 7, g., or Isis, p. 20, Taf. IL., or Anm. d. Sc. Nat. p. 114, Pl. IV. fig. 7, g.).
anastomosing glandular tubes, forming, sometimes, several lobes, and sometimes, a single triangular mass with a smooth exterior.

In their passage in front, the two exeretory ducts converge and form, under the oesophagus, a common canal which traveises the pharynx and terminates in the mouth near the root of the tongue. ${ }^{(2)}$

The Liver is generally of a reddish-yellow color, and is rarely lobulated. Usualiy, it is a compaet glandular mass eapsulated by a fold of the peritoneum. ${ }^{(3)}$ With the Octopoda, it is a large, smooth, ovoid gland, ${ }^{(4)}$ while with the other Cephalopoda, with a few exceptions, ${ }^{(5)}$ it is divided into two or four portions symmetrically surrounding the oesophagus. ${ }^{(15)}$. The bile, when this organ is single or double, is excreted by two ducts arising from the inferior extremity of the organ ; but when this organ is quadruple, as with Nautilus, and Loligopsis, each division has a special excretory duct, and all these ducts soon unite iuto a common Ductus choledochus, whieh, after a short course, opens upon the sides of the coecum. ${ }^{(7)}$

As a Pancreatic gland may, certainly, with reason, be regarded the pale-yellow, short, ramified glandular tubes, which, with many species, are appended to the hepatic ducts with which they communieate by many orifices. ${ }^{(8)}$

2 For the intimate structure of these glands which appeu to be wanting with Nautilus, and Lolisropais, sce J. Muller, De Glank. struct. P. 54, Mal. U. fix. 9. They are lobulated with Loligo, and consist only of a small compact body with Octopus, Eledone, Sepia, sc ; see Cuvier, Mém. Pl. III. fis. 2, 3; Warner, Icon. zoot. Tab. XXIX. fig. 1士, k.; Brandt, loc. cit. Thf. XXXII. fig. 3, 5; F'érussar, loc cit. Octopus, PI. XII. XLII. Their surlace is granulated with Sepiola, according to Delie Chiaje, Descriz. Tav. XXVI. fig. 1t, L., thil Grant, Trans. \&c. Pl. XI. fig. 8, g.
${ }^{3}$ For the intimate structure of the liver, see Mieller, De Gland. Struct. B. 71 (Octopus), and Rathke, loc. cit: p. 137 (Lotigopsis).

4 See Cuvier, Wagncr, and Ferussac, loc. cit.
z With Onychoteuthis Banksii, the liver is a single, very oblong mass; see Owen, in the Cyclop. I. p. 537.
© With N ale tilus, the liver is divided into four large portions, each componsud of numerous lobes anbracing on each sile the erop-like asophagus; see Owen, On the Nautilus, p. 26, Pl. IV. z., or Isis, p. 22, 'Taf. IIL., or Ann. d. S'c. Nat. p. 117, P'l. II. fig. 1. \%. With Loligopsis guttata, the four hepatic divisions are, according to Grant (Trans. \&c. D. 25, P1. II. fig. - , e. anl \%, iv), deeply conceated in the cavity of the body; while wihn Loligo Eschscholitzii, and dubia, it is a single mass, according to Rathlie (Mém. de St. Pétersb. loc. cit. p. 137, 170. Pl. 1I.). With Sepia, Joligo, Sepiola, \&ce, this organ is diviled into long halves, smooth externally, and extending from the neck along the dorsal median line, their length depending on that of the animal ; see Brandt, hec. cit. Taf. XXXII. fig. 3, p. (Sepia), and Grant, loc, cit. Pl. XI. fig. 7, 8. f. (Sepiota).

7 See Cuvier, Mém. p. 30, Pl. IV. fig. 2, ${ }^{4}$, n. n.; Férussac, loc. cit. Octopus, PI. XIV. fig. 5, 6, Argonauta, Pl. [5. fig. 2, d.; .Owen, On the Nautilus, [ll. VII. fig. 8, h., or Isis, Taf. II., or Aan. d. Sc. Nat. Pl. IV. fig. 8 h. ; and Grunt, Trans, of the Zool. Sac. I. Pl. II. fig. 7, b. Pl. XI. fig. 7, g. (Loligopsis and Sepiola).

This strocture und arrangement of the glandular appemitures of the hepatic ducts which were noticed and regarded as a pancreas by fifuter The Catal. of the Plysiol Ser. I. p. 229, No. Th5 with Sepia, remind oue very much of what is found in fishes, where, according to Stanuius' investigations, the pyloric appendrges communicate with the Ductus choledochus (see Brockmann (Stannius) De Pancreate piscium, Diss. Rostoch. 1846).* Aceording to Delle Chiaje (Descriz. I. p, 32, Tav. XII1. XVIIL.), these bodics exist not only with Octopus, Eledome, Tremactopus, and Argonauta, but also with Sepia, Loligo, and Sepiola. Grant (The Whinb. Philos, dour. XIII. 1825, p. 197) has describet them whith Loligo stigitta, and Owen sought in vain for them witl Noutilus, but found them hirlly developed with Sepiola, Onychotcuthis, Sepioteuthis, and Rossia (Uyclop. I. p. 53\%). See also Grant, I. Trans. of the Zoul. Suc. I. Pl. II. fig. T, c., Pl. XI. fig. 'T, 8, 13 (Loligopsis and Sepiola).
In the species of Loligopsis examined by Rathke (loc. cit. p. 160, Pl. II.) the Ductus choledochus was dilated into a round sinus at the point where the paucreatic tubes opened iuto it.

[^166]
CHAPTER VII.

CIRCULATORY SYSTEM.

§ 251.

The circulatory system of the Cephalopoda does not appear more highly developed than that of the other Mollusea. ${ }^{(1)}$ However, this subject is still deficient in creditable observations, and especially in those relating to the absence of completely-closed vessels.

The blood is usually colorless, or of a green-bice, or violet-bice color, and contains, proportionably, numerous round corpuscles enclosing many granules most of which are colorless, but with a few, scattercd here and there, of a violet hue. ${ }^{(2)}$

$$
\oint 252 .
$$

The Central organ of the circulation consists, with all the Cephalopoda, of a simple ventricle, situated in the centre of the cavity of the body, and surrounded with a pericardium. It is round, or oblong, ${ }^{(1)}$ and serves as an aortic heart.

With Nautilus (Tetrabranchiata), this organ receives, on each side, two branchial veins; while with the Dibranchiata there is one vein only, and the heart sends off a superior and an inferior aortic trunk. ${ }^{(2)}$ The mouth of the veins and the origin of the arteries are furnished with valves. ${ }^{(3)}$ The Asceuding aorta first sends two branches to the mantle, then gives off branches to the liver, to the upper portion of the digestive eanal, to the inferior salivary glands, and to the funnel. Behind the cephalic cartilage it bifurcates, forming a ring embracing the upper extremity of the cesophagus, and from which arise two arteries for the ocular bulbs, ${ }^{(4)}$ eight or ten for the arms, and many small branches for the parts of the mouth. ${ }^{(5)}$ The Descending aorta furnishes branches to

[^167]the stomach, the small intestine, the rectum, the branchiae, and the genital organs ; the artery of these last, however, sometimes arises directly from the heart.

Nothing positive can now be said as to the terminal relations of these arteries:- that is, whether they are directly continuous with the renous radicles by means of a capillary system with proper walls, or whether they terminate by orifices so that the blood is effused immediately into the parenchyma of the body. ${ }^{(6)}$
The Venous system begins in the different parts of the body by numerous small vessels, of which we are still ignorant whether they are continuous with the terminal arterioles, or whether they commence by themselves with proper orifices. Their radicles unite and form longer branches which finally open into a large Sinus. One of these sinuses, which is of a circular form, surrounds the upper extrenity of the esophagus, and receives the veins coming from the eyes, the arms, ${ }^{(7)}$ and the parts of the mouth. From this sinus arises another, of an oblong form, which, since it extends into the cavity of the body and receives the different veins from the viscera. may be called a Vena cava superior. In the centre of the body it divides into two large venae cavae which extend on each side to the base of the branchiae ${ }^{(8)}$ and terminate in the two so-called branchial hearts. ${ }^{(9)}$ These two veins receive, also, two trunks, which bring the blood from the mantle and are often dilated into two large sinuses. ${ }^{(0)}$
The distinct, but often very thin walls of the venous sinuses, are somctimes so intimately blended with the adjacent organs, that these sinuses may be easily taken for wall-less lacunae. ${ }^{(11)}$

[^168]
CHAPTER VIII.

RESPIRATORY ORGANS.

§ 253.

All the Cephalopoda respire by means of Branehiae. These are situated in the cavity of the mantle, separated from the other viseera, and outside of the peritoneum. Hectocotylus forms the only exeeption in this respeet, - its branchiae being free, and plaeed along the sides of the anterior half of the body under the form of numerous oblong, thin, thicklyset lamellae. ${ }^{(1)}$ Nautilus has, on each side, two branchiae, while the other Cephalopoda have only one.

These organs have a more or less oblong, pyramidal form, and are attached, at one of their borders, to the external surfaee of the mantle by a thin eutancous fold, - leaving their extremity to cxtend freely in front. The adherent cdge is bordered by the trunk of the branehial artery, and by a large glandular band, ${ }^{(2)}$ while the free border is oeeupied, from its base to the top, by the prineipal branchial vein. With Nautilus, and the Loligina, there are, between these vessels, numerous, triangular, branchial lamellae lying upon eaeh other, and plieated upon both surfaees. But with the Octopoda, these lamellae are replaeed by arches, which, on each side, pass from one vaseular trunk to another, and have, upon their eonvex edge, a multi-plieated membranous band. ${ }^{(3)}$ The branchial vessels extend from the branchial artery to the branchial vein through the lamellae and the branchial arches; ${ }^{(t)}$ and in this passage, the venous is ehanged to arterial blood. ${ }^{(5)}$ As there is no ciliated epithelium on the surfaee of the branehiae, the water is renewed exclusively by the rhythmical respiratory movements. ${ }^{(6)}$ It enters, from both sides of the funnel, into the interior of the mantle when its borders are open, and is ejeeted through the funnel by the contraetions of the mantle when its borders are elosed. ${ }^{(7)}$

1 I have found such with Hectocotylus tremoctopodis ; according to Kölliker (loc. cit.) that of Argonauta has also branchiae.
2 This glandular hody has been regarded by Cuvier (Mém. p. 20, Pl. II. fig. 3, Pl. III. fig. I, A.) and other zootomists as a muscular stripe; While Mayer (Analekten, \&c., p. 56, Taf. V. fig. 1, No. 14), from its cellulo-vascular texture, has taken it for a spleen. I have heen unahle to find in it any muscular fibres, but ooly numerous cells, and I am of the opinion that this enigmatical organ holds some special relations with the venous system.

3 see Owen, On the Nautilus, p. 30, Pl. VI. fig. 1, 2, or Isis, p. 26, Taf. IV., or Ann. d. Sc. Nat. p. I2t, Pl. III. fig. 2, 3, and Valenciennes, loc. cit. p. 281, PI. IX. X. ; The Catalog. of the Physiol. Ser. I1. Pl. XXI. XXII. (Sepia) ; Treviranus, Beobacht. aus. d. Zoot. u. Physiol. 1. 37, Taf. VIII. fig. 52-54; Grant, Transact. of the Zool. Soc. I. Pl. II. XI. (Loligopsis and Sepiola); Cuvier, Mém. p. 20, Pl. II. III.; Delle Chiaje, Descriz. Tav. XIX. fig. I-5 (Octopus); and Férussac, loc. cit.

4 The numher of the hranchial lamellae and arches varies very much. With Nautilus, each branchia is composed of a double row of forty-eight lamellae; the long-hodied Loligina have a double row also, composed of sixty to ninety lamellae. With Sepia, there are thirty pairs; and with the Octopoda, the number of branchial arches is still less; there are only fifteen pairs with Argonauta, and twelve alone with Octopus, and Eledone.
5 For the distribution of the blood-vessels in the branchiae of Sepia, see Tilesius, De Respirat. Sepiae officinalis, Tab. I. II.
${ }_{6}$ That, with the Cephalopoda, which are in general so poor iucilia, there should he no ciliated epithelium on the branchiae, is so remarkable a fact, that 1 have had it confirmed from fresh specimens by my friend H. Koch at Trieste, although Sharpey (Cyclop. I. p. 619) had already spoken of it.
${ }_{7} 7$ For these respiratory movements, see Gravenhorst, Tergestina, p. 1, and Wagner, in tho Isis, 1833, p. 159.

§ 254.

The existence of an Aquiferous system with the Cephalopoda cannot be doubted. ${ }^{(1)}$ It occupies the entire trunk of these animals, and terminates by two orifices between which lies the excretory duct of the ink-sac, and which are often situated upon a small tubular eminence of the peritoneum. Each of these orifices leads into a spacious, thin-walled cavity (lateral cell), ${ }^{(2)}$ situated near the pericardium. It contains the two venac cavae with their appendages, and communicates, by orifices and canals, with other aquiferous cells surrounding the various viscera, - such as the stomach and the caecum, as well as with the two so-called branchial hearts. These cells send a canal to the special genital glands. ${ }^{(3)}$

With Nautilus, there are, on each side, in the abdominal peritoncum, three orifices, through which the water of the cavity of the mantle enters into the lateral cavitics. ${ }^{(4)}$ There is another system of aquifcrous canals under the skin of the head and neck. It consists of several large reservoirs which extend somewhat deeply between the organs of this portion of the body. These reservoirs communicate externally by orifices situated upon different points of the head. ${ }^{(5)}$

CHAPTERIX.

ORGANS OF SECRETION.
I. Urinary Organs.
§ 255.
The Urinary organs of the Ccphalopoda, which have hitherto been much doubted, are particular appendages of the Venae cavae. With all the species having two branchiae, the two Venae cavae, formed by the division of the great median sinus, and which extend obliquely through the two lat-

[^169]5 With Tremoctopus violaccus, there are four very distinct Foramina aquifera. Two of these are situated at the superior part of the head behind the base of the superior arms, and the other two on the sides of the funnel (Delle Chiaje, loc. cit. Tav. LXXI. (11) fig. 10, p., Férussac, loc. cit. p. 92 Octopus, PI. XVIII. XIX. fig. 1). With Octopus tuberculatus, there are only these last two openings (Delle Chiaje, loc. cit. Tav. LV. (3), fig. 1, d. d. ; Wagner, in Heusinger's Zeitsch. f. d. organ. Physik. III. p. 227, Taf. XII. fig. 1, and Ferussac. loc. cit. p. 88, Octopus, Pl. VI. ${ }^{8}$ fig. 2).

It is the same also with Ommastrephes todarus (Ferussac loc. cit. Ommastrephes, II. II. fig. 3, 10). With Octopus indicus, there are eight small aquiferous orifices between the arms near the mouth (Ferussac, loc. cit. p. 25, Octopus, Pl. XXVI. fig. 1). According to D'Orbigny, there are only six, in the same situation with Sepia, Loligo, Onychoteuthis, \&c.
eral aquiferous eells to the base of the branehiae, have, exteriorly, variously ramified, glandular tufts whieh projeet into the aquiferous eells. ${ }^{(1)}$ Sometimes similar appendages are found also upon the prineipal veins whieh open, in these eells, into the venae eavae. ${ }^{(2)}$ With Nautilus, whieh has on eaeh side in the peritoneum four venae eavae, eaeh of these last extends between two eells eaeh of whieh reeeives a part of the glandular appendages with whieh it is provided. ${ }^{(3)}$

These organs, for a long time known as the Spongy bodies, ean now be regarded positively as kidneys; for, by ehemieal analysis, it has been proved that they seerete urie aeid. ${ }^{(4)}$ Careful examination of them has shown that their parenehyma eonsists of a tissue of eontraetile fibres, ${ }^{(5)}$ among whieh are spread branehes coming from the venae eavac.

This parenehyma is surrounded by a struetureless membrane, eovered with several layers of nueleated granular eells. The urine is secreted from the external surfaee of this eellular layer ; it is of a dirty-yellow eolor, and eseapes immediately into the peritoneal earities, and thenee is diseharged externally through their orifiees, whieh may, therefore, be taken for urethral eanals. These spongy appendages of the veins ought, therefore, to be regarded as everted glandular follieles, the seereting cells being situated externally and the blood-vessels within. ${ }^{(6)}$ Not unfrequently, the reddish erystals formed in the urine, eompletely inerust these glands, giving then their peculiar eolor. ${ }^{(7)}$

The so-ealled Branehial hearts of the Dibranehiata eontair no traee of museular fibres, and appear to be in some way eonneeted with the urinary organs. They are round, hollow, thiek-walled, and lie upon the eourse of the venae eavae between the last renal masses of the branehiae, so that the blood of these veins passes into their eavities and bathes their spongy walls. ${ }^{(8)}$ Their eolor is violet with the Oetopoda, and pale-yellow with the

[^170][^171]18.47, p. 1, Taf. I. His chemical, as well as his histological results, can leave little doubt as to the Renal nature of these organs. - ED.

Loligina. Their walls are composed of a dense wcb of cells, which, with the Octopoda, contain round, violet nuclei, of a crystalline texture and resembling entirely those found in the renal cells of the Gasteropoda. ${ }^{(9)}$

II. Organs of Special Secretions.

$$
\text { § } 256 .
$$

The Ink-sac is an organ generally common with the Cephalopoda. It is usually pyriform, situated upon the median line of the abdomen, and often enveloped with a peritoneal layer of silvery lustre. ${ }^{(1)}$ Its apex points forwards and upwards, towards the funncl. The walls of its generally small eavity are eavernous, ${ }^{(2)}$ and seerete the well-known black pigment, which, through contractions, passes into the funnel, and is then expelled, mixed with the water of the sea, which is passing out of the body. The excretory duet of this sae runs along the rectum, and terminates just behind the anus, or opens into the rectum. ${ }^{(3)}$

As an organ, also, of special secretion, ought to be regarded the eom-pletely-elosed chambers found in the shell of the Nautilina; for it is said that their walls, like those of the natatory bladder of fishes, secrete a gas. ${ }^{(3)}$

CHAPTER X.

ORGANS OF GENERATION.

$$
\text { § } 257 .
$$

The Genital organs of the Cephalopoda are always distributed upon two individuals, and present very remarkable peeuliarities.

Abstract

uated at the inferior or lateral portion, separates these bodies into two unequal divisions; see Brandt, loc. cit. Taf. XXXII. fig, 22, q. r. ; The Catal. of the Physiol. Ser. II. Pl. XXII. f. x. (Sepia) ; Delle Chiaje, loc. cit. Tav. XCI. XCIII. XCV. XCVI. (21, 23, 25, 26), (Loligo and Sepiola). ${ }^{3}$ Erdl (Carus, Erläuterungstaf. Hft. VI. p. 7) has published an observation on the glandular nature of these bodies, and the resemblance of their parenchyma with that of the kidneys of Helix, all of which I have been able to fully oonfirm. Nevertheless, these organs demand further chemical and histological investigation.

1 This organ, which is entirely wanting with Nautilus, and Hectocotylus, has an elongated form with the long-bodied species, and is large with those whose body is short; see Wagner, Icon. zoot. Tab. XXIX. fig. 20, h. i. (Octopus); Ferussac, loc. cit. Argonauta, Pl. 1. 5 fir. 2, 3 ; Brandt, loc. cit. 'Tab. XXXII. Heg. 1, 2t, o. (Sepia). That of Sepiola is quite remarkane in having an extriordinary development in certain individuals, at particular seasons, without reference to the sexes. There are then found two long botics adherent by a constriction to the sides of the otherwise simple inksac. ' I'hese lateral bodies are black, composed of a glandular tissue continuous with that of the sae,

and surrounded by a muscular layer. Peters (Müller's Arch. 1842, p. 329, Taf. XVI. fig. 1, b. b. $8-10$) has seen it contract regularly. With the specimens preserved in alcohol the ventral surface appears colorless. Grant appears to have been unaware of this increased development at certain times with Sepiola, for he has attributed to them in general a trilobed ink-sac (Transact. of the Zool. Soc. I. p. 82). In the Sepiola figured by Delle Chiaje (Descriz. Taf. XI. 1ig. 4, 1.), the two lateral lobes in question are very distinct.
2 Delle Chiaje, Descriz. I. P. 74, Tav. XIII. fig. 1, 2. Tav. XVIII. fig. 4 (Loligo, Octopus and Eledone).
3 This last case obtains with the Loligina.
4 Owen (On the Nautilus, p. 47, or Isis, p. 39) has, it is true, left undecided the question whether these chambers are filled with gas or with liquid; but, according to Vrolik (Ann. of Nat. Hist. X1I. p. 174) the chambers of Nautilus pompilius really contain a gas composed chiefly of nitrogen without any trace of carbonic acid. These chambers resemble, in many respects, the swimming blulders of fishes, and, like them, serve, perhaps, to facilitate the ascension and descension of these animals in the water.

The Eggs, at their escape from the ovary, arc oval, and have a yellow, or rose-colored vitellus, containing a germinative vesicle and dot.

The vitclline membrane has transverse and longitudinal folds on its internal surface, which extend into the vitellus, - giving the eggs a reticulated aspect. ${ }^{(1)}$

The Spermatic particles are very active, of a cercarian, or a simply capillary form, and, as a whole, give the sperm a white color. Those of a cercarian form are proper to the Loligina, and consist of a cylindrical body to which is rather abruptly attached a small and pretty long tail. ${ }^{(2)}$ Those of a capillary form are found with the Octopoda, not only with the males of Octopus and Eledone, but also with Hectocotylus. ${ }^{(3)}$

§ 258.

The Ovary, always simple, is situated, at the base of the sac of the mantle, in a solid envelope (ovarian capsule) of a round or oblong form, and derived from the peritoneum. At its circumscribed point the proper ovary commences as a multi-lobulated body filling its cavity. ${ }^{(1)}$ The eggs, which are developed in the parenchyma of these lobes, appear first as round prominences; they gradually increase, and, finally, are attached to the ovary only by a small peduncle. At this epoch the ovary furnishes thew with a thin envelope (egg-capsule), through which, in the mature eggs, the reticulated folds of the vitelline membrane can be seen. ${ }^{(2)}$ When the eggs are fully matured, their capsules burst, and they fall into the ovarian capsule, after which, their proper capsules fade and finally disappear. ${ }^{(3)}$ From the ovarian capsule they pass into the oviduct through an infundibuliform opening; but, beside this opening, some Octopoda have also two others belonging to an aquiferous canal, and which, perhaps, play an important part in the fecundation of the eggs. ${ }^{(4)}$ The oviduct is simple, or doublc, and extends directly in front opening at the base of the funncl near the rectum. With Argonauta, and Tremoctopus, alone, the two female genital orifices are situated,

[^172]wide apart, in the region of the base of the branchiae. ${ }^{(5)}$ When there is only a single oviduet, it terminates always on the left side. ${ }^{(6)}$ With most of the Oetopoda, the oviducts, at near the middle of their course, traverse a round glandular body, the internal surface of which is longitudisally plieated; from this point to their extremity, they are covered with analogous glandular folds. ${ }^{(7)}$ This glandular body is absent with the Loligina, but the walls of their oviduct become thick and glandular before terminating. ${ }^{(8)}$ It is very probable that this glandular apparatus furnishes the materials of the various envelopes of the cggs after their escape from the ovary.

There is another peculiar glandular apparatus (Nidamental glands) having no direct connection with the genital organs, which eonsists of two hollow, pyriform, whitish bodies, situated upon the ink-sac of the female Loligina. These bodies have a lamellated structure and their obtuse extremity extends forwards; they open near the genital orifiee. ${ }^{(9)}$ Sometimes, directly in front of these glands, there is another gland, simple or double (aecessory nidamental gland), of a reddish eolor, lobulated posteriorly, composed of eocea, but apparently without any exeretory duct. ${ }^{(0)}$ This whole glandular apparatus secretes, perhaps, a substance with which the eggs are eoated as they pass from the oviduet, and which serves to glue them to foreign bodies.

The deposited eggs (spawn) are always surrounded with envelopes and prolongations of various forms, by which they are bound together and attaelied to submarine bodies. Thus, those of Sepia are enclosed, eaeh, in a black, oval capsule, composed of scveral horny layers, which is prolonged at one of its extremities into a short, cleft peduncle, by which the eggs are attached, singly or in groups, to marine plants; ${ }^{(1)}$ but those of the Loligina are united by a colorless gelatinous substance into a chaplet, and are enclosed, moreover, caeh, in a special eapsule one of the extremities of which has a small peduncle; thus arranged, they form large masses floating free

[^173][^174]in the sea. ${ }^{(12)}$ With those of Argonauta and Tremoctopus, the envelope is eomposed of a solid, homogeneous, eolorless substanee. and at their pointed extremity there is a small filament; these filaments being entangled together, the eggs form large botryoidal masses. Argonauta attaehes these bunches to the convex portion of its shell; ${ }^{(13)}$ but Tremoctopus, with which these masses are in ehaplets, forms them into a staff-like strueture, by means of a tissue, of leathery eonsistence, seercted for this purpose. ${ }^{(14)}$ With the other Cephalopoda, the eggs are arrauged in tubes or in fillets. ${ }^{(15}$
$$
\text { § } 259 .
$$

The sim le, round, or oblong, whitish Testiele, is situated, in most speeies, at the bottom of the eavity of the mantle. It is surrounded by a capsule derived from the peritoneum but adherent to it only at one point. It is composed of numerous ramified eylinders, eonverging from the periphery towards the eentre, whieh is oeeupied by a narrow irregular cavity.

The sperm is formed in the intervals of the eylinders and thenee passes into the deferent eanal, whieh, at its passage from the testicular capsule, is narrow and very flexuous, but suddenly dilates at its upper extremity, where its walls are thick and glandular, and have a longitudinal fold on their internal surface.

This glandular portion of the Vas deferens reeeives the orifiee of an equally tlexuous eaecum, which is probably an organ of seeretion; and terminates, finally, in a large sae with museular but thin walls which are plieated longitudinally. This sae, known as the Bursa Needhamii, is followed by a fleshy tube (Ductus ejaculatorius), which extends dircetly in front and projeets, as a short penis, into the eavity of the mantle near the reetum. ${ }^{(1)}$

With the Loligina, and with Octopus, and Eledone, the sperm is not freely evaeuated, but is eneloscd in very complieated organs (Spermatophores), whieh, at the epoeh of procreation, aecumulate in abundance in the Bursa Needhamii, and are large enough to be seen with the naked cye. They are always cylindrieal and eonsist of a homogeneous, colorless, solid tube, round at the anterior extremity, but at the posterior end, somewhat constricted and then dilated into a kind of sphere. Eaeh of these Spermatophores eontains two kinds of organs: a very thin sae filled with spermatie partieles, and an apparatus to project these partieles outwards.

The Sperm-sac always eontains fully-developed spermatie partieles bundled together: it nearly entirely fills the cavity of the tube, through

[^175]15 See Quoy and Gaimard, Ann. d. Sc, Nat. XX. 1830, p. 472,11 I. X1V. B., and Ferussac, loc. cit. Octopus, 11. XXVIII. fig. 3.

1 For the male genital organs of Octopus, see Cuvier, Mém. loc. cit. p. 32, Pl. IV. fig. 5 ; he regards the upper glandular portion of the deferent canal as a Vesicula seminalis, and the coecum appended to it as a Prostata. See, also, Delle Chiaje, Descriz. Tav. VI. fig. 2, Tav. X1. fig. 2, 3, Tav. XII. fig. 28 (Octopus, Sepia and Loligo); Wagner, lcon. zoot. Tab. XXIX. fig. 22 (Octopus); Peters, in Miller's Arch. 1842, p. 332, 'Taf. XVI. fig. 2, 3 (Sepiola), and especially the beautiful figure of those of Sepia by Milne Elwards, in the Ann. d. Sc. Nat. XVILI. 1842, p. 341, Pl, XV.
which it is seen of a milk-white color. Its posterior extremity is attached, by a short, small ligament, to a kind of piston which forms the anterior portion of the projectile apparatus.

This piston is a solid, cylindrical body, continuous behind with a spiral ligament which is contained in a thin sheath extending to the posterior extremity of the tube, in a fold of which it terminates. ${ }^{(2)}$

The Spermatophores are evidently formed in the upper glandular portion of the deferent canal, where droplets of sperm are often seen arranged in rows, and, at first, appear surrounded by simple, colorless envelopes; these, as they advance in the Vas deferens, gradually resemble more and more the perfcet Spermatophores.

Those found in the Bursa Needhamii are always regularly arranged, and sometimes form, lengthwise, several superposed layers. Their anterior extremities always point forwards, and not unfrequently their posterior ends are bound together by long, flattencd, interlaced filaments. These Spermatophores are in the highest degree hygroscopic : they absorb liquids very quickly, and then their posterior extremity bursts, allowing the escape of the compressed spiral ligament together with its sheath, and the piston, which draws with it the sperm-sac to ${ }^{9}$ which it is attached. ${ }^{(3)}$

The projection of the seminal sacs occurs, most probably, at the moment when, during coition, the Spermatophores pass from the penis of the male into the sac of the mouth of the female. A true intromission of the penis into the female genital opening, appears impossible with these animals, so that coition consists only in a simplc juxtaposition of the genital organs. ${ }^{(4)}$ The fecundation of the eggs should occur very early - while the eggs are

[^176]has figured anew, as an Entozoa, and even as an Echinorhynchus, the uncoiled Spermatophores of Loligo (Descriz. III. 1841, p. 138, Tav. XI. fig. 12, 13). Wagner, also, formerly regarded those of Sepia as containing an Echinorhynchus, and has figured as such the piston with the spiral ligament in a rudumentary state (Lehrb. d. vergleich. Anat. 1835, p. 312, and Müller's Arch. 1836, p. 230, Taf. IX. fig. B. C.).
Carus went even still further, and described the Spermatophores as gigantic spermatic animals under the name of Needhamia expulsoria ; and regarded the parts they contained, such as the sperm-sac, the piston, the spiral ligament, \&c., as a colon, a small intestine, a stomach, a crop, and an cesophagus (Nov, Act. Acad. Nat. Cur. X1X. I. 1839, p. 3, Tab. I., and Erliaterungstaf. loc. cit. Mft. Y. 1840 , p. 4, Taf. I. fig. 10). It was not until 1839, a time when severai naturalists were convinced of the presence of spermatic particles in the sperm-sac, that the true nature of these bodies was fully understood ; see Philippi, in Maller's Arch. 1839, p. 301; Krohn, in Froriep's neue Notiz. XII. 1839, p. 17 ; Siebold, Beitrige z. Naturgeschichte d. wirbell. Thiere, 1839, p. 51 ; Peters, in Müller's Arch. 1840, p. 98, and Milne Edwards, Ann. d. Sc. Nat. XIII, 1840, p. 193 . Leuckart (Kool. Bruchsticke, IIft. II. 1841, p. 93) has given the history and criticism of the opinions relating to the sperm machines of Needham.
4 Aristotle (IIist. Animal. lib. V. cap. 5) had already declared that the Cephalopoda copulate by a kind of embrace. From the observations of $L e$ bert and Robin (loc. cit. p. 135, and Ann. d. Sc. Nat. 1V. 1845, p. 95, Pl. IX. fig. 5, 6), it would appear that the males do not deposit the spermatic particles further in than the cavity of the mantle of the females; for they observed, with a female Loligo, numerous Spermatophores glued to the internal surface of this cavity, near the oviduct.
still at the bottom of the female genital organs; for, later, the action of the sperm would be obstructed by their solid envelopes. It must, therefore, be supposed that the sperm is carried from the cavity of the mantle into the ovarian capsule, either by means of the anti-peristaltic movements of the oviduct, or by the aid of the aquiferous system. ${ }^{(5)}$

§ 260.

With the individuals hitherto known as the Hectocotyli, the genital organs occupy a space disproportionably large to the size of the body. The round, smooth enlargement on their posterior extremity is a genital capsule, with thin walls, and containing the sperm and the copulatory organs. ${ }^{(1)}$ The sperm forms a long, moniliform, clustered string, composed of thick oval bundles of spermatic particles, regularly bound together by fasciculi of hair-like spermatic particles. ${ }^{(2)}$ In this clustered string are included, also, the Ductus ejaculatorius and the very long and retractile penis. With Tremoctopus violaceus, this penis sometimes projects between the fifth of the posterior pair of suckers, as a small cylindrical, folded prolongation. ${ }^{(3)}$

§ 261.

The Development of the Cephalopoda is almost without analogy, and, from the remotest times, has excited the curiosity of Naturalists; but it is only very recently that it has been correctly understood and followed from its first stages. ${ }^{\text {a }}$

After the disappearance of the germinative vesicle, the vitellus divides; but this segmentation is only partial. Usually, at the acute extremity of the vitellus, where the germinative vesicle is found, there appears a small elcvation fiom the vitelline mass, divided into halves by a furrow. Each

5 According to Kölliker (Entrickel. \&c. p. 11). the eggs are fecundated while yet contained in the ovarian capsule.

1 See Hectocotylus octopodis, in Ann. d. Sc. Nat. foc, cit. fig. 1-3, b.
I I have so observed it with the males of Tremoctou ve violaceus; and Dujardin, also (IIist. Nat. d. Helminth. p. 482), has observed a smooth cord composed of capillary spermatic particles with Hectocotylus octopodis, Cux.

I am uncertain as to the origin of this cord, but, in the specimens preserved in alcohol, which I have examined, it appeared probable that it was primarily contained in the deferent or in the testicular canal.

3 The Ductus ejaculatorius of Tremoctopus violaceus, which is gradually continuous into the penis, begins by a well-marked, clavate thickening, projecting into the genital capsule, and apparently perforated at its upper extremity, at which point, perliaps, the sperm enters. Near the end of the penis, this canal hts, over a considerable extent, small horny tubercles, and it is probable that this portion can be everted, thus allowing the possibility of an intimate union with the female organs. I am unable to say whether this is so with the other Hectocotyli. The penis of Hectocotylus argonautae, according to a figure of Delle Chiaje (loc. cit. Tav. XVI. fig. 1, a), and Costa (loc. cit. Pl. XIII. fig. $2{ }^{2}$, c), projects from the posterior extremity of the body; but it may be, that with the specimens examiued by these uaturalists, this organ
had become free from an accidental reut of the genital capsule.
1 Aristotle (Hist. Animal. lib. V. cap. 16, 4), and in the bast century, Cavolini (Abhandl. ت̈her die Erzeugung der Fische u. d. Krebse, 1792, p. 54) had already declared that, with Sepia, the vitelline sac is situated on the head of the embryo, and, as it were, hanging from the mouth ; but it is only latterly that this statement has been thoroughly verified; see Froricp, Dats Thierreich, Abth. V. 1806, p. 23, fig. 8-10; Carus, Enlauterungstaf. Hit. III. 1831, 1. 10, Taf. II. fig. 16-30; Cuvier, Sur les oeufs de Seiche, in the Nouv. Ann. du Mus. I. 1832. p. 153, Pl. VIII. fig. 6-14, also in abstract in Anu. d. Sc. Nat. XXVI. 1832, p. 69, or'Froriep's Notiz. XXXTV. p. 199 ; Coldstream, On the feetus of Sepia officinalis, in the Lond. and Ldinb. philos. Magaz. Oct. 1833, or Froriep's Notiz. XXXIX. 1 . 6 ; Duges, Note sur le développement de l'embryon chez les Mollusques céphatopordes, in Ann. d. Se. Nat. VIII. 1837, p. 107, Pl. V., or Froriep's neue Notiz. VII. p. 209, fig. 3-9.; D'Orbigny, in Férussac, loc. cit. Loligo, Pl. X. fig. 3-6; Van Beneden, Recherches sur l'embryogénie des Sépioles, in the Nouv. MIém. de l'Acad. de Bruxelles, X1V. 1841, Pi. I.; Delle Chinje, Descriz. I. p. 38, Tav. VI. fig. 6, 7 (Sepia), Tav. XIV. fig. 14-24 (Argonauta), and Tav. XXIX. fig. 2-5 (Sepiota). But the first phases of their development remained unobserved, until Kölliker, in 1314, filled this deficiency by his masterly work - Eutwickelungsgeschichte der Cephalopoden.
of these halves is also divided, and so on, forming four, eight, \&e., segments, each resembling a more and more acute triangle, with a converging apex, while its base is direetly eontinuous with the remaining vitellus. After a certain number of segments have been formed by these longitudinal divisions, transverse furrows are seen separating the apiees of the segments, and forming, at first, in the centre of the emincnce, a ring composed of eight to sixteen portions; but finally, from a further segmentation in both directions, these furrows become a mass of inercasingly smaller and more numerous parts. ${ }^{(2)}$

This portion of the vitellus, which, during this time, has also been developed at its periphery, is ehanged into a blastoderma composed of two layers. Upon this blastodermal membrane several folds appear, which are the first traees of the future embryo, viz: first, a median, uneven fold or rudiment of the mantle, and then two others, lateral, which ultimately form the cyes. Between these three folds are placed two others whieh become the two lateral halves of the funnel. Subsequently, the folds of the branchiae and arms appear; and among these last the two belonging to the ventral surfaee are first seen. Still later, the folds of the eyes and arms, and their surrounding parts, become more and more prominent upon the vitelline mass, thus forming the eephalic portion of the cmbryo. From this last, opposite the vitellus, the fold of the mantle is sketched as the future posterior portion of the body. The general form of the animal may, therefore, be recognized very early, although the ecphalic portion quite exeeeds that of the mantle.

At the posterior or dorsal surface of the cephalic portion, the mouth appears, first as a semilunar depression, and the internal layer of the blastoderma gradually extends from the border of this portion over the whole vitelline mass, produeing, finally, a true vitelline sae. The external surface of this is eovered with eiliated epithelium which gradually spreads over the other parts of the embryo, sueh as the lobes of the head, the arms, the eyes, and the mantle, while that of the branchiae, and the funnel, the balves of whieh have then united, is never ciliated. ${ }^{(3)}$

Of the Cartilages, the artieular and eephalic are the first developed. The internal shell, ${ }^{(4)}$ the nervous system, the heart with the vaseular and respiratory systems, the digestive canal and its appendages, and the ink-sac, are formed successively, and may be easily seen at the termination of the embryonic life, when, also, are found some ehromatic cells.

As to the vitelline sac, it should be remarked that it never communieates with the intestinal canal, as has hitherto been supposed. ${ }^{(5)}$ The cephalie portion, which always extends upon this sae, embraces a part of it, so that it is divided by a constriction into an internal and external portion, the former of which extends cven into the cavity of the mantle. The eonstricted portion is gradually elongated, and finally becomes a long, very narrow canal, extending from the eephalie extremity to the side of the

2 See Kölliker, loc. cit. p. 17, Taf. I.
3 With Loligo, the vitelline sac and its ciliated epithelium are formed quite early; while with $S e$ pia, they do not appear until the embryo and its different organs have become quite large. With the first, the embryos have rotatory movements, but with the second this is not the case (iölliker, loc. cit. P. 51).
4 With Argonauta, the external shell is formed while the embryo after its cscape from the egg, is still persistent in the spawn inside the shell of its parent ; see Power, in Wiegmann's Arch. 1845, I.
p. 379, and Maravigno, Ann. d. Sc. Nat. VII.
1837, p. 174 .

5 Most of the earlier anatomists were led into error from the tenuity of the canal of communication, and the difficulty of its examination. They supposed that the external vitellinc sad communicated with the oesophagus and stomach, by this canal ; see Carus, loc. cit. Taf. II. fig. 27 (Loligo) ; Cuvier, loc. cit. Pl. V111. fig. 9 ; Dugès, loc. cit. Pl. V. fig. 3 (Sepia) and Van Beneden, loc. cit. Pl. I. fig. 13 (Sepiola). Kölliker was the first to view it correctly (loc. cit. p. 86, Taf. IV.).
mouth, and producing a communication between the internal and external saes.

The vitellus of the internal sac gradually disappears, and is replaced through this canal of communieation by that of the external sac. During the suecessive development of the organs contained in the cavity of the mantle, the internal vitelline sac is divided into lobes whieh are finally broken up and absorbed; while the intestinal canal, the remaining organ of the cmbryo, is developed, quite independently, from the vitelline mass.

As to the development of the males (Hectocotyli) of Argonauta and Tremoctopus, nothing is yet known execpt of its last period. It has been observed, however, that, during the time they are in the egg, they have their proper form which is so remarkably different from that of the females. ${ }^{(6)}$

6i Had the fact that the Hectocotyli exist in the egg with tbeir proper form, among the eggs of femates of certain species, been properly observed, the true relations of these supposed parasites to the aninnals iu which they live, would have bcen known long ago. A passage of Maravigno, first properly interpreted by Kolliker (Ann. of Nat. Hist. loc. cit. p. 414) shows clearly that this Italian naturalist, in his researches connected with Argonauta, was in error only as to the eggs which contained the male individuals.

* [§ 261, note 6.] The subject of the IIectucotylus to which such frequent mention has been made in these pages, is one that has elicited a good deal of attention of late years, but, now, happily, seems pretty definitcly settled. Chief among these investigators are H. Müller, and Verany and Vogt. They have pretty clearly shown the non-independeut character of these forms. The details of these researches cannot here be given ; it may be remarked, however, that these observers have all studied these forms upon living specimens on the coasu. It has heen shown that the Argonautae on which these IIectocotyli are found, have a highlydevcloped testicle, the situation and structure of which correspond to those of the common Cephalopoda, and which communicates with the Hectocotylus.

In conclusion, I may quote H. Müller's own words: "It is then proved that the IIectocotylus is formed on a male Argonauta, and is nothing but au arm metamorphosed in a very irregular manner. This arm, or the Hectocotylus, is dctached

He says thus: "Mais encore que le petit poulpe, au sortir de l'oeuf, ne ressemble pas entièrcment à cc qu'il sera par la suite; c'est alors une sorte de petit ver (vermicello) pourvu de deux rangées dc ventouses dans la longueur, avec un appendice filiforme à une extrémité, et un pctit renflement vers l'autre, où il parast que sont les organes de la di-gcstion."- (Anm. d. Sc. Nat. VII. 1837, p. 173.) The mode of development of these males differs undoubtedly very much from that of the females.*
when it has been, filled with the sperm which is formed in a truc testicle of the Argonauta itself, and it then plays an apparently independent life. In this condition. it meets the female Argonautae which, by a true copulation, it impregnates, as I have observed with the IIectocotylus of a Tremoctopus, and it resembles in this, as also by its movements, by a kind of circulation, and by the long duration of its life after detachment, a true male animal."

For the litcrature of this subject, see, beside the writings referred to in the above pages, Kolliker, Transact. Linn. Soc. London, XX. 1846, p. 9, Pl. I. ; Bericht vou der zootomischen Anstalt zu Würtzburg, Leipzig, 1849, p. 67, Taf. I. II; Power (Madame) Mollusques Mediterranécns, 1 re partie Genes, 1847-51, p. 34, 126, Pl. XLI. ; Verany and Vogt, Ann. d. Sc. Nat. XVII. 1852, p. 146, Pl. VI. -IX. ; H. Müller, Ann. d. Sc. Nat. 1852, XVI. p. 132 ; also, in extenso, in Siebold and Kölliker's Zeitsch. IV. p. 1, Taf. I. and p. 346 ; and Siebold, in Ibid. IV. p. 122. - ED.

INTRODUCTORY NOTE TO THE CRUSTACEA.

Within a short time, the class Crustacea has received a contribution of so valuable a character that I cannot omit to mention it specially in a note. I refer to the large and comprehensive work of Dana, published this year (1853). This work, aside from its high zoological value, includes anatomical details and the discussion of principles in animal morphology, of great importance to the student of this interesting yet difficult class of animals.

It will be found that constant reference has been made to the anatomical details, in my notes; but the doctrines advanced as to the morphological structure of these animals, more than equally important, could be here given only in a separate form. I have been the more induced to include them here, from the fact that the work in question will have a very limited circulation, comparatively, and can be accessible only to a few. With these views, I have solicited Professor Dana to put his particular principles into a condensed form for this work, and he has kindly favored me with the following account:

The several types of structure among Crustacea are distinguished, primarily, by the different degrees of centralization or cephalization in the species, which degrecs of cephalization are cxhibited in the form of the body, and position, number, form or length of the appendages. The higher cephalization is seen in the larger number of organs that are pressed into the service of the senses and mouth; in the closcly-crowded position and small size of these organs; in the little elongation of the antennac ; and in the obsolescence of the abdomen and abscuce of abdominal appendages. Thus, in the Brachyura, nine segments and their pairs of appendages, out of the fourteen cephalothoracic, belong to the senses and mouth ; they are all small, and gathered into a short space; the antennac are exceedingly small, excepting the basal joint which is the seat of sense ; the abdomen in the males is small and without appendages. In the Maioids, the highest Brachyura, the head is very narrow, with the anterior antennac longitudinal, and the base of the outer antennae soldered without suture to the shell. The concentration is here most complete. The widening of the front in the Cancroids shows a relaxation of the concentration,
as do also other characteristics ; the loosening of the outer maxillipeds in the true Cancers, and most swimming Crustacea and Corystoids, is another step in this relaxation; the elongation of the antennae in the Corystoids and Anomoura is another step ; the loosening of the abdomen from the ventral surface of the ccphalothorax; its becoming loosely inflexed or cven extended; its taking appendages - are among the other steps seen in the Anomoura ; the outer maxillipeds becoming pediform, and then the next pair pediform also, showing a tendency to a passage from the mouthseries to the foot-series, are other steps downward, observed in the Macrura; and the clongated abdomen with its regular series of organs as well as the clongated antennac, the union without fossettes, and eyes without sockets, all cxhibit the relaxation of centralization that marks the Macrura.

A further degradation is scen in the obsolescence of some of the pairs of feet and abdominal appendages, as in the Mysis group; and the same principle is exemplified in the Brachyura, where the posterior cephalothoracic legs bceome small or rudimentary, or swimming legs.

There are, hence, two methods by which the passage of Crustaeea from the higher to the lower grades takes place :

1. A diminution of the eentralization leading to an cnlargement of the circumference or sphere of growth at the expense of concentration, as in the elongation of the antennae, a transfer of the maxillipeds to the foot-series, and the elongation of the abdomen and abdominal appendages.
2. A diminution of force as compared with the size of the structure, leading to an abbreviation or obsolescence of some of the circumferential organs, as the posterior or cephalothoracic legs, or anterior antennae, or the abdominal appendages (if such appendages belong to the type embracing the species).

The Maerura, Anomoura, and Brachyura are alike in having normally nine cephalic annuli (out of the fourteen ccphatothoracic), and but five foot-annuli. The Mysis and Squilia gronps are in the same eategory. There are speeics that show a tendency to a transfer of the posterior mouth-annuli or appendages to the foot-scrics, but it is only a tendency. These together constitute the First type among Crustacea.

In the Second type, there are seven cephalic annuli and pairs of appendages, and seven foot-annuli or pairs of feet; sueh are the Isopoda, Anisopoda and Amphipoda.

In the Third type, there are normally six (or five) cephalic annuli, out of the whole normal number, fourteen, - the eight (or nine) posterior annuli belonging to the foot-series, part of which (the thrce posterior pairs and often more) are usually obsolete. Moreover, the abdomen, by the sccond law of degradation, mentioned above, is without appendages - such are the Entomostraca.

In the Fourth type, there are six (or five) cephalothoracie annuli, as in the Entomostraea, with whieh group they might be associated. But other peeuliarities lead to a separation, and the species referred to are the Cirripedia.

In the Fifth type, there are five (or four) cephalothoracic annuli, out of the whole normal number fourtcen; in other words, the mouth never ineludes more than a single pair of maxillae with the mandibles. Moreover, by the seeond law of degradation, all the jointed cephalothoracic appendages are wanting. These are the Rotatoria.

The following table presents a view of the number of cephalic annuli in these Types, and also the mean size:

Sce pp. 1406 and 1407 (loc. cit.), for observations on mean size in the Entomostraca and Cirripedia, where an important principle is brought out, and where, also, some explanations are furnished which make the statement given above of the mean size, intelligible. - Ed.

BOOK TWELFTH.

C l U S T A C E A.

CLASSIFICATION.

$$
\text { § } 262 .
$$

In the Classifieation of the Crustacea, the remark of Erichson ${ }^{(1)}$ should be adduced, that, with these animals, the external loeomotive organs are not limited, as with the other Arthropoda, to the anterior part of the body, but may exist on all its segments, and often with a shape so changed, that they beeome foot-jars, or anal-feet, or oars. If the Crustaeea are examined from this point of view, it will not appear surprising that the Myriapoda are elassed among them; for they do not properly belong either to the Araehnoidae or to the Inseeta.

ORDER I. CIRRIPEDIA.
4
Family: Balanodea.
Genera: Balamus, Chthamalus, Coronula, Tubicinella.
Family: Lepadea.
Genera: Otion, Cineras, Lepas, Pollicipes.
ORDER II. SIPHONOSTOMA.
Family: Penellina.
Genera: Penella, Peniculus, Lernaeocera, Lernaea.
Family: Lernaeodea.
Genera: Achtheres, Tracheliastes, Brachiella, Lernaeopoda, Anchorella, Chondracanthus.

Family: Eraasilina.
Genera: Dichelestium, Lamproglena, Ergasilus, Nicothoë.

Family: Caligina.
Genera: Caligus, Pandarus, Trebius, Dinematura, Euryphorus, Phyllophora.
Family: Argulina.
Genus: Argulus.
ORDER III. LOPHYROPODA.
Genera: Cyclopsina, Cyclops, Anomalocera, Calanus, Peltidium, Hersilia, Polyphemus, Daphnia, Evadne, Lynceus, Cypris.

ORDER IV. PHYLLOPODA.
Genera: Lymnadia, Isaura (Estheria), Apus, Branchipus, Arternia, Chirocephalus.

ORDER V. POECILOPODA. Genus: Limulus.

ORDER VI. LAEMODIPODA. Genera: Cyamus, Caprella, Leptomera, Aegina.

ORDER VII. ISOPODA.
Family: Bopyrina.
Genera: Bopyrus, Phryxus, Jone, Cepon.
Family: Cymothoidea.
Genera: Cymothoa, Aega, Nerocila, Anilocra, Serolis.
Family: Spiakromatoda.
Genera : Sphaeroma, Cymodocea, Nesea, Amphoroïdea.
Family: Idotieeoidea.
Genus: Idothea.
Family: Aselliva.
Gencra: Lygia, Janira, Asellus, Lygidium, Porcellio, Oniscus, Armadillidium, Tylos.

ORDER VIII. AMPHIPODA.
Genera: Vibilia, Hyperia (Hiella), Phronima, Iphimedia, Amphithoë, Talitrus, Gammarus.

ORDER IX. STOMAPODA.
Genera: Phyllosoma, Amphion, Mysis, Leucifer, Cynthia, Thysanopoda, Alima, Squilla, Squillerichthus.
order X. DECAPODA.
SUB-ORDER I. MACRURA.
Genera: Penaeus, Pasiphaea, Alpheus, Caridina, Hippolyte, Palaemon, Aristeus, Gelia, Callianassa, Crangon, Nephrops, Astacus, Homarus Palinurus, Scyllarus, Galathea.

SUB-ORDER II. ANOMURA.
Gcnera: Pagurus, Porcellana, Remipes, Ranina, Homola, Lithodes, Dromia, Dorippe.

SUB-ORDER III. BRACHYURA.
Genera: Lupea, Portunus, Eriphia, Carpilius, Cancer, Maia, Leucippa, Hyas, Pisa, Stenorhynchus, Mithrax, Camposcia, Ilia, Grapsus, Ocypoda, Uca, Gecarcinus, Thelphusa.

ORDER XI. MYRIAPODA.
 SUb-order i. Chilognatha.

Genera: Glomeris, Blaniulus, Platyulus, Polydesmus, Spirobolus, Julus.
SUB-ORDER II. CHILOPODA.
Genera: Cryptops, Geophilus, Scolopendra, Litholius, Scutigera.

BIBLIOGRAPHY.

Suammerdamm. Von der Zerglicdcrung ciner Krebsschnecke, in the Bibel der Natur, 1752, p. 84.

Schäffer. Der fischfórmige Kiefenfuss, 1754. Die geschwänzten und ungeschwänzten zackigen Wasserflöhe, 1755. Der krcbsartige Kiefenfuss, 1756.

Rösel. Der Flusskrebs; in his Insekten - Belustigungen, Th. III. 1755, p. 307.
O. F. Mïller. Entomostraca, 1785.

Cavolini. Abhandlung über die Erzeugung der Fische und der Krebse, 1792.

Ramdohr. Beiträgc zur Naturgeschichte einiger deutschen MonokulusArten; in his Micrographischen Beiträgen zur Entomologie und Helminthologic, 1805.

Jurine. Mémoire sur l'Argule foliacé ; in the Ann. du Mus. d'Hist. Nat. VII. 1806, p. 431. Histoire des Monocles, 1820.

Prevost. Mémoire sur le Chirocephale; an appendix to Jurines Histoirc des Monocles, p. 201.

Cuvier. Mémoire sur les animaux des Anatifes et des Balanes; in the Mém. du Mus. d'Hist. Nat. II. 1815, p. 85, also in his Mémoires sur les Mollusques, loc. eit.

Treviranus. Abhandlungen über den inneren Bau der ungeflügelten Insekten ; in his Vermischten Schriften anatomischen und physiologischen Inhalts. Bd. I. II. 1816-17.

Geveke. De Cancri Astaci quibusdam partibus. 1817.
Suckou. Anatomisch-physiologische Untersuchungen der Insekten und Krustenthiere. 1818.

Straus. Mémoire sur les Daphnia; in the Mém. du Mus. d'IIist. Nat. V. 1819, p. 380. Mémoire sur le Cypris, Ibid. VII. 1821, p. 33. Mémoire sur les Hiella, nouveau genre de Crustacés Amphipodes, Ibid. XVIII. 1829, p. 51. Ueber Estheria dahalacensis, eine neuc Gattung aus der Familie der Daphniden; in the Museum Senckenbergianum. Bd.Il. - 1837, p. 117.

Brongniart. Mémoire sur le Limnadia ; in the Mém. du Mus. d'Hist. Nat. VI. 1820, p. 83.

Savigny. Description de l'Egypte, Hist. Nat. Crustacés. 1820-30.
Rathlé. Anatomie der Idothea Entomon; in the Neuesten Schriften der naturforschenden Gesellschaft in Danzig. Bd. I. 1820, p. 109. Zur Fauna der Krym. 1836. De Bopyro et Nereïde, commentationes anatom-ico-physiologicae duac, 1837. Bemerkungen über den Bau des Dichelesthium Sturionis und der Lernaeopoda stellata ; in the Nov. Act. Nat. Cur. XIX. 1839, p. 127. Beiträge zur Fauna Norwegens, Ibid. XX. 1843, p. 3.

Ĺ́ón Dufour. Recherches anatomiques sur le Lithobius forficates et la Seutigera lineata; in the Ann. d. Sc. Nat. II. 1824, p. 81.

Desmarest. Considerations générales sur la Classe des Crustacés, 1825.
J. Müller. Zur Anatomie der Scolopendra morsitans; in the Isis, 1829, p. 549.

John Thompson. Koological Researches and Illustrations, or Natural History of nondescript or imperfectly known animals. I. Pt. 1, 1831-34.

Nordmann. Mikrographische Beiträge zur Naturgeschichte der wirbellosen Thiere, HIft. If. 1832.

Zenker. De Gammari Pulieis historia naturali atque sanguinis circuitu commentatio, 1832.

Kutorga. Scolopendrae morsitantis anatome, 1834.
Roussel de Vauzème. Sur le Cyamus Ceti, in the Ann. d. Sc. Nat. I. 1834, p. 239.

Burmeister. Beiträge zur Naturgeschichte du Rankenfüsser, 1834. Beschrcibung ciniger neuen oder weniger bekannten Sehmarotzerkrebse ; in the Nov. Act. Nat. Cur. XIX. 1835, p. 271.

Martio St. Ange. Mémoire sur l'organisation des Cirripèdes, 1835, also, in the Mém. présentés à l'Acad. Roy. d. Se. de l'Tnst. de France, VI. 1835 , p. 513.

Kollar. Beiträge zur Kenntniss der lernäenartigen Crustaceen; in the Ann. des Wiener Mus. d. Naturgeschichte, Bd. I. 1835, p. 79.

Milne Edwards. Histoire naturelle des Crustacés, 1834-40; alśo, article Crustacea, in Cyelop. of Anat. I. p. 750.

John Coldstream. Cirrhopoda, in the Cyclop. of Anat. I. p. 683.
Kröyer. Ueber die Schmarotzerkrebse, in his Naturhistorisk Tidskrift. Bd. I. II. 1836-37, also in the Isis, 1840, p. 702, 1841, p. 187. Ueber den Bopyrus abdominalis, Ibid. ILI, or in Isis, 1841, p. 693, or in Ann. d. Sc. Nat. XVII. 1842, p. 142. Monografisk Fremstilling af Slaegten Hyppolytes Nordiske Arter. 1842.

Brandt. Beiträge zur Kenntniss des inneren Baues von Glomeris marginata ; in Müllcr's Archiv., 1837, p. 320. Recueil de Mémoires relatifs à l'ordre des Insectes Myriapodes, 1841; Extracted from the Bull. scientifique publ. par. l'Acad. Impér. d. Sc. de St. Pétersburg, V.-IX.

Van der Hoeven. Recherches sur l'histoire naturelle et l'anatomie des Limules, 1838.

Lovén. Evadne Nordmanni, ein bisher unbekanntes Entomostracon ; in Wiegmann's Arch. 1838, Bd. I. p. 143.

Joly. Histoire d'un petit Crustacé (Artemia salina); in the Ann. d. Sc. Nat. XIII. 1840, p. 225. Recherches zoologiques, anatomiques et physiologiques sur l'Isaura cycladoïdes, Ibid. XVII. 1842, p. 293.

Zaddach. De Apodis cancriformis anatome et historia evolutionis, 1841.
Newport. On the organs of reproduction and the development of Myriapoda; in the Philosopl. Transact. 1842, Pt. II. p. 99, also in Froriep's neuen Notiz. XXI.p. 161. On the Structure and Development of the nervous and circulatory systems, and on the existence of a complete cireulation of the blood in vessels in the Myriapoda and the Macrourous Arachnida, Ibid. 1843, Pt. I. p. 243; also in Froriep's neuen Notiz. XXVIII. p. 177, or in Ann. d. Sc. Nat. I. 1844, p. 58, or in Ann. of Nat. Hist. XII. p. 223.

Rymer Jones. Myriapoda, in Cyclop. of Anat. III. 1842, p. 544.
Lereboullet. Mémoire sur la Ligidie ; in the Ann. d. Se. Nat. XX. 1843, p. 103.

Vogt. Beiträge zur Naturgeschichte der schweizerischen Crustaceen (Argulus und Cyelopsina), in the Nouv. Mém. de la Soc. helvétique, VII. 1843.

Frey. De Mysidis flexuosae anatome commentatio, 1846.

ADDITIONAL BIBLIOGRAPIIY.

J. D. Dana and E. C. Herrick. Description of the Argulus Catostomi. Amer. Jour. of Sc. XXXI. p. 297.
J. D. Dana and C. Pickering. Description of the Caligus Americanus. Ibid. XXXIV. p. 235.
J. D. Dana. On the Eyes of Sapphirina, Corycaeus, \&c. Proceed. Acad. Nat. Sc. Philad. 1845, II. p. 185, and Amer. Jour. of Sc. 2nd Ser. 1X. p. 133.
——Report on the Crustacea of the U. S. Exploring Expedition, \&c. \&c., part I. 1852, 4to. pp. 688, part II. 1853, pp. 689-1618. With a folio Atlas of 96 Plates.

Leydig. Ueber Argulus foliaccus; ein Bcitrag zur Anatomie, Histologie und Entwickelungsgeschichte dieses Thieres; in Siebold and Kölliker's Zeitsch. II. 1850, p. 323.

- Ueber Artemia salina und Branchipus stagnalia; Beitrag zur anatomischen Kenntniss dieser Thicre, in Ibid. III. 1851, p. 280.

Baird. The Natural History of the British Entomostraca. Published
by Ray Soc. London, 1850. In this work are cmbodicd the results of his earlier researches published in the Trans. of the Berwick Nat. Club, \&c. - Darwin. A monograph of the sub-class Cirripedia with figures of all the spccies. Published by Ray Soc. London, 1851. This work is rich in anatomical details, many of which are new.

Van Beneden. Recherches sur quelques Crustacés inferieurs, in the Ann. d. Sc. Nat. XVI. p. 71. - Ed.

CHAPTER I.

EXTERNAL ENVELOPE AND CUTANEOUS SKELETON.

§ 263.

The External cnvelope of the Crustacca is more or less solid, and has the form of a malti-articulated, cutaneous skeleton, sometimes of a leathery or horny consistence, but generally consists of a hard, calcareous shell.

It has, consequently, no contractility, and participates in the movements of the body only in a passive manner, that is, by the interarticular soft skin, and by the antennal and foot-like processes.

In this cutaneous skelcton, whether it is leathery, horny, or calcareous, there is a peculiar organic substance as its basc. This substance, which is found in the cutaneous skeleton of other Arthropoda also, has reccived the name of Chitine. It resembles cellulose of plants in its insolubility in caustic potass, but differs essentially from it in containing nitrogen. ${ }^{(1)}$

§ 264.

Nothing in general can be said as to the Histological composition of this cutancous skeleton of the Crustacea, for it differs widely not only in the various orders and families, but cven in the different parts of the body of the same specics. ${ }^{(1)}$ Whether hard or soft, it is usually composed of

* [§ 26t, note 1.] Of the results of Lavalle's bhervations it may be well to add his concluding remarks ; after a minute description of each portion of the tegumentary apparatus, be concludes : "I sliall bere only observe further, that my investigations seem to be in eomplete opposition to the theories which make the shell of the Crustacea analogous (homologous) to the scaly epidermis of sorpents and Lizards. I sce no analogy (homology) between the shedding of the shell of the Crnstueca, - which divests them of organs des-

1 We are indebted to Valcntin for the researehes, few as they are, which have hitherto been made on the internal structure of the skeleton of Crustacea; see his Repertor. f. Anat. u. Physiol. I. 1836, p. 122.
Lavalle is about to publish microscopical researches on the structure of the eutaneous skeleton of the Decapoda; see Aun. d. Sc. Nat. 1847, p. 352.*
tined to give the body its form and volume, to serve as points of attachment to the locomotor muscles, to furnish the instruments of prehension and mastication; organs plaeed not only on the surface of the body, but often immersed in the midst of soft parts, and in which we find an organization such as I have described, - and the periodical shedding observed in reptiles of a thin epidermis, without consistency, completely unorganized and incapable of fulfilling any of the uses to which the shell is destined. My re-
numerous very thin layers, made up of very fine, interlaced fibres. However, sometimes this fibrous texture is seareely distinguishable, and often the lamellae are perfeetly homogeneous. Frequently, also, these lamellae are traversed, either in a parallel or perpendieular direetion, by eanals, which are often so small that, seen under the mieroseope by refleeted light, they appear only as lines or blaek points. ${ }^{(2)}$ In some speeies, this skeletou has a distinet eell-strueture; for the skin, here and there, has the aspeet of a net-work composed of numerous round, or polyhedral meshes.

This net-work is, undoubtedly, the result of the fusion of the walls of numerous cells lying on the same plane. In the caleareous shells, the earbonate and phosphate of lime is so intimately combined with the chitine, that their partieles, as sueh, cannot be distinguished. ${ }^{(3)}$ In those portions of the skin which serve a respiratory function, the ealeareous matter is always wanting.

The pigments are due to very fine granules which exist either as sueh in the cutaneous lamellae, or are so thoroughly fused in these last, that they are indistinguishable. In some eases, these granules are eontained in polyhedral eells whieh form a simple layer under the transparent skin; in others, radiating pigment cells, isolated, or reticulated, are seen through the colorless skin. The red, green, or blue eolor of many of the lower Crustacea, is due to oil-globules in the interior of the body, which are seen through the transparent integument. ${ }^{(4)}$

The tubereles, points, bristles, single or bifid hairs, whieh are usually hollow and exist on the surface or borders of different parts of the eutaneous skeleton, are always mere prolongations or simple excreseences of the integument, and eontain its charaeteristie substance, - Chitine.

With Crustaeea, as also with the other Arthropoda, the eutaneous envelope, whatever may be its tenuity-as for instance on the respiratory organs, is never covered with eiliated epithelium. ${ }^{(5)}$ This absence of vibratile organs is due, probably, to the presence of ehitine.
The internal surface of this envelope is usually lined with a peeuliar, thin, fibrous membrane, analogous to an internal periosteum. In the moulting process, which is common to all Crustaeea, it plays an important part, for it probably seeretes, in layers, the materials for the new envelope.

§ 265.

Beside the cutaneous skeleton, there is, with the Cirripedia, an envelope, entirely resembling the mantle and the valves of the Acephala.

[^177]195, PI. XXI. fig. 9, a. b.) has observed with Calanus arietis (an animalcule allied to Cyclopsina castor), two bristles at the extremity of each of the long antennae, and which, he says, are provided with a row of vibratile cilia. But this observation does not invalidate what I have remarked in the text, for how often have ciliary phenomena been olserved on organs which really have no such appendages. I doubt if this observation of Templeton will be confirmed by other observers.
first, soft, sensible, and even furnished with vessels, but a quantity of calcareous mole soon collects there, hardens it, and obstructs the pores and vessels ;'" see loc. cit. p. 376, also Comp. rend. 1847, XXIV. p. 12.-Ed.

The body of these animals, as well as its articulated appendages, are enclosed in a cutaneous skeleton containing the chitine; and, moreover, is enveloped in a peculiar mantle having, externally, calcareous plates which vary in number and are so united together as to be movable in some speeies, and fixed in others. With the Lepadea, the mantle is prolonged into a kind of siphon.* Not only this mantle, but also its ligaments uniting the movable pieces of the shell and the siphon, are composed of a lamellated tissue analogous to that of the proper eutaneous skeleton, and like it also, contain chitinc. It is covered with a thin layer of darkcolored pigment cells.

But the valves of the Cirripedia differ essentially from the calcareous shell of the other Crustacea. In the first place, they have no participation in the moulting, to which the cutancous skeleton and the mantle are regularly subjected; (1) then again, their structure and chemical composition resemble that of many of the Bivalvia. ${ }^{(2)}$ The valves of the Balanoidca form the only exception in this respect. They are traversed. in part, by numerous parallel tubes, dilated at their inferior or their external portion, which pursue a vertical course in the vertical valves, but are radiated in the horizontal plate. These tubes, which are wanting in the movable opercula of these shells and in the transversely-striated valves which, in the genus Balanus, are intercalated between the longitudinally-striated ones, are often laterally compressed, and their interior has imperfect longitudinal septa, or is cven divided into several chambers by transverse partitions. ${ }^{(3)}$ The horizontal plate which forms the base of the shell, is perforated eentrally, and hollowed on its under surface, with the genus Coromula. This cavity is divided, by numerous vertical and symmetrically-arranged septa, into compartments filled with a fibrous substance. ${ }^{(4)}$ With Tubicinella, this plate is entirely wanting, and is replaced by a fibrous substance. This fibrous matter, by which Coronula and Tubicinella are fixed firmly to foreign bodies, is comparable to the pedicle of the Lepadea, which has become internal and overgrown by the shell.

The increase of the shells of Cirripedia follows the same laws as that with the bivalve or multivalve mollusea, judging from the course of the lines of growth which they present.

$\S 266$.

The form and number of the different segments of the cutaneous skeleton, which are sometimes extraordinarily developed, and sometimes equally

1 Thompson (Zool. Research. \&c. p. 79, Pl. X. fig. 1), has observed with Balanus pusillus, that the Cirripedia, like the other Crustacea, cast of their entire skin at certain seasons. I have myself often scen this animal deprived of its skin with all the appendages, and even the mantle which lines its shell. In captivity, these little animals repeat this 1 rocess at irregular and often very short intervals, as in twelve, eight and eveu five days.

2 See Schmidt, loc. cit. p. 60.
3 See Poli, loc. cit. Tab. 1V. fig. 6-10; Rapp, in Wiegmann's Arch. 1841, I. p. 168 ; and Coldstream, in the Cyclop. of Anat. loc. cit. p. 685.
4 For Coronula diademt and baluenaris, see Chemnitz, Neues Conchylien-Cabin. V111. p. 319, Taf. XC1X. fig. 84t, 846 ; Lamarck, Ann. du Mus. ©l. Nist. Nat. I. p. 461, PI. XXX. fig. 3, ani Burmeister, Beitrige, \&c., p. 34, Taf. 1. fig. 2, 3 .
from the pair of distinct antennac to the fixed simple pedicle ; see Dana, Notice of some Genera of Cyclopacea, Silliman's Jour. Vol. 1.2 ${ }^{\text {ad }}$ Ser, p. 225, note, also Rep. on Crustacea, Ex. Exped. of the U. S. 1. 1333. - ED.
abortive and fused several together, - serve, in descriptive zoology, to characterize orders, sub-orders, families, and genera; consequently they need not be mentioncd here. ${ }^{(1)}$

With many Crustacea, the internal surface of the skeleton in widely different parts of the body, has prolongations and processes of the most manifold form; some of these serve as points for the insertion of muscles and tendons, and others as partitions separating and shielding particular organs.

CIAPTER II.

MUSCULAR SYSTEM AND ORGANS OF LOCOMOTION.

§ 267.

The voluntary muscles of Crustacea are composed exclusively of trans-versely-striated fibres, and are, morcover, perfectly colorless. ${ }^{(1)}$

They are always inserted upon the interior of the skeleton, either directly, or by means of its prolongations. These last are often very long, resembling tendons; from which, however, they differ in their intimate structure and chemical composition. They are composed of straight, parallel, flattened fibres, and show their direct relations with the cutaneous skeleton by containing chitine.

The isolated muscles have usually a riband-likc form,* and are especially accumulated in those regions of the body displaying great power or extensive movements. There are, therefore, for their reception, cavities or large canals in certain parts of the skeleton. Generally, the flexors are upon the ventral, and the extensors on the dorsal surface of the body. Ihe first are always larger and more powerful than the sceond. Usually, the muscles pass from one segment to the adjacent one, and by this arrangement, the interarticular movement between the segments is produced. Their course is longitudinal, but, especially where there are several superposed layers, they assume also an oblique and crucial direction. ${ }^{(2)}$ Rarely are transversc mascles observed. ${ }^{(3)}$
The muscular system in gencral is very unequally \cdot developed in the various orders of Crustacea. It is most complicated when the number of

[^178]3 With the Myriapoda, the transverse muscles pass off right and left from the ventral median line to the sides of the abdominal segments. With the Lernaeodea, and Ergasilina, there are, under the skin, transverse as well as longitudinal muscles.
other Arthropoda, and especially the Insecta, under which, this point will be specially treated. - Ed.

* [§ 267.] For a circular muscle quite extraordinary in Caligus, see Dana, Descript. of a species of Caligus, Amer. Jour. of Sc. XXXIV. p. 247, Pl. IV. fig. 7, r. - Ed.
the segments of the body is greatcst; ${ }^{(4)}$ and most simple when these segments are atrophied or blended together. ${ }^{(5)}$

§ 268.

The locomotive organs of the Crustacea are, in general, very numerous; for, often all the segments, from the head to the extremity of the tail, that is, the three corresponding to the thoracic scgments of insects, and those of the posterior part of the body, have, each, a pair of articulated appendages. In the order Myriapoda, the Chilognatha have two pairs of legs on each segment of the body. ${ }^{(1)}$ The form of these organs may be most variously noodified, and even so mueh so that their function is entirely changed. ${ }^{(2)}$ But those of the first five segments of the abdomen are most constant in their form; although they change their function, being sometimes ambulatory legs, sometimes prchensile organs, and sometimes oars. When prehensile organs, their last joint is armed with a very hooked, sharp claw; when oars, this same joint becomes a plate bordered with stiff bristles or bifid hairs.

The locomotive organs of the three thoracie segments are usually pressed towards the mouth and changed into foot-jaws, which serve either as masticatory, or as tactile and prehensile organs. The appendages of the posterior part of the body may have even yet wider variations. They may be changed into false or abdominal feet serving sometimes as oars, as fins, or as respiratory organs; and, in the act of generation, they may play the part, some, of copulatory organs, and others, as porters of the eggs.

When they are ambulatory, or when prehensile organs, these appendages may be divided intosix pieces, viz. : The Coxa, the Trochanter, the Femur, the Tibia, the Metatarsus, and the Tarsus the extremity of which, with the ambulatory feet, is often prolonged into a short, stiff claw. When they serve as natatory organs, the separate joints are more or less flattened and spread out. When used as prehensile organs, they are either monodactyle - the entire tarsus being transformed into a strongly-curved hook which can be applied against the metatarsus, - or they are didaetyle or like pineers, - the metatarsus being thiekened or increased in a hand-like manner, and prolonged into an immovable process (Index), against which the tarsus (Pollex) can be applied in a finger-like manner.

From these metamorphoses and the complete abortion of these appendages, the various forms of Crustacea may be reduced to a few principal types, as follows:

[^179]1. With the Myriapoda, these appendages are ambulatory and have the same form with all the segments of the body; and only with the Chilopoda the anterior and middle pairs of the first segment corresponding to a thorax, are ehanged into tactile organs.
2. With the Isopoda, Laenodipoda, and Amphipoda, the first thoraeic pair are taetile organs. With the Amphipoda, the second and third thoracie pairs are changed into prehensile organs armed with a elaw. The five anterior abdominal pairs are ambulatory and unehanged, with the Isopoda, and Amphipoda. But the remaining posterior pairs are transformed, with the first of these orders, into lamelliform respiratory organs; and with the second, into short, very movable appendages, terminated, each, by a double uni- or multi-articulate cirrus, which serve sometimes as oars, sometinies as gyratory organs.
3. With the Decapoda, the thorax is entirely abortive, and its three pairs are changed into oral and taetile organs; while the first pair, belonging to the anterior abdominal segments, is usually transformed into a forficulate prehensile organ. The four sueceeding pairs are simply anbulatory organs. But the appendages of the pesterior part of the abdomen are reduced to tendril-like proeesses, which play a part in the aet of generation.

With the Squillina, the three thoraeie, and the first two abdominal pairs have the form of prehensile organs, while the three suceeeding pairs retain their eharaeter of ambulatory organs, and those of the remaining posterior segments are ehanged into lamelliform fins.
4. In the section of the inferior Crustacea, designated usually under the name of Entomostraea, the head and thorax are fused into a single part ealled Cephalothorax, and the mouth is situated so far behind, that the first pair of feet is in front of it. The locomotive apparatus here consists usually of oars or prehensile organs. With the Poeeilopoda, the first three pairs of appendages are forfieulate, as, also, are the three pairs of jaws. With the Phyllopoda, and Lophyropoda, the first two pairs of feet resemble antemae; of these sometimes the first, as well also as the second, which are usually branched, serve as oars; ${ }^{(3)}$ here, also, the often very numerous, anterior abdominal appendages are used usually as fins, while the posterior ones are scareely at all developed.
5. With the Cirripedia, the first thoracie pair is transformed in a remarkable manuer. With the Lepadea, they are ehanged into a soft foot; and with the Balanodea, into a shell. ${ }^{(4)}$ The remaining six pairs are multiarticulate eirrate organs, and the abdomen is prolonged into a tail free from appendages. The three anterior pairs of these eirrate organs are the shorter, and have a tactile function; while the three posterior are used as gyratory organs.
6. With the Siphonostoma, the mouth is even still further behind, and

[^180]the young animals, these organs are used clcarly as oars; вee Jurine, Hist. d. Monocles, loc. cit. Pl. XX. fig. 9, and Pl. XXI. fig. 1, 2 (Chirocephalus), and Joly, in the Aun. d. Sc. Nat. XIII. HI. VII. (Artemia).*

4 Sce Thompson, Zonl. Research. PI. IX. fig. 3 (Balanus), and Burmeister, Beitr., \&c., Taf. I. fig. 3-5 (Lepas).

[^181]cussion of this point, sce Dana, Report on Crustac. \&c. p. 1031.-ED.
the number of appendages much less; so that the three and only pairs, eorresponding to the thoracic, are in front of the mouth. With the Caligina, and the Ergasilina, the thoracic appendages are prehensile organs, while those of the abdomen are ehanged into rudimentary oars. With the genus Argulus alone, the first abdominal pair has the form of suckers,* the remaining ones being fin-like as usual. With the Lernaeodea, the abdominal appendages are entirely wanting, and there are only a few anterior prehensile ones, two of which, in some genera, are prolonged arm-like, and united, at their extremity, into a button-like, suctorial organ. ${ }^{(n)}$ Sometimes these arms are wanting, there being present only the suetorial organ. ${ }^{(6)}$ With the Penellina, the locomotive organs are reduced to non-articulated rudiments; or even these may be wanting. and then the cephalic extremity of the unsegmented body has stiff, forked, horny, processes, by means of which these parasites enter the parenehyma of other animals. ${ }^{(\pi)}$

§ 269.

Certain Crustacea have, moreover, a special loeomotive apparatus. With Cypridina, the body is shielded with a bivalve shell, the halves of which move on a kind of hinge. Upon their internal surface are inserted muscular fibres, arising from the back of the animal, which act like the adductor muscles of the bivalve Acephata.

With the Cirripedia, there is a eonsiderable transverse adductor muscle, which, with the Balanodea, and Lepadea, is situated in the anterior or cephalic angle of the fissure of the mantle, which is nearly always elosed by an operculum. ${ }^{(1)}$ In this same angle, the body, with all the Cirripedia, is in connection with the mantle, partly by its cutaneous envelope, which, at this point, is folded in so as to line the cavity of the mantle, and partly by various muscles. These muscles arise from the auterior extremity of the body, which is inverted within the cavity of the mantle, and from both the ventral (or upper), and from the dorsal (or lower) surface of the animal.

When those of the upper or abdominal surface are eontracted, and, at the same time, the adductor muscle of the valves is relaxed, the animal comes out through the fissure of the mantle; but it is withdrawu into the mantle-eavity when those of the lower or dorsal surface are contraeted. ${ }^{(2)}$

[^182]
CHAPTER III.

NERVOUS SYSTEM.

$$
\S 270 .
$$

The Nervous system of the Crustaca, is developed in different degrees according to the various orders. ${ }^{11)}$

Its central mass consists of an abdominal cord, connecting, usually, with the cerebral ganglia by an oesophageal ring. With the long-bodied species, this abdominal cord is composed of numerous ganglia, arranged in succes: sive pairs from before backwards, and comected together by longitudinal commissures. But when the cutaneous skeleton is shortened by a diminution or a fusion of the segments, the ganglionic chain is lessened in a like manner by a coalescence or a disappearance of several of its ganglia.

With the Macrura, the Stomapoda, the Amphipoda, and Isopoda, the abdominal cord consists of ten to thirteen pairs of unequal ganglia, situated, usually, on the median line, and shielded by septa given off from the internal surface of the thoracic and abdominal segments of the skeleton.
The size of these ganglia is in direct ratio with the developnient of the segments and their appendages, to which they belong. Those of the thorax, - the anterior abdominal ones, as well as the last caudal one, are consequently very large, for they send filaments to the various chelate, prehensile, ambulatory, and natatory appendages, and to the caudal lamcllac, which are usually highly developed. With the Myriapoda, the abdominal cord is remarkable for the great number of its ganglia, which are of equal size. Quite often, the ganglia of the same pair are fused into a single mass ; in which ease, the two interganglionic commissures are more or less approximated or even blended together. With some species, a portion of the abdominal ganglia are so closely approximated, successively, that the interganglionic commissures are wholly wanting. With the Brachyura, the whole abdominal cord is concentrated into a large central mass.
The peripheric nerves arise from the ganglia, rarely from the interganglionic commissures. The cerebral mass, which is situated above or in front of the resophagus, is composed of a pair of considerable ganglia, more or less fused together. The nerves sent off from these, go principally to the organs of sense; and in the inferior Crustacca, where these last are wanting, the cerebral mass is absent also. In such case, there are usually wanting likewise the two cercbral commissures, which are given off from the anterior thoracic ganglion, and surround the esophagus.*

1 Audouin and Milne Edwards (Ann. d. Sc. Nat. XIV. 1828, p. 77, Pl. II.-VI.) have given a general review of the disposition of the nervous system in the different orders of Crustacea; see also

* [End of $\S 270$.$] It is regretted that no example,$ illustrative of this last statement, is given, for certainly none is now recallected where the grand typical structure is not present, - in other words, where the cesophagus does not pierce the cerebral nervous system at some point. In many of the

Milne Edwards, IIst. Nat. d. Crustac. I. p. 126, PI. XI., and his article Crustacea in the Cyclopof Anat. loc. cit. p. 762.
inferior Crustacea, such as Caligus, and some of not all of the Cyclops tribe, the cephalic, thoracic, and abdominal ganglia, are fused into a single mass through the anterior part of which the cesoplagus passes ; see Dana, loc. cit. Caligus. Amer. Jour. Sc. XXXIV. p. 250.-Ed.

§ 271.

The intimate structure of the nervous system in many of the orders of Crustaeea, can be made out without difficulty, by dissection and the microscope; ; ${ }^{(1)}$ for its elements are not as liable to change as in the other elasses of the Invertebrata already described.

In many speeies, there may be observed in the nerves surrounded by a delicate fibrous neurilemma, the primitive nerve-fibres so large that their double eontour is easily seen; but these gradually assume a varicose aspect. ${ }^{(2)}$ In the ganglia, the ganglionic globulcs may be easily seen, as very large, round, and sometimes pyriform eells, having eaeh a disproportionately large nucleolated nucleus. ${ }^{(3)}$ As to the eourse and arrangement of the nerve-fibrcs in the interior of the abdominal ganglia, two kiads of these fibres may sometimes be distinguished : the first pass uninterruptedly through all the ganglia suceessively, and thus contribute to the formation of the longitudinal commissures; but the seeond pass round among the ganglionie globules, and emerge laterally from the ganglion to form the peripherie nerve. ${ }^{(4)}$

§ 272.

From a more partieular examination of the arrangement of the nervous system in the different orders of Crustaeea, the following remarkable faets have been noticed. ${ }^{(1)}$

With the Macrura, where this system is most highly developed, ${ }^{(2)}$ the abdominal cord is eomposed of twelve pairs of ganglia, generally bleaded

1 See Helmholtz, De fabrie. syst. nerv. evertebrat. loc. cit. p. 17.*
2 Ehrenberg, Unerkannte Struet. \&c. p. 56, Tab. VI. fig. 3-5 (Homarus marinus, Astacus fluviatilis and Palaemon squilla). The varicose enlargements are represented too regular in some of these figures. See, also, Hannover, Recherch. \&c. p. 68, Tab. VI. fig. 76, c. e.
© Hannover, loc. cit. p. 67, fig. 75, 76 a. (Astacus fluviatilis), and Valentin, in the Nov. Aet. Aead. Nat. Cur. XVIII. p. 210, Tab. IX. fig. 7285. This last author declares that he has observed, in the abdominal ganglia of the common crawfish, the ganglionic globules divided symmetrically into two groups, right and left; and in the caudal ganglia of the same species, that he has seen two double groups, two anterior and two posterior.

4 Valentin (loc. cit. p. 211) has seen these two kinds of primitive fibres in the abdominal cord of the common crawfish. We are indebted to Newport for very complete observations on the disposition of the nervous fibres in the abdominal cord of Myriapoda, and illustrated by numerous figures; see Plilos. Transact. 1843, p. 243, PI. XI., or in abstract in Froriep's neue Notiz. XXVMr. p. 177, or in the Ann. d. Sc. Nat. I. 184t, p. 58, or Annals of Nat. Hist. XII. p. 223. According to this observer, four fasciculi of primitive nerve-fibres may be observed in the ventral eord of the Myriapoda. An upper and a lower, extending longitudinally, contain the one, motor, and the other, sensitive fibres. A third is composed of transverse fibres which pass from one side of the ganglion to the other ; and

* [§ 271, note 1.] See, also, for histological details on this हystem, Leydig, loc. cit. Siebold and Köl-
the fourth extends from one ganglion to the next succeeding, by the side of the longitudinal commissures. To these last, Newport has given the name of fibres of reinforcement. Eaeh peripheric nerve given off from the abdominal cord, contains fibres from all of these four fasciculi. The associate and reflex motions between the feet of the same pair, are due to the transverse fibres, and the sympathy between the posterior and anterior feet is referable to the fibres of reinforeement.
1 If , in proceeding from the higher to the lower speeies in the deseription of the nervous system, I have deviated from the plan hitherto pursued, it is because, with the Crustaeea, this system, notwithstanding the various forms of the body, is found upon one and the same type, whieh is not true in any of the preceding classes, as, for instance, in the Aeephala. This type is especially apparent during the young age of these animals, and does not change exeept from their ulterior metamorphosis, when, often some portions of the nervous system disappear ; on this aecount, this last will be best understood when studied in its primitive state, or from the more perfect forms it presents in the higher Crustacea.

2 For the nervous system of the macrourous Crustacea, see Audouin and Milne Edvards, loc, cit. (Homarus, Palaemon, and Palinurus); Suckou, loc. cit. p. 61, Taf. XI. fig. 7 (Astacus); Brandt, Medizin. Zool. I. p. 64, Taf. IX. fig. 1, and espeeially Newport, Philos. Trans. 1834, p. 406, Pl. XVII. fig. 40-42 (Homarus).
liker's Zeitseh. II. p. 328, III. p. 291 (Argulus, Artemia, Branchipus). - Ed.
together laterally, on the median line. Of these, the first six pairs, belong. ing to the thoraeie and to the anterior abdominal segments, are the larger, and send off nerves prineipally to the foot-jaws, to the preheusile, and to the ambulatory organs. The two longitudinal commissures between the anterior abdominal ganglia, are separate; but those between the posterior ganglia are, on the eontrary, blended into a single eord. In some species, these eommissures are wholly wanting between the anterior ganglia. ${ }^{(3)}$ The brain consists of a single transverse ganglion; from its front and sides pass off several nerves for the antennae, the olfactory organs, the eyes, and the auditory organs; while, from behind, it sends off the two long eords which surround the œsophagus. These last give branches on their eourse to the organs of mastieation, and interanastomose behind the œesophagus, just before reaching the first thoraeie ganglion, by a transverse filament. ${ }^{(4)}$

With the Stomapoda, the nervous system is composed of a cerebral ganglion, and of about tell abdominal ganglia; of these, with the Squillina, the last six belong to the tail, while the remaining four, anterior, send nerves to the thorax, and to the first three abdominal segments. The size of the first, which sends nerves to the prehensile feet, is due to its being eomposed of several ganglia fused together. ${ }^{(5)}$ With the Mysina, the five or six largest ganglia belong to the thorax and to the anterior part of the abdomen, and are connected together by short, double eommissures. ${ }^{(6)}$

The genus Phyllosoma has two extraordinarily long and very small oesophageal eords extending from the brain to the abdominal cord. The thoraeic portion of this last is eomposed of three pairs of ganglia, blended almost into a single mass; these are sueceeded by six pairs of large abdominal ganglia, arranged in two longitudinal rows, and intereonnected by six very short, transverse filaments. In the short tail, there are, moreover, six pairs of ganglia, smaller and laterally eontiguous, but connected suceessively by very small longitudinal filaments. ${ }^{\text {(i) }}$

With the Anomoura, whieh resemble the Brachyura in the abortion of the post-abdomen, the structure of the nervous system eonfirms this affinity. With Pagurus, the anterior portion of the abdominal eord consists only of three ganglia, which send nerves to the foot-jaws, to the cheliform, and to the partially abortive ambulatory feet. But the posterior part of this cord consists of two cords which arise from the third abdominal ganglion, and unite, just in front of the arms, in the fourth and last ganglion. ${ }^{(8)}$ With the genus Homola, the five pairs of the anterior abdominal ganglia are fused into a single mass which is perforated through its eentre. From the posterior border of this mass a simple nervous cord as rudiment oi the posterior part of the ventral eord, passes off to the wholly abortive post-abdomen. ${ }^{(9)}$

With the Brachyura, the nervous system has only two eentral masses, one eerebral, the other abdominal. The first sends nerves, as in the other

[^183]Decapoda, to the organs of sense; the second is large, round or oval, and situated in the centre of the thorax, - it is sometimes perforated centrally, ${ }^{(10)}$ and supplies all the nerves of the trunk, beside sending off the two oesophageal cords. These cords are connected by the transverse commissure already mentioned, and give off filaments to the organs of mastication. From the posterior extremity of the cord, there arises a simple nervous trunk, free from ganglia, and extending along the median line to the very extremity of the tail. (11)

Among the Amphipoda, the Gammarina have a brain scarcely larger than the first of the abdominal ganglia; thesc last, twelve in number, are connected by double commissures, and the postcrior ones belonging to the segments of the body which have false feet, are always smaller than the others. ${ }^{(12)}$ With the large-headed Hyperina, the two cerebral ganglia are considerably larger than the abdominal ones, which are ten in number, and of unequal size. Their commissures are contiguous, and the first ganglion, which is the largest, is probably the result of the fusion of two pairs. ${ }^{(13)}$

With the Isopoda, the abdominal cord, which is connected with the cercbral ganglia by two short oesophageal cords, is composed of seven pairs of ganglia, situated in the thoracic and anterior abdominal segments, and connected together, successively, by double commissures. In some genera, the posterior ganglia send off radiating nerves to the partially abortive and partially fused terminal segments. ${ }^{(14)}$ In others, these seven pairs are succeeded by five or six pairs of others, smaller, and which, with Ilothea, are connected together by double commissures; ${ }^{(1)}{ }^{(1)}$ but with the genera Cymothoa, ${ }^{(16)}$ Aega ${ }^{(17)}$ and Iygidium, ${ }^{(18)}$ are contiguous. With many Isopoda, the peripheric nerves are given off, not only from the ganglia, but also from their longitudinal commissures, and the posterior ones are distributed to the dorsal region of the animal. ${ }^{(19)}$

With the Laemodipoda, the abdominal cord is composed of eight pairs of ganglia, of which the first two are situated in the cephalic segment, one behind the other, and send off nerves to the organs of mastication, and to the first pair of feet, - thus corresponding to the result of the fusion of the first two thoracic segments with the head. The other pairs are connected by very distinct double commissures, which, between the last two pairs, are quite short, thus bringing the last three pairs almost together in the third terminal segment of the body. ${ }^{(20)}$

With the Myriapoda the ganglia of the abdominal cord are very numerous, and nearly all of the same size. The brain consists, usually, of a

[^184]16. Audouin and Milne Edwards, loc. cit. p. 83 , Pl. II. fig. 2, and Milne Edwards, loc. cit. Pl. XI. fig. 2.
${ }^{7}$ Rathke', Nov. Act. Nat. Cur. XX. Pt. I. p. 33, Tab. VI. fig. 15.
18 Lereboullet, Ann. d. Sc. Nat. XX. p. 124, Pl. V. fiy. 24.

19 Porcellio, Oniscus, Armadillidium, Idothea.
20 Treviranus, Vermisch. Schrift. II. p. 8, Taf.
I. fig. 5, and Roussel de Vauzeme, Ann. d. Se. Nat. I. p. 253, I'l. IX. fig. 19 (Cyamus).
According to Frey and Leuckart (Beitr. p. 102), the ventral cord of Caprellu somewhat resembles that of Cyamus.
distinct right and left half, upon caeh of which is a kind of Ganglion opticum, of a size proportionate to that of the development of the eycs. With the Chilopoda, the abdominal ganglia are widely separated from eaeh other, but eonneeted by double commissures whieh are closely approximated, and in some cases, fused together as a ventral cord. ${ }^{(21)}$. With Lithobius, and Scutigera, there are sixtecn pairs of these ganglia ; with Scolopendra, twenty-two, and with Geophilus, fifty to one hundred and forty. Of these ganglia, the first pair, belonging to the two anterior feet, which are changed into prehensilc or tactilc organs, are much the largest. The size of the others corresponds, for the most part, to the development of the fect. ${ }^{(22)}$)

Of tho Chilognatha, the genus Polydesmus, the long fect of which are widely separated, is allied to the preceding section of Myriapoda. Above each two pairs of feet, the abdominal cord is enlarged into two successive ganglia, and the medullary mass between them corresponds to a simple longitudinal commissure. ${ }^{(3)}$ (With the other Chilognatha, of whieh the pairs of feet are elose together, the longitudinal eommissures are wholly wanting, so that the ganglia, of a number corresponding to that of the pairs of feet, form a moniliform cord; and in some Julidae, the constrictions of this last are eutirely effaced. ${ }^{(24)}$

The disposition of the nervous system of Limulus is remarkable. Its principal mass surrounds the mouth like a ring. From the anterior portion of this, corresponding to a brain, pass off nerves in front, among which the two optic nerves are conspicuous for their length; while its posterior are, which surrounds the oesophagus, has three transverse eommissures sueceeding each other. From the lateral portions of this ring, pass off six pairs of large nerves for as many pairs of prehensile feet. From its posterior border arises a large trunk eomposed of two bands which extend backwards along the median line of the abdomen, furnishing nerves to the fin-like and gill-like appendages, and then separating, terminate in the tail in.a ganglion from which are given off many filaments to the neighboring parts, and a very long one which enters the caudal spine. ${ }^{(55)}$

Of the nervous system of the Phyllopoda, that of the genus Apus is the best knowu. ${ }^{(20)}$ The brain consists of a flattened, quadrilateral body, from the superior angles of which arise the optic nerves, while from the posterior angles pass off the two long, œsophagcal eommissurcs. These last, before reaching the thoracie ganglia, are connected by a transverse commissure. Upon the thoracie succeed numerous abdominal ganglia, those of cach pair of which, as in the first, are wide apart, but they gradually approximate posteriorly, and at last are fused into a single mass.

The two thoracic ganglia, as well also as the anterior abdominal pairs,
${ }_{22}$ Geophilus.
22 Treviranus, Verm. Schrift. 11. p. 31, Taf. V1I. fig. 2, 5 (Lithobius and Geophilus); $K u$ torga, loc. oit. p. 15, Tab. 11. fig. 2, Tab. 1II. fig. 1, 2 (Scolopendra morsitans); but especially Newport, Philos. Trans. 183t, p. 403 , Pl. XVII. fig. 43-43 (Scolopendra), and 18 13 , p. 257, Pl. XI. fig. 11-13 (Geophilus).

23 Newport, loc. cit. 1843, p. 252, Pl. XI. fig. 6, 10 , or Owen, Lect. \&c. p. 200, fig. 93.
ot Thare are only six pairs of ganglia with Glomeris; see Brandt, in Muller's Arch. 1837, p. 321, Taf. XII. fig. 6. But these ganglia are very numerous with Julus; see Treviranus,

[^185]are connected together by double, transverse commissures, which, posteriorly, become single, and, finally, wholly disappear. The longitudinal commissures are disposed in a like manner ; they are double and wide apart in front, hut, posteriorly, approximate and are proportionably shortened, until they fuse together, and then entirely disappear, - the cord terminating in a simple moniliform band which ends above the last pair of feet. The other abdominal segments which have no feet, receive their nerves from two long cords which arise from the twenty-fourth and twentyfifth abdominal ganglia and accompany the intestinal canal to the last segment of the tail, where they end in a ganglionic enlargement from which are given off several short filaments, beside a long nerve to the two caudal bristles. In the other Phyllopoda, the nervous system is observed with difficulty, probably from its tenuity; and, as yet, only a single flattened cephalic ganglion has been found. ${ }^{(27)}$ With the very small Lophyropoda, these difficulties are even greater, for here there has been observed a multi-constricted, nervous mass, situated in front of the cesophagus, which may be regarded as a cerebral ganglion, since it sends off, in front, several filaments to the tactile and ocular organs; and behind, two cords which surround the cesophagus, and join, perhaps, in an abdominal ganglion. ${ }^{(28)}$

Among the Siphonostoma, with Argulus, as with the Lophyropoda, the nervous centre is reduced to a cerebral mass situated above the proboscis, - and composed of three ganglia arranged triangularly. ${ }^{(29)}$ With the other parasitic Crustacea, of which the head and organs of sense have gradually disappeared, the cerebral ganglion always becomes correspondingly less apparent, while the abdominal cord is the more distinct. This is so with the genus Chondracanthus, which has a cerebral ganglion, and in the few segments of the body, several widely separated (laterally) ganglia connected together by longitudinal, double commissures. ${ }^{(30)}$ With Diche-

[^186]cit. p. 39, Tab. II. fig. II. 1, 2, 3), by Straus (loc. cit. p. 396, PI. XXIX. fig. 6, b. (l. e. (Daphnia)), and by Lovén (loc. cit. p. 151, Taf. V. tig. 5, d. (Evadne)).

29 Jurine, Ann. du Mus. VII. 1. 447, Pl. XXVI. fig. 11, and Vogt, loc. cit. p. 14, fig. 1, I., $11 . \dagger$
${ }^{30}$ Rathke, Nov. Act. Nat. Cur. XX. p. 125.
\dagger [§ 272 , note 29.] The recent researches of Lfydig (loc. cit. Sicbold and Kölliker's Zeitsch. 1I. p. 328) have extended our knowledge of the nervous system with these lower Crustacca. In Argulus, this observer found the central nervous system to consist of a cerebral portion and a ventral cord. The first, or brain, is composed of two parts - one anterior and club-shaped, the other, beneath the first, pyriform and much the larger. This portion connects, by two commissures which embrace the œesophagus, with the ventral cord. This cord is composed of six ganglia. Ile onserved the following distribution of the peripheric portion of the nervous system. From the brain arise the optic nerves, and behind these, two pairs of nerves for the antenaae; of the ventral ganglia, the first, third and sisth give off nerves to the appendages of the body and its internal organs. Leydig found no trace of a splanchnic system with these animals. - Ed.
lestium, the cerebral ganglion is entirely wanting, but, in its stead, there is a conspicuous thoracic ganglion under the esophagus, from which passes off an equal number of nerves in front and bchind, and which is succeeded, posteriorly, by a large nervous trunk as the abdominal cord. This cord has ganglionic enlargements in the three anterior abdominal segments, and finally divides into two branches which extend to the very extremity of the tail. ${ }^{(31)}$ With Achtheres, and Peniculus, the nervous centres consist only of two trunks lying on the lower surfaee of the abdomen, each side of the intestinal canal. ${ }^{(32)}$

With the Cirripedia, which are headless, the nervous centre consists of two parallel abdominal trunks, which, in their course, form six to seven ganglionic enlargements from which pass off, laterally, nerves to the cirri. The tivo anterior ganglia are connected by a nerve which stretches arcuately over the œesophagus, and sends filaments to the organs of mastication, so that a brain proper is wanting. The last two pairs of ganglia are blended into a single mass, which sends nerves to the cirri, and two filamens into the long tail. ${ }^{(33)}$

$\oint 273$.

The Vegetative nervous system is distinetly developed with many Crustacea. It consists of a single or of a double Splanchnic nerve.

With the Decapoda, and Squillina, a single splanchnic nerve arises from the posterior border of the brain, - passes over the stomach, at the same time enlarging into one or two ganglia, distributes its branches to the walls of this organ, and, finally, enters the liver right and left.

This nerve is reinforced by two filaments, which, conjointly with the nerves of the masticatory organs, are given off from the ganglionic enlargements of the two essophageal commissures, and, before entering the splanchnic nerve, send off filaments directly to the lateral walls of the stomach. ${ }^{(1)}$

With the Oniscidae, there are two splanchnie nerves. On each side of the small stomach are two ganglia which connect with the brain by a short filament, and send off, posteriorly, small branches to the walls of the stomach. ${ }^{(2)}$

With the Myriapoda, there are also two systems of splanchnic nerves.

[^187]* [§ 272, note 33.] Subsequent researches have shown that with some at least of the Cirripedia, there is a proper brain furnishing nerves to the organs of sense; see Darwin, Monogr. of the sub-

Krohn, Isis, 1834, p. 529, Taf. XII. fig. 1-4, and Schlemm, De hepate ac bile Crustaceorum et Mol luscorum, loc. cit. p. 16, Tab. I. fig. 2, Tab. II. fig. 13 (Astacus fluviatilis). Suckow (loc. cit. p. 62, Tab. XI. f.g. 7, 5.) in the Crawfish, and Newport (Philos. Trans. 1834, Pl. XVII. fig. 40, f.) in the lobster, have observed only a single splanchnic nerve, which they have regarded as a cardiac nerve. Audouin and Milne Edwards, on the other hand, have described and figured with both the Macrura and the Brachyura, double splanchnic nerves, but the single one was entirely overlooked.
2 Brandt, Bemerk. \&c. p. 14, and Medizin. Zool. II. p. 75, Taf. XV. fig. 27, c.
class Cirripedia, \&c., p. 48 (Lepas). Even in the description referred to above, of Otion, by Wyman in Silliman's Jour., a brain is really spoken of. Ed.

The single stomato-gastric system consists of two short trunks which extend from the brain in front, send several small filaments to the parts of the noouth, and finally pass in front of the brain, - ending in a small ganglion. From this last, arises a single nerve, which passes under the brain and extends along the œesophagus to the stomach, being, in its course, sometimes enlarged like a ganglion. The double splanchnie system, on the other hand, is composed of a double row of ganglia accompanying the œesophagus, and connected, partly by the pesterior border of the brain and the single nerve, and partly by nervous branches. The filaments given off from these ganglia are distributed not only to the cesophagus, but also to the salivary glands. ${ }^{(3)}$

In the genus Limulus, there is observed, as a single splanchnic nerve, only one nerve, having a ganglion and situated on the heart ; ${ }^{(4)}$ while, with Apus, the splanchnic nervous system is highly developed. The two œesophageal commissures furnish, as with the Decapoda, two nerves which, shortly after their origin, are eonnected by a transverse eommissure. On the œesophagus, they are blended into a single nerve, and send to this canal numerons filaments. ${ }^{(5)}$ With the other inferior Crustacea, no splanchnic nerves have as yet bcen observed.

CHAPTER IV.

ORGANS OF SENSE.

§ 274.

The sense of Touch is highly developed with Crustacea. Its seat is in the multi-articulate antennae, situated on the head, or cephalic extremity, which always contain large nerves arising directly from the brain. Often, the mastieatory organs have one or several pairs of tactile appendages; and, not unfrequently, several pairs of the feet neighboring the mouth, are changed into tentacular, tactile organs, which play an important part in the ehoice and prehension of food. ${ }^{(1)}$

§ 275.

As Olfactory organs, with the Crustacea, may undoubtedly be regarded the two shallow excavations which, with the Macrura, and with Pagurus, are situated in the basal joint of the two median antennae. Each of these cavitics eommumicates, externally, by a fissure-like opening, placed on the upper surface of the joint, and usually fringed with finc bristles. Inter-

[^188][^189]nally, these organs are lined by a soft membrane, whieh eontains a nerve arising from the brain in eommon with the internal antenual nerve. ${ }^{(1)}$

§ 276.

Organs of Hearing, with the Crustreea, have as yet been observed only with the Deeapoda. ${ }^{(1)}$ With these Crustaeea, there is a hollow eonieal proeess, perforated at its obtuse apex, on the lower surface of the basal joint of the external antennae. Its opening is always elosed by a kind of Tympanitie membrane, in the eentre of which there is usually a fissure. ${ }^{(2)}$ Behind this eonieal process, and in the eephalothorax, there is a large, thin-walled sae, filled with a elear liquid; this is prolonged by a kind of neck into the proeess, and has, undoubtedly, the funetion of a Labyrinthus, ${ }^{(3)}$ for, a special nerve, arising from the lateral parts of the brain, in eommon with the exterual antennal nerve, is spread upon its walls. ${ }^{(4)}$

The base of this labyrinth is in connection with a singular glandular organ, of a usually greenish color, but whose nature is yet undetermined. ${ }^{(5)}$

1 These olfactory organs were first described aud considered as such by Rosenthal (Reil's Arcl. X. 1811, p. 433, Taf. VII. fig. 1-t) with the craw-fish and lobster. Treviranus (Biologie, V1. 1822, p. 308) has subsequently confirmed thesc observations with the lobster. See, for this same animal, Milne Eduards, Hist. Nat. d. Crust. Pl. X1I. fig. I. These organs have been found latterly, also, by Farre, with Palinurus and Pagurus, (Philos. Trans. 1843, p. 233, Pl. LX. X. and Ann. of Nat. IIist. X1I. p. 229). I have myself observed them with Palaemon, Nephrops, and Maia. It is difficult to understand how Farre could have taken these cavities for organs of hearing into which grains of sand, entering by accident, would serve as otolites.

1 Although special auditive organs have not yet becn observed with the other Crustacea, yet it cannot be denied that they are sensible to sounds. At least, the observations of Coldstream (Oyclop. of Anat. I. p. 68s) show that the Cirripedia have a very acute sense of hearing, for they appear eognizant of the slightest sound, and quickly close the shell.

2 This cylindrical protuberance, with its tympanitic membrane, is easily seen in the basilar article mentioned, with Homarus, Astacus, Nephrops, Palinurus, and other Macrura; - see Scarpa, Anatom. disquis. de auditu et olfactu. p. 2, Tab. IV. fig. 4, a. b. ; Weber, De aure animal. aquatil. p. 8, 106, T'ab. I. fig. 1, No. 1, and Milne Edwards, Hist. Nat. d. Crust. Pl. XII. fig. 11, o, (Astacus). This protuberance is long and cylinIrical with Pagurus striatus, and Homola Cuvieri.
With the Maina, whose antennal articles are large and immovable, the auditive organs are slightly protuberant, and situated near the mouth. See Savigny, Descrip. de l'Egypte, loc. cit. Pl. VI. fig. 4.2 and 6.2 a. e. (Maia and Stenorhynchus), and Milne Edwards, loc. cit. I. p. 268. Pl. III. fig. 2, e. Pl. XV. fig. 2, 10, 16 (Maia, Mithrax, Leucippa, and Camposcia).

With Scyllarus latus, wbose antennae are very large and fixed at their base, the large but that auditive cylinders are very short and near together on the borders of the mouth (Savigny loc, cit. Pl. VIII. fig. 1.a, a. e.). With Scyllarus arctus, I

+ [§ 276, note 2.] The organ of hearing in Leucifer first nuticed by Souleyet, has since been studied by Huxley (Ann, of Nat. Hist. 1851, p. $30 \pm$) who appears to have clearly made out the structure which resembles the ordinary form of
have found the same concealed in the semilunar depressions which are underueath the mouth. With Mava, these cylinders are obliquely truncated, and are articulated witb the large and basilar articles of the antenne. They can be depressed towards the inner side, and then righted as a kind of external auditive conch, and for this purpose the intcrnal surface of the cylinder has a pair of muscles which are inserted on an internal, stirrup-like proccss ; sce Cavolini, Abhandl. über die Lrzeugung d. Fische und der Krebse, p. 183, and Milne Edwards, llist. Nat. d. Crust. I. p. 12t, Pl. XII. fig. 10, e. 1. m., and fig. 11, or in Cyclop. of Anat. loc. cit. p. 768, fig. 397, 398. Further researches are necessary, before the opinion of Souleyet (Froriep's neue Notiz. XXVIII. p. 8t) can be admitted, that a small,round, glittering body which, with Leucifer, is situated at the base of the internal antennae, is an auditive organ.*

3 Formerly, the attention had been called only to the portion of this labyrinth which is concealed in the auditive cylinder (Scarpa, loc. cit. Tab. IV. fig. 6, and Weber, loc. cit. Tab. I. fig. 2). It is only lately that it has been shown that this small auditive vesicle belongs to a very large ampulla situated at its base; see Brandt, Mediz. Zool. II. p. 64, Taf. XI. fig. 13, a. a., and Neuwyler, Anatom. Untersuch. Liber den Flusskrebs, in the Verhandl. d. schweizer. Naturf. Gesellsch. bei ihrer Versammel. zu Zurich, 1841, p. 176.

4 Scarpa, loc. cit. Tab. IV. fig. 5, g. g., and Weher, loc. cit. Tab. I. fig. 2, No. 7 ; Brandt, and Neuwyler, loc. cit. ; Farre, Philos. Trans. 1843, II. IX. Ag. 10, e.e.

5 This glandular body which appears to be present with the Brachyura also, is situated, with the Astacina, behind the base of the external antennae, eoncealed in the lower portion of the shell, and covered, in part, by the membranous labyrinth; see Roesel, loc. cit. p. 322, Tab. LVIII. fig. 9, c.; Suckow, loc. cit. p. 55, Taf. IX. fig. 2, a.; Brandt Mediz. Zool. p. 64, Taf. XI. fig. 8, k. (Astacus), Mitne Edwards, IIist. Nat. d. Crust. Pl. XIf. fig. 9, a. 10, g. (Astacus and Mara). Neuwyler has given the green glands of the craw-fish a special examination (loc. cit.). He found that they eonsisted of an intestinoid tube communicating with the membranous labyrinth. At first he
auditory apparatus in the Mollusca. See also Schödler (Wiegmann's Arch. 1846, p. 363) mpon this organ with Acanthocercus rigidus; finally, Darwin, loc. cit. Cirripedia, p. 53.-ED.

§ 277.

The sense of Sight is present quite universally with Crustacea. ${ }^{(1)}$
The Cirripedia, the Penellina, and the Lernaeodea, alone, are without it; and even here this deficiency occurs only during the last phases of their retrograde metamorphosis, when these aninials remain fixed to foreign bodies. ${ }^{(2)}$

There is, moreover, in the other orders, here and there a genus which contains blind individuals. Such is the case with the females of certain parasitic Isopoda, ${ }^{(3)}$ and with some subtcrranean Myriapoda. ${ }^{(4)}$

The eyes of Crustacea present very various grades of development. The lowest of these is seen in the so-called Simple-cycs. With these, there is observed a convex cornea, and, behind it, a round, light-refracting body. This lens is surrounded by a layer of black, brown, red, or blue pigment, which, at its most convex point, is perforated by an optic nerve. The young individuals of the Cirripedia, the Penellina, and the Lernaeodea, have an eye of this kind in the middle of their forehead, but which gradually disappears in the course of their metamorphosis. ${ }^{(5)}$ Certain Ergasilina, as likewise the Lophyropoda and Phyllopoda, have, also, at their escape from the egg, a simple eye, which, with the Ergasilina, and certain Lophyropoda,
thought them comparable to a cochlea, but he was unable to find any nerve going to them, and has relinquished this idea,- doubting that these organs, aud the ampulla mentioned, are really auditive organs. Farre (loc. cit.) has gone further; he has taken these bodies for olfactory organs, and has endeavored to show, as already mentioned, the organs of smell to be real organs of hearing. It is true that, in the organs of hearing, no otolites are found ; but the principal parts exist, such as a Ca vum tympani, at the entrance of which is extended a tympanitic membrane and au auditive resiclc, upon which is spread a nerve.
The view of Frey (De Mysidis Anat. p. 13), then, is inadmissible ; he regards the seat of hearing, with Mysis, as the two internal caudal valves, where he has observed a cavity containing a radiated body, the nucleus of which has a crystalline structure, and which he regards as an otolite. But, aside from the singular structure of this body, he does not mention its haviag any special nerves.

It is, moreover, unnecessary to seek, with those Crustacea whose antennae are highly developed, the auditive organs anywhere but on the head; for, at the base of these antemnae, as, for example, with the Amphipoda, there are several other hollow processes which, in part, have been regarded as palpi, but which, upon more careful examination, will undoubtedly be found to be, some auditive, and others olfactory organs.

Frey and Leuckart (Beitr. p. 114, Taf. II. fig. 18) have, from the first, described in more detail the organs of the caudal valves of Mysis, as proper auditory organs; but, aside from the two so-called otolites which, contrary to all analogy, are provided with stiff bristles, the correctness of this interpretation is always open to question, for these authors have been unable to perceive any

[^190]nerve destined for these so-called auditive capsules, with Mysis.

1 For the eyes of Crustacea, see especially J. Müller, Zur vergleich. Physiol. d. Gesichtsinnes, p. 307 ; or its abstract in Ann. d. Sc. Nat. XVII. 1829, p. 225, or his later researches on the eyes of the Insecta and Crustacea, in Meckel's Arch. 1829, p. 38, and in Tiedemann's Zeitsch. f. Physiol. IV. p. 97.

2 The adult Cirripedia, notwithstanding the absence of eyes, are very sensitive to light. This I have observed with individuals of Balanus pusillus, which I had captive several weeks at Danzig. These animals, when undisturbed, came out of their shell, and executed the usual motions of their cirri, but they withdrew as quick as lightning into the shell, when, from passing my hand over the vessel, I shaded them. Coldstream (Cyclop. loc. cit. p. 688) has made similar observations.*

3 The females of Jone, Phryxus, and Bopyrus. \dagger
4 For example, with Polydesmus, Blannulus, Cryptops, and Geophilus.
5 For example with Achtheres, Tracheliastes, Lernaeocera (Nordmann, loc. cit. p. 80, \&c., Tab. IV. fig. 5, Tab. VI. fig. 5, 6). The Cirripedia have, at their escape from the egg, a single, hlack eye, according to Thompson; see the Philos. Trans. 1835, p. 355, Owen, Lectures, \&c., p. 161, fig. 88; and Goodsir, Edinb. new Philos. Jour. 1843, No. 69, p. 97, Pl. III. fig. 8, and Pl. IV. ng. 13-17 (Lepas and Balanus); but with the embryos of Balanus pusillus, I have found this eye of a red color. The reason why Burmeister (Beitr. \&c. p. 15, Taf. I. fig. 2) could perceive no eye with the young of Lepas, is, as he himself has remarked, because they had been effaced by the alcohol in which the specimens examined had long been preserved.
situated at the extremity of two optic nerves which proceed each from an ophthalmic ganglion. These ganglia are situated on two nervous cords which arise from the supra oesophage di ganglia. - En.
\dagger [§ 277 , note 3.] Quite remarkable among the blind Crustacea is the Astacus pellucidus Telk. from the Mammoth Cave, Kentucky. - Ed.
remains as a visual organ during the whole life; ${ }^{(9)}$ while, with other Lophyropoda, and with the Phyllopoda, it either entirely disappears, ${ }^{(7)}$ or remains in a eondition apparently rudimentary, by the side of the other eyes, whieh are subsequently formed. ${ }^{(8)}$ With certain Ergasilina, ${ }^{(9)}$ and some Lophyropoda, ${ }^{(10)}$ with the Caligina, ${ }^{(11)}$ and the males of some parasitic Isopoda, ${ }^{(12)}$ there are two permanent eyes, right and left, on the vertex of the head. The Poeeilopoda, also, have, beside their compound eyes, two simple ones, eontiguous on the middle of the forehead. ${ }^{(13)}$ These simple eyes are also sometimes the more numerous, and are then situated on eaeh side of the head, in fours, sixes or eights, in a single or double row, constituting the Oculi seriati, as is observed with some Myriapoda; ${ }^{(1)}$ or they are eollected in a thick group of twenty to forty, eonstituting the Oculi gregati, as is the ease with other Myriapoda, and with the Isopoda. ${ }^{(1)}$ Eaeh of these eyes has a separate branch of the optie nerve; this nerve, therefore, divides as many times as there are eyes.

