

Digitized by the Internet Archive in 2016

ECONOMY OF NATURE

EXPLAINED ANDILLUSTRATED

ONTHE
PRINCIPLES

0 F
MODERN PHILOSOPHY.

```
                    B Y
                            G. GREGORY, D.D.
JOINT EVENING PREACHER AT THE FOUNDLING HOSPITAIg
                                    AUTHOR OF
ESSAYSHISTORICAL ANDMORAL, E犬C.
```



```
                    IN THREE VOLUMES.
                WITH FORTY-SIX PLATES.
                    -m
                    V O L. III.
                            LONDON:
SRINTED FOR J. JOHNSON, NO72,ST, PAUL'S CHURCH YARDE
            1796.
```

| ROYAL COLLEGE OF PHYSICIANS |
| :--- | :---: |
| LIBRARY |

ROYAL COLLEGE OF PHYSICIANS	
LIBRARY	

$\begin{array}{llllllll}\mathrm{C} & \mathrm{O} & \mathrm{N} & \mathrm{T} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{S} .\end{array}$

Book VIII.

OFVEGETABLES.

Снағ. I.-page I.

Structure of Vegetables.
General Obfervations on organized Bodies.-Confituent Principles of Vegetable Matter. - Structure of Plants.-The Stem.T'be Bark.-The Wood. -The Pith. -The vafcular Syfem in Plants.- Refpiration of Plants.-Tbe Root.-T'be Leaves,The Flower.-T'be Fruit.-T'be Seed.-Bonnet's Experiments.Perpendicular Growth of Plants.-Plants propagated by Slips, Suckers, and Off-fets.

Chap. II.-page 14.

Fluids of Vegetables.
The Succus Communis or Sap.-Vefels for the Circulation of the Sap.-Succus Proprius; its Veffels and Courfe. - Bonnet's Experiments on the Nourifoment of Plants.-Dr. Hales's Experiments on $\dot{F r u i t}$ Irees.-Bonnet's on Flowers, $\mathcal{E}^{\circ} c$.

Chap. III.-page 22.
Functions of Vegetables.
Perfpiration of Plants.-Circulation of the Fluids in Plants.Property in Plants of emittinx vital Air; of decompofing Water. -Senfibility to the Sun's Light.-Caufe of the Green Colour of Vegetables.-Bonnet's Experiments on Vegetable Perfpira-tion.-Sexual Syftem.-Growth and Natriment of Vegetables.-Manures.-Principles of Agriculture.

ROYAL COLLEGE OF PHYSICIANS LIBRARY	
CLASS	5
ACCN.	12001
SOURCE	
DATE	

príIIANS
OF
Sondon

C Ollllll

Bоoк VIII.

OF VEGETABLES.

> Снағ. I.-page s.
> Structure of Vegetables.

General Obfervations on organized Bodies.-Confituent Principles of Vegetable Matter. - Structure of Plants. -The Stem.T'be Bark.-T'be Wood. - The Pith. -The vafcular Sy/fems in Plants.-Refpiration of Plants.-The Root.-The Leaves,The Flower.-The Fruit.-The Seed. - Bonnet's Experiments.Perpendicular Growth of Plants.-Plants propagated by Slips, Suckers, and Off-fets.

Chap. II.-page 14.
Fluids of Vegetables.
The Succus Communis or Sap. - Vefels for the Circulation of the Sap. -Succus Proprius; its Veffels and Courfe. - Bonnet's Experiments on the Nouri/bment of Plants,-Dr. Hales's Experiments on $\dot{F}_{\text {ruit }}$ Grees.-Bonnet's on Flowers, $^{\text {Grc. }}$

$$
\mathrm{C}_{\text {HAP. }} \text { III.-page } 22 \text {. }
$$

Functions of Vegetables.
Perfiration of Plants.-Circulation of the Fluids in Plants.Property in Plants of emitting vital Air ; of decompofing Wa-ter.-Senfbility to the Sun's Light.-Caufe of the Green Colour of Vegetables.-Bonnet's Experiments on Vegetable Perpira-tion.-Sexual Syfem.-Growth and Nktriment of Vegetables.-Manures.-Principles of Agriculture.

$$
\text { CHar. V.-page } 46 .
$$

Of the more fimple vegetable Compounds.
Gum.-Gun Arabic.-Gun Tragacanth.-Common European, G.m.-Sugar; obrained from moot Vegetables.-Procels of making Sugar.-Manna. - Fat, or exprefid Oils.-CBocolate.Vegetable Wax - Analyisis of Olive Oil.-Effontial Oils.-Of Cimamon.-Of Balm, Peppermint, and Wormzuood.-Of La-vender.-Of Rofes.-Of Anijed.-Of Parfry.-Of Camo-mile.-Of Saflafras and Carrarvay.-Of Nitimeg, Pepper, and Mace-Balfims.-Baljam of Tolu.-Benzoin and Storax:Camphor, Refins.-Gume Copal.-Catbous, or claftic Gum.-Fecula.-Briony. - Potatoes. - Sago.-Salep. - Farina or Flour. -Gluten. -Starch. - Saccharine Metter of Wibcat. - Bread.Colouring Matuers of Vegetables.- Principles of the Art of Ding.-Arnotto.- Bazard Saffron.-Archil.-Indigo.-Alknnet Rnot.-Lute la.-Madder.-Walnut,-Alder.-Sumach, モ゙c.-Galls,-Lakis.

$$
\text { Снар. VI.-page } \sigma \text { б. }
$$

Fermentation.
Gharce Kinds of Fermentaticr. -The vinous or Spirituous.-Spixis of Wine or Alcoboi.--Ether.-Acetous Fermentation.-Putrica Fermentation.-Obfervations on Putrefudion in general.

Book IX.

OF ANEMALS.
Char I-page 84.

> Of Animal Mater in general.

Gencral Remarks on o ganixed Bodies.-Products from the Dijpillation of animal Mattcr.-Elementary Principles whish enter
 Fent Forns of Animal Matter. - Telly.-Glue.-Lymph.-Further Produlds.-Fat.-Fibrous Parts.

Of the Blood.
Sanguineous and exfanguious Animzals -Warm and cold blooded Animals.-Serum and Cralfamentum.-Polypufes.-Analy/is of. Blood.-Lymph.-Iron in the Blood.-Caufe of the Red Co-lour.-Red Globules.-Hewfon's Experiments.

Сhap. III.--pagérol.
Structure of Animals.
Size of Man.-His eref Pofure.-Varieties in the Structure of Animals.-Parts of the Animal Body.

Chap. IV.--page 106.
Structure of the Boncs.
Bones conffit of Fibres; cellular. - The Marrow.-Wafte of Bone in old Age.-Epiphyles.-Periofeum.—Progrefs of O.fification. -Articulation.

Снар. V.-page ro.

Divifion of the Skeleton, with the Bones of the Head.
The Skeleton briefly defiribed. - Bones of the Cranium.-Bones of the Face-of the Nofe of the Palate.-The upper and under Faw.-Forn and Proportion of the Head,-Subfance and Structure of the Bones of the Head.-Sutures.
C н ap. VI.—page iz2.

The Teetli.
Gencral Defcription of the Teetb.-Incifores.-Canini.-Molares.Enamel of the Teeth.-Graivth of the Teeth.-The Face lengthened after Eight Years of Age.-Varieties in the Teeth of different Animals.

CHAP. VII.-page 125°
Bones of the Trunk.
Sifine cr Back Bone-Horv the Head is moved - The Thorax. -The Pelris.-Principal Marks of Difinerion between the Male and Femaie Skeleton.

$$
\mathrm{C} \| \wedge \text { p. VIHI.—page } 136 .
$$

The Bones of the inferior Extremity. 1he Os Femoris.-Bones of the Leg.-The Foot.

$$
\text { Chap. } 1 \text { X.-page } 142 \text {. }
$$

The Bo:ies of the fuperior Extremity; with a brief Comparifon of the Homan Skeleton with that of ligutes.

Bones of the Humbrus.-Os Brachii.-Antibrachium. - Bones of tive Hond- Refemblance betwen the julerior and anferior E.x-tremities.-Comparijon between the Hiumana Skeleton and that of 2) uadrupeds.

$$
\text { С н а в. X. -page } 156 .
$$

Structure of the Mufcles.
General Defription of Mufles.-Obfervations of the Abbè Fon-tana.-Of Lerwenhoek.-Mufcles compofed of Jmall Fibres.Strueture of different Mufcles.-Antagonifs.-Mufles of the Fatus.

> Cirap. XI--page 160.
> Mufcles of the Head.

Mi: 5 cles of the Forebead.-Of the Eyb-lias.-Of the Eye.-Of the Nofe. - Mufles of the Mouth. -Why the Face is the Index to the Mind.-Timporal Mujcles.-Mufcles of the Neck.-Of the Tawe. - The Tongue. - Mufcles of the Palate, Ơc.

Снар. XII.-page 169.
Mufcles of the Trunk.
Mufcles of the Neck and Back.-Of the Breaft.-Of the Ribs.The Diaphragm.-Mufcles of the Abdomer.-Of the Pclwis, \mathcal{O}°.

CHAP. XIII-page 185 .
Mufcles of the inferior Extremities.
Mufcles of the Tibigh. -Of the Leg.-Of the Foot and Tors.
CHap. XIV.—page 196.
Mufcles of the fuperior Extremities.
Scapular Mufcles.-Mufcles of the Fore-arm.-Of the Hand.Of the Fingers.

CHAP. XV.—page 224.
The Cellular Subftance, Fat, and Integuments of the Body.
General Defcription of the Cellular Subfance; its Ufes.-The Fat; its Ufes.-The Skin.-The Organ of Touch -The Epidermis.-Caufe of the black Colour of the Africans.-Corns. - Fontana's microjcopic Obfervations on the Epidermis.-Quantity of Perpiration from the buman, Body.

CHap. XVI.-page 230.
The Hair and the Nails.
Opinions of Anatomifts with refpect to the Nature of the Hair, Nails, Ecc.-Hair originates from the Cellular Subfance.-Fontana's Obfervations on Hair.--Tbe Nails.-The Horns, Hoofs, and Claws of Animals.

$$
\text { Снар. XVII.-page } 232 .
$$

The Cavity of the Abdomen.
Contents of the Abdomen.-P Parts intsolved by the Peritoneum.Parts not involved by it.-The Peritoneum.-Tbe Mefentery.The Omentum.-Different in Mon and शuadrupeds.
viii C O NTENTS.

Chaf. XVIII. -page 235°
The Stomach and Inteftines.
General Defription of the Stomach.-Length of the Inteffines in Man and 2 uadrupeds.-Small and large Intefines.

$$
\text { С нағ. XIX. -page } 24^{2} \text {. }
$$

> The Liver, Spleen, and Pancreas.

Nature and Situation of the Liver.-T'be Gall Bladder.-Bile
Dulfs.-Caufe of Faundice.-The Spleen.-The Panereas.Its Ujis.

$$
\text { С н a f. XX.-page } 247 .
$$

The Organs placed near, but without the Cavity of the $A b$ domen.
The Glandula Suprarenales.-Tibe Kidneys.-The Bladder.

$$
\text { С } \mathrm{HAP} \text {. XXI.—page } 253 \text {. }
$$

The Cavities of the Mouth and Fauces, \&c.
Thbe Palate. -The Pbarynx. - The Oefophagus. -The LarynxiThe Clottis.-The Epiglotis. - The Wind Pipe.

Chap. XXII.-page 26.
The Pleura, the Lungs, and the 'Ihymus.
Defcription of the Thorax. - The Pleura. - The Breafs.- Breafs of Infants contain Milk.-The Mediafinum.-The Lungs.-Ths Tbymus.

$$
\text { Chap. XXIIT.—page } 265 .
$$

The Heart.
The Pericardizn:- The Heart.-The Ventricles and Auricles.Their Ujes.-General View of the Blood-velels.

Chap. XXIV.-page: \ddagger r.
General Diltribution of the Arterics.
The Aorta - The coronary Aitery. - The carctid and Jubclavian Arteries.-The intrrcofial Arteries.-Bronchial Arteries. -The

Coliac Aitery.-MeJenteric Arteries.-Rcnal Avteries.-Lunsbar Arteries.-Iliac Arteries.-Crural Artery.-Pulnonary Artery, Ξ_{c}.

$$
\text { Chap. XXV.-page } 285 .
$$

General Diftribution of the Veins.

Pshmonary Veins.-İena Cava. - Veins of the Head.-Jugulas and Subclavian.-Veins of the Juperior Extremity.-Wenus Azygos.-Weins of the lower Extremities.-Courje of the Blood tbrougli the abdominal Vifcera, the Liver, E'c.

Сhap. XXVI.-page 293.

Structure and Courfe of the Lymphatics.
qivuo Kinds of Lymphatics.-Defcription of thefe Vefels.-Lymaphatic Glands.-Lackeals.-Thoracic Dict.-Receptacle of the Cisyle, Ecic.

$$
\text { Снар. XXVII.-page } 297
$$

Of the Brain, \&c.
The Dura Mater.-T'be Falx.-Sinufes of the Brain,-The Pia Mater.-The Cerebrum and Cerebellum.-Soarce of the Optic Nerves.-The Pineal Gland.-The fuppojed Seat of the Soul. -The Medulla Oblongata.-Source of the Nervis.The Spinal Marrow.

Chaf. XXVIII.-page 31r.

Structure and general Diftribution of the Nerves.
Origin of the Nerves.- Extreme Subtility of the Ner:uous Fibres.-
Ganglions.-Plexus.-Fontana's Microfcopical Obfervations on Nerves-Nerves from the Brain.-Olfactory and Optic Nerves, छc.-Auditory Nerves, Ecc.-Lingual Nerves, E®c.-Sympathetic Nerve.-Nerves from the Spinal Marrow.-Pbrenic Nerve.-Dorfal and Bracbial Nerves, ξ_{c}-Lurnbar and Crural Nerves, $\xi_{c}{ }_{0}$-Sciatic Nerve.

Circulation of the Blood.
Strueture of the Heart, and Circulation in cold-blooded Animals.Circulation in the warm-blooded Animals.--Courfe of the Blood through the Luugs.-Through the reff of the Body.-Ramifications of Arteries.-Valvular Structure of Veins.-Different from the Structure of Lymphatics.

Secretion, Excretion, Abforption, and Nourifhment.
General Effect: of Secretion.-The Glands.-Excretion.-Secretion of Bile.-How, this Function is performed in Fihes. - Abjorp. tion.-Lymplatic Glands.-Nouriflament or Reparation of the Body. - Bonis become more folid in old Age.

С Hap . XXXI.-page 347.

Digeftion.
Senfations of Hunger and Thirft.-Progrefs of the Food to the Stumach.-Digefion, how performed by Men and 乌uadrupeds. -By Birds.-The Gizzard of Forwls, and its Ujes.-Birds of Prey. - Rcaunurl's Evyeriments on the Digrfion of Forwls.Morion of the Sten, ach and Gizzard.- Balls of Hair found in
 partly difolved by its Agion afier Death.-Fermentation only takes place in difenjed Stomachs.-W"bat Sulffarces are digeffible, and the comtrary - Porvers of Digefion in different Animals. - Carnivarour. - Grauivorcus. - Graminivorons. - Sleeping Animals.-Acommodating Power of the Siontach.

Chap. XXXII.—page 30%.

Refpiration and Animal Heat.
Refpiration in part an involuntary Fnnction.- Fout Stages of Re-Spiration.-Ufes of Refpiration.-Rejpiration of Infects differene from that of otber Animals. - The red Colour of the Blood ilevie d from the Air in Rejpiratioll.-Dr. Prieflieg's Experiments. - Dr. Goodzum's Experiments. - The oxygenous Part of the Air diminimißad by Reffiration.- Fixed Air gencrated in the Lungs
in Refpiration and expired.- Animal Heat produced by Reppira-tion.-Inftanced in different Animals. -Dr. Crawford's ingenious Theory.

Снағ. XXXIII.-page 379 .
The Voice.
Infrument of Sound in the Animal Body.-Thbe Larynx.-Experiments on the Windpipes of different Animals. - Wherber the Larynx acts as a wind or fringed Infrument.-Singing, bow performed.-Speaking.-Whipering.

Chap. XXXIV.—page 3^{82}.
Mu!cular Motion.
Inquiry whether any Thing equivalent to mufcular Motion is to be found in the other Parts of Creation.-Different Hypothefes concerning the Caule of mufcuar Motion.-Its Dependence on the Will.-Contracile Porver of Mujcles after Death.-Extent of the Contraction of Mufcles.-Adrantage from the Obliquity of sertain Mufcles.-Infertion of the Tendons. - Force of Mufcles.

Смар. XXXV.-page 389.

Animal Electricity.

Accidental Difcovery of M. Galvani.-Animal Electricity only excited by Metals.-Experiments on dead Animals.-Conductors and Non-conductors of this Porver.- Experiments on the living Subject.-On Eartb Worms, छ'c.-Analogy between this Porver and Elearricity. - Shock of the Torpedo.-Neprous Energy.

Снағ. XXXVI.-page 4 ог.

Senfation.

Dificulty of the Suliject. -Senfation the Effer of certain Relations eftablifped by the Creator-Objects of different Senfes.-Influence of the Nerves in conveying Senjations to the BrainThe Brain the Revelaztory of Ideas.- Infinti of Antimals as connected with the nervous Syfen.-Harmony of the Senfes.Duration of fenfible Impreffions.-The Five Senjes.

Chap. XXXVII.-page 408.
Touch, and its Organs.
The mon extenfive of the Senfes.-Organs of Toucb.-I I : what Manner it enables us to judge of the Qualities of Bodies.- Tiung" Man couched by Cbefelden.-Remarks on his Caje.

Снар. XXXVIII--page 411.

Tafte, and its Organs.
The Tongue the Organ of Taffe - Defcription of it.-How fupplied with Nerves.-Mujbles of thr Tongue.-How rafing is performed.

Char. XXXIX.-page 414.
Smelling, and its Organs.
Final Canfe of this Senfe. - Lefs actite in Man thars in fome orber Auimals.-Diferent alfo from theirs.-Defcriftion of the Organs of Scent.-Comparijon between this Senfe and that of Fiafte.

> Снар. XL.-page 416.
> Hearing, and its Organs.

Defcription of the Eiar-Adnirable Structure of this Organ for conveying and echoing Sousd.-Manner in which the Pulfes of Air are conveged to the Ear.-Communication by the Euftachiari Tube.-Reafon ruly Perfons who lifien attentively open their Mouths.-The Membrana Tympani probably the great Inforusnent of Hearing.

$$
\text { Снар. XLI.-page } 426 .
$$

Sight.
Defription of the Eyr. - Eyes of different Animals.-How Vifron. is performed. - Hown all the Parts of an Objeet are comprebended by the Eye. - An Image of every Oliject painted on tbe Retina of each Eye, and yet crily one Object parceived.-Caufe and Cure of Sphunt:rg. -T be Seife of Sight limited. - By subat Means rue jurige of if:Pance. -State of the Sight at different Ages.-Caisr.ons for peeferving the Sight.

Chap:

Снағ. XLII.-page 448.
The Geftation and Birth of Animals.
Farieties in the Production of Aninials. -Proportion of Males th Fenales.-Grorwth of the Factus. - Oviparous An:mals.-Mode of Exifence before Birth. Weight of a newaborn Infint.Mifcellaneous Cialculations concernang the Proportion of Births to that of Deaths in Infancy, ξ^{c}.

Снар. XLIII.-page 457.

The Growth and Decline of the Body.
Increafe of the Body before and after Birth.-DiJproportion of the Parts decreafes with Growth. - What Parts firft ceafe to increafe in Size.- Youth.-Manbood.-Firft Symptoms of Decline. -At what Period old Aqe generally commences. - Symptoms of Age.-Caufes why the Human Frame cannot be of long Durasion.

Book X.

OF THE HUMAN MIMD.

Снар. I.-page 4^{61}.
Of the Study of the Human Mind.
Our Kunwledge of Mind limited.-Confufed by Metapbysecs.Pla, of this Inquiry.-The Firft Part re/peits the Inftruments and Modes of Aciion of the Human Mind. -T'be Second, the Springs or aidive Porvers. - The Third, the mof important 2ucfions in Morals, $\xi^{\circ} \xi^{\circ}$

> Chap. II.-page 466.
> Of Perception.

The Senfes she great Source of Informution.-Difinction between Senfation and Perception.-Senfes correat each otber.-Wbetber the fame Objeas produce fimilar Perceptions in different Men.Ideas.

Chaps.

Of Ideas.

Ideas of Senfation and Reflecion.-Simple and complex.-Modes and Subfances.

Chaf. IV.-page 474.
Of Affociation.
Syncbronous A Oocialions.-Succeffive A fociations.-A great Part of our Knowledge confifts of the latter.-Common Senfe. - Train of Ideas. - In rwhat Manner the Train of Ideas is carried on. Relations of Coutiguity, ξ_{c}.-How thefe are formed in the Mind.-How the Train of Ideas is regulated. - Iufuence of the Will.

$$
\text { CHa } . \text { V.-page } 4^{8 z}
$$

Memory.
Ideas of Memory.—Difinguibed from Ideas of Imagination.Judgment concerning Diftance of Fates.-Memory in Young and Old Per.jons.—Recollection.—Cortainty.

Chay. VI.-page 489.
Of Invention.
Invention; what.-Ideas of Menory and Imaginations-LIuvertion and Judgment.

С н a p. VII.-page 49 2.
Of Judgment.
Judgenent; wbat.-AJent.-Probability.

Chaf. VIIT.-page 495.
Of Words.
Abfraed and general Terms.-Ufes and Abufes of Words.Thinking in Language.

Снар. IX.-page 500 .
Of Pleafure and Pain.
ఖleafure in confequence of AEtion.-By Afociation.-By Paffon.-Utility.-Surprife.-Variety.-Regularity.-Imagination.

Cha P . X.-page 509.
Of Love and Hatred.
Definition of Love.-Origin of the Social Pafron,-DiJike and Hatred.-Defire and Averfion.

Chaf. XI.-page 51%.
Of Beauty.
Of Beauty in general.-Original.-From Afociation.-Nature and Art.

Сяар. XII.-page 517.
Of Cuftom.
Pain from Cufom.-Pleafure.-Admiration.
Cinap. XIII.-page 52 \%.
The Paffions.
Of the Paffons in general. - Particular Paffions. - Afociated Pafrions.-Paternal Lorve.-Sympatby.-Avarice.-Ambition. -Love.

Снағ. XIV.-page 532.

Of Reafoning.
Common Senfe; what.-Defective Reajoning.-Analogical Rea-foning.-Wrong Data.-Pleafures of Reafoning.

Снap. XV.-page 539.
Of the Arts.
Mufr.—Painting.—Poetry.-Wit.

$$
\begin{gathered}
\text { CHAP. XVI.-page } 543 . \\
\text { Of Morals. }
\end{gathered}
$$

Le of the Docirine of Allociation in Morals.-Two Tbeories of Morals. - A Moral Senje. - Thbe Aromments againg a Moral Senfe. - A frong argument for Divine Rerve!ation.

$$
\begin{gathered}
\text { Char. XVII.-prge } 549 . \\
\text { Of Genius. }
\end{gathered}
$$

General Obfervations on whbat confitutes Genius.-Of the Va. vitues in Cenius.-Ganius oppyed 10 Dirlmsfs.-Different Cafld of Gientus.

Chaf. XVILI-page 555.
Of Tafte.
Of Agreenent and Difagreement in Taße.-Of a Standard of Tiape.

Chap. XiX -page $55^{8 .}$

Of Opi, ín.

Paradore of the Stoics.-Explaration. - The fenfille Pleafires mare numirous than the jenfou'le Puins. - Thee jame with the intelleetucil Pleafures anit Pains.

$$
\text { С н a f. XX. -page } 5 \text { бo. }
$$

Of the Free Agency us w'a.

Preaiffination, or fatal Neceffity, not camett id with the Docirine of the Afrecatio:: of I.teas. -Inconfiste icy of the inatalifts.Miorive' and Altion in Morals totully a yuent fion Cause and Eifire in Plojits. -The Onus Prabundi in thes Quegtion lies on the Fatalifts.- Quefion concerang the Influwic at Motives.Argument of the Fintalifts from the Divine Prejci en-Atjerd and lorrible Confoqucarst refulting fiom the Dieqrine of $F a-$ falitv. - Modefy and Hesmitisy reconmended in pisiopopbical Situdies. - Thofe Scicnus io be preferred which are moft consntecial with pradical Utility.

Boor Vilif.

$$
\dot{O} F \quad V E G E T A B L E S .
$$

$$
\mathrm{CHAP} . \mathrm{I} .
$$

STRUCTURE OF VEGETABLES.
General Obfervations on organized Bodies.-Conftituent Principles of Vegetable Matter.-Strutezure of Plants. - The Stenn.-The Bark. - The Wood. - The Pith. - The vafcular Sylem in Plants.-Rejpiration of Plants.-The Root.-Tbe Leaves.T'he Flower.-The Fruit. -The Seed.-Bomet's Experiments.Perpendicular Growth of Plants.- Plants propagated by Slips, Suckers, and Of: ets.

ADISTINCTION has been eftablifhed by philofophers, which is not deftitute of utility, though it muft be confeffed that in this, as in every other inftance which regards the fyftem of nature, the line of demarcation is fcarcely defined with fufficient precifion.-All natural bodies have been claffed under two grand divilions; unorganized and organized bodies. If the phrafe vegetable life might be freely admitted, it would be confiftent wish correctnefs to term the former the inanimate, and the latter the animated parts of creation. Through the former of thefe regions we have already travelled with fome diligence, though it is to be appreYol. III, B hended
hended not without pain and difficulty to the reader: for an author is but feldom an adequate judge of the degree of entertainment which his labours are capable of affording to others.-The latter, which includes what the old writers denominate the vegetable and animal kingdoms, remains to be confidered.

Unorganized bodies, we have feen, confift of fimple combinations of a vaft variety of different elementary principles. Organized bodies, on the contrary, confift of few principles; but in the proportions, combinations, and arrangement of thefe principles, they are infinitely varied; and their ftructure is as complex, as their materials are fimple. Thus, in the mineral creation we may enumerate not fewer than thirty-three diftinct elementary principles; the vegetable creation for the moft part confifis only of three; and the utmont to which it can be extended, is about fix or feven diftinct fpecies of matter, which occafionally enter into the compofition of thofe varied beauties, that fingularity of ftructure, that valt affemblage of organized bodies, fo different in qualities and external appearance, which the woods, the fields, and the gardens, prefent to our view: fo. numerous that they have hitherto eluded the art of the moit fkilful botanift to methodize and arrange.

The conftituent or clementary principles of vegetables, are hydrogen, oxygen, and charcoal. Thele, as far as our obfervations have hitherto extended, are common to all vegetables. There are fome other fubftances, fuch as calcarious earth, iron, and azote, which are occafionally found in vege-
tables; but as they are not common to all plants, they cannot be confidered as effential to the conftitution of vegetable matter.

But if the materials of which vegetables are compofed are fo few and fimple, their organization is curious beyond any thing which the mineral world prefents to our view. The parts of vegetables, which naturalifts are accuftomed to confider as diftinct in their nature and functions, are fix, the ftem or trunk, the root, the leaf, the flower, the fruit, and the feed. In many vegetables the root appears nearly frmilar, in all its conftituent parts and principles, to the ftem or trunk, and indeed the one feems a continuation of the other ; which muft be my apology for reverfing in fome degree the order of nature, and treating firft of that part, which though it feems to proceed or fpring immediately from the other, is yet the moft perfect in its organization, and is in general of the greateft ufe and importance to man.
I. The ftem or trunk, which includes alfo the branches, I might fay all the more folid and fubftantial parts of a tree or plant, confifts of three parts, the bark, the wood, and the pith.
ift. The bark is protected on the outfide by a cuticle, epidermis, or fcarf-fkin, which confifts fometimes of numerous layers, and'differs in thicknefs in different plants. This fkin or cuticle is an organized body, compofed of very minute bladders, interfperfed with longitudinal woody fibres, as in the nettle, thiftle, and the generality of herbs. It contains alfo longitudinal veffels, and is vifibly porous in fome plants, and particularly the cane.

$$
\mathrm{B}_{2}
$$

On removing the cuticle, the true bark appears, and may be confidered as a congeries of pulp or cellular fubftance, in which are placed a number of vefiels, as well as longitudinal fibres. The veffels of the bark are differencly fituated, and deftined for various ufes, in different plants. In the bark of the pine, for inftance, the inmoft are lymph-ducts, exceedingly minute; thofe neareft the furface are gum or refiniferous veffels, for the fecretion of the turpentine, and thefe are fo large as to be vifible to the naked eyc.

2d. The wood lies between the bark and the pith. Its fubftance is denfer that that of the bark, and its ftructure more difficult to be underftood. It is however generally fuppofed to confift of two fubttances, the parenchymatous or cellular, and the ligncous. The ligneous parts are no more than a congeries of old, dried lymph-ducts. Between the bark and the wood a new ring of thefe ducts is formed every year, which gradually lofes its foftnefs as the cold feafon approaches, and towards the middle of winter is condenfed into a folid ring of wood. Thefe annual rings, which are vifible in moft trees when cut tranfverfely, ferve as marks to determine their age. They feem to decreafe in breadth, as the tree advances in age; and as they are found to be very unequal in fize throughout, their breadth probably varies according as the feafon is favourable or otherwife.

The wood differs from the bark, not merely in the degree of hardnefs; its ftructure is effentially different, and the apparent converfion of bark into wood is entirely a deception. One Atriking difference

Chap. r.] The Stem, Wood, Pith, E3c.

ference between the wood and the bark is, that the former is poffeffed of fipiral veffels which run from one end of the tree to the other. From the great refemblance of thefe air-veffels to thofe of infects, they are fuppofed to be fubfervient to the fame function. The ftem of fome plants is entirely hollow, partly, it is fuppofed, from thefe plants, which are generally of a quick growth, requiring a more than ordinary fupply of air.
3^{d}. The pith is fituated in the center of the ftem, and in young plants it is very abundant. It is faid by fome authors to confitt of exactly the fame fubftance as the parenchyma or cellular fubftance of the bark; and to be compofed of fmall cells or bladders, generally of a circular figure, though in fome plants, as the borage and thifte, they are angular. In moft plants the pith gradually dies away as they approach to maturity ; and in old trees it is almoft entirely obliterated.

Such are the folid parts of plants ; but to render their organization more clearly underfood, in plate I. fig. I. is the fection of a branch of afh, cut tranfverfely as it appears to the eye. Fig 2. is the fame fection magnified. A. A. the bark. B. B. B. an arched ring of fap-veffels next the cuticle. C. C. C. the cellular fubftance of the bark, with another arched row of fap-veffels. D. D. a circular line of lymph-ducts next the wood. E.E. the wood. F. the firft year's growth. G. the fecond. H. the third. -I. I. I. the true wood. K. K. the great air-veffels. L. L. the leffer air-veffels. M. M. M. parenchymatous infertions of the bark, reprefented by white rays. N.O. the pith.

The name of air-veffels, as was before remarked, has been given to certain tubes fituated in the wood, leaves, and petals, but not in the bark of trees. They are formed by a number of fmall filaments, fpirally rolled up fo as to form a cavity in the midcle, and are fuppofed to be the inftruments of refpiration in plants; but how this function is performed, is not clearly underftood. Trees and fhrubs only are pofiefed of air-veffels; and when a plant is placed under the exhaufted receiver of an air-pump, the air only iffues from the wood in which the air-veffels are fituated.

There is reaion to believe that the air's proper entrance to plants is through the cuticle, which is proved to be a vafcular fubitance, fince, when under an exhautted receiver, it iffues direetly through the cuticle. That the air is neceffary to the futtenance of plants, appears from the experiments of Dr. Bell *. In the winter feafon he covered feveral young trees with varnifh, leaving the tops of the branches only expofed to the air. They remained in this fituation during the following fummer, when fome of them lived, though in a languid ftate ; but thofe from which the air had been more accurately excluded, died without a fingle exception. To this proof the fame author adds, that trees overgrown with mofs have few leaves, weak fhoots, and fcarcely any fruit; and that it is the conmon practice of all judicious gardeners to ftrip the mofs from the bark of aged trees, which by admitting

[^0]the air, generally reftores them to vigour and fruitfulnefs.
II. The root, which fixes the plant to the earth, and is the chief fource of its nourifhment, differs much in different fpecies of vegetables. All roots agree in being fibrous at their extremities, and it is by their fibres chiefly that they are fitted to draw nourifhment. The root terminates upwards in the ftem or trunk, which fuftains the other parts of the vegetable. The internal ftructure of the root, or rather of its fibres, differs not very materially in general from that of the ftem. It confirts of a cuticle, bark, wood, and commonly of a fmall pertion of pith; though there are fome roots which have no pith at all, while there are others which have little or none at the extremities, but a confiderable quantity near the top. The cuticle, in all roots at a certain age, is double; the cortical fubftance, or bark, differs greatly in its quantity and difpofition in different plants. In trees it is thin ; in carrots, on the contrary, it is one half of the femi-diameter of the root; and in dandelion it is nearly twice as thick as the woody part. The roots, as well as the trunk of plants, are furnifhed with a variety of veffels for the purpofe of conveying and circulating air and the juices neceffary to their nourinment.

In plate I. fig. 3. is a fection of the root of wormwood, as it appears to the eye; and fig. 4. is the fame magnified. A. A. the fkin with its veffels. B. B. B. the bark. C. C. C. the lymph-ducts of the bark. The other holes are fmall cells or fap-veffels. D. D. D. parenchymatous infertions from the
bark. E. E. E. the rays of the wood, with the air-veffels.-This root has no pith.
III. The leaves are organs effential to the exiftence of plants. Trees perifh when totally divefted of them ; and in general, when ftript of any confiderable proportion of their leaves, they do not fhoot vigorounly. The leaves are formed by the expanfion of the veffels of the ftalk into a net-work, which exhibits a beautiful appearance when the intermediate parenchymatous matter is confumed by putrefaction. Doth furfaces of the leaf are covered with a membrane, which is a thin bark, continued from the farf-fkin of the flalk.
IV. The flower confifts of four parts, the calyx, the corolla, the ftamina, and the pifillum. The calys or flower-cup is almoft always of a green colour, and is that which furrounds and fupports all the other parts of the flower. The corolla is of various colours, is varioufly fhaped in different vegetables, and is that which conflitutes the moft confpicuous part of the flower. It fometimes confifts of one continued fubflance, but more frequently of feveral portions, which are called petals. The ftamina are fuppofed to be the male part of the flower. Linnaus defines them to be an entrail of the plant, defigned for the preparation of the pollen. Each ftamen confilts of two parts; the filimentum or fine thread which fupports the anthera, and the anthera itfelf, which contains within it the pollen, and when come to maturity difcharges it for the impregnation of the germen. From the fuppofed function of the ftamina, they afford the chief foundation of the diftribution of the vegetable fyltem into
into claffes. Such flowers as want this part are called female ; fuch as have it, but want the pittillum, maie; fuch as have them both, hermaphrodite; and fuch as have neither, neuter.

The pifillum or pointal is fuppofed to be the femaie part of the flower; it is defined by Linnæus to be an entrail of the plant, defigned for the reception of the pollen. It confifts of three parts, the germen, the fyle, and the ftigma. The germen is the rudiment of the fruit accompanying the flower, but not yet arrived at maturity. The ftyle is the part which ferves to elevate the ftigna from the germen. The figma is the fummit of the piftillum, and is covered with a moifture for the breaking of the pollen.

The pericarpium or feed-veffel is the germen grown to maturity. Such are the conftituent parts of the flower; they are however infinitely varied, and ferve both to diverfify the face of nature, and to intereft and delight the curiofity of man. One curious fact it is neceffary to notice, before I difmils this branch of my fubject, and that is, that every flower is perfectly formed many months before it makes its"appearance. Thus the flowers which appear in this year are not properly the productions of this year: the mezereon fowers in January, but the flowers were completely formed in the bud in the preceding autumn. If the coats of the tu-lip-root alfo are carefully feparated about the beginning of September, the nafcent flower, which is to appear in the following fpring, will be found in a fipall cell, formed by the innermoft coats, as reprefented
fented in plate I. fig. 5 . where the young flower appears towards the bottom of the root.
V. The fruit confifts of nearly the fame parts as are found in the flem; of a 1 kin or cuticle, which is a production or continuation of the flkin of the bark; of an outer parenchyma, which is the fame fubftance continued from the bark, only that its veficles are larger and more fucculent or juicy. Next the core there is commonly an inner pulp or parenchyma; and the core is no more than a hard woody membrane, which inclofes the feed. It is to be obferved, however, that the organization of fruit is very various; in fome the feeds are difperfed through the parenchymatous or pulpy fubftance; in fome, inftead of a core, we find a ftrong woody fubftance, inclofing the feed or kernel, which from its great hardnefs is termed the ftone; in fome, there are a number of feeds; and in others, only a fingle feed, inclofed in a large mafs of parenchymatous matter.
VI. The feed is a cleciduous part of a vegetable, containing the rudiment of a reew one. The effence of the feed confifts in the corculum or little heart, which is faftened to the cotyledones or lobes, and involved in them, and clofely covered by its proper tunic. The corculum confifts in the plumula, which is the vital fpeck of the future plant, extremely fimall in its dimenfions, but increafing like a but to infinity. The roftellum, however, muft be included, which is the bafe of the plumula; it defcends and Arikes root, and is the part of the feed originally contiguous to the mother plant. It is commonly fuppofed, and with fome reafon,

that the perfect plant, or at leaft all the organization which is requifite to a perfect plant, exifts in the feed, furrounded by a quantity of farinaceous matter, which ferves to abforb moifture, and to furnifh nourifhment to the corculum till its parts are fufficiently unfolded to draw fupport from the foil. A kidney-bean or lupine, when it has been foaked for fome time in water, and begun to fwell, is eafily feparated into its two lobes; and between there is difplayed the nafcent plant. The naked eye can eafily difcern the ftem, and its connexion with the lobes. Through the lobes are diffufed innumerable veffes, which immediately communicate with the embryo plant. On the external furface of the feed are abforbent veffels, which attract the moiflure ; by this moifture a degree of fermentation is produced, and thus a juice is prepared by a natural procefs in every refpect proper for the nourifhment of the plant in its firf efforts to extend its tender frame. The plant in its infancy is almoft a gelatinous fubftance, and increafes and indurates by degrees; and I believe in general the hardnefs of wood bears a pretty exact proportion to the flownefs with which a plant increafes. That part of the ftem which is next the root is the firft which affumes the woody texture.
M. Bonnet, in order to afcertain how far the lobes of the feed were neceflary to the growth and health of the corculum, detached them with great dexterity without a vital injury to the infant plant. Some French-beans treated in this manner, and fowed in a light foil, grew, but the confequence ivas, that not only the firft leaves were much
finaller,

12 Perpendicular Growetb of Plants. [Book VIII.

fimaller, but the plants were uniformly weaker in every part of their growth than others, which for the fake of comparifon were fown at the fame time without being mutilated. The feeds which were deprived of the lobes put forth fewer bloffoms, and produced lefs feed. The feeds of moffes are naturally devoid of lobes. The firft leaves which make their appearance, and which are called feminal, appear not lefs neceflary to the perfection of the plant than the farinaceous lobes. If they happen to be broken off, the plant experiences a proportional lofs of vigour.

It is matter of curious oblervation, that feed, thrown into the ground at random, fhould always come up in the proper direction. M. Dodart has offered an ingenious explanation of this fact, which confifis in fuppofing that the roftllum contracts by humidity, and that the plumula on the contrary contracts by drynefs. According to this idea, when a feed is puţ into the ground the wrong way, the roftellum, which then points upwards, contracts itfelf towards the part where there is moft humidity, and therefore turns downwards. The plumula on the contrary pointing downwards, turns itfelf towards the part of the foil which is drieft, and therefore rifes towards the furface. This explanation, however, evidently refts on no better bafis than conjecture.

Independent of the feed, there are two other mc-thods by which plants are propagated, by flips and fuckers; and many plants naturally make an effort to propagate themfelves in this manner. The bul-bous-rooted plants in general increafe by off-fets.

> Chap. I.] Proparation by Off-jets. I3

When a tulip is firtt planted in the fpring, the ftem iffues from the middle of the bulbous root; but when the tulip is taken up in the autumn, the ftem no longer proceeds from the middle of the root, but feems attached to one fide. The fact is, that the root which is taken up is not the fame that was planted. The original root has decayed by having its fubitance abforbed for the nourifhment of the bloffom, and a new root has been provided for the future year.

Cif A P. II.

FこUIDS OF VEGETABLES.

The Succtus Communis or Sap.-Vefels for the Circulation of the Sap. - Succus Proprius; its Vefrels and Courfe.-Bonnet's Experiments on the Nourijbment of Plants. - Dr. Hales's Experiments on Fruit Trices.-Bonnet's on Flowers, E゚C.

THE fluids or juices of vegetables, fays Dr. Bell, are of two kinds. 'The one is of the fame nature in all the variety of vegetables: the other varies according to the different plants in which it exifts. The former, which is called the fuccus communis, when collected early in the fpring, from an incifion made in the birch or vine, differs little from common water ${ }^{*}$. The latter, which is named the fuccus proprius, pofleffes various properties in various plants, and gives to each its fenfible qualities. 'Thefe two juices never mingle with each other in the tree, and the latter is found in the vaja propria only.

* It has, however, been alledged to contain a faccharine matter in fome trees, as in the maple, \&oc. It has likewife been fuppored to contain an acid. But, in various experiments which Dr. Bell made on it, he found nothing in it of either kind; and therefore, where fulch appearances have taken place, he fuppofed them to arife from an adventitious mixture of the fap, and the fucsusproprius.

Chap. 2.] Vajcular Syjtem of Vegetables.

- It is not yet afcertained, whether the juices of plants are tranfmitted through veffels, or cellular fubftance. Each fide of the queftion has had its advocates, who have fuppported their refpective opinions with probable arguments: but it is to be regretted, that, on fo interefting a fubject, no conclufion can be formed from the actual diffection of vegetables. It however feems molt probable, that all the fluids of plants are tranfmitted through veffels, for the following reafons. 1. The exiftence of vafa propria, and rafa aëria, is difcoverable by the naked eye, and made ftill more manifeft by the microfcope. That Juccus proprius and air are contained in thefe is evident, and therefore analogy leads us to believe, that the fuccus communis is alfo contained in veffels. 2. Secretion, of which vegetables have undoubtedly the power, is in no inflance, that we know of, performed without the action of veffels. 3. An experiment, made by Dr. Hales, feems clearly to prove, that the fap is contained within its own veffels, and does not fortuitounly pervade every intertice of the plant. He fixed an inftrument round the ftem of a vine, by which its contractions and expanfions could be accurately meafured; but he found no difference in the circumference of the trunk, when the tree was full of fap, and when it was entirely without it, although the inftrument employed was fo nice, as to detect a variation of the hundredth part of a finger's breadth. If the fap had been tranfmitted, without veffels, through the cellular fubftance, this, on the withdrawing
of the fap, would have been compreffed, and of courfe the ftem of the tree would have contracted itfelf into a fmaller compafs *.
- Botanifts have made many experiments to afcertain the courfe of the fap. Early in the fpring; when the fap begins to flow, incifions have been made in the trunk and branches of trees, as far as the pith; and, in fuch cafes, it has been conftantly found, that a larger quantity of fap fowed from the fuperior, than from the inferior mar'gin of the incifion. This circumftance led to the opinion, that in the beginning of the fpring, great quantities of moifture are abforbed by trees from the atmofphere, and hence the fource of the abundance of fap \dagger. But this conclufion is found to difagree with the phenomena of nature, from the two following experiments.
' 1 . Incifions of various heights being made in the ftem of feveral plants, their roots were immerfed in a decoction of log-wood. The roots abforbed the coloured liquor, which at length began to flow from the fuperior, and not from the inferior, mar-gins of the incifions; nor had the liquor extended

[^1]
Chap. 2.] Experiments on the Courfe of the Sap.

extended itfelf much upwards, beyond the margin of the incifion from which it was difcharged.
' 2. In the feafon when the fap flows moft abundantly, called the bleeding feafon, a deep cut was made into the branch of a growing vine, and the greateft quantity of fap was difcharged from the upper margin of the incifion: but a branch of the fame tree, cut in the fame manner, being inverted; the fap flowed moft copiouny fiom the othermargin of the incifion, which of courfe was now that next the root. On the other hand, many experiments may be brought to prove directly, that, in the bleeding feafon, the fap afcends from the roots towards the branches; the following however may fuffice. 1. Early in the fpring, when little or no fap had as yet entered the plant, Dr. Hope made a number of incifions, of different altitudes, into the root and ftem of a birch. As the fap rofe, it firft flowed from the tuperior margin of the loweft incifion, and then, in regular fucceffion, from the upper margins of the other incifions, till at laft it reached the higheft. 2. If, in the beginning of the bleeding feafon, before the fap is tound in the ftem or branches, an incifion is made in the root of a vine, a confiderable fow of fap will follow the wound. 3. The quantity of fap is very generally proportioned to the humidity of the foil *.

- When

[^2]' When a portion of the bark and wood of the pine is cut from the flem, the fucus proprius flows in confiderable quantity both from the upper and under margin of the incifion. Hence it occurred to botanifs, that this juice might have little or no motion, and that its eflux from fuch an orifice might depend entirely on its being freed from the preffure of the bark and wood. But I cannot accede to this opinion: for although, in the beginning, the fuccus proprius flows from both margins of the incifion, in a little while, as I have obferved, it is difcharged from the fuperior margin only. This obfervation in itfelf is not however decifive. For it may be fuppofed, that the liquor flows more copioully from the fuperior margin, becaufe the preffure of the air is lefs upon it, than en the inferior, and becaufe the liquor itfelf is difpofed to fall downwards by its gravity, in the fame manner as the fuccus communis. That I might put this matter out of doubt, I placed the branch of a pine in a horizontal pofition, and another branch 1 inverted, fo that its branches were turned towards the earth. In thefe fituations, I cut a portion of the bark and wood from each,
roots? The incifion, it is faid, hurts or deftroys the energy of the fap-veffuls for a coniderable way below, whence the fap is not propelled upwards, againgt its own weight, and the preffure of the atnofiphere now admitted. From the divided veffels, it pafes by a lateral comnunication (for there are fap-vefels in every direction) into thofe undivided, and when it has got above the incifon, it again paffes laterally into the divided veffels; and falling downwards, from its own gravity, a want of continuity of veffels, and the diminifhed preflure of the atmofphere, it flows from the faperior margin of the incifion.
and, in both inftances, the fuccus proprius flowed only from thofe margins of the incifions which were farcheft from the roots. Hence it appears clearly, that the courie of this juice, in its veffels, is never from the roots towards the branches, but always in the contrary direction *?

M . Bonnet conceives that the nutrimenrad juices of vegetables pafs during the day-time from the roots to the trunk by the ligneous fibres, affifted by the air-veffels, and are principally carried to the furface of the leaves, where a copious perfpiration takes place. At the approach of night the heat no longer acting on the leaves and the air contained in the arr-veffels, the fap returns towards the roots; at the fame time that the humidity condenfed on the inferior furfaces of the leaves, which by their inequalities are beft fitted to retain it, is abforbed and conveyed through the branches to the trunk. In this manner he is of opinion that vegetables are nourifhed in the day-time by their roots, and in the night by their leaves.

The fame philofopher wifhed to difcover whether plants nourifhed by their leaves would live as long, and thrive as well, as others nourifhed by their roots. He plunged in fmall veffels, filled with water, plants of mercury, immerfing the leaves of fome and the roots of others. He left to each plant one or two fprigs, which were kept out of the water,

[^3]C_{2} and
and which were only nourifhed by the part of the plant which was immerfed. He rendered all there fprigs as equal and as much alike as poffible. He left the plants in this fituation for five or fix weeks, at the end of which time he could obferve no difference between the fprigs uniformly nourifned by the leaves, and thofe nourifhed by the roots. He only remarked that the leaves plunged in water feemed to fuffer a little more from the action of that fluid than the roots. M. Bonnet alfo buried the top of a willow-tree, leaving the roots above ground. The rocts, being prevented from drying by a covering which clid not entirely exclude theair, put forth leaves mixed with roots; the top, which was buried in the ground, produced roots, and the plant continued to live.

Dr. Hales, in his fatical experiments, mentions feveral, in which he rried to change the natural navour of fruits, and to communicate thofe of feveral fpirituous liquors, and of different odoriferous infuflons. With this intention he plunged in difierent liquors branches londed with fruit; and left them there for fome time, without being able to perccive that the tafte of the fruits was in the leaft altered, whether the experiment was made upon them ripe or unripe. But he almoft always perceived the finell of the liquors or infufions in the ftalks of the leaves, and in the wood. He conjectures, with much probability, that the veffels near the fruit become to fine as not to admit the odoriferous particles.
M. Bonnet made experiments on flowers fimilur to thore which Dr. Hales made on fruits. He chofe

Chap. 2.] Experiments on Flowers.

chofe fuch flowers as have naturally little perfume, as the different fpecies of French-beans. Stems with thefe flowers were immerfed in tubes, forse of which were filled with firits of wine, others with Hungary-water, \&c. In about twenty-four hours the flowers were faded, and they had already acquired in a very fenfible degree the odours of the liquors which they had imbibed. The odour became much more remarkable a few days afterwards. M. Bonnet alfo found that the leaves of the apricottree acquired a fenfible odour from the liquors into which branches of that tree were plunged.

С H а P . III.

FUNCTIONS OF VEGETABLES.

> Perfpiration of Plants.-Circulation of the Fluids in Plants.Property in Plants of emitting evital Air; of decompcing W'a-:er.-Senfbility to the Sun's Light.-Caufe of the Graen Ciolour of Vegetables.-Bomnet's Experiments on Vegetable Peripiration.Sexual Syfen -Growuth and Nutrinent of Vegetables.-Ma-nures.-Principles of Agriculture.

THE leaves of plants have been not improperly compared with the lungs of animals. - Plants as well as animals,' fays an author whom I have already quoted with approbation, 'perfpire, and in both cates this function is effential to health. By the experiments of Dr. Hales *, and M. Guettard \dagger, it appears, that the perfpirable matter of vegetables differs in no refpect from pure water, excepting that it becomes rather fooner putrid. Thie quantity perfpired varies, according to the extent of the furface from which it is emitted, the temperature of the air, the time of the day, and the humidity of the atmo?phere. As the leaves form the greateft part of the furface, it is natural to fuppofe, that the quantity of

[^4]thefe will very materially affect the quantity of the perfiration. Accordingly, the experiments of Dr. Hales have afcertained, that the perfpiration of vegetables is increafed or diminifhed, chiefly, in proportion to the increafe or diminurion of their foliage *. The degree of heat in which the plant was kept, according to the fame author, varied the quantity of matter perfpired; this being greater, in proportion to the greater heat of the furromad. ing atmofphere. The degree of light has likewife confiderable influence in this refpect: for Mr. Philip Miller's experiments prove, that plants uniformly perfpire moft in the forenoon, though the temperature of the air, in which they are placed, fhould be unvaried. M. Guettard likewife informs us, that a plant, expofed to the rays of the fun, has its perfipation increafed to a much greater degree, than if it had been expofed to the fame heat, under the fhade. Finally, the perfpiration of vegetables is increafed in proportion as the atmofphere is dry, or in other words, diminifhed in proportion as the atmofphere is humid.'

Dr. Hales found that a fun-fower, weighing three pounds, perfpired twenty-two ounces during twenty-four hours. Dr. Keil perfpired thirty-one ounces in twenty four hours. The quantity therefore perfiped by the furn-flower was much greater, in proportion to its weight, than that perfipired from the human body. Dr. Keil ate and drank four pounds ten ounces in twenty-four hours. Seven-

- Statical Effays, vol, i. p. 29.
C_{4}
teen

24 Cdoriferous Exbalation from Plants. [Book VIII.

teen times more nourifhment was taken in by the root of the fun-fower, than was taken in by the man. If the perfpiration of vegetables is checked, they fpeedily fade. It is checked from glutinous fubflances adhering to their furface; hence the advantage of wafhing them. The more healthy and vigorous the plant, the more copious the perfpiration; though an excefs, as well as a defect of it, feems prejudicial and even deftructive to vegretables. It bears alfo a proportion to the quantity of leaves, thefe being the principal organs of perfipiration.

The oduriferous exhalation of leaves and flowers forms an atmolphere around vegetables, which ftrikes our fenfes, and which the contact of a body on fire is fometimes capable of inflaming, as has been obierved with regard to the fraxinella.
' Some botanifts,' obferves Dr. Bell, 'have conceived, that plants, as well as animals, have a regular circulation of their fuids. Others think this very improbable. On both fides, recourle has been had to experiments; and from thefe, conclufions perfectly oppofite have been deduced. When a ligature has been fixed round a tree, in fuch a manner that no juice could be tranfmitted through the bark, the tree has been found to thicken above the ligature ; but below it, to continue of the fame circumference. Hence fome have concluded, that the fap afcends through the wood, and defcends through the bark. Thofe who are of a contrary opinion have found, that, in certain cafes, the juice afcends through the bark only: for when a portion of the wood has been cut out, and the bark exactly replaced, the growth of the
tree has been found to go on unchanged : hence it is faid, that the juice is tranfmitted equally through all parts of vegetables. The experiments adduced on each fide of the quetion are juft, but the reafonings on thefe, by each party, feem equally inconclufive. The analogy of animal nature appears to favour the opinion, that the juice rifes through the wood only, and defcends only through the bark ; but this analogy is not complete throughout. The arteries are not placed in the internal parts alone, nor the veins in the external, but they accompany each other through every part of their diftribution. In vegetables, the fap rifes from the roots, but the proper juice defcends towards them; in the defcent of the juice, the wood acquires its growth, and abforption is a conftant action of the leaves. Thefe obfervations render it probable, that there is a circulation of the juices; and if there is, the veffels which perform it, we may reafonably believe, accompany each other through every part of their courfe.'

By what force the juices of plants are propelled in their circulation, remains yet one of the fecrets of nature. It has been attributed to capillary attraction, but this caufe feems inadequate to the effect ; nor is it poffible on that principle to explain why the fap of the vine flows from an incifion made in the fipring, and not from one made in the fummer. The capillary attraction ought not to be lefs powerful in the latter than in the former feafon; indeed it ought to be more fo, as the heat is greater. Befides, capillary tubes do not difcharge their contents, when
when broken acrofs; but from the ftem of a plant cut tranfverfely, a large quancity of fuid is difcharged. The more probable opinion is, that plants are endued with fomething of a vital power or energy, which impels the juices through the whole vafcular fyftem ; and this opinion is flrengthened by an obfervation of Dr. Bell, which was the refuls of experiment, namely, that there are particular fuoftances which increafe the growtir of plants, by acting as ftimulants on their fibres.
The experiments of Dr. Prieftley have fufficiently frewn that vegetables have the power of correcting bad air; and Dr. Ingenhouz has proved that they have the faculty of producing vital air only when acted on by the rays of light. If a vegetable is immerfed in water, and the rays of the fun directed on it, air-bubbles will be obferved to collect on the leaves, and at length rife to the furface of the waser. This appearance is moft remarkable in the morning, as the leaves have not then been previoully exhaufted by the action of light. Vital air of a great degree of purity may be obtained in the fummer time, by inverting a jar filled with water in fuch a manner as to receive the air-bubbles as they arife. All plants, however, do not emit this air with the fame facility; there are fome which emit it the moment the rays of the fun act upon them, and this is the cafe with lavender. Some aquatic plants afford vital air with great facility, fome more ilowly, but none later than in eight or ten minures, provided the fun's light is ftrong. The air is almoft entirely furnifhed by the inferior furface of the lezeres of trees; herbaceous plants afford it from
almoft the whole of their furface. The leaves afford more air when attached to the plant, than when gathered, and the quantity is greater, the frefher and founder they are. Young leaves afford but a fmall quantity of vital air; thofe which are full grown afford more, and the more the greener they are. The epidermis, the bark, and petals do not afford it, and in general vital air proceeds only from thofe parts of plants which are of a green colour. Thus green corn and green fruits afford this air, but it is not produced by thofe which are ripe; and flowers in general render the air noxious. Thefe facts may tend to explain the manner in which the light of the fun operates in maturing fruits, viz. by expelling the fuperfluous oxygen, and thus changing them from a harfh and four, into a mild and fweet fubftance. Aquatic plants, and fuch as grow in moift places, are remarkable not only for affording a large quantity of vital air, but alfo for abforbing inflammable gas, and are therefore in all refpects calculated for purifying the air of marfhy fituations. A very extraordinary power of abforbing inflammable air was obferved in the willow by Dr. Prieftley; and this fact feems connefted with the rapid growth of that plant in marfhy fituations, where much inflammable air is produced. M. Senuabier found that plants yitd much more vital air in diftilled water impregnated with fixed air, than in fimple diftilled water.

It appears further, from the experiments of Dr. Prieftey, that plants will bear a greater proportion of inflammable than of fixed air, and that vital air appeared generally injurious to plants. A fprig of mint growing in water, placed over a fermenting liquor, and of courfe expofed to fixed air, became quice dead in one day; a red rofe became of a purple colour in twenty-four hours. Plants die very foon bath in nitrous air, and in common air when faturated with it. Air appears uniformly to have been purified by healchy plants vegetating in ic; bur thefe experiments require great nicety, as the leaft degree of putrefaction will injure the air. Thie air contained in the bladders of marine plants was found confuiterably purer than common air.

Atmofpheric air is seftored, after being injured by refpiation or combuttion, by a plant vegetating in it. This refloration of air depends upon the vegetating ftate. of the plant; for a number of mint-leaves frefh gathered being kept in air in which candles had burnt out, did not reflore the air. Any plant will effeet this purpofe, but thofe of the quicke? growth in the moft expeditious maner.

That plants have a property of producing pure air from water is evident from an experiment of Iir. Prieftley's. The green matter which is to be obferved in water is doubtefs a vegetable production. Water containing this green matter always afiorled vital air in a large quantity; but water which had it not afforded none. It has been frequently offerveci that vegetables do not thrive in the dark. A seceives was therefore filled with watcr, and leept till it was in a fate of giving air ropiounly; after this it was removed into a dark nom, and from that time the production of air entirely ceafed. When placed again in the fun, it afforcled
afforded no air till about ten days after, when it had more green matter, the former plants being probably all dead; and no air could be produced till new ones were formed.

From various experiments it appeared, that different animal and vegetable putrefcent fubfances afforded a very copious pabulum for this green vegetable matter, which produced fo freely the vital air; whence the philofophic author of this difcovery is led to the following conclufions: - It is impoffible,' fays he, 'not to obferve from thefe experiments the adimirable provifion in nature, to prevent or leffen the fatal effects of putrefaction, efpecially in hot countries, where the rays of the fun are mont direct, and the heat moft intenfe. Animal and vegetable fubftances, by fimply putrefying, would necerfarily taint great maffes of air, and render it unfit for refpiration, did not the fame fubftances, putrefying in water, fupply a moft abundant pabulum for this wonderful vegetable fubflance, the feeds of which feem to exift throughout the atmofphere. By there means, inftead of the atmofphere being corrupted, a large quantity of the pureft air is continually thrown into it. By the fame means alfo, ftagnant waters are rendered much lefs offenfive and unwholefome than they would otherwife be. That froth which we obferve on the furface of fuch waters, and which is apt to excite difguft, generally confifts of the pureft vital air, fupplied by aquatic plants. When the fun fhines, this air may be obferved to iffue from them. Even when animal and vegetable fubflances putrefy in air, as they have generaily fome moifure in them, various other vegetable productions, in the form

30 Plants in Shade do not afford good Air. [Book VIII.

form of mold, \&c. find a proper nutriment in them, and by converting a confiderable part of the noxious effluvia into their own fubftance, arreft it in its progrefs to corrupt the atmofphere.'

The fame vegetables which afford vital air very plentifully in the light of the fun, afford in the fhade air lefs pure than that of the atmofphere. This ftriking effect of light on vegetables is a ftrong argument in favour of the opinion, that the motion of the juices of vegetables is performed by vefiels, which, like thofe of animals, poffefs irritability, and are excited to action by ftimulating fubftances.

The effect of vegetation in producing the vital air, which was afforded in the preceding experiments, feemed in fome meafure dubious to Sir Benjamin Thomplon, who extracted vital air, by immerfing in water a variety of fubftances, as raw filk, cotton, wool, eider-down, hare's fur, fheep's wool, ravellings of linen, and human hairas related in a former book. He was led, from the refult of thefe trials, to fufpect that the pure air was mercly feparated from the water, and that any fubftance which would act by a capillary attraction, fo as to feparate the component parts of the water, would effect the production of pure air. He therefore procured a quantity of fpun glafs, which confifts of minute tubes, which he immerfed in water, but the quantity of pure air produced was very trifling. Hence he concludes, that there is fomething in thofe fubitances which operates in producing pure air, and that it is not merely a mechanical feparation of the component parts of water.

The light of lamps produced the fame effet as the fun's light, air in great quantities was produced, and perfectly pure. Vegetables will alfo, with any ftrong light, produce vital air as well as with the light of the fun. The air from filk was much fuperior to that from vegetables.

Plants have a remarkable fenfibility to light; they unfold their flowers to the fun, they follow his courfe by turning on their ftems, and are clofed as foon as he difappears. Vegetables placed in rooms where they receive light only in one direction always extend themfelves that way. 'If they receive light in two directions, they direct their courfe towards the ftrongeft. Trees growing in thick forefts, where they only receive light from above, direct their fhoots almoft invariably upwards, and therefore become much taller and lefs fpreading than fuch as ftand fingle. This affection for light feems to explain the upright growth of vegetables, a curious phenomenon, too common to be much attended to. It has been afcertained by repeated experiments, that the green colour of plants is entirely owing to light ; for plants reared in the dark are well known to be perfectly white.

If we take a fucculent piant, and exprefs its juice, the liquor appears at firft uniformly green; but allow it to ftand, and the green colour feparates from the watery fluid,-and falls to the bottom in a fediment. If we collect this fediment it will be found to be of an oily nature, for it does not diffolve in water, but it will in fipirits of wine, or oil, to which it imparts a green colour. As the fun produces the green colour in plants, and as this re-
ficles in an oily matter, it was formerly concluded that light furnifhes the oily matter of vegetables, and that it effects this by furnihhing the principle of inflammability. The new chemical doctrines, however, afford a much more fatisfactory explanation of the effect of the fun's rays in producing the oily matter in vegetables. Vegetable matter confifts in general of carbon, hydrogen and oxygen ; the fun's rays produce a difengagenent of the latter principle in the form of vital air, and the two former are the conftituent principles of oil.
M. Bonnet made a feries of experiments in order to afcertain whether the fuperio: or the inferio: furfaces of leaves have a greater fhare in performing perlpiration. From the trials which he made, he concludes that the inferior furface of the leaf is in general by far the moft active in this refpect, though in one or two fipecies of vegetables this difference was much lefs remarkable. The mallow was the only vegetable the leaves of which perfpired more by the upper than the inferior furface. The method which he employed to afcertain the comparative effect of the two furfaces was to cover firft one and then the other furface with oil. The leaves were then immerfed in tubes filled with water, and the quantity of the perfpired matter was meafured by the length of the tube emptied in a given time. The oil, by ftopping up the pores, prevented perfpiration from the furface to which it was applied. Some large leaves of the white mulberry-tree being kept fufpended on water with their upper furfaces in contact with the fluid, faded in five days; fome leaves of the fame tree, being placed in a fimilar
fituation,
fituation, but with the inferior furface touching the water, were preferved green for nearly fix months.

The fexual fyftem has been the fafhionable fyftem of botany for many years. It is well known that the palm is of that clafs of vegetables which has flowers of different fexes on different trees. The peafants in the Levant, whether acquainted with this fact, or whether directed to the practice by accident alone, have been accultomed to break branches from the male palm while in flower, and attach them to the female plant, which they find to be conftantly productive of an abundant crop. This fact has alro been proved by a moft decifive experiment of M . Glediffch. There was in the royal garden at Berlin a beautiful palm-tree, a female plant, which, however, though twenty-five years old, had been always barren. There was another palm at Leipfic of the male kind, which bloffomed every year. This ingenious botanift undertook to fecundate the palm at Berlin from that at Leipfic, and had fome of the bloffoms conveyed by the poft. The confequence was, that he produced that feafon excellent dates; anl the experiment, profecuted with fome variation fur feveral fucceeding years, was attended with the fame fuccefs *.

It has been faid, that the polien was deftined for the impregnation of the germen. This is performed in the following manner. The anthere, which at the firft opening of the flower are whole, burft foon after, and difcharge the pollen. Being difperfed about the flower, part of the pollen

* Bonnet Contemp. p. 6.
lodges on the furface of the ftigma, where it is detained by the moifture with which that part is covered: Each fingle grain or atom of the pollen has been obferved by the microfcope to burft in this fluid, and is fuppofed to difcharge fomething which impregnates the germen below: what the fubftance is which is fo difcharged, and whether it actually paffes through the ftyle into the germen, feems yet undeterinined, from the great difficulty of obferving fuch minute parts and operations. In fome vegetables, the ftamina move towards the piftillum; and a very evident motion of them is obferved in the flowers of the common berberry, on touching them with the point of a pin.

The nourishment of vegetables, as it is fo intimately connected with the important fcience of acgriculture, has defervedly attracted confiderable attention. Mr. Boyle dried in an oven a quantity of earth proper for vegetation, and, after carefully weighing it, planted in it the feed of a gourd; he watered it with pure rain-water, and it produced a plant, which weighed fourteen pounds, though the earth had fuffered no fenfible diminution.

A willow-tree was planted by Van Helmont, in a pot, containing 100 pounds of earth. This was in general watered with difilled water, or fometimes with rain-water, which appeared perfectly pure. The veffel containing the plant was covered in fuch a manner as totally to exclude the entrance of all folid matter. At the end of five years, upon taking out the plant, he found it to have increafed in weight not lefs than IIg pounds, though the
earth had loft only two ounces of its original weight.

Thefe experiments would admit of fome doubt, and muft have remained in a great meafure inexplicable, but for the experiments of Mr . Cavendifh, and the facts related by Dr. Prieftley, which place it beyond a doubt, that vegetables have a power of decompofing water, and converting it, with what they derive from the atmofphere, into almoft all the different matters found to exift in their fubitance. For the products of wood in diftillation, I mult refer the reader to what has been advanced in the cnapter on carbon, or the carbonaceous principle.

Ail the proper juices of vegetables depend on the organization, as is evident from the operation of grafting. From the materials of fimple water and air, are produced thofe wonderful diverfities of peculiar juices and fruits, which the vegetable world affords; and the immenfe variety of taftes, fmells, \&cc. In the fame vegetable what a variety is found! The bark is different in tafte from the wood, the peculiar juices have fomething different from them both, and the pith of fome plants affords a matter which could not have been expected from their exterior qualities. The root is often different from the ftem, and the fruit from both, in all their fenfible qualities.

In whatever way the nourifhment of vegetables is received, it may fairly be faid to confint principally of water. I am inclined to believe, however, that calcareous earth, in fmall portions, may enter into the compoition of at leaft many vegetables; fince animals which exitt entirely on
vegetable food are found to have in their folid parts, the bones for inftance, a confiderable portion of this fubflance; though it muft be confeffed, that chemical analyfis, as far as it has hitherto gone, does not warrant us in fuppofing caicareous earth to be an effential conflituent of all vegetable matter. It may be faid further, that on fome occafions the addition of other matters, as of different kinds of manure, adds greatly to the growth of vegetables; but in whatever degree a rich foil or dung may add to the luxuriance of growth, other facts feem to prove that it is not effiential to vegetation. It is well known that many herbs flourith in pure water, and that pear, plum, and cherry-trees, planted in pure mofs, have arrived at fuch perfection as to produce good fruit *.

Different theories have been advanced, to account for the operation of manures in promoting the growth of vegetables, none of which feem altogether fatisfactury. The common opinion is, that the fubftances employed as manures are the food of plants, and are abforbed by their roots. This hypothefis may be true to a certain extent, when

* It is but fair to infert the following fact, which feems to favour the necefity of carbonic matter to the growth and increafe of at leaft fome fpecies of vegetables.
" M. Ruchert is perfuaded that earth and water, in proper proportions, form the fole nutriment of plants; but M. Giobert has.clearly fhewn the contrary; for, having mixed pure earth of alum, filex, calcareous carth, and magnefia, in varivus proportions, and moiftened them with water, he found that no grain would grow in them; but when they were moiliened with water from a dunghill, corn grew in them profperounly. Hence the neceflity of the carbonic principle is apparent." Kirzvand on Manures, p. 42.
applied to fome manures, but cannot be true with regard to them all; for it is well known, that not only chalk and lime, but even flints, are very beneficial to fome foils. Another opinion is, that manures act by bringing foils to fuch a confiftence as is favourable to the growth of the roots of vegetables, and to the affording of them water in a proper quantity. A third opinion is, that manures act as ftimuli on the roots of vegetables, and thus excite them to more vigorous action. Some authors think that manures act as folvents on matters previouny contained in the foil, and thus fit them for entering the roots of plants; and others, that they act chemically, by forming combinations which are favourable to vegetation. Which of thefe hypothefes is beft founded, it is difficult to determine; but it does not feem urilikely that they may be all true to a certain extent.