Another form of eyes whieh is pretty eommon among Crustaeea, but whieh has many modifieations, has reeeived the name of Compound Unfaeeted Eyes.

These organs are eomposed of a eommon cornea, eovering numerous simple eyes, closely set against each other. They are found in their simplest form, with the Cirripedia at a eertain epoch of development, with the Argulina, the Laemodipoda, and eertain Lophyropoda, Phyllopoda and Amphipoda. Here, directly under the cornea, are a greater or less

6 Lamproglena, Ergasilus (Nordmann, loc. cit. Tab. II. fig. 1, 7), Cyclops, Cyclopsina, Cypris, \&c.
${ }_{7}$ With Limnadia, and Isaura, it is replaced by a compound eye; see Joly, Ann. d. Sc. Nat. XVII. PL. IX. fig. 39-41.

8 This is so with the adult individuals of Apus and the Branchiopoda, where the simple embryonic eye persists in an atrophied condition between the two faceted eyes; see Schüffer, Der krebsartige Kiefenfuss, Taf. II. fig. 1 c., and Taf. V. fig. 3-5; also, Zaldach, loc. cit. p. 43, Tab. II. fig. 18-22, C. and Tab. IV. (Apus); Prevost, in Jurine's Hist. d. Monocles, PI. XX.-XXI. (Chirocephalus), and Joly, loc. cit. XIII. Ml. VII. (Artemia). The black spot observed front of the compound cye, with Lynceus, and certain species of Daphnia, is certainly only the remains of the simple eye ; see Muller, Entomostr. Tab. IX.-XI., and Jurine, Hist. d. Monocles, Pl. XV.-XVI.
But, with this simple rudimentary eye, should not be confounded the problematical vesiculiform organ which is found behind the compound eyes of certain Plyyllopoda and Lophyropoda. With Apus, this organ contains a nucleus, divided into four parts (Schaffer, loc. cit. Taf. II. fig. 1, b., or Zaddach, loc. cit. p. 48, Taf. II. fig. 10. P., 25). The vesiculiform body which, with Limnadia, strctches from the inner surface of the head, behind the eyc, towards the forehead (Brongniart, loc. cit. p. 83, Pl. XIII. fig. 6), may serve, according to Straus, to fix the animal to foreign bodies ; (see Mus. Senckenh. II. p. 126, or Férussac, Bull.

[^191]d. Sc. Nat. XXII. 1830, p. 333). With Evadne, there is found at the same place, hehind the large eye, a circular muscle, which also, perhaps, is for thic attachment of the animal.*
9 Nicothoe (Rathké, Nov. Act. Nat. Cur. XX. p. 102, Tab. V. fig. 1,8, 10).

10 Hersilia, Peltidium, \&c. (Philippi, in Wiegmann's Arch. 1839, I. p. 128, Taf. IV. fig. 9, 13, or Milne Edwards, Hist. d. Crust. P1. XXXVII.).
11 Pandarus, Caligus, Trebius, Dinematura, \&c. (Milne Edwards, Mist. d. Crust. P1. XXXVIII., and Kroyer, in the Naturhist. Tidskr. I., or in the Isis, 1841, p. 188, Taf. I.).

12 Phryxus and Bopyrus (Rathke, Nov. Act. Nat. Cur. XX. p. 44, Tab. I. fig. 13, in Tab. II. fig. 3, and, De Bopyro et Nereile, Tab. I. fig. 2).
13 Sce Van der Hoeven, Recherches, \&c., 23, Pl. III. fig. 5 , a. a., $6, \mathrm{C}$.

14 With PLatyu7us, there are, on each side, six eyes, arranged in two rows. Scolopendra has four, while with Glomeris, there are eight, which form a simple arcuate row on each side; see Müller, in Meckel's Arch. 1829, p. 40, Tab. III. fig. 3, 4, also Kutorga, loc. cit. P. 17, Tab. III. fig. 3, 4 (Scolopendra), and Brandt, Mcdiz. Zool. II. p. 99, Taf. XV. fig. 43 (Glomeris).

15 Treviranus, Vermisch. Schrift. II. p. 32, Taf. VII. fig. 1 (Lithobius) and Müller, in Meckel's Arch. $1829, \mathrm{p} .43$ (Julus) ; sce also Treviranus loc. cit. I. p. 64, Taf. IX. fig. 54 (Porcellio), Muller, loc. cit. p. 42, Taf. III. fig. 5, 6 (Cymothoa), and Lereboullet, Ann. d. Sc. Nat. loc. cit. p. 107, Pl. IV. fig. 2, $2^{\text {b }}$ (Lygidium).
them as mere accumulations of pigment granules, having no special function whatever. This naturalist alludes, also, to the problematical body ahove mentioned. He did not observe it with Artemia, hut it was present with Branchipus, and larger in the larval than in the adult conditions. He hesitates to express an opinion as to its nature. - Ed.
number of round, pyriform, or cuneiform lenses, the pointed posterior extremity of whieh is surrounded by a pigment matter of usually a deep brown or black eolor, while the rounded anterior extremity is always widely protuberant. The optie nerve, before reaching this pigment, divides into as many branehes as there are lenses.

With Argulus, ${ }^{(16)}$ Cyamus, ${ }^{(17)}$ and with the Amphipoda, ${ }^{(18)}$ there are always two considerably flattened eyes; while with Daphnia, Lynceus, Polyphemus, Evadne, ${ }^{(19)}$ (the Lophyropoda) and also with the young bivalve Cirripedia, ${ }^{(20)}$ there is, on the other hand, only a single oeular bulb, spheroidal, and the result of the fusion of two eyes; it receives, therefore, the two optic nerves which are separated from each other by the median line of the body. With Limnadia, and Artemia, of the Phyllopoda, this fusion is less complete, for, upon close examination, the line of separation nay be seen. ${ }^{(91)}$ With many Daphnioiddae, this eyelopean eye has several muscles, eorresponding to the recti muscles of the Vertebrata, which give the eye a movement of rotation about its eentre. ${ }^{(22)}$

With some Crustaeea belonging to the orders Amphipoda, Phyllopoda, and Poecilopoda, the eompound eyes are so modified, that, beneath the cornea which is simple, there is another eornea that is faeeted. Each of these faeets consists of a depression, in which fits the truncated extremity of an oblong, conieal lens; and the opposite extremity of this lens is surrounded by pigments, and conneeted with a filament of the optic nerve. ${ }^{(23)}$

A second modification of these eompound eyes is also observed with some Amphipoda and Phyllopoda. Here, the cornea is likewise donble, but between the faceted one and the eonieal lenses, are interposed peculiar lenses of an oval form. ${ }^{(24)}$

The third form of eyes observed with Crustacea has received the name of Compound Faceted Eyes. These are found in the genus Scutigera, and in the higher groups of Crustacea, namely: the Stomapoda, and Decapoda, with which the eyes are situated at the extremity of two peduncles, or, what is more rare, at a point below their extrenity. ${ }^{(255)}$ These peduneles are movably inserted on the anterior border of the cephalothorax, and are

[^192]loc. cit. p. 77, Pl. IX. fig. 3,4 ; and Burmeister, Beitr. p. 17, Taf. I. fig. 3-5.
21 See Brongniart, loc. cit. p. 85, Pl. XIII. fig. 3, 4 (Limnadia), and Joly loc. cit. p. 309, Pl. VII. fig. 3, Pl. VIll. tig. 2t, 26 (Iscura). In this lastmentioned Crustacean the eyes contann ovoid lenses. ${ }_{22}$ Dophaia and Evadne ; see.Jurine and Loven, loc. cit.
23 This modification is fonnd with Amphithoe, Apus, ant Limu/us ; see Milne Edwards. IFist. d. Crust. I. p. 116 ; Zaddach, loc. cit. p. 45, Tab. 11. fig. 18-24, and Fan der Hoeven, loc. cit. p. 23, Taf. 1II. fig. 6, A. B.

24 Hyperia (Milne Edwards. Hist. d. Crust. 1II. p. 74, strd Ann. d. Sc. Nat. XX. 1830, p. 388, and Multer, in lis Areh. 183̈6, p. 102), and Branchipus (Burmeister, in Muller's Arch. 1835, p. 529, 1uf. X111. fig. 1-1).

The lenses of this last-mentioned Phyllopod are situated in the cap-like cavities of the cones, so that this kind of eyes which, moreover, are pedunculated, form the transition to the faceted ones.*

25 With some species of Ocypoda.

* [§ 277, note 24.] The peculiarity in the structure of the eye of Branchipus, as above mentioned by Burmeister, Leydig (loc. cit. Siebold and Köl/iker's Zcitsch. III. p. 295), was unable to verify with Branchipus stagnalis - Ed.
usually concealed in special fossae. The tetragonal or hexagonal facets of the cornea are always very numerous; ${ }^{(26)}$ - behind each of them; is a conical, or prismatic lens, the round extremity of which is fitted into á transparent conical fossa, corresponding to a vitreous body; while the conical extremity of these bodies is received into a kind of calyx, formed by the filaments of the optic nerve. Each of these filaments, together with its calyx, is surrounded by pigment matter in a sheath-like manner. ${ }^{(27)}$ *

CHAPTER V.

DIGESTIVE APPARATUS.

$\S 278$.

The opening of the digestive apparatus with the Crustacea is usually situated directly in front of the first pair of feet, which, as foot-jaws, grasping or prehensile organs, are used for the seizing, the tasting, and the bearing to the mouth of food. ${ }^{(1)}$ With many species, there are, as auxiliary organs for this purpose, the oar-like, the post-abdominal, and branchial feet, the movements of which not only produce currents of water necessary for respiration, but also direct towards the mouth a great quantity of nutritive matter. ${ }^{(2)}$

The mouth is gencrally situated underneath and somewhat removed from the anterior border of the head. It is covered with a soft upper lip,

> 26 The facets are tetragonal with Astacus, Ho_{0} marus, Palinurus, Galathea, Scyllarus, Palaemon, Pasiphaea, and Penaeus ; hexagonal with Scutigera, Squilla, Phyllosoma, Pagurus, Calianassa, Maia, Campilius, Portunus, and llia; see Milne Edwards, Hist. de Crust. I. p. 117, Pl, XII. and Will, Beitr. z. Anat. der zusammengeset. Augen, \&c., p. 7. fig. 3, c.

> 27 Will, loc. cit. p. 12, fig. 3, 4 ; see also Suckow, loc. cit. Taf. X. fig. 19, 20 ; Soemmering, De oculor. sect. horizont. p. 75, Tab. I1I., and Milne Edwards, Hist d. Crust. Pl. XII. fig. 8 (Astacus).
> 1 Sce above, § 263.
> 2 These acts may be distinctly seen with the

[^193]Phyllopoda, the Lophyropoda, and the Cirripedia. These last use principally their long, posterior, cirrus-like feet, which they unroll and roll up alternately, maintaining regular currents in the water. During these movements, the three pairs of anterior and shorter feet seize, with much address, the particles of food borne against them by the current. Often the oar-like feet with the Daphnioildae become dirty in this act, and are glued together by particles of food which have heen ejected from the mouth. But these animals easily rclieve themselves by curving in front their spinous tail and combing out the oar-like feet, which arc themselves ciliated and bristled.
of the greatest brcadth of the body in Corycaeus. The lens and the cornea are often very distant from each other, being separated by a long clear space. The external surface of the cornea is spherical; but the inner is conoideo-spherical, or parabolic. The texture is firm, and when dissected it breaks or cuts tike a crystalline lens. The true lens is always prolate, with a regular contour, excepting behind, where it is partly penetrated by the pigment. The pigment is slender, vermiform, of a deep color, either red or blue, but at its anterior extremity usually lighter, and often orange or yellow." -- Ed.
beneath which is a pair of strong upper jaws (Mandibulae), which move laterally by means of large muscles arising from the internal surface of the cephalic and dorsal parts of the skeleton; the internal border of these jaws is hard and often denticulated. With the higher Crustacea, these mandibles have a tactile organ (Palpus). ${ }^{(3)}$ Bchind these mandibles are two pairs of lower jaws (Maxillae), which are weaker, softer, and deficient in palpi. They arc composed of sevcral pieces, except with the Myriapoda, where they are fused into a kind of lower lip. Between the two mandibles and the first pair of maxillae, there is a soft, tongue-shaped, and sometimes bifid process, which, also, may be regarded as an under-lip. ${ }^{(t)}$

With many of the lower Crustacea, the parts about the mouth are variously modified, whereby they lose their peculiarities as masticatory organs. Thus with the Poecilopoda, the mouth is simple, infundibuliform, and jawless, - the mandibles and maxillae being changed into chcliform legs. ${ }^{(5)}$

With the parasitic Crustacea, the organs of the mouth are changed into parts for Suction. The two lips are prolonged into a kind of proboscis, and the masticatory organs become more and more indistinct and finally disappear entirely. This is best observed with the Caligina where the mouth has the form of a beak pointing backwards, and the upper and lower lips are joined together forming a long tube which contains the two very long, horny, denticulated mandibles, while at its base are two palpiform, rudimentary maxillae. ${ }^{(6)}$ With Argulus, the oral parts form a suctorial apparatus even more complcte. This is a very long proboscis, pointing forwards, and out of which the two mandibles project in the form of two small pointed stylets, while the maxillae are entirely wanting. ${ }^{(7)}$. With the Lernaeodea, and Penellina, on the other hand, the proboscis is short, and contains two short mandibles, which are denticulated and hooked; and on its outside are two palpiform, rudimentary maxillae. ${ }^{(8)}$ But the oral parts are most abortive with the Ergasilina and Bopyrina. Here, the upper and under lips are blended together into a short proboscis without mandibles,

[^194]${ }^{5}$ See Van der Hoeven, loc. cit. p. 16, PI. II. fig. 1, A. (Limulus).

6 Milne Edwards, Sur l'organisation de la bouche chez les Crustacés suceurs, in the Ann. d. Sc. Nat. XXVIII. 1833, p. 78, Pl. VIlI. ; and especially Burmeister, in the Nov. Act. Nat. Cur XVII. p. 278, Tab. XXI11.-XXV.

7 Jurine, loc. cit. p. 440 , 11. XXVI. fig. 3-7, $16 ; \operatorname{Vog} t$, loc. cit. p. 7, fig. 5.*

8 Nordmann, Microgr. Beitr. loc. cit. Taf. V.IX., and Kollar, Ioc. cit. Taf. IX. X. (Actheres, Branchiella, Chondracanthus, Tracheliastes, and Basanistes); also Burmeister, loc. cit. p. 310, Tab. XXIV. A. (Lernaeocera).
fig. 2. b.). This last-mentioned author thinks that the spicula in question is a poison weapon; a view which is rendered probable from the fact that it has glands connected with it, as in the stings of insects, which glands have hitherto beeu considered salivary; but they do not open into the mouth like ordinary salivary glands. Moreover, Leydis quotes the observation of Jurine that tadpoles pierced by this organ of Argulus, seemed poisoned and soon died. - Ed.
and the palpiform maxillae, with only a few exeeptions, are wholly wanting. ${ }^{(9)}$

$\S 279$.

The Intestinal Canal with nearly all the Crustaeea, traverses the body without eonvolutions on the median line, ${ }^{(1)}$ and the anus is situated at the extremity of the tail. ${ }^{(2)}$ Its walls are eomposed of three to four different layers, of whieh the outer, answering to a peritoneal envelope, eonsists of a dense fibrous membrane.

The internal layer eonsists of a struetureless, transparent epithelium, always non-eiliated. In the anterior portion of the intestine, whieh is often dilated into a kind of stomach, as also in the rectum, this epitleelium is quite dense and is direetly eontinuous with the external skin, and like it also, eontains ehitine; it is moreover, east off, at the moulting, with the skin to whieh it remains attaehed, partly by the mouth, and partly by the anus. ${ }^{(3)}$ Between this epithelium and the peritoneal envelope, there is a granulo-vesieular, mueous layer, surrounded by smooth, simple, and interlaeed, museular fibres.

With the higher Crustaeea, alone, the digestive eanal eonsists always of a very short oesophagus, a stomaeh, an intestine and reetum. With the lower Crustaeea, it is only a simple tube of the same ealibre throughout, exeept near the anus where it is sometimes eonstrieted by the aeeession of a museular layer. With the Siphonostoma,* and many of the Lophyropoda and Phyllopoda, it is straight throughout; ${ }^{(4)}$ but with the Daph-

> 9 Nordmann, loc. cit. Taf. T.-III. (Lamproglena and Ergasilus); Rathké, De Bopyro \&e. p. 4, Tab. I. and Nov. Act. Nat. Cur. XX. p. 42, 103, Tab. II. V. (Nicothoë and Phryxus) ; also Kröyer, Isis, 1841, p. 343, Taf. V. fig. 7. c. (Nicotho $\ddot{\varepsilon})$. There is an cxception in this respect with Dichelestium. Its proboseis is prolonged into a kind of bcak surrounded by numerous movable processes, of which one pair of denticulated stylets concealed iu a fold of the proboscis corresponds perhaps to mandibles, while another pait may perhaps be regarded as maxillae; see Rathke Nov. Act. Nat. Cur. XIX. p. 136 , Tab. XVII. fig. 1214, and Milne Edwards, Hist. d. Crust. Pl. XXXIX. fig. 4, a-c. or Cyclop. of Anat. loc. cit. p. 773, fig. 412-115.

> 1 Glomeris and Lynceus form here an exception. With the first, the intestine has one curve in front and another behind (Brandt, in Muller's

${ }^{*}$ [$\left.\$ 279.\right]$ The alimentary canal of the Caligoidea, according to Dana (Report. Crust. loc. cit. p. 1337), is divided into four very distinct parts, -an œsophagus, small and slender; a stomach broad and heart-shaped; an intestine, marked by light constrictions, and a rectum provided with powerful muscles. The œesophagus has a valve at its entrance into the stomach, and thereby regurgitation of the food is prevented.
See, also, for the digestive canal of Argulus, with its histology, Leydig (loc. cit. Siebold and Kölliker's Zeitsch. II. p. 332, Taf. XIX. fig. 2). - Ed.
\dagger [§ 2 79 , note 4.] For details upon the structure of the digestive canal of Artemia and Branchipus, see Leydig (loc. cit. Siebold and Kölli-

Arch. 1857, p. 322, Taf. XII. fig. 2) ; with $L y n-$ ceus, it has one or two spiral turns (Müller, Entomostr. Tab. IX. X., and Jurine, Hist. d. Monocles Pl. XV. XVI.).
2 The Cirripcilia form an exception to this rule ; their anus is situated betwecu the last pair of cirri and the base of the tail ; sec Cuvier, Mém. loc. cit. fig. 7, k., and Martin St. Ange, loc. cit. Pl. II. fig. 4,5, \&c., h.
3 Sce Schmidt, Zur vergleich. Physiol. p. 30.
4 For the straight intestine of the Penellina, Lernaeodea, and Ergasilina, see Nordmann, loc. cit. Taf. I.-X., also Burmeister, Nov. Act. Nat. Cur. XVII. p. 311, Tab. XXIV. A. fig. 1. (Lernaeocera); Rathké, Ibid. XIX. p. 156, Tab. XVII. fig. 2 (Dichelestium) ; Jurine Hist. d. Monocl. PI. I.-VII. (Cyclops and Cyclopsina); Prevost, Ibid. PI. XX-XXII. (Chirocephalus); Joly, loc. cit. Pl. VII. VIII. (Artemia). \dagger

Ker's Zeitsch. III. p. 283). This observer divides it into three distinct portions: Esophagus, Stomach, and Intestine. The stomach is'composed histologically of four tunics; 1. A Muscular, made up of circular and longitudinal muscles ; 2. A Homogeneous, scrving as a support for this organ; 3. A Cellular ; and lastly 4, A IIomogeneous, which appears to be merely a continuation in words of the external Chitine layer. The intimate structure of the intestine is quitc the same as that of the stomach, but the elementary particies of the muscles composing its muscular tunic, are spindle-shaped, giving this tissue here a structure quite peculiar, and unlike anything found elsewhere ; see loc. cit. Taf. VIII. fig. 6, 10.-ED.
nioidae, and Apodidae, on the contrary, its anterior extremity mounts towards the dorsal surface of the head, and then curves baekwards to the mouth. ${ }^{\text {(5) }}$

With the other Crustacea, there is, more or less distant from the esophagus, a stomaeh, formed by a pylorie constriction of the intestine. This stomaeh is small with the Cirripedia, Laemodipoda, Isopoda, and Amphipoda; ${ }^{(6)}$ but is pretty long with the Myriapoda. ${ }^{(7)}$ In many of the Isopoda and Laemodipoda, the stomaehic epithelium has stiff cilia, or presents a eartilaginous, or horny aspect, thus eonstituting a stomachic support and dental apparatus, ${ }^{(8)}$ which is also observed in the somewhat larger stomaeh of the Poccilopoda and Stomapoda. ${ }^{(9)}$ But this strueture of the stomach is most prominent with the Decapoda. Remarkable for its size and form, it consists of two portions; one, anterior, vesiculiform, eommunieating with the œesophagus, the other pylorie, pyramidal, and with the apex pointing backwards. The internal tunie of the stomach is composed of elitine and covered with stiff bristles, or sometimes with groups of very singular hairs of a forfieulate form. Moreover, its callous and cartilaginous portions form, in the pyloric region, a remarkable support, on which are three solid movable pieces. One of these pieces is a single tooth plaeed in the middle of the posterior wall of the stomach; while the other two, longer and somewhat erciulated, are situated on the sides opposite caeh otlier. Several muscles, arising from the internal surfaee of the cephalothorax, are inserted on this stomaeh, and it is very probable that, by these, the animal can voluntarily bring the three pieces together, making them scrve as internal mastieatory organs. ${ }^{(10)}$

Abstract

5 For the arcuate intestine of Daphnia, Lynceus, and Polyphemus, see the figures given by Jurine, IIist. d. Monocl.; Straus, loc. cit. Pl. XXIX. (Daphnia) ; Brongniart, loc. cit. PI. XIII. (Limnadia); Straus, Mus. Senckenb. loe. cit. p. 112, Taf. VII. fig. 12, and Joly, loe, eit. Pl. V1L, fig. 5 (Isaura). With cypris, there is a kind of stomach on the curved digestive canal (Straus, loe. cit. p. 50, Pl. I. fig. 10). ${ }_{6}$ For the intestine and stomach of the Cirripedia, see the writings of Cuvier, Burmeister, and Martin St. Ange ; also Roussel de Vauzème, loc. cit. 1'l. VII. tig. 12, 18 (Cyamis) ; Brandt, Hediz, Zool. II. Tab. XV. tig. 39 (Oniscus) ; Lereboullet, loc. cit. p. 126, Pl. V. fig. 25 (Lygidium), and Rathké, loe. cit. Taf. IV. fig. 19 (ldothea). 7 See Ramdohr, Abhandl. uib. d. Verdauungsw. d. Insck. p. 145, Taf. XV. fig. 1 ; Treviranus, Verm. Schrift. II. p. 23, 43, Taf, V. fig. 4, Taf, VIII. fig: 6 (Lithobius and Julus); L. Dufour, loo. eit. p. 84, 95, PI. V. fig. 1, 4 (Lithobius and Scutigera) ; Kutorga, loc. cit. p. 5, Tab. I. fig. 2 (Scolopendra) ; and Brandt, in Muller's Areh. loc. cit. 'Taf. XIL. fig. 2 (Glomeris).* 8 The stomach of Oniscus contains a cartilaginous support of a peculiar form (Brandt, Mediz. Zool. I1. p. it, Taf. XV. fig. 41, 42). That of the stomach of Idothea entomon is composed of several solid pieces (Rathke, loc. cit. p. 119, Taf. IV. fig. 20, 21). With Lygidium, the epithelium is supported by several horny pieees, and provided with numerous stiff bristles (Iereboullet, foc, cit. p. 127, Pl. V. fig, 26-30). Finally, with Cyamus,

* [§ 279, note 7.] For the alimentary canal of Julus in all its details, see Leidy, A Flora and
there are in the cardiae region of the stomach two lateral horny tridentate folds (Roussel de Vauzeme, loc. cit. p. 251, PI. VIIL. fig. 13, 14).

9 With Limulus, the cesophagus extends in front and opens into a very museular backwardlycurved stomach the epithelium of which has fifteen longitudinal rows of horny teeth (Van der Hoeven, loc. eit. 1. 17, Pl. II. fig. 3. B.). With Squilla, the stomach is pyramidal, and has, at its pylorie region, horny plates and very regular rows of hairs (Duvernoy, in Cuvier's Leeqons d'Anat. Comp. V.p. 231). With Mysis, also, the epithelium of the pyriform stomach is supported by several solid lamellae composed of chitinc and covered with bristles mixed with hairs (Frey, loc. cit. p. 16)

10 The stomach of the Crawlish is the one best known; see the descriptions and figures given by Roesel, Suckow, Brandt, loc. eit., and Milne Edwards, Ilist. d. Crust. I. p. 67, Pl. IV. The intimate structure of this stomach and its juternal appendages have been earefully studied by V 'alentin (Repertorium, I. p. 115, Taf. I. fig, 15-21) and by Oesterlen (Müller's Arch. 1840, 1. 387, Taf. XII.).

The teeth and bristles heve observed, are found also with the threc divisions of the Decapoda. I have seen them with Homarus, Palinurus, Calathea, Pagurus, Cancer, Maia, Lupea, \&c. With Crangon, and Palacmon, I found the dental lamellae wanting but the epithelium was hairy. With Caridina, according to Joly (loc. cit. p. 73 , Pl. III. fig. 27), hairs of this kind are inserted on the band-like eondensations of the stomacb.

Fauna within living Animals, in Smithsonian Contributions to Knowledge, V. 1853. - ED.

§ 280.

A large portion of the Crustacea have glandular appendages to the digestive canal. But it is only a few of these organs to which ean be attributed the function of Salivary Glands. Two such of a lobular form, are found in the Cirripedia on the stomach, and pour their seerction into the anterior part of this organ. ${ }^{(1)}$

But with the Myriapoda, these organs are very distinct. There are two or more on cach side of the cesophagus and stomach, and their rather long, exeretory ducts open into the oral eavity. ${ }^{(2)}$ With all the other Crustacea, these organs are wholly wanting.*

The Liver, which exists sometimes as a glandular layer enveloping the digestive canal, and sometimes as a separate organ, is composed of greenish, or of yellowish-brown tubes of variable size, the wails of which are formed by numerous granular cells, between which are interposed fat-vesicles. ${ }^{(3)}$ With most of the lower Crustacea, with the Siphonostoma, the Lophyropoda, the Phyllopoda, and Myriapoda, the liver is not isolated from the digestive tube, but the follieles of its glandular layer are somewhat protuberaut on the external surface of this tube, and open on its internal surface, each probably by a separate orifice. ${ }^{(4)}$ With Argulus,

Abstract

1 See Cuvier, MEm. loc. cit. p. 10, fig. 9, u. u., 11. d. (Lepas); Burmeister, loc. cit. p. 42, Tab. II. fig. 13, 14, c. (Coronula) ; Karsten, Nov. Act. Nat. Cur. XX1. 'Tab. XX. fig. 1, d. (Balanus). 2 With Lithobius, and Scutigera, there are two compact salivary glands which extend from the head into the first scgments of the body (L. Dufour, loc. cit. p. 83,9 ̄, P1. I. V.). Treviranus (Verm. Schrift. II. p. 25 , Taf. V. fig. 4, q. q.) regarded them as a mass of fat. The botryoidal glands, which open by several excretory ducts into the oral cavity, have been observed by Gaede (Wiedemann's zool. Mag. I. p. 107, Taf. I. fig. T, i i.), by Muller (Isis, 1829, Taf. II. fig. 5), and by κu torga (loc. cit. p. 4, lab. I. fig. 4), in the anterior extremity of the body of Scolopendra. With Glomeris, there are only two short, slightly flexuous glandular tubes situated in the lower portion of the head and opening into the mouth (Brandt, in Müller's Arch. 1837, P. 323, Taf. XII. fig. 3). With other Myriapoda, these organs quite resemble those of the Insecta. Thus, with Geophilus, there are two flexuous tubes situated pretty far behind the head, and from which pass off two very long, small excretory ducts along the cesophagus to the mouth (Treviranus, loc. cit. p. 37, Taf. VII. fig.

3). With Julus, the salivary organs are even longer aud form, with the urinary canals, a very complicated net-work about the stomach, and from which pass off, according to Treviranus (loc. cit. p. 44 , Taf. VIII. fig. 6), three excretory ducts to the mouth. But Ramdohr (AbhandI. \&c. p. 149, Taf. XV. fig. 1, g. g.) has figured only two simple salivary canals with Julus, and this number has been verified by Burmeister (Isis, 1834, p. 136). I have seen these two canals with Julus sabulosus anastomose in an arcuate manner at their posterior extremity.*

3 For the intimate structure of the biliary tubes, see Schlemm, De hepate ac bile Crust., loc. cit. p. 14, Tab. II. fig. 1-8 (Astacus), and Karsten, Nov. Act. Nat. Cur. XXI. p. 295, Tab. XVIII. -XX. (Oniscus, Astacus, and Bulanus).

4 An bepatic layer of this kind may be observed with the Penellina, Lernaeodea, Ergasilina (Nordmann, loc. cit. Taf. I.-X.), and with Artemia (Joly, loc. cit. p. 239, Pl. VIII. fig. 4). The numerous caeca, whicb, according to Ruthké (Nov. Act. Nat. Cur. XX. p. 122, Tab. V. fig. 15), belong to the entire digestive canal of Chondracanthus, are perhaps formed by an hepatic substance. With the Chilognatha, and Chilopoda, I have found the

* [§ 280, note 2.] For the salivary glands of Julus see Leidy (A Flora and Fauna within Living Animals, p. 17, Pl. VII. fig. 21, a. h. In Smithsonian Contributions to Knowledge, V. 1853). Beside the long tuhular glands mentioned by the authors ahove, he bas described two others which are placed on each side of the cesophagus and are pyriform, conglomerate, and cellular in structure.

Wright (Ann. Nat. IIist. 1848, p. 140) has also made ohservations on the glands of Geophilus which open into the head; he has shown them to be venenifcrous, for a single excretory duct passes off from the anterior part of this gland and termi-
nates, on each side, in a canal of the jaw or mandihle, as in the Arachniodae. - Ed.
\dagger [§ 280, Dana (Report, \&c., loc. cit. p. 1339) speaks of several small glands ahout the mouth, and communicating with it by ducts, with the Caligoidea, and which are prohahly of a salivary nature. These organs in Argulus have heen carefully examined hy Leydig (Ueher Argulus, \&c., loc. cit. p. 333, Taf. XIX. fig. 2, a.), and especially as to their relations to the spicula (see § 278 , note 6) of these animals. Leydig thinks they may as well be regarded poisonous as salivary glands. See my note under § 278 , note 7. - Ed.

Daphnia, and Apus, alone, the anterior extremity of the intestinal canal has several single or ramose caeca, the walls of which appear to serve principally as hepatic organs. ${ }^{(5)}$ With the Cirripedia, similar cacca exist on the stomach, ${ }^{(6)}$ and form, evidently, the transition to the hepatic organs of the other Crustacea,-that is, to an isolated liver with special, though short excretory canals. Such an isolated liver occurs with the Lacmodipoda, Isopoda, and Amphipoda, and consists of long varicose caeca arising from the base of the stomach, and accompanying the intestine a considerable distance. ${ }^{\text {(7) }}$

With the Poccilopoda, Stomapoda, and Bopyrina, the hepatic organs are inscrted at various points along the digestive canal. ${ }^{(8)}$ Finally, with the Dccapoda, the liver consists of two glandular masses composed of more or less ramose caeca loosely bound together. Each of these glands, which sometimes occupies only the sides of the cephalothorax, but sometimes, also,
argest portion of the alimentary canal dotted with small, yellowish-brown follicles, which I can only regard as hepatic organs, although other Zootomists consider them as Malpighian canals (see § 287). L. Dufour (loc. cit. p. 96, Pl. V. fig. 4, 13.) has found these follicles in the stomach of Scutigera, but did not regard them as hepatic.
The numerous large cells, which, according to Serres (Ann. du Mus. d'llist. Nat. XX. p. 250), cover the external tunic of the intestine of Lithobius, are certainly onty follicles of this kincl.*
5 With Daphnia, there are two lateral, back-wardly-curved caeca, which ascend from the anterior extremity of the digestive canal towards the dorsal surface of the head ; see Schaffer, loc. cit. p. 41, Taf. II. fig. 2, k. k. ; Straus, loc. cit. p. 401, PI. XXIX. fig. 6, s. o. s., and Jurine, Hist. a. Monocl. Pl. IX. X. fig. 7, XI.-XIII. With Branchipus, and Artemia (Joly, loc. cit.), the anterior extremity of the digestive tube has also two short caeca which, with the glandular tunic with which the remainder of the intestine is covered, should be regarded as a liver. With Argulus, the stomach has two multiramose caeca, which lie in the parenchyma of the body (Jurine, loc. cit. p. 441 , Pl. XXVI. fig. 1-3, 9, or Vogt, loc. cit. p. 8 , fig. 1, 9). With Apus, these caeca are given off from the anterior extremity of the digestive canal and do not extend beyond the anterior border of the cephalothorax (Scheitfer, loc. cit. p. 70, Taf. V. fig. 15, a. a.). Accorling to Zuddach (loc. cit. p. 8, Tab. 1. fig. $10-13$, and Tab. IV.), these caeca contain numerous glandular follicles. \dagger
6 Beside the figures of these strmachic appendages in the works of Cuvier, Burmeister, and Martin St. Ange, see also particularly those which Karsten (Nov. Act. Nat. Cur. XXI. p. 301, Tab. XX. fig. 1-4) has given of the hepatic organs surrounding the pylorus with Balanus.
7 With cyanus, there are two long hepatic canals which wind over the digestive canal (Roussel de I auzeme, loc. cit. p. 252, Pl. 1X. fig. 19). The two stomachic appendages of rdothea which Ruthlee (loc. cit. p. 121) has taken for arlipose bodies, belong to the hepatic apparatus which here, according to my observations (Muller's Arch.

* [5250 , note 4.] For the liver of Julus, see Leidy, luc. cit. He says, " A t the termination of the proventriculus, there open two biliary tubes, and from it, surrounding the commencement of the ventriculus, is suspended a broad, white, opaque, reticulated band, appareutly composed like the rete adiposa of insects." - ED.
\dagger [§ 230 , note 5.] The hepatic nature of these appeudages with Artemia and Argulus is denied

1837, p. 435) consists of three pairs of yellow varicose tubes. With Oniscus, Porcellio, Asellus, and $L y$ sidium, there are four very long varicose hepatic tubes which open right and left into the pylorus (Treviranus, Verm. Schrift. I. 1. 57, Taf. VII. fig. 38, Taf. IX. fig. 50, Taf. XI. fig. 64 ; Brandt, Mediz. Zool. II. p. 75, Taf. XV. fig. 39 ; Lereboullet, loc. cit. p. 130 , 14. V. fig. 25 ; Karsten, loc. cit. p. 296, Tab. XXVII. fig. 1). Treviranus, who did not observe the excretory ducts of these glands regarded them as masses of fat, while Ramdohr (Abhandl. üb. d. Verdawungsw. \&c. p. 204, Taf. XXVIII. 1椫. 5), who, probably by mistake, has figured with Porcellio three similar appendages, has taken them for salivary organs. There are three pairs of hepatic canals with cymothoa (Meckel, Syst. d. vergleich. Anat. IV. p. 154), Acga (Ruthke, Nov. Act. Nat. Cur. XX. p. 30, Tab. VI. fig. 16, d. d. 18), and Lygia (Milne Edwards, IIfst. Nat. d. Crust. Pl. IV. fig. 3). I cannot now decide whether Hiella has really only one varicose hepatic tube, or whether the others were overlooked by Straus (loc. cit. p. 59, Pl. IV. fig. 15). With Gammarus, and the other Arphipoda, I have found two pairs of long liepatic tubes.

Frey and Leuchurt (Beitr. p. 10t) have found with Caprella, as with Cyumus, two simple hepatic coeca.

8 With Limulus, there are fom groups of interlaced caecal canals situated in both sides of the cephalothorax. The bile is poured into the auterior portion of the intestine by four distinct excretory ducts, which are widely separated from each other (Van der Hocven, loc. cit. p. 18, PI. II. fig. 1, 5, 8). With Squilla, Bopyrus, and Phryxus, the digestive canal lias ramose or varicose hepatic caeca on both sides, at irregular intervals, of its whole length (Müller, De Gland. Struct. p. 70, Tab. IX.; Duvernoy, Ann. d. Sc. Nat. VI. 1836, p. 243, Pl. XV. fig. 1 (Squilla); and Rathke, De Bopyro et Nereide, p. 9, Tab. I. fig. 7, and Nov. Act. Nat. Cur. XX. p. 47, (Bopyrus and Phryxus.) The genus Mysis (Frey, loc. cit. p. 19) on the contrary, which has eicht hepatic canals opening right and left into the base of the stomach, resembles again the Amphipoda and 1sopoda.
by Leydig (Ueber Argulus, \&c., and Ueber Artemia, \&c., loc. cit. Siebold and Kölliker's Zeitsch. II. p. 334, and III. p. 286) on histological grounds; it is most probable however that they serve as a liver, since Will (Müller's Arch. 1848, p. 506) has shown, by chemical analysis, the hepatic nature of analogous caecal tubes with Daphnia and Cyclops. - Ed.
reaches even to the tail, pour their secretion, by a short duet, into the digestive canal on both sides elose behind the pylorus. ${ }^{(9)}$

§ 281.

With many Crustacea, the digestive canal is surrounded with fat-eells, the contents of which are often of a beautiful orange or blue eolor. These cells either consist of a few seattered globules, ${ }^{(1)}$ or are disposed in lobes of various forms. ${ }^{(2)}$ This tissue is undoubtedly analogous to the Corpus adiposum, so common in inseets.

The fat which these eells contain, plays a part, probably, in digestion and assimilation ; for with these animals the excess of nutriment is deposited as fat to be used in times of need, as, for example, during the aet of moulting. This explains why the quantity found is so variable, or even may be entirely wanting.

* CHAPTER VI.
 CIRCULATORY SYSTEM.

§ 282.
Although the blood of Crustacea traverses the body by a very regular circulation, yet, as with all the Arthropoda, the vaseular system is here quite imperfeet, the blood-currents not always being eontained in proper eanals. But a central, propelling organ is very rarely absent, and consists of a heart, sometimes round and vesiculiform, sometimes long and tubular. With the higher Crustacea, it is the point of departure of an arterial system whieh, with the lower orders, gradually becomes abortive, and at last entirely disappears. The more or less long arteries do not terminate peripherically in a eapillary net-work, but the blood is freely effused into the

[^195]13; and Dclle Chiaje, Descriz. \&c. Tav. LXXXVI. fig. 6.*
1 Thcse fat-globules, of an orange color, are often found scattered about in Cyclops, Daphnia and Gammarus.
2 Such lobes and of a blue color are found with Branchipus on the sides of the digestive canal. Other whitish adipose masses form a kind of network around the intestinal canal of Lernaea, Lernaeocera and Lamproglena (Rathké, Nov. Act. Nat. Cur. XX. p. 129, and Nordmann, loc. cit. p. 6, 125, 132, Taf. I. fig. 4, Taf. VI. fig. 4). This last observer has regarded this reticulated mass as a liver. With the Myriapoda, these adipose masses are large, lobulated, and occupy quite a space in the visceral cavity.
${ }^{*}$ [${ }^{5}$ 281, note 9.] For the intimate structure

[^196] XV. p. 1. - Ed.
laeunae which lie between the different visceral organs and appendages of the body. But, notwithstanding the absenee of vascular walls in these interstices, the blood moves in determinate directions, until, after a course of variable length, it is returned to the heart. During their course, the blood-eurrents are often taken up by particular reservoirs, whieh, as venous sinuses, may be regarded as forming the rudiments of the venous system. In this manner, notwithstanding the imperfection of this vascular apparatus, all the organs constantly reeeive fresh blood, which is nowhere stagnant ; also, the arterial may be clcarly distinguished from the venous eurrents, even when the arterial walls are wanting.

The Blood, itself, is either colorless, or of a faint red or violet hue. These colors belong to the blood-liquid, and not to the eontained globules, which are few and always colorless. These globules are round, oval, or pyriform ; their surface is rough, and they contain fine granules, and, often a very large nucleus. ${ }^{(1)}$

§ 283.

The Heart of the Crustacea is always situated in the axis of the body, directly under the shell, at the antcrior part of the back, and is often attached to the internal surfaee of the skeleton by muscular fibres.

Usually, its walls are thin and composed of scattered muscular fibres interlaced in various ways. By the contraction of these fibres the blood is propelled from behind forwards through the arterial orifices, - those of the veins being closed at the same time by valves.

The number of these different orifiees, and the form and divisions of the Heart, have the following modifications:

1. With many of the lower Crustacea, especially with the Siphonostoma, and the Lophryopoda, the heart is a simple, thin-walled sac, of either a spheroidal or an elongated form, but invariably with only two orifiees, - a posterior or venous, and an anterior or arterial. ${ }^{(1)}$

* [$\$ 283$, note 1.] With Caligus, the circulation is wholly lacunal, and appears to consist of broad irregular streams, passing through the spaces left by the internal organs, - there being in no part distinct vessels. A single centre of circulation, or a heart, can scarcely be said to herc exist, but there are two points in the median line where there is a valvular action, and which perhaps per-
> 57. Pl. V. fig. 4) thinks he has observed a distinct auricle underneath the heart of Cyclops; but for my own part I have been unable to see it. As to a second or ventral heart, situated under the dorsal heart, which, according to Perty (Isis, 1832, p. 725), is found with Daphnia, I have been as unable as Wagner (Vergl. Anat. 1834, p. 166) to find it. With Argulus, the heart is long and situated under the dorsal shell, as Vogt (loc. cit. p. 9, Taf. I. fig. $1,10, \mathrm{M}$.) has shown, contrary to the opinion of Jurine (loc. cit. p. 437, Pl. XXVI.). With Achtheres, Dichelestium, Chondracanthus, the heart consists of a long cylindrical tube (Nordmanne, loc. cit. p. 73, and Rathké, Nov. Act Nat. Cur. XIX. p. 153, and XX. p. 125). The anterior and posterior valvular system which Pichering and Dana (Isis, 1840 , p. 206) have seen with Caligus, lead us to think that here also there is a heart between these valves. ${ }^{\star}$

form the functions of this organ; see Dana, Caligus, \&c., Amer. Jour. \$c. XXXIV. p. 257, PI. III. fig. 6, a. 6, b.

A corresponding structure has been found with Argulus, by Leydig (loc. cit. Sicbold and Kölliker's Zeitsch. II. p. 235, Taf. XIX. fig. 3), who has given, moreover, many listological details upon the circulatory system of these animals. - Ed.
2. With the other Crustaeea, exeepting the Myriapoda, the heart has, likewise, the form of a short simple sae, or that of a simple tube. In both eases, it is perforated by very numerous arterial and venous orifiees. During the systole, the blood is propelled through the arterial orifices leading, nearly always, into vessels of the same nature; at the same time, the venous orifices are elosed by valves, which open, however, during the diastole, to allow the ingress of the blood into the heart. With the Deeapoda, the heart is vesiculiform, situated in the middle of the eephalothorax, and its projecting corners often give it a star-like aspeet. This heart has arteries passing off in front, behind, and below, and the returning venous blood enters it through venous orifices on its upper lateral portion. ${ }^{(2)}$ With the Poeeilopoda, Isopoda, Amphipoda, and probably, also, with the Laemodipoda, and Cirripedia, the tubular heart, oecupying a large portion of the anterior and middle regions of the back, sends off arteries before, behind, and laterally, and reeeives the venous blood through lateral venons orifiees. ${ }^{(3)}$ This organ is most highly developed with the Stomapoda, where it oeeupics ncarly the whole length of the body like a tube; (4) but with the

2 There are, usually, in the polygonal heart of the Deeapoda, three anterior arterial orifices, two helow and one behind. Thesc open distinctly into as many main arteries; see Swammerdamm, loc. cit. p. 87, Taf. XI. fig. 8 (Pugurus); Roesel, loc. cit. p. 58, Taf. IX. fig. 14, and Suckow, loc. cit. p. 58, Taf. IX. fig. 1, Taf. XI. fig. 2-4 (Astacus); p. 58, Taf. IK. fig. 1, Taf. XI. fig. $2-4$ (Astacus);
Audouin and Milne Edwards, Ann. (1. Sc. Nat. XI. 1827, P. 353, 363, Pl. XXIV. XXVIII. fig. 1; and Milne Edwards, Ilist. d. Crust. Pl. V. VII, (Maia and Homarus), and Cyclop. of Anat. loc. cit. p. 775, fig. 418 (Concer). Not so easily scen are the six venous orifices which always are only valvular fissures, chiefly because they do not open into veins. According to Lund, and A. W.F. Schultz (Isis, 1825. p. 594, Taf. III. Ag. 2-4; Ibid. 1829, P. 1299, (Homarus), and 1830, 1. 1226, with the figure of p. 1228, (Maia)), the heart of the macrourous Decapoda has two upper, two lower, and two lateral vcnous orifices, while that of the Brachyura have only four upper and two lateral. Krohn (Isis, 1834, p. 524, 'Taf. XII. fig. 1-3), has confirmed this observation with the crawfish. Suckow, however (loc. cit. p. 58, Taf. XI. fig. 2, a. a.), did not perceive in this species only the two upper orifices, while Audouin and Milne Edwards (Ann. d. Sc. Nat. loc. cit. p. 357, 364, Pl. XXV1. fig. 3, $\mathrm{N} . \mathrm{m}_{\mathrm{o}}$) have not observed in the heart of Homarus and Maia only the two lateral orifices. This last naturalist (IIist. d. Crust. I. p, 94. Pl. V. VI.) refuses to admit the description of the heart of the Decapoda given by Lund, and brings to his support (Cyclop. loc. cit. p. 777) Hunter's preparations of the lobster ; but, judging from the beautiful figures of them given by Owen (Catal, of the Pliysiol. Ser. II. Pl. XV. h. h. Pl. XVI. fig. 2, d. d. and especially fig. 1, f. f. f.) these arc just the preparations to support the view of Lund, Schultz, and Krohn. I, at least, have perceived distinctly the upper, lower and lateral venous orifices, as "the three orifices of the veins passing into the heart, f. f. f." See also the description of Owen of the heart of the lobster in his Lectur. on Comp. Anat. p. 179, fig. 91.

3 For the heart of Limulus, see Straus, Consid, gén. sur l' anat. comp. des anim. articulés, p. 346, and especially Van der Hoeven, loc. cit. p. 18, P1. II. fig. 9. Beside the anterior and posterior arterial orifice, there are, with these Crustacea, seven others belonging to the scven pairs of lateral arteries, and on the dorsal portion of the organ, an equal number of valvular openings helonging to the veuous system. With the

Isopoda, the tubular heart is continuous with an anterior and a posterior aorta; it receives only three to five pairs of lateral vessels which have heen regarded sometimes as arterial and sometimes as venous; see Treviranus, Verm. Sehrift. I. p. 58. 65, That. VIII. fig. 46, and Taf. IX. fig. 55 (Porcellio and Armadillidium) ; Brandt, Med. Zool, II. P. 75, Thf. XV. fig. 38 (Porcellio) ; Lereboullet, loc. cit. p. 131, Pl. V. fig. 33 (Lysidium); Rathké, in the Neuest. Danzig. Schrift. I. p. 122 (Idothea), and Nov. Act. Nat. Cur. XX. p. 31 (Aega). It is, however, very probable that these orifices are arterial, for they open into vessels, and, moreover, the venous orifices are found, as with Limulus, on the dorsal surface of the organ. For the Amphipoda, Gammarus pulex may be cited as a type, and of which the heart as a cylindrical vessel occupies the axis of the anterior scgments of the hody. In this animal may be very easily seen how the blood, with the diastole, cnters the heart through the several dorsal venous orifices, and how, with the systole, it is thrown forwards, backwards and laterally through the arterial openings.

We have not yet complete researches on the heart of the Cirripedia; butsince Martin St. Ange (koc. cit. p. 18) states that these animals have a dorsal vessel with lateral trunks, it may be concluded that their heart is like that of the Amphipoda, Isopoda, \&c. As to the Laemodipoda, we have only the imperfect details given by Treviranus (Verm. Schrift. II. p. 8), aud Roussel de Vauzime (loc, cit. p. 254), according to which there is, with Cyamus, only a simple tube opening hefore and behind; and we are therefore unable to say whether this heart is formed after the first or second ty pe indicated in the text.

4 With Mysis, the heart consists, according to Frey (loc. cit. p. 21), of a dorsal vessel extending from the cephalothorax into the back part of the hody; but the blood enters it only through a posterior Ostium venosum, and passes out into the hody through an anterior Ostium arteriosum. If this organization is confirmed, Mysis will differ remarkably in this respect from the Isopoda, Amphipoda, dc., but especially from another Stomapode genus, - Squilla; for in this last, the heart with its anterior, posterior and lateral orifices, reaches its greatest development, occupying the entire abdominal cavity except the ceplalothorax, and sends off laterally fourteen to seventecn pairs of arteries, beside being perforated on its upper portion by various pairs of venous orifices; see Duvernoy, Ami. d, Sc. Nat. VIII. 1837, p. 42, Pl.

Phyllopoda, it is less elongated and has numerous constrictions, thereby rescmbling the following type. ${ }^{(3)}$
3. This type, the third, is found with the Myriapoda, and considerably resembles that of the so-called Dorsal Vessel of the Insecta. With the Chilognatha, and Chilopoda, it consists of a more or less articulated tube, occupying the whole dorsal line of the body. It is divided by constrictions and imperfect muscular septa into chambers, nearly as numcrous as the segments of the body. Each chamber is attached, as with the Insecta, right and left to the internal surface of the segments of the body, by triangular muscles. The Diastole is produced chiefly through these muscles. At its anterior extremity, this dorsal vessel passes through an Ostiom arteriosum into an aorta, while, from the posterior extremity of each of these chambers are given off two lateral arteries. The returning blood enters the heart through the two venous orifices on the dorsal surface of each compartment. The Systole consists of an undulating action from behind forwards, and the blood is thereby propelled partly from onc chamber to the next forward, and partly into the lateral arteries. ${ }^{(6)}$

§ 284.

The Circulation outside of the heart, with the Crustacea, has very varicd relations, as has already been mentioned. With the lower Crustacea, with the Siphonostoma, the Lophryopoda, and the Phyllopoda, the blood forms regular currents in the intervisceral lacunae and interstices, but there is no trace of vascular walls. The aortic current, shortly after leaving the heart, divides into a right and left portion, which, also, sub-divide, cuter the appendages of the cephalic extremity, then turn and run along the abdominal surface of the body - furnishing, in their course, several lateral, looplike currents, which enter the locomotive organs, then turn again towards the posterior cxtremity of the back, where they euter the heart. ${ }^{(1)}$

1I. fig. 1, and especially, Audouin and Milne Edwards, lbil. XI. 1827, p. 376 , Pl. XXXII. These last naturalists have very distinctly represented the dorsal venous orifices of the heart just mentioned.
5 With Branchipus, Artemia, Isaura, and Apus, the heart which has several constrictions and whose venous orifices are very apparent, occupies the entire dorsal median line excepting in the caudal extremity ; sce Joly, Ann. d. Sc. Nat. X1I1. p. 239, PI. V1II. fig. 4, j., XVII. p. 307, Pl. IX. fig. 43 , r.; also Krohn, , 需roriep's ncue Not. XLLX. p. 305, fig. 1, 2; and Zaddach, loc. cit. p. 17, Tab. I. fig. 17, C., Tab. 1I. fig. 4-14.*

6 Although Treviranus (Verm. Schrift. 11. 1p. 31, Taf. VI. fig. 6), and Kutorga (loc. cit. p. 18) lave, indeed, furnishod some communications on the heart of Lithobius and Scolopendra, yet we are really indebted for what is known of the structure of this organ with the Myriapoda to the excellent researches of Newport; see Philos. Trans. XXIII. p. 272, Pl. XIII. fig. 18-22 (Scolopendru),
and fig. 25 (Scutigera). According to these investigations, the interventricular scpta are scarcely developed with the Chilognatha, although very much so with the Chilopoda.

1 An extra vascular circulation has been observed with the Lernaeodea, by Nordmann (loc. cit. p. 73, 98), and with the Caligina, by Pickering and Dana (1sis, 1840, p. 205, 1841, Tif. IV.). Jurine (loc. cit. 1.437, Pl. XXVI. fig. 8), and, with morc exactness, Fogt (loc. cit. P. 9, Taf. I. fig. 10), have described the circulation with ArgwTus. For that of Daphnia, sec Gruithuisen, Nov. Act. Nat. Cur. XIV. P. 403 , Tab. XXIV. fig. 6 ; Perty, Isis, $1832, \mathrm{p} .725$, and Ehrenberg, Abhand.. d. Berl. Akad. 1835, 9. 189, note. Zaddach (loc. cit. p. 23, Tab. I. fig. 17) has represented in much detail that of Apus. In order to be convinced of the entire want of vascular walls with the lower Crustacea, there is perhaps no species which will serve better than Argulus foliaceus whose body is wholly flizttened and transparent throughout. t

[^197]Siebold and Kölliker's Zeilsch. 11. p. 337) upon this same species. His schema of the circulation with these animals is as follows: "The blood is thrown from the heart into the interstitial lacunae of the organs; thereupon it is collected in the posterior portion of the heart; a portion of it

With the other Crustacea, with whieh the heart is unarticulated, the blood passes from this organ into arterial eanals; but the walls of these last sooner or later eutirely disappear, so that here also the blood eireulates at liberty between the interstiecs of the body. The regular arterial eurrents thus formed finally bend about and become those of the venous system. With the Isopoda, and the Amphipoda, perhaps, also, with the Poecilopoda, and Laemodipoda, the anterior, posterior, and lateral arterial trunks disappear after a very short course. ${ }^{\left({ }^{(2)}\right.}$

With the Stomapoda, and Dceapoda, the arterial system is pretty well developed, and can be traced even to its ultimate ramifications. With the first, the heart, at its auterior extremity, sends off a simple, pretty long aorta, which ramifies to the eyes and tentacles; while from its sides, pass off numerous arteries for the scgments of the body and their appendages, and, posteriorly, a branch whieh extends to the very extremity of the tail. ${ }^{(3)}$

With the Decapoda, on the other hand, the heart has three anterior aortae, of which the middle one goes, almost unbranehed, to the eyes, while the two lateral, belonging to the antennae, give off, in their course, branehes to the cephalo-thoracic organs. The two hepatic organs, alone, have speeial arteries, which arise directly from the lower surface of the heart. Behind, there is a posterior aorta which, immediately after its origin, divides into a dorsal and an abdominal branch. The first of these, either simple as with the Macrura, or bifureated as with the Brachyura, extends even to the end of the tail, sending off branches right and left. The seeond passes below, and is distributed principally to the fect, the pincers, the foot-jaws, and the maxillae. ${ }^{(4)}$

2 According to the researches of Treviranus (Verm. Schrift, I, p. 78) upon Asellus, and of Zenker (loc. cit. p. 21) upon Gammarus, the arterial system is very rudimentary with the Isopoda, and Amphipoda. This may be easily proved by an examination of allied species. It may he asked, however, if the blood-currents of these Crustacea are not enveloped in vascular walls so delicate as to escape ohservation ; but with proper care one may be satisfied that no such walls exist. From muscular contractions or the hending of the articulations, the current of the hlood is often stopped, and then the blood-glohules cvade the obstacle by passing at any point directly from the arterial into the venous current.
Goodsir (Edinb. new Philos. Jour. July, 1842, p. 184) was certainly deceived when lie aftirmed that he had ohserved the hlood of Caprella circulating in arterial and venous vessels.
The absence of vascular walls with Caprella, already ohserved by Wiegmann (Arch. 1839, I. p. 111), has been confirmed by Frey and Leuckart (loc. cit. p. 104, Taf. II. tig. 19, 20), aud, according to them, the circulation here is analogous to that of the Amphipoda.*
enters this organ without passing to the branchiae, but the other portion traverses the gills and afterwards returns to the heart." - Ed.

* [\$ 284, note 2.] In a private letter Agassiz has communicated some interesting facts on the circulation of Caprella. He says "Caprella has a tubular, dorsal vessel with lateral valves, exactly like the larvae of Insecta, - the blood is emptied, in
${ }^{3}$ This disposition of the artcrial system has been observed by Audouin, Milne Edwards, and Duvernoy (Ann. d. Sc. Nat. XI. 1827, p. 377, Pl. XXXII. and VIII. 1837, p. 33, Pl. II. fig. 1), with Squilla, while Mysis appears from its circulatory organs to he allied to the Isopoda and Amphipoda; sec Thompson, Zool. Research. loc. cit. I. p. 13, and Frey, loc. cit. 1r. 13.

4 The arterial system of Maia and Homarus has heen described with many details in the so-oftenquoted memoir of Audouin and Milne Edwards (Ann. d. Sc. Nat. XI. 1827 , p. $3 \overline{2} 2$, Pl. XXIV.XXIX.). Lund, also (Isis, 1825, p. 393, Taf. III. fig. 1), has very well described the arteries of the lohster. But especially should he noticed the excellent preparations of Hunter of the arterial syst m of this same animal (Catal. of the Physiol. Ser. II. P1. XV.-XVIII, For this system with the crawfish, see Branat, Med. Zool. loc. cit. p. 63, Taf. XI. fig. 2; and for that of Cancer pagurus, Milne Edwards, in the Cyclop. loc. cit. p. 775, fig. 418.
front, into the main cavity of the body, moves backwards along the lower part of that cavity without heing enclosed in vascular walls, and returns to the dorsal vessel through the lateral valves. The circulation was traced in a living animal into which a solution of a small quantity of carmine had been injected."-ED.

With all the Crustacea, the venous eurrents gradually converge from the lower part of the body into various intercommunicating sinuses, situated, some upon the median line, and others at the base of the feet. ${ }^{(5)}$ From these sinuses the blood proeeeds to the branchiae, and thenec iuto the dorsal sinus the walls of which are thin and uneontractile, and within which the heart is entirely enclosed. This dorsal sinus is filled during the systole, and the arterialized blood which it eontains is absorbed during the diastole through the venous orifices of the heart, without any aid on the part of the walls of the sinus. ${ }^{(6)}$

With the Myriapoda, also, the arterial system is highly developed. Not only are there numerous arteries arising from the sides of the heart, which ramify in the segments of the body, but also, beside an anterior dorsal aorta, two other eonsiderable arteries which embrace the cesophagus, then bend below and unite to form, on the abdominal cord, a Supra-spinal artery. This artery gives off numerous lateral branches, which acconipany the principal nerves, and terminate, at last, in ramuscules. ${ }^{(7)}$

But what distinguish the Myriapoda from the higher Crustacea, are the venous currents, which, equally extra-vascular, do not run towards the respiratory organs, but pass dircctly into the dorsal sinus, and thence are absorbed into the chambers of the heart through the venous orifiees. ${ }^{(8)}$

Abstract

5 of the absence of vessels around the venous currents one may easily be convinced from an examination of small Amphipoda and Isopoda. This absence exists also with the higher Crustacea; see Duvernoy, Ann. d. Se. Nat. VIII. 1837, p. 34, or in Cuvier, Leçons d. Anat. Comp. VI. p. 404 (Squilla). I am quite of the opinion of Lund and Schultz (Isis, 1830, p. 1225), who have combated the opinion of Audouin and MiIne Edwards and have described the venous system of the Decapoda as having proper walls (Ann. d. Sc. Nat. Pl. XXVI--XXXI.). But Mitne Edwards, who, at this time, advocates with so much zeal the wall-less condition of the circulating currents with Mollusca, appears, moreover, to eutertain the opinion of a similar circulation with the Decapoda; at least, such would be inferred from what he has said upon the circulation in general of Crustacea; sce Ilist. d. Crust. I. p. 101, and Cyclop. loc. cit. p. 777.

6 According to Audouin and Milne Edwards (loc. cit. Pl. XXV1. fig. 3), the returning blood from the branchiae enters the heart direct through inter-anastomosing vasa branchio-cardiaca. But this statement has been rcasonably doubted by various observers, for these naturalists had overlooked the sinus which envelopes the heart of the higher Crustacea, and receives, first of all, the branchial blood ; see Straus, Considér. \&c. p. 345 ; Lund and Schultz, Isis, 1830, p. 1226 ; and Krohn, Ibid. 1834, p. 522. This dorsal sinus has been

compared sometimes to an auricle, sometimes to a pericardium ; but, strictly speaking, neither of these comparisons is correct

7 The division of the anterior dorsal aorta, with Scolopendro, was first noticed by Straus (Considér. \&c. p. 347). More detailed researches on the arterial system of the same have been published by $K u$ torga (loc. cit. p. 18, Tab. III.), and Lord (Med. Gaz. part VI. vol. I. 1837, p. 892), who were chiclly occupied with the supra-spinal artery. But of all the observers, Newport (Philos. Trans. 1843, P. 274 , P1. III. XIV.) has worked out the arterial system of the Myriapoda in the most complete and masterly manner. His researches have shown that this system is least developed with the Julidae, and rises gradually through the Glomeridae and Geophilidae - reaching its highest grade of structure with the Scolopendridae. Kutorga has entirely mistaken the nature of the heart in regarding it as a vena cava, and the supra-spinal artery is an aorta. Gaede, also (Zool. Magaz. I. 1. 10s, Taf. I. fig. 7, g. f.), is quite in error as to the vascniar system of Scolopendra; for he has evidently seen the three vessels arising firons the anterior extremity of the heart, nanely : the dorsal norta and the two vessels which, uniting, form the supra-spinat artery; but he has takeu them for nerves

8 Newport, who has so well observed the circulatory system of the Myriapoda, says nothing of veins, and describes the dorsal simus as a pericardium.

CHAPTER VII.

RESPIRATORY SYSTEM.

§ 285.

The majority of Crustacea respire by Branchiae; but among the lower orders, there are many which have no trace of respiratory organs, while the Myriapoda respire by aeriferous tracheae.

With most Siphonostoma, Lophyropoda, and many Stomapoda, there are no partieular respiratory organs, the respiration being, therefore, eutaneous; and with some species of these orders, the water is renewed by the oarlike action of some of the locomotive organs. ${ }^{(1)}$

The Branchiae of Crustacea are sometimes lamelliform, sometimes eylindrieal, and often appear either distinet and separate, or consist of eompound serrated organs, branehed in various ways, on whieh the branchial lamellae are disposed in a regular row, and the branehial tubes united in larger and smaller tufts. But these lamellate or tubular branehiae are invested with a membrane so thin that it widely differs from those of the other regions of the body. It is never eiliated, and is usually without fringes, bristles, \&e. The interior of these organs presents only a few parenchymatous points, and, whatever may be their form, they are always traversed by numerous eanals and large interanastomosing laeunae, which are wholly without proper walls, and are filled by the arterial and venous currents. ${ }^{(2)}$

The branchiae are often in connection with their neighboring appenda. These last consist or muti-artieulate lashes or eirrt, or of seales, or large plates, and serve either as gyratory organs, or as opereula shielding the respiratory organs; sometimes, indeed, they perforni both of these funetions at the same time. Nearly always these organs are fringed with long, stiff, and often pimate bristles. ${ }^{(3)}$

1 The branchiae are wanting with the Penellina, Lecrnaeodea, Ergasilina, and with some Caligina. With Daphnia, Lynceus, and some other allied Lophryopoda, the small oar-like feet concealed

* under the belly are probably desigued for the agitation of the water, while the two feet projecting in front of the body, and which are larger and usually branched, are the principal swimming, organs. Indeed, eveu when these animals are at rest, these organs are seen in perpetual motion thus causing in the cavity of the shell a continual current of fresh water ; this supports the observation of Ehrenberg (in his third Beitr. loc. cit. p. 189, note) that, with these Entomostraca, the interual surface of the valves performs the function of branchiae. The active, hairy, clavate corpuscles inserted on the base of the first pair of feet with Cyclopsina castor, and which have been usually regarded as posterior antennae (Müller, Entomostr. p. 106, Tab. XV . fig. 5, 6, c., or Jurine, 1Iist. d. Ilonocl. p. 52, Pl. IV. fig. 1, Pl. V. fig. 1.b. Pl. V1. fig. 13, a.), wre nothing but organs for the acgitation of the water. With Cypris, only, are there perhaps special branchial organs. These little animals have at the base of the posterior pair of jaws two semilunar, pectinated plates, curved upwards, having completely the aspect of branchiae; see Ramdohr, Beitr. loc. cit. p. 15, Taf. IV. fig. 3, 13. and fiㅇ. 8, L. ; also Straus, loc. cit. P. 49, Pl. I. fig. 4,0 and fig. 8 , e., or Baird, in the Magaz. of Zool.
and Bot. I. 1. 520, Pl. XVI. fig. 8. These organs appear to have been wholly misapprehended by Treviranus (Verm. Schrift. II. p. 53, Taf. 1X. fig. 5). With Mysis, Leucifer, and Amphion, there are no traces of branchiae, while with the other allied Stomapoda, such as Alima and Phyllosoma, they sometimes exist in a rudiuentary form. As branchiae, have been regarded, also, the articulated processes of the cloven feet of Mysis and some other Stomapoda; but, certainly, they are organs for swimming or for the agitation of the water, and their organization has nothing in common with that of branchiae.
2 It is owing to this small quantity of parenchyma in the lamelliform branchiae and to the numerous lacunae filled with blood that, when the circulation in these organs is arrested, the two lamellae of which they are composed, separate from cach other, and the whole branchia, swollen from accumulated blood, has the form of an ampulla. The blood then changes its natural color. This pathological state may be easily seen with iudividuals of Asellus, Gammarus, and Apus, when allowed to be a long time dying. These ampullat are violet, with Gammarus; and of a beautiful red, with $A p u s$; see my note upon the ampullae of Apus cancriformis, in the 1sis, 1831, p. 429.

3 Hairy and bristled appendages of this nature are often taken for brunchiae. These organs are not only surrounded by a thick skin which of it-

The branehiac are usually inserted at the base of the anterior true feet, or the posterior false feet, floating freely in the water; or, they are eontained in a special respiratory cavity, into whieh water is admitted through various ways.

$\oint 286$.

The prineipal differences observed with the Crustaeea in the disposition and structure of their branchiae, are the following :

1. Many genera of the Caligina and Argulina, have upon various parts of their body, such as the baek, the abdomen, and the tail, several thin, simple, naked lamellae, which may be regarded as branchiae. ${ }^{(1)}$
2. The feebly-developed branehiae of the Lepadea consist of eylindrieal or laneeolate proeesses inserted at the base of some of the eirrate feet, and curved towards the baek of the animal, so that they are always eoncealed in the cavity of the shell. But the water is renewed upon their surfaee by the regular movements of the long posterior feet. ${ }^{(2)}$ With the Balanodea, the bramehiae have left the body of the animal, and are developed on the internal surfaee of the mantle as more or less numerous soft folds or lamellae. ${ }^{(3)}$
3. With the Laemodipoda, and some Stomapoda, the branehial apparatus is redueed to a few vesieular or eylindrieal, sometines wholly rudiment-
self would render them unfit for the respiratory function, but they are not traversed except by feeble blood-currents which do not cater the bristles or hairs. From the complete absence of ciliated cpithelium, the vortcx-producing organs are of much importance. On tbis account, many species with which these organs are wanting, use their feet for this purpose.
1 Euryphorus has four such pedunculated branchial lamellae on the dorsal surface of the two grand segments of the body. These arc what Milne Edwards (IIist. Nat. d. Crust. 1I1. p. 462, Pl. XXX1X. fig. 1) has called Appendices elytroides. With Dinematura, the last paix of feet is changed into two naked, deeply-fissured branchial lamellae (Kröyer, 1sis, 1841, p. 275, Taf. I. fig. 5, i.). With Phyllophora, the branchial apparatus is still more fully developed, for cach foot of the last four pairs terminates with two ovoid, glabrous, branchial lamellae (Milne Edwards, luc. cit. III. p. 471. PI. XXXV111. fig. 14), The two thin, lanecolate caudal lamellae of Argulus, through which pass strong blood-currents interrupted only by some islets of substance, arc certainly respiratory organs to which the oar-like organs which Jurine (loc. cit. p. 442) has erroneously considered as branchiac, serve as vortex-producing organs. I am yet undetermined if the respiration is performed by these lamellae alone, or in part by the lateral portions of the dorsal shield through which pass numerous blood-currents. But iu any case, I cannot believe
it possible, as has Vogt (Ioc. cit. p. 11), that these lateral portions are the only respratory organs of these animals.*

2 In the various species of Lepas, therc are from two to five arcuate branchiae which hang from each side at the base of the first pair of cirri. With Cineras, beside the six branchiae, there is one, very short, upon the back of the animal, at the base of the third, fourth, and fifth pairs of feet; whilc with Otion, therc is a seventh pair inserted on the second pair of feet; see Mertens in MutLer's Arch. 1835, p. 502 ; Wagner, Lehrb. d. vergleich. Anat. p. 200 ; Cuvier, Mém. loc. cit. p. 6, fig. 2, 5, o. p. ; Burmeister, Beitr. \&c. p. 31, Pl. I. hig. 1t, c. c., and Martin St. Ange, Mém. foc. cit. Pl. II. fig. 17, 19, K. K. (Lepas).

3 Thesc branchial lamelha are extraordinarily developed with Coronula diadema (Burmeister, Beitr. \&c. p. 38, Taf. II. fig. 10, a. a.). They are few in number with Balanus (Cuvier, Mém. loc. cit. p. $1 \pm$, fig. 18 , c. c.). It is truc that Burmeister subsequently (Haudb. d. Naturgeschicht. p. 551) did not regard as branchise but rather as ovarian sacs, these organs which as to form and position correspond somewhat to the branchiae of certain Branchiopoda (Lingula). But even if they do serve at the same time as receptacles of the egers, this would be no reason for refusing to the folds of the mantle of the Balanodea the function of a respiratory organ, for, with cther lower animals, as for example with the Lamellibranchia, the branchiae serve as receptacles for the egrs.

[^198]and 3rd, of a lacunal net-work (Lückennetz). The glands and the muscles constitute what is descrihed above as the islets of substancc. Leydig denies that these lamellas, thus composed, have, poculiarly, a gill function. - ELu.
ary appendages, whieh hang freely from the base of some of the feet, or are inserted isolatedly on the sides of the body. ${ }^{(4)}$
4. The Phyllopoda have, at the base of each of their numerous swimming feet, an ovoid or lanceolate branehial lamella, pointing forwards. It is quiekly distinguished by its thin, glabrous covering, in opposition to that of the other divisions of feet, whieh are bristled. ${ }^{(6)}$
5. With the Amphipoda, the rapacious and ambulatory feet, excepting the first and last pairs, are those only which are provided with respiratory organs. These last eonsist of oval or round glabrous lamellae, situated internally at the base of the five middle feet. They reeeive, eonstantly, fresh water by the movements of the three anterior pairs of post-abdominal feet, whieh aet as gyratory organs. ${ }^{(6)}$

4 With Phyllosoma, there is, at the hase of the anterior feet, a small, ovoid, pelunculated appendage, which may perbaps be regirded as a rudimentary branchia; see Milne Edwards, Hist. Nat. d. Crust. I1. p. 47 t , Pl. XXVIII. fis. 15, a. It is remarkable that, with another stomapode genus, Squilla, there are at the base of the ten rapacious feet similar pedunculated appendages of the form of oval lamellae (Milne Edwards, Hist. Nat. d. Crust. 11. p. 512, Pl. XXVI. lig. 15, Pl. XXYII. fig. 13,14, b.). These, also, would be regarded as rudimentary branchiae, did not tbese Crustacea have distinct branchial organs (see below). With Alima, the oval feet have sometimes very rudimentary branchiae in the form of simple vesicles or ramified proeesses (Milne Edwards, loc. cit. II. p. 506). Witb Caprella, and Aegina, the first two pusterior abdouinal segments bave, upon the sides, a simple, very soft, pyriform brancbia; while with Leptomera, there is a vesicle of the same nature at the base of the six feet of the first three posterior abdominal seg. ments; see Muller, Zool. Danic. Tab. Lil. fig. 5, and Tab. CI. fig. 2; Templeton, Transact. of the Entomol. Soc. I. p. 193, ['I. XX1. fig. 7, f. ; and Kröyer, Naturhist. Tidskr. IV. p. 490, PI. VI.Vill. With Cyamus, the respiratory organs are even more developed. They consist of four long, simple cylinders inserted on the sides of the first two posterior abdominal segments, and projecting over the back ; see Treviranus, Verm. Sehrift. II. p. 9, Taf. I. fig. 1-3, and Beobacht. aus. d. Zoot. u. Pbysiol. p. 32, Taf. VII. fig. 48-50; also Kröyer, loc. cil. IV. p. 474, Pl. V. fig. 70-76; and Roussel de Vauzème, loc. cit. p. 243, Pl. VILI. ; aceording to this last mentioned author, Cyamus ovalis has four double, branehial cylinders. Tbese branchiae of Cyamus have often been taken for metamorphosed feet, but it is ouly necessary to examine them in their earliest comdition in order to be convinced tbat they are special organs (Milne Edwards, Ann. d. Se. Nat. 1II. 1835, p. 329, Pl. XIV. fig. 14). At this epoch they are as pyriform as those inserted on the side of the feet of Leptomera. Tbe passage to Squilla, whose brancbiac arc more highly developed, is made by Cynthia. Each anal foot has here a hifurcated brauchis, the two cylindrical divisions of which are curved towards each other ; see Milne Edwards, Mist. Nat. d. Crust. II. p. 462, Pl. X. fig. 5.
$\overline{5}$ The delicate hranchial lamellae usually assume after death the form of vesicles, from being filled with hlood, a phenomenon alieady mentioned ($\$ 285$, note 2). But, formerly, they were taken for special organs whose function was unknown, and Berthold (Isis, 1830, p. 693) has regarded those of $A p u s$ as male genital organs; while the remaining pilose divisions of swimming feet were, according to him, respiratory organs.

These branchiae are easily perceived with $A p u s$ after death, and from tbe form which they then assume, they have long been known as the problematical red sacs (Schaeffer, loc. cit. Tab. II. 11.. VI.; Zaddach, loc. cit. p. 14, Tab. II. fig. 13, B. Tab. XIV.). In 1830 (Isis, p. 429) I gave the correct interpretation of these organs which, like the swimming feet of these animals, diminish in size from before backwards ; but, already, before me, Loschge (Naturforsch. Stück. XIX. p. 68, Taf. 111 . fig. $6,7,10$) had recognized their nature. With Limnadia, and Isaura, the branchiac are very long and of a brown-red color, but are wanting on the last swimming feet; see Brongniart, loc. cit. p. 86, PI. XILI. fig. 7, 8 ; Straus, Mus. Senckeub. loc. cit. p. 124, Taf. VII. fig. 13, 14, r., 15, k.; Joly, loc. cit. p. 299 , PI. VII. fig. 2, 6, 7, f. and PI. VIII. fig. 8, f. . With Chirocephalus, Branchipus, and Artemia, they have a more oval form and exist on all the swimming feet. Rathke (Zur Fauna der Kryın. p. 108, Taf. VI. fig. 14, 19-21), has figured, probably from dead individuals, those of Artemia as vesicular bodies. In the figures of Jurine (Ilist. d. Monocl. PI. XXI. XXII.), made for the memoir of Prevost, the branchiae of Chirocephalus are not seen at first, but with a little attention may be discovered. Gaede (Hiedemann's zool. Magaz. I. p. 88), Berthold (Isis, 1830, p. 689, 'Taf. VII. fig. 1), and Zaddach (loc. cit. p. 11, Tab. I. fig. 17, Tah. 1I. fig. 10) have regarded the large dorsal shield of tpus as a respiratory orgau, since its lateral halves are traversed by hlood-currents running close to cach other (Schaeffer, loc. cit. p. ${ }^{7} 2$, Tab. I. fig. 5, b. h.), and thence passing directly towards the anterior extremity of the heart.

Indeed, from the vascularity and delicateness of the under surface of this shield, one would be quite disposed to attribute to these parts a participation in the respiratory act.
© For a long time, the multi-articulated, hristly, anal feet of these small Crustacea were regarded as branchiae, for the true branchiae are quite concealed under the internal surface of the anterior feet. Liven after the attention had been directed to these organs, their form was often misapprehended ; for when these animals are a long time dying, their hranchiae are changed, from congestion, into ampullae. With the Ampbipoda, it is easy to distinguish the branchial lamellae from the incubatory lamellae at their side, for the borders of these last are bristled ; see Straus, loc. cit. p. 57, PI. IV. fig. 10, 11, h. (Hiella) ; Zenker, loc. cit. p. 8 (Gammarus); Milne Edwards, Ann. d. Sc. Nat. XX. 1830, p. 357 , PI. X. fig. 7, Pl. XI. fig. 1, also Ibid. III. 1833゙, P1. XIV. fig. 9 , and IIist. d. Crust. III. p. 6, PI. I1. fig. 15, c., Pl. XXX. fig. 1, 13, 16 (Gammarus Phronima, Vibilia, Hyperia). According to Savigny's figure (Descrip. de 1'Egypte, loe. cit. P1.
6. With the Isopoda, the five pairs of post-abdominal feet are nearly always concerned exclusively in the function of respiration. The two multi-articulate cirri of each of those feet, have been changed into plates, which, pointing backwards, are imbricated and applied against the under surface of the last caudal segment, which is usually very large. ${ }^{(7)}$ The form of these plates is sometimes lanceolate, sometimes discoidal or rhomboidal, and they often differ widely in the different sexes of even the same species. Upon the same foot, the external or anterior plate is usually leathery and bristled on its external border; while the internal or posterior plate is covered with a very thin envelope, and is usually entirely glabrous. This last, therefore, should be regarded as the proper branchia, of which the first is only the operculum, serving, also, ofteu as a gyratory organ. The first case is observed with the terrestrial Isopoda, where the branchial opercula are fixed, rhomboidal, slightly concave, and completely eover the branchial lamellae preserving them from desiccation. ${ }^{(8)}$

With most of the aquatic Isopoda, on the other haud, this apparatus is in perpetual motion, and the branchiae are often of the same form and size as the operculate plates. The opercula of the first pair are so large that they extend beyond all the rest. ${ }^{(9)}$ With the Idotheoidae, the operculate apparatus has an entirely peculiar structure. The two feet of the last caudal segment are developed into two valves which move laterally like the two folds of a door, and can open and close the branchial cavity, which is provided with five pairs of double plates. ${ }^{(10)}$ The branchial apparatus of the Bopyrina differs, in many respects, from that of the other Isopoda. With some species, it is reduced to four or five pairs of simple, superposed plates, without any accessory organ; while with others, there are four to six branchiae which, as more or less deeply fissured cordiform plates, or as long and

Abstract

XI. fig. $4^{3}, 4^{3}$.) of Amphithoë filosa, this animal lias, beside the ten round branchial lameliae, a sixth and rudimentary pair on the tivo posterior feet.* 7 For the respiratory organs of the Isopoda, see especially Duvernoy and Lereboullet, Ann. d. Sc. Nat. XV. 1841, p. 177, l'l. VI.

8 With the terrestrial Isopoda, the branchial apparatus is somewhat abortive, for true branchiae are wanting beneath the two anterior pairs of opercula, and those back of the thaee posterior pairs are very small and delicate; see Treviranus, Verm. Schrift. I. p. 62, Taf. VI. VIII. IX. (Por cellio); Savigny, Descript. de l'Sgyptc, loc. cit. Pl. XII. fig. 7 (Lygia), and Pl. XIII. (Tylos, Porcellio and Armadillidium) ; Brandt, Mediz. Zool. IL. Taf. XV. iig. 35-37 (Porcellio), and Lereboullet, los. cit. p. 118, Pl. IV. fig. 17, M. V. fig. 18-22 (Lygidium). This abortion of the bran chiae is compensated with some Oniscidae by the existence of lung-like organs. (See below, $\$ 287$.)

9 Asellus has two very large, conmon, anterior

branchial opercula; but the branchial apparatus, morcover, is composed of only three pairs of plates on each side (Treviranus, Verm. Schrift. I. p. 75 Taf. X. XII.), while with Sphaeroma, Cymothoa, and allied genera, there are five pairs on tach side (Savigny, loc. cit. Pl. XI. XII.).

With some species of Sphaeroma, Cymodocea, Nesea, and Amphoroïdea, the branchial plates of the last two pairs of branchiae, have numerous transverse plicae, which connect thesc Sphaeromatoda with the Poecilopoda (Duvernoy and Lereboullet, loc. cit. p. 215, Pl. VI. tig. 15-23, and Milne Edwards, 1Iist. d. Crust. III. p. 223, Pl. XXXII. fig. 9). With Serolis, the branchial structure is quite different, the fourth and fifth pairs of fect being changed into broad branchial plates (Milne Edwards, Arch. du Mus. d' Ilist. Nat. II. 1. 21, Pl. II. fig. 1-6).

10 see Rathke, loc. cit. p. 115, Taf. IV. and Milne Edwards, Mist. d. Crust. Pl. X. fig. 6. 7 (Idothea).

* [§ 286, note 6.] Leydig (loc. cit. Siebold and Kolliker's Zeitsch. Ill. p. 289) does not admit that the red pouches, above-mentioned with Apus, are of a respiratory character, at least with Artemia and Branchipus, where he has examined their histological composition. In this connection it may be mentioned that this observer has found on each
natatory foot of Branchipus, a peculiar and new structure. This is a roundish, dark-orange-colored, pedunculated body, situated on the under side of the leg near the coxal joint. This body is composed of large nucleated cells which contain a yellowish liquid. The use of this structure is unknown. - Ed.
sometimes branehed tubes, projeet considerably beyond the lateral borders of the posterior segments of the body. ${ }^{(11)}$

7. The Poccilopoda hold a place between the Isopoda and the Decapoda, their branchiae being, as in the first, inserted on the abdominal feet, and, as with many of the second, composed of numerous plates. With Limulus, the five posterior abdominal feet, whieh are inserted on the second dorsal segment, and changed, as well as the first pair of abdominal feet, into very large plates, have upon their posterior surface numerous semioval, branchial plates lying upon eaeh other. The first pair of feet appears to play, also, at the same time, the part of an opereulate apparatus. ${ }^{(12)}$
8. The Stomapoda, with which the respiratory apparatus is most highly developed, have numerous branchial filaments disposed pectinately on a long stalk, and float freely in the water.
The Squillina have a similar branehial tuft on the anterior surfaee of the external plate of eaeh of the ten swimming feet, whieh are only the ten post-abdominal feet of the posterior part of the body, transformed. ${ }^{(13)}$

With Thysanopoda, only, these branehial tufts are inserted at the base of the anterior abdominal feet. ${ }^{(1)}$
9. With the Deeapoda, all the branchiae are joined together at the base of the anterior abdominal feet and of some of the foot-jaws; but at the same time they are contained in a speeial branchial cavity, which is covered by the lateral parts of the cephalothorax. Lach of these two cavities eommunieates externally by two fissures. One of these is situated at the under surfaee of the body between the lower border of the eephalothorax and the base of the feet ; through it the water enters the branehial eavity. The other is upon both sides of the mastieatory organs, and through it the water is ejected. In this last, which is sometimes prolonged into a semieanal, ${ }^{(15)}$ are several multi-artieulate cirri and lamcllae, which belong to the second and third pairs of foot-jaws. ${ }^{(16)}$ Their eontinual motion produces a regular current of water from the branchial cavity outwards. ${ }^{\text {a7) }}$ As to the number of branchiae, there are wide differences in the various families of this order. There may be six, seven, fourteen, eighteen or even twenty-one in the same respiratory cavity. When numerous, there are usually two or three fixed on the four posterior foot-jaws, three or four on

[^199]chial tubes pointing backwards, and with the females of this same genus, the five anterior pairs are branched on one side. In this sex, also, the organization of the Amphipodia appears to be repeated, for, from the base of the anterior feet hangs a long riband-like band (brauchia?). See Milne Edwards, Hist. d. Crust. III. p. 279 , PI. XXXIII. fig. $14,15$.

12 See Van der Hoeven, loc. cit. p. 19, Pl. I. fig. 10, Pl. II. fig. 1, 11-15; and Duvernoy, Ann. d. Sc. Nat. XV. 1841, P. 10, Pl. III.

13 Squilla and Squillerichthus; see Treviranus, Beobacht. aus d. Zoot. u. Physiol. p. 22, Taf. VI. fig. 36-39; and Milne Edwards, Ilist. d. Crust. Pl. X. fig. 4, Pl. XXVII. fig. 7.

14 Milne Edwards, Ibid. Pl. X. fig. 3, Pl. XXVI. fig. 6, and Ann. d. Sc. Nat. XIX. 1830, p. 453, Pl. XIX.

10 With miny Brachyura.
16 See Suckow, loc. cit. Taf. X. fig. 1, p. q., fig. 2, p. r., fig. 3, d. s. e. (Astacus) ; Milne Edwards, Ilist. d. Crust. Pl. IlI. fig. 8-10, i. j. (Mäa).

17 For this mechanism of the respiratory organs of the Decapoda, see Milne Edwards, Ann. d. Sc. Nat. XI. 1839, p. 126, Pl. ILI. IV.
eaeh of the four anterior pairs of feet, and one only on the last pair. With these Crustacea, moreover, the organs have no eomnection with the movable basal joint of the feet; but, on the other hand, most of them are inserted on the base itself of the respiratory cavity above this joint. Many Macrura, which have numerous branehiae, are those exelusively which have one of these organs inserted on the cosa of the feet. ${ }^{(18)}$ As to their structure, these organs vary also very mueh. Usually, they have the form of a long, aeutely-pointed pyramid with a solidly-attached base, the axis of whieh is formed in its whole length by a shaft traversed by an arterial and venous canal, and eovered by numerous thin lamellae or eylindrical filaments, the size of whieh deereases gradually towards their apex. ${ }^{(19)}$

§ 287.

Many terrestrial Isopoda have a branchial apparatus, the organization of whieh is entirely peeuliar, and distinetly indieates a pulmonary respiration. With Porcellio, and Armadillidium, there are four white spots on the two anterior pairs of the branelial opercula. These spots communicate with as many eavities whick ramify like vessels. They are situated between the two plates of these four opercula, and are filled with air. At the base of each of these opereula there is a narrow opening through whieh, when these eavities are compressed, the air will eseape, and then the white spots disappear. By these means, these animals are undoubtedly in

Abstract

18 The branchiac are fewest with the Brachyura, and Caridoidae ; among these last, Crangon and Alpheus have only six in each respiratory cavity, and Palaemon and Hippolyte seven. Uca, also, has only six on each side, while with the majority of Brachyura, namely, Portunus, Grapsus, Thelphusa, Gecarcinus, Pisa, Maia, Cancer, \&x., hhere are eighteen in all, the two anterior pairs of which are usually only feebly developed and belong to the two pairs of posterior foot-jaws, while the others are in general (Maia, Cancer, Lupea, \&c.) so aggregated at the anterior part of the bottom of the respiratory cavity, that the space corresponding to the last two pairs of feet appears rill-less. The majority of the Brachyura have fourteen branchiac on each side, and these organs are even more numerous with various Macrura. Thus, I have counted eichteen with Astacus, Homarus, and Palinurus; two of which, with Palinurus, and Astacus, are in connection with the middle, and thrce with the posterior foot-jaw; while with Homarus, this last has also three branchiae, but the second footjaw has only a rudimentary one. As to the other iranchize, there is, in thesc thrce generia, a lranchia inserted on the cosa of the four anterior feet. Above each of thesc same feet are other branchiac disposed, in couples, with Astacus, and in threes above the fourth foot, with Homarus, and above the second, third and fourth, with Palinurus ; while above the last foot that is sill-less, there is only a single branchia. With Nephrops, there are twenty branchiae on each side, and with Scyllarus, twenty-one. See, for the number and disposition of those organs with the Decapoda, Duvernoy, in Cuvier's Leçons d'Anat. Comp. VII. p. 393.

19 The various forms of the branchiae of the Decapodi may be roduced to two types. The first, the less common, exists with many Macrura, for example with Seyllarus, Palinurus, Gebia, and Homarus. The shafts of their branchial arches

support numerous cylinders set together in a brush-like manner. In the figures which Audouin and Milne Edwards (Ann. d. Sc. Nat. X1. 1827, PI. XXIX. fig. 1, Pl. XXX. fig. 2, Pl. XXX1.) have given of the branchiac of Homarus, this structure may be easily scen. With Astacus, the cylinders arc much less numerous, and disposed only on two of the sides of the branchial shaft, - giving it a pinnate aspect; and those which are inserted on the coxae are terminated by a thin, mutiplicate lamelliform dilation, which has completely the structure of a branchial lunella (Suckow, loc. cit. p 59, Taf. X. fig. 1, 2, 25, 26, Taf. XI. fig. 5, $\boldsymbol{G}_{;}$Brandt, Medic. Zool. II. Taf. XI. fig. 23). With Homarus, and Polinurus, also, the coxae have an analogous plate inserted close by the side of the coxal branchia; but it is of a leathery consistence and covered with numerous hairs, so that it cannot participate in the function of respiration, but is probably only a septum to separate the different groups of branchiae. Aristeus, which has sisteen branchiae on each side, differs widely from the other Macrura in having its pemitorm lrailchiae composed of a shaft from which pass of right and left numerous curled filaments whose: convex border is covered by tufts of very delical. thick-set branchial cylinders (Duvernoy, Ann. d. Sc. Nat. XV. 1841, p. 104, 1'l. V.). The second type is formed by these brancliate to the shafts of which adhere at right angles numerous thin some. times rhomboidal, sometimes spheroidal lamellae, contiguous, and decreasing in size towards the apex of the shaft. This type occurs cspecially with the Brachyura, the Anomura, and with Galithea of the Macrura; also of the Caridoidae, with Palaemon, Hippolyte, Alpheus, Penaeus, Crangon, \&c.; sce Audouin and Mihue Edwards, Ann. d. Sc. Nat. XI. 1827, PI. XXVI. and XI. 1839, PI. III. fig. 1, P1. IV. fig. 1, 4 (Maïa, Ranina, Palaemon) ; also Kröyer, loc. cit. Tab. 1.-V. (Hippolyte), and Joly, loc. cit. p. 71, Pl. III. fig. 24 (Caridina).
a eondition to respire atmospheric air. ${ }^{(1)}$ But with Tylos, this pulmonary apparatus is still more highly developed; for, under the four pairs of opereula, there are, instead of simple branchial plates, oblong appendages on whieh is a transverse row of aeriferous sacs having a kind of stigma on their under surfaee. ${ }^{(2)}$

All the Myriapoda respire by true traeheae. Their blood does not require, therefore, special organs to receive the influenee of the air, for this last is earried into every part of the body.

The stigmata for the ingress and egress of the air, are easily seen with the Chilopoda, for they are usually surrounded with a ring of brown ehitine, and situated on each side of the body between the base of the feet and the dorsal shields; they are not found, however, above all the feet, for the segments whieh have them alternate more or less regularly with those that are without them. ${ }^{(3)}$ With the Chilognatha, the very small stigmata are on the ventral surfaee. They are situated on the anterior border of the ventral plates, from the posterior border of which arise the feet. ${ }^{(4)}$ The intinate strueture of these traeheae, which are usually brown, is exactly like that of those of insects. ${ }^{(5)}$ Among the Chilognatla, the Julidae are notieeable for the very simple eharaeter of their trachean apparatus. Eaeh stigma leads into a tuft of tracheae from whieh arise air-eanals whieh neither ramify nor anastomose but gradually become smaller and smaller and surround the various organs. ${ }^{(6)}$. With the Glomerina, on the contrary, the traeheae, whieh arise from the stigmata by two trunks, are branehed, but do not anastomose with the neighboring branehes. ${ }^{(7)}$ Those of the Chilopoda most elosely resemble those of the Inseeta, - being very ramose, and their large trunks intereommunieating at their origin by longitudinal and transverse anastomoses, so that each stigma ean introduee air into the entire trachean system. ${ }^{(8)}$

[^200][^201]
CHAPTER VIII.

ORGANS OF SECRETION.

1. Urinary Organs.

§ 288.

As yet, Urinary organs have not been observed with the Crustacca except in the Myriapoda. Here, as with the Insceta, they consist of long, small, brownish vessels, caeeal, and describing many eonvolutions about the stomach and intestine. These Malpighian vessels, as they have been termed, open into the digestive canal at the boundary between the stomach and intestine, and scercte as certainly as do those of the Insecta, uric acid. ${ }^{(1)}$ With the Chilopoda, there is usually one on each side of the pylorus; but with the Chilognatha, there are two, which open, however, into the intestinal canal by a common orifice. ${ }^{(2)}$

It is now undetermined whether these organs exist also in the other families of Crustacea. But with some Decapoda, there are certain caeeal vessels which are imperfectly known. They open into the intestinc at various points between the pylorus and rectum, and a more complete examination may, perhaps, show them to be of a urinary nature. ${ }^{(3)}$

II. Organs of Special Secretions.

$$
\S 289 .
$$

The Astacina have a very remarkable secretion commonly known as Crabs-eyes. These are a kind of calculi composed of carbonate of lime

[^202]678) is very common with the Macrura, Brachyura, and Anomura, and notably with Astacus fluviatilis, Homarus marinus, Cancer pagurus, Portunus puber, and Cancer maenas. But although Milne Edwards admits the same also (loc. cit. I. p. 76), yet it does not appear to be agreed upon, for Meckel (Syst. d. vergleich. Anat. IV. 1. 161) contradicts Cuvier in this respect, and declares that he has never found this caecum either with the Crabs or with Astacus, Scyllarus, and Patinurus, but only with Parurus, Penaeus, and Palaemon. Duvernoy, also (Lecons d'Anat. Comp. V. p. 228), has not observed it in the Macrura just cited, nor with Galathea squamifera, and Palaemon serratus, although he perceived it with Portunus muber directly behind the pylorus, and with Cancer pagurus, near the rectum. Like Milne Edwards (Hist. d. Crust. I. p. 115, Pl. X fig. 2, j. (Maĩa)), I must leave undetermined the point whether or not, this glandular mass which, with the Decapoda, is conceated under the floor of the respiratory cavities in the bottom of the cephalothorax, and which opens externally by an excretory canal between this same cephalo thorax and the first abdominal segment, - is reatly a urinary organ.
and formed in the two lateral pouehes of the stomach of the Astacus fluviatilis. ${ }^{(1)}$ As they are not observed during the whole year, but only just before the moulting, and as, when this process oceurs, they pass from the east-off stomach into the eavity of the new one, it may be inferred that they are in some way connected with the aet of eedysis, and that if the lateral pouches of the stomueh secrete from the blood the exeess of ealeareous salts, it is in order that these last may be subsequently used for the formation of the new shell. ${ }^{(2)}$

The caustic, brown fluid, whieh most Myriapoda, when touehed, emit from a row of orifices situated on the sides of the segments of the body (Foramina repugnatoria), and which exhales an odor like that of chlorine, is seereted by small, pyriform, glandular follieles, situated immediately beneath the skin. Its use is, perhaps, for the lubrieation of the articulations of the segments of the body. ${ }^{(3)}$

In the following chapter will be mentioned many other glandular organs connected with the genital funetions.

CHAPTER IX.

ORGANS OF GENERATION.

$\S 290$.
The Crustacea reproduce by Male and Female Organs, situated in different individuals, and have, for the most part, copulatory organs.

Nevertheless, the Cirripedia form an exception in this respeet, being hermaphrodites; while, on the other side, many Entomostraea differ from the general rule, in their species being almost exelusively females, which produce, during many suecessive generations, individuals exelusively of the female sex, and only at long intervals, those of the male sex. ${ }^{(1)}$ There is,

[^203]luminous liquid. Brandt (Recueil, \&c., p. 15t, 157) has observed, with Glomeris, that these follicles are situated, in pairs, on the dorsal surface of each segment of the body.*
1 This is sc with the Daphnioidae, Cypridoidae, and Apodidae. In the second of these groups, the males are so rare, that these Entomostraca have been taken for hermaplurodites, and Straus (loc. cit. p. 52, Pl. I. fig. 15) has said that if this was really the case, he regarded as testicles two long cylindrical problematical bodies whicl he had observed with all the females of cypris. In the genus Apus, no individuals which can with certainty be regarded as males, have been found. Berthold (Isis, 1830 , p. 693) lias taken the red ampullae found with these Crustacea for testicles; but, as I liave already remarked, these anpullae are only branchial lamellae filled with blood during the dying of the animal. (See § 286 , pote 5.)
florence flask with the mouth drawn to a point. This sac is composed of a basement membrane lined with a single layer of secreting cells. The neck of the glands has muscular bands. - ED.
probably; some relation between this remarkable mode of generation and the fact that some females lay two kinds of eggs, one of which is developed spontaneously, that is, without the infuenee of sperm, while the other requires to be fecundated. ${ }^{(2)}$

The strueture and disposition of the genital organs is so different in the various divisions of Crustacea, that it is difficult to make any general statement about them. Usually, there is a complete duplication of these organs, internal and external, with both sexes. With the females, there is nearly always, right and left, a longer or shorter, rarely-branched, ovarian tube. This is succeeded by a narrow oviduet, usually long, and often flexuous. This last eontinues into a large vagina, which opens at very different points on the ventral surface, sonetimes quite in front, sometimes near the middle, or at the posterior extremity. It is rare that this vagina has a Receptaculum seminis; but, more commonly, the females have special glandular eanals annexed to the genital orifice. The product of these last is a viscous mucus, which hardens in water, and serves to envelop the eggs; and to glue them together. The eggs, thus bound together in chaplets or elusters, remain glued to the parts neighboring the genital orifice, or to the postabdominal feet, and are borne about by the females, until the embryos are fully developed. With other females, where these organs are wanting, they are replaced by a speeial pouch (Marsupium) situated, usually, at the inferior surfaee of the thorax. In this poueh the eggs are deposited and remain until their embryos are completely developed.

With the males, the internal genital organs are disposed in a similar manner, and often have the same form as those of the females. A eareful examination is, therefore, necessary, to perecive their distinetive eharaeter. Moreover, they open, also, at the most varied points of the body. In many species, there are, near the genital orifices, eopulatory organs in the form of stylets, or canaliculi, which serve to transfer the sperm into the female organs. With others, the antennae, or some of the feet, are provided with a kind of hook, or pineers, with which they seize and retain the females during copulation. Sometimes the internal organs of the left eommunieate, by anastomoses, with those of the right side, or, in the place of two lateral genital openings, there is only one, situated on the median linc. With many species, the genital organs, internal and external, are simple, and placed in the axis of the body; but it is rarely observed, that the oviducts and deferent eanals are single where the ovaries or the testicles are double, or that there are two genital openings for single internal organs.

The Kggs of the Crustacea are usually of either a lively green, yellow, or violet color. They are always spherical, and composed of a dense chorion, containing a vitellus, which surrounds a germinative vesicle, with one or more nuclei. The vitellus is composed of numerous oil-globules, which are held together by a clear, albuminous liquid, and give the egg its peculiar eolor. ${ }^{(3)}$

The sperm is white and sometimes opalescent. The spermatic partieles are of very varied and remarkable forms. Nearly always, they are

[^204]stiff and motionless, and may be arranged under the following principal types.

1. With the Cyclopidae, and Chilognatha, the spermatic particles, which are dcveloped in cells, retain their cell-form to their perfect state, without any trace of processes or appendages. ${ }^{\left({ }^{(1)}\right.}$
2. With the Decapoda, they are likewise ncarly always of a granular or ceh form, but have snall, filiform, sac-like processes; sometimes they are divided into two portions by a constriction. ${ }^{(5)}$
3. With the Mysina, Amphipoda, and Isopoda, they have the form of very long threads, pointed at both extremitics, or with a cylindrical incrassation at one of them. They are motionless, and, upon the addition of water, do not roll up in a loop-like manner. ${ }^{(6)}$
4. With the Cirripedia, and Chilopoda, they arc capillary, very lively, and, from contact with water, become eutangled, forming loops and rings. ${ }^{\text {(7) }}$

1 With Cyclopsina castor, the spermatic particles are small, finely-granular, oval corpuscles (see my Beitr. zur' Naturg. d. wirbellosen Th. p. 41, Taf. II. fig. 41-43 c., or Ann. d. Sc. Nat. XIV. 1840, p. 30, l'l. V. B.). As to the other Entomostraca, we have not yet sufficient data to say anything in gencral. But the form observed with Cyclopsina castor cannot be regarded as a typical one with these animals, for Wagner (Wiegmann's Arch. 1836, I. p. 369) has observed large, filiform, flexuous, spermatic particles with Cypris. I, myself, have found those of Daphnia rectirostris to consist of a long, semi-circular body, which becane motionless and disappeared by bursting on the addition of water. Slein (Müller's Arch. 1842, p. 263 , Taf. XIV. fig. 37, 40) has rightly figured those of Glomeris as fusiform cells ; bat he was less exact with those of Julus and Polydesmus, in describing them as small transparent vesicles (Ibid. fig. 36, 39.)
With Julus subulosus, they look exactly like very short cylinders containing a very distinct, round nucleus. With Julus hispidus, they are of the same form, but are not nucleated; while with Julus terrestris, they are conical and nucleated (see my notice in Muller's Arch. 1843, p. 13). Those of the Siphonostoma are, also, of a celloid form; see Frey and Leuckart, Beitr. loc. cit. p. 135, Taf. II. Ag. 21 (Caligus).
${ }^{5}$ Henle (Muller's Arch. I835, p. 603, Taf. XIV. fig. 12) and mysclf (Ibid. 1836, p. 26, Taf. III. fig. 23, 2t) first called attention to the singular form of the spermatic particles of the common craw fish; but, subsequently, Kolliker (Beitr. \&c. 1841, p. 7, Taf. II. III. and in the schweizerisch. Denkschrift. f. d. gesammt. Naturw. VIII. 1846, p. 26, Taf. II.) has shown that those of the most diverse species of Brachyura, Anomura, and Macru-
ra, are motionlcss, radiated cells, one part of which is separated by a constriction, and prolonged sometimes into a kind of peduncle; the ray are often only three or four in number, and the cells themselves are sometimes conical or cylindrical. The most simple of these spermatic particles are observed with Crangon vulgaris, and Palaemon squilla; and, according to my own observations, consist only of flattened cells with a short pointed process.
6 Simple capilliform spermatic particles are found with Mysis, Oniscus, Porcellio, Idothea, and Gammarus; see my rescarches in Muller's Arch. I836, 1. 27, Taf. III. fig. 19, 20, and Ibid. 1837, p. 433 ; also Kolliker, Beitr. loc. cit. p. 15. This last naturalist (Beitr. \&c. p. 14, Taf. III. fig. 28, 29) has stated that the long capillary, but motionless spermatic particles of Iphimedia obesa and Hyperia medusarum are terminated iy a cylindrical and slightly flexuous incrassation. I have found those of Asellus aquaticus to be similar but the cylindrical extremities were straight.
7 The spermatic particles of the Cirripedia, which are simply capillary and very active when fully developel, lave been observed by me (Müller's Arch. 1836, p. 29), with Balanus pusillus, and by Kolliker (Beitr. p. I6, Taf. III. fig. 30, and Schweiz. Denks. loc. cit. p. 33) with many other species of Balanus, and with Chthamalus, Lepas, and Pollicipes. Those of Lithobius and Geophilus present a remarkable aspect from their extrenie activity, and may well be recommended for study from their size (Stein, in Muller's Arch. 1842, p. 250, Taf. XIII. XIV. fig. I9-33). Treviranus (Verm. Schrift. II. p. 26, Taf. VI. fig. 2, 3) has taken those of Scolopendra, which are bound together in a long white cord, for a Helminth.*

* [§ 290, note 7.] The spermatic particles of the Crustacca are the most remarkable of any in the whole animal kingdom. The strange, bizarre forms, herc observed, have led to singular views as to their development and character. The recent researches of Kolliker have done much to clear up this intricate subject, and these researches have been continued by Wagner and Leuckart (Art. Semen, Cyclop. Anat. and Physiol.). The most singular of these particles, as is well known, are those belonging to the higher forms of this class. The development and nature of these I have rccently stud-
ied, and with results quite different from those of the authors just mentioned. My observations were made on those of Pagurus, Pilumnus and Astacus. Here, the development occurs in special cells like that of those of other animals, and the particle, however singular its form, is the transformed nucleus of these cells. The spine-like processes lie reverted Of the body of the particle when this last is in the special cell, but become erect and prominent when the particle escapes. The body of the particle, therefore, is solid, and not hollow and nucleated, as has been supposed (see Kulliker and his

With very many Crustacea, the sperm, at its emission, is contained in capsules (Spermatophores).

I. Hermaphrodite Crustacea.

$$
\text { § } 291 .
$$

With the Cirripedia, the male and femaic genital organs are quite removed from eaeh other. With the Lepadea, the ovaries are lodged in the upper extremity of the pedunele and in the midst of the spongy substanee, filling its cavity. ${ }^{(1)}$ They eonsist of ramified eaeea, while with the Balanoodea, the ovarian follieles are situated between the lamellae of the mantle. ${ }^{(2)}$ With the Lepadea, the eanal which extends from the lower extremity of the shell into the pedunele and eommunieates by a narrow opening with the cavity of the mantle, may properly be regarded as an oviduet. ${ }^{(3)}$ But new researehes are required to show by what means the eggs of the Balanodea reaeh this same eavity, for, as is the ease with the Lepadea, they remain there until the embryos are fully formed. These eggs, of a blue or yellow color, are always intimately glued together, and form, after the laying, a large sheet or layer whieh, with the Balanodea, is applied to the internal surfaee of the mantle, and often retained there by the branehial lamellae; ${ }^{(4)}$ while with the Lepadea, it eovers, bonnet-like, the rounded portion of the body.

The Testieles are composed of numerous ramified follieles spread out between the skin and the two sides of the digestive eanal. They join from the right and left into two very long and tubular Vasa deferentia which aecompany, serpentinely, the alimentary eanal to the anus, and then blend together, forming a more narrow Ductus ejaculatorius. As this last traverses the whole tail and opensat its extremity, it has been usually regard-

[^205][^206]The whole subject of the spermatic particles if the Crustacea is sadly deficicnt in well-authenticated observations, and particles and cell-like forms are constantly described as spermatic particles, which, according to all the laws of sprmetoloty as yet known, cannot be such. It should be remembered that the spermatic particle is never a cell, but is the mctamorphosed nucleus of a cell ; it is, therefore, always a more or less solid corpuscle (whatever be its form, \&c.), and to which, moreover, there may be attached one or more appendages - Ed.
ed as a Penis. ${ }^{(5)}$ The length and mobility of this tail is such that it ean be used, with the Cirripedia, as a copulatory organ, and, being brought in contact with the orifice of the oviducts, which is situated on the mantle, self-impregnation may thus takc place.*

II. Female Crustacea.

§ 292.

The female genital organs of the Siphonostoma and Lophyropoda consist nearly always of two long and sonetimes flexuous ovarian pouches, situated on both sides of the digestive canal. The oviducts pass backwards and terminate on both sides of the end of the body by separate orifices, or by a single genital opening on the median line. With those species whose body has a tail, these orifices are not situated like the anus, at its extremity, but at its base. Very often, they scrve as the outlets of the excretory ducts of two caecal orgaus which secrete a viscous substance by which the cggs are glued together in clusters or chaplets. ${ }^{(1)}$ Not unfrequently, there are hook-like or capsular appendages near the genital openings, for the retention of these clusters. ${ }^{(2)}$ But these are wanting with the Daphnioildac, there being in their place an incubating cavity, situated betwecn the
${ }^{5}$ Cuvier (Mém. loc. cit. p. 9, fig. 8) has taken, with Lepas, the testicles for the oraries, and the Vasa deferentia for the testicles. This error could not be reetilied until the discovery of the true ovaries (see Burmeister, Beitr. luc. cit. p. 33, Taf. II. tig. 16 ; Warner, in Müller's Arelı. loc. cit. p. 469, Taf. V11I. fig. 8 ; and Martin St. Ange, loc. cit. p. 21, P1. II. Lepas). It is more siugular to see Goodsir (Edinb. New Plilos. Jour. 18t3, July, p. 83, Pl. 111. IV. or Ann. d. Se. Nat. I. 1844, p. 107 , Pl. XV. C. or Froriep's neue Notiz. No. 651,1841, p. 193), endeavor to confuse this question by deelaring the hermaphrodite animals of Balanus to be females which carry, in the eavity of their inantle, dwarfish and abortively-formed malcs. Very probably those socalled males are parasitic Crustacea, as Kölliker (Sehweiz. Denks. loe. eit. p. 33) has supposed.

1 Thé female genital organs are completely double with the Penellina, the Lernaeodea, the Ergasilina and the Caligina; see Nordmann, loc. cit. p. 6, Taf. I. fig. 4 , Taf. V. fig. 7, Taf. VI. fig. 10 (Lamproglena, Achtheres and Peniculus); Goodsir,

Edinb. New Philos. Jour. July, 1842, p. 178, or Ann. d. Sc. Nat. XVIII. 1842, p. 181; Kröyer, Naturh. Tidskr. 1. PI. VI. or Isis, 1841, p. 194, Taf. I. Tab. VI. fig. 4, C. (Caligus) ; and Rathke, Nov. Act. Nat. Cur. X1X. p. 145, Tab. XVII. fig. 2 (Dichelestium). This last-mentioned author was the first to notiee the organs whieh, in various Crustacea. secrete the viscous matter mentioned in the text. He found them highly developed with the Nicothoe (loe. cit. XX. p. 106), where they extend, with the ovaries, even into the wing-like appendages of this parasite. The ovarian follicles of Chondracanthus, which are multiramose, differ very mueh from the usual form (Rathké, Ibid. XX. p. 123, Tab. V. fig. 18). With the Cyclopidae, there is only a single genital opening, although the ovaries and the organs secreting the viscous matter, are double. But with Argulus, the female genital organs are the most simple, consisting only of a single ovarian tube, opening at the base of the tail (Jurine, loc. cit. p. 448, Pl. XXVI. fig. 3). \ddagger

2 Nordmann, loe. eit. p. 8, Taf. II. fig. 6 (Ergasilus).

[^207]character to those of Ibla, that he considers them to be true males of the species with whieh they are connected. Being thus supernumeraries, he has termed them complemental males. As spermatic particles were distinctly observed in them, their male nature is elear, but it would not appear equally clear that they really belong to the genus and species with which they are connccted. Faets so singular require further researeh. See Darwin, Monogr. \&c. loc. cit. p. 207, 231. - Ed.
\dagger [§ 232, note 1.] For further details on the female genital organs of Argulus, with illustrations, see Leydig, loc. cit. in Siebold and Kölliker's Zeitsch. II. p. 339, Taf. X1X. fig. 5, a. Taf. XX. fig. 8, 10. - En.
shell and the posterior part of the back. ${ }^{(3)}$ The femalcs of Daphnia have, beside those eggs which are rapidly developed in this cavity, another kind known as the hibernating eggs, and in which no germinative vesicle is observed. They are always found in couples in a thickencd, saddle-like portion of the shell of the animal, which is often of a black color, and separated from the shell by a kind of moulting. Thus enveloped in a bivalved capsule, they are protected against the severities of the wintcr. ${ }^{(4)}$

Among the Phyllopoda, the Apodidac are distinguished for the very large, multiramose, ovarian follicles which border the two oviducts on every side; these last are straight and large, and situated on the side of the digestive canal. With Apus, each of them sends off, at about its middle, a short, excretory canal, to the cleventh pair of feet, in which there are two alveolate receptacles with covers for the reception of the cggs. ${ }^{(5)}$ With the Branchiopoda, the ovaries consist of two straight coeca, situated in the tail, on each side of the intestinc. Their upper extremity, beneath the last pair of feet, passes into an elongated receptacle. These two receptacles, separated from each other only by a thin partition, have a narrow outlet at their posterior extremity, and form, under the base of the tail, a kind of oblong tumor, into which the hard and granular eggs are constantly cast from the contractions of special muscular bands. ${ }^{(6)}$ There are, moreover, on the sides of the body above the last pair of feet, two oblique horny plates, which the males, during copulation, seize with their cephalic pincers.

With the Poecilopoda, the cephalothorax contains two ramified ovaries,

3 See Straus, Mém. sur les Daphnia, loc. cit. p. 413, Pl. XXIX. and Jurine, Hist. d. Monocl. Pl. VIII.-XVI. The genera Argulus and Cypris differ, moreover, from the other Entomostraea, in that they do not bear about their eggs after laying, but deposit them on foreign bodies; see Jurine, Mém. sur l'Argule, loe. cit. p. 451, and Straus, Mém. sur les Cypris, loe. eit. p. 54.