When we attempt to difcover the component principles of the objects around us, and the fources whence they are fupported, we are loft in the greatnefs and diverfity of the fcenes peefented to use We fee animals nourifhed by vegetables, vegeta* bles apparently by the remains of animals, and fofils compofed of the relics of both thefe kingdoms. It feems certain, however, that vegetables preceded animals. A feed of mofs lodging in a crevice of a bare rock is nourifhed by the atmofphere, and the moifture afforded by the rains and dews. It comes to perfection, and fheds its feeds in the mouldering remains of its own fubftance. Its offspring do the fame, till a cruft of vegetable mould is formed fufficiently thick for the fupport
of grafs and other vegetables of the fame growth. The fame procefs going forward, fhrubs, and lafly the largeft trees, may find a firm fupport on the once barren rock, and brave the efforts of the tempeft.

From the advantages cierived from a change of crops in agriculture, it has been fuppofed that different vegetables derive different kinds of nourifhment from the fame foil, felecting what is beft adapted to their own fupport, and leaving a fupply of nourifhment of anothẹ kind for vegetables of a different freecies. Was this, however, the cale, vegetables would not fo much impede each other's growth when placed near together. And in the operation of grafting, we have a clear proof, that the juices received by the root of one fipecies of tree may, by the organization of the inferted twig, be fubfervient to the growth of leaves, flowers, and fruit of a different kind. The advantage derived from a change of crops may be better explained on other principles: forme plants extend their roots horizontally on the furface of the foil, others ftrike them clownwards to a confiderable depth. Some plants are found to bind or harden the foil, others to loofen it. Thus, fur example, wheat and rye-grafs render a foil ftiff, while pulfe, clover and turnips pulverize it. By varying the crops, therefore, the foil is preferved in a middle ftate, between too much fliffinefs and too much friability. Nor is this the only good effect arifing from this difference of roots. From this circumftance fome vegetables draw their nourifhment from the furface of the earth, while others derive
it partly from a greater depth. So that by a change of crops, a larger portion of the foil is made to contribute to the nourifhment of plants than could have been effected by the cultivation of any fingice fpecies. One other advantage to be derived from a change of crops, is this: fome plants extract almoft the whole of their nourifhment from the foil; and this is particularly the cafe with thofe which are moft valuable, and which contain the greateft quantity of folid matter. By the repetition of fuch crops, however, the foil is found to become too much exhaufted. There are other plants which derive a large proportion of their nourifhment from the air ; by fuch therefore the foil will be much lefs exhautted, and under a crop of them will be in fome meafure at reft. The good effects of a change of crops may therefore be fufficiently explained, without fuppofing that each particular !pecies of vegetables is nourifhed by a different kind of food. This opinion is alfo neceffarily attended with two great difficulties: one is, that there exifts in every foil as many diftinet kinds of nourifhment, as there are fipecics of plants capable of growing in that foil; the other, that plants are endued with the facuity of dilcerning and felecting, from all thefe kinds, their own proper nourithment. The former of there fuppofitions is too abfurd to merit the leaft attention, and the latter has been difproved by actual experiment, fince plants are not able to prevent their roots from abforbing fuch matters as prove poifonous to them. Other writers, however, have been more moderate, and though they have rejected the idea of feccific nourifhment in general, have ne-
verthelefs imagined that the hypothefis might be well founded with refpeet to particular fpecies of vegetablec. This they infer from the exiftence of fpecific manures, as foot for faintoin, afhes for white clover, and fome others. It does not feem pofitible, however, to draw a line of diftinction; and if we reject the idea of a fpecific nourifiment in general, we cannot admit it in particular inftances.

In order to difcover whether plants have an actual power of diftinguifhing matters prefented to their roots, a friend, who affifted me in compiling this part of the work, made, among others, the following experiment.

A vigorous plant of mint was placed in a twoounce phial, filled with filtrated well-water, io which were added four drops of a moderately itrong folution of fal martis. On examining the plant the following day; no other effect was obferved, than that the very tips of the radicles were withered and black. Four more drops of the formion were now added. On the third day the appearances were thic fame; and no new change taking place on the fourth, twelve more drops of the folution were added. On the fifth day the roots appeared of a yellowifh green colour, and the top drooped very much, The larger leaves were pretty much withered and blackened. The abforption of the water appeared to be in fome meafure impeded, but not entirely prevented. On the fixtin day the whole plant was witheing very faft ; the roots became of a dark olive-green colour, and the larger leaves were become very black, efpecially the foot-ftalks
and the projecting fibres. On the feventh day the blacknefs had made ftill further progrefs, and the plant was dead. A fufficient proof that fome of the iron was abforbed by the plant, may be drawn from the following circumftance-its leaves when macerated in diftilled water, produced a black colour iwith galls. The leaves of a plant of mint, which had been nourifhed by water alone, when tried by the fame teft, produced no colour whatever. Triling as this experiment may appear, it proves two points; that plants have not the power of rejecting even injurious matters when prefented to their roots; and that other matters befides water and :ir are capable of being abforbed by them.

Agriculture feems yet to be nearly in its infancy, and even the benefit produced by the common cuftom of letting lands lie fallow, has not yet been fatisfactorily explainect. Something may no doubt be attributed to the deftruction of weeds, but more probably to fome change produced in the foil by its being expofed to the action of the fun and air. The management of nitre-beds may tend to throw fome light on this fubject. Thefe are compofed of calcareous earth and dung cemented together. After being expofed for fome months to the air, they are found to contain a quantity of nitrous acid, which, uniting to the calcareous earth, forms a kind of falt, which is extracted by lixiviation. Now calcareous earth and dung are two of the moft powerful kinds of manure, and it does not feem improbable that their fertilizing powers may be in tome manner connected with their property of affording nitrous acid.

$$
\text { С н а р. } I V^{\top} \text {. }
$$

VEGETABLESUBSTANCES.

Of the mof remarkable Vespeable Prodsciions.- Vicgetalie Oxyds.-Fegetable Acids.-Otber efintial Salts of V'igetables.

IT has been already remarked, that the fimple component principles, which are effential to the formation of vegetable matter, are but three in number, namely, carbon, hydrogen, and oxygen. From the various proportions in which thefe ingredients are combined, refults almoft all the variety of vegetable matters which fall under our notice. Sugar, mucus (under which term I include the different kinds of gums, and farch) are vegetable oxyds, having hydrogen and charcoal combined, in different proportions, as their radicals or bafes, and united with oxygen, fo as to bring them to the ftate of oxyds. From the fate of oxyds they are capable of being changed into that of acids, by the addition of more oxygen; and according to the degrees of oxygrenation, and the proportion of hydrogen and charcoal in their bafes, they form the feveral kinds of vegetable acids. On the other hand, gum by being depriyed of oxygen is capable of affording oil. M. Wroulfe has found that a pound of gum arabic diftilled with a quarter of a
pound of vegetable alkali, furnifhes a confiderable quantity of oil. The liquor which rifes along with it is not at all acid ; therefore the acid of the gum remains united with the alkali. Honey afforded copioufly an oil, when fubmitted to the fame procefs.

The following are all the vegetable acids hitherto known.
I. Acetous acid, or vinegar.
2. Oxalic acid, or that of forrel and fugar.
3. Tartarous acid.
4. Pyro*, or empyreumatic, tartarous acid.
5. Citric acid, or that of lemons.
6. Malic acid, or that of apples.
7. Pyro-mucous acid.
8. Pyro-ligneous acid.
9. Gallic àcid, or that of galls.
10. Benzoic acid, or that of Benjamin.
11. Camphoric acid.
i2. Succinic acid, or that of amber.
Nitrous acid, repeatedly difilled with gums, mucilages and fugar, is decompofed, the azote in part efcapes, and the oxygen uniting with the inflammable matter of thefe fubftances, produces the acid of fugar. By a continuation of the procefs, however, the hydrogen and charcoal of the mucblaginous matters are feparated; the charcoal, combining with the oxygen, forms carbonic acid gas, and the hydrogen either efcapes in the fate of inflammable air, or, attracting part of the oxygen, forms water. From this view of the fubject, toge-

[^5]tiocr with nther facts, it has been inferred, that a greater or leís ;roportion of vital air, unied with the other two general principles of veectables, hydrogen and clarcoal, produces all the various acids of vegetables. Thus tartar is fiud to have been converted into the acid of apples, by treatment with nitrous acid. The acid of apples, by the continuance of the operation, becomes converted into acis? of fugar, or acid of forrel, which are the fame thing. The fame procefs further continued, affords vinegar. Hence it flould feem that according to the greater progrefs of the operation of combuftion, or the combination of vital air with the bafes, the acids of tartar, of apples or unripe fruit, of forrel or fugar, of vinegar, and laftly of charcoal, are produced. In this order of proceeding, the acids become more and more perfect, and lefs eafily decompofable; and it probably procceds from this caufe, that the reverfe of thefe proceffes could never be completely accomplified.

Prcfeffor Murray, of Gottingen, has affured us, that he has obtained acid of fugar by repeated diftillations and congelation, without ufing nitrous acid. Abbè Fontana obtained an acid perfectly like that of fugar from all the gums and refins. Mr. Watt of Birmingham, when making fome experiments relative to ink, obfersed a number of particles floating in the fluid, which had the fhape of cryftals of the faccharine acid, and upon examination were found to be really fuch ; and, condalting the procefs in the ufual way with the nitrous acid, he found that aftringent vegetable matters contain the

Chap. 4.] Neutral Salts found in Vegetables.
acid of fugar in greater abundance than that fubftance from which it derives its name.

Thefe faline matters are called effential falts of vegetables. There are fome others which are allo called effential falts, but are not peculiar to vegetables. Such as the fixed vegetable alkali, which may be extracted by incineration from plants in general, and the fixed foffil alkali, which is only extracted from marine plants. Several neutral falts may alro be extracted from particular vegetables: as vitriolated tartar from millefoil, and from aftringent and aromatic plants; Glauber's falt from tamarifk ; common falt and muriat of pot-afh from marine plants. Many other falts will doubtlefs be found, when a greater number of planis thall be accurately analyfed.

Снар. V.

OF THE MORE SIMPLE VEGETABLE COMPOUNDS.

Gum.-Gum Arabic.-Gum Tragacanth.-Common Eurofean Gum -Sugar; obtained fiom moft Fegetables.-Procefs of making Sugar. - Manna. - Fat, or exprefled Oils.-Cbocolutc.-Vegetable Wax.-Analyfs of Olive Oil.-EGential Oils.-Of Cimna-mon.-Of Balm, Peppermint aud Wormevood.-Of Lavender. -Of Rofes.-Of sinifed.-Of Parfley.-Of Camomit.-Of Saffafras and Ciurrazuy).-Of Nutmeg, Pepper and Mace.-Buljams.-Baljam of Tolu.-Benzoin and Storax.-Camphor, Refins.-Gum: Copal.-Catclione or clafic Giun.-Fecula.-Bricny.-Potatccs.-Sago.-Salep.- Farina or Flonr.-Glu-3n.-Starch.-Saicharine Matter of I'bsat.-Dread.-Colouring Matters of Vegctablis.- Priuciples of the A:t of Dying.-Arnetto.-Baffard Saffirn.-Archil.-Indigo.-Alkanet Rcot.
 Ga!ls.-Lakes.

THERE are certain compound fubftances, which are formed by the procefs of vegetation, and may be obtained without the application of any greater heat than that of boiling water, or the action of any other folvents, than water and ardent fpirit. Thefe fubftances may be referred to the following heads:-1. Gum. 2. Sugar. 3. Fat Oils. 4. Effential Oils. 5. Balfams. 6. Camphor. 7. Refin. 8. Pure fecula of vegetables. 9. Farina. 10. Vegetable colouring matters.
I. GUM.
I. Gum- - Its charaders, when in its pureft fate, are thofe of a fubftance inodorous, infipid, generally folid, of more or lefs tranfparency, with fometimes a light tinge of colour,' generally yellow ; eafily foluble in water into a vifcid liquor, called mucilage, in which ftate it originally exifted in the vegetable; not acted on by fpirit of wine or oils; not volatile in the heat of boiling water, nor fufible in any heat, but fubject to the fame changes as other vegetable matter.

Gum, in its dry and folid ftate, is not in the leaft acted on by oils, but mucilage manifefts a confiderable difpofition to unite with them. Gum is not a folvent of relinous or balfamic matter; this matter will, however, be diffolved in water, in confequence of being added to gum, efpecially by the affiftance of agitation. Thus oils and balfams may in many cafes be combined with water, and remain combined with it, forming a milky folution, particularly if the quantity of gum is confiderabie. This kind of combination is very frequent in plants. There are many in which oil and gum are naturally united. The ufeful juice of the poppy is of this kind, and from fuch compounds gum-refins are obtained, by the evaporation of their watry parts. They have ftill folubility in water, though the gum is the part chiefly diffolved; the refinous part is either left in its concrete ftate, or being merely fufpended, and not diffolved, its particles are interpofed between thofe of the gum and water, and occafion a degree of opacity. Such fubftances alfo in their folid ftate as confift of a mixture of guni and refin are always opake, while the
pure gums and pure refins have more or lefs of tranfparency.

Gum is very abundant in the vegetable kingdom; it is found in a great number of roots; the young fhoots and young leaves contain it in large quantities, and its prefence may be known by its vifcous and adhefive quality, when thefe parts are cruthed between the fingers. Gum is ufually obtained by wounding the bark of particular trees. It is obfervable, that faccharine fruits, when four and unripe, are found to contain gum and an acid; whence it feems not unfair to conclude, that faccharine matter is formed of thefe materials, operated on by the procefs of vegetation.

The moft common gums are-1. Gum Arabic, which flows from the acacia in Egypt and Araoia, and is of the fame nature with gum Senegal, which is fometimes fold inftead of it. 2. Gum tragacanth, which is obtained from a thorny bufh, growing in Crete, Afia, and Greece. 3. The gum which flows from certain trees growing in this country, particularly apricot and plum-trees. The effential characters of all thefe gums are the fame, but gum tragacanth is by far the mont powerful in producing a thick and tenacious mucilage.
II. Sugar. - The mixed and various properties of this fubftance, have rendered chemitts very doubtful to what clafs of bodies it ought to be referred. By fome it has been called inflammable, by others faline, and by others it has been claffed among gummy and mucilaginous matters. Sugar. is foluble, both in water and ardent fpirit. It is more inflammable than gums, and has not been
proved to contain any falt ready formed, except fome fixed alkali. It is the only principle the prefence of which enables fluids to take on the vinous fermentation.

Saccharine matter is found in a great number of vegetables; fuch as the maple, the birch, the red beet, the parfnip, the grape, farinaceous grain, potatoes: Margraff indeed extracted it from moft vegetables; and it is well known that honey is a faccharine matter, collected by the inftinct of the bee from an infinite variety of plants, but principally from flowers. The arundo faccharifera or fugar-cane contains this matter however in larger quantities; and affords it more readily, than any other plant. The ripe canes are twice crufhed between iron cylinders, by which they are fqueezed completely dry, and fometimes even reduced to powder. The cane juice or melafies is received in a leaden bed, and thence conveyed into a veffel called the receiver; thence it runs to the boiling-houre, where it is received into a copper pan or caldron, which is called a clarifier. Of thefe there are generally three, and their dimenfions are determined by the extent of. the owner's plantation. Methods of quick boiling are indifpenfably neceffary, as the pureft cane juice will not remain twenty minutes in the receiver, without fermenting and becoming tainted. As foon. as the fream from the receiver has filled the boiler or clarifier with frefh liquor, and the fire is lighted, the temper, which is generally Brittol white lime in powder, is ftirred into it. This is done in order to neutralize the fuperabundant acid, to get rid of which is the great difficulty in making fugar. As Vol. III. E the
the force of the fire increafes, a fcum is thrown up, which proceeds from the gummy matter of the cane, with fume of the oil, and fuch matters as are entangled in the mucilage. The heat is now fuffered to increafe gradually, till it approaches to that of boiling water; but it muft by no means be fuffered to boil. When the fcum begins to rife into blifers, and break into white froth, which generally appears in about forty minutes, it is known to be fufficiently heated. The fire is then extinguifhed, and, if circumftances will admit, the liquor is left a full hour undifturbed. The liquor is now carefully drawn of, fo as to leave the fcum, and conveyed by a gutter to the evaporating boiler; and if produced from good materials, and well managed, it will appear almoft tranfparent. In this veffel it is fuffered to boil, and the fcum as it rifes is continually taken off, till the liquor becomes finer, fome whar thicker, and almoft of the colour of Miadeira 'wine. Being transferred to a fmaller copper, the boiling and fcumming are continued; and if the liquor is not fo clear as might be expected, lime-water is added, which thins the mixture, fo as to fuffer the impurities to rife more readily to the furface. When, in confequence of fuch foumming and evaporation, the liquor is fo reduced that it can be contained in the third copper, it is laded into it, and fo on to the laft copper, which is called the teache. This arrangement fuppofes four coppers, befides the three clarifiers.

In the teache the liquor undergoes another evaporation, till it is fuppofed to be boiled enough to be removed from the fire.

The cooler (of which there are generally fix) is a fhallow wooden veffel, about eleven inches deep, feven feet in length, and from five to fix feet wide. A cooler of this kind holds a hogthead of fugar. Here the fugar grains, that is, as it cools it runs into a coarfe irregular mafs of imperfect cryftals, feparating itfelf from the melafes. From the cooler it is taken to the curing-houfe, where the melaffes drains from it. When it is cooled fo that the finger may be.plunged into it without injury, it is poured into barrels, placed over certain cifterns, and pierced at the bottom with many holes, imperfectly ftopped with the ftalk of a plantain leaf, through which the fyrup drains. In the fpace of three weeks the fugar becomes tolerably diy and fair. It is then faid to be cured, and the procefs is finifhed. The fugar thus obtained is called moufcovado, and is the raw material whence the Britifl fugar-bakers chiefly make their loaf or refined lump. The juice of the fugar-cane contains a fuperabundance of acid, which prevents the dry concretion. In order to get rid of this, they employ lime-water, as the faccharine acid is feparated by its means from every other combination. The lime powerfully attracting the acid when united with it, forms an infoluble falt, which either falls to the bottom or mixes with the fcum. Many perfons have fuppofed that a portion of the lime remains mixed with the fugar; but Bergman affures us, that if the purification is properly conducted, the nature of the ingredients, the circumftances of the operation, and finally the moft accurate analyfis, abundantly fhew, that there is not the fmalleft trace of lime
remaining. Good fugar diffolves totally in difilled water, which could not poffibly be the cafe if there was prefent any lime, either in a feparate ftate or united with the faccharine acid.

There is another fort of fugar, which is much ufed, and which in England-paffes by the name of Lißon fugar, but which in the Weft Indies is called clayed fugar; the procefs for making it is as follows:-A quantity of fugar from the cooler is put into conical pots or pans, with the point downwards, having a hole about half an inch in diameter at bottom, for the melafies to drain through, but which is at firt ftopped with a plug. As foon as the fugar in thefe pots is cool, and becomes a fixed body, which is known by the middle of the top falling in, the plug is taken out, and the pot placed over a large jar, intended to receive the fyrup which flows through. In this fate it is left as long as the melaffes continucs to drop, when a ftratum of moifened clay is fpread on the fugar. The water gradually draining from the clay, dilutes the melaffes, in confequence of which more of it comes away from the fugar, which becomes whiter and fincr. A fecond covering of clay is put on when the firft is dry, and water is again fuffered to filter through, after which the loaves are carried to an oven to dry. At the end of eight or ten days thefe loaves are broken, and the powdered fugar is conveyed to Europe.

Certain juices which flow out of plants are of a faccharine nature ; fuch is manna, which is produced by the pine, the fir, the oak, the maple, the juniper, the fig, the willow, \&xc. ; but the aht,
the larch, and the alhagi afford it in the largett quantities. Robel, Rondelet, and others, have obferved at Montpelier, upon the olive-trees, a kind of manna, to which they have given the name of oeliomeli. Tournefort collected it from the fame trees at Aix and Toulon. The afh, which is very abundant in Calabria and Sicily, affords the manna of commerce: it flows fpontaneounly from thefe trees, but is much more abundantly collected by making incifions in the bark. That which is procured by introducing chips of wood or finall fticks into artificial apertures, forms a kind of ftalactites, perforated within, and called manna in the tear. Manna in flikes flows from the bark, and contains fome impurities. Manna affords, by treatment with the nitious acid, the fame acid as is obtained from fugar.
III. Fat Oils are not emitted from the furface of vegetables, but are obtained by preffure from their emulfive feeds or kernels. They feel fmooth to the touch, are generally, when recent, without fmell or tafte, and are infoluble in water. They are not volatilized but by a heat confiderably fuperior to that of boiling water, and do not take fire till fufficiently heated to be volatilized. When they are burned on the wick of a lamp, fmall portions are fucceffively brought to its extremity, and being there volatilized, undergo inflammation. IMoft fat oils are fluid, and require a confiderable degree of cold to congeal them; ochers become folid by a very flight degree of cold; and others again are al:noft always folid: thefe laft are called butters.

Such are thofe of the cacao-nut, from which chocolate is made, and alfo of the cocoa-nut. Vegetable wax is of the fame nature, only more folid. It is the production of China; and is there made into yellow, white, or green candles, the colour varying according to the manner in which the wax is extracted. The catkins of birch and poplar afiord a fmall quantity of a fimilar wax. M. Berthollet eafily whitens it with oxygenated muriatic acid.

Fat oils expufed to the air attract its oxygen, and become acid or rancid. Water and fpirit of wine, by abftracting this acid, deprive them of their ftrong tafte, but never completely reftore them to their original ftate. M. Berthollet has difcovered that fat oils, thinly fpread on the furface of water, and expoled to the air, become thick, and affume the appearance of wax. This appears to arife from the abforption of oxygen, as the oxygenated muriatic acid procluces this change more fuddenly.

Thefe oils afford by diftillation a fmall quantity of water impregnated with a peculiar acid, a light oil, a denfe oil, and inflammable and fixed airs. The quanticy of charcoal left behind is not abundant. By re-diftilling the firt products, more water, and an oil which becornes lighter each time, are obrained. Lavoifier ccllected the produrts of oliveoil bursed in an apparatus properly conftructed to afcertain their nature and properties. He obtained feventy-nine parts of carbou, and twenty-one of hydrogen, from one hendred of vil. From thefe component parts, inferences may be drawn refpecting the acict, the water, the fixed air, and the inflammable
air,
air, afforded by partial decompofitions or combuftions of this fluid. When oils are burned in pure air, one of their component principles, hydrogen, is combined with pure air, and forms water; while charcoal, its other component part, combines with pure air alfo, and forms fixed air.

The denfe animal oils, fuch as butter, tallow, fat, and the oil of the whale, exceedingly refemble vegetable fixed oils. They appear, however, to contain a proportion of azotic air and anmalized matter, probably in the flate of ferum or jelly.

Agitation in water feparates a mucilaginous matter from fat vegetable oils, which feems to be the caufe of their becoming rancid. They combine with pure fixed alkalies into foap, and they alfo unite with magnefia and lime, which form with them foapy compounds.
IV. Essential Oils are remarkable for a ftrong aromatic fmell, and are fufficiently volatile to rife with the heat of boiling water. They are in general foluble in fpirit of wine, and their tafte is very acrid. They are much more inflammable than the fat oils.

Effential or volatile oils exift in moft fragrant vegetables, and in various plants are found in different parts; thus the oil of cinnamon is found in the bark; of balm, peppermint, and wormwood, in the leaves; of the rofe and lavender, in the flower; of nutmegs, anife, and fennel, in the feeds. They are obtained either by expreffion, as from the peel of oranges and lemons, or by diftillation with water. For the latter purpofe, the plant is

E4
put into a copper alembic, with water; the water being made to boil, comes over together with the oil into the receiver, and is obtained feparate by decantation. Some of the effential oils are fluid, as that of lavender ; others congeal by cold, as that of annifeed; others are always concrete, as thofe of roíes and parfley. They differ much with refpect to colours: thus, oil of lavender is yellow, that of cinnamon deep yellow, that of parney green, that of camomile blue. Some of the effential oils float in water, as moft of the oils obtained from plants growing in temperate climates; others, as thofe of faffafras and carraway-feeds, and moft of the oils from hot countries, fink in that fuid. This property is not, however, invariable with refpect to climate, as the effential oils of nutmeg, pepper, and mace are lighter than water. It is remarkable, that effential oils fometimes entirely differ in their properties from the plant which affords them; thus, oil of pepper is mild, and oil of wormwood is not bitter.

The perfume, or principle of fcent, in plants, to which Boerhave gave the name of Spiritus reator, feems in general to refide in the effential oil. It compofes an extremely finall part of the weight of vegetables, as may be inferred. from the lofs of fragrance fuftained by effential oils with little or no lofs of weight. It does not feem improbable, that the perfume, or principle of feent, in plants, is a ças of a peculiar nature. Its invifibility and volatility, the manner in which it is expandel and difperfed in the atmofplsere, together wih certain experiments made by Dr. Ingenhouz, on the noxious gas af-
forded by flowers, render this opinion very probable.

It is eafy to difcover the adulteration of volatile oils, either by pouring ardent firit on them, which will not diffolve the fat oil they may be contaminated with; or if they are dropped on paper, and held to the fire, the effential oil evaporates, leaving the fat oil behind, which makes a greafy fpot. If oil of turpentine is fraudulently added to them, its fmell betrays its prefence when treated in this manner. By expofure to the air they become thick; and in procefs of time affume the character of reff. Needle-fhaped cryftals are depofited fimilar to thofe alforded by camphor when fublimed. Geoffroy the younger obferved them in the effential oils of motherwort, marjoram, and of turpentine. The fame chemitt obferves, that their fme! is fimilar to that of camphor.

Effential oils combine very readily with fulphur, and form compounds called balfams of fulphur, in which the fulphur is fo far changed that it cannot be recovered.
V. The proper vegetable Balsams are oily aromatic fubftances, imperfectly fluid, obtained by incifions made in.certain trees. The word balfam has been ufed in a very extenfive fenfe, to denote a variety of vegetable fubftances, which agree in confiftence, though differing very widely in their nature and properties. This denomination, however, is more properly confined to fuch refinous mateers as poffefs a fragrant fmell, and more efpecially contain acid, odorant, and concrete falts, which
may be extracted by decoction or fublimation; fuch as benzoin, balliam of Tolu, and ftorax.
VI. Camphor is a peculiar vegetable fubftance, of a ftrong finell and tafte, which referrbies effential oils in fome of its properties, and differs from them in others. It is much more volatile than the effential oils; with the mof gentle heat it fublimes and cryfallizes in hexagonal laminæ attached to a middle fiem. By a fudden heat it melts before it rifes. Water cioes not difolve it; but it is plentifully foluble in fpirit of wine, æether, and concentrated acids, from the two former of which it is feparated by the adulition of water without alteration. Fixed and volatile oils diffolve camphor with the affiftance of heat, and depofit cryftals in the form of a beautiful vegetation by cooling. A peculiar acid is formed by the difillation of nitrous acid with this fubftance. Camphor, has heen obtained in fmall quantities from the roots of zedoary, thyme, rofemary, fage, anemony and other vegetables, by diftillation. It is obfervable, that all the fe plants afford a much larger quantity of camphor, when the fap has been fuffered to pais to the concrete fate by feveral months drying. Thyme and peppermint, חowly dried, afford much camphor; and M . A chard has obferved, that a fimell of camphor is difengaged when volatile oil of fennel is treated with acids. M. Chaptal concludes, from thefe and fome other facts of the fame kind, that the bafe of camphor forms one of the conftituent parts of fome volatile oils, in which it exifts in the liquid state,
ftate, and does not become concrete, but by combining with the bafe of vital air.

The camphor of commerce is obtained from a fpecies of laurel which grows in China, Japan, and in the inands of Borneo, sumatra, Ceylon, \&c. The tree which produces it fometimes contains it in fo large a quantity, that it need only be cleft, in order to obtain very pure tears of camphor, of confiderable fize. The roots of this tree afford camphor in by far the greateft abundance, but it is alfo procured fr, m the branches, trunk and leaves. The method of obtaining the camphor is by diftilling the different parts of the tree with water. The alembic in which the operation is performed is covered with a capital or head filled with ftraw. On the application of a fufficient heat, the camphor is fublimed in fmall greyifh grains, which are afterwards united into larger maffes. The camphor in this ftate is impure ; it is purife ! after being brought to Europe, principally in Holland, where it undergoes fublimation in low fat-bottomed glafs veifels. Chaptal fays, that the Dutch mix an ounce of quick-lime wich every pound of camphor previous to diftillation.
VII. Resins are dried juices of plants, of the nature of effential oils. Almof all the concrete juices diftinguifhed by the name of refins are foluble in ardent fpirit, and not in water, whereas gums are foluble in water, and not in fpirit. They ufually flow from wounds made in the trunks of trees purpofely to obtain them. They are infiammable, and burn with much fmoke. In clofed vef-
fels they do not rife wholly by heat, but are decompofed. Refins differ from balfams in their fmell, which is lefs agrecable, and efpecially in their containing no concrete acid falt. The coimmon refin of the pine, the refin of the fir, pitch, tar, and turpentine, are perfećt reins, and are foluble in fpirit of wine. Copal, and the elaftic fubftance callect coutchouc, which is the infpiffated juice of an African tree, are ufually but improperly reckoned anoong refinous fubitances; though neither fpirit of wine nor water diffolves thern. They are foluble, however, in oils, by the affiftance of heat, and have been thought to be of the nature of fat oils, though they differ in many remarkable properties.

The juices called gum-refins, of the mixtures of gum and refin, are not completely foluble either in water or fpirit of wine. Both thefe menftrua, however, by diffolving one of the component parts, fufpend a portion of the other, from their intimate union.

Viif. Pure Fecula of Vegetables.-If the fubftance of a vegetable is reduced to a pulp by pounding, this pulp by frong preflure affords a turbid white o: coloured Pluid, which by flanding depofits a fubfance, more or lefs fibrous or pulverulent, according to the nature of the vegetable fubftance from which it was obtainced. This is called the fecula of regetables, and confitts almoft entirely of farch. Some parts of vegetables appear to be altogther compofed of this matter; fuchas the feeds of the gramineous and leguminous plants, tuberous ronts, \&ec. Thefe parts in general
afford
afford the fineft and moft abundant fecula. The ftems and leaves of vegetables afford only a coarfe filamentous depofition, but if this is powdered and wained, the water carries off a fine fecula, perfectly fimilar to that afforded by grain. All vegetables therefore, and all the parts of them, afford more or lefs of this matter; the only difference is, that in fome parts it is naturally difengaged from other fubftances, in others it is in fuch a ftate, that it muft be feparated by a laborious procefs. The fecula of fome vegetables is feparated as an article of food: as from the root of briony, from potatoes, from the root of a very acrid plant called manioc, from the pith of a kind of palm which grows in the Moluccas, which affords the fecula called fago; and from the root of a fpecies of orchis, which affords falep.
IX. Farina.-Flour, or the pulverized fubftance of farinaceous feeds, has a ftrong analogy with the gummy and faccharine mucilages. Farinaceous feeds, if kept in a moderate temperature, and fupplied with moifture, are, by the incipient procefs of vegetation, converted in a great meafure into faccharine mucilages, as happens in making malt. Wheat-flour is the moft perfect farina with which we are acquainted, and I fhall therefore confine my defcription to it; though it mult be confeffed that this defcription will not apply in all refpects to the more imperfect fpecies of farina.

If a handful of wheat-flour is taken and kneaded in a veffel of water, underneath a ftream from a cock:,
cock, the water carries off a fine white powder, and the kneading muft be continued till the water paffes off clear. The flour is then found to be feparated into three fubftances; a greyifh and elaftic matter remaining in the hand, which is calied the glutinous or vegeto-animal part; a white powder depofited by the water, which is the fecula or farch; and a fubftance held in folution by the water, which is of a faccharine mucilaginous nature.

The glutinous matter exifect before in the flour in a pulverized form, and acquires its tenacity by imbibing a portion of the fluid, but is totally infoluble in it. It has fcarcely any tafte, is clantic, ductile, and of a whitifh grey colcur. When drawn out, it extends to the length of about twenty times its diameter before it breaks, and appears as if compored of fibres placed befide each other, according to the direction in which it has been drawn. If the force ceales, it recovers its original form by its elafticity. When dry it is femi-tranfparent, and refembles glue in its colour and appearance. If it is drawn out thin when firfo obtained, it may be dried by expofure to the air, and in that flate has a polified furface, refembling that of animal membranes. If it is expofed to warmth and moifture while wet, it purrefies like an animal fubftance. If this gluten in its dried ftate is placed on burning coals, or held in the flame of a candle, it exhibits the characters of an animal fubfance; it crackles, fwells and burns, exactly like a feather or piece of horn. By diftillation it affords, like animal fubftances, alkaline water, concrete vo-
latile alkali, and an empyreumatic oil. Its coal is very difficulty incinerated, and does not afford fixeci alkali.

From the fe facts it follows, that this fubfance is totally different from all the others kiown to exift in vegetables, and in many of its characters refembles the fibrous part of the blood. It is to this gluten that wheat-flour owes its property of forming a very adhefive patte with water. This gluten - does not appear to exift in any confiderable quantity in other farinaceous fubitances, as rye, barley, buck-wheat, rice, \&ic. M. Berthollet thinks that this glutinous fubftance contains phofphoric falt, like an mal matters, and that this is the reafon of the difficulty with which it is inciserated. Rouelle the younger found a glutinous fubftance in the fccula of plants, analogous to that of wheat.

The powder which I remarked, as being feparated from the farina, and which, bering only furpended and not diffolved in the water, falls to the bottom by reft, is the amylaceous fecula or farch, which indeed compofes the geater part of the four. This fubftance is very fine and foft to the touch; its tafte is fcarcely fenlible. When firf extrazted by the procefs which has been defcribed, its colour is greyifh; but the farch-makers render :t extremely white, by fuffering it to remain in the water for a time, after it has becume acid.

Starch feems nearly allied τ, mucilaginous mitters, and is totally different from the glucinous ibftance laft defcribed. Its habitudes and produ is with the fire, or with nitrous acid, are nearly tie fame as thofis of gum and of fugar; but it diff is
from thefe fubftances in being fcarcely, if at all, acted on by cold water, though with hot water it forms a gelatinous fluid. It feems to be more remote from the faline ftate than gum, as gum is more remote from it than fugar. Starch burns without emitting an empyreumatic fmell. By diftillation with a nake!! fire, it affords an acid water of a brown colour, and a very thick oil towards the end of the procefs. Its coal is eafily reduced to afhes, which contain fixed alkali.

The fubftance which was mentioned as being diffolved in the water in which flour is wafhed, does not effentially differ from other faccharine mucilages. By evaporating the water in which it is contained, M. Poulletier obtained a vifcous glutinous, fubftance, of a brownifh yellow colour, and fightly faccharine tafte. This fubftance, called by its difcoverer the mucofo-faccharine matter, exhibited all the phenomena of fugar in its combution and diftillation. It is this which excites the acid fermentation in the water which floats above ftarch; for, as Macquer well obferves, the latter is not at all foluble in cold water. The mucofo-faccharine matter exifts in a very fmall proportion in wheat-flour. M. Fourcroy, however, is of opinion, notwithtanding the finall quantity of it, that it is the part principally concerned in the fermentation by which bread is leavened.

With refpect to what is the nutrimental part of flour, all the fubftances into which it is refolved, by wafhing it in water, feem well adapted to this purpofe; but as the amylaceous matter is the moft abundant, $f 0$ it is probably the moft important ingredient

Chap. 5.]

gredient. The amylaceous matter in wheat is to the glutinous in the proportion of about three to tivo.

Bread is the farina of grain, made into aj pafte with water, and baked. Unleavened bread, or bifcuit, keeps longeft without fpoiling, and is therefore uled at Fea, where baking woukd be extremely inconvenient. Bread ufed on fhore is in general. leavened, and for this purpofe a guintity of yeaft is added to it, whilile in the ftate of dough; in confequence of this, and of being kept in a warm temperature, it undergoes fermentation, attended with the estrication of air, by which the particles are feperated from each other, and the mafs fwells and becomes more porous. This diftenfion is ftill fur-. ther increafed by the rarefaction of the air in baking, and thus is formed a fubftance much more mifcible with water than dough, and upon this latter property feems to depend its greater wholefomenefs, as being more digeftible.
9. Colouring Matters of Vegetables. Ona knowledge of the colouring matters of vegetables, depends the art of dying, which confifts in extricting from various fubitances colouring particles, and applying them to ftuffs and other matters intended to be dyed, fo that they fhall adhere as firmly and durably as poffible. Dyers enumerate five colours, which they call primary, from the mixture of which other colours are produred: thefe are blue, red, yellow, nut-colour, and bláck. Gnorf dyes are thofe which can refift the attion of water, air, and of certain faline and faponaceous liquors, Vol. III.

F
which
which are ufed as the proofs of the durability of colours. Falfe dyes are thofe which cannot refift thefe proofs.

A great number of vegetable colouring matters, which are of an extractive or faponaceous nature, are readily diffolved in water. The colouring principle of many other fubftances refides in a purely refinous matter, infoluble in water, and in fome inftances attached to matters infoluble, even in fpiric of wine ; but they are all acted on by alkalies, which convert them into a kind of foaps, mifcible with water. The principal colours of this nature are the annotto, a kind of fecula, obtained by maceration of the feeds of the urucu putrefied in water, and which dyes an orange yellow colour ; the flower of carthamus or baftard faffron, which affords a very fine red; archil, which is a pafte prepared with mofles, macerated in urine with lime, and which dyes red. The colour of indigo alfo refides in a refinous matter.

Certain colouring fubftances are foluble in oils. Alkanet, or the red root of a kind of burglofs, is of this kind, but cannot be ufed in dying.

We may eafily conceive that a coloured decoction may ftain any ftuff which is dipped into it, and that this colouring matter may be again abftracted by the application of the fame menftruum as it was originally fufpended in. But the action of thofe dyes, which, although once diffolved and fufpended in water, cannot again, after they are applied to ftuffs, be wafhed out, is not fo eafily underftood. Thefe latter, or durable dyes, alone deferve attention. Dyes of different colours require different
treatment. Stuffs to be dyed of a red or yellow colour muft be boiled in water, with alum or fixed alkali, before they are dipped into the dying decoctions: the red colouring materials are kermes, cochineal, gum-lac, and madder ; the yellow materials are luteola or dyers weed, and other yellow flowers. The ftuffs for blue dyes require no previous preparation. Thefe blue dyes are made of indigo, or the blue fecula obtained from woad, diffolved in a lixivium of fixed alkali, or in urine, with or without the addition of fome green vitriol. The ftuffs intended to receive a root colour, require no previous preparation, but to be foaked in warm water. Thefe dyes are chiefly decoctions of walnutfhells, walnut-roots, alder-bark, fumach, and faunders. Thefe root colours, which are all yellow, ferve to form a very good ground, on which other more brilliant colours may be applied, and to them no faline or other matter is added. The black dyes, which are inks or decoctions of galls, mixed with green vitriol, require no previous preparation of the ftuff.

It is obfervable that wool takes the dye better than filk, filk than cotton, and cotton than flax. Writers on the art of dying hold different opinions refpecting the manner in which colouring particles apply themfelves to the fubftances expofed to their contact. Many have fuppofed that this application takes place only in proportion to the number and magnitude of the fores in the various fubitances. Macquer, who has paid great attention to this fubject, fuppofes that the greater or lefs facility with which the colour is applied, depends on the reF_{2} fpective
fpective nature of the colouring parts, and the lubtances propofed to be dyed : and that dying is truly an external tinge or painting, which fucceeds and lafts by virtue of an affinity and intimate union between the colour and the dyed fubftance. This ferves to explain the ufe of the matters, which it is on many occalions necefliry that the fuffs fhould imbibe, previnus to immerfing them in the dying fubftance. The fame thing may be illuftrated by confidering the procefs employed in the preparation of certain colours called lakes. Vegetable colouring matters are diffolved, and then precipitated by the addition of fome other fubftance. Thus, for example, if madder is boiled in water, together with an alkali, and alum is then added, the earth of the alum will be precipitated, together with the colouring matter, with which it will form an infoluble pigment. A double decompofition here takes place, the vitriolic acid quits the earth of alum to unite with the fixed alkali, and the vegetable matter unites itfelf with the earth.

Chap. 6.7 [69$]$

CHAP. VI.

FERMENTATION.

Thrce Kinds of Fermentation. - The winous or fpirituous. - Spirit of Wine or Aichbol.-Etber.-Acetous Fermentation. - Putrid Fermentation.-Obfereations on Putrefadion ingeneral.

HA VING confidered the ftructure and compofition of vegetable fubftances, it becomes neceffary to direct our attention to certain fpontaneous changes which they undergo, when deprived of the vital principle. Thefe changes are called fermentations, which are three in number, and are termed, from their products, the vinous or fpirituous, the acetous, and the putrid. The circumftances univerfally neceffary to fermentation are moifture, a certain degree of heat, and the contact of air. The three kinds of fermentation are fometimes confidered as different ftages of one procefs; this, however, is an improper view of the fubject; as each kind of fermentation is a peculiar procefs, and totally different from every other. Some bodies become acid without having undergone the fpirituous fermentation, and others putrify without F 3 shewing
fhewing any difpofition to affume either that or the acetons ftate.

The conditions neceflary for the production of the Vinous or fpirituous fermentation are-1. A degree of Puidity nightly vifcid. -2 . The prefence of faccharine mucilage. It is found that the fer-, mentable juices of fruits, boiled till they become thick, are indifpofed to ferment, and this net only in their infpifrated ftate, but when diluted again with water: for this reafon it is, that in the making of fugar nothing is of more importance tian the juice of the canc iceilis fubmitted to boiing immediately on being expreffed. Preferves, and oher mixtures prone to fermentation, are prevented from that procefs by the fame method. - 3. A proper temperature, which varies from forty eight to eighty of Fahrenheit's thermoneter. If below this, the fermentation is languid; if above it, it is impetuous, and is apt to ruhh into the acetous fate even before the vinous. -4. The addition of a quantity of the fubftance called yeaft, which is itfelf the product of the vinous fermentation, is of great affitance in exciting it. By what power yeaft acts in producing the vinous fermenta.:on, has been much difputed. Mr. Henry thinks that yeaft is no other than fixed air already formed, but enveloped or entangled in the mucilaginous matter of the liquor from which it was obtained; and the fame ingenious experimentalift was able to bring on the vinous fermentation, by adding to common wort a quantity of fixed air in the claftic form. To account for this, it is not difficult to x
fuppofe that fixed air has an attraction for its own conftituent principles, when placed in favourable circumitances to act upon them; and that it will thus occafion the feparation of fixed air from the fermentable liquor, which is fo remarkable during fermentation.

The phenomena which prefent themfelves in a liquor during the fpirituous fermentation are - Firft, A muddinefs, from the feparation of an aerial matter, which rifes in bubbles to the top in fuch quantity, and in fuch quick fucceffion, as to produce a hiffing noife, and form a froth. Thefe minute globules of air occafion the motion of the particles of the fluid among one another; and this motion is perceptible, even before the air is vifibly feparated. The globules of air attach themfelves to the particles of the mixture, and buoy them up; at length the globule is detached, and the atom finks by its own weight. The nature of the air which is difengaged was not underftood till the modern experiments on aeriform fluids afforded fo much affiftance to chemical fcience. It is now afcertained to be the carbonic acid gas, or fixed air, which, being heavier than atmofpheric air, forms a ftratum in the upper part of the veffel in which the fluid is fermenting, where it may be perceived from its greater denfity. This air, contained in the fermenting vats of brewhoufes, frequently produces the moft fatal effects on the workmen; and a candle dipped into it is as certainly extinguifhed as if plunged into water. During the time that the fermentation is going on,

[^6] the bulk of the liquid is augmented. Another phenomenon is the proluction of a grentle heat, equal to about feventy-two degrees of Pahrenheit's thermometer. After fome days, the number of which varies according to the dilution of the fuibllance and the degree of heat, the motion in the fluid diminithes, the warmth abates, and the enifition of air is leffened; the liquor becomes clear, and the fcum, which confifts of the more folid particles and air, becomes heavier in proportion as the air efcapes, and at laft finks. The liquor has now undergone a great change; it has acquired a pungent and pleafant tafte and fimell, and an inebriating quality, and has loft its fweetnefs. If the liquor is now diftilled, inftead of an inlipid matter, we obtain an ardent fpirit, and a four, grofs fluid remains behind *.

* The phenomena of fermentation have long been'known; but it remained for Lavoifier to afcertain with accuracy what happens in that process. I thall therefore extract his experiments and conclufions, as ftited by himfelf, in his Elements of Chemiftry,

Table I. Materials of Fermentation,

By the experiments of Lavoifier, it appears that ardent Sprit (alcohol) or the product of the vi-
nous

Table II. Confituent Elements of the Materials of Fermentation.

Table MI. Recapitulation of thee Elements.
fibs. oz, gros gers.

Azote of the ycalt - - $0 \quad 0 \quad 5 \quad 2.94$

$$
\text { In all }-510000
$$

- Having
nous fermentation, confilts of the fame principles as fugar, except that they are combined in different proportions. Ardent fpirit contains more hydrogen, and lefs carbon and oxygen; which latter principles compofe the carbonic acid gas which efcapes during the fpirituous fermentation. M. Lavoifier found that when ardent fpririt is burned in a chimney adapted to receive the va-

[^7]pours, a larger quantity of water is formed than the whole of the fpiric employed amounts to; whence it follows, that ardent fpirit contains a large proportion of hydrogen, which forms water, by combining with the vital air of the atmofphere during
fome proceffis, we have the refults as given in the following tables.

Table IV. ProduEzs of Fermentation.
 during comburtion. That it alfo contains a proportion of carbon, has been proved by M. Berthollet,

Table V. Recafitulation of the 'Produefs.

- In thefe refuits, I hare been exal, even to grains; not that it is poffible, in experiments of this mature, to carry our accuracy in far; hut as the experiments were made only with a fcup pounds of fugar, and as, for the fake of comparifon, I seduced the refults of the actual experiments to the quintal or inlaginary hundred pounds; 1 thought it necefiary to leave the fractional parts precifely as produced by calculation, , When we confider the refults prefented by thefe tables with attention, it is eafy to difcover exactly what occurs during fermentation. In the firft place, out of the 100 libs. of fugar employed, 4 libs. 1 cz .4 gros. 3 grs. remain, without having
thollet, who found that when a mixture of ardent fpirit and water is burned, the refidual fluid precipitates lime-water, which mut proceed from irs containing fome carbonic acid. Spirit of wine aflumes the form of an elaftic fluid at the temperature of 185 ciegrees.
having fuftered decompofition; fo that, in reality, we have only operated upon 95 hbs . 4 f 0 z .3 gros. 6 g grs. of fugar; that is to. fry, upon 61 liós. 6 oz. 45 ors. of oxygen, 7 libs. 10 oz. 6 gros. 6 grs . of hydrogen, and 26 libs. 13 oz . $;$ gros. 19 grs . of charcoal. By comparing thefe quantities, we find that they are fully futlicient for forming the wingle of the alcohol, carbonie acid, and acctons acid produced by the fermentation. It is not, therefore, necenary" io fuppofe that any water has been decompored during the experiment, unters it is pretended that the oxygen and hydrogen exitt in the fugar in that flate. On the contrary, I have already made it evident that hydrogen, oxygen, and charcoal, the three contituent elements of vegetables, remain in a flate of equilibrism or mutual union with each other, which fubfits folong as this unton remains sudikurbed by increafed temperature, or by fome new compround attraction; and that then only thefe elements combine. two and two together, to furm water and carbonic acid.
- The effeets of the vinous fermentation upon fugar are thus reduced to the mere feparation of its clements into two pertions; one part is oxygenated at the expence of the other, fo as to form carbonic acid, whilft the other part; being difoxygenated in favour of the former, is converted into the combuftible fubfance alcohol; therefore, if it was poffible to re-unite alcohol and carbonic acid together, we ought to form fugar. It is evident that the charccal and hedrogen in the alcohol do not exilt in the flate of out, they are combined with a portion of oxygen, which realers them mifcible with water; whe:efore thefe three fublances, oxygen, hydrogen, and charcoal, exift here likewife, in a feecies of equilibrium or reciprocal combination; and in fagt, when they are made to pafs through a red lot tube of glats or porcelain, this unionor equilibrium is deftroyed, the elements become combined two and two, and water and carbonic acid are formed.

Spirit of wine and the acids act with confiderable violence on each other. When ftrong vitriulic acid is poured on an equal quantity of rectified fipirit of wine, a ftrong heat, with a remarkable hifing noife, are excited; the two fubftances become coloured, and emit a fweet fimell, refembling that of lemons, or the apple called golden rerinet. If the mixture is made in a retort, and then fubmitted to diftillation in the well-regulated heat of a fand bath, a large receiver, kept cool by the application of moiftened cloths, being adapted, the volatile products may be condenfed. Thefe are: 1. Spirit of wine of a fweet fmell. 2. A fluid called etber, extremely volatile, and alfo of a pleafant odour; this comes over as fuon as the fluid in the retort begins to boil, and the upper part of the receiver is at the fame time covered with large diftinct ftreams of the fluid, which run down its fides. 3. A light yellow oil, called fweet oil of wine; and 4 , a fulphureous fipirit paffes over, the white colour and fmell of which indicate the proper time for changing the receiver, in order to have the ether feparate; and this is fucceeded by black and foul vitriolic acid.

Ether is a fluid of a peculiar nature. It is the lighteft and moft volatile of all unelaftic fluids, and its tendency to affume the claftic form is fo ftrong, that it is quickly diffipated in the ordinary heat of the atmofphere, unlefs confined. It is highly inflammable, fo that it is dangerous to bring a candle near any confiderable quantity of it, the vapour taking fire, and communicating the inflammation to the whole volume. The acids with which firit of
wine is diftilled, in order to obtain ether, feem to effect this principally by robbing the fpirit of part of its carbon, which latter fubftance occafions the dark colour in the mixture, by decompofing the acid. A fmall part of the acid adheres to the ether in its afcent, and this conftitutes the differences which exift among the ethers, according to the acid by which they were produced.

The Acetous Fermentation is fill more fimple than the fpirituous, and confifts merely in the abforption of the vital or oxygenous part of the atmofphere, by which vinous fluids are converted into vinegar; whence it appears that it is the proportion of oxygen alone which conftitutes the vaft difference which exifts between ardent fpirit and vinegar. That wine is converted into vinegar, by the addition of oxygen, is proved, as well from the general analogy of the formation of other acids, as by the following direct experiments. In the firft place, we cannot change wine into vinegar, without expofing the former to the contact of air containing oxygen, or employing fome other mode of oxygenation; fecondly, this procefs is accompanied by a diminution of the volume of the air in which it is carried on, from the abforption of oxygen; and thirdly, wine, by being converted into vinegar, is increafed in weight.

The Putrid Fermentation is the deftruction of the equilibrium which holds the conftituent principles of bodies in a flate of combination. Thus a vegetable fubftance, vihich when entire confifts of a triple combination of hydrogen, oxygen, and carion, is refolved by putrefaction into hydrogen
gas, and carbonic acid gas, which confifts of oxygen and carbon. As there is not enough of oxygen to convert all the carbon into carbonic acid gas, a quantity of the charcoal remains behind, mixed with the earthy and faline matter contained in the vegetable. Thus putrefaction in a vegetable fubftance, is nothing more than a complete analyfis of it, in which the conftituent elements are difengaged in the form of gas, except the earth, and a quantity of charcoal which remains in the ftate of mould.

Such is the refult of putrefaction when the fubftances fubmitted to it contain only oxygen, hydrogen, charcoal, and a little earth. But this cafe is rare ; and thefe fubitances putrefy imperfectly, and with difficulty. It is otherwife with fubftances containing azote, which indeed exifts in all animal matters, and in a confiderable number of vegetables. The putrid fermentation of animal fubftances is commonly called putrefaction, and this is well known to take place in them, after they are deprived of life. The circumftances which favour putrefaction are the fame as thofe which promote the firituous and acetous fermentations, viz. humidity, the admiffion of air, and a due degree of heat. Heat to a certain degree promotes putrefaction, yet 20° above that of the human blood feems to prevent it. A finall piece of firh which was luminous, and confequently putrid, was put into a thin glafs ball, and water of the heat of 118° extinguifhed its light, and confequently ftopped its tendency to putrefaction, in lefs than half a minute; on taking it out of the water, it began to recover its light in
in about ten feconds, but was never fo bright as before ${ }^{*}$.

Azote, which abounds fo much in animal fubftances, not only occafions a more rapid putrefaction, but renders its products confiderably different from thofe afforded by the decay of fuch vegetables as do not contain azote. In the putrefaction of animal matters, the hydrogen, inftead of efcaping in a feparate ftate, combines with the azote, and forms volatile alkali. The hydrogen gas alfo diffolves a part of the carbon, the fulphur, and the phofphorus, all which fubftances enter into the compofition of animal matter; with thefe, it forms compound aeriíorm fluids, which have obtained the following names, carbonated hydrogen gas, fulphurated hydrogen gas, and phofphorated hydrogen gas. The two latter of thefe gaffes have a peculiar, difagreeable odour, and, together with the volatile alkali, occafion the penetrating and offenfive exhalations which proceed from putrid matters. Sometines volatile alkali predominates, which affects the eyes; fometimes, as in feculent matters, the fulphuratel gas is mon prevalent; and fometimes, as in putrid herrings, the phofphorated hydrogen gas is mofe abundant. Carbonic acid gas is alfo difengaged. It appears highly probable, that water, which is fo neceflary to putricfattion, is decompofed during that procefs, and that its component principles, oxygen and hydrogen, contribute to the great quantity of gaffes which are produced. Oxygen feems alfo to be abforbed

* Priefley's Hift. of Optics, p. 579.

Vol. III.
G
from

82 Mufcular Matter sbanged into Oil. [Book VIII.

 from the atmofphere, fince putrefaction is expedited by vital air.M. Fourcroy and M. Thouret have obferved fome peculiar phenomena in dead bodies, buried at a certain depth, and preferved to a certain degree from contact of air; having found the mufcular flefh converted into true animal fat. This mult have arifen from the difengagement of the azote by fome unknown caure, leaving only the hydrogen and charcoal remaining, which are the elements of fat or oil. This obfervation, M. Lavoifier remarks, may at fome future period lead to difcoveries of great importance to fociety, by elabling the chernif to convert into oil fubfiances which confift of nearly the fame principles, but which are at prefent of no value.

The decompofition of vegetable matters by fire, was noticed, in treating of inflammable fuisfances, in the chapter on carbun or the carbonaceous principle; and the node of extracting from the athes of certain plants that ufful fubfance the fixed alkali, has been alfo defcribed.

There is perhaps no procefs of nature better underfood than thit of fermentation, and yet there is not any mose calculated to excite our aftonifhment; there is not any inftance within my recollection fo ftriking, of the furpizing change which combination produces in bodies; and is is the more wonderful, when we confuder, that different proportions of the fame ingredients produce fluids effentially diftinet in all their leading characters. He that " made a weight for the winds, and weigheth the waters by meafure;" how excellently has he ordered all things for the benefit of his crea-

Chap. 6.] Atbeifin inconffent twith Pbilofophy. 83 tures! "The undevout aitronomer is mad," is the ftrong expreflion of a fublime writer; yet, if the wildom and providence of G did evident in thofe immenfe bodies, of the ftructure of which we are in a great meafure ignorant, furely it is much more fo in thefe minute operations, which are the immediate objects of our fenfes, where every thing is plainly the effect of intelligence and defign; and, however ignorant and fuperficial obfervers may wander from the path of truth, the naturalift at leaft can never ba an a hein.

[84 [Book IX.

B оок IX.

$$
O F A N I M A L S \text {. }
$$

Cinap. I.

> OFANIMAL MATTERINGENERAL:

General Romaris on organizad Bodics. - Produsts from the Difillation of Animal Matuer - Elementary Principles which enter into the Compofitionof Inimal Matter. - Animal Acids.-Diffor. ent Forms of Animal Matter.-Ycily.-Gluc.-Lymph.-Further Products.-Fat. - Fibrous Parts.

1N treating of organized bodics, as introductory to an account of the vegetable fyftem, fome obfervations were made, which are alfo in a great meafure applicable to animal nature. The elementary principles, however, which enter into the compofition of animal bodies are more numerous than thofe which are found in vegetable matter; and at the fane time the Atructure of animals is much more complex than that of plants. In both, the growth and increafe is provided for by a curious kind of chemical apparatus, adapted for effecting thore wonderful changes, diffolutions, and combinations of mateer, which are effential to their refpective natures. All, however, that we have been able to difcover in vegetables, is fome traces of a vafcular fyftem; whereas, in animal nature, there is aut only a moft elaborate fyftem of veffels, but
means provided for the augmentation of the temperature, and for the fulfilling of thofe functions which belong to a creature, endued with a power of voluntary motion, and of thought.

To ciefribe with accura ${ }^{\text {In }}$ y the fpecific characteriftics' of different animals, to enter into the detail of what is called comparative anatomy, would employ an inmenfe and elaborate treatife; and indeed to acquire the neceffary knowledge for fuch an underiaking would occupy a long life. As the object, however, of the prefent work is to give a general view of nature, rather than to enter into that minuteners of difquifition which is chicfly necenfary for technical perpofes, or for thofe inquirers whofe leifure and patience far exceed thofe of the majority of mankind, it will be neceffary to confine the prefent fubject within reafonable limits. And fince it would be impoffible in fuch a work to treat of the fpecific organization of every animal, I have made choice of that one, whore parts and functions are found to be the molt perfect; and as it is eafier to look down from an eminence than to afcend the heights of creation, from what will be Itated in the fucceeding pages on the economy of the human body, it will not be a matter of grear difficulty to comprehend that of other animais *. The plan which will be purfued in this part of the work will not be materially different from that which has been adopted in the preccling. After a few obfer-

[^8]vations on the component principles of animal matter, I fhall proceed to confider the ftructure of thofe organs which conftitute the animal machine ; and laftly, the functions to which thofe organs are fubfervient.

When animal matter is diftilled with a ftrong heat, we obtain a watery fluid, holding in folution fo:ne fal ammoniac, fuperfaturated with volatile alkali; a light oil, and a ponderous dark oil, mixed with concrete volatile alkali; a fpongy coal renains in the retort, of diffcult incincration, and which contains fea-falt, mild foffile alkali, iren, and calcareous earth, combined with phofphoric acid.

Such are the products afforded by the diftillalation of all animal matters, except that the proportions vary, according to the degree of folidity in the part fubmitted to dintillation. The moft characteriftic mark of animal matter, is its containing azote, which confiderably alkers its products, both by puterefaction and diftillation, and which in both thefe procefies combining with hydrogen produces volatile alkali. As vegetables and animals, however, pafs by infenfible degrees into each other, fo there are fome vegetables which affurd volatile alkali, and which confequently contain azote ; though in far le is quantity than any animal matter.

The elementary matters which enter into the compofition of the foft parts of animals, are carbon, hydrogen, azote and oxygen; the bones arc compofed of calcareous earth and phofphoric acid: a very fmall quantity alfo of iron, and of fome neutral falts, particularly fuch as are compofed of the mineral and volatile alkalies, and lime, combined
bined with the muriatic, phofphoric and cretaceous acids, are difcovered by careful analyfis. By the application of heat, the elementary matters above mentioned afiume new arrangernents and combinations; hydrogen and oxygen uniting, form water; hydrogen and carbon, oil; hydrogen and azote, volatile alkali; oxygen and carbon, cretaceous or carbonaceous acid: fome of the gaffes alfo efcape in a feparate ftate, and part of the carbon remains behind with the earthy matter. Lavoifier, after having treated of the decompofition of vegetable matter, obferves :

- Animal fubfances, being compofed nearly of the fame elements with cruciferous plants, give the fame products in diftillation, with this difference, that, as they contain a greater quantity of hydrogen and azote, they produce more oil and more ammoniac. I fhall only produce one face, as a proof of the exactnefs with which this theory explains all the phenomena which occur during the diftillation of animal fubfances-which is the rectification and total decompofition of volatile animal oil, commonly known by the name of Dippel's oil. When thefe cils are procured by a firft diftillation in a naked fire, they are brown, from containing a little charcoal almoft in a free flate; but they become quite colourlefs by rectification. Even in this ftate the charcoal in their compofition has fo flight a connection with the other elements, as to feparate by mere expofure to the air. If we put a quantity of this animal oil, well rectified, and confequently clear, limpid, and tranfparent, into a bell-glafs filled with oxygen gas over mercury, in a fhort time the
gas is much diminifhed, being abforbed by the oil: the oxygen, combining with the hydrogen of the oil, forms water, which finks to the bottom; at the fame time the charcoal which was combined with the hydrogen being fet free, manifefts itfelf by rendering the oil black. Hence the only way of preferving thefe oils colourlefs and tranfparent, is by keeping them in onttles perfectly full, and accurately corked, to hinder the contact of air, which always difcolours them.
' Succenive reftifications of this oil furnih another phenomenon confirming our theory. In cach diftillation a fmail quantity of charcoal remains in the retort, and a little water is formed by the union of the oxyecn conenined in the air of the diftilling vefte s with the hydrogen of the oil. As this takes place in cach fuccofive diftiliation, if we arake ufe of large veffers, and a comiderable degree of heat, wee at laft cecompole the whole of the oil, and change it entircy into witer and chaccal. When we wic fonall veife..., and cfpecially when we emI iny a now fire, or deseec of heat little abuve that of boiling water, the total dee mpofition of thefe vils, by repeated cifftilation, is greatiy more tedious, and more diffentily accomplifhed.'

Animal matters are compound falifiable bafes brought to the flate of oxyt, by combination with oxygen, and which by the further addition of that principle are capable of becoming acids. Several animal acids have been difcovered, fome of which approach very near to the vegetable acids. Their bafes have not been afcertained with accuracy, but are fuppofed to be different combinations of carbon, hydrogen,
hydrogen, and azote. The animal acids at prefent known, are the following :

Lactic acid, obtained from milk.
Saccho-lactic, from fugar of mill.
Formic, from ants.
Bombic, from filk-worms.
Sebacic, from fuet.
Lithic, from urinary calculus.
Pruffic, from blood, or other animal matter, by means of fixed alkali ignited with thefe matters.
Having mentioned the principles afforded by the complete decompofition of animal matter, it will be proper to notice certain matters into which the foft parts of animals may be refolved by the action of menftrua. If a part of an animal is boiled in water, it is gradually diffoived, and a matter is extracted, which forms a folid but tremulous mars when cold, and which is called jelly. This is found moft plentifully in the-white parts of animals, but may be obtained in a fimalier or greater proportion from all. It is neariy inodorous and infipid, and is foluble both in cold and hot water, but more eafily in the latter. When its watery parts are more fully evaporated, it forms glue. The jelly of animais is very analogous to the gum of vegetables, except that the latter does not contain azote, and of courfe is lefs prone to the putrefactive fermentation, and is incapable of affording volatile alkali. The glue obtained by boiling animal matters, differs in fome menfure according to the firmnefs or laxity of the fubftance from which it is obtained; thus the flins, tendons, cartilages, and ligaments afford
the firmeft glue. The flkins of eels are the bafe of gold fize; and from old white leather gloves and parchment is made a kind of glue ufed by painters. Glues differ from each other in their confiftence, tafte, fmell, and folubility: there are fome which readily become foft in cold water; others are not diffolved but in boiling water; but the preparation of the latter is not generally known. The beft glue is tranfparent, of a yellow brownifh colour, without fimell and tafte, and entirely fuluble in water, with which it furms a vifcid uniform fluid. Animal jeily differs from glue, only in pofiefing a lefs degree of confiftence and vifcidity; The firt is more efpecially obtained from the foft and white parts of animals, and is far more abundant in thofe which are young. Glue is othtained in greateft perfection from the tougheft parts of older animals. Jelly and glue are infoluble in fpirit of wine.
L.ymph or ferum conftitutes the greater part of the fluids of animals, and will be afterwards treated of as a conftituent part of the blood.

Spirit of wine, when applied to animal matters, difolves an extractive fubftance, which is depofited on the evaporation of the fluid; this matter is allo foluble in water. It fwells and liquefies by heat, and emits a fmell fomewhat refembling that of burned fugar; it is chicfly this fubflance which covers the furface of roafted meat, in the form of a brown cruft.

The fat of animals approaches very nearly to the nature of the fat oils of vegetables. The globules which rife to the furface of water in which meat is boiled,

Chap. 1.] Fat, Fibrous Matter, E $\underbrace{}_{\text {c. }}$ 9x boiled, confift of the fat. The fat of animals, as well as the fat oils of vegetables, affords a peculiar acid, which is called the febacic acid, or acid of fuet.

After all thefe matters are extracted, there remains nothing but a white fibrous matter, infipid, and infoluble in water. This matter has all the characters of the fibrous part of the blood, which I fhall treat of in the following chapter.

Chap. II.

OF THE BLOOD.

> Eanguinzous and exfangruious Animals.-Warm and cold blooded Animals.- Serum and Crafamentum.- Polypufis.- Analy is of Blood.-Lymph.-Iron in the Blood.-Cauje of the Red Co-lonr:-Red Globules.-He.rufon's Exiseriments.

THIS fluid, which is fo effential to life, varies confiderably in different fpecies of animals. In man, and other large animals, it is of a red colour, but in fome fmaller animals the circulating fluid is nearly colourlefs, and therefore fuch ammals are called exfanguious; though with little propriety, as their circulating fluid appears to anfwer all the purpofes of blood, and there feems no reafon to affirm that nothing can be blood, which is not of a red colour. The moft remarkable diference in the blood of animals, is with refpeet to the temperature. The blood of man, quadrupeds, and birds, is hotter than the medium they inhabit; they are therefore called animals with warm blood. In fifhes and reptiles it is nearly of the temperature of the medium they inhabit; and thefe are therefore called animals with cold blood. The temperature of the blood, as well as the change of colour to a brighter red, which the blood undergoes in pafing through
through the lungs, will be treated of in a future chapter on refpiration.

When blood is firf drawn from a vein, it appears to be an homogeneous red fluid: it then confolidates into one uniform mafs; in a little time a yellowifh watery liquor begins to feparate from it, which is more or lefs in quantity, according to the ftate of the blood; the red mafs, in the mean time, contracts greatly in its dimenfions, expelling the watery liquor from its pores, and confequently increafing in firmnefs and denfity. This feparation happens in the body after death, and produces thofe concretions in the heart, and large veffels, thofe adhefive maffes called polypufes, which were formerly fuppofed to have exilted during life, and fometimes to have been the immediate occafion of' death. By agitation, blood continues fluid; but a confiftent fibrous matter adheres to the ftick or inftrument made ufe of to ftir it, which by repeated ablution in water becomes white, and appears to be very fimilar to the fibres of animals obtained by wafhing away the other adhering matters. Received from the vein in warm water, blood depofits a quantity of tranfparent filamentous matter, the red portion continuing diffolved in the water. On evaporating the fluid, a red fubtance in the form of powder, or eiffily reducible to it, is left. Blood infpifated to drynefs leaves a dark coloured mafs, amounting at a medium to about one fourth part of its weight, of a bitter faline tafte, eafily inflammable, and burning with a blueifh flame. The exficcated blood is not foluble in acid or alkaline liquors, but gives fome tinge to water and to fpirits of wine;
and is more powerfully acted on by dulcified fpirit of nitre. Recent blood is coagulated by the mis neral acids, and by moft of the combinations of them with earthy and metallic bodies. With vegetable acids, and with folutions of neutral falts, it mingles equably without coagulation. Alkalies, both fixed and volatile, render it more fluid, and preferve it from coagulating. Blood by difillation affords the fame refults as other animal matters. Six pounds of human blood diftilled to drynefs, with a gentle heat, were reduced to a pound and an half; after which the mafs was urged with a graduated fire, till the retort at laft became red hot. The produce was feventeen ounces of liquor, twelve of which were a red and very empyreumatic volatile and alkaline fluid, and the other five were oil. What remained in the retort was a light coal, weighing four ounces and a half.

It has been already mentioned that blood fpontaneoufly feparates into two parts, a colierent mafs called the craffamentum, and an aqueous liquor called the ferum, with which the craffamentum is furrounded.

Lymph or ferum, which is alfo called the albuminous matter, from its congulating into a white mafs by the application of a heat equal to 156 degrees of Farenheit's thermometer, is very analogous to the white of egg. Scrum is allo coargulated by acids and by ardent fpirit; alkalies render it more fluid. It converts fyrup of violets to a green, Its colour is yellowih, inclining to green; its tafte is faline, and it feels between the fingers in fome degree unctuous and adhefive, By diftillation
it affords the fame principles as other animal matters.

Serum, expofed to a warm temperature in the open air, pafles quickly to putrefaction. It unites with water in all proportions, but they are kept feparate by their different denfities, unlefs agitated together. Serum poured into boiling water for the moft part coagulates inftantly. The coagulation formed in ferum by the addition of an acid, diffolves very quickly in volatile alkali, which is the true folvent of the albuminous part ; but it is not at all foluble in pure water. The coagulation formed by fipirit of wine, on the contrary, is foluble in water, as M. Bucquet has difcovered. This liquid, M. Fourcroy concludes, is an animal mucilage, compoled of water, acidifiable oily bafes, marine falt, chalk of foda, and calcareous phofphat; this laft appears to produce the rofe-coloured precipitate, obtained by pouring the nitrous folution of mercury into ferem. Though the liquid is fcarcely coloured, the addition of nitrous acid, and more clipecially of mercurial nitre, produces a rofe or light feflh-colour, which M. Fourcroy has often obferved in many other animal liquors.

The craffamentum, when well wafhed in water, is feparated into two very diftirce fubftances, one of which is difolved, and tinges the water of a red colour, while the other remains behind in the fate of a white fibrous matter, the fame as that which adheres to the ftirrer with which recent blood has been agitated, in order to prevent its coagulation. The water in which the red part is diffolved, when heated with different menttrua, exhibits all the cha-
racters of ferum; but it contains a much greater quantity of iron, which may be obtained by the incineration of the coal, and fubfequent wafhing to feparate the faline matters. The refidue of this wafhing is a yellow cals of iron, of a beautiful colour, and ufually attracted by the magnet. The red colour of the blood is therefore with fome appearance of reafon attributed to this metal. Iron has been obtained from the blood in confiderable quantity by Menghini, Rouelle, and Bucquet.

The fame chemifts found that iron was capable of paffing into the blood from the inteftines, fince patients who were under a courfe of martial medicines are known to difcharge a part of it by the urinary paffages. Iron is obtained from the red particles of the blood, but not from the wafhed coagulum. Thefe facts, together with the increafed rednefs of the blood by pafing through the lungs, where it may be fuppofed to fuffer a degree of calcination from the abforption of oxygen, render the above opinion highly probable.

The fibrous part of the blood, when thoroughly wafhed, is white and infipid; by diftillation, like other animal matters, it affords water, oil and volatile alkali. Expofed to a gentle heat, it is much hardened; when fuddenly expofed to a ftrong heat, it fhrinks up like parchment. It purrefies very rapidly, and affords much volatile alkali. It is infoluble in water, and when boiled in that fluid hardens, and affumes a grey colour. Acids unite with it, and in particular the nitrous acid diffolves it, and extricates azote and nitrous air ; while the refidue by evaporation affords acid of fugar in cryftals,

Chap. 2.] Micrescopical Appearence of the Blood. 97

 a peculiar oil in flocks, and the phofphoric falt of lime. Marine acid forms a green jelly with the fibrous part of the blood. The acid of vinegar diffolves it with the affiftance of heat ; water, and more particularly alkalis, precipitate the fibrous matter when diffolved in acids. The animal fubftance is decompofed in thefe combinations; and when feparated from the acids by any method, it no longer retains its former properties.The microfcopical appearances of the blood have attracted great attention. Various accounts have been publifhed on this fubject, moft of which feem to have been framed more on theory and preconceived opinion, than actual obfervation. 'Thefe falfities have been detected by Mr. Hewfon, whofe microfeopical experiments on the blood are the lateft which have been made, and remain at prefenc (as far as relates to the compofition of the blood) uncontradicted. I fhall therefore tranicribe the following particular account of them, given by himfelf in a letter to Dr. Haygarth, phyfician, in Chetter.
' The red particles of the blood, improperly' called globules, are flat in all animals, and of very different fizes in different animals. In man they are fmall, as flat as a fhilling, and appear to have a dark fpot in the middle. In order to fee them diftinetly, I dilute the blood with frefh ferum. My predeceffors, not having thought of this, could not fee them diftinctly. And Lewenhoeck in particular, imagining a round figure fittef for motion, concluded they muft be round in the human body; though he and others allowed that in frogs, \&cc. where they viewed them diftinctly, from the blood

Vol. III.
H
being
being thinner, they were flat. Now I prove that they are flat in all animals. In the human blood, where thefe particles are finall, it is difficult to cetermine what that black fpot is, which appears in the center of each. Some have concluded that it was a perforation; but in a frog, where it is fix times as large as in a man, it is eafy to fhew that it is not a perforation, but on the contrary, is a little folid, which is contained in the middle of a veficle. Inftead, therefore, of calling this part of the blood red globules, I fhould call it red veficles; for each particle is a flat veficle, with a little folicd fphere in the centre.

- I find that the blood of all animals contains veficles of this fort. In human blood there are millions of them, and they give it the red colour; but in infects they are white, and lefs numerous, in proportion than in man and quadrupeds. As they are flat in all animals, I fufpect that fhape is a circumftance of importance, but can be altered by a mixture with different fluids. And I find, that it is by a determinate quantity of neutral falt contained in the ferum, that this fluid is adapted to preferving thefe veficles in their flat fhape': for if they are mised with water, they become round, and diffolve perfectly; but add a little of any neutral falt to the water, and they remain in it without any alteration in their flape, and without diffolving.
' Now, when it is confidered that the blood of all animals is filled with thefe particles, we muft believe that they ferve forne very important purpofe in the animal occonomy; and fince they are fo complicated in their ftructure, it is improbable

Chap. 2.] . Red Veficles in the Blood.

that they fhould be formed by mechanical agitation in the lungs or blood-veffels, as has been fufpected; but probably have fome organs fet apart for their formation. This I hall endeavour to prove, when I have explained their ftructure a little more particularly, and mentioned the manner in which I exhibit it. I take the blood of a toad or frog, in which they are very large; I mix it with the ferum of human blood to dilute ir; I find them appear all flat, fo they do in the blood-veffels of this animal, as I have diftinctly feen in the web between its toes, whilft the animal was alive and fixed in the microfcope. Their appearance in thefe animals is not unlike fices of cucumber. I next mix a little of the blood with water, which inmediately makes them all round, and then begins to diffolve them whilft they are round. I incline the ftage of the microfcope, fo as to make them roll down it; and then I can diftinctly fee the folid in the middle fall from fide to fide, like a pea in a bladder. A neutral falt added to them at this time brings them back to their flat fhape; but if the falt is not added, the water gradually diffolves away the veficle; and then the little fphere is left naked. Such is the compofition of thefe particles. I have exhibited thefe experiments to a confiderable number of my acquaintance, who all agree in their being fatisfactory.
' The microfope I ufe is a fingle lens, and therefore as little likely to deceive us as a pair of fpectacles, which, as is allowed by all who ufe them, do not disfigure objects, but only reprefent them larget.'

It is unneceflary to follow Mr. Hewfon into his fpeculations with segard to the ufe of the thymus and lymplatic glands, which he thinks are defigned to fabricate the middle folid particles of the blood which are afterwards to be furnifhed with veficles in the celis of the fpleen. Thefe inquiries may Shew the ingenuity of their author, but will not anfwer our purpofe, which is to detail with concifenefs what has been afcertained with certainty.

Chap. 3.] [101 l

CHAp. III.

STRUCTURE OF ANIMALS.

Size of Man.-His erect Pofure.-Varieties in the Strafure of Animals.-Parts of :be Animal Bodj.

IN taking a general view of the formation of Man, a circumitance of importance is his fize, confidered in relation to the force of gravitation. If the fize of man was much greater than it is, fuppoling his ftrength to be only in proportion, his motions would be much flower, and more laborious; nor would his increafe of fize be entirely compenfated by a diminution in the force of gravitation, for this would expofe him to inconveniences, on account of the various relations in which he ftands to other objects. On the contrary, was man much fimaller, though he would gain in celerity what he would lofe in force, yet his weaknefs would incapacitate him for acting with advantage on confiderable maffes of matter. On the whole, it fhould feem, that neither an increafe of fize with an increafe of gravitation; nor a diminution of fize with a diminution of gravitation; nor an increafe of either with a diminution of the other, would in general fo well fuit the conveniences of man, $_{2}$ and his

[^9]relation to other beings, as the ftate in which he at prefent fubfifts.

The moft friking difference of ftructure between man and the other animals is his erect figure, excellently adapted to the more extenfive views which he was defigned to take of nature; and which, inftead of being a mark, as Helvetius pretends to think, of human arrogance, in departing from the horizontal pofture, which was allotted to man in common with other quadrupeds, is one proof of the diftance which the Deity meant to interpofe between man and the reft of the animal c:eation. Helvetius, however, denies the fuperiority of man in every refpect; and maintains, that the mental acquirements of a horle would not be inferior to thofe of a man, if the former was furnifhed with fingers, and endued with the fame exquifite fenfe of feeling which the latter enjoys. We may grant that all our fimple ideas are derived from the information of our fenles; but we would afk what experiments I-elvetius or his, adherents have made, to afcertain, that there can be no differences in the fructure of intellectual organs? and upon what aur thority they conclude, that all the varieties we obferve in mental cndownients, among individuals of the fame race, as well as among different races of animals, are folely to be referred to differences in the organs of fenfe? But granting all that Helvetius requefts, how came man to have fingers and horfes none, if they were equally defigned to gallop through the foreft? - he muft eitiner lave made fingers fur himfelf, or he muft have been originally defigned by his Maker for nobler occujations.

Chap. 3.] Struture of the Ourang-Outang. 103
The ftructure of man, moreover, in feveral other particulars, entirely confutes the affertions of Helvetius; but without attending to orher circumftances, it will be fufficient to mention the formation of the lower extremities in man, fo different from the hind legs of quadrupeds, and fo admirably adapted to the erect pofture. By fome naturalifts the Ourang-Outang is confidered as the original flock of the human race. His claims to humanity are founded upon his being able to walk upright, being furnifhed with fuch mufcles as are requifite for that purpofe. The form of his heart, lungs, breaft, brains, and inteftines are fimilar to thofe of a man. He can fit uplight with cafe, and can handle a ftick with dexterity. That his race is diftinct, however, from that of man, is evident, from his having thirteen ribs on each fide, whereas man has but twelve. He has not the faculty of fpeech, and articulation is impoffible to him, on account of the ftructure of the parts about the larynx.

While, however, we diffent from Helvetius, in finking man to the level of other animals, let us reflect that the purpofe of nature feems to be, to diffure life and enjoyment wherever they can exift; and let us avoid the oppofite, narrow-minded, and if poffible, fill more abfurd notion, that the happinefs of man is the fole object of creation.

In the animals which more commonly fall under our obfervation, the furface is foft, and the bones are deeply feated; but in others the reverfe happens, and we obferve the bones forming a cafe to the fofter parts. We fee fome animals furnifhed withs wings, to fport in the regions of the atmofphere;

$$
\mathrm{H}_{4} \quad \text { fome }
$$

104 Variety in the Structure of Animals. [Book IX. fome immerfed by means of a heavy fhell, during the whole of their exiftence, in the depths of the ocean; and others furnifhed with organs, to perforate their dark paffage through the bowels of the earth. In general the bones of animals are filled with marrow, but in many kinds of birds they are excavated for the reception of air, fitting them for floating more eafily on the furface of water, and at the fame time, when neceffity requires, for remaining longer beneath its furface. In fome animals, even the brain and heart efcape our moft careful refearches; and fome, like vegetables, may be multiplied from the limbs of their parents. So endlefs indeed are thefe. differences, that there is perhaps no one circumfance of ftructure or function common to all ani-mals.- But let us return from thefe extenfive profpects to the confideration of the ftructure of out: own fpecies.

Before we proceed, however, to confider the ftructure of the body, it will be proper to prenife a few very brief definitions of the moft remarkable parts of which it conifits.

Bones are hard fubftances, which form the bafis of the body.

Cartilages are firm, fmooth, claftic bodies, which cover ends of the bones.

Mufcles are contractile organs, which are attached to bones, and perform the motions of the body.

Tendons are tough cords, by means of which mufcles are attached to bones.

Ligaments are ftrong fibres or membranes, which connect bones to each other:

Blọod-

Chap. 3.]
Blood-veffels are membranous flexible tubes, which convey the blood to and from the heart.

Lymphatics are tranfparent tubes, which perform abforption.

Nerves are white cords connected with the brain, and are the inftruments of fenfation and voluntary motion.

Glands are organic maffes, deftined for the purpofe of fecretion.

С н а р. IV.

STRUCTURE OF THE BONES.

> Bones confiff of Fibres; cellilar. - The Mairow. Wifle of Bone in old Age. - Epiphyles.- Perioffeum. - Pregrefs of Officitation. - Articulation.

THE body, as Hippocrates long ago remarked, is a circle; and therefore at whatever point we were to begin the defcription, we fhould ultimately be equally led, by the connexion of parts, to the confideration of the whole. As the bones, however, may be confidered as the bafis of the body, on which the other parts depend for fituation and fupport, it appears mon eligible in the firft place to confider their ftructure and ufes.

The bones confif of fibres, diftributed in lamelle or plates; thele plates are not clofely applied to each other, but, with the intervention of tranfverie fibres, conftitute cells. The cells are diftributed through the fubftance of all the bones, but are uniformly moft remarkable in the centre, and on the furface of the harder bones are fo fmall as not to be diftinctly perceptible without the aid of glaffes.

The marrow which fills the cavities of the bones is a fat oily fubitance, containce in a fine and tranf- ticular fubftance of the bones. If the different parts of a bone are obferved, it is found that where the diameter of the bone is the leaft, there the ficles are thickeft and moft compact ; where the diameter is greateft, which is in general towards the ends of the long bones, their ftructure is very cavernous throughout. The marrow pervades the whole fubftance of the bones, but is moft remarkable in the middle part of the cavities of the long bones. Its appearance and nature alfo differ in different bones, or in the fame bone in the progrefs of life. Thus the marrow is bloody in children, oily in adults, and thinner and more watery in aged people.

At the time of birth, the bones are very imperfect, particularly thofe of the head; fo that by being moveable in this part, and folding over each other during the time of delivery, an eafier paffage is procured for the infant. There are many projections from the bones, which in infancy are foft, but which in the adult fate are bony; and the fame tendency to the formation of bone increafing with our years, bones which were feparate in the prime of life concrete in old age. In the decay of the body, however, the bones are diminifned with the other parts, fo as in extreme old age to weigh a third lefs than in the middle periods of life.

To far the greater number of boncs whofe ends are not joined to other bones by immoveable articulation, are annexed, by the intervention of cartilage, fmaller bones, called epiphyfes or appendages. In young fubjects thefe are eafily feparabic, but in adults
adults the point of conjunction is not very perceptible.

The bones are furnifhed with a tough membrane, called the periofteum, which is fpread on their furface, and the principal ufe of which feems to be to convey blood-veffels for their nourifhment ; there blood-veffels are very numerous and remarkable in the bones in the infant ftate, but become gradually lefs fo in the progrefs of life.

It has been fuppofed that the bones were formed by fucceffive offification of layers of the periofteum. This opinion, however, is contrary to what is obferved on examining bones in the progrefs of their formation : and is alfo difproved by fome experiments, in which animals were feid with madder. Their bones were found to be tinged in proportion to the length of time that they were kept on this food; but neither the periofteum nor the cartilages were altered from their natural colour.

The mot general divifion of the bones is that into the long and cylindrical, and the flat and the broad. The offification in both thefe kinds of bones begins in the middle, at feveral peints at a time, and gradually extends tow ards the ends of the long bones and the circumerence of the broal.

The ends of the long boies, where they are united to each orher, are larger than their middle part, and feveral advantiges attend this ftructure. By thefe means the furface of contact between the two bones of an articulation is increafed, their conjunction confequently becomes firn:er, there is more tpace for the conneEtion of mulcles, which alfo act more powerfully from their axes being further re-
moved from the middle of the joint, or the center of motion.

The bones are united to each other, either moveably or immoveably. They are moveably articulated in three ways:-It. By a ball and focket, which admits of motion in all directions, as in the fhoulder. 2dly, By a hinge, which allows motion in only two directions, as in the knee; and 3 dly, By a long procefs of one bone received into the cavity of another, which admits of a rotatory motioli, as in the articuration of the firfe and fecond vertebre of the neck. The immoveable articulation of bones is of two kinds: ift, where numerous proceffes of two bones, like the teeth of faws, are mutually received into each other, as in the bones of the head; and $2 d l y$, by the growing together of bones with the intervention of cartilage, as in the union of the os facrum with the offa innominata.

The ends of bones which move on cach other are tipped with finooth cartilage; and the friction is ftill further diminifhed by a fluid, mucha more fippery than oil itfelf, which is called fynovia. The moveable joints are alfo furnifhed with itrong membranes, called ligaments, which pafs from one bone to another, affording ftrength, and retaining the heads of the bones in their cavities. For the purpofes of articulation, and the connection of mufcles, bones are uneven on their furface, and have numerous elevations and depreffions.

Chap. V.

DIVISION OF THE SKELETON, WITH THE BONES OF TIIE IEAD.

T'be Skeleton briefly defcribed.- Eones of tive Craniun:-Bones of the Facc-of the Nofe-of the Palate. - The upper and under Gaw.-Form and Proportion of the Head.-Sulflance and Structure of the Bones of the Head.-Sutures.

THE fkeleton, by which is underflood all the bones of the body in their proper fituations, is divided into the head, trunk, and extremities.

When the bones are put into a natural fituation, farcely any one of them will be found to have a perpendicular bearing on another; though the fabric compofed of them is fo contrived, that in an crect pofture a perpendicular line from the common centre of gravity falls in the middle of their common bafe. On this account, we can fupport ourfelves as firmly, as if the axis of all the bones had been a ftrait line, perpendicular to the horizon; and we have much greater quicknefs, eafe, and ftrength, in feveral of the neceffary motions, as well as other advantages in the fituation and protection of the vifcera. It is true, indeed, that wherever the bones on which any part of the body is fuftained, decline from a flrait line, the force of the mufcles required to counteract the gravity is greater than would
would be otherwife neceffary; but this is more than compenfated by the advantages above mentioned.

The bones of the head are divided into thofe of the cranium and face. The cranium, or that bony cafe which furrounds and protects the hrain, confifts of eight pieces of bone. At the fore part is placed the os frontis ; at the back part the os occipitis; at the upper and fide parts the offa parietalia; at the under and fide parts, the offa temporalia; in the fore part of the bare the os ethmoides; in the middle of it the os fphenoides. Thefe two latter bones are common to the cranium and face.

The os frontis is fo called from being the only bone of the forehead, though it extends confiderably farther upwards. It has fome refemblance in fhape to the concha bivalvis, commonly called the cockle. The greater part of it is convex externally, and concave internally, with a ferrated circular edge. 'The upper part of the os frontis, where it is connected to the parietal bones, is very fmooth and convex, but below it has feveral inequalities, where it contributes confiderably to the formation of the cavities, in which the eyes are lodged. In the part of the os frontis which correfponds with that part of the forehead immediately above the eye-brows, the two tables of the bone feparate by the external being procruded outwards, to form two large cavities, called frontal finufes. There cavities communicate with the external air by means of the nofe. The frontal bone ferves to fupport and protect the anterior lobes of the brain. The falx of the dura mater, of which I fhall have occafion to fpeak
more fully hereafter, is attached to a ridge or furrow at the middle and internal part of this bone. The os frontis is pierced with fome fmall holes for the paffage of blood-veffels.

Each of the two offa parietalia is an irregular fquare, its upper and fore fides being longer than that behind or below. The inferior fide is a concave arch; the middle of it receiving the upper and round part of the temporal bone. The external furface of each parietal bone is convex. On their inner concave furface we obferve a number of deep furrows, difpofed like the branches of trees, which receive the blood-veffels of the dura mater. On the infide of the upper edge of the offa parietalia, there is a large finuofity, where the upper part of the falx is faftened, and the fuperior longitudinal finus is lodged. The offa parietalia are the nioft equal and fmooth, and are among the thinneft bones of the cranium; and yet the divifion of their fubftance into two tables and a diploe is no where fo remarkable. Thefe bones are joined before to the os frontis by the coronal future; at their long inferior angles, to the fphenoid bone, by part of the future of this name; at their lower edge, to the offa temporum, by the fquamous future; behind to the os occipitis, by the lambdoidal future; and above to one another, by the fagittal future. In a child born at the full time, none of the fides of this bone are completed, and the brain is in general not completely furrounded by a bony cafe, till fix or feven years of age.

The offa temporum are equal and finooth above, where they terminate in a thin femicircular edge,
which is laid over the inferior part of each of the offa parietalia, as the fcales of fifh are placed over each other, forming a juncture, which is on this account called fquamous. Behind this, the upper part of the temporal bone is thicker; and more unequal. Towards the bafe of the fkull; the temporal bone is very irregular and unequal, and becomes contracted into an oblong very hard fubftance ; and being extended forwards and inwards, becomes fmaller, and is called the os petrofum; which contains the internal parts of the organ of hearing. This bone has three remarkable procefles. The firft; placed at the lower and pofterior part of the bone, is from its refemblance to a nipple called maftoides or mamillaris. Within it is compofed of fmall cells, which have a communication with the organs of hearing. About an inch farther forward, the fecond procefs begins to rife from the bone; and having its origin continued obliquely downwards and forwards, it becomes fmaller, and is at length united with a correfponding procefs of the os malæ; or cheek-bone. In this manner is formed a bony jugum or yoke, under which the temporal mufcle paffes. Hence this procefs of the temporal bone has been called zigomatic. From the inferior unequal part of the os temporum the third procefs ftands out obliquely forwards; the fhape of it has been thought to refemble the ancient ffylus feriptorius, and it is therefore called the ftyloid procefs. The chief ufe of thefe proceffes is to afford attachment to mufcles. Numerous finuofities or depreffions of this bone, by increafing the furface, anfiver the fame purpofe. This bone has alfo feveral perforations, Vol. III.
one of which, fituated between the zigomatic and maftoid procefles, is the orifice of a large funnel or canal, which leads to the organ of hearing.

The os occipitis, fo called from its fituation at the back part of the head, like the other bones of the cranium, is externally convex, and internally concave. Its figure is an irregular fquare, or rather a rhomboid; of which the angle above is generally a little rounded; and the lower angle is extended to the inferior part of the cranium, in the form of a wedge, and is thence called the cuneiform procefs. At the bafe of this triangular procefs, on each fide of the great foramen, through which paffes the fpinal marrow, are obferved two large oblong proceffes, called the condyles, which ferve for the articulation of the cranium with the firf vertebra of the neck. Around the great foramen, the edges are unequal, for the firmer adhefion of the ftrong circular ligament which paffes from the circumference of the foramen to the firft vertebra. On the infide of the occipital bone are feveral ridges and furrows; to one of the ridges is fixed the pofterior part of the falx, and the furrows receive the finufes which run in this part of the cranium. The ridges of this bone form a crofs, and round the middle of the crofs there are four large depreffions, feparated by its limbs; the two upper depreffions being formed by the pofterior part of the brain, and the two lower by the cerebellum. The inner furface of the cuneiform procefs is hollowed for the reception of the medulla oblongata and the bafilar artery. Befides the great foramen, there are feveral other perforations in this
bone, or between it and the adjoining bones, for the paffage of nerves and blood-veffels. The occipital bone at its upper part; where it is chiefly expofed to injury, is very thick and ftrong, but lower down, where it is protected by the ftrong and thick mufcles which are inferted into it, it is often very thin. The occipital bone is connected above to the offa parietalia by the lambdoidal future; laterally to the temporal bones by a continuation of the fame future ; below it is firmly connected by an union of fubftance to the fphenoid bone, by means of the cuneiform procefs.

The os ethmoides, or fieve-like bone, derives its name from the numerous fmall apertures with which it is pierced at its fore part. From the middle of the internal fide of the lamella, which is fo full of holes, a thick procefs rifes upwards; and being higheft at the fore part, gradually becomes lower as it is extended backwards. From a fancied refemblance of this procefs to a cock's comb, it has been called the crifta-galli. The falx is connected to its ridge, and to the unperforated part of the cribriform plate. All the prominences, cavities, and meanders of the ethmoid bone are covered with a continuation of the membrane of the nofrils. The ufes of this bone are to fuftain the anterior lobes of the brain; to give paffage to the olfactory nerves, and attachment to the fals ; to enlarge the organ of fmelling, by allowing the membrane of the nofe a greater extent; to form a part of the orbit of the eyes, and the feptum varium.

The os fphenoides, or wedge-like bone, which is fo called from its fituation in the middle of the
bones of the cranium and face, is of a very irregrular figure, and bears fome refemblance to a bat, with its wings extended. This bone is generally divided into a body, and two fides or wings. When we view the external part of the os fiphenoides, two or three remarkable proceffes from each fide of it may be obferved, which are all of them again fubdivided. The firtt pair confifts of the two large lateral proceffes or wings; the upper part of each of which is called the temporal process, becaufe they join with the temporal bones in forming the temples: that part of the wings which projects towards the infide, fomewhat lower than the temporal proceffes, and is fmooth and hollowed, forms part of the orbits. The loweft and back part of cach wing runs out with a fharp point, called the fpinous procefs, to meet the point of the pars petrofa of the temporal bone. The fecond pair of external proceffes of the fphenoid bone are the aliform or pterygoid, and which ftand out almoft perpendicular to the bafe of the fkull. Each of them has two plates and a middle foffa at the pofterior furface. Of thefe plates, the exterior is the broadeft; the interior are longeft, and terminate in a hooklike procefs. Another pair of procefles may be mentioned, viz. the little triangular thin proceffes which come from each fide of the fphenoid bone, where the pterygoid proceffes rife from it; thele are extended to join the ethmoid bone. The external furface of this bone is every where covered with depreffions, finuofities, and fofie. Within there are three remarkable foffe; two of thefe are feated in the internal part of each wing
of the fphenoid bone, for receiving the middle part of the brain. The third, which is fmaller, is feated on the top of the body of the bone, which from its refemblance to a Turkifh faddle is defrribed under the name of felia turcica. In th:s fofla a gland called the pituitary is placed; behind and before it are the clinoid proceffes. The holes on each fide of the os fyhenoides are fix proper and three common. The firft is a round aperture, immediately below the anterior clinoid proceffes, which tranfinits the optic nerve and ocular artery. The fecond, which is a large nit, and is called the foramen lacerum, tranfmits the third, fourth, fixth, and the firtt branch of the fifth pair of nerves. The third hole, fituated a little lower, is called rotundum from its fhape, and tranfmits the fecond branch of the fifth pair of nerves. The fourth is the foramen ovale, about half an inch behind the foramen rotundum; through it paffes the third branch of the fifth pair. Very near the point of the fpinous procefs is the fifth hole of this bone, which is fmall and round, and gives paffage to the largeft artery of the dura mater. The fixth proper hole cannot well be feen till the cuneiform bone is removed from the other bones of the cranium - for one end of it is hid by a fmall protuberance of the internal plate of the perygoid procefs, and by the point of the proceffus petrofus of the temporal bone. Through it a confiderable branch of the fifth pair of nerves is reflected. The firft of the common apertures is that unequal fiffure at the fide of the fella turcica, between the extreme point of the os petrofum and the fpinous procefs of the
cuneiform bone. This perforation only appears after the bones are boiled; for in a recent fubject, its back part is covered by a thin bony plate, which lies over the internal carotid artery, and farther forward it is filled with a cartilaginous ligament, under which the cartilaginous part of the euftachian tube is placed: it was by this paffage that the ancients believed the nimy matter was conyeyed from the glandula pituitaria to the fauces. The fecond aperture is a large difcontinuation of the external fide of the orbit, left between the orbitar proceffes of the fphenoid bone, the os maxillare, male, and palati. The third common aperture is formed between the bafe of this bone and the root of the orbitar procefs of the palate bone of each fide.

Under the fella turcica, within the fubflance of the fphenoid bone, are two finules, feparated by a bony plate, which are lined with a membrane, and open into the noftrils.

The fphenoid bone is joined to all the bones of the cranium, and likewife to the offa maxillaria, offa malorum, offa palati, and vomer.

The face is divided into the upper and under maxillæ or jaws. The upper jaw is the immoveable part of the face, which confilts of fix bones on each fide, and a thirteenth in the middle. The thirteen bones are two offa nafi, two offa unguis, two offa malarum, two offa maxillaria, two offa palati, two offa fpongiofa inferiora, and the vomer. The offa nafi are placed at the upper part of the nofe; the offa unguis are the internal canthi of the orbits; the offa malarum form the prominence of
the cheeks ; the offa maxillaria form the fide of the nofe, with the whole lower and fore part of the upper jaw, and the greateft part of the roof of the mouth; the offa palati are fituated at the back part of the palate, noftrils, and orbit ; the offa fpongriofa are feen in the lower part of the noftrils; and the vomer helps to feparate thefe two cavities. The bones of the face, befides being connected to the bones of the cranium by futures, common to them with the bones of the cranium, are joined to each other by fifteen futures, which it would be tedious to defcribe. Neither does a defcription of the form and connection of each of there fmall bones fall in with the general view of the ftructure of the body which I propofe to take.

The lower jaw in the adult confifts of only one bone. In form, it refembles a horfe-fhoe, the convex part of which is turned forwards, and forms the chin. At its back part this bone is bent upwards, and terminates in two proceffes. The anterior of thefe, which rifes higheft, is a thin point, into which mufcles are inferted. The pofterior procefs terminates in an oblong fmooth head tipped with cartilage; it is called the condyloid, and is received into a foffa of the temporal bone, where it is capable of very extenfive motion. There is a cavity through the fubftance of this bone, which receives a large twigg of the third branch of the fifth pair of nerves. This begins at the bottorn of each coronoid procefs, and termiHates externally near the chin. This bone is fur-
nifhed with an outer and inner bony plate, called the alveolar proceffes, for retaining the teeth with firmnefs, In each of the jaws are placed fixteen teeth ; fo that the head, if we include the os hyoides, a fmall bone fituated under the chin, confifts in the adult of fixty-three pieces.

With refpect to the form of the cranium, when feen from above, and when the forehead is placed next the eye, it very much refembles that of an egg; the os frontis correfponding to the fmaller end of it, and the os occipitis to the greater. When feen in any other point of view, however, this refemblance is not perceptible. The fides of the head are flat, and the lower part is flat and irregular. The bones of the face conftitute an imperfect triangle. The fize of the head, in a well-formed perfon, is to the reft of the body as one to nine.

The fubftance of the bones of the cranium is in general made up of two tables or plates, with the interpofition of a fpongy cavity. The external table is thicker, fmoother, and covered with the periofteum; the internal is thinner, more uneven, more brittle, and is lined with a thick vafcular membrane, called the dura mater.

The bones of the head are united to each other by a number of tooth-like proceffes; and thefe joinings are called futures. The coronal future runs acrofs the head, and connects the frontal bone to the parietal bones. The fagittal future divides the upper part of the head into two equal parts. It connects the two parietal bones to each other, and paffes from the middle of the frontal to the middle of the occipital bone.

Chap. 5.] Sutures of the Cranium. 121
The lambdoid future is interpofed between the back and fore parts of the cranium, or between the occipital and two parietal bones. The two fquamore futures connect the temporal bones to the parietal. There are alfo many lefs remarkable futures, which join the bones of the face to thore of the cranium.

$$
\text { С } \mathrm{HAp}_{\mathrm{A} .} \text { VI. }
$$

THE TEETH.

General Defription of the Treth.-Incifores.-Canini.--ilolares.Enamel of the Tecth. - Growuth of the Teeth. - The Face lengtbened after Eight Years of Agc:-V arieties in the Tieth of different Animals.

TIIE teeth, both of the upper and lower jaw, are fixed in fockets of the jaw-bones, formed of thin bony lamelle. That part of the teeth which projects beyond the gums, is called their body; the external termination of the body, the corona or crown; and that which is hid, and which terminates in a wedge-like point, is called the radix or root. The roots of the teeth are perforated at their extremities, for the reception of nerves and bloodvefiels.

The teeth are divided into three orders. The four front cutting teeth, are called incifores. Next to thefe is placed on each fide a tooth, called from its form the canine or dog-tooth; and laftly, on each fide five molares or grinding teeth. The laft tooth on each fide, from its not being cut till after the age of puberty, is alfo called dens fapientiæ, or the tooth of wifdom.

- The four incifores are fmaller and narrower in the lower than in the upper jaw. The corona of
the incifores is broad and fharp, and in children is much notched. The roots of the incifores are fhort, and terminate in a fingle blunt apex. The canine teeth are ftronger, more acute, and more deeply rooted than the incifores. They are convex before and concave behind, and are fitted for tearing our food to pieces. The molares, by the eminences on the corona, and by therr broad upper furfaces, are evidently, as their name expreffes, defigned for the grinding of the food. The anterior molares are fmaller and lefs uneven on the corona than the pofterior ; the ftrongeft being placed nearelt the articulation of the jaw-bone, becaufe there we can exert the greateft force. The roots of the molares are long and pointed; each tooth has two, three, four, and fometimes, though very ravely, five roots. The roots fometimes ftand feparate, fometimes are concreted together; fometimes they are ftrait, fometimes crooked.

The fubftance of the teeth is compact. The corona is coverord with a curious fubftance, called the enamel. This is thin, white, fhining, and, being the hardeft and moft compact fubftance in the body, is admirably adapted to the purpofes of maltication.

It is fcarcely neceffary to remark, that in eating we only move the lower jaw, and that the upper is on all occafions fixed and immoveable.

In the infant ftate, two fets of teerh are already obfervable in the jaw-bones. In the cutting of the teeth, the incifores firt make their appearance, in general about the eighth month ; and afterwards, at about two years of age, two molares and the
124. Varieties in the Teeth of Animals. [Book IX. dog-tooth. The firft fet of teeth when complete is but twenty in number, viz. eight incifores, cight molares, and four canini. In the fecond fet are added twelve molares, viz. three on each fide in each jaw, making the complete fet in the adult thirty-two. To make room for this addition, the jaws undergo a gradual elongation. Hence the face is fo much lengthened from eight to eighteen years of age. About the feventh year the fecond fet begins to fupply the place of the firft, which by this time become loofe, by the wafte of the fockets and the growth of the tecth below.

If we extend our views to the lower animals, we fhall find no part of the body more various among different races than the teeth. This circumftance is fo remarkable, that Linnæus has employed it in the diftribution of the firt clafs of animals (the mammalia) into its feveral orders. To enumerate all the varieties of teeth would be impoffible, and at prefent it would be fuperfluous. Let it be remarked, however, that they are not without their ufes, and that every animal experiences the advantages of its own peculiar ftructure.

Снар. VII.

BONES OF THE TRUNK.

Spine or Bach Bone.-How the Head is moved.-The Thorai.
-The Pelvis.-Principal Marks of Difinetion betweren the Male and Female Skeleton.

THE bones of the trunk are divided into thofe of the fpine or back-bone, the thorax or cheit, and the pelvis. The fpine confifts of twenty-four pieces of bone called vertebræ; feven of thefe belong to the neck, twelve to the back, and five to the loins. The thorax confilts anteriorly and laterally of twelve ribs on each fide of the fternum or breaft-bone, and part of the fpine behind. The pelvis is compofed of four bones; two offa innominata or hip-bones; the os facrum, and the os coccygis.

That feries of bones called the Tpine forms a column larger below than above, fmooth and round before, very rough and uneven behind, and hollow within. The bones of the fpine are joined to each other by cartilages, in the centre of each of which is contained a fluid; a curious circumftance of ftructure firft difcovered by the late Dr. Monro, of Edinburgh. The chief advantage of this ftructure is, that this fluid, when confined, has all the refiftance of a folid body, without its hardnefs, which in this part might be attended with very bad confequences.

The head is connected to the upper vertebra of the neck by two fmooth projections of that vertebra, which are called condyls, being received into two correfponding cavities in the under part of the cranium. By means of this joint we move the head backwards and forwards on the fpine, or perforn the action of nodding. As it is neceffary, however, for the head to have alfo a rotatory motion, we here find a peculiarity of flructure to which there is nothing fimilar in any other part of the body. In the upper furface of the fecond vertebra of the neck there is a long tooth-like procefs or projection, which is received into a perforation of the firft vertebra. This procefs is rendered fmootls by a covering of cartilage ; it paffes quite through the vertebra above it, and is connected to this as well as to the cranium by ftrong ligaments, which give ftrength to the connection, and guard againft the effects of a too extenfive motion. The rotatory motions of the head, therefore, are not performed on the firft vertebra of the neck, but on the fecond; the firt vertebra, with the head, moving on the tooth-like procefs of the fecond vertebra, as a wheel moves on its nave.

The fpine, however, though it forms a column, does not form by any means an upright column. The fpine, viewed fideways, if the os facrum is confidered as a continuation of it, is bent very much in the form of the letter δ. In the neck it projects lomewhat forwards, lower down it takes a curved direction backwards, to make room for the heart and lungs. In the loins it advances again forwards under the centre of gravity, fo as to fup-
port the abdominal vifcera; and in the pelvis it recedes backwards, fo as confiderably to enlarge that cavity.

Each vertebra is divided into a body and feven projections, apophyfes or proceffes. The body is placed before, it is fmooth, of a roundifh form, and a remarkably fpongy texture. The proceffes are of a much firmer texture, and project backwards. Two of thefe proceffes are called the fuperior oblique, and afcend obliquely from the upper part of the vertebra; two are called the inferior oblique, and defcend obliquely from the lower part; two are called the tranfverfe, and project fideways; and one is called the fpinous, frorn its refemblance to a thorn, which projects directly backwards. Of thefe proceffes the finous and tranfverfe are the moft prominent. The oblique proceffes feem chiefly defigned for the articulation of the vertebre with each other, and are therefore alfo called articular proceffes. All the vertebre are perforated for the reception of the fpinal marrow, and alfo have notches for the tranfmifion of nerves.

The ufes of the fpine are to fupport the body in an erect pofture, and at the fame time, by the number of joints with which it is furnifhed, to admit of a free motion, without danger of compreffing the fpinal marrow, which it is defigned to protect. It is formed larger below than above, becaufe the lower parts of it have a greater weight to fupport than the upper; and becaufe, when the body is bent, that weight acts with the longeft lever againft that part of the fpine which is fartheft removed from it.

In very young children, each vertebra confifts of three pieces of bone united by cartilage. As the fpine contains fo important a part as the fpinal marrow, we obferve a folicitous care taken by Providence, that the vertebre fhould not be disjointed. Befides being conneeted by ftrong ligaments, proportioned to the forces which are to be refifted, the vertebre of the neck enter into each other, thofe of the back are propped by the ribs, and thofe of the loins have fo large a furface of contact, as to render their feparation almoft impracticable.

The thorax is a bony cavity, narrow above, wide below, and arched behind and at its fides.

The fternum or breaft-bone, which forms the anterior part of the thorax, is of a fpongy confiftence, and of a flat and nearly triangular form; in infancy it confitts of many parts, in the adult ftate of only two, or fometimes three. The upper part is broad and thick, the lower narrow and thin. The loweft part of the fternum, from its refemblance to a dagger, and its cartilaginous nature, is called cartilago enfiformis. The upper part of this bone is notched for the paffage of the wind-pipe, and there are two cavities in its fides for the articulation of the clavicles or collar-bones. There are alfo feven fmall holes on each fide, for the articulation of feven ribs. Its ufes are to fupport the ribs, to protect the lungs and heart, and to furnifh connection to a mufcular organ, which will be afterwards confidered, called the diaphragm.
The ribs which conftitute the greater part of the cavity of the thorax, are fomewhat of a femicircular form; they pafs from the fine towards the fternum ;
they are not connected, however, to the vertebre themfelves, but to the cartilagino-ligamentous fui ftance which connects the vertebræ to each other. At the pofterior part the rib has two proceffes; one of thefe, by which it is connected between two vertebræ, is called its head; another is articulated with the tranfverfe procefs of the vertebre imme: diately below, and is called its tuberofity. Advancing farther on this external furface, we obferve on mof of the ribs another finaller tubercle, into which ligaments connecting the ribs to each other, and to the tranfverfe proceffes of the vertebrex, and portions of the longifimus dorfi, are inferted. Beyond this the ribs make a confiderable curve, fomerimes called thcir angle. The ribs then begin to become broad, and continue fo to their anterior end, whereas near the fpine they are nearly round. To the fore end of each rib a long broad and ftrong cartilage is fixed, and reaches thence to the fternum, or is joined to the cartilage of the next rib. The ribs are twenty-four in number, twelve being placed on each fide. They are divided into the true and the falfe ribs; the feven uppermoft on each fide, which are connected to the fternum, being called true, and the remaining five falfe.

The upper rib is fo placed, that its connection with the fternum is fomewhat higher than that with the fpine, and the two connections of the fecond rib are about horizontal; all the other ribs, however, puint obliquely downwards, as they approach the fternum, and this obliquity increafes as we advance lower. A neceffary confequence of this ftructure is, that when the ribs are raifed, they mult

Vol: III,
K
be brought nearer to a right angle with the fpine, and that the cavity of the cheft mult be erlarged. The upper rib is fixed, but the fecond and every fucceeding rib is gradually more moveable than that placed immediately above it.

The feven upper ribs, called the true ribs, are, as was before remarked, connected to the fternum ; the three upper of the falfe ribs are not connected to the fternum, but adhere to each other, and to the cartilaginous anterior part of the loweft of the true ribs. The two loweft of the falfe ribs are only connected to the fpine by one articulation, and have their other end no otherwife fupported than by the mufcles and membranes with which they are furrourded. By this ftructure the trunk of the body is rendered more fexible at its lower part, where moft motion is required.

The ules of the ribs are to form the lateral parts of the thorax; to render the cavity of the thorax larger or fmaller in breathing; to protect the vifcera of the thorax; to give origins and infertions to a variety of mufcles; and to fupport the mamme or breafts.

The pelvis, fo called from its refemblance to'a bafin, conftitutes the loweft part of the trunk. Its pofterior part is formed by the os facrum, and its lateral and anterior parts by the offa innominata.

The os facrum may be confidered as a continuation of the fpine; and fome anatomifts have called both this bone and the os coccygis by the name of the falfe vertebre. The os facrum is a large thick bone, of a triangular form; its broadeft part
is placed uppermooft, and its narroweft is turned downwards and inwards. The pofterior furface of this bone is convex, the anterior concave. The two lateral margins of it are incrufted with cartilage, by the help of which it is immoveably connected vith the offa innominata. In the middle of this bone there is a canal for the fpinal marrow, correfponding with that in the vertebre of the fpine; and on the anterior furface there are ten perforations, for the paffage of as many nerves. On the pofterior part there are many protuberances, which, like the proceffes of the vertebra, ferve for the infertion of mufcles.

The os coccygis is a fmall bone of a pointed flape, adhering to the lower part of the os facrum. The os coccygis is in infancy compofed of feveral pieces of bone, which coalefce, however, in the adult ftate. It may be confidered as a continuation of the os facrum, and is bent in the fame direction with that bone.

The offa innominata, which form the fides and fore part of the pelvis, are two large broad bones, which in infancy confift each of them of three diftinct pieces ; but as we advance in life, the intermediate cartilages gradually offify, and the marks of the original feparation difappear, fo that they become one irregular bone. They ftill, however, retain the names of ileum, ifchium, and pubis, by which their divifions were originally dittinguifhed, and are defcribed as three different bones, by the grenerality of anatomifts. The offa innominata are connected pofteriorly to the os facrum, by a firm cartilaginous fubftance.

The os ileum or haunch-bone, forms the higheft and moft confiderable part of the os innominatum. The external fide of the ileum is unequally convex, and is called its dorfum: the interral concave furface is by fome authors named its cofta. The femicircular edge at the higheft part of this bone, which is tipped with cartilage in the recent fubject, is named the fpine. This has two confiderable projections; one anterior, and the other pofterior, which is the larger of the two. Thefe ends of the fpine being more prominent than the furface of the bone below them, are therefore called anterior and pofterior fpinous proceffes. Below the anterior fpinous procefs another protuberance projects, which by its fituation may be diftinguifhed from the former, by adding the epithet of inferior. Between thefe two anterior proceffes, the bone is hollowed. Below the pofterior fpinal procefs a fecond protuberance of the edge of this bone is alfo to be obferved, which is clofely applied to the os facrum. Under this laft procefs a confiderable niche is obfervable in the os ileum; between the fides of which and the ftrong ligament which is ftretched over from the os facrum to the fharp-pointed procefs of the os ifchium of the recent fubject, a large hole is formed, through which the mufculus pyriformis, the creat fciatic nerve, and the pofterior crural veffels, pafs, and are protected from compreffion. The internal furface of the os ileum is concave in its broadeft fore part, whence a fmall finuofity is continued obliquely forivards, at the infide of the anterior fpinous procefs. This ridge is continued from the os facrum, and correfponds with a fimilar pro-
minence, both of that bone and of the ifchium, and forms, with the inner part of the os pubis, what is called the brim of the pelvis. The pofterior and lower parts of the offa ileum are thick; but at their middle, where they are expofed to the actions of feveral ftrong mufcles, and to the preffure of the abdominal vifcera, they are exceedingly, thin and compact.

The offa ifchii or hip bones, form the lower and lateral parts of the pelvis : each is commonly divided into its body, tuberolity and ramus. From the body of the ifchium the flarp fpinous procefs ftands out back wards, to which the anterior or internal facrofciatic ligament is fixed. Betwcen the upper part of the ligannent and the bones, it was formerly obferved that the fciatic nerve, \&cc. pafs out of the pelvis. The tuberofity, or loweft part of the ifchium, is large and irregular, affords an origin to feveral mufcles, and is the part on which the body refts in the pofture of fitting. From the tuberofity the bone becomes thinner and narrower ; and pafing forwards and upwards, concurs with the ramus of the os puibis, to form a large hole, called foramen magnum ifchii, or thyroideum. This hole, which in the recent fubject is clofed with a flrong membrane, called the obturator ligament, affords through its whole circumference attachment to mufcles.

The offa pubis conftitute the anterior, or, when the body is crect, the lower part of the pelvis. They are of an irrregular form, and as well as the other parts of the offa innominata have a fhare in forming the acetabulum. The two offa pubis are joined togecher by cartilage at the fore part of the pelvis, which is called the fymphyfis pubis. In each os pubis we may obferve the body of the bone, its angle, and ramus. - The body or outer part is united to the os ileum ; the angle comes forwards to form the fymphyfis, and the ramus is a thin procefs which unites with the ramus of the ifchium to form the foramen thyroideum.

The acetabulum, or focket of the thigh bone, which is partly formed by all the three bones which conftitute the offa innominata, is placed at the under part of the pelvis, and is turned obliquely outwards. The acetabulum is not a perfect circle in the fkeleton, the under part being fupplied in the recent fubject by cartilage.

The os pubis conftitutes about one-fifth of the acetabalum, the os ileum makes fomething lefs than two-fifths, and the os ifchium as much more than two..fifths.

The pelvis has two openings, one above and one below; that above, when we ftand in the erect pofture, pointing nearly directly forwards, that below, nearly directly backwards.

The chicf differences between the male and female flecictons are in the proportions of the bones of the pelvis. The cavity of the male pelvis is an irregular circle; that of the female is much larger, and of an oblong fhape ; the longeft diameter being from fide to fide, and the fhorteft from the os facrum to the offa pubis. Flence women are much wider acrofs the hips, in proportion to their height, than men. The os facrum is broader, and turned more backwards for enlarging the pelvis. The os coccygis is more moveable, and much lefs bent forwards, to facilitate delivery. In confequence of
the pelvis being wider in women, the articulations of their thigh-bones mult be farther removed from each other, which gives them a different gait from men in running, as they muft throw the weight of their bodies further from fide to fide in order to bring it over the centre of gravity. The bones in general are much finer and lefs robuft in the female than in the male fkeleton, and the collar-bones are tefs curved. The offification of fome of the bones is alfo in women lefs complete.

The principal ufes of the pelvis are to form an arch between the trunk of the body and the lower extremities; to contain and protect the urinary bladder, the lower part of the inteftinal canal, sic.

$$
\left[\begin{array}{ll}
136
\end{array}\right] \quad[\text { Book IX. }
$$

Снй. VIII.

THE BONES OF THE INFERIOR EXTREMITY:

> The Os Femoris.-Bones of the Leg. - Thbe Foot.

THE bones of the lower extremities are divided into the thigh-bone, the bones of the leg , and the bones of the foot.

The os femoris, or thigh-bone, is the longeft bone in the body, and is the largeft, thickent, and ftrongeft of the cylindrical bones. The lower extremities are connected to the trunk by the head of the os femoris being received into the acetabulum. The thigh-bone is not placed in a perpendicular direction, the upper ends of the thigh-bones being much further apart than the lower; and from the greater width of the pelvis in women, this difference is much more remarkable in them than in men. The body of this bone is fomewhat of a triangular form; it is convex before and flat behind, and is marked particularly behind by bony ridiges, which ferve for the connection of mufcles. 'This bone is perforated at one or two places for the reception of bloodveffels.

The os femoris is not a ftrait bone, but is arched confiderably forwards. Its head is turned inwards, and the neck is almoft horizontal, con-
fidered wich refpect to its fituation with the body of the bone. Throughout two thirds of the length of the thigh-bone, at its pofterior part, we obferve a ridge called the linea afpera, which originates from the trochanters, and after rumning fome way, divides into two fmaller ridges, which terminate at the condyls.

The head of the os femoris is nearly round, and is marked in the centre with a round pit, into which a ligament, which ferved to keep it fixed in the focket, was inferted. The neck is narrower above and thicker below, and is terminated by a ridge, to which the capfular ligament of the joint was attached. Below this ridge are two remarkable proceffes called the trochanters. The larger of the trochanters is directed outwards, and is placed at the outer fide of the thigh-bone; the other is placed behind, but points inwards. The furfaces of both the trochanters are very rough, for the infertion of mufcles. From the mufcles inferted into thefe two proceffes being the principal inftruments of the rotatory motions of the thigh, they are called trochanters.

The lower extremity of the thigh-bone is thick, and terminates in two condyls *, which are very clofe to each other before, but confiderably removed behind, where there is formed a fafe canal, through which a large artery paffes to arrive at the leg. Behind are alfo two cavities which receive ligaments croffing each other for ftrengthening the connection of the os femoris with the larger bone of the leg.

[^10]The os femoris is united to the trunk by that kind of joint which admits of motion in all dircetions; but here this motion is in fome diredtions mucir limited by the capfular ligament of the joint. The fubftance of this bone, as of all the cylindrical bones, is firm in the middle, and fpongy towards the extremities,

The lery has threc bones, the tibia, the fibula, and the patella. The aibia, which is the principal bone of the leg, is a cylindrical bone of a triangular form, larger above than below. 'The uprer end of the tibia is large, bulbo:s, and fpongy, and is divided into two cavities by a rough irregular protuberance, which is hollow at its moft promirent part, as well before as behind. The two broad cavities at the flue of this protuberance are not equal ; for the internal is oblong and deep, for recciving the internal condyl of the os femoris; while the external is more fuperficial and rounder, for the external condyl. The circumference of thefe cavities is rough and unequal, for the firm connection of the ligaments of the joint. In this manner is formed a hinge or joint, which admits of motion in only two directions. At the back part of this bone the fame canal is continued between the condyls, for tranfmitting blood-veffels and nerves, as in the os femoris; and there are two eminences for the infertion of the other ends of the crucial ligaments. At the anterior part of this bone is a cavity for the reception of the patella, which correffonds with one between the condyls of the os femoris. Below the external edge of the upper end of the tibia is a Hat furface of cartilage, for
the connection of the fibula; and at its lower end there is a longitudinal cavity on the outfide, for receiving the lower part of the fame bone. On the internal part of the bottom of the tibia is a procefs, which forms the inner malleolus or ankle-bone. Still lower, at the extremity of the tibia, is a tranfverse articulating cavity, covered with cartilage, and divided by a ridge, which receives a bone of the foot called the aftragalus. The body of the tibia has three angles, and as many flat furfaces. One of the flat furfaces is turned directly backwards, and one of the angles is placed directly at the forepart of the bone, and is that fharp ridge which is felt by the finger, being only covered by the common integuments of the body. Another angle is called the pofterior and internal, and terminates in the inner ankle-bone; and the third is called the pofterior and external angle, and gives connection to the interoffeous ligament, which paffes from this bone to the fibula.

The fibula, which is nearly oppofed to the laftmentioned angle of the tibia, is a triangular and very thin bone, nearly as long as the tibia. Its fuperior extremity is united to the head of the tibia by means of cartilage. Its head does not rife quite fo high as that of the tibia, and has therefore no connection with the os femoris; its lower extremity is flightly connected to the aftragalus, and forms the external ankle. Its chief ufes are to afford room for the connection of mufcles, to extend the interoffeous ligament, and to give greater firmnefs to the connection of the tibia with the foot.

The

The patela, rotula, or knee-pan, is a frmall flat bone of a fomewhat triangular form, which is placed at the fore part of the leg, where the tibia is conaected with the os femoris. The anterior convex firface of the patella is pierced by a great number of holes, into which enter fibres of the ftrong ligament which is fpread over it. Behind, its furface is finooth, covered with cartilage, and divided by a middle convex ridge into two cavities, both of which are exactly adapted to the pulley of the os femoris. The fubftance of the patella is cellular, but the cells are fo fmall thet it is a very ftrong bone. Its ufes a:c to protect the joint, and to anfwer the purpofe of a pulley to the mufcles which extend the leg.

The foot is compofed of the bones of the tarfus, metatarfus, and toes. It is convex above, concave below, and has a confiderable projection behind.

The tarfus, which is connected with the bones of the leg, confifts of feven pieces of bone, the aftragalus, the os calcis, the os naviculare, the os cuboideum, and the three ofla cunciformia. The aftragalus occupies the pofterior and upper part of the foot, and is the bone on which the bones of the leg immediately depend for fupport. The os calcis forms the projection of the heel; it is of a very irregular form, and is divided into the body, which points backwards, and an anterior procefs by which it is connected with the aftragalus and the os cuboideum. The os naviculare is placed before the aftragalus, and towards the infide of the foot ; it derives its name fromits fuppofed refemblance to a koat. The os cuboideum is placed before the os calcis $_{2}$
calcis, and towards the outfide of the foot. The three offa cuneiformia are placed before the os naviculare, near to cach other, and are fo called from their appearing like wedges driven in among the other bones of the foot. The fubflance of the offa tarfi is fpongy, and they are fo comnected together by cartilage as not to admit of much motion upon each other.

The metatarfus confits of five cylindrical pieces of bone, interpofed between the tarfus and the bones of the toes. Their upper furface is convex, their lower furface concave ; their pofterior extremity is concave where they are connected with the tarfus, and their anterior extremity is furnihed with condyls, by which they are faftened to the bones of the toes.

The bones of the toes are connected to thofe of the metatarfus. The great toe has only two joints, the relt three, and in this refpect they refemble the fingers and the thumb. There are fometimes found fmall bones, which are called offa fefamoidea; there chiefly occur between the firlt and fecond joints of the great toe and thumb, and as they anfwer the fame purpofes, viz. that of removing the tendon further from the axis of motion, may be confidered as fimall patellæ. They are almoft exclufively found in perfons advanced in life and inured to hard labour, and therefore are by fome fuppofed to owe their origin to friction.

Снар. IX.

THE BONES OF THE SUPERIOR EXTREMITY; WITH A BRIEF COMPARISON OF THE HUMAN SKELETON WITH THAT OF BRUTES.

> Bones of the Humerus.-Os Bracchii.-Antibraccbium.-Bones of the Hand. - Refenblance betwecn the fuperior and inforior Ex-tremities.-Comparijon between the Human Skeleton and that of 2uadrupeds.

THE fuperior extremity is divided into the humerus or fhoulder ; the brachium or arm; the antibrachium or fore-arm; and the manus or hand.

The humerus is compofed of two bones, the feapula or fhoulder-blade, and the clavicula or collarbone. The point where thefe two bones unite is the top of the fhoulder. The fcapula is a flat thin bone of a triangular flape. It is fituated at the upper part of the back, and extends from the firft to about the feventh rib. One of the furfaces of the fcapula, which is concave, is applied to the trunk of the body; the other, which is convex, and more uneven, is turned outwaids; b mat the form of the bone may be plainly difcerned in the living perfon. The external furface is divided by a projecting ridge of bone, called the fpine of the fcapula, into two parts, the upper of which is much narrower and fmaller than the lower. The feapula has three an.
-gles, and three fides or margins. With refpect to the margins, that which is placed next the fpine is by far the longelt, and is therefore fometimes called the bafe of the fcapula; that which forms the upper part of the bone is nearly horizontal, and is parallel to the fecond rib, and is the fhorteit and thinnef; the remaining margin, which defcends obliquely from the point of the floulder to the inferior angle, is by far the thickeft and ftrongeft.

The procefes of this bone are the coracoid, fo called from its refemblance to a crow's beak, which rifes from the anterior part of the fuperior margin of the fcapula; and the acromion, which is a broad and flat procefs of the fpine, piaced at the top of the thoulder, and is the whole thick bulbous fore part of the bone. Near the fore 'part of the fuperior margin is a femilunar niche, from one end of which to the other a ligament is ftretched; and fometimes the bone is' continued to form one or two holes' for the paflage of the fcapular blood-veffls and nerves. From the niche to the termination of the foffa (in which a mufcle called the teres major is attached) the fcapula is narrower than any where elfe, and this part has therefore been called its neck.

The cavities of the-fcapula are the glenoid cavity, wider below than above, and covered with cartilage for the reception of the bone of the arm; and feveral fmaller cavities for the connexion of mufcles; and other ules.

The texture of the fcapula is firm, but the bone is fo thin as at molt places to be tranfparent. It is connected by a ball and focket to the bone of the arm; by the intervention of cartilage to the clavicle;
clavicie; and with the head, the os hyoides, the fternum, the ribs, and the back-bone, by means of mufcles. Its ufes are for the articulation of the arm-bone, for the infertion of a great number of mufcles, to add force and extenfivenefs to the motions of the arm, and to be a defence to the pofterior part of the trunk.

The clavicula, clavicle, or collar-bone, is a cylindrical bone, placed almoft horizontally between the fide of the fternum and the acromion of the \{capula. Its figure is fomewhat like that of the letter f; and it received its name from a fuppofed refemblance to the key ufed among the ancients. The clavicle, as well as other long cylindrical bones, is larger at its ends than at its middle. The end next the fternum is triangular : the angle behind is confiderably protruded, to form a fharp ridge, to which the tranfverfe ligament, extended from one clavicle to the other, is fixed. It is for the moft part convex without, and concave within. One end of the clavicle is connected by a ball and focket with the fternum, and the other by cartilage to the acromion of the fcapula. Its ufes are to fupport the fhoulder and other parts of the fuperior extremity, to protect fome large veffels in their paffage to the arm, and to connect the fcapula to the thorax.

The os brachii, or as it is fometimes called the os humeri, is a cylindrical bone, the round head of which is received into the glenoid cavity of the fcapula. It is larger and rounder at its upper part, and fmaller and flatter below. It has three projecting lines, and as many flat furfaces, by which form it admits of a more advantageous and exten-
five connexion of mufcles, than if it had been a fimple cylinder, which is not to be found in any bone of the body, though all the long bones approach to it. This bone has many circumftances of ftructure in common with the os femoris. Like that bone it is articulated by a round head, which is furrounded by a capfular ligament, and, like it, has procefles for the connexion of mufcles; bur thefe proceffes are much lefs remarkable in the os humeri than in the os femoris. At the lower extremity of this bone we obferve feveral procefies and cavities. The moft remarkable procefles are the two condyls; of thefe the external is the fmalleft, and is of an irregular oblong fhape. The internal is more protuberant, and ferves, as well as the former, to give origin to many mufcles. Between thefe two condyls are two lateral protuberances, which, together with a middle cavity, form a kind of pully, on which the motions of the fore-arm are chiefly performed.

The antibrachium, or fore-arm, confifts of two bones, the ulna and the radius. The ulna, which is the longer of the two bones, and is that by which the fore-arm is chiefly connected with the arm, is large above and fmall below, and is of an irregular cylindrical form. At the fuperior extremity of the ulna there are two proceffes, a larger one called the olecranon, placed pofteriorly, and a fmaller, called the coronoid, at the anterior part. At the upper end of the ulna, between thefe proceffes, is a cavity divided by a projecting line, and covered with fmooth cartilage, for the reception of the correfponding projections of the os humeri, There is another cavity

Yol. III.
L
at the fide of the coronoid procefs, covered with cartilage, on which the fuperior end of the radius rolls in fome of the motions of the hand. At the lower extremity of the ulna, which is: much finaller than the upper, is a head with a flight excavation, and a fimall procefs called the 凤yloid, which forms a projection at the lower end of the fore-arm, on the fame fide with the little finger, not unlike the ankles. The ulna is firmly connected above, by a hinge joint, to the os humeri, laterally to the radius, and nightly below to the carpus, and its articulations are every where firmly fecured with ligaments.

The radius is a bone of nearly the fame form, fize, and appearance, with the ulna. As the larger end of the ulna is firmly connected with the os humeri, fo that of the radius is connected to the carpus. On the contrary, the connedions of the ulna with the carpus, and of the radius with the os humeri, are very inconfiderable; the finaller end of the one bone being oppoided to the larger of the other, and depending on it for fupport and firmnefs. The ends of theie two bones are clofely joined together; their middie parts recede from each other, with the interpofition of an interoffous ligament, fimilat to that beeween the tibia and fibula. At the upper end of the radius is a finall cavity, which receives the outer protuberance of the os humeri, and the projecting ridge farrounding this cavity rolls in a finall finus at the upper end of the uha, jn vihichs fituation it is held by a, ring of cartilage. At the bottom of the radius there is alfo a fimilur finus, which receives the lower end of the ulna. The radius is therefore joined to the ulna by a double
articulation; for, above, a tubercle of the radius plays in a focket of the ulna, whilt below, the radius affords the focket and the ulna the tubercle. The motion, however, performed in thefe two is very different; for, at the upper end, the radius does no more than turn round its axis, while, at the lower end, it moves in a fort of cycloid upon the round part of the ulna; and as the hand is here articulated and firmly connected to the radius, they muft move together. The ulna, being connested by a hinge-joint to the os brachii, has fcarcely any other motion than that of flexion and extenfion, in which it carries with it the !adius. The motions of the hand, in which the palm is turned either upwards or downwards, are performed by thofe of the radius on the ulna, carrying with it the hand. From thefe circumftances it appears, that the ulna more particularly belongs to the os humeri, and the radius to the carpus. The ulna fometimes carries with it the radius, but the radius never moves the ulna, which, like the tibia is connected by a hingejoint, and has motion only in two directions. The radius is fo intimately connected with the hand, and is fo much employed in its principal motions, that it has been called manubium momus, or the handie of the hand. Without this peculiar mechanifm, the motions of the fore-arm would be as confined as thole of the leg; but providence, which has preferred the more firm and fecure ftructure in a part which was deftined to fupport the body, has adapted the fore-arm, by this beautiful and admirable contrivance, for the performance of a number

$$
\mathrm{L}_{2}
$$

of motions, with whick a hinge-joint would be quite incompatible.

The bones of the hand are divided into thofe of the carpus, meacarpus, and fingers. The carpus or wrift is formed of eight bones, which are fmall, of irregular flapes, and diftinguifhed into two feries. The form of the carpus is fquare ; that furface, which is contiguous to the palm of the hand, is concave, the oppofite is convex. Each of the two feries of bones, which compofe the carpus, confifts of four pieces. The firft feries, or that which is placed next the bones of the fore-arm, confifts of the os naviculare, the os femilunare, the os cuneiforme, and the os pififorme. The bones, which form the other ferics, are the os multangulum majus, the os multangulum minus, the os capitatum, and the os cuneiforme. Thefe bones are covered with cartilage, and are yariounly articulated with the bones with which they are in contact. The principal ufe of fo great a number of bones in the wrift is to render the hand more flexible. The back part of the hand is convex, for greater firmnefs and frength; the palm concave, for containing more furely and conveniently fuch bodies as we take hold of. The upper part of the hand has an obfcure motion in comparifon with the remainder, and ferves as a bafe to the fingers.

With refpect to the metacarpal bones, and thofe of the fingers, they are fo nearly fimilar to thofe of the metatarfus and toes, that nothing need be added concerning them.

The reader muft undoubtedly have been ftruck with the great refemblance of ftrueture between

Chap. 9.]

the inferior and fuperior extremities. The os humeri has many points of refemblance to the os fe moris, the tibia and fibula to the radius and ulna, and the bones of the carpus, metacarpus, and fingers to thofe of the tarfus, metatarlus, and toes.

Before the anatomy of the bones, however, is concluded, it will be proper to make a few general remarks on the fkeleton of quadrupeds.

In quadrupeds we obferve the fame general outlines of ftructure in the offeous fyltem as in man. Their fkeletons divide themfelves into head, trunk, and extremities; and each of thefe divifions bears a ftriking refemblance to the fame divifion in the fkeleton of the human body. The cavity of the cranium is much fmaller in quadrupeds than in man, in proportion to the other parts, but the bones of the face are much longer ; and with refpect to this circumftance, as well as many others, the monkey holds a middle place between mankind and quadrupeds.

The fpine, as in man, is connected to the cranium; but in quadrupeds this bony column, inftead of being placed vertically, is placed horizontally; in both, however, the ftructure is the fame, and the part is fubfervient to the fame purpofes. The other parts of the trunk are alfo very fimilar to the fame parts in man; and the form and relative fituation of the fternum and ribs are nearly the fame, but the latter are more numerous in quadrupeds. The fame refemblance is manifelted in the bones of the pelvis, except that the os coccygis is continued beyond the other parts of the body, and forms the tail. The upper part of both

150 Skeleton of Quadrupeds. [Book IX. extremities, as in man, is formed of one piece of bone, the lower part of two, and in many quadrupeds there are bones which correfpond with the carpus and tarfus, the fingers and the tocs. The clavicula or collar-bone is in general, however, wanting in quadrupeds, and is only found in monlieys, fquirrels, and fome other animals, which are fkilful in climbing, and which employ their fore legs for other purpofes than that of travelling. In fhort, the fikeleton of the quadruped is fo fimilar to that of man, that when the ficleton of the former is placed erect on the hind-legs, it may eafily, by perfons unacquainted with anatomy, be miftaken for that of the latter.

The figure in Plate II. reprefents a front view of the human fkeleton, with fome of the ligaments and cartilages, which connect the bones to each other.

Head and Neck.

a, Os frontis.
b, Os parietale.
Between a and b, part of the coronal future. c, The pars fquamofa of the temporal bone.

Between b and c, the fquamous future.
Below the pars fquamofa, the zygoma; and, lower down, above f, the maftoid procefs.
Between the pars fquamofa and the cavity, which contains the cye-ball, called the orbit, the tem T_{7} poral procefs of the fphenoid bone is feen. d, Os male.

Above d, a portion of the tranfverfe future.
f, Os maxillare fuperius, with the eight teeth of the right fide.

Chap. 9.]

Defcripticn of the Plates.
The nalal procefs of the fuperior maxillary bon has the os nafi joined, by the lateral nafal future, to its infide; and at the outfide, within the orbit, the os ungurs.
The offa nafi joined to each other before, by, the anterior nafal future.
f, Os maxillare inferius with fixteen teeth; the four anterior named incifores, the two corner ones conini, and the five pofterior on each fide molares.
Oppofite to f, the angle of the lower jaw; above f, the condyloid procefs, by which the jaw is connected to the temporal bone, at the root of the zygoma; and behind the os malx, the coronoid procels.
\therefore The feven cervical vertebræ, with their intermediate cartilages.
Oppofite to g, their tranfverfe proceffes.

> Trunk.
e, Sternum.
a, its middle piece, to which one half of the cartilage that connects the fecond rib, the whole of the cartilages of the third, fourth, fifth, fixth, and one half of the feventh, are fixed.
Above a, the firft or upper triangular piece, to which the clavicle and one half of the cartilage that connects the fecond rib are fixed.
Below a, the extremity, or third piece of the fternum, named the cartilago confforinis, to which one half of the cartilage that connects the feventh rib is fixed.
b, The feventh, or laft true rib.
c, The twelfth, or laft of the five falfe ribs.
d, The five lumber vertebra, with their intermediate cartilages.
Oppofite to d, their tranfverfe proceffes.
e, The os facrum, with its five divifions.
f, Os innominatum, divided into
g, Os ilium,
b, Os pubis,
i, Os ifchium.
Oppofite to i, the foramen thyroideum.

> Superior Extremity.
a, The clavicle fixed before, to the firtt piece of the fternum, and outwards to the acromion of the fcapula.
b, The fcapula.
Above b, the cervix of the fcapula.
Oppofite to it, the inferior cofta; and below the outward extremity of the clavicle, the fuperior cofta, and coracoid procefs, are feen.
c, the os humeri.
The upper end of $i t$, which is connected to the cavity of the fcapula, named the glenoid, below the acromion, is named its bead or ball; on each fide of which is feen the tubercles, named the external and internal; and between thefe, a groove for lodging the long head of the biceps flexor cubiti.
d, The internal condyle.
e, The external condyle.
Between d and e, the trochlea, upon which the ulna moves.
f, The radius.

$$
\text { Chap. 9.] Defrription of the Plates. } 153
$$

The upper end, which moves on the external condyle of the os humeri, is named its bead; below that, the tubercle for the infertion of the biceps flexor cubiti, and between thefe the cervix.
The inferior end of it is connected to the carpus, g, Ulna.