4 The formation of the sadile, which is intimately connected with the deposition of the hibernating eggs, has been called by Jurine the Maladie de la selle. But it has been before observed by Muller (Entomostr. p. 84, Tab. XI. fig. 9-11, Tiab. XII. fig. 5), and by Ramdohr (loc. cit. p. 28). See, also, Straus, loc. eit. p. 415, Pl. XXIX. tig. 16, 17 , and Jurine, Hist. d. Monocl. p. 120, Pl. XI. fig. 1, 4.*
${ }^{5} \mathrm{Sec}$ Schaeffer, Der krebsartige Kiefenfuss, p. 79, Taf. IV. fig. 2-7, and Zaddach, loc. eit. p. 51,

* [§ 292, note 4.] Recent investigations upon the cconomy and development of the Crustacea indicate that the phenomena above-mentioned, of the reproduetion by means of a second kind of eggs (so-called), is far from being limited to a few of these animals. Indeed, it is probable that all or most of the Entomostraca reproduce by this mode. As mentioned on a preeeding page, these phenomena do not appear to me to belong to true oviparous reproduction, but must be considered as a kind of internal gemmiparity. The so-called winter-eggs are, therefore, not eggs, but buds (gemmae) - a view which is borne out by their composition, there being no germinative vesicle and dot. This subject will be discussed with some detail below (note under $\$ 355$) when speaking of the Aphides-animals with which I have traced these phenomena with some care. For many interesting details on this
lab. I. (Apus). With Limnadia, and Isaura, a special receptacle is wanting ; the eggs are attached to the feet probably by the aid of their hairy external envelope ; see Brongniart, loc. cit. p. 88 ; Straus, Mus. Senekenb. loc. cit. Taf. VII. fig. 16, and Joly, loc. cit. p. 308, PI. IX. A. \dagger
6 See Prevost, in Jurine's Hist. d. Monocles, p. 228, Pl. XX. fig. 1, 10 (Chirocephalus). This au thor erroneously declares, moreover (loc. cit. p. 207), that the females of tbis animal have, also, at the end of the tail, openings into which the sperm is reeeived during coition. See also Joly (loc. cit. p. 240 , Pl. VII. fig. 12, Pl. VIII. fig. 4), who regards the receptacles of the eggs, with Artemia, as the ovaries. The eggs with a solid, granular shell, of Branchipus, have been pretty distinetly figured by Schaeffer (Der fischförm. Kiefenfuss, fig. 14).
subject, see Liévin, Die Branchiopoden der Danziger Gegend, 1848, p. 11. et seq.; Baird, Brit. Entomostr. \&c. loe. eit. passim ; Zenker, Physiologische Bemerkungen über die Daphnoidae, in Müller's Arch. 1851, p. 112 ; Leydig, Ueber Artemia salina und Branchipus stagnalis, in Siebold and Kölliker's Zeitsch. I11. 1851, p. 297. - Eb.
\dagger [§292, note 5.] For the female genital organs of Artemia and Branchipus, see Leydig (loc. eit. Siebold and Költïcer's Zeitsch. III. p. 300). Jo$1 y$, it would appear, did not observe the ovaries of Artemia, but has described the egg-capsules as such. The real ovaries here consist of sacs or pouches, lying near the dorsal surface of the abdomen, and extending to the second abdominal riag; these ovarian sacs pass into a vesiculiform dilatation, which has non-muscular walls, and eorresponds to a uterus. - Ed.
the large oviducts bf which open at the base of the first pair of feet, near the median line of the body. ${ }^{(7)}$

With the Lacmodipoda, Isopoda, Amphipoda, and Mysina, there are two simple ovarian tubes wound about the digestive canal; these oviducts are sometimes terminal, sometimes lateral. The two vulvae are usually situated on the internal side of the fifth pair of feet. ${ }^{(8)}$ The eggs, after laying, are always deposited in an incubating pouch, situated beneath the anterior extremity of the body, and the walls of which are formed in part by from two to five pairs of imbricated, and often concavo-convex lamellae. ${ }^{(9)}$ These last are generally bristled on their borders, and are chiefly developed at the epoch of procreation, after which they disappear. ${ }^{(0)}$

The ovaries of the Squillina differ remarkably from those of the other higher Crustacea. They consist of numerous, ramified lobes, filling the lateral portions of the posterior abdominal segments, and the digitations of which extend even into the last and fiattened caudal segment. All these divisions of each ovary join in a large, long tube, which surrounds the digestive canal. The portion of the ovary contained in the three segments to which are attached the ambulatory feet, sends towards the ventral surface, three branches, which join, upon the median line beneath the abdominal cord, with those of the opposite side, and form, in the middle of each of these three segments, a round sinus. These sinuses are comected by longitudinal anastomoses, and the anterior one is prolonged into a common papillary vulva, situated in the middle of the first abdominal segment beneath a horny process. ${ }^{(11)}$
7 Van der Hoeven, loc. cit. p. 21, Pl. II. fig. 15,
PI. III. fig. I (Limulus).
8 There are two ovarian tuhes, each continuous
posteriorly into a short oviduet with Cyamus
(Roussel de Vauzeme, loc. cit. p. 253, PI. 1X. fig.
19), with Aera (Rathké, Nov. Act. Nat. Cur. XX.
p. 32, Tab. VI. fig. 17), and with Mysis (Frey,
loc. cit. p. 25). The two oviducts meet in a com-
mou vulva in front of the anus with Bopyrus and
Phryxus (Rathké, De Bopyro, \&c., p. 19, Tab. I.
fig. 7, and Nov. Act. Nat. Cur. XX. p. 47). With
the Asellina, the ovarian tubes are coecal at both
of their extremities; the oviducts pass off laterally
and open in the articulation of the fifth and sixth
segment of the body (Brandt, Mediz. Zool. II. p.
76, Taf. XV. fig. 32). I have observed an analo-
gous structure in the genital organs of Idothea
(Muller's Arch. 1837, p. 434). With Caprella,
the ovarian tubes are coecal in the same way, but
they interanastomose hy two pairs of short, trans-
versal oviducts (Goodsir, Ediub. New Philos. Jour.
July, 1812, p. 181, PI. IlI. fig. 2). This author
adds, contrary to all analogy, that these oviducts
terminate in two vulvae situated one behind the
other on the middle of the belly.
9 The incubating sac of Cyamus and Caprella
is composed of four lamellae situated back of the
branchiae upon the two footless segments of the
body (Roussel de Vauzime, loc. cit. p. 249, Pl.
VIll. fig. 3, and Goodsir, loc. cit. p. I05, Pl.III.
fig. 3,10). With Mysis, this cavity contains also
only four lamellae covered with stiff hristles and
attached to the coxae of the last two pairs of feet
(Müller, Zool. Danic. Tab. LXVI. fig. 1, 2 ; Milne
Edwards, Hist. d. Crust. Pl. XXVI. fig. 8, d.;
and Rathké, in Wiegmann's Arch. 1839, 1. p.
199). With Nerocila, there are also four large
lamellae arising from the coxae of the sixth and
seventh pairs of feet. With Idothea, the Aselli-
na and the Gammarina, on the other hand, the
five anterior segments of the hody have as many
pairs of ventral lamellae of this kind. With Gammarus, the horders of these ten lamellae are covered with long bristles (Zenker, loc. cit. p. 8, fig. N. b.). With Cymothoa, the coxae of the first six pairs of feet have a semilunar lamella (Milne Edwards, Ann. d. Sc. Nat. I1I. I835, Pl. XIV. fig. 2, and Cyclop. loc. cit. p. 784. fig. 436). The same is true of Anilocra, judging from Savigny's figure (loc. cit. Crust. Pl. X1. fig. 10). With Bopyrus, and Phryxus, the incubating sac contains six pairs of lamellae whieh, in the first of these genera, are not wholly superposed (Rathké, De Bopyro, \&c., p. 6, Tab. I, fig. 5, and Nov. Act. Nat. Cur. XX. p. 44, Tab. II. fig. 12). The sixth or anterior pair of these lamellae is wanting with Cepon (Duvernoy, Ann. d. Sc. Nat. XV. 120, Pl. IV. fig. 2), but with the Bopyrina in question, is singularly attached to the head. According to Treviranus (Verm. Schrift. I. p. 61, Taf. IX. fig. 52), there are at the bottom of this sac with Oniscidae, four short conical processes which secrete a yellowish fluid; but Brandt (loc. cit. II. p. 72, Taf. XII. fig. 2, Taf. XV. fig. 33) was unable to find them, while Rathke (loc. cit.) has been led to regard as secreting organs also, two filaments which, with Mysis, are attached to the ventral wall, and stretch into the incuhating sac.
10 This origin and disappearance of the incubating lamellae I have seen very distinctly with Idothea entomon (Müller's Arch. 1837, p. 435). The females of Cyamus which Muller (Zool. Danic. Tab. CXIX. fig. 16), and Treviranus (Verm. Schrift. II. Taf. I. fig. 2). have figured, appear to have been individuals whose incuhating sac was not then fully developed.
11 The ovaries of Squilla are so intimately hlended in part with the liver, that they may be easily confounded with that organ. It is on this account that Duvernoy's figure (Ann. d. Sc. Nat. VI. 1836, p. 248, Pl. XV. and VIII. 1837, p. 42 , PI. II.) of this organ with this same animal, is not

With the Braehyura, the eephalothorax eontains four long ovarian tubes, two anterior, and two posterior. The first wind outwardly over the liver, and are anastomosed by a short transverse eanal ; while the second are straight, lie elose to eaeh other, and eover the anterior part of the intestine. The anterior and posterior tubes of each side unite in a short vagina, and, at their point of junetion, open into a pyriform sae, whieh has been regarded by some as a Bursa copulatrix, and by others as a gland seereting the viscous substanee whieh envelops the eggs, but whieh, upon a more eareful examination of its eontents, will be found to be a Receptaculum seminis. ${ }^{(12)}$ The two vaginae open near the ventral median line in the segment whieh bears the third pair of feet. ${ }^{(13)}$ With the other Deeapoda, the Anomura and the Maerura, -these saes, just mentioned, are wanting, while the ovaries themselves are disposed, in general, like those of the Brachyura. ${ }^{(14)}$ But the \backslash genera Pagurus and Astacus, alone, form an exeeption in this respect. In the first, the two ovaries with their oviduets lie eoneealed prineipally beneath the dorsal surfaee of the tail; while in the seeond, they are aggregated in a trilobed mass in the pylorie region, from whieh pass off two short oviduets. ${ }^{(5)}$ The female genital openings are situated, with the Anomura, as with nearly all the Maerura, in the eoxal joints of the third pair of feet. ${ }^{(1))^{1}}$

With the females of all the Deeapoda, the feet of all the eaudal segments are highly developed and very hairy. They serve to support the eggs whieh are glued together in elusters by a viseid substanee whieh hardens in water; these elusters are attaehed to the bristles or hairs of these feet. But with the Braehyura, and Anomura, these eggs have an additional proteetion in the tail, whieh is folded against the body. ${ }^{(17)}$

The Chilognatha have only a single long and large ovarian tube, provided with two short oviducts which are narrower, and open externally at two squamous bodies situated on the under surfaee of the third segment of the body. These two bodies eontain two short eaeea one of whieh is dilated at its base into a vesiele, and eaeh pair opens by a eommon orifiee in the vulva. They represent a Receptaculum semiñis. ${ }^{(18)}$ With the
perfeetly elear. This naturalist has, moreover, regarded a large part of the ovaries as venous sinuses, and the white eggs which they contain as coagulated blood. In order to have a general.idea of the disposition of the female genital organs with these animals, it is only neeessary to cast a glance over Delle Chiaje's figure (Deseriz. \&c. Tav. LXXXVI. fig. 4, b. g. g.) ; it is true that he has represented them as testicles, but they are perfeetly exhibited, with the exeeption, however, of the anterior portion.
12 See Cavolini, loe. eit. p. 138, Taf. II. fig. 3 (Grapsus); Milne Edwards, 11 ist. d. Crust. I. p. 170, P1. XII. fig. 12, and Cyelop. loe. cit. p. 784, fig. 434 ; Carus, Erläuterungstaf. loc. cit. lleft. V. 1. 7, 'laf. III. fig. 7, and Erdl, Entwickel. d. liummereies, p. 11 (Mäa).
13 Cavolini, loe. cit. Taf. II. fig. 2, a. (Grapsus) ; Milne Edwards, IIist. d. Crust. PI. III. fig. 4, i. ; and Carus, loe. eit. Taf. III. fig. 8, b. (Maia).
14 Milne Edwards, IIist. d. Crust. I. p. 171, and Duvernoy, in Cuvier's Leçons, \&e., loe. eit. V1II. p. 349.
15 The internal female genital organs of the erawfirh are represented in Roesel, loc. cit. Taf. LX. fig. 2t, 25 ; in Suckou, loc. cit. 'Taf. X. fig. 16 ; and in Brandt and Ralzeburg's Mediz. Zool. II. Taf. XI. fig. 15

16 The two vulvae of the erawfish may be setn in the figures already eited. For those of the Anomura, whieh, cxeept with Pagurus, are covered by the tail eurved in front; see Milne Eddwards, Hist. d. Crust. III. p. 172, Pl. XXil. hig \&, 18 (Dromia and Remipes), and Areh. du Mus. 1. PI. XXVI. fig. 1, e. Lithodes). But the Caridoindae form an exeeption in this respect, - their female genital openings being situated in the same places as those of the males, that is on the external side of the eoxae of the posterior feet; see hröyer, loe. cit. p. 27, fig. 5t, A. f. and 6g. 97, B. g. (Hippolyte).

17 With Pagurus, the anal feet are developed only on one side of the tail.
18 Many erroneous opinions have been entertained by Zootomists on the subject of the female genital organs of the Chilognatha. Thus, Treviranus (Verm. Schrift. II. p. 45) with Julus, and Brandt (Muller's Arch. 1837, p. 325, Taf. XIl. fig. 8) with Glomeris, think they have observed double ovaries, as is also true of Stein (Miller's Arch. 1842, p. 246, 248) ; but Newport (Phil. Trans. 1842, p. 99, or in Froriep's neue Not. XXI. p. $161 ;$ see, also, Rymer Jones, Cyclop. loc. cit. p. 552, Gg. 315,316) has noticed only a simple ovarian tuhe with Julus, which I have been able to confirm ; and as for Glomeris, Brandt (Recueil, luc. eit. p. 157) has himself reeently pereeived the same.

Chilopoda, also, the ovary is a single long tube, but extends from before backwards and terminates by a short oviduct in the last segment of the body. The Receptaculum seminis consists, here, of two ovoid capsules, sessile or pedunculated, and inserted upon the sides of the extremity of the oviduct. Into this last, moreover, just before its termination, long excretory ducts enter from the two to four Glandulae sebaceae, which furnish probably the viscous coating of the eggs. ${ }^{(19)}$

III. Male Crustacea.

$\S 293$.

The males of the Siphonostoma often differ very much from the females, not only as to their external form, but also in their smaller size, - their development being arrested at a very early period. On this account, some are still unknown, and the organization of others is not understood. ${ }^{(1)}$

With the Caligina, however, they have reccived more attention, for in size they are scarcely smaller than the femalcs. Their posterior abdominal segment, which, usually, is not as large as that of the other sex, has, at its extremity, two genital openings, side by side. No testicles or excretory canals have yet been observed, but it may be inferred that their cxternal form and their disposition are analogous to those of the oviducts. ${ }^{(2)}$

But with Dichelestium, the male organs are better known. The two spheroidal testicles, and the somewhat tortuous Vasa deferentia of these

Abstract

There has been the same misapprehension and changing of opinion on the subject of the position of the external genital openings. According to Treviranus, and Brandt (loc. cit.), they should be situated, with Julus and Glomeris, at the posterior extremity of the body ; but Latreille (IIst. Nat. d. Fourmis, 1802 , p. 385) hal before indicated their true position with Polydesmus, and Savi (Isis, 1823, p. 217) has confirmed this with Julus. Brandt (Recueil, loc. cit. p. 154) has since rectified his error in respect to Glomeris. But Stein has treated with most detail the subject of the genital openings with Julus and Glomeris, as well as their seminal receptacles (Müller's Arch. 1842, p. 246, Taf. X11. fig. 12, and Taf. XIII. fig. 15. See, also, my observations, Ibid. 1843, p. 9).

19 For the female genital organs of Lithobius and Scutigera, see L. Dufour (loc. cit. p. 89, Pl. V. fig. 1, 4) who regards the two stalkless Receptacula seminis of Lithobius as a reservoir of the four Glandulae sebaceae, and with Scutigera, as the Glandes sebacees themselves. 1 cannot now say whether these last organs arc wanting in Scutigera, or whether they escaped the attention of this naturalist. Treviranus (Verm. Schrift. 11. 1. 28, Taf. V. fig, 8) has very well observed the simple ovary with its appendages of Lithobius; but he did not recognize the use of these last. Kutorga (loc. cit. p. 8, Tab. I. fig. 5) has not been more fortunate with the female genital organs of

[^208]Scolopendra. Those of Scolopendra morsitans represented by Muller (Isis, 1829, p. 550, Taf. II. fig. 5) are probably the male organs. Stein (loc. cit. p. 239, Taf. X11. fig. 2, 8) has described very accurately these organs with Lithobius, and Geophilus. This last has two long-pedunculated seminal receptacles, and only two very long Glandulae sebaceae.
I Nordmann (loc. cit. p. 76, \&c., Taf. V. VIII. IX. X.) was the first to discover some of these small male Crustacea which are nearly always attached to their females in the neighborhood of the genital opeuings. Ile observed them with Achtheres, Brachiella, Chondracanthus, add Anchorella. But with an individual of the first of these genera only, he found in the posterior part of the body, four round masses, which perliaps may be the internal genital organs. Burmeister (Nov. Act. Nat. Cur. XVII. p. 320) refuses to recognize these small makes for the above-mentioned Siphonostoma, whilc Kröyer (Natur. Tidskr. I. PI. III. or Isis, 1840, p. 710, Taf. I. Tab. 111.) sustains the opinion of Nordmann with cogent arguments, and has described and figured several of these males belonging to Lernaeopoda and Lernaea. See also the description of Chondracanthus published by Rathhé, Nov. Act. Nat. Cur. XX. p. 126, Tab. V. fig. 13 .
2 See Kröyer, Naturh. Tidskr. I. Pl. VI. or Isis, 1841, p. 194, Taf. I. Tab. VI.*
length of the thorax into the abdomen where it passes into the seminal organs. Described more particularly, the testicles are rather larger than the buccal mass, and are situated just anterior to the stomach, in part beneath the base of the prehensile legs, and the spine of the preceding pair. - Ed.

Crustacea completely resemble, as to form and situation, the ovaries and oviducts of the fcmales, except that the deferent canals are dilated, before their termination, into two seminal vesicles. ${ }^{(3)}$

With Argulus, the males have, at the base of their last pair of feet, a hook which is used in copulation. But as to their internal organs, there arc, as yet, no credible observations. ${ }^{(4)}$

With the Cyclopidae, the male organs consist of a single pyriform testicle, the Vas deferens of which curves, first forwards, then backwards, and opens at the base of the tail on the niedian line. In the lower end of this canal, a homogeneous, cylindrical envelope is formed around the sperm, a real spermatophore, which has a narrow neck, and which the males glue to the vulva of the females. ${ }^{(5)}$. For effecting this last, the males have one or even both of their antennae incrassated at their base, and provided with a special article near their extremity, which gives these organs a forficulate character. ${ }^{(6)}$ When the male, by the aid of these antennae, has embraced the abdomen of the female, he bends the posterior part of his body forwards, and seizes hold of the female a second time with the forficulate foot of the second pair, at the same time grasping, with the other and digitiform foot, the spermatophore as it is escaping from the genital opening, and attaches it to the vulva. ${ }^{(7)}$

As yet we possess only quite incomplete observations upon the males of Daphnioïdae, Cypridoidae, and Apodidae, which are found only at certain seasons of the year. ${ }^{(8)}$ With the species yet observed, the testicles

Abstract

3 Rathke, Nov. Act. Nat. Cur. XIX. p. 149, Tab. XVII. fig. 17. I do not know how it is with the males of the other Ergasilina, for as yet we know only the females of these animals. 4 Jurine, who was the first to notice these copulatory organs of the male Argulus, says he perceived al the base of the penultimate pair of feet a vesicular swelling containing, he thinks, a fecundating liquid (Ann. du Mus. loc. cit. p. 448, Pl. XXVIII. டig. 1, 21).*

5 Kor the formation of these spermatophores with Cyolopsina castor, and minutus, see my Beitr. zur Naturg. d. wirbellosen Thiere, p. 36, Taf. II. fig. 41-44, or Ann. d. Sc. Nat. XIV. 1840, p. 26, Pl. V. B. I have shown how their contents are thrust out in passing the neck by the action of a peculiar substance which swells when in contact with water. ${ }^{6}$ The two antennae are thus endowed, with $C y$ clops quadricornis, Cyclopsina minutus, aud alpestris; while this organization obtains with one antenna, only, with Cyclopsina castor, and Anomalocera Patersonii; see the figures of Muller, Entomostraca; and Jurine, Mist. d. Monocles; also Vogt, Schweiz. Denksch. loc. cit. p. 18, Taf. II.; and Templeton, Trans. of the Entomol. Soc. II. p. 35, PI. V. fig. 1, 5. The asymmetrical posterior pair of feet has been igured by Jurine, loc. cit. p. 61, Pl. IV. fig. 2, Pl. VI. fig. 11 (Cyclop-

[^209]sina castor), and by Templeton, loc. cit. p.37, Pl. V. fig. 1, 18 (Anomalocera).

These spermatophores, the true signification of which was unknown until lately, are found, often in the numbers of four to six, upon the same female, after several coitions occurring at different intervals ; see Mïller, loc. cit. Tab. XVI. fig. 5 , 6, and Jurine, loc. cit. Pl. IV. fig. 6 (Cyclopsina castor) ; also Ramdohr, loc. cit. Taf. III. fig. 6, 9, and Jurine, loc. cit. Pl. VII. fig. 2, 14 (Cyclop$\sin a \operatorname{minutus}$). The spermatophores of this last have the form of a curved horn, and become, after a time, of a brown color. With Cyclops quadricornis, the sperm does not appear to contain spermatophores at the moment of its evacuation.

8 The males of Polyphemus, Limnadia, and Apus, have not yet been observed. It is said, it is true, that Kollar (Isis; 1834, p. 680) has discovered those of Apus cancriformis; but as yet nothing definite has been learned about the matter. At all events, the description given by Zaddach (loc. cit. p. 53, Taf. I. fig. 15, 16, and Taf. III. fig. 1, P.) of the male genital organs of these Crustacea, is unsatisfactory, for at the point, where, according to this naturalist, are found the two mate genital orifices surrounded by short spines, that is, on the dorsal surface of the last segment of the body, are found, with all the females also, similar orifices. It is therefore probable that the ramosc testicles which
coming from an accessory gland, which is pouchlike, and stretches back of the seminal vesicle. As auxiliary copulatory organs may be regarded a hook situated on the anterior border of each of the last pair of feet, and a nodule or papilla in the posterior border of the penultimate pair, corresponding, oppositely, with the hook. These hooks were taken by Jurine for penises, and the papillae for seminal capsules. - Ed.
consist of two spheroidal bodics which open externally, by two deferent canals, in front of the tail. ${ }^{(9)}$ The copulatory organs are attached to the anterior fcet, and consist of hooks and long bristles, by which these animals adhere to the under surface of the thorax of the females. ${ }^{(0)}$ With the Branchiopoda, the male genital organs have a very remarkable organization. The testicles consist of two long, straight, caecal tubes, stretching the whole length of the tail. From the upper and dilated extremity of each passes off, inwards and backwards, an excretory canal. These canals. shortly after their origin, dilate into a seminal vesicle, and then pursue their course betwecn two longitudinal ridges which run backwards from the base of the tail. At the posterior extremity of these ridges, they open near a process covered with short spines. For the seizure and retention of the females for copulation, the two anterior cheliform fect are provided with antler-like hooks, and, also, at their base, with two peculiar, sometimes digitiform processes, curved above the front. ${ }^{(11)}$

With the Poecilopoda, the testicles consist of ramified canals situated in the cephalothorax, which terminate at that same point on the first pair of post-abdominal feet where are situated the genital openings with the females, in two short, perforated, penis-like organs. ${ }^{(12)}$

With the Laemodipoda, Isopoda, and Amphipoda, the testicles consist of two caeca situated by the side of the digestive canal, and continuous, posteriorly, into two more or less flexuous deferent canals upon the sides of

Zaddach thinks he has observed with a small number of individuals which had been preserved in alcohol a long time, are only ovaries, the characteristics of which have been effaced by the spirit. As to Cypris, all we know about their males is that their spermatic particles, according to Wagner (loc. cit.), are disproportionately large, and that Ledermuller (Microscop. Gemüths-und Augen-Ergötzung, p. 141, Taf, LXXIII. fig. d.) thinks he has seen them in copulation. Baird, also (Magaz. of Zool. and Bot. I. p. 522), has often seen two individuals of Cypris together, but was not sure that they were copulating.*

9 Lovén, in Wiegmann's Arch. p. 160, Taf. V. fig. 13 (Evadne).

10 With the males of Daphnia, there is a hook together with a small long lash on the two anterior pairs of feet situated close under the head. The first pair of feet situated on the beak in front of the mouth, is very long and provided with two small pointed hooks ; while, with the females, these feet
have the form of two short, obtuse antennae (Müller, Entomostr. p. 87, Tab. XII. fig. 6 Ramdohr, loc. cit. p. 25, Taf. VII. ; Straus, Mém. du Mus. 'V. p. 419, Pl. XXIX. fig. 18, 19 ; and Jurine, Mist. d. Monocles, p. 105, Pl. XI. fig. 58). With the males of Evadne, only the feet of the first abdominal pair are provided each with a hook and some pretty long bristles on their last two articles (Lovén, loc. cit. p. 157, Taf. V. fig. 11). With Isaura, on the other hand, the first two pairs of abdominal feet are armed at their extremity with stout nails (Straus, Mus. Senckenb. II. p. 123, Taf. VII. fig. 4,13 ; and Joly, loc. cit. p. 298, Pl. VII. fig. 2, 6).

11 Schaeffer, Der fischförm. Kiefenf. fig. 3-11; and Müller, Žol, danic. Tab. XLVIII. (Branchipus). The frontal digitiform processes are especially developed with Chirocephalus; see Prevost, in Jurine's Hist. d. Monocl. p. 202, PI. XXII. \dagger
12 Van der Hoeven, loc. cit. p. 20, Pl. II. fig. 14, 18 (Limulus).

[^210]were really spermatic particles, the time of observation must have been soon after copulation. Ed.
$\dagger[\$ 293$, note 11.] For the details of the male genital organs of Artemia and Branchipus, see Leydig (loc. cit. Siebold and Kölliker's Zeitsch: III. p. 297). With these Phyllopods, these organs consist of testes, vasa deferentia, and penises ; all of which are double and symmetrical. The testes consist, each, of an oblong pouch which is directly continuous into its vas deferens; and this last passes into its penis. The two penises are situated at the base of the abdomen, and point, bung-shaped, backwards. Besides these parts, there is an external organ, style-like, used in copulation (loc. cit. Taf, VIII. fig. 4, a.). - En.
which, with the Idothcoïdae, and Asellina, are two pairs of similar seminal tubes. The two Vasa deferentia converge towards the posterior portion of the body, where they pass into a double, or a single excretory canal, which usually commences directly in front of the first pair of post-abdominal feet, on the median line of the body. ${ }^{(13)}$ With the Isopoda, this excrctory canal opens into a short, backwardly-curved penis, upon which are two long processes (secondary penises) inserted on the internal border of the second pair of fect. ${ }^{(14)}$

With the Stomapoda, the testicles consist of more or less ramificd, glandular lobes, from which pass off, laterally, two Vasa deferentia which terminate in two hollow penises projecting at the base of the last pair of feet. ${ }^{(15)}$

With the Brachyura, and the short-tailed Anomura, the two testicles consist of a net-work of very small semeniferous canals, occupying the lateral portions of the ecphalothorax, which gradually increase in size until they pass into the long Vasa deferentia. These last form numerous convolutions, and are finally continuous into two larger Ductus ejaculatorii. ${ }^{\text {a6) }}$ With the male Paguridae, the testicles are contained, like the ovaries, in the tail. They consist of two large tubes which rapidly contract into a Vas deferens, which is straight, at first, but afterwards spiral. This then becomes larger and is gradually continuous into a Ductus ejaculatorius. ${ }^{177}$

With some Macrura, the cephalothorax contains two anterior and two postcrior testicular tubes, a portion of the last being extended even into the tail ; while the first are connected, by a transversc anastomosis, behind the middle of the body. The two posterior join with the two anterior in the postcrior extremity of the cephalothorax, and form on each side, a short, narrow, deferent canal, which terminates in a larger Ductus ejaculatorius. ${ }^{(18)}$

13 With cyamus, whose caudal extremity is atrophied, the orifices of the two excretory ducts are situated directly in front of the arms on two, side by side papilliform penises (Roussel de Vauzeme, loc. cit. p. 252, Pl. VIII. fig. 7, 15). With Aega, the two testieular tubes are curved Slike on the sides of the oesophagus. Their deferent canals are dilated at the posterior extremity each into a seminal vesicle of the same S-like form. They open through two approximated papilac situated on the under surface of the last foot-bearing abdominal segment (Rathke, Nov. Act. Nat. Cur. XX. p. 32, Tab. VI. tig. 16).
The three testicles which are found on each side of the thorax with Idothea, Lygia, Lygidium, Asellus, Porcellio, Oniscus, \&c., are very attenuated in frout, but hehind, are enlarged into a kind of bulb before passing into the Vas deferens. Cavotini (loc. cit. p. 155) has already carefully described these with Lygia oceanica. See, moreover, Milne Edwards, Hist. d. Crust. Pl. XII. fig. 13 (Lygia) ; Brandt, Nediz. Zool. II. p. 76, Taf. XV. fig. 31 (Oniscus), and Lereboullet, loc. cit p. 132, Pl. V. fig. 134 (Lygidium).

14 The copulatory mgans of the Asellina have been deseribed and fisured by Brandt (loc. eit. p. 73 and Taf. XV. fig. N. V. Z.). Treviranus, also (Verm. Schrift. I. p. 59, 74, Taf. VIII. fig. 48, 49, Taf. XII. fig. 65-67), has well represented them with Porcellio, and Asellus, although he entirely overlooked the six testicles of these Crustacea. The prenis, and its auxiliary stalks, which, with the Isopoda are always concealed in the midst of the branchial lamellae, have been figured by Degeer (Abhandl. zur Geschichte d. Insekt. V11. p. 191, Taf. XXXII. fig. 6,20), and by Rathke (loc. cit. p. 125,

Taf. TV. fig. 16, 17, f. h. 25) with Idothea entomon; but this last author is quite mistaken about the internal genital organs, having confounded the male with the femate (loc. eit. p. 123, fig. 22). I have already corrected this error in Muller's Arch. 1837, p. 434. Savigny, also (Descript. de l'Égypte, Crust. Pl. XII. XIII.), has given beautiful figures of the copulatory organs of Sphaeroma, Lygia, Idothea, Tylos, and Oniscus. The secondary or auxiliary penises have been represented by Lereboullet, hec. cit. p. 120, Pl. V. fig. 19 (Lygidium), and by Milne Edwards, Arch. dn Mus. II. p. 21, Pl. II. fig. 3.* b. ${ }^{1}$. (Serolis), and Ann.d. Sc. Nat. XV. 1841, Pl. VI. fig. 4 (Lygia).
15 As to both form and position, the multilohular testicles of Squilla almost exactly resemble the ovaries. But their lateral lohes are not blended together at the anterior extremity of the body, and the two deferent canals are given off laterafly (Delle Chiaje, Descriz. \&c. Tav. LXXXVI. Hig. 4). The two penises of these Crustacea have been correctly figured in Desmaret's Considérat. \&e. Pl. XLII. n. n.

For the male organs of Mysis, of which the testicles are composed of only a few lobes, see Frey, loc. eit. p. 26.

16 Cavolini, loc. cit. p. 144, and Milne Edwards, Mist. d. Crust. I. p. 166, and Cyclop, loc. cit. p. 783 , fig. 418 (Cancer pagurus).

17 Swammerdamm, loc. cit. p. 86, Taf. XI. fig. 6, and Delle Chiaje, Descriz. \&c. Tav. LXXXVI. fig. 6.

18 Milne Edwards, 1Iist. d. Crust. Pl. XII. fig. 15 (IHomarus), and Delle Chiaje, loc. eit. Tav. LXXXVII. fig. 6 (S'cyllarus).

With other Macrura, the testicles consist only of a trilobed glandular mass covering the pyloric portion of the stomach, and from which pass off two long, very flexuous Vasa deferentia, which are dilated, near their extremity, into a nearly straight Ductus ejaculatorius. ${ }^{(19)}$ The excretory ducts of the sperm are very distinct with the Decapoda, when filled with this fluid, from their chalk-white color. With many species, the sperm, as it approaches the end of these ducts, is divided into portions, around which capsules or spermatophores are developed.

These last are usually pyriform, and connected together by a common band. ${ }^{(2)}$ The external genital organs of the male Decapoda are quite varicd, although these excretory ducts almost invariably open on the coxal joint of the last pair of feet. ${ }^{(21)}$ With the Paguridae, and Macrura, the malc genital orifices are surrounded by a'soft sphincter, without any trace of a penis, but out of which the Ductus ejaculatorius is perhaps protruded during copulation. ${ }^{(22)}$ But with the Brachyura and short-tailed Anomura, on the contrary, there are two longer or shorter tubular penises, always covered by the tail, which is pressed against the belly. ${ }^{(23)}$ With very many Decapoda, the two feet of the first caudal segment are transformed into pedicellated processes (sccondary penises), the extremity of which is sometimes grooved. With some short-tailed Anomura, the feet of the second post-abdominal pair take part also in the act of copulation, and, for this purpose, are prolonged into stalk-like organs. ${ }^{\left({ }^{(2)}\right)}$

Among the Myriapoda, the Glomerina have two testicular tubes extending into the abdomen and composed of numerous vesicles partially blended together. They unite in the thorax into a common Vas deferens. With the Julidae, the testicles have a similar structure, but the vesicles open separately into the external side of the two Vasa deferentia, which are close together, are connected, in a ladder-like manner, by numerous trans-

[^211]verse anastomoses. In front, the testicular vesicles are lost in these canals, which finally diverge from each other in an arcuate manner, as is also true of the Vas deferens of the Glomerina. In this manner, these canals, as two Ductus ejaculatorii, extend to a triangular seale situated under the third thoracic scgment, and terminate at the lower angles of this scale in two short, conical, penis-like protuberances. ${ }^{(3)}$

With the Chilopoda, the male organs are very eomplicated and formed upon a wholly different type. Their orifices are always situated at the posterior extremity of the abdomen. With some species, there is only a single, long, testicular tube into which pass two lateral, also very long, coecal tubes (Epididymes?). At their point of junction, arise two short Vasa deferentia, which terminate in a common, short, campanulate penis. Other Chilopoda have two to three varicose testicular tubes which anastomose, loop-like, at both of their extremities, and terminate, at last, in a longer or shorter Vas deferens, which bifurcates in its course, but its branches come together again in a short penis. With all the Chilopoda, the common genital orifice is connected with the short excretory ducts of two to four oblong aecessory glands, the nature of which is yet unknown. ${ }^{(26)}$

$$
\text { § } 294 .
$$

The Development of the Crustacea occurs, as with all Arthropoda, aecording to a special type. ${ }^{(1)}$

After the disappearance of the germinative vesicle, a partial segmentation occurs upon a given point of the surface of the vitellus. By this process, a transparent, finely-granular, proligerous dise is formed. ${ }^{(2)}$ The borders of this dise gradually extend over, and finally cover the surface of the vitellus. It is then changed into a proligerous vesicle enclosing the remainder of the vitellus.

At the pole of the egg where the proligerous disc is first formed, are de-

Abstract

25 For the male organs of the Chilognatha, see Newport, Philos. Trans. 1842, loc. cit. p. 99 Rymer Jones, Cyclop. III. p. 551, fig. 314; and Stein, in Müller's Arch. 1842, p. 246, Taf. XII.XIV. (Julus, Polydesmus, and Glomeris). The two testicles of Glomeris were formerly described as ovaries by Brandt; see his Beitr. loc. cit. p. 325, Taf. XII. fig. 8 ; but he has rectified this in his lecueil, loc. cit. p. 157. For the copulatory organs of the Julidae, may be cited, also, the researches of Latreille, and Savi (loc. cit.). ${ }^{26}$ Lithobius has only a single testicular tube with two epididymes and four accessory glands (Treviranus, Verm. Schrift. II. p. 25, Taf. V. fig. 7 ; L. Dufour, loc. cit. p. 87, Pl. V. fig. 2, 3, and Stein, loc. cit. p. 240, Taf. XII. fig. 1). Geophi lus has three interanastomosing, varicose testicles, and two accessory glands (Stein, loc. cit. p. 243 , Taf. XII fig. 7). Judging from Muller's figure (loc. cit. Taf. II. fig. 5), Scolopendra morsitans han also two anastomosing varicose testicles. But this point is made somewhat uncertain from the researches of Kutorga (loc. cit. p. 10, Tab. II. fig. 4-6), who has shown positively the existence of four accessory glands with this animal. L. Dufour's figures (loc. cit. p. 97, PL. V. fig. 5) of the male organs of Scutigera indicate here a very different organization. There are two testicular tubes which unite loop-like at the anterior extremity and then gend off a long yery flexuous canal which has two

peduncufated vesicles (Vesiculae seminales). The posterior extremity of these testicles is continuous into two Vasa deferentia which become dilated into as many Ductus ejaculatorii. Perhaps this abnormal organization of these animals in this respect, will be reduced from further researches to the type of the Scolopendra.

1 The embryology of Crustacea has been brought out, especially by the numerous and exact researches of Rathke; see his Untersuch. über d. Bild. u. Entwickel. d. Flusskrebses, 1829, then his notes in Burdach's Physiol. II. 1837, p. 250 ; his Ablaandl. zur Bild. u. Entwickel. d. Mensch. u. d. Thiere, 1833 ; his Mittheilung. über d. Entwickel. d. Decapoden, in Müller's Arch. 1836, p. 187, or in Wiegmann's Arch. 1840, I. p. 241 ; and in the Neuest. Schrift. d. Danzig. naturf. Gesellsch. III. 1left. IV. 1842, p. 23 ; then, Zur Morphol., Reisebemerk. aus Taurien, 1837; his Beobacht. u. Betracht. uber d. Entwickel. d. Mysis vulgaris, in Froriep's neue Not. XXIV. 18t2, p. 181 ; and finally his Comment. de Animal. Crust. generat. 1844. See, also, Erdl, Entwickel. d. Hummereies, 1843; and Joly, Sur le développ. des Caridina, in the Ann. d. Sc. Nat. XIX. loc. cit. p. 57, Pl. IV.

2 Cancer maenas forms perhaps the only exception in this respect. Here, the segmentation appears to be complete; see Rathke, in Froriep's neue Not. loc. cit. p. 182; and Erdl, loc. cit. p. 27.
veloped the ventral portion together with the abdominal cord of the future embryo; while, at the opposite pole, where the borders of the dise meet, the dorsal portion of the animal appears. Quite early, the blastoderma ean be seen eomposed of an external or serous, and of an internal or mucous layer. This last, after having enveloped the entire vitellus, is changed gradually into the alimentary eanal. The hepatie organs are only devertieuli of this last, while the antemae, the oral apparatus, the feet, and the branehiae, are developed from the serous layer.
The embryos, thus formed, differ eonsiderably, and their form is often so dissimilar from that of the adult animal, that, during their ulterior development, there is a real metamorphosis, which takes place by more or less numerous stages eoineident with the act of moulting.

An embryonie type quite general among the lower Crustacea, that is, the Cirripedia, Siphonostoma, Lophyropoda and Phyllopoda, is that which was first observed with Cyclops. There is here a long scrics of metamorphoses. The monoele-like larvae have an ovoid, unartieulated body, usually provided with a single, simple eye, and two or three pairs of oar-like appendages eovered with long hairs. ${ }^{(3)}$

With some Braehyura, there is an equally well-marked metamorphosis : for, in leaving the egg, they have a long tail and two very large eyes; but with the first moulting they aequire two enormous, spur-like apophyses, one on the front, and the other on the baek. ${ }^{(4)}$

Abstract

3 It is remarkable that the young Cirripedia, which are hexapod, have the characteristics of tbe larvae of Monocles; see Thompson, Zool. Researcb. loc. cit. p. 69, Pl. IX. (Balanus) ; Burmeister, Beitr. loc. cit. p. 12, Taf. I. (Lepas); Goodsir, Edinb. New Pbilos. Jour. No. 69, July, 1843, p. 97, Pl. III. IV., or Isis, 1844, p. 901 , Taf. I. fig. 8, 11-17 (Balanus). The larvae of these Crustacea, before bcoming fixed in order to undergo their metamorphoses, change into a bivalve animal resembling Cypris. Among the Siphonostoma, the monocle-like embryos are very general. Nordmann (loc. cit. p. 11, \&c., Taf. II.VII.) has recognized larvae of this kind, some with three (Ergasilus and Lernaeocera), and others with only two (Achtheres and Tracheliastes) pairs of feet. According to Follar (loc. cit. p. 8\%, Taf. X. fig. 10), the embryos of Basanistes are monoclelike and have six feet, as are also those of Lernafopoda described by Rathke (Zur Morphol. \&s. p. 3t, Taf. I.). Gondsir (loc. cit. No. 65, July, 1842, p. 178, Pl. III. fig. 19-23) has observed embryos with four feet in the eags of Caligus. The larvae of Nicothoé (Rathleé, Nov. Act. Nat. Cur. XX. p. 109, Tab. V. fig. 8-10) and of Argulus (Miller, Entomostr. p. 122, Tab. XX. fig. 2, and Jurine, loc. cit. p. 453, Pl. XXVI. fig. 4) form an exception in this respect, for when they leave tbe egg they have two simple eyes, an

articulated body, and more than three pairs of feet. Those of the Cyclopidae which have six feet bave been known a long time. But Müller (Entomostr. p. 39, Taf. I. II.) formerly divided them under the names of Nauplius and Amymonc. See Degeer Abhandl. \&c. VII. p. 181, Taf. XXX. (Cyclops); Ramdohr, loc. cit. p. 5, \&c., Taf. I. III.; but especially Jurine, IIist. d. Monocl. p. 15, \&c.., Pl. I.-VII. (Cyclops and Cyclopsina). The young Daphnioidate and Cypridondae, on the contrary, resemble the adults on their escape from the egg. The simple eye is evidently tbe result of a very early fusion of two eyes; see Jurine, loc. cit. p. 113, PI. VIII. IX. (Daphnia and Cypris); Rathké, Abhandl. z. Bildungs u. Entwickelungsgesch. \&c. 1). 85 (Daphnia and Lynceus); Baird, Maçaz. of Zool. and Bot. I. p. 522, and II. Pl. V. fig. 12 (Cypris) ; finally Lovén, loc. cit. p.161, Taf. V. fig. 12 (Evadne). Of the Plyllopoda, the monocle embryos of the Apodidae have two pairs of feet, whilc those of the Branchiopoda have threc ; see Schafffer, Der krebsartige Kiefenf. p. 118, Taf. I. fig. 3; and Zaddach, loc. cit. p. 55, T'ab. IV fig. 1-3 (Apus) ; Joly, loc. cit. p. 321, 11. IX. fig. 39 (Isaura); Prevost, in Jurine's Mist. d. Monocl. p. 214, PI. XX. fig. 9 (Chirocephalus); and Joly, loc. cit. p. 257, Pl. VII. fig. 4 (Artemia).*

4 These embryos with such singular forms, have, hitherto, been figured as separate genera under the

[^212]ances of tbe different organs. Argulus is quite well developed when hatched, its muscles are transversely striated and the locomotive organs well formed. Artemia has, at this period, two antennae, two pairs of feet on the head, and the red pigment spots on the forebead, but these last have as yet no ligbt-refracting body. The muscles are still without striae, and even here and there are filled with vitelline globules. The heart and blood-circulation are still unformed. - Ed.

The young of the Paguridae and Maerura differ more or less from the adult animals. ${ }^{(5)}$ But this differenee is less with the Poeeilopoda, Laemodipoda, Stomapoda, Isopoda, and Amphipoda. ${ }^{(6)}$ Finally, with the Myriapoda, the metamorphosis is limited to the increase of the number of the segments of the body, and of the feet. ${ }^{(7)}$
names Megalops, Monolepis and Zoēa (Milne Edwards, Hist. d. Crust. II. p. 260, 431), until Thompson perceived their true nature; see his Zool. Research. \&c. Pl. I. and his Memoir on the double Metamorphosis in the Decapodous Crustacea, in the Plilos. Trans. I835, pt. II. p. 539 ; see also the Edinb. New Philos. Jour. No. 20, p. 221, and the Entomol. Magaz. No. 14, p. 370. Although these observations have been confirmed from different sides, yet they did not, at first, receive full assent, especially on account of the authority of Rathke (Müller's Arch. 1836, p. 187), who opposed them. Templeton (Trans. of the Entomol. Soc. II. p. II5, Pl. XII.) and Westwood (Philos. Trans. I835, pt. II. p. 311, Pl. IV.) refuse to give up the genus Zoëa; but since Du Cane (Ann. of Nat. IIist. III. 1839, p. 438, Pl. XI. or Froriep's neue Notiz. XIII. p. 5, fig. 10-13), has verified, with Cancer maenas, the observations of Thompson, and Rathke' himself (Wiegmann's Arch. 1840, I. p. 246, and Neuest. Danzig. Schrift. loc. cit. p. 39 , Taf. IV.) has seen the embryos of Hyas under the form of a Zöa, this wonderful metamorphosis of the Brachyura can no longer be doubted. See also Steenstrup, in the Oversigt over det kgl. danske Videnskabernes Selskabs Forhandlinger, 1840 , p. 15, or Muller's Arch. 184I, p. 218 (Hyas), and Gootsir, Edinb. New Philos. Jour. No. 65, I842, 1. 181, Pl. III. fig. I6-18 (Cancer maenas).
5 The embryos of Pagurus which have a frontal spinc, were also, before the discovery of Thomp$80 n$, taken for species of Zoëa ; see Philippi, in Wiegmann's Arch. 1840, I. p. 184, Taf. III. fig. 7, 8 ; also Rathké, Mid. p. 242, and, Danzig. Schrift. loc. cit. p. 29, Taf. III. ; Steenstrup, loc. cit. ; and Goodsir, loc. cit. No. 65, p. 182, Pl. III. fig. 12-I4. The difference in form between the
embryos and the adults is less marked with Astacus, Homarus and other Macrura; sce Rathké, Eatwick. d. Flusskr.) and in the Dinzig. Schrift. loc. cit. p. 23, Taf. II. (Homarus) ; Du Cane, Ann. of Nat. IIist. II. 1839, p. I78, Pl. VI. VII. or Froriep's neue Notiz. XIII. p. S, fig. 4-9 (Palaemon and Crangon); Kröyer, Monogr. loc. cit. p. 37, Pl. VI. (Hippolyte and Homarus) ; Johy, Ann. d. Sc. Nat. XIX. loc, cit. Pl. IV. (Caridina), and Erdl, loc. cit. p. 18, Taf. III. IV. (Homarus).

6 According to Milne Edwards (Instit. 183s, No. 258, p. 397), a cephalothorox and abdomen may already be distinguished with the hatching embryos of Limulus. But the abdomen has only three pairs of appendages and its long spine is wholly wanting. This naturalist, also, has figured an embryo of Cyamus which closely resembles the adult (Ann. d. Sc. Nat. III. I835, p. 328, Pl. XIV. fig. 14).

For the embryos of the Isopoda and Amphipoda, see Rathké, Abhandl. loc. cit. ; Ann. d. Sc. Nat. II. 1834, p. I39, Pl. XI. ; Zur Morphol. \&c. 4I, Taf. II. III. (Bopyrus, Idothea, Janira, Lygia and Amphithöe); Nov. Act. Nat. Cur. XX. p. 49, Tab. I. (Phrysus) ; also Milne Edwards, Ann. d. Sc. Nat. MI. 1835, p. 323, Pl. XIV. (Cymothoa, Anilocra, Phronima and Amphithoé); finally Rathké, in Wiegmann's Arch. I839, loc. cit. Taf. VI. (Mysis).

7 See Gervais, Ann. d. 1. Soc. Entomol. de France, I837, and Institut. 1839, p. 22; Waga, Rev. Zool. 1839, No. 3. p. 76, or Wiegmann's Arch. 1840, II. p. 351 ; and especially Newport, Philos. Transact. 1842, part II. p. 99, and Cyclop. loc. cit. III. p. 353, fig. 317-326, also in Froriep's neue Notiz. XXI, p. 161.

BOOK THIRTEENTH.

ARACHNOIDAE.

CLASSIFICATION.

§ 295.

The Arachnordae, which are organized after very different types, have always four pairs of feet. The Tardigrada form no exception in this respect; and although it may appear singular to find them placed in this class, yet this seems their most proper place ; only they should be placed at the head, for they form the transition of the Arachnoidae to the Annelides, exactly as do the Cirripedia from the Crustacea to the Acephala.*

The Arachnoidae are usually defined as Arthropoda wanting the antennae ; this, however, is incorrect, for these organs are not wanting, strictly speaking, but take the place of the mandibles, which are absent, as will be shown hereafter.

ORDER I.

Cephalothorax multi-articulate. Special respiratory organs wanting.
SUB-ORDER I. TARDIGRADA.
Legs rudimentary. Abdomen wanting.
Genera : Milnesium, Macrobiotus, Emydium.
SUB-ORDER II. PYCNOGONIDAE.
Legs very much developed. Abdomen rudimentary.
Genera: Nymphon, Ammothea, Pallene, Phoxichilidium, Pariboea, Endeis, Phoxichilus, Pycnogonum.

[^213]ORDER II.
Cephalothorax unarticulated, or biarticulated. Respiratory organs consisting of tracheae.

SUB-ORDER III. ACARINA.
Abdomen unarticulated and fused with the ccphalothorax. Palpi simple.
Family: Acarea.
Genera: Demodex, Sarcoptes, Glycyphagus, Tyroglyphus, Melichares, Dermaleichus, Acarus, Pteroptus.

Family: Hydracinea.
Genera : Limnochares, Arrenurus, Eylais, Diplodontus, Hydrachna, Atax.
Family: Oribatea.
Genera : Hoplophora, Oribates, Zetes, Pelops, Damaeus.
Fanily: Gamasea.
Genera : Dermanyssus, Uropoda, Gamasus, Argas.
Fanily: Ixodea.
Genus: Ixodes.
Family: Bdellea.
Gencra: Bdella, Molgus.
Family: Tronbidina.
Genera: Erythraeus, Trombidium, Smaridia, Tetranychus, Rhyncholophus, Rhaphygnathus, Penthaleus.

SUB-ORDER IV. OPILIONINA.
Abdomen articulated, but indistinctly separated from the cephalothorax. Palpi simple.

Genera : Phalangium, Gonyleptes, Eusarcus.
SUB-ORDER V. PSEUDOSCORPII.
Abdomen articulated, but indistinctly separated from the cephalothoraz. Palpi forficulate.

Genera: Obisium, Chelifer.
SUB-ORDER VI. SOLPUGIDAE.
Abdomen articulated, distinctly separated from the cephalothorax. Palpi simple.

Genus: Galeodes.
31*

ORDER III.

Abdomen and cephalothorax unarticulated, distinct from each other. Respiratory organs consisting of tracheae and lungs.

SUB-ORDER VII. ARANEAE.
Genera: Mygale, Thomisus, Uptiotes, Lycosa, Dolomedes, Salticus, Segestria, Dysdera, Scytodes, Clubiona, Drassus, Argyroneta, Clotho, Agelena, Lachesis, Tegenaria, Micryphantes, Theridion, Linyphia, Epeira, Tetragnathus.

ORDER IV.

Abdomen articulated. Cephalothorax unarticulated. Respiratory organs consisting only of lungs.

SUB-ORDER VIII. PHRYNIDAE.
Abdomen distinct from the cephalothorax. Cheliceres unguiculate.
Gencra: Thelyphonus, Phrynus.
SUB-ORDER IX. SCORPIONIDAE.
Abdomen indistinctly separated from the cephalothorax. Cheliceres forficulate.

Genera: Scorpio, Buthus, Androctonus.

BIBLIOGRAPII.

Leeuwenhoek. Continuatio arcanorum naturae, 1719, Epist. 138, p. 312.

Roesel. Insekten-Belustigungen, Thl. IV. 1761, p. 241.
Degeer. Abhandlungen zur Geschichte der Insekten, VII. 1783.
Hermann. Mémoire aptérologique, 1804.
J. F. Meckel. Beiträge zur verglcichenden Anatomie, I. Hft. 2, 1809, p. 105.

Treviranus. Ueber den inneren Bau der Arachniden, 1812. Vermischte Schrift. anat. u. physiol. Inhalts. I. 1816. Ueber d. Bau d. Nigua (Acarus americanus), in his Zeitsch. f. Physiol. IV. 1831, p. 185.

Serres. Mémoires du Mus. d'hist. Nat. V. 1819, p. 86.
Léon Dufour. Ann. génér. d. Sc. physiq. d. Bruxelles, IV.-VI.
J. Miller. Beiträge zur Anatomie des Scorpions, in Meckel's Arch. f. Anat. 1828, p. 29.

Lyonet. Anat. de différentes espèc. d'Insectes, in the Mém. du Mus. d'hist. Nat. XVILI. 1899, p. 282, 377.

Brandt. Medizin. Zool. II. 1833, p. 87. Recherch. sur l'anat. d. Araignées, in the Ann. d. Sc. Nat. XIII. 1840, p. 180.
Savigny. Descript. de l'Égypte. Hist. Nat. Arachnides, Pl. I.-IX.
Audouin. Lettre contenant des recherches sur quelques Araignées
parasites, in the Ann. d. Se. Nat. XXV. 1832, p. 401. Cyelop. of Anat. I. 1836, p. 196, Art. Arachnida.

Dugès. Reeherehes sur l'ordre des Aeariens, in the Ann. d. Se. Nat. I. 1834, p. 5, and II. p. 18; also, Sur les Aranéides, Ibid. VI. 1836, p. 159.

Walckenaër. Hist. Nat. d. Inseetes aptères, I.-III. 1837-44.
Doyère. Sur les Tardigrades, in the Ann. d. Se. Nat. XIV. 1840, p. 269.

Van der Hoeven. Bijdragen tot de kennis van het geslaeht Phrynus, in the Tijdsehrift voor natuurlijke Gesehiedenis en Physiologie, IX. 1842, p. 68.

Grube. Einige Resultate aus Untersuehungen über d. Anat. d. Araneïder, in Mïller's Areh. 1842, p. 296.

Menge. Ueber d. Lebensweise d. Araehniden, in the Neuest. Sehrift. d. naturf. Gesellsel. in Danzig. IV. Hft. 1, 1843, p. 1.

Tulk. Upon the anatomy of Phalangium opilio, in the Ann. of Nat. Hist, XII. 1843, p. 153, or in Froriep's neue Notiz. XXX. 1844, p. 97.

Dujardin. Sur les Aeariens, in the Comp. rend. XIX. 1844, p. 1158, and Mém. sur les Aeariens, in the Ann. d. Se. Nat. III. 1845, p. 5.

Quatrefages. Mém. sur l'organis. d. Pyenogonides, in the Ann. d. Se. Nat. IV. 1845, p. 69.

Blanchard. Observat. sur l'organis. d'un type de la elasse des Araehnides, le genre Galéode, in the Comp. rend. XXI. 1845, p. 1383.

Wasmann. Beiträge zur Anat. d. Spinnen, in the Ablandl. d. naturwissensch. Vereins in Hamburg, 1846.

ADDITIONAL BIBLIOGRAPHY.

Wilson. Researehes into the Strueture and Development of a newlydiseovered parasitie animaleule of the Human Skin, - the Entozoon follieulorum, in the Philos. Trans. 1844, p. 305.

Wittich. Dissertatio sistens. observ. quaed. de Aranearum ex ovo evolut. Halis, 1845.
———Die Entstehung des Arachnideneies im Eierstoeke ; die ersten Vorgänge im demselben naeh seinem Verlassen des Mutterkörpers; in Mïller's Areh. Hft. 2, 1849, p. 113.

Leuckart. Ueber den Bau und die Bedeutung der sog. Lungen bei den Arachniden, in Siebold and Kölliker's Zeitsch. 1849, I. p. 246.
J. V. Carus. Ueber die Entwickelung des Spinneneies; in Siebold and Kölliker's Zeitseh. II. 1849, p. 97.

Blanchard. De l'Appareil eireulatoire et des Organes de la respiration dans les Araehnides, in the Ann. d. Se. Nat. XII. 1849, p. 317.

Dufour. Observatious sur l'Anatomie du Seorpion, in the Ann. d. Se. Nat. XV. 1851, p. 249.

Kaufmann. Ueber die Entwickelung und systematisehe Stellung der Tardigraden, in Siebold and Kölliker's Keitseh. III. 1851, p. 220. - Ed.

CHAPTERI.

EXTERNAL ENVELOPE AND CUTANEOUS SKELETON.

§ 296.

The cxternal envelope of the Arachnoidae is usually soft, or coriaceous, rarely horny; ${ }^{(1)}$ but in no instance does it possess a proper contractility. In place of this, however, it is extensible in the highest degree with many species. This extensibility is seen especially with those species which are accustomed to long fasts, having only an occasional opportunity to fill their digestive canal with food consisting of the animal juices. ${ }^{(2)}$

The envelope is composed here, as with all the Arthropoda, chiefly of chitine. ${ }^{(3)}$ To this last are undoubtedly due its solidity and indestructibility, which may be observed with the small and delicate Acarina and Tardigrada, not only when it is in a fresh state, but even after it has been cast off by a kind of moulting. ${ }^{(4)}$

$$
\text { § } 297 .
$$

With most Arachnoidae, the cutaneous envelope may be separated into two tunics; an external and an internal. The first is the more solid and thick, and, in the cephalothorax and the extremities, has often a cellular structure. Upon the abdomen of the Araneae and Acarina, it presents peculiar, waving markings which, as concentric rings, surround the base of the hairs; (1) but it is difficult to determine if they are due to delicate plicae, or the effect of the intimate structure of the skin. With Ixodes, only, these prominent lines appear, unmistakably, as folds of the epidermis, for they completely disappear when these animals are gorged with food.

The epidermis is often provided with papillae, clavate excrescences, spines, bristles, simple or plumose hairs, and even, sometimes, with scales. ${ }^{(2)}$ These various cutaneous formations, which are usually hollow, either occupy only certain points, or are extended over the whole surface of the body, giving it a velvety or a furry aspect.

The internal tunic of the skin consists of a thin, always colorless mombrane, finely granular or fibrillated, which is perforated at those points where there are hair-like or other formations of the epidermis. ${ }^{(3)}$ Directly beneath this membrane, which, undoubtedly, reproduces the epidermis after

[^214]saigne (loc. cit.), and of that of Ascaris, Meckelia, Sabella, Hermione and Nephtys, made by Loewig and Költiker (Ann. d. Sc. Nat. V. 1846, p. 198).

1 For example, with Epeira, Segestria, Thomisus, Argyroneta, Salticus, Sarcoptes, \&c.
2 llumose hairs are very often found with the Araneae; and I have found lanceolate scales with Salticus, and clavate excrescences with the Trombidina; see IIermann, loc. cit. PI. III. fig. O-Y.
3 I am unable to say whether the internal membrane is prolonged at these points into the hollow excrescences of the skin, or whether the appearances alluded to are not produced artificially when the outer is separated from the inner layer of the skin.
moulting, is a layer of eolored vesieles and granules, whieh can be seen through the skin, giving it the often very beautiful colors whieh are observed in many speeies.

The various divisions of the eutaneous skeleton, of whieh the number is quite limited, have been so thoroughly studied in zoology, that they may well be passed over here without notiee.

The Cephalothorax sends off from its inner surfaee, espeeially with the Opilionina, and Araneae, various proeesses, whieh serve, as with the Crustaeea, as points for the insertion of museles, and as septa between eertain organs. With the Araneae, they form, at the bottom of the eephalothorax, a solid horizontal plate, - a kind of internal skeleton, whieh, before and behind, is attaehed to the sternum by two tendinous ligaments. This plate is deeply indentated on its anterior border, and furnishes points of insertion for the museles of the extremities, as well as for several other parts. ${ }^{(4)}$

CIAPTER II.

MUSCULAR SYSTEM AND ORGANS OF LOCOMOTION.
§ 298.
The voluntary museles of the Araehnoidae are of a dirty-yellow eolor, and, like those of the Crustaeea, are distinetly striated transversely. ${ }^{(1)}$ Their general disposition agrees, also, with those of Crustaeea. ${ }^{(2)}$

The prineipal museular masses are found in the cephalothorax, for here arise, not only the museles of the parts of the mouth, but also those of the first artiele of the taetile organs and legs. With those speeies having an unartieulated abdomen, the museles of this part of the body differ from those of Crustaeea. For, directly beneath the skin, is a thin layer, eomposed of numerous short, riband-like fibres, interlaeed in various direetions, and frequently anastomosing with eaeh other. ${ }^{(3)}$ Moreover, with many speeies, there are, on both the dorsal and the ventral surfaee of the abdomen, depressions of the skin, from whieh pass off small museular bands, which penetrate into the interior of the abdomen, and pass among the viseera.

With the Araneae there is, generally, on eaeh side of the ventral median

[^215][^216]line, a tendinous ligament, on which are inserted several of these muscular bands. ${ }^{(4)}$ It is very probable that these animals can, by this apparatus, compress their abdomen in various directions.

§ 299.

The locomotive organs of the Arachnoidae are situated exclusively on the cephalothorax. They consist of only four pairs of legs, of which the first may, perhaps, be rcgarded as the posterior pair of metamorphosed maxillae. ${ }^{(1)}$
Some Mites, only, when young, have six fect, and the young of the Pycnogonidae have, also, only four. With Phrynus, and Thelyphonus, the first pair considerably resembles two multi-articulated tactile organs; but with Galeodes, thesc same organs have wholly the appearance of legs, excepting they are without claws. With Mygrle, the inaxillae of the first pair have the form of feet, and their extremity is not only unguiculated, but also provided with a tarsus. The other Arachoidac have usually nails on all their feet, and, with some, each foot may have four nails. ${ }^{(2)}$ With many Araneae, the nails have, on their convex side, a pectinated appendage. ${ }^{(3)}$

As to the types of the articulations of the legs, they are usually as follows; first, a movable Coxa; then a short Trochanter; then a longer, stiff Femur; then a Tibia, divided by an articulation into two unequal parts; and, finally, a Tarsus, composed of a long and a short article. With the Phrynidae, not only are the first and autenniform pair of fect alrcady mentioned, different from this type, but the three other pairs have a great number of articles, each tarsus having four. But the Phalangidae differ the most,- the tarsi of all the feet having an extraordinary number of articles. On the other hand, among the lower Arachnoidac, and especially with the Acarina and Tardigrada, there are species with which the seven articles just mentioned cannot be easily distinguished, for the articulations are less in number, or wholly indistinct. With many of these species, some of the pairs of legs, or even all, are reduced to real foot-stumps. ${ }^{(4)}$ Numerous parasitic Acarina have, between the uails, a small organ (Arolium), by which, as with a sucker, they can attach themselves to foreign bodies. ${ }^{(5)}$ These organs are most developed with Sarcoptes and allied genera, which are without nails, for they here consist of a long, pedunculated dise upon all, or only upon some of the feet. ${ }^{(6)}$. With the aquatic Hydrachnea, the swimming feet have no other peculiaritics than that one of their sides is thickly pilose.

[^217][^218]
CHAPTER III.

NERVOUS SYSTEM.

§ 300.
The grades of development of the Nervous System with the Arachnoidae are very different, being connected with the divisions of the cutaneous skeleton. For, when these last disappear, those of the nervous system belonging to them, and often the ventral cord, are concentrated, as with the brachyurous Decapoda, into a single ganglionic mass, occupying the ventral portion of the cephalothorax; while, if the body is multi-articulate, this system resembles that of the macrurous Decapoda. In both cases, with only a few exceptions, there is a cerebral ganglion situated above the cesophagus, and connected with the ventral cord by two short commissures surrounding this canal. From this ganglion pass off nerves to the eyes, and the maxillary palpi or so-called mandibles; while the first pair of maxillae, changed into tactile organs, reccive their nerves from the anterior extremity of the ventral cord.

The intimate structure of the nervous system, with the Arachnoidae, consists of primitive fibres much finer, and ganglionic globules much smaller, than those of Crustacea. ${ }^{(1)}$ As to the direction and disposition of these fibres, those of the Seorpionidac almost cxactly resemble those of the Myriapoda. ${ }^{(2)}$

§ 301.

The nervous system is most simple in its organization with the Acarina. In those 'species where, as yct, it has been found ${ }^{(1)}$ it consists only of a simple abdominal ganglion, from which pass off, from all sides, the peripheric nerves; and, upon the upper surface of which, is detached a simple transverse band, under which the cosophagus passcs.

With the Tardigrada, this system is a little more developed, although the brain is still wanting. ${ }^{(2)}$ It consists of four ganglia, corresponding to the four segments of the body, and connected together by double longitudinal commissures. Between each of the ganglia, the commissures are connected by a transverse filament. The nerves which proceed from the ganglia belong to the muscles; but the first ganglion sends, morcover, in front, four larger trunks, which are the nerves of sense, and are distributed to the eyes and palpi. ${ }^{(3)}$

[^219][^220]The ventral chain of the Pyenogonidae is composed likewise of four ganglia, but these, which send off, each, a nerve from its side to the corresponding foot, are contiguous, and the first connects with the ovoid cerebral ganglion by two lateral commissures. ${ }^{(4)}$

With the Araneae, the central portion of the nervous system consists of a large sub-oesophageal ganglion, and another, smaller and above the œsophagus. They are separated from each other only by a narrow fissure through which the oesophagus passes. The super-eesophageal ganglion, which is somewhat emarginated in front, corresponds to the brain, and sends off nerves to the eyes and cheliccres. The sub-esophageal ganglion, situated in the middle of the cephalothorax, sends off, on each side, four larger processes, from which arise the nerves of the feet. Its anterior border supplies, moreover, the nerves of the two palpi; and from its posterior margin pass off two nerves for the abdominal viscera. ${ }^{(5)}$

The nervous system of Galeodes, ${ }^{(6)}$ Phrynus, and Thelyphonus, ${ }^{(7)}$ has a like disposition.

The central mass of the nervous system of the Phalangidae begins by two conical, contiguous cerebral ganglia, which connect with a suboesophageal, fused ganglion, by two short lateral commissures. This ventral ganglion is composed of a transverse portion, which is situated in the centre of the ccphalothorax, and of two lateral portions which consist, each, of an anterior or larger, and a posterior or smaller lobe. These lobes send off nerves to the cight legs, and in front, others to the palpi; while from the postcrior border of the transverse portion pass off several nerves to the viscera of the abdomen. ${ }^{(8)}$

With the Scorpionidae, the nervous system is very highly developed. The brain, which is not large, is composed of two sphcroidal, superoesophageal ganglia fused together. Above, and in front, they send off nerves to the eycs and the cheliceres; and below, they connect with the first ventral ganglion by two short, large filaments, which embrace the œesophagus. The first ventral ganglion is pretty large, being the result, probably, of the fusion of several ganglia. It is situated in the middle of the cephalothorax, and sends nerves to the palpi and to the eight legs. In the rest of the body there are three ventral ganglia, smaller, and followed by four others situated in the tail. All these ganglia are connceted by double, longitudinal commissures, and the posterior seven give off, from each side, two uerves; while from the last gangtion arise also two others, which, passing backwards, soon unite and extend to the very extremity of the tail, sending off nerves right and left. ${ }^{(9)}$

4 Quatrefages, loc. cit., 77, P1. I. fig. $1^{3} 2^{2}$; also Pl. 11. fig. 2, 3 (Ammothea and Phoxichilus).
5 Treviranus, Ueber d. inn. Bau d. Arach. p. 44, Taf. V. fig. 45 , and Zeitsch. f. Physiol. IV. p. 94 , Taf. VI. fig. 4 ; Lyonet, loc. cit. p. 405 , Pl. XXI. fig. 22; Brandt, Mediz. Zool. II. p. 90 , Taf. XV. fig. 3, 4, or Ann. d. Sc. Nat. X1II. p. 184, Pl. IV fig. t. Duges, [bid. VI. p. 174 ; Grube, loc. cit. p. 302, and finally Owen, Lectures, \&c., p. 255, fig. 109. This last author has represented, in a very instructive manner, the neryous system of a Mygale seen in profile.
${ }_{7}$ Blanchard, loc. cit. p. 1384.
7 Van der Hoeven, Tijdschritt. loc. cit. 1X. 1842, p. 68, and X. 1843, p. 369.

* [§ 301, note 9.] See also Dufour (Ann d. Sc. Nat. XV. 1851, p. 250). This anatomist has found a fourth abdominal ganglion, situated just

[^221]
§ 302.

A Splanehnie nervous system has been observed with only the higher Araehnoidae; but here it is highly developed. The odd stomaehie nerve has been the part most diffieult to discover ; it is observed, however, with some Araneae, - the posterior border of the brain sending off two small filaments which traverse the eentral opening of the stomaeh but unite on its dorsal surfaee. ${ }^{(1)}$ The Scorpionidae have a similar stomaehie nerve whieh also arises from the brain by two filaments which have a small ganglion at the point of their union. ${ }^{(2)}$

With the Phalangidae, Araneae, Galeodea, and Phrynidae, the splanchnie nerves are very distinct. They arise from the posterior border of the ventral nervous mass situated in the eephalothorax, and are distributed to the digestive, respiratory, eireulatory, and genital organs, and have, sometimes, ganglia on their course. With Phalangium, there are three of these nerves arising from the posterior border of the transverse portion of the ventral mass. The middle one of these nerves divides into two branehes, whieh dilate into two ganglia eonneeted together by a transverse anastomosis. From these two ganglia arises a nervous plexus, which is distributed to the internal genital organs, and to the eorium. The lateral nerves, directly after their origin, likewise divide into two branehes, each of which forms a ganglion ; the external nerves after a shorter, and the internal after a longer eourse. The two external ganglia thus formed send filaments to the terminal portion of the genital organs, while those of the two internal ganglia are distributed to the digestive tube and neighboring organs. ${ }^{(3)}$. With the Araneae, the Galeodea, and Phrynidae, the posterior extremity of the principal ventral ganglion sends off two considerable nervous cords, eontiguous, which pass into the abdominal eavity where they are distributed, radiatingly, to the digestive organs, to the pulmonary saes, to the genital organs, and to other abdominal viscera. Sometimes, before dividing, they unite in a common ganglion. ${ }^{(4)}$

[^222]
CHAPTER IV.

ORGANS OF SENSE.

§ 303.

The multi-articulated antennae with which the Crustacea and Insecta are endowed, are absent with the Arachnoidac, or, morc properly speaking, they are changed into prehensile and masticatory organs. ${ }^{(1)}$

The palpi, which are absent with only a few Arachnoidae, ${ }^{(2)}$ must be regarded as the principal seat of the sense of Touch. These tactile organs always receive two considerable nerves arising from the anterior extremity of the ventral ganglionic mass. ${ }^{(3)}$ A very delicate sensc of touch cxists, also, in the extremity of the feet, which are well supplied with nerves; and, for this object, the feet of the Opilionina and Phrynidae have the form of multi-articulated antennac.

With the Araneae, this point admits of no doubt, for these organs (the fect) are especially used in the formation of the web.

§ 304.

Although we must grant to the Arachnoidae the sonse of Taste, and that of Smell; and although many facts show that the have the sense of Hearing highly developed, yet, at present, nothing satisfactory has been discovered cither as to the locality or the structure of the organs which are the seat of these senses. ${ }^{1)}$

§ 305.

The organs of Vision of the Arachnoidae consist always of simple eyes (Stemmata); but among the lower Arachnoidae, there is a complete series, namcly, the parasitic Mites, and allied groups, which are entirely deficient in these organs. ${ }^{(1)}$

The stemmata of the Arachnoidae have exactly the same organization as the simple eyes of the Crustacea. They are composed of a simple and convex cornea, of a spherical lens, and of a concavo-convex, vitreous body, which is surrounded by a Retina. Each of thesc eyes is enveloped, before and behind, by a pigment tunic corresponding to the Chorioidea; its color

[^223][^224]is very variable, and, in front, it terminates between the lens and the vitreous body by a ring which resembles an Iris. When two of these stemmata are contiguous, the pigment tunic is common between them. ${ }^{(2)}$

The number, the situation, the disposition, and the direction of the eyes, present so many variations, that they have been used by zoologists to characterize the genera. Chelifer, Erythraeus, Smaridia, Tetranychus, Arrenurus, and the Tardigrada, have two of these organs on the anterior portion of the back, while with many Oribatea, they are lateral and anterior. With Trombidium, there are two cyes also, but they are situated directly above the first pair of legs, on clavate peduncles. ${ }^{(3)}$ With the Pyenogonidae, and with Obisium, there are four eyes situated on the first segment of the body; there are the same number, also, with Bdella, Rhyncholophus, Eylaïs, Atax, Diplodontus, Hydrachna, and Limnochares, situated on the anterior part of the back. ${ }^{(4)}$

With the Opilionina, there are two median, larger, and two lateral, smaller eyes. The first of these are situated on a tubercle, and their corneae face right and left. ${ }^{(5)}$ With Galeodes, there are six eyes on the anterior border of the first segment of the body; of these, the middle or largest pair is directed upwards; another, situated in front of these last, forwards; and the remaining pair, inserted above the anteriorlegs, laterally. ${ }^{(6)}$ The Araneae have, usually, eight eyes; only a.few have but six. ${ }^{(7)}$ These eyes, always situated on the cephalothorax, are generally of different sizes with the same individual, and are either grouped symmetrically upon the anterior median line of the cephalothorax, or scattered on its lateral border. ${ }^{(8)}$ The dorsal eyes are directed upwards, and the marginal ones, forwards or laterally.
The disposition and direction of these organs are conformable with the animal's mode of life; some species watch their prey in crevices, fissures, or tubes; while others remain motionless in the centre of their webs, or lurk from side to side, - a kind of life requiring them to look in all directions. The color of the pigment of the eyes is based also upon the same relations; for, with the diurnal species, it is green, reddish, or of a

[^225]brownish black, as with the other Arachnoidae ; but with the nocturnal spiders, it is replaced by a membrane which has a splendid lustre. ${ }^{(9)}$ With the Phrynidae, there are also eight stemmata, of which two are situated on the middle of the cephalothorax, and the remaining six form a triangle composed of three on each of its sides.

With the Scorpionidae, the eyes are the most numerous. There are two large eyes on the middle of the cephalothorax, then a row of from two to five smaller on each side of its anterior border.

The number of optic nerves depends, usually, upon that of the eyes. But the Scorpionidae form an exception in this respect; for their brain sends off, at the side of the two median optic nerves, two other nerves, common, and belonging to the two rows of marginal stemmata, but which do not divide until they have reached these organs. ${ }^{(1))}$ On account of the usually deep position of the brain, the optic nerve is generally of considerable length; but the Pycnogonidae alone differ in this respect from the other Arachnoidae, for, with Phoxichilus, the four eyes are situated directly on the brain, and, with Ammothea, this last sends off, as a common optic nerve to the four eyes, a large, short prolongation. ${ }^{(11)}$

CHAPTER V.

DIGESTIVE APPARATUS.

§ 306.

The entrance of the digestive canal is surrounded by very variable organs, but, with all, the Mandibles are always wanting. The organs usually called such are only antennae metamorphosed into prehensile and masticatory parts. This is shown not only from the cerebral origin of their nerves, but by the fact that they, or more properly the Cheliceres, never act, like the mandibles of the other Arthropoda, in a horizontal direction. Most of the Arachnoidae live on liquid food, and, therefore, the basilar article of the maxillac is more or less abortive, and is rarely used in mastication, while the succeeding articles are changed into a usually very large tactile or prehensile palpus.

In gencral, the organization of the parts of the mouth with the Arachnoidae may be divided into the following five types:

1. With the Tardigrada, there are real organs for suction. These consist of a kind of sucker, situated on the end of a fleshy proboscis which can be retracted into the head. On each side of this proboscis there are two stylets (teeth) which, by means of a special muscular apparatus, can be protruded into the former. ${ }^{(1)}$
2. With most of the Acarina, the two cheliceres are sometimes forficulate or unciform, sometimes cultrate or styliform, and by their use, these

[^226]snall animals can pieree or cut as may be required. These cheliceres are free, or lodged in a sheath out of which they may be protruded; sometimes they are covered, above or below, by a frontal or chin-like process. In a few instances, these proeesses are united, forming a proboseis out of which the cheliceres may be protruded. ${ }^{(2)}$ The first pair of maxillae, which are inserted on the sides of the cheliceres, are wholly unfit for masticatory organs, and, being destined for tactile parts, they have the form of palpi. These palpi are sometimes multi-articulated, sometimes uni-artieùlated, and, from their various modifieations, have received the names of Palpi rapaces, anchorarii, fusiformes, filiformes, antenniformes, valvaeformes, and adnati. ${ }^{(3)}$
3. The Oribatea, which, from their herbivorous nature, hold a distinet place, not only among the Acarina, but also among the Araehnoidae in general, are distinguished also for the organization of their buecal organs. Their chelieeres are protractile, and the first pair of maxillae, situated under them, forms a complete masticatory apparatus, their basilar article being developed at the expense of the rest into a large denticulated piece. The other artieles form only a very short palpus. ${ }^{(4)}$
4. The Pyenogonidae, Opilionina, Pseudoseorpii, Galeodea, and Seorpionidae, all, have tri-articulated cheliceres. Under these last are situated the first pair of maxillae whieh have no mastieatory character. ${ }^{\left({ }^{(5)}\right.}$ With the Scorpionidae, and Pseudoscorpii, they are long-forfieulate, while, with the Galeodea, the Pyenogonidae and Opilionina, they are antenniform. With the Phalangidae, only, there is observed on their basilar artiele, a hairy, obtuse appendage, comparable to a rudimentary maxilla. ${ }^{\left({ }^{(5)}\right.}$ With the Seorpionidae, the two basilar artieles of the pineers are so approximated by their flattened internal surfaces, that they may well be used for the bruising of soft animal substanees. ${ }^{(7)}$
5. With the Phrynidae, and Araneae, the cheliceres have the form of bi-artieulated, uneiform antennae. The basilar article of these so-ealled mandibles is always very thick, and the terminal article consists of a small, very sharp hook. ${ }^{(8)}$ When at rest, this last lies folded on the inter-

[^227]4 I have satisfied myself of the presence of horny' denticulated maxillae, fitted for mastication, with Hoplophora, Pelops, Zetes, Oribates, Damaeus, and with other Oribatea.
5 Some lycnogonidte form the only exception in this respect. With Pariboea, the cheliceres are simple, bi-articulate and clavate; but with Ende iss, Pycnogonum, and Phoxichilus, they are wholly wanting; see Philippi, in Wiegmann's Arch. 1843, I. Taf. IX. fig. 1-3; also Savigny, Johnston, and Milne Edwards, loc. cit.
${ }_{7}^{6}$ Savigny, Mém. \&c. I. Pl. VI. fig. 2, d.
7 It is well known that the Scorpionidue and the other rapacious Arachnoidae, merely suck their prey; but it is said that Galendes devours completely the insects which it has caught, seizing them with their cheliceres, and eating them piece by piece. During these processes each chelicere acts separately (Hutton, Ann. of Nat. Ilist. XII. 1843, p. 81, or Froriep's neue Not. XXVIII. p. 49). The Phalangidae have probably the same habits, for fragments of insects which they have eaten are found in their digestive canal (Tulk, loc. cit. p. 248).
8 See Roesel, loc. cit. Taf. XXXVII, and Savigny, Descript. de l'Egypte, Pl. I.-VIII., also Lyonet, loc. cit. Pl. XIX. XXI.
nal side of, or underneath the basilar article. It is erected when the animal, for defenee, or for the seizure of its prey, inficts a poisonous wound; and, for this purpose, the excretory duct of a poison-gland opens at the apex of each of these hooks. ${ }^{99}$. The first pair of maxillae is changed, with the Araneac, into very long tactile, and with the Phrynidae, into prehensile organs. Their basilar articles form two upwardly directed prominenees, which are contiguous at their bristly, internal borders, and thereby eover the entrance of the oral cavity. ${ }^{(10)}$ As the Araneae bruise, by means of these prominences, their prey whieh they have seized and taken into their mouth, these parts may be regarded as rudimentary maxillae.

The entrance of the Oral eavity is surrounded, with most Araehnoidae, by a soft, unequal border. This may be regarded, in part, as an upper and under lip, and partly as a tongue. ${ }^{(11)}$ The orifice and cavity of the mouth are often provided with small hairs pointing inwards, among which are sometimes obscrved horny ridges, whieh serve, probably, as teeth. The Araneae have this peeuliarity, that their large oral eavity has a groove on the median linc of the palate, whieh is continuous into the oesophagus. ${ }^{(12)}$ Its lateral borders may be so approximated that it is ehanged into a eanal. This apparatus is eertainly very serviceable to these animals in sueking their prey, after it has been punctured repeatedly, and taken into the mouth.

With very many Araehnoidae, the food, before reaching the proper digestive tube, traverses a very short eesophagus. ${ }^{(13)}$

With the Araneac, this eanal is genieulate, of a horny consistence, and, at the point where it enters the stomach, it presents a prismatic muscular enlargement on whieh is inserted a large muscle arising from the centre of the dorsal shield and passing through the eentral opening of the stomaeh. ${ }^{(4)}$ This serves probably as a sueking apparatus during the prehension and deglutition of food. ${ }^{\text {(i0) }}$ With the Tardigrada, the oesophagus terminates also by a muscular apparatus of this kind, whieh, with Macrobiotus, and Emydium, is spheroidal, and with Milnesium, eylindrical. ${ }^{\text {a() }}$

- § 307.

The Intestinal eanal of the Araehnoidae is formed after two different types.

1. With the Tardigrada, Aearina, Pyenogonidae, Opilionina, Solpugidae, and Araneae, the stomaeh has a greater or less number of eaeeal

[^228]œesophagus of the Pycnogonidae; but, subsequently, he found that he was deceived, and that vibratile organs were wanting here as with all the Arthropoda.

14 Brandt, Mediz. Zool. 1. p. 89, Taf. XV. fig. 6, b., or Ann. d. Sc. Nat. XIII. p. 183, Pl. IV. hig. 2. b.

15 This suctorial apparatus appears to have becn well described and understood by Wasmann (loc. cit. p. 10 , fig. 13 , i. m.) ; but, already before this, Lyonet (loc. cit. p. 402, PI. XXI. fig. 4, C D E.) had rightly perceived it; while Brandt (Med.
Zool. 11. p. 87) had taken it for an os hyoüdes.
16 Doydre, loc. cit. p. 322, PI. XIII.-XV.
diverticuli, of the most varied form and size. It is continuous into a short, small intestine, which passes, in a straight line, to the anus situated usually at the posterior extremity of the body. Before reaching this point, the intestine has, usually, a dilatation bounded by a constriction, which may be regarded as a rectum, or better, perhaps, as a cloaca. With the Tardigrada, the stomach is oblong and occupies a large portion of the body. It is divided throughout by numerous constrictions into many irregularly disposed caeca. ${ }^{(1)}$

With the Acarina, whose anus is placed nearer the middle of the belly, there are, nearly always, three short caeca at the anterior part of the stomach, and two, longer and more or less constricted, in the latcral regions of the abdomen. With some species of parasitic Mites, these appendages of the stomach are bifurcated. ${ }^{(2)}$ With the Pyenogonidae, the stomach is short, but has five pairs of very long caeca, some of which penetrate into the two cheliceres, and others into the eight long legs, even to the extremity of the tibiae. ${ }^{(3)}$ With Galeodes, also, these appendages penetrate the legs, and* the base of the cheliceres and palpi. ${ }^{(4)}$ With the Phalangidae, the stomach is spacious and has thirty appendages of varied size. Thus, at its upper part, there are four rows of short cacca, and, upon the sides, three pairs, very long and extending over ncarly the whole length of the visceral cavity; the iniddle pair of these last has, moreover, short sacculi. ${ }^{(5)}$ With the Araneae, the stomach is situated in the cephalothorox, and presents a very remarkable disposition. At the posterior extremity of the thoracic cavity, and directly behind the sucking apparatus, it is divided into lateral halves which extend arcuately in front, and, uniting, form a ring from which are given off laterally five pairs of caeca cxtending towards the points of insertion of the legs and palpi.

The intestine arises from this annular stomach, opposite the sucking apparatus. It traverses the abdomen on the median line, and terminates, before reaching the anus, in a cloacal dilatation. ${ }^{(6)}$
2. With the Phrynidae, ${ }^{(7)}$ and Scorpionidae, ${ }^{(8)}$ the intestinal canal is very simple compared with that just described. It consists of a straight

I Doyeire, Ibid. p. 324, Pl. XV.
2 See Lyonet, loc. eit. PI. XILI. fig. 11, I2; Duges, loc. cit. I. Pl. 1. fig. 27. II. Pl. VII. (Erythraeus, Dermanyssus and Ixodes); also, Treviranus, Zeitsch. f. Physiol. IV. p. I89, Taf. XVI. lxodes has dichotomous stomachic appendages, of which the posterior, at the extremity of the body, curve first downwards, then forwards with a long course. These various caeca of the Acarina often appear, especially when filled with food, clearly definet, through the skin. But when empty, they are freduently overlooked in the small species, from the tenuity of their walls. However, I have always succeeded, even with the smallest Oribatea, in distinguishing the walls of the intestine, especially when it contained food. I must, therefure, consider as wholly erroncous, the opinion recently advanced by Dujardin (Ann. d. Sc. Nat. III. p. 14, or Compt. rend. loc. cit. p. II59), that the food eaten by the Acarina does not pass through a distinct digestive tube, but is freely effused in the interstices of the viscer"u.
${ }_{3}$ Milne Edwards, Mist. Nat. d. Crust. III. p. 531, and Quatrefages, loc. cit. p. 72, P1. I. II.

4 Blanchard, loc. cit. p. 1384.
5 Ramdohr, Abhandl. üb. d. Verdauungswerk. p. 205, Taf. XXIX. ; Treviranus, Verm. Schrift. I. p. 29, Taf. III., and Tulk, loc. cit. p. 246, Pl. IV.

6 For the annular stomach of the Arancae, and on which, with Tegenaria, Treviranus (Bau d. Arach. p. 30, Taf. II. fig. 24, v. b.) hats found only Kour caeca, see Brandt, Mediz. Zool. II. p. 89, Taf. XV. fig. 6, or Ann. d. Sc. Nat. XIII. p. 182, Pl. IV. fig. 2, or Isis, I831, p. 1I05, Taf. VII. nig. 6 ; also Owen, Lectures, \&c., p. 257, fig. 110; and Wasmann, loc. cit. p. I1, fig. 17, 18. According to this last observer, the four pairs of stomachic caeca, with Mygale, bend downwards to the base of the eight legs, in order to pass into the thorax where they ramily and interanastomose.
With Argyroneta, and some species of Epeira, according to Grube (Müller's Arch. I842, D. 208). the lateral haves of the stomach are not united in a ring at their anterior extremity, but are only contiguous.

With the Araneae, the walls of the stomach contain finely-granular cells which, by reflected light, have a milky aspect, and secrete perhaps a kind of gastric juice.

7 Van der Hoeven, Tijdschr. \&c. IX, p. 68 (Phrynus)
δ Meckel, Beiträge, loc. cit. p. 107, Taf. VLI. fig. I3; Treviranus, Bau d. Arach. p. 6, Taf. I fig. 6, and Müller, loc. cit. p. 45, Taf. II. fy. 22.
tube, of nearly equal size throughout, without a stomachic dilatation and without caeca, which opens by an anus at the posterior extremity of the body. ${ }^{(9)}$

§ 308.

The Salivary glands exist with, perhaps, all the Arachnoidae; for, they are found even in many of the lower forms, where their presence would be least expected. With the Tardigrada, there are on eaeh side of the sucking apparatus, large, lobulated glandular tubes, which appear to be organs of this nature, although their outlets have not yet been distinctly traeed. ${ }^{(1)}$ With the Oribatea, there is at the anterior extrenity of the body, a pair of similar tubes, but simple and colorless, which extend to the mouth, and have undoubtedly a salivary function. ${ }^{(2)}$

With Ixodes, these organs are extraordinarily developed, consisting of two large masses of vesieles situated on the sides of the anterior part of the body, and opening by short ducts into tro multiramosc exeretory canals. These last, whose walls are traversed by a solid spiral filament, open into the buccal cavity at the base of the lip-like process. ${ }^{(3)}$

With the Araneac, a slit in the upper lip leads into a cavity situated above the palate, and at the base of this eavity is a transparent, glandular mass, which, very probably, scerctes the saliva; this flows up through the slit in question, and moistens the substanees from which the animal extracts its food. ${ }^{(1)}$ As salivary organs should also be considered the two pairs of glandular tubes, which, with the Scorpionidae, are situated on the sides of the anterior part of the body, and extend forwards to open into the esophagus. ${ }^{(5)}$

With the Araneae, and Seorpionidae, there is a Liver distinct from the digestive tube, which, for a long time was regarded as an adipose mass. With the Tardigrada, Acarina, Pyenogonidae, and Opilionina, the walls of the stomachie appendages are of this nature, for they are glandular and composed of granular and usually yellowish-brown cells. ${ }^{(6)}$. With the Araneae, the brown or dirty-yellow liver is very voluminous, filling a large portion of the abdominal cavity, and enveloping most of the other viscera.

At first sight, it appears to be a compact mass, but, further examined, it is found composed of numerous multiramose, closely-aggregated caeca. The walls of these are thick, and erowded with hepatic cells, and they open into the digestive canal near its middle by four short hepatic ducts. ${ }^{\text {(2) }}$

[^229][^230]With the Scorpionidae, the liver is also very large, and composed of many lobes. It occupies the two sides of the abdominal cavity even to the base of the tail, and closely encompasses the intestine, the heart, and the genital organs. The ramifications of the biliary canals traverse, in groups, the parenchyma of this liver, and the bile is poured into the intestine by five pairs of short, excretory ducts, equally, but very widely separated from each other. ${ }^{(8)}$ *

$$
\text { § } 309 .
$$

With many Arachnoidac, the circulatory system consists only of a Heart or an articulated dorsal vessel. With the higher forms, there is, in addition, a system of more or less dcveloped blood-vessels; while with the lower species, such as the Tardigrada, the Acarina and the Pyenogonidae, not only all these vessels, but the heart, also, is absent. There is, thereforc, in these last, no regular circulation, but the nutritive fluid fills all the interstices of the body, and, by the aid of the muscular movements and the contractions of the intestinal canal, is transferred in an irregular manner hither and thither in the visceral cavity and in the extremitics. ${ }^{(1)}$

The Blood of the Arachnoidae is entirely colorless, and has a slightly milky aspect only when in considerable quantities. It contains a few granular blood-cells of a pretty regular, spheroidal form, and some very small, isolated granulcs, derived perhaps from broken blood-cells. ${ }^{(2)}$

[^231]Beneden has observed, in the extremities of thesc animals, regular blood-currents produced apparently by contractile membranes at the base of the legs; see Institut. No. 627, or Froripp's neue Notiz. XXXVII. p. 72.
2 For the blood of the Arachnoidae, see Wagner, Zur vergleich. Pliysiol. d. Blutes, Heft. I. p. 27, fig. 11 (Scorpio europaeus) ; Horn, Das Leben des Blutes, p. I0, Taf. I. fig. 12 (Tegenaria domestica), and Doyere, loc. cit. p. 309, PI. XV. fig. 5 (Tardigrada.)
thereby of the wature of the alleged hepatic appendages of the alimentary canal of these animals, Will, Miller's Arch. 1848, p. 507. - Ed.

§ 310.

With the Arachnoidae, the circulatory organs, when present, are disposed in the following manner:

With the Phalangidae, they consist only of a Dorsal Vessel, which is three-chambered, and attenuated at both extremities. ${ }^{(1)}$

With the Araneac, the dorsal vessel is fusiform, and has many constrictions. It is situated principally in the abdomen, being attached to its dorsal wall by triangular transverse muscles. This heart, which extends also into the cephalothorax, sends off from each cxtremity and from its sidcs, many ramified, vascular canals, which are certainly Arteries.

The two of thesc last arising directly behind the peduncle of the abdomcn , are distributed to the pulmonary sacs, while those following pendrate chiefly the liver. All these vessels gradually disappear in the parenchyma of the body, and the blood, after its effusion, continues to circulate in the lacunac, and, without the intervention of veins, is returned to the heart, or more properly into the blood-rescrvoir which corresponds to the dorsal sinus of the Crustacea. Thence it enters the heart through its lateral, valvular openings. ${ }^{(2)}$

The vascular system is most highly developed with the Scorpionidae. For, here, not only is there an articulated Hcart and Arteries, but also a Venous system. ${ }^{(3)}$ The cylindrical heart whose walls contain transversc and longitudinal muscular fibres, is retained in place between the diaphragm of the cephalothorax and the last abdominal segment, by several transverse triangular muscles. It has eight chambers whose size diminishes from bcfore backwards. At each cxtremity it is prolonged into an

[^232]arterial trunk. The anterior of these arteries very soon ramifies, and distributes blood to the feet, the pincers, the ehelieeres, and to all the organs in the eephalic cxtremity. Two of its branches, bending downwards, embrace the œesophagus, and then join in a large common vessel ealled the Supra-spinal artery, whieh lies upon the ventral cord and aecompanies it to the eaudal extremity, giving off, in its course, numerous lateral braneles. ${ }^{(4)}$ The posterior arterial trunk is distributed in like manner to the posterior extremity, and gives off, right and left, numerous branehes. The middle chambers of the heart send off, each, laterally, shorter arteries, whieh are distributed to the neighboring organs. Beside these arteries of the muscles and visecra, these animals have, also, a special Viseeral artery, arising from the anterior arterial trunk before it divides into the two branehes which form the supra-spinal artery. The viseeral artery runs baekwards towards the digestive tube, and sends branches to the liver. ${ }^{(5)}$ The terminal ramifieations of these various arteries are directly eontinuous, it is said, with a venous system. ${ }^{(6)}$ In this last may be notieed, espeeially, a Sub-spinal vein, by whieh the blood is earried to the pulmonary sacs; thence to be borne to the heart by speeial vessels. These last open, probably, into a sinus, from which the blood passes into the heart through lateral openings, two of whieh exist in eaeh of its ehambers. \dagger

[^233]* [§ 310, note 6.] In regard to the questiou of capillaries with the Scorpionidae, a remark of Blanchard (loc. cit.) may be given. He says, "I have proved with an entire certainty that the blood is distributed in all the cavities of the body, as with all the Articulata, and that it is conveyed to the lungs simply by means of the lacmae. Most of the vessels which arise from the sides of several of the chambers of the heart have appeared to me to be
cisely this point, and has not distinctly indicated it in his plates otherwise so beautiful, I demur admitting that, with the scorpionidae, the arteries pass directly into the veins, and therefore, that these animals have a system of capillary vessels. This direct communication between these two systems does not exist with the other Arachnoidae, neither with all the other Artbropoda in general.*
pulmono-cardiac vessels, wholly analogous to those we have described with the Araneae."-Ed.
\dagger [§ 310, end.] For further details on the circulatory system of the Arachnoidae, see the memoir quoted above of Blanchard. This naturalist has sought to extend his doctrine of the peritrachean circulation, to the different sections of the Arachnoidae. - Ed.

CHAPTER VII.

RESPIRATORY SYSTEM.

§ 311.

The higher Arachnoidac respire by tracheae, or by lungs; but in the lower, namely, the Tardigrada, ${ }^{(1)}$ the Pycnogonidae, ${ }^{(2)}$ and some parasitic Acarina, ${ }^{(3)}$ no traces of respiratory organs have yet been found. With these animals therefore the respiration must be cutaneous.

Many Acarina, the Opilionina, the Pseudoscorpii and the Solpugidae, breathe by tracheae, while the Arancae, the Phrynidae and the Scorpionidae breathe by lungs. On this account, these animals have been divided, in zoological systems, into the Arachnidae tracheariae and pulmonariae. But this classification is valueless, since it has been shown that the Araneae possess both lungs and tracheae.

312.

With the Acarina, the Tracheae are exceedingly tenuous, and it is only in the larger species that the spiral filament of these organs can be observed. They arise usually by a simple tuft from two stigmata which are sometimes concealed between the anterior feet, as with the Hydrachnea, the Oribatea, and the Trombidina, sometimes very apparent above the third pair of legs, as with the Gamasea, and sometimes behind the last pair of legs, as with the Ixodea, ${ }^{(1)}$

With the Hydrachnea, which live in the water and never come to the surface to take in air, the tracheae possess, probably, the power to extract from the water the air necessary for respiration. ${ }^{(2)}$

With the Pseudoscorpii, there is, on the ventral surface of the two first abdominal segments, a pair of lateral stigmata, with four short but large trachean trunks from which arise numerous unbranched tracheae spreading through the entire body. ${ }^{(3)}$ With the Solpugidae, whose tracheae

[^234][^235]ramify through the whole body like those of insects, there are three pairs of stigmata. ${ }^{(+)}$With the Phalangidae, the trachean system is highly developed, arising from two stigmata concealed under the coxae of the posterior legs, each of which has a horny valve. The two large trunks given off from these stigmata, run obliquely to the cephalic extremity; they intercommunicate by a transverse anastomosis, and give off, in all directions, numerous branches which are spread over the abdominal viscera, and penetrate even the palpi and legs. ${ }^{(5)}$

With many of the Arancae, there are, on the under surface of the abdomen, two orifices which lead into two pulmonary sacs, beside two other opeuings belonging to the trachean system. With Segestria, Dysdera, ${ }^{(6)}$ and Argyroneta, ${ }^{\text {a }}$ there arise from these two stigmata two large trunks surrounded by a kind of horny trellis-work. From the cxtremity of these trunks are given off innumerable, very small tracheae, which are unbranched and without the spiral filament. They are disposed in tufts, and are distributed, some in the abdomen, and others in the cephalothorax, penetrating even to the extremity of its members. With Salticus, and Micryphantes, ${ }^{(8)}$ the two stigmata are situated at the posterior extremity of the body, far removed from the pulmonary sacs, and send off, directly, two tufts of unbranched tracheae, which are distributed exclusively to the abdominal viscera. ${ }^{(9)}$ There is, with the other Arancae, a trachcan system, very imperfect it is true, which has hitherto been overlooked by anatomists. Directly in front of the spinnerets, there is, with most species, a transverse fissure difficult to be seen, which lcads into a very short trachean trunk. From this trunk are given off four simple tracheae which, singularly, are not cylindrical, but are flattened, riband-like, and without a trace of a spiral filament; these extend, with a gradual atteuuation, to the base of the abdomen. These riband-like, silvery tracheae are composed of a thin, but solid, homogeneous membrane, which is euveloped by a soft, transparent pellicle corresponding to a peritoneum. The air received into these organs is separated into as fine portions as that of the lungs. These tracheae differ therefore, prominently, from those of the other Arachnoidae. ${ }^{(10)}$
ifnorant of their existence, and even lately, that Tulk (Annals of Nat. Hist. XV. p. 57) should have failed to see them with Obisium.

4 See Müller, Isis, 1828, p. T11, and Milne Edwards, Règne anim. Illustr. Arachnides, Pl. II.
${ }_{\bar{\sigma}}$ Treviranus, Verm. Schrift. I. p. 32, Taf. IV
fig. 19, and Tulk, loc. cit. p. 327, Pl. V. Aig. 33.
6 Dugés, in "Le Temps," 1835, No. 1942, Peuilleton, Acad. d. Sc. Séance du 9 Février, or Froriep's neue Notiz. XLI1I. p. 231, or Ann. d. Sc. Nat. VI. p. 183, and kegne animal, Arachnirles, Pl. 11.. fig. 4, V. fig. 4. See also Owen, Lectures, \&cc., p. 259, fig. 112.
7 Grube, be. cit. p. 300, and Menge, loc. cit. p. 22, Thf. I. fig. 6-14.
\& Menge, loc. cit. p. 23, Taf. I. fig. 15.
9 l have had an opportunity to satisfy myself of the existence of this interesting trachean system with Segestria, Argyroneta, Salticus, and Micryphantes. I should also add that the principal trunks are lattened, and that the contained an is

* [§ 312, note 10.] See also for these anomalous tracheae, Blanchard (loc. cit. Amm. d. Sc. Nat. ㅈI. 1849, p. 345), who regards them as only
finely divided, while that in the cylindrical tracheae given off from these trunks, forms a continuous column.
10 I have found this trachean system with Epcira, Tetragnathus, Drassus, Clubiona, Theridion, Lycosa, Diomedes and several others. I have been unable to perceive it in individuals escaping from the egg. Thomisus viaticus is the only species in which the four flattened trachean trunks are ramified, and thus serves as the passage to the most highly developed trachean system of Salticus. By direct light, they appear black, and thus it is possible that they may have sometimes been taken for urinary canals. But this error is imnecessary, for these last vessels burst from the slightest pressure and efruse granular contents, while the tracheae under such treatment become transparent, their contained air making its escape, and when the pressure is withdrawn they resume their black color.*
clongated pulmontry sacs; but especially Leuclart (Ueber den laau und dic Bendeutuag der sog. Lungen bei den Arachniden, in Siebold and Külli-

§ 313.

The Lungs of the Arachnoidae consist of round sacs situated near the lower surface of the abdomen and communicating, externally, by transverse fissures. Their internal surface has numerous thin solid lamellae, triangular or rhomboidal, and connected together like the leaves of a book. By reflected light these lamcllae have the same silvery lustre as the tracheae, although, seen by direct light, they appear of a deep-violet, nearly black color. Each of these is formed by a membranous fold, between the two leaves of which the air enters from the general cavity of the lung and is divided into very minute portions. No traces of blood-vessels have been found in these Pulmonary lamellae. It is therefore very probable that the blood of the pulmonary arteries is effused into the parts surrounding the lungs, and in this way bathes the lamellae. ${ }^{(1)}$

With the Scorpionidae, the four anterior segments have, each, on their under surface, a pair of stigmata. These animals have eight pulmonary sacs, in each of which there are twenty fan-shaped lamellae. ${ }^{(2)}$ The genus Phrynus has only two pairs of pulmonary sacs, the stigmata of which are placed between the first and second, and the second and third abdominal segments. But each sac has eighty lamellae. ${ }^{(3)}$ With the Araneae, there are only two lungs occupying the base of the abdomen. The number of their lamellae is considcrably less than in the preceding groups. But with the Mygalidae only, there is a second pair of lungs directly behind the first. The place occupied by these organs, is indicated, with the Araneae, by a triangular horny plate, at the posterior border of which is a stigma. ${ }^{(4)}$

[^236]act. 1843, p. 295, PI. XIV.) is prohahly mistaken in saying that unnucleated cells and a very fine capillary net-work exist between these plates, and that the net-work arises from a branch of the pulmonary artery situated on the free border of each lamella.

3 See Van der Hoeven, Tijdsch. loc. cit.
${ }^{4}$ The lungs of the Araneae have been studied by Meckel (Translat. Leçons d'Anat. comp. of Cuvier, loc. cit. p. 290), Treviranus (Baa d. Arachn. p. 24, Taf. II. and Beohacht. \&e. p. 29, fig. 43-17), Gaede, Nov. Act. Nat. Cur. XI. p. 335, (Mygale); hut especially by Müller (Isis, 1828, p. 709, Taf. X. fig. 4-6). See also Menge, loc. cit. p. 21, Taf. I. fig. 6-9. I am unable to say hy what means the blood returns to the heart, whether by a direct course, or, more or less circuitously through the interstices of the parenchyma, for there are no veins.
view put forth together with the general doctrine that the pulmonary sacs of the Arachnoidae are, likewise, but modifications of the tracheal type, has many facts deserving the attention of anatomists, and especially the developmental relations of the spiral thread as ohserved in the embryos of these animals. - Ed.

CHAPTER VIII.

ORGANS OF SECRETION.

I. Urinary Organs.

§ 314.

With most Arachnoidae, there are small, usually multiramose, glandular tubes, which open into the cloaca. By their structure and the nature of the fluid they secrete, they exactly resemble the Malpighian vessels of the Insecta, and like them, also, they have, for a long time, been regarded as hepatic organs; but now, they are known to be positively those of an urinary nature. The urine is usually accumulated in the cloaca, and consists of a troubled, dirty-white liquid, rarely reddish ; and, by direct light, is found to hold in suspension innumerable dark molecules.

These organs appear to be absent with the Tardigrada a_{n} and Pyenogonidae. But, on the other hand, they are easily observed with many Acarina, where they consist of simple or ramose white tubes, situated between the appendages of the stomach. ${ }^{(1)}$ With the Phalangidac, there are two pairs of urinary canals which wind between the stomachic caeca. ${ }^{(2)}$ With the Araneae, these organs are numcrous, multiramose, and of a white or reddish color. Their very small branches penetrate between the different portions of the liver, and end in two principal trunks or ureters, which open into a cloaca provided with a kind of diverticulum. ${ }^{(3)}$ With the Scorpionidae, the organization in this respect is quite similar, and the canals, ramified in various ways, enter, some the interstices of the hepatio lobes, while others surround the digestive canal. They pour their product into the cloaca by two ureters which are situated back of the biliary canals. ${ }^{(4)}$

[^237]${ }^{3}$ Ramdohr (loc. cit. p. 208, Taf. XXX. fig. 2), and Treviranus (Bau d. Arach. p. 30, Taf. II. fig. 24) were only imperfectly acquainted with the urinary canals of the Araneae. They have heen more exactly described by Brandt (Mediz. Zool. II. p. 89, Taf. XV. fig. 6, 17, or Ann. d. Sc. Nat. XHI. p. 183, Pl. IV. fig. 2, 3) ; hut see, especially, Wasmann, loc. cit. p. 17, fig. 17, 21-23 (Mygale). In most speeles, the urine is of a dirty-white color; but with Mygale, it is reddish. In several individuals of a large species of Mygale preserved in alcohol, I have found, in the ureters, hard, reddish concretious which Dugès (Aun. d. Sc. Nat. VI. p. 180) had already observed. Treated with nitric acid and ammonia, I obtained purpuric acid.

4 See Treviranus, Bau d. Arach. p. 6, Taf. I. fig. 6, and Müller, loc. cit. p. 47, Taf. II. fig. 22. This last anatomist says that these glandular canals communicate with the heart, hut he has probably confounded them with the blood-vessels.

II. Organs of Special Secretions.

§ 315.

Very many Arachnoidae have Poison-glands, the produet of whieh is exereted through the extremity of a hollow claw. With the Phrynidae, the Araneae, and some Acarina, there are two such glands in communication with the terminal hooks of the chelieeres. They have been often taken for salivary organs. With the Trombidina, there are, on each side of the eephalothorax, two small, flexuous, colorless, glandular tubes, which, at their anterior extremity, are dilated, each, into a cylindrieal, thin-walled poison-reservoir. From this reservoir arises a long, narrow canal, whieh runs to the ehelieeres. ${ }^{(1)}$ With the Araneae, the poison-apparatus consists of two tubes, often a little curved, and surrounded by a layer of flattened, spiral, muscular faseiculi. ${ }^{(2)}$ These two glands are situated at the base of the ehelieeres, extend more or less into the cephalothorax, ${ }^{(3)}$ and, in front, beeome suddenly attenuated, forming a narrow excretory duet whieh terminates at the apex of the hollow elaw of the ehelieeres. ${ }^{(4)}$ With the Seorpionidae, this apparatus is situated in the last caudal segment; it eonsists of two oval vesiefes, whose exeretory duets open at the apex of the sting situated on the end of the tail. These two glands are surrounded by a layer of flat, eircular, smooth, museular faseieuli. ${ }^{(5)}$

With the Araneae, there is another and very remarkable secretory apparatus, - the Silk organs. Its product is a viscous, transparent liquid which hardens quiekly on exposure to the air, forming threads. It escapes by three, rarely by two pairs of spinnerets, situated behind the anus. ${ }^{(6)}$ The glands whieh seerete it are eomposed of transparent nueleolated eells, and are of very variable form and disposition, but always situated in the midst of the abdominal viscera. About five kinds of these glands may be distinguished, although not always simultaneously in the same individual. The threads have probably different qualities, aceording to the glands from whieh they are seereted.
The genus Epeira, eontaining all these five kinds of glands, will serve as the type for their dcseription. There are observed : ${ }^{(7)} 1$. Small pyriform follieles, aggregated in groups of hundreds, and having short exeretory

[^238]16, 17 ; Brandt, Mediz. Zool. II. Taf. XV. fig. 6, or Ann. d. Sc. Nat. XIII, Pl. IV. fig. 2; and Wasmann, loc. cit. p. 19, fig. 25, 26. For the intimate structure of these glands, see Meckel, in Müller's Arch. 1846, p. 35.

5 Müller, in Meckel's Arch. loc. cit. p. 52, Taf. I. fig. 7, 8. Serres (loc. cit. p. 90) regards the portion of these glands which is surrounded by muscular fibres, as a rescrvoir of poison, and that. this last is scereted by innumerahle glandular follicles enveloping the muscular layer. In fact, with Scorpio europaeus, I have seen this layer covered, externally, with a stratum of cylindrical cells.
6 The Mygalidae have two pairs of these papillae, or spinnerets, instead of six, the usual numher.

7 I speak here upon the careful investigations of H. Meckel (Muller's Arch. 1846, p. 50, Taf. I1I. fig. 40-49). For the older descriptions, see Treviranus, Bau d. Arach. p. 41, Taf. IV. V., and Verm. Schrift. I. p. 11, Taf. I. fig. 4; and Brandl, Mediz. Zool. II. 1. 89, Taf. XV. fig. 5 , or Ann d. Sc. Nat. XIII. p. 184, PI. IV. fig. 5.
canals, which are interlaced in a screw-like manner, and open at the six spinnerets ; ${ }^{(8)}$ 2. Six long, flexuous tubes, which gradually enlarge into as many pouches, and are then continuous, each, into an equally long excretory duct which forms a double loop; 3. Three pairs of glandular tubes similar to the preceding, but which open externally through short excretory ducts; 4 . Two groups of multiramose follicles, whose pretty long excretory ducts run to the two upper spinnercts; 5 . Two slightly ramified caeca, varicose at intervals, and which terminate, by two short excretory ducts, in the middle spinnerets.

Most Araneae have three pairs of spinnerets, that is, papillae in the form of an obtuse cone; the middle pair of these is composed of two, and the anterior and posterior pairs, of three articles. The apex of these papillae dcfines the passage of the thread, and is surrounded by stiff bristles and hairs, and dotted with numerous small, horny tubes, which are only prolongations of the cxcretory ducts. Each of these tubes is composed of two pieces; one, basilar and thick, the other, terminal and very small, and through the orifice of which the web-liquid escapes in the form of a very delicate thread. ${ }^{(9)}$ The number of these tubes varies according to the specics, the age, and the sex. ${ }^{(10)}$ Those belonging to the unbranched glands are distinguished from the others by their size. With some species of Clubiona and Drassus, there arc, beside the usual six spinnerets, two others, composed of a single article and joined together. This fourth pair is situated on the belly, forward of the others, and is comected with a kind of comb (Calamistrum) attached to the metatarsus of the two posterior legs. ${ }^{(11)}$

With Phalangium, there is an S-shaped glandular tube situated on the digestive canal, and ending at both extremities by a narrow duct. Its nature is yet unknown; and although the outlet of these excretory ducts has not been discovered, yet as this apparatus is found only with males, it may well be supposed to have some connection with the genital functions. ${ }^{(12)}$

With some Acarina, there are certain phenomena indicating that these animals have special secretory organs, whose product, like the web-liquid, is hardened on its evacuation. Thus, with some species of the genus Uropoda, there is formed, by a substance of this kind, a peduncle situated at the posterior part of the abdomen, and by which these animals fix themselves to insects. This stalk, dilated disc-like, was taken formerly for an organ of suction. ${ }^{(3)}$ Many specics of Mydrachna fix, by a kind of glue,

[^239]cording to Blackwell (loc. cit.), with Clubiona atrox, Drassus viridissimus, parculus and exiatrox,
12 See Treviranus, Verm. Schrift. I. p. 37, Taf. III. fig. $17, \mathrm{~h}$., and $T u l k$, loc. cit. p. 252, P1. IV. fig: 21.

13 See Deseer, loc. cit. p. 52, Taf. VII. fig. 16, and Duges, Ann. 4. Sc. Nat. II. p. 30 (Uropoda vegetans). The peduncle is more or less long and often attached to the hardest parts of the Coleoptera. Its formation is connected with sume metamorphosis of these animals, and is without doubt due to a secretion proluced by some glandular ap pratus opening near the anus. This view appears, at least, more natural than that advanced by Duges (loc. cit. p. 30), and adopted by Dujardin (Compt. rend. loc. cit. p. 1160), that this peduncle is formod by the feces hardening after their escape from the anus.
the anterior portion of their body on aquatie plants, and in this position, wait the completion of their moulting. ${ }^{(14)}$ The secreting organs of this substance have not yẹt been discovered.

CHAPTER IX.

ORGANS OF GENERATION.

§ 316.

All the Arachnoidae reproduce by a sexual generation, and their male and female genital organs are situated upon different individuals. The eggs are feeundated in the genital organs of the fentales, and the males have often eopulatory organs of a very singular character. The Tardigrada form an exception in this respect, being hermaphrodites, and wanting the copulatory organs.

In general, the genital organs of the Arachnoidae are composed of the following parts. The ovaries or testicles are always double, but sometimes blended together on the median line. They are situated in the abdomen, and have two exerctory ducts, which usually open at a common genital orifice at the base of the abdomen, or under the thorax. The ovaries, when filled with cggs, have always a botryoidal aspect. Only a few species have an ovipositor or a penis. The excretory ducts of both the ovaries and the testieles sometimes have appendages which, with the females, serve to receive the sperm, or to secretc a viscous substance for enveloping the eggs ; and which, with the males, represent an epididymis or the seminal vesicles. Quite often, the males differ from the females in a special modifieation of their cheliceres, their palpi, or some of their legs. When this is the case, these organs serve, during copulation, to hold the females, or play the part of a penis.
The eggs of the Arachnoidae are spheroidal, rarely oval, ${ }^{(1)}$ and composed of a smooth chorion enclosing a vitellus consisting of vesicles filled with a eolorless and, also, often highly-eolored fat, in the midst of which is concealed the germinative vasicle. The germinative dot is sometimes simple, sometimes composed of a group of small granules. ${ }^{(2)}$ The eggs of Lycosa, Thomisus, Diomedes, Salticus and Tegenaria, are remarkable; for, beside the germinative vesicle, they contain, before being filled with the vitellus, a peculiar, round, finely-granular, solid nucleus. ${ }^{(3)}$

[^240]Clubiona and Salticus; see Wagner, Prodom. \&c. loc. cit. p. 8, Tab. I. fig. 11 (Epeira).
3 This nucleus which appears to contain a central nucleolus, is distinguished, with direct light, by its dirty-yellow color, aud it has always appeared to me that there were detached successivcly from its surface several layers of granulcs which mixed with the aibumen, without the nucleus diminishing in size. At all events, this nucleus plays an important part in the development of the eggs, for it appears very early, and does not disappear until quite late. It has also been observed

The lower Arachnoidae produce only a small number of eggs at a time, but these are often of a size disproportionately large to that of the animal. ${ }^{(4)}$
As yet, only very incomplete researches have been made on the elements of the Sperm. It appears, however, that the spermatic particles differ considerably in the various groups. Those of the Tardigrada have the cercarian form; those of the Scorpionidae, on the contrary, are simply filamentoid. But both kinds have very active movements which are suspended by the contact of water. ${ }^{(5)}$ The Sperm of the Araneae always contains spherical or reniform motionless corpuscles. ${ }^{(6)}$ With the Acarina, the spermatic particles are motionless and of most varied forms. ${ }^{(7)}$
by Wittich (Observ. quaed. de Aranearum ex ovo evolut. Dissert. Malis, 1845, fig. 1, A.).*
4 With the Tardigrada, the eggs are very large, as are also those of Oribates, Sarcoptes and Demodex.
5 See Doyere, loc. cit. p. 354, Pl. XVI. fig. 5 (Macrobiotus), and Köliker, Schweiz. Denkschr. VIII. loc. cit. p. 25, Taf. 11. fig. 16 (Scorpio europaeus). I have observed that the charactoristic movements of the spermatic particles ccased instantly from contact with water, and that the particles themselves became twisted and doubled.
6 With Tegenaria, Salticus, Lycosa and Theridion, the spermatic particles have the form of round cells, while those of Micryphantes and Clubiona are reniform or semilunar. They are formed in groups in the mother-cells. With Tegenaria, a round nucleus is easily distinguished in the spermatic particles. With Lycosa, this nucleus is oblong, curved and attached to the wall of the cell; and this led me at first to think these cells were the spermatic particles in their first stages of de-

* [§316, note 3.] The development and structure of the eggs of Araneae have recently been carefully studied ly Wittich (Die Enstehung des Araclmideneies in Eicrstocke, die ersten Vorgange in demsebreu nach sciuem Verlassen des Mutberkörpers ; in Muller's Arch. 1849, p. 113), and by J.V.Carus (Ueber die Entwickelung des Spinneseies, in Sicbold and Kolliker's Zeitsch. II. 1850, p. 97). The structure of the ovary of these aninals is no less beautiful than singular ; it resembles a bunch of grapes enclosed in a coumon capsule. The eggs are developed, each, on the extremity of a pedicle which is attached to the main stem or rachis. The details of the development of the ova are briefly as follows: On the extremity of the pedicle appears a delicate vesicle, or cell, which contains a nucleated cell. This nuclcated cell is the germinative vesicle, with its dot, and does not increase so rapidly in size as the vesicle in which it is contained; but this tast dilates and expands, and minutc cells appear in the liquid, lying between its membrane and the germinative vesicle. These newly-formed cells constitute the vitellus ; and when the ovuu is completely formed, it consists of vitellus in which is concealed the germinative vesicle with its dot. In a word, the ornm is here formed as elsewhere, except that it is developed on the extremity of a pedicle. In regard tw the peenliar bodies mentioned above by Siebold, as found in the vitellus, their presence and struc-
velopment, and that their definite form would be cer carian. But I quickly abandoned this idea when I found the same form in the seminal receptacle of the females, where, evidently, the spermatic particles cannot be present except in their perfect state.