The upper end of it forms the coronoid procefs, for the infertion of the brachialis mufcle.
The inferior end has a procefs named the β floid, which is connected to the carpus by a ligament.
k, The carpus, formed of eight bones.
i, Metacarpal bone of the thumb.
k, The metacarpal bones of the four fingers.
l, The two joints of the thumb.
m, The three joints or phalanges of the fore-finger; and the fame are feen in each of the other three.

Inferior Extremity.
a, Os femoris.
The upper end of it is named its bead or ball, which is lodged in a deep focket of the os innominatum, named the acetabulum.
Between the head and trochanter major, the cervix.
3, Trochanter major.
c, Trochanter minor.
d, Internal condyle.
e, External condyle.
f, Patella.
The place where it moves upon the of femoris, is named the trocblea.
g, Tibia.

Between the tibia and the condyles of the os femoris, the femilunar cartilages are feen; and below the joint, the tubercle of the tibia.
b, Fibula.
i, Malleolus internus.
k, Malleolus externus.
b, Os calcis.
Between l and m, the other fix bones of the tarfus,
m, Metatarfal bones of the four toes.
n, The three joints, or phalanges, of the four toes.
o, Metatarfal bone of the great toe.
p, The two joints of the great toc.
The figure in plate III. reprefents a back view of the human fkeleton, with fome of the ligaments and cartilages which connect the bones.

> Head and Neck.
a, Os parietale, joined to its fellow by the fagittal future.
b, The os occipitis, joined to the parietal bones by the lambdoid future, which is between a and b.
c, Os malx.
d, Maxilla inferior, with a view of the teeth of. both jaws from behind.
e, The feven cervical vertiura.
Trunk.
C. The feventh or laft true rib.
b, The twelfth or laft rib.
c, The five lumbar vertebre.
d, Os facrum.
e, Os coccygis.
f, Os innominatum, divided into

Chap. 9.] Defcription of the Plates.
g, Os ilium.
h, Os pubis.
i, Os ifchium.
Superior Extremity.
a, Thie clavicle, joined outwards to the acromion of the fcapula.
b, The fcapula.
c, Os humeri.
d, Internal condyle.
e e, External condyle.
f, Radius:
g, Ulna, its upper end, named olecronon; and near the wrift, its ftyloid procefs.
h, The eight bones of the carpus.
i, The metatarfal bone of the thumb.
k, The metatarfal bones of the four fingers.
l, The two joints of the thumb.
m, The three joints or phalanges of the four fingers. Inferior Extremity.
a, Os femoris.
b, Trochanter major, and at the infide of it the cervix.
c, Trochanter minor.
d, Internal condyle.
e e External condyle.
f, Tibia.
g, Fibula.
b, Malleolus internus.
i, Malleolus externus.
k, The feven bones of the tarfus,
l, The metatarfus.
m, The joints or phalanges of the toes.

[156]. [Book IX.

Снар. X.

STRUCTURE OF THE MUSCLES.

General Defcription of Mufcles.-Dbfervations of the Able Fcx-tana.-Of Lesvenboek. - Mufiles compofed of fimall Fibres.Structure of different Mufles. - Antagonifs.-Mufles of the Fortus.

THE bones, confidered with relation to the motions of the body, are merely levers; lee is now confider the ftructure of the mufcles, which are the immediate fources of all the motions of the animal machine.

The animal fubftance, which the anatomift calls mufcle, is that which in common language paffes under the name of the lean or flefh of meat. The colour of the mufles, when they are firt removed from the body, is red; this colour, however, is not effential to them, but is merely owing to the prefence of blood, for when mufcle is cleanfed from biood, it appears white. In every recent mufcle we may at firft view diftinguifh two kinds of fibres; the one kind appears red, and is the true mufcular fubftance; the other is tendinous, has a white filvery appearance, and has no power of contraction like the former. 'The tendinous fubfance is fometimes collected into a cord, but is very frequently expanded, fo as by covering the furface of a mufcle, or by pervading its fubftance, to afford a very extenfive connexion to mufcular fibres.

The Abbè Fontana has taken great pains to examine the ftructure of mufcles. He divided mufcular fubftance with the point of a fmall needle till he came to minute threads, which, whatever pains he took, would admit of no further divifion. Thefe, he examined with a lens, the diameter of which was one-ninth of an inch; when they appeared to be folid homogeneous cylinders, interrupted at regular diftances by very minute lines or wrinkles. Thefe wrinkles, when they were examined in different points of view, might have paffed for globules; but upon this circumftance, as the obfervation went no further, the Abbè does not infift. This undulated appearance has alfo been obferved in nervous and tendinous fibres, examined by microfcopes of high magnifying powers. Dr. Monro, in his obfervations on the nervous fyttem, gives it as his opinion, that they are to be confidered as folds or joints, ferving to accommodate the parts to the different fates of flexion and extenfion. In proof of this he finds, that thofe parts which have this appearance in their relaxed ftate, lofe it when ftretched.

Lenenhoeck long ago fancied that he had difcovered the ultimate mufcular fibre, which he confidered as being one hundred times as frall as a hair. He afterwards, however, candidly acknowledged, that what he fuppofed to be a fimple fibre was, in fact, a bundle of them. Notwithftanding, therefore, the microfcopical obfervations of the Abbè Fontana, and other philofophers, we muft ftill acknowledge ourfelves ignorant of the ftrufture of the ultimate component parts of mufcular fubftance; and all we are allowed to fay is, that their ftructure is fibrous.

Thefe minute fibres, obferved by the Abbè Fontana, were tied by cellular fubtance in fimall fafciculi or bundles, thefe bundles are again formed into larger by the fame means, and of thefe fafciculi are compofed thofe contractile maffes of flefh callect mufcles.

Mufcles are generally connected at their two extremities to bones, by means of tendons; the largeft part of a mufcle is called its belly, and is chiefly compofed of contractile mufcular fibres. That connection of a mufcle which is leaft moveable is called its origin, that which is moft moveable its infertion; but thefe terms are in many cafes merely relative, for a part of the body which is more fixed in one pofture becomes lefs fo in another. The fibres which compofe a mufcle run either longitudinally, tranfiverfely, obliquely, or circularly. If all the fibres which compofe a mufcle run in the fame direction, it is called rectilinear; radiated, if the fibres arc difpofed like radii; penniform, if, refembling the plume of a feather, the fibres are fituated obliquely with refpect to the centre from which they proceed; compound, if the fibres run in different directions. The majority of the large mufcles of the body are compound.

Moft mufcles have others oppofed to them, which act in a contrary direction, and are called antagonifts. Thus, one mufcle, or one fet of mufcles, bends a limb, another extengls it ; one elevates a part, another depreffes it ; one draws it to the right, another to the left. By thele oppofite powers the part is kept in a middle direction, ready to be drawn either one way or another, as particular mufcles are
thrown into ftronger action. The flexor mufcles exceed the extenfors in ftrength, and for this reafor the eafielt poftures are thofe in which the body or limbs are moderately bent.

When we fpeak of the mufcles of a part, we do not mean thofe which are fituated on it, but thofe which ferve to move it. Thus, what are called the mufcles of the leg, and which are fublervient to its motions, are placed round the thigh bone; thore which move the foot, round the bones of the leg, \&c.

In the fretus the mufcles are evidently inferted into the periofteum only, but in the adult ftate, when the periofteum adheres much more clofely to she bone, the cendons, being confufed with the periofteum, pafs with that even into the foveoli of the bone.

Снар. XI.

MUSCLE 3 OF THE HEAD.

Muycles of the Forchead.-Of the Eyc. lids.-Of the Eye.-Of the Nofe.-Mufcles of the Mouth.-Why the Face is the Index to the Mind. - Temporal Mufcles. - Mufcles of the Neck.-Of she Farw.-The Tongue.-Muscles of the Palate, Ėc.

THE fkin which covers the head is moved by a fingle broad mufcle, and one fmall pair. The former of thefe is fituated immediately below the common integuments, at the back and fore part of the head, with the intervention of a broad tendon, and is called occipito frontalis. Its effect is to draw the fkin of the head backwards, to raife the eye-brows, and wrinkle the fkin of the forehead.

The corrugator fupercilii arifes from the internal angular procefs of the os frontis, near its joining with the bones of the face; it is inferted into the inferior and inner part of the occipito frontalis, draws the eye-brows towards each, pulls downwards the fkin of the forehead, and caufes it to wrinkle, particularly between the eye-brows.

The mufcles of the ear will be fpoken of when it becomes neceffiary to treat of the organs of hearing.

The mufcles of the eye-lids are, the orbicularis palpebrarum, which furrounds the eye, and has the effect of fhutting the eye-lids. The upper eye-lid has alfo a mufcle proper to iffelf, called the levator palpebra fuperioris, the effeet of which is to raife the former.

The ball of the eye has fix mufcles, four ftrait and two oblique. The frait mufcles all rife from the bottom of the orbit around the foramen, through which the optic nerve paffes, and are extended to the fore part of the globe of the eye. Thefe mufcles are named from thcir ufe. The levator oculi raifes the ball of the eye, the depreffor pulls it down, the adductor turns the eye towards the nofe, and the abductor moves the globe outwards. The two oblique mufcles are, the obliquus fuperior or trochlearis, which, rifing from the bottom of the orbit, runs along the pars plana of the ethmoid bone to the upper part of the orbit, where its tendon paffes through a cartilaginous ring connected to the os frontis, by which mechanifm the direction of its force is altered, and its tendon afterwards proceeding a litcle downwards, and directed outwards at the fame time, is inferted half way between the infertion of the attollens oculi and optic nerve. The effect of this curious mufcle is to roll the eye, to turn the pupil downwards and outwards, and to draw the whole ball nearer to the nofe. The obliquus inferior arifes from the orbitar procefs of the fuperior maxillary bone, and running obliquely outwards is inferted in the fpace between the abductor and optic nerve. Its ufe is to draw the globe of the eye forwards, inwards, and downwards, and, contrary to the fuperior oblique, to turn the pupil upwards towards the inner extremity of the eyebrow. By acting fucceflively with all the mufcles of the cyes we are able to roll them.

Vol. III. M
The

The nofe is affected by feveral mufcles of the face, but only one pair is commonly confidered as properly belonging to it. This, which is called the compreffor naris, arifes externally from the root of the alx nafi, and running obliquely upwards along the cartilage of the nofe, joins its fellow, and is inferted into the neighbouring bone. The effect of this mufcle is to comprefs the alx towards the feptum naris, particularly when we want to finell acutely; it alfo wrinkles the fkin of the nofe.

The mouth has nine pair of mufcles inferted into the lips, where their terminations form a fingle mufcle, which furrounds the mouth. One of thefe rifes from the upper jaw-bone, and is inferted into the angle of the mouth. Its effect is to raife the corners of the mouth, and it is therefore called the levator anguli oris. 2. The levator labii fuperioris alæque nafi. This rifes by two diflinet origins; one of thefe proceeds from the fuperior maxillary bone immediately below the orbit, the other from the fame bone at the inner angle of the eyc. It is inferted partly into the upper lip and partly into the outer part of the alre nafi, raifes the upper lip towards the cyes and a little outwards, and alfo dilates the noitrils, by drawing the alæ nafi upwards and outwards. 3. The depreffor labii fuperioris alæque nali, arifes from the upper jaw-bone, where the dentes incifivi and canini are fixed, and is inferted into the upper lip and root of the alxe nafi. When it acts, it draws the upper lip and ale nafi downwards and backwards.

The three mufcles of the mouth, already mentioned, are fituated above, the three other pairs are placed below.
4. The depreffor anguli oris arifes from the lower edge of the maxilla inferior, and is alfo connected to the neighbouring foft parts. It is inferted into the corners of the mouth, and pulls them downwards. 5. The depreffor labii inferioris arifes from the inferior part of the lower jaw-bone, near the chin, is inferted into the edge of the lower lip, and pulls it downwards and a little outwards. 6. The levator labii inferioris arifes from the lower jaw, where the dentes incifivi and canini are fixed, and, being inferted into the under lip and fkin of the chin, draws them upwards.

Three pair of, mufcles are alfo feated outwards with refpeet to the mouth.
7. The buccinator (or trumpeter) arifes from both jaws, adheres clofely to the membrane of the mouth, and is inferted at its angles. Its effect is to draw the angles of the mouth backwards and outwards, and to contract its cavity, as in blowing a wind inftrument, and in pufhing our meat betwcen the teeth. 8. The zygomaticus major arifes from the os malæ, near the zygomatic future, and is inferted into the angle of the mouth. When it contracts, it draws the angles of the mouth upwards and outwards, and makes the cheeks prominent as in laughing. 9. The zygomaticus minor defcends obliquely from the prominent part of the os male, and is inferted into the upper lip near the corner of the mouth. Its ufe is to draw the corner of the mouth obliquely upwards and outwards towards the external corner of the eye.

The fingle mufcle, which was mentioned as being formed by the terminations of all the others decuffating each other, is called the orbicularis oris, and entirely furrounds the mouth. Its ufe is to thut the mouth, by contracting and drawing both lips torgether, and to counteract all the mufcles which contribute to its formation.

The mufcles of the face are the organs, which, being affected by the paffions, render the human countenance an index of what is paffing in the mind; and, as all mufcles acquire a greater degree of ftrength as well as pronencis to action in proportion to the degree in which they are employed, fo the countenance becomes impreffed with a general character, which is the foundation of phyfiognomy. For this reafon the comntenances of old people are more exprefive, and their likeneffes more eafily taken, than thofe of the young, though this is partly to be attributed tot the wafling of the fat, which in youth fills the internices between the mufcles, and prevents flrong lines. To the above principle is to be attributed the greater exprefion obfervable in the countenance of a perfon of a cultivated mind than in that of a perfon whofe flock of ideas is narrow. From all thefe circumftances it appears, that the cultivation of the mind is the moft likcly method of increafing the expreffion and beauty of the countenance.

The mufcles of the lower jaw are four pairs, and are thofe employed in the maflication of the food.

The temporalis mufcle has a very extenfive origin, from the lower and lateral part of the parietal bone, all the pars fquamofa of the temporal bone,
from the external angular procefs of the os frontis, and from the temporal procels of the fphenoid bone. From thefe different origins the fibres defcend like radii towards the jugum, under which they pafs, and are inferted into the coronoid procefs of the lowér jaw. Its ûfe is to prefs the lower jaw againft the upper, and at the fame time to draw it a little backwards. This mufcle is covered with a broad tendon, called its aponeurofis, which defends it, and gives origin to a great number of mufcular fibres.

The maffeter arifes from the fuperior maxillary bone, where it joins the os mala, and from the inferior and anterior part of the jugum, and is inferted into the angle of the lower jaw, which, when it acts, it preffes againft the upper.

The pterygoideus internus proceeds from the inner and upper part of the internal plate of the pterygoid procels of the fphenoid bone, and from the pterygoid procefs of the os palati. It is inferted into the angle of the lower jaw internally, and, when it a£:s, clraws it upwards and obliquely towards the oppofite fide.

The pterygoideus externus takes its origin from the outer fide of the pterygoid procefs of the fphenoid bone, from part of the tuberofity of the os maxillare adjoining to it, and from the root of the temporal procefs of the fphenoid bone. It is inferted into the neck of the condyloid procefs of the lower jaw, and pulls it forwards and to the oppofite fide, or when both the external pterygoid mufcles act, the fore teeth of the under jaw are pufhed forwards beyond thofe of the upper jaw.

On the fide of the neck, towards its fore part, are two mufcles. The external of thefe is a mufcle of the fkin, and is called platifma myoides. It arifes by a number of flender fibres from the cellular fubftance, which covers the upper parts of the deltoid and pectoral mufcles ; in their afcent they all unite to form a thin mufcle, adhering to the fkin, and which is inferted into the lower jaw. It draws the fkin of the cheek downwards.

The fterno-cleido-maftoideus has two origins, one from the fternum, the other from the clavicle, which, uniting, form one mufcle, which runs obliqucly upvards and outwards, and is inferted into the maftoid procefs of the temporal bone. When it contracts, it turns the head to one fide, and bends it forwards ; or when its fcllow acts with it, they draw the head dirrectly forwards.

Six pairs of mufcles are fituated between the os hyoides and the lower jaw.

The mufcle, which forms the external layer, is, called the digaftricus. It rifes near the maftoid procefs, runs downwards and forwards to the os hyoides, and thence proceeds to the bone of the chin, into which it is inferted. When it acts, it pulls the lower jaw downwards and back wards, and therefore opens the mouth. When the lower jaw, however, is fixed by the ftronger mufcles, which have been already defcribed, the effect of the digaftricus is different, for the os hyoides, then becoming the more moveable part, is drawn upwards, and with it the larynx and pharynx, as in the act of fwallowing.

The mylo-hyoideus paffes from the infide of the
lower jaw to the os hyoides, and has nearly the fame effect as the digaftricus.

The genio-hyoideus alfo paffes from the os hyoides to the chin, and either raifes the former or pulls down the latter, according as the lower jaw or the os hyoides is rendered more fixed by other mufcles.

The genio-hyo-gloffus arifes from the lower jaw, and is inferted partly into the os hyoides, and partly into the tongue. This mufcle, according to the direction of its fibres, acts very differently on different occafions; from the feparate action of its fibres it either draws the tongue backwards, extends it out of the mouth, or renders its upper part concave.

Two mufcles pafs from the os hyoides to the trunk. The fterno hyoideus proceeds from the fternum, and pulls the os hyoides downwards. The omo hyoideus arifes from the fuperior cofta of the fcapula, and draws the os hyoides obliquely downwards. It is to be noticed, that when there are two mufcles of equal ftrength and equal obliquity attached to a moveable part, and they both act together, they draw it in a ftrait line, the obliquity of the one counterbalancing that of the other.

The fubftance of the tongue is mufcular, and is diftinguifhed by anatomifts into fix pair of mufcles, which it cannot be neceflary to enumerate. Thay alfo defcribe fix pair of mufcles belonging to the pharynx; thefe 1 fhall pafs over in filence, and merely confider it as a mufcular bag, forming the upper part of the alimentary canal. There
are alfo feveral mufcles belonging to the palate and uvula, of which the limits of this work da not permit the fpecification. I fhall at prefent alfo pars over the mufcles of the larynx, as a better opportunity will occur of comprehending them under the delcription of the parts to which they belong. The fame obfervation is applicable to the mufcles of the car.

Chap. I2.] [169]

C н a p. XII.

MUSCLES OF THE TRUNK.

Mufles of the Neck and Back.-Of the Branf.-Of the Ribs.The Diaphragm.-Mufiles of the Abdomen.-Of the Pelvis, छc.

0N the anterior part of the neck, clofe to the vertebre, are feated the following mufcles :
The longus colli arifes from the bodies of three of the vertebre of the back, and from the tranfverfe proceffes of moft of the vertebre of the neck. It is inferted into the fore part of all the vertebre of the neck, and has the effect of drawing it forwards or to one fide, according as the mufcle on both fides, or that on one only, is called into action.

The rectus capitis internus major proceeds from the extremity of the tranfverfe proceffes of the three, four, five, and fix vertebre of the neck, is inferted into the cuneiform procefs of the os occipitis, and bends the head forwards.

The rectus capitis internus minor arifes from the fore part of the body of the firit vertebra of the neck, is inferted into the condyloid procefs of the os occipitis, and alfo bends the head forwards.

The rectus capitis lateralis arifes from the anterior part of the point of the firft tranfverfe procefs of the firft vertebra of the neck, and is inferted into the os occipitis, and bends the head a little to one fide.

The large and ftrong mufcles, feated at the pofterior part of the trunk, may be divided into four layers and a fingle pair. The external layer confifts of two very broad mufcles.

The trapezius arifes by a ftrong round tendon, from the middle of the os occipitis, and from a rough curved line, which extends thence towards the maftoid procefs of the temporal bone. It proceeds downwards along the nape of the neck, is attached to the fpinous proceffes of all the vertebrex of the back, and the two loweft of the neck, and is alfo firmly connected by the intervention of a tendon to its fellow of the oppofite fide. It is inferted into the pofterior part of the clavicle, the acromion, and almoft all the fpine of the fcapula. It moves the fcapula either obliquely upwards, directly backwards, or obliquely downwards, according as its different parts are called into action.

The latifimus dorli arifes, by a broad thin tendon, from the pofterior part of the fpine of the os ileum, from the fininous proceffes of the os facrum, loins, and feven inferior of the back, and from three or four of the lower ribs; its fibres converging perfs over the inferior angle of the fcapula, are collected into a flat cord in the axilla, and inferted into the os humeri. Its action is to pull the arm downwards and backwards, and to roll the os humeri.

The fecond layer of mufcles confifts of three pair, two on the back and one on the neck. Orn the back are feated the ferratus pofticus inferior. This mufcle originates from the fpinois proceffes of the two inferior of the back and three fuperior vertebre of the loins, is inferted into the four loweft ribs,
ribs, which it draws downwards, and is therefore a mufcle of expiration.

The rhomboideus proceeds from the fpinous proceffes of the five fuperior vertebre of the back and three inferior of the neck, and is inferted into the bafe of the fcapula, which it draws obliquely upwards, and directly inwards towards the fpine.

On the neck is fituated,
The fplenius, which arifes from the fpinous proceffes of the four upper vertebre of the back and five lower of the neck; it is inferted into the tranfverfe procefles of the five fuperior vertebre of the neck, the pofterior part of the maftoid procefs, and the os occipitis, where it joins the root of that procefs. When one of thefe mufcles acts, it brings the head and neck obliquely backwards, or, when they both act, they draw the head directly backwards.

The fingle pair, which was mentioned, is the
Serratus pofticus fuperior. This originates from the fpinous proceffes of the three loweft vertebre of the neck, and two uppermoft of the back, and is inferted into the fecond, third, fourth, and fifth ribs. Its effect is to elevate the ribs, dilate the thorax, and confequently it is fubfervient to infpiration.

Having removed thefe mufcles, we come to the third layer, which confifts of three on the back, and three on the neck.

On the back are,
The fpinalis dorfi, which arifes from the fpinous proceffes of the two uppermoft vertebre of the loins and three inferior of the back, and paffes to the nine uppermoft finous procefles of the vertebre
[Book IX.
tebre of the back. The evident effect of this mufcle is to ftraiten the fpine, and prevent it from bending forwards.

The longifinus clorfi originates from the fide of the os facrum, and its finous proceffes; from the pofterior fpine of the ileum; from all the fpinous proceffes, and from the roots of the tranfverfe proceffes of the vertebre of the loins. It is inferted into all the tranfverle proceffes of the vertebre of the back, and alfo into the lower edge of the ton uppermoft ribs, nea: their tubercles. This mufcle ftrengthens the Pine, and kecps the body from bending forwards.

The facro-lumbalis, which arifes in common with the longiffimus dorfi, is inferted into all the ribs near their angle. It pulls down the ribs, and affifts in ereeting the trunk of the body.

On the ineck we find, the
Complexus, which arifes from the tranfverfe proceffes of the feven fuperior vertebre of the back and four inferior of the neck; it is inferted, with the trapezius, into the inferior edge of the protuberance in the middle of the os occipitis, and into a part of the curved line which runs towards the maftoid procefs. When they both act, they draw the head directly backwards, or obliquely fo when only one is called into artion.

The trachelo-mantoideus, which arifes from the tranfverle proceffes of the three uppermoft vertebre of the back, and firm the five lowermoft of the neck, where it is connected to the tranfverfus cervicis, is inferted into the pofterior part of the maftoid procefs.
cefs. It affifts the complexus, but pulls the head more to one fide.

The levator fcapule arifes from the tranfverfe procefles of the five fuperior vertebre of the neck, and is inferted into the fuperior angle of the feapula. It elevates the fcapula, and draws it a little forwards.

The fourth layer confifts of two pair on the back, two on the pofterior part of the neck, four froll pair, fituated immediately below the pofterior part of the occiput, and three on the fide of the neck.

On the back are the
Semifpinalis dorfi, which arifes from the $\operatorname{tran}\{-$ werfe proceffes of the feventh, eight, ninth, and tenth vertebre of the back, is inferted into the fpinous procefles of all the vertebre of the back above the eighth, and into the two lowermoft of the neck. Its effeet is to extend the fpine backwards.

The multifitus finine originates from the fide and §pinous proceffes of the os facrum, and from the pofterior part of the os ileum, where it joins the facrum; from all the oblique and tranfverfe proceffes of the vertebre of the loins; from all the tranfverfe proceffes of the vertebre of the back, and from thore of the neck, except the three upper; its tendinous and mufcular fibres run in an oblique direction, and are inferted into the fpinous proceffes of all the vertebre of the loins, of the back, and of the neck, except the firt. When one lide of this mufcle acts by itfelf it cxtends the fpine obliquely, when both act they draw it direetly backwards.

On the pofterior part of the neck are the femifpinalis colli, which arifes from the tranfverfe proceffes of the fix uppermoft vertebre of the back, and is inferted into the fyinous proceffes of all the vertebre of the neck. It extends the neck backwards.

The tranfverfalis colli, which proceeds from the eranfverfe proceffes of the five uppermoft vertebre of the back, and is inferted into the tranfverfe proceffes of all the cervical vertebræ, except the firft and the laft. It turns the neck obliquely backwards and a little to one fide.

Below the poferior part of the occiput are,
The rectus capitis pofticus major. This mufcle arifes from the external part of the fpinous procefs of the fecond vertebra of the neck, afeends obliquely outwards, and is inferted into the os occipitis. It pulls the head backwards, and affifts a little in its rotation.

The rectus capitis pofticus minor arifes from a little protuberance in the middle of the back part of the firft verrebra of the neck, and is inferted near the foramen magnum of the os occipitis. It affirts in moving the head backwards.

The obliquus capitis fuperior arifes from the traniverfe procefs of the firf vertebra of the neck, and is inferted into the os occipitis. It draws the head backwards.

The obliquus capitis inferior arifes from the fpinous procefs of the fecond vertebra of the neck, and is inferted into the tranfverfe procefs of the firft vertebra of the neck. This mufcle acts very powerfully in giving a rotatory motion to the head.

On the fide of the neck are the fcalenus antictis, which arifes from the fourth, fifth, and fixth tranfverfe proceffes of the vertebre of the neck, and is inferted into the upper part of the firf rib.

The fcalenus medius, which proceeds from all the tranfverfe proceffes of the vertebrae of the neck, and is inferted into the upper and outer part of the firft rib.

The fcalenus pofticus, which arifes from the fifth and fixth tranfverfe proceffes of the vertebre of the neck, and is inferted into the upper part of the fecond rib.

The effect of all the fcaleni is to bend the neck to one fide, or, when the neck is fixed, to raife the ribs and dilate the thorax.

There are a number of fmall mufcles fituated between the fpinous and tranfverfe proceffes of contiguous vertebre, fome of which approach fo nearly to the nature of tendons as to ferve merely as ligaments. The ufe of all thefe is to ftrengthen and erect the fpine.

In the defrription which has been given of the mufcles which ferve for the motion of the whole head, the reader cannot have failed to obferve, how much more numerous thofe are which are inferted into the back part of the head, and pull it backwards, than thofe which have the oppofite infercion and effect. The reafon of this is, that the center of gravity of the head does not fall on the condyls, on which it is fupported, but confiderably farther forward; from which mechanifm it is evident that the mufcles which pull the head back muft be continually acted againtt. Hence, wher a perfon falls

aneep,

anecp, or is afecterd with the paify, and the mufcles ceafe in act, the head always falls forwards. By the fnine being thus connelled towards the potterior part of the cranium, more fpace is allowed for the cavities of the mouth and fauces.

Mufcles fituated on the anterior part of the thorax.
After having remaved the common integuments of the thorax, we ubferve a large mufcle, the pectoralis major, which rifes from the cartilaginous extremities of the fifth and fixth ribs, from almoft the whole length of the fternum, and from near half the anterior part of the clavicle. Its fibres run towards the asilla, and it is inferted into the upper and inner part of the os humeri. Its effect is to move the arm forwards and obliquely upwards towards the fternum.

Having removed this we come to another layer, which confifts of three mufcles.

The lubclavius is a fmall mulcle which ri?es from the firt rib, and is inferted into the inferior part of the chavicle. Its elfect is to pall the clavicle downwards and forwards.

The pectoralis minor arifes from the upper edge of the third, fourth, and fifth ribs, and is inferted into the coracoid procefs of the feapula. Its ufe is to bring the fcapula downwards and forwards, or that being fixed, to pull the ribs upwards.

The ferratus magnus originates from the nine fuperior ribs, by an equal number of 怆hy digitations, refimbling the teeth of a faw, whence the term ferratus is derived. Being folded about two angles of the fcapula it is inferted into its bafe. Its effeet is to move the fcapula forwards, or when
the fcapula is forcibly raifed, to draw the ribs upwards.

The mufcles which cover the ribs being removed, we obferve the fpace between the ribs filled up with double rows of mufcles, called the intercoftales cxterni and interni. The external arife from the inferior acute edge of each rib, and running obliquely forwards are inferted into the obtufe upper furface of the rib next below. The internal arife in the fame manner as the external, except that, contrary to them, they begin at the fternum, and run obliquely backwards. The two rows of intercoftals, therefore, decuffate each other like the ftrokes of the letter X. The effect of the contraction of both feries is the fame, viz. that of bringing the ribs nearer to each other, and as each lower rib is more moveable than that above, to raife the ribs, dilate the thorax, and aflift in infpiration.

Certain portions, both of the external and internal intercoftals, are longer, and paffing over one rib are inferted into the next below it. The ribs are likewife raifed, and their pofterior articulations ftrengthened, by twelve fhort mufcles, which arife from eleven of the tranfverle procefles of the dorfal vertebræ, and the loweft of thofe of the neck, and which are inferted into the rib immediately below the tranfverfe procefs from which each of them rifes.

The fterno-coftalis arifes from the cartilago enfiformis, and is inferted into the lower edge of the cartilages of the third, fourth, and fifth ribs, Its effect is to deprefs thefe cartilages and the extreYol. III.

N
mities
mities of the ribs, to contract the cavity of the thorax, and therefore to affift in expiration.

The moft important mufcle of the thorax, however, ftill remains to be confidered. The diaphragm is a broad and fttong mufcle, which divides the cavity of the abdomen from that of the thorax. It is placed very obliquely between thefe two cavities,' its anterior connection being much higher than its pofterior. Its middle part is forced up by the vifcera of the abdomen, fo as to form an arch. The diaphragm, at its anterior part, arifes from the upper and internal part of the enfiform cartilage, and from the cartilages of the fixth, feventh, and all the inferior ribs. The mufcular portions arifing from all thefe points converge towards a common center, where they terminate in a broad triangular tendon. This being directed downwards and backwards is attached to a mufcular fubftance, which arifes by eight heads from the fecond, third, and fourth lumbar vertebrx. There are feveral paffages through the diaphragm, which mutt not be pafied over in filence. Among the mufcular portions which proceed from the lumbar vertebra are openings through which pafs the aorta, the thoracic duct, the vena azygos, and the two great intercoftal nervcs. The mufcular fibres, which proceed from the lumbar vertebre, run obliquely upwards and forwards, and form in the middle two flefhy columns, which decuffate, and leave an oval fpace between them for the paffage of the cefopitagus and eighth pair of nerves. Towards the :ight fide of the broad tendon, which forms the mididle of the diaphragm, there is a large

Chap. 12.] Mujcles of Expiration. 373
quadrangular opening, through which the vena cava paffes to arrive at the heart. When the diaphragm contratts, its concavity is leffened, particularly or each fide, over which the lungs are placed, its center being firmly fixed from its connećtion with the mediaftinum. By the defeent, however, ,f its fides, it pufhes downvarde and forwards the abdominal vifcera, it lengthens, and of courfe enlarges, the cavity of the thora\%, and is the principal mufcle of infpiration. The ribs are at the farne time raifed by the intercostal mufcles, by which the thorax is made wider. The chief mufcles of expiration, on the other hand, afe thore which furround the abdomen. Thefe counteract the intercoflals, by pulling down the ribs, in which they are affifed by the ferrati, and oppofe the diaphragm by the portici infe--iores preffing back wards and upwards the abdominal vifcera. By theíe mufcles refpiration is in general carried on. In cafes, liswever, of laborious refpiration, whether from difeafe or violent exercife, other mufcles are called into action; inspiration is then promoted b_{j} the pectoral mufcles, the ferrati antici majores, the ferrati portici pofteriores, and the fcaleni. That thefe mufcles may act with more advantage, perfons labouring under difficule refpiration extend and fix the neck, and raife the fhoulders. In laborious expiration the quadrati jumborum, facro-lumbales, and longifimi dorfi, concur in pulling down the ribs. The elafticity of the cartilages of the ribs is alfo on all oscafions an agent in expiration.

The mufcles fituated on the anterior part of the abdomen are five pair. On the middle of the an-
terior part of the abdomen, three of its mufcles, the two oblique and the tranfverfe, terminate in tendinous fubfance, which forms an expanfion the whole way from the cartilago enfiformis to the offa pubis. This from its white appearance is called linea alba. The external layer is formed by a mufcle, which from its fituation and the direction of its fibres is called the obliquus defcendens externus. This mufcle rifes by as many heads from eight or nine of the loweft ribs; its notches always mix with thofe of the ferratus major anticus, and generally cohere to the pectoralis major, intercoftals, and latifinuus dorfi. It proceeds obliquely downwards and forwards, and is connected partly to the linea alba and partly to the fpine of the ileum. Its tendinous fubtance, which forms part of the linea alba, divides below into two columns, which leave between them a nit named the ring of the abdomen; of thefe columns the inferior is inferted into the os pubis of the fame fide, the fuperior decuffates its fellow, and paffes over to be inferted into the os pubis of the other fide. That part of the external oblique mufcle, which is connected to the fpine of the ileum, is ftretched from the anterior fipinous procefs of that bone towards the os pubis, forming what is called Poupart's or Fallopius's ligament. This tendon is united with the itrong tendinous expanfion of the thigh, called fafcia lata, which involves and fheaths the mufcles of the thigh, and, proceeding to the leg, performs there the fame office.

The opening, called the ring of the abdomen, formed by the tendons of this mufcle, gives paffage to the fpermatic veffels in men, and the round
ligaments of the uterus in women. The contents of the abdomen, getting through this opening, form the inguinal hernia. Under Poupart's ligament pals the great veffels of the thigh, and this is the feat of the crural or femoral hernia. -This mufcle afints the exclution of the freces and urine, and in expiration, and bends the body forwards.

The fecond layer is formed by the obliquus afcendens internus. This mufcle arifes from the fpinous and tranfiverfe proceffes of the three uppermoft lumbar vertebre, from the upper part of the facrum, and from the fpine of the ileum, the whole length between the pofterior and fuperior anterior fpinous procefs. Paffing obliquely upwards, it is inferted into the cartilaginous part of ail the falfe ribs and the two loweft of the true, to the enfiform cartilage and to the fernum. At its anterior part it becomes itendinous, and dividing, receives the rectus mufcle between its feparate portions. Its pofterior portion is connected with the tendon of the tranfuerfalis mufcle, its anterior with the linea alba. At its loweft part it is inferted into the anterior part of the os pubis. Its wefe is to affift the former, but it bends the trunk in the reverfe direction.

The tranfverfalis has nearly the fame origins as the internal oblique. It is inferted into the cartilago enfiformis above, and into the whole length of the linea alba, except at its lowermoft part. It fupports and compreffes the abdominal vifcera.

The rectus abdominis arifes from the cartilago enfiformis and the cartilages of the three loweft true ribs. In its courfe downwards it paffes through
the fheath formed by the divifion of the tendon of the internal oblique, having the tendon of the external oblique without, and that of the tranfverfalis within. The rectus is generally divided by three tencinous interfections. Below it is connected to the offa pubis, where they are joined to each other. The ufe of this mufcle is to comprefs the fore part, and more particularly the lower part, of the abdomen. It alfo bends the trunk forwards, or raifes the pelvis towards the fernum. By being furrounded by the tendons of other mufcles, it is prevented from flarting from its fituation.

The Pyramidales are a fhort pair of mufcles frequently wanting; they arife from the offa pubis, and are inferted into the linea alba about half way between them and the navel. They affitt the rectus.

The anterior part of the abdomen is diftinguilhed into feveral divifions, called regions. 1. The epigaftric region, whici) reaches from the pit of the ftomach to within tirree fingers breadth of the navel, and is bounded taterally by the hypochondria. 2. The umbilical region, which extends three fingers breadth above and below the navel, and is terminated laterally by the lumbar regions; and 3. Below the umbilical region is the hypogaf tric, on each fide of which are the iliac regions. Still lower down is the region of the pubis.

Within the cavity of the abdomen are fituated fous pair of mufcles The pfoas magnus arifes from the fide of the body and tranfverfe procefs of the loweft, vertebra of the back, and from thofe of all the vertebre of the loins. Paffing downwards through the pelvis it is inferted partly into the leffer trochantes

Chap. 12.] Mufcles of the Pelvis, E'c.
and partly into that part of the os femoris a little below it. It bends the thigh forwards, or when the thigh is fixed, as in the pofture of ftanding, it bends the trunk forwards on the offa femoris. The pfoas parvus proceeds from the two upper vertebræ of the loins, and fending off a fnall long tendon, is inferted into the brim of the pelvis at the junction of the os ileum and pubis. It affifts the pfoas magnus in bending the loins forwards.

The iliacus internus arifes from the tranfverfe proceefs of the laft vertebra of the loins, from the inner edge of the fpine of the ileum, from the edge of that bone between its anterior fpinous procefs and the acetabulum, and from moft of the hollow part of the ileum. It joins with the pfoas magnus where it becomes tendinous, is inferted along with it into the fmaller trochanter, and has the fame effect.

The quadratus lumborum is feated further backward; it arifes from the pofterior part of the fpine of the os ileum, and is inferted into the tranfverfe procefles of all the lumbar vertebra, into the laft rib near the fpine, and by a fmall tendon into the fide of the laft vertebra of the back. Its ufe is to move the loins to one fide, or, when both act, to draw the loins forwards.

Within the pelvis are placed the obturator internus, which arifes from the internal circumference of the foramen thyroideum. Its tendon paffes out of the pelvis, between the pofterior facro-ifchiatic ligament and the tuberofity of the os ifchium, and is inferted into the large pit at the root of the trochanter major. Its effect is to roll the os femoris obliquely outwards.

The coccygeus paffes from the fpinous procefs of the ifchium to the bottom of the os facrum and the whole length of the os coccygis. By its contraction the os coccygis is drawn forwards.

Belonging to the anus are,
The fphincter ani, whick arifes from the fkin and fat which furrounds the verge of the anus. The fibres are gradually collected into an oval form, and furround the extremity of the rectum, which they ferve to contract.

The levator ani arifes from the os pubis, within the pelvis, and from the fpinous procefs of the ifchium. It is inferted into the fphincter ani, acceleratores urinæ, and the point of the os coccygis. It furrounds' the extremity of the rectum and the neck of the bladder, fo that joining with its fellow, they togcther very much refemble the flape of a funnel. It fupports and draws upwards the rectums.

Chap. 13.] [185]

Chap. XIII.

MUSCLES OF THE INFERIOR EXTREMTTES.

Mufcles of the Thigh.—Of the Leg.-Of the Foot and Toes.

AS the two fides of the trunk of the body correfpond, a defcription of one fide is to be underftood as applying equally to both. In the fame manner the parts of the extremities have their fellows on the oppofite fide.

The mufcles which belong to the thigh, and are fituated at the anterior part of the pelvis, are,
$\left.\begin{array}{l}\text { The proas magnus, } \\ \text { The iliacus internus, }\end{array}\right\}$ already defcribed.
The pectinalis arifes from the upper and anterior part of the os pubis, immediately above the foramen thyroideum. It is inferted into the anterior and upper part of the linea arpera of the os femoris, a little below the trochanter minor. Its ufe is to draw the thigh upwards and inwards, and to roll it in fome degree outwards.

The triceps adductor femoris arifes by three diftinct heads from the offa pubis, and is inferted into almoft the whole length of the linea alpera, into a ridge above the internal condyl of the os femoris and into the upper part of that condyl. The ufe of this extenfive mufcle is, as the name exprefles, to draw the thighs together; it alfo at the fame time tends to move them upwards and to roll the thigh outwards.

The obturator externus furrounds the foramen thyroideum, and alfo rifes from the membrane which
fills up that foramen, and from the adjacent parts of the os pubis and ifchium. Its fibres converge to a point, and paffing outwards around the back part of the neck of the os femoris, are inferted by a ftrong tendon into the inner and back part of the trochanter major, adhering in their courfe to the capfular ligament of the thigh bone. Its ufe is to roll the thigh bone obliquely outwards, and to prevent the capfular ligament from being pinched.

The mufcles placed at the ponerior part of the pelvis, and defigned for the motions of the lower extremity are, the gluteus maximus, which forms the external layer, and arifes from the poferior part of the fipinc of the ileum, from the whole pofterior furface of the os facrum, and from the pofterior facroifchiatic ligament; defcending obliquely, it paffes over the trochanter major, is firmly connected to the tendinous expanfions of the tenfor vaginæ femoris, and is inferted by a broad tendon into the upper and outer part of the linea afpera. The effeet of this mufcle is to draw the thigh backwards and a little outwards.

The gluteus medius forms another layer. It arifes from the anterior fuperior fpinous procefs and the dorfum of the os ileum, and is inferted into the outer and pofterior part of the trochanter major. Its ufe is to draw the thigh outwards, and a little backwards, and to roll it, efpecially when it is bended.

The third layer confifts of four mufcles.
The gluteous minimus arifes from the outer furface of the os iieum and the border of the great niche. It is inferted into the upper and anterior
part of the great trochanter, and alfits the former mufcle.

The pyriformis arifes within the pelvis, from the anterior part of the os facrum, thence becoming narrower, it paffes out of the pelvis along with the pofterior crural nerve, below the niche in the porterior part of the os ileum. It is inferted into a cavity at the root of the trochanter major. By its contraction it moves the thigh a little upwards, and rolls it outwards.

The gemini confifts of two portions, one of which rifes from the ouzer furface of the fpine of the os ifchium, the other from the tuberofity of the os ifchium and pofterior facro-ifchatic ligament. It is inferted into the lame pari of the trachanter major with the pyrifurmis and obturator internus. This mufcle rolis the thigh outwards, and confines the tendon of the obturator internus.

The quadratus femoris arifes from the outfide of the tuberofity of the os ifchium, is inferted into a ridge which paffes from one trochanter to the other, and rolls the thigh outwards.

The mufcles feated on the thigh, and which move the leg, confift of two on the infide, one on the outfide, four before, and four behind.

On the infide are,
The fartorius, which arifes from the fuperior anterior fpinous procefs of the ileum. This long mufcle, running downwards and a little inwards, is inferted into the inner fide of the tibia. It dravis the legs obliquely inwards, fo as to bring the legs acrofs each other, for which reafon it is called the fartorius, or the taylor's mufcle.

The gracilis arifes near the fymphyfis of the offa pubis, and is inferted with the fartorius into the inner part of the tibia. It affifts the fartorius in bringing the legs acrofs, and, when they are a little bent, to affift in bending them further.

On the outfide of the thigh is placed
The tenfor vagine femoris, which arifes from the external part of the anterior fuperior fpinous procefs of the os ileum. It is inferted into the tendinous fafcia which covers and confines the mufcles of the thigh. Its ufe is to ftretch and fupport the fafcia, and alfo to roll the thigh fomewhat inwards.

On the fore-part of the thigh are,
The rectus, which arifes partly from the inferior and anterior fpinous procefs of the ileum, and parcly from the dorfum of the ileum, a little above the acetabulum. Paffing down the middle of the os femoris it is inferted into the patella, by the intervention of which its effect, that of extending the leg , is much increafed.

The vaftus externus aritos from the root of the trochanter major and the outer cdge of the linea alpera through its whole length. It is inferted partly into the upper and outer part of the patella, and partly into the tendinous expanfion, which is continued from the outfide of the thigh to that of the leg. This mufcle affits the former in extending the leg.

The vaftus internus arifes from the fore part of the os femoris, the root of the trochanter minor, and inner edgé of the linea afpera. It terminates partly in the tendinous aponeurofis of the leg, and
is partly inferted in the inner and upper part of the patella. It alfo extends the leg.
The cruræus arifes from the anterior part of the os femoris, between the two trochanters, but nearer the trochanter minor. It adheres firmly to the whole of the anterior part of the os femoris, is inferted into the middle of the patella, and aflifts in extending the leg.

On the pofterior part of the thigh are placed
The femitendinofus, which arifes from the tuberofity of the os ifchium, and is inferted into the infude of the ridge of the tibia a little below its tubercle. Its effect is to bend the leg and draw it inwards.

The femimembranofus, which originates from the tuberofity of the ifchium, and is inferted into the inner and back part of the head of the tibia. It bends the leg, and brings it directly backwards.

The biceps flexor cruris arifes by two diftinct. heads. Of thefe the longer proceeds from the tuberofity of the ifchium, and the fhorter from the linea afpera, a little below the termination of the gluteus maximus. The two heads join a little above the external condyl of the os femoris, and are inferted by a ftrong tendon into the head of the fibula, forming the external ham-ftring. The internal is formed by the two preceding mufcles.

The popliteus arifes from the lower and back part of the external condyl of the os femoris, it runs over the ligament which involves the joint, and is inferted into a ridge at the upper and internal
edge of the tibia, a little below its head. It affifts in bending the leg, and prevents the capfular ligament from being pinched.

The mufcles fituated on the leg, and which perform the motions of the foot, are either extenfors or flexors of the foot, or extenfors and flexors of the toes in general.

The extenfors of the foot are: the gaftrocnemius, which arifes by two heads, one from each of the condyls of the os femoris. A little below the joint their fleflhy bellies unite in a middle tendon, and below the middle of the tibia it terminates in a broad tendon of the following mufcle.

The foleus, or gaftrocnemius internus, alfo arifes by two heads; one from the upper and back part of the head of the fibula, the other from the upper and pofterior part of the tibia. The flefh of this mufcie, covered by the tendon of the gemellus, runs down nearly as far as the extremity of the tibia, a little above which the tendons of this and of the preceding mufcle unite, forming a ftrong cord called tendo achillis, which is inferted into the pofterior and projecting part of the os calcis. The diftance of the extremity of the os calcis from the aftragalus, which is the center, on which the motions of the foor are performed, gives thefe mufcles great power. Their effeet is to extend the foot by bringing it more nearly into the direction of the tibia. When the foot, however, becomes the more fixed point, as in the erect poiture of the body, there two mufcles, by preffing the foot againft the ground, raife the body; they are therefore very much employed in walking, running, and jumping, but particularly

Chap. 13.] Calies of the Legs, their Ufe, EJc. IgI
ticularly in afcending fteps, whence the fatigue felt in thefe mufcles which form the calves of the legs by a continuance of that exercife.

The plantaris arifes from the upper and back part of the external condyl of the os femoris, adhering in its defcent to the capfular ligament of the knee. Paffing under the cemellus, it foon terminates in a thin tendon, which is the longeft in the body, and which is inferted into the infide of the back part of the os calcis. It co-operates with the former mufcle in extending the foot, and alfo pulls the capfular ligament of the knee from between the bones, and prevents it from being pinched.

The flexors of the foot are four, two of which belong to the tibia and two to the fibula.

The tibialis anticus proceeds from the upper and fore part of the tibia, and from the interoffeous ligament. Near the extromity of the tibia it fends off a round tendon, which paffes under the ligamentum tarfi annulare near the inner ankle. It is inferted into the infide of the os cuneiforme internum and the pofterior cnd of the metacarpal bone, which fuftains the great toc. The effect of this mufcle is to bend the foot, by drawing it upwards, and at the fame time to turn it inwards.

The tibialis polticus proceeds from the upper part of the tibia neir its union with the fibula, then paffing through a perforation in the interoffeous ligament, it continues its origin from the interofenus ligament, and from the upper half of the tibia, receiving allo a few fibres from the fibula. It finds
off a round tendon, which paffes in a groove behind the malleolus internus. It is inferted into the inner part of the os navicufare, and into the adjacent bones, at the internal and upper part of the foot. This mufcle alfo bends the foot, and turns it inwards.

The two flexors which proceed from the fibula are,

The peroneus longus, which arifes from the fore part of the head of the fibula or perone, and alfo continues to receive fibres from the external part of this bone almoft as low as the ankle. Its tendori runs in a channel at the back part of the outer ankle, thence being reflected to the finuofity of the os calcis, it runs in a groove in the os cuboides, and paffing clofe to the bones in the fole of the foot, it is inferted chiefly into the metatarfal bone of the great toe. This mufcle moves the foot outwards and a little upwards.

The peroneus brevis arifes from the outer and fore part of the fibula. Its tendon paffes behind the outer ankle, in which fituation it is retainedi by the fame ligament as that of the laft mufcle. It is inferted into the root and external part of the metatarfal bone of the little toe. This mufcle alio moves the foot outwards and a little upwards.

The cominon extenfors of the toes are,
The extenfor longus digitorum pedis, which arifes from the upper, outer, and fore part of the tibia, interoffeous ligament, and inner edge of the Gibula. It divides into four tendons under the ligamentum tarfi annulare. It is inferted by four flat tendons into the roots of the firft joints of the four
fmall toes. Its ufe is to extend all the joints of thefe toes. A portion of this mufcle is inferted into the metatarfal bone of the little toe, affifts in bending the foot, and is called the peroneus tertius.

The extenfor brevis digitorum pedis arifes from the fore and upper part of the os calcis, is inferted into the tendinous expanfion at the upper part of the foot, and extends the toes.

The common flexors of the toes are,
The flexor brevis digitorum pedis, which arifes from the lower part of the os calcis. Its thick flefhy belly foon divides into four tendons, which, after being pierced by thofe of the following mufcle, are inferted into the fecond phalanx of the four fmall toes. This mufcle bends the fecond joint of thefe toes.

The flexor longus digitorum pedis arifes from the upper and back part of the tibia, fome diftance below its head. In its courfe downwards it is increafed by flefly fibres from the inner edge of the tibia, and by means of tendinous fibres is connected to the outer edge of that bone. Paffing under two annular ligaments, which retain its tendon in its proper fituation, it is received into a finuofity at the infide of the os calcis, and about the middle of the fole of the foot divides into four tendons, which perforate thofe of the flexor brevis, and are inferted into the extremity of the laft joint of the four fmall toes. Its ufe is to bend the laft joint of the toes.

Vol. III.

0
This

This mufcle receives, in the fole of the foot, anow ther, which arifes from the infide of the os calcis, and which increafes its ftrength.

The lumbricales pedis are four fmall mufcles in the fole of the foot, fo called from their refemblance in fize and appearance to earth-worms ; they arife from the four tendons of the flexor digitorum longus, and are inferted into the infide of the firft joint of the four fmall toes. Thefe mufcles render the flexion of the toes more extenfive, and draw them inwards.

The mufcles fituated chiefly on the foot are thofe defigned for the motions of each of the toes in particular. To the great toe belong five mufcles. Of thefe, one extends it, two bend it, one draws it outwards, and another inwards.

The little, toe, befides the common flexors and extenfors, has two mufcles proper to itfelf. One of thefe draws it outwards, and the other contributes to its flexion.

Between the metatarfal bones are alfo feated feven mufcles, called the interoffei interni et externi. The internal interoffei are three in number; their ufe is to draw the three fmaller toes towards the great toe. The external interoffi are four ; of thefe, the firft ferves to move the fore-toe towards the great-toe; the other three draw the three toes next the great toe outwards. All the interoffei affift in extending the toes.

The tranfverfalis pedis arifes from the under part of the anterior extremity of the metatarfal bone of the great toe, and terminates at that of the metatarfal bone of the little toc. By the contraction

Chap. I 3.] the Toes. 195 of this mufcle the great and little toes are brought nearer.

The mufcles fituated in the foot are covered and protected by a ftrong tendinous expanfion, which paffes from the os calcis to the firf joints of all the toes.

Сиар. XIV.

MUSCLES OF T'EF SUPERIOR EXTREMITIES.
Scafilar Mufcles.-Mufiles of the Fire-arm,-Of the Hand.-Of the Fing cres.

TIE pectoralis major and latiffimus dorf have already been deferibed.
The mufcles which are feated on the feapula, and which are inferted into the os humeri, are,

The fuprafpinatus, which arifes, as its name expreffes, from that part of the fcapula which is above its fine; it paffes under the acromion, adhering to the capfular ligament of the os humeri, and is inferted into the large tuberofity on the head of that bonc. Its ufe is to raife the arm upwards, and to clraw the capfular ligament from between the bones, fo that it may not be hurt by compreflion.

The infrafpinatus, which originates from all that part of the bafe of the fcapula that is between its fpine and inferior angle; and alfo from the fpine as far as the cervix fcapulæ. Its tendon, running forwards, is connected with the capfular ligament, and terminates in the middle and upper part of the protuberance on the head of the os humeri. This mufcle rolls the humerus outwards, fupports the arm when raifed, and alfo affifts in raifing it, and pulls the ligament from between the bones.

The teres minor arifes from the inferior cofta of the fcapula, and is inferted into the back part of the
ruberofity on the head of the os humeri. Its ufe is to roll the humerus outwards and draw it backwards, and by its connection with the capfular ligament of the os humeri, to draw it from between the bones.

The teres major arifes from the inferior angle and inferior cofta of the fcapula; its flefhy fibres are continued over part of the infrafpinatus mufcle, to which they firmly adhere. It is inferted, by a broad and thin tendon, along with the latifimus dorfi, into the ridge at the inner fide of the groove for lociging the tendon of the long head of the biceps. It effect is to roll the humerus inwards, and draw it backwards and downwards.

The deltoides arifes from the clavicle, proceflus acromion, and the fpine of the fcapula; from thefe origins its fafciculi converge, forming a covering to the anterior part of the joint of the os humeri. It is inferted into a roigh protuberance in the outer fide of the os humeri. The chief effect of this mufcle is to raife the arm ; but from the different direction of its fibres, it may alfo move it backwards or forwards.

The coraco-brachialis arifes from the fore part of the coracoid procefs of the fcapula, is inferted into the middle and inner fide of the os humeri, and moves the arm upwards and forwards.

The fubfcapularis arifes from the whole internal furface of the fcapula; after being connected to the capfular ligament, it is inferted into the upper part of the fmall internal protuberance at the head Qf the os humeri. It rolls the os humeri inwards,
draws it to the fide of the body, and draws the capfular ligament from between the bones.

The mufcles fituated on the os humeri, and which move the fore-arm, are oniy four; two being placed before for the flexion of the joint, and two b.hind for its extenfion. Thofe placed before are,

The biceps flexor cubiti, which confits of two heads, which unite about the middle of the os humeri. Of thefe the fhorter rifes from the coracoid procefs of the fcapula; the longer and outermoft begins from the upper edge of the glenoid cavity of the fcapula, paffes over the head of the os humeri within the joint, and in its defcent without the joint is inclofed, by a membranous ligament, in a groove near the head of the os humeri. This mufcle is inferted, by a ftrong roundifh tendon, into the tubercle on the upper end of the radius internally. Its effects are to bend the fore arm, and to turn the radius outwards, and for bring the palm of the land uppermof. Part of the tendon proceeding from this mufcle is alfo fpent in a tendinous expanfion, which covers all the mufcles at the infide of the fore arm, and joins with another tendinous membrane, which is fent off behind from the triccps extenfor cubiti. The ufe of thefe expanfions, as in wher parts of the body, is to confine the motions of the muilies, to protect them, and to give origin to a number of fibres.

The brachialis internus ariles from the os humeri at each fide of the infertion of the tendon of the deltoides. Being clofely applied to the inferior and imuer part of the os humeri, it runs over the joint, is firmly attached to the ligament, and is inferted

Chap. 14.] Muccles of the Fore-arm, Ecc.
into the coronoid procefs of the ulna. It affifts the former mufcle in bending the fore-arm.

Behind are

The triceps extenfor cubiti, which confifts of three headis ; of thefe one proceeds from the inferior cofta of the fcapula, another from the upper and outer part of the os humeri, and the third from the back part of that bone. Thefe three heads, when united, form a large mufcle, which is clofely applied to the pofterior part of the humerus, from which they receive fome mufcular fibres. This mufcle is fixed to the upper and outer part of the olecranon of the ulna.

The anconæus arifes from the external condyle of the os humeri, and is inferted into a ridge on the outer and pofterior edge of the ulna. It affifts in extending the fore arm.

The mufcles fituated on the fore arm may be divided into four orders: r. Flexors and extenfors of the whole hancl. 2. Flexors and extenfors of the fingers. 3. Supinators and pronators, or thore which roll the radius on the ulna. 4. Flexors and extenfors of the thumb and fore finger.

The firft order confifts of three ीexors and three extenfors. The fexors are,

The palmaris longus, which arifes from the inner condyle of the os humeri, and is inferted partly into the annular ligament, which confines the tendons feated in the wrift, and partly into the tendinous expanfion, which covers the palm of the hand. This mufcle bends the wrift and ftretches this membrane.

The palmaris brevis, which originates from the annular ligament and teridinous expanfion on the palm of the hand, and is inferted into the os pififorme, and the fiin covering the abducor minimi digiti. It affints in contracting the palm of the hand. This finall mufcle is commonly confidered as belonging to the former.

The flexor carpi radialis proceeds from the inner condyle of the os humeri, and is inferted into the metacarpal bone of the fure finger. It bends the hand and affifts in its pronation, that is, in turning the palm downwards.

The flexer carpi ulnaris arifes alfo from the internal condyle of the os humeri, and alfo from the outer fide of the olcramon. It is inferted into the os pifforme, amd affits in bending the wrift.

The extenfors of tice whole hand are,
The extenfor capi radialis longior, which arifes from the lowier purt ci the external ridige of the os humer:, athive iss estemal condyle. It is inferted into the upper part of the metacappal bonc, which fupports ti.e fore firger. Its cfiect is to extend the wrift and bring the hand backwards.

The extenfor capi rachatis brevior arifes frem the outer part of the external condyle of the hamerus, and from the ligament which connects the radius to it. It is inferted into the upper part of the metacarpal bone of the middle finger, and extends the writt.

The extenfor carpi ulnaris arifes from the external condyle of the os humeri, and aifo receives an acceffion of fibres in its progrefs from the ulna.
ulna. Its round tendon is confined by a membranous fheath in a groove, which is fituated at the extremity of the ulna. It is inferted into the upper part of the metacarpal bone of the little finger, and anfifts in extending the wrif.

The flexors and extenfors of the four fingers are,
The flexor fublimis perforatus, which arifes from the internal condyle of the os humeri, the inner edge of the coronoid procefs of the ulna, and the upper and anterior part of the radius. It fends off four tendons before it paffes under the ligament of the writt, which being divided for the paffage of the tendons of the following mufcle, are inferted into the anterior and upper part of the fecond bone of each finger. It bends the fecond joints of the fingers.

The flexor profundus perforans, which originates from the upper part of the ulna, and from a confiderable part of the interoffeous ligament. It divides into four tendons, which pafs through the fits in the tendons of the preceding mufcle, and are inferted into the upper part of the laft bone of the four fingers. Its ufe is to bend the laft joint of the fingers.

The lumbricales arife from the four tendons of the preceding mufcle, and are inferted into the outer fides of the broad tendons of the interoffei mufcles. They increafe the fexion of the fingers.

The extenfor digitorum communis arifes from the outer condyle of the os humeri, and is inferted into the pofterior part of all the fingers by a tendinous expanfion. It extends the joints of all the fingers.

The mufcles, which roll the radius on the ulna, are,

The fupinator radii longus, which arifes from the external ridge of the os humeri, above the external condyle. It is inferted into the outer fide of the inferior extremity of the radius. Its effect is to roll the radius outwards, and confequently to turn the palm of the hand upwards.

The fupinator radii brevis, which arifes from the external condyle of the os humeri, and pofterior furface and outer edge of the ulna. It is inferted into the head, neck, and tubercle of the radius. It rolls the radius outwards, and turns the palm of the hand upwards.

The pronator radii teres, which originates from the internal condyle of the os humeri and coronoid procefs of the ulna. It is inferted into the pofterior part of the radius, about the middle of that bone. Its effect is to roll the radius, with the hand, inwards, and confequently to turn the back of the hand upwards, or to lay the hand prone.

The pronator radii quadratus arifes from the inner and lower part of the ulna. Its fibres, running tranfverfely, are inferred into the anterior part of the radius oppofite to their origin.

For the motion of the thumb are placed in the fore-arm,

The flexor longus pollicis manus, which originates from the upper and fore part of the radius; its tendon paffes under the ligament of the wrift, and is inferted into the laft joint of the thumb, which it ferves to bend.

The extenfor offis metacarpi pollicis manus, which arifes from the middle and pofterior part of
the ulna, from the middle and pofterior part of the radius, and from the interoffeus ligament. It is inferted into the os trapezium and upper back part of the metacarpal bone of the thumb. Its effect is to extend the metacarpal bone of the thumb outwardly.

The extenfor primi internodii arifes from the pofterior part of the ulna, and from the interoffeous ligament. It is inferted into the pofterior part of the firlt bone of the thumb, which it extends obliqueiy outwards.

The extenfor fecundi internodii, arifes from the miadle and back part of the ulna, and from the interoffeous $\mathrm{lig}_{\text {sament, }}$ and is inferted into the laft bone of the thumb, which it extends obliquely backwards.
To the fore finger belongs
The indicator, which begins from the pofterior part of the ulna, about the middle of that bone. Its tendon, accompanying that of the cxtenfor digitorum communis, which belongs to the fame finger, they are inferted together into its upper part. Its effect is to extend the fore finger, whence its name of indicator, as that is the finger with which we ufually point at any object of attention.

The mufcles feated in the hand may be divided into thofe of the thumb and thofe of the fore and little fingers.

The flexor brevis pollicis manus arifes from the os trapezoides, annular ligament, os magnum, and os unciforme, and is inferted into the fecond joint of the thumb, which it ferves to bend.

The flexor oflis metacarpi pollicis, or opponens pollicis, arifes from the os trapezium and ligamentum carpi annulare. It is infertul into the under and anterior part of the firft bone of the thumb. Its effect is to bring the thumb inward:, fo as to place it in oppofition to the fingers.

The abductor pollicis manus commences from the ligamentum carpi annulare and from the os trapezium, and is inferted into the outer fide of the root of the firft bone of the thumb. Its ufe is to draw the thumb from the fingers.

The adductor pollicis manus arifus from the metacarpal bone which fuftains the midute finger, and is inferted into the inner part of the roct of the firt bone of the thumb. This mufcle pulls the thumb towards the fingers.
'The thumb has, therefore, in ail, cight mufcles, four feated in the fore-arm and four in the hand. Of the whole eight, theee are flexors, three extenfors, one is an abductor, the other an addector.

One mufch, the indicator, projer to the forefinger, and feated in the fore-arm has been alrcady defcribed; another mufle proper to this finger is feated in the hand; it is called

The abductor indicis manus, and arifes from the inner fide of the firf bone of the thumb and from the os trapezium, and is inferted into the firft bone of the fore-finger. It ferves to bring the forefinger towards the thumb.
'To the little finger belong
The abductor minimi digiti, which arifes from the os pifforme and the adjacent part of the annular ligament. It is inferted into the fide of the firlt reft.

The adductor metacarpi minimi digiti manus, which arifes from the os unciforme and the adjacent part of the annular ligament ; it is inferted into the anterior part of the metacarpal bone of the little finger, which it draws towards the reft.

The flexor parvus minimi digiti arifes from the os unciforme, and from the ligament of the wrift near it, and is inferted into the firt bone of the little finger. It bends the little finger, and affifts the adductor.

Between the metacarpal bones there are four internal and three external mufcles, named interofei. They are inferted into the roots of the fingers. The interoffei interni extend the fingers, and more them towards the thumb, except the third, which draws the middle finger from the thumb. The interoffei externi alfo extend the fingers; but the firft draws the middle finger inwards, the fecond draws it outwards, and the third draws the ring-finger inwards.

The figure in Plate IV. reprefents the firt layer of mufcles fituated on the anterior part of the whole body, immediately under the common integuments, and tendinous fafciæ.

Muscles fituated on the Head and Neck.
e, The anterior flefhy belly of the occipito-frontalis fituated on the os frontis.
Above a, the tendinous aponeurofis of the occi-pito-frontalis, covering the upper part of the parietal bones.
B, Attollens aurem.

Under it the tendinous aponeurofis covering the temporal mufcle.
Anterior auris between c and the ear.
c, Orbicularis palpebrarum.
Its tendon is feen at the inner canthus, fixed to the nafal procefs of the fuperior maxillary bone. Levator labii fuperioris alæque nafi.

Seen divided into two portions running down along the fide of the nofe; an 1 on the outfide of it, the levator anguli oris.
Next this, the
Zygomaticus minor.
Farther outwards,
Z.ygomaticus major.

On the ala and tip of the nofe, the
Compreffor naris.
d, Depreffor anguli oris.
And beneath it, a portion of the depreffor labii inferioris.
e, Orbicularis oris
f, Platyfma-myoides.
Behind f, the fterno-cleido-mafoidxus is feen through the platyfma-myoides.

> Trunk.
a, Pectoralis major.
The upper part of it is covered by the origin of the platyfma-myoides.
b, Serratus magnus.
The other portions refemble this.
c, Latiffimus dorfi.
d_{2} Obliquus externus defcendens.

Chap. 14.]

e, Linea femilunaris.
f, Linea alba.
Below f, the umbilicus. Between e and f, the rectus abdominis; and, at the inferior part of the linea alba, oppofite to g, the pyramidales appear through the tendons of the oblique mufcles.
g, Ring of the external oblique mufcle; with the fpermatic chord, paffing through ir; and covered by the cremafter mufcle.
Superior Extremity.
a, Deltoides.
Above the clavicle, a portion of the trapezius is feen.
b, Biceps flexor cubiti.
At the bending of the arm is feen its tendon going towards the radius, and the part, from which the tendinous aponeurofis that covers the fore-arm, is cut off.
On the infide of the biceps, part of the triceps extenfor cubiti; and on the outfide, part of the brachialis internus.
c, Supinator radii longus.
d, Pronator teres.
e, Palmaris longus.
f, Palmaris brevis.
On the palm of the hand, the aponeurofis palmaris is feen extended from the annular ligament at the wrift, to the roots of the metacarpal bones of the four fingers.
g, Flexor carpi radialis.
h, Part of the flexor fublimis perforatus.
i, Infertion of the flexor carpi ulnaris,
k, Abductor pollicis.
Inferior Extremity.
a, Tenfor vaginx femoris, the vagina or tendinous fafcia being cut off.
On the outfide of it a portion of the gluterus maximus.
b, Part of the iliacus internus.
On the infide of it, between b and c, part of the pfoas magnus.
c, Pectinalis.
d, Triceps longus.
e, Gracilis.
f, Sartorius.
g, Rectus cruris.
Its tendon is feen inferted into the patella, from which a ftrong tendon is fent to be fixed to the tubercle of the tibia.
b, Vaftus externus.
i, Vaftus internus.
k, 'Tibialis anticus.
l, Peronæus longus.
On the outfide of it, a portion of the folæus.
m, Extenfor longus digitorum pedis, with the peronæus tertius, and extenfor proprius pollicis pedis,
n, Gaftrocnemius externus, or gemellus.
o, Solæus.
p, Ligamentum tarfi annulare.
q, Abductor pollicis pedis.

The figure in Plate V . reprefents the fecond layer of mufcles on the anterior part of the whole body. Muscles filuated on the Head arid Neck.
a, Corrugator fupercilii.
b, Temporalis.
c, Maffeter.
d, Levator anguli oriś.
e e, Buccinator.
f, Orbicularis oris.
Oppofite to the right ala nafi, the portion of this mufcle, which Albinus names,
Nafalis labii fuperioris.
g, Depreffor labii inferioris.
b, Sterno-cleido-maftoidæus, which is
Seen below, arifing from the fternum and clao vicle, by two heads.
i, Sterno-hyoidæus.
On the outfide of it, the
Omo-hyoidæus.
Further out, a portion of the
Hyo. thyroidæus.
k, Levator fcapulx.

TRUNK。

a, Subclavius'
b, Pectoralis minor.
c, Serratus magnus.
d, Rectus abdominis, divided into feveral ferhy portions bý its tendinous interfétions.
e, Pyramidalis.
f, Obliquus afcendens internus.
क, Spermatic cord, with the origin of the cremafteis mufcle.
Vol. III.
P.