7 With Trombidium, Zetes, Oribates, and Hoplophora, the spermatic particles are developed, as I have satisfied myself, under the from of vers small, rigid corpuscles, in very large cells. With Bdella, they are produced in a similar manner, hat are fusiform. With other Acarina they are found of remarkable forms. Thus, in the testicles of the Hydrachnea and Gamasea, I have observed round masses of cuneiform bodies, at the larger extremity of which there was an oblong granular spot. I have also satisfied myself that these motionless spermatic particles of such large size are preceded in their development by round nucleated cells. In the testicles of Ixodes ricinus, I have seen countless traisparent staff-like bodies, pretty long and large, motionless, but swollen at one of their extremities when placed in water. \dagger
turc have been observed by both Wittich and Carus; they are composed of concentric layers around a nucleus. Of their nature and function nothing is known. - Ed.
\dagger [§ 316, note 7.] I have studied the development and nature of the spermatic particles of the Araneae and Acarina, but with results different from those above mentioned. With the first of these, they are devcloped, as usual, in special daughter-cells, and invariably consist of an arcuate staff, to which is attacbed a short but very, very delicate tail ; mdeed, this tail is so tenuous that only the best and lighest microscopic powers can bring it out. It escaped the watchful cyes of Fag ner and Leuckart, and led them to adopt erroneous views of the formation of these bodies (sce Art. Semen, Cyclop. Anat. \& Plyss. fig. 374). W ith the Acarina, the particles have the same form and character, but are much more minute and difficult of examination. It would appear from the description given above by Siebold, that he must have taken for spermatic particles the peculiar granule-like bodies found in the sperm of the Araneac. These bodies are very hydroscopic, but arc homogeneous, and although I could make out nothing further as to their structure, yet it is evident that they are wholly different from the true spermatic particles, and cannot be considered as either undeveloped or modified forms of these last - Ed.

I. Hermaphrodite Arachnoidae.

§ 317.

The Tardigrada have only a single, but large, ovarian tube, applied on the posterior half of the digestive canal and opening into the cloaca. This last which is only a dilatation of the rectum, receives, also, two lateral, narrower, seminiferous tubes, together with the excretory orifices of a pyriform seminal vesicle. With Milnesium, Emydium, and Macrobiotus ursellus, the eggs are surrounded by a smooth chorion, and deposited in a solid epidermis which is detached during the moulting, - so that all the eggs are finally contained in this envelope. But the other species of Macrobiotus shield their eggs in another manner, by surrounding each with a very solid, granular capsule. ${ }^{(1)}$

II. Female Arachnoidae.

§ 318.

The female organs of the Acarina consist of two ovarian sacs, the oviducts of which open in a common vulva situated in the middle of the belly, or further forwards on the thorax, sometimes between, sometimes behind the last two pairs of legs. ${ }^{(1)}$ With many of these animals, the oviduct opens into a protractile ovipositor by the use of which the eggs are lodged under the epidermis of plants ${ }^{\text {a }}$ or animals. ${ }^{(2)}$ A great number of Mites

[^241][^242]
Abstract

cation with two short cylindrical glands filled with transparent cells, and which secrete probably a substance for enveloping the eggs. I have, morcover, found with other Acarina (for example, with the Hydrachnea, Gamasea, and Oribatea) various organs belonging to the genital apparatus, but without perceiving their relations as clearly as with Ixodes. llowever this may be, I am convinced that Dujardin (Ann. d. Sc. Nat. III. p. 20) goes too far in saying that, with most Acarina, the eggs are developed loosely in the parenchyma of the hody, without the necessity of an ovary with proper walls. According to chis same naturalist (Ibid.), the Oribatea are viviparous and have a large vulva which can be closed by two lateral alae, and hefore which is an orifice closed also by a similar apparatus. This last orifice belongs to a tube which Dujardin regards as a penis ; so that the Oribatea would he hermaphrodites. As to the first point, - the viviparity of these animals, I have verified it for Hoplophora, Zetes and Oribates; but I cannot say as much of the second point, for, as I have satisfied myself, the posterior orifice is an anus, and the anterior a vulva having an ovipositor.

2 For example, Hydrachna; see Duges Ann. d. Sc. Nat. I. p. 165. A parasitic mite long known under the name of Hydrachna concharum or Limnochares anodontae, and which lives in the cavity of the inantle of Anodontae, buries its eggs deeply in the skin of that organ; see Pfeiffer, Naturg. deutsch. Land u. Süsswasser-Mollusk. Abth. II. p. 27, Taf. I.; and Baer, Nov. Act. Nat. Cur. XIII. p. 590, Tab. XXIX.

eggs from their first stages, in the ovary of Macrobius Dujardin. - Ed.
surround their eggs, grouped together, with a tough eoagulable substanee, and glue them to various bodies. It is, therefore, very probable that there are special organs for the seeretion of this substance. ${ }^{(3)}$

As yet, we have no observations on the interual genital organs of the Pyenogonidae, although, for a long time, the females have been recognized by their filiform oöphores, composed of nine to ten articles, and situated in front of the first pair of legs. ${ }^{(t)}$

With the Phalangidae, the two ovaries are blended together, and form a flexuous tube occupying a large portion of the abdomen and continuous anteriorly into two short oviducts. These last unite in a large oviduct situated, loop-like, in the posterior extremity of the abdomen, between the eonvolutions of the ovaries. Its anterior extremity reeeives a second oviduet, which, after deseribing numerous convolutions, opens in a horny, articulated ovipositor. This last ean be protruded between the posterior legs by means of a special muscular apparatus, on the under side of whieh are two eaeca opening into the oviduct at the base of the ovipositor. These organs are either seminal reeeptaeles, or the seeretory organs of a viscous substanee. ${ }^{(5)}$

With most Araneae, the two oblong ovaries are eoneealed between the hepatie lobes, and open by the intervention of two short oviducts, into a vagina situated between the two pulmonary sacs. This vagina is supported by a horny plate, and opens externally through a transverse fissure, after having previously reeeived the exeretory ducts of the two eontiguous Receptacula seminis. These last are pyriform and nearly always eomposed of a deep-brown, horny substance; they are attached to the cutaneous envelope, and have, each, an equally horny exeretory duet which is more or less long and interlaeed with the eorresponding one on the other side. ${ }^{(6)}$ The females surround their eggs in groups, with a web, so that they have no organs for secreting a viscid substance.

The Epeiridae offer a remarkable modification in their external genital organs. The entrance to their vagina is covered by a horny process, direeted fiom before backwards, and at the base of which there are pyriform, pedunculated, seminal reservoirs. ${ }^{(7)}$ It is yet undeternined whether this process is conneeted with the aet of copulation, or with the deposition of the eggs.

The Scorpionidae have three ovarics eonsisting of as many longitudinal tubes united by four pairs of transverse ones. The two external of the former tubes are eontinuous anteriorly as oviducts, and unite in a short vagina whieh opens at the base of the abdomen. Before their junction, the oviducts dilate into a round poueh, which, as it sometimes eontains the sperm, may be regarded as a Receptaculum seminis. ${ }^{(8)}$

[^243]
III. Male Arachnoidae.

§:319.

From the few observations hitherto made upon the male organs of the Acarina, it appears that they are formed after very different types. With Trombidium, there are twenty red, testicular vesicles, attached by short peduncles to the annular Vas deferens which opens between the posterior legs. This last, before its termination, reeeives also two brown, longpedunculated vesicles, whose nature is yet unknown. ${ }^{(1)}$

With Ixodes, the testicles consist of a group of four to five pairs of longer or shorter follicles, which unite in the middle of the abdomen, and send off two small Vasa deferentia to the basc of the chin-like proccss. This last, together with the cheliceres, these animals introduce deep into the vagina during copulation, while their two palpi, separated at a right angle, are applied upon the thorax of the femalc. ${ }^{(2)}$ With Gamasus, there appear to be only two simple, isolated, testicular follicles, each having a deferent canal. With many Acarina, there is a short penis situated at a point corresponding to that of the vulva of the females, and sometimes concealed within the body. ${ }^{(3)}$ With other Acarina, the males are distinguishable from the females, by the larger size of their cheliceres, and some of the legs which serve to retain the females during copulation. ${ }^{(4)}$

With the Phalangidae, the testieles consist of numerous small caeca, all united at onc point into a long, flexuous deferent canal. This last is continuous into a Ductus ejaculatorius which traverses a museular penis; this terminates with a hook-like gland, and its body is horny and surrounded by a muscular sheath out of which it ean be protruded under the thoras. ${ }^{(5)}$ With many Opilionina, the posterior legs have remarkable spines and exerescences which, undoubtedly, are used during eopulation. ${ }^{\text {(6) }}$

With the Araneae, the testicles consist of two long, simple, interlaced caeca, concealed between the hepatic lobes. ${ }^{(7)}$ From them pass off two

Taf. VII. fig. 18-20); Treviranus (Bau. d. Arachu. p. 12, Taf. I. fig. 12), and Muller (loc. cit. p. 53 Taf. I1. fig. 14-19). This last naturalist has found, with the large African scorpions, eggs in the lateral long, varicose and caecal appendages of the ovarics. These appendages do not increase in size except in proportion as the eggs are developed; while, with the small European scorpion, the eggs produce only simple pyriform folds on the ovarian tubes. I have found sperm and very active spermatic particles in the seminal receptacles of living females of Scorpio europaeus.
i I have proved this complicated disposition of the male organs with Trombidium holosericeum, where it had been wholly misapprehended by Treziranus (Verm. Schrift. I. p. 48, Taf. V1. fig. 35).

2 This singular mode of coition liad already been observed by Degeer (loc. cit. p. 45, Taf. V1. fig. 6) with Ixodes ricinus, and subsequently by $P h$. W. J. Muller (Germar's Magaz. d. Entomol. In. 1817, p. 281) ; but it remained wholly unobserved by the other entomologists. It appears that the male of Ixodes ricinus, which differs considerably from the female, has been mistaken for a different species and named Ixodes reduvius (Audouin, loc. cit. XXV. p. 422, Pl. XIV. fig. 4), or Ixodes marginalis (IJahn, Die Arachn. I1. p. 63, fig. 153). The characters peculiar to this sex are, a
dorsal shield covering the whole body, palpi slorter, and teeth less numerous upon the also shorter chin like process.

3 The penis is sub-ventral with Bdella, sub-thoracic with Gamasus, and behind the genital orifice with Oribates. With Arrenurus, it is inserted on a tuberosity of the abdomen, giving the males a very singular appearance (Duges, loc. cit. I. p. 155, Pl. X. fig. 20).
4 With the males of certain species of Gumasus, the two cheliceres are perforated, and the second pair of legs is very stout and provided with spines ard excrescences. With Dermaleichus, it is the third pair of these organs which is sometimes very large and armed with robust nails. With Sarcoptes, the posterior legs are long and armed with nails and discs, while with the females these same legs are abortive.
${ }_{\bar{j}}$ Treviranus, Verm. Schrift. I. p. 36, Taf. IV. fig. 21, 22 ; and Tulk, loc. cit. p. 250 , P1. IV. fig. 21-24.
6 With Eusarcus, Gonyleptes, \&c. The very large chcliceres of the Phalangidae are not used in the act itself of copulation, but are employed to fight with on these jealous occasions ; see Latreille, Hist. Nat. cl. Fourmis, p. 380.
7 For the testicles of the Araneae, see Treviranus, Bau d. Arachn. p. 37, Taf. IV. fig. 33, and Brandt, Mediz. Zool. II: p. 89, Taf. XV. fig. 7.
deferent eanals to the base of the abdomen where, between the two pulmonary saes, there is a genital opening in a small horny plate. This opening is only a simple transverse fissure whieh, in eopulation, does not eome iu eontaet with the vulva of the female. These animals always use their hollow, spoon-shaped palpi, whieh often have a very eomplieated strueture. They are filled with sperm and applied to the entranee of the vulva. For this purpose, the last artiele of the palpi, which is always hollow and much enlarged, eontains a soft spiral body terminated by a eurved, gutter-like, horny proeess. Beside this, there is an arehed, horny filament, and several hooks and other appendages of the most varied forms. These appendages are protraetile, and serve, some to seize the female, and others as conduetors of the sperm. ${ }^{(8)}$

With the Seorpionidae, eaeh of the two testieular tubes forms a loop enveloped by the substanee of the liver, and eonneeted with its mate by two transverse eanals. The anterior border of eael of these loops sends off a short Vas deferens whieh opens at the base of the abdomen, reeeiving in its traek two eaeea of unequal length. Of these, the longer eontains a granulo-vesieular substanee, and is, perhaps, an aeeessory gland; while the shorter, from the charaeter of its contents, is evidently a Vesicula seminalis. ${ }^{(9)}$ A deeply erenated, small papilla projeets out of the genital orifiee, and, as it is wanting with the females, may be regarded as a

Abstract

${ }^{8}$ For a long time, the excretory point of the Vasa deferentia was undetermined, because the two sexes of these animals had never been seen to place in contact these genital orifices during copulation. But when it was discovered that only the palpi of the males touch the vulva, the exeretory ducts of the testicles were sought in these palpi. It is only recently, however, that it has been perceived, that with these animals, as with the Libellulidae (see my nemoir in Germar's Zeitsch. f. d. Entomol. II. p. 423), the copulatory organ and the Vesicula seminalis are eatirely removed from the male genital orifice. In order to be couvinced that the application of the male palpi against the female vulva constitutes really the act of copulation, it is only necessary to examine the palpi under the microscope and compress them. From the last article a large quantity of sperm will be seen to escape. Then again, after copulation, the Receptacula seminis of the females will be found filled with the fluid. The form of the palpi with the males varies almost infinitely according to the genera and species. They are very simple and slightly swolleu with Clubiona and Lycosa, while, with Epeira, Tegenaria, Linyphia, Micryphantes, Salticus, Argyroneta, \&u., their last article is so complicated that the most minute description would be inadequate in giving an exact idea of it; see the figures of Lyonet, loc. cit. p. 383, PI. XIX. XX.; Trevi-

* [§319, note 8.] I have made a microscopic examination of this curious palpus-structure in counection with the general structural relations of the internal genital organs, in some of the common Araneae (Tegenaria, Agelena, \&c.) where this formation is most marked. In Agelena, the peculiar, corkscrew-like, horny process, situated in the last, spoon-shaped article of the palpus, contains a canal throughout, which commences in a kind of receptaculum at the hase of the process. This receptacle is filled with the peculiar eranule-like bodies mentionol above (Note to §
ranus, Bau d. Arachn. p. 37, Taf. IV. fig. 3537; Brandt, Mcdiz. Zool. 11. p. 87, Taf. XV. fig. 1; Savigny, Descript de l'Egypte, Pl. I.-VII.; Menge, loc. cit. p. 35, Taf. Ill. fig. 13-27.

Treviranus (Bau d. Arach. p. 33) has made an exposition of the older opinions of Lister, Lyonet, Clerk, and Degeer, on the copulation of these auimals; but he regarded the act as only a prelude for exciting the sexual desixes, and which would be followed by a real copulation, consisting of the contact of the male and female gcnital orifices. Moreover, Treviranus had uever observed this last act.
The more recent ohservers, such as Dug is (Ann. d. Sc. Nat. VI. p. 187), Menge (loc. cit. p. 36), and Blackwall (Annals of Nat. Hist. XV. p. 225), have naturally only confirmed the views of the older naturalists. According to Menge, the males of Linyphia and Agelena evacuate a drop of sperm from their genital orifice, which is then received aud absorbed by the last article of their palpi.*

9 For the male organs of the Scorpions, which have been very imperfectly described by Treviranus (Bau d. Arachn. p. 22, Taf. I. fig. 11), see Meckel (Beitrag. loc. cit. p. 114, Taf. VII. fig. 14), Serres (loc. cit. p. 89) and Muller (loc. cit. 1. 59, Taf. I, fig 8). 1 have seen distinctly with living individuals of Scorpio europaeus, speruatic particles in motion in the small caeca which I have called the seminal vesicles.

316, note 7). As the most repeated and careful examinations showed no spermatic particles in this palpus-capsule, 1 was led to advance the view that the palpi were only excitatory and not intromittent organs, in the copulatory act (see Proceed. Boston Soc. Nat. IHist. 1V. 1851, p. 106). But the question is still open, and especially as some recent investigators of the economy of these animals have observed facts that would indicate the intromittent function of these organs; sce particularly, Blackwall, Ann. Nat. 1list. passim, for scveral years past. - Ed.
rudimentary penis. It is yet undetermined if the two external, lateral, peetiniform appendages situated near the genital orifice in both sexes, serve any purpose during eopulation. ${ }^{(10)}$

§ 320.

We have, as yet, only insufficient observations on the Development of the Araehnoidae. However, those that we possess upon its first stages, ${ }^{(1)}$ show that, with few exceptions, ${ }^{(2)}$ here as with the Crustaeea, the disappearanee of the germinative vesicle is followed by a superficial and partial segmentation of the vitellus. There is thereby formed a thin embryonic layer, eomposed of moleeular eorpuseles retained in a transparent viscid liquid, and distinguished from the rest of the vitellus by its white eolor. While this oval blastoderma, whose longitudinal axis eorresponds to the ventral or nervous side of the embryo, extends towards the sides and the back, it divides into an external or serous, and an internal or mucous lamella, the last of whieh gradually eovers the remaining portion of the vitellus, and beeomes changed into the digestive tube and its appendages. In the mean while, there appear, on the external surfaee of the serous lamella, various symmetrical prominenees and projeetions, which in time become the segments of the body, the parts of the mouth, the taetile, and the loeomotive organs.

With the exception of the Seorpionidae, and Oribatea, whieh are viviparous, the embryos of all the Arachnoidae are developed subsequent to the deposition of the cggs. ${ }^{(3)}$

With the majority of Araehnoidae, the embryos, at their eseape from the egg, have the form of the adult. ${ }^{(4)}$ The lower orders, only, form an exception in this respeet, for they aequire their definite form after several moultings, and a true metamorphosis. With the Pyenogonidac, these

> 10 Tulk (Ann. of Nat. Hist. XV. p. 56) has lately expressel the opinion tbat these combs serve to clean the palpi, the tarsi, and the extremity of the tail. He adduees, as proof, the presence of transparent combs of exactly identieal form, with Obisium, between the pincers of the ehelieeres, and which are used for this purpose.

> 1 Tbe first phases of development have not been observed as yet exeept witb the Araneae and Scorpionidae ; see Herold, De Generat. Aranear. in ovo, 1824 ; Rathke, Zur. Morphol. Reisebemerk. aus Taurien, 1837, p. 17, and in Burdach's Physiol. II. 1837, p. 242 ; the same in Froriep's neue Notiz. XXIV. 1842, p. 165 (Lycosa saccata) ; also Kölliker, in Müller's Areh. 1843, p. 139 (Scorpio europaeus) ; finally, Wittich, Observ. quaed. de Aranear. ex ovo evolut., Malis. 1845, fig. 1, A. As to the development of the Acarina, I have satisfied myself upon the eggs of the Oribatea,

* [§320, note 1.] See, also, Wilson, Researches into the strueture and develop. of a newly-discovered parasitic Animalcule, \&c., in the Pbilos.'Trans. 1844, p. 305 (Entozoon (Demodex) folliculorum), and Van Beneden, Rechercbes sur I'Atax upsilophora, in the Mém. de l'Acad. Roy. de Bruxell. XXIV. Wilson's details are imperfect, and throw but little light on tbe real character of the development of the follicle-parasite. It would appear, however, to be truly one of the Artbropola. - Ed.
\dagger [§ 320 , note 2.] For the embryology of the
that the same phenomena occur as witb most of the other Arachnoidae.*

2 I have distinctly seen, in the eggs of Macrobiotus Hufelandii, the segmentation involve tbe entire vitellus. Kölliker (Müller's Arch. 1843, p. 136) has made the same observation with Pycnogonum. \dagger

3 Tbe relations of the Seorpionidae in this respect are very remarkable, for their embryos are developed in the ovaries at the spot even where the eggs are formed ; see Muller, loc. eit. p. 55, and Rathké, Zur Morphol. loe. eit. It is evident that the sperm must ascend from the two seminal reservoirs into the ovaries to fecundate the eggs. With the Oribatea, the embryos appear to be developed in a kind of uterus situated immediately behind the ovipositor.
4 With the Araneae, the sexual differences which are so striking do not appear until after the first moulting.

Tardigrada, see Kaufmann, loc. cit. in Siebold and Kölliker's Zeitsch. III. 1851, p. 220. Tbe type of development is like tbat of the Articulata in general, and tbis would seem to elearly settle tbe position of these animals in this class. Kaufmann eonfirms the observation of Siebold as to the segmentation of tbe entire vitellus. After this process has occurred, the mulberry like mass is cbanged into the embryo, exactly as is observed witb the eggs of the Arachnoidae in general. - Ed.
changes should be most prominent, for their embryos have a short unarticulated body, and, beside the cheliceres, are provided with only four bi- or tri-articulated feet. There is, however, a very long lash, attached, sometimes to the two cheliceres, sometimes to each of the four legs. It is not until after suecessive moultings, that the other legs, the divisions of the body, and the extremities, appear. ${ }^{\text {(i) }}$

With Emydium, ${ }^{(6)}$ and most of the Aearina, the embryos have only six legs, when hatched; but as they otherwise resemble the adūlts, their metamorphosis consists only in the appearance of another pair of legs. A true metamorphosis is observed only with Hydrachna. Here the embryos have a very long and large snout whieh might easily be taken for a head distinct from the trunk. ${ }^{(7)}$ This disproportion between these two parts is subsequently reversed, when the young pierce with their snout the bodies of insects, while their own bodies, gorged with food, become of a monstrous size. These young have six legs, and, during their parasitic life, were for a long time described as distinct species under the generic name Achlysia, until it was diseovered that they possessed eight legs after their first moulting. ${ }^{(8)}$ Similar metamorphoses oceur with the Trombidia which, as red, hexapod larvac, are attached to flies, grasshoppers, plant-lice and yarious other terrestrial inscets. These, also, have been formed into proper genera under the names of Astoma, Leptus, and Ocypeta. ${ }^{(9)}$ *

[^244]found these red Achlysiae with monstrous bodies on the dorsal surface of the abdomen of Dytiscus and Mydrophilus. Others, smaller, were observed even more frequently upon the segments of the body and the articles of the extremities, with Nepa, and $R a-$ natra. The true nature of these epizoa has been cleared up by Burmeister (Isis, 1834, p. 138, Taf. I. fig. 1-6), and by Duges (Amn. d. Sc. Nat. I. 1834, p. 166, Pl. XI. fig. 49m55).

9 See Gervais, in Walckenaër, Aptéres, \& c., III. p. 178.
the Acarus muscarum of Degeer, and the IIypopus of Dugès. It has neither mouth nor digestive apparatus, but simply adheres to the animal on which it lives, by a sucker. It may be the nurse of a Gamasus ? - Ed.

BOOK FOURTEENTH.

INSECTA.

CLASSIFICATION.
§ 321.

As anatomists have bcen able to examine, with few exceptions, nearly all the orders and families of the Insecta, their anatomical researches have not been restricted, as in the preceding classes, to isolated genera or specics, - but have embraced entire familics. With such abundant materials, we should go beyond the limits of our work in enumerating here all the genera, or even all the families, whose organization has been studied.
A. Insecta witiout Metamorphosis.
(Insecta ametabola.)

ORDER I. APTERA.
Families: Pediculidae, Nirmidae, Poduridae, Lepismidae.
B. Insects with incomplete Metamorphosis.
(Insecta hemimetabola.)

1. Movtif Suctorial.
order II. hemiptera.
Families: Coccidae, Aphididae, Psyllidae, Cicadidae, Cercopidae, Naucoridae, Nepidar, Coreidae, Pentatomidae.
2. Moutif Mandibulate.

ORDER III. ORTHOPTERA.
Families: Physopoda, Forficulidae, Psocidae, Perlidar, Ephemeridar, Libelfulidae, Termitidae, Acrididae, Locustidae, Achetidae, Phasmidae, Mantidie, Blattidae.
C. Insects with complete Metamorphosis.
(Insecta holometabola.)

1. Moutif Suctorial.
a. Two wings. Under lip changed into a suctorial organ.

ORDER IV. DIPTERA.
Families: Pulicidae, Nycteribidae, Hippoboscidae, Muscidae, Ofstridae, Syrpilidae, Conopidae, Stomoxydae, Bombylidae, Anturacidae, Leptidae, Henopidae, Asilidae, Stratiomydae, Tabanidae, Tipulidae, Culicidae.
b. Four scaly wings. Maxillae changed into a suctorial organ.

ORDER V. LEPIDOPTERA.
Families: Tineidae, Pyralidae, Geometridae, Noctuidae, Bombycidae, Hepiolidae, Zygaenidae, Spilingidae, Papilionidae.
c. Four naked wings. Tonguc changed into a suctorial organ.

ORDER VI. HYMENOPTERA.

Families: Apidae, Andrenidae, Vespidae, Formicidae, Scoliadae, Mutillidae, Pomplidiae, Crabonidae, Bembectdae, Chirysididae, Cynipidae, Icineumonidae, Siricidae, Tentiredinidae.

2. Moutif Mandibulate.

a. Two posterior wings only.

ORDER VII. STREPSIPTERA.
b. Four membranous wings.

ORDER VIII. NEUROPTERA.
Families: Pifryganidae, Sialidae, Meyerobidae, Myrmeleonidar, Ritaphidiadae, Panorpidae, Mantispidae.
c. Two upper wings corneous, and two under membranous.

ORDER IX. COLEOPTERA.
Families: Pselaphidae, Coccinellidae, Chrysomelidae, Cerambycidae, Curculionidae, Cistelidae, Meloidae, Tenebrionidae, Pyrociroidae, Elateridae, Lamellicornes, Clavicornes, Hỳdropuilidae, Hydrocantitari, Staphylinidae, Carabidae.

BIBLIOGRAPHY.

Réaumur. Mémoires pour servir à l'histoire des Inseetes. 1734.
Roesel. Insekten-Belustigungen. 1746.
Suammerdamm. Bibel der Natur. 1752.
Lyonet. Traité anatomique de la ehenille, que ronge le bois de saule, 1762, and Auatomie de differentes espèees d'Insectes, in the Mém. du Muséum, \&e., XVIII.-XX. 1829-32.

Degeer. Abhandlungen zur Geschichte der Insekten. 1776.
Meckel. Beiträge zur vergleichenden Anatomie. 1808.
Gaede. Beiträge zu der Anatomie der Insekten. 1815.
Suckow. Anatomiseh-physiologisehe Untersuehungen der Insekten und Krustenthiere. 1818.

Straus-Dürckheim. Considérations générales sur l'Anatomie eomparée des animaux articulés. 1828.

Kirby and Spence. Introduetion to Entomology, 1816-28, or its translation into German by Oken, 1823-33.

Burmeister. Handbueh der Entomologic. 1832.
Brandt and Ratzeburg. Medizinisehe Zoologie. Bd. II. 1833.
Ratzeburg. Die Forstinsekten. 1837.
Lacordaire. Introduetion à l'entomologie. 1834-38.
Westwood. An introduction to the modern elassification of Inseets. 1839.

Newport. Artiele Insecta, in the Cyelopaedia of Anatomy and Physiology, II. 1839.

Léon Dufour. Recherehes anatomiques et physiologiques sur les Hémiptères, 1833 ; and, Reeherehes anat. et physiol. sur les Orthoptères, les Hymenoptères et les Neuroptères, 1841. Both of these are in the Mém. à l'Aead. royale d. Se. de l'Institut. de France, IV. VII.

Nicolet. Reeherches pour servir à l'histoire des Podurelles, 1841, in the Neue Denksehr. der allg. schweizer. Gesellsehaft, \&e. Bd. VI.

ADDITIONAL BIBLIOGRAPHY.

Dufour. Études anatomiques et physiologiques, sur une Mouehe, in the Mém. de l'Instit. IX. 1846, p. 545.

- Reeherehes anatomiques et physiologiques sur les Diptères, in Ibid. XI. 1851, p. 17.1. See also his various eommunieations on the anatomy and metamorphosis of different Insecta, in the Ann. d. Se. Nat. VII. 1847, p. 5 , and p. 14 ; VIII. 1847, p. 341 ; LX. 1848, p. 91, 199, 205, 344 ; XIV. 1850, p. 179 ; XVII. 1852, p. 65.

Blanchard. De la Cireulation dans les Inseetes, in the Ann. d. Se. Nat. IX. 1848 ; p. 359 - also in extract in the Comp. rend. XXIV. 1847, p. 870, or in the Ann. Nat. Hist. XX. 1847, p. 112, or in Schleiden and Froriep's Not. LXVI. 1847, p. 342.

Nouvelles observations sur la eirculation du sang et la Nutrition ehez les Insectes, in the Ann. d. Se. Nat. 1851, XV. p. 371.

Stein. Vergleichende Anatomie und Physiologie der Insekten. In Monographieen, Erste Monographie: Dic weiblichen Gesehleetsorgane der Käfer. Mib. 9 Kupertafeln. Berliu, 1847.

Siebold. Ueber die Fortpflanzung von Psyche: Ein Beitrag zur Naturgeschichte der Schmetterlinge - in Siebold and Këlliker's Zeitsch. I. 1848 , p. 93 ; see, also, for further researches on the subject, his Bericht üb. die entomol. Arbeiten d. schles. Gesellsch. in J. 1850, or its transl. in the Transact. of the Ent. Soc. I. 1851, p. 234.

Leydig. Die Dottcrfurchung nach ihrem Vorkommen in der Thierwelt und nach ihrer Bedeutung, in the Isis, 1848, Hft. 3.
———Einige Bemerkungen über dei Entwickelung der Blattläuse, in Siebold and Killiker's Zeitsch. 1850, II. p. 62.
-_Anatomisches und Histologisches über dic Larve von Corethra plumicornis, in Ibid. III. 1852, p. 435.

- Zur Anatomie von Coccus hesperidum, in Ibid. V. 1853, p. 1.

Meyer. Ueber die Entwickelung des Fettkörpers, der ${ }^{*}$ Tracheen und der Keimbereitenden Geschlechtstheile bei den Lepidopteren, in Siebold and Kolliker's Zcitsch. I. 1849, p. 175 ; see also the Mitth. d. naturf. Ges. in Zürich, Hft. 2, p. 206.

See, also, the various writings referred to in my notes. - Ed.

OHAPTERI.

EXTERNAL ENVELOPE AND CU'TANEOUS SKELETON

§ 322.

The cutaneous envelope of the multi-articulate body of the Insecta consists, as with the other Arthropoda, of a kind of external skcleton, of a consistence sometimes leathery and soft, sometimes horny and solid. Its elasticity and flexibility is limited to the points of junction of the segments of the body, and of the articles of the cxtremities. Its characteristic chemical substance is likewise chitine, a peculiar azotic matter insoluble in caustic potass, and with which highly-colored pigments are often chemically combined. ${ }^{(1)}$ Chitine enters also into the composition of the hairs and the scales of the skin, and the internal processes which may be regarded as an Interual Skelcton.

$$
\text { § } 323 .
$$

Histologically, the cutaneous envelope is so variously and often so ex-

1 See Odier, Mém, de la Soc. d'Ilist. Nat. de Paris, I. foc. cit. ; Lassaigne, Compt. rend. XVI. 1813, p. 1087, or Froricp's neue Noti\% XXVII. p. 7, and Schmidt, Zur vergleich. Physiol. \&c. p. 32. Lassaigne has proposed for this substance the name Entomoderm. The coloration of the
cutaneous skeleton is probably due to an oil with which the chitine is impregnated, especially with the Coleoptera.

See Bernard-Deschomps, Sur les Elytres des Coleopteres, in the Ami. d. Sc. Nat. III. 1845, p. 351.*

[^245]traordinarily complicated, that it is very difficult to recognize its elcments. When horny, there can always be distinguished an epidermis composed of unnucleated, lamellated cells intimately blended together. These cells, however, are often polyhedral, and so disposed as to form a simple layer; in other cases, they are more or less blended together, giving rise to undulating or imbricated lines in the cepidermis. In order to study the subjacent layer, or dermis, the cutaneous envelope must be macerated and decolored in caustic potass. This layer will then be found to be composed usually of several lamellac superposed in various ways and thercby often producing very clegant markings. In many instances, these reticulated or radiated markings would indicate the presence here of intercellular passages, and porous canals. ${ }^{(1)}$ In the thin, membranous portions of the skeleton, for instance, the wings, the structure usually appears wholly homogeneous.

On the external surface of this envelope there are o en numerous excrescences, such as tubereles, spincs and hairs, which are usually hollow. The hairs are sometimes simple and smooth, sometimes set with small hairs or barbellate. ${ }^{(2)}$ Many of these cutaneous formations are inserted by a small peduncle in small fossae, to which they loosely adhere, and from which they are very readily detached. Usually, they are flattened, scale-

Abstract

1 Histological researches upon the cutaneous skeleton have, as yet, been extended over only a few species. I am able to cite only the works of H. Meyer (Müller's Arch. 1842, p. 12 (Lucanus cervus), and of Platner (Ibid. p. 38, Taf. III. (Bombyx mori). 2 These barbellate hairs are found with the larvae of all the Bombycidae (Reaumur, Mém. \&c. Tom. I. Pl. VI., and Degeer, Abhandl. I. Taf. IX.-XIII.).

They are easily rubbed off, and when brought in contact with our skin, they insinuate themselves by the truncated extremity, and thereby often proroke an insupportable itching or even an inflammation. The processionary moths are so much feared in this respect as to pass for being poisonous; see Nicolai, Die Wander-oder Prozessionsraupe, 1833 , p. 21, and Ratzcburg, Du Forstinsekten, II. p. 127, Taf. I. fig. 11, 12, and Taf. VIII. a. The pains which these bairs can produce with man, may be judged by tbe disease which Ratzeburg suffered, and of which he has given an account (Entom. Zeit. 1846_{n} p. 35). The symptoms spoken of by this excellent entomologist may be explained without attributing any specific poisonous property to these bairs, if it be considered that, like a fine powder, they rest on the skin and may enter the respiratory organs by inhalation, and penetrating the tissues encounter a multitude of nervous fibres. Their passage into the tissues is the more easy, since they are fusiform, very sharp at both extremities, the free

one of which is provided with denticulations pointing upwards, while the opposite one is loosely inserted in a small fossa, so that they are detached without breaking from their fastenings by the least contact. Tbe deep-colored spots observed on the back of the processionary moths, and which are divided into four parts by crucial lines (Ratzeburg, Die Forstinsekt. loc. cit. Taf. VIII. a fig. 1.L and 1. 1), consist of callosities on which are situated thousands of these small fossae from which arise an infinite number of laars. With many birds and insectivorous reptiles, the hairs of the moths which these animals have eaten, traverse the mucous membrane of the stomach and enter the tissues. I should not have thus mentioned this subject, since for a long time the true nature of the hairy stomachs of old cuckoos bas been understood (sec the discussion on this subject between Brehm, Richter, Carus, Oken, and Bruch, in the Isis, 1823, p. 222 , and 666, Taf. VIII., also, 1825 , p. 579 , Taf. IV.), if, recently the passage of hairs from the digestive tube iuto the mesentery of frugs had not given rise to a similar error. The mesentery of these reptiles very often contains fragments of hairs and the spines of insects, surrounded by concentric layers of conneeted tissue and thus arrested in their course. These encysted hairs have been described by Remak (Muller's Arch. 1841, p. 451) under the name of parasitic enigmatical horny fibres, while Mayer at Bonn has gone so far as to take them for Pacinian corpuscles (Die Pacinischen Körperchen, 1844 , p. 14, fig. 2).*

* [§ 323, note 2.] Will (Schleiden and Froriep's Not. 1843, Aug. p. 145) has made chemicomicroscopical investigations upon the nature of this peculiar poisoning power manifested in the processionary moths; his rescarches were upon Bombyx processionea. Tbe poisonous material was found to be formic acid in a free and highly-concentrated state; it was met with in all parts of the caterpillar, but especially in the faeces, in the greenishyellow liquid emitted by these animals when di-
vided, and in the hairs. These bairs were mostly hollow, and their cavity was not closed at tbeir base, but passed through the skin and appearcd connected with glands below. These observations are the more interesting since this same observer has shown that the poisonous material of the poisonapparatus of the Hymenoptera, consists likewise of formic acid. See my note under $\S 347$, noto 11. - Ed.
like, and colored. Their forms vary infinitely not only according to the species, but also according to the regions of the body. They are often ribbed longitudinally, and denticulated or deeply serrated on their borders. These scales are often inscrted on the skin perpendicularly, thus forming a peltlike covering easily wiped off; sometimes they are imbricated and exactly fitted to each other. ${ }^{(3)}$

§ 324.

The various parts of the cutaneous skeleton of the Insecta have been so carefully studied in Zoology, that they may well be passed over here. As the internal surface of this skeleton furnishes points of inscrtion to the voluntary muscles, the segments of the body on which these last are attached, would naturally be developed in proportion to their volumc. Thus with those Insecta which have powerful masticatory organs, the head is remarkably large on account of the prominent devclopment of the masticatory muscles; in
tn the same way likewise other fossorial, rapacious, or saltatory Insecta,indicate their habits of life by the size of their legs, which are endowed with great muscular power. It is for the same reason, also, that with the species which fly, the mesothorax and metathorax are so largely developed; for these contain not only the muscles of the last two pairs of legs, but also those of the wings. These rclations are especially distinct in those familics or gencra which embrace both winged and unwinged species.

On the internal surface of the cutancous skeleton, are found, in the hcad and thorax, processes which may be regarded as an internal skeleton. Some of these serve as septa, which separate certain organs, and others furnish points of insertion to muscles, and then are often bifurcated. ${ }^{(1)}$

CHAPTER II.

MUSCULAR SYSTEM AND LOCOMOTIVE AND SONIFEROUS ORGANS.

§ 325.

The muscular fibres of the Insecta arc striated, not only in the voluntary muscles, but often also in those of organic lifc, as in the stomach and intestine. ${ }^{(1)}$ All are colorless or of a dirty ycllow color. This last is especially observed with the muscles of the thorax belonging to the wings, which differ,

[^246]Dujardin, Observ. au microscop. p. 121, Pl. VII, IX. XI. XII. ; Nicolet, loc. cit. p. 22, Pl. II. (Poduridae), and H. Fischer, Isis, 1846, p. 401, Taf. IV. (Coleoptera).

1 For the internal skeleton of the Insecta, see Audouin, Ann. genér. d. Sc. physiq. VII. p. 182, or Meckel's deutsch. Archiv VII. p. 435 ; Eschscholtz, Isis, 1822, p. 52 ; Burmeister, llandb. \&c. I. p. 251, and Newport, Cyclopaed. loc. cit. II. p. 909.

1 Necrophorus.
furthermore, from the others, in their transverse striae being less distinct, and their fibrillae being more easily observed; indeed, with most species, these last show a tendency to separate even from the least pressure, while those of the other voluntary muselcs are very compactly united together. ${ }^{(2)}$

The muscles are attached directly upon the cutaneous skeleton, as with the Crustacea. In the extremities, only, do there appear to be tendons; but these are merely very long, flattened processes of the skeleton, situated in the axis of the articles of the extremities. They serve as points of attachment to short nuscular fasciculi which are there obliquely inserted, after having arisen from the inner surface of the articles. With adult insects, the segments of the body are only slightly movable, and have but few muscles. But with the larvae, whose extremities are rudimentary, or even wholly wanting, there is a very prominent muscular system situated directly beneath the skin, and composed often of several layers of flattened fasciculi. ${ }^{(3)}$

§ 326 .

The Locomotive organs, properly speaking, of the Insecta, are the legs and the wings. The true legs never exceed three pairs, and are inserted upon the first three segments back of the head-Prothorax, Mesothorax, Metathorax. Each leg is divided into a Coxa, a Trochanter, a Femur, a Tibia, and a Tarsus. The tarsus is divided into sevcral articles, the number of which reaches even five. The form of thesc legs varies infinitely according to the mode of life of each spccies. The most common are those to which are usually given the names: Pedes cursorii, ambulatorii, gressorii,

2 This is so with the Diptera, Ilemiptera, and
Hymenoptera, with the muscles of whose wings the
elements may be very easily separated.*
3 Lyonet (Traité, \&c., p. 114, ll. VI.-VIII.) has
given a very detailed account of the muscles of the
larva of Cossus. See also Newport, Philos.
Transact. 1836, p. 537 , Pl. XXVII. (the cutaneous
muscles of the larva of Sphinx ligustri), and
*[§325, note 2.] The delicate and beautiful
structure of the thoracic muscles of some of the In-
secta, has been carefully studied of late, and has
aided not a little in the elucidation of the histology
of the muscular tissue. Sce Lebert, Recherches
sur la formation des muscles, \&c., in the Ann. d Sc.
Nat. XIII. 1850, p. 182-195, Pl. VII. fig. 18-27;
but especially Aubert, Ueher die eigenthumliche
structur der Thoraxmuskeln der Insekten, in Sie-
bold and Kulliker's Zeitsch. IV. 1853, p. 388 .
This last-mentioned naturalist states that he has
observed a new form of muscle-element in the
thorax of the Libellulidae, consisting of primitive
muscular bands by means of which, with a heaker-
shaped apparatus, the wings are moved. These
fihres consist of flattened rihand-like bands, striated
on their borders as well as on their flat surface.
I have recently studied the elements of the
thoracic muscles of many Diptera (Culex, espec-

Straus, Consid. \&c. p. 140, Pl. III. IV. (Melolontha vulgaris).
Reference may bc also made to the works of Meckel (System, \&c., III. p. 22), Cuvier (Leçons, \&c. II. p. 64), Burmeister (IIandb. \&c. I. p. 267), Lacordaire (Introduct. à l'Entomol. II. p. 249), and of Newport (Cyclopaed. \&c. loc. cit. p. 934).
ially) with the highest and hest microscopic powers. The dises composing the primitive fibrillae, easily separate and may be studied by themselves. But, with the best powers, I have heen unahle to ohserve in them anything but that each disc is a solid, homogeneous light-refracting hody. The fihrilla appears to be formed hy the aggregation of these dises in a linear series and with regular interspaces; no sheath, hy which these discs would he retained in a row, was ohserved. Contraction of the fibrilla takes place hy an approximation of the dises to each other, and the consequent greater or less disappearance of the interspaces. These phenomena can be easily ohserved, and, it may he added, there are often seen isolated fibrillae contracting and relaxing, thus showing that the real phenomenon of muscular contraction, does not depend upon the nervous system, however much the action of this last may serve as a stimulant. - Ed.
natatorii, saltatorii, raptorii, and fossorii. ${ }^{(1)}$ The tarsal artieles are often enlarged, in whieh ease they form, on their under surfaee, either a naked, fleshy sole, or a thickly-pilose ball of the foot, whieh is usually eordiform. With the Dytiscidae, several of these tarsal joints are changed into a dise provided with suekers. The last artiele of these organs bears usually two movable hooks, whieh are sometimes deeply bifid or dentieulate on their coneave border. ${ }^{(2)}$ It is rare that there is a third hook between them. ${ }^{(3)}$ But with the Strepsiptera, and Physopoda, all the hooks are wanting. The Diptera and many Hymenoptera, have, moreover, under these hooks, soft lobules (Arolia) provided with numerous small papillae, by means of whieh these inseets ean fix themselves to objeets. ${ }^{(4)}$ With a great number of larvae, the six legs are very short or abortive, or even eompletely wanting. In the first ease, they eonsist, usually, of merely a hook, but these larvae have also many short obtuse proeesses on the other segments of the body, and by means of the hairy soles on the extremity of these, they ean fix themselves on bodies and thereby move along. ${ }^{(5)}$ With many entirely apodal larvae, these processes are replaeed by simple tubercles, or by belts of baekwardlypointing bristles or spines, whieh serve as points of support in their locomotion. ${ }^{(6)}$

The organs of flying are the anterior and the posterior Wings. The first are inserted on the mesothorax, and the seeond on the metathorax; but in nearly all the orders, there are genera with which these organs are wholly wanting. ${ }^{(7)}$ In other genera, the females alone are wingless, ${ }^{(8)}$ which is also true of the neuters of eertain families. ${ }^{(9)}$ It is more eommon still, to see the posterior wings ehanged into balaneers; ${ }^{(10)}$ and this same transformation oeeurs also, but very rarely, with the elytra. ${ }^{(1)}$ The wings, properly speaking, are only prolongations of the eutaneous skeleton traversed by traeheae and blood-eanals. Their forms, their nervures, their folds, \&e., as well as their sometimes eomplete abortive eondition, may here be passed over, for all these pointsbelong to the domain of Zoology.*

* [\& 326.] Leidy (Proceed. Acad. Sc. Philad. 1II. 1846, p. 104) has described a peculiar mechanism by which the membranous wings of Locusta are closed in a plicated manner like a fan. This mechanism consists of spiral ligamentous bands, wound, like the thread of a screw, around the transverse or connecting veins, which latter are also flexible. By this arrangement, upon the con-
steep and smooth surfaces. But this assertion requires further proof, although it is admitted by Spence (Trans. of the Entomol. Soc. 1V. D. 18).

5 With the Lepidoptera, and Tenthredinidae.
6 With many Diptera.
7 Among the Orthoptcra, the wings are wantiug with some Blattidae, Acrididae, Phasmidae, and Psocidae; among the Memiptera, with Acanthias, and Rhizobius; and among the Diptera, with Melophagus, Phthiridium, and Pulex flagellos.

8 With Lampyris, some Blattidae, Coccidac, Bombycidae, Geometridae, also with the Mutillidae and the Strepsiptcra.

9 With the Formicidae and the Termitidae.
10 With the Coccidae and the Drptera. The posterior wings are entirely wanting with some Ephemeridae.

11 The two singularly distorted halancers of the Strepsiptera, situated in front of the wings and in rapid and unceasing motion, are, from their insertion, only abortive elytra.
traction of the alary extensors, the spring-like ligaments, or ligamenta spiralia, are stretched in the expansion of the wings, and upon the relaxation or cessation of the action of the muscles, the plyysical properties alone of the ligamenta spiralia, in resuming their unstretched state, close the wings. Ev.

The movements of the wings are produced by two extensor and several smaller flexor muscles, which arise from the middle and posterior thoracic segments, and are inserted on a tendinous process at the base of each wing. The size of these muscles is proportionate to the size of the wings and their mode of use in flight. They are, consequently, all equally developed when the four wings participate equally in the act of flying, as is the case with the Lepidoptera, Hymenoptera, the majority of the Ncuroptera, the Libelludidae, Perlidae, and finally, the Cicadidae, and the Aphididae.

The muscles of the anterior wings are comparatively smaller thran those of the posterior, when the first are not used, properly speaking, except to cover the latter, as is the case with the Coleoptera, the Bugs, and many of the Orthoptera. ${ }^{(12)}$

With most of the Poduridae, and with the young larvae of Xenos sphecidarum, there is a peculiar, fork-shaped, saltatory organ. It is inserted on the posterior extremity of the body or under the abdomen, and, when at rest, points horizontally backwards. By means of a special muscular apparatus, this fork is bent forwards and applied against the abdomen; it is then returned violently into its original position, thereby tossing the animal a considerable distance. ${ }^{(13)}$

Many of the Insecta produce sounds which we perceive partly as clear tones, and partly as confused noises. These are due, sometimes to particular soniferous organs, but more often to vibrations of the cutanous skeleton produced by special muscular organs, or to the rubbing of certain parts against each other. But in every case, without exception, the sound is due to the action of voluntary muscles, and has no connection with the respiratory organs. ${ }^{(1)}$

The buzzing produced by many Diptera, and Hymenoptera, during flight, is due, without doubt, to vibrations of the thorax produced by the rapid and successive contractions of the muscles of the wings in this act. ${ }^{(2)}$ Further researches are necessary to show if the sounds produced by certain butterflies are due to rubbings of some parts of the cutaneous skeleton, or to a special soniferous apparatus. ${ }^{(3)}$ But the sharp sounds of many Coleoptera

[^247]of the wings, for it persists sometimes after the removal of these last. Neither can it be attributed to the rapid passage of air through the stigmata of the thorax, causing vibrations in that part of the body. Burmeister, who has advocated this last opinion (Handb. sc. I. p. 503, and in Poggendotf's Ann. d. Physik. XXXVIII. 1836, p. 283, T'af. III. fig. 7-9), compares these sounds to those produced by a siren ; but this theory has been fully refuted by Goureau, Solier, and Erichson (see Silbermann's Revue Entomol. 111. p. 105, and Ann. de la Soc. Entom. de France, VI. 1837, p. 31, and Wiegmann's Arch. 1838, II. p. 193). The various sounds of flies and bees may be imitated, moreover, by placing a vibrating tuningfurk in contact with a band of stretched paper, an experiment in which the vibrations of the air take no part.
3 It is said that, with Euprepia pudica, the peculiar sounds are produced by the rubbing of a callosity of the two posterior hips against the middle hips (Solier, Ann. de la Soc. entom, loc. cit.). The cry of Acherontia atropos has been attempted
are caused by the rubbing of their prothorax against the peduncle of the mesothorax, or by grating the ridges of the abdomen against the internal surface of the elytra. Reduvius stridulus, Mutilla europaea, and Mantis religiosa, produce also certain sounds by the frietion of particular portions of their skeleton. ${ }^{(4)}$ The males of many Aerididae produce their ereaking sounds by playing, as with the bow of a violin, upon the lateral borders of their Elytra, by their posterior thighs which have a longitudinal granular ridge on their internal surface. ${ }^{(3)}$ The peculiar cry of the male Loeustidae and Achetidae is produced by the base of their elytra. The very hard and sharp internal border of one of these elytra rubs against a horny ridge upon the under surface of the other, elose to the tympanitie dise. ${ }^{(6)}$

With the males of the musical Cieadidae, there is a very remarkable soniferous apparatus, situated on the under surface of the first abdominal segment. It consists of two spacious drums at the base of which is a dry, plieated membrane, to which is attached a large muscle of conieal form, arising from a median, bifureated process of the second abdominal segment. The entrance of each of these drums is more or less eovered by a rounding operculum which is free behind. The musele draws the membrane inwards, then relaxing, this last returns by its own elastieity, produeing, as from the bending up and down of a metallie plate, a loud, elanging sound. This sound is undoubtedly considerably increased by the resonanee of the air in the drums and in the neighboring vesicular tracheae. ${ }^{(7)}$
to be explained in various ways, but none of the causes yet assigned are satisfactory; see Passerini, Ann. A. Sc. Nat. X1II. 1828, p. 332; R. Wagner, in Müller's Areh. 1836, 1. 60; Goureau, Nordmann, and Duponchel, Ann. de la Soe. entom. VI. -IX., or Wiegmann's Archiv. 1839-41.*

4 See Burmeister, Handb. \&e. I. p. 507, and Goureau, in Silberman's lievue Entom. 11I. p. 101.
s See my observations in H'zemmann's Arch. 1844, I. p. 53. This fiddling movement may be eisily observed with the males of Gomphoceros and Oedipoda. Pneumora maculata lias, upon the sides of the second abtominal setrment, a very strongly dentieulate, oblique ridge, against which is rubbed, probably, a horny process situated on the internal surface of the posterior thighs. I am yet unable to aeeount for the way in which the males of Oedipoda stridula produee their hoarse buzzing, during flight.

[^248]${ }^{6}$ For this soniferous apparatus, see Goureau and Solier, Ann. d. la Soe. Entom. 1837, p. 31; Newport, Cyclopaed. loc. cit. I1. p. 928, fig. 394396 ; Goldfuss, Symb. ad. Orthopt. quorued. oeconomiam, Bonn. Diss. 1843, p. 5, fig. 1-10; and my observations in Wiegmann's Areh. loo. eit. p. 69. Burmeister (IIandb. \&e. I. p. 511) has sought to explain this sound by referring it to the powerful escape of the air from the stigmata of the Locustidae and Aerididae; but this is unsatisfactory.
${ }_{7}$ For the soniferous apparatus of the musieal Cieadidae, see Réaumur, Mém. V. 4th mém. Pl. XVII; ; Burmeister, Landb. \&c. I. p. 513 ; Ratzeburg, Mediz. Zool. II. p. 208, Taf. XXVII. and espeeially Carus, Analekt. zur Naturwiss. p. 142 , fig. 1-18. \dagger

European Acherontia atropos may produee its peculiar sound in a similar manner. - Ev.
\dagger [§ 327, note 7.] See also my investigations upon this apparatus of the Cicada septendecim in the Proceed. Boston Soc. Nat. Hist. 1851, p. 72. Ed.

CHAPTER III.

NERVOUS SYSTEM.

§ 328.
The central parts of the nervous system consist, with the Insecta, as with the other Arthropoda, of a Brain and a Ventral Cord. ${ }^{(1)}$

The brain is situated in the cephalic segment, and is composed of a Ganglion supraxsophageum, connceting with a Ganglion infrawsophageum which is smaller, by two lateral commissures which embrace the esophagus. The first of these ganglia corresponds to the cerebrum of the Vertcbrata; and the second is comparable perhaps to the cerebellum or spinal cord.

The veutral cord succeeds upon the sub-oesophageal ganglion, and consists, sometimes of a single ganglionic mass, sometimes of a chaiu of ganglia more or less approximated and connected by double, longitudinal commissurcs. ${ }^{(2)}$ The number of the ventral ganglia, which is never greater than that of the segments of the body, as well as the presence and length of the longitudinal commissures, depend often upon the number, the size, and the mobility of the segments of the body to which they belong. With those Insecta whose segments are very short and rigid, the ganglia are closely approximated or even entirely blended together; while, in most larvac, where the segments of the body are equally developed and flexible, the ganglia are separate, ncarly equal in size, and connected by pretty long commissures. These last are rarely united into a single cord, although the ganglia, not only those of the ventral cord, but also those of the brain, appear, nearly always, to be composed each of two united ganglia.

Aside from the differences presented according as the insect may be a larvae, a pupa, or an imago, the nervous system varies so much even in the same group, that it may be quite dissimilar in species which, in other respects, are very closely allied. These modifications refer to the number of the ganglia, the length of their commissures, and the more or less complete fusion between certain ganglia.
The superior cerebral ganglion, which is often composed of two hemispheres more or less fused together, gives off the two antennal and the two optic nerves. The simple eyes or stemmata, either when alone, or when coëxistent with compound or faceted cyes, always receive their nerves from the same ganglion; although these last are sometimes given off from a trunk in common with the optic nerve. The sub-eesophageal ganglion furnishes nerves chicfly to the mandibles, to the maxillae and their palpi. With the perfect Insecta, the three thoracic are much more voluminous than the abdominal ganglia. They send nerves not only to the legs, but also to the muscles of the wings.

1 For the nervous system of the Insecta in general, see Burmeister, Handb. \&c. I. p. 290 ; Lacordaire, Introd. \&c. II. p. 183 ; Newport, Cyclopaed. II. p. 942, and Blanehard, Ann. d. Sc. Nat. V. 1846, p. 273. L. Dufour (Mém. prés. d. l'Acad. d. Sc. IX. 1846, p. 562, Pl. I. fig. 16) has given a very exact description of this system in Sarcophaga haemorrhoidalis.

2 Entomotomists are not agreed as to the number of the abdominal ganglia, for the sub-œesophageal ganglion is sometimes regarded as the first of the ventral cord. For the nervous system of the larva and pupa of Sarcophaga, see L. Dufour, loc. cit. Pl. I. fig. 12-15.

The ventral ganglia are usually small, coëqual, and give off no nerves except to the segments of the abdomen. The last ventral ganglion, alonc, is larger, for it furnishes, in addition, nervous filaments to the rectum, and to the excretory ducts of the genital organs.

Usually, the nerves arise in the ganglia by two or three principal roots. Some nerves, however, arise from the interganglionic cord. In those spccies where the ventral ganglia are entirely fused together, the nerves arise close together, but immediately diverge in different directions.

$$
\text { § } 329 .
$$

As to the Intimate Structure of the nervous system of the Insecta, both the nerves and the ganglia are always surrounded by a fibrous neurolemma, and, according to carefully-made researches, are never wanting in the two usual anatomical components. Between the extremely tenuous primitive fibres, are interposed, in the ganglia, very small globules. These last, nucleolated, usually contain also a finely-granular substance, colorless, though sometimes reddish or brownish. ${ }^{(1)}$

There are, with the Insecta, as with the Crustacea, two modes of the disposition of the fibres in the ganglia. The first, which form nervous, inferior cords, are disseminated in the ganglia ; while the others, which belong to the superior nerves, simply pass through or over these ganglia. These two kinds of fibres give off, laterally, nervous filaments, which, uniting, form peripheric nerves of a mixed character. The superior cords correspond, probably, to the motor nerves, and the inferior to the sensitive nerves of the Vertebrata. ${ }^{(2)}$

§ 330.

The Disposition of the nervous system in the various orders of Insecta presents the following differences: ${ }^{(1)}$

Among the Aptera, the ventral cord of the Pediculidac is composed of three contiguous ganglia situated in the thorax. The prothoracic ganglion connects with the brain, and the metathoracic sends nerves to the abdomen. ${ }^{(2)}$ The nervous system of the Poduridae differs from this, in their three thoracic ganglia being separated, and their interganglionic longitudinal commissures being wide apart. ${ }^{(3)}$ More widely different still, is the ventral cord of the Lepismidae; it is composed of eleven ganglia connccted by doublc longitudinal commissures. ${ }^{\left({ }^{(4)}\right.}$

With the Hemiptera, this system is limited to two thoracic ganglia, of ${ }^{\circ}$ which the anterior is the smaller. With Pentatoma, and Cicada, these two ganglia are not separated except by a constriction; while, with Nepa,

[^249][^250]they are connected by two long commissures. From the posterior of these ganglia pass off, in a ventral cord, two main trunks, approximated, which send off, in their course, lateral branches towards the periphery; with Pentatoma, these two main trunks are fused into one. ${ }^{(5)}$

With the Diptera, the ganglionic chain is always connected by simple commissures. The number of ganglia varics with the families, and, usually, is proportionate to the length of the segments of the body. ${ }^{(6)}$ The ventral cord is most concentrated with the Hippoboscidae, ${ }^{(7)}$ the Ocstridac, and the Muscidae calypterae ; it consists of only a single thoracic ganglion, from which pass off nerves in various directions. The Muscidae acalypterae, on the contrary, the Syrphidae ${ }^{(8)}$ and the Conopidae, have, beside this thoracic ganglion, one or two ventral ganglia ; while the Scenopinidae have five, and the Tabanidae, Stratiomydac, ${ }^{(9)}$ Therevidae, Leptidae, Asilidac, and Bombylidac, have six. Their number is still larger with the Empidae, Culicidae, and Tipulidae; - there being, in the first, three thoracic and five abdominal ganglia; and in the last two, three thoracic and six abdominal ganglia. The larvac of the Diptera usually have one more pair of ganglia than the adults. It is only in those species whose ventral cord is fused into a single mass, that the same concentration is observed with the larvac. ${ }^{(1))}$ The larvae of the Diptera have either a moniliform ventral cord, composed of ten approximated ganglia, or a chain of eleven of these masses, connected by long commissures, which are often double. ${ }^{(11)}$

With the Strepsiptera, alike in the thrce states of larva, pupa and imago, the ventral cord consists only of a large thoracic ganglion, from which pass off nerves in various directions. ${ }^{(12)}$

With the adult lepidoptera, the rentral cord consists of seven ganglia, of which the first two are the largest and belong to the thorax. The connecting commissures are not doublc except between the thoracic ganglia; those of the others being more or less fused into a single cord. In the Caterpillars, the ventral cord consists of eleven nearly equal ganglia; the two commissures between the first three of these, are quite wide apart;

* [§ 330, note 5.] For the nervous system of Belostoma, with all its details, see Leidy, IIistory and Anatomy of the hemipterous Genus Belostoma, in the Jour. Acad. Nat. Sc. Philad. I. 1847, p. 65, Pl. X. fig. 13. - Ed.
† [§330, note 11.] In the larva of Corethra
intestin. exposit. contin. tertia. p. 2s, Taf. III. fig. 4), and according to which, two long ganglionic cords, connected by transversal anastomoses, extead the whole length of the body,-is based on inexact observations. Inthe larvae of Piophila and Eristalis, several ventral gangha fused together form a single abdominal cord; see Swammerdamm, Bib. der Nat. p. 279, Taf. XLIII. fig. 7, and Burmeister, IIandb. loc. cit. Taf. XVL. fig. 10.
11 The larvae of Stratiomys have an abdominal cord composed of ten contiguous panglia (Swammerdamm, Bib. der Nat. p. 264, Taf. XL. fig. 5). With those of Culex, Chironomus, Simulia, and other Tipulidae, the ten ganglia are wide apart, and connected by double lougitudinal commissures. \dagger
12 In the apodal larvae and the larvae-like females of Xenos Rossii, I bave found this nervous mass in the first segment of the body which corresponds to the cephalothorax.
plumicomis, Leydig found the ventral cord composed of eleven, instead of ten ganglia; see Anatomisches und Fistologisches üb. d. Larve von Corethra plumicornis, in Siebold and Kölliker's Zeitsch. III. 1852, p. 438. - LD.
while those of the others are usually fused together. ${ }^{(3)}$ During the pupastate, a remarkable ehange takes place. The eommissures between the first and seeond, and the third and fourth ganglia, are gradually shortened. The ganglia are thereby gradually approximated, and, in the end, are fused together, forming the two thoracie ganglia of the adult, which send off nerves to the legs, and to the museles of the wings. At the same time, the fifth and sixth ganglia entirely disappear or are fused into one. ${ }^{(4)}$

With the Hymenoptera, the ventral eord is eomposed of seven to eight ganglia conneeted by double commissures. The first of these, smaller than the second, is, like it, produeed by the fusion of several ganglia; and both are situated in the thorax. Of the remaining five or six abdominal ganglia, the last two are elosely approximated, or fused into one. ${ }^{(1)}$ Here, as with the Lepidoptera, the number of ganglia in the ventral cord of the larvae, is eleven, as has been speeially shown in the false eaterpillars of the Tenthredinidae. ${ }^{(16)}$

With the Orthoptera, and Neuroptera, the nervous system is nearly always composed, in their various states, of three thoraeic and six to seven abdominal ganglia conneeted by double commissures and forming a ehain as long as the body. ${ }^{(17)}$

With the Coleoptera, the number and disposition of the ventral ganglia present the widest variations of all. The longitudinal commissures, always double, are shortened or even wholly wanting at eertain points. The ganglionie ehain is, therefore, more or less abbreviated, and sometimes the ganglia are almost fused into a single mass. In this respeet this system here presents two principal types, the limits between whieh, however, have

Abstract

13 For the nervous system of the larvae of $V a$ nessa urticae and Bombyx mori, see the figures of Swammerdamm,loc. cit. p. 387, 230,Taf. XXVIII. fig. 3 , and Taf. XXX1V. fig. 7 ; also for that of the larva and imago of Cossus ligniperda, the works of Lyonet, Traité, \&c., p. 190, PI. 1X., and in the Mém. du Mus. loc. cit. p. 191, PI. LI. (17). For that of Gastropacha pini, pupa and imago, sec Suckow, Anat. physiol. Untersuch. 1. 40, Taf. VII. fig. 37,38 ; but see espeeially the excellent description of that of the larva, pupa, and imaro of Sphinx ligustri, for which we must thank Newport. Philos. Trans. 1832, p. 383, Pl. X11. X111.; also, 1834, p. 889 , Pl. X111.-XV1II., and Cyclop. \&c. loc. cit. p. 943 , fig. $406,414,415$. 14 This metamorphosis of the nervous system was first observed by Herold (Entwickclungsgesch. 1. Schmetterlinge, loc. cit. Taf. I1.) with Pontia brassicae, and has since been confirmed by Newport with Sphinx ligustri and Vanessa urticae; see Philos. Trans. 1834, PI. XV. XV1. fig. 20-30, and Cyclop. loc. cit. p. 962, fig. 420-423. 15 See Swammerdamm, Bib. der Nat. p. 207, Taf, XXII. fig. 6 (Apis mellifica) ; Treviranus, Biologie, V. Taf. I. (Bombus muscorum), and Brandt and Ratzeburg, Medizin. Zool. II. p. 203, Taf. XXV. fig. 31 (Apis mellifica). For the disposition of the ventral chain of the Lepidoptera in general, sec, morcover, L. Dufour, Rechereh, sur les Orthopt., 11ymenopt. \&c. p. 381. According to this last-mentioned naturalist, the number of ventral ganglia is five with Vespa, Scolia, and with most of the Apidae and Andrenidac; six with Odynerus, Sphex, Pompilus, Chrysis, the Ichneumonidae,

Bembccidae, with Larra, and Tiplica; four with Triposylon, and three with Eucera.
16 The ventral chain of the Tenthredinidac, Apidae, Vcspidae and other IIymenoptera, undcrgoes, undoubtedly, with the pupae, a metamorphosis similar to that occuring with the Lepiloptera.

17 Swammerdamm, loc. cit. p. 108, Taf. X1V. (a pupa of Ephemera); Marcel de Serres, Mem. du Mus. 1V. 1818, Pl. VI11. (1.) fig. 1 (Acridium); J. Muller, Nov. Act. Nat. Cur. X1V. Tab. IX. fig. 1, and X1I. p. 568, Tab. L. fig. 1 (Acridium and Bacteria); Newport, Cyelop. 11. p. 950, fig. 409, 410 (Forficula and Locusta); finaly, L. Du four, Ann. d. Sc. Nat. X111. 1828, p. $361,11$. XXII. fig. 4 (Forficula), Recherch. sur les Orthopt. \&c. p. 281, H. II. fig. 7 (Oedipoda), and p. 561, Pl. XI. fig. 160 (Libellula). Aecording to L. Dufour, there are seven ventral ganglia with Libellula and Ephemera, while there are only six with Perla and Phryganea. But Pictet (12echerch. pour servir à l'hist. et a l'anat. des flryganides. Pl. II. fig. 33-36) and Burmeister (llandb. \&c. 1I. p. 895, 898) assign to these insecta, in both their larva and their perfeet state, eight ventral ganglia. There are cyen nine of these gangliz with the Ephomeridae, according to Burmeister (loc. cit. p. 763). In the very chubbed larvae of Myrmeleon there are eight contiguous ventral ganglia beside two thoracic ones (Cu vier, Lecons, \&c., 111. p. 341). Loew (Germar's Zeitsch. 1V. p. 424) remarks that the proper Neuroptera are distinguished by the separation of their last two abdominal ganglia, while, wlth all the Orthoptera, they are fused together.*

[^251]femorntum, Leidy, Proceerl. Acad. Sc. Philad. 1846, III. p. 83. - Ed.
not yet been definitely fixed. ${ }^{\text {a }}$) The first type eonsists of an absence of all the longitudinal eommissures, as is the ease with most of the Lamellieornes, the Cureulionidae, and the Scolytidae. Here, the ventral cord is limited to three ganglia eonneeted together ; of these, the first eorresponds to the prothoraeie, and the seeond, the larger, to the second and third thoraeic ganglia. This last is sueeeeded by an oblong, ganglionie mass, representing the coneentrated abdominal portion of the cord, and from which arise the nerves of the muscles of the abdomen. ${ }^{(19)}$ In the seeond type, the abdominal portion of the eord oeeupies the entire length of the body. This is the ease with the Cistelidae, Oedemeridae and Cerambycidae, whieh have five ganglia in the abdomen. ${ }^{(20)}$ With the larvae of the Coleoptera, these two types are more elearly defined, there being no intermediate forms. ${ }^{(12)}$

§ 331.

The Splanehnie nervous system eonsists, with the Inseeta, in all their states, of a single and a double nervous eord. Sometimes the first, sometimes the seeond of these is the more developed.

The single Stomato-gastrie nerve arises from the anterior border of the cerebral hemispheres, by two short filaments, which, direetly in front of the brain, meet in a ganglion (Gangtion frontale) lying upon the osophagus. From this ganglion are given off several nervous filaments which go to the upper lip; while, from the opposite side, arises a simple nerve

18 There has recently appeared a very detailed memoir, accompanied with beautiful figures, on the nervous system of the Coleoptera, by Blanchard; see Ann. d. Sc. Nat. V. 1846, p. 273, Pl.VIII.-XV., and Regne animal. illustr. Insectes, MI. 11I. III. bis. and IV. (Melolontha, Carabus, Otiorhynchus, Cerambyx).
19 See Straus, Consirler. \&c. p. 391, PI. IX. fig. 1 (Melolontha vulgaris), and Blanchard, loc. cit. An analogous concentration of the nervous system occurs iu the families of Histeridae, Gyrinidae, Nitidulidae, and Scaphididae, where the ventral portion forms a single oblong ganglion, while the three thoracic ganglia are connected by double longitudinal commissures. In most of the other families, the three thoracic ganglia are more or less separated, and the abdominal portion is modified in various ways. With the Endomychidae, Meloidae and Chrysomelidae, there are only four abdominal gauglia comnected by very short double commissures; see Audouin, Ann. d. Sc. Nat. IX. 1826, p. 36, Pl. XL11. fig. 16 (Lytta) ; Brandt, Mediz. Zool. II. p. 103, Taf. XVII. fig. 2, Taf. X1.X. fig. 19 (Meloé and Lytta) ; Newport, Cyclopaed. loc. cit. I1. p. 950, fig. 408 (Timarcha) and Joly, Ann. d. Sc. Nat. II. 1844, p. 24, Pl. IV. fig. 16 (Colaspis). With the Dytiscidae, and with Byturus, there are six abdominal ganglia, and the commissures are also very short; see Burmeister, Handb. loc. cit. Taf. XVI. fig. 9 (Dytiscus). This figure, however, is not fully exact, if compared with that of Blanchard (loc. cit. p. 343, Pl. X. fig. 1). With the Staphylinidae, Silphidae, and Hy drophilidae, the abdominal portion, although composed of eight ganglia, is not prolonged much into the abdomen; it is longer and composed of six to scven ganglia with the Carabidae, Lucanidae, and Pyrochroildae; see L. Dufour, Ann. d. Sc. Nat. VIII. 1826, p. 27, Pl. XXI. bis, fig. 2 (Carabus), and Ibid. XIII. 1840, p. 332, Pl. VI. fig. 9 (Pyrochroa). It is even still longer
and composed of eight ganglia with the Clateridae, Cleridac and Telephoridac.

20 See Blanchard, loc. cit.
21 With those species of the Lamellicornes, and Curculionidae, whose ventral cord is very much conccutrated, the eleven large component ganglia are, with the larvae, united into one knotty mass, without any trace of cominissures ; see Swammerdamm, loc. cit. p. 131, Taf. XXVIII. fig. 1 (Oryctes) ; L. Dufour, Ann. d. Sc. Nat. XVIII. 1842, p. 170, 11. IV. fig. 11 (Cetonia) ; Burmeister, Zur Naturgesch. d. Calandra, p. 13, fig. 13, 14 ; Blanchard, Ann. d. Sc. Nat. loc. cit. Pl. XIY. fig 1 (Calandra). With the larvae of the Meloidac, Pyrochroïdae, Lucanidae, Chrysomelidae, Tenebrionidae, as well as of most of the other families of the Coleoptera, the ventral chain occupies nearly the entire length of the body, and is composed of eleven gauglia having double commissures; the thoracic ganglia exceed but little in size those of the abdomen ; see Brandt, Mediz. Zool. 1I. p. 105, Taf. XVI1. fig. 20, Taf. XIX. fig. 31 (Meloë and Lytta) ; L. Dufour, Ann. d. Sc. Nat. XIII. 1840, p. 327, l'l. V. fig. 8 (Pyrochroa), and XVIII. 1842, p. 172, ll. V. fig. 17 (Dorcus) ; Newport, Cyclopacd. loc. cit. p. 943 , fig. 404 (Timarcha); Joly, Ann. d. Sc. Nat. II. 1841 , p. 24, Pl. IV. fig. 14 (Colaspis), and Blanchard, Ibid. Pl. XV. fig. 7, Pl. X. fig. 5 (Chrysomela and Tenebrio). It is only with the larvae of the Carabidac, Silphidae, Staphylinidae and Diaperidae, that the ventral cord, although composed of eight ganglia, does not extend into the last abdominal segments ; while that of the larvae of the Dytiscidae, composed of seven ganglia, does not reach beyond the middle of the abdomen; see Burmeister, Trans. of the Entomol. Soc. Lond. I. p. 239, Pl. XXIV. fig. 9 (Calosoma) ; Blanchard, Ann. d. Sc. Nat. loc. cit. Pl. IX. fig. 3, 5, Pl. XI. fig. 4, Pl. X. fig. 2 (Silpha, Staphylinus, Diaperis, and Dytiscus).
(Nervus recurrens) which passes over the esophagus to the stomaeh, giving off branches right and left. Reaehing the stomach, it divides, after having formed a ganglionie enlargenent, into two arineipal branches.

The double Stomato-gastric nerve consists of one, two, or three pairs of small ganglia, situated behind the brain, on eaeh side of the osophagus, and communicating with eaeh other, with the posterior extremity of the brain, and with the Nervus recurrens, by delieate filaments. These filaments seud fine threads to the œesophagus, and, at certain points, anastomose with the single nerves. ${ }^{(1)}$

With the Memiptera, a single Splanchnic nerve has been observed, and, for the double system, there has been seen, on each side of the cesophagus, two small ganglia, one behind the other. ${ }^{(2)}$

With the Diptera, the splanelnie system appears to be present; at least, there has been observed on the Chyliferous stomach of the Hippoboseidae, a pair of filaments belonging, probably, to the double system. ${ }^{(3)}$

The Lepidoptera have a highly-developed Nervus recurrens, which often forms, with the caterpillars, several small ganglia lying behind eaeh other on each side of the brain, and connected together by a double nervous areh. The double system arises on each side of the œesophagus, from two ganglia, situated one behind the other, whieh, with the caterpillars and pupae, are often approximated to a blending together, and which send off, beside the filaments anastomosing with the reeurrent nerve, threads to the dorsal vessel. ${ }^{(4)}$ The Hymenoptera, ${ }^{(5)}$ Neuroptera, and Orthoptera, also, have the two kinds of splanehnie systems. The double trunks are highly developed with the Acrididae, and the Gryllotalpida, and have two pairs of ganglia at their upper extremity, beside one or two on their course; while, with the Libcllulidae, Blattidae, and espeeially the Phasmidae, the single nerve is the most developed. ${ }^{(6)}$

[^252]tems with the imago and larva of Bombyx mori. The works of Newport (Philos. Trans. 1832, p. 383, Pl. XIT. XITI., and 1834, p. 389, Pl. XIII. XIV.) on the larva and imago of Sphinx ligustri, are very distinguished.

See Treviranus (Verm. Schrift. III. p. 59), who thinks he has observed the Nervus recurrens with Apis mellifica ; Brandt, also (Mledizin. Zool. II. p. 203, Taf. XXV. fig. 32, and his Bemerk. \&cc. p. 22), has described the two systems in this species, and in the Bumble-bee (Apis terrestris).
${ }^{6}$ According to Burmeister (Handb. \&c. I. p. 310, Taf. XVI. fig. 6 (Girylus migratorius)), the recurrent nerve leaving the frontal ganglion, runs backwards and cads, after a short course, in a ganglion which connects by two filaments with the internal ganglia of the double system. These last send off several branches to the cesophagns, and connect, through two filaments, with the external ganglia of the same system. From these external ganglia arise two lateral trunks which run along the resophagus and are distributed to the gizzard, forming a nervous plexus having four ganglia. See, also, for the same species, Brandt, in the Isis, 1831, p. 1104, Taf. VII. fig. 5. According to this last author (Bemerk. \&c. p. 29, Taf, 1I. fig. 7-9), the double system of Gryllotalpa is similarly disposed, only the nervous plexus of the gizzard arises from two posterior ganglia of the two trunks. See, also, for that of Gryllotalpa, L. Dufour, Recherch. sur les Orthopt. \&c. p. 285, Pl. III. fig. 23. With Phasma ferula, the four anterior ganglia of the single system are small, but. for compensation, the double system is very com-

The Coleoptera have, in both their larval and their perfect states, a feebly-developed double nervous system arising from two pairs of ganglia, and a highly-developed Nervus recurrens which, with a few species, forms, directly behind the Ganglion frontale, a second ganglion. It runs along the osophagus, and usually forms, posteriorly, still another ganglion, and then divides dichotomously. ${ }^{(7)}$
A great number of the Insecta have, in all their states, another system of nerves, called Respiratory nerves, which, in view of their functions, ought very properly to be elassed among the mixed nerves, for they contain not only motor, but also vegetative fibres. This system arises by several single roots from the longitudinal commissures of the ventral cord. Each of these roots divides into two Nervi transversii which deviate from each other at right angles, and anastomose with the ganglia of the ventral chain and with its peripheric nerves, receiving at the same time organie fibres from the ganglia of the double splanchnic system. These respiratory nerves are distributed to the large trachean trunks, and especially to the muscles of the stigmata. The respiratory movements of Insecta cannot, therefore, be regarded as properly of a voluntary nature. ${ }^{(8)}$

CHAPTER IV.

ORGANS OF SENSE.

$\S 332$.

The sense of Touch appears to be seated, with Insecta, in very different parts of the body. ${ }^{(1)}$ It is chiefly located in the palpi of the mouth, which, for this purpose, are usually terminated by a soft surface. ${ }^{(2)}$ The antennae, also, serve as tactile organs, but in a very variable manner, according to their forms, the degree of their development, and the habits of

[^253]the species. These organs reccive, each, directly from the superior eerebral mass, a nerve; these nerves perceive the slightest disturbances occurring in the antennal teguments, which are solid and often provided with hairs and bristles. With those Insecta with which these organs are very long, filiform, and movable in various directions, they serve, like the vibrissae of many maminalia, to announce the presence of external bodies. With very many other Insecta, they are very movable, and are distinctly used as tactile organs, like the fingers of the human hand. ${ }^{(3)}$ It is also by means of these organs, that insects perceive the various eonditions of the atmosphere, especially the temperature, and thereby regulate their movements and actions.

With those Insecta whereof the parts of the mouth are changed into organs of suction, it is quite evident that the extremity of the snout or proboseis is the seat of a very delicate sense of touch. Also with those female insects having an ovipositor, which is used to deposit their eggo in holes of various depth, the apex of this organ must be endowed with the same power. Finally, this sense must be ascribed to the extremities of the legs of many Insecta, which, in either their larval or in their perfect state, use these organs for the performance of labors of a special nature. ${ }^{(4)}$ With the Poduridae, there is, upon the ventral surface of the first abdominal segment, a singular organ which is soft, protractile, bifureated or bi-lobed, and probably of a tactile nature. ${ }^{(5)}$

§ 333.

Undoubtedly the sense of taste, with Insecta, is seated in the tongue, when this organ is present. The tongue, of a soft eonsistence, is particularly developed with the Carabidae, Locustidae, Acrididae, Libellulidae, and Vespidae, which are all mandibulated ; and with the Apidae, and Museidae, which lick up their food. With the suctorial Insecta, the tongue is either wanting, or ehanged into a horny bristle; - a transformation met with, also, in eertain species having masticatory organs.

$$
\oint=334 .
$$

The organs of Olfaction with Insecta, have not yet been satisfactorily determined, although most of these animals by their aid, ean perceive in a most wonderful manner, the food proper either for themselves or their young. The various hypotheses upon this subject are unsatisfactory, and especially those by which this sense is located in the hard and dry parts of the body, which are quite unfit to recognize odoriferous substances. ${ }^{(1)}$

[^254]cherch. \&c. p. 42, P1. 1II. fig. 5, 19-22. I am not determined whether or not should be placed in the same category the soft protractile organs, often of a beatitiful red or orange color, possessed by Matachius on the lateral portions of the body, by Stenus at the extremity of the abdomen, and by the harvae of various Lepidoptera (Papilio machaon and podalirius, Harpyia vinula, \&c.) on the neck or back.* 1 According to Rosenthal (Reil's Arch. X. p.
with Papilio asterias ; I regard them as oloriferous and defensive. rather than tactile organs. Ed.

§ 335.

There is the same uncertainty concerning the organs of Audition. Experience having long shown that most Insecta perceive sounds, this sense has been located sometimes in this, and sometimes in that orgin. But in these opinions, it often seems to have been forgotten or unthought of, that there can be no auditive organ, without a special auditive nerve which connects directly with an acoustic apparatus capable of receiving, conducting, and concentrating the sonorous undulations. ${ }^{(1)}$

Certain Orthoptera are the only Insecta with which there has been discovered, in these later times, a single organ having the conditions essential to an auditive apparatus. This organ consists, with the Acrididae, of two fossae or conchs, surrounded by a projecting horny ring, and at the base of which is stretched a membrane resembling a Tympanum. On the internal surface of this membranc, are two horny processes to which is attached an extremely delicate vesicle filled with a transparent fluid and representing a membranous labyrinth. This vesicle is in conncetion with an auditory nerve which arises from the third thoracic ganglion, forms a ganglion upon the tympanum, and terminates in the immediate neighborhood of the labyrinth by a collection of cuneiform, staff-like bodies with very finelypointed extremities (primitive nerve-fibres?), which are surrounded by loosely-aggregated, ganglionic globules. ${ }^{(2)}$

The Locustidae and Achetidae have a similar organ, situated in the

136, Taf. VIII. fig. 5, 6), the olfactory organ of the Muscidae is a double, oblong fossa, situated under the antennae, and covered by a plicated membrane formed hy the cutaneous envelope, which is otherwheres solid and dry. Until lately, from the timc of Reaumur, the sense of smell has been located in the anteunae, although they present no trace of a humid surface, and have none of the anatomical and physiological conditions requisite for heing the seat of this function. Sce Lefébvre, Ann. d. la Soc. entom. d. France, VII. p. 395, or Ann. d. Sc. Nat. XI. 1839, p. 191 ; and Küster, Isis, 1844, p. 647. The same objections might be raised against the opinion of Marcel de Serres (Ann. du Mus. XVII. p. 426), who locates this sconse, with the Orthoptera, in the palpi. Equally groundless appears the view of Baster quoted by Straus (Consider. \&c. p. 420), that this sense is seated in the stigmata of the tracheae. Treviranus seeks to avoid the difficulty in supposing that the entire buccal cavity, which is humid, can receive odorous impressions. Erichson (Diss. de fabr. et usu antenn. in Insect., Berlin, 1847) has recently appeared anew in fatvor of the antennae. According to him, the numerous small fossae of these organs are covered internally with a delicate membrane sensible to odors.*

1 The author who has erred most widely in this respect, is L. W. Clarke (Magaz. of Nat. Hist. Septemher, 1838, or in Froriep's neue Notiz. IX. p. 4, fig. 12, a-11), who has descrihed at the hase of the antennae of Carabus nemoralis, Illig, an auditive apparatus, composed of an Auricula, a

Meatus auditorius externus and internus, a Tympanum, and a Labyrinthus, of all of which there is not the least trace. The two white convex spots at the base of the antennae of Blatta orientalis, and which Treviranus (Annal. d. Wetterauisch. Gcsellsch.f. d. gesammte Naturkunde, I. Hft. 2, p. 169, Taf. V. fig. 1-3) has described as auditory organs, are, as Burmeister has correctly stated (Handh. II. p. 469), only rudimentary accessory eyes. Newport (Trans. of the Entom. Soc. 1I. p. 229) and Goureau (Ann.d. 1. Soc. ent. X. p. 10) think that the antennae serve both as tactile and as auditory organs. But this view is inadmissible, as Erichson (Wiegmann's Arch. 1839, II. p. 285) has already stated, except in the sense that the antennae, like all solid hodies, may conduct sonorous vihrations of the air ; but, even admitting this view, wherc is the auditory nerve? for it is not at all supposable that the antennal nerve can serve at the same time the function of two distinct senses.

2 This organ has been taken for a soniferous apparatus by Latreille (Mém. du Mus. VIII. p. 123) and Burmeister (IIandb. I. p. 512). J. Müller (Zur vergleich. Physiol. d. Gesichtssinn. p. 439, and Nov. Act. Nat. Cur. XIV. Tah. IX.) was the first who fortunately conceived that with Gryllus hieroglyphus, this was an auditory organ. Ile gave, however, this interprctation only as hypothetical; but I have placed it heyond doubt by careful researches made on Gomphoceros, Oedipoda, Podisma, Caloptenus and Truxalis (Wiegmann's Arch. 1844, I. p. 56, Taf. I. fig. 1-7).

[^255]fore-legs directly below the coxo-tibial articulation. ${ }^{(3)}$. With a part of the Locustidae, ${ }^{(4)}$ there is, on each side at this point, a fossa; while with another portion of this family, ${ }^{\left({ }^{(2)}\right.}$ there are, at this same place, two more or less spacious cavities (Auditive capsules) provided with orifices opening forwards. ${ }^{(6)}$ These fossae and these cavities have each on their internal surface, a long-oval tympanum. The principal trachean trunk of the leg passes between the two tympanums, and dilates, at this point, into a vesicle whose upper extremity is in connection with a ganglion of the auditory nerve. This last arises from the first thoracic ganglion, and accompanies the principal nerve of the leg. From this ganglion in question passes off a band of nervous substance which stretches along the slightly excavated anterior side of the trachean vesicle. Upon this band is situated a row of transparent vesicles containing the same kind of cuneiform, staff-like bodies, mentioned as occurring with the Acrididae. The two large trachean trunks of the fore-legs open by two wide, infundibuliform orifices on the posterior border of the prothorax, so that here, as with the Acrididae, a part of this trachean apparatus may be compared to a Tuba Eustachii. ${ }^{(7)}$ With the Achetidae, there is on the external side of the tibia of the forelegs, an orifice closed by a white, silvery membrane (Tympanum), behind which is an auditory organ like that just described. ${ }^{(8)}$

The organs of Vision consist of simple, or of compound eyes. ${ }^{(1)}$ The first occur chiefly with the larvae of holometabolic Insecta; and the second with Insecta in their perfect state. There are, however, many species which have both kinds of eyes in their imago state. These organs are wanting with only a few adult Insecta, ${ }^{(2)}$ but are wholly absent with many larvae and pupae of the holometabolic species. ${ }^{(3)}$

1. The Simple eyes (Ocelli, Stemmata) are composed of a convex, spheroidal, or elliptical cornea, behind which is situated a spherical or cylindrical lens, lodged in a kind of calyx formed by an expansion of the optic nerve, and which is surrounded by a variously colored pigment-layer, as by a Chorioidea. ${ }^{(4)}$ These stemmata are sometimes so closely situated

3 See my rcsearches in Wiegmann's Arch. Ioc. cit. p. 72, Taf. I. fig. 8-17.
4 Meconema, Barbitistes, Phaneroptera, Phylloptera.
5 Decticus, Locusta, Xiphidium, Ephippigeta, Saga, Conocephalus, Callinemus, Acanthodis, Pseudophyllus, \&c.
6 In his classification of the Locustidae, Burmeister (IIandb. \&c. II. p. 673) has made usc of the different forms of these orifices;-differences, however, which had before been pointed out by $D e$ geet (AbhandI. Th. III. p. 285, Taf. XXXVII. fig. 5 and 6) Lansdown Guilding (Linn. Trans. XV. 1827, p. 153).

7 These two infundibuliform orifices of the tracheae, which L. Dufour (Recherch. sur les Orthopt. \&cc. p. 279, Pl. I. fig. 2) has called vessies aërostatiques, have generally been regarded as the stigmata of the prothorax, although the true stigmata, of the ordinary form and size, are situated in front of the orifices if question.

8 With Achetra achatina and italica, there is a tympanum of the same size, on the internal surface of the legs in question; but it is scarcely observable with Acheta sylvestris, domestica and campestris

1 For the eyes of the Insecta, see Marcel df Serres, Mém. sur les yeux comp. et les yeux lisscs d. Ins.; Treviranus, Verm. Schrift. III. p. 147, and Beit. zur Anat. u. Physiol. d. Sinneswerkz. 11ft. I. p. 84 ; finally, J. Miuller, Zur vergleich. 1'hysiol. des Gesichtssinn, p. 326, or in Ann. d. Se. Nat. XVII. 1829 , p. 242 (in extract), and his Mcmoir in Mreckel's Arch. 1829, p. 38.

2 The eyes are wanting in many species of Ptitium which live under the bark of trees (Erichson, Naturgesch. d. Insekt: Deutschl. III. p. 32) ; with Anophthalmus, which live in caverns (sturm, DcutschI. Fauna Abth. V. Bd. XV.), and with Claviger, which live in ant-nests.
3 As such may be cited the larvae of Hymenoptera, exccpting, however, those of the Tenthrcdinidae ; those of the Diptera, which live in decomposing animal and vcgetable substances; those of the Rlateridae, Histeridac, Lamellicornes, 'Tenebrionidae, and in general the apodal larvae of Coleoptera ; finally, the parasitic larvae of the Strepsiptera, whose females are also blind in the imago state.
${ }_{4}$ For the simple eyes of Dytiscus, sce Mül/er, in Meckel's Arcli. loc. cit. p. 39, Taf. III. fig. 1, 2 ; for those of Cicada, Vespa, Bombus, and Libet-
on the brain that their optie nerves consist only of small papillae on this last; ${ }^{\left({ }^{(j)}\right.}$ but, when further removed from the brain and grouped together, the optic nerves arise by a common trunk which divides into as many branches as there are cyes. ${ }^{\left({ }^{(0)}\right.}$

The number and disposition of the stemmata vary very much in the different orders. When they alone constitute the visual organs, they are always situated on the lateral parts of the head, - where they may be disposed either, as one on each side, or as several irregularly grouped together (Ocelli gregati), or regularly arranged in rows (Ocelli seriati). There is only one simple eye on each side with the Pediculidae, Nirnidae, Coccidae, the larvae of the Phryganidae and Tenthredinidae, and the aquatic ones of very many Diptcra. These organs are in groups of four to eight with the Poduridae, ${ }^{(7)}$ with the larvae of Lepidoptera, the hexopod larvae of the Strepsiptera, the larvae of the Hemerobidae, Mymeleonidac, Raphididac, and with the hexapod ones of the Coleoptera. ${ }^{(8)}$ The winged males of the Strepsiptera have the largest number of stemmata aggregated in groups; they here form two lateral, globe-like projections, and constitute the transitionary form to the faceted eyes, for there are fifty to seventy on each side, separated from each other ouly by hairs. ${ }^{(9)}$ Very many Insecta with two, faceted eyes, have, also, on their front, three stemnata disposed in a triangle. ${ }^{(10)}$
2. The Compound eyes, or those whereof the cornea is faceted, are composed of simple cyes so thickly set together that their more or less thick, slightly eonvex, quadrangular, or hexagonal corneae are contiguous. ${ }^{(1)}$

The size of these facets is not uniform even in the same eye, for sometimes those above, or those in the centre, are the larger. ${ }^{(12)}$ Behind each cornea is situated, in place of a lens, a transparent pyramid the apex of which is directed inwards and received into a kind of transparent calyx corresponding to a Corpus vitreum. This last is surrounded by another calyx formed by the expansion of a nervous filament arising from the
lula, see Treviranus, Beitr. \&c. p. 84, Taf. II. fig. 25-35
${ }_{5}$ Bombus, Apis, Vespa; see Treviranus, Bi ologie, V. Taf. II., and his Beitr. \&c. Taf. II. fig. 29 ; and Brandt and Ratzeburg Medizin. Zool. II. Taf. XXV.fig. 31, 32.

6 With many of the larvae of the Lepidoptera and the Coleoptera, the optic nerves arise by two more or less long roots; see Lyonet, Traité. \&ic. p. 58I, Pl. XVIII. fig. I, No. I, and fig. 6 (larva of the goat-moth) ; Suckow, Anat. physiol. Untersuch. p. 41, Taf. III. fig. 34 (pine caterpillar), and Burmeister, Trans. Entom. Soc. I. p. 239, 1’l. XXIII. fig. 7 (larva of a Calosoma). The three stemmata of Cicada reccive their nerves from a common trunk arising from the middle of the brain; see Treviranus, Beitr. Taf. II. fig. 24, and L. Dufour, Recherch. sur les Hémiptères, \&e., Ph. XIX. fig. 203.

7 Sce Nicolet, Recherch. sur les Podurelles, loc. cit. p. 28, Pl. II. III.

8 Such are the carnivorous laxvae of the Carabidae, Staphylinidae, Dytiscidae, Dermestidae, Silphidae, \&c., and the herbiferous larvae of the Chrysomelidae. Those of Cicindela have only two large stemmata on each side of the head, and those of Lycus, Meloë, Lampyris and Cantharis, havc only one.

9 See Templeton, Trans. Entom. Soc. III. p. 54, P1. IV.

10 'There are three frontal stemmata with many of the Orthoptera (Mantidae, Acrididae, Libelluli-
dae, Perlidae, Psocidae, Ephemeridae and some Phasmidae); with some Neuroptera (IIemerobius, Panorpa, Phryganea), and Hemiptera (P'entatoma, Coreus, Berytus, Cicada). This is the case also with many Diptera, such as the Muscidae, Syrphidae, Stomoxidae, Bonbylidae, Anthracidae, Oestridae, Asilidae, Empidae, \&c.; they are wanting with Tabanus, Haematopota, Conops, Hippobosca, Melophagus, and many of the Tipulidac. With the IIymenoptera, they are constantly present except with the neuter ants and with the females of Mutilla and Myrmosa; there are only tivo of these eyes with most of Gryllus; Sciophila, Mycetobia and Leja, of the Diptera; Sesia, Euprepia, Pyralis and a grcat number of the Noctuillae, of the Lepidoptera; Gryllotalpa, Blatta and Termes, of the Orthoptera; and Omalium and Anthophafus, of the Coleoptera.

11 For the intimate structure of the compound eyes, see Straus (Consid. \&c. p. 411, PI. IX.), Dugets (Ann d. Sc. Nat. XX. 1830, p. 341, PI. XII., or in Froriep's Not. XXIX. p. 257), R. Wagner (Wiegmann's Archiv, 1835, I. p. 372, Taf. V.), and especially Will (Bciträg. zur Anat. d. zusammengesezten Aug g n mit facettirt. Horshaut. 1840).

12 These differences in the size of the facets had been observed by Marcel de Serres (loc. cit. p. 45) with Libellula. They exist also in the eyes of Lagria fava, gibbosa, atra, Tabanus rusticus, and some other Diptera; see Ashton, Trans. Entom. Soc. II. p. 253, P1. XXI.
ganglion on the extremity of the optie nerve, a short distance from the brain. ${ }^{13)}$ Eaeh lens-like pyramid with its vitreous body and nervous filament is enveloped by a Chorioidea usually of a brown eolor, whieh forms, behind the eornea, a kind of pupil, ${ }^{(14)}$ but to whieh are due, by no ineans, the beautiful eolors so often observed in the eyes of these animals. ${ }^{(13)}$

The size and form of the eompound eyes, as also the number of their faeets, are very varied. ${ }^{(6)}$ The larvae and pupae of the hemimetabolie Inseeta have, usually, a less number of faeets and eonsequently smaller eyes, than the perfeet forms. With the Libellulidae, and Diptera, the eyes are very large ${ }^{\left({ }^{(\hat{7}}\right)}$ while with the Formieidae, they are perhaps the smallest of all. With many Diptera, and some Hymenoptera, those of the males are mueh larger than those of the females, and are often eontiguous in front or above. ${ }^{(18)}$ With some Hymenoptera, and Diptera, they are pilose, - the hairs being inserted in the angles of the facets. ${ }^{(9)}$

The eompound eyes are usually spherieal or oblong; and, with many Cerambycidae, and with the Vespidae, they are deeply emarginate in front, or on their internal border. With Diopsis, ${ }^{(20)}$ they have a very singular appearanee, being supported on two very long, rigid, frontal proeesses, and their direetion eannot, as with other Inseeta, be ehanged without a turning of the head. ${ }^{(21)}$

CHAPTER V.

DIGESTIVE APPARATUS.

The Inseeta very often use their labial and maxillary palpi to seize and to eonvey food to the mouth, and even to introduee it wholly within this last. Wi many speeies, the fore-legs are used to seize and retain the food, and the first pair is sometimes changed for this purpose ever into rapaeious organs. ${ }^{(1)}$ With the larvae and pupae of the Libellulidae, there

[^256]17 The largest eyes are observed with the ILenopidae, where they cover nearly the whole head; see Erichson, Entomographien. Ilft. I. p. 132, Taf. I.

18 Among the Hymenoptera, the genera Astata, Larra, Tachytes, Apis ; and among the Diptera, the Museidae. Syrphidae, Leptidae, Tabanidae, Stratiomydae, and many other familles.
19 With Apis, Tabanus, Anthomyia, Eristalis, Folucella, and other Diptera.

20 Sce Linné, Amoenitates aeademicae. VIII. Tab. VI. and Dalman, in Fuessly's Arehiv d. Insekt. IIft. 1, Taf. VI. or Isis, 1820, p. 501, Taf. V.
21 The Inseeta seareely move their head when they look in different directions. This renders very singular the extended mobility of the bead with Mantis religiosa, which, in watehing for its prey, looks on all sides.

1 For example, with Syrtis, Naucoris, Nepa, Ranatra, Hemerodromia, Mantis, Mantispa, \& c .
is, attached to the under lip, a peculiar prehensile organ which covers, like a mask, the masticatory organs, and, by means of a double articulation, can be let down and then returned with the utmost quickness. During this manœuvre, the prey is seized by two acute hooks inserted on the anterior border of this lip, and earried to the mouth. ${ }^{(2)}$

The parts of the mouth of the Insecta may be divided into Masticatory and Suetorial organs, between which, however, there are many intermediate forms. The second are, properly speaking, modifications of the first, and for this reason, the last should be deseribed first; the special details of these organs, however, belong to the domain of Zoology.

These masticatory organs ${ }^{(3)}$ consist of a pair of Mandibles and a pair of Maxillae, which move laterally and are more or less covered by an upper (Labrum), and an under (Labium) lip. The upper jaws (Mandibulae) exceed in hardness all the other parts of the mastieatory apparatus, and consist of two simple, horny organs, often dentieulated at their extremity. The under jaws (Maxillae) are, usually, softer, and composed of several pieces, - of which the most essential are : Palpi maxillares, composed of from one to six articles, and direeted outwards; and the stipule, usually denticulated or ciliated, and divided into a Lobus cxternus and internus. The under lip, which supports two Palpi labiales composed of from one to four articles, may thus be considered as another pair of maxillae the lateral halves of which are more or less fused together on the median line. ${ }^{(4)}$ Such are the oral organs with the Coleoptera, the Neuroptera, and the Orthoptera. It is interesting to remark that the Orthoptera, in the widest aeceptation of the term, have in common, this charaeter, that their under lip is divided by a deep fissure into lateral halves, while that of the Neuroptera and Colcoptera consists of a single picee. ${ }^{(5)}$

At the base of the under lip is attached the tongue, which, either fleshy or horny, is single or cleft. Often it is completely abortive, but in other cascs, on the contrary, it is very long and changed into a suctorial organ. This last form is most prominent with the Hymenoptera, where the two jaws have, at the same time, ceased to be masticatory organs, and form a sheath enveloping the tongue and labial palpi. ${ }^{\left({ }^{(4)}\right.}$

The oral parts are changed into suctorial organs with the Diptera, Hemiptera, and Lepidoptera. The first have a Proboscis, formed bythe under lip transformed into a suctorial tube (Theca) which is often genieulate. At its base are from four to six bristles which may be regarded, some as maxillae and mandibles, and others as representing the tongue. ${ }^{(7)}$ With

2 See Roesel, Insektcnbelustigungen, II. Insectorum aquatil. Classis II. p. 12, Taf. III. IX., and Suckow, in Heusinger's Zeitsch. d. organ. Physik. II. Taf. I.

3 Beside the so often cited writings of Straus, Kirby and Spence, Brandt and Ratzeburg, Burmeister, Lacordaire, Newport, and Westwood, see Savigny, Mém. sur les anim. sans vertebres, I. p. I, Pl. I.-IV.; also, Isis, 1818, p. I 405 , Taf. XVIII. Nees von Esenbeck, Isis, 1818, p. 1386, and Suckow, iu Heusinger's Zeitsch. \&c. III. Taf. I.-IX.

4 This opinion, before advanced by Oken, Savig$n y$, and Leach, has been sustained with very many details ly Brullé (Ann. d. Sc. Nat. II. 1844, p. 324).

5 On account of these modifications of the under lip, to which Erichson (Entomograph. IIft. 1, p. 5, and in Germar's Zeitsch. I. p. 150, Taf. II.) has especially called the attention, we can distinguish, in their perfect state, the hemimetabolic from the

[^257]the Hemiptera, the suetorial apparatus is lengthened into a Rostrum, by the under lip being ehanged into two quadri-articulate grooves united so as to form a tube, and cnelosing the setiform mandibles and maxillae. ${ }^{(8)}$ With the Lepidoptera, the changes are still greater, for the mandibles are only very simall appendages, while the maxillae are transformed, each, into a semi-eanal which can be rolled up spirally, and when united form an organ of suction (Lingua spiralis). At the base of this last are two very short maxillary palpi, bi-or tri-articulate, while the two tri-artieulate and very hairy labial palpi consist of two pretty large appendages between whieh the suctorial tube retreats when rolled up. ${ }^{(9)}$

The buccal organs begin to atrophy with the Aptera. The four palpi present with the Lepismidae, are already wanting with the Poduridae ; ${ }^{(0)}$ and with the Nirmidae, they, as well as the maxillae, are very small, while the mandibles are quite large.

With the Pediculidae, there are still wider modifications; for here there is a protractile suctorial tube composed of four stiff bristles (rudimentary jaws) which are enelosed in a soft and equally protractile sheath (under lip.) ${ }^{(1)}$

With the Larvae of Inseeta, the buceal organs are most usually masticatory; for, not ouly the larvae of the Coleoptera, the Orthoptera, and many of the Neuroptera and Hymenoptera, have the same organs of this kind (mastieatory) as the perfect insects, ${ }^{(0)}{ }^{(2)}$ but also the larvae of the suctorial Lepidoptera, ${ }^{(13)}$ and those with a distinct head of certain Diptera ${ }^{(1))}$ with which, however, the maxillae and palpi are very frequently wanting. ${ }^{(n)}$ But with the acephalous larvae of Diptera, those of the Strepsiptera, as also with the parasitic ones of some Hymenoptera, the mouth is formed rather for sueking than for masticating the food; for, on the inner side of the soft tumid lips, either the horny organs are wholly wanting, ${ }^{(6)}$ or the mouth is armed with two parallel hooks, which are used partly to grapple and partly to puneture the bodies these animals attaek. ${ }^{(1 i)}$
bres, I. Pl. IV. fig. 1, and Newport, Cyclopaed. loc. cit. fig. 379-381.*
8 Sawgny, Mém. \&c. I. Pl. IV. fig. 2, 3 Ratzeburg, Mediz. Zool. II. Taf. XXVII.; and Burmeister, ILandb. \&c. II. Taf. I.
9 This suctorial tube is pretty long with the Papilionidae and the Sphingidae; it is very short with many Bombycidae and Pyralidae; see Savigny, Mém. \&c. I. p. 1, Pl. I.-III. ; Ratzeburs, Die Forstinsekt. II. P. 2, I'af. I. ; and Newport, Cyclopael. bo. cit. p. 900, fig. 377, 378.

10 Nicolet, Reehereh. p. 34, Pl. IV.
11 Burmeister, Linnaea entomologica. II. p. 569, Tab. I.
12. See Ratzeburg, Dic Forstinsekt. I. III. ; Hartig, Die Aderfüger Deutschlands, Taf. I.VIII. ; Burmeister, Trans. Entom. Soc. I. Pl. XXIII. XXIV. (Calosoma), and Naturgesch. d. Calandra, fig. 10-12; Waterhouse, Trans. entom. Soc. I. Pl. III.-V. (Rhaphidia, and various Coleoptera).
13 Lyonet, Traité, \&c., P1. I. ; and Ratzeburg, Die Forstinseki. II. Taf. I.

14 Such are the larvae of Culex, Chironomus, Corethra and Simulia, and many other of the aquatic Tipulariae.
15 In the larvae of Sciara, Mycetophila, Sciophila, Ceroplatus, \&c., which live in rotten wood or in fungi ; see L. Dufour, Ann. d. Sc. Nat. XI. 1839, p. 204, P1. V. fig. 23, XIL. p. 10.
16 The mouth of the apodal larviae of the Strepsiptera (see my researches in Wiegmonu's Arch. 18 ± 3, I. p. 159, Taf. VII. fig. 14), and of the young larvac of Microgaster (Ratzebiurg, Dic Iclineumon. d. Forstinsekt. p. 13, 'raf. IX.) has, in place of jaws, soft papillae which, as these larvae approach the end of their development, are changed into horny jaws by means of which these Insecta make a passage into the skin of the animals in which they live.

17 With the Muscidae, Oestridae, Syrphidae, and other Diptera; see Swammerdamm, Bib. der Nat. Taf. XLIII. fig. 5, and L. Dufour, Ann. a. Sc. Nat. I. 1844, p. 372, Pl. XVI. fig. 8, I0, XII. 1839, p. 4, I'I. II. III.

[^258]the mouth of the Diptera presents appendages wholly comparable to those of the other Insectit, except that these appeadages are modified in a special manner, - Ed.

The mouth of the larvae of the Myrmeleonidae, Hemerobidae, and Dytiscidae, is of a very peculiar construetion. There is no oral orifice, properly speaking, and the maxillae and nandibles are wholly unfit for mastieation, the latter being changed into two curved hooks, hollow and with a narrow fissure at thcir extremity. Thesc larvae bury these hooks in the insects they have seized, and through the cavity of these organs, which communicates at its base with the eesophagus, suck the blood. ${ }^{(18)}$

A considerable number of the Insecta take no food during their perfect state, the object of their existence being only to accomplish the aet of reproduction. Their jaws are often very rudimentary and are fit neither for sueking nor for masticating. ${ }^{(19)}$ In some cases, indeed, not only are these organs wanting, but the oral orifice is closed as with all inactive pupae. ${ }^{(20)}$

§ 338.

The Digestive Canal of Insecta and their larvae, is more or less long, sometimes extending from the mouth directly to the anus upon the median line; sometimes forming in the abdomen loops and convolutions. It is retained in place not by a nesentery, but by numerous fine tracheae, which envelop its entire extent. It is always wholly invested by a homogencous peritoneal envelope under which lies a muscular tunic, composed of longitudinal and eircular fibres, which arc especially developed about the mouth and anus. Internally, it is lined throughout by an epithelium which is extremely thin at the middle portion of this canal, but very solid and composed of chitine at its two extremities. In the middle portion just mentioned, there is a layer of aggregated cells, evidently of a glandular nature, between the epithelium and the muscular tunic.

The different parts of this canal in the Insceta may be properly distinguished in the following manner. The first portion is the Oesophagus, muscular, oceupying the three thoracic scgments and often dilated at its posterior part into a crop (Ingluvies) and muscular gizzard (Proventriculus). Sometimes there is appended to the esophagus a sueking stomach consisting of a more or less pedunculated, thin-walled vesicle, which is multiplicated on itself when empty.

The second portion consists of a stomach (Ventriculus), in which the ehyle is formed, and which is continuous at the point of insertion of the Malpighian vessels, with the third portion of the digestive canal. This third portion commences by a small and usually short lleum, which is followed by a Colon, larger and of variable length. This last often has a Caecum at its anterior extremity and terminates posteriorly in a short muscular Rectum. ${ }^{(1)}$

[^259]proboscis of many Bombycidae and Mepiolidae, appears equally unfit to receive food. Finally, the two small, intercrucial maxillae of the males of the Strepsiptera, are wholly inadequate for the functions of masticatory organs.

20 Hovable oral organs and an oral orifice are wanting with many Oestridae, and llenopidae, as well as with the male Coccidac.

1 The functions of these different portions of the digestive canal do not always correspond to those of those parts having the same names with Vertebrata. Burmeister (Kur Naturgesch. d. Calandra p. 9) is certainly correct in saying that the stomach is the chylopoietic part, thus combining the fucc-

With nearly all Insecta in their perfeet state, this colon or large intestine contains from four to six organs of a peeuliar strueture and doubtful function. These consist of transparent protuberanecs, disposed in suceessive pairs, or forming a transverse series. They are round, ovoid, or oblong, their base being sometimes surrounded by a horny ring, and they are traversed by numerous tuft-like tracheae. ${ }^{(2)}$ The Lepidoptera, espeeially, are remarkable for their numerous organs of this kind. ${ }^{(3)}$ It is singular that they are wanting in all inseets during their larval and pupa states.

The Anus of Insecta, in all their states, is invariably situated on the last segment of the body. With the quiescent and non-feeding pupae, both the anus and the mouth are wanting, but with the larvae of only the Strepsiptera, the Apidae, and the Vespidae, are both ileum and colon wanting at the same time. ${ }^{(4)}$

The form and disposition of the different parts of the digestive canal vary infinitely, according to the habits of life and the states of development of the Inseeta in whieh they are observed. On this account it is very diffieult to make any general statement of the various struetural relations. ${ }^{(3)}$ But that condition may be taken as the fundamental type which belongs to those perfeet insects whose life is pretty long and whieh have masticatory organs. Such, therefore, will receive our first consideration.

With the Coleoptera, ${ }^{(6)}$ the oesophagus is nearly always terminated by a

Abstract

tions of the stomach and small intestines of the Mammalia. The crop and gizzard correspond to parts of the same names with birds. The ileum, which is usually regarded as analogous to the small intestine of the Vertebrata, probably plays a very subordinate part in the act of digestion. Burmeisfer thinks that it serves only to conduct the chyme or chyle, but with certain species where it is very long, it is probably the seat of a second digestion. The caecum often selves to reecive the secretory product of the Nalpighian vessels, and therefore belongs rather to the urinury than to the Chylopoietic apparatus (see $\S 346$).

2 It is hardly comprehensible how organs so common with the Insecta, shonld, as yet, be so little known.

Swammerdamm, however, ohserved them with A;is mellifica (Bib. der Nit. Taf. XVIII. fig. 1), :ud Suckow (Heusinger's Zeitsch. III. P. 21, Tal. VI. (ig. 121, 123) has mentioned them with isespa crabro, and Apis mellifica, undel the name of (alloms swellings. Brandt anl Ratzeburg, slediz. Zol. 11. Taf. XXV. fig. 2t (1pis mellifica), as whll as Eurmeister (Handb. \&c. I. p. 143) speak of them very slightly. L. Dufour (Recherch. sur les Orthopt. \&c. p. 396, 427), has furured them with varions Orthoptera, Neuroptera and Ilymennotera under the name of Boutons charnus;太nally, Newport (Cyclopaed. \&c. LI. p. 970, fig. 4.! (Carabus monilis)) has designated them as Giambalar protuberances. All the figures above crited rive the external form of these orgaus but not

their internal structure. They are especially apparent and four in number with the Muscidae ; see Ramdohr, Ablandl. üh. d. Verdauungswerkz. \&c. Taf. XLX. Gg. 2, M. M.; and, Suckow, loc. cit. Taf. IX. fig. 153. The four with Melopharus are very singular and different from those of thas other pupiparous Diptera, in that their external surface is covered with small solid scales ; see L. Dufour, Anu. d. Sc. Nat. IIT. 1845, p. 71, Pl. Ll. fig. 1315.

3 I have counted, with the Zygaenidae, thirty of these swellings, and nearly a handred with the Papilionidae, Noctuidae and Geometridae. Hepiolus, Tinea, and Adela, have, hy exception, only six. Treviranus (Verm. Schrift. MI. p. 106, Taf. XIL. fig. 4), and Lyonet (Mém. (lu Mus. \&c. XX. 1. 184, Pl. XVLL. fig. 6) have taken these organs for glanls with Papilio.

4 The digestive canal is probably organized in a similar manner with the larvae of the Iymonoptera and the Diptera, which are parasitic in the bodies of other Insecta.*
5 For the digestive tube of the Insecta, beside the works already cited of Swammerdamm, Gaede, Burmeister, Lacordaire, and Newport, see, especially, Ramdohr, Abhandl. üb. Il. VerdauungsWerkz. \&゙c.; Marcel de Serres, Aum. du Dus. XX. p. 49 ; and Suckow, in JIeusinger's Zeitsch. [I1. 1) 1.
6 The digestive organs of the Coleoptera have been especially studied by L. $D u$ four (Λ nn. d. Sc. Nat. 11. III. 182t, and 1. 1834). See, moreover,

* [8 331, note 4.] See, for the intestinal canal of the larvae of Nymenoptera, Ed. Grube (Míller's Arch. 1849, p. 50), who, from cxaminations of the larvae of wasps and hurnets, concludes that a raight alimentary canal opening at the posterion 1. itrenity is always present, but that only the mus(al:ur tunic forms the continuons tube, - the lining usmbrane of the stomach ending caecally, aud the
same membrane of the intestine commencing caecally, aul, finaliy, that the intestine serves, during the larval state, only to receive the secretion of the Malpighian vessels which are urinary organs. But it is doubtful if the contents of the stomach are expelled by mouth during the larval state. This closed pyloric end of the stomach is opened during the transition to the pupa state. - Ed.
crop-like dilatation, ${ }^{(n)}$ which, with the Cicindelidae, Carabidae, Dytiscidae, and Gyrinidac, is followed by an ovoid gizzard. This last is longitudinally plicated internally, and these folds are usually armed on their borders with cilia or horny hooks. The intestinoid stomach is of median length with the carnivorous Coleoptera, but very long and more or less flexuous with those which are herbivorous. ${ }^{(8)}$ Nearly always, its whole external surface is numerously constricted, and covered with small cacca. ${ }^{(9)}$ The ileum and colon are, usually, rather short. ${ }^{(0)}$

Among the Orthoptera, the families Forficulidae, Termitidae, Blattidae, Achetidae, Locustidae, Acrididae, and Mantidae, are distinguished for their large crop, ${ }^{(11)}$ which, with Gryllotalpa is completely constricted from the œesophanus. The gizzard is of variable length, and coverel, internally, with rows of horny denticulated plates. ${ }^{(12)}$ The stomach is tubular, of equal calibre, median length, and rarely makes a half or an entire turn. ${ }^{(13)}$ In most of the familics just mentioned, its upper extremity has two, six, or cight caeca, ${ }^{(4)}$ and its postcrior part is continuous into an often somewhat flcxuous ileum upon which succeeds a short colon. With the Perlidae, the gizzard is wanting, but the upper extremity of the stomach has from four to eight cacca, pointing forwards. ${ }^{\text {ar }}$ With the Phasmidae, and the Libcllulidac, the oesophagus is long and large, and protrudes somewhat' into the straight, oblong, constricted stomach, which is without cacca and is succeeded by a very short ileum and colon. ${ }^{(16)}$ The digestive tube of the Ephemcridae, which, in their perfect state, takc no food, is feebly developed. Its walls are very thin throughout, and the ocsophagus is directly continuous with the stomach which is a bladder-like dilation and succecded by a short, straight intestinc. ${ }^{(77)}$

(Forficula), and his Recherch. sur les Orthopt. sc. loc. cit. Pl. I.-V. XIII.

12 See the figures cited in the preceding note. According to L. Dufour (Recherch. \&c. p. 608, Pl. XIII. fig. 196), this gizzard with its dental apparatus is wauting with Termes; but, according to Burmeister (IIandb. I. p. 137, Tuf. XI. fig. $8-10$), it is present being concealed at the base of the œesophagus.

13 Gryllotalpa and Ephippigera.
14 These caeca are wanting with Forficula and Termes. There are only two with Acheta, Gryllotalpa, Locusta, and Ephippigera; six to eight with the Mantidae, Blattidae, and Acrididae. In these last, each of these caeca sends off two deverticula, one forwards, and the other backwards.

15 See Suckow, in Heusinger's Zeitsch. II. p. 267, Taf. XVI. fig. 7 ; L. Dufour, Rechereh. Sc. Pl. XIII. fig. 198 ; and Pictet, Hist. Nat. des Névroptères. Famille des Perlides. These caeca are wanting with Nemura.

16 See Ramdohr, A\$hand. \&c. Taf. XV. (Libellula and Agrion) ; Suchou, loc. cit. II. Taf. II. fig. 14 (Aeschna); L. Dufour, Recherch. \&c. p. 568, Pl. XI. (Leschna and Libelluta); and Muller, Nov. Act. Nat. Cur. XII. p. 571, Tab. L. (Bacteria). These stomachic appendages are wanting with Psocus also ; see Nitzsch, in Germar's Mag. IV. p. 277, Taf. II. fig. 1.

17 See L. Dufour, Recherch. \&c. Pl. XI. fig. 167, and Pictet, Hist. Nat. des Insect. Névropt. Hamille des Ephémériues.

[^260]The predatory Panorpidae, which are rapacious, differ notably from the other Neuroptera, and resemble rather the preceding order. Their œosophagus is short and straight, and, in the thorax, is succeeded by a spherical muscular gizzard which is lined internally with a brown chitinous membrane covered with stiff hairs. The stomach is tubular and straight ; the ileum makes two convolutions before passing into the long colon. ${ }^{18)}$ With the other Neuroptera, namely, the Myrmelconidae, Hemerobidae, Sialidae, and Phryganidae, the cesophagus is long, and dilated, posteriorly, into a kind of pouch; and often there is a long, thin-walled, sucking stomach inserted on one of its sides. The proper stomach is of a median length, and is more or less transversely constricted. ${ }^{(19)}$ The two other portions of the digestive canal are very small and straight.

The Iymenoptera, which often sip up their fluid flood, have a long cesophagus which dilates into a thin-walled, sucking stomach. ${ }^{(20)}$ With the Vespidae, Apidae, and Andrenidae, this stomach is often only a lateral fold of the œesophagus, and with many Crabonidae, it is attached solely by a short and narrow peduncle. ${ }^{(21)}$ Many species of this order have a rudimentary, callous gizzard, euveloped by the base of the stomach. In the genera Formica, Cynips, Leucospis and Xyphidria, it is very apparent, and consists of a globular, uncurved organ. Those Hymenoptera which are engaged during a long and active life ${ }^{(2)}$ in labors for the raising and support of their young, have a pretty long and flexuous stomach and intestine, and the first has, usually, many constrictions. The Cynipidae, Ichneumonidae, and Tenthredinidae, which, after copulation and the deposition of their eggs, take no further care in the act of reproduction, have only a very short small stomach and intestinc.

But the modifications of each of the various portions of the digestive tubes are most prominent with the sucking Insecta, especially with the Hemiptera. ${ }^{(23)}$ The oesophagus of these last is usually short and small, while the stomach is generally very long, and describes many convolutions in the abdominal cavity. This stomach, as to form and structure, may be divided into two or three distinctly-defined portions. The first consists of a glandular ante-stomach which is straight, large, and divided by several constrictions. The second has the form of a long, flexuous canal, whose walls are glandular, and which dilates, at its posterior extremity, into an oval pouch. ${ }^{(34)}$ With the Cicadidae, it forms a kind of loop, its posterior extremity being attached to the antc-stomach with Tettigonia, Cercopis, and

[^261][^262][^263]Ledra; and with Cicada, it penetrates even under the museular tunie of this ante-stomaeh. ${ }^{(25)}$ With the Pentatomidae, and some Coreidae, there is even a third stomaeh, quite remarkable, eonsisting of a very narrow, slightlyflexuous eanal, on which are inserted two or four rows of elosely-aggregated glandular tubes. ${ }^{(26)}$ The ileum and eolon are nearly always fused into a pyriform pouel, upon whieh is sometimes inserted a kind of lateral eaeeum. ${ }^{(27)}$ With the Cicadidae, however, the ileum is distinet, narrow, and nearly always very long and flexuous.

The Diptera have a sueking stomaeh with a more or less long pedunele, inserted upon one of the sides of the short, small œesophagus. This peduncle aeeompanies the stomaeh even into the abdominal eavity, where it terminates in a pouch whose thin walls are eomposed solely of delieate museular fibres. This poueh is oblong or round, and often divided, heart-shaped, by a deep fissure. ${ }^{(38)}$ The proper stomach is always long and intestinoid, exeept at its anterior extremity, where it is often dilated. It is situated in the abdominal eavity and makes many eonvolutions. In some families, only, there are two lateral eaeca inserted near its eardiae extremity. ${ }^{(2)}$ The ileum is small, of median length, and is suceeeded by a pyriform colon.

The Lepidoptera, whieh, in their perfeet state, live only upon the juiees of flowers, suek up this kind of food by means of a thin-walled. sueking stomach, situated at the anterior extremity of the abdominal eavity, and opening by a short pedunele into the posterior extremity of the small, long oesophagus. ${ }^{(30)}$ The stomaeh is pretty long and large, often varieose, and always straight. The ileum is long, small, and nearly always forms several

[^264]and two hackwards. The Diptera fill this sucking stomach with liquid (honey, blood, \&c.), or solid (pollen-grains) substances, but which, certainly, are only there deposited without being changed, for the walls of this organ do not present the least traces of a glandular structure. It is, moreover, remarkable that the Pulicidae and the Hippoboseidae, which feed exclusively on animal juices, have a kind of crop at the posterior extremity of the asophagus, but no trace of a sucking stomach; see Ramdohr, loc. cit. Taf. XXI. XXIII. (Melophagus and Pulex), also L. Dufour, Ann. d. Sc. Nat. VI. 1825, p. 303, Pl. XIII. fig. 1, and III. 1845, p. 69, Pl. II. fig. 13 (Hippobosca and Melophagus). With Pulex, the crop is provilled with large cilia on its internal surface, and thus resembles a gizzari.

30 See Swammerdamm Bib. der Nat. Taf. XXXVI. fig. 1 (Vanessa urticae); Treviranus, Verm. Schrift. II. p. 103, Taf. XI., and Annal. d. Wetterauisch. Gesellsch. III. Ilft. 1, p. 147, Taf. XVI. (Vanessa, Sphinx, and Deilephila) ; Suckow, loc. cit. Taf. IX. fg. 161 (Yponomeuta); and Newport, Cyclop, loc. cit. fig. 430, 431 (Sphinx and Pontia). Thas sucking stomach is double with the Zygaenidae (Ramdohr, loc. cit. Taf. XVIII. fig. 1) ; it is wholly wanting with the Hepialidae, Bombycidae, and in general all the imago Lepidoptera which do not eat. See Treviranus, Vcrm. Schrift. loc. cit. p. 107, and Annal. d. Wetterauisch. Gesellsch. loc. cit. p. 158, Taf. XVII; and Lyonet, Mem. du Mus. XX. p. 208, P1. XIX. fig. 10 .*

[^265]convolutions. The colon is constantly of a large size, and is often dilated into a caecum at its anterior portion. ${ }^{(31)}$

Among the Aptera, the Nirmidae, Poduridae, and Lepismidae, have, at the posterior extremity of the eesophagus, a kind of crop, which, with Lepisma, is succeeded by a globular gizzard provided with six teeth. The proper stomach has the form of a long tube, and is not flexuous as with the Pediculidac. With these last, and with the Nirmidae, which are parasites, it has, at its anterior extremity, two cacca directed forwards. But the intestine which succeeds it, is very short with all the Aptera. ${ }^{(32)}$

With all the hemimetabolic Insecta, or the Orthoptera and Hemiptera, the digestive canal of the larvac and pupae differs but little from that of the perfect insects. ${ }^{(33)}$ With the Coleoptera, the larvae likewise resemble the perfeet insects in this respect, - their mode of life being generally the same, as has already been evinced by the structure of their oral organs. The stomach is usually shorter and larger, and the number of its appendages less, than with the perfect forms. ${ }^{(3)}$

The larvac of the remaining holometabolic Insecta, which differ essentially from the imagines as to their oral organs, beside living upon different food, have also a digestive canal so different, that it must undergo a constant and gradual change during the quicscent pupa state. ${ }^{(33)}$. Most of these larvae have powerful masticatory organs, - such are those of the Lepidoptera, the Tenthredinidae, the Siricidae, Phryganidae, Sialidae, and the cephalous ones of the Culicidae and Tipulidae. The digestive canal here is straight and rarely longer than the body; its greater portion consists of a large and usually varicose stomach, while the ileum and colon are pretty short. With the larvae of the Lepidoptera, the cylindrical ileum is large and divided into six lateral pouches, by as many longitudinal septa. ${ }^{(56)}$ But with the cephalous larvac of the Mycetophilidac and Sciaridae, and the acephalous ones of the Diptera, the digestive canal is formed upon a wholly different

[^266]straight stomach, which, at both extremities and sometimes also in the middle, has a circle of simple or varicose, thickly-set caeca; the ileum is very short, and the large intestine extremely large and always bent forwards ; see Roesel, Insektembelust. II. 'Taf. VIII. IX.; Suckow, loc. cit. III. Taf. III. fig. 87 (Melolontha) ; I. Dufour, Anm. d. Sc, Nat. XVIII. 1842, 1'I. IV. fig. 8, Pl. V. fig. 18 (Cetonia and Dorcus); finally, the excellent work of De Harn, Sur les mútamorphoses des Coképtères, Mém. I. les Lamellicornes, in the Nouv. Ann. du Mus. IV. 1835, p. 153, Pl. XVI--XIX.
35 For this metamorphosis of the intestinal cannl, sec Dutrochet, Jour. de Physique, \&c., LXXXVI. 1818, p. 130, or Meckel's deutsch. Archiv IV. p. 255 , Taf. III. (Bombyx , Myrmeleon, Apis, Polistes, Tenthredo and Eristalis). This metamorphosis with Sarcophaga haemorrhoidalis has been described and figured by L. Dufour, Mŕm. présentés, \&c., IX. p. 580, Pl. III.
36 See Swammerdamm, Bib. der Nat. Taf. XXXIV. fig. 4 ; Lyonet, Traitè, \&te, Pl. XIII.; Ramdohr, loc, cit. 'Taf. XVM1. fig. 5. Many naturalists have carefully observed the metamorphoses of the digestive canal with the Lepidoptera; sec Herold, Entwickelungsreschichte d. Schnettert. Taf. III. fig. 1-12 (Pontir brassicae) ; Suckow, Anat. physiol. Untersuch. p. 24, Taf. 11. fig. 1-10 (Gastropacha pini); anl Newport, Philos. Trans. 1834, l'l. X1V. fig. 11-13 (Sphinw ligustri). This last author has figured the digestive camal in situ in all the three states.
plan. It exceeds more or less the length of the body, and there is a crop at the posterior extremity of the oesophagus upon which succeeds a long and tortuous stomach. Upon the cardiac portion of this last there are inserted two to four caeca directed either forwards or backwards, and with some larvae of the Muscidae, there is also a long, sucking stomach upon one of the sides of the œesophagus. ${ }^{(37)}$

With the larvae of the Neuroptera, which suck up their liquid food through tubular mandibles, the posterior extrenity of the cesophagus is dilated into a pyriform sucking stomach, which is followed by the proper stomach, large, of median length, and slightly flexuous. The extremely small ileum is long and makes several convolutions, while the colon is large, vesiculiform, and continuous into a horny tubular rectum. ${ }^{(38)}$
§ 339.
As to the grandular appendages of the digestive canal of the Insceta, the Salivary Organs are quite widely distributed, as well with the Imagines as with the Larvae and feeding Pupae. These organs consist of one, or two, rarely three pairs of colorless tubes of unequal length. These are sometimes prolonged into the thorax, while in other cases they accompany the digestive canal into the abdominal cavity where it makes many convolutions. Their cxcretory ducts are composed of a solid membrane, and are distinctly separated from the glandular portion. ${ }^{(1)}$ This last is composed of three layers, namely : an cxternal, homogeneous envelope, - an intimate tunic accompanying the excretory duct, - and a middle layer composed of colorless, glandular, nucleated cells, which often form very fine excretory tubes opening into the commion duct. Frequently, also, these ducts contain a spiral filament like the tracheae ; they open, each, at the base of the oral cavity by a distinct orifice, and it is rare ${ }^{(2)}$ that they unite, forming a common duct; sometimes they have, ncar their excretory openings, special salivary reservoirs. ${ }^{(3)}$ With very many Aptera, ${ }^{(4)}$ Diptera, Lcpidoptera, and Coleoptera, ${ }^{(5)}$ the salivary organs consist of two simple tubes, which, with the larvae of the second and third of these orders, often extend a considcrablc way into the abdominal cavity. ${ }^{(6)}$ With the Cerambycidae, Te-

37 See Swammerdamm, Bib. der Nat. Taf. XLI. fig. 6, Tab. XLIII. fig. 5 (Stratiomys and Piophila) ; Ramdohr, loc. cit. Taf. XIX. fig. 1 (Musca) ; L. Dufour, Ann. d. Sc. Nat. XI. 1839, p. 212, Pl. V. fig. 23, XII. p. 13, 18, Pl. I. fig. 1, 4, and I. 1844, p. 372, Pl. XVI. fig. 8 (Ceroplatus, ડapromyza, Piophila).
The metamorphosis of this digestive canal, in the pupa of Sarcophaga carnaria, is represcnted in a suite of figures published by Suckow, in Ifeusinger's Zeitsch. III. Taf. IX. fig. 147-153. lut Suctow has fallen into the same error as Ramdohr (loc. cit. p. 171) in regarding the caecal appendages of the stomack of the larvac as four tubes connecting the stomach with the salivary canals.
38 See Ramdohr, loc. cit. p. 154, Taf. XVII. fig. 1; and L. Dufour, Recherch. \&c. p. 589, Pl. XII. fig. 175 (Myrmeleon). The large intestine together with the rectum, does not scrve, with this larva, as a defecating organ, but, as is very extraordinary, has the function of a Spinneret (see § 347).

1 For the intimate structure of these organs, see H. Meckel, in Mullcr's Arch. 1846, p. 25, Taf. I. II.

2 Piophila, Musca, Sarcophaga, Tabanus, Hippobosca, Oestrus, Mordella, Mantis, and Forficula.
${ }_{3}$ With Forficula, Musca, Sarcophaga, and Hippobosca, each of these excretory ducts is dilated into a roundish reservoir ; but with the Termitidae, Acrididae, Achetidae, and Mantidae, there is an oblong, pedunculated reservoir common to both ducts. See, for the figures, the various memoirs of L. Dufour.

4 With the Nirmidae.
${ }_{5}$ Pyrochroa, Lixus, Phyllobius, Diaperis, Lema, Oedemera, Chrysomela, Coccinella. In this last genus, the two salivary vessels are torose.
6 See the figures in the works of Swammerdamm, Lyonet, Ramdohr, Suckow, Herold, and L. Dufour.
nebrionidae, Mordellidae, ${ }^{(6)}$ and most of the Mymenoptera, ${ }^{(8)}$ they consist of two rather short, ramified tufts, often contained entirely in the head. ${ }^{(3)}$ Among the Neuroptera, the Myrmeleonidae and Sialidac have two simple short salivary tubes, while, with the Phryganidae and Hemerobidae, they are ramificed and highly developed. ${ }^{(10)}$ It is quite remarkable that there is, in this respect, a sexual difference with the Panorpidae; the males have three pairs of very long, tortuous tubes, while, with the females, the only vestiges of this apparatus are two indistinct vesicles. ${ }^{(11)}$ Among the Orthoptera, the salivary organs are entirely absent with the Libelfulidae, and Ephemeridae. On the other hand, they are highly developed with the Achetidae, Acrididae, Locustidae, Mantidae, Blattidae, Termitidae, and Perlidae, where they consist of two, four, or six botryoidal masses of vesicles, situated in the thorax, and having long, excretory ducts, beside, also, often long-pedunculated pyriform reservoirs. ${ }^{(2)}$ Among the Hemiptera, ${ }^{(13)}$ these organs are absent with the Aphididae and the Psyllidae; but, on the other hand, they are very large and of a remarkable structure with the Bugs and Cicadidae. Here they are vearly always lobulated, and are divided by a constrietion into two portions, of which the upper is much smaller than the lower, and often both have long digitiform processes. The excretory duct divides, immediately after its origin, into two special canals of equal or very unequal length, which extend, serpentinely, first, into the abdominal cavity, and then ascend to the mouth. ${ }^{(14)}$ Beside these two constricted glands, many Bugs have, also, one, rarely two pairs of simple salivary tubes, ${ }^{(15)}$ which are often dilated, vesiculiform, at their extremity. ${ }^{(16)}$ The salivary organs of the musical Cicadidae differ in many respects from those of the others of this family; for, beside the two simple tortuous tubes, there is, in the head, another pair of glands, composed, each, of two tufts of short, cylindrical caeca, situated one behind the other. ${ }^{(17)}$ It is yet undetermined

7 See L. Dufour, Ann. d. Sc. Nat. IV. 182t, Pl. XX1X. fig. 4,5, XiV. 1840 , Ml. X1. fig. 16.
8 See L. Dufour, Recherch. \&c. p. 390, fig. 48, 72, 109, 148 (Apis, Andrena, Philanthus, and Xyphidria.
9 With the Coleoptera, the ramified glands end in long, tortuous caeca; while with the Ilymenoptera, their extromities are vesieuliform, thereby giving the whole gland a botryoidal aspect.

10 see L. Dufour, Recherch. \&e. p. 563, fig. 179, 184, 191, 192, 208, 209 (Myrmeleon, Sialis, Hemerobius, and Phryganea).
11 See Brants, Tijdschr. voor naturl. Geschid. en l'hysiologie, 1839, p. 173 ; and L. Dufour, Recherch. \&c. p .582 , fig. 169 (Punorpa).

I2 Sce L. Dufour, Recherch. \&c. p. 296, PI. T.V. XII1. ('Tridactylus, Oedipoda, Gryllotalpa, Ephippigera, Mantis, Blatta, Termes, and Perla).*
13 For the salivary organs of the IIcmiptera, see, beside Ramdohr, loe. cit. Taf. XX1I. XXIII. especially L. Dufour, Recherch. sur les Hémiptères, p. 118, llı. I.-1X.

14 The two excretory ducts are of the same length

* [§339, note 12.] See also Leidy, loe. eit. p. 82 (Spectrum femoratum). - Ed.
\dagger [§ 339, note 14.] With Belostoma, the sabivary glands are four in number, are of conglomerate structure and situated on each side of the cesophagus into the eommeneement of which they empty. Two of them are long and extend backwards as far as the commencement of the ab-
with Ranatra, No Naucoris Corixa Redu with Ranatra, Nepa, Naucoris, Corixa, Redu-
vius, and Syrtis. One is very long and the other very short with Tetyra, Pentatoma, Syromastes, Coreus, Lysaeus, Aphrophora and Cercopis. With the Mydrocorisac, above citcd, the two sativary glands arc, moreover, composed of numerous round secretory vesicles. In general, these glauds have been regarded as composed of two vesicles each of which has a proper excretory duct; but this view is incorrect. The two excretory ducts are always the result of the division of a common trunk which arises at the eoustricted point of the gland. With Ranatra, alone, the anterior is entirely separated from the posterior portion of the gland. \dagger

15 There is only one pair of simplesalivary glands with Tetyra, Pentatoma, Pyrrhocoris, Lygaeus, Naucoris, Nepa and Ranatra; two pairs with Coreus and Alydus. With Nepa and Ranatra, they dilate into an oval rescrvoir.
${ }_{17}$ Syrtis, Reduvius, Pelegonus, and Corixa.
17 See L. Dufour, Ann. d. Sc. Nat. V. 1825, p. 158, Pl. 1V. and Rechereh. \&c. PI. V11I.
domen ; while the other two are about one-fourth as long. Beside these, on each side of the œesophagus, there is situated a sigmoid caeeal porich which opens by a narrow duct into the commencement of the cesophagus in the vicinity of the termination of the salivary ducts; these are perhaps reservoirs of the saliva ; sce Leidy, loc. cit. p. 63. - Ed.
whether onc of the pairs of these glands with thesc Hemiptera, may not be a poison apparatus.

The Insocta have no distinct Hepatic Organs, but the function of a Liver is performed by the walls of the stomach, the internal tunic of which is composed of closely-aggregated hepatic cells. With many species whose stomach has caecal appendages, the walls of these last have a similar hepatic structure, and must scerete, therefore, a bilc-like fluid. ${ }^{\text {(18) }}$

With some Insecta, the ileum has glandular appendages, whose product is perhaps analogous to a pancreatic fluid. The two or four rows of follicles which, as before mentioned, are situated on the ileum of the Pentatomidac and some Corcidae, would, in the same manner, be regarded as a Pancreas. The same remark applics to the ramified appendages, which, with Gryllotalpa, open into the stomach below the two caeca, as well, also, as to the two or three follicles which, with Pyrrhocoris, are inserted, laterally, on the posterior part of the ilcum. ${ }^{(19)}$

There is found, with all Insceta, a Corpus adiposum, - a tissue, composed of adipose cells, which is intimately conncetcd with the functions of digestion and assimilation. This body is cspecially developed towards the end of the larval state, and it disappears, for the most part, during the pupa period, so that only a few traces of it are found with Insecta in their perfect state. It is usually of a white, or a dirty-ycllow color, but is also observed of a green. red, or orange hue. In the larvac, the fat cells generally form pretty large, lamelliform lobes, sometimes ramificd or reticulated, sometimes plicated, spread through the abdominal cavity in all the intervals of the viscera. These lobes are always traversed and retained in place by numerous trachean branches. With the perfect Insecta, the remains of this body are not usually found except in the posterior portion of the abdominal cavity, where they consist of fat-cells loosely scattered, and not retained by the tracheac. ${ }^{(21)}$

[^267]sur les IIêmiptêres, p. 44, Pl. II. fig. 19, 21 (Pyrrhocoris).t

20 See L. Dufour, Recherch. sur les Carabiq., in the Ann. d. Sc. Nat. VIII. 1826, p. 29 ; Recherch. sur les IIÉmipt. p. 141, and Recherch, sur les Orthopt. p. 291, 385, $562 . \ddagger$
closely applied to the intestinum tenue; they join the intestine at the junction of the duodenum and ileum. - Ed.
\ddagger [§339, note 20.] See, upon the Corpus adiposum, Mayer (Ueber die Entwickelung. des Fettkörpers, \&c. bei den Lepidopteren, in Siebold and Kulliker's Zeitsch. I. p. 175) who has traced its development.
These adipose bodies are formed from a great number of scparate, flattened, usually manypointed lohes. These lohes consist of pouches with structurcless walls, and filled with fat-globules. Each pouch is originally a simple cell with a large nucleus attached to its wall, In this cell are formed daughter-cells, which, when filled with fat, burst, and thereby the mother-cell becomes the fatcontaining sac. - Ed.

CHAPTER VI.

CIRCULATORY ORGANS.

§ 340.

The Circulatory System is feebly developed with Insecta, consisting of a contractile, articulated Vas dorsale, and a cephalic Aorta. The first serves, as a heart, and the sccond is a simple conductor of the blood from the heart into the body. In both of these vessels, the blood moves from behind forwards, and, at its escape from the aorta, traversesthe body in all directions, forming regular currents which have, however, no vascular walls. In this way, it penetrates the antennae, the cxtremities, the wings, and the other appendages of the body, by arterial currents, and is returned by those of a venous nature. All the venous currents empty into two lateral ones ruming towards the posterior extremity of the body, and which enter, through lateral orifices, the dorsul vessel. ${ }^{(1)}$

1 Swammerdamm, Malpighi, and others of the older anatomists, had already formed a pretty exact idea of the circulation of the Iasecta. But, subsequently, it was entively abandoned when it was observed that the dorsal vessel was a closed tube, and servel only as a simple reservoir of the nutritive juices. Carus was the first to demonstrate anew the existence of a circulation which has since been confirmed with all the three stages of insects. See Carus, Entlleck. einez einfachen, vom IIerzen aus beschleuaigt. Blutkreisl. in den Larven netzfüglich. Insekt. 1827 ; Nov. Act. Acad. Nat. Cur. XV. part II. p. 8, Taf. LI. ; and Lelrb, d. vergleich. Zoot. 1834, p. 687; R. Warner, Lsis, 1832, p. 320, 778 ; Burmeister, llandb. \&c. I. p. 164, 436 ; Bowerbank, Entum. Mag. I. 1833, p. 239, IV. 1835, p. 179 (also in Froriep's nene Notiz, XXXIX. p. 149) ; Tyrrell, Philosoph. Trans. 1835, p. 317; Newport, Cyclop. \&c. II. p. 980 ; Milne Edwards, Ann. d. Sc. Nat. 111. 1845, p. 278 ; and Quatrefuges, Instit. 1845, p. 305. This circulation carried on by the dorsal vessel, haviag been observed by so many distinguished naturalists, it is truly incomprehensible that L. Dufour (Recherch. sur les 1 Lémipt. p. 272 ; Recherch. sur les Orthopt. p. 287 ; Anu. d. sc. Nat. XV1. 1841, p. 10 ; Mém. presentes a l'Inst. IX. p. 505, 601) cau persist in denying that the dorsal vessel is anything but a secretory organ which, according to him, has no opening and therefore nothing in common with a heart. IIe cites the authority of Cuvier who was unwilling to accord to the Vas dorsale either the name or the functions of a heart (Cuvier, Mém. sur lamanière dont se fait la nutrition dans les Insectes, in the Mem. d. 1. Sor. (1'IIist. Nat. de Paris, VII. 1793, p. 34, or Reil's Arch. V. p. 97). L. Dufour adduces, moreover, in support of his crroneous view, the following remarl: of Carus (Erlau-

* [§ 340, note 1.] The results obtained by Blanchard have been very satisfactorily confirmed by Agassiz (Procecd. Amer. Assoc. Advancem. Sc. 1843, p. 140, also its translation into French in the Ann. d. Sc. Nat. 1851, XV. p. 353), who lias succeeded in distinctly injecting the tracheac by the dorsal vessel. These experiments I have had the
terungst. IIft. VI. p. 8), "In the perfect Insecta, whose respiration is performed by a system of tracheae traversing the entire body, the circulation of blood would he useless." lut to this it may bc replied, that Carus, by these words, has contradicted his proper observations ; for he has shown that there is a circulation in many perfect insects, as is stated not only in the Nov. Act. Nat. Cur-, loc. cit., but also in the Erlauterungstafeln from which the above citation was taken. At all events, the proposition of Carus is correct, "that ininsects, the blood must come in contact with the atmospheric air, which is accomplished by means of the tracheau system." But this applies only to the small portion of the circulation connectel with the respiratory process; whereas, the larger portion, destined for the general nutritiou of the tissues, does notevideutly require the presence of tracheac. The presence of a real blood-circulation by means of the Vas dorsale, is so easily observed, that tho injections of Blanchard arc scarcely necessary (Compt. rend. XXIV. 1847, p. 870).

If, in certain species, although transparent, these phenomena are not observable, we must not be too hasty in denying its real existence, for the blool, which is uot visible except through its globules, is often so poor in these last, as to elude our observation. Verloren has recently given a very complete résumé of what has been done on this subject, and has alded new and confirmatory observations; see Hollandische Beitr. zu den anat. und. physiol. Wissenschatt. I. IIft. 2, 1, 220; and Mémoire en résponse da la question suivante : ectaircir par des observatious nouvelles le phćnoméae de la circulation dans les Insectes, en recherchant si peut la reconnative dans les larves des diferents ordres de ces animaux, is the Méra. courona. par l'Acad. de Belgiquan, XIX. 1s+7.*
gool fortune to witness, and their character was such as to leave with me no doubt as to the peritracheau circulation. Sec, also, the additional evidence which Blanchard (Compt. rend. Oct. 6, 1851) has recently furnished of a peritíachean circulation, which is very important and weighty. He took advantage of the well-known fuce that sil:: -

The Blood of the Insecta is usually a colorless liquid, though sometimes yellowish, but rarely red. ${ }^{(2)}$ In this liquid are suspended a few very small, oval, or spheroidal eorpuscles, which are always colorless, have a granular aspect, and are sometimes nucleated. ${ }^{(3)}$
The Dorsal Vessel, which is constricted at regular intervals, is always situated on the median line of the abdomen, being attached to the dorsal wall of its segments by several triangular muscles whose apices point outwards. Its walls contain both lougitudinal and transverse fibres, and, externally, are covered by a thin peritoneal tunic. Internally, it is lined by another very fine membrane, which, at the points of these constrictions, forms valvular folds, so that the organ is divided into as nany chambers as there are constrictions. Each of these chambers has, at the anterior extremity on cach side, a valvalar orifice which can be inwardly closed.(4) The returning blood is accumulated about the heart and enters into it during the diastole of each of its chambers, through the lateral orifices. ${ }^{(5)}$ It then passes, by the regularly successive contractions of the heart, from behind forwards into the aorta which is only a prolongation of the anterior chanber. This aorta consists of a simple, small vessel, situated on the dorsal surface of the thorax, and extending even to the cephalic ganglion, where it either cuds in an open extremity, or divides into scveral short branches which terminate in a like manner. ${ }^{(6)}$ The length of the dorsal vessel depends, in all the three states of inscets, upon that of the abdomen. The number of its chambers is very variable, but is, most usually, eight. ${ }^{(7)}$

The blood, after leaving the aorta, traverses the body in currents which

> 2 The hlood is red in many larvae of Cheronomus.

> 3 For the blood of Inseeta, see Wayner, Zur vergleiel. Physiol. d. Blutes, Ift. I, p. 26, Ilft. 2, p. 36, and Isis, 1832, p. 323; Horn, Das Leben d. Blutes, p. 9, Taf. I. and Newport, Institut. 1845, p. 241, or Ann. d. Se. Nat. 111. 1845, p. 364, or Froriep's neue Notiz. XXXIV. p. 9.

> 4 For the strueture of the dorsal vessel, see Straus, Consid. \&e. p. 35̄6, Pl. VIII. (Melolontha vulgaris) ; Wagner, Isis, 1832, loe. eit. Taf. II. (larvae of Diptera and Ephemeridae), aud in Müller's Areh. 1835, p. 311, 'Taf. V. (larva of Corethra plumicornis) ; Newport, Philos. Trans. 1843, p. 272 , and Cyelop. loe. eit. p. 976 , fig. 433 , A. and 434 (Lucanus cervus anl Asilus crabriformis) ; finally Verloren, Mém. loe. cit. p. 31, Pl. 111.-VII. (Chironomus, Sphinx, Rhynchophorus, Pompilus, Syrphus, and Vespa). The

worms fed on different artifieially-colored leaves produeed eorrespondingly colored cocoons. He therefore fed, in the same manner, various larvae, and, upon disseetiou, found not only their blood but also their tracheae colored like the eolor used. With the tracheae, this eolor was deepest at the base, but gradually paled away towards their extremity. What adds a eorroborating value to these experiments is the fact that the museles here remained uneolored, thus showing that this special trachean eoloration was not due to a bathing of the general fluids of the body. Compare also the reeent various notes and papers of Blanchard, in Anu. d. Sc. Nat. - Ed.

* [§340, note 4. \rceil See also, for histologieal de-
eonstrietions of the dorsal vessel are feehly marked with the larvae of the Diptera and Mymenoptera.* 5 According to Newport (Cyclop. loe. eit. p. 977), the spaee in whieh the blood aeeumulates about the heart is surrounded by a very thin membrane, and may therefore be regarded as a true auricle.
6 The Aorta is divided at its extremity with Meloë, Blaps, T'imarcha, Vanessa, aud Sphinx; see Newport, Cyclop. loc. eit. p. 978.
7 With the Orthoptera, Lepidoptera, and their larvae, as also with various larvae of Diptera. It is rare that the numher of chambers exeeeds eight, as, for example, with the Poduridae (Nicolet, loc. eit. p. 50, Pl, IV, fig. 3). More eomuronly there are seven, as with Lucanus and Dytiscus (Newport, Cyclop. loe. eit. fig. 433, A., and Wagner, Ieon. Zoot. Taf. XXIII. ig. 2). Burmeister (Handb. I. p. 165) has observed only four with the larva of a Calosoma.
tails upon the leart, Leydig, Siebold and Kölliker's Zeitsch. 1852, III. p. 446 (larva of Corethra plumicornis). This naturalist has here described a new and peculiar kiud of valves, whieh deserve partieular notiee. In the last ehamher of the heart, there are six or eight pairs of roundish, clear hodies, attaehed to the inner surface of the heart by a pedunele. They alternate in their position, one beyond the other, so that, during the systole, two of them are so opposed that the calibre of the ehamber is eompletcly elosed at that point. Each of these eurious valves is only a pedunculated nueleated cell ; see loe. eit. Taf, XVI. fig. 2, c.Ed.
are always extravascular, and in this way bathes all the organs. ${ }^{(8)}$ The nowly-prepared nutritive fluid passes through the walls of the digestive canal in which it is found, into the visceral cavity, and thence directly into the blood. Latterly, this extravascular circulation has been called in question, but its presence may be easily and directly obscrved with very many perfect Insecta and their larvae. The vascular walls supposed to have been seen at certain points, are, undoubtedly, the result of some error of observation or interpretation. ${ }^{(9)}$ This is also true of the pulsatile organs supposed to have been observed in the legs of many water-bugs, and which were thought to affect the circulation. ${ }^{(0)}$

CHAPTER VII.

RESPIRATORY SYSTEM.

§ 341.

The Insecta respire, in all their conditions of life, by means of a system of Tracheae which are spread through the entire body and penctrate all the organs. This system of air-vessels either opens cxternally by stigmata through which the atmospheric air is introduced dircetly, or they have no external communication, but derive the air from the water by means of lamelliform or tubular prolongations with which the tracheac terminate, and which have often becn compared to branchiae. ${ }^{(1)}$ In the first case, they are called Pulmonary tracheac, and in the sccond,Branchial tracheae.

Abstract

8 In the antennae, the legs, the filaments of the tail, and other appendages, the arterial and venous currents are contiguous. But in the wings they are are isolated; and although they may be observed in the nervures of the wings, yet these last should not thereforc be regarded as true bloodvessels, for their cavitics arc only prolongations of the visceral cavity, as is shown by the fact that they are sometimes traversed at the same time by branehes of traeheae. In the memoir of Verloren (loc. cit. p. 76) will be found a very complete account of all the reasons opposing the presence of vaseular walls in Insecta. 9 The same should probably be said about the thin walls which Bowerbank, and Newport (loc. cit.) think they have observed with Ephemera concerning the two lateral currents which run towards the posterior extremity of the abdomen. Another vessel which, according to Treviranus (Zeitsch. f. Physiol. IV. p. 182, Taf. XIV. fig, 13) and Neuport (Philos. Trans. 1834, P. 395, PI. XIV. fig. 9, and Cyelop. loc. cit. p. 980), is found in the larvac and imagines of Lepidoptera above the ganglionic chain, and is the analogue of the supraspiral artery of the Myriapoda ($\$ 29.1$), requires further research, for it may be questioned if such an organ, found only in cextain groups of Insecta, is really a vesseh.

10 Very dissimilar and contradictory opinione have been published on these pulsatory organs. Behn (Müller's Arch. 1835, p. 554, Taf. XIII. fig. 13, 14, or Ann. d. Sc. Nat. IV. 1835, p. 5) has described them with Corixa, Ploa, Naucoris, Nepa, and Ranatra, as thin, movable lamellae attached to the inner wall of the tibiac. Verloren (Mém. loc. cit. p. 82, Pl. VI. fig. 24, 25) has confirmed these observations with the Ciealidae, althongh neither L. Dufour (Ann. d. Sc. Nat. IV. 1835, p. 313) nor Wesmaèl (Bullet. de l'Aead. de Braxell. III. p. 158) has been abte to discover them in the water-bugs above cited. It is possible that these apparent pulsations are produced simply by the contraetions of neighbormg muscular fibres.
1 See Burmeister (Iandl) \&c. I. p. 179 ; Ler cordaire, Introduct. \&c. II. p. 89 ; and Newport, Cyclop. loc. cit. p. 983). These organs have not the structure of true branchiae, and the blood is not subjected in their interior to the respiratory act, as is shown by the small quantity of this fluid which traverses them. These false branhiae are evidently designed to recoive air, or, to speak more properly, to act, through exdosmosis and exosmosid, in the transference of air from the water into the tracheaeu system. Dugets (Traité de Physiol. IL. p. 519) is thercfore correct in terming them Branchies trachéales.

The tracheae are cylindrical tubes of variable size, which often form, in their course, vesicular dilatations and numerous anastomoses. They divide, like blood-vessels, into many branches which gradually decrease in size, ending, at last, caecally, so that the expired air passes out by the same way that it entered.
The intimate structure of these organs is remarkable, and has always attracted the attention of anatomists. ${ }^{(2)}$ When filled with air they present a beautiful, silver appearance. Externally, they are invested with a thin transparent, colorless, or very rarely brownish membrane, corresponding to a peritoneal envelope. ${ }^{(3)}$ Internally, they are lined with another membrane still finer, which presents a lamellated epithelial structure. ${ }^{(4)}$ Between these two membranes is situated a solid spiral filament whose turns are usually near together. This filament is sometimes cylindrical, sometimes flattened, usually transparent and colorless, and in a few instances only, of a dark color. ${ }^{(5)}$ Often, its course is unbroken for a long distance, and rarely is its extremity forked. The new threads always begin between the turns of the preceding one, as may be easily observed at the commencement of each trachean ramification. In the ultimate trachean branches, these threads gradually decrease in size, and at last become indistinct. In the vesicular dilatations of the tracheae, with many Insecta, the spiral thiread is often wholly wanting. ${ }^{(6)}$ *

§ 342.

The Branchial tracheae are found only in certain aquatic larvae and pupae, and never in the perfect Insecta. The absence of stigmata here is compensated by the existence of false branchiae (Branchiae spuriae seu tracheales), which are cylindrical, or riband-like organs covered by a very

> 2 For the internal structure of the tracheae, sce, beside the works of Burmeister, Lacordaire, and Newport, that of C. Sprengel, Comment. de partib. quibus Insect. spiritus ducunt, 1815 ; Suckow, in Heusinger's Zeitsch. H. p. 2t, Taf. I. fig. 10 ; Straus, Consid. \&c. p. 315, Pl. VI. fig. 5; Newpurt, Philos. Trans. 1836, p. 529 ; and Platner, in Müller's Arch. 184t, p. 38, Taf, III.
> 3 This membrane is brown in the Tibellulidae and Locustidac ; this coloration is due to a finelygranular substance contained in the membrane.
> 4 See Platner, loc. cit. Most anatomists regard this internal membrane as mucous. This being admitted, it was very natural to suppose that it, like that of the lungs of the Vertebrata, is covered with cilia. But here, as well as in other regions of the
body of insects, there is no trace of ciliated eplthelium, which, indeed, would be incompatible with the presence of chitine. Peters (Muiller's Arch. 1841, p. 233) was certainly deceived when he thourht he obscrved ciliary tnovements in the tracheae of Lampyris, Coccinella, Musca, and other fusecta. Ile has himself admitted that he was not able to distinguish the cilia. For my part, I have sought in vain for this movement it the tracheac, and Stein (Vergleich. Anat, u. Physiol. d. Insekt. 1847, p. 105) has been equally unsuccessful.
5 The tracheae of the larrae of the Dytiscidac owe their black color to the spiral filaments.
G With the Muscidae, Syrphidae, Vespidae, Apidac, and Mclolonthidas.

* [§341, end.] See, also, for investigations upon the intimate structurc of the tracheae, Dujardin (Comp. read. 1849, p. 674), and Mayer (Ueber dic Entwickelung. des Fettkörpers, der Tracheen, scc. \&c., bei deu Lepidopteren, in Siebold and KölliKer's Zeitsch. I. p. 125). The views of Dujardin are different from those usually received, for he regards the spiral thread not as a special formation, but only a fold-like thickening of the internal membrane, - which membrane is not composed of cells but is a structure analogous to the wing-membrane, and is covered with hairs and points. On
the other hand, Mayer, who has studied the embryonic dcvelopment of these organs, states that the spiral thread is originally a homogeneous membranc, which ultimately splits up into the threads.

This subject of the structure of tracheac has now an additional point of interest, from its relations to Blanchard's views of a peritrachean circulation in the Insecta. In this connection see especially $\boldsymbol{F}^{\prime} \mathbf{i}$ lippí (Annali della R. Accad. d'agricolturo di Torino. V., also Wiegmann's Arch. 1851, Th. II. p. 145). - Ed.
thin eutaneous membrane, and containing one or several finely-divided traehean trunks. These traehean branehiae are either isolated, or fascieulated ; in this last ease, they are often digitiform, or penniform, and their ultimate ramifieations are usually defieient in the spiral filament. All the air-vessels which these branehiae eontain, arise from the larger trachean trunks. These brauchiae oeeur with various Tipulidae, with a Nymphuta, with the Phryganidae, Sialidae, Ephemeridae, Perlidae, Libellulidae, and with the Gyrinidae.

This traehean system is most simple with the larvae of Tipulidae of the genera Chironomus, Tanypus, Corethra and Simulia, as also with some larvae of the Phryganidae, of the genera Rhyacophila and Hydropsyche, where the traeheae, instead of forming eutaneous appendages, are subeutaneous and ean therefore extract air from the water. The larvae of Corethra are distinguished for having in the thorax and abdomen, direetly beneath the skin, two adjaeent traehean vesieles, by means of whieh, very probably, the neeessary renewal of air takes plaee. ${ }^{(1)}$ With the pupae of Simulia, there are two branehial tufts on the sides of the prothorax, eomposed, eaeh, of six to eight long eaceal tubes, whieh eontain each a single simple traehea deficient in the spiral thread. ${ }^{(9)}$ Of the various larvae of the Lepidoptera, living under the water, that of Nymphula stratiotalis, alone, has trachean branehiae. These eonsist of faseieulate filaments situated on the sides of the abdominal segments. ${ }^{(3)}$ With the larvae of Sialis, each of the six, seven or eight abdominal segments has upon its sides an artieulated, filiform thread, containing a traehean vessel, and whieh may, therefore, be regarded as a traehean branchia. ${ }^{\left.()^{1}\right)}$ Most of the larvae and pupae of the Pliryganidae, have, at the same points, one or two filiform, traehean branchiae, rarely ramified, and united in groups of from two to five, whieh stand out towards the baek. ${ }^{(5)}$ With those of the Ephemeridae, eaeh of the anterior abdominal segments has a pair of these branehiae whieh are sometimes ramified in the most varied manner, and sometimes eonsist of two kinds, some being lamelliform and alternating with the others whieh are faseieulate. ${ }^{(6)}$ With all the Ephemeridae, these organs lave movements whieh are sometimes slow and rhythmieal, and sometimes rapid and oseillatory.

With the Perlidae, the branehise are filiform, ramified, and situated on the three thoraeic segments of the larvae and pupae, or bound together in several short faseieuli which eover the base of the legs. ${ }^{(7)}$

Among the Libellalidae, the larvae and pupae of Agrion and Calo-

[^268]chiae are rumose with Hydropsyche, and Rhyacophila.
6 See Swammerdamm, Bib. der Nat. Taf. XIII.XV.; Réaumur, Mem. VI. Pl. XLII.-XLVI.; Degeer, Abhand. II. Taf. XVI.-XVIII.; Suckow, in Heusinger's Zeitsch. II. Taf. 1II. fig. 2I, 22; Carus, Entdeck, eines Butkreisl. loc. cit. 'Taf. III.; and the figures of Pictet, IIist. d. Insect. Névropt. Ephémériues.
7 See the figures of Pictet, Mist. d. Névropt., Perlides. According to Newport (Ann. of Nat. 1list. XIII. p. 2I, or Froriep's neue Notiz. XXX. p. 179, or Amn. d. Sc. Nat. I. 1844, p. I83), these brauchial tufts persist, with Pteronarcys regalis, to the imago state. This would be a very extraordmary anomaty, and shoull be confirmed, for, from the observations of Newport, it does not appar that the tufts of hair situated on the thorax of this Perlide really preserve the structure of branchial tufts.
pteryx are distinguished for having three long, lamelliform branchiae, with a rounded extremity, and situated vertically upon the posterior part of the abdomen. ${ }^{(8)}$

The trachean branchiae of Aeschna, Libellula, and the other Libellulidae, are formed upon a wholly different plan. They are situated in the very large rectum, and consist of numerous epithelial folds which are traversed by a great number of very fine branches of many large trachean trunks. The rectum is, moreover, invested by a very highly-developed muscular tunic, and its orifice has three pyramidal valves which regulate the entrance and the escape of the water required for respiration. ${ }^{(9)}$ Finally, the larvae of Gyrimus have a pair of long branchiac upon the sides of each of the first seven abdominal segments, and two pairs on those of the eight, ${ }^{(10)}$

§ 343.

The tracheae most universal with Insecta are those termed Pulmonary, which are characterized by the presence of stigmata (Spiracula). These last are round orifices or narrow two-lipped openings, situated at various points on the external surface of the body, and which, with many soft-skinned Insecta, are surrounded by a horny ring. Usually, their borders are fringed with small, short, simple or pinnate hairs, ${ }^{(1)}$ and can be opened and shut by means of an internal muscular apparatus; this last is sometimes attached to two inwardly-projecting horny plates. By these means, many Insecta have well-marked respiratory motions, especially of the abdomen. ${ }^{(2)}$

With the larvae of the Lamellicornes, the stigmata have a peculiar organization. They are closed by a horny membrane whose semilunar borders are cribriform for the free passage of air. ${ }^{(3)}$
The larvae of the Oestridae have two large stigmata, covered each by a similar plate or membrane, at the extremity of the abdomen; and with some larvae of the Muscidae, the posterior stigmata are closed in the same manncr, excepting that the membrane is perforated by threc very distinct openings.

Wach stigma is usually the entrance of only a single trachean trunk

[^269]due to the protractilc and retractilc movements of the abdominal segments. Many Lamellicorncs make these respiratory movements before flying, probably that they may fill their trachean system with air.
3 Sprengel (loc. cit. p. 9, Tab. I.) has described very correctly the stigmata of the Lamellicornes. Treviranus (Dic Erschein. und Gesetze d. Organ. Lebens, I. p. 258) thinks that these lamellae are not perforated and that the air enters these trachcae by endosmose, although Burmeister (Iandb. \&c. I. p. 172) says he has observed a single central opening. I have been unable to confirm the statement of Sprengel, and think that chese perforations might easily elude the observation, from their being concealed beneath a kind of net-work on the external surface of these lamellae. L. Dufour (Ann. d. Sc. Nat. XVIII. 1842, p. 173, Pl. IV. fig. 7) has also misapprehended the stigmata of the larvac of Cetonia; for that which he has described as a transverse fissure is only a fold, due to a pressure exercised during the manipulation, on the horny lamella which normally is convex and imperforate in its centre.
which ramifies more or less directly; sometimes, however, several trunks arise from the same stigma. ${ }^{(1)}$

With perfect Insecta, the stigmata are nearly always situated on the sides of the body in the membrane connecting the two segments, being always wanting, however, in the membrane which unites the head and prothorax, and that between the last two abdominal segments. In many cases, they are covered by the borders of the segments. With the Coleoptera, the stigmata are often situated so high upon the back as to be concealed by the elytra. ${ }^{(5)}$ The number and position of the stigmata vary infinitely, and are not invariable in the different conditions (larva, pupa and imago) of even the same species. These variations are the least with the hemimetabolic Insecta. But among the Hemiptera, the Naucoridae and Ncpidae form a remarkable exception in this respect. They have, excepting those of the thorax, only two stigmata at the posterior extremity of the abdomen, and which alonc serve, probably, for respiration when these insects are in the water; with Nepa, and Ranatra, these anal stigmata are situated at the base of a long tube formed by the union of two semicanals. ${ }^{(6)}$ The smatlest number of stigmata, consisting of two situated adjacently at the posterior extremity of the abdomen, occurs with the larvae of the Dytiscidae, Stratiomydae, Conopidae, and some Tipulidae and Tachinariae. Somctimes these two stigmata are situated at the extremity of a longer or shorter Respiratory tube (Sipho), surrounded by a circle of stiff or penniform bristles. In some cases this siphon is very long and articulated, and can be intussuscepted like the tubes of a telescope. ${ }^{(7)}$ When these Insecta become pupae, these stigmata are sometimes remarkably modified. The pupae of Culex lose thcir anal siphon, and accuuire, instead, two others which are infundibuliform and situated laterally between the prothorax and mesothorax. ${ }^{(8)}$ The pupac of Ptychoptera respire by means of a flexible siphon situated in the neck. ${ }^{(9)}$ With the Strepsiptera, the male, as well as the apodal female

[^270] L. Dufour has properly called them false stig-
pupae, respire by two stigmata situated on the sides of the cephalothorax. ${ }^{(10)}$

Most of the acephalous larvae of Diptera have only four stigmata, of which two are situated on the truncated extremity of the abdomen, and the two others, smaller, upon the sides of the second segment of the body. These last have sometimes a tubular form, and with some species, are even divided digitiformly at their extremity. ${ }^{(1)}$ With the larvac of many Syrphidae and Tachinariae, the two posterior stigmata consist of two siphons, which arc often fused into one. ${ }^{(12)}$ The larvac of the Coccidae have only four stigmata situated on the under side of the middle portion of their body. ${ }^{133}$ Most of the larvae of the Colcoptera, Hymenoptera, Lepidoptera, as well as the cephalous ones of the Diptera, have numerous stigmata situated on each side in the middle of the scgments of the body, and which are never wanting, constantly, except with the second and third thoracie, and the last abdominal scgments.

§ 344.

The numerous differences of the trachean system ${ }^{(1)}$ in the various fanilies of the Insecta may be classed under two principal forms.

1. With the first and most common, there are two large lateral trunks upon the sides of which open trunks which arise from the stigmata. From these lateral trunks branch off tracheae to the various parts of the body.
2. With the second form, the trunks which arise from the stigmata or trachean branchiac, dircetly ramify over the organs, but give off, both forwards and backwards, branches of communication to the neighboring trunks. The branches of one and the same segment frequently interanastomose by transverse trunks.

Often these two forms of tracheae coëxist in the same individual. In many cases, the secondary tracheae, in opening into the main trunks, are dilated into a large vesicle, or have upon their course numerous similar vesicles which give the whole system a varicose aspect.

Among the Aptera, the trachean system is of the first form with the Pediculidae, Nirmidac, and Poduridae. ${ }^{(2)}$ But the Lepismidac form an exception in this respect, each of their stigmata opening into a trunk, which, without anastonosing with the neighboring trunks, is isolatedly ramified. ${ }^{(3)}$

With the Hemiptera, the trachean system presents many modifications. The trunks arising from the stigmata, sometimes ramify without anastomosing, and sometimes open into two latcral trunks. The musical Cicadidae

10 See my Meraoir in Wiegmann's Arch. 1843, I. Taf. VlI.

11 See Bouché, Naturgesch. d. Insekt. Taf. V. VI. ; L. Dufour, Ann. d. Sc. Nat. X1I. 1839, Pl. 1I. 1II., and X11I. 1840, Pl. I1I. and I. 1844, PI.XVI.(Tachina, Anthomyia, IIelomyza, Sapromyza, Piophila, \&c.).

12 The siphon is very long, articulated, and situated at the extremity of the hody with the larvae of Eristalis; see Réaumur, Mém. loc. cit. IV. P1. XXX. XXX1I.
${ }_{13}$ See Burmeister, IIandb. \&c. II. Taf. I. fig. 10-12.
1 See, beside the works of Burmeister and Lacordaire, the work of Marcel de Serres, in the Mém. du Mus. IV. p. 313.

2 With the Poduridae, the six trachean hranches given off from the two main trunks, have each an oval dilatation ; see Nicolet, loc. cit. p. 47, Pl. IV. fig. 3.
${ }_{3}$ Guérin (Ann. d. Sc. Nat. V. 1836, p. 374) thinks that the trachean system is wanting with Machilis; but this must be incorrect, for Burmeister (Isis, 1834, p. 137) has observed this system with Lepisma, with which it had for a long time before been sought in vain. I have very distinctly observed it in Machilis, as well as in Lepisma, and its organization is the same in both. The vesicles which, with Machilis, are situated on the sides of the abdominal appendages, and which Guerin thinks are respiratory organs, must have another function.
and the Pentatomidae, have varicose tracheae. With Cicada, there are two of these vesicles situated at the base of the abdomen distinguished for their very large size. ${ }^{(4)}$ With Nepa, the primary trunks pass into the two lateral trunks, and form transverse anastomoses which extend from one side of the body to the other. In the thorax, the two lateral trunks form several large vesicles, between which arise, upon the sides, two other trunks which send an infiuite number of very fine branches to the thoracie muscles. ${ }^{(5)}$

With the Diptera, this system is of the first form. It often presents, espeeially with those having a large and short abdomen, vesieular dilatations of which there are two, situated at the base of the abdomen, very large and distinet, sometimes filling nearly the whole abdominal eavity. ${ }^{(6)}$ It is, moreover, with the larvae of this order, that this form of tracheae is most completely represented. The two lateral trunks are connected by the same number of transverse anastomoses as there are segments of the body. ${ }^{\text {(i) }}$

With the Lepidoptera in all their states, this system is also of the first form. ${ }^{(8)}$ With the inagines of some Sphingidae, Bombyeidae and Noetuidae, whose flight is continual, there are numerous vesieular dilatations and appendages of the tracheace. ${ }^{(9)}$

The tracheae of the Hymenoptera, which, throughout, are of the first form, send off from their two principal trunks numerous transverse auastomoses, and usually present vesicular dilatations at many points. ${ }^{(10)}$ Of these last, those situated on the abdominal portion of the two trunks are very large, and often eontiguous, so that the trunk to which they belong appears like a large sae constricted from point to point. ${ }^{(1)}$ Sometimes there are only two of these vesieles, which are distinguished from the rest by their enormous volume, situated at the base of the abdomen. ${ }^{(22)}$ With the larvae, there are found, pretty commonly, two main trunks eonneeted by transverse communicating tubes. ${ }^{(13)}$

4 See Burmeistcr, Mandb. \&c. If. Taf. I. fig. 10-12 (Coccidae) ; L. Dufour, Recherch. loc. cit. Pl. XVII. fig. 194 (Tetyra), and Carus, Analekt. \&c. p. 156 (Cicado).
5 see L, Dufour, Recherch. \&c. 1. 24t, Pl. xyif1.
G With the Muscidae, Syrphidae, Tabanidae, Asilidae, Leptidae, \&c. For the trachean system of the larva and pupa of Sorcophago haemorrhoidalis, see L. Dufour, Mém. présentés, \&c., IX. p. 5 I2, PI. II.

7 S'wammerdumm, Bib. der Nat. Taf. XL. fig. 1 (larva of a Stratiomys) ; Bouché, Naturgesch. d. Insekt. Taf. V1. fig, 1 (harva of an Anthomyia), and L. Dufour, Ana. d. Sc. Nat. XIf. 1839, l'. I.-1 II.

8 Lyonet, Traite, PI. X. X1. (larva of Cossus ligniperda). White the Syrphidae and Muscidae are passing into their pupa-state, the posterior stigmata disappear, the two anterior ones alone remaining active. With the Syrphidae these last often appear as two short tubes insertal on the cervical region.
${ }^{2}$ See Sprengel, loc. cit. Tab. III. fig. 24 (Sphinx ligustri). Sometimes the number of thesc append-
ages is reduced to two large aëriferous reservoirs
situated in the thorax; see Succow, Anat. physiol.
Untersuch. Untersuch. p, 36, Taf. VII. fig. 30 (Gastropacha pini).
10 These dilatations are wanting with the Cynipidae, Chalcididae, and some 1chneumonidae. For the trachean system of the Hymenoptera in general, see L. Dufour, Recherch. sur les Orthopt. p. $371 .{ }^{*}$
11 With the Apidae, Andrenidre, Vespidae and Bembecidae; see Brandt and Rotzcburg, Mediz. Zool. II. Taf. XXV. fig. 30 (Apis mellifica), and Newport, Philos. Trans. 1836, Pl. XXXVI. or Cyclop. Sc. II. fig. 436 (Bombus terrestris).

12 With many of the Tenthredinidae, with Myrmosa, Scolia, Crabro, Pompilus, Sphex, \&c.
13 See Swommerdantm, Bib. der Nat. Taf. XXIV. fig. 1 (larva of a bee). According to the observations of Ratzeburg (Die 1chneumon. d. Forstinsekt. p. 63, 81, Taf. IX.), the parasitic larvae of Microgoster aud Anomolon are very singular. When young, they have no traces of tracheae, and respire, perhaps, by means of a caudal appeudage enveloped by a thin membrane.
vesicles serve chicfly to enable the insect to alter its specific gravity at pleasure during fight, and thus diminish the muscular exertion required during these movements. - Ev.

[^271]The true Neuroptera, in all their states, have a pretty simple trachean system provided with two lateral trunks. But with the Orthoptera, on the contrary, this system is usually very complicated. It is, indced, less so with the Blattidae, Forficulidac, Ephemeridae, and Perlidae; ${ }^{(4)}$ but with the Libellulidae, the two lateral trunks are very large and arise from the trachean branchiae together with two other trunks. ${ }^{(9)}$ With the other Orthoptera, the tracheae are very numerous and disposed according to the second type or form, their trunks being connected by a multitude of voluminous, longitudinal, and transverse anastomoses, giving the whole a reticulated aspect. ${ }^{(6)}$ With the Acrididae, most of the transverse anastomoses have large air-reservoirs on their course. ${ }^{\text {a7) }}$

With the Coleoptera, the tracheae are always highly developed, and disposed, with the larvae, after the first type, but with the imagines, after the second. ${ }^{\text {as }}$ With these last, the anastomosing canals, which connect the primary trunks, are often double. ${ }^{(19)}$ With the Palpicornes, and Lamellicornes, this system is most highly developed, - the fine as well as the larger tracheae having a multitude of terminal vesicles. ${ }^{(2)}$

CHAPTER VIII.

ORGANS OF SECRETION.

I. Urinary Organs.

§ 345.
The Malpighian vessels, which are widely spread among the Insecta in all their conditions, ${ }^{(1)}$ must now, since uric acid has been detected in their secretion, be regarded as Kidneys. ${ }^{(2)}$
14 See Swammerdamm, Bib. der Nat. Taf. XIV.
and Carus, Entleck. \&c. Taf. III. (larva aud pupa
of an Ephemera).
15 Suckow, in Heusinger's Zeitsch. II. Taf. I.
II. (larva and imago of an Aeschna).
1f. With the Locustidae, Achetidae and Mantidae ;
see L. Dufour, Recherch. sur les Orthopt. \&c. p.
269, Pl. I. fig. 1 (Oedipoda), and Marcel de Serres,
Mém. du Mus. 1V. p. 331, Pl. IV. (16) (Mantis),
also in 1 sis, 1819, p. 627, Taf. IX.
17 Marcel de Serres, loc. cit. Pl. III. (15)
(Truxalis), and L. Dufour, loc. cit. PI. I. (Oedi-
poda).
18 See Burmeister, Trans. Entom. Soc. I. Pl.
XXIV. fig. 9 (larva of Calosoma sycophanta),
and Audouin, Ann. d. Sc. Nat. 1X. 1826, PI.
XLIII. fig. 3 (Lytta vesicatoria).
19 See L. Dufour, Ann. d. Sc. Nat. VIII. 1826,
p. 23, Pl. XXI. bis. fig. 1, and Pictet, Mém. de
Geneve, VII. p. 397, fig. 6 (Hammaticherus
heros).
${ }^{2} 0$ Swammerdamm, Bib. der Nat. Taf. XXIX.
fig. 9 (Geotrupes nasicornis), and Straus, Con-
sid. \&c. Pl. VII. (Melolontha vulgaris). See,
also, for the Coleoptera in general, L. Dufour,
Ann. d. Sc. Nat. VIlI. 1826, p. 22.
1 As yet only Coccus, Chermes, and the Aphi-
dilue, heve been found wanting the Malpighian ves-
sels; see Ramdohr, Verdaungswerk, d. Insekt. p. 198, Taf. XXVI. and L. Dufour, Recherch. sur les Hemipt. p. 116, fig. 114. I have been unable to find them with the Strepsiptera in their. various stages of development. The male imagines of Xenos Rossii, alone, have presented to me, at the extremity of the digestive canal, a singular glandular appendage resembling a cribriform lobe, and which serves, perhaps, as a urinary organ.
2 For a long tine the Matpighian vessels wore regarded as biliary organs, when Rengger expressed the opinion that they were urinary organs. without, however, having demonstrated the presence of uric acid in their secreted product (Physiol. Untersuch. über die Maushalt. der Insekt. 1817, p. 27). This chemical proof was furnished by Brugnatelli and Wurzer (Meckel's Deutsch. Arch. II. 1816, p. 629, and IV. 1818, p. 213), with Bombyx mori. Subsequently, the existence of this acid has been confirmed by Chevreul with Melolontha vulguris (Straus, Consid. \&c. p. 251), and by Audouin with Lucanus cervus and Polistes gallica (Ann. d. Sc. Nat. V. 1836, p. 123). See, also, Meckel, Ueb. die Gallen - und Harnor. gane der Insekten, in his Arch. 1826, p. 21, and Groshans, De System. uropuët., quod est Radiat. Articulat. et Mollusc. Acephalorim. 1837, p. 39.

These always eonsist of several very long small tubes which, either separately, or by means of one or two common excretory ducts, are inserted upon the postcrior or pyloric extremity of the stomach. These ducts are sometimes dilated, bladder-like, at their point of insertion. The opposite extremity of these uriniferous canals either terminates caecally, or passes arcuately into that of another. When, as is usual, they are very long, they conbrace the digestive eanal with numerous irregular convolutions. With certain species, they creep, by their anterior extremity, between the tunics of the stomach, or by their posterior between those of the colon ; this remarkable relation has often led to the opinion that these organs have two outlets into the digestive eanal. ${ }^{(3)}$

These vessels are yellowish or brownish in color, and often slightly varicosc. ${ }^{(4)}$ They are composed of an external homogencous tunic filled internally with cells. These last are very large, and are disposed rather in rows, than adjacently; and nowhere can there be perceived in the interior of the vessels a glandular canal defined by a special epithelium. Each cell contains a clear, colorless nucleus, and a multitude of very fine granules which appear black by direct light, but by reflected light present a dirtyyellow or brown, rarely a green or red, aspect. ${ }^{(5)}$ The granular contents of the cells, which give to these vessels their peculiar color, are seattercd, when the cells are ruptured, through the intercellular spaces, and flow gradually into the digestive canal, Thus excreted, they accumulate in the eolon or in its caecal appendage, and are evacuated with the faeces, or separatcly, as a troubled liquid of a eolor varying according to the species. ${ }^{(6)}$

§ 346.

The Malpighian vessels present numerous modifications as to their number, their length, their points of insertion, and their modes of grouping, in the different orders of the Insecta. ${ }^{(1)}$

With the Aptera, they are of median length; with the parasitic species, and with the Lepismidae, they are four in number; and six with the Poduridac. ${ }^{(2)}$

The Hemiptera have never more than four of these vessels, which are pretty long, whose extremities are looped with the Hydrocorisae and many

3 L. Dufour has clearly demonstrated the usual cascal terminations of these vessels; see Ann. d . Sc. Nat. XIV. 1840, p. 231, Pl. NI. fig. II (larva of a Mordella), and X1X. 1843, p. 155, Pl. VI. fig. 9 (IIammaticherus heros).

4 The urimiferous canals of Melolon tha vulgaris and Sphinx ligustri form, in this respect, a remarkable exception. In a great part of their course, they have on each side short caeca, pectinately disposed; sce Ramdohr, Abhandl. \&c. 'Taf. VIII. firs. I, 2; L. Dufour, Ann. d. Sc. Nat. III. 1823, Pl. Xly.fig. 4, 5; Siraus, Consid. \&c. Pl. V. fig. 6, 10 (Melolontha); and Newport, Cyclop. loc. cit. p. 974, fig. $432(\text { Sphin } x)^{*}$
${ }^{5}$ For the intimate structure of these vessels, see H. Mectel, in Miller's Arch. 1846, p. 41, Taf. II.

6 With the holometabolic Insecta, the urine is evacuated isolately, especially when they approach the completion of their pupa-statc. It is well known that the Lepidoptera, when bursting from their pupae, emit a considerable quantity of urine, of a variable color. In the larva and pupa of

Myrmeleon, it is gradually accumulated to a large quantity of a rose-color, in the digestive tube, and which the perfect insect immediately discharges on leaving the pupa-envelope, as a sollat or clongat ovoid body. Réaumur (Mém. V1. 10 mem . P]. XXXIV. fig. 12, 13) and Roesel (Ins istenbelust. 1II. p. 123, Taf. XX. fig. 28, 29) have taken thin wrinary concretion for the egg of this inscet. Sometimes there is precipitated in the urine, red crystals of a quadra-pyramidal form; for example, with the larvae of Sphinx and Ephemera.
1 For these modifications in the different orders of Insecta, see the figures belonging to Ramdohr's work (Verdauungswerkz. \&c.) ; those of Suckow, in Ieusinger's Zeitsch. III. and L. Dufour, Sur les vaisseux biliares ou le foie des Insectes, in the Ann. d. Sc. Nat. XIX. 1843, p. I 45 , Pl. VII.-1X.
2 See Treviranus, Verm. Schrift. II. Taf. III. fig. I (Lcpisma), Swammerdamm, Bib. der Nat. Taf. 11. fig. 2 (Pediculus), and Nicolet, loc. cit Pl. IV. fig. 2 (Podura).
of the Geocorisae. ${ }^{(3)}$ With some species, their excretory ducts form one or two vesicular dilatations situated above the colon. ${ }^{(4)}$. It is only with a few Geocorisae, and with the Cicadidae, that the extremities of these canals are free. ${ }^{(i)}$ With this last group, and with the Cercopidae, they creep with a portion of the intestine, between the tunics of the ante-stomach, before opening into the lower extremity of the true stomach. ${ }^{(5)}$

With the Diptera, there are four long uriniferous vessels. The Culicidae and Psychodae, alone, by exception, have five. ${ }^{(7)}$ With very many species, these canals are united in twos, and open, by a common exerctory duct, into the lower extremity of the stomach. ${ }^{(8)}$ Loop-like anastomoses occur only with the Tipulidae, Leptidac, and Bombylidae. ${ }^{(9)}$

With the Lepidoptera, there are nearly always six long, free, uriniferous tubes, which open into the stomach by two excretory ducts. ${ }^{(10)}$

The Hymenoptera are distinguished for their considerable number of these vessels, which are usually short and surround the pylorus in numbers of twenty to one hundred and fifty. ${ }^{(11)}$ With the Orthoptcra, these vessels are inserted in a similar manner, ${ }^{(2)}$ but are often much more numerous. ${ }^{(13)}$ The Termitidae, alone, form an exception, -having only six. ${ }^{(4)}$.

The true Neuroptera are distinguished from the Orthoptera in that their vessels of this nature are long, flexuous, and only six to eight in number. ${ }^{\left({ }^{(5)}\right)}$

With the Coleoptera, they are usually long, make numerous convolutions, and never exceed four or six in number. ${ }^{(t 6)}$ When four, they are nearly always joined by twos at their extremity; and when six, they are often attached by their extremities to the colon. ${ }^{(17)}$

The urinary vessels of the larvae and pupae resemble somewhat those of the perfect Insceta. ${ }^{(18)}$ With the larvae of certain Hymenoptera, and Orthoptera,

[^272]12 With the Ephemeridae, alone, the form of these canals is somewhat different, in that their free extremities are nearly always thickened, and that the excretory ducts take one or two spiral turns.
13 See L. Dufour, Recherch. sur les Orthopt. \&c. PI. I.-IV. XI. XIII. Gryllotalpa is distinguished from the other Orthoptera in that the urinary canals are disposed fasciculate and terminate in a single excretory duct.
${ }^{14}$ L. Dufour, Recherch. loc, cit. PI. XIII. fig. 196.

15 L. Dufour, Ibid. Pl. XI--XILI. There are six of these vessels with the lluyganidae, Sialidae, Panorpidae, Rhapididae : and eight with the Myrmeleonidae and IIemerohidae.
16 There ane four urinary vessels with the Carabidae, Staphylinidae, Gyrinidae, Palpicornes, Lamellicornes, Cantharidae, and Buprestidae; six with the Byrmidae, Nitidulidae, Dermestidac, Cleridae, Meloidae, P'yrochroidae, Bruchidae, Bostricidae, Capricornes, Chrysomelidac, and Coccinellidae.
${ }^{17}$ For the uriniferous canals of the Coleoptera, see, beside Ramdohr, and Suckow, loc. cit., L. Dufour, Ann. d. Sc. Nat. 1824, 1I.-IV. ; 1834, I. PI. II. III.; I840, XiII. PI. V. VI.; XIV. Pl. XI.; XIX. Pl, VI. With Donacia, the six vessels have a very peculiar aspect. Two pairs unite loop-like at their posterior extremities, and their anterior ends undte in a common reservoir ; while the third pair are free and open isolately at the pylorus; see L. Dufour, Ann. d. Sc. Nat. 1824, IV. PI. VII. fig. 7, 8, and 1844, XIX. Pl. VII. fig. 10.

18 Beside Ramdohr, and Suckow, loc cit., see L. Dufour, Ann. d. Sc. Nat. XII. 1839, Pl. I.; XIII. Pl. V.; and XVIII. Pl. IV. (Iarva of a Tipulide, a Sapromyza, a Pyrochroa, and of a Cetonia, \&c.); De Haan, Nouv. Ann. du Mus, IV. I'l. XVI.-XIX.
alone, their number is smaller, ${ }^{(9)}$ and with those of the I䛖idoptera, the extremities of the six tubes of this kind are insinuated between the tumics of the colon; while, with the imagines they are free. ${ }^{(20)}$ With the Buprestidae, the larvae have six, but the imagines only four, of these vessels. ${ }^{(2)}$

II. Organs of Peculiar Secretions.

§ 347.

A great number of the Insecta, in both their larval and their perfect state, have glandular organs which secrete very varied products remarkable for their specific properties.

Many specics have a secretory apparatus analogous to the cutaneous glands of the Vertebrata, which have received the name of Glandulae odoriferae. These consist of round follicles situated under the skin, whose very short excretory ducts open between the segments of the body, or between the articulations of its extremities. Their product emits a powerful odor, and, with some species, is evacuated in the form of droplets, ${ }^{(1)}$ or, with others, covers the whole surface of the body, being perceived only by its odor. ${ }^{(2)}$ The disagrceable odor emitted by the Bugs is due to a fluid secreted by a single, ycllow, or red pyriform gland, situated in the centre of the metathorax, and opening betwcen the posterior legs. ${ }^{(3)}$ With other Insecta, there are analogous secretory organs, concealed in the posterior extremity of the abdomen, which copiously emit a fetid, troubled liquid, through an orifice situated by the side of the anus. These Anal Glands are usually double, and consist of simple follicles whose secretory product accumulates in round, or oblong contractile reservoirs. ${ }^{(4)}$ With many
(larva of various Lamellicornes); and Burmeister, Trans. of the Entom. Soc. 1. PI. XXIV. fig. 10 (larva of a Calosoma), and lis Abhandl. z. Naturgeschichte d. Calandra, loc. cit. fig. 3.

19 The larvae of the Apidae and Vespidac have only four urinifcrous vessels; see Swammerdamm, Bib. der Nat. Taf. XXIV. fig. 6 (barva of a bee); Suckow, in Heusinger's Zeitsch. 111. Taf. V1. dig. 180, and Ramdohr, loc. cit. Taf. XII. (larva of a Vespa); finally, Rathké, in Müller's Arch. 1844, p. 36, Taf. 11. (Iarva of a Gryllotalpa).

20 See Lyonet, Traite, \&c., ll. X11I., and Suckow, Anat. u. physiol. Untersuch. Taf, II.

21 See L. Dufour, Ann. d. Sc. Nat. XIV. 1840, p. 114. Loew (Entom. Zeit. 1841, p. 37, fig. 3) did not, probably, observe these canals in the larva of Buprestis mariana; for, otherwise, he would not have regarded as such the two caecal appendages at the upper extremity of the stomach, and which the Buprestidae have also in their imago-statc (sec § 338).

1 With Euprepia, and Zygaena, a fluid of this kind, yellowishly transparent, exurles under the collar; and with many Meloildae, Chrysomelidae, and Coccincllidae, it escapes from the kace-joints. The larvae of these last Coleoptera, as well as those

[^273]of many Tenthredinidae, emit droplets of fluid from the surface of their skin from the least touch. Very often the odor of this fluid remiads one of fresh poppy-juice. The fluid emitted from the cephaloprothoracic articulation, with Colymbetes and Dytiscus, has a very nauscating order. I am unable to decide whether or not the transparent liquid which escapes with varbous Aphididae through two tubes on their abdomen, belongs to this same category of secretions.
2 Certain Pluryganidae, Hemerobidac, Crabronidae, Scoliadae, lchnemonidae, \&c., emit specific odors without the sccretion of their Glandulae odoriferae being visible.

3 Sec L. Dufour, Recherch. loc. cit. p. 266, Pl. XVII. fig. 194. Moreover, the opiaion that all the Bugs emit a bad odor is incorrect; for with many, as for cxample Syromastes, the Glandulac odoriferae exhales a very agrceuble odor resembling that of a fine bergamot pear.*

4 These anal glands, which Burmeister (Handb. I. p. 157), Grant (Outlines, \&c., loc. cit. p. 584) and other anatomists have mistaken for urinary organs, consist, with the Dytiscidae and Gyrinidae, of two simple, long and flexuous caeca, whose reservoirs, having two short excretory ducts situated
abdomen. They open externally between the coxae of the posterior legs. See Leidy, loc. cit. p. 64. - Ed.

Coleoptera, these anal glands seerete a eaustie fluid whieh has a penetrating and more or less aromatie odor. They are somewhat ramified, or eomposed of vesieles disposed botryoidally, and open into one or several long, exeretory duets. ${ }^{(5)}$ These last open in to two pyriform, museular reservoirs, whose powerful contraetions expel, as a means of defenee, the seereted fluid. ${ }^{(6)}$ The Formieidae, also, have, in the anal region, a glandular apparatus from whieh they ejeet a eaustie, aeid fluid. This apparatus is single and eomposed of one reservoir whose neck opens into a simple tube. ${ }^{(7)}$ The larvae of Harpyia, also, defend themselves by ejeeting an irritating liquid seereted by a glandular sae, whieh opens direetly baek of the head on the under surfaee of the first segment of the body.

Among the Itymenoptera, the females of the Vespidae, Fossores, Andrenidae, and Apidae, have, in the anal region, a glandular apparatus whieh seeretes a poisonous fluid introdueed by means of a hollow sting into the tissues of their prey or enemies. ${ }^{(8)}$ This Poison-apparatus is composed of two long tubes whieh are sometimes very ramose. ${ }^{(3)}$ The intimate strueture of these tubes resembles that of the salivary glands. ${ }^{(10)}$ The two poison-glands are sometines isolated, sometimes united into a eommon eanal, and their produet is poured into a pyriform reservoir, whieh has thin but eontraetile walls, whose longer or shorter exeretory duet opens into the sting. ${ }^{(11)}$ This sting is formed by the intimate union of two lateral pieces, and plays in a eleft horny sheath. Often, its extremity is eovered with baekwardly-pointing dentieles. ${ }^{(12)}$ Both the sheath and the sting have, at their base, a peeuliar muscular apparatus by which they are protruded and withdrawn.
near the arms, ejaculate a highly stinking liquid. With the Silphidae, where this apparatus is single, the reservoir opens laterally into the rectum ; see 11 . Meckel, in Müller's Arch. 1846, p. 47, and L. Dufour, Ann. d.Sc. Nat. VII1. 1826, p. 15, I11. Pl. X. fig. $3,4,5$, Pl. X111. fig. 5, 7 (Dytiscus, Gyrinus and Silpha). Witl Gryllotalpa, the anal glands cousist of small lobular bollies inserted on the reservoir which receives their product; see L. Dufour, Recherch. sur les Orthopt, \&c., p. 346, 1'1. 11. fig. 19.

5 With the Carahidae, and Staphylinidae; see L. Jufour, Ann. d. sc. Nat. V1If. 1826, p. 6; 11. Pl. XX, XXI.; Iff. l'l. X.; and VII. Pl. XfX. XX.; J. Micller, De Glandul. Struct. \&c. Tab. I. fig. 13-18; and Stein, Vergl. Anat. u. Physiol. d. Insekt. 1847, Taf. 1. fig. 4, g. g. (Dianous) and Taf. ILI. fig. 3, 1. n. (Oxytelus).
6 With Brachinus, as is well known, this product is so volatile as to immediately become gaseous on its ejection.*
7 See L. Dufour, Recherch. sur les Orthopt. \&c. p. 413, Pl, VII. fig. 86.

8 The Bees, which have a poison-apparatus of this kind, ought to be regarded as femalcs whose genital organs are undeveloped. Many fossorial Hymenoptera, which feed their young with insects,
wound these last with their sting, that thcy may be mastercal, and conveyed the more easily to the nest. Indeed, some carry their prey into their nests transfixed with the sting. (See my Observ. quacd. de Oxybelo atque Miltogramma, 1841, p. 11.) The wound does not always kill the insect, but simply disables it, so that they remain fresh for several days ly the side of the larvae for whose food they are to serve.
9 There are two simple tubes with Vespa, Scolia, Crabro, Halictus, Apis, \&c.; but they are ramified with Pompilus, Philanthus, Larra, Bombus, \&c.

10 For the intimate structure of these poisonglands, see II. Meckel, in Muller's Arch. 1846, p. 45, Taf. 11 I.

11 This poison-apparatus is described more in detail in the works of Swummerdamm, Bib. der Nat. p. 183, Taf. VIII. (Apis); Brandt and Ratzeburg, Mediz. Zool. I1. p. 203, Taf. XXV. fig. 39-42 ; Ramdohr, Abhandl. üb. d. Verdauungswerkz. \&c. Taf. X1V, fig. 5 (Pompilus), and Suckow, in Heusinger's Zeitsch. 11. Taf. XIV. fig. 38, 46 (Apis and Crabro). \dagger

12 Sce Swammerdamm, loc. cit. Taf. XVIfI. fg. 3.

[^274]\dagger [$\$ 347$, note 11.] The poison of the poison apparatus in the IIymenoptera has been investigated by Will (Schleiden and Froriep's Not. 1848, Scpt. p. 17) who found, with Ants, Bees, and Wasps, that this product consisted of formic acid and a whitish, fatty, sharp residuum, the former being the poisonous substance. - ED.

There is another eategory of seeretory organs whieh, with many females, open at the base of the ovipositor, but as they are intimately conneeted with the aet of oviposition, they will be most properly described with the genital organs. ${ }^{(13)}$

A very large majority of the holometabolie Inseeta have, in their larvaestate, silk-organs, the seeretion of whieh they use, some, to weave a eoeoon when about to pass into the pupa-state, or to elose a hollow refuge they have sought; others to fasten together foreign bodies for the fabrication of their retreat. These organs are, therefore, most developed at the period when these inseets approach their pupa-state; but with the larvae of the Psychidae, Tortrieidae, and Lasioeampadae, they are already active during the first epoehs of life. The silk-seereting portion of this glandular apparatus eonsists of two long, somewhat flexuous, thiek-walled caeca, situated on the sides of the body, and eontinuous, in front, into two small exeretory duets, whose common orifice is on the under lip, and usually at the extremity of a short tubular protuberanee. ${ }^{(14)}$ With the larvae of Myrmeleon, the silkapparatus is very remarkable, for the reetum itself is ehanged into a large sae and seeretes this substanee, which eseapes through an articulated spinueret projecting from the opening of the anus. ${ }^{(15)}$

With the Apidae, there is a very remarkable Wax-seereting apparatus. This wax is elaborated by the Workers under the form of thin discs, whieh are formed between the imbrieated posterior legs, without there having been diseovered, as yet, in this region, the orifices of any special glands. It must therefore be supposed that it is produced by an exudation from the thin membranes whieh eonneet the different parts of the legs. ${ }^{(16)}$ Moreover, many other Insecta have seeretory produets which transude through the skin without the existence of any speeial glandular apparatus, and whieh are hardened by the air like wax. These produets are usually whitish, pulverulent, filamentous, or floeculent substances, which eatch upon the surfaees of bodies. ${ }^{(17)}$

13 See § 350.
14 See Roesel, Insektenbelust. III. Class. I. Pupilionum nocturnorum. Taf. IX. (Bombyx) ; Lyonet, Traité, \&c., p. 498, Pl. XIV. XV. (Cossus) sacko a, Anat. u. physiol. Untersuch. 1. 29, Taf. VII. fitr. 3I (Gastropacha) ; Pictet, Recherch. pour servir a l'hist. d. Phryganides, PI. III. fig. 1 (Phryganea). The decrease of these organs during the pupa-state has been very carcfulty detailed by Herold, Entwickelungsgesch. d. Schmetterl., Taf. III. and by suckow, loc. cit. Tuf. IL. (Pontia, Gastropacha).
15 See Rèaumur, Mém. \&c. VI. Pl. XXXII. fig. 7, 8 ; Ramdohr, Abhandl. \&c. Taf. XVII. fig. 1.
16 For the intimate structure of the wax-secreting portions of the skim with the workers of bees, see Treviranus, Zeitsch. f. Physiol. I1I. p. 62, 225 ; and Drandt and Ratzeburg, II. p. 179, Taf. XXV. fig. I8. The production of wax with bees has lately been the subject of much research among French naturalists. Mitne Edwards has advocated the opinion before rejected by him, that this sulstance is secreted by special glands. But L. Dufour, after carefully-matle resoarches, failed to discover them. See the various memoirs on this question in the Compt. Lend. XVII. and in the

Institut. 1843, also in Froricp's neuc Not. XXVIII. XXIX.

It is, moreover, easy to be convinced of the abscnce of these glands with the bee-workers; but if certain Andrenidae are examined, there will be found, on each side of their posterior tibiae, a small pyriform follicle with an cxeretory duct, ata which secretes an oily substance.
${ }^{17}$ These cutaneous secretions are observed with various Coccidae and Aphididae, whose entire bodies they cover with a powdery or woolly substance. With the females of Dorthesia, not only the entire body is covered with a substance which forms a sohd white crust, but also the eggs after their deposition are invested with a similar envelope and thereby glued to the abdomen of the mother. With many malc Coceidae, this secretion forms, at the posterior extremity of the abdomen, a bundle of very diverging, long, white and perishable hairs. With some Cicadidae (Lustra and Flata), the thorax and abdomen are covered, in places, by a kind of mould of a similar origin. The larvae of many Tenthredinidae (for example, Tenthredo ovata), as well as those of certain Coccinelidae (Scymmus), exude a liquid which, upon drying, forms white flocci.*

[^275]copique de la cire, in the Ann. d. Sc. Nat. XIf. I849, p. 250); his observations were mad: upou

The Phosphorescent Organs of the Lampyridae and certain Elateridae, ${ }^{\text {(8) }}$ consist of a mass of spherical cells, filled with a finely-granular substance, and surrounded by many numerous trachean branches. ${ }^{(12)}$ This substance which, by day-light, appears of a yellow, sulphur-like aspect, fills, with the Lampyridae, a portion of the abdominal cavity, and shines on the ventral surface through the last abdominal segments, which are covered with a very thin skin; while, with the Elateridae, the illumination occurs through two transparent spots situated on the dorsal surface of the prothorax. The light produced by these organs so remarkably rich in tracheae, is undoubtedly the result of a combustion kept up by the oxygen of the air of these vessels. This combustion explains the remission of this phosphorescence observed with the brilliant fireflies, and which coincides, not with the movements of the heart, but with those of inspiration and expiration. ${ }^{(20)}$

CHAPTER IX.

- ORGANS OF GENERATION.

§ 348.

The Insecta always multiply by means of genital organs situated in different individuals, ${ }^{(1)}$ and, invariably, are provided with copulatory organs. \ddagger With certain species, namely, with the Apidae, and Termitidae, the females

[^276]ricp's neue Not. No. 583, p. 168, and in Schleiden and Froriep's Not. No. 9, p. 135.*
1 Hartig has declared that certain species of Cynips are hermaphrodites; but Ratzeburg and I have shown that this assertion is based on an erroneous interpretation of the organization of tbe females of Cynips; see Germar's Zeitsch. f. Entom. III. p. 322, Taf. I.; and IV. p. 380, 396.
The true hermaphrodites which have as yet been found in the other orders of insects, notably among the Lepidoptera, ought to be regarded as monsters. Klug (Verhandl. d. Gessellsch. naturf. Freunde in Berlin, I. p. 363, and Jahro. d. Inseckt. I. p. 254), Ochsenheimer (Die Schmetterl. von Europa IV. p. 185) and Lefébure (Ann. d. 1. Soc. Entom. IV. 1835, p. 145) have given a list of the cases of hermaphroditism with insects. See also Burmeister, Ilandb. I. p. $338 . \dot{f}$
\ddagger \§348. $]$ The copulatory organs of the Insecta present wide and manifold variations, as has been shown espceially by the recent researches of Lacaze Duthiers, Recherches sur l'Armure génitale des Insectes, in the Ann. d. Sc. Nat. 1849, XII. p. 353, 1850, XIV. p. 17; also his Recherches sur l'Armure génitale femelle des Insectee Orthoptères, id Ibid. XYII. 1852, p. 207, and Recherches sur l'armure génitale femelle dcs Insectes Hémiptères, Ibid. XVIII, 1852, p. 337, finally the same of the Insectes Névroptères, Coléoptèrcs, Diptères, in Ibid, XIX. 1853, p. 25, et seq. -- Ed.
are much less numerous than the males. In the colonies of Bees, Termites, and Ants, there are, beside the males and females, a multitude of neuter individuals known as the Workers or Soldiers.

The sexual parts of inseets are developed chiefly during the pupa-state; but their rudiments exist alrcady in the youngest larvac, with which the sexes may then be distinguished. ${ }^{(2)}$

The female genital organs persist in a rudimentary germ-like condition with many larvae of Bees, probably owing to the influenee of nourishment, for by increasing that of the workers these last may be raised to the rank of females or Queens. ${ }^{(3)}$

The Aphididae are very remarkable in that they produce, for several successive generations, only females whieh, in thcir, turn reproduce, but viviparously and without the direct influcnee of the males. ${ }^{(4)}$
The genital organs of the Insecta are composed in general, of two symmetrical Ovarics, or Testicles, situated in the abdominal cavity, and of two oviducts, or Deferent canals (Tubae, or Vasa deferentia) which unite in a common exeretory duet (Vagina, or Ductus ejaculatorius) opening baek of

Abstract

2 Herold (Entwickelunysgesch. d. Schmetterl.) has made very interesting researches on this premature development of the genital organs with Pontia brassicac, and which accord with the observations of Suckow (Auat. u. physiol. Untersuch. p. 31, Taf. III. V.) on those of Gastropacha pini. See, also, Herold, Disquisit. de Animal. Vertebr. carent. in ovo format. Tah. I. fig. 9, or Ann. d. Sc. Nat. XIf. I839, p. I86, Pl. VII. fig. 8. To be convinced that in the other orders of Insecta the genital organs are also developed at a very early period, it is only necessary to cast a glance over the figure which Suckow (Heusinger's Zeitsch. II. Taf. X. fig. 9) has given of Aphrophora spumaria, and L. Dufour (Ann. d. Sc. Nat. XIII. 1840, PI. III. fig. 5) of Pyrochroa coccinea. 3 For the origin of the neuters with the Mymenopteri, see Treviranus, Zeitsch. f. Physiol. III. p. 220. In all the bee-workers there are found

* [§348, note 4.] The peculiar economical relations of certain Hymenoptera (Cynips) referred to above bave rcceived some explanation by the researches of Fraucndorf (IIardinger Berichte üb. d. Mittheil. v. Freunden d. Naturwiss, in Wien. IV. p. 247, or Wiegmann's Arch. 1849, Th. II. p. 118), upon Gastropacha lanestris. He gathered two nests of the larvae at the end of June, 1836; by the middle of August the caterpillars had spun up, and on Sept. 18, the first imago appeared, and the second on Dec. 14 ; both of these were males; in the spring of 1837, some twenty individuals of both sexes appeared; others, likewise, in the autumn of 1537 ; others still in the following year, and the last of them on the 4th of March, $1 \$ 42$. The pupastate of the last of the brood was therefore five and a half years, white that of the first was only as many weeks.

In regard to the alleged anomalous reproductive relations of Psyche, they have received the special attention of Siebold, who has quite cleared up the subject (Ueber der Fortpflanzung von Psyche: Lin Beitrag z. Naturgeschichte der Schmetterlinge, in Siebold and K'̈lliker's Zeitsch. I. 1848, p. 93 ; salso in his Bericht üb. die entomol. Arbeiten d. schles. Gesellsch. im J. 1850, or its trans1. in the
vestiges of the ovaries and of the seminal receptacle. See Ratzeburg, Nov. Act. Nat. Cur. XV. part II. p. 613, Tab. XLVII. and my observatiuns in Germar's Zeitsch. IV. p. 375.

4 This mode of generation of the Aphididae (see \$ 350) quickly remiuds one of that which Steenstrup has called Alternate Generation. Certain species of Cynips belong probably to the same catcgory, for their males have yet been undiscovered. Hartig (Germur's Zeitsch. IV. p. 398) has been unable to fond any individuals of this sex among thousands of Cynips folii and divisa. Similar observations have been made by L. Dufour (Recherch. sur les Orthopt. \&c. p. 52\%). It is to me probable, also, that the capacity which many entomologists attribute to Psychc of laying eggs without a previous copulation is an example of alternate generation.*

Transact. of the Entom. Soc. London, I. 1851, p. 234. In the first of these researches made upon the genera Psyche and Fumea, there was no evidence that, with the individuals of these genera, reproduction occurs in an anomalous manner, that is, without the aid of the male; on the other hand, the facts of the well-developed character of the interaal genital organs of the females, and of the capacity of the male to impregnate the female while she is conceated deeply in her case-these precluded the hypothesis of Lucina sine concubitu. But subsequent researches made upon Talaeporia have shown him that, with the individuals of this genus, non-sexual reproduction does occur, presenting similar phenomena and conditions as the generation of the viviparous Aphides. It is proper to remark, however, that the carefully-mate researches and experiments of Speyer upon the genital organs ant mode of reproduction of Talaeporia lichenella, several years before, had shown that two successive generations here occur without the presence of males; see his paper in the Entom. Zeit. I847, p. 18. For the phenomena and their interpretation of the development of the viviparous Aphididae, see my note at § 355 , end. - Ev.
the anus. This duct has several double or single appendages, of which one with the females serves as a seminal receptacle (Receptaculum seminis), or as a eopulatory organ (Bursa copulatrix), while the others, in both sexes, are true secretory organs. The vagina is often prolonged into a horny oripositor, and this same organ modified, with the males, is the Penis.

The Ergs of Insecta are very varied in their forms and colors. Externally, they are frequently marked by prominences and raised lines, forming a very varied, and often a very elegant design. ${ }^{(5)}$ Those of some Cynipidae, Ichneumonidae, and Siricidae, have one of their ends prolonged into a long, straight or curved thread. ${ }^{(6)}$ With some Hydrocorisac they are oblong and their posterior extremity is covered with long. stiff bristles. ${ }^{(7)}$ They have, usually, a very solid chorion, and a thin vitelline membrane. The vitellus is composed of fat-vesicles more or less colored, which communicate their color to the entire egg. The germinative vesicle contains a germinative dot which is often composed of several parts. ${ }^{(8)}$

These eggs are formed after two different types.

1. With the Orthoptera, and various Coleoptera, the germinative vesicle is formed in the posterior extremity of the tubular ovaries, and is gradually surrounded by a mass of granular vitelline substance. This vitelline mass continues to increase until, at last, there is formed on its surface a chorion, at first soft, but which finally becomes solid. During the course of this development, the eggs succeed each other in a row, and in this way advance towards the opening of the ovarian tube. ${ }^{(9)}$
2. With the Lepidoptera, Diptera, Hymenoptera, Neuroptera, Cicindelidac, Carabidae, and Hydrocanthari, the mode of formation is wholly different. The vitelline mass which is disposed around the germinative vesicle, increases in the following manner: Between each two vitelline masses, there appear a group of large vitelline cells whose contents are blended with the subjacent vitelline mass; while, the chorion is developed from a layer of vitelline cells, commencing by its inner portion. It gradually estends over the vitelline mass and cells, and finally, when the vitellus has reached a certain volume, closes at the upper portion of this last. The epoch at which the eggs reach their maturity coincides, with the Lepidoptera, Tipulidae, and Ephemeridae, with the end of their pupa state, so that these insects are able to deposit their eggs as soon as they have cast off their pupa cnvelope; while, with the Libellulidae, the Locnstidae, and especially the Apidae, the eggs are not matured in the ovaries until a long time after. ${ }^{(10)}$

With all Insecta, the sperm contains very active filiform spermatic particles which become immediately stiff and looped when put in water. These particles are developed in large cells whose involucrum finally dis-

[^277][^278]appears, while the spermatie partieles thus formed remain together for some time and finally are united in faseieuli of variable forms. ${ }^{(11)}$

With many speeies, these bundles are disposed one after another, and then united forming long, vermieular bodies. ${ }^{(12)}$ Only gradually, as the sperm mass passes along the deferent eanals, are the spermatie partieles separated to unite again under new and remarkable forms. These last consist of long, penniform bodies, having very singular movements, for their free extremities oseillate to and fro without cessation. ${ }^{(13)}$ A kind of spermatophore is also observed in the female organs of many speeie; belonging to the Lepidoptera, Orthoptera and Coleoptera. It eonsists of a peeuliar hollow body, usually somewhat peduneulate, with pretty solid albumen-like walls, and filled with spermatic particles. ${ }^{(12)}$

I. Female Genital Organs.

§ 349.

The two Ovaries are always composed of a larger or smaller number of tubes, whose free extremities are extremely small, but which gradually inerease in size to their point of insertion on the oviducts. From their eaceal terminations is prolonged a delieate thread, whieh, bound together with the others, serves to attaeh the two ovaries to the thorax. ${ }^{(1)}$ The

11 For the spermatic particles of the Insecta and their development, see my memoir in Mäller's Arcla 1836, p. 30 ; and Kolliker, in the Neue schweiz. Denkschrift. VIIl. p. 24.*

1: See my memoir in Muller's Arch. loc, cit. p. 38, Taf. III., fig. 16-18 (Pontia). These vermiforu bundles are observed not only with all the Lepidoptera, hut also with certain Diptera and Coleoptera; sec Loew, IIorəe anatom. Hft. 1, 1841, p. 26, Tar. II. (Scatopse), and Hummerschmidt, Isis, 1838, p. 358, Tuf. 1V. (Cleonus and various Lepidoptera). This last mentioned naturalist has, however, taken these cords for gigantic spermatic particles, to which he has given the name of Pagiura, Spirilura and Cincinnura.

13 I have discovered these penniform bodics composed of spermatic particles in the Receptaculum seminis of Locusta and Decticus; see Nov. Act. Nat. Cur. XXI. 1845, p. 251, Tab. X1V. XV. Dujardin (Observ. au Microscop. 1842, Pl. XI. fig. 18, 19) had already perceived similar bodies in the male organs of Tettigonia plebeja and Sphodrus terricola. Stein (Vergl. Anat. \&c. p. 106, Taf. 1. fig. 19 (Loricera)) has also found them in the seminal receptacles of the females of various Carabidae.
14 Pyriform, slort-pedunculated spermatophores are found in the Receptaculum seminis of the

* [\$348, note 11.] The spermatic particles of the Insecta are described above, as well also by Wagner and Leuckart (loc. cit. Cyclop. Anat. and Plyys.), as being invariably filiform. This is incorrect: it is true they are generally so; as, for instance, with all the Coleoptera, Lepidoptera, Diptera, Aptera, 1Kemiptera ; but with some families of the other orders (the Ilymenoptera, Neuroptera and Orthoptera) their form is quitc different, and I am only surprised that it has not before hecn noticed. Thus, with the Libellulidae, Ephemeri-
fecundated females of Locusta and Decticus (see my memoir in the Nov. Act. Nat. Cur. loc. cit. p. 262, Tab. XVI. fig. 14, 15), while those observed in the Bursa copulatrix of many Lepidoptera are round and long-pedunculated. With the Colcoptera, spermatophores are often found, also, in the copnlatory pouch of the fecundated females. Their forms vary consilerably, and I may mention specially those of Clivina fossor, which are elongate and remarkable for their very long and twisted peduacle; see Stein, loc. cit. p. 91, Laf. I. V11. VIII. The older entomologists took these spermatophores for the penis which was detached in the copulatory act - an opinion which I myself formerly entertained (Müller's Arch. 1837, p. 399 419) ; but, since, I have learnerl the truc nature of these bodies, and the rectification of this error, made by Stein (loc. cit. p. 86), is perfectly correct.

1 For the different dispositions of these tubes, sce J. Muller, Nov. Act. Nat. Cur. XII. p. 585; Burmeister, Mandb. I. p. 199 ; and Lacordaire Introduct. \&c. I1. p. 329. The ovaries of the Strepsiptera are organized after a wholly different type. The smplicity of the female organs here is very remarkable, and in this respect they hold an exceptional position. The two ovaries are, at first, two lony bodies, composed of innumerable germs. When these last have matured, they are disengaged
dae, Andrenidae, Vespidac, \&c., these particles have the form of those of the Araneae - an arcuate staff, to which is attached a delicate tail; while, with the Phasmidae, they consist of a spoou-shaped head with a very conspicuous tail - indeed, quite resembling those of many of the Rodentia. It is scarcely necessary to ald that in this class these particles are, as is the case with all the other classes of animals, developed in special cells. The whole subject is dceply interesting, in both a histological as well as a zoological point of view. - Ed.
ovarian tubes are, moreover, always enveloped by numcrous traehean networks. (2) Upon their length, whieh is very variable, depends the number of the eggs or germs which are disposed in a single file; and in this way, they may be distinguished as uni-, bi- and multi-lccular. The two Oviduets are usually short and often dilated into a kind of ealyx at their upper extremity, if there are numerous ovarian tubes meeting at this point.

The Seminal receptacle (Receptaculum seminis) is a double or single, solid eapsule (Capsula seminalis) of variable form and surrounded by a muscular layer. It opens into the vagina below the point of junction of the two oviduets, by means of a canal of variable length (Ductus seminalis). This duct has sometimes a simple, or a bifurcatcd appendage (Glandula appendiculuris). ${ }^{(3)}$ The seminal receptacle never contains spermatic particles with those females which have not rejeeted their pupa covering, or especially with those still in a virgin state; but after copulation it always contains a multitude of these particles moving very actively, and these movements are kept up for a long period, as nay be obscrved with those females which live over the winter. ${ }^{(4)}$

The Copulatory pouch (Bursa copulatrix) consists ncarly always, of a spacious, pyriform rescrvoir, whieh, with only a few exceptions, opens into the vagina below the seminal receptacle. During copulation, it receives the penis, and often, also, the sperm which enters either by portions containcd in the spermatophores, or enveloped by a shapeless gelatinous substance. ${ }^{(5)}$

The secretory organs situated at the lower end of the vagina, eonsist, usually, of two rather long, glandular tubes on cach side of the vagina, into which they open, either direetly, or through two small special excretory ducts. They often have, on their course, two vesieuliform reservoirs. In most cases, these glandular organs appear to form a Sebaceous or

Abstract

and scattered through the cavity of the body between the fat-cells. The females are apodal, and the ventral surface of their borly, which resembles that of the larvae, is occupied by a slallow canal (Incubatory canal) which terminates caecally in the penultimate segment of the body, and opens upon the cephalothorax by a semilunar orifice (Genital opening). From this canal pass off into the visceral cavity three to five forward-bent tuhes. The eggs are developed in the visceral cavity, and by these tuhes the young larvae make their exit therefrom; see my Beitr. zur Naturgesch. d. wirbell. Thiere. p. 75, Taf. IM. fig. 62, 67; and Wiegmann's Arcら. 1848, I. p. 1-17. Formerly, I erred in taking the ventral for the dorsal surface with these insects. $2 J$. Muller has taken these filaments for vessels communicating between the ovaries and the dorsal vessel; see Nov. Sct. Nat. Cur. XII. p. 580. 3 For a long time this Receptaculum seminis remained wholly unobserved, or was taken for a Bursa copulatrix, or an organ secreting a viscous substance for gluing the eggs together and to foreign oljects. The older descriptions and figures give, therefore, only an imperfect idea. It is only lately that the constant presence and true nature of this organ have heen recognized (see my memoir in Mruller's Arch. 1837, p. 392, and Stein, Vergl. Anat. \&c. 18t7, p. 96). Yet, at this day, the copulatory pouch and seminal receptacle are frequently confounded together; and L. Dufour, in particulart: persists in lis old error in designating this seminal receptacle as a Glande sébifique.

4 See my obscrvations made upon Vespa (Wiegmanu's Arch. 1839, I. p. 107) and Culex (Ger-

mar's Zeitsch. II. 1840, p. 442). Stein, also (loc. cit. p. 112), has shown that the spermatic particles remain alive a long time in the seminal receptacles of the Coleoptera. The liquid secreted by the accessory gland serves, probably, to keep the spermatic particles fresl, and to prevent them from desiccation. The fecundation takes place undoubtedly when the eggs pass in front of the orifice of the seminal receptacle, which is then probably compressed by an investing muscular apparatus. This long preservation of sperm in the seminal receptacle explains how the females of certain species can lay eggs so long after copulation, and at a time when the males have all dissppeared. The time of the full maturity of the eggs in the ovary, moreover, does not always coincide with that of the leat and copulation with the male. The obscrvations which have been made on this last point have been collected by Muller (Nov. Act. Nat. Cur. XII. p. 624).
5 This copulatory pouch, which, from its large size, was first perceived hy entomologists, is even now often taken for a fecundating sac, or a seminal reservoir (Spermatheca). The spermatic particles are carried, undoubtedly by their own movements, from this copulatory pouch into the Receptaculum seminis; and very probably they begin to travel shortly after copulation, for, a long sojourn in the Bursa copulatrix does not appear advantageous, since those that remain over become stiff and dead-like in the midst of the seminal fluid, which is granulous and viscid. J. Hunter (Yhilos. Trans. 1751), in his experiments on artificial fecundation, was successful only when he took the sperm from the copulatory pouch of the females which had just come from copulation.

THE INSECTA.
Mucous apparatus (Glandulae sebaceae or colleteriae), for they secrete a viscous, coagulable substance, which serves to envelop and glue the eggs together, and to fix them to foreign bodies. With the females of the Ichneunonidae, this apparatus secretes a kind of cement with which these inseets close the wounds they have made in the bodies of the Insecta in which they have deposited their eggs. It is probablc, also, that, with those Insecta which deposit their eggs by means of an ovipositor in the tissues of plants, thereby producing galls, these same organs serve as a kind of Poison-apparatus causing this diseased formation of the vegetable parenchyma.

§ 350.

The different parts of the female genital apparatus present, in the various orders and families, countless modifications as to number, form and disposition. The most important of these are the following :

With the Aptcra, the two ovaries consist each of only four to five tubes, which, with the Pediculidae, open, all, at the top of the corresponding oviduct; while with the Lepismidae, they are separately inserted on the side of the moderately long oviduct. In both of these families, there are two short varicose caeca, whieh enter laterally the lower end of the vagina, and are probably sebaceous or viscous organs. ${ }^{(1)}$ There appears to be here no seminal receptacle or copulatory pouch.

With the Hemiptera, the ovaries consist of four to eight tubes of variable length, disposed verticillate at the extremity of the short oviducts. The Psyllidae and Cicadidae, alone, form an exception in this respect. With the first, the ovaries are composed of ten to thirty unilocular tubes, and with the second, twenty to seventy bilocular ones. These last, moreover, are distinguished by their oviducts being divided into several branches, on the extremity of each of which is a tuft of ovarian tubes. ${ }^{\left({ }^{(2)} \text { Their Recep- }\right.}$ taculum seminis consists of two small caeca. ${ }^{(3)}$ The other Hemiptera have only a single seminal receptacle, which is pyriform with the Psyllidae and oviparous Aphididae ; ${ }^{(4)}$ is a long, slightly flexuous caecum with the Naucoridae, and Nepidae; and a very long, somewhat flexuous caecum with the Hydrometridae. With many Capsidae, and other Geocorisae, also, it is a pretty long and flexuous caecum, while, with the Pentatomidac, the rather short Ductus seminalis terminates in a brownish, horny, pyriform Capsula seminalis, the constrictions and protuberances of which often present a peculiar appearance. Sometimes this tube is dilated into a secoud vesicle, at whose base is a horny tube containing a second tube which is a direct prolongation of the Capsula seminis. ${ }^{(5)}$ Most Hemiptera have no copulatory pouch, - the Cicadidae, alone, having one which eonsists of a narrow-necked, pyriform vesicle. ${ }^{(6)}$ With the oviparous Aphididae,

[^279]and many Geocorisae, the secretory apparatus consists of two round glandular sacs, ${ }^{(6)}$ while, with the Cicadidae, it is a single, long flexuous tube. ${ }^{(8)}$ The viviparous Aphididae differ from those which are oviparous, in that their eight ovarian tubes are multilocular, and their oviducts entirely without appendages; while with the second or oviparous, these cight tubes are unilocular, and there is a seminal receptace and two sebaccous glands. ${ }^{(9)}$

With the Diptera, ${ }^{(10)}$ the ovaries consist, usually, of numerous short, three or four chambered tubes. With only a few species, these tubes are long and have eighteen to twenty chambers. ${ }^{(11)}$ The disposition of these tubes varics considerably. With some, they are simply terminal to the short oviduct; while with others they form one or more series on the sides of these organs, which, then, are longer.

The Receptaculum seminis presents the most varied forms, ${ }^{(12)}$ it is usually, triple, rarely simple or double, ${ }^{(13)}$ and is lined with a horny, brown substance. It has a round, pyriform, or oblong shape, and, in this last case, is often flexuous or spiral. The seminal ducts, which lead from the receptacles to the vagina, are sometimes isolated, and sometimes united into one or two common ducts before entering the vagina. Directly below then on each side, are the points of junction of the two secretory organs, which, always present with the Diptera, consist of two simple, rarely ramose tubes, whose very small excretory ducts have, exceptionally only, a vesiculiform dilatation. ${ }^{(4)}$ The Bursa comulatrix appears to be wanting with all the Diptera. But, with many Muscidae, the vagina has, as a seminal receptacle or uterus, a spaciouk. and sometimes two-lobed reservoir in which the fecundated eggs are accumulated in great numbers, and remain until the larvae are sufficiently developed to be hatched, making these animals viviparous. ${ }^{(15)}$ With certain species of Tachina, this uterus presents a remarkable form ; the vagina is very long, spiral, and of equal size throughout; and, at certain periods, is crowded with larvae or small eggs. ${ }^{166)}$ With the pupiparous Hippoboscidae, the female organs are formed on an entirely special type, corresponding with the remarkable mode of the reproduction

7 See L. Du four, Recherch. loc. cit. PI. XIV. XV.
${ }_{8}$ See Meckel, Suchow, L. Dufour, Doyère, loc. cit.
9 See my researchics in Froriep's neue Notiz. XII. p. 307. Dutrochet (Ann. d. Sc. Nat. XXX. 1833, p. 204, PI. XVII. C. fig. 1), it would appear, has unvittingly figured the genital organs of an oviparous Aphis, by taking the seminal receptacle for a sperm-secreting organ. In this way he was led to regard the viviparous Aphididae as hermaphrodites.
10 For the internal female organs of the Diptera, see L. Dufour, Ann. d. Sc. Nat. I. 1844, p. 253, and especially Loew, llorae anatom. p. 61.

11 Ephydra and Tachina; see Loew, loc. cit. Taf. IV. tig. 3, 10.

12 For the Receptaculum seminis of the Diptera, see Siebold, in Muller's Arch. 1837, p. 414, Taf. XX. fig. 7-10; and especially Loew, loc. cit. 1. 89, Taf. IV.-VI., and in Germar's Zeitsch. III. p. 386, Taf. III.; the numerous figures of this author will give some idea of the inexhaustible variety of forms of these organs. When L. Dufour (Ann. d. Sc. Nat. I. 1844, p. 262) would regard the seminal receptacle as a reservoir of the neighboring secretory organs, it is evident that this distinguished entomotomist must have entirely omitted a microscopical analysis of the substances found in the various glands and other organs of Insecta.

13 The Receptaculum seminis is simple with Pulex, Empis, Dolichopus, and Hilaru; and double with Piophila, Stomoxys and Borborus.

14 See Siebold, and Loew, loc. cit. These glandular appendages secrete with certain Tipulidae a considcrable quantity of gelatinous substance which eavelops the eggs and binds them in a kind of collar. These collars, which are deposited in the water, have for a long time been figured by botanists among the algae under the name of Gloconema.
${ }_{15}$ There are viviparous species in the genera Musca, Anthomyia, Sarcophaga, Tachina, Dexia, Miltogramma, \&c.; see my memoir in Froriep's neue Notiz. 1II. p. 337, and in Wiesmann's Arch. 1838, I. p. 197 ; also my Observat. quaed. Entom. \&c. p. 18. L. Dufour (Ann. d. Sc. Nat. I. 184t, p. 261) has designated this reservoir as Réservoir ovolarvigere ; sce also his Mist. d. Métamorph. ct d. l'Anat. d. la Piophila petasionis, Ibid. p. 382, Pl. XVI. fig. 16, g. Loew (IIorae anatom. Tab. IV. fig. 9, 11, 14, Tab. V. fig. 13) has figured analogous uteriform reservoirs with Musca, Dexia, Piophila and Psila.
16 This long spiral-form vagina, which was formerly described as an ovarium spirule, is found in Tachina fera, tessellata, grossa, vulpina, haemorrhoidalis, \&c.; see my memoir in Wiesmann's Arch. loc. cit. p. 194, and Réaumur, hém. IV. 10 ménı. p. 412, PI. XXIX. fig. 7, 8.
of these animals. The two ovaries are uniloeular pouches of unequal size, inserted laterally, by means of a short oviduct, upon the vagina. The upper extremity of this vagina contains sperm, after copulation, and may, therefore, be regarded as a Receptaculum seminis; while the lower portion is widely dilated, and may, therefore, be considered as an uterus. The upper or narrower portion of the vagina receives two small, sinple, or somewhat ramose glandular tubes (Glandulae sebaceae). ${ }^{\text {(17) }}$ Below these glands are situated the two excretory ducts of a double glandular apparatus, very voluminous and multizamose, whose product serves, without doubt, to nourish the larvae which are provisionally developed in the uterus. ${ }^{(15)}$

With the Lepidoptera, each ovary is composed of four very long, spiral, multilocular tubes. The Receptaculum seminis ${ }^{(19)}$ is pyriform, and often has a long, spiral Ductus seminalis. ${ }^{(29)}$ At its base opens a simple or bifurcated aecessory gland, and underneath it there is always a large, double, sebaceous gland, consisting of two rather long, flexuous, simple caeca. These last open into the vagina, by means of a short common excretory duct, and each, at their point of union, is usually dilated into a vesiculiform reservoir. ${ }^{(12)}$ Some Lepidoptera have, moreover, two smaller ramose glands, situated near the orifiee of the vagina, which seerete, perhaps, an odorous substance that excites the copulatory act. ${ }^{(22)}$ The copulatory pouch, finally, is very remarkable in all the species oî this order. It consists of a large, pyriform reservoir, sometimes constricted in its middle, and having for the reception of the penis, a canal which opens externally by a special orifice situated below the vulva. In its course this canal sends off a small, flexuous, lateral duct, which passes into the vagina opposite the mouth of the Receptaculum seminis, and thus forms a communication between this last and the copulatory pouch. ${ }^{(33)}$

With the Hymenoptera, the ovaries ${ }^{(21)}$ vary very mueh as to the number of their eomponent tubes, of which there are sometimes four to six, sometimes eight to ten, and with some species they range from twenty to a hundred. ${ }^{(23)}$ These tubes are always multiloeular, and never very long. The

[^280]Taf. VI. K. (indistinct). Moreover, Malpighi (De Bombyce, 1669, p. 81, Tab. XII. Gig. 1, J. K. M.) had already perceived, with the silk-worm, all the appendages of the vagina, and specially the copulatory pouch with its camal of lateral communication. With Euprepia Hebe this canal has a pyriform deverticulum.*

24 For the femate genital organs of the Mymenoptera, see L. Dufour, Recherch. sur les Orthopt. \&c. p. 406.

25 Each ovary is composed of three or four ovigerous tubes with Xylocopa, Bombus, Anthophora, Chrysis; of five to sin with Nomada, Sapyga, Chalcis, Vespa; of eight to ten with Pimpla, $\bar{P} a-$ niscus ; of ten to twelve with the Tenthredinidae; of twenty to twenty-five with Myrmica, Xiphrydria and Banchus; and of more than one hundred with Apis. With Chelonus the ovaries present a remarkable exception; they consist each of two long flexuous tubes, which are very widely dilated at their lower extremity. L. Dufour (loc. cit. p. 541, Pl. X. fig. 143) regards these swellings as a kind of uterus in which are developed the larvae of these Ichneumonilae; but this assertion cannot be admitted without further research.
and Kölliker's Zeitsch. 1. 1849, p. 182. This memoir contains many new details. - Ed.