Supe-

Superior Extremity.

a, Biceps flexor cubiti.
b, Short head of the biceps.
Beneath the upper part of it, a portion of the coracobrachialis.
Beneath the under part, a portion of the brachialis internus.
c, Long head of the biceps.
At the bending of the arm, the tendon of the biceps, and the place where the tendinous aponeurofis was cut from it, are feen.
d, Extenfor carpi radialis longior.
Beneath it a portion of the
Extenfor carpi radialis brevior.
e, Flexor fublimis perforatus.
f, Infertion of the extenfor carpi ulnaris.
g, Extenfors of the thumb.
h, Opponens pollicis.
On the infide of $i t$, a portion of the Flexor pollicis brevis.
i Tendon of the flexor longus pollicis manus, after paffing through the flexor brevis pollicis manus.
k, Abductor minimi digiti manus.
l, Flexor parvus minimi digiti manus.
m, Ligamentum carpi annulare.
Inferior Extremity.

- a, Iliacus internus.

Between a and b, part of the proas magnus.
b, Pectinalis.
c, Triceps longus.
d, Gracilis.
e, Rectus cruris cut off near its origin.
f, Tendon of the rectus cruris cut off above the patella, from which a ftrong tendon is fent to be inferted into a tubercle of the tibia.
g, Portion of the glutæus medius.
On the infide of it; part of the glutrus minimus.
b, Vaftus internus.
i, Vaftus externus.
k, Cruræus.
l, Infertion of the biceps flexor cruris into the fibula. m, Tendons of the gracilis and femitendinofus inferted into the tibia.
n, Solæus.
o, Peronæus longus.
p, Extenfor longtis digitorum, with the peronrus tertius on the outfide, and extenfor pollicis proprius on the infide.
q, Solæus.
r, Flexor longus digitorum.
\int, Tendons of the tibialis pofticus and flexor longus digitorum pedis.
t; Flexor brevis digitorum pedis.
The figure in Plate VI. reprefents the third layer of mufcles, with fome of the ligaments, cartilnges, and naked bones on the anterior part of the whole body.
a, Depreffor labii fuperioris alæzue nafr.
b, Orbicularis oris, after moft of the mufcles, which are fixed to it, and affift to form it, have been taken away.
s, Buccinator.
Above c, part of the pterygoidæus externus is feen paffing behind the coronoid procefs of the lower jaw.
d, Levato:
d, Levator labii inferioris.
e, Sterno-thyroidæus.
Immediately above, and feemingly the continuation of it, the
Hyo-thyroidxus.
f, Scalenus anticus.
Contiguous to it, on the infide, the
Scalenus medius.
Above it, a portion of the
Trachelo-maftoidæus.
Between the fealenus anticus, and fterno-thyroideus, and hyo-thyroidæus, the
Rectus capitis anterius major, and
1.ongus colli.

Trunk.

6, Third row of external intercoftal mufcles.
The reft appear in the fame manner between the other ribs.
b, Third row of internal intercoftal mufcles.
The reft appear between the other ribs.
c, Tranfverfalis abdominis.
d, The place from which the inferior part of the terdon of the tranfverfalis, that paffes before the rectus and pyramidalis mufcles, is cut off.
Between thefe portions of each fide, the peritonewm is laid bare, and the ligaments of the bladder, which were formerly the umbilical arteries and urachus.
Between this portion and the os pubis, the fper matic cord is feen cut.
c, The inferior edge of the upper part of the tendon of the tranfverfalis; which paffes behind the rectus,
rectus, and immediately adheres to the peritonæuin.
f, The anterior lamella of the internal oblique, which joined the tendon of the external to pals over the rectus.
Between f and g, the pofterior lamella of the internal oblique, joining with the tendon of the tranfverfalis, to pafs behind the rectus.
g, The place at the linea alba, from which the tendon of the external oblique, and anterior lamella of the internal, were cut off.
At g, Umbilicus.

> Superior Extremity.
a, Subfcapularis.
b, Teres minor.
c, Coraco-brachialis.
The part from which the fhort head of the biceps flexor cubiti was cut off from it, is feen at its upper end.
d, Brachialis internus.
e, Brachialis externus, or third head of the triceps.
f, Extenfor carpi radialis longior, and with it the extenfor carpi radialis brevior.
Both thefe are diftinetly feen in the right hand.
Between the tendon of the brachialis internus and extenfor radialis, the
Supinator radii brevis is feen.
G, Flexor longus pollicis manus, with the flefhy portion of it which arifes from the internal condyle of the os humeri.
b, Flexor profundus perforans, which plits into four tendons, which pafs under the ligamentum carpi annulare.
i, Pronator quadratus.
k, Adductor niinimi digiti manus.
l, One of the lumbricales.
The other three appear in the fame manner, along the tenduns of the flexor profundus.
Behind thefe, the internal interoffei are feen.

> INferior Extremity.
a, Glutaus minimus.
b, Iliacus internus.
On the infide of it, between b and c, the proas magnus.
c, Obturator externus.
d, Adductor Lrevis femoris.
e, Adductor magnus femoris.
f, Gracilis; which is
Seen inferted into the infide of the head of the tibia.
g, The thort head of the biceps flexor cruris.
b, Peronæus longus.
\therefore Peronaus brevis.
Between thefe two peronæi and tibia, the tibialis pofticus is feen.
k, Tendon of the tibialis pofticus, covering the tendon of the flexor longus digitorum pedis,
l, Extenfor brevis digitorum pedis.

The figure in Plate VII. reprefents a back view of the mufcles, which are immediately fituated below the common.integuments.
Head and Neck.
a, Part of the occipito-frontalis mufcle, with its aponeurofis.
b, Attoilens aurem.
c, Anterior auris.
d, Retrahentes auris.
Trunk.
a, Trapezius, or cucularis.
b, Its tendinous edge joining with its fellow in the nape of the neck, which is called ligamentum nuche or colli.
c, The flefly belly of the latifimus dorfi.
d, The tendon of the latifimus dorfi, which arifes in common with the ferratus pofticus inferior.
e, Part of the obliquus externus abdominis.
Superior Extremity.
a, Deltoides.
b, Infrafpinatus, with a portion of the teres minor and major below it.
c, Triceps extenfor cubiti.
Its tendon is feen inferted into the head of the ulna, called olecranon; and, on the infide of it, the anconcus.
d, Extenfor carpi radialis longior, covered by a portion of the fupinator radii longus; and, under it , a portion of the extenfor carpi radialis brevior.

$$
\mathrm{P}_{4} \quad e, \text { Extenfor }
$$

e, Extenfor digitorum communis manus, which fplits into four tendons, and pals with the indicator, under the ligamentum carpi annulare externum, at the extremities of the metacarpal bone, under ligaments proper to themfelves; and are loft in a broad tendon, which covers the back of the four fingers.
f, Extenfor offis metacarpi p-llicis manus.
g, Extenfor primi internodii pollicis manus.
h, Extenfor fecundi internodii pollicis manus.
i, Extenfor carpi ulnaris.
k, Part of the flexor carpi ulnaris.
Under it, part of the
Flexor profundus perforatus.
And on the infide, part of the
Flexor fublimis perforatus, which are more diftinctly feen on the right fore-arm. Likewife, on the right hand, are feen part of the abduçtor pollicis manus, abductor minimi digitu manus, and the aponeurofis palmaris.

Inferior Extremity.

a, Glutæus maximus.
b, Part of the glutæus medius.
c, Part of the tenfor vaginæ femoris.
d, Vaftus èxternus.
6, The long head of the biceps flexor cruris :
And beneath it,
f, Part of the fhort head.
\& Semitendinofus:
And beneath it, on each fide,
A portion of the femimembranofus is feen.
b, Gracilis.

Chap. 14.1
On the outfide of it,
A portion of the adductor magnus is 反een.
i A frnall part of the vaftus internus.
k, Gaftrocnemius externus, or gemellus;
And within its outer head,
A portion of the plantaris.
l, Solæus or gaftrocnemius internus.
m, Tendo Achillis, with the plantaris.
n, Peronæus longus.
o, Peronrus brevis; between it and the tendo Achillis, a portion of the flexor longus digitorum pedis.
p, Tendons of the extenfor longus digitorum pedis, with the peronæus tertius, paffing under the ligamentum tarfi annulare; and the flexor brevis digitorum pedis is feen beneath them.
2, Abductor minimi digiti pedis; and above it the tendons of the peronæus longus and brevis, paffing under proper ligaments of their own.

The figure in Plate VIII. reprefents the fecond layer of the mufcles on the back-part of the body.

> Head ard Neck.
a, Temporalis; its tendon is feer pafing below the zygoma.
8, Maffeter.
c, Splenius capitis et colli.
d, Portion of the complexus.
4. Levator fcapulæ, or the mufculus'patientiæ.
a, Rhomboides major.
b, Rhomboides minor:
And immediately above it, the upper edge of the ferratus poficus fuperior is feen.
c, The ferratus pofticus fuperior on the right fide.
d, Scrratus pofticus inferior.
e, Part of the fpinalis dorfi.
f, Part of the longifiimus dorfi.
g, Part of the facro lumbalis.
b, Serratus iz agnus.
i, The broad tenclon, by which the latifimus dorfi begins, and from which the tendon of the ferratus pofticus inferior is infeparable.
k, Part of the obliquus internus afcendens abdominis.
l, The fphincter ani, fixed to the point of the os coccygis; at the fide of which the coccygreus, and a portion of the levator ani, are feen, \&cc.

Surerior Extremity.
a, Supra-fpinatus.
b, Infra-fpinatus.
c, Teres minor.
$d_{\text {, }}$, Teres major.
e, Triceps extenfor cubiti.
f, Its head called longus.
g, The brevis: And,
b, A finall portion of the third head, named bracbialis cxternus.
\therefore The tendon of the triceps, inferted into the olecranon.

$$
\dot{k} \text {, Part }
$$

Chap. 14.] Mufcular Plates.

k, Part of the brachialis internus.

b, Anconæus, which feems to be continued from that part of the brachialis externus immediately above it.
m, Extenfor carpi radialis longior ; and beneath it, the brevior : both are feen at the writt, inferted into the metacarpal bones of the fore ard middle fingers.
n, Flexor carpi ulnaris.
o, Part of the fupinator radii brevis.
p, Extenfor offis metacarpi pollicis manus.
q, Extenfor primi internodii pollicis manus.
r, Extenfor fecundi internodii pollicis manus.
\int, Indicator, inferted into the root of the firf joint of the fore-finger.
t, One of the three external interoffei manus. The other two are diftinctly feen without letters.
u, One of the tendons of the extenfors of the fingers cut; and the fame is feen in each of the other three fingers, joining with the tendons and aponeurofes of the interoffei and lumbricales, and fpread upon the back' of the fingers.
N.B. On the right hand, part of the flexors of the fingers, the abductor ;pollicis and minimi digiti, are feen.

Inferior Extremity.

a, Glutrus medius.
b, Pyriformis.
c, The two mufcles called gemini, between which the tendon and fleihy belly of the obturator internus paffes over the tuberofity of the os ifchium,
ifchium, are feen within the pelvis, partly covered by the coccygxus and levator ani.
d, Quadratus femoris.
e, Vaftus externus.
f, f, Parts of the triceps magnus.
g, Long head of the triceps flexor cruris, and beneath it part of the fhort head is feen.
b, Semitendinofus, and beneath it parts of the femimembranofus are feen on each fide of it.
i, Gracilis,
k, A fmall portion of the valtus internus.
l, Popliteus.
m, The fefhy belly of the plantaris; and its long nender tendon is feen pafing over the infide of the foixus.
r, Solæus.
0 , The place where the tendon of the gemellus was cut off; but the flefh of the folæus runs farther down.
p, Tendo Achillis, with the plantaris.
q, Peronaus longus, paffing at the outer ankle to the fole of the font ; beneath it, the peronxus brevis to the root of the metatarfal bone of the little toe; and, between it and the tendo Achillis, a portion of the flexor longus digitorum pedis.
r, Tendans of the extenfor longus digitorum pedis, with the peronæus tertius; and beneath thefe, the extenfor brevis digitorum pedis.
\int, Flexor brevis minimi digiti pedis.

Chap. 14.] Mufcular Plates.
The figure in-Plate IX. reprefents the third layer of mufcles on the pofterior part of the body, with fome of the ligaments and naked bones.

Muscles on the Head and Neck.
a, Part of the buccinator.
b, Complexus.
c, Trachelo-maftoidrus; on the outfide of it, the tranfverfalis colli.
6, Scalenus medius.
e, Scalenus pofticus.

> Trunk.
a, Spinalis dorfi; and beneath it, the multifidus fріпæ.
b, Longiffimus dorfl, which fends off a flefly nip to the trachelo-maftoidæus.
c, Sacro lumbalis, with the cervicalis defcendens fent off from it along the fide of the neck, and outfide of the tranfverfalis colli.
d, Semifpinalis dorfi.
e, Tranfverfalis abdominis.
N. B. The fpaces between the fpinous proceffes of the vertebre have mufcular fafciculi between them, particularly thofe of the neck; and are named interjpinales colli, dor $\sqrt{1}$, and lumborum; but thofe of the back feem to be tendinous and ligamentous.

Superior Extremity.

a, Teres major.
b, Part of the coraco-brachialis.
c, Part of the brachialis internus.
d, The third head of the triceps extenfor cubiti, called bracbialis externus, after the longus and brevis have been cut off.
e, Extenfor radialis longior.
f, Extenfor radialis brevior.
g, Part of the flexor profundus perforans
b, Supinator radii brevis.
i, Part of the adductor pollicis manus.
k, One of the three external interoffei; the othet two may be eafily diftinguifhed without lettèrs.
1 , Tendons of the extenfors of the fingers, joining with thofe of the lumbricales and interoffei, which form a tendinous expanfion on the back of the four fingers.
$N . B$. On the right hand, part of the flexors of the fingers and thumb, part of the adductor pollicis, and the whole of the adductor minimi digiti, are feen.
Inferior Extremity.
a, Glutrus minimus.
b, Obturator internus; its flefhy belly is feen within the pelvis.
Beneath b, the tendon of the obturator externus.
c, Semimembranofus.
d, The fhort head of the biceps flexor cruris.
e, Triceps magnus.
f, Gracilis.
In the ham, the origins of the two heads of the gaftrocnemius externus and plantaris, are feen.
g, Poplitæus.
h, Tibialis pofticus.
i, Flexor

Chap. 14.] Mufcular Plates. 223
i, Flexor longus digitorum pedis.
k, Flexor pollicis longus.
l, Peronæus longus, running down to be inferted into the metatarfal bone of the little toe.
Beneath it, the peronæus brevis, paffing to the fole of the foot.
m, Extenfor brevis digitorum pedis.
n, Part of the flexor longus digitorum pedis.
plainly perceived the fat ooze out on all fides, but on the moft careful examination was unable to difcover any ducts going to or from them.

The ufes of the fat, as has been already intimated, are in fome refpects fimilar to thofe of the cellular fubftance, in which it is feated. It involves many of the vifcera, partictilarly thofe of the abdomen, and here it increafes, in people difpofed to obefity, to a great degree. Within the cranium, where by its preffure it might injure the brain, none of this Tubfiance is found.

The cellular fubftance, befides ferving the purpofes already mentioned, by being placed between the fkin and the mufcles, is always confidered as one of the integuments of the body. The other integuments are the fkin, properly fo called, and the epidermis or fcarf fkin.

The fkin is probably nothing more than a dondenfed cellular fubftance, copiounly furnifhed with blood-veffels, lymphatics, and nerves, as it within gradually becomes lefs denfe, and is at length infenfibly loft in the loofe cellular fubftance. It covers the whole furface of the body, is tough, elaftic, and forms, by means of the nerves, which terminate in $i t$, particularly at the extremities of the fingers, where it is mott fenfibie, the-organ of touch.

The cutis, when freed from the epidermis, which is its external covering, is found to be furnifhed with innumerable papille, which appear like minute granulations; their ufe is probably to increafe the fenfibility of the ikin, as where it is moft fenfible they are moft remarkable.

The flin or cutis, however, not only covers the outer parts of the body, but becoming thinner and more delicate enters and invefts internally the various cavities which open on the furface. It is every where pierced with blood-veffels, and in fome parts with the ducts of fmall glands, which are feated between the fkin and the cellular fubftance, and which pour out an oily febacious matter for the lubrication of the furface of the body.

The epidermis or fcarf fkin every where covers the true fkin, which would otherwife, from its extreme fenfibility, occafion much uneafinefs from the, friction to which the furface of the body is neceffarily expofed. The epidermis confifts of a mucous fubitance, which is placed next the true fkin, and a dry, tranfparent, and in fome meafure horny fubftance, which is placed outwards.

The mucous fubftance, called corpus mucofum, or rete Malpighianum, is of a confiftence between that of a folid and a fluid, and is often treated of by anatomifts as a diftinct covering of the body. The colour of it varies according to the complexion. In fair people it is white, in brown people of a dufky hue, and in the A fricans black. In the latter it is alfo more folid, and can be feparated from the external part of the epidermis, which cannot be effected in Europeans. By friction, the epidermis gains very much in thicknefs, as may be obferved in the hands of labouring people, and in the foles of the feet of thofe much accuftomed to walking. Corns, which are nothing but hardened epidermis,
are the confequence of the preffure and friction of tight fhoes*.

The epilermis is not furninhed either with nerves or blood-veffels, and is therefore infenfible. The Abbè Fontana fubmitted fome very minute portions of the epidermis, taken from his hand, to examination by a microfoope which magnified feven hundred diameters. The epidermis appeared to be compofed of winding cylinders, which approached each other, and retreated with much regularity and order ; fmall globules alfo were in parts perceptible. When the portion of epidermis was covered with water, it appeared more tranfparent, and the cylinders and globules were feen more diftinctly. He could obferve nothing, however, like perforations or holes in the epidermis, and therefore doubts of their exiftence. It feems probable, the Abbè Fontana add's, that the lymphatics, which le Pere della Torre pretends to have feen in the epidermis, were nothing but thefe winding cylinders.

We muft believe, however, from the quantity of fenfible and infenfible perfipation, efpecially in warm climates, where, according to Sanctorius, who made his experiments in Italy, it amounts to five eighths of the food taken in, that there are perforations in the epidermis for the paffage of exhalant arteries. It may be alfo added, that the appearances exhibied

[^11]Chap. 15-] Skins of Quadrupeds.
by objects fubmitted to microfcopes of high powers are never much to be depended on, and have given rife to numerous deceptions.

Immediately below the fkin of quadrupeds, except thofe of the porcine (fwine) fpecies, lies a thin flefhy expanfion, called panniculus carnofus, covering the greater part of the body, and furrounding the other mufcles. In man there is nothing fimilar to this, excepting the platifma myoides, or the occipito-frontalis mufcle. The ufe of this thin mufcular expanfion is to wrinkle and move the fin in order to thake off duft, infects, \&cc.

[230] [Book IX.

Снар. XVI.

THE HAIR AND THE NAILS.

> Opinions of Anatomifts with reppect 10 the Nature of the Hair, Nails, धัc.-Hair originctes from the Cellalar Subffance.-Fontara's Ohjervations on Hair.-Tie Aiails.-The Horns, Hoofs, and Clazus of Animals.

MA N Y anatonmifts chure to call the hair, the nails, and the horns of animals, productions of the epidermis; by Malpighi and Rufh the hairs were fuppofed to be continuations from the nerves; neither of which opinions, however, feems to be fufficiently proved, though the former appears by far the more probable. The hairs are diftributed more or lefs remarkably over the whole body except on the palms of the hands and foles of the feet. They rife each of them from a feparate oval bulb placed beneath the true fkin, and lodged in the cellular fubftance, and they are furrounded by a fheath, which rifes with them as far as the furface of the body.

The Abbè Fontana took a hair, which he cleanfed by repeatedly drawing it through a piece of fine linen dipt in water; he cxamined it with lenfes of different powers, from fome which magnified 400 , to others which magnified $7 c 0$ diameters, and the appearances, he informs us, were uniformly the fame. The hair in general appeared of the colour of tranfparent amber; towards the center, however, of it, there was obfcure line, which was broken

Chap. 16.] Horns; Fioofs and Claws.
at one part. It appeared woven, and formed by, or covered with, twifting cylinders, interrupted at places, and winding like the inteftines of animals. Among the winding cylinders there appeared minute glabules of the fame diameter with the cylinders. Having crufhed the hair at one of its extremities, it appeared as if formed of many irregular polifhed trunks, which were compofed of bundles of very fmall winding cylinders, with fome globules fcattered on the cylinders themfelves.

The nails are, horny infenfible bodies, formed of thin lamelle or plates. They rife by a fquare origin from the laft joints of the fingers and toes, and are hard where they are expofed to the air, but foft near their roots. The ftructure of the horns, hoofs, and claws of animals is very fimilar to that of our nails. A minute portion of a finger nail being fubmitted to the microfcope, exhibited the fame appearances as the epidermis. Both the nails and hair grow entirely from below, by a regular propulfion from théir roots.

Сhap.

[232] [Book IX.

Снар. XVII.

THE CAVITY OF THE ABDOMEN.

Contents of the Abdomen.-Parts involved by the Pcritoneum.Parts not involved by it.-The Peritoncum.-The Mefentery.The Omentun.-Different in Man and 2uadrupeds.

TH1S cavity is bounded above by the diaphragm, below by the bones of the pelvis, at the fides by various mufcles and the falle ribs, before by the mufcles of the abdomen, and behind by the vertebrax of the loins and the os facrum. Strictly fpeaking, however, no part is faid to be within the cavity of the abdomen, which is not involved in a thin tranfparent membrane, called the peritoneum, of which a more particular defcription will prefently be fubmitted to the reader.

The parts which are involved in the peritoneum are, the mefentery, the omentum or caul, the ftomach, the fmall and great inteftines, the lacteal veffels, the pancreas, the fpleen, and the liver.

The organs which are not involved in the peritoneum, but are placed behind it, are the kidneys, the ureters, the receptacle of the chyle, the aorta, and the vena cava.

The upper part of the bladder is involved in the peritoneum, the lower is placed without it.

The peritoneum is to be confidered as a membrane forming an internal covering to the parts which are the boundaries of the abdomen, and at the fame time doubled back on itfelf in fuch a man-

The internal furface of the peritoneum is fmooth, its external is rough, and united to the neighbouring mufcles and veffels by the intervention of cellular fubftance. The cellular texture attached to the peritoneum, and in fome parts included within irs duplicatures, is generally replete with fat. The peritoneum is a denfe but thin and tranfparent nembrane, the ufes of which are to retain the vifcera of the abdomen in their places, and by the fimooth and moif covering which it affords them, to prevent adhefions of one vifcus to another; for which it is escellently adapted by being continually moiftened by a ferous fluid, which proceeds from very minute pores. The exiftence of thefe is proved by fpreading a portion of the peritoneum on the end of the fingir, and then pulling it very tight on all fides; by tiefe means the pores are dilated, and fmall drop: may be obferved to proceed from them.

The mefentery is a production of the peritoneum, and is formed by two laminx of this membrane including cellular fubtance. It rifes by a narrow origin trom the firft, lecond, and third vertebre of the loirs ; it advances forwards, and graduaily becomes sroader in its progrefs. The mefentery at length embraces the inteftines with its lamine, and thus affords them the coat which they derive from theperitoneum. That part of the mefentery which invelves the fmall inteftines is more properly called the mefentery; that which involves the large is diftiguifhed by the term mefocolon. The mefentery includes between its lamine all the blood-
veffels and nerves which belong to the inteftines, and alfo the numerous lacteal veffels which take up the chyle from the inteftines, and the glands with which thefe veffels are connected.

The omentum or caul is alfo formed by a clubiicature of the peritoneum, including thin cellular fubftance, with a large quantity of fat. It is variounly attached to feveral of the vilcera of the abciomen. The fuperior portion of it is divided into two borders, one of which is fixed to the arch of the colon, the other along the great curvature o: the ftomach. Below this it is loofe, and is placed between the inteftines and the antericr part of the peritoncun. Befides this large membranous covering, called the great omentum, there is a much fmaller membinne of the fame kind, which is called the little omentum. It is fxed by its whole circumference partly to the fmall curvature of the ftomach, and partly to the concave fde of the liver. The little omentum is thinner and more tranfparent than the other, but its ftructure is much the fame, and it is in fact a continuation of the larger.

The omentum in man defcendis as far as the navel, in quadrupeds much lower. The reafon for this difference feems to be, that from tue erect poiture of man, the oily matter exuded from the omentum muff fall downwards to lubricate the inteftines, which are placed fill iower ; this, however, cannot happen in quadrupeds, which have the tunk of the body in a horizontal fituation, and therefore ftand in need of a longer omentum; but as the ufe of the omentum is not fully afcertained, this oxplanation is perhaps imacinary.

Chap.

Chap. 18.] $\quad\left[\begin{array}{lll}235 &]\end{array}\right.$

Снар. XVIII.

THE STOMACH AND INTESTINES.

General Defcription of the Siomach. - Length of the Inteftimes in Man and ${ }^{\text {2 }}$ uadrupeds. - Sm:all and large Intefines.

TH E ftomach is a membranous fack, in form, when diftended, not unlike a bag-pipe. The ftomach is much larger towards the left fide than towards the right. It has two orifices, one towards its left fide, where the œfophagus or gullet enters, called the cardia, and another towards the right, called the pylorus, which opens into the inteftines. The great extremity of the fomach is in the left hypochondrium, and for the moft part immediately under the diaphragm, yet the left orifice is not in the left hypochondrium, but almoft oppofite to, and very near the middle of the bodies of the loweft vertebre of the back. The finall extremity of the ftomach does not reach to the right hypochondrium; it bends obliquely backward towards the other orifice; fo that the pylorus lies about two fingers breadth from the body of the vertebra, immediately under the fmall portion of the liver, and confequently lower down and more forward than the cardia. The ftomach is connected to the omentum, and by means of the omentum, on the left fide, to the fpleen.

The orifices of the ftomach are placed in the receffes on each ficle of the fpine, and the body of the ftomach is clofely applied to it, and in a manner bent round it. The orifices of the ftomach are therefore placed further back than its body, and are alfo a little higher, though when the ftomach is diftended its body rifes nearly to a level with its orifices. The body of the fomach is diftinguifhed into two curvatures ; the concave furface, which is applied round the fpine, is called the leffer curvature, and that which is convex, and is turned forwards and downwards, the greater.

The ftomach is formed of four coats. The external of thefe is the peritoneal; the fecond is mulcular, and is furmed of fibres, which are continued from the mufcular coat of the œefophagus. Thefe fibres are varioully diffributed in the ftomach. Some run directly in the leffer curvature to the right crifice of the ftomach, and are loft in the duodenum ; fome run down each fide of the fomach, and are loft in is wideft part towards the left fide. Befides thefe longitudinal fibres, the ftomach is furrounded by fome which are circular, and which are alfo continued from the cefophagus. There is a large affemblage of mufcular fibres round the right orifice of the flomach, which conftringes it fo as to prevent the food from paffing into the inteftines before it has undergone the proper changes in the ftomach.

If we examine the inner furface of the fmall extremity of the flomach, where it ends in the inteftinal canal, we oblerve a circular border with a roundilh hole in the middle, which is the pylorus,
as before mentioned. The border is formed, partly by a fold of the internal coats of the fomach, and partly by a collection of fefly fibres fixed in the duplicature of the tunica cellulofa, and diftinguifhed from the other mufcular fibres by a thin whitith circle, which appears even through the external coat, round the union of the ftomach and inteftines.

The third cont of the ftomach, which conftitutes the greateft part of its fubftance, is the cellular, or, as it has been improperly called, nervous coat. This is thick, firm, of a white colour, and is connected to the mufcular by the intervention of cellular fubitance, as it is alfo to the coat within.

The fourch and inner coat of the ftomach is the villous. This and the cellular coat, being more extenfive than tre seft, are formed into numerous wrinkles or folds. It obtains the name of cillo:s from the unevennefs of its furface, as being fimilar to wool or hair when immerfed in water. Jt is fingle, of a red colour, and is copiounly fupplied with mucus.

The ftomach is furnifhed with lacteals, which rife moft numeroully from it near its right orifice; it is alfo very copiouny furnifhed with nerves and blood-veffels, which will be more fully defcribed hercafter. With refpect to the ufes of the ftomach, they will be fpoken of at large in the chapter on digeftion.

By the inteftines is meant the whole of the alimentary tube beyond the ftomach. They are divided into the fmall and the large. The fmall inteftines are fub-divided into the duodenum, the jejunum, and the ileum. The large into the cœcum,
the colon, and the rectum. All the inteftines, except fome part of the duodenum, are furrounded and fupported by the mefentery. In man, the length of the inteftines is about fix times that of the body, but in graminivorots quadrupeds their length, in proportion to that of the body, is much greater.

The fmall inteftines fill the middle and fore-parts of the abdomen, while the large fill the upper and under parts, as well as the fides of that cavity.

The fonall inteftines, in general, are of a cylindrical form. They are compofed of four coats, the ftructure of which is fimilar, and which bear the fame names as thofe of the flomach. The mufcular coat, however, differs from that of the ftomach in one refpect, that the longitudinal fibres are here lefs numerous, and the circular fibres much more fo. The fame fibre, however, does not wholly furround the inteftine, as the circle is made of feveral imperfect arches. The cellular coat is exactly the fame as that of the fomach. It affords ftrength to the intentines, and conducts nerves and blood-veffels to and from the villous coat. The villous coat of the fmall inteftines is exceedingly extenfive, and forms, together with the cellular fubftance, which connects it to the cellular coat, a vaft number of red femilunar folds or wrinkles, which ferve to increafe remarkably the internal furface of the inteftines, and of courfe to expofe the chyle more fully to the mouths of the lacteals.

The fmall inteftines aflift in the preparation of the chyle, and propel their contents towards the great inteftines.

With refpec: to the fmall inteftines in particular, feveral circumftances are to be noticed. The duodenum, fo named from its being about twelve inches in length, differs from the others in not being entircly furrounded by the peritoneal coat; its mufcular coat, however, is ftronger than that of the other fmall inteftines, and its colour is more florid. The duodenum, beginaing from the fomach, firf runs towards the right fide downwarls, and rather backwards; then it bends towards the right kidney, to which it is nightly comected, and thence paffes beiore the renal artery and vein, afcending gradual!y from rigint to left, till it gets before the aorta and laf vertebra of the back. It continues its courfe obliquely forwards by a gentle rurn, and then terminates in the jejunum. Through this whole courfe the duodenum is firmly bound down and concealed by the folds of the peritoneum. The duodenum is more lax, and of larger diameter than the other fimall inteftines, and i,y its various rifings and fallings is calculated to retain the food for fome time before it paffes into the jejunum?. About fix inches from the pylorus, the common bile duct and the duct fiom the pancreas pour their contents together into the duodenum.

Of the remaining part of the fmall inteftines, two fifths are called the jejunum, and the remaining three fifths the ileum, as no other characteriftic mark of diftinction can be pointed out. The upper part of the frall inteftines is indeed uniformly more red, rather wider, and its ftructure more robuft than the lower part, but the gradation is regular. Nothing particular is to be obferved at any part, which can furnilh a juft foundation for a
change of name, and Haller accordingly comprehended the jejunum and ileum under the term of inteftinum tenue, or fmall inteftine. The jejunum is placed more about the umbilical region, the ileum more in the hypogaftric. The fmall inteftines at length terminate in the large, in the hollow of the right iliac bone, below the kidney. At this place there is a valve, which exhibits the appearance of a nit or chink. This valve permits a free paffage from the fimall inteftines to the large, but prevents any thing from paffing readily from the large to the finall.

The coecum, which forms the beginning of the great inteftines, may be confidered as a production of the colon expanded into a bag. It is about four fingers in length and as many in breadth. It is fituated in the right iliac region, and refts on the broad part of the os ileum. At its lower part it has a long fmall procefs, called the vermiform, from its refemblance to an earth worm. This procefs is plentifully furnithed with mucus, which it pours into the cœecum. In apes this procefs is wanting, but its place is fupplied by a gland, which affords a nippery fluid. In fome birds we meet with two vermiform proceffes, and in fome kinds of filh they are very numerous. Under the name of colon is comprehended almoft the whole of the great inteftines. The colon begins in the right iliac region, and is attached to the kidney, thence it rifes as high as the ftomach and the liver. It now runs tranfverfely before the fomach to the left fide, is connefied to the fpleen and kidney, defcends into the left iliac region, and being there bent in the form
of the letter S, it terminates in the rectum. The ffructure of the colon is fimilar to that of the fimall inteftines. It is more robuít, however, and the longitudinal mufcular fibres, which are mixed with ligamentous fubflance, are united into three fafciculi, giving it in fome meafure a triangular form. Thefe fafciculi are continued from the vermiform procefs of the creum to the end of the colon, where they gradually difappear.

Along the whole courfe of the colon are a number of cells formed by circular contractions of the inteftine, which ferve to retard the progrefs of its contents.

Along the whole courfe of the large inteftines we alfo obferve fmall projections of a fat fubftance, contained in elongations of their common coat. They feem in their nature very analogous to the omentum, and are confidered by Winfow as a kind of fmall omenta; they are accordingly named appendices epiploicx.

The rectum, which is a continuation of the colon, begins at the loweft vertebre of the loins. It is bent like the internal furface of the os facrum and os coccygis, to which it is clofely applied, and terminates at the anus. The blood-veffels of the inteftines will be mentioned in treating of the general diltribution of the arteries and veins. -

C п А

'THELIVER, GPLEEN, ANDPANCREAS.

Nature and Situation of the Liver.-The Gall Bladder.-Bile Durfs.-Caufe of Faundice. -The Spleen.-The Pancreas.Its Ufes.

THE liver is an organ of a deep red colour, and is by far the largeft gland in the body. It is fituated immediately beneath the diaphragm. In man, the liver is divided into two portions or lobes, the larger of which is placed in the right hypochondrium, and the fimaller extends acrofs the epigaftric region, towards the left. The liver is divided on the upper and anterior fide into its lobes by a broad ligament, on the lower and pofterior, by a deep fiffure.

The upper furface of the liver is convex and fmooth, correfponding to the concavity of the diaphragm. The lower furface is concave and uneven. The anterior and inferior margin of the liver is acute, the pofterior and fuperior obtufe. At the back part of the liver, near the great fiffure, there is a triangular eminence, called the fimall lobe of the liver, or lobulus Spigelii. The ligaments of the liver, by which it is fupported, are four. Of thefe, one fupports cither lobe, and the broad ligament fupports the middle. Thefe ligaments are productions of the peritoneum, and are very different from what are called by the fame name in other parts of the body. They
pafs from the diaphragm to the liver. Befides thefe, there is the round ligament, which is formed by the concretion of a confiderable blood-veffel of the fretus, and paffes from the liver to the navel. Befides being fupported by thefe ligaments, the great lobe of the liver is likewife connected by immediate adhefion, without the intervention of the peritoneum, to the tendinous part of the diaphragm. Round this adhefion we may obferve the peritoneum folded back, to form the external covering of the liver.

The blood-veffels of the liver, which will be hereafter particularly confidered, all enter on the concave fide of this organ, where it is divided into its two lobes. The ufes of the liver are to fecrete and prepare the bile.

The gall-bladder is a membranous receptacle, fufficiently large to contain two or three ounces of bile. It is connected to the inferior part of the right lobe of the liver in fuch a manner, that its fundus or bottom is placed forwards, and is in contact with the colon, and its neck is placed backwards. In fhape the gall-bladder much refembles a pear. It confifts of four coats, which are very fimilar to thofe of the inteftines, and are called by the fame names. The gall-bladder, as well as the liver, and the other vifcera of the abdomen are covered by the peritoneum.

The ducts, which ferve to convey the bile formed in the liver to the duodenum, deferve particular attention. The duct which comes from the liver, and is called the hepatic duct, is conftituted of a number of fimaller ducts, which rife through the whole fubitance of the liver. This duct is joined
:47 Gall Bladder, Hepatic Duct, E'c. [Book IX. to another coming from the gall-bladder, and there ducts together conttitute the common bile duct. The common duct defcends towards the pancreas, and paffing behind the duodenum, pierces its external coat. After having run between the coats of this intentine for fome diftance, it is at length, between its fecond and third coat, united with the duct from the pancreas, and the fluids from the liver and pancreas being thus mixed, are poured together into the cavity of the duodenum.

The gall-bladder in man receives all its contents by means of the communication hetween the cyftic and hepatic ducts. In fome animals, however, the gall-bladder receives its bile by peculiar ducts immediately from the liver, and in thefe animals the cyltic and hepatic ducts do not unite: From the ftructure and connection of thefe ducts in man it is evident, that all the bile which paffes into the duodenum muit pafs through the hepatic and conmon bile ducts, and that which goes to the gall-bladder paffes through the cyftic duct. The ducts are furnifhed with a mufcular coat. The ufe of the gall-bladder feems to be to retain the bile till its more watery parts being removed, the remainder may become thicker, more pungent, and more acrid. It is fo placed that it may be prefied upon by the diftended flomach, and its contents therefore difcharged when they are moft required to affift in the procefs of digeftion. The gall-bladder is alfo emptied by the compreffion and agitation of the vifcera, which happen in vomiting. The bile in the gall-bladder fometimes concretes into hard maffes called gall-ftones., As long as
thefe remain in the gall-bladder they occafion little or no inconvenience, but when they are propelled into the ducts they diftend and irritate them fo as, when of a large fize, to be productive of very violent pain. When thefe concretions are ftopped in the common gall duct, they prevent the paffage of bile into the inteftines. The bile, not efcaping in the ufual manner, is accumulated in the liver, and being taken up by the abforbents is carried in the circulating fyftem, and produces jaundice.

The fpleen is a fpongy vifcus, of a colour between deep red and blue. Its figure is \mathfrak{f} irregular as to admit of no defcription; it is fomewhat oblong, however, but is convex on the fide which is applied to the ribs, and concave on that which is turned inwards towards the other vifcera of the abdomen, and where it receives its blood-veffels. It is placed on the left fide, in the left hypochondrium, and is oppofite to the two laft of the falic ribs.

The fpleen is connected to the ftomach by bloodveffels and a ligament, to the omentum, to the left kidney, to the pofterior part of the diaphragm by the peritoneum, to the pancreas by veffels, and to the colon by a ligament. The fpleen has only one coat, which can be diftinctly perceived, and which is derived from the peritoneum. The fpleen is extremely vafcular, and when macerated feems wholly conftituted of numerous blood-veffels. It has no excretory duct, and it is remarkable, that though an organ of fuch confiderable fize, its ufe is entirely unknown.

The panereas is a glandular organ, of a pale-red colour, and is called in certain animals the fweetbread. The pancreas is fituated in the epigattric region, behind the ftomach, in the triangular face furrounded by the windings of the duodenum. In form it refembles the tongue of a dog, the narrow termination of which is placed towards the fpleen, and is connected to that organ by blood-veffels. The pancreas in the human fubject is eight or nine inches in length but very narrow, and its fituation in the body is very nearly tranfverfe. The liquor prepared by this gland is remarkably fimilar to thofe prepared by the glands which furnifh faliva to the mouth; fo that the pancreas may be confidered as the largeft falivary gland in the body. Like the falivary glands, the pancreas is a conglomerate gland, or confifts of a number of finall glandular maffes united by cellular fubftance. Near the pancreas is obferved a fmaller gland of the fame kind. This is called the little pancreas, and pours its contents into the pancreatic duct. We have already feen, that where the pancreatic duct pours its contents into the duodenum, it is united with the common bile duct.

С н a p. XX.

THE ORGANS PLACED NEAR, BUT WITHOUT THE CAVITY OF THE ABDOMEN.

> The Glandule Suprarenales.-Tbe Kidneys. - The Bladder.

THE glandulae fuprarenales are two triangular bodies, the fabric of which is analogous to that of glands. In the fotus they are larger than the kidneys themfelves, over which they are placed; but in adults they are much fmaller. They are hollow, and are filled with a reddifh matter. The right fuprarenal gland is fixed to the liver, the left to the fpleen and pancreas, both to the diaphragm, and each of them to the kidney, above which it is placed. They are furnifhed with no excretory duct, and their ufe is unknown.

The kidneys are two organs of a pale red colour, and a firm confiftence, in form refembling the beans which bear the fame name. They are placed without the cavity of the abdomen, on each fide of the fpine, and extend acrofs the two loweft falfe ribs as far as the bottom of the fecond lumbar vertebra; they reft on the great pfoas mufcle, the fquare mufcle of the loins, and the tranfverfe of the abdomen, in fuch a manner that the right kidney is placed below the liver and the colon, fomewhat lower and further back, the left under the fpleen, the fomach, the pancreas, and the colon, fomewhat higher and more forwards. The length of the kidneys is about fix inches, their breadth about four. Of the two margins of the kidneys, that which is placed outwards

$$
\mathrm{R}_{4} \text { is }
$$

is convex, that placed inwards concave. The kidneys are variounly connected to the vifcera, which are next them. The right kidney is conneeted to the colon which, as fhould have been before remarked, is here partly without the cavity of the abdomen.

The kidney is made up of three different fubftances; firt, an external part of a pale colour, which chiefly confifts of numerous convolutions of blood-veffels, and is called the cortical part. The other two fubftances, that is the medullary or ftriated, and t.ie papillary, are really but one and the fame mafs, of a redder colour. The radiated ftrix are continued into the papillary portion, where they terminate in about eleven or twelve papillæ, correfponding with the number of glandular portions, of which the kidney was originally compored. At the point of each papilla we fee with the naked eye, in a night depreffion, feveral fmall holes, through which the urine may be perceived to flow when the kidney is compreffeci. Each papilla lies in a kind of membranous calix or fheath, which opens into a common cavity, called the felvis. The pelvis is alfo membranous, being a continuation of the calix. In man the cavity of the pelvis is not uniform, but diftinguifhed into three fortions, each of which contains a certain number of calices, together with the papille which they furround. The kidneys are furrounded with a ftrong firm membrane, which is very clofely applied about them. This, however, does not proceed from the peritoneum, but is connected to the pofterior part of that membrane by means of a large quan-
tity of cellular fubtance, which is always plentifully filled with fat.

The urine, which is fecreted in the kidney, drops from the papille into, the pelvis. All the fub-divifions of this bag ultimately terminate in a membranous canal, called the ureter, which, defcending between the peritoneum and the great pfoas mu!cle, reaches the urinary bladder, to which it conveys the urine. The ureters of both kidneys enter the bladder at the pofterior part, near the neck, which is the moft fixed point. They run fome difiance between the coats of the bladder, before they open into its cavity, and this frructure has the effect of a valve, in preventing the fluid when the bladder is very full, from returning towards the kidney.
The ureters are about a fpan long, and their canal is much wider in fome parts than in others. They are in general about the fize of a writing pen, and are fomewhat curved in their courfe from the kidney to the bladder, fo as to refemble the letter f. They are furnifhed with feveral coats, one of which is mulcular. They are very fenfible, as is proved by the acute pain which perfons who are fubject to the gravel experience while the fones are paffing through them.

The urinary bladder is a membranous fack of confiderable fize. It is placed at the anterior part of the pelvis; when it is empty, it finks below the upper part of the offa pubis, but when filled, rifes confiderably above them. It is larger in women than in men. The upper part of the bladder is called its fundus, which is much wider than where it terminates in its neck. The anterior part of the bladder,
bladder, which is placed next the offa pubis, is more flat, that turned backwards more convex. Its general form is a round oblong.

The bladder in men is connected behind to the rectum, and before it is always attached by cellular fubitance to the offa pubis. It is alfo connected to the navel by ligaments, which are the remains of two arteries of the foetus, and as its fundus projects into the cavity of the abdomen, the bladder is alfo connefted to the peritoneum, which covers part of its fundus.

The coats of the bladder are, firft, a coat of cellular fubftance, by which it is comected to the neighbouring parts; 2dly, a mufcular coat, the fibres of which, beginning from the neck, afcend on both fides towards the fundus. At the neck the fibres crofs each other, and in this manner form a fphincter, by which animals are enabled to retain the urine; and yet a continuation of the fame fibres rowards the fundus affifts in expelling it. In this part, as well as in the tongue and mouth, we have an inftance of the different parts of the fame mufcular fibres counteracting each other.

The third coat of the bladder is like the nervous coat of the inteftines, and bears the fame name. The inner coat has many foldings, and is plentifully fupplied with mucus. The fundus of the bladder alfo derives a coat from the peritoneum. The ufes of the bladder are to receive the urine, to retain it for a time, and to expel it through the urethra from the body.

Had the peritoneum been fpread over the bladder in its whole extent, the weight of the vifcera in our

ereet pofture would have fo borne upon it, that a confiderable quantity of water could not have been collected there. The peritoneum, however, by paffing from the fides of the abdomen over the fuperior part of the bladder, forms a fupport for the incumbent vifcera, and preferves a certain fpace below, where they cannot prefs. In the quadruped, where, from the horizontal pofition of the body, the abdominal vifcera do not preis on the bladder, that organ is entirely invefted with the peritoneum.

The figure in plate X . reprefents,
r. The trachea.
2. The internal jugular vein.
3. The fubclavian vein.
4. The vena cava defcendens.
5. The right auricle of the heart.
6. The right ventricle, the pericardium being removed.
7. Part of the left ventricle.
8. The aorta afcendens.
9. The arteria pulmonalis.
10. The right lobe of the lungs, part of which is cut off to fhew the great blood veffels.
iI. The left lobe of the lungs.
12. The diaphragm.
13. The liver.
14. The ligamentum roundum.
15. The bottom of the gall-bladder projecting beyond the anterior edge of the great lobe of the liver.
16. The flomach, preffed by the liver towards the left fide.

17. The

252 Explanation of the Plates. [Book IX.
17. The fmall inteftines.
18. The fpleen.

The figure in plate XI. reprefents,

1. The under fide of the liver.
2. The ligamentum rotundum.
3. The gall-bladder.
4. The pancreas.
5. The fpleen.
6. The kidney.
7. The aorta defcendens.
8. The vena cava afcendens.
9. The emulgent vein.
10. A probe under the fpermatic veffels and the arteria mefenterica inferior, and over the ureters.
11. The ureter.
12. The iliac veffels.
13. The inteftinum rectum.
14. The urinary bladder.

Chap. 21.] [253]

Снар。 XXI.

THE CAVITIES OF THE MOUTH AND FAUCES, \&c.

The Palate.-The Pbarynx. - The Oefophagus. - The Laryn.x.The Gloitis.-T'be Epiglotis.-Tbe Wind Pipe.

IT is unneceffary to enumerate the parts which externally limit the cavity of the mouth, as the lips, cheeks, \&cc. fince they are obvious to common obfervation. Within the mouth are the bony proceffes which include the teeth, and which are covered by the gums. The upper and arched part of the mouth is called the palate. The palate is divided into the hard and the foft. The hard palate is bounded by the teeth, and is formed by the two offa maxillaria and two offa palati covered with the periofteum and the common coat of the infide of the mouth, which produces, particularly in fome animals, a number of hard ridges. The foft palate or velum pendulum palatinum is a feptum, whiç arifes from the external margin of the palate bones, and laterally from a procefs of the fphenoid bones. It is a moveable foff fubfance, hanging between the cavity of the mouth and the pofterior termination of the nofrils.

The fofe palate is compofed of the common membrane of the mouth and nofe, and includes a number of mucous glands, and fome muicular fubftance. It forms two arches on each fide, defrending from the hard palate. The two anterion
of thefe arches are fmaller and thinner, and are inferted laterally into the tongue; the two pofterior are large, and are connected behind to the pharynx. In the middle and upper part, where all the half arches unite, they are lengthened into a fmall pointed body, which is cafily feen at the back part of the mouth, and is called the columella or uvula. On each fide, in the bottom of the face which is left between the anterior and pofterior arches, is placed an oblong glandular body, which opens into the throat by cleven or twelve excretory ducts, and is called the amygdala or tonfil. We have the power of ftopping the paffage of air from the nofe, by drawing up the foft palate, fo as to cover its pofterior openings. The whole cavity of the mouth is moiftened by mucus, and the liquor from the falivary glands.

The glands which furnifh the mouth with fpittle or faliva are the two parotids, which are feated immediately below the ears; the maxillary, which are feated at the infide of the angles of the lower jaw; the fublingual, which are placed between the bone of the lower javz and the tongue; and laftly, a number of finall glands, placed in bunches about the opening of the ducts, which come from the parotid glands. The ffructure of the falivary glands is like that of the pancreas.

I fhall defer the defcription of the tongue till I come to treat of the fenfe of tafting. The nofe, the ear, and the eye, will be defcribed when I treat of the fenfes to which they are fubfervient.

The cavity behind the palatum molle or fofe palate is called the pharynx. At the back part it is bounded by the vertebrax of the neck, above by
the bafis of the cranium, before and laterally by the foft palate and much cellular fubftance, and every way by the mufcles which furround the neck. The noftrils terminate at their pofterior opening in the cavity of the pharynx, as do laterally the two euftachian tubes from the internal part of the ear.

The pharynx is a mufcular bag fhaped like a funnel, beginning from the bafis of the cranium and terminating below in the æfophagus or gullet. Its fubftance is merely mufcular, covered with the fame tender and glandular membrane which lines the mouth, fauces, and œefophagus. The ufe of the pharynx is to receive the aliment and impel it into the æfophagus.

The œfophagus or gullet is a membranous tube, beginning from the narrow termination of the pharynx. It is placed between the vertebre of the neck and the windpipe, and defcending lower is embraced by the pleura, and lies in a triangular fpace behind the mediaftinum. Having arrived at the bottom of the thorax it paffes through the left perforation of the diaphragm, and terminates in the cardia, or left orifice of the fomach.

The œefophagus has four coats. Firt, a covering from the pleura; fecondly, a mefcular coat of confiderable power; thirdly, a cellular coat; and laftly, a tender internal coat, like that of the fauces, and which is copioufly fupplied with mucus. The ofophagus conveys the food to the fomach.

The laryns is a hollow tube compofed of cartilages, mufcles, and ligaments, fituated bchind and below the tongue, 35 the anterior part of the neck.

The larynx is conneeted above to the os hyoides, behind to the root of the tongue and the pharynx.

The cartilages of the larynx are the cricoid or annular, which is narrow before and broad behind, and is there divided into two excavations, which receive the arytenoid or pyramidal cartilages. The cricoid cartilage furms the bafis of the whole larynx. It is connected below to the windpipe, and above to the pyramidal and thyroid cartilages.

The thyroid cartilage refts perpendicular'y on the cricoid, and confitutes the upper, anterior, and largeft part of the larynx. It confifts of two almoft quadrangular plates of cartilage, which unite before at an obtufe angle, but behind are feparate. This cartilage is harder and more prominent in men than in women, and has therefore been called the pomum Adami. At its pofterior part the thyroid cartilage has procefles above and belcw. The upper are united by means of ligaments with the proceffes of the us hyoides. The lower, which are fhorter, are connected to the cricoid cartilage. The two arytenoid cartilages are the fmalleft which contribute to form the larynx. They are equal in fize, and when joined together refemble the fpout of an ewer. They are placed perpendicularly in two excavations of the cricoid cartilage at its pofterior part. The glottis is formed of two ligaments, in the following inanner:

Anteriorly the bafis of each arytenoid cartilage is fixed to one end of a ligamentary cord, which, by its other end, is inferted about the middle of the concave fide of the anterior portion of the thyroid.

Chap. 21.] Epiglottis, 'ઉcr.
At the latter infertion the two ligaments touch each other; but a fmall fpace is left between them, where they are connected with the arytenoid cartilages. This chink is what is called the rima glottidis, which is capable of contraction and dilatation.

Under thefe ligaments are two fmaller, which alfo arife from the arytenoid cartilages, and, runing forwards, are attached to the middle part of the thyroid cartilage. Between thefe fuperior and inferior ligaments there is on each fide a fmall bag or cavity, called the ventriculus Galeni.

Over the opening of the larynx, the rima glottidis, is placed a cartilaginous fubftance, called the epiglottis; it is fituated above the anterior or convex portion of the cartilago thyroides, and its lower extremity is connected by a flort, broad, and very ftrong ligament, to the middle notch in the upper edge of that cartilage. The epiglotis is fomewhat concave behind and convex before. Its fhape refembles that of the tongue, and its termination or apex is always free, fo as by its own elafticity to be naturally elevated. In deglutition, however, when the tongue is drawn backwards, the epiglotis is exactly applied over the rima glottidis, fo as to prevent the food from pafing into the larynx, or, as is commonly faid, going the wrong way.

The pharynx is every where connected by mufcular fibres to the larynx, and the larynx is in a manner fufpended in its cavity. At the anterior part of the larynx is placed a gland of confiderable fize, called the thyroid gland. It is not difcovered to have any excretory duct, and its ufe is unknown.

Vox. III.
S
The

The mufcles which regulate the motions of the glottis, which is the principal organ of the voice, are the following four pairs, and one fingle mufcle:

The crico-arytænoideus pofticus arifes from the cricoid cartilage, and is inferted into the pofterior part of the bafe of the arytenoid cartilage. By its contraction it opens the rima glottidis a little, and by pulling back the arytenoid cartilage, renders the ligament tenfe.

The crico-arytanoideus lateralis proceeds from the cricoid cartilage laterally, where it is covered by part of the thyroid, and is inferted into the bafe of the arytenoid cartilage. Its effect is to open the rima glottidis, by feparating the arytenoid cartilages, and confequently the ligaments which are fixed to them.

The thyreo-arytznoideus arifes from the thyroid cartilage, runs backwards along the fide of the glottis, and is inferted into the arytenoid cartilages. Its effect is to bring the thyroid and arytenoid cartilages nearer to each other, and confequently to relax the ligaments which are placed between them.

The arytænoideus obliquus arifes from the bafe of one arytenoid cartilage, and crofling its fellow, is inferted into the tip of the other. When both aet, they pull the arytenoid cartilages towards each other, and therefore contract the rima glottidis.

The fingle mufcle which was mentioned is the arytænoideus tranfverfus. It arifes from the fide of one arytenoid cartilage and paffes to the other. It fhuts the rima glotidis by bringing the arytenoid cartilages with the ligaments nearer each other.

Befides thefe, there are a few feparate mufcular fibres, which from their connections are called

The thyreo-epiglottideus, which arifes from the thyroid cartilage, andi is inferted into the epiglottis laterally. It draws the epiglottis obliquely downwards,

The aryteno-epiglotideus; which arifes from the fide and upper part of the arytenoid cartilage, and is inferted with the former into the epiglotis; is pulls down the epiglottis, and counteracts the effect of its elafticity.

The alpera arteria, or windpipe, is a tube formed of annular carrilages, inembranes, and mufcular fibres. It begins from the annular cartilage of the larynx, defeends rather toward's the right fide of the fpine into the cavity of the thorax, and is divided, into two great branches, which being afterwards fubdivided, obtain the name of bronchia, and are diftributed through the fubftance of the lungs. The afpera arteria is furnifhed with two membranes, the outer of which is formed of cellular fubftance and the inner is very foft and tender; between thefe membranes are placed the cartilaginous rings. Thefe rings are conneEted to each other by ligamentous fibres above and below. They do not form compleat circles, but are imperfect behind, where the circle is compleated by a foft but ftrong glandular and mufcular membrane. The cartilagrinous rings are thin and elaftic, but thicker and broader before than at their fides. They are largeft at the upper part of the windpipe, and are found to be fmaller as we advance lower. Of the mufcular fibres fituated between the cartilaginous rings, fome
*e circular, which render the windpipe narrower, and others longitudinal, which render it fhorter.

The windpipe in the upper part of the cavity of the thorax is divided as was before ftated into two great branches, the larger and fhorter of which goes to the right lobe of the lungs, the fmaller and longer to the left.

The ftructure of the branches of the windpipe, till they enter the fubftance of the lungs, is the famc as that of the windpipe; after they enter the lungs, however, the cartilaginous rings foon difappear, and nothing but a thin elaftic coat remains. The ultimate divifions of the windpipe terminate in the air-veffels of the lungs.

С н A P. XXII.

THE PLEURA, THE LUNGS, AND THE THYMUS.
Defription of the Tharax.-The Pleura. - Thbe Breafts.-Breafts of Infants contain Milk.-Thbe Mediafinum.-The Lungs.-Tbe Tby\%us.

THE thorax is that part of the body which lies between the neck and the diaphragm. It is furrounded by the fpine, the ribs, the fternum, and the diaphragm, and alfo, internally, by a thin membrane like the peritoneum, which forms two feparate cavities, and is called the pleura. On the external part of the thorax are placed the mammæ or breafts ; within is the heart, with its large veffels, and the lungs.

The mammæ, or breafts, in men, and children of both fexes, are no more than cutaneous tubercles, with a brownifh circle in the middle, called the areola. In women they are two convex firm bodies, of a glandular nature. 'In the middle of each breaft is a prominent fpongy fubftance, called the papilla, perforated by a number of ducts for the difcharge of the milk, around which is placed the areola. The internal part of the breaft chiefly confifts of a large quantity of fat ; but there is alfo a large glandular fubfance, compofed of many fimaller glands, connected together by cellular membrane; this is the organ which fecretes the milk, and to which the term mamma is more ftrictly applicable. It is remarkable, general be preffed from the breafts of new-born infants, both male and female.

The pleura, as has been intimated, is a tranfparent and denfe membrane, continued through the left perforation of the diaphragm from the peritoncum. It covers the internal furface of the bones of the thorax and the upper part of the diaphragm, and involves the vifcera of the thorax in the fame manner as below it involved thofe of the abclomen. The internal furface of the pleura is conitantly moiftened, and rendered flippery by a ferous exudation.

The mediaftinum is formed by two laminz of the pleura including cellular fubfance. Thefe are clofely connected near the fternum and vertebre; but in the middle and towarcis the lower part they are feparated by the pericardium and heart. Before the heart, from the pericardium to the fernum, the two lamine achere very clofely: higher up they are divided to receive the thymus. The mediaftinum divides the thorax perpendicularly intn two feparate cavities or facks, which contain the lungs. The mediafinum is attached in fuch a manner to the anterior part of the bones of the thorax, as to render the right fack of the pleura larger than the left. Behind, the mediaftinum is attached to the dorfal vertebre, before to the fternum, below to the diaphragm and pericardium, and above to large blood- veffels.

Behind, towards the vertebrx of the back, is left a triangular fpace, in which is placed the windpipe, the cefophagus, the thoracic due., and feveral large blood-veffels; before, the gland called the thymus
occupies a fimilar fpace. The ufes of the pleura are to furnifh an internal covering to the bones of the thorax and the diaphragm, and an external covering to the thoracic vifcera.

The union of the two facks of the pleura, forming the mediaftinum, is of ufe, by fupporting the lungs, and by preventing their preffure on each other when the body is turned to either fide. By the two fides of the thorax being thus feparated, one may be wounded without impeding the functions of the other.

The lungs fill the two facks of the pleura, one of which is placed on each fide of the mediaftinum. With refpect to the form of the lungs, their bafes are broad, and their fummits form an obtufe cone. Their anterior furfaces, and thofe applied to the mediaftinum, are fat, that next the ribs is fomewhat convex, and that behind round. The lower parr: of the left lung is excavated to make room for the heart. The colour of the lungs is in infants reddifh, in adults greyih, and in old age they verge towards dark blue or black; their furface is ufually mottled.

The lungs are connected above to the neck by means of the windpipe, and below by blood-veffels to the heart. They have no other covering bus the pleura, connected to them by the intervention of thin cellular fubftance, which in this part is always free from fat.

With refpect to the ftructure of the lungs, the right, which is larger, confifts of three lobes, the left only of two; all of thefe are fub-divided into a number of fmaller lobes called lobules. There
divifions are connected to each other by the intervention of cellular fubftance. The fubftance of the lungs is ultimately made up of minute veficles, called the air veffels of the lungs, which are the terminations of the windpipe.

Thefe veficles have extremely thin coats, and on thefe coats are diftributed the minute ramifications of the blood-veffels which go to the lungs. It has been computed, from the extreme minutenefs of the air-veffels, that the internal furface of the lungs is not lefs extenfive than the floor of a moderate fized fitting room. Thefe air-veffels communicate with each other through the whole fubftance of each lung, fo that by inflating one lobule the air paffes into the reft. The ufes of the lungs are of the moft important nature, and will be confidered in a feparate chapter on the fubject of relpiration.

The thymus, the fituation of which has been juft mentioned, is foft, and of a fpongy texture. It is very large in the foetus, and is filled with a white thin liquor ; in adults it is hard, fimall, and gradually decays. It is not difcovered to have any excretory duct, and its ufe is unknown.

Chap. 23.] [265]

Сиар. XXIII.

THE HEART.

The Pericardium.-The Heart.-The Ventricles and Auricles.Their Ujes.-General View of the Blood-vefels.

THE heart is a hollow mufcle, included in a membranous bag, called the pericardium.
This membrane inclofes not only the heart, but the great veffels which arife from it. This covering of the heart confilts of three laminæ ; the external of thefe is formed by a duplicature of the mediaftinum. 'The middle lamina, which is the thickeft and ftrongeft, is compofed of very fine tendinous fibres, which at the lower part are connected and mixed with thofe of the diaphragm. The internal lamina feems to be a continuation of the outer coat of the heart and great veffels. Within the pericardium is found a quantity of tranfparent liquor, which facilitates the motions of the heart, by preventing friction.

The heart is placed in man almoft tranfverfely, and refts on the diaphragm at the anterior part of the thorax. The bafis or broad part of the heart is directed towards the right fide, its point or apex towards the left, and this latter is fo placed, as when the heart beats to ftrike the fixth rib. The upper furface of the heart is convex ; the lower, which refts on the diaphragm, is flat. The greater part of the heart lies in the left cavity of the thorax.

The fubftance of the heart is mufcular, and is compofed of fibres, which, arifing from the bafis, where it is tendinous, take a winding courfe towards its apex in various directions.
The principal part of the mufcular fubftance of the heart forms two cavities called the ventricles. The pofterior or left ventricle of thefe is much thicker, ftronger, longer, and rounder than the other; the anterior or right ventricle is wider, fhorter, and thinner*. The feptum, or that portion of mufcular fubftance which is placed between the ventricles, feems chiefly to belong to the former, and gives the latter an appearance of being mercly an appendage.

At the bafis of the heart are two cavities, which are each of them clivided by anatomifts into two parts, the finus and the auricle; but as thefe together form one cavity, it will anfwer beft the purpofe of perfpicuity to fipeak of teem fimply by the name of auricics. The auricies are compofed of two membranes, with fome mufcular fibres. Like the ventricles, they are feparated from each other by a feptum, and one of them obtains the appellation of the anterior or right auricle, the other that of the poiterior or left. Each of them communicates with the ventricle, which is placed next it, and which bears the fame name.

Between the auricles and ventricles of the heart are placed valves, as alfo at the mouths of the great

[^12]arteries, which prevent the blond from paffing in any other than the proper direction.

The valves, which are placed between each of the auricles and ventricles, are turned inwards towards the latter cavities. The valves, fituated at the entrance of the anterior ventricle, have three remarkable points, and are therefore called valvule tricufpides; thofe of the poiterior ventricle terminate in two points, and from being compared to a mitre, are called valvule mitrales. In each of the great arte, ies, which proceed from the ventricles, the aorta and pulmonary artery, are feated three valves turned from the ventricles, and called femilunares. All thefe valves are elongations of the internal membrane of the part to which they belong. They are clofely connected on that fide from which the current of blood proceeds, and their other extremity is loofe. When the blood, therefore, proceeds in its proper courfe, they are preffec clofe to the fide of the veffel, and occation no impediment ; but when it is about to return in the contrary direction, they are raifed from the fide of the veffel, and meeting in the middle of its cavity, fhut up the channel. The internal furface of the ventricles is extremely uneven, from a number of flefhy columns which rife from its infide, and fome of which terminate by tendinous extremities in the valves of the heart, which they fupport, and enable to perform their office more effectually.
Befides the connection, however, between the auricles and ventricles of the heart, each auricle communiçates with a large vein, and each ventricle with a large artery. The ufe of the auricle
is to receive the blood from the vein, and to difcharge it into the cavity of the ventricle. The ventricle receives the blood from the auricle, and drives it forcibly into the artery. By a repetition of thofe actions is performed the circulation of the blood, which is the fubject of a reparate chapter, in which I fhall take occafion to mention fome remarkable varieties in the hearts of different,races of animals.

The veffels of the human body are either bloodveffels or lymphatics.

The blood-veffels are membranous tubes, which convey the blood to and from the various parts of the body. They are divided into arteries and veins. 'The arteries pulfate, and convey the blood from the heart; the veins return it towards the heart, and do not pulfate*. The large trunks, both of the arteries and veins, are near the heart; at a diftance from ${ }^{\prime}$ it they are divided into numerous fmall branches in a manner very fimilar to that in which the trunk of a tree is loft in its branclies and twigs.

The arteries are formed by the following tunics. The firft is derived from the cavity, through which the artery paffes; in the thorax, from the pleura; in the abdomen, from the peritoneum, $\& x \mathrm{c}$. The fecond is a loofe covering of ceilular fubftance, which contains fmaller veffels, for the nourihment of that on which they run, and which in the large arteries often contains a confiderable quantity of fat.

[^13]
Chap. 23.] Structure of the Arteries and Veins.

The third is mufcular, and is compofed of feveral fmall arches of mufcular fibres, many of which go to the formation of a circle. Within this is a thin cellular coat, which adheres clofely to the former ; and laftly, there is a firm, finooth, and whitifh coat, with which the circulating mafs of fluids is in contact.

The ftructure of the veins is the fame as that of the arteries, but more delicate. The mufcular coat is in them fo thin, or of fo pale a colour, as not to admit of demonftration in man, but is plainly feen in a veffel called the vena portarum of the ox. That veins, however, have mufcular coats in all animals, is inferred from their contractile power.

The venous fyftem is far more capacious than she arterious.

Arteries are commonly faid to diminifh in fize, as they recede from the heart; but this is not the real tate of the cafc. As long as an artery continues undivided, its diameter remains the fame; and when it does divide, the area of the veffels formed by this divifion is always greater than the area of the artery from which they are produced; fo that the artery may in truth be faid to be increafed. This rule holds equally with refpect to the divifion of the great trunks of arteries, and the fub-divifions of their branches. The trunks alfo of veins are always fmaller than the fum of the finaller veins from which they are formed.

The larger trunks of blood-veffels are feparate subes, but their branches form various communifations with each other, and thefe communications increafe.
increafe as the veffels become more minute, fo as at length to form a web of veffels in the parts on which they are diftributed. The advantages of this ftructure are very obvious, as by a communication of veffels each part may receive blood from many fources, and no part therefore fuffers by the divifion of the blood-veffel which more particularly belongs to it ; its advantages are like thofe of commerce among mankind, by which the effects of partial loffes are guarded againft by a mutual exchange of conveniencies.

The branches of arteries are in general fent off at much more acute angles than thule of the veins, by which the paffage of the blood through the arteries is the lefs impeded.

The arteries have in general a correfponding vein placed near them ; but to this rule there are feveral exceptions, which will be more particularly noticed in fpeaking of the venous fyftem. The trunks of the veins, and almoft all the arteries, are deeply feated; but the fmaller veins are every where thickly diftributed on the furface of the body, immediately below the 1 kin . By this ftructure a paffage is provided for the blood on the furface of the body, where the internal veins are fo compreffed by the action of mufcles as not eafily to tranfmit their contents. The external and internal veins communicate very freely.

Chep. 24.] [$\left.\begin{array}{lll}271\end{array}\right]$

Cin а. XXIV.

general distribution of the arteries.

> The Acrta. -The coronary Artery. - The carotid and fubclavian Artcries.-The intercofal Arteries.-Bronchial Arteries.-The Carliac Artery.-Mefenteric Avteries.-Renal Avteries.-Lunntar Arteries.—lliac Arteries.- Crural Artery.-Pulmonnry Artery, ध®c.

FROM the pofterior, inferior, or left ventricle of the heart proceeds the principal artery of the body, called the aorta. Irrmediately on leaving the heart it fends off two fmall arteries, called the coronary, which are diftributed on the heart itfelf. The aorta now rifes three or four inches above the heart, when it is turned backwards and towards the left fide, forming an arch over the left divifion of the windpipe. From the convex fide of its arch, the aorta fends off three large arteries, which go to the head and arms. The firft of thefe is equal to the two other in fize, and foon divides into two branches; of thele one is the right carotid artery, which is diftributed on the right ficle of the head; the other is the right fubclavian, which proceeds to the right arm. 'The arteries which belong to the left fide of the head and left arm arife feparately from the aorta, and are the two other branches which were mentioned as being fent off from its arch.

Upon meafuring the fides of the veffels, the furface of the united trunk of the right fubclavian and carotid is lefs than that of the left fubclavian and carotid, which arife feparately; if fo, the refiftance to the blood muft be lefs in that common trunk than in the left fubclavian and carotid. The refiftance being fmaller, the impetus and velocity of the blood muft be lefs affected; and as the ftrength of the mufcles is as the quantity of blood fent into them in a given time, thofe of the right arm will beftronger than thofe of the left. This therefore accounts in fome meafure for the preference which is generally given to the right arm, though it muft be acknowledged that it is difficult, from this reafoning, to accourt for the preference which fome childien give to the left. The right fubclavian and carotid fometimes arife feparately like the leff, but it has not been afcertained that this exception to the ufual ftructure happens more frequently in left than in right handed perfons. In quadrupeds we obferve fomething of the fame preference of the right limbs, and attended with the fame diffribution of the arteries. In birds, which muft be nicely balanced, the arteries of both fides come off ailke.