Receptacula seminis is nearly always simple, round, or oroid, and necked, and is eontinuous into a usually short, seminal duet. ${ }^{(26)}$ A Glandula appendicularis is never absent, and eonsists, usually, of a bifureate tube, which opens into the Ductus seminalis, and only rarely into the Capsula seminalis itself. ${ }^{(27)}$

With the Tenthredinidae this apparatus is, moreover, formed after a different type; the seminal vesiele is a simple devertieulum of the vagina, and more or less distinct from it, beside, it is deficient in the accessory gland. ${ }^{(28)}$ The eopulatory pouch is absent with all the Hymenoptera, as are also the Glandulae sebaceae with those females whieh have a sting and a poisongland ; but these sebaceous glands are highly developed with those species having an ovipositor, into which last they open, and probably serve some purpose eonnected with the oviposition, partly as sebaceous, and partly as exeitatory organs. This secretory apparatus eonsists of a simple or a double ramose gland, whose excretory duct receives the neek of a pyriform reeeptaele, or, sometimes, is itself dilated into a vesicular reservoir. ${ }^{\left({ }^{(2)}\right)}$

With the Orthoptera, the two ovaries are nearly always composed of numerous, multiloeular tubes, whiel usually open in a single row upon the internal or external side of two large and sometimes very long ovaries. ${ }^{(30)}$ The seminal receptaele often consists of a simple longer or shorter pedunculated vesiele, whose elosed extremity is dilated into a pyriform vesiele with the Psoeidae, Forfieulidae, Loeustidae, Phasmidae and Mantidae. ${ }^{(31)}$ A similar Capsula seminis is often found with the Aerididae on one of the sides of the Ductus seminalis and removed from its extremity. ${ }^{(32)}$ Most of the Blat-

> 26 For the Receptaculum seminis see Siebold, Observ. quaed. Entom. loc. cit. p. 6, and in Germar's Zeitsch. IV. p. 362, Taf. If. With those females which, at short intervals, lay very many eggs, the seminal receptacle is very large; see Swammerdamm, Bib. der Nat. Taf. XIX. fig. 3, t. u. u., where the Receptaculum seminis of a honey-bee is very well represented.*

> 27 The Glandula appendicularis is simple and inserted on the Ductus seminalis with the Pteromalini and Cynipidae; it is double, and opens firectly into the Capsula seminis, with Vespa :rabo and Tiphia femorata.
> 25 The seminal receptacle is double, exceptionally, vith Lyda.
> ${ }^{29}$ This glandular apparatus is simple and has a ateral pyriform reservoir with various Ichneumonidae; sse L. Dufour, Recherch. Pl. X. fig. 137142 (Pimpla and Bracon). This naturalist calls this apparatus Glande sérifique, as distinguishing it from the Glande sebifque. With Sirex, I have observed the excretory duct of this single and multiramose gland dilated into a large reservoir. With the Tenthredinidae, it is also ramose, hut douhle as well as its vesicular reservoir ; see \boldsymbol{L}. Dufour, loc. cit. Pl. X. fig. 155-157 (Tenthredo and Cimbex).

> 30 With the Locustidae, Acrididae, Mantidae and Libellulidae, the ovarian tubes are inserted upon the internal side, and with the Phasmidae and Ephemeridae, on the outer side of the two oviducts. Forficula gigantea has, moreover, only five internal multilocular tubes, while with Forficula auricularis, the very long oviducts have on all sides a multitude of unilocular tuhes. With Mantis, the ovarian tubes are unilateral, but united together in several bundles. With Oedipoda cerulescens and Truxalis nasuta, the two

* [\$350, note 26.] See also Longstreth (Proc. Acad. Sc. Philad. 1852, VI. p. 49) for some observa-
long, flexuous, caecal oviducts, have tubes only at their lower extremity. The oviducts of Perla bicaudatu are still more remarkable; they are very long, flexuous, and have ovarian tuhes only on one side of their upper extremity, and anastomose in a loop-like manner. For all these differences, see L. Dufour, Recherch. sur les Orthopt. \&c. PI. II.V. and PI. XI. fig. 165, Pl. XIII. fig. 206, and in the Ann. d. Sc. Nat. XIII. 1828, PI. XXI. XXII. (Forficula).
31 With Forficula, and Acheta, the seminal receptacle has a long and flexuous peduncle, which, with the Psocidae, and Locustidae, is shorter. That of Psocus pulsatorius contains several long-pedunculatel, glandular hodies (Nitzsch in Germar's Magaz. IV. p. 281, Taf. II. fig. 3-5), which I formerly regarded as Capsulae seminates (Muller's Arch. 1837, p. 410), but which are probably spermatophores. With Perla, the seminal receptacle is a simple caecum, twisted like a ram's horn, and the base of which supports several short glandular follicles (Glandulae appendiculares?.). For the seminal receptacle of the Orthoptera cited in the text, see especially Roesel, Insektenb. Th. II. Heuschrecken-und Grillen Sammlung. Taf. IX. fig. 3, k. (Decticus); L. Dufour, Recherch. sur les Orthopt. Pl. III. fig. 31, Pl. IV. fig. 43 (Acheta and Mantis) ; and Siebold, Nov. Act. Nat. Cur. XXI. part I. p. 254, Tab. XIV. fig. 1, c. (Locusta).
32 See Hegetschweiler, De insect. genitalihus dissert., fig. V1I. f. e.i and Siebold, in Muller's Arch. 1837, p. 409, Taf. XX. fig. 3 (Gryllus). The Ductus seminalis is usually very long and intertwisted, as, for example, with Gryllus, Truxalis, \&c.
tions on the impregnation of the common honey-bee, as due to a Receptaculum seminis. - ED.
tidae ${ }^{(33)}$ and Libellulidae ${ }^{(33)}$ have a short, double, seminal receptaele, which, however, appears to be wholly wanting with the Ephemeridae. There is a round Bursa copulatrix only with the Libellulidae. ${ }^{(33)}$ The glandular appendages of the vagina are also not found with all the Orthoptera. They are wanting with the Forfieulidae, Phasmidae, Perlidae, Ephemeridae, Libellulidae and Acrididae, but with Decticus and Locusta, there is a sebaceous organ consisting of a simple, pretty long tube, ${ }^{(36)}$ which. with the Aehetidae, is more or less ramose, and with the Blattidae and Mantidae is composed of a considerable number of partly simple, partly ramose follicles. ${ }^{(37)}$

With the Neuroptera, the ovaries consist always of multilocular tubes. With the Hemerobidae, and Myrmeleonidae, there are ten inserted on the external side of the two large oviduets, and with the Phryganidac, their number is quite large, but their insertion on the oviducts is the same. ${ }^{(38)}$ The ten with Panorpa, and the much larger number with Sialis, are disposed vertieillate at the extremity of the oviducts. With Myrmeleon and Panorpa, the seminal reeeptacle is a long, pedunculated sac; and has, with Hemerobius, a single, and with Raphidia, a double Glandula appendicularis. ${ }^{(33)}$ With the Phryganidae, this reeentacle is still more complicated, for, beside a long, tortuous accessory gland, which is inserted on the neck, or at the base of the Capsula seminis, there is, at the lower extremity of the Ductus seminalis, another and flexuous glandular tube, and a shortpedunculated reservoir which eorresponds perhaps to a copulatory pouch. ${ }^{(40)}$ With Sialis, beside two lateral deverticula serving, probably, as copulatory pouches, the vagina has numerous vesicular appendages filled with a dark liquid, but the nature of these is still not understood. (ii) With Myrmeleon, Hemerobius, and Panorpa, the vagina receives two simple, more or less flexuous, glandular tubes, ${ }^{(42)}$ which are probably sebaceous organs, and with the Phryganidae, consist of six digitiform follieles. ${ }^{(43)}$

With the Coleoptera, the ovaries eonsist of trilocular, rarely multilocular tubes, ${ }^{(41)}$ whieh are inserted on the calyciforn upper extremity of the oviducts, in groups of five to ten or even of fifteen to thirty and forty. (4) Beside

33 Blatta orientalis has two short and flexunus seminal receptacles; but Blatta germanica has two large aud two small ones; see Stiphold, in Muller's Arch. 1837, p. 40s.
34 The scminal receptacles of Libellula, Aeschna and Diastatomma consist of two small caeca, which, with Calopteryx, open into the variua through a common duct ; while, with Agrion, there is only a single long receptacle; see Ruthice, De Libellular. partibus genital. 'Tab. I. fig. 11-13, 'Tab. II. fig. 12-14, and Tab. III. fig. $9-11$, c, and L. Dufour, loc. cit. Pl. XI. Hig. 1654.d. (Libellula, Aeschena and Agrion). See also my memoir on the generation of the Libcllulidae, in Germar's Zeitsch. 1. p. 433.

35 See Rathké, loc. cit. Tab. I. fig. 11-13, Tab. II. fig. 12, 13, ant Tab. III. fig. 9-11, 1 .

36 See Roeset, loc. cit. Taf. IX. fig. 3, i., and Siebold, Nov. Act. Nat. Cur. loc. cit. p. 255, 'Tab. XIV. fig. 1, e.

37 Sse L. Dufour, Recherch. \&c. Pl. III. fig. 31, d. (Oecanthus), PI. IV. fig. 43 (Muntis). It is not surprising that this wax-apparatus is so highly developed with the Blattidae and Mantidae, for, as is known, the females of these insects surr.und their eggs with very spacious, multilocular capsules, which they carry about with them, or finten to foreirn bodies; see Gaede, Beitr. \&c. litf. I. fig. 13, 14 (Blatta orientalis), and Roesel, loc. cit. 'Th. IV. 'Taf. XII. (Mantis).

38 For the female organs of the Neuroptera, see L. Dufour, Recherch. sur les Orthopt. \&c. Pl, XiI. Xilif.
${ }_{39}$ L. Dufour, loc. cit. Pl. XLI. fig. 174, d. (Panorpa).
${ }^{41}$ L. Dufour, Ibid. PI. XIL1. fig. 211, 212.
41 L. Dufour, Ibil. PI. XII. fig. 188, b.; and Suckow, in Heusinger's Zeitsch. II. Tar. XVI. fig. 16, d.
42 L. Dufour, Ibid. Pl. XII. fier. 17t, 194, c. c.
43 L . Duforr, Ibils. Pl. Xili. fig. 211. By mans of these glands the females of Phryganea envelup their eges with a gelatinous sulstance which swells in water und often sticks to stones or aquatic plants, presenting the appearance of an anntiar spawn.
44 The ovarian tubes are multilocular with the Carabidae, Mydrocanthari, Cyphonidae, Telephoridae, and Curculionidac; in general they are bilocular with the Staphylinidae; see Stein, Yergl. Anat. \&c. p. 23.

45 The ovaries are multitubular with the Carabidae, Ilydrocanthari, Ilydrophilidae, Elateridae, Chrysomelidae, and Coccinellidae; while with Apion, Lixus, and Hylesinus, there are only two on each side; see L. Dufour, Ann. d Sc. Nat. VI 1825, Plo. XVIL.-XX.; Suckow, in Heusinger's Zeitsch. If. Taf. XILL, and Stein, loc. cit. Taf. IlI.-VIII.
these fasciculate, there are, also, here and therc, botryoidal ovaries, in which there are numerous imbricated tubes inserted on a large calyx of cach of the oviducts. ${ }^{(45)}$ When these tubes are fow in number, they are but rarely disposed in simple or double regular series. ${ }^{(47)}$ With most species, the Receptaculum seminis is cuneiform and often arcuate; its internal walls are brown, solid and horny, and it communicates with the vagina or copulatory pouch by means of a long, flexuous, spiral Ductus seminalis. With many species, this receptacle is invested with a muscular apparatus, composed of striated fibres, and which undoubtedly is a compressor. Usually, there is, attached to the base of the receptacle, a simple, rarely bifurcate or multiramose, Glandula appendicularis, which is sometimes provided with a long, fluauous excretory duct. ${ }^{(48)}$ Sometimes the entire Receptaculum seminis is composed of only a simple, rarely bifurcate, somewhat long caecum. ${ }^{(9)}$ Most of the IIydrocanthari, and some Carabidae, with which the Ductus seminalis is inserted on the copulatory pouch, have the peculiarity that there arises from the Receptaculum seminis a special Fecundatory canal which opens into the upper portion of the vagina. ${ }^{(50)}$ A Bursa copulatrix exists, generally, in this order. With only a few specics, it consists of a simple dilatation of the vagina, ${ }^{(51)}$ but, usually, it is a rather long, muscular caecum, separated from the upper wall of the vagina, and sometimes even flexuous when its length is considerable. ${ }^{(52)}$ Very often, the vagina is quite long, curved S-shaped, and passes with the rectum into a cloaca-like canal. It has a complicated special muscular apparatus. ${ }^{(53)}$ The glandular appendages of the vagina are wanting with the Coleoptera, but, with the Hydrophilidae, there are two multiramose appendages on the oviducts, which are probably sebaceous organs. ${ }^{(54)}$ The same function may, perhaps, be attributed to the glandular walls of the upper cxtremity of the oviducts of the Staphylinidac and Histeridae. ${ }^{(55)}$

[^281]bidae; see Stein, loc. cit. p. 99, Taf. I. fig. 12, Taf. II.

51 Silpha, Dromius, Calosoma, and other Carabidae.

52 See Straus, Consid. \&c. Pl. VI. fig. 2, o. n. (Melolontha); Brandt and Ratzeburg, Mediz. Zool. II. Taf. XVII. fig. 2, n. m. (Meloe); Suckow, in Heusinger's Zeitsch. 1I. I'af. XIII. ; Siebold, in Muller's Arcli. 1837, p. 405, but especially Stein, loc. cit. p. 69, and the corresponding figures.

53 Tbere is a long, flexuous, muscular vagina with the Cerambycidae, Curculionidae, Elateridae, Buprestidae, and most of the Heteromera; also, with the IIsteridae, Dermestidae, Parnidae, \&c.; see Stein's exact descriptions, loc. cit. p. 71, Taf. VI.-VIII.

54 See Stein, toc. cit. p. 33, Taf. IV. fig. 3 (Hydrobius fiuscipes). With Hydrobius piceus, and caraboides, tbere are even two kinds of analogous appendages. One consists of eight bifurcate follicles, the other of simple tubes inserted on tbe calyx of the oviducts; see L. Dufour, Ann. d. Sc. Nat. VI. 1825, p. 445, Pl. XVIIL. fig. 5, and Suckow, in Heusinger's Zeitsch. II. 'l'af. XIII. fig. 34 . Tlee bifurcated appendages were overlooked by this last naturalist. It is well known that the females of the IIydrophilidae enclose their eggs by groups in a cocoon (Lyonet, Mérn. du Mus. \&c. XVIII. p. 454, Pl. XXIV.) which those of Spercheus carry about attached to their posterior legs.

55 Stein, loc. cit. p. 35.

§ 351.

The External Genital Organs of the females are pretty simple with the Aptera, Hemiptera, Lcpidoptera, Coleoptera, with many of the Diptera, Orthoptera, and Nंcuroptera, and with some Hymenoptera. The orifice of the vagina is supported by an upper, and two lateral horny plates, whose size and form vary according to the species. With only some Coleoptera, Diptera, and Hymenoptera, the end of the vagina is protractile, appearing as a more or less articulated Vagina tubiformis. ${ }^{(1)}$ These horny plates about the vaginal orifice serve to support the penis during copulation, and to facilitate the escape of the eggs during oviposition. ${ }^{(2)}$ With the Acrididae, thesc plates are conical, and in two pairs, one upper, and one under, which may be opened and shut in a pincer-like manner. With several genera of the Tipulidae, and Asilidae, the two lateral plates are very long, and form a simple ovipositor (Vagina bivalvis). ${ }^{(3)}$ With Boreus, and Acheta, this ovipositor is long, and with Raphidia, it is long and acinaciform. The Locustidae have also a similar and very prominent ovipositous sabre, but more complicated in that each of its plates is divided into three pieces, which are so disposed that the two internal, soft, are surrounded in a sheathlike manner by the four others, which are horny. With the 'Fenthredinidae, and with Aeschna, Agrion, and Calopteryx, there is an analogous apparatus situated at the posterior extremity of the abdomen, and covered by two valves, only that its pieces are denticulated in a saw-like manner, and thercfore is called saw-ovipositor. ${ }^{(+)}$With the Siricidae, the ovipositing apparatus is likewise composed of two horny, denticulate plates; but is more auger-like in its form, and, with some species, projects far beyond the short lateral valves. ${ }^{(5)}$

The Ichneumonidae, Cynipidae, and Cicadidae have a more or less long ovipositor (Terebra), composed of two lateral groove-like sheaths, betiveen which plays a kind of sting composed of two intimately-united horny shafts. This sting serves, partly to picree the substance in which the eggs are to be dcposited, and partly to push the eggs along the sheath formed by the groove-like valves. ${ }^{(6)}$ All these different ovipositors have a muscular apparatus at their base, by which their component pieces are moved.

With some Libellulidae, there is a peculiar groove-like appendage on the penultimate abdominal scgment. It serves to receive the eggs at the

[^282]9 (Agrion). It is well known that these Insects use this ovipositor to pierce the epidermis of plants, and to introduce therein their eggs. The deposition of the eggs with the Tenthredinidae has been described with details by Dahloom (Isis, 1837, p. 76) and by Rotzeburg (Forstinsekten, Th. III. p. 65). I have, also, observed this act with Agrion forcipula (Wiegmann's Arch. 1841, I. p. 205).

5 Hartig and Ratzeburg have given a detailed description of the auger of the Siricidae; it is particularly long with Xiphydrio and Sirex.
6 For the ovipositor of the IIymenoptera, see Hortig, Die Adlerfiüger Deutschl. p. 16; in Wiegmonn's Archiv, 1837, I. p. 151, and in Germor's Zeitsch. III. p. 326 ; Ratzeburs, Mcdiz. Zool. II. p. I45, Taf. XXIII. (Cynips). F that of the Cicadidae, see Reaumur, Bim. Y. 4 mémoire, Pl. XVIII. ; and Doyere, Ann. cl. Sce. Nat. VII. I837, p. 193.
moment of their escape from the vagina, and in this way the eggs are collected in masses to be deposited in places fit for their incubation. ${ }^{(1)}$

II. Male Genital Organs.

$$
\text { § } 352 .
$$

The Testicles, which are double like the ovaries, consist, sometimes of two simple caeca, which are more or less long and torose, and sometines of many caeca, very variable as to their forms and disposition. Their mode of grouping resembles that of the ovaries; indeed, their whole appearance and contour, and the number and composition of their various parts resemble remarkably those of the female organs. With many spccies, thesc organs are covered hy a lively-colored pigment layer, or enveloped by a special membrane (Tunica vaginalis).

The two Vasa deferentia are of variable length, often exceeding that of the body, and therefore making several convolutions in the abdominal cavity. When the testicles are composed of many caeca, there are often the same number of these canals; but they oftcn unite, on each side, into a common duct. Sometimes they have, each, at their lower extremity, a vesicular dilatation which may be regarded as a Vesicula seminalis. At their point of junction on the Ductus ejaculatorius, there are usually situated two, longer or shorter, simple Glandulae mucosae, which secrete a quickly coagulating, granular mucus, which serves, during the copulatory act, partly to fill and distend the Bursa copulatrix together with the penis, and partly to surround portions of the sperm, and thereby form spermatophores. ${ }^{(\text {() }}$

§ 353.

The principal modifications observed with the internal male organs of the Insecta, are the following:

Among the Aptera, Lepisma is distinguished in having numerous oval, testicular follicles, whose Vasa deferentia, after forming irregular ramifications, unite in two common excretory ducts, which, gradually enlarging, terminate in a Ductus ejaculatorius at the point of insertion of two arcuate accessory glands. ${ }^{(1)}$

With the Hemiptera, the internal genital organs are of very variable form. ${ }^{(2)}$ The Pentatomidae have only two simple, pyriform testicles, often of a beautiful red color; at their free extremity they sometimes have several constrictions, and thus form the passage to the form proper to many Geocorisae, which have seven'long testicular tubes united in a fan-like

[^283]1 For the various forms of the simple and eompound testieles, as well as for the male organs of the Inseeta in general, see Burmeister, Mandb. \&e. I. p. 217, and Lacordaire, Introduet. \&e. II. p. 305.

1 See Treviranus, Verm. Schrift. II. p. 15, Taf. IV. fig. 2. The Pedieulidae have only two pairs of testieles.
2 See L. Dufour, Reehereh. sur les Mémipt. Pl. X.-XIII.
manner. ${ }^{(3)}$ Sometimes these seven tubes are grouped into a bundle at the upper extremity of each of the two deferent canals. ${ }^{\left({ }^{(+)}\right)}$With the Cicadidae, the testicular tubes are extremely numerous and fasciculate in the same manner ; ${ }^{(5)}$ while with Psylla, there are only four, and with Aphis, only three on each side. ${ }^{(6)}$ The Hydrometridae have only two or four long testicular follieles, on the sides of which arise the deferent canals. With Pelogonus. and Notonecta, there are two pairs of long, spiral tubes, while with Nepa, and Ranatra, there are five on each side, long and flexuous. The Vasa deferentia are short with most of the Geocorisae, the Psyllidae and the Aphididae; but with the Hydrocorisae, and the Cicadidae, they are long and intertwisted. The glandular appendages are highly developed with most Hemiptera and often open into the two deferent canals above the Ductus ejaculatorius. ${ }^{(7)}$ But when these glands appear to be wanting, the deferent canals have upon their course, or at their extremity, vesicular dilatations which, perhaps, take their place. ${ }^{(8)}$ With the Pentatomidae, the clandular appendages consist of two to four multiramose fascicalate tubes. The Ductus ejaculatorius is then dilated at its base into a kind of vesicle divided into two or three lobes, which serve probably as mucous reservoirs. ${ }^{(3)}$

With the Diptera, the male organs are much more simple, there never being but two simple testicles, ${ }^{(0)}$ whose external envelope is often brown or yellow. These organs are usually pyriform or oval, but sometimes long or hooked or twisted in various ways. ${ }^{(1)}$ The Vusa deferentia are usually of considerable length, ${ }^{(12)}$ and open in the upper end of the Ductus ejaculatorius, ${ }^{(13)}$ always in common with two simple and pretty long accessory glands.

With the Lepidoptera, the testicles are always composed of two round or oval follicles, often surrounded by a beautifully colored pigment. ${ }^{(4)}$ Very often, also, they are so approximated on the median line of the abdomen, as to appear fused into a single round body. ${ }^{(15)}$ The two deferent canals, after a short course, unite with two simple, long and very flexuous accessory glands, and then form a very long and torose Ductus ejaculatorius. ${ }^{(16)}$

3 Coreus, Alydus, Pyrrhocoris, Acanthia.
4 Capsus, Miris, Aradus.
i L. Dufour, Ami. d. Sc. Nat. V. 1825, Pl. VI. fig. 6,7 , and in his Recherch. sur les liémipt. Pl. X1ld. dig. 152-155 (Cicada, Aphrophora, and Issus).
6 With $A p h i s$ lonicerae, the six testicular tubes are concentrated on the median line of the abdominal cavity, so that they might easily be taken for a single body; see my observations in Froriep's neue Notiz. XIt. p. 307. According to Morren's description (Ann. d. Sc. Nat. 1836, p. 87, 1’l. VI.), there would appear to be a real fusion of the testicular tubes with Aphis persicae.

7 With Aradrus, Nepa, Cicada, Aphrophora, the two simple glandular appendages, which are extraordinarily long and flexuous with the Cicorlidae, are inserted on the sides of the deferent canals; while with Aphis, which has two, and with Notonecta, Miris and Capsus, which have four, the glandular tubes open into the Ductus ejaculatorius, conjointly with the deferent canals.

8 Psylla, Pyrrhocoris, Velia and Gerris. L. Dufour (Recherch. \&c.) unhesitatingly calls these dilatations of the deferent canals Vesiculae seminules.
${ }^{9}$ L. Dufour (Recherch. \&c. Pl, X.) also regards this reservoir as a Vesicula seminalis.

To The male organs of the Diptera have been described by L. Dufour (Ann. d. Sc. Nat. I. 1844, p. 250), and by Loew (Horae Anat. p. 9, Tab. I. -11 I.), whose account is very detailed and exact.

11 The testicles are long and regularly flexuous with Myopa, spiral-form with Asilus and Dasypogon, while those of the llippoboscidae are extremely long and very torose; see L. Dufour Ann. d. Se. Nat. loc. cit.
12 Stratiomys, alone, has very long and torose deferent camals.
13 These two glands are very long with Hippobosca, Dolichopus, Asilus, and Stratiomys ; ritmose with Trypeta and Psila; with Leptis, they are wanting, being replaced, probably, by two swellings situated at the lower extremity of the two deferent canals. Empis and Scatopse have two pairs of glands, one above, the other below.

14 The testicles are cammen-red with Arsynnie, Hipparchia, Pontia and Liparis; green with Lycaena and Sphinx.

15 Suckov (Heusinger's Zeitsch. II. Taf. X. fig. 10) has found two separated testicles with Yponomeuta. The fusion of these organs is complete with the Papilionidae, Sphingidae, Bombycidae, \&c.
16 See IHerold, Entwickelungsgesch. d. Schmetterl. Taf. IV. XXXII. (Pontia brassicae), thal

With the Hymenoptera, ${ }^{(17)}$ the testicles present many different forms. Weside two simple ovoid testicular follicles, ${ }^{(18)}$ there are, not unfrequently, also two testicles composed of several long follicles, fasciculate, and surrounded, together with a portion of the torose deferent canal, by a common eavelope ; but, more conmonly, these two testicles are contained in is capsule situated on the median line of the body. ${ }^{(19)}$

With the Tenthredinidae and the Siricidae, the testicles are scparate and distinct, without capsules, and composed of round follicles disposed botryoidally. ${ }^{(31)}$ The two deferent canals are usually pretty long, and have, sometimes, at their lower extremity, two vesicular dilatations which, containing sperm, may be regarded as seminal vesicles. ${ }^{(21)}$ The deferent canals with the Hymenoptera have, usually, two pyriform accessory glands, whose excretory ducts unite into a short Ductus cjaculatorius. ${ }^{(22)}$

With the winged Strepsiptera, there are two pyriform testicles provided with very short deferent canals, which dilate above the Ductus ejaculatorius into two seminal vesicles; but nowhere has an accessory gland been observed.

With the Orthoptera, the two testicles are nearly always composed of a greater or less number of follicles. With the Acrididae, Locustidae, Achetidae, Blattidae and Mantidac, they are composed of long fasciculated or imbricated caeca, which, as with the Hymenoptcra, are very often surrounded by a common envelope. In some species the two groups of testicular follicles are united into a common mass on the median line of the abdomen, by this Tunica vaginalis. ${ }^{(23)}$ On the other hand, the Phasmidae, Libellulidae, Perlidae and Ephemeridae, have a multitude of round follicles, disposed botryoidally around a long dilated portion of each of the deferent canals. ${ }^{(24)}$ These last are usually very short, and with the Achetidae and Locustidae, only, they are quite long, and spiral from beginning to end. ${ }^{(25)}$ Many Orthoptcra have highly-developed accessory glands surrounding a short Ductus ejaculatorius, on which they are sometimes disposed in successive groups. ${ }^{(26)}$ A part of this apparatus, in which are

Suckow, Anat. u. physiol. Entersuch. Taf. IV. (Gastropacha pini).*
${ }^{17}$ L. Dufour (Recherch. sur les Orthont. p. 399, Pl. Y.-X.) has furnished observations accompanied with very many figures ou the male organs of the Hymenoptera.

1s The testicles are simple with Parnopes, Cymips, Diplolepis and Chelonus.

19 There are two unicapsular testicular hundles with Apis, Xylocopa and Bombus; see L. Dufour, loc, cit. fig. 53-62. The two testicular fasciculi are enclosed iu a common capsule with $\mathbf{A n}$ thophora, Anthidium, Odynerus, Tiphia, Scolia, Pompilus and Crabro ; see L. Dufour, loc. cit. Pl. VI.-IX.
20 L . Dufour, loc. cit. fig. 150-154 (Tenthredo, Hylotoma and Cephus).
21 The deferent canals terminate each with a seminal vesicle with Cynips, Chelonus, Apis and Xylocopa.
≥ 2 See Brandt and Ratzeburg, Mediz. Zool. Taf. XXV. fig. 35 (Apis), and L. Dufour, loc. cit.

+ [§ 353 , note 16.] See, also, for histological details on the internal male organs and their development, of the Lepidoptera, Meyer, loc. cit. Siebold and Kölliker's Zeitsch. I. 1849, p. 182. The formula of the development of the testicles is, of course, the same as that of the development of the

23 See L. Dufour, Recherch. sur les Orthopt. Pl, I.-V. There are two distinct fasciculate testicles with Gryllotalpa, Oecanthus, Ephippigera, and two groups of long, imbricated follicles with Tetrix. Locusta and Decticus. The testicles are fused iuto one body with Oedipoda and Blatta. \dagger
24 See Suckow, in Heusinger's Zeitsch. II. Taf. XII. fig. 25, Taf. X. fig. 8 ; Rathké, De Libellur, partibus genital. Tab. I. fig. 3, and L. Dufour, loc. cit. Pl. II. fig. 164, and Pl. XII. fig. 204 (Perla and Libellula).
25 See L. Dufour, loc. cit. fig. 25, 36 (Gryllotalpa and Ephippigera).

26 The Perlidae have only two testicular follicles inserted on the deferent canals. Tetrix, the Acrididae, Achetidae and Blattidae, have two long and large fasciculi ; finally, with the Mantidae and Locustidae, there are, besides these fasciculi, one or two pairs of shorter hurdles; see L. Dufour, loc. cit. Pl. III.-V.
ovaries ; but this ohserver shows that the spermatic particles are formed, like the ova, while the insect is in the pupa-state. - Ed.
\dagger [§ 353, note 23.] See also Leidy, Proceed. Acad. Sc. Philad. 1846, III. p. 80 (Spectrum femoratum).-ED.
situated here and there vesicular reservoirs, secretes, undoubtedly, with the Locustidae, a substance used in the formation of the spermatophores. But with the Phasmidae, Libellulidae and Ephemeridae, the Ductus ejaculatorius is wholly dcficient in all kinds of glandular appendages.

With the Neuroptera, the various genera present only few modifications in their male genital organs. With Panorpa, the two testicles are very simple and ovoid; ${ }^{(2 \pi)}$ but with the other species they consist of two tufts of long or round follicles. ${ }^{(33)}$ With Myrmeleon, and Hemerobius, they are oval and surrounded by a distinct envelope. The two deferent canals are short, and always have on their lower extremity two long or ovoid accessory follicles. ${ }^{(2)}$

With the Coleoptera, the male organs vary very much. ${ }^{(30)}$. With the Carabidae, Hydrocanthari, and Lucanidae, the testicles consist of two extremely long, torose caeca, ${ }^{(31)}$ of which each is sometimes enclosed in two special envelopes. ${ }^{(3)}$) The Elateridae, Tillidae, Cantharidae, very many Heteromera and Coccinellidae, have, on the other hand, a multitude of round or oblong, short follicles, fasciculate, composing the two testicles, which, ${ }^{(33)}$ in some genera, are here also invested by a capsule. ${ }^{(34)}$ With the Hydrophilidae, and Pyrochroildae, these organs are composed of numerous short, aggregated follicles, situated laterally over a wide extent of the posterior extremity of the deferent canals. ${ }^{(33)}$ With the Staphylinidae, and Silphidae, the testicular follicles are pyriform and inserted botryoidally on the posterior extremity of the simple or multiramose Vasa deferentia. ${ }^{(36)}$ With the Lamcllicornes, Cerambycidae, Curculionidae, and Crioceridae, these organs are formed after a wholly diffcrent type, their number being two, six, or even twelve on each side. They arc usually round follicles, flattened disc-like, and from which pass off pretty short excretory ducts to the extremity of the two common deferent canals. ${ }^{(37)}$

The Vasa deferentia, with the Colcoptera, are usually pretty long ; but with the Carabidae, Hydrocanthari and Cerambycidae they are very long, spiral or torose. ${ }^{(38)}$ With a few species, only, is each of them dilated in its course into a Vesicula seminalis. ${ }^{(33)}$ The accessory glands are never wanting in this order, and they either open, together with the deferent canals, into the upper extremity of the Ductus ejaculatorius, or they pass into these canals before they reach this duct. In very many species this gland-
${ }^{27}$ L. Dufour, loc. cit. fig. 172.
28 Sialis and Phryganea.
29 See L. Dufour, loc. cit. Pl. XII. fig. 172-210 (Panorpa, Myrmeleon, Sialis, Phrysanea), and Suckow, in Heusinger's Zeitsch. II. Taf. XVI. fig. 15 (Sialis).
30 For the male organs of the Coleoptera in general, see especially L. Dufour, Ann. d. Sc. Nat. VI. 1825, p. 152, Pl. IV.-IX. and I. 1834, p. 76, Pl. III. IV.
31 With Harpalus, the two caeca are united into a single clew.
32 Cybister, Scarites, and Clivina, have two testicles invested by a capsule.

33 Each testicular fasciculus is composed of from three to seven follicles with Dermestes, Heterocerus, Anthrenus, Oedemera, Helops, Diaperis, Tenebrio ; while with Blaps, Pimelia, Mylabris, Telephorus, Bostrichus, the Elateridae and Coccinelidae, their number is much larger.
it There is a T'unica vaginalis with Clerus,Trichorles, Mylabris, and which, with Galeruca, is even ermmon to both testicles.

35 See Swammerdamm, Bib. der Nat. Taf. XXII. fig. 5 ; Suckow, in Heusinger's Zeitsch. II. Taf. X. fig. I, 2 (Hydrophilus); L. Dufour, Ann. d. Sc. Nat. XIII. 1840, Pl. VI. A. lig. 18 (Pyrochroa).
36 The two testicles are multiramose with Silpha; see L. Dufour, Ann. d. Sc. Nat. VI. 1825, Pl. VI. fig. 6 .
${ }_{37}$ Hammaticherus, Anthribus, Lixus and Donacia have two pairs of testicles; Melolontha and Prionus six, Trichius nine, and Cetonia twelve. Beside L. Dufour (loc. cit.), see Suckow, in Heusinger's Zeitsch. II. Taf. XI. and Straus, Considerat. \&c. PI. VI.
is These torosities are even surrounded with a capsule with Cybister ; see L. Dufour, Ann. d. Sc. Nat. VI. 1825, PI. V. fig. 1.

39 With the Hydrophilidae, there is a vesicular dilatation at the lower extremity of the deferent canals; but with Anthribus, and Lixus, it is situated at the opposite extremity.
ular apparatus eonsists of only two simple, longer or shorter eaeea, ${ }^{(40)}$ whieh are sometimes quite long and torose. ${ }^{(11)}$ Another series of Coleoptera have four to eight eaceal appendages, disposed in pairs, and variable as to length and volume. One of these pairs is probably only a reservoir for the seareted product of the others. ${ }^{\left({ }^{(2)}\right)}$ The Ductus ejaculatorius is always very museular, and with very many speeies, quite long and flexuous, and the penis therefore ean be widely protruded during eopulation.

§ 354.

The Copulatory organs of the male Inseeta are valve-like or forfieulate, horny appendages, ${ }^{(1)}$ whieh are so variable in their form that the most allied speeies differ, in this respect, widely and eonstantly. ${ }^{(2)}$

Beside these proper eopulatory organs, situated at the posterior extremity of the abdomen, there are often on the antennae, the parts of the mouth, the legs and other regions of the body, auxiliary organs used for seizing and retaining the female, and whieh have long been objects of eareful deseription in zoology.

With most Hemiptera, the posterior extremity of the abdomen eoneeals a horny eapsule whieh contains a protraetile, tubular penis. With very many Diptera, the eopulatory organs projeet prominently in the same region of the body, and eonsist often of two horny valves of different forms whieh envelop a rather long penis. ${ }^{(3)}$ The Lepidoptera, Hymenoptera, Orthoptera, and Neuroptera, have two pairs of valves, one internal, the other external, whieh enelose a tubular or groove-like penis. ${ }^{(4)}$

The Ephemeridae and the Strepsiptera, only, are distinguished by their very simple eopulatory organs; for with the first there is only a simple penis without a valvular apparatus. This last is replaeed by two long, small, triartieulated stylets, situated on the penultimate abdominal segment and eurved inwardly; while with the Strepsiptera, the penis, also naked and horny, is so artieulated that it ean be applied laterally against the abdomen, like the blade of a knife in its handle.

With the Libellulidae, however, the orifiee of the Ductus ejaculatorius is most simple, being eovered only by two very small oval valves. But the penis is not wanting with these Insecta; it is singularly eoneealed, together with a horny-walled seminal vesiele, in a fossa situated at the base of the

[^284]they been well understood, the formation of many bad species might have been prevented. They prevent allied species from producing bastards by adulterous connections, for the hard parts of the male correspond so exactly with those of the female, that the organs of one species cannot fit those of another. L. Dufour has, therefore, properly termed these copulatory organs as "la gurantic de la conservation des types, el la sauvegarde de la légitemité de l'espece."
3 This horny apparatus, from its large and often tumid lateral valves is quite prominent with the Dolichopidae, Empidae, with Asi/us, Laphria, Ctenophora, Nematocera, and other Tipulidae. See Schummel, Beitr. zur Entomol. Taf. 1.-I1I. (Tipula).
4 With the Panorpidae, these copulatory organs are changed into very large pincers; while with Psyche, the very long penis is protractile like the tubes of a telescope, thus enabling these butterflies to copulate with their females which remain coucealed in sacks.
abdomen. ${ }^{(5)}$ This penis is eomposed of three artieles with Aeschma, Lilellula, and Gomphus; but of one only with Calopteryx, and Agrion, with whieh it is not directly adherent to the seminal vesiele. The male Libellulidae are obliged, before eopulation, to fill their vesicula seminalis, which is situated at the base of the abdomen. This they aecomplish by bending the posterior extremity of the abdomen, so as to meet and empty the semen into this vesicle. They then seize the female by the neek, by means of their anal pincers, and she plaees her genital orifiee in eontaet with the copulatory apparatus of the male. ${ }^{(6)}$ These anal pineers of the males have very distinet speeifie eharaeteristies, while the lemales, on their part, have, in the separate speeies, equally speeifie seulptured markings on the prothorax. ${ }^{(\pi)}$

With the Coleoptera, the eopulatory organs eonsist of a more or less horny sheath enveloped by a membranous prepuee, and eontaining a broadly-flattened penis whieh eonsists of a canal supported by two lateral horny ridges. At rest, these organs are entirely withdrawn into the abdominal eavity, but ean be widely protruded out of it by means of a very remarkable museular apparatus. ${ }^{(8)}$. With the male individuals of Dermestes, there is a median orifice on the third and fourth abdominal segments, from which projects a brush of stiff bristles eomeeted with a round museular body situated on the internal surfaee of eaeh of these segments. This brush is undoubtedly some way eonneeted with the act of eopulation. ${ }^{(9)}$

§ 355.

The development of the larvae of Inseeta in the egg, oeeurs in the same manner as with most of the other Arthropoda. After the unusually early disappearanee of the germinative vesiele, ${ }^{(1)}$ there is formed, fron a superficial and partial segmentation, a round or oblong-oval blastoderma, whose hyaline aspeet eontrasts with that of the rest of the vitellus. ${ }^{(2)}$ This blas-

[^285]1 The gemminative vesicle is nevor observed in eggs that have been layed; it has disappeared even in those still in the oviduct; this disappearance would not appear, therefore, to denend upon the act of fecundation
2 The first phases of the development of Insecta have been studied by Herold (Disquisit. de Anim. vertelr. carent. in ovo format. $1835-38$) with Spinx ligustri and Musca zomitoria; and by Lölliker (Observ. te prima Insect. genesi, 18 ± 2, or Amm. d. Sc. Nat. XX. 1843, Pl. X.-X11.) with Chironomus, Simulí, and Donacia.
The ulterior phases have been traced hy Rathkic (Meckel's Arcin. 1832, p. 371, Taf. 1V. and Muller's Arch. 1844 , p. 27, Taf. II.) with Btatha orientalis and Cryllotalpa vulgaris ; and by Nicolet (Recherch. \&c. p. 18, P1. I.) with the Poduridae. ${ }^{*}$
conditions of formation belongiug to the different groups, and the ohservation of the details of dovelopment of different internal and external organs. Those anomalies of development and reproduction, which continued research shows to be far from uncommon with the Iasecta, will ultimately be found, prohably, referable all to the phenomena, we have discussed below, of the Aphididae. - ED.
toderma, whieh corresponds to the ventral side of the future embryo, extends gradually in all direetions and at last eneompasses the whole vitellus, - its borders meeting on the dorsal surfaee. It may be divided into an external or serous, and an internal or mueous layer. In the first of these is developed, on the median abdominal line, the ventral cord; while the seeond forms a semi-canal which gradually surrounds the vitellus and at last eompletely enveloping it, is ehanged into the digestive eanal. The various appendages of this eanal are subsequently formed by simple eonstrietions or devertieula from its eavity; while the other abdominal viscera are direetly developed from a speeial blastoderma.

Upon the external surfaee of the serous layer are formed the parts of the mouth, the taetile organs, the legs, and the other appendages of the body, whose artieulations, like those of the body itself, are produeed by eonstrietions.

The dorsal vessel is formed between the two blastodermic layers on the side opposite that of the ventral cord. This development of the embryo takes place at the expense of the vitellus, whieh, enelosed in the digestive canal, is gradually eonsumed.*

* [End of § 355.] The subject, which has been frequently alluded to in this book, - the singular mode of reproduction of the viviparous Aphtdidae, is one of so much intcrest and importance in physiology, that I propose to give it somcthing more than a brief mention. Moreover, I have enjoyed excellent opportunitics for the study of these phenomena in question, and have advanced an interpretation of them, and their like elsewhere, quite different from that usually received.

My observations were made upon Aphis caryae (probably Lachnus of Illiger, or Cinara of Curtis), one of the largest and most favorable species for these investigations. This was in the spring of 1853. The first colony, on their appearance from their winter quarters were of mature size, and contained, in their interior, the developing forms of the second colony quite far advanced in formation. On this account it was the embryology of the third series or colony, that I was able to first trace. A few days after the appearance of the first colony (A), the second colony (B), still within the former, had reached tro-thiuds of their full embryonic sizc; the arches of the segments had begun to close on the dorsal surface, and the various appendages of the eynbryo were becoming promineut; the alimentary canal was more or less completely formed, although distinct abdominal organs of any kind belonging to the digestive system were not apparent.

At this time, and while the individuals B. were not only in the abdomen of their parents A., but were also enclosed cach in its primitive egg-likc capsule; at this time, I repeat, appear the first traces of the germs of the third colony, C. Their first traces consisted of small egg-like bodics, arranged two, three, or four in a row, and attached at the locality where are situated the ovaries in the oviparous forms of the Aphididae. These egg-like bodies were either single nucleated cells of one three-thousandth of an inch in diameter, or a small
number of such cells enclosed in a simple sac. Thesc are the germs of the third generation or colony, and they increase pari passu with the development of the embryo in which they are formed, and this increase of size takes place not by the segmeutation of the primitive cells, but by the endogenous formation of new cells within the sac. After this increase has continued for a certain time, these bodies appear like little oval bags of cells, all the component cells being of the same size and shape, - there being no onc particular cell which is larger and more prominent than the others, aud which could be comparable to a germinative vesicle. While these germs are thus constituted the formation of new oncs is continually taking place. This occurs by a kind of constriction-process of the first germs ; one of the ends of these last beiug pinched off, as it werc, and so, what was before a single body or sac, bccomes two which are attached in a moniliform manner. The new germs thus formed may consist each of a single cell only, as I have often seen; but they soon attain a more uniform size by the endogenous formation of new cells within the sac in which it is enclosed. In this way the germs are multiplicd to a considerable number, the nutritive material for their growth being, apparently, a fatty liquid in which they arc bathed, contained in the abdomen, and which is thence derived from the abdomen of the first parent. When these germs have reached the size of about one three-hundredth of an iuch in diameter, therc appears on each, ncar the inner pole, a yellowish, vitellus-lookiug mass or spot, composed of yellowish cells, which, in size and general aspect, are different from those constituting the germ proper. This yellow mass increases after this period, pari passu with the germ, and at last lies like a cloud over and partially concealing one of its poles. I would, moreover, insist upon the point that it docs not gradually extend itself over the whole germ-
mass, and is, therefore, quite unlike a proligerous disc.

When these egg-like germs have attained the size of one one-hundred-and-fiftieth of an inch in diameter, there begins to appear distinctly the sketchiug or marking out of the future embryo. This sketching consists at first of delicately-marked retreatings of the cells here and there; but these last soon become more prominent from sulcations, aud, at last, the form of an articulated emhryo is quite prominent.

During this time, the yellowish, vitellus-looking mass has not changed its place, and although it is somewhat increased in size, yet it appears otherwise the same. When the development has proceeded a little further, and the einhryo has assumed a pretty definite form, the arches of the segments, which have hitherto remained gapingly open, appear to close together on the dorsal surface, therehy enclosing the vitellus-looking mass within the abdominal cavity. It is this same vitelloid mass thus enclosed, which furnishes the development of the new germs (which in this case would be those of the fourth colony, or D), and this germ development here commeuces with the closing up of the abdominal cavity, and then the same processes we have just described are repeated.

The details of the development subsequent to this time, - the formation of the different systems of organs, \&c., are precisely like those of the development of true oviparous Arthropoda in general ; and although the ovoid germ has, at no time,

- the structural peculiarities of a true ovum,- such as a real vitellus, germinative vesicle and dot, yet if we allow a little latitude in our comparison and regard the vitellus-looking mass as the mucous, and the germ-mass proper as the serous fold of the germinating tissue, as in true ova; if this comparison of parts can be admitted, then the analogy of the secondary phases of development between these forms, and true ova of the Arthropoda, cau be traced to a considerable extent.

These secondary phases of development need not here he detailed, for they correspond to those described by Herold, Kolliker, of the true ovum in other Insecta, and which, too, I have often traced in various species of the Arthropoda in general.

When the embryo is fully formed and ready to hurst from its capsule in which it has been developed, it is about one-sixteenth of an inch in length, or more than eight times the size of the germ, when the first traces of development in it were seen. From this last-mentioned fact, it is evident that, even admitting that these germ-masses are true eggs, the conditions of development are quite different from those of the eggs of the troly viviparous animals, for, in these last, the egg is merely hatched in the body instead of out of it, and, moreover, it is formed exactly as though it was to be deposited, and its vitellus contains all the nutritite material required for the development of the embryo until hatched. With the Aphididae, on the other hand, the developing germ derives its nutritive material from the fatty liquid in which it is
bathed, and which fills the ahdomen of the parent. The conditions of development in this respect, are here, therefore, more like those of the Mammalia and the whole parent animal may be regarded in one sense as an individualized uterus filled with germs, - for the digestive canal with its appendages seems to serve only as a kind of laboratory for the conversion of the succulent liquids this animal extracts from the tree on which it lives, into this fatty liquid which is the nutritive material of the germs.
Omitting the curious and intcresting details of the further history of the economy of these Insecta, as irrelevant to the point in discussion, we will now turn to see what view we should take of these processes, and what is their physiological interpretation. In the first place it is evident that the germs Which develop these viviparous Aphides are not true eggs ; they have none of the structural characteristics of these last, - such as a vitellus, a germinative vesicle and dot; on the other hand they are at first simple collections, in oval masses, of nucleated cells. Then again, they receive no special fccundating power from the male, which is the necessary preliminary condition of all true eggs; and furthermore the appearance of the new individual is not preceded by the phenomena of segmentation, as is also the case with all true eggs. Therefore, their primitive formation, their development and the preparatory changes they undergo for the evolution of the new individual, are all different from those of real ova.

Another point of equal importance is these viviparous individuals of the Aphides have no proper ovaries and oviducts. Distinct organs of this kind I have never been able to make out. The germs, as we have before seen, are situated in moniliform rows, like the successive joints of confer void plants, and are not enclosed in a specirl tube. These rows of germs commence, each, from a single germ-mass which sprouts from the inner surface of the animal, and increases in length and the number of its component parts by the successive formation of new germs by the constriction process as already described. Moreover, these rows of germs which, at one period, closely resemble in general form, the ovaries of some true Insecta, are not continuous with any uterinc or other female organ, and therefore do not at all communicate with the external world, on the other hand, they are simply attached to the inner surface of the animal, and their component germs are detached into the abdominal cavity as fast as they are developed, and thence escape ontwards through a Porus genitalis.

With these data, the question arises, what is the proper interpretation to be put upon these reproductive phenomena we have just described? My answer would be that the whole constitutes only a rather anomalous form of gemmiparity ; as already shown, the viviparous A_{P} hididae are sexless ; they are not females, for they have no female organs, they are simply gemmiparous, and the hudding is internal, instead of external as with the Polypi and Acalephae ; moreover this budding takes on some of the morphological peculiarities of oviparity but these
peculiarities are economical and extrinsic, and do not touch the intrinsic nature of the processes therein concerned. Viewed in this way, the different broods or colonies of Aphididae cannot be said to constitute as many truc generations, any more than the different branches of a tree can be said to constitute as many trees; on the other hand the whole suite, from the first to the last, constitute but a single true generation. I would insist upon this point as illustrative of the distinction to be drawn between sexual and gemmiparous reproduction. Morphologically, these two forms of reproduction, have, it is true, many points of close resemblance, but there is a grand physiological difference, the perception of which is deeply connected witb our higbest appreciation of individual animal life.

A true generation must be regarded as resulting only from the conjugation of two opposite sexes, from a sexual process in which the potential representatives (spermatic particle and ovum) of two opposite sexes are unitcd for the elimination of onc germ. Tbe germ power thus formed may be extended by gemmation or fission, but it can be formed only by the act of generation, and its play of extension by budding or by division must always be within a certain cycle, which cycle is recommenced by the new act of the conjugation again of the two sexes. In this way the dignity of the ovum as the primordium of all true individuality, is maintained.

I have thus treated this subject in some dctail, not only from its wide bearing in the physiology of reproduotion, but also from its direct rclation to many pbenomena alluded to in the preceding pagcs. In the memoir from which I have made this extract (read before the Amer. Acad. Arts and Sc., Oct. 11, 1853) I have entered into a full
discussion of those many points suggested by these studies. One of these, is, the relation of this subject to some of the various doctrines of development, which have been advanced in late years, such as that of Alternation of Generation, by Steenstrup, and that of Parthenogenesis by Owen. I have there attempted to show that the phenomena of these doctrines, as advanced by their respective advocates, all belong to those of gemmiparity, and that therefore Alternation of Generation and Parthenogenesis in their implied sense, are misnomers in physiology. Another point there treated in cxtenso, is the identity of this mode of reproduction we have just described in the Aphididae, witb that observed in the so-callcd hibernating eggs of the Entomostraca (see above, $\S 290$) and the like phenomena observed in nearly every class of the Invertebrata. They are all referable, in my opinion, to the conditions of gemmation, modified in each particular case, perhaps, by the ecoromical relations of the animal.

See for some recent writings on this peculiar form of reproduction with the Insecta, and which contain many interesting physiological remarks, Leydig, Die Dotterfurchung nach ihrem Vorkommen in der Thierwelt und nach ihrer Bedeutung, in the Isis, 1848, Hft. 3 ; also, Einige Bemerkungen über die Entwickelung der Blattlause, in Siebold and Kölliker's Zeitsch. II. 1850, p. 62; also Zur Anatomie von Coccus hesperidum, in Ibid. 1853, V. p. 1 ; Victor Carus, Zur naheren Kenntniss des Generationswechsels, Leipsig, 1849; and Siebold, as referred to in my note under § 348 note 4. I cannot here discuss the often similar and dissimilar views to thosc of my own above detailed, expressed by these different investigators.- Ed.

I N D EX.

ABBREVIATIONS.

Ceph'd., Cephalopoda. Ceph'r., Cephalophora. Crus., Crustacea.
Eck., Echinodermata.

Hel., Helminthes.
Inf., Infusoria.
Ins., Insecta.
Pol., Polypi.

Rhiz, Rhizopoda.
Rot., Rotatoria. Turb., Turbellaria.
N. B. The Numbers refer to the Paragraphs.
A.

Acalephae, 63.
АСернада, 170
Aciculi, Ann. 145.
Air cavity or reservoir, Acal. 65.
Ambulacra, Ech. 77, 91.
Ampulla, of Poli, Ech. 92.
Anselides, 142 .
Antennae, Ann. 149, 152. Arach. 306. Ins. 332.
Anus, Inf. 15. Ech. 82. Hel. 107. Rot. 136. Aceph. 188, 189. Ceph'r. 214. Ceph'd. 249. Crus. 279. Arach. 307. 1ns. 338.
Apparatus, ceraceous, Ins. 347 .
digestive. Inf. and Rhiz. 11. Pol. 35.
Acal. 61. Ech. 82. IIel. 106. Turb. 125.
Rot. 136. Ann. 152. Aceph. 188. Ceph'r.
213. Ceph'd. 248. Crus. 278. Arach. 306. Ins. 337.

- ejaculatory, of sperm. Ceph'd. 259.
masticatory. Ech. 84. Hel. 108. Rot.

136. Ann. 154. Ceph'r. 213. Ceph'd. 248. Crus. 279. Arach. 306. Ins. 337.
mucous. Ins. 349.
Acal 18.
Acal. 63. Ech. 89. Hel. 112. Turb. 126.
Rot. 138. Ann. 158. Aceph. 193. Ceph'r.
137. Ceph'd. 253. Crus. 285. Arach. 311.

1ns. 341.
— rotatory. Rot. 133.sebaccous.
—— sericeous. Arach. 315. Ins. 347.
suctorial. Hel. 103. Arach. 306. Ins. 337, 338.

- tentacular. Ech. 83.
—— venomous. Arach. 315. Ins. 347, 349.
Appendices, caecal. See Caecum.
- cutaneous. Ann. 143.

Arachnomate, 295.
Arms. Aceph. 185. Ceph'd. 237.
Arolium. Arach. 299. Ins. 326.
Arteries. See Circulatory System.
Audition. See Auditive Organs.

B.

Balancers. Ins. 326.
Bladders, natatory. Acal. 58. Ceph'd. 256.
Blood. Pol. 39, 41. IIel. 110. Ann. 156. Aceph. 191. Ceph'r. 216. Ceph'd. 251. Crus. 282 Arach. 309.1 ns. 340.
Brain. Ann. 146, 147. Ceph'r. 206. Ceph'd. 240. Crus. 270. Arach. 300. 1ns. 328.
Branchiae. Ech. 89. Ann. 159, 160. Aceph. 193. Ceph'r. 220. Ceph'd. 253. Crus. 285. Arach. 312. Ins. 342.
Bristles. Ann. 145. Aceph. 185
Bursa Needhami. Ceph'd. 259.
Byssus. Accph. 179.

C.

Caecum. Ech. 85, 86. Hel. 108. Ann. 154. Aceph. 189. Ccph'd. 249. Crus. 279. Arach. 307. Ins. 338.
Caeca, hepatic. See Liver.
Calamistrum. Arach. 315.
Canal, intestinal. Ann. 154. Aceph. 189. Ccph'r. 214. Ceph'd. 249. Crus. 279. Arach. 307 . Ins. 338.
$\overline{\text { Canals, aquiferous. See Aquiferous System. }}$
-_ lateral. Hel. 110.
longitudinal. IIel. 111.
Capsule, genital. Ceph'd. 260.
———egg. Ceph'd. 258
Cardo. See Hinge.
Cavity, branchial. Ceph'r. 220.

- incubatory. Crus. 282.
- pulsatile. 1 nf. 16.

Cespiratory. Aceph. 194. Crus. 285.
Cell, lateral. Ccph'd. 254.
Cells, chromatophoric. Ceph'd. 233.
—— hepatic. See Liver.
__ vitelline. Mel. 115. Turb. 129.

Cephalophora, 201.
Cerfalopoda, 230.
Cheliceres. Arach. 306.
Circles, of hooks. Hel. 103.
osseous. Ech. 73.
Cirri. Ann. 149, 152
Cloaca. Arach. 307.

$$
\text { genital. Ceph'r. } 227 .
$$

Cocoon. Ann. 166.
Collar. Ann. 167.
Corallum. Pol 25
Cord, calcareous. Ech. 75.

- ventral. Ech. 80. Mel. 104. Ann. 146,

Ceph'r. 206. Crus. 270. Arach. 300. Ins. 328.

Corpus adiposum. Crus. 281. Ins. 339.

- spongiosum. Ceph'd. 255.

Corpuscles, germinative. Hel. 118
Crop. Ceph'd. 249. Ins. 338.
Cbustacea, 262.
Cups, sucking. Hel. 103.

D.

Dart. Ceph'r. 227.
Dart-sac. Ceph'r. 227.
Development. Pol. 51, Ech. 98. Hel. 118.
Turb. 129. Rot. 141. Ann. 169. Aceph. 200. Ceph'r. 229. Ceph'd. 261. Crus. 294. Arach. 320. Ins. 355.

- of Mollusca in Holothurioidea, 229.

Disc, vibratile. Rot. 133.
Drums. Ins. 327.

E.

Echnodermata, 71.
Eggs. Pol. 44, 45. Acal. 67. Ech. 95. Hel. $115,116$. Turb. 128. Rot. 140. Ann. 163 Aceph. 198. Серh'т. 225. Ceph'd. 257, 258. Crus. 290. Arach. 316. Ins. 348.

- hibernating. Cr. 292.

Elytra. Ins. 326.
Envelope, cutaneous. Inf. and Rhiz. 6. Pol. 25. Acal. 54. Ech. 72. Hel. 100. Turb. 121. Rot. 131. Ann. 143. Aceph. 171. Ceph'r. 202. Ceph'd. 233. Crus. 263. Arach. 296. Ins. 322.
Eyes. See Organs of Vision.
——crabs. Crus. 289.

F.

Fins. Ceph'd. 234. Crus. 268.
Foot. Aceph. 178. Ceph'r. 204. Crus. 268.
Foramina, repugnatoria. Crus. 289.
Fossettes, respiratory. Ann. 158.

G.

Ganglia, radiating. Ceph'd. 241 ,
pedal. Cephr. 208.
Generation. See Generative Organs.
alternation of, Pol. 45. Acal. 70. Hel.
118. Ins. $348,355$.

Germs, egg. Hel. 115.
Girdle. Ann. 167.
Gizzard. Ins. 338.
Glands, albumen. Ceph'r. 227.
Glands, albumen. Cep of Bojanus. Aceph. 196.
——genital accessory. Hel. 116, 117. Ann.
166. Ceph'r. 227. Ceph'd. 258. Arach. 315. Ins. 349 .

- hermaphrodite. Ceph'r. 227.
-- mermaphrodite. Ins. 352.
——— nidamental. Ceph'd. 258

Glands, odoriferous. Ins. 347.
—— poison. Arach. 315. Lus. 347.
salivary. Ech. 86. Hel. 109. Turb. 125. Rot. 136. Aun. 155. Aceph. 190. Ceph'r. 215. Ceph'd. 250. Crus. 280. Arach. 308. Ins. 339 .
——sebaceous. Ins. 349.
-_ sericeous. Arach. 315. Ins. 347.

H.

Heart. Ech. 88. Ann. 156. Aceph. 191. Ceph'r. 217. Ceph'd. 252, 255. Crus. 283. Arach. 309. Ins. 340.

Helminthes, 99.
Hinge. Aceph. 174.
Hooks. Ech. 75. Hel. 103.

I.

Ink-sac. Ceph'd. 256.
infusoria, 3.
Insecta, ó21.
Intestines. Ann. 154. Aceph. 189. Ceph'r. 214. Ceph'd. 249. Crus. 279. Lns. 338. See also Digestive Tube.

J.

Jaws. Rot. 136. Ann. 153. Ceph'r. 213. Ceph'd. 248. Crus. 278. Arach. 306. Ins. 337.

K.

Kidneys. Aceph. 196. Ceph'r. 223. Ceph'd. 255. Ins. 345.

Knobs, fleshy. Ann. 145.

L.

Labium. Ins. 337.
Labrum. Crus. 278. Ins. 337.
Lantern, of Aristotle. Ech. 84.
Larvae, nursing. Hel. 118.
Legs. Crus. 268. Arach. 299. Ins. 326.
Lemnisci. Hel. 110
Ligament, clastic. Aceph. 174.
Liver. Pol. 37. Acal. 61. Ech. 86. Hel. 109. Turb. 125. Rot. 136. Ann. 155. Aceph. 190. Ceph'r. 215. Ceph'd. 250. Crus. 280. Arach. 308. Ins. 339.
Lungs. Ann. 159. Ceph'r. 221. Crus. 287. Arach. 313.

M.

Mandibulae. Crus. 278. Ins. 337.
Mantle. Aceph. 171. Ceph'r. 202. Ceph'd. 234. Crus. 265.
Maxillae. Crus. 278. Ins. 337.
Membrane, argenteous. Ceph'd. 247.
Metamorphosis. Ceph'd. 234.
etamorphosis. Pol. 52. Acal. 70. Hel. 118. Ann. 169. Aceph. 200.
Mouth. Inf. 15. Pol. 36. Acal. 61. Ech. 82, 84. Hel. 107. Turb. 125. Rot. 136. Ann. 153. Aceph. 188, 189. Ceph'r. 213. Ceph'd. 248. Crus. 278. Arach. 306. Ins. 337.

Muscles. See Muscular System.

\mathbf{N}.

Nerves, pneumogastric. Ceph'd. 241.
——respiratory. Ins. 328.

Nerves, splanchnic. Ann. 148. Aceph. 184. Ceph'r. 219. Ceph'd. 242. Crus. 273. Arach. 302. Ins. 331.
Nucleus, generative. Inf. and Rhiz. 21.
intestinal. Aceph. 189.
Nurses. See Nursing Larvae.

O.

Oars, or oarlike organs. Crus. 268.
Esophagus. Ann. 154. Aceph. 189. Ceph'r. 214. Ceph'd. 249. Crus. 279. Arach. 206. Ins. 338.
Olfaction. See Organs of.
Opercula, branchial. Crus. 286.
Operculum. Ceph'r. 203
Organs, auditive. Pol. 34. Acal. 60. Ann. 151. Aceph. 186. Ceph'r. 211. Ceph'd. 246. Crus. 276. Arach. 305. Ins. 335. - bird's-head-like. Pol. 32. of the Byssus. Aceph. 179. copulatory. Ann. 164, 167. Ceph'r. 227. Ceph'd. 259. Crus. 291, 293. Arach. 319. Ins. 354.
generative. Inf. and Rhiz. 20. Pol. 43. Acal. 66. Ech. 95. Hel. 114. Turb. 128. Rot. 140. Ann. 162. Aceph. 197. Ceph'r. 225. Ceph'd. 257. Crus. 290. Arach. 316. Ins. 348.
—— gyratory. Crus. 285.
locomotive. Inf. 7. Rhiz. 8. Pol. 31. Acal. 57. Ech. 77. Hel. 103. Turb. 122. Rot. 133. Ann. 145. Aceph. 177. Ceph'r. 204. Ceph'd. 238. Crus. 268. Arach. 299. Ins. 326.

- muciparous. Ceph'r. 224. Ceph'r. 224 .
- olfactory. Ceph'd. 245. Crus. 275. Arach. 304. Ins. 334.
——phosphorescent. Ins. 347. - prehensile. Pol. 36. Acal. 56. Ech, 78. Crus. 268.
rotatory. See Rotatory Apparatus.
- salivary. Sce Salivary Glands.
- of Secretion. Inf. and Rhiz. 19. Pol. 42. Acal. 65. Ech. 94. Hel. 113. Turb. 127. Rot. 139. Ann. 161. Aceph. 196. Ceph'r. 223, 224. Ceph'd. 255, 256. Crus. 288, 289. Arach. 214, 315. Ins. 345, 356, 347. - of Sense. Inf. and Rhiz. 9, 10. Pol. 34. Acal. 60. Ech. 81. Hel. 105. Turb. 124. Rot. 135. Ann. 149, 150, 151. Aceph. 185, 186, 187. Ceph'r. 210, 211, 212. Ceph'd. 243, 244, 245, 246, 247. Crus. 274, 275, 276, 277. Arach. $303,304,305$. Ins. 332, 333, 334, 335, 336.
—— vitellus-secreting. Hel. 115. Turb. 128. - sericeous. Ins. 347.
- soniferous. Ins. 327. suctorial. Crus. 278. See also Proboscis. _ of Taste. Inf. 10. Ceph'd. 24t. Arach. 304. Ins. 333.
- of Touch. Inf. 10. Pol. 34. Ech. 81. Hel. 105. Turb. 124. Rot. 135. Ann. 149. Aceph. 185. Ccph'r. 210. Ceph'd. 243. Crus. 274. Arach. 303 . Ins. 332. - urinary. Ceph'r. 223. Ceph'd. 255. Crus. 288. Arach. 314. Ins. 345.
— venomous. Pol. 28. See Venomous Apparatus.
_ vibratile. Inf. 8. Pol. 26. Acal. 58.
- of Vision. Inf. 9. Pol. 34. Acal. 60. Ech. 81. Hel. 105. Turb. 124. Rot. 135. Ang. 150. Aceph. 187. Ceph'r. 212. Ceph'd. 247. Crus. 277. Arach. 305. Ins. 336.
- vortical. Crus. 285.

Orifice, cloacal. Rot. 136.
Orifices, genital. Ech. 97. Hel. 115. Turb. 128. Ann. 166. Ceph'r. 227. Ceph'd. 258. Crus. 290. Arach. 318. Ins. 351.

Orifices, respiratory. Ech. 93.
Os sepiae. Ceph'd. 235.
Oraries. Pol. 45, 47. Acal. 68. Ech. 97. Hel.
115, 116, 117. Turb. 128. Rot. 140. Ann.
166, 168. Aceph. 198. Ceph'r. 228. Ceph'd.
258. Crus. 291. Arach. 316. Ins. 349.

Ovipositor. Arach. 318. Ins. 332, 351.

P.

Palpi. Cr. 278. Arach. 303, 306. Ins. 332, 337. Pancreas. Rot. 136. Ceph'd. 250. Ins. 339.
Pedicellariae. Ech. 78.
Peduncle. Aceph. 180.
Penis. 11el. 115, 116, 117. Turb. 128. Ann. 166. Ceph'r. 227, 228. Ceph'd. 259. Crus. 291, 293. Arach. 319. Ins. 354.

Penises, secondary. Crus. 293.
Perisoma. Ech. 72.
Pharynx. Turb. 125. Ann. 153. Ceph'r. 213. Ceph'd. 248.
Pinnulae. Ech. 72.
Plates, ambulacral. Ech. 72.
-- cribriform. Ech. 97.
——genital. Ech. 97.
—— madreporic. Ech. 75.
Plexus, splanchnic. See Splanchnic Nerves.
Pouch, cirrous. IIel. 115.

- copulatory. Turb. 128. Ins. 349.
fecundating. Ceph'r. 227.
incubating. Crus. 292.
———problematical red. Crus. 286.
Polypr, 24.
Polypary. Pol. 25.
Pores, ambulacral. Ech. 72, 77.
Proboscis. Hel. 103. Ann. 149. Crus. 278.
Aracl. 306. Ins. 332, 337.
Propagation. See Organs of Generation.
Prostatc. Ceph'r. 227.
R.

Rays, branchial. Ann. 152.
Receptaculum seminis. Turb. 128. Ceph'r. 227. Crus. 292. Arach. 318. Ins. 349.
Rectum. Ech. 85. Rot. 136. Ann. 154. Aceph. 189. Ccph'r. 214. Ceph'd. 249. Arach. 307. Ins. 338.
Reservoir, egg. Ann. 166. Crus. 290, 292.
-sperm. See Receptaculum Seminis.
Rhizopod $4,4$.
Ring, aquiferous. Ech. 92.

- œesophageal. Ech. 80. Hel. 104.' Ann.

146. Aceph. 183. Ceph'r. 206. Ceph'd. 240. Crus. 270. Arach. 300. Ins. 323.

- osscous. Ech. 73

Rostellum. Hel. 103.
Rostrum. Ins. 337.
Rotatoma, 130.

S.

Shell. Aceph. 174. Ceph'r. 203. Ceph'd. 235. Crus. 265.
Siphon. Aceph. 173. Ceph'r. 203, 220. Ceph'd. 235. Ins. 343.

Silk. Arach. 315. Ins. 34π
Skeleton, cutaneous. Pol. 25. Acal. 54. Ech. 72. Hel. 101. Crus. 263. Arach. 296. Ins. 322. internal. Ech. 73. Aceph. 175. Ceph'd. 231. Ins. 322.

Skin. See Cutaneous Envelope.
Smell. Sce Olfactory Organs.
Spermatophores. Ceph'd. 259. Crus. 290.
Spermatic Particles. Pol. 46. Acal. 67. Ech. 95. 11el. 115, 116, 117. Turb. 128. Rot 140. Ann. 163. Aceph. 198. Ceph'r. 225. Ceph'd. 257. Crus. 290. Arach. 316. Ins. 348.

Spinnerets. Arach. 315. Ins. 347.
Stalk, crystalline. Aceph. 189.
Stemmata. See Organs of Vision.
Sting3. Ann. 145. Crus. 264. Ins. 347.
Stomach. Inf. 12. Pol. 37, 38. Acal. 61. Ech. 85. Rot. 136. Ann. 154. Aceph. 189. Ceph'r. 214. Ceph'd. 249. Crus. 279. Arach. $307 . \quad$ Ins. 338.
Suckers. Ech. 77. Hel. 103
Sucking Cups. Hel. 103. Ann. 145, 153. Ceph'r. 204. Ceph'd. 238. Arach. 299.

Support, calcareous. See Internal Skeleton.
System, aquiferous. Pol. 41. Acal. 63. Ech. 91. Hel. 112. Turb. 126. Rot. 138. See also Aquiferous Vessels.
circulatory. Inf. and Rhiz. 16. Pol. 39. Acal. 62. Ech. 87. 1 Hel. 110. Turb. 126. Rot. 137. Ann. 156. Aceph. 191. Ceph'r. 216. Ceph'd. 251. Crus. 282. Arach. 309. Ins. 340 .
muscular. 1nf. 7. Pol. 29. Acal. 57. Ech. 76. Hel. 102. Turb. 122. Rot. 132. Ann. 144. Aceph. 176. Ceph'r. 204. Ceph'd. 236. Crus. 267. Arach. 298. 1ns. 325. - nervous. Inf. 9. Pol. 33. Acal. ö9. Ech. 79, 80. Mel. 104. Turb. 123. Rot. 134. Ann. 146, 147, 148. Aceph. 181, 182, 183. Ceph'r. 206, 207, 208. Ceph'd. 239, 240, 241. Crus. 270, 271, 272. Arach. 300, 301. Ins. 328, 329, 330.

- respiratory. See Respiratory Apparatus. splanchnic. See Splanchnic Nerves. tegumentary. See Cutaneous Envelope.

T.

Taste. See Organs of Taste.
Teeth. Ech. 84. IIel. 108. Hot. 136. Ann. 153. Ceph'r. 213. Arach. 306.
Tentacles. Pol. 36. Acal. 61. Ech. 83, 91. Turb. 125. Ann. 149. Aceph. 173, 177, 185, 189. Ceph'r. 204,210. Ceph'd. 243.

Testicles. Pol. 44, 47. Acal. 68. Ech. 97. IIel. 115, 116, 117. Turb. 128. Rot. 140. Ann. 166, 168. Aceph. 198. Ceph'r. 228. Ceph'd. 259. Crus. 291, 293. Arach. 316. Ins. 352.

Tongue. Ceph'r. 213. Ceph'd. 244, 248. lus. 333, 337.
Tracheae. Ann. 159. Crus. 287. Arach. 312. Ins. 342.

Tube, anal. Aceph. 189, 194
——buccal. Aceph. 189, 194. germinative. Hel. 118. digestive. Inf. 12. Pol. 37, 38. Acal. 61. Ech. 85. Hel. 106, 107. Turb. 125. Rot. 136. Ann. 154. Aceph. 189. Ceph'r. 214. Ceph'd. 249. Crus. 279. Arach. 307. Ins. 338.

Tubes, calcareous. Ann. 161.
genital. Hel. 117.
respiratory. Rot. 138. Aceph. 193. Ins. 343.
-_trachean. Ech. 93.
Tunnel. Ceph'd. 234
Turbellarla, 120.

U.

Uterus. Hel. 115, 116, 117. Aceph. 199. Ceph'r. 227, 228.

V.

Vagina. Hel. 115, 116, 117. Turb. 128. Ins. - 351. See also Genital Orifices

Velns. See Circulatory System
Vesicles, pedunculated. Hel. 112.

- of Poli. Ech. 92. seminal. Hel. 115, 117. Turb. 128. Ann. 166. Ceph'r. 227. Arach. 319. Ins. 352. See also Receptacula Seminis.
- tentacular. Ech. 83

Vessel, dorsal. Ann. 156. Crus. 283. Arach. 309. Ins. 340.

Vcssels, aquiferous. Ann. 159. Aceph. 195. Ceph'r. 222. Ceph'd. 254. See also Aquiferous System.
lateral. Ann. 156
-— Malpighian. Crus. 288. Ins. 345.
—— Mappighian. Crus.
Vulva. See Genital Orifices.

W.

Wax. Ins. 347.
Wings. Lns. 326.

Valuable scientific Works,

PUBLISHED BY GOULD \& LINCOLN, 59 WASHINGTON STREET, BOSTON.

PUBLISHED ANNUALLY, COMMENCING WITH 1850.

THE ANNUAL OF SCIENTIFIC DISCOVERY;

Or, Year Book of Facts in Science and Art, exhibiting discoveries and improvements in Mechanics Useful Arts Natural Philosophy, Chemistry, Astronomy, Meteorology, Zoölogy, Botany, Mineralogy, Geology, Geography, Antiquities, \&c. ; with a list of recent Scientific Publications; a list of Patents ; obituaries of eminent Scientific Men ; index of important papers in Scientific Journals, Reports, \&c. Edited by David A. Wells, A. M. Each volume will be adorned with a fino likeness of some distinguished scientific man. Agassiz, Silliman, and Itenry appear in the volumes already publishcd. 12mo. Cloth. 1,25. Paper cover, 1,00.
This work will bo issued annually, so that all important facts discovered or announced during the year may easily be obtained. Each volume is distinct in itself, and contains entirely neao mutter

The Editor has the approbation, and will contime to receive the counsel and personal contributions, of Professors Agassiz, Ilorsford, and Wyman, of Harvard University, and many other scientific gentlemen.

THE POETRY OF SCIENCE;
Or, The Plysical Phenomena of Nature. By Robert Hunt, author of "Panthea," "Researches of Light," \&c. 12 mo . Cloth. 1,25.

LAKE SUPERIOR:

Its Plysical Character, Vegetation and Animals, compared with those of other and similar regions, by L. Agassiz, and contributions from other eminent and scientific gentlemen. With a narrative of the Expedition, and illustrations by J. E. Cabot. One volume octavo, elegantly illustrated. Clotl. 3,50.
This is one of the most valuable scientific works that has appeared in this country.

THE FOOTPRINTS OF THE CREATOR;

Or, the Asterolepis of Stromness, with numcrous illustrations. By Hugh Milera, author of "The Old Red Sandstone," \&c. With a Memoir of the author, by Lours Agassiz. 12mo. Clotli. 1,00.
Dr. Bucrland says, "I would give my left hand to posscss such powers of description as this man."
"Mr. Millcr's style is remarkably pleasing; his mode of popularizing geological knowledge unsurpassed, perhaps unequalled; and the dcep reverence for Divine Revelation, pervading all, adds interest and value to the volume." N. Y. Contmercial Advertiser.

THE OLD RED SANDSTONE;
Or, New Wailss in an Old Field. By Hugh Mileer. Illustrated with Plates and Geological Sections. l2mo. Cloth. 1,00.
"It is, withal, one of the most beantiful specimens of English composition to be found, conveying information on a most difficult and profound science, in a style at once novel, pleasing, and elerant" - Albany Spectator.

THE NATURAL HISTORY OF THE SPECIES;
Its Typical Forms and Primeval Distribution. With elcgant illustrations. By Charles Hamilton Smith. With an Introdurtion, containing an abstract of the views of Blumenbach, Prichard, Bachman, Agassiz, and other writers of repute. By Samuel Kneeland, Jun., M. D. Iथmo. Cloth. 1,25.
"Tho history of the species is thoroughly considered by Colonel Smith, with regard to its origin, typical forms, distrimition, filiations, \&c. The marks of practical good sense, careful observation, and deep research are displayed in every page. An introductory essay of some seventy or eighty pages forms a valuable addition to the work. It comprises an abstract of the opinions advocated by the most eminent writers ou the subject ; such as Prichard, Agassiz. Blumenhach, Bachman, \&c. The statements are made with strict impartiality, and, without comment, left to the judgment of the reader."-Sartain's Magazine.

THE EARTH AND MAN;

Lectures on Comparative Physical Geography, in its relation to the History of Mankind. By Arnold Guyot Translated from the French by Prof. C. C. Felton. With illustrations. 12mo. Cloth. 1,25.
"The grand idca of the work is happily expressed ly tho author, where he calls it the grographical march of history. Faith, science, learning, poetry, taste, in a word, genirs, have liberally contributed to tho production of the work under review. Sometimes we fecl as if we wero studying a treanise on the exact sciences; at others it strikes the ear like an epic pocm. Now it reads liko history, and now it somds like prophecy. It will find readers in whatever languago it may be published."- Christian Examiner.

COMPARATIVE PHYSICAL AND HISTORICAL GEOGRAPHY;
Or, the Study of the Earth and its Inhabitants. A Series of Graduated Courses, for the use of Schools. By Anxolv Gu yot, autlior of "Earth and Man," \&c.

Tlip series hereby announced will consist of three courses, adapted to the capacity of three diffcrent ages ard periods of study. The two parts of the first or preparatory course are now in a forward state of preparation, and will be issued at an early day

MURAL MAPS;
A frrips of elrgant colored Maps, projected on a largo scale, for the Recitation Room, consisting of a Map of the Worli, North and South America, Europe, Asia, Africa, etc., exhibiting the Physical Ple nomena of the Globe. By Arnold Guyot.

A GEOLOGICAL CHART,

Giving an ideal netion of the surcessive genlogial formations, with an actual section trom the Atlantic to the Pacific Ocean:. P! I'tif. James Hall, of Abany. Price, monnted, 9,00 .
This Chart has been prapared at the request of S. S. Rindall, Depnty Superintendent of the Common Schools of New York, and A. G. Juhson, Deputy Secretary of the State of Now York. It has been examined, and is highly conmented, by Prof. Agassiz, Charles Lyell, Edward IItchicock, J. D. Dana, A. D. Bache, Joseph Henry, J. W bailey, 'T. S. Ihunt, J. W. Foster, S. S. Holdeman, and many other scientific gentlenien.
a Key to Geological Cifart. By. Prof: James Hall I8mo. Price 25 cente.

VALUABLE SCHOOL BOOKS，

PUBLISHED BY GOULD AND LINCOLN，BOSTON．

THE ELEMENTS OF MORAL SCIENCE；

By Francis Wayland，D．D．，President of Brown University．50th thonsand．
ABRIDGMENT OF THE ELEMENTS OF MORAL SCIENCE，
Adapted to the use of Schools and Aeademies，by the author．35th thousand．
THE ELEMENTS OF POLITICAL ECONOMY， By Francrs Wayland，D．I．25th thousand，revised and improved．

ABRIDGMENT OF ELEMENTS OF POLITICAL ECONOMY，
Adapted to the use of Schools and Academies，by tho author．12th thousand．
$\$ 5$ The above popular works of Dr．Wayland are now used in most of our principal Colleges，Academies，and schools，and the sale of each is constantly increasing．

PALEY＇S NATURAL THEOLOGY，

Illustrated by forty plates，and selections from the Notes of Dr．Paxton ；with ailditional Notes，original and select－ ed，for this edition．With a Vocabulary of Sciontific Terms．Edited by John Ware，M．D．

THE YOUNG LADIES＇CLASS BOOK，
A Selection of Lessons for Reading，in Prose and Verse．By Ebeneter Balley，A．M．，late Principal of the Young Latlies＇High School，Boston．Stercotype edition．
36 This is considered by competent judges decidedly the bet reading hook for femalo schools and seminaries ever published．

ROMAN ANTIQUITIES AND ANCIENT MYTHOLOGY，

By Charles K．Dillaway，A．M．，Iate Principal in the Boston Public Latin School．Illustrated by elegant engrav－ ings．Sixth edition，improved．
程 A peculiar merit of this compilation，and one which gatins it admission into female seminaries especially，is the absence of allnsions to the disgusting obscrnities of Ancient Mythology；while，at tho same tine，nothing is omitted which a pure mind would feel interested to know．
jos The work is rapidy coming into nse all over our country；it is already introduced into most of our High Sclools and Academies，and in nany of our Colleges．

BLAKE＇S FIRST BOOK IN ASTRONOMY，

Designed for tho use of Common Schools．By Rev．J．L．Blake，D．D．Ilustrated by steel－plate Engravings．共 Tho author has interwoven with his scientific instructions much interesting historical information，and con－ trived to dress lis philosophy in a garb truly attractive．

BLAKE＇S NATURAL PHILOSOPHY，

Being Conversations on Philosophy，with the addition of Explanatory Notes，Questions for Examination，and a Dir－ tionary ef Philosophical Terms．With twenty－eight steel engravings．By Rev．J．L．Blake，D．D．A netv edition，enlarged．
\＄cs Perhaps no work has contributed so much as this to excite a fondness for the study of Natural Philosophy in youthful minds．The familiar comparisons with which it abounds awaken interest，and rivet the attention of the pupil．It has been introduced，with great success，into the public schools in Boston．

THE ELEMENTS OF GEOLOGY；

Adapted to Schools and Colleges，with numerons illustrations．By J．R．Looms，Professor of Chemistry and Geol－ ogy in Waterville College，Me．12no．Cloth．

PRINCIPLES OF ZOÖLOGY；

Tonching the Structure，Development，Distribution，and Natural Arrangement of the Races of Animals，living and extinct，with numerous illustrations．For tho use of Schools and Colleges．Part I．Comparative Physiology． By Lours Agassiz and Augustus A．Gould．Revised edition．12mo．Cloth．1，00．
＂This work places us in possession of information half a century in adivance of all our elementary works on this subject．＂－Prof．James Hall，Albany．

THE CICERONIAN，

Or the Prussian method of teacling the Latin Language．Adapted to the use of Americall Schools，by Barnas Sears，Secretary of the Hassachusetts Board of Ellucation．
序 This work has been recently published，and is already introduced into several of the best schools in the coun－ try，and approved by all who have examined it．It is confidently commended to teachers as the best uork for coni－ niencing tlse study of the Latin language．

MEMORIA TECHNICA，

Or the Art of abbreviating these studies which give the preatest labor to the memory．To whirh is added a Pel petual＇Almanac for two thonsand years of past time and tine to come．Adapted to the nse of Sehrols and Acad emies．By Lorenzo D．Johnsos．
mos G．\＆L．keep，in addition to the many walmable Theological，Miscrlaneous，avib Fhool Books，puh lished by themselves，a general assortment of works in those departments，which they sell at very lozo prices．
gos Particular attention is prid to supplying Couvtry Tradens，Schools，Academies，Colleges，and Labraries ro those who purchase to sell again，and others who buy in quantities，a biberal discount will be made．Orders an－ wered with promptness，and gandz f．rwarded to aby part of the Union
-

2:

[^0]: ${ }^{1}$ Handbuck dcr vergleichenden Anatomie. Göttingen, 1824.
 2 Lecons d'Anatomie comparee. Paris, 1709~ 1805. Translated into German and published with notes and additions by Meckel and Froriep. 4 vols. Leipzig, 1809-10. 2nd edit. Paris, 1835-45.
 3 System der vergleichenden Anatomie. 6 vols. LIalle, 1821-33.
 4 Lectures on Comparative Anatomy. 6 vols. london. 181t-29.

[^1]: ${ }^{10}$ Traité pratique et théoretique d'Anatomie comparee. 2 vol. Paris, 1843.
 ${ }^{11}$ Lehrouch der Zootomie. and edite, entirely revised; or "lharbuch der vergleichenden Anatomie." Leeipzig, 1842.
 ${ }^{12}$ Biologic. 6 vol. Güttingen, 1802-22. Also ; Erscheinungen und Gesetze des organischen Lebens. 2 vol. bremen, 1831--33.
 13 Grundriss der Physiologic. 2 vol. Berlin, 18:21-28.
 ${ }^{1 ⁄}$ Traité de Physiologie comparée de lliomme ct des Animaux. 3 vol. Montpellicr, 1838-39.
 30 Die Mhysiologie als Drfahrungswissenschafk, erste Auflage, mit Beiträgen von C. v. Baer, Dieffenbach, J. Muller, R. Wasncr. 6 vol. Leipzig, 1826-40. 2 te Auflage, mit Beitrdgen von C. Meyer, II. Rathké, C. v. Sirbold und G. Valentin. 2 vol. Leipzig, 1835-37.
 ${ }^{16}$ Ilandbuch der Physiologie des Menschen. 2 vol. 4th edit. Cobjentz, 1844.

[^2]: ${ }^{17}$ Lehrbuch der Physiologic. Ind edit. Leipzig, 1843.
 ${ }^{18}$ Merlicinische Zoologie. 2 vol. Berlin, 1829-33. ${ }^{10}$ Erlaterungstafeln zur vergleichenlen Anatomic. 6 heft. Leipzig, 1826-43.
 ${ }^{20}$ Icones physiologicie. Erlảaterungstafeln zur Physiologic und Entwickelungsgeschichte. Leipzig, 1839. Also, lcones Zootomicie. Ilandathas zu: vergleichenden Anatomie. Leiprig, 1841.
 ${ }^{21}$ Iconographie du Fiegne Animal de G. Cuvier, ou Représentation d'apres nature de l'une des especes les plus remarquables et souvent non encore figurées de chaque genre d'Animaux; pour servir d’atlas a tous les Tratés de Zoologic. 7 vol . avec 450 planches. Piris, 1830-38.
 ${ }^{22}$ Régne Animal de Cuvier, nouvelle édition, accompagnée de planches gravées, \&cc. \&c. L’aris, 1836-47. Still unfinished.

[^3]: ${ }^{1}$ Mikroskopische Tntersuchungen, \&c. Berlin, teurs des spores des Algues. Ann. des Sc. Nat. 1839
 2 Thuret. Recherches sur les organes locomo- ${ }^{3}$ The same. Pl. X.

[^4]: 4. As an example, may be mentioned the various and dissimilar opinions of naturalists upon the question of the animal or vegetable nature of the "red snow; " a question upon which Flotow, after the most careful studies, is still undecided. See Flotow, "Ueber Haematococcus pluvialis," in Nov. Act. Acad. Leop. Carol, vol. XX. part ii. I. 18.
 s See Unger, Die Pflanze im Momente der Thierwerdung. Wien. 1843.
[^5]: Also, Kützing, Uelser die Verwandlung der Infusorien in niedere Algenformen. Nordhausen, 1844.

 In an academic paper (Dissertatio de finibus inter regnum aninale et vegetabile constituendis, Erlangae, 1844), I have attenipted to show that this confusion between the two kingdoms does not exist.
 ${ }^{0}$ Abhandungen der Akademie der Wissenschaften zu lerlin, 1836, p. 134, Taf. I. fig. I9, and 1839, p. 102, Taf. IV. €ig. 5.

[^6]: ${ }^{1}$ In this table are mentioned the families and genera of those only which have been the objects of anatomical study.

[^7]: ${ }^{3}$ Amblyophis, Euglena and Peridinium, have a simple flagelliform cilium, but with Chlorogonium it is double.

 4 Trachetius trichophorus feels about with a long snout of this kind, without, lowever, producing a vortical action on the water.
 5 See Ehrenberg, "Bie Infusionsthicrchen," Taf. VIII. and IX.
 ${ }^{6}$ Gromia fluviatilis, Miliola vulsaris, Vorticialis strigilata, Euglypha tuberculosa, Trinema acinus, according to Dujardin (Ann. des

[^8]: a " Die Infusionsthierchen," p. 492.
 ${ }^{1}$ Auserlesene mikruskopische Entdeckungen, 1777 , p. 51 ; also, Abhandlung über die Stamenund Infusionsthierchen, 1778, p. 140.

 * Some recent researches of Thuret (Ann. d. Sc. Nat. 3 rd sel. XIV. 1850) on the reproductive germs of Algae prove that these bodies have red eyelike specks, resembling those seen in the Polygastrica, but which disappear when the Zoospores attach themselves and germination proceeds. The

[^9]: ${ }^{2}$ The genus Opalina was first established by Purkinje of I'alentin. Many species are found in the rectum of frogs, and it is not rare to mect with them in the alimentary canal of Planaricae. $\boldsymbol{\gamma}$
 fact is a very interestiug one in this connection. ED.
 iो [§ 11, note 2.] According to Agassiz (Amer. Jour. Sc. XIII. 1852, p. 425), Opalina is only a larval form of Distoma. - ED.

[^10]: 1 Focke (Isis, 1836, p. 785) has already raised doubts as to the existence in Infusoria of the stomachs described by Ehrenberg. Ehrenberg has also opponents in Dujardin (Ann. des Sc. Nat. Zool. 1V. 1835, p. 364 ; V. 1836, p. 193 ; X. 1838, p. 230 ; also llist. Nat. des Infus. 1841, p. 57), in Meyen (Müler's Arch. 1839, p. 74) and in Rymer Jones (Ann. of Nat. Nlist. 111. 1899, p. 105 ; also, "A General Outline of the Animal Kingdom," 1841, p. 56).
 He has attempted to reply to the objections here urged by very detailed illustrations of the organization of the Polygastrica, made by him and Wer-
 ** Bailey (Amer. Jour. Sc. May, 1853, p. 341) has reeently published ap account, accompanied with numerous figures, of a new animatcule, which is so remarkable in this eonnection that 1 give here his description. Ilc says: " If the reader will

[^11]: 1 "Die Infusionsthierchen," pp. 321, 326, 329. Ehrenberg has, moreover, in Trachelius meleagris, confounded the contractile cavities with those non-contractile, and which receive the food.
 ${ }_{2}$ Abhandl. d. Berliner Akad. 1833, p. 179 ; also
 "Die Infusionsthierchen," 1p. $319,338,339$.*
 1 Vaginicola and Vorticella. See Focke, Isis,

[^12]: 1 Actinophrys. The month is naked also in the genera Diflugia and Arcella of the Rhizopoda.*
 ${ }^{2}$ Bursaria, Paramacium, Urostyla and Stylonychia. In Glaucoma scintillans the ciliated crown of the mouth is replaced by a special semihunar ciliated lobe.
 ${ }^{3}$ In Stentor, Vorticella, Epistylis and Trichodina, this apparatus is retractile, and produces in a particular way the vortical actions. In Spirostomum ambiguum, there is a long, natow, ciliated furrow, through which the food is conducted to the mouth, situated at the posterior portion of the body.

 - Payrodon, Nussula, Chilodom and Chlamidodon. Here the hair-like teeth arc arranged in a cylinder so as to resemble a weir.
 5 The desophagus is short in Oxytrich α, Stylonychia, and Euplotes ; but is elongated or spinal in Lorticelli, Carchesium and Epistylis;

[^13]: * [§ 15 , note 1.] Kblliker (Siebold and Kolliker's Zeitsch. I. 1849, p. 198) has given a long and detailed description of Actinophrys sol. According to him, it is without mouth or stomach proper, and internally is composed of a homogeneous sub-

[^14]: stance. Yet this remarkable animal lives on other Infusoria, Algae, \&c., and avails itself of them by seizing and afterwards invaginating them in its parenchyma, until they finally are included within its interior. - Ev .

[^15]: ${ }^{1}$ Ehrenberg (loc. cit. p. 321, Taf. XXXIII. fig. viii.), deceived by this illusion, has taken the eight to twelve contractile cavities of Trachelius meleagris for stomachal cells, filled with red gastric juice. He has also regarded these cavities, when simple or double, as seminal vesicles. (Abhandl. d. Berliner Akad. 1833, p. 172, - 1835 p. 158.) In. species having but few, he has very arbitrarily decided that some are seminal vesicles, others stomachal pouches, as, for example, in Amphileptus (loc. cit. p. 355). According to him, the seminal vesicles, upon contraction, pour the sperm upou the eggs contained

[^16]: in the body. It really seems very strange that these animals should practise uninterruptedly these pollutions throughout their cntire life. These animals have neither testicles nor ovaries, and the function of these cavities is not, therefore, that assigned to them by Ehrenbers, - but is, as I think, with Wiegmanu (Arch. f. Naturg. 1835, I. p. 12), analogous to that of a heart.
 ${ }^{1}$ Dujardin, Ann. 1. Sc. Nat. Zool. tome X. Pr. XV. fig. 3 ; also, " lnfusoires," Pl. VIII. fig. 6. Ehrenberg's plates of these star-like vesicles are incorrect.

[^17]: ${ }^{2}$ Ehrenberg, loc. cit. p. 41, Taf. II. fig. xvii.
 1 Ehrenberg (Ibid, p. 303, Taf. XXXI. fig. vi. 1) appears to have taken the protrusion of these contractile vesicles for that of a snout.

[^18]: ${ }^{1}$ That which Ehrenberg has arbitrarily taken for eggs is sometimes granules of the parenchyma or pigment corpuscles, sometimes bits of food. He did not perceive that these bodies want all that which is necessary to make up an egg, - such as chorion, vitellus, and germinative vesicle and dot. It is on this account that he declares that he never has observed the hatching of young Infusoria. (Abhandl. d. Berliner Akad. 1835, p. 156.)

 2 Vorticella, Carchesium.

[^19]: 1 Loc. cit. p. 110.
 2 Perhaps this nucleus, of which the animal is only a temporary envelope, is ultimately developed into a particular animal. ludeed, perhaps this species, as well as many others, are only the larval states of other animals, whose metamorphoses are yet unknown. It may properly be asked, if this nucleus has not, relative to the body containing it, the same signification as have the tubulous larva of Monostomum mutabile (see below) to the embryos they surround.

[^20]: 1 There are here enumerated only those families This remark applies equally to the following whose organization has been specially studied. classes.

[^21]: 1 The Actinina and Hydrina
 2 Corallium.
 3 The Gorgonina
 4 These corpuscles are easily seen in Alcyonium and Lobularia. (Milne Edwards, Ann. I. Sc. Nat., Zool. 15.1835, pl. X11I. fig. 9 ; Pl. XV. fig. 10-11.) Spicula of this kind are found in the interior of their tissues, as well as on the surface. Ehrenberg (Abhand. d. Berl. Akad. 1811, I'h. I.

 * It should here be remarked that the old, and as now regarded, mistaken view of the formation of the frame of lolyps is here repeated; for the frame Is generally an internal skeleton, as, for instance,

[^22]: 1 Erdl has seen very distinct ciliated epithelium in Actinia and Veretillum. (See Müller's Arch. 1841, p. 423.)

 2 Ablaudl. ll. Berl. Akad. 1834, p. 255, 377.
 1 These nettling organs, which are much more common in the lower orders of the animal kingdom than was at first supposed, ale yet quite imperfectly known. Wagner first discovered them in the Actinia, although he rerarded them at first as the spermatic particles of these animals. (Wiegmann's Arch. 1885. 1I. p. 215, Taf 111. fig. 7, also 1841, 1. p. 41 ; Icones Zoot. Tat. NXXIV. fig. 24.) These researches have been extenled by Erdl, who has shown that they also exist with Veretillum and Alcyonium. (Muiler's Arch. 1841, p. 433, Taf. XV. fig. 3-6 and 8, 9.) In Alcyonium, Erdl has observed the filament take, on its depmeture from the vesicle, first a riband-like, and then a spiral aspect. In Desmophyllum stellaria

[^23]: (Ehrenberg), I have seen these cylindrical orgats laving a long spiras filament. With Edwardsia, Quatrefages has found these organs upon the whole surface of the body, as well as upon the arms. (Ann. d. Sc. Nat., Zool. 1842, XV111. p. 81, Pl. II. fig. 4-6.) For the nettling organs of the Tubulariae and the dctiniae, see also Wagner in Müller's Arch. 1817, p. 195, 'Taf, VILI.
 Ithese were first duscribed by Ehrenberg. (Mittheil. a. d. Verhand. d. Geveltschaft naturf. Freunde zu Bertin 2 tes. Quartal, 1836 , p. 28 ; atso, Abhandl. d. Berl. Akatl. 1835, p. 147; 1836, p. 133, Taf. II.) They have been carclully studied by Erdl (Müller's Arch. 1841, p. 430. 'Jaf. XV. fig. 10-13).
 2 Ehrenberg has figured, ideally (Ahandl d. Bert. Aksid. 1836, p. 183, Taf. 11. fig. 1) an Ifydra in the act of seizing its prey with extended hooks. la reality this animal is never thus seen.

[^24]: 1 Milne Eduards, who declares he has scen striated muscular fibres in Eschara (Ann.d. Se. Nat. VI. I836, p. 3), must have been deceived. I have been unable to perceive them in Eschara, Alcyonella, Cristatella, and other species. Nordmann also has not found them in Cellaria. (Observ.sur la Faune Pontique, 1840, p. 679 ; also Müller's Arch. 184:, p. ceviii.) The irregular bands appearing during contraction, but afterwards disappearing, have been observed by Quatrefages with Edwardsia (Ann. d. Sc. Nat. XVIII. 1842, p. 84, pl. II. fig. 7, a-b).*
 1 Corda, Nov. Act. Acad. C. L. C. Nat. Cur. XVIII. 1839, p. 299. Also Ann. d. Sc. Nat. VIII. 1837, p. 363.

[^25]: * [$\$ 29$, note 1.] Busk has described and figured the striated form of this tissue with Anguinaria spatulata and Notamia bursaria. (Trans. Microscop. Soc. of London, II.) I have been unalle, however, after considerable search upon many Bryozoa, among which were several Alcyonella, to detect any appearances of this kind; and I would venture a pretty confident opinion that in the spe-

[^26]: 1 A double œesophageal ganglion has been observed by Dumortier (Mém. sur l' Anat. et la Physiol. d. Polypisrs composés d'eau douce 1836, p.41, pl. II. fig. ${ }^{2}$) in Lophopus cristallinus (P/umatella cristata of Lamarck); and by Coste (Comp. rend. XII. 1841, p. 724)in the Plumatellae in general. Nordmann also has seen a similar ganglion under the mouth of Plumatella campanulata (Lainarck) (loc cit. p. 703), and of T'endra zostericola (Ann. d. Sc. Nat. XI. 1838, p. 190). Accorling to Van Beneden, a nervous ring surrounds the cesophagus of Alcyonella (Ann. d. Sc.

[^27]: * [§ 33, note 1.] Allman has observed with Cristatella mucedo a small roundish body situated at the upper end of the pharynx, and which he regards as a nervous ganglion (Rep. Brit. Assoc. Advancem. of Sc. 1816, p. 88). This observation he subsequently confirmed, and has observed with Plumatella repens this ganglion (which lic terms the great œesophageal ganglion) send off a large filament to each of the tentaculiferous lobes; also a smaller one passing off at each side to embrace the oesophargus, while a very short one was distrib-

[^28]: 3 Quatrefages, Ann. d. Sc. Nat. XV11I. 1842,
 p. 250, pl. V1II. fig. 1, d, d, and fig. 6.

 4 See Krohn (Müller's Arch. 1843, p. 176) and Kolliker (Froriep's ncue Notizen, 1843, No. 534, p. 81). Van Beneden has perceived in the campanulate and free indiviluals of Campanularia gelatinosa and geniculata, not only eight marginal bodies, each containing a calcareous nucleus, but also four nervous ganglia about the base of the stomach (Mém. sur les Campanulaires de la côte d'Ostende, 1843, p. 24-27, pl. II. II1.). 1 am yet undetcrmined upon the question whether, as Van Beneden thinks, these bodies have sometimes the function of organs of vision, and sometimes that of organs of hearing. I am also in doubt as to the opinion of Huschke (Lehre von den Eingeweiden und Sinnesorganen, 1844, p. 880), who regards as otolites the calcareous bodies which have been observed in the peduncle of Veretillum cynomorium. Nordmann (Versuch. einer Monogr. des Tergipes, p.88) has described as auditory organs the marginal bodies of the free-swimming Campanulariae.
 1 This cavity which is in the arms of most Polyps

 * $\$ 836$, note 1.] Subsequent researches have shown that the cavity of the tentacles does open externally through a small papilla. See Dana,

[^29]: 7 Flustra, Eschara, Tubulipora and Cristatella.
 8 Actinina.
 9 Hydra, Coryne, Eleutheria, Sertularia, Campanularia and Alcyonium.
 10 Such preliensile organs have been observed lyy Quatrefares upon the clavate tentacles of Elcutheria. Ile thinks also he has observed two muscles in their capsules, by which the retractile sting is projected (Ann. d. Sc. Nat. XVIII. 1842, p. 276 and 233, pl. VIII.; or Froriep's neue Notizen, 1843, No. 543, p. 230). The oval wesicles which roughen the tentacles of Cainpanularia, and which Love'n (Wiegmunn's Arch. 1837, I. 1. 252) has described as small spinous warts, are probably of the same nature. In Hydra each hook-organ upon the arm is surrounded by a group of similar vesicles, in the interior of whicl is a rigid bristle. These organs are here found only upon the arms. They are distinguished from the organs having hooks by their less size, and from their having no projecting filament. Corda has not properly distinguished then from the hook-organs, whose fila-

[^30]: * [§ 38, note 2.] According to Allman (Report Brit. Assoc. 1850, p. 310), the œesophagus sueceeds the stomach without the intervention of any distinct crop with all the fresh-water Bryozoa. The stomaeh is large and thick-walled, and may be divided into a cardiac and a pyloric portion. The pylorus is distinetly valvular, and the intestine,

[^31]: 1 The calcareous tubes of Tubipora, and the corneous ones of the Sertularina and other Bryozoa, are, without doubt, secreted by the border of the mantle, as is true of the shells of mollusks.

 I According to Roesel (Insektenbelust. III. p. $50 \pm, 525$. Taf. LXXX11I. fig. 3), fissuration takes place transversely with Hydra. Longitudinal fissuration is principally observed with the Madreporina. When it is complete the cells of the corallum are definitely limited, as in Astraea, Favia,

[^32]: 3 Eschara and Flustra have a lamellated form when fixed to stoncs, shells, or the broad laves of Algae; but are tubular when attached to the steins of plants. Alcyomella stagnorum under* goes similar changes in the form of its corallum. It diviles in a regular dichotomous mannes (Eichhorn, Beitr: zur Naturgesch. d. kleinsten Thierc. Tra. IV.; also Roesel, loc. cit. Taf. LXXIII. and LXXIV.), and in this form has been described under the name of Plumatella camparalata by Lamarck. But when a colony of these Polyps is fixed upon a stone or a sunken root, they commenee to be developed in a dichotomous manner: But afterwards they become lapidescent by the branches of both modes interlacing each other. As the mass beeomes more voluminous and dense, the tubes of the dead gencration support those of the living. (See Lamouroux, Exposit. méthod. des Gemres de lordre des Polypiers, PI. LXXVI. fig. 5.) Under this from this Polyp has received the name of Alcyonella stagnorum (see Raspail, Hist. Nat. de l'Alcyonelle fluviatile). \dagger

 1 Hydra.
 2 Actinia. +
 3 Alcyonella.

 * [End of § 43.] For a full account of the reproductive process with Polyps, and the most philosophical exposition of the relations of gemmation and its analogies and affinities with other dcvelopracntal proeesscs, see Dan α, loc. eit. 1. 85. No abstract can be given of such a work, - Ed.
 ' \dagger [$\$ 43$, note 3., For full details of the gemmiparous mode of reproduction with the Bryozoa, see Van Beneden (Rechereh. sur lorganis. des

[^33]: * [End of additional note to §45.] The remarkable relations here spoken of, and the conjeetures as to the real zoologieal nature of the animals in question, have been pretty satisfaetorily cleared up by the recent researches of Agassiz. He has shown that the 1Iydroid Polyps are not simply a lower form of stemmed animals, producing at a given period more highly-organized Medusæ, but that they are themselves, by their structure, real Medu-

[^34]: 2 Raspail; 1oc. cit. pl. XII. fig. 10-12, pl. XIV. fig. 4-s, and pl. XV. fig. 5.
 ${ }_{3}$ Turpin and Gervais, Ann. des Sc. Nat. VII.
 1837, pl. T1I. A. fig. 2-4, and pl. IV. A. fig. 1-6.
 4 Wagner. Wiegmann's Arch. 1835, 1. Taf. III.
 fig. 1 ; also Icanes zoot. Taf. XXXIV. fig. 22.
 Suatrefages. Ann. d. Sc. Nat. loc. cit. pl.
 fig. 7, and pl. II. fig. 10.
 ${ }^{6}$ Carus and Otto. Erlauterungstafeln, Heft. IV. Taf. I. fig. 19; also Wagner, Icones zoot. Taf. XXXIV. fig. 2.

 7 Milne Edwards. Ann. d. Sc. Nat. loc. cit. nl. XIV. fig. 4; pl. XV. fig. 6, 8, and pl. XVI. fig. 3-5.

 8 Ibid. p. 329, pl. XII. fig. 3, pl. XIII. fig. 2, 7.
 9 Rymer Jones. Outlines, loc. cit. p. 36, fig. 9, after Lamouroux.
 10 Kölliker's observation upon the sexual organs

[^35]: * [§45, note 10.] With the Actinina, some of the lamellae which partition off the visceral cavity are margined each by a white, capillary, convolut. ed cord. It is attached to the lamellae by a thin, mesentery-like membrane. These cords are the testicles. Between the spermatic lamellae are others similarly arranged, which are the ovarian, on

[^36]: * [At end of § 50.] The so-called ova, mentioned above in the text, may be justly questioned as being true ora, for we know of no real ova which do not contain a germinative vesicle. Then, again, simple oval masses of cells as they are, they would exactly resemble the bud-like eggs of Aphides, and the "hibernating eggs" of Daphnia and some of the Rotatoria, all of which are properly gemmae, and do not require the agency of the spermatic

[^37]: 1 Eschscholtz, loc. cit. Taf, XV. ; and Lesson, Acalèphcs, loc. cit. PI. XII. fig. 1; also, Duperrey, Voyage loc. cit. Zoophytes, No. 6. fig. 1, A. A.

[^38]: * [§ 57, note 2.] For the muscular system of the Acalephae, see also Forbes (loc. cit. p. 3), and Agassiz (loc. cit. p. 236). This last-named author has described this system with full details in many genera. It is much more complex than has hitherto been supposed, and I must refer for the details to the memoir in question.

[^39]: * [§ 62, note 1.] A true circulatory system las not been observed also by Dana (Struct. and Class. of Koophytes, 1846, p. 12), by Forbes (Brit. Naked-cyed Biedusae, 184S, p. 6), by Agassiz (Contributions to the Nat. Mist. of the Acalcphat of North Amorica, Mem. Amer. Acad. Bostra, 1850, p. 260), and by Busch (Beobacht. üb. Anat.

[^40]: * [§ 66, note 3.] Reproduction by fissuration has been observed with the Discophora by K olli ker (Siebold and Kölliker's Zeitsch. IV. p. 325); be witnessed this phenomena with Stomobrachium mirabile. It does not appear, however, that he has observed this process with adult forms; for he remarks that there is reason to belicve that this Stomobrachium is only a young, imperfect form of his Mesonema coerulescena. - Ed.
 \dagger [§67, note 2.] The spermatic particles of the Acalephae have invariably, I think, a cercaria-

[^41]: 1 Will, Horae tergest. p. 38, Taf. I. fig. 22, 23.
 2 Waener, Icones. zoot. Tab. XXXIII. fig. 26, a. a.; Will, loc. cit. Taf. II. fig. $5,7,8,1 \pm, 16$; Brainville, Manuel d'Actinol. $18{ }^{2}$. शै VTI. fig. 3: and Sars, Beskrivelser loc. cit. 11. $12,13$.
 3 Will, loc. cit. p. 71.
 4 Milne Edwards, Ann. d. Sc. Nat. XV I. p. 198, Pl. 1. fig. 1, a, b.

 5 Caede, Beitradge loc. cit. Taf. I. fig, 1, c. (Me-
 dusa) ; and Lesson in Duperrey, Voyage loc. cit.
 No. 12, 13 (Chrysaora).
 ${ }_{7}^{6}$ Rhizostomum.
 7 Chrysuora, Medusa, Pelasia and Aurelia. See Ehrenberg, Abhandl. d. Berl. Akal. 1835, Taf. I. fig. 1 ; Wagner, lcon. zoot. Tal. XXX1II. fig. 1 ; and Brandl, Mém. de l'Acad. de st. Petersburg, IV. I'l. IX. X. With the male and the female Copliea, I have found the testicles and the ovaries disporsed exactly as with the

 8 In Cassiopea, these organs ar wethan minber.
 9 Medusa and Pelagia; see Ehrenberg, loc.

[^42]: 10 In the Crinoidea, as well as in the Echinodcrms generally, the parts of the skeleton have a caleareous, reticulated structure; see Miller's Arch. 183 ${ }^{7}$, P. 93 , and Ueber d. Bau. d. Yentacrinus caput Medusae, in the Abhand!. d. Berl. Akad. 1841, Taf. I. fig. 3.
 1 Echinus, Cidaris.
 2 Vulentin, Dlonogr. loc. eit. Pl. II. fig. 15.
 3 agassiz, Monogr. d'Echinodermes, 2 le Livr. containing the Scutellal, Pl. XIL. fig. 3, 11. XXVII. fig. 7 (Lobophora and Echinocyamus).

 4 Tiedemann, Anat. d. Röhrenholothurie, \&c., p. 26, Ial. II. fig. 5; also Wagner, Ieon. zoot. Tab. XXXII. fig. 15.

 Koren has observed that the osseons ring is composed of ten pieces with Thyone fuscus and Cuvieria squamata of the Molothurinac.
 5 (euatrefages, Ann. d. Sc. Nat. XVII. 1842, p. 47 , Pl. IV. tig. 5 ; Pl. V. fig. 7, c. c.

 I With Oreaster and Culcila, the whole body is covered with knobs and granulations. With Astropecten and S'tcllaster, you find flattened points and marginal lancllae. Inaumacrable rays, with

[^43]: Duvernaca. The similar hooks found in the seamud of Vera Cruz have been taken by Ehrenberg for stony eoncretions belonging to a sponge, and figured and named Spongolithis unchora (Abhand. d. Berl. Akarl. 1841, p. 323, Tat. III. No. VII. fig. 36). IIe has also taken the perimated supports of these hooks for an Iufusorium with a siliceous carapace, described as Dictyocha splendens (ibid. tig. 35). But, more latuly, he has perceived their true nature (Tbill. $1.407,443$). The discovery of analogous cutitneous organs in the marl near streitberg, by Count Miunster (Beitr. z. Petrefak. Hft. VI. 1843, p. 92, 96, Taf. IV. fig. 9), is very interesting, since it shows the antediluvian existence of Symapta.
 Beside the cutanenus corpuscles of carbonate of lime, Quatrefages (loc. cit. p. 36, PI. III. fig. 15) has found others which are of a spherical form in the skin of Symapta Duvernaea; and, as they have protractile filaments, he compares them to nettling organs.
 1 Astrophyton.
 2 These parts are found in Astropecten. According to Tiedemann (loc. cit. p. 51), they furnish the necessary calcareous matter tor the skeleton of the Astcroidae. But Ehrenberge (Muiller's Arch.

[^44]: 4 Valentin, Monogr. loc. cit. p. 35, Pl. II1. fig. 39.

 5 The cutaneous muscular system of Holathuria has been described by Tiedemann (loc. cit. p. 27, Taf. II. 1V.) ; and that of Synapta by quatrefages (Ann. d. Sc. Nat. loc. cit. p. 41).
 6 For the muscular system of Sipunculus nudus, see Grube, in Muller's Arch. 1837, p. 240, Taf. XI. fig. I.

 1 The ambulacra of Comatula, which have active vermicular movements, have no opening at their free extremity ; see Müller, Abhand. d. Berl. Akad. loc. cit. p. 222, Tab. 1V. fig. 13, 14.
 \geq By these the very active arms of the ophiuri-

[^45]: ${ }^{1}$ Krohn (Müller's Arch. 1841, p. 8, Taf. I. fig. $3,4)$.
 2 Krohn, loc. cit.
 1 Krolm, ibid. p. 4, 10.
 2 Muller (Abhandi. d. Berl. Akad. loc. cit. p. 233, Taf. IV. fig. 11, i. ; Taf. V. fig. 16).

 3 The nervous system of the Asteroidae was first clearly shomn by Tiedemann (loc. cit. p. 62, Taf. IX. and Meckel's Deutsch. Archiv. I. 1815, p. 69, Taf. III. fig. 1). This anatomist, like Krohn (loc. cit. p. 4), did not perceive the ganglia of the cesophageal ring, observed by Wagner (Vergleich. Anat. 1834, p. 372).

 The ganglia and nerves that Spix (Ann. du Mus. d'Hist. Nat. XIII. 1809, p. 439, Pl. XXXII. fig. 3, 6) and Konrad (De Asteriarum fabrica dissert. 1814, p. 13, fig. 3, 0.) affirm to have seen on the internal (dorsal) surface, opposite the ventral

[^46]: and, in the Asteroidae, where they are upon the ventral surface at the end of the furrows, the rays bend round to the dorsal surface; and again, although Tiedemann (Meckel's Deutsch. Arch. loc. cit. p. 175) thinks these last can distinguish light from darkness, yet it is doubtful if these animals can really see by these organs. They appcar, like many other inferior animals, to perceive the light by its action as an excitant upon their skin, and in this way can, bike plants, seek the sunlight. The account which Forbes (Hist. of British Star-fishes, p. 139, and Froriep's neue Not. No. $420,1841, \mathrm{p} .26$) las given of Luidia fragitis$\operatorname{sim} a$, which, having made its escape by the loss of an arm, looked with scornful eyes upon its persecutor, is pleasant to read, but is far from settling this question.
 1 Asteroïdea, Echinoidea, and Sipunculoïdea.

[^47]: 2 Holothurioidea.
 3 Holothurioïdea and Sipunculö̈dea.
 4 Asteroidae.
 5 Ophiuridae.
 6 According to Sharpey (Cyclopædia, \&c., loc. cit. I. p. 616) and Valentin (Wagner's llandwörterbuch der Physiol. I. 1842, p. 493), the internat surface of the stomach and its appendages, of the Asteroidae, has a ciliary moveracnt. Valentin (Monogr. \&c. p. 79) has also found ciliated epithelium in the entire digestive canal of Echinus.

 With Phascolosoma, where I have found cilia upon the tentacular apparatus, and with Comatula, wherc Mrüller (Abhandl. d. Berl. Akad. 1841, p. 233) has found them in the anus, they extend probably through the intestine.
 1 Müller, Abhandl. d. Berl. Akad. 1841, p. 222.

[^48]: 2 These vesicles are found in Holothuria and Chirodota; see Tiedemann, loc. cit. Tab. II. fig. 4, e. 6, i. ; also the Catalogue of the Museum, London, \&c., IV. Pl. XLIX. fig. 1, 2 (Holothuria tubulosa) ; and the Atlas Zool. du Voyage de l'Astrolabc. Zoophytes, Pl. V11I. fig. 3 (Chirodota fusca). In Pentacta doliolum, I have found only a single cylindrical vesicle fixed to the circle of tentacles. In Synapta Duvernaea (Quatrefages Ann. d. Sc. Nat. loc, cit.), these vesicles are cntirely wanting.
 Cuvier (Anat. Comp. V. p. 454) and other anatomists (see Grant, Outlines, \&c., p. 333) have erroneously taken these parts for salivary organs. They do not communicate with the digestive canal, but connect freely with the circulatory and respiratory systems, -a point, therefore, to which we shall further allude bereafter.

[^49]: 3 In Pentacta, thicre are five large cylindrical muscles arising from the subcutaneous longitudinal ones, and inserted into the osseous circle; - they are special retractors of the tentacles ; see Mechel, System d. vergleich, Anat. IV. p. 62.
 4 I am inclined to regard as tentacular the two vesicles of roli, in Sipunculus ; and of whict Delle Chiaje (Hemor. \&c. Tav. I. fig. 6, d.) perceived only one, although Grube (Muller's Arch. 1837, p. 251, Taf. XI. fig. 2, P.) has seen them both fixed in a space circumseribed by the tentacular membrane.
 5 Grube, 1bid, p. 241, Taf. XI. fig. 1, u. 2, m. m.; and Delle Chiaje, Mcmor. \&c. Tav. I. fig. 3.
 6 The oral tentacles of Synapta Duvernaea, which, according to Quatrefages (loc. cit. p. 63, PI. IV. fig. 1), have suckers on their internal surface, are certainly used as locomotive organs.

[^50]: 1 This apparatus has been minutely described by Tiedemann (loc. cit. p. 72, Taf. X. fig. 1, 2), by Meckel (Syst. d. vergleich, Anat. IV. p. 56), and by Valentin (Monogr. \&c. p. 63, Pl. V.). See also the beautiful figure by Rymer Jones (Outline of the Anim, King. \&c. p. 167, fig. 70, 71).
 ${ }^{2}$ A gassiz, Monogr. \&c. 2e Livr. Scutelles. p. 15, Pl. XII. XIII. XIV. \&c.

 1 Konrad, De Asteriarum fabrica, fig. 5.

[^51]: 5 Müller, Mbhandl. d. Beri. Akad. 1841, p. 230, Taf. V.
 ${ }^{6}$ See Merkel, Syst. d. vergleich, Anat. IV. p. 55, aud Delle Chiaje, Memor. \&c. Tay. XXV. fig. 12 ; also Carus and Otto, Erläntwungstafeln z. vergleich. Anat. IIft. IV. Tab, I. fig. 25, and Wagner, Icon. zoot. Tab. XXXiL. fig. 8. The nature of the canal firured by Delle Chiaje is yet unknown. It arises from the first portion of the intestine, and returns to it at its midde portion. 1t has not been mentioned by Meckel.
 7 Agassiz, Monogr. des Scutelles, p. 14, PI. III. fig. 19, a.
 8 1bid. p. 17, Pl. XXII. fig. 28 (Laganum and Mellita).
 ${ }^{9}$ See Tiedemann and Valentin, loc. cit.
 10 The digestive canal of the llolothorinae was first figured by Delle Chiaje and by Tiedemann,
 II. See the remarks of Forbes and Goodsir upon the Anatomy of Thalassema and Echiurus (Froriep's neue Notizen, No. 392, p. 273, fig. 12).

 13 The alimentary canal of Simunculus nudus. and of Echinorhyncus, has been faithfully dcscribed by Delle Chiaje (Memor. \&c. I. p. 9, Tap. I. fig. 5, 6; 1. 126, Tav. X. fig. 11) and Grube (Muller's Arch. 1837, p. 245, lif. Xi.). I have found a similar intestine in Phascolosoma granulatum.

[^52]: 1 The ramified organs of the Echinidae, already known by Tiedemann (loc. cit. p 78, Taf. X. fir. 5, d. d.) and Detle Chiaje (loc. cit. II. p. 338), have been more exactly described by Valentin (Monogr. \&c. p. 82, Pl. IV. fig. 57; P1. VIII. fig. 42), and by Erdl (W'iegmann's Arch. 1842, $\overline{1}$. 13. 59 , Taf. If. fig. 12, 13).

 2 Valentin, loc. cit. Pl. VII. fig. 185, 1.
 3 Valentin, loc. cit. fig. 143 ; and Erdl, loc. cit. fig. 13.*

 4 The branchiae of Holothuria tubulosa have

 * [§ 90, note 3.] Sce, in this connection, Muller (Arch. 1850, p. 122), who has confirmed Vaten-
 heen very well described by Tiedemann (loc. cit. 1). 11, Taf. II, or Warmer Tcon. zoot. Tab. XXXII. fig. 9), and by Delle (hiaje (loc. cit. Tav. viIt. IX.). Sec also Atlas Zool. du Voyage de 1'Astrolabe. Zoophytes, M1. VII. fig. 2, 9, p. (Holothuria ananas) and Pl. VII. fig. 3, eे (Claulolabes spinosas). Pentacta doliolam has similar organs. According to Cavier (Anat. Comp. VIS. 1840, p. 536) there is only a single branchia in the other remaining Molothurinae.
 tin's observations as to the structure of the external gills. - Ed.

[^53]: 5 There is found, but inconstantly, it would appear, upon the trunk of the branchize of some Holothurinae particular pedunculated coeca, which in Bohadschia marmorata bave been regarded as urinary organs by Jaeger (De Hlolothuriis, \&c., Tab. I11. fig. 9, g.). But they require further investigation.*
 6 Forbes and Goodsir (Froriep's neue Not. No. 392, p. 277, fig. 12, e. - 19).
 1 From the figures of Delle Chiaje (loc cit. Tav.

 * [§90, note 5.] For many new details upon the respiratory system of the Molothurioidea, see

 XX1. fig. 17) it would appear that Ophiurus has an aquiferous system.
 ${ }_{2}$ Miller, Abhandl. d. Berl. Akad. 1841, p. 234.
 3 These pyriform vesicular appendages are always situated between the principal vessels of the rays, varying both as to number and volume, and being sometimes entively wanting. Astropecten bispinosus has only five; Asteriscus verruculatus, Astropecten pentacanthus, and Asteracanthion glacialis, have ten, in pairs. In this

 Müller, Arch. 1850, p. 129-155 (Synapta, Chirodota, and Molpadia). - Ed.

[^54]: * [$\$ 95$, note 3.] The spermatic particles of the Echinoderms are developed, like those of the other Radiates, in special cells, and like them also have, I think, invariably a cercaria-form. The differences in the shape of the head of these particles

[^55]: 1 The development of the genital organs of Comatula was first observed by Dujardin, who asserts that the red vesicles situated on both sides of the tentacular furrows secrete, during the epoch of rut, a very beautifully red liquid (L'Instit. No. 119, p. 268, or Wiegmann's Arch. 1836, 11. p. 207). Thompson has seen the eggs of Comatula escape in clusters through the openings of the pinnulae (Edinb. New Philos. Jour. No. XX. p. 295, or Froricp's neue Not. No. 1057, 1836, p. 4, fig. 8); while, according to Miller, they escape by rupture (Abhandl. d. Berl. Akad. 1841, p. 234, Taf. V. fig. 17, 18).

 2 Ophioderma longicauda, and ophiolepis scolopendrica; see Rathké, Foriep's meue Not. No. 263, p. 65 ; and, Neueste Schrift. d. Naturforsch. Gesellsch. in Danzig. III. Hift. IV. 1842, p. 116, Taf. II. fig. 3, 4.

 3 Ophiocoma nigra; see Rathké, Danzig. Schrift. \&c. loc. cit. Taf. 1I. Gg. 5-7.
 4 Ophiothrix fragilis.
 ${ }^{5}$ Rathké, loc. cit.
 6 Muller and Troschel, loc. cit. p. 133.
 7 Miller and Troschel have very interesting details upon the various arrangements of the genital organs of the Asteroidae (loc. cit. p. 132).

[^56]: 15 The separate sexes of Echinus were first shown by Peters; sec Müller's Arch. 1840, p. 143.

 16 See Tiedemann, loc. cit. p. 85, Taf. X. fig. 1, 4, 8 ; and especially V utentin, Monogr. \&c. p. 103, 11. VIII.

 17 With Echinanthus, Mellita, Rotula, Scutella (see Agrassiz. Monogr. des Scutelles), and Spatangus arcutrius, and ovatus, I can count only four genital plates, while in Encope, and Clypeaster, I find five; yet Vatentin (Repertorium, 1840, p. 301) expressly speaks of five genitat organs in Spatangus violaceus.

 18 Fagner and Valentin were the first who noticed the exual differences of Holothuria tubulos α; see Froriep's netre Not. No. 219, p. 99.

 19 Sce Wagner, Icon. zoot. Tab. XXXIL. fig. 11 (Holothuria tubulosa). I have already remarked $(\$ 86)$, that the white cylindrical pedicelle, taken by sone zootomists as testicles (Delle Chiaje, loc. cit. I. p. 97, Tav. VIII. fig. 1. o.), are distinct from the genital organs, and communicate directly with the intestinal canal.

 20 See the Catalogue of the Physiol. Series, \&c., loc. cit. IV. Pl. XLIX. fig. 1. c. (Ifolothuria tubulosa).
 21 Quatrefages, Amm. d. Sc. Nat. loc. cit. p. 66, Pl. $\{V . \mathrm{Bg} .1, \mathrm{q}$. Pl. V. fig. 1.
 oep condmons organs of two sexes

[^57]: * [§ 97 , note 23.] For the sexual organs of Sipunculus, see Peters (Miuller's Arch. 1850, p.

[^58]: 1 Anguillula is the only exception to this.
 2 The head of the sexless Cystici, as to its form
 tts hook and suckers, strikingly resembles that of

[^59]: * In this connection, and espeeially in reference to the remarks made by the author under $\S 99$, it may be well to notiee that Van Beneden does not regard the Linguatulae as true Helminthes, but that they belong rather to the division of artieulated animals, - coming nearest to the Lerneae. His reasons are the following :
 "These animals, on their extrication from the egg, are provided with two pairs of artieulated feet terminated by hooks.
 "The nervous system differs from that of the Lerneae only in having two cords whiel form the ganglionic ehain, separated throughout their whole length, whilst in the Lerneae they are separated for only half their length.
 "In both cases the males are eomparatively very small. The ovisacs of the females are equally bulky ; but in the Lerncae which live in water they projeet externally, whilst in the Linguatulae, whieh always live in a different medium, they remain in the iaterior.

[^60]: I In many Nematodes, Acanthocephali, and Trematodes, the epidermis is spinous like a rasp. These spines are simple in Liorhynchus denticulatus, Lecanocephalus spinulosus (according to Diesing, Annalen des Wiener Museums, 11. Abth. 2, 1839, Taf. XIV. fig. 14-20), Echinorhynchus pyriformis, and hystrix (Bremser, Icon.
 sum, scabrum, ferox, and pertatum (Ibid. Tab. X. and Nordmann, Micograph. Beitrage. IIft. I. Taf. IX.), and Pentastomum denticulatum (Diesing, loc. cit. I. Alth. 1, Taf. I1I. fig. 10-13). But they are polydenticulated in Cheiracanthus (Diesing, loc. cit. II. 1Ift. 2, Taf. XIV. XVI. Helmint. Tab. VII.), Distomum lima, maculo-

[^61]: 2 This is so, for instance, with the anterior extremity of Liorhynchus denticulatus, and Strongylus annulatus, mihi (from the trachea of the wolf).
 The epidermis of Ascaris nigrovenosa has such long and loose folds that its body, scen laterally, has a fringed appearance.
 3 Excepting the longitudinal folds of the epidermis, which form lateral wings of variable form and length at the cephalic extremity of the Nematodes, or on both sides of the extremity of the tail of many males of this order (Bremser, Icon. Melminth. Tab. IV. fig. 20-24), I have as yet found the epidermis longitudinally plicated over the whole body only with Strongylus striatus, and inflexus.
 4 These different dermic layers are distinct, especially with Gordius and Mermis; see Dujardin's figure in the Ann. d. Sc. Nat. XVIII. 1842, Pl. VI. I have found this structure also in Ascaris mystax, microcephata, Distomum echinatum, hians, linea, and in Monostomum verrucosum.
 In Amphistomum giganteum, Diesing (Annal. d. Wieuer Museums, 1. Abth. 2, p. 233, Taf. XXII. fig. 1, c, d), has regarded these layers as muscular. The same is true of Bojanus (Isis, 1821, p. 166, Taf. II. fig. 12), and Laurer (De Amphistomo conico, p. 6, fig. 15).

 But the structurc of the skin of Echinococcus

[^62]: In the Cestodes, this error is unnecessary, for in the posterior portions of their body the eggs can easily be distinguished from the corpuscles; moreover, these last are the most numerous about the neck and anterior rings, - localities where the genital organs are scarcely and sometimes not at all developed. It may be added, also, that these bodies dissolve in a weak acid with the escape of gas, while the cggs of Taenia under the same circumstances remain unaffected. In the Cystiei, which are sexless, and where therefore eggs are vainly sought for, these corpuscles, as to their structure, chemical composition, and position, so closely resemble those of the Cestodes, that it appears strange that they have always been taken tor eggs. Eschricht (Nov. Act. Acad. Leopold Carol. Vol. XIX. Suppl. alter. 1841, p. 59, 103), not having perceived that they contain carbonate of lime, has deseribed them as elementary granules, and thinks that they have a nutritive function analogous to that of the blood and lymph corpuscles.

 Gulliver (Med.-Chir. Trans. VI. London, 1841, p. 1; see Wiegmann's Areh. 1841, II. p. 314) has given an exact description of those of Cysticercus, but he also has taken them for eggs. In Taenia filum, linea, serrata, and infundibuliformis, they are spherical or oval; and in the first two species, Gocze (Versuch eincr Naturgesch. d. Eingeweidewürmer, p. 399, Taf. XXXII. A. fig. 6, 7, 12) has taken them for eggs, and the concentric rings of the calcareous layers for the coils of the embryo. With those of Cysticercus cellulosae, and pisiform is, the diseoid form prevails; I have often seen here four to six calcareous layers about

[^63]: the suctorial apparatus of the Trematodes. In Tristomum hamatum (see Ruthké, Nov. Act. Acad. Leop. Carol. XX. 1843, p. 241, Taf XII. fig. 11), several sharp points project from the bottom of the sucker at the posterior extremity. With Polystomum appendiculatum (Nordmann, Micrograph. Beitrdge, 11 ft. I. p. 82, Taf. V. fig. 6, 7), the borders of the six suckers at the posterior extremity are armed with a sharp claw. The dise of Gyrodactylus (Ibid. Taf. X.) has its borders provided with six lormy points, and its base is supported by two sides of the same nature, curved like an arc.

 A very complicated support, formed of horny arches and ridges, sustains the eight suckers at the posterior extremity of Octobothrium sagittatum, Merlangi, and of Diplozoon paradoxum ; an analogons support wholly surrounds the large foot at the end of the body of Arine (Lenckart, Zool. Bruchstücke Mift. 3, Taf. II. and Nordmann, Micogr. Beitr. Inft. 1, Taf. VII.; also Diesing, Nov. Act. Acad. Leop. Carol. XVIII. pt. 1, 'Tab. XVII.).

 The four fossae found on each side of the mouth of Pentastomum contain simple and double very curved hooks, which the animal can erect at will (Diesing, Ann. d. Wiener Mus. I. Abth. 1, Taf. III. IV.). A remarkable exception among the Nematodes is found with Ifcdruris androphora,

[^64]: 6 Helminthologists are not yet agreed as to the number and arrangement of the proboscideal muscles of the Acanthocephali ; see Nitzsch, in Ersch and Gruber's Encyclop. I. 1818, p. 242 ; Bojanus, in Isis, 1821, Taf. III. fig. 34; Westrumb, De Helminthibus Acanthocephalis 1821, 1. 50 ; and Cloquet, Anat. des Vers. intestin. p. 76, P1. VII. Mehtis (Isis 1831, p. 82) has taken the proboscideal sheath for an cesophageal organ, and its two muscles for vessels. Burow (Echinorhynchi strumosi Anatome, 1836, p. 16, fig. 1, e) has fallen into a similar error, in regarding these same muscles as intestinal tubes.
 7 With many Trematodes, as, for example, with Polystomum, Octobothrium, oc. (see Baer, Nov. Act. Acad. Leop. Carol. XIII. pt. 2, 'Tab. XXXII. fig. 7, f. and Mayer, Beitrage, \&cc., Taf. III. fig. $3, \mathrm{~m} . \mathrm{m}$. fig. 8), there are found between the suckers at the posterior extremity, special hooks, and to which, with Polystomum, I have seen proper muscles proceed from the interior of the bods.
 With certain Cercariae (larvæ of Distomum) one can distinctly observe the use which they make of

[^65]: * [§ 104 , note 1.] Blanchard (Amn. d. Se. Nat. 1848, X. p. 338) appears to have distinetly made out a nerrvous system in Taenia. With Taenia serrata, there are direetly behind the proboseis two small medullary nuelei united by a commissure; from these pass off on eaeh side a nerve whieh is distributed to the lateral parts of the head, and conneets with a ganglion situated at the base of eaeh sueker, whieh sends filaments to the museles of this last. Posteriorly there are given off filaments which run parallel to the intestinal tubes. This, however, has not been confirmed by other ohservers, and Agassiz has made a statement in a private letter to me which is worthy of notice.

 He says: "I believe the nervous system described by Blanchard to be bands of museular fibres which cross eaeh other betiveen the fossae of the proboscis : at least, this is so in the new speeies of Taenia from Amia calva whieh was observed alive for several hours; and I could diseover no nervous threads, but only museular fibres, whieh had exaetly the arrangement of Blanchard's nervous system." See, however, Valenciennes' report to the Aead. des Se. in the Comp. Rend. 1847, XX1V. p. 1034, also Blanchard's response to Dujardin, Tbid. 1849, XXLX. p. 60.-Ed.
 \dagger [§ 104 , note 3.] Blanchard has found with Linguatula another ganglion above the cesopha-

[^66]: 1 These tactile granulations are found with many species of Asearis, as, for instance, in Ascar is osculata, between the large oral eollars ; in physaloptera alata, they surround the oral extremity of the body as a single row; but they form a double one in Asearis truneulata. With Distomum laureatum, ind nodulosum, they are found upon the borders of the oral sueker. With Holostomum excavatum, and podomorphum, there are two retraetile bobles protruding from the sides of the mouth; and in Holostomum alatum, these have anteuna-like filaments; see Nitzsch's figures of Holostomum, in Erseh and Gruber's Eneyclop. III. p. 399, IX.

 2 These dark pigment-dats upon the infusoriform embryos of many Trematoles when they escape from the egg, and of whieh there is only one upon the ncelk of Distomum nodulosum, and hians, and two upon Monostomum mutabile, have been taken for eyes by Nordmann (Microgr. Beitr. IIft. 2, p. 139), and formerly by myself also (Fiesmann's Arch. 1835, I. p. 63, Taf. I. fig. 3, 4, 5). Three of these dats have been observed upon is larva of a Monostomum which Nitzseh (Beitr.
 zur. Infusorienkundc, p. 23, Taf. I.) has deseribed in Cercaria ephemera; I have secu only two upon the baek of many eercarian larva. Of this stime nature are the two red dots of Scolex polymorphus (Muller, Zool. Danica. Tab. LYILI. fig. 16,17), as also the brown ones upon the neek of Gyrodactylus auriculatus (Nordmann Nicrogr. Bcitr. Hft. I. p. 108, Taf. X. fig. 4). Fimally may be mentioncd Amphistomum subclavatum: which has two large oval black dots upon its nech. These pigment-eells are physiologically, without doubt, simply eolored spots, which in Polystomum inteEerrimum are highly developed, forming a widelyspread subcutaneous net-work. Sometimes, and espeeially in the various Cercariae, and in many individuals of Amphistomum subclavatum, these dots have a very effaecd aspeet; this is probally due to a dissolution of the walls of the eells, - the pigment-granules being then scattered through tho skin.

 1 It has already been observed that the four suekers of Tacnia, regarded by Nitzsch as oral orifiees, are imperforate at their bottom. Owen (Cyclop. Anat. \&c. II. p. 131) has fallen inte f.

[^67]: s This epithelium has sometimes special inequalitics. which, with Ascaris osculata, and spiculigera, form a regular zir-zag series, resembling the valves of the intestinal mucous membrane of some vertebrates. With Ascaris aucta, they have the form of long, sharp villosities.
 6 This caecal appendage, accompanied usually with a constriction of the posterior end of the cesopharus, was first observel by Mehlis (Isis. 1831, p. 91, Taf. II. fig. 16, 17, 18). It is found with many Ascaris, but its length is very variable. In Ascaris heterura, semiteres, and ensicaudata, it is very short, and protrules scarcely beyond the œesphageal constriction; while in Ascaris depressa, aucta, angulata, and mucronata, it reaches to the middle of the cesophagus, and in Ascaris spiculigcra, osculata, and the species described as Filaria piscium, it extends nearly to the cephalic extremity.*

 1 Thess glanduiar-like organs are often very distinct $\mathrm{i}_{1}{ }^{\circ}$ the carcarian larvae of the Trematodes, and in many adults of Monostomum, and Distomum ; see Wiegmann's Arch. 1813, LI. p. 323.

 2 Mehlis (Isis, 1831, p. 81 , Taf. II. fig. 6) has observed with Strongylas urmatus, an annular vessel surrounding the mouth, which communi-

 * [§ 103, note 6.] See, for the alimentary canal of Ascaris infecta, Leidy (A Flora and Fauna within living animals, smithsonian Contrib. V. Art. 2, p. 43, PI. VI. fig. 1-7). He divides it into a strongly muscular gizzard, a cylindroid intestine lined with hexahedral epithelium, and a pyriform rectum.
 See also his description of that of Streptosomum, Thelastomum, \&c. (Ibid. p. 43). In The-

[^68]: 8 The length of the uterus varies very much in different gencra and species, and its coils are always irregular. With Monostomum mutabile, and verrucosum, the oviduct arising in the posterior extremity, passes in front with numerous transverse coils.
 9 I have found one testicle only, in Amphistomum subclavatum, and Aspidogaster conchicola, although I have seen three or four in Distomum appendiculatum, and cygnoz̈des.

 10 With Distomum ovatum, the two testicles are side by side behind the ventral sueker ; with: Distomum chilostomum, they are on each side of this sucker, and with Distomum crassum, mihi (from the intestine of Hirundo domestica), they are in front of it, on each side of the neek.

 11 With Distomum longicolle, lanceolatum, охуигит, есһїатит, globiporum, and Amphistomum conicum, the testicles have many depressions ; see Bojanus, Isis, 1821, Taf. II. fig. 25-27; Burmeister and Siebold, in Wiegmann's Arch. 1835, II. Taf. II. 1836, I. Taf. VI.; also Laurer, De Amphistomo conico. iig. 21, 24, 25. With Amphistonum subtriquetrum, giganteum, and Distomum hians, the number and depth of these depressions gives the testielc the aspect of a bundle of caeca; sec Bojanus, Ioe.cit. Taf. 11. tig. 14-17, and Diesing Ann. d. Wicner Mus. I. Abth. 2, Taf. XXII.

 12 In the testicles of the Trematodes, the development of the spermatic particles oecurs after the usual mode.

 The bundles whieh they form are separated in their passing the vasa deferentia, and they collect into integular masses in the seminal vesicles.

 Their extremely aetive movements cannot be
 perceived unless they are quite isolated. When put in water they become twisted together, and assume a loop-like arrangement, - their motions instantly ceasing.

 For the development of the spermatic particles of the Trematodes, see Kolliker, Die Bildung du Saamenfaden in Bläschen, loc. cit. p. 44, fig. 31.*
 13 These two vasa deferentia are sometimes bended together before reaching their destination; this is so in Distomum varicgatum, and longicolle.

 14 The internal seminal vesiele is so extraordinarily large in Distomum variegatum that it cxceeds that of the ovary and two testieles.
 15 This cirrhus-sac, together with the penis, is very long with Distomum lima, maculosum, variegatum, and ovatum ; but it is especially so with Aspidogaster conchicola, and Monostomum verrucosum.
 16 The protruding cirrhus or penis of Distomum holostomum is provided with small bunches ; and that of Monostomum verrucosum with numberless little warts.
 17 When the penis is protruded, it may then be seen how the contents of the vagina are emptied at its base. When the common genital opening is closed, the very flexible penis can be turned into the vagina and there discharge its eontents, and in this way the sclf-impregnation of these animals may occur.
 ${ }^{18}$ The common genital opening is usually situated on the middle of the neek, and with Distomum, it is direetly in front of the ventral sueker.
 With Distomum clavigerum, and ovatum, it is upon the sides of the neek, and with Distomum caudale, and holostomum, exceptionably, it is on

 * \{\$115, note 12.] Thaer (Müller's Arch. 1850, p. 602, Taf. XXI. fig. 19) has deseribed and fig-
 ured the spermatic partieles of Polystomum appendiculatum as Cercaria-form, - Ed.

[^69]: * [§ 115, note 25.] I have observed the development of the spermatic particles with T'aenia. They are developed in special cells, and before they have escaped, are therein coild up resembling those of the coleopterous insects. They are simply filiform. - Ed.
 † [§ 115, note 26.] The Ccstodes have been the objects of much careful sturly during the last few

[^70]: * [§ 116, note 8.] For some further details on the genitalia of the Acanthocephali, see Blanchard (Ann. d. Sc. Nat. 1849, X1I. p. 23), and Regne

[^71]: * [§ 117, note 2.] Primitively, the ova of Ascaris consist of nucleolated cells, which are polyhedral from mutual pressure. These increase in size gradually, in their passage down towards thic oviduct, and the granules of the liquid lying betwcen the nucleus or germinative vesicle and the cell-wall

[^72]: * [\$.118, note 3.] The history of all our best cmbryological studies shows that the segmentation of the vitellus is the invariable preface to the begimning of development with all true ova. In the case of the Cestodes, if, as above mentioned, there is no such process, it is highly probable that such

[^73]: 1 I cannot here omit the question, if these small sexless Turbeliaria, as for example, Derostomum, and Microstomum, really constitute distinct gen-
 era, and if they are not rather the larvae of other inferior animals.

[^74]: 1 With Microstomum lineare, Örsted, these prehensile organs so closely resemble those of Hydra tbat they need not be described. According to Orsted tbey are urn-shaped glands in the centre of wbicb are parabolic bodies wbicb are constantly in motion (loe. cit. p. 73, Taf. II. fig. 18). But had he pressed tbese organs between two plates of glass, he would bave seen the protruding filament, together witb its double books.

 2 I bave seen these corpuscles protruding tbrough the lateral border of the body of Planaria lactea. In the dorsal papillae of Thysanozoon Diesingii, a part of these corpuscles are contained in cells; but the others are free and often protrude througb the skin. With Mesostomum Ehrenbergii, and rostratum, they are arranged in rows in the anterior half of the body, forming striae, which quickly catch the attention. Örsted has taken these corpuscles for as many muscular columns (loc. cit. p. 70, Taf. II. fig. 26, 37). The spines whicb, according to bim (loc. cit. p. 72, Taf. IL. fig. 29,34) cover the entire surface of Macrostomum

[^75]: 1 Ehrenberg has seen two disconnected gangiia with Planaria lactea (Abhand. d. Berl. Akad. 1835, p. 243). With other Dendrocoeli, as with Planocera sargassicola, and pellucida, these two ganglia are blended into one ; at least, the organ which Mertens has here described as a heart, has exactly the appearance of two united ganglia (loc. cit. Taf. I. fig. 6, Taf. II. fig. 3, m. or Jsis 1836, Taf. IX. fig. 3, c. m.). The light pulsations which this author affirms to have here observed, are perhaps, as Ehrenberg has supposed (loc. cit. p. 244), due to the contractions of neighboring organs. According to Schulze (loc. cit. p. 39), with Planaria torva, the double central ganglion gives off two nerves, which pass backwards on both sides of the intestine.
 This double ganghon, situated in the cervical region, and the nervous filaments which it gives off, have been demonstrated by Quatrefoges (loc. cit. p. 172, Pl. TV.-VI.).

 1 Most commonly there are two eye-dots. With Planocera, and Leptoplana, there are many which are grouped together, and with Polycelis nigra, the whole anterior part of the body is covered with them. In many small species, they appear to be of a simple pigmentary nature.
 2 With Planaria lactea, there is, between the cornea-like bulging of the skiry, and a semilunar, pigment layer, a small, conical, transparent body, corresponding exactly to a crystaline lens; see Ehrenberg, loc. cit. p. 243, and Schulze, loc. cit.

 * [§ 12t, note 2.] See also Leidy (Proc. Acad. Nat. Sc. Philad. III. 1848, p. 248) on the eye-specks of Phagocata gracilis, a sub-genus made by him from Planaria, and Schmidt (Die Rhabdocoélen Strudelwürmer, \&c., p. 7, and Neue Beitrage Zur Naturgesch, der Würmer, \&c., p. 11). Both of these observers agree in considering these parts in

[^76]: * [§ 128, note 1.] See Leidy (loc. cit.); he found that with Phagocata (Planaria) gracilis,

[^77]: * [End of § 129.] Recent embryological studies have thrown some light upon this point - the alleged plurality of embryos in a single egg. The so-called egg in these cases is almost undoubtedly an ovarian sac, iu which are developed many germs; some of these germs may perish, and the fewness of those remaining would give the appearance of an egg with many germs. - Ed.
 \dagger [§ 129, note 1.] The development of Planaria has been also observed by Schmidt. Die Rhab-

[^78]: 1 With Chaetonotus, and Philodina aculeata,
 the structure of the skin is quite different from
 this; for its Eurface bristles with still points and
 spines. With Noteus, and Anuraea, there are species whose faceted skin is roughemed bje inuuncrable granulations.

[^79]: 2 With Conochilus, Megalotrocha, Lacinularia, Brachionus, Noteus, Squamella, Notommata, and Stephanops, the tail is transversely marked or articulated. With many species of IIIdatina, Rotifer, Philodina, Actinurus, and Eosphora, not only the caudal extremity, but the whole body, is regularly segmented, and capable, especially at the posterior extremity, of being intussuscepted or drawn out, like a telescope.
 3 A solid carapace, like the shell of Daphnia, is found with Brachionus, Anuraea, Noteus, Salpina and Euchlanis.
 1 The muscles are smooth when at rest, but when contracted, they appear more or less distinctly plicated transversely. The assertion of Ebrenberg is therefore remarkable, that the longitudinal mus-

[^80]: 1 The sanguineous vessels which Ehrenberg has frequently described and figured, have not appeared as such to Dujardin (Infusoires, p. 589), Rymer Jones (Comp. Anat. p. 125), Doyere (Ann. d. Sc. Nat. XVII. 1842, p. 201), and myself.

 The so-called annular vessels encircling the body of many species at regular and wide distances, and which, as he himself avows (Die Infusionsthierchen, p. 415), are not connected by longitudinal vessels, are undoubtedly only the transverse suica-

[^81]: * \{§ 137, note 1.$\}$ Dalrymple (Pliil. Trans. 1849, p. 334) has described with Asplanchna Brightwellii what he regards as a peculiar circulatory system. It "cousists of a double series of transparent filaments (for there is no proof of their being tubes or vessels), arranged, from above downwards, in curved or semicircular form; symmetrical when viewer in front. These filaments, above and below, are interlaced loop-like; whilc another fine filament passes in a straight line, like the chord of an arc, uniting the two looped extremIties. To this delicate filament are attuched tags,

[^82]: * [§ 140, note I.] The view here expressed that the young of the viviparous Philodinae may find their escape from the body of the parent throurh an opening near the anus-the oviduets being perhaps wanting - is prohahly eorreet, since, in the viviparous Aphides, where the processes of reprotuction occur likewise ly a kind of gemmiparity, there are, according to my observations, no oviducts proper, but the young, having fallen into the ahdominal cavity, thence escape through a Porus genitalis situated near the anus. - Ed.
 \dagger [End of § 140.] The diseovery of distinct males with the lotatoria is due to Brightwell (Ann. Nat. Hist. Sept. 1848) who has positively determined it with Asplanchna. Mere it is about half the size of the fomale, being also of a different form; it is exceedingly transparent and easily eludes observation. The testis appeared as a round vessel situated at the bottom of the body on one side, and filled with spermatic particles. This author

[^83]: 1 Since Kölliker (Verhandl. d. Schweiz. naturf. Gesellscb. zu Chur. 1844, p. 89) and Quatrefages (Ann. d. Sc. Nat. VI. 1846, p. 173) have published their researches on the anatomy of the Nemertini, I have, also, during my last
 visit at Trieste in 1847, been convinced that these animals should be classed among the Turthese animals should be classed among the Tursince their entire body is covered with very distinct vibratile cika. - Additional note.

[^84]: The external respiratory organs alone are covered with ciliated epithelium. Orsted (Beschreih. d. Plattwümer, loc. cit. p. 77) however, affirms that the hody of the Nemertini is provided with vihratile cilia. But this is to me improbable at least with the large species of Borlasia, Nemertes, and Polia.

 At all events this statement of his requires new jroof. See additional note under $\$ 142$.
 2 Scaly appendages of this kind cover the back of Aphrodite, Polynoé, and Sigalion. With Potynoé squamata, they are very easily detached.

[^85]: ${ }^{3}$ The back of Aphrodite hystrix has numerous bristles and hairs; with Aphrodite aculeata, these hairs are so thickly set that they conceal the back hy a kind of felt.
 1 The middle muscular sheet is found with the Hirudinei and Lumbricini ; see Brandt and Ratzeburg, Med. Zool. II. p. 244, Taf. XXIX. fig. 1, 2, and Morren, loc. cit. p. 83.
 But with the Nemertini it is wanting; see Rathke, Neueste Schrift. d. naturf. Gesellschaft, in Danzig. loc. cit. p. 95.

[^86]: * [§ 144 , note 3.j The development and intimate structure of the muscles of the Annelides has been carefully studied by Leydig (Siebold and Kölliker's Zeitsch. I. 1849, p. 103) upon Piscicola, Clepsine, Nephelis, and other Hirudinei. The muscular fibre is here developed as in the higher animals out of large nucleated cells arranged in rows, and the adult fibre often shows the rebics

[^87]: 2 For the nearly inexhaustible variety of form of these horny locomotive organs, which, when cultrate, or lanceolate, are used as weapons of defence, see Audouin and Milne Edwards, Classification des Annélides, loc. cit. XXVII. p. 370, and Orsted, Gröulands Annulata und Annulatorum Danicorum Conspectus, fasc. I. Pl. I.

 3 See Rathke, De Bopyro et Nereïde, p. 31, Tab. II. fig. 7, 12; Grube, Zur Anat. d. Kiemenwürmer p. 5; and Gruithuisen, Anat. d. gezüngelten Naïde, in the Nov. Act. Acad. XI. p. 240, Tab. XXXV.

 4 Aphrodite, Nerezs, and Arenicola.
 5 Amphitrite, and Siphonostomum.

[^88]: *[§ 14' , note 3.] This alleged relation of the elements of the nervous tissue is a point of no little histological importance and I shall give it a special consideration in noticing the minute structure of this tissue with the higher animals. I have made no observations on the animals in question, but

[^89]: 15 Cuvier (Lac. d'Anat. Comp. II. 337) has noticed with Aphrodite two nerves passing backwards which ought to be regarded as of a splanchnic nature; hut Grube (Zur. Anat. d. Kiemenwurmer, p. 58) has been unable to find them eveu in the same species.

 16 Stannius (1sis, 1831, p. 986, Taf. VI. fig. 8, r. r.), and Grube (De Pleione carunculata, 1837, p 9. fig. 5, r.), have seen with certain speeles of Amphinome the two roots of the Plexus splanchnicus superior, but were unahle to trace them further. However, with Eunice IIarassii, Girube (Zur. Anat. d. Kiemenwürmer, p. 43, Taf. 1I. fig. 9, i.) has found heside these two roots, the Ganglion pharyngeum superius which they form, and the nervous filaments which pass off from this last. Quite lately, Quatrefages has given very exact aud detailed descriptions and figures of the expansions of the Plexus splanchnicus superior and inferior, with Eunice Nereäs, Glycera, Phyllodoce, and Aricinella ; see Ann. d. Sc. Nat. 1844, II. p. 81, 11. I. 1I.

[^90]: 17 These two ganglionic chains were first described hy Stannius with Amphinome rostrata (Isis, 1831, p. 986, Taf. VI. fig. 4). IIe saw three ganglia connect with the cesophageal ring on each sidc. But Grube (De Pleione carunculata, p. 10, flg. 5) has seen six on each side with Amphinome carunculata. These lateral ganglia, moreover, remind one of those described by Wagner, as already noticed with Pontobdella muricata.
 1 According to Rathké (Danzig. Schrift. loc. cit. p. 94,100), the two cephalic and respiratory fossae with the Nemertini, are the seat of a most dehcate scase of touch ; and their white, long and protractile proboscis is also a tactile organ. But other naturalists attribute wholly different functions to these organs.
 2 The prohoscis is non-articulated with Nais proboscidea, and Euaxes filiformis (Grube, Wiegmann's Arch. 1844, 1. p. 204, Taf. VIl. fig. 1). But it is articulated with Rhynchelmis (Hoff. meister, Ibid. 1843, I. p. 192, Taf. IX. fig. 8).

[^91]: ${ }^{3}$ The antennae of the Annelides have been distinguislied from those of insects by being terined Tentacula; for they are non-articulated, while those of insects are articulated. But this distinction is not valid, for, with the Branchiati, there are insensible transitions from the non-articulated tentacula to the articulated antennae. But another and more essential difference is, that those of the Annelides are contractile, while those of insects are not. These organs are articulated with Eunice, Peripatus, and Syllis. In this last it is truc of the cirri also. The modifications and varietics of the antennae and cirri belong, howevcr, to the province of Zoology.

 4 With Nereis, four nerves pass off from the anterior portion of the brain to the four antennae; the two external as gustatory nerves and which go to the larger antennae, are largely swollen at their extromity; see Rathké, De Bopyro et Nercide, p. 43, Tab. II. fig. 4, 5.
 $\dot{\Sigma}^{\circ}$ See Rathké, Ibil. Taf. II. fig. 18, d. d. and in the Danzig. Schrift. loc. cit. p. 76, Taf. V. fig. 14, d. d.

 1 A remarkable exception to this occurs with Amphicora Sabella as described by Ehrenberg (Mittheil. aus d. Verhandl. d. Gesellsch. naturf. Ereunde zu Berlin, 1836, p. 2). It has, it would

[^92]: *|§ 150 , note 1.1 Quatrefages (Ann. d. Sc. Nat. X. 1848, p. 48, Pl. II. fig. 10, y.) describes two colored points situated on the middle of the brain of Hermella, as cyes. They are composed of pigment and rest directly on the nervous substance. - Ed,
 (\$§ 150, note 2.) Quatrefages (Compt. rend.

[^93]: 1 Terebella, Amphitrite, and Siphonostomum.
 ${ }_{2}$ Sabella, and Serpula.
 3 Many Ilirudinei.
 ${ }^{4}$ This is true of the Ifirudinei, and many Nemer. tini.
 ${ }^{5}$ With the Chaetopodes.
 1 See Delle Chiaje, Memorie loc. cit. Tav. LXXVIII. fig. 8.b. (Polia geniculata) ; Huschhe, Isis, 1830, Taf. V1I. fig. 2 (Notospermus drepanensis) ; Grube, Aktinien, EChinod. und Wurmer, \&c., Ioc. cit. fig. 7, a. (Meckelia annulata); Rath$k e ́$, Danzig. Schrift. loc. cit. Taf. VI. fig. 8. H. (Borlasia striata); and Ehrenberg, Symbol. Pisysic. Phytozoa Turbellaria, Tab, IV. fis. 4. g. (Micrura fasciolata). Ehrenberg, moreover, was deccived in regarding this mouth as the opening of the genital organs, and in taking the probosciteal organ of this species, for the true mouth. There is yet in this respect much contradiction among naturalists.

[^94]: Thus Duges, with Polystemma (Prostoma) armatum (Ann. d. Sc. Nat. XXI. 1830, p. 74, P1. II. fig. 5), and Quatrefuges, with Nemertes mandilla (Icon. du Regne anim. de Cuvier, Zooph. Pl XXXIV. fig. 2), regard the long canal which opens at the ceplatic extremity, as the pharyngeal tube, and the spines at its base as masticatory organs; while Orsted (Beschreib. d. Plattwürmer, p. 22 Taf. III. fig. 41, 49, 50) regards this whole apparatus with Tetrastemma as a copulatory organ (see below). In my opinion, the animals here cited do not belong cven to the Nemertini.

 2 Borlasia (Rathté, loc. cit. p. 96, Taf. VI. fig. 10, 11) and Polia (Delle Chiaje, loc. cit. II. p. 407 , Tav. XXVIII. fig. 3, j., or Isis, 1S32, p. 648 , Taf. X. Gg. If. 3, j.). With Meckelia annalata, 1 have found the pharyngeal tulse arangel in the same way.

[^95]: Sorms with the huccal orifice, a cavity distinct from chat of the abdumer, and its anus has a kind of sphincter. But this is certainly an erroneous view of the organization of these worms : the contents of the cavity are sufficient alone to confute it.
 2 Moquin-T'andon, loc. cit. PI. I.-IV.
 3 With Piscicola, exceptionally, the anus is upon the ventral surface of the last segment of the body ; see Leo, in Muller's Arch. 1835, p. 420.

 4 Hente, Muller's Arch. 1839, Taf. XIV. fip. I
 5 Wagner, Isis, 1834, p. 130, Taf. 1. fig. 1, 2.
 6 Brandt and Ratzeburg, Med. Zool. II. p. 216, Taf. XXIX, B. fig. 12.
 ${ }_{8}$ Ibid. s'af XX1X. A. fig. 19, 20, 55.
 8 With Clopsine murginata, this rectum has coecal appendarea also; see F. Muller, in W'iesmann's Arch. 1844, I. p. 3九1, J'af. X. fig. 14.*

 9 With Lumbricus, the stomach is very muscular ; sce Morren, loc. cit. Tab. XI.-XIV. This is also true of Nais proboscidea, bat not with Lumbriculus, and Enchitracus.

 10 Terebella, and Sabella; see Grube, Zur Anat. d. Kiemenwürmer, p. 20, 27, Tai. I1, fg. 12, and Milne Edwards, Ann. d. Sc. Nat. X. 1838 , P's. X. XI.
 11 Sabella; see Carus and Otto, Erlaterungotaf. 11ft. IV. Taf. II1. fig. 4, 6, and Wagner, Icon. zoot. Tab. XXVIK. fig. 21.
 I' Amphitrite, and Siphonastomum. With the first, the stomach is long, spiral, aud divided into an ascending and it descending purtion; sce Rathlé, Danzig. Schrift. luc. cit. p. 64, 86, T'af. V. VI.
 13 Anphinome, Arenicala, Eunice, and Nephtys; see Stannius, lsis, 1831, Taf. VI. fig. 10; Milne Edwards, Ann. d. Sc. Nat. X. 1838, Pl. XII. XIlI. ; Grube, Zur Anat. d. Kimenwurmer, Taf. I.
 14 According to Grube (Ibid. p. 34), the intestine of Cirratulus is spiral like that of Subplla. 15. Ammotrypane (according to Grube, see Ratheé, Nov. Act. Acad. Nat. Cur. 工X. P. 197, Tab. X. Ag. 13).

 * [§ 154, note 8.] For many special details iflustrating as well the histology as the anatomy of the intestinal canal of the Ilurudinei (Piscicola,

[^96]: 11 Nerers; see Rathke, De Bopyro et Nereide p. 35, Taf. 1I. fig. $7,8$.
 17 With Aphrodite hystrix, and aculeata, the intestine has on each side twenty glandular appendages with long peduncles. In this last species, these app ndages are eaeca also, for they have at their extremities saccular dilatations filled with chyme; see Pallas, Miscell. Zool. p. 85, Tab. VIl. fig. 11 ; Treviranus, in his Zeitsch. f. Physiol. ifi. p. 162, Taf. XII. fig. 9,10 ; and Milne Edwards, in Cyclop. Auat. and Phys. I. p. 169, fig. war
 70.
 ${ }^{1}$ Brandt, Mediz. Zool. II. p. 247. Taf. XXIX. A. fig. 22, 23 .*
 \& Morren, loc. cit. p. 129, Tab. X. X1. (Lumbricus terrestris).
 ${ }^{3}$ Henle, in Muller's Arch. 1837, p. 79, Taf. VI. tig. 6, d. d.

[^97]: ${ }^{7}$ Sec Pallas, Treviranus, Milne Edwards, soc. cit., and Grube, loc. cit. p. 54.
 ${ }^{8}$ According to Henle (Mul/er's Arch. 1837, p. 81, Taf. II, fig. 2), this giandular envelope forms a villous envelope about the intestine. This is also true of Lumbricus, Lumbriculus, Nais, and Chactogaster. The glandular sacs are greenish with Branchiobdella (IIen/e, loc, cit. 1835, p. 555), yellowish with Amphitrite (Rathke, Danzig. Schrit. loc. cit. p. 65). With Sanguisuga, the excretwy ducts of the hepatic sacs inter-anastomose and form a kind of nct-work around the stomach and its cocca; see Brundt, Med. Zuol. p. 217, Taf.

[^98]: * [§ 155, note 8.] The liepatic organs with the Annelides have been successfully studied by Will (Muller's Arch. 184S, p. 508), who has used chemlcal tests. He has found the glandular layer

[^99]: 1 For the blood-globules of the Annelides, see Wagner, Zur vergleich. Physiol. d. Blates, Mift. I. p. 23, Hft. II. D. 39. According to him, those of Terebella (Ibid. Hit. 1. fig. 8) are pale red, circular discs. IIere the exception is remarkable, supposing there was not an error of observation. It appear's that beside the blood which circulates in the vessels the fluid contained io the visceral cavity of the Chaetopodes plays also an important part in the act of nutrition, for the egors and the spermatic particles which with these animals are often detached from the ovaries and testicles at a time when still quite imperfect, attain their complete development while remaining in the visceral cavity, probably by means of this nutritive fluid. See Quatrefages, Ann. d. Sc. Nat. V. 1846, p. 379.

 1 According to Milne Edwards (Ann. d. Sc. Nat. X. 1838, p. 197), the blood of the Nemertini is colurless.
 2 The vascular system of Polystemmir has been distinctly seen by Duges (Amn. d. Sc. Nat. XXI. 1830, p. 75, 1'l. II. fig. 6), and by Orsted (Beschreib. d. Plattwurmer, p. 17). It is composed of many longitudinal vessels, which intercommunicate not by transverse ones, but by arcuate anastomoses at the cephalic extremity, and by two hearts in the cervical region. According to Orsted, these

[^100]: 18 Arenicola; see Milne Edwards, loc. cit. Pl. $X 111$.
 19 Ernice ; Ibid. Pl. XII. fig. 2.
 20 With Eunice, Nephtys, Gilycera, and Arenicola, the blood is red ; with Phyllodoce, it is yellow ; and it is nearly colorless with Aphrodite, Polynö̈, and Sigalion; see Milne Edwards, loc. cit. p. 196.*
 1 See Mïller, Zool. Danica. Tab. LXVIII. fig. 1-4 (Tetrastemma (Planaria) viride); Delle Chiaje, Memor. loc. cit. Tav. LXXVIII. fig. 8, a (Polia geniculata); Quoy and Grimard, Atlas Zool. de l'Astrolabe Zooph. PI. XXIV. fig. 10 (Borlasia virides) ; and the Dict. d. Sc. Nat. LVII. Art. Vers, p. 574 , Pl. Parentomozonires, Nemertes, fig. 1, 2 (Borlasia Angliae, and Cerebratulus bilineatus) ; also Huschke, Isis, 1830, Taf. VII. fig. 1-3. Notospermus drepanensis.

 2 Tetrastemma viride, Polia geniculata, and

[^101]: Micrura fasciolata (Ehrenberg, Symb. phys. Phytozoa Tibl. IV. fig. 4.e. i. g.).
 ${ }_{3}$ See Quatrefrges, liegne anim. illustr. Zooph. Pl. XXXIV. fig. 1, b. b. (Nemertes Camillae).

 4 Rathice (see above, § 149 , note 1) is of the opinion that these two cephalic fossae are the seat of touch ; but the view oi Orsted (Beselneib. d. Plattwürmer, 1. 18, 77), who thinks them of a respira. tory nature, is, perhaps, the more correct. In support of this last, is the fact of the presence of ciliated epithelium, and of a very large blood-vessel directly heneath them (see Quatrefares, loc. cit. 11. XXXIV. fig. 1, g. g. (Nemertes Camillae)) and which, in many Nemertini, is clearly seen through the thin epithehum ; see M.ller, Zool. Dun. Tab. LXVIII. (Tetrastemma vivire) ; Delle Chiaje, Memor. Tav. LXXV111. fig. 8 (Polia geniculata), and lsis, 1830, Taf. VII. (Notospermus drepanensis).

[^102]: * [§157, note 20.] See also for the blood of the Annelides, Quatrefages, Ann. d. Sc. Nat. XIV. 1850, p. 287. - ED.

[^103]: 7 These vesicular dilatations do not pulsate, and are undoubtedly analogues of the simple sinuses which communieate with the aquifcrous canals of Nephetis vulsaris.*

 1 These respiratory organs may be taken as analogous to the aquiferous vessels of the Lumbricini, which can be everted so that the internal ciliaterl surface beomes external, and the external blood-vessels internal.
 2 Serpula, and Protula.
 3 Sabella.

 + Terebella; see Delle Chiaje, Mem. loe. cit. Tav. XLIII. lig. 1-5, Tav. XLV. fig. 2, 10 ; and Milne Edwards, Ann. d. Sc. Nat. X. 1838, p. 200, PI. X. XI. fig. 1. There are here on each side of the neck three multiramose, contractile branchiae which are placed close together. Into these a large portion of the blood of the median dorsal vessel enters by six lateral branches, while the remaining portion passes on through the dorsal vessel to the tentacles and the borders of the hips.
 In each branchial tuft there are a simple artery and a vein placed side by sidc, which anastomose at its extromity in an arcuate manner.

 The returning blood from the six branchiae passes by as many veins into the median dorsal vessel, and the frequent strong contraetions and dilatations of the branchiae, certainly very mueh aid the current.

 5 Amphitrile; see Pallas, Miscell. zool. p. 120, Tab. IX. fig. 1, 5, 6, 8, e, e; Rathké, Danzig. Sehrift. loe. cit. p. 59, Taf. V. fig. 1, 3. IIere the four semi-pimate branchiae are upon both sides of the second and third rings of the body, and each lamella contains a tightly-elosed vascular network.
 6 The filaments of these branehiae are very short

[^104]: 1 Similar muciparous follicles are arranged in curved rows with the IIirudinei, upon both the ventral and dorsal surfaces, giving the skin a granulated aspect ; see Brandt, Med. Zool. II. p. 244. I have seen similar groups of follicles with the larger Lumbricini.*
 2 The secretion of the calcareous matter occurs here probably as upon the border of the mantie of Mollusks.
 3 Sabella, Onuphis, and Chatopterus.
 4 As secreting orgrans of this glue, Rathke has correctly described four ycllowish glands situated,

 * [§ 161, note 1.] Leydig (Siebold and Külliker's Zeitsch. 1849, p, 109) has described with Piscicola, Clepsine, Nephelis, and other Hirudinei, cutaneous glands. These consist of an infundibuliform sac, which. exactly resembles a nucleated cell, from which passes off a long, tortuous duct.

[^105]: I Lumbriculus, Naïs, Chactogaster and Acolosoma.
 ¿ See Johnston, in the Mag. of Zool, and Bot. I. 1837, p. 534.
 3 With the Nereideae.
 4 Fissuration with many species of Nais, has already been noticed by O. F. Muller (Naturgesch. einiger Wurm-Arten des süssen und salzigen Wassers. Taf. II. \&c.). For that of Nais proboscidea and Chatogaster diaphanus, see Gruithuisen, Nov. Act. Acad. Nat. Cur. XI. p. 243, Tab. XXXV. fig. 1,3 ; XIV. p. 412, Tab. XXV. fig. 2. For that of Aeolosoma, see Orsted in Kröyer's Naturhist. Tidskrift. 1V. P'. III. fig. 7 ; and for that of $N e$ reis prolifera, see Muller, Zool. Dan. 1I. p. 16, Tab. LII. fig. 6. This last species is a very yount Nereis. 1t is probable that many other Branehiati multiply in the same way. Quatrefages (Froricp's neue Not. No. 726,1845 , p. 344) has recently recognised a Syllis in Nereis prolifera.
 Sars (Faun. litt. \&e. p. 87, Taf. X. fig. 18, 19) has observed multiplication by transverse division with Filograna implexa, a young animal detaching itself from the caudal end of this Serpula. I have observed a hike division with a Protula, a genus allied to Serpula. According to Milne Edwards (Ann. d. Sc. Nat. III. 1845, p. 180, Pl, X1.) a sia-

[^106]: 1 See Brandt, Mediz. Zool. II. p. 252, Taf. XXIX. A. fig. 45, 46 ; Moquin-Tandon, Monogr. loc. cit. p. 80, Pl. I.-II.; Leo, Muller's Arch. 1835, p. 424, Taf. XI. Gig. 10 (Sanguisuga, Dulacostomum, Nephelis, Pontobdella, and Piscicola.
 According to the careful rescarches of Filippi (Lettera sopra l'anat. e lo sviluppo delle Clcpsine, p. 16. Tav. I. fig. 5), Grube (Untersuch. üb. d. Entwickl. d. Clepsinen. p. 6, Taf. 11I. fig. 3), and Fr . Muller (Muller's Arch. 1846, p. 138, Taf. VIII.), the two ovaries of Clepsine and Nephelis, consist of long flexuous cords surrounded by two more or less long muscular sheaths, which are uninterruptedly continuous into the oviducts ; they receive the egge as they are detached from the ovaries, and pass them along by peristaltic movements,
 2 S'anguisuga has nine pairs of tcsticles (Brandt Mcd. Zool. II. p. 252, Taf. XX1X. A. fig. 32-14). The Vasa deferentia of the seven pairs with Piscicola are dilated before reaching the two seminal vesicles into two long and very flexuous tubes (Epididymis, according to Leo, lnc. cit. 1835, p. 423, Tuf. XI. fig. 10). With Pontobdella, there are

[^107]: * [§ 166, note 2.] For many valuable details on the genitalia of the Ifirudinci, see the often-quoted and valuable works of Leydig, loc. cit. p. 120. It contains histological, as well as anatomical results. According to him, Piscicola has six, and not seven (Leo) pairs of testicles.-Ed.

[^108]: 1 With Lumbricus terrestris, the two antexios gevital openings are male, and the two posterior, female. These have been figured by Monterre (loc. cit. fig. 2, a. c.), Leo (De struct. Lumbr. terrestr. Tab. I. fig. 2), and by Morren (loe. eit. Tab. III. fig. 2). With Saenuris, and Nais, I have also found these two pairs of genital openings.
 2 This invagination of the testicle in the ovary has been distinctly observed by me with Saenuris variegata, and Nais proboscidea. From H. Meckel's late researches upon the very complicated genital apparatus of Lumbricus terrestris, it appears that there are three pairs of seminal vesicles and testicles ; these last being intimately joined with as many ovaries (Muller's Arcl. 1844, p. 480, Taf. XLll. fig. 12). It is probable that here the testicles aud ovaries are also invaginated, and that the vesicles which have usually been taken for testicles are only vesiculae seminales; see Morren, loc. cit. p. 175, Tab. VI1.-X. and T'reviranus, in his Zeitsel. f. Physiol. V. p. 154, Taf. VII. 1Iowever, as yet I have been unable to trace to their termination, the excretory ducts of the testieles and ovaries which are invaginated together.
 This point is all the more difficult, for, as Duges appears to represent (Ann. d. Se. Nat. XV. 1828, p. 323, Pl. IX. fig. 2, or Isis, 1830, Taf. I11. Tab. 9, fig. 2), the vas deferens is probably invaginated in the oviduet. Many observers have gone so far as to think that the eggs laving escaped from the ovary, and fallen into the cavity of the body, pass gradually to its posterior portion, and are there evacuated through invisible openings. On this accouut, several of them have taken for eggs and embryos, the collections of horny spines, and vibrios, which are often found in these animals. See above, § 145, note 1 ; and E. Home, Lect. on Comp. Anat. IV. 1823, Pl. CXLIX.

 I have always been astouished that, at the epoch of procreation with Szenuris, Euaxes, and Nais, the two anterior genital openings should communicate with two caced which contain sperm and loug

[^109]: * [§ 168, note 4.] According to Felix Dujardin (Ann. d. Sc. Nat. XV. 1851, p. 238) Exogone pusilla is androgynous. Beside the well-known pediculated ovarian sacs on the ventral surface, each segment of the body, excent the first two, has, with this species, a dorsal, fusiform cirrus, in which are developed spermatic particles. This oh-

[^110]: 1 The mantle is leathery with Cynthia. cartilagi-
 soft with Salpa, and relatinous with Clavelina, Dinous and hard with Plallusia, cartilaginous and

[^111]: 2 These openings are properly only simple orifices of the cavity of the body, and correspond to the respiratory tubes of certain Lamellibranchia; see below, § 190.
 3 With Mya, Panopaea, Pholas, Teredo, Aspergillum, the mantle is almost entirely closed, but it has two long fissures at each extremity with Soleh, Cyclas, Tellina, Mytilus, Lithodomus and others; witb tbe Ostracea, Pectinea, Arcacea, Naïades, and Brachiopoda, it is entirely open.

 1 This important fact was first stated by Carl Schmidt (Zur. vergleich. Physiol. d. wirbellosen Thiere. 1845, p. 61), with Cynthia mamillaris, and has subsequently been confirmed by Löwig and Kölliker, after the most careful investigations upon the entire order of Tunicata (Compt. rend. 1846, p. 38). These two autbors found this nonazotized substance, particularly in the different species of Phallusia, Cynthia, Clavelina, Diazona, Botryllus, Didemnum, Aplidium, Salpa, and Pyrosoma; but not with the other Mollusca, nor with the Annelides, the Helmintbes, the Echinodermata, the Acalephae, and the Polypi. It is certainly wanting in the true Infusoria, for Frustulia salina, which Carl Schmidt cites as belonging to this order and as containing cellulose, is evidently a vegetable. Löwig and Kölliker justly fear, moreover, that this discovery will be quickly seized by those who deny that there is any limit between the animal and vegetable kingdom (see loc. cit. p. 8). They seek, therefore, to oppose this view by insisting upon the circumstance that this cellulose is never found in a pure state in the mantle of the Tunicata, but always combined witb other substances, and that, moreover, no animal has as yet been found entirely composed of this substance.
 2 Phallusia mamillarıs, sulcata, Cynthia papillata, pomaria, and Salpa bicaudata.

[^112]: With many of the eompound Aseidiae, the body sends fleshy ramified prolongations into the mautle. These have been regarded as blood-vessels by Savigny (Mem. \&e. P. 47, (Diazona and Botryl(us)), and Delle Chiaje (Deseriz. \&e. 1II. p. 34, Tav. LXXX1II. fig. 13, 15 (Polyclinum viride)); but Milue Edwards (lue. cit. p. 41, Pl. V1I. fig. 1, $1^{\text {b. 1c. 5d.) has regarded them with Botryllus }}$ rotifera, and Didemnum gelatinosum, as hollow prolongations,- a view eutiuely assented to by Kölliker.
 1 With Avieula, Anomia, Peeten, and Spondylus, there are two or three rows of eylindrieal tentacles along the border of the mantle; with Lima, these tentacles are highly developed, and are situated upon the eonvex edge of the fold of the mantle. With Mytilus edulis, they are peculiar, being flattened and digitiform.

 2 With the Naiades (Unio and Anodonta), there are no tentacles around the anal fissure, while the prineipal mantle-orifice which is separated from this last by only a narrow isthmus, has them quite numerously upon its borders; see Pfeiffer, Naturg. deutseh. Land-und Susswasser Mollusken, Abth. II. Taf. I. fig. 2, 5, 9, p. h. These Naiades have also a third fissure, which is dorsal and situated quite distant from the anal one ; it was first pointed out by Bojanics. I aun yot unsettleal as to its nature. Sse Pfeiffer, loc. cit. Taf. I. fig. 5, t.
 3 Isoeardia, Tridacna, and Chama.
 4 With Psammobia, Tellina and Venus, the

[^113]: I The shells of Lingula eontain very little lime, and there is even still less in the flexible valves of Orbicula.
 2 The mierosenpie structure of shells has of late been studied by several naturalists ; see Deshayes, Cyctop. of Anat. se. I. p. 707; Shuttleworth, ueber den Bau d. Schalen, Sc., in the Mittheil. d. naturforsch. Gesellseh. in Bern 1843, p. 43 ; and Carpenter, Annals of Nat. Hist. X11. 1843, p. 373, Pl. XIII. XIV. and especially the Rep. of the Brit. Assoc. 1844, p. 1, with many figures.*
 3 Mya arenaria forms an exeeption to this; the tooth of its shell contains true prismatie erystals bound together in a star-like manmer ; see Carpenter, Amals of Nat. Hist. loc. cit. Pl. XIV. fig. 8.

 4 These two layers, of which the outer one quite resembles the enamel of the tecth, are very distinetly seen with Malleus, Perua, Crcuatula, Avicula, Meleagrina, Pinna, Anodonta, Unio, \&s. With Ostrea, and Chama, they atternate with each other several times. In many lectinea,

[^114]: 8 With Mya, and Lutraria, the epidermis forms a complete sheath around the siphon.

 9 Mytilus hirsutus, Arca barbata, lacerata, and ovata.
 10 I must omit a description of the various forms of the hinge and ligament, for they belong properly to the department of Zoology. The hinge is wholly wanting with the Inclusa, and the ligament is absent with the Brachiopoda; and with Orbicula, and Lingula, both are absent.
 The Aspergillina are distinguished from all the other Acephala, by a singular disposition of their valves. Their mantle ceases early to secrete the natter for the shell-formation. The two valves are then joined at a point, where, most prohably, they would have been articulated, while the mantle which has only two smfall openings, and its long siphon with a double canal, is covered with a calca-

[^115]: 2 Lingula forms an exception. Here the principal adductor is a short, solid muscle, which stretches straight across from one shell to the other, at their posterior extremity.
 \$ This muscular apparatus has been particularly luscribed and figured by Owen, and Vogt (loc. cit.) with Terebratula, Orbicula, and Lingula.

 With the Terebratula, two pairs of muscles arise from each valve. The two anterior ones arising from the imperforate valve, are the longer, and have their origin back of its centre. After the crossing of their delicate tendons, they pass through the opening of the valve and terminate in the peduncle, together with the two posterior ones which are short and fleshy, and which arise at the base of the hinge. Of those of the perforated valve, the two posterior ones only pass to the peduncle - the two anterior being attached to the base of the other valve. With Orbicula, there are two posterior, and two anterior fleshy muscles, sll of which pass obliquely from one valve to the other, while the anterior ones sometimes send off fibres to the short peduncle. In the space circumscribed by these four muscles, lie four others, which are small and interlaced, and extend from the

[^116]: With Tellina, Donax, and Cyclas, it is very long and more or less ridged, and often quite small at its basc.

 With Cardium, Nucula, Trigonia, Mactra, and lsocardia, it is curved like a houk or knee from behind in front. With Solen, it is very long, straight and nearly cylindrical
 4 Cyclas and Pisidium. It is probable that those species whose foot is furrowed upon its inferior bord 1 (Pectunculus), or bent in front (Nucula aud L'risonia), can also creep like the Gasteropoda.
 \rightarrow Pholas.
 1 The Malleacea, Aviculacea, Mytilacea, with l'ecten, Lima, Arca, Tridacna, \&c.
 tquite singulanly there exists with Anodonta, Unio, and Cyclas, when hatched, a secretory organ of the byesus ; see below, § 197 , note 13.

 2 For the byssus-forming orifan, see Deshayes,
 Cyclop. of Anat. \&c. I. p. 702; and espectally A. Muiller, De Bysso Acephalorum, Dissert. Perolini. 1836 ; or, his Memoir in Wiegmann's Arch. 1837, 1. p. 1, Taf. I. II
 \% The manner in which Mytilus and Tichogonia act in spinning their byssus has been described by Marion de Proce in the Ann. d. Sc. Nat. XVIII. 1842, p. 59 ; and by A. Muller, loc. cit.

[^117]: 1 Carefully examined, Anomia will be found to have three unequal adductor muscles arising from the imperforate valve. The largest of these, together with one of the others, passes into the fissure of the other valve; while the third is inserted upon the same valve.

 2 It has already been remarked ($§ 177$), that with the Brachiopoda the peduncle receives muscles both from the body and from the valves. It has, moreover, muscles of its own, and ought, therefore, to be contractile. This contractility is quite prominent with the very large and long peduncle of Lingula, especially in comparison with

[^118]: 11 When the two retractor muscles of the siphon are large, as is the case with Solen, Mactra, Venus, and Cytherea, their two nervous trunks have several ganglionie enlargements along their course, connected by transverse filaments; see Blanchard, loc. eit. p. 333, Pl. XII. fig. 1, 2, d. (Solen and Mactra).*
 1 With the simple Ascidiae, as a sympathetic system may perhaps be eonsidered the ganglion, which, according to Schalk (loc. cit. p. 9, fig. 4, g. q.) is concealed between the intestinal convolutions, at the posterior extremity of the body of Phallusia, and send off filaments in various direetions. But, as yet, the existence of this ganglion needs confirmation.

 2 Garner, Duvernoy, and Blanchard have seen the filaments, which issue from the prineipal ganglia, enter the vegetative organs; but as they could not further trace them, they hesitate to regard them as organic nerves. Keber is more positive in favor of the cxistence of a sympathetic system with the

[^119]: 2 See Garner, loc. cit. fig. 3 ; Krohn, loc. cit. fig. 16, and Grube, loc. cit. fig. 2.
 3 Phallusia, Cynthia, and Clavellina, according to Will, loc. cit. No. 623, p. 102. Grant (Outlines, \&i.., p. 361) has secn, at least with Phallusia, these fourteen eyes.
 4 See Will, loc. cit. p. 100. The color of the eyes appears reddish blue with Mactra, and of a yellowish brown with others.
 5 See Will, loc. cit. The pupil is an elongated oval with Pinna. With Pectunculus pilosus,

[^120]: the very mumerous eyes are partly isolated, and partly grouped in twenties and thirties.
 ${ }^{6}$ Beside the figures already cited, all of which belong to Pecten and Spondylus, see also those which Delle Chiaje (Descriz. \&c. Tav. IXXX' LXXVI.) has given of the eyes of Pecten. In this same genus, Will has seen sixteen to twenty-four of these organs upon the convex portion of the mantle, and thirty-five to forty-five upon the plane portion; and with Spondylus gaederopus, sixty upon the convex, and ninety upon the plane side.

[^121]: 1 With many Accphala, as with the Ascidiae and Salpinae whose mantle is entirely closed with the exception of the two respiratory orifices, it is only in an improper manner that the terms oral and anal can be given to these orifices.
 1 With Salpa cordiformis, ant maxima, I have seen this furrow quite distinctly, It appears to be present in all species. Cuvier has alrcady mentioned and figured it (Mem. sur les Thalides, \&c., p. 12, fig. $1,2,3, \& c ., \varphi$. , and it has also been noticed by Savigny (Mém. \&c. p. 121, 1'l. X1Y. fig.

[^122]: 2 See Home, Lect. on Comp. Anat. II. Pl. LXXII. (Salpa Tilesii).

 3 For the oral and anal orifices of Salpa, see the figures of Cuvier, and Savirny, loc. cit. Sone species however differ from the descriptions here given. Thus, according to a preparation in Monter's Museum, the intestine of Salpa gibbosa has two caecal appendages (Home, Lect. ©c. Pl. LXXI. fig. 2,3, and Catalogue ol the l'hys. Series, I. p. 132 , Pl. VII. fig. 1, 2, i. i.). The intestinal canal of Salpa pinnata presents a still more remarkable exception. No nucleus is formed, but the mouth opens directly into the stomach which is curved and sends off an intestine in front, and the anal orifice is situated near the anterior extremity of the ventral groove; see Cuvier, loc. cit. p. 11, fig. 2; Home, loc. cit PI. LXXIII. fig, 2, and the Catalogue of the Phys. Suries, I. Pl. VI. fig. 4.
 4 Savigny has described this canal with the most different Ascidians as a Sillon dorsal; see the figures (loc. cit. Pl. VI. 太c.) ol Cynthia, Phallusia, Diazona, Synoïcum, dplidium, Eucoelium, Polyclinam, Botryllus, Pyrosoma, \&c.
 Carus also has called the attention to this canal with Cynthia microcosmus (Nov. Act. Acad. Physion-Med. loc. cit. p. 432, Tab XXVII. fig. 1, 2, q.).

[^123]: glandular appendages of the intestine of Brachiopoda are hepatic organs.*
 2 The intestinal nucleus of Salpa owes its yellow~ ish-brown color to these hepatic organs. But with Salpa democratica, and caerulescens, it is of a beautiful bluc color.

 Salpa pinnata, whose straight intestine has already been mentioned, is distinguished also by its liver which is separated from and runs parallel with the intestine ; see Cuvier, and Meyen, loc. cit. This last-mentioned author aftirms that he has seen with this species a kind of green gall-bladder (loc. cit. p. 389, Tab. XXVII. fig. 19, m.) ; but probably he confounded the stomach of the animal with its liver. For the intimate structure of the glandular layer upon the intestine of Salpa cordiformis, see Eschricht, Over Salperne, p. 27, Tab. III. fig. 20. With the Ascidiae, the liver is a simple glandular layer upon the stomach and intestine in the various species of Phallusia and Diazona; while with Cynthic, it is isolated near the pylorus, and composed of large follicles; see Savigny, loc. cit. PI. XII. fig. $1^{\text {d }}$ (Diazona).

 3 With T'erebratula, there are two groups of

[^124]: * [§ 190, note 1.] Frey and Leuckart declare the presence of salivary glands with Teredo navalis ; see loc. cit. - Eb.

[^125]: and has figured it very beautifully ; see his Descriz. \&e. Tav. LXXV. fig. 6, and Tah. XC. fig. 1, 2 (Mantle of Pecten and Solen), T'uv. LXXXIX. lis. II (foot of a Mactra).
 'The vascular net-work which Poli (loc. cit. Tab. XXXVIII.) has figmred in the mantle of a Pinna, is probably only one of aquiferous camals.
 I shall again (\$195) allude to this confusion between the blood and anuiferuns vessels.*
 1 These respiratory motions aid also for the locomotion of Saipa ; for, when water escapes by the

[^126]: 5 These ciliated organs were first described by Meyen, loc. cit. p. 385.
 6 With the compound Ascidiae, the arrangement is such that several individuals are disposed in a atar-like manner about a cavity in which their anal tubes open.
 ${ }^{7}$ Cynthia microcosmus, momus, \&c.
 8 See the figures of Savigny, and Milne Edwards, loc. cit.
 9 Phallusia sulcata, monachus, intestinalis, and Diazona violacea; see Savigny, loc. cit. Pl. IX.-XII.

 10 See Milne Edwards, Sur les Ascidies composees, p. 7. Cuvier, and Suvigny, had already

[^127]: fanus, Isis, 1819 ; Treviranus, Peobacht. \&c. p. 44 , and the beautiful figutes of Poli, loc. cit.*
 1 Baer was the first to call the attention to this aquiferous system with the Naiades (Froriep's neue Not. No. 265, 1826, p. 5) after an analogous one had been pointed out with the Gasteropoda by Delle Chiaje. Poli, it is true, had recognized it before this, but he had taken them partly for tracheae and partly for lymph of blood-vessels.

 * Meckel (Syst. 1. vergleich. Anat. VI. p. 6t) went certainly too far when he aftirmed that these orifices are only accidental fissures. I have been unable to find the orifices, which, according to Poli (loc. cit. Introductio, p. 42,52), are upon the summit of the cirri of the mantle and lead into a tracheal systin.
 3 Orilices of this kind have been described and figured by Delle Chiaje with Solen siliqua, as Fori aquiferi (Descriz. \&c. III. p. 60, Tav. XC. fig. 11). These pores communicate prohably with an aquiferous system which Treviranus has seen in the foot of Solen ensis. (Die Erschein. u. Gesetze

[^128]: 5 Similar concretions had already been seen and described with several of the Lamellibranchia by Poli, who has regarded the kidneys as organs for the secretion of the lime of the shell ; see his classic work, Introductio, p. 18, also Tom. II. p. 86, Tab. XX. fig. 4, 6, k, fig. 12, 13 (Cytherea chio), P. 143, Tab. XXVI. fig. 11, 12, $13, \mathrm{y}$. (Pectunculus pilosus), and p. 241, Tab. XXXV1L. fig. 5, 6, 3, D (Pinna nobilis).
 These concretions were irregular and of a red or yellow color. I have recently found, in several individuals of Pectunculus pilosus, amber-colored concretions, mostly round, of variable size, giving these two organs the appearance of a fish's ovary filled with eggs. Having collectell a considerable quantity of these concretions, I sent a part of them to Ilerrn Von Babo of this city, who has favored me with their qualitive analysis. The result was that those with a conchoidal fracture were composed principally of phosphate of time with a trace of magnesian phosphate, and a small quantity of organie matter which behaved with nitric acid exactly like uric acid. Nutwithstanding Bojanus, (Isis, 1819, p. 46, 1820, p. 40t) has taken much pains to prove that these organs are pumonary, yet the view that they are kidueys has found most sutpport (Treviranus, in Tiedemann's Zeitsch. f.

[^129]: 1 These two ovaries have been most thoroughly observed with Salpa pinnata, see Forshä, Descrip. in itinere orient. observ. p. 13, Tal. XXXV. B. bl, 4 ; Cuvier, loc. cit. p. 12, fig. 1. 2, ψ^{\prime}; Chamisso, loc. cit. p. 6, fis. 1; Delle Chiaje, Mcmor. \&e. III. Tav. LXV. tig. 8, h.; Meyen, loc. cit. p. 393 , Tab. XXVII. fig. 1, 21, f. ; and the Catal. of the Phys. Series, \&c., 1. Pl. VI. fig. 1-t, p. Cavier (loc. cit. p. 22. fig. 8) has also observed two ovaries with Salpa cylindrica. It must also be added here that, according to Forskil and Chamisso, there are two violet ovaries, with Salpapinnuta both in a simple and an aggregated form.
 2 It was Kroien (loc. cit. p. 52) who recognized with Salpa maxima a round testicle in the centre of the nucleas. It was composed of numerous seminiferous delicate canals filled with a white seminal liquid, and opening by a short canal into the natatory cavity. This testicte is probally the same organ that Delle Chiaje (Descriz. \&c. 1II. 'Tav. LXXVIII, fig. 4, d.) has described as an ovary. The assertion of Meyen, on the other hand (loc, cit. p. 397, 'Tab. XXVIII. fig. 5-10), that a conical organ which, with Satpa mucronata, is situated in frout of the cervical ganglion, belongs to the male genital organs, is unfoumded and certainly incorrect. But the observation of Krohn, on the contrary, gives support to the opinion of Delle Chiaje (Mem. \&c. IIl. 1. 62, and Descriz. \&c. I1J. 12.42) that this white canal which,

[^130]: * [$\$ 200$, note 5.] The embryology of the Ascidiae has been followed out by Agassiz (Proceed. Amer. Soc. for the Advancem. of Sc. 21 meeting, 1849, Cambridge, p. 157), and by Krohn (Muller's Arch. 1852, p. 312). The observations of Agassiz are complete throughout, but unfortunately not yet all

[^131]: 14 Carus, loc. cit. Tab. IV. fig. 14.
 15 See Rathké, Carus, and Quatrefages, loc. cit.

 * [End of § 200.] For the embryology of the Acephala with almost a profuseness of detail, see Loven (Ofversigt af Kongl. Vetenskaps-Acad. Förhandlingar, $5^{\text {to }}$ Argangen, 1848, Stockholm, 1849, or its transl. into German in Müller's Arch.

 1848, p. 531, or in Wiegmann's Arch. 1849, p. 312). This observer has observed with care the formation of all the organs and their mutual embryonic relations; even the résumé is too lengthy to be here quoted, - Ed.

[^132]: 1 Mechel (Syst. der vergleich. Anat.) has alrady used this word in the same way.
 a ioblliker has communicated to me a yet unpmbished work in which he has described, beside Flobellina and Polycera, three new genera of the inferior Gisteropoda, under the names of Acan-

[^133]: 1 Ciliated epithelium covers the entire surface of the body with Lymnacus, Planorbis, Pleysa, Paludina, Valvata, Tergipes, Flabellina, and Polycera. With the terrestrial Gasteropoda, 1 have found it only on the surface of the foot, and with Arion, upon also the borders of this organ, which is separated from the rest of the body by a longitudinal furrow. I cannot, therefore, support the assertion of Falentin (I'agner's Handwort erbach der Physiol. I. p. 429) that with Ifelix and Limax, the whole surface of the body andeven the tentacles are covered with this epithelium.
 2 With Limax, Arion, and some allied genera, this mantle is quite rudimentary, -covering like a which only a small portion of the back.
 ? The genus Sagitta difers, in this respect, from all the other Cephafophora. Its skin is without folds, forms a kind of cylinder, and eonsists of a slense dcrmis perfectly sinooth and non-contractile. At first, its structure appears to be homageneous, but a more carefnl examination shows extremely delicate parallel fibres rumning from before backwards in uninterrupted and apparently varicose rows; they resemble nuckear fibres [of IIenle].

[^134]: 9 See \boldsymbol{H}. Meckel, Ceber die Kalkdrüsen der Gartenschnecke, in Müller's Arch. 1816, p. 17.

 10 According to Gray (Lond. Mcd. Gaz. pt. V. 1837, 38 , vol. I. p. 830), some Gasteropoda have, in the border of their mantle, numerous glands which secrete pigment matter ; and the shell will he marked according as this secretion is continuous or irregular.
 ll The only solid particles I have heen able to find in this mucus arc calcareous molecules which disengage gas when dissolved in acids.
 In the shells of Helix, Bulimus, Cyclostoma, Paludina, Neretina, and Cypraea, I have also been unable to find the cellular structure which Bowerbank (Ann. of Nat. Ilist. No. 68, 1843) affirms exist in those of several Gasteropoda.
 12 Helix hirsuta, hispida, villosa, and the young of Paludina vivipara.
 13 The operculum is horny with Patudina, Conus, Buccinum, Cassis, Murex ; and calcareous with Neritc, Turbo, Cyclostoma.

[^135]: Here again the renus Sagitta forms an exception. Its muscular fibres are distinctly striated, and its whole muscular system consists of a simple cutaneous layer composed only of longitudinal fibres.
 2 The breadth of this foot varics much according to the species. With Scyllaea, and Tritonia, it forms only a very narrow furrow, with which these animals can embrace marine algae.
 3 Thus, with Patella and Haliotis.
 ${ }_{4}^{4}$ See Forskal, Icones, \&c., Tab. XXXIV. fig. A.; Delle Chiaje, Memor. loc. cit. Tav, XLI. fig. 1, and Descriz. loc. cit. Tav. LXIII.-IV. ; Quoy and Gaimard, in the Ann. d. Sc. Nat. XVI. 1829, Pl. II. fig. 4-6, or in Isis, 1833, Taf. VI. (Peterotrachea and Carinaria); and Rang, in Mim. de la Soc. d'IIst. Nat. de Paris, loc. cit. p, 375, Pl. IX. fig. 1, 10, a. d. (Atlanta).

 IS See Eschricht, loe. cit. Tab. I. fig. 5 (Clio) and F'an Beneden, Exercises, \&c., Fasc. II. PI. I. 1I. (Cymbulia and Tiedemannia). 1t is possible that Thetis uses as natatory organs, beside its large ceplialic fin, the contractile appendages which exist on each side of the back. These last

[^136]: 6 See Krohn, cit. p. 6.
 I See Cuvier, m . loc. cit. p. 8, Pl. 1. B. fig. 8 (Pneumoderm '); D'Orbigny, Voy. dans l'Amér. mérid., wi l-is, 1839, p. 497 , Tuf. Y. fig. IX. 1-15 (Spongiourciaciaea and Pneumoder-
 mon), and Eschricht, loc. cit. p. 8, Tab. II. fig. 12, 13 (Clio).
 i For these isolated muscles, see Cuvier, Mém. sur la limace et colimaçon, loc. cit. p. 11, Pl. II fig. 2, 3.

[^137]: 1 These ganglia are orange-colored with Lymnaeus, and red with Planorbis, Paludina, Iyalea, Pleurobranchus.
 ${ }_{2}$ Hannover (Recherch. microscop. sur le Systéme nerveux, 1844 , p. 69, Pl. VIII.) has very well described and fgured the ganglion-globules of Helix and Limax.

 3 Judging from Ehrenberg's figure (Unerkannt. Struktur' \&c. 'Tab. VI. fig. I. 12.) of the pedunculated gamglion-glohules of Arion cmpiricorum, he was not aware of the large nuclei which they coutained.

[^138]: * [§ 207, note 4.] Leidy's results, after very careful dissection, do not accord with these, for he observed none of the nerve-fibres originate or terminate in the ganglionary globules; see loc. cit. vol. I. 1. 243. - Ed.
 \dagger [§ 208, note 1.] See also Alder and Hancock, loc. cit. Part. II. Pl. II. fig. 9 (Dendronotus), PI. IV. fig. 16 (Duto) ; Part. III. Pl. VIII. fig. 8 (Eolis) ; Part. IV. 1I. V. fig. 1, k. (Scyllaea); l'art V. Il. 11. fig. 13 (Doris), Pl. XLIll. fig. 10 (Antiopa) ; then Leydig, Ueber Paludina vivi20*

[^139]: * [§ 208 , note 3.] For the cutaneous nerves and their mode of distribution with Carinaria, sce Leydig (Siebold and Kölliker's Zeitsch. III. 1851, p. 325). Here, the nerves branch into finer and finer filaments, and finally lose themselves in a terminal net-work; these terminal branches have frequent ganglionic corpuscles in their course. These corpuscles appear to be developed in the nerve-tube ; see loc. cit. Taf. IX. fig. 5. - Ep.
 \dagger \{§ 208, note 5.$\}$ Middendorff (loc. cit. p. 75) has described with Chiton a flat and almost perpendicular nervous band situated on the internal sphincter of the mouth, and which he thinks is probably two ganglia cercbralia fused together ('1"ti. LX. fig. 6, a) ; this band sends off numerous

[^140]: 7 This œsophageal ring is composed of eight ganglia with Tergipes (Nordmann, loc. cit. p. 35, T'ab. 11.), but with Actacon, there are only seven, the lower one of which, asymmetrical, sends two very long cords of communication to two large cerebral ganglia, while the two lateral ganglia connect by a short commissure passing under the œesophagus (Allman, loc. cit. p. 194, Pl. V1I. fig. 1). According to a communication which Kolliker has made to me, this ring, with Elabellina, has only five ganglia.

 8 See Berthold, in Müller's Arch. 1835, p. 378.
 9 There is a transversal commissure between the two cerehral ganglia with Patclla, IIaliotis, Phasianella, Janthina, Turbo, Paludina, Lymnaeus, Plonorlis, and with many other species having a shell. These two ganglia are contiguous with Helix, Limax, and Cypraca; but they are fused. into one with Buccinum, Murex, Oliva, Harpa, Voluta, and other Pectinilsanchia.
 10 Haliotis has two, and Patella four inferior ganglia disposed transversely, which send off from each side a double cord of communication to the brain. With Ancylus, Lymnaeus, Planorbis, Physa, Succinea, Bulimus, the inferior portion is composed of five to seven ganglia, unequal and disposed asymmetrically, and connected together by
 off eight pairs of nerves ; Part V. Pl. II, Gig. 13 (Doris), cerebral ganglia, five pairs, and a single ganglion, - the pairs are symmetrically placed with regard to the median line and give off fifteen pairs of nerves; the single or visceral ganglion gives off four nerves which are distributed to the organs of reproduction, to the stomach, to the two hearts. and to the branchiae, and can be traced into ganglia of the sympathetic system belonging to these several organs; Part V. Pl. XLllu. fig. 10 (Antiopa), cerebral ganglia, six, and give off ten or eleven pairs of nerves.

[^141]: cartilaginous lamellae, and the third has, beside, numerous horny hooks which point forwards (Cuvier, Ioc. cit. Pl. III.),
 7 Murex, Voluta, Sigaretus, Phyllidia, Diphyllidia, and many species of Doris and Carinaria.
 8 The intestine is very short and slightly tortuous with Clio, Carinaria, Gbetis, Tritonia, Diphyllidia, Pleurobranchaea, Buccinum, Миrex, and Janthina. With the other Cephalophora, it has usually many convolutions, which are quite numerous especially with Haliotis, Patella, and Chiton (Cuvier, loc. cit. P1. I.-III., and Poli, loc. cit. 'Tab. III. fig. 6).
 9 With the Pectinibranchia, and most of the Pulnonata, whose anus is near the respiratory orifice, the position of the first is determined by that of the last, and therefore is most usually upon the right, and rarely upon the left side. This is the case also with nearly all the other Gusteropoda.

 With Patella, it is situated directly back of the head ; with Tritonia, Scyllaea, and Thetis, a little further back; and even still more behind with Diphyllidia, Dolabella, Notarchus, and Pleurobranchaca. In this last genus it is above the branchia, while in Plewrobranchus, and Aplysia, it is behind this organ. With Chiton, Phyllidia, Doridium, Bullaea, Testacella, and Onchidium, it is at the very posterior end of the body. With Doris, and Polycera, it is somewhat elevated on the side of the back and surrounded by branchiae.
 With Haliotis, it is anterior and on the left side; and with Sigarctus, Fissurella, and Emarginula, it is even in front of the oral cavity.

 Its position is varied with the Heteropoda and Pteropoda. With Carinaria, and Pterotrachea, it is situated at the base of the intestinal sac, with Atlanta, upon a prolongation of the right side of the neck ; with Phyllirrhoé, upon the middle of the right side; with Pneumodermon, dircetly behind the right pinion; with Tiedemannia, it the middle of the abdomen; with Hyalaea, at the same point but a little at the left; and with cymbulia and Limacina, in the respiratory cavity. Sce, for these various positions, the works especally of Cuvier, Mectiel, and V'an Bencden.

 10 Krokn, loc. cit. p. 8.
 11 For the intestinal canal of the Apneusta, see Milne Edwards, Ain. d. Sc. Nat. XVIII. 1842, p.

[^142]: 7 With Dentalium, there are two symmetrical livers, one on each side of the intestinal canal ; sec Deshayes, loe. cit. Pl. XV. fig. 11, or Isis. Taf. V1. fig. 15, m. m. With Diphyllidia, also, there are two livers, one on caeh side of the stomach into whieh they open by several transverse excretory canals; see Mechei's Arcli. 1826, p. 15, Taf. 1. fig. 11.

 8 For the external form of the liver, consult Cu vier, loc. cit. The hepatie ducts open, near the pyloric orifice, with Limax, Helix, Testacella, Doridium, and Dentalium ; into the intestine, with IIaliotis, Vermetus, Pleurobranchus, Diphyllidia, Doris, Planorbis, and Lymnaeus ; into the third stomaeh, with Aplysia, Dolabella, and Notarchus; while with Onchidium, two of the ducts open into the cesophagns, and the third into the first stomach.*

 1 The tenacity with whieh the opinion was entertained that there is a completely-closed vaseular system with the Mollusca, is shown in the faet that Cuvier (Regne anim. I. p. 50), after having seen,

 * [§ 215, note 8.] For the details of the hepatic structure with the Nulibranehia, see Alder and Hancock, loc. cit. Part II. ll. II. fig. Z, e. hh., and fig. 3 (Dendronotus) ; Part III. 11. VIII. fig. 9 (Aeolis) ; Part lV. Pl. V. fig. 1, E. E. g. (Scyl(aea), and fig. 8, g. g. (Eumenis) ; Part V. Pl. I. fig. 2, d. d., and Pl. 1L. fig. 1, f. (Doris).

[^143]: 2 The opinion that the dorsal and lateral appendages of Acolis, Eolidina, Venilia, Zephyrina, Amphorina, Flabellina, Calliopaca, and Tergipes, are branchiae, is untenable, since it has heen shown that they contain prolongations of the digestive canal.
 ${ }^{3}$ For the aquifcrous systen of Actaeon, and Icnilia, see helow, § 222.

 1 For the ciliated organs of the branchite of Gasteropoda, see Sharpey, Cyclop. Anat. \&c. I. p. 619.

 2 For the branchial apparatus of the Cephalophora, I must refer principally to the works of Cuvier (lémoires, \&c.), Savigny (Descript. de I's.gpte, loc. cit. II. M. I.-III.), Meckel (Beitrage zur vergleich. Anat., and Syst. d. vergleich. Anat., luc. cit.), Quoy and Guimard (Voyare de 1'Astrolabe, or 1sis, loc. cit.), and Delle Chiaje ($\$ \mathrm{~cm}$. and Descrizs loc. cit.).

 3 With Clio, one does not know what to think of the form and position of their respiratory organs, since that Eschricht (loc. cit. p. 5. 16) has shown that the vascular net-worlis observed hy Cuvier upon the two fins of these animals (Blem. loc. cit. p. 5), and which have been taken for branchial vessels, are only muscular fibres. Van Beneden ulso, coukd find no respiratory organs with Limacina and Cuvieria. Moreover, more accurate obscrvations are required to determine whether or not the fur-rayad cutaneous appendage of the poste-

[^144]: 1 The respiratory cavity is situated in the middle of the back with Parmacella, and wholly behind with Testacella, and Onchidium.
 \because Onchidium. Whether or not the contractile, ramified excrescences at the posterior part of the back of this amphibious mollusk, of which Ehrenberg las counted more than twenty, serve really as branchiae as this natwalist asserts (Symb. physic. animal. evertebr. Mollusca), camot be determined except from a most exact analysis of these organs. Troschel (Wiegmann's Arch. 1845, I. p. 197, Taf. VIfI.) has shown with more certainty that Ampullario is amphibions, for he found a pulmonary above the branchial cavity communicating with this last, and lined with bloodvessels.
 3 With Limax, and Arion, the respiratory cayity has an annular form, its centre being occupied by the heart and kidney.

 4 I have found ciliated epithelium in the pulmo-

[^145]: * [\$ 221, pote 6.] See, for the respiratory organs of the terrestrial Gasteropoda, Leidy, loc. cit. p. 235. - LD.

[^146]: * [\$223, note 6.] For the renal organs with Paludina, see Leydir, Ueber Paludina vivipara, \&c., loc. cit. p. 180, Taf. XIII. fig. 49, O. - Eid.

[^147]: * [§ 224, note 3.] See for further description, together with figures of these peculiar bodies containing a spiral thread, Alder and Hancock, loc. cit. Part III. Pl. VIII. Gg. 14 (Aeolis); they correct their former view (montioned above) and admit, what I think is not in the least doubtful, that they

[^148]: are analagous to the nettling argans of the $\mathbf{P o l y p s}$. Agassiz has carefully observed them, and they have all the characteristics of a true lass α-cell; to this I may add my own observatians upon other Mallusca. - ED.

[^149]: * [\$ 227, note 18.] For the relations of the darisac with the American Itelices, see Leidy, luc. cit. II adds, "The dart-sac and multiid vesicles, so common in European species, are very rare in American species." The dari-sac has been tiond in only four species. - ED.

[^150]: 10 The penis is short, and of a compact form with the Pteropoda; see the figures of that of Cymbulia, Tiedemannia, Hyalea, Cleodora, Cuvieria, and Limacina, in Van Beneden, Exerc. zoot. loc. cit. Clio, however, forms an exception in this respect, its penis being long and Hexuous (Eschricht, loc. cit. Tab, III. fig. 24). With the Apneusta, this organ is pretty long, spiral-form, and concealed in a pyriform sac, aud the Vas deferens is inserted at its base; see Allman, loc. cit. Pl. VI. t. (Actacon), and Nordmann, loc. cit. Tab. III. fig. 5, p. q. 1. (Tergipes). There is a similar disposition with Thetis, Tritonia, Doris, and Pleurobranchaea (H. Meckel, loc. cit. Taf. XV.). In the last-mentioned genus, it is distinguished for its extraordinary length. That of Arion, Limax, Succinea, Lymnueus, Planorbis, Physa, Clausilia, Helix cellaria, and fruticum, is thick, very short, and unites either abruptly or gradually with the Vas deferens; whilc that of Bulimus, and most species of Hetix, ends posteriorly in a long lash which projects f:cely into the cavity of the body, and upon which is inserted the deferent canal at a variable distance from the extremity (Wohnlich, Treviranus, Erdl, Paasch, loc. cit.). With Onchidium, Bullaea, and Gasteropteron, the penis has a very long, flexuous lash, which, with Aplysia, and Pleurobranchus, is shorter, but never in connection with the Vas deferens (Cuvier, and H. Meckel, loc. cit.).

 20 These retractor muscles are inserted at the posterior extrewity of the penis with Arion, Limax, and Planorbis; and more in front and on the sides with Lymnaeus, and Helix (Wohnlich, Erdl, and Paasch, loc. cit.).

 21 Such a common genital orifice is found with Helix, Limax, Arion, Succinea, Bulimus, and Clousilia, on the right side of the neck behind the teatacles; it is situated further bebind, but always

[^151]: 1 At present there are known tro or three species of these singular beings resembling the torn-off arms of the O-topoll, and which live in the cavity of the mantle of certain Octopoda, attached by the means of suckers. Hectocotylus argonqutre was first described quite imperfectly by Delle Chiaje (Memur. \&c. 11. p. 225, Tav. XVI. fig. 1, 2, and 1sis, 1832, Taf. X. fig. 12, a. b.) under the name of Trichocephalus acelabularis. Another description by Costa (Ann. de Sc. Nat. XVI. 1841, p. 184, ㄴ1. XII1. fig. 2, a.-c.) has not added much to our knowledge of the real nature of this animal. Another species, Hectocotylus octopodis, established by Cuvier (Aun. d. Sc. Nat.

[^152]: 3 am intebted to Kölliker for the examination of these individuals of IIectocotyhus tremoctoportis, of which I found two in one and the same cavity of the mantle of a female. Although they
 have been preserved in alcohol a long time, get I was able to assure myself of the correctness of many of Kolliker's statements, and therely to be couvinced of the real nature of these animals.*

[^153]: 1 For the different cartilages, see, Schultze, in Meckel's deutsch. Arch. TV. p. 334, Taf. IV. fig. 1, A-G ; Spix, Cephalogenesis, p. 33, Taf. V. fig. 15-17 ; Meckel, Syst. d. vergleich. Anat. II. Abth. 1. p. 125 ; Brandt, Medizin Zool. II. p. 303, Tab. XXXII.; Owen, Cyclop. Anat. and lhys. I. p. 524 , fig. 212, A-D; Wagner, Icon. zoot. Tab.

[^154]: * [§ 233, note 1.] I have mude some careful observations with the microscone npon the chromatic relations of the skin of the Cephatopuda, selecting for

[^155]: Cyclop. \&c. fig. 212, D. D.), bat very short with Sepiola.
 1 For the chromatic cells, see San Giovanni, in the Giornale enciclopedico di Napoli Ann. XIII. No. 9, or Froriep's Not. V. 1833, p. 215, or Am. d. Sc. Nat. XYI. 1829, p. 308 ; Frenage, Ohserv. sur ta mohilité des taches que bon remarque sur la peutu des Cahnars, \&c., Paris, 1823 ; Delle Chiaje, Memor. Sc. 1V. 1829, p. 63, and Descriz. I. 1841, 1. 14 ; Wagner, Isis, 1833, p. 159, in Wicgmann's Arch. 18t1, I. p. 35 , and Icon zoot. Tab. XXIX. fig. 8-13, and Harless, in Wiegmann's Arch. 1846, I. P. 34, Taf. I.*
 my subject the common Squid(Lortigo illicebrosa). My results difer somewhat from those of Harless above-mentioned. I found only one kind of pigg-

[^156]: 1 This muscular layer is incomplete with Sepia -being wanting in the dorsal portion of the mantle.

 2 A very full description of the muscles of the

[^157]: 9 Owen, On the Natilus, p. 17, PI. IV. fig. 2, k., or Isis, p. 15, or Amm. (1. Sc. Nat. P. 103, PI. I1. fig. 3, k., and F'atencitures, loc. cit. p. 268, Pl X1. fig. 4, P.
 1 Kölliker, Entwickehng. d. Cephalop. p. 79.
 According to the researches of Lebert and Robin

[^158]: l The nervous system of the Cephalopoda has been carefully described by Cuvier, Mém. p. 34, Pl. I. fig. 4 (Octopus) ; Brandt, Mediz. Zool. p. 308, Taf. XXXII. fig. 23 (Sepia); Owen, and Valenciennes, loc. cit. (Nautilus); and by Van Beneden, loc. cit. (Argonauta); see, moreover, the figures given by Owen, of that of Sepia (On the Nautilus, Pl. VII. fig. 3 , or Isis, 1835, Taf. IV. 7 , fig. 3, or in the Ann. d. Sc. Nat. XXVIII. Pl. III, fig. 5, and Cyclop. I. p. 549 , fig. 232), and those of Loligo, Sepia, and Octopus, in Delle Chiaje, Memor. \&e. Tav, XCV. C.-CII., and Descriz. Tav, XXV. XXIX.-XXXI.*

 2 Brandt, loc. cit.
 3 Owen, On the Nautilus, P. 36, P1. VII. fig. 1, or, Isis, 1835, p. 30, Taf. IV. 7, fig. 1, or, Ann. d. Sc. Nat. XXVIII. p. 134, PI. III. fig. 4, and Valenciennes, loc. cit. p. 287, Pl. Vili. fig. 2-1.
 1 Cuvier, DIém. p. 36, Pl. I. fig. \pm, (Octopus); Delle Chiaje, loc. cit. Tav. CII. (23), C. (31), (Octopus and Sepia); F'erussac, loc. cit. Pl. IJ, fig. 1, and Van Beneden, loc. cit. p. 15, Pl. II. fig. 2, and Pl. IV. (Argonauta). \dagger

[^159]: ${ }^{5}$ Delle Chiaje, loc. cit. Tav. XCV. (25) and CI. (30), (Loligo). The two parallel nerves which, with Lotigopsis, extend backwards along the inferion: dorsal surface of the mantle belong also to this class of nerves. Grant (loc. cit. p. 21, R'I. II. (ig. 5, 6), has compared them to the spinal marrow of Vertebrata. With Onychoteuthis, 1 have also seen the fivo nerves of the fins running along the internal surface of the mantle, while with Loligo, as Delle Chioje has indicated in his Tav. C1. (30), they afterwards pass into the muscular layer of the manthe and continue their course betwcen it and the skin, sending off filaments to the two muscles of the fins.
 (; Owen, On the Nautilus, p. 38, Pl. VII. fig. 1, No. 13, or, Isis, p. 32, Taf. IV. 7, fig. 1, or, Ann. d. se. Nat. p. 137, Pl. III. fig. 4, No. 13.
 7 These two nerves, analogous to the Par vagum, have been observed by all the Anatomists of these animals; see Cuvier Mém. p. 39, Pl. I. fig. 4, u. (Octopus) ; Brandt, loc. cit. Tab. XXXII. fig. 3, g. and fig. 23, k. ; Owen, Cyclop. loc. cit. I. fig.

[^160]: 1 Touch appears the only sense developed with Hectocotylus. If Costa's figure (Ann. d. Sc. Nat. XVI. PI. XIII fig. 2^{4}, e. f.) is exact, Hectocotylus argonautae has a special tentacle-like tactile organ on the anterior extremity of the body.

 2 Owen, On the Nautilus, Pl. IV. PI. VII. fig. 1, or Isis, 1835, Taf. 11I. IV., or Ann. d. Sc. Nat. XXVIII. Pl. II. fig. 1, Pl. III. fig. 4.
 ${ }^{3}$ Owen and Valenciennes, loc. cit. Pl. VLI. fig. 2, i. and PI. IX. fig. 1, i.

 1 This organization appears to have eluded the observation of most naturalists. I have seen it very distinctly, not only with the Loligina, but also with the Octopoda. Owen (On the Nautilus, p. 23, Pl. VIII. fig. 7, or, £sis, p. 20, Taf. II. or, Ann. d. Sc. Nat. p. 113, Pl. IV. fig. 7, and Cyclop. I. p. 5.54, fig. 236, and Valenciennes (loc. cit. p. 280, P. ㄱ. fig. 3, 4,), only, luave represented with Nau-

[^161]: disc, concave on one side, and very convex and sometimes even conical, on the other Scarpa, loc. cit. Tab. IV. fig. 9, and Weber, De Aure et Auditu, p. 11, Tab. II. fig, 8 , (Octopus); also Delle Chiaje, Menor. Tav. LULII., and Descriz. \&c. Tav. XII. $\mathfrak{6} \mathrm{g}$. ${ }^{\circ} \mathrm{B}, 19,23,24$, (Octopus and Eledone). With Octopus, they lave a crystalline structure; but with Eledone, where they are very flat and colorcd brown on one of their surfaces, they consist of a soft limeless substance, - often rendering in vain the search for them in specimens long preserved in atcohol.
 The irregular otolites of the Loligina, which appear bristling with points and serratures (Scarpa, loc. cit. Tab. IV. fig. 8, and Delle Chiaje, loc. cit. 'Tav. LVIII. (12) fig. 13, 14, 16, 25, 26, (Sepia and Loligo), , have the aspeet, under the microscope, of an aggregation of very fine, acute prisms, the points of which turn inwards (Carus, Lehrb. d. vergleich Zoot. I. p. 358).
 5 See Valenciennes, loc. cit. p. 291, Pl. VIII. fig. 2, No. 3, and Pl. IX. fig. 4, $5, a$. IIe lias seen it supplied with nerves coming directly from the brain. Owen (Qa the Cephalop. with chambered shells, p. 10) took them for venous sinuses, and could not admit that they were auditive organs, since they contained no otolites. But it might be argued that these otolites are limeless like those of Eledone, and may, therefore, dissolve and entirely disappear after death.

[^162]: 5 Zootomists are not agreed upon the interpretation to be put on this membrane. Frohn, and Owen (loc. cit.), who regard the anterior part of the ocular capsule as a cornea covered by a conjunctiva, consid r the cavity found behind it as a large anterior chamber, filled with is Humor aqueus. Cuvier, Wharton Jones (loc. cit.), and J. Muller (in his Arch. 1836, Jahresb. p. 91), regard the capsular cavity with its serous nembrane, as a closed conjunctival sac; so that the transparent convexity of the capsule is not a cornea, but a continuous closed eyelid. Horeover, as there are often found two rudimentary eyelids in the eyes of Cephalopoda (Mayer, Analekt. f. vergleich. Anat. Mft. I. p. 52, Taf. 1V. fig, 6-11), this transparent convexity may be regarderl as a thitd lid or a nictitating membrane adherent throughout except at the point of the opening. Many anatomists, and especially Cwoier, and Owen, have not noticed this openiag of the oeular capsule. But De Blainville (Princip. d'Anat. comp. I. P. 41t, and Dict. d. Sc. Nat. XLVIIL. p. 262) mentions it with Loligo, Octopus, and S'epia; and Wagner (Analekt. ((c, p, 53) has described it earefully.

 In the large work of Ferussac, it is often figured under the name of Orifice lacrymal; see Loligo, ㄹ. XX. fig. 7, PI. XXIMI. fig. 5 , a, 17,

 * [§217, note 8.] The microscopic structure of this lens corresponds also with that of the Vertebrata - that is, composed of dehicate tubes or fibres.

 Pl. XXIV. fig. 2, d, 14 ; and Sppiola, Pl. III. fig. 5, 15. a, Pl. VI. Gg. 2. a, Pl. IV. fig. 10. a.

 6 On accont of this singular organization, D'Orbigny (in Ferussac, loc. cit. Introduct. p. 15) has separated, under the name Oigopsides, the genera mentioned in the text from the other Loligina which he calls Myopsides. The segment of the border of the capsule, and which is wanting with Loligopsis, is spoken of as a Sinus lacrymalis in Ferussae, loc. cit. Onychoteuthis, Pl. III. fig. 1, PI. III. tig. 2, Pl. XII. fig. 4, 13, PI. XIV. fig. 1; Ommastrephes, 11. 1. fig. 15, 11. II. tig. 3, 11.'
 F The pupil is not circular except with onychoteuthis, Ommastrephes, and Loligopsis.

 The upper papillary border, usually convex with the other Cephatopoda, is often prolonged as a Velum or Operculum pupillare. Witl Sepia, it is often bilobed after death; see the figures of $F e^{j}-$ russac, luc. cit. and Delle Chiaje, Osservaz. anat. lue, cit. Tav. IX. fig. $1,2,3$.
 8 For the lens and the ciliary body, see Inuschke, Comment. de pectine in aculo Avium, 1827, 1. 9, fig. 11, and Delle Chiaje, Descriz. \&c. Tav. V. fig. 18, and Tav. XIX. fig. 6-S. Although Mayer (Analekt. loc. cit. p. 54) declares that this lens has a capsule, yet 1 am undecided on this point, for the other anatomists are silent. ${ }^{*}$
 These fibres however are more than twice as small as those of any of the Vertebrata I have cxamined. ——d.

[^163]: 9 For the interlacement of the nerve-fibres in the Ganglion opticum, - see, especially, Wharton Jones, and John Power, loc. cit.
 10 The intimate, very complicated structure of the retina, has been described principally by Treviranus (loc. cit. p. 155), Wharton Jones (loc. cit.), and Paccini (Nuove ricerche microscop. sulla tessitura intima della retina aell' Uomo, nei Vertebrati, nei Cefalopodi e negli Insetti. Bologna, 1845, p. 55 , fig. 13, 14). The mysterious phenomenon, that, according to the older auatomists, the surface of the retina exposed to the light is covered with a pirment-layer, rests only on an imperfect knowlerlge of the structure of this organ, as has been shown by Wharton Jones (loc. cit.), and Valentin (Repert. f. Anat. IL. 1837, p. 109).

 11 see Krohn, and Wharton Jones, loc. cit.
 12 Hayer (Analekt. \&e. p. 53) regards this substance as a semi-idipose gland with several excretory ducts, - a kind of lachrymal gland the product of which is poured into the conjunctival sac; but Kolliker (Entwick. d. Ceph. p. 103) could fiad nothing glandular in its structure.

 13 For the pedunculated cyes of Loligopsis, see Rathke, in the Mem. d. St. Petersburg, loc. cit. 1'l. 1., and F'érussac, loc. cit.
 14 The eyes of Nautilus having been studied for

[^164]: 1 I have been unable to find in Hectocotylus tremoctopodis, the orifice which Cuvier (Ann. d. Sc. Nat. loc. cit. p. 151, fig. 1, 3, 4. f., or J sis, 1832, p. 560, Taf. IX., or Froriep's Notiz. loc. cit. p. 8 , fig. $16,18,19, \mathrm{f}$) has regarded as a mouth with Hectocotylus octopodis; and as Kolliker (loc. cit.) says nothing about a digestive apparatus with these animals, I suspect that it is wanting here, nutrition taking place by cutaneous absorption while these bodies are in the mantles of their females.

 2 See Férussac, loc. cit. the figures for Sepia, Loligo, Sepioteuthis, Onychoteuthis, and Ommastrephes.
 ${ }_{4}$ See § 245.
 4 Cuvier, Mém. p. 25, P1. MI. fig. 6 ; Savigny, Descript. de l'fgypte, loc. cit. Pl. I.; Delle Chiaje, loc. cit. Tav. LX. (10) fig. 9 ; Wagner, Icon. zoot. Tab. XXIX. fig. 18; and the numerous figures

[^165]: 1 Sepia, Loliro, Onychoteuthis, Loligopsis, Sepiola, \&c.

 ב Cuvier, Mém. Pl. IV. fig. 1, 2, b.; Wagner, Icon. zoot. Tab. XXIX. fig. it (Octopus) ; Van Beneden, loc. cit. Pl. III. fig. 3, d. (Argonauta); Férussac, loc. cit. Octopus, Pl. XIII. fig. 9, 10, Argonauta, Pl. I^{J}. fig. 1,2 ; and Delle Chiaje, Descriz. Tav. XV. fig. 3 (Tremoctopus).
 ${ }^{3}$ Owen, On the Nautilus, Pl. IV. or Isis, Taf. III., or Aun. I. Sc. Nat. Pl. II. fig. 1.

 4 See the figures in Cuvier, Brandt, Ferussac, Owen, \&c. The stomach of Octopus and Eledone, from its muscular walls, and its alnost horny epithelium, resembles very much the gizzard of birds.

 5 This caecum, regarded as a second stomach by many zootomists, corresponds, probably, to the pyloric appendages of fishes. With Nautilus, it is a round sac, the internal surface of which has longitudinal folds, so that its cavity has a lamellated appearance (Owen, On the Nautilus, p. 25, lll. IV. y . and Pl. VIIL. fig. 8, f., or lsis, Taf. II. III., or Ann. d. Sc. Nat. Pl. II. fig. 1, y. P'l. IV. tig. 8, f.). With Loligopsis, and Sepiola, this round sac is lined internally with spiral folds (Grant, Transact. loc. cit. p. 25, Pl. II. fig. T, g. and p. 81, Pl. XI. fig. 7, 8, c.). With Sepia, and various Octopoda, it is oblong, and lined internally with transverse spiral folds supported by a kind of mesentery; - see Van Beneden, loc. cit. Pl.

[^166]: * Note. These recent researches modify essentialty wha Stonnius has satid in the second volume of his work, upot the Appendices pyloricae and the Pancreas of fishes, organs not in the least identical.

[^167]: 1 See Milne Edwards, and Vatenciennes, Compt. rend. XX. 1845, p. 261, 750 , or Froriep's neue Notiz. XXXIV. p. 84, 258 ; also Milne Edwards, Ann. d. Sc. Nat. III. 1845, p. 341. This last author has also deseribed (Ann, d. Sc. Nat. VIII. p. 53), the circulatory system of the Loligina, which is interrupted by a large sinus; but he makes no mention of the aquiferous system. As of late there is increasing evidence for the opinion, that, with various invertebrate animals, the blood-system communicates externally at certain points on the body, and can therefore receive water into its interior, it is now important to investigate the direct or indirect relations between this and the aquiferous system which is so widely spread through the Mollusks, the Worms and the Zoophytes. It may be that this aquiferous system, if it really communicates with the blood system, corresponds to a lymphatic apparatus, although it seems hardly reasonable to suppose that canals, which carry a portion of the nutritive fluids, should open externally.*
 2 Wagner, Zur vergleich. Physiol. d. Blutes. Ilft. I. p. 19 ; and Delle Chiaje, Descriz. I. p. 57.

 1 The form of the heart depends upon that of the
 posterior part of the body ; it is large in the gencra with a short boly, and elongated in those of a long body. According to Kolliker (Ann. of Nat. Hist. XVI. p. 414), IIfetocotylus has also a heart communicating with arteries and veins, but he says nothing of its locality.
 2 See Owen, On the Nautilus, Pl. VI. fig. 1, or Isis, Taf. IV. or Ann. d. Sc. Nat. XXVIII. 1'l. III. fig. 2 ; Brandt, loc. cit. Taf. XXXII. fig. 22 ; The Catal. of the Physiol. Ser. II. Pl. XXII. (Sepia); and Van Beneden, loc. cit. Pl. III. fig. 5 (Arsonauta).

 Often the two branchial arteries are widely dilated before entering the heart, and these dilatations may be regarded as auricles.
 3 See Cuvier, Mém. p. 22, Pl. II. fig. 4 (Octopus) ; and Owen, Cyclop. I. p. 511, fig. 22% (Onychoteuthis).

 4 For the distribution of the ophthalmic arteries see Krohn, Nov. Act. Nat. Cur. XIX. pt. II. p. 47.

 5 Delle chiaje, loc. cit. Tav. LXXXVIII. XC. XCII. XCIV. (or' $20,28,22,24$) has represented in detail the arterial system of Octopus vulsaris, Sepia officinalis, Loligo vulgaris and sagittata.

 * [§ 251, note 1.] For Milne Edwards' beautiful figures see Règne anim. loc. cit. Pl. 1', 1 (Octopus).-Ed.

[^168]: 6 Milne Edwards and V'alenciennes (loc. cit.) throw no light on these questions. It is moreover singular that in the numerous and often very detailed figures of Delle Chiaje of the vascular system of Cephalopoda, he has nowhere represented in the least a capillary net-work between the arteries and veins ; while Kolliker (Entwick. der Cephal. p. 81), declares that he has seen numerous sapillary vessels in the embryos of Sepia.
 7 All the arms of the Cephalopoda have two venous trunks. Lebert and Robin (Miller's Arch. 1846, p. 130) have observed, in the venous system Sepia officinalis, a valve preventing the reflux of the blood towards the head.
 8 With Nautilus, this sinus is divided into four venae cavae (Owen, loc. cit.).
 9 The so-called Branchial hearts of the dibranchiate Cephalopoda have no muscular fibres, but have a very glandular aspect, and are in close relation with the urinary organs; see below, $\$ 255$.
 10 Delle Chiaje, loc. cit. Tav. LXXXVIr. LXXXXIX. XCI. XCIII. ($17,27,21,23$), has also figured with many details the venous system of Octopus, Sepza, and Loligo.