The two carotid arteries proceed upwards on each fide of the windipe, behind the fterno-cleidomaftoideus mufcle, and the platilma myoides, as high as the larynx, without a divifion. About this part the carotid artery is divided into two others, called external and internal carotid arteries. The external earotid fupplies the parts about the larynn, the face, the cxternal parts of the head and the
dura mater. The other divifion of the carotid is diftributed almoft entirely on the brain, and is therefore called the internal carotid artery. It firft proceeds to the lower orifice of the great canal of the pars petrofum of the temporal bone. After being contorted according to the courfe of this paffage, it at length enters the cavity of the cranium, at the fide of the fella turcica. As it leaves the bony canal, it fends off an artery, whic' fupplies the conterts of the orbit, and which communicates with twigs of the external carotid about the face.

The internal carotid afterwards runs under the bafis of the brain at each fide of the infundibulum, where it is at a fmall diftance from the carotio artery of the other fide. At this part it commonly divides into two branches, one of which paffes towards the anterior, the other towards the pofterior part of the brain, where it communicates with the vertebral artery of the fame fide. The arteries of the brain are inclofed in the folds of the pia mater, and are not diftributed on the fubftance of the brain itfelf, till after having undergone minute divifion.

The fubclavian arteries are fo called, becaufe they pafs under or behind the clavicles. Each fubclavian artery fends off a confiderable one to the internal parts of the head. They proceed from the upper and pofterior part of the fubclavian, and obtain the denomination of vertebral arteries, becaufe they pars through openings in the tranfverfe proceffes of the vertebræ of the neck. Having reached the great foramen of the os occipitis, they enter the cranium, and pierce the dura mater. The two vertebral arteries, after they have entered the craVos, III.

T nium,
nium, gradually advance towards each other, and at length unite, forming the arteria bafilaris.

The fubclavian artery alfo fends off twigs to the mediaftinum, thymus, trachea, and pericardium. It alfo fends off two branches of a larger fize, called the mammaria interna, and cervicalis, befides the vertebralis, which has been already defcribed.

The fubclavian artery, where it leaves the thorax, immediately above the firft rib, changes its name to that of the arteria axillaris, becaufe it paffes under the axilla. In this courfe it gives off four principal branches, the thoracica fuperior, mammaria externa, thoracica humeralis, and axillaris fcapularis, which are diftributed on the parts from which they derive their names. The arteria axillaris, where it paffes behind the tendon of the pectoralis major, again changes its name to that of the arteria brachialis. Between the axilla and the middle of the arm, the artery is only covered by the common integuments; below this it paffes under the biceps mufcle, and runs obliquely forwards as it defcends. In its courfe, it continues to fend off branches to the adjoining parts. A little more than a finger's breadth below the bend of the arm, the arteria brachialis divides into two branches, called the cubitalis and radialis, the former of which lies next the ulna, the latter next the radius.

The aorta, having completed its arch, is directed downwards, being fituated towards the left fide of the fpine. Below the fourth vertebra of the back, it obtains the name of the defcending aorta, which, between this part and the diaphragm, fends off the foilowing branches:

Chap. 24.] Intercofal and Broncbial Arteries, E3C.275
The inferior intercoftal arteries are generally feven or eight on each fide. They arife in pairs along the pofterior part of the aorta, and run tranfverfely towards each fide on the bodies of the vertebre. They afterwards pafs in the bony ridge at the inferior edge of the ribs, almoft as far as the fternum, being diftributed in their courfe on the intercoftal mufcles.

The bronchial arteries are two or three in number, which fometimes arife from the aorta, fometimes are branches of the fuperior intercoftal, or of the arteries of the œfophagus. They enter with the divifions of the bronchia into the fubftance of the lungs, on which they are diftributed.

The arteries of the œfophagus are generally two or three in number. They arife from the anterior part of the aorta and are diftributed on the œfophagus.

One or more arteries are alfo fent to the diaphragm, and diftributed on its lower furface.

Below the diaphragm, the defcending aorta fends off

The creliac artery, which arifes from the anterior part of the aorta by a fhort trunk, which divides into three principal branches; one runs upwards, and is called the coronary artery of the ftomach, and which is chiefly diftributed on that organ; another runs towards the right, and having fent off one or two branches to the ftomach and duodenum, joins the vena porta, enters the fiffure of the liver, and is diftributed through its fubftance ; the third
is directed to the left, under the ftomach and pancreas, to the fpleen. In its progrefs it diftributes fmall branches to the ftomach, pancreas, and omentum.
-At a fhort diftance below the coeliac, the fuperior mefenteric artery proceeds from the anterior part of the aorta. Near its origin it fends off a fmall branch, which carries blood to the large extremity of the pancreas, and the neighbouring part of the duodenum. Being included between the laminæ of the mefentery, it forms a kind of arch, which defcends obliquely from left to right, and from which about fixteen or feventeen branches are fent off, moft of which are fpent on the fimall inteftines. As thefe branches approach towards the inteftines, and are more minutely divided, they inofculate and communicate very freely with each other, fo as at length to furround the inteftines like net work. From the concave fide of the arch proceed feveral branches, one of which is of great length, and makes a remarkable communication with the inferior mefenteric artery. From the numerous communications among the arteries of the inteftines, we may obferve how carefully thefe pares are provided with a fupply of blood.

The next arteries, which are fent off from the 2orta, are the two emulgent or renal. They arife one on each fide, and proceed almolt horizontally to the kidneys. As the aorta lies towards the left fide of the fpine, the right renal artery is longer than the left. The reverfe is the cafe with the veins,
as the vena cava is placed on the right fide of the fpine.

Above the renal arteries arife two arteries, which go to the glandulæ fuprarenales, and which alfo fend branches into the adipofe membrane which furrounds the kidneys.

Below the renal arteries arife the two fpermatic arteries, which are very fmall. They are placed behind the peritoneum, on the pfoas mufcles.

The lower mefenteric artery arifes from the anterior part of the aorta, below the fpermatic. It is foon divided into three or four branches, which gradually feparate from each other. The fuperior of thefe branches forms the communication, which was mentioned as taking place between the two mefenteric arteries. The inferior mefenteric artery is diftributed chiefly on the colon; it fends, however, a confiderable branch to the rectum, called the arteria hæmorroidalis interna.

The lumbar arteries proceed in five or fix pairs from the pofterior part of the aorta, much in the fame manner with the intercoftals. The fuperior fometimes fend blood to the diaphragm and intercoftals, but they are principally fpent on the pfoas (cles, the quadrati lumborum, and the oblique and tranfverfe mufcles of the abdomen. One or more arteries are fent off from the lower part of the aorta, or fome of the neighbouring arteries, to the os facrum and large nerves of thefe parts.

Near the laft lumbar vertebra, the aorta is divided into two equal trunks, called the common iliac arteries, one of which lies to the right the other to the left, and which recede from each other as they de-
fcend. About three fingers breadth from their origin, eachiliac trunk is divided into two fecondary arteries. One of thefe, which is called, from the parts on which it is diftributed, the hypogaftric, or internal iliac artery, is gradually bent forwards, and terminates like a ligamentous cord at the navel. The other artery is called the external iliac, and paffes under the ligament of Fallopius, in its way to the lower extremity, on which it is diftributed.

From the convex fide of the curvature of the hypogattric artery are fent off feveral confiderable branches, which may be diftinguifhed by the following names; iliaca minor, facre laterales, glutæa, fciatica, pudica communis, hæmorrhoidalis media, obturatrix.

The iliaca minor is a fmall artery, which is diftributed on the iliac mufcles and bones. The arterix facre laterales are commonly two in number. They are fent to the fore part of the os facrum, and penetrating its fubftance, are diftributed to the nerves and membranes within. The arteria glutæa is of very confiderable fize; it paffes out of the pelvis with the fciatic nerve, and is ciftributed on the two larger glutai mufcles; it alfo gives branches to fome other neighbouring mufcles, and to the parts about the anus. The arteria fciatica gives fome branches to the os facrum and actjoining mufcles. It paffes obliquely over the fciatic nerve, and goes through the great pofterior finus of the os ileum. It afterwards afcends on the outfide of the os ileum, and is feent on that and the glutxi mufcles. The arteria pudica communis, or pudica interna, divides
into two branches; one of thefe runs on the infide of the tubercle of the ifchium to where the corpora cavernofa take their origin; at this place it is divided into feveral fimaller branches, which are diftributed on the corpora cavernofa, the bulb of the urethra, and the anus. The fecond principal branch, fometimes called the pudica externa, runs between the bladder and rectum.

The hæmorrhoidalis media proceeds from the pudica interna, or fome of the other large branches; it goes to the lower part of the rectum, and fends twigs to the bladder, veficule feminales, and proftrate gland. The arteria obturatrix perforates the obturator mufcles, and is diftributed to the neighbouring mufcles.

The hypogaftric, or internal iliac artery, having fent off all thefe branches to the parts about the pelvis, afcends on the fide of the bladder towards the navel, where it meets its fellow of the oppofite fide. Thefe arteries, near the navel, are in the adult contracted into the appearance of a ligament, and are quite clofed; in the foetus, however, they are a continuation of the trunk of the hypogaftric arteries by which the circulation is carried on between it and the placenta.

It has been already mentioned, that the external iliac artery pafles out of the abdomen under Fallopius's ligament; it here gives off two confiderable branches; one of thefe, the arteria epigaatrica, runs upwards on the mufcles at the anterior pàrt of the abdomen, and communicates freely with the mammaria interna; the other branch,

$$
\mathrm{T}_{4} \quad \text { fent }
$$

280 Arteries of the Thigh and Leg. [Book IX.
fent off from the external iliac at this place, runs to the internal edge of the os ileum, and is ramified on the oblique and tranfverfe mufcles of the abdomen, communicating with the lumbar arteries.

After it has paffed under the ligament of Fallopius, the external iliac changes its name to that of the crural or femoral artery. It fends off, firft, three frall branches; one, the pudica externa, goes to the inguinal glands, \&cc. and communicates with the pudica interna; another goes to the pectineus mufcle; and the third, to the upper part of the fartorius.

Afterwards the trunk of the artery defcends to the head of the os femoris. About three fingers breadth from the ligament of Fallopius, it fends out three confiderable branches. The external branch, called the circumflexa externa, is diftributed to the mufcles of the thigh, fituated before and at the outfide. The middle branch, named the profunda, runs down on the infide of the thigh between the triceps mufcles. The internal branch, called the circumflexa interna, runs backwards towards the great trochanter, and fupplies the mufcles, feated at the pofterior part of the os femoris, and fends a branch into the fubftance of the bone itfelf.

After having fent off thefe branches, the crural artery, covered by the fartorius mufcle, proceeds down to the bottom of the thigh, and paffes through the tendon of the adductor magnus, a little above the internal condyle of the os femoris; afterwards, continuing its courfe through the hollow of the ham, it is called arteria poplitea.

While in the ham it fends off branches; which afcend to communicate with thofe of the crural artery. Branches are alfo fent to the joint. When it has reached the back part of the head of the tibia, it gives off two branches, one to each fide. As the poplitea ends, it divides into two principal branches; one of which runs between the heads of the tibia and fibula, paffing from behind forwards on the interoffeous ligament, where it takes the name of arteria tibialis anterior; the fecond branch divides into two cthers, the larger called arteria tibialis pofterior, the other arteria peronea pofterior.

From the anterior, fuperior, or right ventricle of the heart proceeds an artery (the pulmonary) nearly equal to the aorta, but the coats of which are lefs robuft. Its trunk, ha, ing run upwards almoft as high as the aorta, is divided into two parts, one of which paffes under the aorta to the right lung, while the other proceeds to the left. Thefe arteries enter the lungs with the bronchia, and the divifions and fub-divifions of both are diftributed together through their fubftance. The ultimate ramifications of the pulmonary artery are fpread out on the air-veffels, through which the blood undergoes that change from the air which it is the purpofe of refpiration to effect.

Befides receiving arteries in common with other parts of the body, we find that the lungs continually receive and return the fame quantity of blood as paffes through all the other parts of the body; from which we may form fome idea of their extreme yafcularity.

282 Explanation of the Plate [Book IX.
In the plate annexed (XII.) the arteries are reprefented freed from the nufcular and fibrous parts.

1. Aorta afcendens.
A. Three femilunar valves.
2. Trunk of the coronary artery.
3. Aorta defcendens.
4. Subclavian artery.
5.5. Carotid arteries.
6.6. Vertebral arteries.
7.7. Arteries that go to the lower part of the face, tongue, \&c.
8.8. Temporal arteries.
10.IQ. Trunks which go to the foramina narium, \&c.
I1.x]. Occipital arteries. 'e:
12.12. Arteries which go to the fauces, \&c.
B.B. A fimall portion of the bafis of the fkull.
13.13. Contorfions of the carotid arteries, before they pafs to the brain.
C. The pituitary gland between the contorted trunks of
14.14. The carotid arteries.
D.D. The ophthalmic arteries.
5. Contorfions of the vertebrals.
6. The vertebral arteries, where they lie on the medulla oblongata.
18.18. Ramifications of the arteries within the fkull.
E.E. The arteries of the cerebellum.
19.19. Arteries of the larynx, \&c.
20.20. Arteries which convey blood to the mufcles of the neck and fcapula.
21.2 I . Mammary arteries.
22.22, Arteries of the mufcles of the os humeri, \&c.
23.24. Divifions of the arteries of the arm.
25.25. A branch of an artery not found in all fubjects.
7. External artery of the cubitus.
8. Arteries of the hands and fingers.
28.28. Divifion of the aorta.
9. Bronchial artery.
10. Intercoftal arteries.
11. Cœliac artery.
12. Hepatic arteries.
13. Arteria cyftica, on the gall-bladder.
14. L. ower coronary artery of the ftomach.
15. Pyloric artery
16. Epiploic artery.
17. Ramifications of the coronary artery, which embrace the bottom of the ftomach.
18. The upper coronary artery of the ftomach.
40.40. Phrenic arteries.
19. Splenic artery.
20. Upper mefenteric artery.

44: Superior branches of the mefenteric artery, freed from the fmall inteftines.
45. Lower mefenteric artery.
49.49. Emulgent arteries.
50. Arteriæ lumbares.
51. Spermatic arteries.
52. Arteria facra.
53.53. Common iliac arteries;
54.54. Iliacus externus.
55.55 . Iliacus internus.
56.56. Um-

284 Explanation of the Plate, \mathcal{J}^{2}. [Book IX. 56.56. Umbilical arteries.
57.57. Epigaftric arteries.
69. The crural artery.
70. Arteries which pafs to the mufcles of the thighs and tibia.
71. Part of the crural artery.
72. The three large trunks of the arteries of the leg.
73. Arteries of the foot.

Chap. 25.] [285]

Снар. XXV.

general DISTRIBUTION OF THE VEINS.

> Pulmonary Veins.-Vena Cava.-Veins of the Head.- Tugular and Subclavian. - Veins of the Superior Extremity.-Vena Azygos. - Veins of the Lower Extremities.- Courfe of the Blood through the abdomsinal Vifcra, the Liver. Ec.

IN defcribing the arteries we followed the courfe of the blood, and beginning with the largeft trunks, traced the feveral branches in the order in which they were fent off. In pointing out the courfe of the veins, however, and fill following the courfe of their contents, the order of the defcription will neceffarily be reverfed, as it is neceffary, in this cafe, to begin with the ramifications, and trace them into the trunks.

The veins of the body may be divided into two claffes; thofe which return the blood conveyed by the pulmonary artery, and thofe which return that of the aorta.

It has been already remarked, that, befides the blood which the lungs receive in common with other parts of the body, they alfo receive all that is tranfmitted by the pulmonary artery, This, after beiner diftributed through the fubstance of the lungs, is returned by veins, which at length unite into four trunks, and paffing through the pericardium, are inferted into the pofterior auricle of the heart.

The

The blood, which is fent to the various parts of the body by the aorta is ultimately received and returned by two large trunks, the vena cava fuperior and inferior, which enter the anterior auricle of the heart. I fhall now proceed to enumerate, in a curfory manner, the branches by which thefe trunks are fupplied.

The vena cava fuperior is formed in the following manner. In treating of the brain, I fhall endeavour to defcribe more fully the triangular canals, called finufes, fituated in the dura mater, and which perform the office of veins. The blood, which is fent to the internal parts of the head, after paffing through other veins and finufes is received by the two lateral finufes; thefe terminate in the internal jugular veins, which correfpond with the internal carotid artery, and terminate in the fubclavian vein. The external jugular vein, which correfponds with the external carotid artery, receives the blood from the external parts of the head, and alfo terminates in the fubclavian vein. This vein alfo receives the contents of the vertebral vein, which correfponds with the artery of the fame name.

The veins of the fuperior extremities run in two fets; fome of them lie immediately under the fkin, others are deeply feated, and accompany the arteries. The vena bafilica is formed by a variety of branches; it proceeds immediately under the fkin, along the courfe of the ulna, to the internal condyle of the os humeri. It afterwards runs up along the infide of the arm, communicating freely both with the deep and fuperficial veins. The vena cephalica receives, at the extremity of the radius, branches

Chap. 25.] Veins of the fuperior Extremity.
which correfpond with thofe of the radial artery. The trunk runs along the radius, between the mufcles and integuments, communicating with all the neighbouring veins; having paffed the fold of the arm, it afcends near the outer edge of the external portion of the biceps, ftill communicating with the other veins, and paffing between the large pectoral and deltoid mufcles, terminates, as well as the bafilica, in the trunk of the axillary vein.

The vena axillaris, which correfponds with the artery of the fame name, is formed by all the veins of the fuperior extremity. Above the axilla it receives branches from all the mufcies fituated about the fcapula, and the upper part of the thorax. Where it paffes between the clavicle and firft rib, it changes its name from that of the axillary vein to that of the fubclavian. The fubclavian veins, receive the contents of the jugular and vertebral veins which come from the head, and alfo other branches from adjoining parts. The left fubclavian vein alfo receives a particular vein, called the intercoftalis fuperior, which proceeds from the upper intercoftal mufcles of that fide. The left fubclavian vein alfo receives the contents of the thoracic duct, which is defribed in another place.

The two fubclavian veins are directed towards each other, and uniting in the upper part of the thorax, rather towards the right fide, conftitute the vena cava fuperior. Into the upper part of the vena cava opens a vein of confiderable fize, called the vena azygos, or the vein without a fellow. This arifes from the lower and internal part of the thorax, and foom paffes over to the right part of the fpine. As it afcends along the right fide of the thorax, it veins, which alfo come from the intercoftals. At the top of the thorax it is bent forwards over the right lung, and opens into the vena cava a little above the pericardium. The vena cava now perforates the pericardium, and defcends to the anterior or right ventricle of the heart.

The veins of the lower extremities, which terminate in the vena cava inferior, are

The vena faphena major, which begins on the infide of the foot, at the great toe, and runs to the inner ankle; here it receives other branches, and then runs up the infide of the tibia, immediately under the fkin. After communicating freely, and receiving other branches, the faphena paffes along the infide of the knee, and afterwards along the thigh as far as the middle of the fartorius mufcle; it next runs on the forepart of the thigh to the groin, and at length opens into the top of the femoral vein. As this vein is quite fuperficial, it may be traced through the whole of its progrefs, when it is diftended with blood, by the naked eye:

The vena faphena minor returns the blood from the outer fide of the foot ; from this part it runs up on the outfide of the tendo Achillis, and next between the gaftrocnemius externus and the fkin. It terminates in the vena poplitea a litcle above the ham.

The vena tibialis anterior is a trunk which accompanies the artery of the fame name, and terminates in the vena poplitea.

The vena tibialis pofterior begins from the fole of the foot by feveral branches. Thefe, forming a trunk, run on the inner fide of the os calcis, and behind the inner ankle. It paffes up between the foleus, and tibialis pofticus mufcles, accompanied by the correfponding artery, and opens into the vena poplitea.

The vena peronea proceeds upwards along the infide of the fibula, almoft in the fame direction with the arteria peronea, and alfo ends in the vena poplitea.

The vena poplitea, which correfponds with the artery of the fame name, is formed by the three large veins defcribed, but feems to be a continuation of the tibialis pofterior. The vena poplitea runs up immediately on the mufcle of the fame name. About the ham it receives a number of branches from the joint and from the neighbouring mufcles. A little above the ham it receives the name of the crural vein, which takes its courfe upwards between the biceps and other flexors of the leg, clofely accompanied by the crural artery. When it has arrived oppofite the trochanter minor it receives three confiderable veins, the circumflexa interna, externa, and profunda, which correfpond with the arteries of the fame names. About an inch below the ligament of Fallopius, it receives the vena fapphena major, the courle of which has already been defcribed. About this place it alfo receives the venre pudicæ externæ.

After paffing under the ligament of Fallopius, and entering the pelvis, it changes its name to that of the external iliac vein. It now receives the vena epigattrica, which defcends towards it at the anteVol. III.
rior part of the abdomen, and other venous branches from the adjacent parts. After having received the venous branches which correfpond with the arterial branches of the external iliac artery, the external iliac vein unites with the trunk of the internal jliac, or hypogaftric, vein, which returns the blood fent to the pelvis by the artery of the fame name. Thefe two venous trunks uniting, form the vena iliaca communis, and the iliacæ communes of both ficles uniting, form the inferior vena cava. This afcends on the vertebre but inclines towards the right fide, whereas the aorta is placed towards the left. It receives the venx lumbares, which enter it behind in pairs. Higher up it is joined by the emulgent veins from the kidneys, the venre capfulares from the glandulæ fuprarenales, and by the right fpermatic vein. The left fpermatic vein commonly goes into the emulgent vein of the fame fide. Oppofite the liver the vena cava receives the blood from the diaphragm and pericardium. Hithertn, none of the veins which return the blood fent to the abdominal vilcera by the caliac and the two mefenteric arterics have been noticed. The courfe of this blood, however, deferves particular attention.

The veins of the rectum form the beginning of a vein called vena meferaica minor, or vena hæmorrhoidalis interna. This afterwards unites with a branch from the left part of the arch of the colon, and opens at length into the vena fplenica.

The vena fplenica returns the blood from the fyleen, and in its paffage alfo receives branches from vena meferaica minor laft defcribed.

The vena meferaica major returns the blood of moft of the branches of the arteria mefenterica fuperior, which are diftributed on the finall inteftines and right portion of the colon. It alfo receives the vena cæcalis from the beginning of the colon, the gaftro colica, partly from the fomach and partly from the colon, and fome other branches from the adjoining vifcera, which vary in different fubjects.

The vena fplenica receives the vena meferaica minor, and the vena meferaica major the vena fplenica, and thus is brought into one veffel, called the vena porte, the blood which comes from the omentum, the pancreas, the fpleen, the flomach, and the firall and great inteftines. The blood, however, thus collected, is not immediately returned to the heart, as in other parts of the body; for the vena porte, having arrived at the concave part of the liver, is firt divided into five branches, and thefe into others more minute, which are diffributed through that organ like arteries, and which perform the fecretion of the bile. Where the vena porte enters the liver, its flructure becomes more robuft, to enable it to perform its new office. The blood, thus circulated through the liver, is again collected by another let of veins, which, uniting into two or three principal trunks, called venæ hepatice, pour their contents into the vena cava. The vena cava, having received thefe veins, perforates the diaphragm and pericardium, and meet-

292 Explanation of the Plate of Veins. [Book IX, ing with the fuperior cava, they empty themfelves together into the anterior auricle.

The veins are reprefented in plate XIII. though not fo perfectly as I could have wifhed.
a.a. Vena cava.
b. Defcending truink of the cava.
c.c. Afcending trunk of the cava.
d.d. Subclavian veins.
e. Vena azygos.
f. Intercoftal veins.
g. Mammary veins.
i.i. Internal jugulars.
l.l. External jugulars.
m. Right axillary vein.
n. Cephalic vein.
o. Baflic.
q. Phrenic.
s.s. Emuligents.
w.w. Iliac branches.
x. Internal iliacs.

1. Vena facra.
2. Spermatic veins.
3. Epigaftric.
4. Saphena.

Снар. XXVI.

STRUCTURE AND COURSE OFTHE

 LYMPHATICS.Trwo Kinds of Lymphatics.-Defription of thefe Vefels.-Lymphatic Glands.-Lacteals.-Thoracic Duct.-Receptacle of the Cbyle, छึc.

LYMPHATICS are fmall pellucid veffels, which convey fluids perfectly, or very nearly, colourlefs. The lymphatics are of two kinds; thofe which take up fluids from the body in general, and thofe which receive the digefted aliment from the inteftines. The latter kind are called lacteals, and both of them terminate in a common trunk, the thoracic duct.

The lymphatics have at leaft two coats, which are thin and tranfparent, but tolerably ftrong. They have alfo nerves and mufcular fibres, as may be collected from their fenfibility when inflamed, and from their power of contraction. They are furnihed with valves, which are placed in pairs, and which are fo numerous, that three or four of them offen occur within the diftance of one inch. From this circumftance, they are frequently called valvular lymphatic veffels, to diftinguifh them from the minute ramifications of the fanguiferous fyifem, which alfo convey a colourlefs fluid.

Lymrphatics begin by extremely minute tubes from the whole furface of the body, from the cellular fubftance, from the cavities of the body, from
all the glands, from all the vifcera, and in general from every part of the fyftem.

It is now well afcertained, that not only water is abforbed by the lymphatics on the furface of the body, but many other fubftances. No lymphatics have been demonftrated in the brain; but from a variety of circumflances there can be very little doubt of their exiftence.

All the lymphatics of the body pafs through certain glands, which are connected with them. When the lymphatics approach thefe glands, they fend fome branches to neighbouring lymphatics; other branches pafs over the furface of the glands, and? others enter their fubftance, in which they are fo minutely divided as to efcape obfervation. A great number of thefe glands are placed at the upper part of the thigh, belonging to the lymphatics of the lower extremity; others are placed under the arm, belonging to thofe of the upper; and there are fimilar glands about the neck, and in various other parts of the body. It is at prefent difputed among anatomifts, whether lymphatic glands are formed of cells or convoluted veffels; but the latter opinion feems to be more probable. Lymphatic or conglobate glands are of various fizes, from that of a fmall pea to that of a bean. They are commonly fomewhat flattened. In young fubjects they are found of a reddif, or brown colour, but they become whiter in the progrefs of life. Their furface in fhining, which is owing to a fmooth denfe coat with which they are covered. Thefe glands are faid to be wanting in fome animals, which yet have lymphatic vefiels.

The lacteals are fo called from a degree of whitenefs in their appearance like that of milk, which they receive from the colour of the fluid which they convey. They arife from the villous coat both of the great and fmall inteftines, but principally from the fmall, particularly the jejunum ; paffing in their courfe through conglobate glands, they advance between the laminæ of the mefentery towards the fecond or third lumbar vertebra, where they meet with the lymphatics of the lower extremities.

Thefe are of two kinds, the fuperficial and deep feated. The former chiefly lie at the infide of the leg and thigh, and fullow the courfe of the vena faphena major. In the groin they pafs through lymphatic glands. Being joined by the lymphatics of the lower part of the abdomen, they pars under the ligament of Fallopius. The lymphatics of the lower extremities and pelvis, and the lacteals from the inteftines, form the beginning of the thoracic duct. This vefel alfo receives the lymph from the other abdominal vifcera.

The thoracic duct, fo ealled from its courfe. through the thorax, ufually begins about the fecond or third lumbar vertebra. It is of different fizes in different fubjects, and is fometimes extended at its lower part into a pyriform bag, called the receptaculum chyli; but in general there is no enlargement fo remarkable as to deferve a particular name. The thoracic duct fometimes divides and again unites. At its beginning, it is fituated at the right fide of the aorta. It is afterwards obferved in the thorax, lying between the aorta and vena azygos, It af-
cends as high as the fixth vertebra of the neck, where, forming an arch, it turns downwards and enters the left fubclavian vein near the infertion of the internal jugular.

The thoracic duct is furnifhed with few valves, and there are placed without much regularity. At the place, however, where it is inferted into the fubclavian vein, there is a circular valve, which prevents the blood from getting into it.

Befides the thoracic duct, which recaives the lymph from the lower extremities and the left fide, and the chyle from the inteftines, there is another veffel fomewhat fimilar, but much fhorter, on the right fide. This receives the lymphatics from the right arm, the right lung, and the right fide of the head, and enters the right fubclavian vein at the fame place where the thoracic duct enters the left.

Chap. 27.] [297]

Сна \quad. XXVII.

OF THE BRAIN, \&c.

> I'be Dura Mater.-T'be Falx.-Sinufes of the Brain.-T'be. Pia Mater:-Tb: Cerebrum and Cerebellemi.-Source of the Optuc Nowes.一The Pineal Gland. -The fuppofed Scat of the Soul.-The Medulla Oblongata.-Source of the Nerves.The Spinal Marrow.

TH E cavity of the cranium is every way furrounded with ftrong bones, which have been already defcribed. Within thefe, before we arrive at the fubftance of the brain, we meet with two membranes, called by the ancients the dura and pia mater, from an opinion that they were the fource of the other membranes of the body. The fame names are fill applied to them by the moderns, though, as in many other cales, the reafon has ceafed.

The dura mater is a thick, firm, infenfible membrane, extremely full of blood veffels. Its external furface performs the part of a periofteum to the internal part of the head, to which it adheres by numerous blood-veffels, particularly at the futures, where they pafs through the cranium to communicate with thofe of the external periofteum. Its internal furface is moiftened by the exhalation of a thin fluid, which prevents its adhefion to the membrane within.

The dura mater forms feveral projections, which ferve very important purpofes. One of thefe, from its
its refemblance to the blade of a fcythe, is called the falx. Its narroweft end is attached to the crifta galli of the ethmoid bone; it runs backwards along the courfe of the fagittal future, to where it meets with the lambdoidal. A little below the lambdoidal future it divides into two wings, forming a tranfverfe feptum, which is firmly attached behind to the os occipitis. The ufe of the falx is to divide the brain into its two hemifpheres, and to fupport them, and prevent their prefling on each other when the head is turned to either fide. The tranfverfe feptum divides the great brain or cerebrum from the fmaller brain or cercbellum, the former being placed above it, the latter below. It alfo fupports the cerebrum, and prevents it from gravitating on the cerebellum when the body is in the erect potture. The connection between the tranfverfe feptum and the falx is fuch, that they preferve earh other in a ftate of tenfion, for if either of them is cut after the contents of the cranium are removed, the other immediately becomes relaxed and flaccid. Below the tranfverfe feptum is fituated a fmaller falx, which ferves the fame purpofes in the cercbellum "as the great falx does in the cerebrum. In the tranfverfe feptum is a great oval notch, through which the fubftance of the cerebrum and cerebellitun communicate and are intimately mixed.

Both the membranes of the brain pafs out of the eranium with the trunks of nerves, and afford them coverings, till they terminate in their fentient extremities.

The blood which is circulated through the brain is not returned through fụch veins aṣ are found in
other parts of the body. We here obferve a peculiar kind of canals called finufes, which are contained in the duplicatures of the dura mater. The moft remarkable of thefe is the longitudinal, which runs in the upper part of the falx; at the tranfverfe feptum this divides into two others, called lateral finufes, which, paffing through the bafis of the cranium, terminate in the jugular veins. Near the concourfe of the fuperior and lateral finufes, we: obferve an opening, which is the orifice of a finus, fituated along the union of the falx and tranfverfe feptum.

Thefe finufes are triangular veins, which, being conveyed through fo firm a membrane as the dura mater, are much lefs liable to be ruptured or diftended; there accidents are ftill further guarded againft by certain filaments, which pafs from one Iide of the finufes to the other, and give fill further fecurity againft the bad effects which are found to arife from the preffure of the brain. The veins, which pour their blood into the finufes, enter them in fuch a manner as to produce the effect of a valve, and to prevent the blood from returting into the tender veffels of the brain, and thus over-diftending thèm.

Befides the finufes above-mentioned there are others of a fmaller fize, which anfuer the fame important purpofes. All thefe communicate with each other and with the great lateral finufes, and therefore difcharge their blood into the internal jugular veins.

The cavernous or lateral finufes of the os fphenoides are refervoirs of a particular kind, contain-
ing confiderable veffels and nerves; and likewife a cavernous and fpongy ftructure, which for fome unknown purpofe is conftantly filled with blood.

The pia mater is a much fofter and thinner membrane than the former; it is connected to the dura mater only by the veins which open into the finufes. The pia mater confifts of two laminx; the external of thefe, from its extreme thinnefs, has been compared to the fpider's web, and is named tunica arachnoidea; at the upper part of the brain it is connected both to the dura mater and the internal lamina of the pia mater, by means of blood-veffels, but in other parts it is quite feparate from both. It is fpread uniformly over the furface of the brain, inclofing all the convolutions, but not entering between any of them.

On the contrary, the internal and moft confiderable lamina of the pia mater is not only infinuated into the numerous folds and circumvolutions of the brain, but is continued into its cavities, performing the important office of conveying the blood-veffels to that delicate organ in fuch a minute flate of divifion, that their pulfation cannot be prejudicial to its functions.

The brain completely fills the cavity of the cranium, and its form therefore correfponds with it; it is convex above, irregular below, and flat at the fides. Under the general name of brain, or encephalon, are included the cerebrum, which occupies the upper and largeft portion of the cranium, and the cerebellum, which is feated in its lower and pofterior part, under the tranfverfe feptum. The cere-

Chap. 27.] Component Matter of the Brain. 301

 brum is divided longitudinally at its upper part, by the falx, into its two hemirpheres. The irregular furface of the cranium below divides each hemifiphere into three lobes. The anterior lobe is lodged on the orbital proceffes of the os frontis; the middle lobe lies in the middle foffee of the bafis of the cranium; the pofterior reits on the tranfverfe feptum over the cerebellum. The cerebellum is itfelf divided into two hemifpheres by the fmall falx.The component matter of the brain is of two kinds; a greyifh matter, which is for the moft part placed without, and is therefore called the cortical, and a white matter called the medullary, which is generally fituated within. The cortical part chiefly accompanies the convolutions of the brain; the medullary is entire, and feems to be compofed of numerous white, minute, parallel, and very tender fibres.

Having removed the falx from between the hemifpheres of the brain, and drawn them gently from each other, we obferve below a white convex furface, which is part of what is called the corpus callofum. It is a middle portion of the meduilary fubftance, which, under the inferior edge of the falx, and for fome diftance on cach fide, is parted from the mafs of the cerebrum by a fold of the piamater. Along the middle of the furface of the corpus callofum, a kind of raphe or future is formed by a particular intertexture of fibres croffing each other. Immediately under thefe is placed the feptum lucidum, whicia is connected below to the fornix, and divides
divides the anterior ventricles of the brain from eacis other. Thefe ventricles are difcovered by making an horizontal incifion in the brain, on a level witle: the corpus callofum. When we have cut into them, we find that they are narrow canals, which take a very winding courfe through the fubftance of the brain. They are lined with the pia mater, and contain a curious collection of minute blood-vefiels twifted about each other, and called plexus choroides. One of the anterior ventricles is fituated in each hemifphere of the brain, and they are divided from each other by the feptum luciduin.

The feptum lucidum is united by its lower part to the anterior portion of that medullary body called the fornix, which forms a kind of arch, fituated under the corpus callofum, and is nearly of a triangular fhape. At the anterior part the fornix fends off a double medullary cord, called its anterior crura; immediately below which we obferve a large white medullary rope ftretched tranfverfely between the two hemifpheres, and commonly called the anterior commiffurc of the cerebrum. To this fubftance the feptum lucidum is connected. At the pofterior part of the fornix are two other crura, which unite with two medullary protuberances called pedes hippocampi. Under the fornix, and immediately behind its anterior crura, there is a hole by which the two anterior ventricles communicate. In examining the fubitance of the ccrebrum, the deeper we go towards the bafis of the cranium, we find that the medullary part becomes the broader.

The plexus rhoroides is a very fine vafcular texture, confifting of a great number of arterial and
venal ramifications, fpread over the lateral or anterior ventricles. When we have removed this plexus, we difcover feveral protuberances included in thefe cavities. Thefe are the corpora ftriata, the thalami nervorum opticorum, and the nates and teftes.

The corpora ftriata are two curved oblong eminences, which extend along the anterior part of the lateral ventricles. They are called ftriata or ftriped, becaufe in cutting them we meet with a number of white and afh coloured lines alternately difpofed. Thefe two eminences are of a greyifh colour on the furface, and larger before than behind, where they are narrow and bent. They may be confidered as forming the convex bafes of the ventricles.

The thalami nervorum opticorum are externally white, but alfo contain both cortical and medullary fubftance, and derive their name from being the chief fource of the optic nerves. They are two eminences placed near each other, between the pofterior portions or extremities of the corpora ftriata. They are clofely united, and at their convex part form one body. Immediately under che union of the thalami nervorum opticorum lies a cavity called the third ventricle of the cercbram. This cavity communicates at its upper and fore part with the paffage between the two lateral veritricles, and fends down from its under and fore part a paffage through the infundibulum; it has a communication backwards with the fourth ventricle.

The infundibulum is a fmali medullary canal, fituated between the balis of the anterior pillar of the
the fornix, and the anterior part of the union of the thalami nervorum opticorum. It runs downwards, and terminates by a finall membranous canal in a foftifh body, fituated in the fella turcica of the fphenoidal bone, and called glandula pituitaria. This fubftance was fo named by the ancients, from its fuppofed office of cleanfing the brain from ferous fluids. Its real ufe is wholly unknown. In ruminant animals it is much larger than in man.

The nates and tefles, or as they are otherwife denominated, tubercula quadrigemina, are four tubercles, fituated behind the union of the thalami nervorum opticorum, adhering to each other. They are externally white, and their internal fubftance is greyifi. Between the two anterior tubercles and the convex part of the thalami nervorum opticorum is an interfice called foramen commune pofterius. This, however, is clofed by the pia mater', and does not open into any cavity.

A bove the tubercuia quadrigemina, and behind the thalami nervorum opticorum, is fixed the pineal gland. This body is of an oval form, about the fize of a pea, and is connected to the lower part of the thalami by two very white medullary pedunculi. It feems to be moftly formed of cortical fubftance, particularly at its upper part, and adheres clofely to the plexus choroides, with which it is covered. This fmall body has been rendered famous by Defcartes, who fuppofed it to be the feat of the foul. It is often found, on being cut into, to contain a gravelly fubflance, which refilts the knife. Below the pineal gland there is a tranfverfe medullary cord, called the pofterior commiffure of the hemifpheres of the cranium.

The cerebellum is fituated under the tranfverfe feptum, in the pofterior and lower part of the cranium. Like the cerebrum it is compofed of cineritious and medullary matter. It differs from the cerebrum, however, in having no circumvolutions on its furface; inftead of thefe, we here obferve numerous furrows running paraicel to each other, and nearly in a tranfverfe direction, into which enter folds of the pia mater. Under the tranfverfe $f=p-$ tum it is covered by a vafcular texture which communicates with the plexus choroides. It has four eminences which are turned in different directions, and which from fome refemblance to the rings of an earth-worm are named appendices vermiformes. The cerebellum is divided into two lateral parts by the fmall falx ; on the back part it is divided into two lobes feparated by the occipital feptum of the dura mater.

By cutting deeply into the fubfance of the cerebellum in the direation of its falk, we obferve an oblong cavity which is called tive fourth ventricle; this terminates back:vards like the point of a witingpen, and this end of it has therefore been called calanus feriptoriks. At the beginning of this cavity we meet with a thin medullary lamina which has been confidered as a valve. This ventricle is lined like the others with the pia mater, which is continued through all thefe cavities.

The fubttance of the cerebellum appears very different, accorifing to the direction in which it is cut. By dividing it vertically we find the medullary part difeofed fo as to exhibit the apperivance of a tree. Thefe ramifications unite to form a meVol. III.

X
cullary
dullary trunk ; the middle, anterior, and moft corfiderable part of which forms two proceffes, the crura cerebelli, which uniting with the crura cerebri conftitute the medulla oblongata, which will be next defcribed; when the cerebellum is cut horizontally this appearance is entirely loft.

The medulla oblongata is fituated in the lower and pofterior part of the cranium, and is formed of two confiderable medullary proceffes of the cerebellum, and of the two larger proceffes of the cerebrum called their crura. It may therefore be conffdered as a medullary mafs common to both cerebrum and cerebellum, by the reciprocal continuity of their fubftances through the great notch in the tranfverfe feptum. The medulla oblongata can only be feen when removed from the cranium, and the defription can only apply to the parts when viewed in their inverted fituation.

The crura cerebri arife from the middle and lower part of each hemifphere. Where they arife from the cerebrum they are feparate, but converge as they run backwards fo as to refemble the letter V. Where they unite they form a middle tranfverfe protuberance called the pons Varolii, becaufe that anatomift compared it to a bridge, and the two crura cerebri to two rivers. This comparifon, however, conveys no idea of the real appearance of the parts, and the pons Varolii is to be confidered merely as an eminence formed by the union of the crura of the cerebrum and cerebellum.

Between the crura cerebri and near the anterior edge of the pons Varolii are two white eminences, named eminentix mamillares. From the pofterior

Chap. 27.] Brain of Birds. 307
part of the pons Varolii the medulla oblongata is contracted, and defcends obliquely backwards to the foramen magnum of the os occipitis, where it terminates in the medulla fpinalis. In this part of it feveral appearances are to be noticed. We obferve four eminences, two named the corpora olivaria, and the other two the corpora pyramidalia. Immediately behind thefe we difcover the beginning of two grooves, one above and one below. Thefe becoming deeper divide the medulla oblongata into two cylinders. When we feparate thefe with the fingers we obferve Eeveral medullary cords which crofs each other in paffing from one lateral portion to the other.

The corpora olivaria and pyramidalia are whitifh eminences fituated longitudinally near each other immediately behind the pons Varolii. The corpora olivaria are outermoft and are nearly of an oval thape. Between them are the corpora pyramidalia, each of which terminates in a point.

It is obfervable, in general, with refpect to the eminences of the medulla oblongata, that thofe which are medullary without are chiefly cortical within. What are the diftinct functions of thefe fubftances which appear fo different to the eye, and what purpofes are aniwered by their intermixture, are points 'which muft remain undetermined till we can difcover the connection between the. mind and the body, and enter into the fecret mechanifm of this wonderful engine of fenfation and intellect.

The brain of birds is covered with the common membranes, but its external furface is not formed into fo many gytre or convolutions as ours. Its
anterior part is quite folid, of a cineritious colour, and fo far has a refersblance of the corpora ftriata as to give rife to the olfactory nerves. The whole of it appears to us imperfect, and ve can farcely diftinguifh whether there is any thing analogous to a third or fourth ventricle: neither the corpus callofum, formin, nates or tefes can be obferved here: which parts therefore camnot be confidered as neceffary to the functions of life; we might however be led to imagine, that they are fubfervient to the fuperior intellectual powers of the human mind, did we not find that quadrupeds have the fe parts as well as men. Theie appearances feem rather to depend on the various diffofition and direction of the fibres which compofe the brain, and the particular ufes which have been affigned to the different parts of the brain feem to have no other foundation than the fancy of authors, who have indulged themfelves in fruitefs fpeculations. Thofe birds which feek their food below the furface of water, mud, Exc. have large nerves which run quite to the extremity of the bill, by which the fenfation of that part is rendered more acute.

- From the meccuila oblongata, which is formed by the union of the cerebrum and cercbellum, arife not only the fpinal marroiv, but almoft all the other aerves which perforate the bafis of the cranium.

The medulla fpinalis, or fpinal marrow, is a continuation of the medulla oblongata, which pafies through the great foramen of the cranium, and is continued down the bony canal formed by the vertebre. The figure of the final marrow is comprefied, being fatter behind than before, where we
obferve a continuation of thofe grooves which divide the medulla oblongata into its lateral portions. In the medulla fpinalis thefe appear like two cords clofely applied to each other, but which may be eafily feparated both before and behind till we come to their middle, where they are joined together by a thin layer of cineritious fubftance pafing from one cord into the other. The fpinal marrow, like the parts of which it is a continuation, confifts of medullary and cineritious fubftance; the former, however, is here placed without; the cineritious is placed within, and by a tranfverfe fection of the medulla fpinalis it appears to be in the form of a horfe-fhoe, the convex fide of which is turned forwards and its extremities back ward.

The fpinal marrow is invefted both with the dura and pia mater. The former of thefe in paffing out of the foramen of the os occipitis, forms a kind of funnel, adhering at its upper part to the ligamentary fubftance which lines the bony canal of the vertebre. Lower down there is no adhefion, except where the nerves pafs through the notches of the fpine, where the dura mater, which invelts the medulla fpinalis, fends out on each fide the fame number of fheaths as there are ganglions and nervous trunks.

The pia mater is connected with the dura mater by means of a thin tranfparent fubftance, which from its indentations between the fimal nerves has been named the ligamentum denticulatum. Its ufe is to fupport the medulla fpinalis, that it may not affect the medulla oblongata, or fpinal nerves by its weight. The lower end of the ligamentum denticulatum
runs to the os coccygis far below the termination of the fpinal marrow.

Each lateral portion of the medulla fpinalis fends off, both from the fore and back parts, flat fafciculi of nervous fibres. The anterior and pofterior farciculi are feparated from each other by the ligamentum denticulatum; then pafing outwards they proceed through the dura mater by two diftinct openings very near each other. Having penetrated the dura mater, the pofterior bundle forms a ganglion, from the oppofite end of which the trunk comes out again, and is there joined by the anterior bundle.

The membrana arachnoides is here very diftinct from the internal lamina of the pia mater; fo that by blowing through a hole made in the arachnoides, it will fwell from one end to the other like a tranfparent inteftine.

The final marrow givel rife to about thirty pair of nerves. Thofe which come out between the vertebre of the neck are thinner than the reft, and are placed almoft tranfverfely; as we defcend, we find them rumning more and more obliquely downwards, and when we arrive at the fecond vertebra of the loins, the fininal marrow is fplit into numerous thread-like fibres, and from its appearance is called cauda equina, or the horfe's tail. The nerves which arife from the different parts of the brain and fpinal marrow will be treated of in a feparate chapter.

С \boldsymbol{C} А P . XXVIII.

STRUCTURE AND GENERAL DISTRIBUTION OF THE NERVES.

Origin of the Nerves.-Extreme fubtility of the Nervous Fibres.-Ganglions.-Plexus.-Fontana's Microfiopical Obfervations orr Nerves.-Nerves from the Brain.-OlfaEtory and Optic Nerves,
 thetic Nerve.-Nerves from the Spinal Marrow.-Pbrenic Nerve.-Dorfal and Bracbial Nerves, Esc.-Lumbar and Crural Nerves, Ěc.-Sciatic Nerve.

NERVES are white cords diftributed from the brain over the whole body; they rife, as was intimated in the preceeding chapter, either immediately from the brain or mediately from it by means of the fpinal marrow, which is itfelf a continuation of the fibres of the brain, and might without impropriety be confidered as the largeft nerve in the body. The nerves, as they pafs off from the brain and fpinal marrow are invefted, and collected into firm cords, by the dura and pia mater. The former, however, is foon reflected back, but the latter accompanies them through all their ramifications, and is fuppofed to be only thrown afide where they terminate in their fentient extremities.

As the medullary fibres are obferved to decuf. fate each other in different parts of the brain, and as injuries of one fide of the head have ofter bee, obferved to produce a pally of the oppofite Cde. the body, it has been fuppofed that all the ner
originate from the frise of the brain cpper tw that at whici they come out. This npiaion, dose ever, is far from being eftablifhed, burwfe a dece. ffation in fome parts is by no man's a proof that it obtains univerfally; and though there are inftances of injuries of the head, which have produced a pally of the oppofice fode, there are others in which the injury and palfy were both on the fame fide.

Nerves arie compofed of threads of the fmallinefs of which we have probably no adequate idea. To afift us in forming one, we muft confider how uniformly nerves are diflributed to even the moft minute fibre of the body, and yet were they all conjoined, they would not make a cord of an inch diameter. It is duluced from actual obfervation, that each fibre in the recina of the eye, or expanded optic nerve, cannot exceed in diameter the thirtytwo thoufund four hundredth part of a hair.

Different nerves in theit courfe often mect together, and form oblong reddifh maffes, called ganglions, larger than the nerves which form them, and alfo of a firmer cenffence. Within the ganglions the fibres of the nerves feen to be thoroughly mixed, and to approach more nearly to the nature of medullary matter: By fome phyficlogifts gancelons are fuppofed to be finall brains, whence the nerves acquire new power and enerey. Oihers, obferving that the nerves which furply the mufches of involuntary motion, as thofe of the heart and inteftines, are particularly fupplied with ganglions, have confidered them as defigned to intercept the operation of the will. Their real ufe is unknown to us, but from whatever caufe it may happen, the
nerves which proceed from a ganglion are rather larger than the fum of thofe which form it.

Several nerves frequently meet together, and by numerous junctions produce an appearance fimilar to that of net work, and this is called a plexus.

Nervous cords have very little elafticity compared with fome other parts of the body.

The Abbè Fontana has taken great pains to afcertain the primitive itructure of nerves. On examining a number of nerves with microfcopes of low powers, fo as not to magnify more than four or five diameters, they always appeared to be furrounded with white fpiral bands not unlike the effeet which would be produced by a ribbon twifted round a cylinder. The fpiral bands were fometimes perfectly regular, fo as to be of equal width along the whole lengti of the nerve examined, and to leave a fpace of a lefs bright colour of the fame width between them; at other times they were irregular and croffed each other at uncertain diftances; this latter appearance, however, was found on further examination to proceed from the nerve fubmitted to examination being compofed of many orhers: for where he carefully feparated a nerve from chofe which adhered to it, and examined it by itfelf, he always found the fpiral bands regular. Ele faiv thefe appearances very plainly in nerves not larger than a hair, with lenfes of very favall power, and was therefore perfuaded that this appearance of bands was not an optical illufion.

The fame nerve, however, which to the naked eye, and by a lens of fmall power exhibited this afpearance,

314 Fontana's Obfervations on Nerves. [Book IX.

 appearance, when examined by a microfcope of high powers, appeared to confift merely of parallel but twifting fibres.He next removed the cellular tiffue or fheath of a nerve, without injuring its texture ; but ftill with a microfcope of high powers he could perceive nothing but waving and twifting fibres, and nothing but fpiral bands with the naked eye. After applying, however, to thefe obfervations for two or three days, he found, that by merely moving the refleeting mirror, he fometimes faw twitting fibres and fometimes fpiral bands with the fame lens. He is therefore under a neceffity of giving up his fuppofed difcovery, and of allowing that the fipiral bands were merely an optical deception.

From his obfervations he can deduce no more than that nerves are formed of a great number of tranfparent, homogeneous, uniform, and very fimple cylinders. That thefe cylinders are formed by an extremely thin tunic, uniformly filled by a gelatinous tranfparent humour, which is infoluble in water ; each of thefe cylinders is covered by an external fheath which is compofed of a great number of twinting threads. Many tranfparent cylinders conflitute a nerve which is fcarcely vifible to the naked eye, and many of thefe form the nervous cords which are feen in animals.

The Abbè Fontana alfo fubmitted to the microfcope the medullary and cortical parts of the brains of feveral animals. In thefe, however, the appearances were pretty fimilar, and the fubftance of both appeared to be organic, vafcular, tranfparent, and twifting, like inteftines.

Chap. 23.] Origin of the Nerves.

The nerves proceed from the encephalon and Spinal marrow. Ten pair are ufuaily enumerated as arifing from the former, and thirty from the latter. I fhall firft defcribe the origin and courfe of thofe of the encephalon. Anatomifts mention thefe in the order in which they prefent themfelves when the brain is lifed from the cranium; thofe which come from the anterior part of the cerebrum are therefore placed before thofe which arife lower down from the cerebellum and medulla oblongata.

The firt pair of nerves is the olfactory, which proceed from the corpora ftriata; they approach the cribriform plate of the os ethmoides, where they fplit into a great number of filaments, which pafs through the perforations of that bone. Afterwards being joined by a branch from the fifth pair, they are fpread on the internal membrane of the nofe, and conftitute the organ of fmelling.

The fecond pair of nerves is the optic, which are continued from the thalami nervorum opticorum, and are of a large fize; they firft make a large curve outwards, and then run obliquely inwards and forwards, till they unite at the fore part of the fella turcica; they then divide, and each runs to its proper foramen in the fphenoid bone. They are accompanied to the eye by the ocular artery, and are at length expanded into the tender and pulpy fubftance of the retina, which receives the impreffions of light. The union of the optic nerves has been thought to explain fome phenomena of vifion, as our feeing objects fingle with two eyes, and their uniform motion. The union of the optic
nerves generally appears fo confiderable, that fome anatomifts have thought that they decuflated each other, and went to the eye on the oppofite fide of the head from that whence they arofe. In many fines the optic nerves evidently crofs each other, but this does not feem to be the cafe in man. They are inferted into the eyes, not directly at their pofterior part, but rather towards that fide which is placed next the nofe. We are unable to fee with that part of the retina where the optic nerve enters.

The third pair called motores oculi arifes from the crura cerebri, near the pons Varolii; they run along the fide of the fella turcica, and pafs out at the foramina lacera, after which each of them divides into brancles; one of there, after forming a ganertion, is diftributed to the globe of tiee eye; the whers are fent to the mufculus rectus of the palphera, and to the attollens, adduchor, deprimens, and outi. uns minor mufles of the eye ball.

The fourth pair of nerves called pathetici, are the fmalleft of all: they arife from near the tubercula quadrigemina; they pars out at the foramina lacera, and are entircly fpent on the mufculi trochleares or fuperior oblique mufcles of the eye balls.

The fith pair is the largeft of thofe which procced from the head; they rife from the crura cerebelli, where they join with thofe of the cerebrum, to form the traniverfe protuberance or pons Varolii. In their progrefs they appear thicker at the fides of the fella turcica, where each forms a diftinct

Chap. 28.] Nerves of the Teeth, $\}$. diftinct ganglion, from which proceed thrce branches, which pafs out of the cranium.

The fint branch of the fifth pair is the opthalmic ; it pafies out of the foramen lacerum, and is in its paffage connected with the fixth pair; it afterwards communicates with the firf and third pairs, and is chiefly fpent on the orbit and the appendages of the eye. One branch paffes through the foramen fuperciliare of the os frontis, to be diftributed on the forehead.

The fecond branch of the fith pair is chiefly fipent on the parts of the upper jaw, and is therefore called maxillatis fuperior ; it is diftributed on the upper jaw bone and its teeth, on the fore part of the palate, the cheeks, upper lips, and noftrils. This branch communicates wich the fixth pair of nerves, and with the portio dura of the fevench pair.

The third and mot confiderable branch of the fifth pair is the maxillaris inferior ; part of this is loft in the tongue; anocher part goes to the seeth of the lower jaw, to each of which it fends a feparate twig; it is partly alfo diftributed on the mufcles of the lower jaw.

The fixth pair of nerves is frmall, and is chiefý diftributed on the abductor mufcle of the eye; it arifes from the forepart of the corpora' pyramidalia, and is its-progrefs towards the foramen lacerum paffes through the receptacula at the fides of the fella turcia, where it is immerfed in blood, but for what purpofe is unknown. In the paffage of this nerve below the dura mater, it lies very contiguous to the carotid artery, and at this part a twig from it defcends the intercoftal nerve.

The feventh pair comes out from the lateral part of the tranfverfe protuberance, and appears to be double, each being accompanied with a larger artery than moft other nerves; it then enters the internal meatus auditorius, where it feparates into two diftinct portions; one of thefe goes to the internal parts of the ear, and is there expended in producing a pulpy membrane refembling the retina ${ }_{5}$ this divifion of the nerve is called the portio mollis; the other, the portio dura, communicates with the fifth pair, and piercing through the parotid gland is divided into numerous ramifications which are fpent on the upper part of the neck and fide of the head.

The eighth pair of nerves, which from the length of its courfe and the variety of parts to which it is diftributed is called par vagum, arifes from the lateral bafes of the corpora olivaria in feparate fibres. The eighth pair is foon joined by the nervus accefforius which is derived from the tenth pair of nerves, and from feveral of thofe of the neck; thus united, they pafs out of the cranium through the fame opening with the internal jugular vein; when they get out of the cranium the nervus accefforius leaves the eighth pair, and paffing through the fterno maftoideus mufcle, is diftributed on that and the trapezius. The eighth pair now difperfes various branches to the tongue, larynx, and pharynx, which are united with branches of the fifh pair, with the portio dura of the feventh pair, with the recurrent nerve, with the great intercoftal, and with the ninth pair and all the cervical nerves. Being feparated

Chap. 28.] Nerves of the Heart, Stomach, Ecc. $3: 9$ feparated from thefe nerves it runs down on the external fide of the carotid artery, and as it is about to enter the thorax a confiderable nerve called the recurrent is fent off on each fide. The right recurrent nerve takes a turn round the right fubclavian artery, and the left round the aorta; and both of them running up again at the fide of the œefophagus to which they give branches, are fpent on the parts of the larynx. We find from many inftances that nerves court the neighbourhood of arteries, but what are the purpofes of fuch a diftribution it is not eafy to determine.

At the part from which the recurrent nerves arife, are alfo fent off twigs which join with the branches of the intercoftal, and which are diftributed on the heart, where they form a plexus on the pericardium. The two trunks of the eighth pair now defcend by the œefophagus to the ftomach, where plexufes are produced, whence the fomach is plentifully fupplied with nerves, and fome are fent to the diaphragm, the liver, and the pancreas. From thefe are fent branches, which contribute to form plexufes on the fpleen and kidneys. Near the cxliac artery the eighth pair alfo unites with the great femi-lunar ganglion, formed by the two intercoftal nerves. I have been the more particular with regard to the eighth pair of nerves, merely to give the reader an idea of the very complex manner in which the nerves are united to each other, and to evince the careful provifion which is made to fupply the moft important vifcera from a variety of fources.

The

The ninth pair or lingual, rifes from the inferior part of the corpora pyramidalia and paffes out through the occipital bone. After they have arrived on the outfide of the cranium they adhere firmly for fome way to the eighth and the intercoftal; then after fending a branch to communicate with the cervical nerves they enter the tongue and are loft in its fubfance.

The tenth pair of the head is by fome anatomifts confidered as the firft of the vertebral. It rifes by feparate threads from the fide of the fininal marrow, paffes out between the os occipitis and firf vertebra of the neck, and after having given branches to the great ganglion of the intercoftal, and fome of the cervical nerves, is loft in the adjoining mufcles.

It has been already mentioned that a branch of the fixth pair of nerves, joined by atwig from the fifth, accompany the internal carotid artery through its bony channel, and pafing out of the cranium, conftitute the beginning of the great intercoftal or fympathetic nerve. As foon as the nerve has grot withcut the cranium it is conneeled a little way with the eighth and ninth pairs; feparating from thefe it forms a large ganglion, into which enter branches from the tenth of the head and from the firlt and fecond pairs of the cervical nerves. Thence running down the neck with the carotid artery, and dift iibuting nerves to the adjoining mufctes, it forms another ganglion as it is about to cnter the thorax, whence nerves are fent to the traciea and heart; thofe which go to the heart being united with nerves from the eighth pair. Below the fubclavian artery the fibres of the intercoital unite to form a third ganglion, ganglion. After this the trunk of the intercoftal paffes down by the fpine, clofe to the tranfverfe proceffes, through the cavity of the thorax. In this courfe all the dorfal nerves as they come from the fpine contribute to its increafe by the addition of twigs on each fide. Defcending ftill lower it receives fimilar accelfions from the nerves which come out between the lumbar vertebre and os facrum. At the extremity of the os coccygis the intercoftals of the oppofite fides are turned inwards and unite with each other. The intercoftal is larger in the thorax than it is either above or below.

From the part whence the fifth, fixth, feventh, eighth and ninth dorfal nerves are fent to the intercoftal, come out as many branches, which form an anterior trunk called the fmall intercoftal nerve. This paffes through the pofterior part of the diaphragm to form with the great intercoftal of the oppofite fide, and with the eighth pair, a large femi-lunar ganglion, fituated between the cæliac and fuperior mefenteric arteries. From this ganglion, as from a centre, nerves are fent to the liver, pancreas, fpleen, diuodenum, jejunum, ileum, and a large part of the colon.

Several fibres alfo paffing downwards on the aorta are joined by other nerves from the pofterior trunk of the intercoftal, and form plexufes which fupply the kidneys, glandulx, fuprarenales, \&c. They alfo form a plexus about the inferior mefenteric artery, which accompanies its branches to that part of the colon which lies at the left fide of the ahdomen, and to the restum.

> Yol. III.

Y
The

The firft cervical pair of nerves comes out between the firft and fecond cervical vertebre; the fecond cervical pair between the fecond and third. Thefe nerves communicate with each other and with thofe nerves of the head which pafs down to the neck. They are afterwards chiefly fpent on the extenfors of the head, the levators of the fcapulx, and the neighbouring integuments.

The third cervical nerve paffes from the fpinal marrow, between the third and fourth vertebre, and joining with the fourth cervical, forms the phrenic nerve, which paffes down by the fubclavian veffels in its way to the diaphragm, on which it is expended. The other branches of the third pair are diftributed to the mufcles of the neck and top of the fhoulder. Hence it has been attempted to account for the pain at the top of the right fhoulder in inflammations of the liver. The diaphragm is fuppofed to be affected either by its contact with the liver, or by the increafed weight of that vifcus pulling it downwards; and the fhoulder is thought to fympathize with the diaphragm, becaufe it receives nerves from the fame fource. This explanation, however, is very unfatisfactory, fince nothing is more common than for parts to be fupplied by the fame nerves without having any fuch fympathy.

The fourth cervical nerve, after having given off that branch which joins with the third to form the phrenic, paffes to the axilla, where it forms a plexus with the firth, fixth, and feventh cervical nerves, and with the firft of the dorfal. After giving fevera! confiderable nerves which are diftributed on the mufcles of the thorax, they form feveral branches
which
which pafs down on the arm, and fupply the whole fuperior extremity.

The dorfal nerves are twelve in number, and all contribute to the formation of the great intercoftal. The firt of the dorfal nerves differs from the reft in contributing to the formation of the brachial nerves, and in forming a large ganglion with the intercoftal nerve.

The dorfal nerves alfo give branches backwards to the ftrong mufcles fituated on the fpine, and which ferve to erect the body. Their principal trunks accompany the intercolal arteries in the groove at the botrom of each rib, and are diftributed with them to the fides and anterior parts of the thorax. The fix lower dorfal nerves alfo give branches to the diaphragm and abdomen. The twelfth joins the firt and fecond of the lumbar, and beftows nerves on the quadratus lumborum, proas, and iliacus internus.

The firft and fecond of the lumbar nerves fend branches, which join with others from the third and fourth, and form a large nerve which paffes through the foramen thyroideum, and is fpent on the mufcles and integuments at the infide of the thigh; it is called the obturator or pofterior crural nerve. By branches from the four upper lumbar neryes is alfo formed the anterior crural nerve, which paffes out of the abdomen under the ligament of Fallopius, and is diftributed on the integuments and mufcles at the fore part of the thigh. A branch of this, nerve alfo attends the vena faphena to the foot.

The fourth and fifth lumber nerves contribute with the three fuperior facral nerves to form the Y 2 largent
largeft nerve of the body, the fciatic. This nerve, after giving nerves to the mufcles about the hips, paffes behind the tuberofity of the ifchium, and then downwards, clofe to the pofterior part of the os femoris. Diftributing nerves through its whole progrefs it runs down the back part of the leg, and terminates in the fole of the foot. The fourth, fifth, and fixth anterior facral nerves are much fmaller than the fuperior, and are chiefly diftributed on the bladder, rectun, and anus. Small nerves pafs through the pofterior openings of the os facrum, which are diftributed on the hips and neighbouring mufcles.

Nerves may more properly be faid to be connected with the brain than to be produced from it, fince foctufes have been born with a brain not larger than a hazel nut, and yet with nerves of the ufial fize.

The ufes of the nerves are very important, but are beft difcovered from obferving the effect of their abfence. When a nerve is cut or tied, the part to which it belonged is inftantly deprived of fenfation, and the will has no longer any command over it. The nerves are therefore the influments of fenfation, and the organs by means of which the brain maintains a communication with the moft diftant: parts of the body.

After having confidered the ftructure of the different parts of the human body, can we refrain from paufing a few moments to contemplate fo wonderful a fabric? But man is only a fingle inflance of the wifdom of Providience; cvery part of the world contains animals, the ftructure of which is not lefs
complex than our own, and the conftitutions of which are fuited to the climates they inhabit. All of them are furnifhed with organs for their fubfiftence, their defence, and their enjoyment, and thefe organs are adapted to their feveral nieceffities, and have correfponding relations in the objects, as well animate as inanimate, which furround them. Not only the furface of the earth, however, but the atmofphere, the ocean, the herbage, the foil, teem with the animal creation. How far this fyitem may extend we know not; but obfervation has hitherto continually enlarged our profpects, without marking a fingle limit; and it is not improbable, that the animal which dwells on the body of another, may itfelf be a theatre of life, on which fill more minute animals take their fport and paftime.

From thefe views fhall we tufn to the heavenly bodies, and fuppofe that fuch vaft maffes of matter are deftitute of inhabitants? The planets as well as the earth receive the rays of the fun, and fome of them which are far removed from his light, are furnifhed with moons. Were thefe moons, which are ouly vifible by the telefcope, defigned for our amurement, or for the ufe of beings placed fufficiencly near to profit by their influence? What Anall we think of thofe fill larger bodies, the ftars, which multiply upon us without end, in proportion as we are furnifhed with more extenfive means of obferving them. But the Deity has placed no bounds to our admiration; for he has made fpace appear to the human mind neceffarily infinite, and time, everlafting.

The figure in the annexed plate (XIV.) reprefents the diftribution of the nerves.
a, A part of the firft branch of the fifth pair of nerves, called the ophthalmic branch, going out of the orbit, and winding upon the forehead.
b, The orbital branch of the fecond branch of the fifth pair, going out at the foramen below the orbit, and diftributing its branches on the lower part of the face beiow the eye.
c, A part of the maxillary branch of the third branch of the fifth pair of nerves, going out by a canal in the lower jaw-bone by the fide of the chin and lower lip.
d, The trunk of the eighth pair of nerves, joined with the recurrent nerve.
e, The trunk of the eighth pair of nerves cut off.
f, The fpinal recurrent nerve. g, A branch of it belonging to the cleidomaftoideus and fternomaftoideus mufcle.
b, The conjunction of the recurrent nerve with the third of the cervical nerves. Afterwards the recurrent winds back wards.
i. i. i, The left intercoftal nerve.
k, The upper cervical ganglion of the intercoftal nerve.
l, A branch of the fecond cervical nerve, going to join the ganglion k.
m, A branch of the firft cervical nerve, going to the fame ganglion k.
$n, 0, \mathrm{Branches}$ from the cervical nerves, going to the interceftal nerve.
p, The ganglion of the intercoftal nerve in the upper part of the thorax.
$q, q, \& x$. Branches, by which the intercoftal nerve is conjoined with the fpinal nerves; viz. by the feventh and eighth of the cervical, and all the dorfal and lumbar.
r, s, The extremity of the intercoftal nerve, belonging to the firft nerve r, and the fecond s of the os facrum.
t, A confiderable nerve, arifing from the intercoftal near the vertebre of the back; here indeed it has fix beginnings, according to thofe branches by which the intercoftal is joined with the fourth, fifth, fixth, feventh, eighth, and ninth dorfal. Which nerve, here cut off, paffes through the diaphragm into the abdom men, where it joins itelelf with the eighth pair of nerves of the brain, and with other branches of the intercoltal nerve, \&xc.
u, A branch of the intercoftal nerve.
$w, w, \& c$. Branches by which the right intercoftal nerve is joined with the fpinal nerves.
x, y, Thofe branches of the right intercoftal, which r, s, reprefent of the left.
z, z, Branches.
A, A, Branches.
B, B, The firt pair of cervical nerves.
C, C, Branches, by which the fecond pair of cervical nerves is joined with the third.
D, D, The fecond pair of cervical nerves.
E, E, Branches, by which the third pair of cervical nerves is joined with the fourth.
F, F, The third pair of cervical nerves:
The

G, G, The fourth pair of cervical nerves.
II I K, H I K L, The phrenic nerves, arifing by two origins, the one H from the fourth cervical pair, and the other I from the fifth. K, K, Their trunks, the left of which, upon account of the point of the heart's being turned to the left fide, is bended towards the left. L, The extremity of the right, branched out upon the diaphragm.
M, M, The fifth pair of cervical nerves.
N, N, The fixth pair of cervical nerves.
O, O, The feventh pair of cervical nerves.
P, P, Branches of the firft pair of dorfal nerves, going to join the eighth pair of cervicals.
Q, R, \& c. The coftal branches of the dorfal nerves, which run according to the length of the ribs. Q, Q, The firft, R, R, the fecond, S, S, the third, T, T, the fourth, U, U, the fifth, V, V, the fixth, W, W, the feventh, X, X, the eighth, Y, Y, the ninth, Z, Z, the tenth, α, α, the eleventh, β, β, the twelfth.
δ, A branch of the fecond coftal nerve, which paffes through the external intercoftal nufcle, immediately under the origin of the ferratus magnus, which proceeds from the fecond rib; afterwards it bends itfelf backwards according to the direction of the origin of the ferratus magnus, and then diftributes itfelf upon the outfide of the latifimus dorfi under the fkin.
z, A fimilar branch of the third coftal nerve, paffing through in the fame manner, and diftributed as the former.

弓, A fimilar

द, A fimilar branch of the fourth coftal nerve, which, when it has got under the fkin, winds partly backwards, and partly forwards and downwards.
4, A fimilar branch of the fifth coftal nerve, which paffes firlt through the external intercoftal mufcle, then through the head of the external oblique, that part of it which rifes from the fifth rib, and afterwards runs along under the fkin.
f, i, x, Branches of the feventh θ, the eighth i, and the niinth coftal nerve $\%$, diftributed to the internal part of the external oblique mufcle of the abdomen.
λ, A branch of the tenth coftal nerve, which, after having paffed through the external intercoftal mufcle and the tranfverfe, runs forwards between the tranfverfe and internal oblique mufcles towards the re§-us mufcle, and paffes through it likewife by the aponeurofes of the oblique mufcles to the parts below the fkin.
μ, A branch of the eleventh coftal nerve, which follows the fame courfe with that of the tenth, λ.
y, A branch of the tenth coftal nerve, beftowed upon the infide of the internal oblique mufcle.
ξ, A branch of the eleventh coftal nerve, beftowed the fame way as the laft, v.
-, π, Thefe appear to be branches of the twelfth coftal nerve, running between the tranfverfe and internal oblique mufcles.
ρ, This is a branch of the firtt pair of lumbar nerves, running likewife between the tranfverfe and internal oblique mufcles.
σ, σ, Branches of the twelfth pair of coftal nerves.
τ, τ, The firft pair of lumbar nerves.
v, A brancls of the firft pair of lumbar nerves.
φ, The fecond pair of lumbar nerves.
x, The fecond of the lumbar nerves, joins with the third, and with the upper root of the nerve 1 .
ψ, A nerve, marked Φ, on the left fide, arifing here by a double origin, one from the firt pair of lumbar nerves, and the other from the fecond.
ω, The third of the lumbar nerves.
Γ, The fourth of the lumber nerves."
Δ, A branch, which is fent from the fourth pair of lumbar nerves to join the fciatic.
Θ, Θ, The fifch pair of lumbar nerves.
Λ, Λ, The firft pair of nerves of the os facrum.
\equiv, \equiv, The fecond pair of nerves of the os facrum. That on the right fide is joined by an intermedi: c branch with the third.
Π, Π, The third pair of nerves of the os facrum.
Σ, Σ, The fourth pair of nerves of the os facrum.
Φ, A nerve, whofe origin is marked Ψ on the left fide, emerging from the great pfoas mufcle, and going down along with it into the groin. w, A nerve, which arifes by a double origin from the fecond lumbar nerve φ, where its roots are cut through.
Ω, A branch of the crural nerve, which is conjoined into one with the nerve, ψ.
I, I, A confiderable nerve on each fide, which arifing by two roots, the one from the fecond

Chap. 28.] the Plate of Nerves.
and third, and the other from the fourth of the lumbar nerves, runs down firt under the great proas mufcle, then by the fide of the pelvis to the upper part of the foramen thyroideum, where it divides into two branches, the anterior, 2 , and the pofterior, 3 .
2, The anterior, goes out immediately above the obturator mufcle by a finus, in the upper part of the foramen thyroideum.
3, 3, 4, The pofterior, pafies through the fame finus, and, running immediatcly down between the two obturators, gives a branch to the external ; it goes out then by that external branch, 4 .
5, The fciatic nerve.
6,6, The crural nerves.
7, 7, Branches of the crural nerves, going to the internal iliacs.
8, 8, The external branches of the crural nerves, which, running down the thighs, give branches to the internal iliac mufcies, the mufculi recti of the leg, the vafti interni, the crurei, and the vafti externi.
9, 9, The internal branches of the crual nerves, which run down the thigh, and in their courfe give off branches to the vafti interni
10,10 , The roots of the nerves.
1I, iI, The roots of the nerves.
12, Here the internal branch of the right crural nerve, emerging between the mufcles gracilis and fartorius, is cut off.
13. The root of that branch.

14, The

14, The internal branch of the left crural nerve cut off.
15, 15, Branches of the fciatic nerves. They produce the branches, $17,17,18,19,20,21$: of which 17,17 , belong to the long extenfors of the toes; 18, to the peroneus longus; 19 is fubcutaneous, and divides itfelf into two branches, which anfwer to the branches 20 and $21 ; 20,21$, are a variation of the branch 19 , dividing itfelf fooner into $=0,21$.
22,22 , The fifth, fixth, feventh, and eighth pair of cervical nerves.
23, A branch, which, arifing from the above nerves in their courfe to the axilla, is diftributed to the infide of the pectoral mufcle.
24, A branch, which, arifing in the fame manner from the above nerves, is beftowed upon the infice of the ferratus anticus.
25,25 , A branch, which, going off like the former from the above nerves, belongs to the mufcle called latiffimus dorfi.
26, A branch of the fixth pair of cervical nerves, beftowed upon the ferratus magnus mufcle, running down according to the direction of that mufcle, and afterwards under the latifimus dorfi.
$27,28,29,30 ; 27,28,29,30$. The four large brachial nerves, in which thofe running on each fide by the axillæ principally terminate. 27,27 , The firf, which in a manner perforate the mufculi coracobrachiales. 28, 28, The fecond, which run according to the length of the humcrus as far as the bending of the
arm, and from thence by the fore-arm, down to the palm of the hand. 29,29 , The third, which run on the back part of the humeri. $3^{0}, 3^{\circ}$, The fourth, which run down, according to the length of the humerus, to the pofterior part of the large condyle, and from thence by the fore-arm to the palm of the hand.
3I, A branch of the third brachial nerve 29.
32, The firt of the brachial nerves 27 , after it has run a little way under the coracobrachialis mufcle, makes it way through it, and afterwards runs under the fhorter head of the biceps, giving branches to this, and the internal brachial mufcle; it is cutoff, at 33.
34, A branch of the firft of the brachial nerves, which it fends off to join the fecond. The fame in the left arm.
35,35, Here the fecond trunks of the brachial nerves 28,28 , give branches to the pronatores and teretes, the radiales interni, the fublimes, and palmares longi mufcles.
36,36 , Confiderable branches of the fecond brachial nerves, which fend off branches to the profundi, and the long flexors of the thumbs; and afterwards 37,37 , get in between thefe mufcles, and run down to the pronatores quadrati mulcles.
37, This fecond of the brachial nerves, paffes through the ligament of the wrift on the infide; afterwards, 39 proceeds to the wrift, where it divides itfelf into five branches, $40,41,42$, 43. 44. Of which

40, The

40 , The firf, gives a branch to the third lumbrical mufcle, after which it divides itfelf into two; one branch running along the fide of the ring finger next the middle finger, and the other along the fide of the middle finger next to the ring finger.
41, The fecond, gives a branch to the fecond lumbrical, and afterwards divides likewife into two; one branch running along the fide of the middle finger next the fore finger, and the other along the fide of the fore finger next the middle finger.
42, The third, gives a branch to the firt lumbrical, and afterwards runs upon the fide of the fore finger next the thumb.
43, The fourth, goes to the thumb, and, there dividing into two, runs upon each fide of it.
44, The fifth, which is here cut off, gives a branch to the fhore absluctor of the thumb. And then it gets between the fhort Rexor and the muiculus opponens of the thumb, and belongs to the opponens.
45,45 , Continuations of the brachial nerves. The third pair of brachials 29,29 , after having rum backwards by the fhoulder-bones from the axillx, and then between the external brachial mulfes on the one fide, and the long and thort heads of the bicipites on the other, and afterwards between the internal brachials and long fupinators, cmerge here 45,45 , between thefe laft-mentioned mufcles, and thence proceed to the infide of the fore-arm, wherc having given off branches to the long fupi-

nators and external radial mufcles, they pfas through the fhort fupinators 46,46 .
47,47 , Nerves cut off.
48,48 , Branches of the fourth brachial nerve 30 , going to the external brachial mufcle 49, 49, to the internal ulnar, 50 , to the profundus.
51, A branch of the fame, which palfes under the internal ulnar to the back part of the extremity of the fore-arm, and makes a fubcutaneous nerve.
After giving off this branch, the fourth brachial nerve runs before the ligament of the wrift inwards, towards the palm of the hand, where it divides into the branches $52,53,54$. Of which 52, The firft remarkable one, fpreading iffelf in the wrift under the tendons of the profundus and the lumbricales mufcles, its branches are diftributed principally to thefe, viz, the abductor of the little finger, the adductor of the fourth metacarpal bone, the interoffeous mufcles, the adductor of the thumb, the fhort flexor of the thumb, and the abductor of the fore finger.
53. The fecond, after it has given off the fubcutaneous branch which is here cut away, and another to the abductor of the little finger, runs along the back part of the little finger.
54, The third, dividing into two at the roots of the ring finger and little finger; one branch runs along the fide of the little finger next the ring finger, and the other along the fide of the ring finger next the little finger.

Chap. XXIX.

CIRCULATION OF THE BLOOD.

Structure of the Heart, and circulation in cald-blooded Animals.Circulation in the ruar m-blooded Animals.-Courfe of the Blood through the Lungs. - Througth the refl of the Body. - Ramifications of Arterits.-Valvular fructure of Veins.-Difierent from the Arufure of Lymplatics.

THE ftructure and ufes of the organs concerned in the circulation of the blood have been already confidered, and it was farther remarked that the heart of man is of a duplex conftruction, in other words, that it has two auricles and two ventricles. With a view to perpicuity, before we proceed to the circulation in the human body, it will be necoffary to mention the flructure of the heart in certain animals in which it is more fimple.

In frogs, ferpents, and other cold-blooded animals, the heart confifts of only two cavities, an auricle and a ventricle; from the auricle the blood paffes into the ventricle, from the ventricle it is driven into the arteries, from the arteries it is received into the veins, and by the veins is again brought back to the auricle.

This being well underftood, it cannot be difficult to comprehend the courfe of the circulation in man: and the wam-blooded animals, in which the only difference is, that the heart being double, or confifting
fifting of four cavities, the blood performs two circles inftead of one. From the anterior auricle the blood paffes into the anterior ventricle; from the anterior ventricle it is conducted by the pulmonary artery to the lungs, and from the lungs, the pulmonary veins bring it back to the pofterior auricle ; from the pofterior auricle it paffes into the pofterior ventricle ; from the pofterior ventriele it is carried to every part of the body, by means of the aorta and its branches, and thence is again brought back by the venæ cave to the anterior auricle, whence it proceeded. In this manner, throughout life, the blood is conftantly performing two circles; a leffer between the heart and the lungs, and a larger between the heart and the reft of the body.

The two auricles and ventricles are of equal capacity, and correfpond in their contractions. From thefe circumftances it is evident, that the fame quantity of blood paffes through the lungs in a given time, as through all the reft of the body, and, confequently, that the circulation mult be much more rapid in the lungs than in other parts. It is fuppofed that about two ounces of blood are thrown from each ventricle of the heart at every contraction.

The heart, however, though the moft remarkable, is not the only organ of circulation; fince every veffel through which the blood paffes affifts, by its contractile powers, to propel its contents. The fudden contractions of the heart, by which the blood is thrown into the arteries, occafion their pulfation, which is moft violent in the large trunks, gradually becomes lefs remarkable as they ramify and recede

Vol. III,
Z
from
from the heart, and is not at all perceptible in the veins, which receive their blood from the arteries. The contraction of the ventricles, by which the blood is propelled from the heart, is called the fyitole ; the dilatation, by which the blood is received into them, the diaftole.

The ftucture of the heart in the tortoife and fome other amphibious animals is intermediate between that of cold-blooded animals and warm-blooded.

The heart has two diftinct auricles, without any communication: and under thefe, there is the appearance of two ventricles fimilar in thape to thofe of the latter clafs: but they may be confidered as one cavity; for the ventricle fends out not only the pulmonary artery, but likewife the aorta; for there is a paffage in the feptum, by which the ventricles communicate freely, and the blood paffes from the left into the right one. From the aorta the blood returns into the right auricle, while that from the pulmonary artery returns to the left auricie, from which it is fent to the left ventricle, \&c. fo that only a part of the blood is fent to the lungs, the reft going immediately into the aorta; hence the animal is not under the neceffity of breathing fo often as other wife it would be.

The ends of the arteries are the beginnings of the veins, which uniting, as the arteries divided, at length form large runks, which generally correfpond with the trunks of the arteries, from which, by the medium of fmaller branches, they received their contents.

Chap. 29.] Circulation of the Blood.

But though all arteries terminate in veins, yet the minutenefs of their ramifications, before this takes place, is various; while fome tranfinit the red globules, others exclude them, and tranfmit nothing but ferum.

A circumftance contributing greatly to the progrefs of the bloed in the veins is their valvular ftructure, fitting them for deriving affiftance from preffure; and we find accordingly in the limbs, and wherever elfe any advantage could be obtained from. this circumftance, that the veins are furnifhed with valves, while in the cavities of the body, where they are not fo much prefied by the action of mufcles, this part of their ftructure is wanting.

The motion of the fluids of the valvular lymphatic fyrtem is quite diftinet from the circulation of the blood. Thefe veffels begin by open mouths, which perform the office of abforption, and their contents are not derived, like thofe of the red veins, from the extremities of arteries; their fluids are therefore propelled, without any aid from the heart, by their own contractile powers.

The moft remarkable functions, to which the circulation of the blocd is fubfervient, are fecretion, the nourifhment of the body, and certain changes which the blood undergoes in its pafige through the lungs; of thefe it will be proper to treat in the clapters immediately fucceeding.

[340] [Book IX.

С н а р. XXX.

SECRETION, EXCRETION, ABSORPTION, AND NOURISHMENT.

General Effects of Secretion.-The Glands.-Excretion.-Secretion of Bile.-How this Function is performed in Fibhes.-Ab-Sorption.-L,ymphatic Glands. - Nourifmenent or Reparation of the Bodj- - Bores become nore folid in old Age.

THERE is no function of the body which is more calculated to excite our aftonifhment and admiration, than that of fecretion. By fecretion we fee one fluid, the blood, modified more varioully and more exquifitely than the human mind can eafily conceive, or ever hope to explain; in one part, fecreted fluids, varying in different races of animals according to their food, are endued with a power of diffolving the aliment, and fitting it for the nourifhment of the body; in other parts, fecretion furnifhes fluids for lubricating the organs concerned in the various functions of the animal machine. In fome animals the moft powerful odours, in many the moft deadly poifons, and in all, that wonderful fluid by which their race is perpetuated, are the products of fecretion.

So far are we from difcovering the nature of fecretion, and the caufes of the different properties of the fluids which are fecreted, that we in reality know little more of this function, than the general outlines of the ftructure of the parts concerned in it. We fee a gland, with an artery, vein, and ex-

Chap. 30.] Secretion, bow performed. 341 cretory duct connected to it, but whether the fecreted fluid is formed by exudation through the coats of the minute arteries diftributed in the gland, or whether it is poured out from the open extremities of arteries into fmall receptacles, and is thence received into the excretory duct, or in what other mode the change wrought on the blood conveyed to the gland is effected, we are entirely ignorant. So different, however, are the properties of fecreted fluids from thofe of the blood, that it is probable fomething more happens than a mere feparation of principles, which previoully exifted in that fluid.

By fome phyfiologits it has been imagined, that fecretion may be explained on the fimple fuppofition of a difference of diameter in the veffels from which the fecreted fluids are poured out. On this idea it has been advanced, that the thinneft fluids are formed by the arteries of the fmalleft diameter, and the more denfe by arteries of a larger fize; but if is evident, that though the fmaller arteries would exclude the larger particles, ftill the larger arteries would fuffer the fmaller particles to pafs through them, and thus the fecretion be in fome meafure confounded.

Excretion, like fecretion, is performed in general by arteries. The term fecretion is applied to the formation of thofe fluids which are fubfervient to fome purpofe in the animal machine; that of excretion to the formation of fuch as are apparently of no particular ufe, and which feem to be feparated for no other end than to be difcharged, from the body. It is difficult, however, to apply thefe dif-
tinctions to particular cafes, fince there is hardly any one of thefe fluids, the production of which is not in fome way uff ful, and but very few which may not te confidered as in fome degree excrement:tintis.

Boh fecretion and excretion are in many parts of the body perfurmed by the minute ramifications of arteries opening on the furface of membranes, wh: hout the intervention of glands. Fiuids, which a. enctigned to whe lumication of paffares, are very generally difchafged into fmall barss or follicles, whence they are exprefied, when their prefence is moft neceflary.

Few of the fecreted Auids are difcharged from the bnly ex.ctly in the ftate in which they were firt preenated, but gradually become more vifcid or acrid; lince, while they remain in the receptacles defined fur their fremervation, their more watery furts are contimally taken away by the action of the arurbents.

We have hitherto confidered ferretion to be on every necaisen the work of arterics, but it is now neceibary to take norice of a remarkable exception to this rule, and to inform the reader, that the moft copious fecretion in the body is performed by veins. Thie bloud, which is carlied by the arteries to the body at laare, is generally returned by the readieft paifages to the heart; but it is ordered otherwife with $r: f_{j} \subset$ ed to that which is fent to the bowels.

The blood from the abdominal vifecta is received by a large vein, furaifhed with remarkably denfe coats, and culled, from entering the liver as threugh a gate, the vena portarum; this vein is diftribuited

Chap. 30.] Secretion of Bile in Fibes.
tributed through the fubttance of the liver, in the fame manner as arteries are diftributed through other glands.

The liver, however, is furnifhed with an artery which may poffibly have fome influence in the preparation of the bile. The ramifications of chis artery inofcul.re with thofe of the ven. portarum, and the blool from both is returned togecher to the heart, by veins which empty themfelves into the vena cava.

A fact fo contradictory to the anal.gy of the other fecretions cannot fail to excite our wonder and curiofity. Our curiofity we cannot hope to gratify, fince the prefent ftate of our knowledge, with refpect to the nature of fecretion, gives us little room to expect a difcovery of the advantages which are derived from this or any other peculiarity in our frame ; but our wonder will be leffened by confidering, that the fame peculiarity takes place in certain animals, under circumftances fill more remarkable. In fifhes, a fingle artery arifes from the ventricle of the heart, which is entirely dittributed on the gills; from the gills the blood is gradually collected into a large veffel, correfponding to the norta in man, and diftributing the bluod to every part of the body. From the bowels, however, the veffels ftill again unite, and form a large trunk, which, entering the liver, performs the fecretion of the bile, in the third circle of the blood, fince it paffed through the heart; whereas in man the blood, in paffing through the liver, is only in its fecond cịcle or courfe.

Z 4 Abforption,

Abforption, as was before remarked, is performed by a fyitem of veffels quite diftinct from thofe concerned in the circulation of the blood. Their appearance, ftructure, and courfe through the body, have been already defcribed. The ufes of the abforbents in the animal ceconomy are of the moft important nature. By the abforbents all the nourifhment of the body is conveyed from the inteftines towards the heart ; and by the abforbents thofe particles, which have become ufelefs in ar.y of the organs, are taken up, conveyed into the mafs of circulating fluids, and ultimately difcharged from the body. The bones themielves afford evidence of the action of the abforbents, as their component particles are continually changing throughout life, and as all the bones lofe confiderably of their weight in extreme old age.

At the fame time, however, that their actual weight is leffened, their fpecific gravity is increafed; for the bones of old people are thinner and more compact in their fides, and have larger cavities. By chemical analyfis, the proportion of earth is found to be increafed in the progrefs of life.

The abforbents are particularly numerous in glands, and very probably have their influence in producing the phenomena of fecretion. 'The fuids, which are fecreted, for lubricating the joints and mufcles, and for moiftening the feveral cavities of the body, are continually renovated by the abforbents, which take up what is already effufed, while more is fupplied by the arteries.

The ufes of the glands connected with the lymphatic veffels are not well underitood, but from
their being univerfal, and from our not being able to find a fingle lymphatic veffel, which does not, in its progrefs towards the heart, pafs through fome of them, it may be concluded that their ufes are very important. One of the purpofes, however, which they ferve, is, probably, to prevent any thing injuri.ous, which may be taken up by the abforbents, from entering the mafs of blood; and in this way the minute ramifications, into which the lymphatics are divided in their paffage through thefe glands, may perform the office of a filter. There are feveral arguments which might lead us to believe, that the lymphatic glands belonging to the lacteals have fome fhare in digeftion, or for fitting the chyle for entering the mafs of circulating fluids; but their influence in this refpect is not proved, nor does it feem eafy to afcertain it. Several hyporhefes have been formed by ingenious men, with a view to explain the mode in which the abforbents act in taking in their contents; but as they are but hypothefes, I hall pafs them over in filence.

As the abforbents are continually taking away the fubftance of the body, it was neceffary that there fhould be organs, which, by furnifhing frefh particles, might counterbalance their effects; and thefe organs are the arteries. It has been already obferved that the arteries, for an important purpofe, convey the blood to every part of the fyftem; by means of the blood, however, the arteries not only produce the fecretions, but furnifh matter to every exhautted organ of the body; and from one fluid, reftore the loft particles of the bones, the mufcles,
and the nerves, or whatever other folids ftand in need of repair.

This office, however, of the arteries, pre-fuppofes that there muft be a fource, from which they are themfelves fupplied wich the fubflance they furnifh to the other organs; and this leads to the confideration of the important function of digeftion.

Chap. 3x.] [347 l

Chap. XXXI.

 Stoma.b.- \quad, , bow performed by Mitn and Quadrupert. Bv Bui . it (iizzaid of Fozuls, and its Ujes-- Birds of Pre\%. - inc.anzar's Exierimen.s on the Digegion of Fowls.M. ... ef ine Stoma b ind Gizz.wi.- Balis of Hair found in
 partly diyllezed by its Alziwn c.fier Death. - Fermentation only takes place in dijeajed Ditwachs.- What Sulifances are digeffible, and the con'rary.- Po vers of Digefion in different Animals.-Carnivorous.-Gruaivorous.-Gramenivorous.-Sleeping Ani-maals.-Accommo:ating Paver of the Stomach.

ANIMALS are powerfully admonifhed to repair the wafte of their bodies by an averfion from the fenfations of hunger and thirft, and a defire of that pleafure which attends the gratification of thefe apperites Solid food, being taken into the mouth, is mafticated by the teeth, and mixed with faliva and mucus, which, by the preffure and action of the parts, are very copioully exuded. Thus foftened and lubricated, the food is conveyed to the root of the tongue, and the lower jaw being now fixed by the fhutting of the mouth, we are prepared to act with the mufcles which pafs from the bone of the lower jaw to that which fupports the tongue, called the os hyoides. A convulfive action of thefe mufcles fuddenly draws forwards the os hyoides, the root of the tongue, and the larynx; the pharynx is enlarged, the food is forced into the gullet, and in its
paffage preffes down the epiglotris, fo as to prevent any thing from getting into the windpipe. The parts before thrown into action are now relaxed; the food is received by the gullet, and is regularly but rapidly conveyed to the flomach. Fluids are conveyed to the ftomach in the fame manner as folids. So perfect and exact is the action of the gullet in propelling its contents, that even air cannot elude its grafp, which is proved by our having the power of fivallowing air, by taking a mouthful of it, and ufing the fame efforts which we employ in fwallowing our food.

After the food has reached the ftomach, it is ftill further foftened, and at length reduced to a pulpy confiftence, by means which we fhall prefently examine. It now paffes through the pylorus, or right orifice of the fomach, into the cluodenum, where it is retained for fome time, and attenuated by the admixture of the bile from the liver, and the pancreatic juice from the pancreas. From the duodenum it paffes into the jejunum and ileum, in which it is moved backwards and forwards by the mufcular contraction of their coats, called their periftaltic motion. As it proceeds, its more fluid parts are continually taken up by the lacteals, and it confequently graduaily becomes of a thicker confiftence. . From the fnall inteftines it pafles through the valve of the colon into the large. Here it probably undergoes ftill further changes, and more of its fluid parts are abforbed by the lacteals. It is at length received by the end of the intertinal tube, called the rectum, and being of no further ufe, is difcharged from the body.

The chyle, which is the product of the digefted aliment, after it enters the lymphatics, is conveyed to the heart, and mised with the mafs of blood. Let us now examine the inftruments, which nature employs in $f 0$ wonderful a procefs, as that of fitting dead matter for receiving active properties, and being endued with life.

- A great many fubftances may enter the lacteals along with the chyle, even folids reduced to fine powder. When indigo has been thrown into the inteftine of a fheep, I have feen the chyle rendered quite blue: now indigo is not foluble in water, but is a folid reduced into a very fine powder. So mufk gets into the chyle, giving it a ftrong fmell, and a great variety of other fubftances of various colours, various taftes, and various fmells, each of them giving colour, or tafte, or fmell, to the chyle. Neverthelefs the lacteals feem to poffefs fome power of rejection, fince green vitriol, either exhibited along with the food, or thrown into the inteftine after the animal has been opened, while chyle was forming and abfurbing; gives no colour on infufion of gall being applied to the chyle; nor if galls are thrown into the ftomach along with the food, or if an infufion of them is in like manner thrown into the inteftine, when an animal is opened, during the time that the chyle is flowing into the lacteals, do they give any colour upon a folution of green vitriol being applied to the chyle *.'

Dr. Fordyce mentions feveral inftances of the ftrong affimilating powers of the ftomachs of certain animals; fuch as filh thriving, increafing in fize, and excluding fæculent matter when confined in

[^14]fpring water, without any perceptible fource of nourifhment, and even when a communication with the air was cut off. He allo remarks, that not only farinaceous and other bland fubitances are found to be attacked by infects, but alfo jalap, fcammony, hemlock, and the moft deadly vegetable poifons. Even cantharides are greedily devoured by two fpecies of infects, not part of them picked out from ocher parts, but the whole ent:rely, without leaving a veftige of any the leaft part of the cantharis undevoured. Dr. Fordyce has procured thefe infects from chefts of cantharides imported from Sicily, and which had lived upon the cantharis for feveral months. After being wafhed with water nightly, thefe infects have juices perfectly bland, fo that if they are bruiled and applied to any the moft tender and fenfible furface of the human body, they produce no inflainmation, nor is there any appearance of their poffeffing any matter having a flimuluing quality.

There are two different proceffes, which in general feem effential to digeftion; viz. trituration and the action of a certain fluid or menftruum. All quadrupeds are furnifhed with teeth, by which they in fome meafure deftroy the texture of their food before it paffes into the ftomach. The inftrument of trituration in granivorcus fowls, and which anfwers the purpofes of the teeth of quadrupeds, is the gizzard, through which all their food paffes, before it enters the organ, which may properly be denominated their fomach. Among fowls, however, there are fome which have a fomach pureiy membrancus, as the eagle, the hawk,
and birds of prey in general. Thefe have neither gizzard nor teeth, but they are furnifhed with a therp and crooked beak, which, by tearing their food to pieces, ferves in fome meature to prepare it for the action of the other inftrument of digeftion, a fluid endued with peculiar qualities, and which, as far as our obfervations extend, feems to be in common to all animals.

The gizzard is an organ compofed of very thick and itrong mufcles; it is lined internally with a fubftance to thick ard calious as not to be hurt by grinding down glafs, and which is always found to contain finall fones of the hardeft materials the bird can procure. By the help of thefe fones, and by means of the hard internal coat of the gizzard, and the force of its mufcular coat, the food is effectually ground down, and fitted for entering the ftomach.
' Spalanzani, and others, have denied (fays Fordyce) that they were of this ufe, and have affirmed that the ftones were picked up by mere accident, the animals miftaking them for fech's. But I have examined this parcicularly in experinents I made in hatching. eggs with artificial heat; t have hatched vaft numbers; and frequently have given the chickens fmall feeds whole, taking care that they fhould have no ftones. In this cafe the feed was hardly digefted, and many of the chickens died. With the fame treatment in every refpect, others who had their feeds ground, or have been allowed to pick up ftones, have none of them been loft. With tolerable care, when common chickens are once hatched by artificial heat, they are eafily brought up without a hen, as by intinct they will keep in that part of the furnace

352 Why Stones are picked up by Fowls. [Book IX. where there is the proper degree of hear, and the proper expofure to air. Inftinct alfo teaches them what fubftances they flould choofe for food, and what quantity of ftones it is neceffary to intermix with it. For if a very large quantity of fmall fones is mixed with a fmall proportion of grain, they will pick out the grain, fo that the proportion of ftones which they fwallow fhall be very litrle, if at all greater than when only a few were intermixed. In thofe I examined the proportion of fones were not at all greater when there was a large quantity of them mixed with the grain, than when there was a fmall proportion; and I have often obferved them choofing one piece of forle, and rejecting another. Birds have alfo an evident inftinct even to diftinguifh one lind of earth from another, as may eafily be feen in Canary birds; the hen, at the time of her laying her eggs, requires a quantity of calcareous earth, otherwife the is frequently killed by the eggs not paffing forward properly, as I have in many inftances obferved; to one fet of hens a piece of old mortar was given, which they broke down and fwallowed, certainly not miftaking it for Canary feed, or any kind of food, but diftinguiming it from a piece of brick, which they did not cither break down or fiwallow; another fet at the fame time were kept without any calcareous earth ; many of there died, while the others, although otherwife exactly in the fame circumftances, were none of them loft. It appears therefore that birds have a neceffity for ftones being fwallowed for digeftion, and earths for other purpofes, and that they have an inftinct which difpofes them to choofe the proper

Chap. 31.] Stomach of the Lobfter, Ecc. 353 quantity and quality required. Moreover, as Mr. Hunter oblerves, the noife of the griiding may be heard, and therefore there can be no doubt that this ftomach is made to contain fones for the fame purpofes for which teeth are employed *.'

The lobfter is furnifhed, for the comminution of its food, with an apparatus which is fituated at the pylorus. It conifits of two bony furfaces, formed into ridges, which are applied to each other like thofe of the molares. They are aifo covered, like our teeth, with enamel, and furnifhed with mufcles; by which the aftion of grinding is performed.

In order to difover the power of the gizzard, Reaumur gave to a turkey frmall tubes of glafs, five lines in lengtin and four in diameter; thefe were broken in the gizzard in tiventy-four hours. In the place of glafs tubes he fubftituted tubes of tinned iron, feven lines in length and two in diameter; clofed with folder at each end. Some of thefe were indented by the action of the gizzard, and others crufhed quite flat. Similar tubes, placed between the teeth of a vice, required a force of four hundred and thirty-fix pounds and a half to produce the fame effects.

Inclofing in tin tubes, properly perforated, fome grains of barley, fome unboiled, fome boiled, and others peeled, and leiting them remain a day or two in the ftomach, he found them only a little fwelled. The fame experiment being tried with meal, the fame confequences were obferved, as it did not become in the fmalleft degree putrid. From thefe experiments Rcaumur concluded; that digettion, in

* Fordyce on Digertion, p. 24, \&cc.

Vos. JII.
birds provided with a gizzard, was chiefly performed by means of trituration.

Such are the powers of the gizzard; but thofe of the membranous ftomach, though of a very different nature, are not lefs aftonifhing. It is well known that birds of prey, which fwallow every part of the animal they devour withour much diftinction, have the power of throwing up fuch parts of their food as they cannot digef. Taking advantage of this circumftance, the fame naturalift gave tubes, fimilar to thofe above mentimed, and filled with fleth, to a buzzard hawk; in twenty-four hours the tubes being thrown up, the meat which tley contained was reduced to an oily pulp, and with no appearance of putridity. At the end of furty-eight hours, the decompofition was ftill more perfect, the pulp was more attenuated and blanched, and that conftantly without any finell. The tubes being filled with the bones of young pigenns, inftead of butcher's meat, thefe were converted into a jelly in twenty-four hours. Beef bones, very hard, and deprived both of flefh and marrow, out of forty grains loft eight in twenty-four hours, and in three days were totally diffolved. Grain and fruit expofed to the fame procefs, were very little if at all affected. Digeftion, therefore, in birds of prey is performed by a fluid, which acts only upon animal matter. This fluid is very abundant in the fomachs of thefe animals. Small pieces of fponge, of thirteen grains, shut up in the tubes, weighed three grains more when thrown up.

Notwithitanding thefe effects of the digeftive organs, the motions of the fomach and the gizzard ere fcarcely perceptible. There is reafon, however,

Chap. 31.] Balls of Hair in Stomachs of Animals. 355
to believe that the little motion they have is very regular. On examining the furface of the balls of hair which are found in the ftomachs of animals which lick their coats, the hairs in each hemifphere feem to arife from a centre, and to have the fame direction, which is circular, and correfponding with what would appear to be the axis of motion. This regularity in the direction of the hair could not be produced if there was not a regularity in the motion of the ftomach. The fame is proved in tome birds, as the cuckow, which fometimes feeds on hairy caterpillars.

The principal inftrument of digeftion in moft animals, is however now generally fuppofed to be the gaftric juice ; a fluid which diftils from certain glands, fituated in the coats of the ftomach, and mixes with the food as foon is it is received into_it.

The Abbe Spalanzani, in order to obtain a fight of the gaftric juiice, introduced tubes, containing bits of fpunge, into the ftomach of a crow. In four hours the tubes were vomited up, and the fipunges, being preffed, yielded thirty-feven grains of gaftric liquor, which was frothy, of a turbid yellow colour, had a tafte intermediate between bitter and falt, and being fet to ftand in a watch glafs, depofited in a few hours a copious fediment. As the fediment might be attributed to the food furpended in the gaftric juice, the experiment was repeated on a crow, the ftomach of which was empty. The fuid obtained in this cafe was of a tranfparent yellow colour, depofited very little fediment, but the tafte twas the fame. The gaftric juice did not burn
when thrown on hot coals, and paper moiftened with it would noe burn till the fluid was evaporatel.

The motion of the ftomach alfo affints in mixing and intimately blending this fluid wich the proper parts of the aliment, fo as to enable its folvent powers more complereiy to act upon it. The fenfible qualities of this nuid are, however, not fuch as to lead us to attribute to it any fuch power; and I do n, know that it has been completely analized by any cheniical procef, at leant by any which enables us to exphain its folvent property. Ω lirench* autior indeed, obferving the power which inflammable air has in diffolving the texture of animal matter, has intimated an opinion, that a portion of the oily matter which is taken in with the food, may be mouified by the fomach into inflammable air, and may perform this part of the procefs of digeftion.

Digeftion differs from all other proceffes, and can be compared neither to putrefaction nor chemical folution. A remarkable circumftance alio with regard to digention is, that by it both animal and vegetable matter is converted into the fame fubftance.

Dr. Fordyce fed a dog with farinaceous matter, and another with mulcle, and opening them both (in which he does not appear to have been juftifiable) during the time that the chyle was flowing through the lacteals, he collected from each as much cinyle as he was able. On examination they

[^15]were found fo fimilar, that the difference could not be dillinguifhed by any experiment which he could contrive. The chyle of a cat living on fefh, according to the fame gendeman, cannut be diftin. guifhed from that of an ox or theep.

Live or frefl vegetables, when taken into the Itomach, are firt killed, by which a Alabbinels of texture is produced, as if they had been bailed, and then they begin to be acted on by the g ftric juice. This fluid indeed, feems to h ve no puser to act on living inatter, fince worms remann unimjured in the ftomach. Digction, however, as far as relates to the dhiflution of aliment, may be carried on out of the body by means of the gaftric juice, and the application of heat equal to that of the human vody. This procefs is continued affer death, and the ftomach, no longer protected by the living principle, is itflif diffolved by the gaftric juice.

In the ftomachs of large fifh are commonly found fmall filhes, ftill retaining their natual form; bu: when touched, they melt down into a jelly. From this circumfance, and from the great quantity of fluids poured into their fomachs, we may conclude, that digeftion is folely effected in them by the dififlving power of a menflruum, without the aid of trituration.

Neither animal nor veget.able fubftances can undergo their fpontaneouis changes, while digeftion is going on in them. The gaftric juice even has a power of recuvering meat already putrid; for let putrid meat be given to a dog ; and the contents of his fomach will be found fweet, and free from all putrefaction, if he is killed a fhort time after.

358 Power of Coagulation in the Siomach. [Book IX:
Bread, which has remained in the fomach of a dog for eight hours, is fo much changed, that it will not run into the vinous fermentation, but when taken out anci kept in a warm thace becomes putrid. Irs putrefaction, however, is not fo quick as that of a foluti n of meat which has been in the fomach for fome time. The effects are fimilar when milk and bread are the food.

When the digetive power, however, is not perfect, then the vinous and acetous fermentation will take place in vegetable matters, and the putrefacive in the ftomachs of animals which live wholly on flef. The gaftric juice apparenidy preferves vegetables from running in:to fornentation, and animal fubftances from putrefaction, not from an antifeptic quality in that fluid, but from a power of making them go through another procefs: In maft ftomachs there is an acid, even though the animal has lived entirely upon meat for many weeks; this, however, is not always the cafe. The acid fometimes prevails fo much as to become a difeafe.

The fomachs of many animals have a power of coagulating milk ; this is continually feen by infants throwing up their milk in a coagulated ftate, and the fanee thing may be obferved by feeding a dog with milk, and killing him half an hour afterwards. The ftomach of the calf, and perthaps that of other animals, preferves this power after death, and is kept dried, for the purpofe of making cheefe. Indeed milk, raw egg, and feveral other fubftances, require tọ be coagulated, before they can be digefted.

Chap. 31.] Process of Digefion.

If we throw milk into a portion of the jejunum, that milk will be ablorbed by the lacteals; but if we throw milk into the ftomach of the fame animal, the milk will not be abforbed by the lymphatics ; therefore an argument might be brought, that the abforbents of the fomach would refufe what the abforbents of the jejunum wouid reastily take up. But it muft be confidered that the milk is inftantly coagulated in the ftomach, and not in the jejunum, which coagulation will perfectly prevent it from being abforbed; but all thofe fubflances which are not changed by the coagulating juice of the ftomach will be, and are equally taken up by the lymphatics in the ftomach and lacteals. There is, therefore, a converfion of the food in the ftomach into a new fubltance, whofe properties are at prefent unknown, which new-fubftance is the only one which can be converted into chyle in the duodenum and jejunum, exactly as we may form farinaceous matter, mucilage, native vegetable acid into wine ; butbefore they can poffibly be converted into wine, chey mult firft be formed into fugar. So in a fimilar manner farinaceous matter, gum, and white of egg, are all capable of forssing chyle; but before they are formed into chyle, they mult be converted into a matter certainly not fugar, but a matter of a particular fpecies in the ftomach, and by the operation of the flomach, this particular fpecies of matter is afterwards converted into chyle in the duodenum and jejunum.

Dr. Young, of Edinburgh, found that an infufion of the inner coat of the ftomach, which had been previounly wafhed with water, and then with dilute
folution of mild fixed vegetaule alkali, fo that it was not poffible that any acid could have remained in it, congulated milk very readily. He found alfo that it had the power of coagulating firum, and other animal mucilages. The coagulating power of this fubfance is very great. Dr. Fordyce mentions that fix or feven grains of the irner coat of the ftomach infufed in water, gave a liquor which coagulated more than a hundred ounces of milk.

All fermentation is quite forcign from perfect digeftion, and when it does take place, is always proportioned to the diforder of the ftoniach, fince very little if any wind or fatulency is generated in the flomachs of thofe, whofe digeftion is mont quick and eafy. It is not uncommon, however, for nillk, vegetables, wine, and whatever has fugar in its compofition, to become fooner four in fome fomachs than if left to undergo a ipontaneous change out of the body; and even fipirits, in certain ftomache, almof immediaxely decrencrate into a very ftrong acid. .ill nily fubftances, particulaly butter, become rancid very fon after being taken into the fromach, and this rancidity is the firft procers in the furmentation of oil Animal food does not fo readily ferment in difeafed ftomachs, when combined with vegetables, as when it is not. Flefh meat appears to undergo no change preparatory to digcftion, but feems at once to fubmit to the action of the galric juice. It appears firft to lofe its texture, then becomes of a cineritious colour, next gelatinous, and laftly, is converted into chyle.

Chap. 3r.] Digefitible and indigefible Matters. 361

In order to arcertain whether the production of any degree of acidity is effential to digeftion, Dr. Fordyce made feveral experiments, from which he concludes, that in perfect digeftion no acidity whatever is produced.

If the gaftric juice is applied to a fubitance out of the buty, in a proper temperature, it will produce changes in it, fimilar to thofe which take place in the commencement of digeltion; but by applying gaftric juice, the watery fuids of the ftomach, the faliva, the bile, the pancreatic juice, altogether or feparately, in no cafe has chyle, or any thing like it, been formed.

It is not yet afcertained what are the circumftances which contribute to render different articles ufed as food, digeftible or indigeftible. Something is undoubtedly to be afcribed to firmnefs of texture, fince cuticle, horn, hair and feathers, which are indigeftible in their natural ftate, became digeftible and nutritious when reduced to a gelatinous form by Papin's digefter. That the folubility or infolubility of a fubftance in the flomach is not, however, merely owing to the degree of folidity, is proved from a circumftance already mentioned, viz. that boiled barley was not acted on by the gaftric juice of a buzzard hawk, while pieces of hard becf bone, expofed to its action in the fame manner, were completely diffoived. But fubftances may even be rendered too foft; for a fluid is difficult of digettion, and its continued ufe very injurious to the ftomach. It may be remarked, that nature has given us very few fluids as articles of food. It therefore feems; that fubitances may be either too compact or too

362 Digeffible and indigefible Matters. [Book IX.

 lax in their Rructare, to render them fit fubjects to be acted on by the digeftive powers.The degree of eafe, however, with which fuisftances are digefted, feems in many cafes owing to a difference in folidity. Brain, liver, mufcle and tendon are digreftible in the order in which they are. here put down. Builed, roafted, and even putrid meat is eafier of digeftion than raw. Hufks of feeds and the hulls of fruits are indicgeftible in their natural ftate, but to what circumflance this is owing is not fully afcertained. The whole of our food is fometimes not digefted ; this may arife from two caufes, either from fome parts of the food being of too firm a texture to be diffulved fo foon as the other parts are converted into chyle and carried into the duodenum: or from the ftomach being fo much difordered as to digeft imperfectly. This diforder of the flomach fometur. pinseeds fo far, that the food paffes through the body himoft unchanged. In fome cafes food has been retanted on the ftomach for twenty four hours, and thrown up without being altered in the leaft.

The effential cils of animals and vegetables are indigeftible ; they are foluble, however, either in the gaftric juice or the chyle, by which means they become medicinal from their flimulant powers. The effential cils of vegetables, but more particularly thofe of animals, feem to pervade the very fubftance of the animals whofe food contains much of them. Thus fea birds, which feed on fifh, tafte very ftrongly of them, and thofe which live on that food only during certan times of the year, as the wild duck, have that tafte only at certain feafons.
 Two ducks were fed, one with barley, the other with iprats for about a month, and killed both at the fame time ; when dreffed, that fed on fprats was hardly eatable.
Animals eat lefs in proportion as their food is more nutritious. Thus carnivorous animals require much lefs food thon the granivorous, and thefe, than the graminivorous; animals, indeed, of the laft kind, employ almott the whole of their time in eating. A correfponding relation is alfo obferved with refpect to the digeftive organs in thefe feveral races of animais; carnvorous animals have only one ftomach, granivurous animals very generally two, ańd graminivorous animals four ftomachs, with a greater lenyth of inteftines. From which circumftances it may be collected, that grafs is more difficultly affimilated than grain, and grain than flefh.

The firft tomach in ruminant animals, fuch as the buii, the freep, \&c. is 'a receptacle which has a pery weak action on the fond, and from it the animal ha: the power of remrning the food into the monith, to undergo a fecond matication. In Mr. Huncer's paper on Digeftion, publifhed by the Roy al Socity, there is the following curious obfervation, which illuftrates very much the ufe of thefe previous ftomachs: milk fucked in by the calf does not remain in any of the previous ftomachs; but pafes down inflantly into the digefting fomach, not requiring any previous operation; but grafs remains for a length of time in the previous ftomachs.
If it is allowable to extend our views beyond the animal kingdom, we might fancy that the digentive procefs in vegetables is ftill more difficult than it is

364 Digeftion of Aeeping Animals, \mathcal{B}^{3}. [Book IX. in the graminivorous animals, fince vegetables are continually taking in nourihnenent, and confume an immenfe quantity of air and water in !reportion to their growch and bulk. When veget:ables, however, are furnifhed with matter which has undergone more preparation than mere air and water, viz. purtified vegetable materer, their groweh is far more rapid: and they flour fle fill more on the remains of the animal hingdom.

Sleeping animals do not digett during winter. Worms and pieces of meat were conveyed down the throats of lizards, which were graing into winter quarters, and which were afterwards kept in a cool place. On opening the animals at different periods, the fubftances were found entire and without alteration. Some of the lizards voided them in the fpring with little or no alteration produced in them. Digeflion is therefore regulated by the fate of the other funations of the body*.

By hunger and cuftom animals may be taught to eat, and even to prefer, a very different kind of food from that naturally defigned for their nourifhment: thus pigeons have been made to live entirely on flefh. Whether the gatric juice is altered in its nature by a difference of food, or in what other way the fyitem accommodates iffelf to fuch a change, it is not cafy to determine.

* Hunter on Digention.-See his volume on the Animal Econemy.

C н A P. XXXII.

respiration and animal heat.

> Refpiration in part an involunzary Funtion.-Four Stages of Ref-piration.-Ujes of Rofpiration.—Refpiralion of Infeizs different from that of otber Animals. -The red Coltair of the Blood derive. from the Air in Ryin ration. - Dr: Pr:eghia's Experrinents. -Dr. Goodzuin's Exterincerts.- The c.x.g.gews Part of the Air dins:m:god by Reffiration,-Fined A.r gonerated in the Lungs in Refpiration cont crapred. - An:ma.' Hewt produced by Refpira-tion,-Inf?ateed in d:feriat An:mals.-D r. Crawujord's ingenious Theory.

UNINTERRUPTUD refpiration being neceffary to our exiftence, it is wifely ordained, that this function fhould be fo fir involuntary as not to require a continunl and inkfome attention. For other puredes, as that of fpeech, refpiration is no lefs wifely tibmitted in fome meafure to our direction, fo that withir certain dimits we can accelerate or retard it at pleafure. We are fufficiently prevented, however, from fufpending refpiration to fuch an extent as to interfere with other proceffes abiolutely neceffary to the fripport of life, by being fubjected, whenever we ceafe to breathe, to a fenfation inexpreflibly diftrefing, and which compels us to ufe every effort in our power to inhale air into the lungs.

The thorax, or that bony cafe which furrounds and protects the lungs, is furnifined with a number of mufcles, fome of which, by drawing the ribs up§ va.ds,

366 Mode in wobich Refpi Hiwn serformel 1 Book IX. wards, cnlarge its capacit; and other:, by drawing them downwards, diminifh it. Its capaciry, however, is fill more influenceciby the mufcular organ called the diaphragm, which from the breat bone and lower ribs paffes obliquely downwards to the loins, and feparates the thoracic from the abdominal vilcera. By the contraction of the diaphragm, the abdominal vifcera are preffed downwards and forwards, by which the lungs are permitted to expand themfelves in the fame direction; when the diaphragm is relaxed, and the abdominal mufcles are thrown into action, a direclly oppofite motion takes place; the vifcern of the abdomen are prefied upwards and backwards againft the lungs, from which part of the air is confequently expelled.

The air, which is to be confidered as poffeffing many properties in common with other fluids; poffefles this, that by its weight it enters where it is leaft refilted. Part of the refiftance to the entrance of the air into the lungs being taken off by the action of the mufcles dilating the thorax, it rufhes in through the windpipe, in the fame manner as it rufhes into the cavity of bellows, when the boards are feparated from each other. Infpiration and expiration therefore are not performed by the lungs themfelves, fince air would be equally drawn into and expelled from the cavity of the thorax when deprived of lungs, fuppofing that the parts of the thorax could be made to perform their motions perfectly well after death. The lungs may therefore be compared to the cavity of bellows filled with any downy fubftance, the bones of the thorax to the boards of the bellows, and the muf-
cles of the thorax to the hands by which the bellows are moved.

Refpiration may be divided into four flages or periods; firt, infpiration; fecondly, a paufe when the lungs are filled ; thirdly, expiration; and laftly, a paufe when the lungs are emptied. We are equally ftimulared to infpiration and expiration by a fenfation of uneafinefs, but that which is felt when the lungs are kept too long inflated after a full infpiration, is of a different kind from that which is perceived when they are preferved too long empty after expiration. In the former cafe the uneafinefs is referred to the head, in the latter to the chef. To what there fenfations are owing we cannot altogether determine ; they are probably, however, to be attributed to the anterior cavities of the heart and the veffels of the head being overloaded with blood, which cannot io readily pass through the lungs while their motion is fufpended. The truth of this opinion is much confirmed by the fluhing of the face, and the burting of blood veffels, which fometimes happens from impeded refpiration.

The air, after pafling through the wincepipe, is conveyed by its ramifications to the air veffels of the lungs. After infpiration the air veffels, which are to be confidered as very minute bladders with thi.. coats, are fully diftended. The minute and very numerous ramifications of the pulmonary artery are diftributed on the membranes of thefe air veffels; and through the membranes, without coming into direft contact with the blood, the air
produces
produces thofe changes on it, which are found to be abfolutely neceflary for the continuance of life.

The chief ufes of refpiration, as far as our knowledge extends, are, ift. To effect certain changes in the mafs of blood; and, ad. To produce animal heat. Thefe effects, though no doubt intimately connected, I fhall take the liberty of confidering feparately, for the fake of greater perficicuity.

The compofition of the atmofphere has already been defcribed, and it is at prefent only neceffary to remind the reader, that rather lefs than threcfourths of the atmofphere is azotic gas, rather more than one fourth nxigen gas, and one or two parts in the hundred fired air. The azote is not proved to have any effect in refpiration, and feems to be merely a diluent of the oxygen gas, which is the principal agent. The fised air, contained in the atmofuhere is probably alfo completely inert with refpect to refpiration. Previuus to a more particular confuderation of the nature of this function, it may not, however, be improper to throw together a few mifcellancous obfervations on that fubject.

Animals breathing air contaminated by refpiration, not only fuffer for want of the pure part of that air, which is deffroyed, but alfo from the fixed air which is produced. Mr. Cavendifh afferts, that in cettain difeafes, and by certain perfons, the air is much fooner rendered unrefpirable. According to the obfervations of Dr. Prieftley, infeets appeared to breathe fixed air, or air otherwife contaminated, as readily as pure air. Flies, however, and other winged infects, have the property of dettroying

Chap. 32.] Refpiration of Injeicts, E'c.
deftroying the falubrity of air by their own refpiration, as may be obferved by confining a few of thofe animals in a phial. There animals, indeed, appear lefs of the amphibious kind, and mucli more delicate, than when in the vermiform or maggot ftate.

Infedts, arid fome exfanguious animals, will exift a confiderable time without any thing equivalent to refpiration. The fame has been proved to be the cafe with finhes, though it is impoffible to define the limits of their exiftence.

A veffel in which, when filled with common air, a moufe could not live more than half an hour, was filled by Dr. Priefley with vital air ; a moufe then lived in it for three hours, and being taken out alive, the air was fill found better, by the nitrous teff; than common air.

From fome experiments made by Dr. Goodwyn, he concludes that the lungs contain 109 cubic inches of air after a complete expiration; and that: this quantity receives an addition of fou:teen cubic inches by infpiration. The dilatation of the lungs, therefore, after expipiration is to their dilatation after infpiration as 109 to 123 .

One infpiration is commonly performed for every four or five pulfations of the heart, which later, in different healthy perfons, vary from fixty to ninety in a minute.

The blood undergoes remarkable changes of colour when circulating in the veffels of an animal; in the lungs it acquires a florid hue, which is gradually loft, while the blood is paffing through the other parts of the body, again to be reftored in the lungs. That the red colout of blood is owing to Voz. III.

B b
the
the influence of vital air is manifeft from actual experiment. Dr. Prieftley introduced different portions of fheep's blood into different kinds of air, and found always that the blackeft parts affumed a bright red colour in common air, and more efpecially in vital air; whereas the brighteft red blood became prefently black in any air unfit for refpiration, as fixed air, inflammable, azotic, and nitrous gas, and after becoming black in the laft of thefe kinds of air, it regained its red colour on being expofed to common or vital air, the fame portions becoming alternately black and red.

It is proper, however, to mention, that Dr. Goodwyn introduced four ounces of florid blood, frenh drawn, into a glafs receiver, containing fixed air, and confined it there for a confiderable time ; and alfo received blood from the carotid artery of a fheep into a phial filled with fixed air, but in neither of the experiments was the florid colour altered. Thefe experiments do not accord with thofe of Dr. Priefley, but the following is intirely confonant with them. Dr. Goodwyn inclofed a quantity of vital air in a glafs receiver inverted in quickfilver, and introduced into it four ounces of blowd, fref drawn from the jugular vein of a fheep; the blood became inftantly very florid, and after feveral minutes the quickfilver afcended two or three lines, which evidently proved, that while the blood was altered in colour, the air was at the fame time diminifhed in quantity.

It is well known that blood, when it congulates on being expofed to common air, affumes on the
furface a bright red colour, while the infide is much darker, bordering upon black.

An objection, however, feems to arife to this hypothefis, viz. that though the blcod in the lunces is not more than a thoufandth part of an inch from the air, yet it never comes into actual contact with it. In order to examine the foundnefs of this objection, Dr. Prieftley took a large quantity of black blood, and put it into a bladder moiftened with a little ferum, and tying it very clofe, hung it in a free expofure to the air, though in a quiefcent flate, and next day found, upon examination, that all the lower furface of the blood, which had been feparated from common air only by the intervention of the bladder, hisd acquired a coating of a florid red colour, and as thick apparently as it would have acquired if immediately expofed to the open air. - In this cafe it is evident, that the change of colour could not have been owing to evaporation, as fome have imagined. A piece of the craflamentum, furrounded by ferum, acquired (not only on that part of the furface which was expofed to the air, but in thofe parts which were covered feveral inches with ferum) a florid red, fo that the deep covering of ferum, which muft have prevented all evaporation, was no more an impediment to the action of the air than the bladder. That it is really the air, acting through the ferum, and not the ferum itfelf, which gives the florid colour, is clearly afcertained by the following experiment: two equal portions of black blood were put into two cups, containing equal quantitics of ferum, which covered the blood in both to the depth of half an inch. One of the $B b_{2}$
cups

372 Caufe of tho Red Colour of Blood. [Book IX. cups being left in the open air, and the other being placed under the exhaufted receiver of an air puinp, the former prefently acquired a florid colour, while the other continued twelve hours as black as at firft. In another experiment, the reverfe of the former, the influence of the air upon the blood was no lefs decifively proved; for red blood became black through the depth of two inches of ferum, when the velfel containing it was expofed to azotic gas. Putrefaction, however, will produce a fimilar effect ; for a fmall quantity of perfectly florid blood being put into a glafs tube fealed hermeticaily, and thus cut off from all communication with external fubftances, became black in a few days. Except ferum, milk is the only animal fluid, through which the air can act upon blood. By fome fubfequent experiments made by Dr. Priefley, he found that the intervention of a bladder by no means prevents the action of fome airs on each other, as the nitrous on common air, \&c.

The fame induftrious philofopher found alfo, that the air and blood employed in the above experiments undergo oppofite changes; for vital air was vitiated by expofure to venous blood, and, on the contrary, inflammable air was abforbed, and foul air improved, by expofure to arterial blood. It has alfo been proved, that inflammable air will produce a change of colour in the blood, when introduced into the veins of a living animal.

The moft remarkable change produced on air, which has been fubfervient to refpiration, is the difappearance

Chap. 32.] Generation of fixed Air in the Lungs. 373 difappearance of the vital air, and the production of fixed air. On account of the production of fixed air, indeed, an animal can only breathe a given quantity of air for a certain time, after which it fickens and dies. If a jar filled with vital air is placed over mercury, and an animal confined in it, after a time it will be obferved to breathe with difficulty, and become very uneary; if the animal is then taken out, and cauttic alkali is introduced, a great diminution in the bulk of the air will take place; by the repeated introduction of the animal and the cauftic alkali almoft the whole of the air may be made to difappear, which proves that the vital air is by refpiration converted into fixed ais.

When we confider the compofition of fixed air, which confifts of the carbonaceous principle united with oxygen, we muft conclude that the oxygen gas is converted into fixed air by the addition of that principle, which, in a ftate of extreme divifion, feems to be extricated from the lungs. By fome phyfiologits, the extrication of this noxious principle has been confidered as the only end anfwered by refpiration. That this is not all, however, is proved by the confideration, that though part of the oxygenous gas is converted into fixed air by the addition of the carbonaceous principle, yet the weight of the air expired does not exceed that which is infpired. 'This naturally fuggefted the opinion, that a part of the infpired air was abforbed, nearly correfponding in weight with the matter difcharged by the lungs. Dr. Prietley, by a feries of experiments recorded in vol. lxxx. p. ro6. of the Philofophical Tranfactions, has accordingly B b 3
proved,

374 Water expired from the Lungs. [Book IX. proved, that a confiderable quantity of vital air is abforbed by the blood. Λ very fmall portion of water is alfo thrown from the lungs at every expiration, which may be cither an aqueous exhalation from the lungs, or may be formed by an union of vital air with inflammable gas.

The production of animal heat next properly claims our attention. That reipiration is really the caufe of animal heat can fearcely be doubted; for thofe animals which are furnifhed with lungs, and which continually infpire the frefin air in great quantities, have the power of keeping themfelves at a teniperacure confuderably higher than the furrounding atmofphere ; but fuch animals as are not furnified with refpiratory organs, are very nearly of the fame temperature with the medium in which they live. Among the hot animals, thofe are the warmelt which have the largent refpiratory organs in proportion to the bulk of their bodies. This is particularly the cale with birds, which have the greatelt degree of animal heat. In the fame animal, the degree of heat is in fome meafure proportionable to the quanrity of air refpired in a given cime. Thus we finci, that animal leat is increafed by exercile and whatever accelerates refpiration. Ly the word heat I do not mean a fenfation, but caloric, or a peculiar fluid, having attradions for other fubftances, with which it is capable of formin'? combinations, and producing many important phenomena. We muft carcfully avoid eltimating the quantity of heat contained in a body by its temperature, as indicated by the fenfes, or even by a thermometer; fur water, wax, metallic bodies, \&ec. in paffing from a fluid
to a folid ftate, lofe a valt quantity of heat without any diminution of temperature; and it is well known, that a quantity of wax, \&c. partly folid and partly fluid, is always of the fame temperature, whether it tends towards the folid or the fluid ftate; that is, whatever is the temperature of the furrounding medium. If the wax is in a melting ftate, it abforbs the fuperfluous heat, which becomes latent; if on the other hand it is congealing, its latent heat is continually extricated, and fuftains its temperature at a fixed point. Heat may therefore exift in a latent state, in which it cannot affect the thermometer.

There is ftill another difference with refpect to the quantity of heat contained in bodies, independent of any change of form, fimilar to that which takes place in the combination of heat with ice conftituting water. This latter difference is called a difference of capacity for heat, by which is underftood an inequality in the quantity of abfolute heat in two bodies, though their temperatures and weights are equal. Thus, if a pound of water and a pound of diaphoretic antimony have a common temperature, the quantity of abfolute heat contained in the former is nearly four times that contained in the latter.

The following is a brief ftatement of Dr. Crawford's ingenious theory of animal heat. He made a feries of experiments, by which he found, that the fixed air and aqueous vapour, which are difcharged from the lungs, contain only about one-third part of the abfolute heat contained in the atmofipherical air, previous to its being refpired: air, therefore, in being fubfervient to refpiration, lofes part of its B b 4
heat.
heat. He has alfo fhewn, that the abfolute heat of florid arterial blood is to that of venous nearly as eleven and an half to ten; fince, therefore, the blood, which is returned by the pulmonary veins to the heart, has its quantity of abfolute heat increafed, he fairly concludes that it muft have acquired this additional heat in the lungs: From the preceding obfervations it appears, that the production of animal heat depends on a procefs analogous to chemical elective attraction, and which is regulated by the following principles. Vital air contains more ab. folute heat, in proportion to its temperature and weight, than fixed air. The blood is returned to the lungs inpregnated with the carbonacecus principle; the blood has lefs attraction for that principle than vital air has; in the lungs, therefore, it quits the blood to unite with the vital air. By this combination the vital air is changed into fixcd air, and depofits part of its heat; the capacity of blood for heat is at the fame time increafed; the blood therefore receives that portion of heat which was detaclied from the air,

The arterial blood, in its paffuge through the capillary veffels, is again impregnated with the carbonaceous principle, and the bafis of inflammable air, by which its capacity for heat declines; it, therefore, in the courfe of the circulation, gradually. gives out the leat which it had received in the lungs, and diffules it over the whole body. Thus it appears, that in its circulation through the lungs the blood is continually difcharging carbonaceous matter and abforbing heat, and that in its paffage tinrough the other parts of the body it is perf etually
imbibing carbon and emitting heat. In this account of animal heat 1 have entirely omitted the abforption of vital air. This abforption was not admitted by Dr. Crawford, and, though eftablifhed by the experiments of Dr. Prieftley, does not at all invalidate the theory of the former philofopher. It is confiftent with either hypothefis, that the blood in the lungs gains the heat which is lof by the air; and upon the truth of this propofition refts the theory of Dr. Crawford.

By the different capacity which blood poffeffes for heat in its different ftates, it is capable of fup. plying the different parts of the body with heat, while its own temperature remains the fame. If this difference of capacity for heat did not exift, the extremities of the body could not be properly fupplied with heat from the lungs, unlefs the lungs themfelves were expofed to' a degree of heat which would be certainly prejudical, and, perhaps, fuch as no organifed fubftance could fupport without deftruction.

Dr. Crawford has moreover proved, by a courfe of experiments, that when an animal is placed in a cold medium, the venous blood acquires a deeper hue ; that a greater quantity of air is vitiated in a given time, and, confequently, that more heat is abforbed by the blood. It appears, therefore, that nature has in this, as in many other inftances, connected the occafion with the means of fupplying it. Since, therefore, it is proved, that heat is abforbed from the air in refpiration, and fince the quantity abforbed is not only adequate to the purpole, but proportioned to the occafion, we may confider
fider ourfelves as greatly indebted to Dr. Crawford for having thrown great light on a moft important function, but which muft ftill be enumerated, on fome accounts, among thore obfcure proceffes of nature, on which human ingenuity may exert its powers, but which it can probably never completely reveal.

Chap. 33.] [$\begin{array}{lll}379 &]\end{array}$

С H ар. XXXIII.

THE VOIC E.

Inffament of Scund in the Animal Body. -The Lavynx. - Experiments on the Windpipes of different Animals. - Whetber the Laynnx afts as a wind or fringed Infrument. - Singing, bow per-formed.-Spiaking. Whbispering.

ALL animals, as far as our obfervations extend, have the power of communicating their fenfations or ideas to each other, and the principal means of this communication is the voice. Man is indebted to this function for the fatisfaction of focial intercourfe, and in a great meafure alfo for his diftinguifhed pre-eminence above other animals in mental acquirements.

The inftrument of the voice is the larynx, and the immediate occafion of it is, the expulfion of the air from the lungs through this organ exciting a vibratory morion in the whole larynx, but more particularly in the ligaments which pafs from the fcutiform to the arytenoid cartilages. That the larynx is really the inftrument of the voice has been fully proved by an ingenious anatomint * of our times, who, after detaching the windpipe from the bodies of different animals, by relaxing or fhortening the tendinous bands at the extremity of the windpipe, and blowing in at the oppofite end, found

- Ferrein.
means to produce all the different cries and tones of which the living animals were capable. On the different ftructure of the larynx depends the different voices of animals; thus birds, which have a fhrill and piercing note, are found to be poffeffed of a narrow larynx ; animals, which are hoarfe or mute, of a wide one. The fame fact is proved in ourfelves. We may perceive, by applying the finger to the throat, when we endeavour to produce a fhrill tone, that the larynx is contracted, rendered tenfe, and elevated; when we produce a grave found, it is enlarged, relaxed, and depreffed; by endeavouring to produce a graver tone than we are capable of, the larynx is too much relaxed to perform its office, and the air paffes through it without producing any found whatever.
Bonnet obferves, that birds are furnifhed with what may be called two larynxes, the one at the fuperior extremity of the windpipe, as in men and quadrupeds ; the other (which is the principal organ of found with them) at the inferior extremity, and clofe to the bronchia. The chief iriftrument for the modulation of the voice in this lower larynx is a membrane fituated tranfverfely between the two bronchix, communicating with other membranes, refembling the reed of a hautboy On the greater or lefs elafticity of thefe membranes ciepends the tone of the voice, in the fame manner as in otheranimals it depends on the tenfion or relaxation of the cords of the gluttis *.

It has been much debated, whether the laryn, in producing the voice, acts as a wind or a ftringed

[^16]
Chap. 33.] Singiug, Speaking, ESc. 38】

inftrument ; but there can be little doubt, from the ftructure and motions of the laryan, that it poffeffes the advantages of both.

Singing is a modulation of the voice, through various degrees of acutenefs and gravity, and is performed almoft folely by the larynx, though the nofe and mouth are in fome degree concerned in improving and foftening the tones. During fpeech, the larynx is pretty much at reft, as very little variety, with refpect to gravity or arutenefs of voice, is requifite. The voice being produced in the larynx, is afterwards formed into letters, fyllables, and words, by various motions of the tongue and lips. The larynx is very little, if at all, employed in whifpering, and feems to tranfmit the air in this care as a fmple tube, like the windpipe.

CiIAp. XXXIV.

MUSCULAR MOTION.

Inquiry esbetber any Tising equivalent to mufenlar Motion is to be found in the cther Parts of Creation.-Diferent Hypoibefes concerning the Caufe of mufular Motion.-Its Dependence on thic W'ill.-Cortraczile Porver of Mufles after Death.-Esitens of the Contration of Mufles.-Atraniage fiom the Obliquity If certain Mrygles.- Injertion of the Tendous. - Force of Mrujcies.

THE power of contraction, with which the mufcles of animals are endued, and by which they perform all the motions of the body, is different from any property inherent in any other kind of matter. Bue though the moft remarkable examples of mufcular contraction are obferved among animals, yet we are by no means authorized to conclude, that the vegetable kingdom is wholly deftitute of fimilar powers; on the contrary, the expanfion and contraction of the flowers and leaves of plants, according to the degree of hear, and the circulation of their fap, are ftrong arguments in favour of the opinion that they are furnilhed with organs truly mufcular; and the convulfive motions excited by touching the famina of certain plants feem to place this matter beyond difpute.

Encior the head of anatomy, the general outlines of the practure of the mulcular organs have been
been already confidered; but nothing further was advanced on the prefent fubject, than that mufcles are contractile maffes compofed of numerous minute, and in general red *, fibres, combined together in bundles by cellular fubflance. Such, therefore, being the ftructure of mufcles, little credit appears to be due to the fuppofition, that mufcular contraction depends on an influx of blood or any other fluid into minute bladders or cells; and it mult remain undetermined, whether the ultimate moving fibres are tubular or folid; whether they confift of chains of rhomboidal veffels, as has been imagined by fome phyfiologits, or whether, as others have thought, they contain a kind of down or woolly fubftance.

When mufcles are thrown into action, they become fhorter, broader, and more denfe, or folid, to the touch; their bulk docs not feem to be on the whole increafed, nor are they found to be of a paler colour.

Mufcles never act but from fome exciting caufe; of there one of the moft frequent and curious is volition, by which every day's experience teaches us we have the power of throwing the greater number of our mufcles into action. Over fome of our mufcles, however, as thofe of the inteftines, and the heart, the will has no influence, and there are therefore called mufcles of involuntary motion. What is the nature of the influence which the will exerts over mufcles, we can never hope to difover; but it is of importance to remark, that the

[^17]nerves are the organs, by which this infuence is exerted; for the nerve leading to any particulas limb being divided, we are no longer able to move that limb at our pleafure.

Befides, however, being influenced by the will, mufcles are thrown into action by feveral other caufes, fuch as chemical or mechanical injury, and flill more remarkably by the electric hock, which influences mufcles infenfible to every other knowir ftimulus.

Mufcles retain a contractile power for a confiderable time after they are removed from the living body; this power, however, gradually diminifhes, till, fooner or later, according to a varicty of circumftances, it ceafes aitogether. The mufcles of involuntaly motion, when removed from the reft of the body, retain their contractile power longer than thofe of voluntary motion; the former, indeed, from this circuniftance, as well as from their uninterrupted motion in the living body, feem to be poffeffed of a capacity for contraction beyond that of the other mufcles.