 11 It is, therefore, difficult to decide if the large cavities which Milne Edwards (Ann. d. Sc. Nat. III. loc. cit. Pl. XIII.-XVI.) has injected, were dilated veins or simple lacunae. In this last case, the venous system would communicate directly with
 the cavity of the body, and there are many circumstances in favor of this view. It is, therefore, to be regretted that Milne Edwards did not, in his researches, pay more attention to the aquiferous system which is spread through the whole body of the Cephalopoda, and thus, for the present at least, prevent the objection, that these aqueous reservoirs should be confounded with the venous sinuses. The lymphatic reservoirs which, according to Erdl (Wiemmann's Arch. 1843, I. p. 163) surround, and can be injected by means of the arteries, are also. perhaps, venous sinuses. An observation of Owen (On the Nautilus, p. 27, Pl. VI. fig. 1, No. 11, or Isis, p. 24. Taf. IV. or Ann. d. Sc. Nat. p. 121, Pl. III. fig. 2, No. 1${ }^{1}$, and of Valenciennes (loc. cit. p. 287), that the large superior vena cava communicates with the abdominal cavity by numerous orifices, is of inuch importance. For, in this way, this vein must be regarded as a large bloodreservoir, conducting, very probahly, the nutritive fluid, after its transudation through the intestinal canal, into tbe general blood current.
 The pericardium of the Cephalopoda sustains, perhaps, analogous relations to the blood-system, for, with Nautilus, it is said to communicate with the abdominal cavity, and with the principal vena cava, with the other Cephalopoda; see the concluding paragraph of note $1, \S 251$.

[^169]: I For this aquiferous system, sec D'Orbigny, in Ferussac, loc. cit. Introduct. P. 20, Ouvertures, aquiferes, and Delle Chiaje, Descriz. 1. p. 53, Apparato-acquoso o idro-pneumatico. Both of these naturalists have included in this system the lachrymal openings and the space circumscribed by the ocular capsules.
 2 See Swammerdamm, loc. cit. p. 35t, Taf. LI. fig. 1, q. q, and Taf. LII. fig. 10, g. g ; Brandt, Mediz. zool. II. p. 30s, Taf. XXXII. fig. 1, 24, i. i (Sepia) ; Cuvier, Mem. p. 15, Pl. I. fig. 1 r. r, and Mayer, Analekt. \&c. p. 5t, Taf. V. fig. 1. t. u. (Octopus) ; Savigny, loc. cit. Pl. I. fig. 12, $31:$ g. g (Octopus and Sepia), and Ferussac, loc. cit. (Octopus), Pl. XII. fig. 1. Pl. XIII. fig. 2, Pl. XIV. fig. 1, f. fr. r. See also Krohn, in Muller's Arch. 1839, p. 353.
 ${ }^{3}$ Delle Chiaje, Dcscriz. Tav. XV. fig. 1. q. (Tremoctopus).
 4 Owen, On the Nautilus, p. 32, or Isis, p. 27, or Ann. d. Sc. Nat. p. 127, and Falenciennes, loc. cit. p. 285, Pl X. tig. 1, 2.

[^170]: 1 Cuvier, Mėm. p. 18, Pl. II. fig. 1, 3, Pl. III. tenuta nel Firenze, 1841, p. 396, pr Isis, 1843, p. fig. 1, x. x; Wagner, 1con. zoot. Tab. XXIX. 417). fig. 11, q. q, 16 ; Delle Chiaje, loc. cit. Tav. LXXXYI1. XCI. XCIII. XCLX. (17, 21, 23, 19); Carus, Erlaüterangstafeln, $1 \mathbf{f t}$. VI. T'ab. 11. fig. 15, 17 ; Mayer, Analekten, Taf. V. fig. 1, s. s. (Octopus) ; Grant, Transact. of the Zool. Soc. I. Pl. II fig. 8, a. b, P1. X1. fig. 9, b. b. (Loligopsis and Sepiola) ; Van Bcneden, loc. cit. Pl. IlI. fig. 5, f. f. (Argonauta).*

 2 Krohn, in Müller's Arch. 1839, p. 355, and Brandt, loc. cit. Taf. XXXII. fig. 2. x.
 3 Owen, on the Nautilus, p. 31, Pl. V. No. 6 , Pl. VI. fig. 1, No. 6, or Isis. p. 26, Taf. III. IV., or Ann. d. Sc. Nat. p. 126, Pl. 111. fig. 1, 2 ; and $V a-$ lenciennes, loc. cit. p. 256, Pl. X. fig. 2, π.
 ${ }^{4}$ These appendages have been successively regarded as absorbent vessels, a rudimental portal system, a spleen, accessory branchiae, blood-reservoirs, genital organs, \&c. Mayer (Analekt. \&c. loc. cit. p. 54) was the first to regard them as urinary organs, but this view was not commonly received. The two peritoneal cavities containing these organs, were also taken by him for urinary bladders, and their orifices as urethrae. The same function has also been attributed to these organs by Sazi (Atti della terza riunione degli scienziati

 At my request, E. Harless, while at Trieste, subjected these organs to a chemical analysis, and, as he obtained from their contents purpurate of Ammonia, there can be no doubt that they are really kidneys.

 5 The contractility observed in these appendages is due, without doubt, to this fibrous tissue (Krohn, in Froriep's neue Notiz. X1. 1839, p. 214, and Erdl, in Wiegmann's Arch. 1843, 1. 162).
 6 1 am indebted for this remarkable histological fact to a recent communication from Harless. \dagger

 7 I have often found in the kidneys of the Sepia officinalis groups of rhomboidal crystals of a crimson red color. Kroh (Froriep's neue Notiz. XI. p. 215) has found them constantly with Sepia, but has sought in vain for them with Octopus, and Loligo vulgaris.
 8 The so-called branchial hearts, which are wanting with Nautilus, and which, it is supposed, pour the blood into the branchiae with the other Cephalopoda, are surrounded by a smooth peritoneal envelope, and have, internally, a cavernous aspect; see Cuvier, 11 ém, Pl. II. fig. 3, No. 9 (Octopus) ; Carus, Erlaüterungstaf. IIft. V1. 1843, Tab. II. fis. 181. (Sepia). With the Loligina, a constriction sit-

[^171]: * [§255, note 1.] See also Mitne Edwards, Règne anim. loc. cit. Pl. Ie. r. (Octopus). - Ed.
 \dagger [§ 255 , note 6.] For this communication in full with figures of Harless, see Wiegmann's Arch.

[^172]: 1 See Kolliker, Entwickelungsgesch. \&c. p. 1, 9, Taf. I. Gg. 9-12. These longitudinal and transverse folds have been observed in the eggs of Sepia and Sepiola; the longitudinal ouly are found in those of Argonauta, Tremoctopus, Octopus, Eledone, \&c.
 2 See my Beitrage z. Naturgeschichte d, wirbell. Thiere, in the Neuesten Schrift. d. naturforsch. Gesellsch. in Danzig. III. 1839, Hft. II. p. 54, Taf. II. fig. 47 (Loligo) ; Milne Edwards, Ann. d. Sc. Nat. XVIII. 1842, p. 337, Pl. XII. fig. 6, Pl. XIII. fig. 7 (Loligo and Sepia), and Peters, in Muller's Arch. 1842 , p. 334 , Taf. XVI. fig. 14 (Sepiola).

 It is easy to observe the development of the spermatic particles in the testicles. According to my observations, the daughter-cells in the mothercells, are developed into as many spermatic particles the tails of which rupture one of the thin sides of the mother-cell.

 3 Milne Edwards (loc. cit. PI, XIII. fig. 11, Pl. XIV. fig. 5), has erroneously figured the spermatic particles of Octopus and Eledone with a very large hody; for it is only a small button-like enlargement; see Valentin, Repert. 1837, p. 140, and Philippi, in Mruller's Arch. 1839, p. 308, Taf. XV. fig. 11. This last has represented the tail of that of Eledone too short.

 I have found the spermatic particles of Hectocotylus tremoctopodis to be exactly like those of Eledone.

 1 Cuvier, Mém. p. 31, Pl. IV. fig. 6, a. b., Van Beneden, loc. cit. Pl. V. fig. 2, a.; Delle Chiaje, Descriz. Tav. XIV,-XVI., and Grant, Trans. of the Zool. Soc. I. Pl. II, fig. 9 (Octopus, Argonauta, Eledonc, Loligo, and Loligopsis).
 2 Delle Chiaje, Descriz. Tav. XV. fig. 15, and Kulliker, Entwick. \&c. Taf. I. fig. 9 (Sepia); Carus, Erlăuterungstaf. 1Ift. V. Taf. II. fig. 9 (Eledone).

 3 With Sepia, the dehiscence produces a rent with irregular borders (Kölliker, loc. cit. p. 13); with Rossia, and Sepiola, a simple rounl opening. which, with Nautilus, according to a figure of Owen's, has crenulate borders, and, according to Delle Chiaje, is regularly denticulated with Eledone; see Grant, Transact. loc. cit. I. p. 84, P1. X1. fig. 12, and Owen, Ibid. II. Pl. XX1. fig. 18, also, On the Nautilus, p. 42, Pl. VIII. fig. 9, c. c., or Isis, p. 35, Taf. III. or Ann. d. Sc. Nat. P. 142, Pl. IV. fig. 9, c. c., and Delle Chiaje, löc. cit. Tav. LV. (3) fig. 15.

 4 These two aquiferous canals form a communication hetween the ovarian capsules and the aquiferous cells surrounding the branchial hearts ($\$ 250$). They are found with Octopus, Eledone, and Tremoctopus; see Krohn, in Müller's Arch. 1839, p. 357 ; Kölliker, Entwick. \&c. p. 11, and Delle Chiaje, Descriz. Tav. XV. fig. 1, q. (Tremottopus).

[^173]: 5 With Octapus, Eledone, Tremoctopus, and Loligo sagittata, there are two oviducts; see Cunier, Mém. llol. I. fig. 1, q. q. Pl. II. fig. 1, r. r.; Mayer, Analckten, Taf. V. fig. 1, i. i.f f.; Ferussac, loc. cit. Octopus, 이. XV. fig. 2, 1. I.; Carus, Erlauterungstaf. Ilft. V. Taf. II. fig. 7, h. h.; Warner, Icon. zoot. Tab. XXIX. fig. $20, \mathrm{~m} . \mathrm{m}$.; Owen, Trans. of the Zool. Soc. 1I. p. 121, and Cyclop. I. p. 558. With Argonauta, these two oviducts are very long and Hexuous; see Delle Chiaje, Descriz. 'Lav. XIV. fig. 1, z. n.; and I'an Beneden, loc. cit. PI. V. Gig. 1, 2; Ferussac, loc. cit. Argonauta, PI. I. ${ }^{4}$ fig. 2, s. s.*
 6 Such is the case with Nautilus pompilius (Owen, loc. cit.), Loligo vulgaris (Carus, Erlauterungstaf. Ilft. V. Taf. 1I. fig, 10, m. 1.), Sepia officinalis, Sepioteuthis, Rossza, Xc. According to Rathke (Mein. d. St. Pétersburg, loc. cit. p. 161, Pl. 11. fig. 10. p. q.), the simple oviduct of Loligopsis passes directly to the posterior part of the body and terminates at the ventral median line between the two fins.
 It is, however, desirable that this remarkable exception to the general rule should be confirmed by other anatomists, for Grant (loc. cit.) is wholly silent upon the course of the oviduct in the females silent upon the course of the ovidu
 7 With Octopus, Eledone, and Tremoctopus, mach oviluct has such a glandular enlargement, hue it is entirely wanting with Argonauta; see ('woicr, Mén. p. 32, Pl. IV. Gig. 6, g.; Ferus-
 sac, loc. cit. Octopus, PI. XV. fig. 9, 10.; Mayer, Analekten, 'Iuf. V. fig. 1, E. h. (Octopus', Delle Chiaje, Descriz. Tav. XV. fig. 1, n. Tav. XV1. fig. 6 ; and Hagner, Icon. zoot. Tab. XX1X. fig. 20, n. n. (Tremoctopus and Eledone).
 \& This is so with Loligo, Sepia, Sepioterthis, Sepiola, sc.; see Owen, Trans. \&c. 11. p 121, 1'l. XXI fig. 18, e. (Rossia). With Nautilus, the very short oviduct has glandular walls in its whole extent (Owen, loc. cit.).

 9 See Swammerdanm, Bib. 1 Natur. p. 354, Taf. LII. fig. 10, g. g.; Brandt, loce cit. p :310, 'Laf. XXX11. fig. 25, k. 1., fig. $28-31$ (Sepia) ; Del.e Chiaje, Mem. IV. p. 102, and Descriz. I. p. 3 \%, Corpii adiposi, Tav. LVIII. (12), fig. 10, a, 11, e.: Peters, in Muller's Arch. 1842, p. 335 , Taf. XVI. fig. 6, f. f. (Sepiola) ; Owen, Trans of the Zout Soc. II. Pl. XXI. fig. 18, r. g. (Rossia).

 10 With Sepia, and Sepiola, this gland is single. and divided by deep fissures into three lobes (see the figures cited in the preceding note, and Owen. Trams. \&e. loc. cit. M1. XXI, fig. 19, 20) ; with Loligo, and Rossic, it is double, and each is divided into two lobes (Owen, Ibill. PI. XXI. fig. 18. h. h.).

 1 Cuvier, Nouv. Ann. du Mus. d'llist. Nat. I. 1832, p. 153, l'l. V111. fig. 1-4; Carus, Erlatuterungstat. Ilft. III. Taf I1. fig. 16; Owen (Cyclop. loc. cit. p. 560 , fig. 244), and Külliker, Entwickel, \&c. p. 14.

[^174]: ${ }^{*}$ [§ 258, note 5.] Sec also Milne Edwards, Règne anim. loc. cit. Pl. $\mathbf{1}^{\mathrm{b}} . \mathbf{1}^{\text {co }}$ n. (Octopus). - Ed.

[^175]: 12 These chaplets are long with Loligo vulsaris, and short with Sepioteuthis; see Burdach, De quibusd. anim. marin. p. 155, 'Tab. XII.; Ferussac, loc. cit. Loligo, Pl. X. fig. 1, $\mathbf{1}^{\text {n }}$, and Kölliker, loc. cit. p. 14.

 13Rang, Magaz. d. Zool. 1837, V. Taf. LXXXVIl. LXXXVHI.; Férussac, loc. cit. Argonauta, Pl. I. ${ }^{3}$.

 14 This body has a peculiar structure, and undoubtedly, is made by the animal itself. It is composed of numerous, superposed, very distinct layers of a granular, probably coagulated substance ; - forming a kind of staff or baton by which the eggs are bound together in groups; for, according to Kolliker (loc. cit. p. 11), it (Tremoctopus) carries the entire mass attached to the suckers of onc of its arms.

[^176]: 2 Needham (An account of some new Microscopical Discoveries, London, 1745 , or Nouv. decouv. faites avec le Microsc. Leyde, 1747, PI. III. 1V.), was the first who described accurately the Spermatophores of Loligo vulgaris. With those of the Loligina, the posterior extremity is enlarged, with one or two constrictions, and contains the spiral ligament with its sheath; the piston also, from its deep-brown color, is easily seen; see Krohn, in Froriep's neue Notiz. XII. 1839, p. 17, fig. 20 (Sepia); Milne Edwards, Ann. d. Sc. Nat. XVIII. 1842 , p. 335, Pl. XII. fig. 1-5, XIII. fig. 1-6 (Loligo and Sepia); Peters, in Müller's Arch. 1812, p. 334, Taf. XVI. fig. 11 (Sepiola). With those of Octopus, and Eledone, the posterior enlargement is very slight, and often, at this point, the envelope is entirely involuted; the seminal sac, moreover, is remarkable from its spiral form ; see Milne Edwards, loc. cit. p. 338, Pl. XIII. fig. 8-10, XIV. fig. 1-6 (Octopus and Eledone); Philippi, in Muller's Arch. 1839, p. 301, Taf. XV. lig. 1-6 (Eledone); this last author has erroneously taken the spiral turns of the ligament for hooks mointing backwards.
 ${ }^{3}$ Redi (De Animalculis vivis quæ in corporibus amimalium vivorum reperiuntur, Lugd. Batav. 1729, 1. 252, Tab. II. fig. 2), was the first who saw these Spermatophores; but he took them for worms. Swammerdamm, on the other hand (Bib. d. Natur, 1. 353, Taf. LII. fig. 6, 7), and especially Needham (loc. cit.), had a correct idea of their nature, for they regarded the white substance they contained as sperm, and the Spermatophores themselves as a kind of cases or machines. But this did not pre vent the later anatomists from regarding them as parasites. Thus Delle Chiaje described those of Octopus and Sepia under the names of Monostomum octopodis, and Scolex dibothrius (Mem . IV. p. 63, Tav. LV. fig. 8, 14, 9, 9.d). Even latterly, this naturalist has not relinquished this opinion, for he

[^177]: 2 Astacus, Apus, Julus, and Glomeris. But in the last two of these, the cutaneous canals are pretty large and consequently have not the appearunce of bluck lines.
 ${ }_{3}$ According to Valentin (loc. cit. p. 121), the cutaneous cinals of the Astacus fluviatilis are tillerl with carbonate of lime, a point which I have not had the opportunity to confirm.
 4 Cyclops, Cyclopsina, and other Entomostraca.
 ${ }_{5}$ T'empleton (Trans. of the Entomol. Soc. I. p.
 scarches have convinced me of the vitality of the shell, at least in the first period of its existence; and in referencs to this, I an fully of Cuvier's opinion, when he said, in his 'Anatomie Comparé,' 'The envelope of the Crustacea is at

[^178]: 1 See Savigny, Mém. \&c. part I. and Erichson, Entomograph. Hift. 1, 1840, p. 1, Taf. II.
 1 For the muscles of Astasus, see Will, in Müller's Arch. 1843, p. $358 .{ }^{*}$
 2 In the tail of many Decapoda, and in the abdominal segments of Myriapoda.

 * [§ 267, note 1.] For researches on the intimate composition of the muscular tissue with Crustacea (Argulus, Artemia, Branchipus), see Leydig, loc. cit. Siebold and Kolliker's Zeitsch. II. p. 327, I11. p. 301). The fibres of muscles can often be easily separated into fibrillae which appear to consist of piles of discs exactly as with some of the

[^179]: 4 The muscular system is highly developed with Decapora, Stomapoda, Amphipoda, Isopoda, Myriapola, Poecilopoda and Phyllopoda; see Geveke, De Cancri astaci quibusd. partib, p. 7, fig. 1-7; Suckow, Anat. physiol. Unter such. loc. cit. p. 04. Taf. IX. X. (Astacus fluviatilis); Milne Eidwards, Ilist. Nat. d. Crust. I. p. 155, Pl. XIII. (IIomarus marinus); K゙utorga, Scolopendr. morsit. Anat. p. 12, Tab. II. fig. 1, 2 ; Van der Hoeven, Reclerch. sur l'hist. nat. et l'anat. d. Limulus, 1. 2t, 1.I. III.; Zadrlach, De Apodis cancriformis Anat. p. 4, Tab. I. 1 II.
 © The abortion of the muscular system is often so extensive ind the lower parasitic Crustacea, that, beside the few muscles belonging to the tactile and locomotive organs, there are found only some longitudinal and transverse fibres under the skin; see Nordmann, Microgr. Beiträge, 11ft. 2, p. 6 Taf. I. V. VII. (Lamproglena, Actheres and

 Tracheliastes), Rathkt, in the Nov, Act. Nat. Cur. XIX, p. 141, Tab, XYYI, fig. 2. 3 (Dichelestium); Pickering and Dana, in the Isis, 1841, laf. IV. (Caligus).

 1 This anomaly, in which the three segments back of the head do not participate, is due, perhaps, to the segments of the body being always fused in twos.

 2 In the interpretation of the movable appendages, I have relied for the most part on the principles of Erichson (Entomograph. loc. cit.), for they appear most consistent and unconstrained. In the instances where, at first sight, they appear unwarranted, they may be very well explained by recourse to the hilenomena of development of Crustacea; and by this means, here, especially, where the metamorphoses occur gradually and continuously, may be found the solution of many obscure questions in morphology.

[^180]: 3 With Cyclops, Cyclopsina, and Cypris, it is the first pair of feet that is transformed into oarlike organs, but it is the second with Apus, Limnadia, Daphnia, and Polyphemus.

 With the l3ranchiopoda, the disposition is quite different. The anterior pair is changed into two blightly movable appendages, hook-like or digitiform, and rolled spirally. With the embryos and

[^181]: * [§ 268, note 3.] The first pair of feet is, gencrally, the second pair of antennae. For a full dis-

[^182]: ${ }_{5}$ Tracheliastes, Achtheres, Brachiella.
 ${ }^{6}$ Anchorella.
 7 Lernaea, Lernaeocera.
 1 Poli, loc. cit. Tab. IV. fig. 3 J. ; Cuvier, Mèm. \&c. p. 5, fig. 2, 7 e. 11 A, and Martin St. Ange, Mém. \&c. p. 15, Pl. II. fig. 18, 3.

 * [§ 268.] For a very complete description of these sucker-like organs, with excellent figures, see

 2 Poli, loc. cit. Tah. IV. fig. 13, y. z. 17 ; Cuvier, loc. cit. p. 5 , fig. 18 b. b., and Martin St. Ange, loc. cit. p. 14, Pl. II. fig. 17, 19, J.

 Dana, Amer. Jour. Sc. XXXI. 1837, p. 297, and Hep. on Crustac. loc. cit. p. 13, 18. - Ed.

[^183]: ${ }^{3}$ Palinurus, and Palaemon (dudouin and Milne Elwards; loc. cit.). In these two Crustacea, there is only a small fissure in the centre of the principal ganglionic mass, after the fusion of the ganglit.
 4 This transverse filament is absent neither with Palaemon, Palinurus, nor with Homarus, and Astacus. It was overlooked by Suckow in the crawfish, although distinctly seen by Brandt; see his Medizin. Zoul. loc. cit., and his Bemerkungen öber die Mundmaren-nerven, loc. cit. Tab. I, fig. 1, 2 E., or Ann. d. Sc. Nat. V. 1836, Pl. IV.

 5 Cuvier, Legans \&c. III. 1845, p. 330, and Delle Chiaje, Descriz. \&c. Tav. LXXXVI. fy. 5.
 ${ }^{6}$ Frey, De Mysidis flexuosae anat. p. 9.
 7 Audouin and Milne Edwards, Ann. d. Sc. Nat. loc. cit. p. 81, Pl. III.

 8 Cuvier, Legos, \&c., loc. cit. p. 323; and Owen, Lect on Comp. Anat. p. 170.
 ${ }^{4}$ Milne Elwards, IIst. Nat. d. Crust. Pl. XI. fig. 9.

[^184]: 10 Maia squinado.
 11 Audouin and Milne Edwards, Ann. d. Sc. Nat. loc. cit. p. 91, Pl. VI., and Milne Elwards, Hist. Nat. d. Crust. I. p. 141, Pl. XI. Hig. 5, 10 (Maia squinalo and Cancer maenas).
 I^{2} Audouin and Milne Edwards, loc. cit. p. ${ }^{79}$, 1'I. I1. fig. 1, and Milne Edwards, loc. cit. p. 123, PI. XI. fig. 1 (Talitrus).

 1. Straus, Mém. sur les 1liella, in the Mém. du Mus. fl'llist. Nat. XVIII. 1829, p. 60, Pl. 1 V. fig. 16 (IIyperia).
 14 Treviramus, Verm. Schrift. I. p. 63, Tab. IX. fig. 53 (Porcellio scaber) ; Brandt, Medizin. Zool. 1I. p. 75 , Tab. XV. fig. 23 (Oniscus murarius), and Rataké, De Bupyro et Nereide, p. 14, Tab. III. fig. 4 (Bopyrus squillarum).
 15: Ratheé, Dinzig. Schrift. loc. cit. p. 127, Tab. IV, fig. 2 (Idothea entomon).
[^185]: Verm. Schrift. 1I. p. 16, Taf. IX., and Newport, Phil. Trans. 1843, p. 247, Pl. XI. fig. 1. The number of ganglia increases in general with the increase of the boly together with that of the number of the segments and feet.
 ${ }^{25}$ Van der Hoeven, Recherch. \&c. p. 21, Pl. 1II. fig. 2, 3.
 ${ }^{26}$ This system has been described by Gaede (Wiedemann's Zool. Magaz. 1. Stück 1, p. 91, Taf. 1. fig. 1), and by Berthold (Isis, 1830, p. 630, Taf. VI1. fig. 4). But for the most careful researches on this subject we are indebted to Zaildach (loc. cit. p. 35, Tab. 1L.).

[^186]: 27 Brongniart, loc. cit. p. 87, 11. XII1. fig. 2, 3, a. (Limradia), and Joly, loc. cit. p. 310, Pl. V. fig. 5, k. and Pl. V111. fig. 21, a. (Isaura). This last naturalist has been unable to find a cerebral ganglion with Artemia (loc. cit. p. 242).*

 28 An analogous brain, divided by constrictions into three ganglia placed in a row, has been figured by Schäffer (Die zackigen Wasserflöhe, loc.
 ${ }^{*}$ [§ 272 , note 27.] The investigations of Leydig (loc. cit. Siebold and Kolliker's Zeitsch. IIl. p. 290) have shown that, with at least Artemia and Branchipus of the Phyllopoda, the nervous system is well developed. This system seems, for the most part, to have escaped the observation of former investigators from want of manipulation; Leydig has described it with detair, and divides it, as usual, into a central and a peripheric portion. The first consists of the brain which sends off nerves to the organs of sense (eyes, antennze, \&c.) and connects, by two commissural cords which embrace the cesophagus, with the ventral cord. This cord is composed of eleven (Branchipus), or twelve (Artemia) ganglia, which are connected, successively, by two longitudinal commissures, and, latcrally, each, by a double, transverse commissure. Each of these ganglia sends off, from its outer border, thrce nerves which are distributed to the abdominal organs and appendages, and to the skin. - Eid.

[^187]: 31 Rathke, Ibid. XIX. p. 150, Tab. XVII. fig. $3,4$.

 32 Nordmann, Microgr. Beitr., Hft. 2, p. 72, 109, Taf. V. fig. 7, J., 6.
 33 Cuvier, Mém. loc. cit. p. 11, fig. 11, and Martin St. Ange, loc. cit. p. 18, Pl. II. fig. 8 (Lepas); also Wyman in Si:liman's Amer. Jour. XXXIX. 1840, p. 182 (Otion).*

 1 We are indebted to Brandt for very complete contributions on the sympathetic system of the Decapoda; see his Bemerk. über d. Mundmagenoder Eingeweidenerven der Evertebr. loc. cit. p. 7, Tab. I. fig. 1-3 (Astacus and Squilla), (also in the Ann. d. Sc. Nat. V. 1836, p. 87, PI. IV. and in the Mediz. Zool. II. Taf. XI. fig. 1, i.) ; see, also,

[^188]: 3 Brandt, Bemerk. \&c. p. 34, Taf. III. fig. 6-9, and in Müller's Arch. 1837, Taf. XII. fig. 7 (Scolopendra, Spirobolus, and Glomeris) ; also Newport, Philos. Trans. 1843, p. 246, 1'1. XI. fig. 1, 2 (Julus). Treviranus had already seen something of a single sympatheric system with

[^189]: Julus; see his Verm. Schrift. II. p. 47, Taf. IV. g.

 4 Van der Hoeven, loc. cit. p. 23.
 5 Zaddach, loc. cit. p. 36, Tab. III. fig. 5.
 1 The various differences of form of these tactile organs belong rather to Zoölogy.

[^190]: * [§ 277, note 2.] Recent investigations have disclosed the existence of eyes with the Cirripedia. Leid ${ }^{\prime}$ (Proceed. Acad. Sc. Phil. IV. 1848, No. 1) discovered them with Balanus, and this discovery has lcd to the confident and successful search of them in other genera. With Lepas, according to Darwin (Monograph, \&c., loc. cit. p.49), there are two closely-approximated eyes, forming a double eye,

[^191]: * [§ 277, note 8.] With Artemia and Branchipus, Leydig (loc. cit. Siebold and Kalliker's Zeitsch. III. p. 295) has found very highly-developed eyes. In structure they correspond to the compound faceted eyes described helow. In regard to the pigment-spots found on the head of these animals, and regarded as of a visual character by Joly and others, this observer considers

[^192]: 16 Jurine, loc. cit. p. 446, Pl. XXVI. fig. 13, and Mü/ler, in Tiedemann's Zeitsch. f. Physiol. IV. p. 97, Taf. Vi. fig. 5, 6 (Argulus foliaceus).*

 17 Roussel de Vauzeme, loc. cit. p. 242, P1. VIII. fig. 5.

 18 Müller, in Meckel's Arch. loc. cit. p. 57, Taf. III. fig. 16, 17 (Gammarus).

 19 The lenses are pyriform with Daphnia (Straus, loc. cit. p. 397, Pl. XX1X. fig. 6,7), cuneiform with Polyphemus and Evadne (Jurine, Ilist. d. Monocles, Pl. XV. fig. 1-3, and Love'n, loc. cit. p. 148, Pl. V.).

 20 It is very remarkable that the Cirripedia, after the disappearance of the simple eye, which, during the embryonic state, is situated on the front, acquire another, compound but equally transitory. This last is situated at the lower border of the cephatic extremity, directly in front of the mouth, during the period when these animals are emtained between two shells, and swim like a Cypris. It is pedunculated, and has the same structure as that of Dapknia; see Thompson, Zool. Research.

 * [\$277, note 16.] For the intimate structure with many details, of the eyes of Argu/us, see Leydig (loc. cit. Siehold and Kö/liker's Zeitsch. II. 1. 331, Taf. XX. fig. 1) ; they are not immovable at B Jurine has described. - Ed.

[^193]: * [§ 277, end.] There is anothcr form of eyc observed by Dana (Report on Crust. loc. cit. p. 1026) with Corycaeus and Sapphirina, and of so remarkable a character that'I quote his description : "A pair of simple eyes, consisting of an internal prolate lens, situated at the extremity of a vermiform mass of pigment, and of a large, oblate, lensshaped cornea. The cornea is connected intimately with the exterior shell of the front or the under side of the head, and the two corneae are like spectacles adapted to the near sighted lenses within; their size is extraordinary, being often one-third

[^194]: 3 With the Decapoda, Stomapoda, Amphipoda, and the majority of Isopoda. With the Chilopoda these palpi exist only in a very rudimentary condition ; and they are entirely wanting with Idothea, the Chilognatha, and the other lower Crustacea. For the parts of the mouth of Crustacea, sce the descriptions and figures contained in the works of Savigny, Milne Edwards, and Erichson; also the various monographic works upon the Decapoda, Isopoda, Myriapoda, Phyllopoda, Lophyropoda, and Cirripedia, by Suckow, Brandt, Rathke, Treviranus Zaddach, Jurine, Love'n, Burmeis ter, Martin St. Ange, \&c.
 4 Astacus, Palaemon, Palinurus, Squilla.
 $*$

 * [§ 278, note 7.] According to Dana, the proboscis herc mentioncd is simply a spicula without any mouth-opening or mandibutar appendages ; the true mouth is posterior to this and has a trunkform, with the buccal orifice on the under surface, as in some geuera of the Cafigoidea, and provided with regular mandibles; sec Amer. Jour. of Sc. 1837, XXXI. p. 299, also Rep. on Crust. loc. cit. p. 1322. This has since been verified by Vogt (Bcitrage, \&c., p. 7), and by Leydig (loc. cit. Siebold and Külliker's Zeitsch. II. p. 332, Taf. XLX.

[^195]: 9 For the liver of the common crawfish, which is large but contained in the cephalothorax, see the descriptions and figures of Roesel, Suckov, Geveke, Brandt, and Schlemm, also those of Müller (De Gland. Struct. p. 69). This last mentioned author found the liver conformable with that of many of the othcr Macrura and Brachyura. Mitne Edwards (Hist. d. Crust. Pl. IV. fig. 5) has found, with Mata, a hepatic mass very remarkable in bcing symmetrically divided into several lobes. With Pagurus, there is, on each side of the pylorus, a long biliary vessel, which extends along the intestine to the extremity of the tail, and into which numerous lateral follicles empty their product ; see Swammcrdamm, loc. cit. p. 86, Taf. XI. fig. 4, 5; Müller, De Gland. \&c. p. 70, Tab. VIII. fig. 12,

[^196]: microscope, see Leidy, Amer. Jour. Med. Sc. 1848,

[^197]: * [\$ 283, note 5.] See also Leydig, loc. cit. Sif bold and Kalliker's Zeitsch. 11L. P. 287 (Artemia and Branchipus).-Ed.
 $\dagger[\S 234$, note 1.] This statement of the complete absence of true vessels in Argulus, is confirmed by the researches of Leydig (loc. cit.

[^198]: * [§286 note 1.] Leydig (loc. cit. Siebold and Kölliker's Zeitsch. IL. p. 337) has carefully examined the iutimate structure of these caulal appendagcs with drgulus; they are composed, 1st, of simple glands such as are found under the skin over the whole body; 2nd, of a rich muscular network;

[^199]: 11 Both sexes of Bopyrus squillae have five pairs of small branchial plates lying over each other like scales (Rathké, De Lopyro, \&c., p. 7, Tab. I.). This is probably true also of the males of Phryxus hippolytes (Rathké, Nov. Act. Nat. Cur. XX. p. 48). The females of this same species and of Phryxus paguri have four pairs of cordate, and nearly double plates, which stand off katerally a little from the posterior part of the body; see Rathké, Ibid. p. 46, 59,Tab. II.; Kröyer, Naturhist. 'Iidskr. I11. p. 102 , Pl. I. IL., or in Isis, 1811, p. 693, 707, Taf. II. Tab. 1, and Taf. III. Tab. 2, or in Ann. d. Sc. Nat. XVIl. 1842, p. 142, P1. VI. With Cepon, the branchial apparatus is highly developed in that, beside the five pairs of lanceolate and pretty long plates which project from the sides of the tail with the males, the five abdominal and the last caudal segment, have six pairs of long, narrow diverging lamellae with pectinated horders. Duvernoy (Ann. d. Sc. Nat. XV. 1841, P. 120, Pl. IV. lig. 1-11), has described these twelve appendages as the principal branchiae of Cepon, while to me, they appear to be accessory, and are, perhaps, vortex-producing organs - the result of a metamorphosis of the anal feet. With Jone, all the ablominal segmeats have a pair of long bran-

[^200]: 1 According to Duvernoy and Lereboullet (loc. cit. p. 231, PI. VI. fig. 14), these cavities secretc a liquid for the moistening of the branchiae. Sec upou this subject, my observations in Miller's Arch. 1842, p. 141, note 2.

 2 See Suvigny, Descript. de l'Érypte, loc. cit. Pl. XIII. fig. $1 .{ }^{2}-1.8^{\text {; }}$; but especially Milne Edwards, Institut. 1839, p. 152, and Hist. d. Crust. III. p. 187, and his figures in the Iconograph. du Regne anim. Crust. PI. LXX.

 3 With Lithobius, there is a stigma above the first, third, fifth, eighth, tenth, tweifth, and fourteenth pairs of feet (Treviranus, Verm. Schrift. II. p. 29, Taf. IV. fig. 7, Taf. VI. fig. 5). With Scolopendra, the stigmata have a similar disposition (Kutorga, loc. cit. p. 14).

 4 See Savi, Isis, 1823, p. 219, Taf. II. fig. 9, a. a., and Burmeister, Ibid. 1834, p. 134, Taf. I. fig. 2,

[^201]: a. a. (Julus). These stigmata with Julus were entirely overlooked by Treviranus. He had regarded as such the orifices of a row of glands which are situated on the sides of the segments of the body (Verm. Schrift. II. p. 42, 'Taf. VIII. fig. 4, S. S.).

 5 The characteristic spiral filament of the Insecta is also not wanting here: sec Kutorga, loc. cit. p. 14, Tab. IL. fig. 8.

 6 Straus, Considérat. \&c. p. 307, and Burmezster, loc. cit. Taf, I. fig. 3 (Julus).
 ${ }^{7}$ Brandt, in Müller's Arch. loc. cit. p. 323, Taf. XII. fig. 4, 5 (Glomeris).

 8 Straus, loc. cit. p. 307, and Traité d'Anat. comp. II. p. 161 ; Treviranus, Verm. Schrift. II. p. 30, Taf. VI. fig. 6 (Lithobius), and Müller, Isis, 1829, p. 551, Taf. II. fig. 1.

[^202]: 1 For the Malpighian vessels, which were for a long time regarded as biliary canals, see further under the anatomy of the Insecta.
 2 Ramdohr, Abhandl. über d. Verdauungsw. \&c. p. 149, Taf. XV. fig. 1 (Julus) ; Trevirantes, Verm. Schrift. loc. cit. p. 24, 44, Taf. V. fig. 4, Taf. VIMI. fig. 6 (Lithobius and Julus), and L. Dufour, Ann. d. Sc. Nat. loc. cit. p. 86, 96, Pl. V. fig. 1, 4 (Lithobius and Scutizera). Scutigera differs from the other Chilopoda in having two pairs of urinary canals.
 See atso Kutorga, loc. cit. p. 6, Tab. I. fig. 2 and Muller, Isis, 1829, p. 550, Taf. II. fig. 5 (Scolopendra) ; finally Brandt, in Müller's Arch. loc. cit. p. 322, Taf. XIl. fig. 2 (Glomeris).
 3 Swammerdamm (loc. cit. p. 87, Taf. XI. fig. 3) had alrcady figured, with Pagurus, a pretty long coecum opening at the posterior extremity of the intestine. With Moia squinado, there are three such pretty long, of which two are inserted on each side of the pylorus, and the third a little further behind (Milne Edwards, Fist. Nat. d. Crust. I. p. 76, Pl. IV. fig. 1, m. n.). Lund (Isis, 1829, p. 1302) has also seen two glandular canals rolled up in a knot, which open each side of the pylorus, while a third entered the rectum. This last, according to Cuvier (Leçons d'Anat. Comp. III, p.

[^203]: * [§ 289, note 3.] These odoriferous glands have been successfully studied by Leidy (Proc. Acad. Sc. Philad. 1840, IV. p. 235) with Julus. Here, they consist of a globular body or sac, with an elongated conical neck, and resemble in form a

[^204]: 2 This phenomenon is undoubtedly analogous to that of the alternation of generation, which is so general with the other lower animals.
 mal. Crust. generat., 1844, and his Bemerkungen in Froriep's neue Notiz. XXIV. 1842, 1. 181; Erdl, Entwickelunt d. Inmmereies, p. 13; and especially Wąner, I'rodromus, \&c., p. 8, Tab. I. fig. 12-17.

[^205]: 1 Burmeister (Beitr. p. 46), and Wagner (MülLer's Arch. 1834, p. 469, Taf, VILl. fig. 10), were the first to notice the ovarian follicles of the foot of the Lepadea, the first with Otion, the second with Lepas. Martin St. Ange (loc. cit. p. 20, Pl. I. fig. 10,11) has verified this fact with this last genus. 1 have found them also in the foot of cineras, and I will remark that in the remaining spongy substance of this foot, there are other round nucleated bodies which appear to be solid concretions, and should n, t be confounded with the germs.
 2 The ovaries of the Balanodea are more difficult of study than those of the Lepadea, probably be-
 figures). The nuclear appearance is due, sometimes to a depression in the body (us wilh Istacus), sometimes to a plastic membrane lying about one of the spinous processes (as with Pilumnus), all made prominent by the refraction of the light ; see my researches in the Proceed. Boston Soc. Nat. Hist. 1V. p. 258.

 In regard to the spermatic particles of the Entomostraca, I have examined those of Cypris, Cy clops, and Daphnia. They are developed, as usual, in special cells - are exceedingly minute, and in form closely resemble those of the Arancae ; consisting of an arcuate rod to which is attached a short but very delicate tail. My results, therefore, do not agree with thoso above-mentioned.

[^206]: cause they are scattered in the walls of the mantle, and consequently scarcely visible, especially when empty. It is undoubtedly on this account that Poli (Testac. utriusq. Sicil. \&c. I. p. 19, 28, Tab. IV. fig. 13, x, x. Tab. Y. fig. 13, 15) has taken for ovaries, with a Batanus, the testicular follicles, although he distinctly saw and has figured the ovarian follicles in another species of this same genus.
 3 This canal, regarded as an oviduct by Wagnet (loc. cit.), had already been mentioned by Cuvier (Mém. loce. elt. p, t, tig. 4).
 4 With Balanis, the layers of eggs form usuadly two large discs (Poli, loc. cit. Tab. 1V. fig. 18, c. c.).

[^207]: * [§ 231, cnd.] That the Cirripedia are not universally hermaphrodites, was first diseovered by Goodsir (El. New Phil. Jour. XXXV. p. 88), upon Balanus balaenoides. The male is very small, and it is not strange that it before eluded observation.
 Darwin has made some researches, lately, with a similar result in some respects. Exceptions to the rule were found by this naturalist in the genera Ibla and Scalpellum. With rbla, the males lie within the sac of the female, and have an elongated body with a pediele below. He has also observed that, with these genera, there are both females and hermaphrodites ; and in some hermaphrodites, males have been observed so similar in general

[^208]: * [\$ 293, note 2.] Dana (Caligus, loc. cit. Amer. Jour. Sc. XXXII. p. 261, also, Report. Crust. \&c. p. 1344) has observed, with Caligus, a well-formed male apparatus. Here, the testicle (and the ovary, also, is the same) consists of a large pyriform body of an internal glandular appearance, and continuous into a duct extending the whole

[^209]: * [§ 293, note 4.] For the male genital organs of Argulus, see Leydig (loc. cit. Siebold and Kölliker's Zeitsch. II. p. 341). The testicles consist of two pouch-like organs, situatcd, one in each caudal fin; they send off, each, a vas deferens which terminates in a seminal vesicle; from this last pass off two deferent ducts which end in the common genital orifice. Just before reaching this orifice, each of these ducts is joined by another

[^210]: * [\$ 293, note 8.] For the genital organs of Cypris, see Zenker (Müller's Arch. 1850, p. 191). They closely resemble those of Cyclops. He has also described the spermatophores (Taf. V. fig. 6); they are probably the very large spermatic particles seen by Wagner as mentioned above. These observations I have recently confirmed. Wagner and Leuckart (Cyclop. Anat. and Physiol. Art. Semen, p. 496, note) must, therefore, be mistaken, when they assert the hermaphroditic nature of Cypris, and say, "We beg to direct the attention to the simultaneous appearance of egg together with the spermatozoa in the same individual ; and therefore to the hermaphroditic condition of the genitals in Cypris." It is probable that they observed only females, and if what they called such

[^211]: 19 With Astacus; see Roesel, loc. cit. Taf, LVIII. fig. 9, and Taf. LX. fig. 23; Suckow, loc. cit. Taf. X. fig. 15 ; Brandt, Mediz. Zool. II. Taf. XI. fig. 14 ; Milne Edwards, Hist. d. Crust. Pl. XII. fig. 1t; and Carus, Erlăuterungstaf. Ieft. V. Taf. III. fig. 9.
 20 Thesc spermatophores, first made known by Kolliker, are bound together, with Galathea, by ramified pedicles; and with Pagurus, by simple filaments ; see Kölliker, Beitr. zur Kemntniss d. Geschlechtsv. \&c. p. 9, tig. 21, 22, also, Schweiz. Denksch. VIII. P. 52, fig. 32-35. See, also, the description which I have given of the spermatophores of Pagurus Bernhardus, in Müller's Arch. 18 ± 2, p. 136, note 1. But one must be careful not to take, in the testicles of the Decapoda, the mothercells in which are developed the radiating cells for the spermatophores.

 21 The land crabs make an exception in this respect, their male genital orifices beiug situated on the last segment of the hody; see Milne Edwards, Hist. Nat. d. Crust. I. p. 168, Pl. XVIII. fig. 6 (Gecarcinus).
 22 For Astacus, see the figures cited above; for Palinurus, Milne Edwards, Hist. d. Crust. PI. XXIII. fig. 2; and for Hippolyte, Kröyer, loc. cit. p. 27 , fig. 54 , B. f.
 ${ }_{23}$ There are two very short, and soft penises with Maïa, Pisa, Cancer, Grapsus, Lupea, Gecarcinus, Porcellana, Homola, \&c. They are long, hard, and point forwards with Dromia.
 24 The canaliculated, secondary penises may be very easily seen on the first caudal segment of Homarus, Nephrops and Astacus; see Roesel, loc. cit. Taf. LVI. ; and Carus, Ertauterungstaf. Heft.
 V. Taf. III. fig. 12 (Astacus). In this last genus, thesc organs are slightly spiral at their extremity. These penises are long, secondary, and concealed under the tail with the male Brachyura and Auomura, with which the majority of the other anal feet are wantiug ; see Milne Edwards, IIist. d. Crust. I. p. 169, 11. III. fig. 6, 15, 16 (Maïa); iu this genus the two pairs of anal feet are rudimentary. This abortion is observed, also, with Grapsus, Cancer, Lupea, Ocypoda, Porcellana, \&c. See the beautiful figures of Savigny, in Descript. de l'Egypte, Crust. PI. II.-VII., and Cavolini, loc. cit. Taf. II. fig. 10 (Grapsus). With Dromia, the two feet of the second caudal segment have the form of two long spines. With Homola, the same feet are equally pedicellated, but terminate with a kind of sucker, and, therefore, are undouhtedly auxiliary in the act of copulation. No auxiliary organs have been found with Galathea, Palinurus, and Scyllaris; but in the last two of these gencra the feet of thic first caudal segment are wholly wanting. With the Caridoidae, the copulatory organs are usually absent, and the first pair of anal feet does not differ from the others; with Crangon, only, have I found the internal prolongation of these fect highly developed and glabrous; while with the posterior feet, it is very small, and, like the external one, very hairy. According to Joly (loc. cit. P. 43, Pl. III. fig. 20), it is somewhat similar with Caridina. Kröyer (loc. cit. P. 27, Pl. II. fig. 54, B. g.) has ohserved, with Hippolyte, between the feet of the fourth pair, two short hooked appendages which may be regarded as sccondary penises.

[^212]: * [8294, note 3.] For many highly-interesting details on tbe economy of the Entomostraca, sce Baird (Britisb Entomostr. \&c. loc. cit. passim). These details witb their corresponding figures will render clear many obscure economical points alluded to above. For the embryology of Argulus, Artemia and Branchipus, see Leydig, loc. cit. Siebold and Kölliker's Zeitscbrift, II. p. 344, and III. p. 30t. Tbe descriptions of tbis observer are quite rich in details upon the successive appear-

[^213]: * [$\S 295$.$] For a detail of the data which fully Stellung der Tardigraden, in Siebold and Kölliker's$ justify this position of the Tardigrada, see Kauf- Zeitsch. III. 1851, p. 220. - Ed. mann, Ueber die Entwickelung und systematische

[^214]: 1 For example, with the Scorpionidae and Phrynidae. The cutaneous envelope is hardest and most fragile with the Oribatea, where it breaks like glass from the lightest pressure.
 2 For example, with Ixodes, and Argas, as also with the parasitic larvae of certain IIydrachnea and Trombidina, known under the names of Achlysia and Leptus.
 8 Lassaigne, Compt. rend. XVI. 1843, No. 19, or Froriep's neue Not. XXVII. p. 8, and Schmidt, Zur vergleich. Physiol. p. 47.
 4 This solidity of the skin with the Tardigrada, is one evidence that these animals are more properly classed with the Arachnoidae, instead of with the worms whose skin contains co chitine and is, therefore, quickly dissolved in caustic potass.* See the analyses of the skin of the earth-worm by Las-

[^215]: 4 This plate, already recognized by Lyonet (loc. cit. p. 405, Pl. XXI. fig. 26), and by Treviranus (Bau d. Arach. Taf. II. fig. 23), has been described morc exactly by Wasmann (loc. cit. p. 2, fig. 2-4). A similar, but rudimentary plate, exists, perhaps, with Phatangium, and, as it lies under the ventral cord, the muscles have the appearance of rising from this last; see Tulk, loc. cit. p. 325, or in Froriep's neue Notiz. XXX. p. 136.
 1 The Tardigrada form an exception in this respect, their muscles being smooth; see Doyere, loc. cit. p. 336.
 2 For the disposition and arrangement of the muscular system of Scorpionidae and Araneae, see

[^216]: Meckel, Syst. d. vergleich. Anat. III. p. 47 ; and for the muscles of Phalangium and Mygale, see Tulk, and Wasmann, loc. cit. The very complicated muscular system of the Tardigrada is quite apparent from the transparency of these animals; see Doyere, loc. cit. p. 335 , Pl. XVII.-XIX.

 3 'This cutaneous layer, already observed by Treviranus (Verm. Schrift. I. p. 9, Taf. I. fig. 3, a. n.), and by Brandt (Hediz. Zool. I. p. 88, Taf. XV. fig. 8, a. a., or Aun. d. Sc. Nat. XTII. p. 180, Pl. IV. fig. 1, a. a.), with Epeira, has been confimed by Tulk (loc. cit. p. 154) with Phalangium, and described in more detail by Hrasmann (loe. cit. p. 8, fig. 7, 8) with Mygale.

[^217]: 4 For these muscles, the cutaneous insertions of which, with the Araneae, with Chelifer and Phalangium, have been taken by Treviranus (Bau d. Arach. p. 23, Taf. II. fig. 17-19, Taf. III. fig. 28 , and Verm. Schrift. 1. p. 18, 33, Taf. 1I.) for the stigmata, see Brandt, Mediz. Zool. loc. cit. p. 88, Taf. XV. fig. 8, c. c., and Ann. d. Sc. Nat. loc. cit., and Wusmann, loc. cit. p. 3. fig. 1, 6, 24.

 1 See Dugis, Ann. d. Sc. Nat. I. p. 7, and Erichson, Entomogr. Heft. 1. p. 7.

 2 Host usuany there are two nails to each foot; bnt Phalangium, Hoplophora, and Damaeus, have only one; while Segestria, Lachesis, and Clotho, as well as Demodex, Pelops, Zetes, and Oribates, have three, and Emydium and Macrobiotus have even four.

 3 see the figures of Savigny, loc. cit.
 4 The articulations are few and indistinct with

[^218]: all the eight legs of Tyroglyphus and Gilyciphagus, but with the anterior legs, only, with Sarcoptes. The posterior tegs of this last genus, and ant of them with the Tardigrada, and with Demodex folliculorum, are only simple stumps.
 ${ }^{5}$ For example, with Ixodes, Argas, Dermanyssus, Pteroptus, \&c.
 6 With Sarcoptes ovis and cati, this arolium is absent with the penultimate pair of legs; and with Sarcoptes equi, with the last pair. With Sarcoptes cynotis, rupicaprae, and scabiei, it is wanting with the last two pairs. With Sarcoptes hippopodes, Glycyphagus prunorum, and Melichares agilis, all the legs have long pedunculated organs of this kind; see Hering, Die Krätzmilben der Thiere, in the Nov. Act. Nat. Cur. XVILI. part II. Tab. XLII1,-XLV.

[^219]: 1 Hannover, loc. eit. p. 71, Pl. VI. fig. 83, 84.
 2 See § 271 , and Newport, Philos. Trans. 1843,

 ## loc. cit.

 1 With many small Acarina, particularly Sarcoptes and Demodex, no traces of a nervous system have been found, notwithstanding the most careful researches; but this is not surprising, considering the minuteness of these animals.
 2 Treviranus (Verm. Schrift. I. p. 47, fig. 32) has investigated the nervous system of Trombidium, and the results lie obtaned have been

[^220]: confirmed with this genus and with Limnochares, by Dujardin (Ann. d. Sc. Nat. III. P. I9). Subsequently, Treviranus (Zeitsch. f. Physiol. loc.
 cit. p. 189, Taf. XVI. fig. 7. c.) has also con-
 firmed, with Ixodes, this passage of the resopharus firmed, with Ixodes, this passage of the esophagus through the principal ganglionic mass. With Trombidium, whose ganglion is somewhat reddish, the cerebral commissure is quite distinct.
 3 See Doyere, loc. cit. p. 343, Pl. XYLi. (Milnesium).

[^221]: 8 The nervous system had already been partially described by Treviranus (Verm. Schrift. 1. p. 38, Taf. IV. fig. 24) ; but especially, and with full details, by Tulk, loc. cit. p. $32 \pm$, Pl. V. fig. 31.
 9 For the nervous system of the Scorpionidae, see Treviranus (Bau. d. Arach. p. 14, Taf. 1. fig. 13, and Zeitschrift f. Physiol. IV. p. 89, Taf. VI. fig. 1-3, and Muller, loc. cit. p. 60, Taf. 1. fig. 5, 7) ; but especially Newport's excellent description (Philos. Trans. 1843, p. 260, P1. XII.); he has traced, with indroctonus, the nerves of the extremities even into the tarsal articles and terminal hooks.*

[^222]: 1 This Nervus sympathicus recurrens was discovered by Brandt, with Epeira; see Mediz. Zool. II. p, 90, Taf. XV. fig. 4, d., and fig. 6, c., or in the Isis, 1831, p. 1105, Taf. VII. fig. 6, b., and Bemerk. üb. d. Mundmagennerven, loc. cit. p. 15, or Ann. d. Sc. Nat. V. p. 94, and XIII. p. 185, Pi. IV. fig. 2, c. This same nerve has been refound by Grube (loc. cit. p. 302), with other indigenous Araneae. With Mygale, according to Duges (Aun. d. Sc. Nat. VI. p. 175), there are, instead of two simple filaments, two lateral ganglionic net-works, from the brain to the stomach.
 2 See Newport, loc. cit.*
 3 See Treviranus, Verm. Schrift. I. p. 38, Tad.
 IV. fig. 24, and Tulk, loc. cit. p. 325, Pl. V, fig. 31, 33.
 4 This ganglion has been observed by Treviranus (Bau d. Arach. p. 45, Taf. V. fig. 45), with the indigenous Araneae, and by Duges (Ann. d. Sc. Nat. VI. p. 175), with Mygale. According to Brandt (Mediz. Zool. II. Taf. XV. fig. 3, and Amı. d. Sc. Nat. XIII. p. 185, Pl. IV. fig. 4), this ganglion is wanting with Epeira, and Treviranus (Zeitsch. f. Physiol. IV. p. 95), has vainly sought for it in a Brazilian spider. Blanchard (loc. cit. p. 1384), has found it with Galeodes, and Van der Hocven (Tijdsch. X. p. 370), with Thelyphonus.

[^223]: See 8306. Latreille (Regne anim. IV. 1829, p. 207), has regarded these mandibles as transformed antennae, but usually they have bcen considered as the first pair of maxillae. This view of Latreille is the correct one, since the nerves of those organs do not arise from the abdominal ganglia, but directly from the brain, as those of the antennae of Crustacea and Insecta.

 2 These palpi are wanting with Pycnogonum, Phoxichilus, Phoxichilidium and Pallene; ee Savigny, Mem. loc. cit. I. Pl. V. fig. 3; Johns ton, Mas. of Zool. and Bot. I. Pl. XiII. fig. 1-8; Milne Edwards, 1 list. Nat. d. Crust. Pl. XLI. fig. 6. With the scorpionidae, as well as with

[^224]: Obisium, Chelifer, Phrynus, and Thelyphonus, the palpi are forficulate, and are used as prehensile organs.
 ${ }_{3}$ See Treviranus, Zeitsch. f. Phys. IV. p. 94, Taf. VI. fig. 4, No. 4 (a Brazilian spider), and Doyere, loc. cit. p. 349, Pl. XVII. fig. 1, a. a. (Milnesium).
 1 According to analogy, the sense of taste, with
 the Arachnoidae, is seated probably at the entrance of the œesophagus.
 1 The eyes are wanting with Demodex, Sarcoptes, Pteroptus, Dermanyssus, Gamasus, Thyroglyphus, Glycyphagus, Acarus, Argas, Ixodes, de. Milnesiam).

[^225]: 2 For the structure of the eyes of Arachnoidae, see Soemmering, De ocul. hom animal. sect. horizont. p. 74, Tab. IM.; and Gaede, Nov. Act. Nat. Cur. XI. p. 338 (Mygale) ; but especially Müller, Zur. vergleich. Physiol. d. Gesicht-sinn. p. 316, Taf. VII. fig. 8-11, or Ann. d. Sc. Nat. XVII. 1829, p. 234, Pl. XII. fig. 1-4 (Androctonus and Galeodes). Brants (Tijds. \&c. V., or Ann. d. Sc. Nat. IX. 1838, p. 308) has confirmed Muller's ooservations for the eyes of Buthus and Mygale; but he observed, also, tubes situated behind the vitreous hody, and analogous to those of the eyes of Crustacea and Insecta. Muller, however (Avch. 1838, p. 139), has been uaable to find them, but he observed that the fibres of the optic nerve, after having entered the eye, are separated by the long filamentoid pigment bodies; and he adds, that these fibres should not be confounded with the vitreous cones of the faceted eyes, the first becoming opaque in alcohol, while the second preserve their transparency.
 ${ }_{3}$ These pedunculated eyes, already figured by Degeer (loc. cit. p. 57, Taf. VIII. fig. 15, y. y.), have been described by Hermann (loc. cit. p. 19, Pl. lir. fig. E. G.), as Qculi inferi; see, also, 'rtciranus, Verm. Schrift. I. p. 49, fig. 31, 33, 34, o. o.

 4 With Bdella, the eyes are wholly lateral. With the Hydrachnea, above named, they are united

[^226]: 9 Duges, Ann. d. Sc. Nat. VI. p. 175.
 10 Treviranus, Zeitsch. f. Physiol. IV, p. 92 Taf. VI. fig. 3 ; and Muller, Zur vergleich. Physiol. \&c. p. 321, Taf.' VII. fig. 10, or Ann. d. Sc. Nat. XVII. p. 238, Pl. XVII, fig. 3.

 11 Quatrefages, loc. cit. p. 77, Pl. I. fig. $1^{1 \text { a., }}$ $2{ }^{3}$.

 I See Doyere, loc. cit. p. 319, Pl. XIII.-X V.

[^227]: 2 For the cheliceres of the Acarina, see the descriptions and figures of Hermann, Duges, and Dujardin, (loc. cit.). These organs are furficulate with the Acarea, Gamasea and Bdellea; see $D u$ jardin, Observ. uu Microse. Pl. XVII. fig. 10, 11 (Icarus). They are unguiculate with Trombidium, Erythraeus, Smaridia, Atax, and Eylaïs; see Treviranus, Verm. Schrilt. I. Taf. V. fig. 29 (Trombidium). 'Ihey are styliform with the $I x$ odes, Tetranychus, Rhyncholophus, Rhaphignathus, and Hydrachna. The frontal prolungation is regarded by some authors as an under lip. It is found with Dermanyssus and Rhaphignathus; while, with fxodes, it belongs to the chin, and thus forms an under lip. With Smaridia, and Sarcoptes, the cheliceres are encompassed by a kind of tube; see Dujardin (Observat. \&c. Pl. XVII. flg. 1-1 (Sarcoptes). With Ixodes, the cheliceres are cultrate and denticulatc ou their external borders; see Saviguy, Descript. de l'Egypte, Pl. IX. and dudouin, Ann. d. Sc. Nat. XXV. Pl. XIV. The brevity and inequality of these organs, as noticed by Audouin with Ixodes erinacei, were due to the circumstance that they were imperfectly and unequally protruded from their sheath.
 ${ }_{3}$ This classification of the palpi belongs to Duges; see Ann. d. Sc. Nat. I. p. 11.

[^228]: 9 See $\$ 315$.
 10 See Treviranus, Bau d. Arach. Taf. II. fig. 14-16, r., and Brandt, Mediz. Zool. II. Taf. XV. fig. $9,18, b$.
 ${ }_{11}$ With the Araneae, and Scorpionidae, the entrance of the mouth has a tumid, pilose upper lip. With the Opilionina, there are several such tumefactions, but with the Pycnogonidae, the oral orifice is prolonged, snout-like, between the maxillse.
 12 See Lyonet, loc: cit. p. 401, Pl. XX1. fig. 4, 5, and Duges, Ann. d. Sc. Nat. V1. p. 178.

 13 With the Acarina, Pycnogonidae, and Araneae. Quatrefages (Compt. rend. XIX. 1844, p. 1152) thinks he has observed a ciliated epithelium in the

[^229]: 9 With the Scorpionidae, the anus is situated on the penultimate caudal segment.
 1 See Doydre, loc. cit. p. 321, Pl. XIII.-XV.
 2 I have seen these glandular tubes with Hoplophora, Zetes, and Oribates.
 ${ }_{3}$ The salivary glands of Ixodes ricinus resemble exactly the botryoidal ones of many of the Insecta.
 The secretory vesicles of the saliva are filled with transparent nucleated cells and surrounded by numerous ramified tracheae with which it is impossible to confound the excretory ducts of these glands; for with these last the spiral turns of thin filament are very wide apart, while, in the tracheae, the spiral windings are very close together.
 4 This glandular apparatus has been seen by Wasmann (loc. cit. p. 8, fig. 16) with Mygale ; 1 have found it also with other Araneae.

[^230]: 5 See Müller, loc. cit. p. 52, and Arwport, Philosopl. Trans. 1843, Pl. XV. fig. 39.
 6 With the Tardigrada, Acarina, and Opilionina, at least, I have seen, distinctly, hepatic cells in the walls of the stomachic appendages. See also Doyerre, loc. cit. p. 327, PI. XV.
 7 Treviranus (Bau d. Arachnid. p. 30, 47, Taf. II. fig. 24, dd., and Taf. V. fig. 47) had already observed the communication between the liver and the digestive organs. The remaining points in the structure of this organ have been rightly estimated by Duges (Ann. d. Sc. Nat. VI. p. 179), Grube (loc. cit. p. 299), and Wasmann (loc. cit. p. 13, fig. 17, m. n., 20-22). See also Owen, Lectures, \&c., p. 258 , fig. 110 , i. i.

[^231]: 8 See Meckel, Beitr. \&c. p. 107, Taf. VII. fig. 13,15 ; this author has seen four pairs of hepatic ducts. See, also, Treveranus, Bau d. Arachn. p. 8, Taf. I. fig. 6, A. v., and Muller, loc. eit. p. 35,46 , Taf. II. fig. 22, D. D.; finally Newport, Philosoph. Trans. 1843, Pl. XIV. fig. 32.
 1 C. A. S. Schultze (in his memoir "Maerobiotus Hufelandii ") thinks he has observed bloodvessels in the Tardigrada; but neither Doyere (loc. cit. p. 310) nor I have been able to find them. For the interstitial circulation of the Pyenogonidae, see Quatrefages, loc. cit. p. 76. Van

[^232]: 1 See Tulk, loc. cit. p. 249, Pl. IV. fig. 17, II., and Treviranus, Verm. Schrift. I. p. 31, Taf. IlI. fig. 16, k., and fig. 18.*

 2 For the vascular system of the Araneae, see Meckel, in his translation of Cuvier's Leecons d'Anat. comp. Th. IV. p. 261 ; Treviranus, Bau d. Arach. p. 23, Taf. III. fig. 28-31, also his Verm. Schrift. I. p. 4, Taf. I. fig. 1; Gaede, Nov. Act. Nat. Cur. XI. p. 335, Tab. XLIV. tig. 3 (Mygale), and Brandt, Meliz. Zool. II. p. 89, Taf. XV. fig. 16, 17. See also Dugès (loc.cit. p. 181), who has been unable to find the venous system with the Araneae, but, at the same time, traced the heart even into the cephalothorax. Wasmann (loc. cit. p. 16, fig. 24), on the other hand, affirms that he has observed, with Mygate, venous trunks which entered the

 * [§ 310, note 1.] Blanchard (loc. cit. Ann. d. Sc. Nat. XII. 1849, p. 383) has extended our knowledge of the circulatory system of this family. The dorsal vessel terminates behind in a small ves. sel which runs to the extremity of the body. In front it passes into an artery of considerable size, which passes under the brain and sends off small - branches to the œesophacus. At the base of this aorta the ophthalmic artery is given off, which bifurcates behind the cyes. From this portion of the heart also pass off branches to the stounach. This naturalist declares the existence here of his peritrachean system, which, together with the heart, he says he has injected through the lacunae. Ed.

[^233]: 4 This supra-spinal artery had been seen, it would appear, by Müller (loc. cit. p. 62, Taf. I. fig. $5, \mathrm{r} . \mathrm{r}$.$) , but he took it for a ligament.$
 ${ }_{5}$ According to Newport, this visceral artery, which is simple with Androctonus, is divided into two trunks with Buthus.
 ${ }^{6}$ Newport speaks in his memoir of various anastomoses occurring between the arteries and veins with Scorpio. But, as he nowhere describes pre-

[^234]: 1 See Doyere, loc. cit. p. 316.
 2 See Quatrefages, loc. cit. p. 76.
 3 Demodex, Sarcoptes, Acarus, \&c.
 1 With Trombidium, there arise two simple and very distinct trachean tufts from the two stigmata situated behind the second pair of legs (Treviranus, Verm. Schrift. I. p. 47, Taf. VI. fig. 32, t. t.). These tracheae do not proceed directly from the stigmata, but from two large, short trunks unobserved by Treviranus.

 With Gamasus, and Uropoda, there are given off, from the two ramified trachean tufts, two unbranched tracheae which, remaining of the same size, describe a slightly arcuate course along the lateral borders of the cephalothorax and terminate in caeca at the base of the parts of the mouth. The two lateral stigmata of Ixodes have been described by Lyonet (loc. cit. p. 288, Pl. XIV. fig. 3, 5), Treviranus (Zeitsch. f. Physiol. IV. p. 187, Taf. XV. fig. 2, f. f.), and Audouin (Ann. d. Sc. Nat. XXV. p. 419, Pl. XIV. fig. 2, q. r. s.). For the

[^235]: tracheae of the Acarina, see, moreover, Dujardin (Ann. d. Sc. Nat. 1II. p. 16, or Compt. rend. loc. cit. p. 1160). It will be difficult, 1 think, to prove the assertion of Dujardin, that, with these animals, the trachean system serves exclusively for the act of expiration, inspiration being performed wholly by the skin.

 2 Dugès (Traité d. Physiol. 11. p. 549) is certainly right in placing the tracheae of the Mydrachnea in the cutegory of Branchiae tracheales, which are so widely spread with the aquatic larvae of Insecta (see below).
 3 According to Audouin (Ann. d. Sc. Nat. XXVII. 1832, p. 62), the tracheae of Obisium are ramified, a statement which I have been unable to verify. It has already been stated that the scarlike fossae on the abdomen of Chelifer have been erroneously taken for stigmata (§ 298, note 4). The tracheae of the Pseuloscorpii are so easily seen by the microscope that it is incomprehensible how anatomists should have remained so long

[^236]: 1 These organs, with which no motions have heen discovered, have been called Branchiae by many Zootomists. But the name of Lungs is very appropriate since the respiration is aerial and not aquatic.
 2 For the lungs of the Scorpionidae, see Meckel, Translat. of Lecons d. Anat. comp, of Cuvier, Th. IV. p. 291 ; Treviranus, Bau d. Arach. p. 7, Taf. I., and Beobacht, aus d. Physiol. p. 25, fig. 40-42; Müller, Isis, 1828, p. 708, Taf. X. fig. 1-3, and in Meckel's Arch. loc. cit. p. 39, Taf. II. fig. 11-13. Müller has very correctly, and in the above-mentioned manner, understood this respiratory apparatus, while, on the other hand, Treviranus and other anatomists, think that the air, instead of entering between the leaves of the pulmonary lamellae, passes over their external surface, and that the blood penetrates between the two plates composing the leaves. Newport (Philos. Trans-
 ker's Zeitsch. 1849, I. p. 246) who, contrary to Blanchard, advances the view that these organs are only a form of tracheae, infra-formed, and which are without the spiral filament, because their simple, unbranched condition does not require, like the ramose tracheae, a spring-like structure, to prevent them from collapsing. This

[^237]: 1 I have discovered without trouble, these canals with the Ilydrachnea, Gamasea, Tromhidina, and Ixodea, Treviranus (Zeitsch. f. Plyysiol. IV. p. 189, Taf. XVI. fig. 8, n. n.) had already ohserved their insertion into the cloaca with $I x$ odes. With Ixodes ricinus, where they are simple and flexuous, 1 have seen them ascend even to the anterior extremity of the cephalothorax ; this is entircly so with Ixodes americanus. The canals, which with Nigua, Treviranus (loc. cit. fig. 7, g. g.) has regarded as salivary organs, are certainly only the anterior extremities of the urinary vessels. The two species of Ixodes just mentioned have their cloaca filled with a white urine.
 2 See Treviranus, Verm. Schrift. I. p. 31, Taf. III. fig. 16, 17. Tulk (loc. cit. p. 249, P1. IV. fig. 17) who has been unahle to trace these canals to their poiuts of insertion on the intestine, has taken a portion of them for salivary organs.

[^238]: 1 The two poison-glands of the Trombidium holoscriceum, and Rhyncholophus phalangiozdes, have the form of a ring with a small opening, Treviranus (Verm. Schrift. I. p. 48, Taf. VI. tig. 3t) has described only very imperfectly these glands with the first mentioned of these animals; and not having seen their excretory ducts, he took them for salivary glands. Dugès (Ann. d. Sc. Nat. IIf. p. 10), on the contrary, perceived their true relation to the cheliceres.
 ${ }^{2}$ It is remarkable that these muscular fasciculi present such different histological characters. I have seen them distiactly striated with Lycosa, Drassus, Tegenaria and Micryphantes. They are smooth with Epeira, Thomisus, Clubion' and Mygale; with Salticus, they present obscure transverse lines, so that I am undecided whether they belong to the first or to the second of these categories.
 3 With Mygale, these glands are entirely concealed in the basilar article of the cheliceres
 ${ }^{4}$ Treviranus, Bau d, Arachn. p. 31, Taf. II. fig. 21,22 ; Lyonet, loc. cit. p. 397, P1. XX. fig.

[^239]: 8 Mygale has only this one kind of glands ; they form four gronps, situated immediately at the base of the spinnerets.
 9 The spinnerets and terminal tubes have already been very exactly figured by Leeuwenhoek (loc. cit. p. 326, fig. 5, 6), and by Roeset (loc. cit. Taf. XXXVIII. fig. 4). See also Lyonet, loc. cit. p. 387 , Pl. XIX. fig. 6-12 ; Wasmann, loe. cit. p. 20, tik. 31-34, aud \boldsymbol{H}. Meckel, loc. cit. p. 54, Taf. III. fig. 43-45.

 10 There are more than a thousand of these tubes on the spinnerets of Epeira; with Tcgenaria, there are about four hundred; with Clubiona and Lycosa, threc hundred; with Segestria, one hundred, and their number is even less with the smatl spiders; sce Blackwell, Transact. of the Linn. Soc. XVIFI. 1841, p. 219, and Ann. of Nat. Hist. XV. p. 221, and Menge, loc. cit. p. 24.

 11 This pair of accessory spinnercts is foumd, ac-

[^240]: 14 According to Duges (Ann. d. Sc. Nat. I. p 70), Hydrachna cruenta, adult, before moulting, bores into aquatic plants by means of its oral organs. But I have seen it fixed, also, upou smooth glass walls, with tbe parts of its mouth enveloped in a kind of cement.
 1 The eggs are oval with the Oribatea and Scorpionidae.
 2 The germinative dot is simple and flattened witb Scorpio, Thomisus, Theridion, Micryphantes, Lycosa, Phalangium, Obisium, Trombidium, Hydrachna, Ixodes, Oribates, Bdella, ,dc. It is composed of a group of granules with Epeira,

[^241]: 1 For the genital organs of the Tardigrada, see Doyère, loc. cit. p. 350, Pl. XIII. XIV. XYI. Goeze (Bonnet, Abhandl. aus d. Insekt. 1773, p. 374), and O. F. Müller (in Fuesslu, Arch. d. Insektenkunde, Hft. VI. p. 27, Taf. XXXVI. fig. 4, 5) had already obscrved that the Tardigrada deposit their eggs in their cutaneous envelope.*

 1 With the Gamasea, and Ixodea, the vulva is situated on the thorax; while, with the Trombidina, Bdella, Ilydrachnea, and Oribatea, it is upon the belly; see Treviranus, Verm. Schrift. Taf. V. (Hydrachna and Trombidium); Audouin, Ann.d. Sc. Nat. XXV. Pl. XIV.; J. Muller, Nov. Act. Nat. Cur. XV. Tab. LXVII.; and Treviranus, Zeitsch. f. Physiol. IV. Taf. XVI. fig. 2 (Ixodes). For the ovaries and oviducts of the Acarina, we have only the works of Treviranus, Verm. Schrift. I. p. 47 Taf VI. fig. 32 E. q. (Trombidium), and Zeitsch.f. Physiol. IV. p. 190, Taf. XVI. fig. $7,8,10, \lambda \cdot \lambda$. (Ixodes). I have observed with Ixodes ricinus the following peculiarities, which were probably uverlooked by Treviranus with Ixodes americanus. The two long ovaries anastomose arcuately at the posterior extremity of the ahdomen. The two oviducts, here given off, open right and left into a pyriform uterus whose neck communicates laterally with a large caccum coming from the vulva. This caecum is divided hy a septum into a posterior, or larger, and an antcrior, or smaller, portion. The first receives the sperm which flows from the second during copulation, and thence passes into the uterus and even into the oviducts. The anterior portion represents the vagina properly speaking, and is in communi-

[^242]: * [§ 317, note 1.] See also Kaufmann (loc. cit. in Siebold and Kölliker's Zeitsch. ILI. 1851, p. 220), who has studied the development of the

[^243]: 3 For example, Eylais, Limnochares, and Diplodontus.
 4 Sec Johnston, Magaz. of Zool. I. p. 370 PI. XIII.; Milne Edwards, 1Iist. Nat. d. Crust. Pl. XLI. fig. 7 ; and Philippi, in Wiegmann's Arch. 1843, I. p. 177, Taf. IX. With Phoxichilidium, the two ouphores are only five articled.
 ${ }^{5}$ See Treviranus, Verm. Schrift. I. p. 34, Taf. If. fig. 20, 23 ; atso Tulk, loc. cit. p. 318, Pl. V. tig. 26-29.
 6 Treviranus (Ban d. Arachn. p. 37, Taf. IV. fig. 32) has figured very correctly the ovaries and their ovilucts. 1Ie has even seen the Receptacula seminis, but he mistook them for cartilaginons bodics (1bid. p. 38, Taf. II. fig. 20, o. and Taf. IV. fig. 40, 0. 41). The anatomists who succeeded him

[^244]: 5 See Kröyer, Naturhist. Tids. III. 1840, p. 299, or 1sis, 1841, p. 713, Taf. III. Tab. III. or Ann. d. Sc. Nat. XVIL. p. 288, Pl. XIII. B. 6 See Doydre, loc. cit. p. 35s. The embryos of the other Tardigrada have four pairs of legs.
 7 Sec Dures, Ann. d. Sc. Nat. I. p. 166, Pl. XI. fig. 47. It follows clearly from the position of the eyes, which are situated not upon this snout, but upon the cephalothorax, that this snout is only a support of the parts of the mouth, and not a head.
 ${ }^{8}$ Sce Audouin, Mém.sur l'Acalysie iu the Mem de la Soc. d'1Hist. Nat. de Paris, I. p. 98, Pl. V.No. 2). He

[^245]: and Wiegmann's Arch. 1850, p. 253 ; Schultze, Beitr. zur Naturgesch. d. Turbellarien, p. 33; and Leuckart, Morphol. der wirbellosen Thiere, p. 49, in Sicbold and Kölliker's Zeitsch. 1851, p. 192, and in Wiegmann's Arch. 1852, p. 22. -ED.

[^246]: ${ }^{3}$ This covering has a velvcty aspect with the Lepiloptera, Anthracidae, and Bombylidae; it is scaly on the bodies of many of the Curculionitae, Mclolonthidae, Clavicornes, Lepismidae, Poduridae and on the wings of the Culicidae, and Lepidoptera. It has always excited the attention of naturalists, who have figured it in their works. See also Reumur, and Degeer, loc. cit., also Lyonet, Mém. du Muséum, XX. p. 82, Pl. VI.-XI. ; Ber-nard-Deschamps, Ann. d. Sc. Nat. III. 1835, l'l.以I. IV. ; Ratzeburg, Die Forstinsekt. II. Taf. I.;

[^247]: 12 For the flipht of Insecta, see Straus, Considér. \&c. p. 200 ; but especially the extensive work, illustrated with many figures, of chabrier, Mém. du Muséum, Vi.-VIIE.

 13 See Nicolet, loc. cit. p. 39, P1. ILI. ; and my Beitrag. zur Naturg. d. wirbell. Thiere. p. 84, Taf. III. fig. 70. This fork is wanting in the genera Achorutes acd Anurophorus, as well as with the larvae of Stylops among the Strepsiptera.
 1 Some Insecta produce sounds by striking or rubhing certain parts of their cutaneous skeleton against the body. The males of Mycterus curculooides knock with such violence the extremity of their body against the boughs on which they have alighted, that they produce a pretty loud sound, designed, probably, to call the fermales.

 The larvae of Vespa crabro, when hungry, scratch the walls of their cells with the point of their jaws, and thus call the attention of the parents to their condition.

 2 The buzzing of these Insecta has been attempted to be explained in various ways. At all events, it cannot be due alone to the movements

[^248]: * [\$327, notc 3.] Haldeman (Silliman's Jour May, 1848) states that Lithosia miniata, Kirby, or an allied speeies, produces au andible stridulation by vibrating the pleura beneath the wings, this part being marked in recent specimens by par: illel lines, apparently indicating the position of the museles. According to him, it is possible that the

[^249]: 1 It was undoubtedly from their extreme delicateness that these ganglionic globules were overlooked by Treviranus (Beitràg. zur Aufklar. d. Erscheinung. u. Gesetze d. organisch. Lebens. I. 1Ift. 2, p. 62). They have been distinctly seen by Ehrenberg (Unerk. Struct. \&c. p. 56, Taf. VI. fig. 6 (Geotrupes)), Pappenheim (Die specielle Gewebelehre d. Gehörorg. p. 51), Helmholtz (De fabric. Syst. nat. \&c. p. 21), II annover (Recherch. microscop. \&c. p. 71, Pl. VI. fig. 81, 82 (Aeschna)) and Will (Muller's Arch. 184t, p. 81).

 2 This difference of the nervous cords was first pointed out by Newport with the pupa and imago of Sphinx ligustri (Philos. Trans. 1834, part II.

[^250]: p. 389 , PI. XIII.-XVII. and Cyclopaed. loc. cit. p. 946). Hagen (Entom. Zeit. 1844, 1. 364) has since observed it with Acschna grandis and Gryllotalpa vulgaris.
 1 Various and special accounts of the general disposition of the nervous system of insects may be found in Cuvier, Lecons, \&c., III. 1845, p. 334.
 ${ }_{2}$ Swammerdamm, Bib. der Natur. p. 36, Taf. II. fig. 7.
 ${ }_{3}$ Nicolet, loc. cit. p. 44, PI. IV. fig. 1 (Smynthurus).

 4 Treviranus, Verm. Schrift. II. IIft. 1, p. 17, Taf. IV. fig. 3.

[^251]: * [§ 330, note 17.] See also for a description and figures of the nervous system of Spectrum

[^252]: 1 For the Splanchnic nervous system of the Insecta, of which Swammerdamm had already observed the recurrent nerve, see, beside the general works of Burmeister (Handb. \&c. I. p. 308), and Lacordaire (Introduct. \&c. II. p. 214), especially J. Miller, Nov. Act. Acad. Nat. Cur. Xiv. 1828, p. 73 ; Brandt (Isis, 1831, p. 1103, also his Bemerk. über die Mundmagen-oder Eingeweidenerven d. Evertelr. 1835, p. 16, or Ann. d. Sc. Nat. V. 1836, p. 95), and Newport, Cyclop. \&c. loc. cit. II. p. 957).
 2 Meckel (Beitr. zur vergleich. Anat. I. p. 4) has observed the Nervus recurrens in the common Cicada, and Brandt (Bemerk. \&c. p. 23, Taf. II. fig. 1, 2) has observed the same with Lygacus, and at the same time the ganglia of the double system.
 3See L. Dvfour, Ann.d. Sc. Nat. 1II. 1845, p. 67.
 4 The recurrent nerve was first discovered in the silk-worm by Suammerdamm (Bib. der Nat. p. 132, Taf. XXVIII. fig. 3, क.). Subsequently, Lyonet (Traité, \&c., p. 577, Pl. X1I. fig. 1, Pl. XIII. fig. 1, Pl. XVI. fig. 14, Pl. XVIII. fig. 1) described with the larva of the Goat-moth, the double system and its relations with the dorsal vessel. Since then, the two systems have been observed i:s the larvae, pupae, and imagines of various Lepidoptera; see Suckou (Anatom. physiol. Untersuch. 40, Taf. VIL. fig. 33-38, (pupa and imago of Gastropacha pini), who has described the double system and the cardiac nerve. See, also, J. Müller (Nov. Act. Nat. Cur. loc. cit. p. 97 (the recurrent nerve of a larva of Sphinx)), and Brandt (lsis, luc. cit. p. 1104, Taf. VII. fig. 3, 4, and Bcmerk. \&c. p. 20), who has described the two sys-

[^253]: plete ; see Brandt, Bemerik. \&c. p. 27, Taf, III. fig. 1-5, and J. Müller, Nov. Act. Nat. Cur. loc. cit. p. 85, Tab. VIII. fig. 1, 3. These two anatomists have given, moreover, details with figures on the splanchnic uerves of Libellula, Blatta, Mantis and Gryllus.
 7 Swammerdamm (Bib. der Nat. p. 132, Taf. XXV1II. fig. 2) has observed the Nervus recurrens in the larva of Oryctes nasicornis. Muller (Nov. Act. Nat. Cur. loc. cit. p. 94, Tab. VII. fig. 4,5) has figured it with Lucanus and Dytiscus. Straus (Consid. \&c. p. 406, 391, Pl, 1X.) has observed with Melolontha, not only the single nerve, but also the double system which, however, he mistook for the accessory ganglia of the brain Brandt (Mediz. Zool. II. p. 103, 118, Taf. XVII. fig. 3, 4, Taf. X1X. fig. 20) was the first to understand the true nature of this system with Meloë and Lytta. See, moreover, Burmeister (Handb. \&c. Taf. XV1. fig. 8 (a larva of Calosoma)), Newport (Philos. Trans. 1834, Pl. XI1I. tig. 4, 5 (imago and arva of Timarcha tenebriosa), and Cyclopaed. \&c. fig. 405, 412, 416-418 (Timarcha, Meloë and Lucanus)) ; also Schiödte, in Kröyer's Naturh. Tidskrift. 1 V. p. 104, Pl. 1. Acilius.

 8 Although Cyonet (Traité, \&c., p. 98, 201, Pl.
 1V. fig. 5, Pl. 1X. fig. 1) had already described this respiratory system with the larva of the goatmoth, uuder the name of brides epinieres, it is Neuport who has recently called the attention of anatomists to this subject, by furnishing, with admirable details, the disposition of this respiratory plexus, in the larva, pupa and imago of Sphinx ligustri (Philos. Trans. 1832, Pl. XII. fig. 4, 1834, P1. X1I1. \&c., and 1836, PI. XXXVI., also Cyclopaed. loc. cit. p. 947, fig. 400). See, also, Müller's ideas (Archiv, 1835, p. 82) on the nature of this nervous system. With various Coleoptera and Orthoptera, with Locusta, Gryllotalpa, and Carabus, the single roots arise, according to Newport, from small ganglia, at the points where are given off the Nervi transversi.

 1 For the senses of the Insecta in general, beside the works of Spence and Kirby, Burmeister and Lacordaire, see Schelver's Versuch einer Naturgesch. d. Sinneswerkz. bei d. 1nsekten u. Wurmern, 1798, a work in which are related the opinions of the older naturalists on this subject.

 2 The tactile sense of the palpi is of great service to 1 nsecta when they eat; for these organs are used not only to feel the food but also to retain, and convey it between the jaws.

[^254]: 3 This may be especially observed with the Hymenoptera.
 4 As such I recollect only the Ateuchidae and Rhynchites among the Coleoptera, the fossorial Hymenoptera, and the larvae of the Phryganidae among the Neuroptera.
 5 With Smynthurus, these organs consist of two long contractile cylinders ; see Degeer, Ablandl. \&c. VII. p. 20, Taf. III. fig. 10, and Nicolet, Re-

[^255]: * [§ 334, note 1. $]$ See also Burmeister (Zeit. für Zool., Zoot., und Paláantol. von D'Alton und Burmeister, No. 5, p. 49, Taf. I. fig. 25-29), who likewise adrocates the auditory function of the
 somewhat in their statements upon the intimate auditory structure of these organs, and, therefore, as to the cxact mode by which audition occurs. Ed.

[^256]: 13 Aceording* to Muller (Arch. 1835, p. 613), these retinae are formed only by a prolongation of the neurilemina, while the proper nervous substance docs not extend beyond the extremity of the vitreous body; but Will denies this (Miller's Arch. 1843, p. 349).
 14 Eheh of these pupils, aceording to Will (MülLer's Areh. 1843, p. 350), is moved by thirty to thirty-five delieate fibres which arise on the four transparent cylinders surrounding the pyramidal lenses; but Brants (Tijdsk. voor natuurlijke gesclied. en physiologie. 184t, II.) regards them as trachean branches and not contraetile fibres.
 ${ }^{5}$ The beautiful emerald color of the eyes of many Libellulidae, Tabanidae, IIemerobidae, \&c., is due to the corneae; for the choriondeae are of the sane dead color as those of other Insecta.
 16 There are sometimes several thousands of these facets in the eyes of large size; see Muller, Zur vergleich. Physiol. d. Gesiehtssinn, \&c., p. 340 ; and Will, Beitrag. \&c. p. 10.

[^257]: holometabolic Neuroptera. This justifies the scparation we have made of the first whose pupac take food and are active, from the second whose pupae are inactive and do not eat. We have placed these last among the Orthoptera, because, like them, they have in all their states a bifid under lip. The differences between the under lip of the Orthoptera and that of the Neuroptera are well shown in Savig$n y$'s excellent figures of the buccal organs of these insects (Descript. d. l'Egypte; Orthoptères, Pl. I.VII. and Neuroptères, Pl. I.-III.

 6 See Swammerdamm, Bib. der Nat. Taf. XVII fig. 5; Treviranus, Verm. Schrift. II. IIf. 2, p. 112, Taf. XII.-XIV.; Brandt and Ratzeburg, Nediz. Zool. II. Taf. XXV. fig. 8-16; Newport, Cyclop. loc. cit. p. 897 , fig. 375,376 ; but espccially Savigny, Descript. de l'Egypte, Ilymenoptéres, Pl. I. - XX.

 7 See Savigny, Ném. sur les anim. sans verte-

[^258]: * [§ 337, note 7.] See in this connection the memoir of Blanchard (De la Composition de la bouche dans les Inscctes de l'ordre des Dipteres, in the Compt. rend. I850, XXXI. p. 424), who shows that

[^259]: 18 See Roesel, lnsektenbelust. 1II. Taf. XVII. XVII1. (Myrmeleon), I1. Insect. aquit. classis 1. Taf. I.-111. (Dytiscus) ; Ratzeburg, Forstinsekt. III. Taf. XVI. (Hemerobius). With the larva of Dytiscus, the body of the maxillae is wholly abortive, but always provided with palpi. With those of Hemerobius, the maxillae are small, deficient in palpi, and play in a groove on the concave side of the mandibles; finally, with those of Myrmeleon, these organs are wholly enclosed in the cavity of the mandibles.

 19 The maxillae are rudimentary and very soft with the Ephemeridae, and Phryganidae, in the last stages of their development. The very short

[^260]: * [§338, note 6.] See, also, Leidy, loc. cit., Fiora and Feuna within Animals, \&c., for full de-

[^261]: 18 Ramdohr, Abhandl. \&c. p. 150, Taf. XXVI. fig. 1, and L, Dufour, Recherch. Sc. p. 582, PI. XI. fig. 169.

 19 Ramdohr, Abhandl. \&c. Taf. XVI, fig. 2, Tap. XVII. fig. 2, 6; L. Dufour, Recherch. \&c. Pl. XII. XIIL. ; and Pictet, Recherch. pour servir a d'hist. et id l'anat. des Phryganides.

 The Myrmeleonidae and Hemerobidae, alone, have a spherical callous gizzard situated between the stomach and cesophagus.
 20 See Swammerdamm, Bib. der Nat. Taf. XVIII. fig. 1 ; Treviranus, Yerm. Schrift. II. Taf. XIV. XVI.; Brandt and Ratzeburg, Mediz. Zool. II. Taf. XXV. fig. 29 ; Ramdohr, loc. cit. Taf. XII.-XIV.; Suckow, loc. cit. III. Taf, VI. VII. VIII. ; finally, L. Dufour, Recherch. \&c. p. 383, Pl. V.-X.

[^262]: * [§ 338, note 23.] For the digestive apparatus with all its details of Belostoma, see Leidy,

[^263]: 21 With Chrysis, and Hedychrum, this sucking stomach consists of two lateral caeca situated at the lower end of the cesophagus; see Suckow, loc. cit. III. Taf. IX. fig. 155, and L. Dufour, loc. cit. Pl. IX. fig. $113,116$.
 ${ }^{22}$ The Apidae, Andrenidae, Vespidae, and Larridae.
 23 For the digestive apparatus of the Hemiptera, see Ramdohr, AbhandI. \&c. Taf. XX1I. XXIII. ; Suckow, loc. cit. III. Taf. VII. VIII. ; L. Dufour, Recherch, sur les Ilémiptères. p. 20, Pl. I.IX.*

 24 Notonecta, Naucoris, Velia, Lygaeus, Coreus, Pyrrhocoris, Pentatoma, Tetyra, Syromastes, \&c.

[^264]: 2 See Ramdohr, loc. cit. Taf. XXIII. fig. 3 ; Suckow, loc. cit. Taf. VII. fig. 138 ; and L. Dufour, loc. cit. Pl. VIII. or Ann. d. Sc. Nat. V. 1825, p. 157, Pl. IV. It was formerly thought that the second stomach of Cicada opened into the antestomach, but the true relation of these organs has been pointed out hy Doyère (Ann. d. Sc. Nat. XI. 1839, p. 81, PI. I.) and confirmed by L. Dufour (Ibid. XII, p. 287). The annular stomach of Dorthesia and Psylla is probably arranged in the same manner ; see L. Dufour, Recherch. \&c. loc. cit. PI. IX. fig. 108, 110.
 26 There are four rows of these glands with Pentatoma, and Tetyra, and two, only, with Syromastes, and Coreus; see Ramdohr, loc. cit. p. 189, Taf. XXII. fig. 3, $4 ;$ L. Dufour, Recherch. \&c. p. 21, Pl. I. II.
 These two authors have taken these rows of glands for transverse-plicated semi-canals. Treviranus (Annal. d. Wetterauisch. Gesellch. \&c. I. Hft. $2, \mathrm{p} .175$, Taf. V. fig. 4) is still more mistaken in taking the four rows in Pentatoma rufipes, for as many adjacent, hut distinct intestinal tubes.
 ef Coreus, Pelogonus, Ranatra, and Nepa.
 is The sucking stomach is simple with the Tipulidae, and Leptidae; it is cordate with the Tabanidae, Syrphidae, and Muscidae ; see Randohr, and suckow, lac, cit.; Treviranus, Verm. Schrift. 1I. p. 142, Taf. XVII.; and L. Dufour, Ann. d. Sc. Nat. I. 184t, p. 376, Pl. XVI. fig. 12.
 29 With the Tabanidae, these two caeca point forwards; hut with the Leptidae and Bombylidae, hackwards; and with the Syrphidae, there are four of them, varicose, two pointing forwards

[^265]: * [§ 338, note 30.] See, also, for the intimate structure of the intestinal canal and its appendages of Bombyx mori (both larva and imago), Fil-

[^266]: 31 This catcum is found with Hipparchia, Pontia, Sphinx, Gastropacha, Euprepia, Acidatia, Caftera, Adela, Chilo, and Tinea. It is wanting with Vanessa, Zysaena, Hepiolus, Cossus, Yponomeuta, and Pterophorus.

 32 See Nitzsch, in Germar's Magaz. d. Entom. I1I. p. 230 (Nirmidae) ; Nicolet, loc. cit. p. 46, Pl. IV. fig. 2 (Poluridae); Swammerdamm, Bib. der Nat. 1.33 , Taf. 1I. fig. 3 ; Ramdohr, loc. cit. p. 185, Taf. XVI. fig. 3, and Taf. XXV. fig. 4, and Treviranus, Verm. Schrift. II. p. 13, Taf. III. fig. 1-6 (Pediculus and Lepisma).
 ${ }^{23}$ Sce Suckow, in Heusinger's Zeitsch. II. Taf. I. fig. 8 (Aeschna), and Rathke, in Miller's Arch. I844, p. 35, Tat. 1I. Fig. 4 (Gryllotalpa).
 34 With the larvae of Calosoma, the stomach is stretight and without cacca (Burmeister, Trans. of the Entom. Soc. I. p. 236, Pl. XXIV. fig. 10, 11).

 With Itydrophilus piceus, and Dytiscus marginalis, it is varicose, slightly tortuous, and without caech (Suckow, in Heusinger's Zuitsch. 1I. Taf. IV. fig. 26, and Burmeister, Mandb. I. Taf. X. Fig. 3). The larvae of the Lampyridae, Pyrochroidae, Mordclidae, and Curculionidae, differ but little from the imagincs as to their digestive canal (L. Dufour, Ann. A. Se, Nat. I11. 183t, Pl. XI. fig. 7 (Lampyris); Ibid. XIII. 1840, Ph. V. fir. 5 (Pyrochroa); XIV. 1840, Pl. XI. fig. 9 (Mordella); and Burmeister, Zur Naturg.d. CaLandra, p. 8, fig. 3.) The most marked difference between the larvae and the imarines, is observed with the Lamellicoracs. The first have a very spacious,

[^267]: 18 For these biliary organs, see J. Müller, De Gland. struct. p. 67. The Malpighian vessels which were formerly regarded as biliary tubes, will be treated of in future ($\$ 346$).*
 19 See L. Dufour, Recherch. sur les Orthopt. p. 332, Pl. II. fig. 19 (Gryllotalpa), and Recherch.

[^268]: 1 Sce Réaumur, Mém. lac. cit. V. Pl. VI. fig. 7 , or Lyonet, Mém. du Mus. XIX. Pl. IX. fig. 14, 15.

 2 Sec Verdat and Fries, in Thon's Entom. Arch. II. p. 66, 69, Taf. III. One must be careful, and not confouml, as has sometimes occurred, the hairy tufts of these larvae for the tufts of tracheae.
 3 sse Degeer, Abhandl. I. Abth. III. p. 85 , Taf. XXXVII. fig. 5,6 .
 4 See Roesel, Insektenbelust. II. Insecta aquat. Class. 11. Tat. XXIII; Degeer, AbhandI. II. Taf. XXIll.; Suckow, in Heusinger's Zeitsch. II. Taf. II. fig. 23, 24 ; and Pictet, Ann. d. Sc. Nat. V. I836, Pl. IIL. During the passage into the pupa state, which occurs with Sialis out of the water, these tracheae arc cast off.
 5 See the figures of Pictet, Recherch. pour servir a l'hist. et a b'anat. d. Phrygandes, PI. II. \&c.; and Degeer, Abhand. II. Taf. XII. The brau-

[^269]: 8 Roesel, Insectenbelust. II. Insecta aquatica, Class. II. Ta\&. IX. XI.; and Carus, Entdeck. \&c. Taf. I.
 9 Roesel, loc. cit. Taf. III.-VIII. and Suckow, in Heusinger's Zeitsch. II. p. 35, Taf. I. II.

 10 Roesel, loc. cit. III. Taf. XXXI. and Degeer, Abhandl. IV. Ta\&. XIII. Further researches are required to decide if the penniform appendages, situated on the sides of the abdominal segments of certain larvac of the IIydrophilidae, are really trachean branchiae. But it appears to me that, with these larvae, the pulmonary and trachean branchiae are confounded ; see Roesel, Insectenbelust. II. Insect. aquat. Class. I. Taf. IV. and Lyonet, Mém. du Mus. XVIII. Pl. XXIII. (12), fig. 47 (Hydrophilus caraboides.)

 1 L. Dufour, Amn. d. Sc. Nat. VIII. 1826, p. 20, Pl. XXI.
 2 The Locustidae, Libellulidae, and other Orthoptera, make true movements of inspiration and expiration, by alternately dilating and contracting the abdominal segments. With the Apidae, Ves~ pidae, and other Hymenoptera, the alternate confractions and dilatations of the abdominal cavity are

[^270]: 4 In the larvac of the Lamellicornes; see Sprengel, loc. cit. Tab. I. fig. 1 (lurvac of Geotrupes). Some Capricomes present, in their perfect state, a very singular organization in this respect. Their thoracic stigmata send of not only several large trackean trunks, but also an infinite number of small branches; see Pictet, Mém. 4.1. Soc. d. phys. \&c. de Genéve, V1I., 1836, p. 303, fig. 5, 6 (IIammaticherus heros), ol Amn. d. sc. Nat. Mif. 1837, p. 63.
 5 From this arrangement, the Dytiscidze anl Gyrinidac, which live in the water, must, in order to breathe, emerge the posterior part of their body to draw fresh air under their elytra, whence it is taken into the tracheae. The Notonectidae, Mydrophilidae, Parnidae, and other aquatic Coleoptera, respire under the water by means of a provision of air which, after their immersion, adheres to the huirs of the legs. With Hydrophilus, the renewing of this air occurs in a very remarkable manner. They protrude only their antenaae out of the water, and. bending them backwards, thus establish a communication between the external air and that athering to the under surface of the bady; see Nitzsch, in Reil's Arch. II. p. 440, 'Naf. IX.
 ;Spe Roesel, Insectenbelust. III. Taf. XXII. XXIII, and L. Dufour, Recherch. sur les $1 \mathrm{E} \dot{\text { e }}$ mipt. p. $24 t$, Pl. XViI. fig. 195, Pl. XVILI. With Nepa, it is rue there are stigma-like rings on the other abdominal segments, but they are closed, and
 mata. In the young age of these inscets; these false stigmata are open and situated in two pilose grooves locatell under the belly at some distance from the lateral borders, and which are prolonget even to the end of the siphon, where they blend inte one. The air is conducted by these grooves into the stirmata.
 ${ }^{7}$ By this disposition of the sticmata, the larvae of the Dytiscidae, Culicidae and Strationy dae, are obliged, in order to breathe, to rise to the surtate of the water, where they emerge only the stigmatic orifices, and the air then adheres to the cormets of hairs on the stigmata. Many Tipulidae, such as Ptychoptera, communicate even more casily with the air by means of their long, articulated, siphontube; see Swammerdamm, Bils. der Nat. Taf. XXXI. fig. 5, Taf. XXXIX. (Culex and Stratiomys) ; Lyonet, Mém. du Mus. XIX. Pl. XVIII. (10) fig. 1-3 (Ptychoptera). The parasitic larvae of the Conopilae, and of Ocyptera of the Tachinariae, which live in the cavity of the body of Cassida, Pentatoma, Bombus and Andrena, obtain the necessary air for their respiration by placing the posterior extremity of their body, which has two stigmata, in contact with a stigma or trachean trunk of the insect in which they live : see L. Dufour, Ann. d. Sc. Nat. X. 1827, p. 235 , VII. 1837, p. 16, Pl. I. fig. 13.
 \& See Swammerdamm, loc. cit.
 ${ }^{3}$ Sec Lyonet, loc. cit. p. 4, 5.

[^271]: * [5344 , note 10.] See Newport (On the formation and use of the air-sacs and dilated tracheae in Insects, Trans. Linn. Soc. June, 1847); these eacs arc formed during the metamorphoses of the insect, and he adopts the view of Hunter, that the

[^272]: 3 With the Naucoridae, Nepidae, with Salda, Capsus and Reduvius. With Dorthesia, the four cauals form also two short loops ; see L. $D u$ four, Recherch. \&c. p. I9, Pl. I.-IX.
 4 Pentatoma, Tetyra, Pyrrhocoris, Lygaeus, Gerris, Stenocephalus.
 5 Cimex, Ploiaria, Miris, Alydus and Coreus. In the last two genera the uriniterous canals, free, terminate at the pylorus in at common reservoir. With Alydus, Aradus, Aneurus; Cixius, Issus, and Asiraca, they unite in twos in a common excretory duct. With Psylla, they consist only of four rudimentary caeca; see L. Dufour, Recherch. loc. cit.
 6 It was a long time before there was an exact idea of the canals with Cicada. Doyire (Ann. d. Sc. Nat. X1. 1839, p. 81, Pl. I.) was the first who perceived that they penetrated between the tunics of the stomach; but he supposed they reappeared on its surface after a short course. IIe did not, therefore, attribute to these insects, only two uriniferous vessels. This last error has been rectilied by L. Dufour (Ibid. XII. p. 287).
 7 See L. Dufour, Ann. d. sc. Nat. XIX. loc. cit. Pl. VIII. tig. 26 (Anopheles).

 8 With the Muscidae, Oestridae, Conopidae, Syrphidae, and Hippohoscidae. With the Stratiomydae, the four canals unite into one excretory duct; see Swammerdamm, Bib. der Nat. Taf. XLI. fig. 6 (Stratiomys) ; L. Dufour, loc. cit. Pl. VIII. fig. 20 (Sargus).

 9 Ramdohr, loc. cit. Taf, XX.
 10 With Pterophorus and Yponomeuta, Suckow has found only four uriniferous vessels (loc. cit. Taf. IX. fig. 153, 161).

 11 See L. Dufour, Recherch. sur les Orthopt. Pl. IlI.-X. The smallest number of these canals is found with the Formicidac, Cynipidae, and Ichneumonidae.

[^273]: * [8 347, note 3.] With Belostoma, the odoriferous glands consist of two pretty long caecal tubes situated in the metathorax, beueath the other viscera, and extendiag into the antcrior part of the

[^274]: * [§ 347, note 6.] For the peculiar glandular apparatus for this purpose, with Brachinus, see Karsten, in Muller's Arch. 1848, p. 367. Contrary to other Zootomists, this observer regards this apparatus as of a urinary nature, for be states that an analysis of its secretion furnishes a product analogous to urea. - Ed.

[^275]: * [§ 347, note 17.] Sce upon the subject of these secretions Dajardin (Mém. sur l'étude micros-

[^276]: 18 For the phosphorcscene of these Coleoptera, єee Carus, Analckt. \&c. p. 168 ; Burmeister, 11 andb. I. p. 534 , and Lacordaire; Introduct. \&c. II. p. 140.

 19 The intimate structure of thesc organs has been studied with Lampyris italica by Peters (Müller's Arch. 1841, p. 229), and by Morren (Isis, 1843, p. 412). This last author says that this insect contains phosphorus, but adduces no fact in support of this asscrtion.

 20 Mattcuci has made numerous experiments on the phosphoreseence of Lampyris italica; from which it appears that the phosphorescent substance burns by means of the oxygen contained in the tracheae, without any increase of the temperature, and without any indication of the presence of phosphorus ; see Matteuci, Leçons sur les phenom. phys, d. corps vivants, Paris, 1847, p. 151, and Compt. Rend. XVII. 1843, p. 309, also in Fro-
 various Insecta, among which were Dorthesia, Alaerodes, \&c. The wax consists of fibres which are perpendicular to the secreting surface, and is a true product of the integument independent of any special glandular apparatus. - En.

 * [§347, note 20.] See, also, a note by me upon the intimate structure of the phosphorescent organs in Pyrophorus phosphorus, Procced. Boston Soc. Nat. Hist. 1850, p. 290. - Ed.
 \dagger [$\delta 348$, note 1.] See, also, for cases of true hermaphroditism in the Insecta, Wing (Trans. of the Eat. Soc. London, V. p. 119) and Wesmatl (Bull. de l'Acad. d. Brux. 1849, II. p. 378). - Ed.

[^277]: 5 Kirby ant Spence (Einteitung, \&c., p. 100, Taf. XV.) have figured a great number of egegs of insects of various forms. Sce, also, Burmeister, Handb. \&c. Taf. I. and Lacordaire, Introduction, \&c., Pl. I.
 6 Sce L. Dufour, Kecherch. sur les Orthopt. fig. 123, 149 (Cynips abd Xiphydria); Hartiz, in Wiegmann's Arch. I837, I. p. 151, 'Taf. IV. (Tryphon, Paniscus, and other Ichneumonidae), and in Germar's Zeitsch. f. Entom. p. 327, Taf. I. fig. 5, 6 (Cynips).

 7 The eggs of Ranatra have two long bristles; while, with those of Nepa, these last form a coronet; see Roesel, Insektenbelust. III. Taf. XXII. XXIII., and L. Dufour, Recherch. sur les Hémipt. Pl. XY'

[^278]: 8 See Wagner, Prodromus, \&c., p. 9, Tab. II. fig. 18-22.

 9 See Wagner, Abhandl. d. physical. mathemat. Klasse. der Akad. zu Munich, II. 1837, p. 554, Taf. II. fig. 1 (Agrion), and Stein, Vergl. Anat. u. Physiol. d. Insekt. I. p. 47, Taf. IX. tig. 4, 8 (Telephorus and Acheta).

 10 Iferold was the first who observed this remarkable mode of the formation of the eggs with the Lepiloptera ; see his Disquisit. \&c. Tab. I. Gig. 11-18, or Ann. d. Sc. Nat. XII. 1839, p. I95, P1. VII. fig. 13-18. Researches even still more detailed liave been made by Stein, Vergl. Anat. \&c. 1. 52, Taf. IX. fig. 2, 9, 13 (Pontia and Ptcrosticitus).

[^279]: 1 See Swammerdamm, Bib. der Nat. p. 37, Taf. II. fg. 8 (Pediculus), and Treviranus, Verm. Schrift. I1. p. 15, Taf. 111. fig. 8, 9 (Lepisma).
 2 See L. Dufour, Recherch. sur les 1 émipt. Pl. XIV.-XVIL, and Ann. d. Sc. Nat. V. 1825, p. 168, P!. IV. (Creada) ; and Suckow, in Heusinger's Zeitsch. II. Taf. XV. lig. 55, 57 (Nepa and Cercopis).
 3 Sze Meckel, Beitr. sc. I. Ifft. 1. Taf. I. fig. 6, i.
 f.; L. Dufour, Ann. d. Sc. Nat. V. 1825, ML. IV. fig. 6, I. 1., an fir. 8, d. 4. ; and Doyere, Mbil. VII. 1847, \&. V111. fig. 3-7, \&. є. (Ledra and Cicada).
 of the oviparous and viviparous Aphididae, in Froriep's neue Notiz. X1I. p. 308.
 5 For the seminal receptacle of the Pentatomidae, sec I. Dufour, Recherch. \&c. loc. cit. Pl. X1V.XV1., and Siebold, in Müller's Arch. 1837, p. 410, T:uf. XX. fig. 4-6.*
 i'Sec Meckel ind L. Dufour, loc. cit. According to Doyere (loc. cit. p. 203, 1'l. V1I1. fig. 3). there is, with the female Cicadidae, a special orifice by the side of the oviduct, which is continuous with \rightarrow dee my memoir an the interanl genital organs the ovipositor, and through which the penis proade my memoir on the interan genital organs trudes into the copulatory pouch.

 - [\$ 350 , note 5.] For the female organs of Betostoma, see Leidy, loc. cit. p. 6t. - Ed.

[^280]: ${ }^{15}$ These tubes are simple with Melophagus, and ramose with Hippobosca.
 18 See my researches in Müller's Arch. 1837, p. 425, and those of L. Dufour, Ann. d. Sc. Nat. V1. 1825, p. 303, Pl. X1II., and IlI. 1845, p. 76, P1. III. This last-mentioned naturalist has very well figured the female organs of Hippobosca and Melophagus; only he is deceived relative to the glandular appendages of the vagina, in regarding the upper pair as a Receptaculum seminis, but which never contain spermatic particles.
 19 For the appendages of the female organs of the Lepidoptera, see Siebold, in Müller's Arch. 1837, a. 417.

 10 The semizal receptacle has been figured in its various stages of development by Herold (Entwickelungsyesch. d. Schmetterl. Taf. IV. fig. 1, u. y. p. and Taf. XXV.) as a unicornous secretiug organ. See also Suckow, Anat. u. physiol. Untersuch. Taf. VI. g. g.
 21 Sse Herold, loc. cit. Taf. III. fig. 1, t. z. and the following plates; also Suckow, loc. cit. Taf. VI. l. 1.
 22 Melitaca, Argynnis, Zygaena, \&c.
 23 See Herold, loc. cit. Thaf. III. fig. 1, x. f. g. and the plates following ; also Suckow, loc. cit.

 * [§ 350, note 23.] See also for the internal female genital organs, and especially their development, of the Lepidoptera, Meyer, loc. cit. Siebold

[^281]: 46 With the Meloildae; see Brandt and Ratzeburg, Mediz. Zool. II. Taf. XVII. fig. 2.
 47 Tbe ovaries are in single rows with Macronychus, Oxytelus, Silpha, and Byrrhus; but they are in two rows with Stenelmis, Lycus, Oedemera, and Hydrobius; see L. Dufour, Ann. d. Sc. Nat. III. 1835, Pl. VII. fig. 25, 27 ; and Stein, loc. cit. Taf. III. fig. 3, 16, Taf. IV. fig. 3, 4 , and Taf. VI. fig. 8. There is a very remarkable disposition, according to Stein (loc. cit. p. 30, Taf. I. fig. 4), with Dianous caerulescens, Myrmedonia caniculata, Homalota canaliculata, and a species of Trichopteryx, which, alone among all known Insecta, have only a single ovary and a single oviduct, the first being composed of ten to twelve tubes disposed in two rows.

 48 For the different forms of the Receptaculum seminis of the Coleoptera, see L. Dufour, Ann. d. Sc. Nat. VI. 1825, and III. 1835, \&c. ; Siebold, in Miviller's Arch. 1837, p. 404, Taf. XX. fig. 1, and especially Stein, loc. cit. p. 96, with the corresponding figures. With the Elateridae, the accessory gland is distinguished by a very complicated structure and numerous ramifications; see L. Dufour, Ann. d. Sc. Nat. VI. 1825, Pl. XV11. fig. 8-10, and Stein, loc. cit. p. 129, Taf. V. Tbe serniual receptacle is wholly wanting with Xantholinus punctatus, Lathridius porcatus, Notoxus monoceros, and Lagria hirta; see Stein, loc. cit. p. 93.
 ${ }_{49}$ With the Carabidae, and some Staphylinidae. The seminal receptacle is double with Stenus and Paederus; see Stein, loc. cit. p. 97, Taf. I. III. fig. 6.
 50 With the Hydrocanthari and some Cara-

[^282]: 1 The ovipositor is unarticulated and protractile with the Ceranbycidae, while it is articulated with the Chrysididae and many of the Muscidae. In this last case, its pieces are movable, like the tubes of a telescope. They are only the terminal abdominal segments modified; see L. Dufour, Ann. d. Sc. Nat. I. 1844, p. 383, Pl. XVI. fig. 16 (Piophila).

 2 For the ovipositor of Insecta, see Burmeister, Handb. \&c. I. p. 209, Taf. XII., and Lacordoire, Iutroduct. \&c. II. p. 353.
 3 Limnobia, Ptychoptera, Tiputa, Ctenophoru. Asilus, Laphria. Among these Diptera, Ctenophora ruficornis is particularly distinguished by the length of the horny plates composing the ovipositor.

 4 For the structure of this saw-like ovipositor, see Lyonet, Mém. du Mus. XIX. p. 57 , 1'I. VI.VIII. (I4-10) (Mouches à scie) ; and Hortis, Die Adlertugler Deutschl. p. 37 , Taf. I. u. d. f.; also, Réoumur, Mém. VI. 11 mémuire, M. XL. fag. 6-

[^283]: 7 The ovigerous groove is short and triangular with Libellula vulgata and cancellata; long aeuminate, and perpendieular with Cordulia metal'ica; long and cordately emarginate and closely applied against the abdomen with Epitheca bimaculata. A remarkable appendare, deeply exeavated, situated to the exterior of the female genital organs of Doritis Apollo and mnemosyne, and upon whieh, as yet, no lepidopterist has given any details, is probably an ovigerous sae.

[^284]: 40 With the Carabidae, Mydrocanthari, and with Mordella, Anthribus, Galeruca and Coccinella.
 41 Melotontha, Cetonia and Lucanus; see L. Dufour, Straus, and Suckow, loc. cit.
 42 With the Staphylinidae, Cantharidae, Byrrhidae, Elateridae, Tillidae, Meloidae, Tenebrionidae, Pyrochroidae, Dermestidae, Cerambycidae, with Donacir, Heterocerus, \&c.; see L. Dufour, Suckow, loc. cit. and Brandt, Mediz. Zool. II. Taf, XVII. X1X. This glandular apparatus is specially developed with Hydrophilus piceus, where, of the four pairs, one is distinguished for its length and thickness, and is composed at its extremity of numerous small follicles; see Swammerdamm, Bib, der Nat. Taf. XX1I. fig. 4 ; L. Dufour, luc. cit. VI. Pl. VI. fig. 7, and Suckow, loc. cit. Taf. X. fig. 1, 3.

 1 See Burmeister, Ilandb. \&c. I. p. 227, Taf. XIII.
 ${ }^{2}$ As yet, these differences in form of the external mal. orgaris have boen of little survice to entomologists in the distinction of species, although, had

[^285]: 5 For the copulatory organs of the Libellulidae, see Rathke, De Libellar. partibns genital., and my researches in Germar's Zeitsch. I. p. 421.
 6 The act of copulation of the Libellulidae has been reprcsented by Swammerdamm, Bib. der Nat. Tai. XII. fig. 3 ; Réaumur, Mém. \&c. VJ. Pl. XL. XLI. ; and Roespl, Insectenbelust. Th. IT. Iusect. aquat. Class. II. Tab. X.
 7 The different forms of these pincers have been figured in Charpentier, Horac Entomul. Tab. I., and Selys Longchamps, Monogr. des Libellul. d'Europe, Pl. I.-IV.
 8 Sec Straus, Considér. \&c. PI. III. V.
 y See my cbservations in the Entomol. Zeitung. 1840, p. 137, and Brulle, Ann. d. I. Soc. Entom. VII. 1838, p. LIII. The golden-colored tuft of hairs situated at the base of the abdomen with the males of Blaps, does not correspond to that of Dermestes, because it is only external and does not project into the interior of the body.