What has been hitherto ftated, relates principally to the more remarkable murcular contractions, by which the actions of the body are performed; but it is to be remembered, that befides thefe occafional contractions, there is a continual tendency in the mufcular fibre to fhorten itfelf; and even after death, when a mufcle is divided, the wounded extremities recede from each other. A ftrong illuftration of this circumftance is obtained, by obferving the confequence of dividing a mulcle in the living body, for in this cafe its antagonift will con-
ftantly draw the part which thefe mufcles were defigned to move, towards its own fide.

That power by which the different parts of a mufcle, divided after death, recede from each other, is called the vis mortua, and is common to mufcles and other animal fibres. The power by which a mufcle obeys a ftimulus after being feparated from the body, or after its communication with the fenforium has been cut off by other means, as by dividing or tying its nerves, has been called its vis infita. This power is more peculiar to life; ánd though it may continue for a few hours after death, yet it difappears much fooner than the former. It was fuppofed by Haller to exift wholly independent of the nerves, but this opinion has neither been eftablifhed nor réfuted. The capacity of mufcles to obey the influence of nerves, is called the vis nervea. The power which we poffefs of calling the mufcles into action by a voluntary effort, depends on a relation eftablifhed by God, and not on the directing influence of the human foul, fince we have no conception of the intimate ftructure cither of the nerves or mufcles. It is true, that by habit we acquire a more exact command over our mufcles in \cdot moft inftances, yet the operation of fucking, in which a variety of mufcles operate in a complex manner, is performed by a new born infant; and the young of many animals can walk immediately after birth.

The extent of the contraction of a mufcle has been limited by fome anatomifts to one third of its length. This ftatement, however, though it may be nearly juft with refpect to the greater number of mufcles, Vol. III. C c
is by no means true with refpect to all. The mufcular coat of the bladder for example, will admit of that organ containing a quart of fluid matter, without much inconvenience, and at the fame time is fo contractile as to be capable of expelling almoft every drop in a very fhort time.

But the extenfive effect of mufcular contraction is not owing only to the degree to which a mufcle can fhorten itfelf, but alfo to the direction of its fibres. Thus oblique mufcles produce a much more extenfive motion than thofe which are ftrait, and this extenfiverefs of motion is proportioned to the obliquity of the mufle. What is gained, however, in extenfivenefs of motion by the obliquity of fibres, is loft in force; but this is more than compenfated by the oblique ftructure, allowing fpace for a much greater number of mufcular fibres. Oblique mufcles have therefore in both refpeets the advantage over thofe which are ftrait, and are accordingly much more numerous in the animal machine.

There is no part of the fructure of the animal boody, which is more calculated to excite our admiration, than the manner in which the tendons of mufcles are inferted into the bones. If for inftance, the mulcle called the biceps, which lies at the infide of the os humeri, and which is defigned to bend the fore-arm, inftead of terminating at the upper part of the radius, had been inferted half way between the elbow and wrift, it is evident, that when the mufcle had contracted itfelf fo as to bring the forearm to a right angle with the os humeri, the tendon mut have ftarted feveral inches from its place, and have given the limb a very unpleafant ap-

Chap. 34:] Force of Mufcles.

pearance, and mult alfo have been attended with Sevcral real inconveniences: By the tendon, however, being inferted riear the joint; the motion of the limb is performed without fo great a rifing of the tendon as to prove troublefome. By this ftructure moreover, the motions of the linib are much quicker than if the tendon had been inferted lower down towards the wrift. By the tendon being inferted nearer the axis of motion, it is alfo evident, that a much fimaller contraction of the mufcle is fufficient to produce an effect, than muft have been neceffary to produce the fame had the infertion of the tendon been half way between the elbow and the wrift. That univerfal rule in mechanics, however, that what is gained in quicknefs is loft in force, it mult be remarked, is applicable to this care, fo that fome lofs of ftrength neceffarily attends the acquifition of fuperior celcrity. But this incon= venience has been obviated by a very fimple expedient, that of making the mufcle ftronger thani would otherwife have been neceflary.

Many very erroneous calculations have been made with refpect to the force of mulcies. Borelli has been led to conclude that the heart at every contraction exerts a force equal to $100,000 \mathrm{lb}$. while others have pretended to difcover that this force does not amount to many ounces. With refpect to the heart, however, we really have not data on which we can proceed with any tolerable degree of precifion. There is no mufcie in the body more conveniently fituated for having the force of its contraction determined than the biceps of the arm. It will be foreign from our prefent with the grofs refult of which I fhall in this place prefent the reader; it is indeed merely mentioned as probable, that when we raife forty pounds weight by means of the fore arm, the biceps exerts a force at leaft equal to five or fix hundred pounds.

The furprizing mufcular force of the turkey's gizzard, has been already noticed.

From thefe obfervations, it appears, notwithftanding the great vifible exertions of mufcular force, that the greater part of their real power produces no apparent effect. For all mufcles are inferted nearer the center of motion than the weights on which they act, and their effect is therefore lefs in proportion to the fhortnefs of the lever on which they act. In moft of the limbs the mufcles are inferted at very acute angles, which throws their force more nearly in the direction of the center of motion, and confequently leffers their effect. Many mufcles pafs over projecting bones, which increafes friction. But befides all thefe caufes diminifhing the power of mufcles, one half of their ftrength is exerted on their fixed extremity, for a mufcle in action, like an extended cord, exerts an equal force at both extremities.

Chap. 35.] [389]

Снар. XXXV.

ANIMALELECTRICITY.

Actidental Difcovery of M. Galvani.-Animal Electricity only excited by Metals.-Experiments on dead Animals.-Conductors and Non-condufors of this Power-Experiments on the living Subject.-On Earth Worms, \mathcal{V}°.-Analogy between this Porver and Eiccerricity. - Shock of the Torpeto.-Nervous Energy.

AMON G the late difcoveries in philofophy there is not any more curious than that relation which is found to exift between certain metals and the nervous and mufcular fyftem of animals, which has received the name of animal electricity. How far it is confiftent with truth to refer this influence to the laws of electricity may be a proper fubject of inquiry, and perhaps of feepti... cifin; but it will be neceflary previounly to relate the principal facts which have been afcertained on a fubject fo novel in phyfiology, and fo little analogous to the known principles of animal exiftence.

The fhock which the mufcles of the human frame receive from the touch of the torpedo, and of the electrical eel, had long been known; but that the animal fibre when deprived of the principle of vitality fhould be fubject to a fimilar influence, was a difcovery referved for the prefent age. M. Galvani, the profeflor of anatomy at Bologna, obferv -

$$
\mathrm{Cc}_{3} \quad \text { ing }
$$ motions in fome frogs, which, with little credit to the profeffor's humanity, hat been honked by the back-bone and fufpended from the iron palifadoes of his garden, his curiofity was powe:fully excited, and on examining minutely into the caufe of there contractions, he found that he could produce thein at pleafure, by touching the animals with two different metals at the fame time in contact with cach other.

From later obfervations it feems to be fufficiently afcertained that thefe involuntary contractions cinnot be excited by any fubftances whatever, whether folid or fluid, except the metals, and that the mutual contact of two merals with eal hother is, in every cale, nfeeffary to the effect. Zinc has been found by far the mof efficacious, efpecially when in contadt with gold, filver, molybdena, fteel or coipper, although thefe latter excite fueble contradtions when in contact only with each other. Next to zinc, tin and lead? feem to be the beft excitors. When the pieces of metals employed, and the furface of the animal fibre with which they are in contact, arelarge, the contractions excited are in general mote confiderable, but by no means in proportion to thefe circumftances.

In order to obferve the phenomena in queftion, cut off the head of a frog. When it has ceafed to ftruggle, apply a plate of zinc under its body, anct a plate of gold to the fuperior furface. Then nide the gold plate till it comes in contact with the zinc, when the mufcles which are further from the brain

Chap. 35.] Experiments on dead Animals. and fpinal marrow than the metals, will be thrown into contraction.

This effect will take place, although the frog with the metals are placed on an inverted glafs jar, and a ftick of fealing-wax is interpofed between the hand of the operator and the metals, that is, although the animal as well as the metals is infulated. I mentioned gold as being the moft powerful of the metals, but a plate of filver, a crown-piece for inA. nce, will anfwer the purpofe.

Cut off the thigh of a frog juf killed clare to the body, and lay bare the fciatic nerve. Place the nerve in contact with a piece of zinc, and let its foot reft on a piece of filver; on bringing the two metals into contact, the mufcles of the limb will be convulfed.

If a piece of brafs wire is made to touch at the fame time the metals difpofed as above defcribed, a communication will be formed beeween them, and the contraction of the mufcles will equaHy take place.

If the nerve is made to reft on a piece of zinc, and, the zinc is touched with a plate of filver held in ore hand of the operator, while with the other he takes hold of the foot of the frog, the influence will pafs through the body of the operator, and the limb will allo be convulled, -Thefe experiments mult be performed before the nerye becomes dry by expofure to the air.

In order that thefe contractions fhould be produced, it is not neceffary that either of the metals fhould be in actual contact with the animai in which the convulfions are to be excited; as
Cc4 the beef were found by Dr. Monro not to prevent the effect.

By an experiment of Dr. Fowler the fame fact is proved. He found that if a frog, of which'the head fhould be firt cut off, is divided into two parts, jult above the origin of the fciatic nerves, and put into a bafon of water, the hind legs may be thrown into ftrong contractions, by bringing zinc and filver into contact with each other, at the diftance of at leaft an inch from the divided fipine, fo long as they are kept nearly in a line with it. Water in this cafe is the only communication between the metals and the origin of the nerves.
Dr. Fowler remarks, that he has frequently paffed this influence through a great length of thin brafs wire, and through the bodies of five perfons communicating with each other by dipping their fingers in bafons of water placed between them; yet it did not appear to have loft any of its force in this long and diffufed paffage ; for the contractions excited in the frog's leg were equally frong, as when it had paffed only through one perfon. Dr. Fowler made many experiments in order to difcover what fubftances were conductors and what non-conductors of this influence. He found that all metals when pure were excellent conductors; that they were not quite fo good when in the ore; and as far as he could afcertain, leaft fo when in the fate of metallic falts. From trials which he made with fome of the calces of metals he concludes, that in that fate their capacity as conductors is quite deftroyed. Stones feemed to be poffeffed of no conducting power. 6

Chap. 35.] of Animal Fleztricity. 393
The different non-condust ro of electricity were found to be non-conductors of this influence. Living vegetables afforded it a ready paffage, probably from the fluids which they contain. Oils of all kinds were fo far from conducting, that if the fingers of the perfon holding ether the probe or the zinc have perfpired much, even this operates as a complete obltruction to the paffage of the influence; the inftant the perfpired matter has been wiped away, and the fingers have been dipped in water, it again paffes and excites contractions. Dr. Fowler wifhed to afcertain whether it paffed over the furface or through the fubftance of metals; he coated feveral rods of different metals with fealingwax, leaving nothing but their ends, by which they were held, uncovered. Contractions were excited as readily through the medium of thefe, as if they had not been coated. It feems to meet with no obftruction in paffing from link to link of feveral chains, even when no preffure, except that of their own weight, is ufed to bring them into contact. Dr. Fo ler was led from this to hope, that he fhould be able to make it pafs through a very thin plate of air. He therefore coated a ftick of feal-ing-wax with a plate of tin-foil, and then made an almoft imperceptible divifion acrofs it with a fharp pen-knife ; but even this interruption of continuity in the conductor was fufficient effectually to prevent its paffage.

Dr. Fowler next proceeds to examine whether the capacity of different fubftances, as conductors or non-conductors, was at all effected by differences' of their temperature ; but this was not the care
cafe with zinc, iron, water, coal, or a common crucible, the only fubftances with which he tried the experiment.

The effects of this influence may be felt in ourfelves by a very eafy experiment. If a piece of lead is applicd to the upper part of the point of the tongue while a piece of filver is applied to the under part, upon bringing the two metals into contact, a fomewhat pungent fenfation will be felt, accompanied by a ftrong metalline talte of fome ciuration. The fame fenfation takes place though both of the metals are prevented from touching the toligue by the interpofition of moiftened paper.

Dr. Fowler fays, he could never perceive that the fenfes either of touch or finell were in the leaft affected by the metals; but the effert which they produce on the eye is very remarkable. Having laid a piece of tin-foil on the point of his tongue, he placed the rounded end of a filver pencil cafe againft the ball of his eye, in the inner canthus, and fuffered them to remain in thefe fituations till the parts were fo accuftomed to them, that he could examine the fenfations produced; he then brought the metals into contad with each other, and to his furprife, perccived a pale flafh of light diffufe itfelf over the whole of his eye. His tongue was at the fame time affected with a fimilar fenfation to that produced when both of the metals are in contact with it. On darkening the room the flath became more diftinct and of a ftronger colour. If the experiment is made with zinc and gold, inftead of tin-foil and filver, the flath is incomparably more vilvid. By infinuating a rod of filver as far as
poffible up the nofe and then bringing it into contact with a piece of zinc placed upon his tongue, he alfo fucceeded in producing the fenfation of a flafh of light, rather more vivid, than when the filver was in conta\&t with the ball of the cye. Dr. Fowler alfo mentions that his friend, Mr. George Hunter of York, difcovered that by plasing one of the meals as high up as poffible between the gums and the upper lip, and the other in a finnilar fituation with regard to the under lip, a flath was produced as vivid as that occafioned by paffing one of the metals up the nole, and placing the other upon the tongue. It differs, however, from the fath produced in the other way, in the fingular circumfance of not being confined to the eye alone, but appearing diffufed over the whole face. On repeating the experiment myfelf, and attending to the concomitant fenfations produced by this difpofition of the metals, I perceived that a fenfe of warmth, at the inftant that they were brought into contact, diffured iefeif over the whole upper furface of the tongue, proceeding from its root to the point. Dr. Rutherford, to whom Nr. Hunter had communicated this experiment, remarked, on repeating it, that a flafh is produced not only at the inftant the metals are brought into contact, but likewife at the inftant of their feparation; while they remain in contact no flath is obferved. Thefe curious phenomena demonftrate the free communication which fubfifts between the feveral branches of the fifth pair of nerves.

The following curious fact is alfo taken from Dr. Fowler's ingenious and entertaining book on animal.
elęctricity.
electricity. He laid a leech on a crown-piece of filver, placed in the middle of a large plate of zinc. The animal moved its mouth over the furface of the filver without expreffing the leaft uneafinefs; but having ftretched beyond it and touched the zinc plate with its mouth, it inftantly recoiled as if in the moft acute pain, and continued thus alternately touching and recoiling from the zinc, till it had the appearance of being extremely fatigued. When placed wholly upon the zinc, it feemed perfectly at its eare ; but when at any time its mouth came in contact with the filver lying upon the zinc, the fame expreffion of pain was exhibited as before. With the earth worm he found that the experiment fucceeded fill more decifively. The animal fprang from the zinc in writhing convulfions; if, when the worm ftretched iffelf forwards, one of the folds came upon the zinc, it expreffed little uneatinefs in comparifon of what it fhewed when the point of its head touched the zinc.

Whether this influence, whatever it may be, is derived from the metals alone, or whether the animals contribute to its production, is not eafy to determine.

On re-confidering the phenomena exhibited by this newly difcovered infuence, we fhall perceive that in fome refpects it remarkably refembles electricity, and in others as remarkably differs from it.

Like the electric fluid, it ftimulates mufcles to coneraction. Like that, its progrefs is arrefted by glafs, fealing wax, \&c. while it is conducted by metals, moifture, \&ic. Dr. Valli informs us, that he obferved the hairs of a moufe, attached

Chap. 35.] Infuence and Elecricity.

to the nerves of frogs by the tinfoil with which he furrounded them, alternately attracted and repelled by each other, whenever another metal was fo applied as to excite contractions in the frogs.

Like the electric fluid, it excites a fenfation of pungency in the tongue; and pafies with fimilar rapidity through the bodies of animals.

It differs from the electic fluid in many refpects.

In order to excite the electric power, it is neceflary that there fhould be motion or friction between two fubftances, an electric and a conductor. Animal electricity is produced by two metals, which, are both conductors and without friction.

According to Dr. Fowler, charcoal is a better conductor of electricity than the fuids of animal bodies. Whereas he never could make the influence in queftion pafs through charcoal.

Dr. Fowler in oppofition to Dr. Valli alledges, that he could not oblerve that the niceit eleEtrometers were affected by this influence.

The fame author remarks, that the moft important and characteriftical difference which he has yet been able to difcover between this new influence and electricity, confifts in their effects upon the contractile power of animals and ' of plants. The contractions of animals excited by electricity, have a tendency to deftroy that power upon which contractions depend. But the contractions excited by the application of the metals, have in all his The more frequently contractions have been in this way excited, the longer they continue excitable; and the longer are the parts upon which fuch experiments are made, preferved from putridity.

It is faid that a Atream of electricity paffed through a fenfitive plant, produces an almoft immediate collapfe of its leaves; but the influence in queftion produced no fuch effect in an experiment made by Dr. Fowler.

The fane attentive experimentalift electrified both pofitively and negatively frogs, whofe heads had been feparated from their boclies. In thefe circumftances the effects of the influence in queftion took place in the fame manner and degree as when no artificial electricity was prefent.

When there is a breach of equilibrium in the diftribution of the electric fluid, all that is required in order to refore the equality of diftribution, is the interpofition of a fingle conducting fubftance between the place in which it abounds, and that in which there is a deficiency; whereas if the phenomena of animal electricity are to be attributed to the fame caufe, it does not appear why two conducting fubtances fhould be neceffary.

In eftablifhing a communication between two oppofite electricities, as for example, between the two fides of a charged phial, it is matter of indifference to which the conductor is firt applied; but it is by means fo, in producing the phenomena of animal electricity; for if one branch of a conductor is applied to the tin-foil arming a nerve, before

Chap. 35.] of this Infinence and Elecrricity.

the other branch has been applied to the mufcles, it frequently fails to excite contraftions. If firtt applied to the mufcles, this is very feldom the cafe.

From fome trials which Dr. Fowler made with the artificial and natural loadtones, and a very fenfenfible magnetic needle, he faw no reafon to fuppufe that this new influence was in any way connected with magnetifm.

Animal ele?ricity is even found to differ, in fome refpects, from that power by which the torpedo, gymnotus, ixc. produce their fhocks. We are told by Mr. Cavendifh, that Mr. Walh found that the fhock of the torpedo would not pafs through a fmall brafs chain. It refembles the power of the corpedo, however, in producing its effects almoft equally well, when both it and the fubject upon which it afts are infulated from furrounding conductors. The fhock of the torpedo, \&c. feems to depend entirely on the will of the animal; but the will of the animal has no fhare in the production of the phenomena difcovered by Galvani.

That this influence is not the fame with the nervous energy appears from its not being ftopped by a tight ligature, or by the tranfverfe incifion of a nerve, provided its parts are again brought into clofe contact. The nervous energy is effectually flopped by a tight ligature or a tranfverfe incifion; and placing the divided extremities into the clofeft contact has no effect in reftoring its influence on the parts of the body to which the divided nerve was diftributed.

400 Animal Electricity. - [Book IX.
On the whole it may be remarked, that the influence difcovered by Galvani refembles electricity more than any other known law of nature. But it differs in fo many inftances even from it, that in the prefent flate of our knowledge, we muft confider it as a newly difcovered law in nature; though future experience and more extenfive obfervation may lead to a different conclufion.

Chap. 36.] [401$]$

Снар. XXXVI.

SENSATION.

D: Fficulty of the Subject. - Senfation the Effert of certain Relations cftablifbed by the Creator.-Objects of different Senfes.-Infuence of the Nerves in convering Senfations to the Brain.- The Brain the Repofitory of Ideas. - Infintz of Animals as connected ruith the ner-vous Sylfem.-Harmony of the Senfes.-Duration of jenfible Imprefions. - Thbe Five Senfes.

FROM the confideration of the other functions to that of fenfation, the tranfition muft be abrupt and without gradation. We now enter on a fubject above all others the moft intricate and difficult, and on which, fince reafon is engaged in difcovering the fource whence it derives thofe ideas on which it afts, we muft neceffarily reafon in a circle.

Senfation is the link, by which the Deity has connected the material to the immaterial world. Without fenfation, in vain would the flars have befpangled the firmament of heaven, in vain would that glorious object the fun have been appointed to illuminate and cherifh the productions of the earth; they could have been nothing to beings who muft have been unconfcious even of exiftence ; and the material world would have been a work without utility or defign.

Senfation is the confequence of certain eftablihed relations between objects; of thefe relations we

Vol. III.
D d
can give no account, for they appear equally above our comprehenfion with the principles of gravitation, electricity, or magnetifm. Relations between the matter of light, the objects of vifion, and the eye, produce fight; relations between certain vibrations of the air and the fenforium of the ear produce hearing, and fo of the other fenfes. We by no means, however, can pretend, in any of thefe cafes, to determine all the intermediate caufes and effects between the quality in a body, which renders it an object of fenfation, and the perception in ourfelves; nor are we by any means authorized to conclude, that our perceptions are juft emblems of the objects which occafion them. But this circumftance, upon which fo much has been faid, can be to us of little importance, fince it ftill remains equally true, that our fenfations are regulated by fixed laws eftablifhed by the Deity himfelf, and fince we mult luppofe that the Creator of the univerfe has orderel all things in wifdom and goodnefs.

We are ignorant of the means by which the objects of fenfation affect the body; but the moft obvious and fimple idea that we can form on this fubject is, that they att by impulfe. Thus the rays of light are known to travel with aftomifhing velocity, and to poffefs a power of moving light bodies. Sound is a tremulous motion of the air, capable of being communicated to bodies in harmonic proportion with it. Odorous particles require the amiftance and motion of air to affect the organs of fcent. The objects of tafte are more perfecily perceived by being preffed berween the tongue and palate. In order to feel any thing, it is neceflary
that the fkin fhould be prefled againft it with a certain degree of force, or, what is ftill more effectual, rubbed over its furface.

The inftruments, which are defigned to convey the effects produced by material objects on the organs of fenfation to the brain, are the nerves, which have been already defcribed as diftributed to the feveral parts of the body, and more particularly to the organs of fenfation. What is the difference of ftructure, which adapts the feveral nerves to the feveral organs of fenfation, we know not, nor can we determine whether certain parts of the brain correfpond with the nerves connected with certain organs of fenfation, and are deftined to preferve the ideas received by thefe particular organs, or whether the whole brain is common to the whole ftock of our ideas and fenfations; though thefe have been fubjects of much fpeculation, it has not even yet been afcertained, whether any material impreffion whatever takes place in the brain in confequence of impreffions on our fenfes; and until this queftion is determined, we cannot be prepared to examine the other. That the brain, however, is really in fome way or other the repofitory of our ideas, we may venture to conclude, fince a perfon who lofes an organ of fenfation does not lofe the ideas previoully acquired by is; and fince perfons fometimes complain of pain, feated in the extremity of a limb of which they have long fince been deprived.

There have been of late years fome curious fpeculations among philofophers with refpect to the material caufe of inftinet in animals, and as there

$$
\mathrm{Dd}_{2} \quad \text { is }
$$

is fome plafinility in their re:fonings, it may be worth while briefly to meation the ourlines of their fyftem. They fupperf th the mu, cions of whimals, commonly called intinctiv., arile from a connection of the nerves belonging to different parts in the brain. In this manner, when the young bild hears the call of its mother, and opens it. buak, they fuppore this effect to be owiņ 10 an migin: I conneetuon between the auditory netve an 'the neives communicating with the mufcles empliye! in upening the bird's beak. When a new born quadruped performs the complex aation officiang, in confequence of the application of its nofe to the teat of its mother, they attribute its capacity ioi executing a function, in which fo m: ny mufcles are employed, to a connection originaily exilting in the brail, between the nerves of its nofe and thofe which beiong to the organs employed in fucking. The moft complex inflinetive actions of anmals, according to thefe philofophers, may be explained on the fame hypothefis.

The qualities of bodies, as perceived by one fenfe, are very frequently connected with others perceived in the fame hodies by the other fenfes: thus, apparent unevennefs, of furface, is tnited with a roughnefs to the touch; apparent vibration, with found; and there is a certain analogy between the odours and taftes of many bodies. Thefe conclufions, however, are to be referred to our previous experience, and by no means authorize us to think that there is any fimilitude in the mode of perception between the fenfes of feeing and hearing, feeing and feeling, or tafting and fmelling. It is faid, that there have been perfons who could diftin-

Chap. 36.] Senfible Impreffions not evanefcent. 405 guiln colours by the fenfeo feehng; bui if they did. it inutt evidently lave been from fome difference of routhnefo, finoothnefs, \&ec. refulting from the materals employed in colouring, and not from any property inherent in the difficent colours as objects of fioht.

It is ordained by our Creator, for the moft importat purpoies, thar wur ferfations floould not be too evaneícent; and it requires fome time after one impreffion is made on an organ of fenfe, before that organ can receive another This is proved by a very fimple and decifive experinent. Ali of us have probably obferved, when a lticis lighted at one end, or a coal, is whirled round wich a certain degree of velocity, that the whole sircle which it performs appears equally illumin.ted, and that we cannot determine at what point of the circle the fire really is; and the fame circumftance may be obferved in the blending of colours, which are yet marked diftinctly on a wheel before it is rurned. The evident caufe of thete appearances is in the eye ; and in the firt cafe, when we fix our eye on any point of the circle made by the evolution of a lighted coal, the illuminated object again returns to that point tefore the fenfation previ nlly profuced is worn off: and the biending of the colours on a wheel is explained in the fame way; for the impreffion made by one colour remains till the other arrives and mixes : ith it. It is allo well known, that perfons who have the beft and quickett ears for mufic cannot judge accuracely of more than a certain number of notes in a fecond of time. 'innumerable facts, indeed, may ferve to convince us,
that the mind cannot well attend to two or more fenfations at the fame time *.' Hold your tongue, faid a Frenchman, you talk fo I cannot tafte my meat. The Frenchman was certainly right; for attention of mind is not lefs neceffary to full perception, than a healthy ftate of the organ of fenfe.

All authors are agreed, that our knowledge of external objects is entirely acquired through the medium of fenfation, though fome perfons of the higheft rank in literature and philofophy ftill contend, againft Mr. Locke, in favour of the exiftence of certain innate and inftinctive principles ; but if I was difpofed to enter into the difpute, this would not be the proper place.

The fenfes are five in number: touch, tafte, fmelling, hearing, and fight. Of thefe I hall endeavour briefly to treat in their order. I have in general confidered it as more conducive to perfpicuity to feparate the anatomical defcription of the organs from the functions to which they are fubfervient; but as the organs of fenfation are fmall, and at the fame time not much connected with the great outlines in the ftructure of the body; and as the

[^18]Chap. 36.] limited in their Operations. 407 organs of fome of the fenfes, particularly that of hearing, are complex, and very difficult to be retained in the mind, I have, in this inftance, thought it neceffary to depart from the former arrangement.

[408] [Book IX.

C if A p. XXXVII.

TOUCH, AND ITS ORGANS.

The maft exterfive of the Senfes.-Organs of Touch.-In whbat Manuer it crubhias is so julye of the Qualitic. of Bodius.- Young Man coucberd by cibrejeluitio-Rencarks on bis Ciffe.

IN order to proteft the body from injury, almoft every part of it is fo formed as to give warning to the mind when any thing injurious affails it. The whole buly may cherefore, in the moft extenfive fenfe of the word, be deemed an organ of touch. The internal parts of the body, however, though they are capable of feeling, yet convey no other idea but that of pain, and give us no information with refpect to the nature of what is applied to them. The whole furface of the body is endued with a much more extenfive power, and informs us of feveral qualities of mater; but tiie lips, the tongue, and, above all, the fingers, afford us the moft accurate information of thofe qualities of bodies which are the objects of this: Ienle.

When the epidermis is removed from the true fkin, we obferve finall ootufe papilla, which feem to be the parts which more paticulalij rece:ve the impreflions of e:trernal otjucts. thete papilia are forewhat more rewarlable in the flin at the end of the firyers, and hare we may perceive, that they have nerves, thou, h from the extreme minutenefs of them they are hardly obfervable. We judge

Chap. 37.] Young Man coucbed by Chefelden. 409

 of heat and cold from the object-being hotter or colder than our fingers *; of the weight of a body, from its degree of preffure compared with its bulk; of its' imoifture, by its culdnefs, or the rrefence of water; of its fofinels, by its yielding; of its hardnefs, by the yickling of the finger; of its figure, by appiying our hands to its different parts; of diftance, by comparifon with what we know to be the length of the finger, hand, or arm. All our concluions, however, are fo regulated by previous experience, and we fo feldom truit to the evidence of touch without alfo calling in the affiftance of vifion, that withour the latter fenfe the conclufions drawn from the other would be very limited and imperfect. Touch is the fenfe by which we acquire a knowledge of the diftance of objects, which, independent of experience, obtained by means of this fenfe, is not to be difcovered by vifion. This circumftance was beautifully illuftrated in the cafe of a young man, as fated in Chefelden's anatomy. This young man, born blind, and being fuddenly enabled to fee, in confequence of a furgical operation, imagined that every thing he faw touched his eyes, and it was only by rep-ated trials of the diftance of objects, by means of touch, that he was taught to correct his error.From this fact, however, it is not perfectly evident, that an infant, born with all its fenfes perfect, would naturally conclude that the objects of vifion touched its eyes. Might not the young man, from

[^19]$$
410 \quad \text { Touch, } \underbrace{2} c . \quad[\text { Book IX. }
$$ being fo accuftomed to judge of objects by their feel, or by applying them to his tongue or nofe, have acquired the idea, that nothing could be perceived which was not in contact with the body? and thus the conclufion which he drew might really depend on the affociation of ideas.

Chap. 38.] [411]

Cия $\mathrm{P} . \mathrm{XXXVIII}$.

TASTE, AND ITS ORGANS.

The Tongue the Organ of Tafe-Deferittion of it.-Horus supplied with Nerves.-Mufles of the Tongue.-How Taffing is performed.

THE tongue has been alrearly cafually mentioned as in fome refpećts a very arcurate oregan of touch; but the fenfe to which it is mose parcicularly fubfervient is that of tafte. The palate is commorily confidered as the organ of tafte; but this is a vulgar error, for unlefs the fubfance applied tos the palate has fome degree of acrimony, no fenfation whatever is the confequence. 'The tonouc, an I more particularly at the point, and the fuperiur and the lateral parts of it, is the true orgin of cafte. The Rkin, wist which the tongue is covered, is remarkably foft and thin, and is continually preferved mosift and varm. On the furface of this fkin papillæ, much larger than in any other part of the body, and of feyeral forts, are obseryable. The firt kind are few in number, and are placed at the back part of the tongue. Thefe are furrounded with a fmall furrow, and their form is almoft that of an inverted cone. They are not of a very delicate ftructure, nor are they much concerned in tafting. The fecond kind, which are fmalier and fofter than the preceding, and into which the firt gradually degenerate, have fome-
what of the form of a mufhroom; they are fcattered on the fuperior farface of the tongue, till, becoming more numerou: to:vards its 'fide ;, they are there difitributed in diverging lines. The third kind are of a conical form, are mixed with the other kinds, and are vely generally diftributed over the whole fuperior part and firdes of the tongue. They are endued with a veiy acure power of fenfation, and are the true organs of tafte. Thefe conical papillæ differ geady in their fize; and fome of them are extremely minute. On an accurate examiration we alio find fome filiform papille placed in the interflices of the c-nical.

The fe papille, befides being copiouny fupplied with blond, are alfo furnined with nerves, of which the reyrac reccives more, in proportion to it. bulk, than perhaps any rither part of the body. The extaling arteries, which are numerouny diftributed on the furface of the tonorye, have no further concern in the fenfe of tafting, than as they help to moition and keep the papille in a fit flate to perform their office. On the upper, and towards the back part of the tongue, are two or three ope nings, which pour out a mucous fluid. The papillae in man are covered with a thin and femipellucid membrane, which anfwers the purpofe of an epidermis. In many animals, as thofe which feed on grafs, the tongue is covered with a very rough and thick membrane, perforated fo as to admit the diffolved food to the papille, which are placed benearh it.

Under the papilla is placed the mulcular fubftance of the tongue. The muicles, which conititute this fubitance, are fo numerous, and are fo confounded

Chap. 3.]
founded with each other and with the fat, that the moft diligent anatomift is unable to trace the curure of many of thein. By the help of thefe mufcles the tongue is moveable in all cirections, and may be rendered booad, narrow, or hollow, at pleafure. The tongue is very plentirully fupplied with bioodveffels.
A cirsumfance univerfally necefary to a body being tafted is, that it fhould be diffllved in the faliva, and in that ftate applied to the papille.

Сняр. XXXIX.

§MELLING, AND ITS ORGANS.

Final caufe of this Senfe.-Lefs acute in Man than in fome otber Animals.-Diferent alfo from theirs.-Defcription of the Organs of Scent.-Comparifon betrueen this Senfe and that of Taffe.

AS one principal ufe of the organs of fmelling is to affift animals in obtaining proper food, and to guard them againft what is improper, they are univerfally placed near the mouth. The or' gans of fmell differ, like thofe of the other fenfes, according to the deftination of the animals to which they belong. This fenfe in man is far lefs acute than that of many other animals; thus, the dog poffefles a power of fmelling, of which we can fcarcely form a conception, and which we happily do not poffefs. Birds of prey, however, are faid to have the fenfe of fmelling fill more acute than dogs. The fenfe of fmelling in man is fuch as to fit him for deriving enjoyment from a diverfity of fcents, particularly thofe of flowers, to which dogs and other animals, which do not feed on herbs, feem quite infenfible.

The organ of fmell is a foft, vafcular, porous membrane, furnifhed with papillx, which is fpread on the internal furface of the noftrils. On this membrane are diftributed a great number of nervous fibres, which procced chiefly from the firft pair of nerves, and which pafs through the ethmoid bone.

Chap. 39.] Sympatby with the Organ of Tafte. 415 From the extreme tenuity of the epidermis, which involves the nerves and blood-veffels in this membrane, hemorrhage from the nofe is more frequent than from any other part of the body.

In order to render this fenfe more acute, the internal cavity of the nofe is variouny contorted, and enlarged by a communication with feveral adjoining cavities, fo as to increafe very much the furface on which the fentient membrane is diftributed. The cavities with which the noftril communicates are cailed finufes; there are the frontal, which is feated in the frontal bone under the eye-brows; the ethmoid, which is a fpongy cavity in the echmoid bone ; and the maxillary, which is chiefly furmed in the maxillary bone, and lies immediately above the double teeth of the upper jaw. In animals, which fmell more acutely, thefe provifions for enlarging the internal furface of the noftril are ftill more remarkable.

The membrane of the nofe is defended and moiftened by a vifcid mucus; and fo neceffary is this to fmelling, that wheni it is deficient, this fenfe is always imperfect. The noftrils are furnifhed with mufcles, by which they are dilated, when, in order to diftinguifh fcents more accurately, we draw in a large quantity of air. A conliderable difference between fmelling and tafting is, that the former is only acted on by the invifible effluvia of bodies which float in the air, the latter, by matter more condenfed and vifible. There feems, however, to be a greater fimilitude between tafting and finelling than between any two of the other fenfes; and when either of them is injured the other commonly fuffers with it.

С н А P 。

[416] [Book IX.

Снар. XL.

HEARING, ANDITS ORGANS.

Defri:ption of the Ear:-Admirable Struaure of this Organ for conveging and echoing Sound.-Manner in whbich the Pulfes of Air are conveycd to the Ear.- Communication hy the Euffacbian: Tube- Rerfon rwby Perfons who liffin attentively open their Moutlos. - The Membrana Tympani probably the griat Infrument of barring.

A
S by the fenfe of fmelling we diftinguifh certain particles floating in the air, fo by that of hearing we difonver the motions and vibrations of the air itfelf. The parts of the ear are diftinguifhed into external and internal. The former of thefe divifions comprehends all thofe parts which we are able to oblerve without diffection, and which are feparated from thofe of the internal ear by the membrana tympani, improperly called the drum of the ear, as it is only a membrane ftrctched before the entrance of the cavity which is properly the ear. The external ear, which from its refemblance to a certain lea-fhell is called concba, is a cartilaginous funnel of an irregular oval form, moveably connested to the head by ligamients, mufcles, and cellular fubftance. The mufcles with which the ear is furnilhed, and which are much émployed by quadrupeds, are of little or no ufe to man.

Different parts of the external ear are known by different names; its upper cartilaginous-part is
called the ala or wing, to diftinguifh it from the foft and pendent part below, called the lobe; its outer border or circle is called the belix, and the femicircle within this, the antibelix. The moveable carcilage, placed immediately before the opening of the ear, is named the tragus, and an eminence oppofite to this, at the extremity of the intibelix, is called the antitragus. The concha, becoming narrower, terminates in the meatus auditorius externus, the external auditory canal. Into this are continued the cutis and epidermis, which, as they enter it, become much thinner and more fenfible, and are furnifhed with minute hairs, by which warning is given when any infect has found admittance, or when any injurious fubfance requires to be removed. This paffage, and the membrana tympani, by which it is terminated, are moiftened by a vifcid fecretion called the wax, which by ftagnation becomes hard, and, when neglected, fometimes accumulates to fuch a degree as to occafion deafnefs. If we were to examine all nature for a contrivance proper for augmenting and echoing founds with the utmolt force and the greateft exactnefs, we thould find the ear beft formed for thefe purpofes; by its admirable ftructure it receives founds of all kinds, admits the greateft quantivy in the fimalleft fpace, and echoes each back withour confufion.

The external ear in different quadrupeds is differently framed, but always adapted to the creature's manner of life. In flape it commonly refembles the oblique fection of a cone from near the apex to the bafis. Hares, and fuch other animals as are daily expofed to injuries from beafts of prey, have large

[^20]ears directed backwards, their eye warning them of any danger before; rapacious animals, on the other hand, have their ears placed directly forwards, as we fee in the lion, cat, \&xc. The flow hounds, and other animals that are defigned to hear moft diftinctly the founds coming from below, have their ears hanging downwards, or their ears are flexible, becaufe they move their head for the moft part with greater difficulty than man. Man again, who muft equally hear founds coming from all quarters, but efpecially fuch as are fent from about his own height, has his external ear placed in a vertical manner, fomewhat turned forward. . In hort, wherever we fee a peculiarity in the make of this organ in any creature, we fhall, with very little reHection, difcover this form to be more convenient for that creature than another. The animal alfo has the power of directing the cone of the ear to the fonorous body without moving the head *.

The membrana tympani is a membrane confifting of feveral lamine. Externally there is the epidermis, under this the vafcular cutis, and, laftly, a dry, elaftic, fhining, and pellucid fubftance. Thefe laminæ are connected by their cellular fubftance. The membrana tympani is never naturally perforated, and the paffage of fmoke from the mouth through the external ear, mentioned by fome authors \dagger, is fabulous, except, perhaps, in fome cales, where a perforation had been accidentally made by violence or difeafe. By the action of particular mufcles, the membrana tympani is pre*

[^21]+ By Dr. Goldfinith in particular.

Chap. 40.] Drum of the Ear. 419
ferved in a degree of tenfion fit for receiving the impreffions of the air. Under it runs a branch of the fifth pair of nerves, called the chorda tympani.

The membrana tympani is ftretched before a roundifh cavity of the os petrofum, hence called the tympanum or drum, and which is about feven or eight lines wide, and half as many in depth. This cavity is increafed in the adult by a communication with the cells of the maftoid procefs, which do not exift in the foetus. Within, the tympanum is lined by a moift and vafcular membrane. The tympanum communicates with the cavity of the fauces, by means of the meatus auditorius internus, or Euftachian tube. This canal, which is parcly bony and partly cartilaginous, begins by a very narrow opening at the anterior and almont fuperior part of the tympanum, increafing in fize as it advances towards the cavity of the fauces, where it terminates by an oval opening behind the noftrils.

Within the tympanum are lodged the little bones of the ear, which are four in number, and from their form have received the foliowing names, 1. The malleus or hammer. 2. The incus or anvil. 3. The roundifh or oval bone. 4t The ftapes or ftirrup.

The body of the malleus is placed in the upper part of the tympanum, and a long procefs, called the handle, defcends between the lamina of the membrana tympani, where it is accurately fixed. It is articulated with the incus by means of two projecting ridges and a furrow between them.

Ee2
The

The incus, which confifts of a body and two legs, and is not unlike a tooth with a double root, exceeds the other little bones of the ear in fize and ftrength. Its body is connected with the malleus; its fhorter leg is placed at the entrance of the canal, which leads to the cells of the maftoid procefs; its longer leg takes the fame direction with the handle of the malleus, to which it is attached by a ligament, and being bent inwards at its termination, receives the fmall oval bone, and by means of this is united to the ftapes.

The refemblance of the ftapes to a ftirrup is fo ftrong, that it can fearcely efcape obfervation. Its hcad, which is formed by the union of its two legs, is hollowed for the reception of the little oval bone which conneets it with the longer leg of the incus. The two legs of the flapes are bent nearly into a circle, and where they unite at the bafis, cover the feneftra ovalis. The ftapes is fituated in a part of the tympanum, feparated from the other parts by a particular membrane.

The ftapes and malleus are each of them furnifhed with a litrle mufcle, called, from the bones to which they belong, flapedius and tenfor tympani. The firft of thefe, which is the fmalleft diftinct mufcle in the body, arifes from a little cavity at the pofterior and upper part of the cavity of the tympanum, and its tendon is inferted at the back part of the head of the flapes. 'This mufcle, which draws the ftapes obliquely upwards, affifts in ftretching the membrana tympani. The other mufcle is more remarkable, and as it operates like the former in ftretching the membrana tympani, has more parti- cularly obtained the name of tenfor tympani. It arifes from the cartilaginous extremity of the Euftachian tube, and is inferted into the back part of the handle of the malleus, which it helps to pull inwards, and by that means to ftretch the membrana tympani.

That part of the ear which is fituated behind the tympanum is called the labyrinth. The labyrinth is feparated from the tympanum by a bony partition, and only communicates with it by means of two openings of rearly equal fize, one of which is the feneftra ovalis, which is fhut by the bafis of the ftapes, the other the feneftra rotunda, which is clofed by a continuation of the membrane which lines the cavity of the tympanum.

In the labyrinth of the ear are fituated the veftibule, the three femi-circular canals, and the cocilea.

The veftibule or porch is a cavity of an irregular roundifh form, and is placed nearly in the center of the os petrofum, between the tympanum, the femicircular canals, and the cochlea. It is open on the fide of the tympanum by means of the feneftra ovalis, and communicates with the upper portion of the cochlea by an oblong foramen, which is under the feneftra ovalis, from which it is feparated only by a very thin partition.

The femicircular canals in the infant are formed of a diiftinct bony fhell, but in the adult coalefce with the firm os petrofum, and are three in number. They form rather more than femicircles, and open at both ends into the veftibule. Only five open-

$$
\text { E e } 3
$$

ings, however, are obferved, fince two of the canals are united at one termination.

The cochlea, fo called from its refemblance to the Shell of a fnail, is formed by a conical nucleus and circumvolutions of thin bony lamellæ, whiclz perfirm two complete circles and an half before they terminate at the apex. The canal of the cochlea is divided by a feptum, into two parts, which are called the fcalæ; of thefe one hegins from the feneftra rotunda, and is called the fcala tympani, the other from the veftibule, and is called the fcala veftibuli. The feptum, which divides the fcala from each other, is partly bony and partly membranous; it is deficient at the apex of the cochlea, where the cavities of the fcalæ communicate. The bony lamella which feparates the two canals is exceedingly thin, and fills about two thirds of the diameter of the canal. The reft of the feptum is compored of a moft delicate membrane, which lines the whole internal furface of the cochlea. The portio mollis of the feventh pair of nerves furnifhes a film of medullary matter to the whole internal furface of the veftibule, the femicircular canals, and the cochlea. Every part of the labyrinth is alfo fupplied with an aqueous exudation, which is fuppofed to receive and propagate to the nerves the vibratory motions imparted by the air. When this fluid is collected in too great quantity, or is compreffed by the ftapes, it is fuppofed to efcape through two minute canals or aqueducts, lately defcribed by Dr. Cotunni, a phyfician of Naples. One of the aqueducts opens into the bottom of the yentibulum, and the other into the cochlea, near the

Chap. 40.] Wby deaf Perfons open their Moutbs. 423 feneftra rotunda. They both pafs through the os petrofum, and communicate with the cranium; they are lined with a membrane, which is fuppofed to be a production of the dura mater.

The manner in which found is propagated by pulfes or undulations of the air has been fully, and, I truft, clearly explained in a preceding part of this work ${ }^{*}$; and from what has been now ftated it will appear, that the eat is an organ admirably adapted for the reception of thefe imprefions. Sound is, however, not merely conveyed by the external cavity of the ear; bur by means of the Euftachian tube, the air finds admittance to the cavity of the tympanum, and the effect of the vibrating air, entering the mouth, may be conveyed to the ear. Hence we perceive the reafon why perfons who liften very attentively, and perfons affected with partial deafnefs, open their mouths. When we breathe, the air, received by this paffage preffes the membrana tympani outwards, and when we make a very full infpiration, as in yawning, this happens to fuch a degree as to prevent the impreffion of founds from without, and occafions a temporary deafnefs.

Notwithftanding the labour of anatomifts in tracing the intricate, fingular, and very curious ftructure of the ear, they have never been able to difcover the peculiar ufes to which all the feveral parts are fublervient. That the concha is defigned to catch and reverberate to the auditory tube the vibrations of the air we are certain, from the analogous effect of a fimilar organ, the ear-trumpet. The membrana tympani, and the little bones of the

* See book v, chap. 10.

$$
\mathrm{Ee}_{4}
$$

ear, are faid to have been deftroyed by difeafe, without depriving the patient of hearing. I cannot, however, fuppofe, that any part of the ear is unneceflary. It therefore feems reafonable to believe, that the membrana tympani, which is ftretched acrofs the paffage to which the vibrations of the air are directed, is defigned to receive them, for which ufe, by its elaftic nature, it is admirably fitted. The malleus is attached to the membrana tympani, the incus to the malleus; the oval bone connects one leg of the incus to the head of the ftapes, and the bafis of the latter bone preffes on the feneftra ovalis. From this ftruture we can fearcely draw any other conclufion, than that the tremulous motion excited in the membrana tympani by the impreffions of the air are propagated through the contents of the tympanum, and imparted to thofe of the labyrinth, which are lined with a delicate nervous film, on which they may operate fo as to produce the ideas of found, When, however, we contemplate the various parts of the labyrinth, we cannot affign any reafon for fo complex a ftricture, and can only admire it as one of the wonders of creation. The analogy of other animals, indeed, inftructs us in one particular, viz. that the cochlea is not effential to hearing, fince birds and fifh hear accurately without this part; but why it is not effential remains ftill a queftion.

To confefs, however, that we are ignorant of the means by which we perceive founds, is not more humble than we muft alfo be with refpect to the information derived from the other fenfes. Why a particular object affects our fenfes in a particular

Chap. 40.$]$

manner, is concealed from us by circumftances which our undertandings cannot difcover. As objects appear green when feen through a green glafs, fo is every object modified by the medium of the fenfes.

It is natural, however, to the human mind, to be defirous of perceiving things as they really are, and this may be an enjoyment provided for us in a future ftate, when we may regard the earth merely as a planet, and the fun as a fixed ftar; and when the mind, liberated from the fetters of the body, and endued with new faculties, may at once contract its attention to the laws which regulate the exiftence of the minuteft animal, and extend its views to the comprehenfion of all the valt bodies which conflitute the folar fyftem.

[426] [Book IX.

Снар. XLI.

$$
S \text { I G H T. }
$$

Defcription of the Eje.-Eyes of difierent Animals.-Morv Vifor: is performed. - How all the Parts of an Object are comprelended by the Eye.-An Image of every Objeer painted on the Retina of each Eye, and yet only one Object perceived. -Caule and Care of Squinting.-T be Sergie of Sight limited.-By rubat Means awe judge of Difance.-State of the Sight at different Ages.-Cautionis for preferving the Sight.

THE eyes, thofe exquilite organs which raife the perceptive powers of the mind to fome comparifon with thofe of fuperior beings, and which in an inftant of time admit impreffions from an almoft infinite variety of objects, are in their ftructure extremely fimple. They are fituated in thofe two cavities, the orbits, which afford them protection from a great variety of external injuries, and contain a quantity of fat, which anfwers the purpofe of a foft cufhion, on which they may reft, and perform their different motions with eafe and fafety. The globe of the eye is immediately covered by the eyelids, which are continuations of the common integuments of the body, doubled inwards, and attached to the eye, by which they produce what is called the tunica conjunctiva. Where the two eyelids are united together, they form the canthi, or angles of the eyes; that next the nofe is called the internal large or inferior angle ; the other, on

Chap. 4x.] StruElure of the Eye.

the contrary, which is next the temples, is called the external finall or fuperior angle. The edges of both eyelids are furnifhed with rims of cartilage called the tarfi ; on the margins of thefe, which are called ciliary edges, are fituated febacious glands, which difcharge an oily fluid for the purpofe of preventing adhefion. The ciliary edges of the tarfi are furnifhed with eye-lafhes. The chief ufe of thefe feems to be, to prevent duft, and other matters floating in the atmofphere, from falling into the eyes.

At the internal angle of the eye is fituated the caruncula lachrymalis, which is a fmall reddinh oblong body. This fubftance feems to be glandular. By the aid of a microfcope we oblerve upon it a great number of finall hairs, covered by an oily yellowifh matter. On the globe of the eyc, near this glandular body, is a femilunar fold formed by the membrana conjunctiva. This fold, which is called the membrana femilunaris, is fhaped like a crefcent, the two points of which anfwer to the puncta lachrymalia, which are the beginnings of a canal terminating in the cavity of the noftrils.

The furface of the eye is conftantly moiftened by a very fine limpid fluid, called the tears, which is chiefly, and perhaps wholly, derived from a gland, fituated in a fimall depreffion of the os frontis, near the external angle of the eye. Its excretory ducts pierce the tunica conjunctiva juft above the cartilaginous borders of the upper eyelids. As this fluid enters the eye at the fuperior angle, it naturally defcends towards the inferior, and is alfo frequently fpread over the furface of the eye by the motion of the eyelids. When it arrives, after thus having wafhed the eye, at the internal angle, it is conducted by the membrana femilunaris into the puncta lachrymalia, which lead into the facchus lachrymalis, from which it is ultimately difcharged into the nofe.

When the eye is irritated by any extraneous fubfance, the tears are difcharged in greater quantity, and thus ferve as a defence to this tender organ, and fometimes wath away the caufe of irritation, or facilitate its removal. Affections of the mind alfo fometimes occafion an increafed flow of tears; the efficient caufe of this connection we cannot trace, but the final caufe feems to be to excite fympathy, and urge the unfecling heart to acts of mercy and benevolence.

The ball of the eye is a cafe of a globular form. It confifts of three coats, an external one called the fclerotica, which is white and gliftening like the tendon of a mufcle; an intermediate one, abounding with blood-veffels, called the choroides; and an internal coat, called the retina, which is an extremely tender film or network, formed by the expanfion of the optic nerve. This defcription, however, applies only to the pofterior and lateral parts of the eye, for at the fore part of the cye, inftead of the opake tunica fclerotica, we obferve a projecting tranfparent circular part, continued from the fclerotica, which from its fubftance being tranfparent like horn, is called the cornea. This portion is fomewhat more convex than the fclerotica, and reprefents the fegment of a fmall fphere added to the fegment of a greater, or, to exprefs the fame idea in more, familiar language, it may be confidered as refembling
refembling a convex watchdglafs, fixed on the lefs convex furface of a watch cafe.

The turica choroides extends from the back part of the eye as far as the termination of the fclerotica, where it is firmly connected by means of a white ring projecting inwards, and called the ciliary circle or ligament. From this edge proceeds a very fine weblike membrane or curtain, called the iris. Its difference of colour in different perfons is a matter of common obfervation. In the middle of the iris is an opening which always appears black, and which is rendered narrower or wider by the contractile powers of the iris. This opening is called the pupil, through which the rays of light are admitted to the internal parts of the eye.

The tunica choroides is defcribed by fome authors as confifting of two laminæ. This defcription, however, applies much better to the eyes of fome animals, particularly to thofe of fheep, than to thofe of man. Thofe who fuppofe the choroides to confilt of two laminæ, defcribe the external one as terminating at the ciliary ligament, and the internal one as extending further to form the iris. The iris itfelf is defcribed as confifting of two laminæ, and it is very certain that two fets of fibres may be obferved. Thefe are fuppofed to be mufcular, and from the mobility of the iris there feems no reafon to doubt of their being really fo. Some of the fibres are orbicular, and lie round the pupil; others are ftrait, and extend from the circumference of the iris to its center. The iris has motions of fuch a nature, that the pupil is contracted on the approach of a trong light, and is dilated in proportion as the
light is lefs vivid. By this admirable yet fimple contrivance, the eye adapts itfelf to the different proportions of light to which it is expofed. If the pupil was always as much conaracted as it is when expofed to the light of noon day, a weaker light, fuch as that of the moon, could not be admitted with fufficient freedom to anfwer any ufeful purpofe. On the contrary, if-the pupil was immoveably dilated, we might take advantage of the \{cattered rays of light, but fhould be diftreffed and blinded by the glorious effulgence of the fun. When a ftrong light fucceeds to darknefs, we are under a neceffity of clofing the eyc-lids, or of turning away the head, till the pupil has been accommodated to the change by the contractile powers of the iris.

The choroid coat is internally covered with a flimy fubftance of a dark colour, called the pigmentum nigrum. The epithet black, however, is not defcriptive of this fubfance in every race of animals. On the contrary, in the ferret the pigmentum is white, and this circumitonce enables that animal to fee in the dark, a faculty well adapted to its habits and mode of life. In man, diftinct vifion in a full light is a more ufeful quality than the power of diftinguinhing objects where the light of day is excluded. The reafon, therefore, of the black colour of the pigmentum is, probably, that thofe rays which pafs the retina, which is a fibrous fubftance, may be abforbed, whereas, when it is of a light colour, many of them are reflected and ftrike the retina, thus increafing the power of vifion where there is a deficiency of light, but producing too great an effulgence and glare in ordinary cafes. This reflection is very ob-
vious in the degree of illumination which proceeds from the eyes of a cat in a dark place *.

The pofterior part of the iris is of the colour of a grape, and was therefore by the ancients called the uvea. The eye being, therefore, every where provided within, except at the entrance of the optic nerve, with a lining of a dark colour, becomes a camera obfcura, and the light which is admitted through the pupil, and paffes to the bottom of the eye, is not difturbed with light refected from other furfaces.

The ball of the eye is filled with three fubftances, which differ from each other in confiftence, but are all called humours of the eye; they are the vitreous, the cryftalline, and the aqueous. See plate xv. fig. 1 , and 2 .

The vitreous humour was fo called from a fuppofed refemblance to melted glafs; it is a clear and gelatinous fluid, very much refembling the white of an egg. It fills about three-fourths of the globe of the eye, and extends from the pofterior part of the eye as far as the ciliary ligament. It is contained in a fine tranfparent capfule or membrane, and being dexterounly removed from the globe of the eye, preferves its confiftence for fome time, being fupported by its capfule, but afterwards runs off, and the capfule fhrinks by degrees. The thin capfule which furrounds the vitreous humour fends off a number of membranous proceffes into the virreous fubftance, where they form cells, which communicate with each other, and afford a greater degree of firmnefs and tenacity to the whole mals.

[^22]The anterior part of the vitreous humour is excavated for the reception of the crytalline. This body has the confiftence of very firm jelly, and has the form of a lens more convex behind than before. It is moft properly denominated the cryftalline lens, and is invefted with a capfule, which is derived from that of the vitreous humour, or at leaft connected with it. Steno obferved, that the lens was compofed of concentric lamellæ, and Zinn has difcovered radiated ftreaks of a pearl colour, dividing it into little triangles. The colour and confiftence of the cryftalline humour varies at different ages. Till the age of thirty it is very tranfparent, and almoft without any colour. It afterwards becomes yellowifh, and that yellownefs gradually increafes. Till the age of twenty the confiftence of the lens is generally uniform throughout ; from this time it becomes hardeft in the middle, and this hardnefs gradually increafes, and extends towards the furface *.

The fore part of the eye is filled by a fluid tranfparent like the others, but as thin as water, and it is therefore called aqueous; this occupies all the fpace between the cryftalline lens and the prominent cornea. The iris floats loofely in this fluid, and divides

[^23]Chap. 4.1.] Eyes of different Animanis.
it into two parts̀ called chambers, which communicare with each other through the pupil. The pollerior chamber is that pace contained between the pofterior furface of the iris and the lens; the anterior is that between the anterior part of the irls and the corne:i.

The eye receives its blood from the internal carotid ariery. The optic nerve does not cuter it immediately behind the pupil at its pofterior part, but rather towards the nofe, fo that the diftance between the pupil and optic nerve is greater when meafured round the external file of the eye next the forehead, than when the internal furface is meafured next the nofe. At that part of the eye where the optic nerve enters, no fenfe of vifion can be excited.

The mufcles of the eye have been already deferibed in another part of the work. For the human eyc, fee Plate XV. Fig. I, and 2.

The father of the prefent Dr. Monro, of Edinburgh, has publifhed, in his comparative anatomy, fome excellent remarks on the variety in the eyes of difficent animals, than which no more ftriking inftance 'can be produced of the wifdom and defign which pervades creation.

- All quadrupeds have, he obferves, at the internal canthus of the eye, a ftrong firm membrane with a cartilaginous edge, which may be made to cover fome part of their eye; and this is greater or lefs in different animals, as their eyes are more or lefs expofed to dangers in fearching after their food. This menbrana niztitans, as it is called, is however not very large in all thefe animals. Cows and horfes have it Vol.IIl. Ff
fo large as to cover one half of the eye like a curtain, and at the fame time it is tranfparent enough to allow abundance of the rays of light to pals through it. Fifhes have a cuticle always over their eyes, as they are ever in danger in that inconftant element, the water. In this therefore we may obferve a fort of gradation.
- All quadrupeds have a feventh mufcle belonging to the eye, called Jufpenjorius. It furrounds almoft the whole optic nerve, and is fixed into the fclerotic coat as the others are. Its ufe is to fuftain the weight of the globe of the eye, and to prevent the optic nerve from being too much ftretched, without obliging the four ftraight mufcles to be in a continual contraction, which would be inconvenient: at the fame time this mufcle may be brought to affint any of the other four, by caufing one particular portion of it to act at a time.
' The next thing to be remarked is the figure of the pupil, which is different in different animals, but always exaclly accommedated to the creature's way of life, as well as to the different fpecies of objects that are viewed. Man has it circular, for obvious reafons: an ox has it oval, with the longeft diameter phaced tranfverfely, to take in a larger yiew of his food: cats, again, have theirs likewife oval, but the longeft diameter placed perpendicularly ; they can either exclude a bright light altogether, or admit only as much as is necefiary. The pupil of different animais varies in widenefs, according as the internal organs of vifion are more or lefs acute: thus cats and owls, who feek their prey in the night, or in dark places (and condequently

Chap. 4I.] of different Animals.
muft have their eyes fo formed as that a few rays of light may make a lively imprefion on the retina), have their pupils in thie day-time contracted into a very narrow fpace, as a great number of rays would opprefs their nice organs; while in the right, or where the light is faint, they open the pupil, and very fully admit the rays. In the fame way, when the retina is inflamed, a great number of rays of light would occafion a painful fenfation; therefore the pupil is contracted : on the contiáry, in dying people, or in a beginning amaurofis, it is generally dilated, as the eyes on fuch occafions are very difficultly affected, and in fome mealure infenfible. See Plate XV. Fig. 3, 4, 5 .
' The pofterior part of the choroid coat; which is called tapetum, is of different colours in different creatures. For oxen, feeding moftly on grafs, have this membrane of a green colour, that it may reflect upon the retina all the rays of lighe which come from the objects of that colour, while other rays are abforbed: thus the animal fees its food better than it does other objects. Cats and owls have their tapetum of a whitifh colour; and for the fame reafons have the pupil very dilatable, and their organs of vifion acute: and we fhall find; that all animals fee more or lefs difinctly in the dark, according as their tapetum approaches nearer to white or black colour. Thus dogs, who have it of a greyifn colour, diftinguifh objects better in the night than man, whofe tapetum is dark brown, and who, I believe, fees wort in the dark of any creature; it being originally defigned that he fhould reft from all kinds of employment in the night-time. The difference then of the colour of the tapetum, as Ff2 indeed
indecd the fabric of any other part in different creatures, always depends on fome particular advantage accruing to the animal in its peculiar manner of life from this fingularity*'?

It was neceffary, in a former part of this work, to notice the fubject of vifion, in defrribing the effects and phenomena of light \dagger. The eye was then mentioned as a mere optical inftrument, but after the particular defcription of that organ, which has now been given, a more particular inveftigation of the fenfe of fight feems to be required; and fhould the reader find any thing like repetition in what will now be fubmitted to him, his candour will, I doubt not, pronounce my apology for cindeavouring to render as clear as poffible a fubject which is at once both important and difficule to be underflood.

It has been fufficiently explaineci, that from every point of a vifible object the rays, or rather pencils, of light are cmitted or rêhected in every direction; but to produce vifion, it is neceffary that they fhould be condente or converged to fuch a point as to make a furcible imprefion on the retina. Thus from the luminous body A ([iig. 6.) the rays r, r; r are fent in various directions. Thofe which Gall upon the eranfparcnt cornea C C are there refracted in fuch a manner as to enter the pupil at p, and in pafting the crytulline lens or humour they fuffer a fecond refraction, and are converged to a point or focus the the point ? on the retina. Now it is eqident, that io the mys could

[^24]Fig. 1.

Fig. 2. Iluman Eyve.

Fiog. 5. C'as.
Fiig. 4. Bird

(

have paffed the humours of the eve in their natural direction, that is in the direction of the cone or pyramid C, A, C, they would have made upon the retina a very exienfive but feeble imprefion, fuch as we know by experience could not produce diftinct vifion; to obviare this it is appointed by the all-wife author of our exiftence, that by the force of the refraction whi-h they fuffer in the eye, they fhould form arother cone oppofed to the firft at its bafe, and the apex of which is at a, and thus an imprefion fufficiently forcible to produce diftinet vifion is made on the retina.

In the preceding inftance, the luminous body A was confidered as a point, and what has been faid of it will apply to every point of a vifible object, which is capable of eranfinitting or reflecting to the cye a pencil or collection of rays. Thus we may eaffly fuppofe that from every point of the arrow A, D, B, (Fig. 7.) pencils of light may be tranfinited ; thele, like all pencils or collections of rays coming from a point, will diverge, and will fall upon the eye in the form of cones oi pyramids, fuch as A, M, C. from the point $A ; D, e, i$ from the point D ; and $\mathrm{B}, \mathrm{C}, \mathrm{N}$. from the point B . If the eye, therefore, is in a proper ftate, the divergent rays proceeding from the point D will be unitad together into one pencil or mafs, fuch as they were when th.y firft proceeded from the object, at the point d, upon the retina; the divergent rays, which fall more obliquely from the point ' A, will be united on the retina at the point a; and thofe which proceeded from B will, by the fame rule, be converged and meetat b. Hence it is evident, that by means Ff 3
of this refraction there are certain points at which the rays of light, after paffing the puphl, crofs each other, and the image which is formed on, the retina is confequently inverted.

If the humours of the eye, through age or weaknefs, have fhrunk or decayed, the cornea will then be too flat, and the rays not being fufficiently bent or refracted, arrive at the retina before they are united in a focus, and would ineet, if not intercepted in fome place behind it, as in Plate XVI. Fig. 8. They therefore do not make an impreffion fufficciently forcible, but form an indiftinct picture on the bottom of the eye, and exhibit the objeft in a confufed and imperfect manner. This defect of the eye is therefore remedied by a double convex lens, fuch as the common fpectacle glaffes, which, by caufing the rays to converge fooner than they otherwife would, afford that aid to this defect of nature which the circumflances of the cafe may require, the convexity of the glafs being always proportioned to the deficiency in vifion.

If, on the cuntrary, the cornea, is too convex, the rays will unite in a focus before their arrival at the retina, as in fig. 9 , and the image will alfo. be indiftinct. 'This defeet is remedied by concave glaffes, which caufe the rays to diverge, and confequently, by being properly adapted to the cafe, will enable the eye to form the image in its proper place.

As the direction in which the rays crofs each other bears a due proportion to the angle in which they are tranfmitted from the object to the eye, it is evident that the image formed upon the retina
will be proportioned to the apparent magnitude; and thus we have our firlt ideas of the fize and diftance of bodies, which, however, in many cales are corrected by experience. The nearer any object is to the eye, the larger is the angle by which it will appear in the eye, and therefore the greater: will be the feeming magnitude of that body. This fact it will not be difficult to explain. Suppofe the object H K (fee Fig. Io.) to be at a hundred yards diftance, it will form an angle in the eye at A. At two hundred yards diftance, the angle it makes will be twice as finall in the eye at B. Thus to whatever moderate diftance the object is removed, the angle it forms in the eye will be proportionably lefs, and therefore the object will be diminifhed in the fame proportion.

From fome late experiments made by Dr. Hofach and Mr. Ramfden, it appears, that the power of changing the focus of the eye, and adapting it to different diftances, does not refide in the cryitalline lens, but in the cornea : that the cornea is compofed of laminx; that it is elaftic, and capable of being elongated one eleventh of its diameter, and of contracting to its former length by its own exertions; and laftly, that the tendons of the four itrait mufcles of the eye are continued to the edge of the cornea, and terminate or are inferted in its external lamina. By the fame experiments it was found, that in changing the focus of the eye from fecing with parallel rays to a near diftance, there is a vifible alteration produced in the figure of the cornea, which renders it more convex; and the alte- Why Objerts aie Jeon uprigbt. [Book IX. ration by which the cornea is brought back to its former ftate is equally vifible *.

Artificial cyes are fold by the opricians, in which all the humours are made of different kinds ef gials, and may be feparated at pleafure. At the back part, where the retina is fuppofed in the natural eye to receive the converged rays, is placed a piece of ground glafs, where the image from the opporet objects is painted in an inverted pofition, as in a camera oblcura. The fame cffedt may be produced with a matural eye, and the nature of vifion may be thus experimentally demontrated: if a bullock's eye is thiken frefh, the pofterior coats dexterouny removed even to the vitreous humour, and if a piece of white paper is then'placed at the part, the imaye of any bright objeet which is placed before the cye will be feen diftinctly painted on the paper, bet in an inverted pofition.

It has been a matter of much doubt and difpute by what means it happens that we fee every object in its natural upright pofition, when we know it to be inverted on the object of fenfation. To this the mofe fatisfactory anfiver that can be given is, that we do not fee the picture which is formed at the bottom of the cye, but the object ittelf. The picture, or rather the impreffion made on the retina, is the means of feeing, and therefore it does not appear of material confequence on what part of the retina the impreffion is made. We in fact fee the image in the direction of that ray which conveys to us the fenfation, or rather in the direction of the axis of that pyramid, which a pencil of d_{i-}

Fiey. 7o.

1

Chap. 4.I.] Objects feen fingle by two Eyes. 445

 vergent rays forms in proceeding from any point of an object. Thus in Fig. 7. we fec the point of the arrow (which is indeed depicted in the lower part of the eye) in the direction of the line $a, \mathrm{~A}$, that is, in its proper upright pofition. On the contrary, we fee the other extremity of the arrow (which is painted on the fuperior part of the retina) in the direction of b, B, that is at the lower end of the object. However, therefore, the image, which is formed, may appear inverted to a perfon infpecting a natural eye, as in the preceding experiment, fill the eye itfelf difcerns the objeet in its proper and natural pofition.As the rays of light are emitted or reflefted from a vifible objeet in all directions, it is evident, that fome of them from every part of it mult reach the eye. Thus the object A, B, C (Fig. 1r.) is vifible to an eye in any part, where the rays $\mathrm{A} a$, $\mathrm{A} b, \mathrm{~A} c, \mathrm{~A} d, \mathrm{~A} c, \mathrm{~B} a, \mathrm{~B} b, \mathrm{~B} c, \mathrm{~B} d, \mathrm{~B} e$, $\mathrm{C} a, \mathrm{C} b, \mathrm{C} c, \mathrm{C} d$, and $\mathrm{C} e$ can comc. But though rays are reflected from every point of the object to every point of the circumambient fpace, yet it is evident, that only thofe rays which pafs through the pupil of the eye can affect the fenfe; thefe rays give aifo the idea of different colours, according to the properties of the bodies which tranfmit or reflect them, upon the principles furmerly demonftrated.

It is very difficult to explain how it happens that two diftinct images are painted upon both eyes, and yet that we only perceive a fingle object. This difficulty has been attempted to be folved by having recourfe to the nower of habit; but 1 con-
fefs I cannot help being of opinion with Dr. Reid, that the correfpondence of the centers of the two eyes, on which fingle vifion depends, does not arife from cuftom, but from fome natural conftitution of the optic nerves. The cafe of the young man born blind, who was couched by Mr. Chefelden, and who faw fingly with both eyes, immediately upon receiving his fight, is vary properly adduced by that refpectable author in favour of this fuppofition. He alfo found, that three young gentlemen, whom be endeavoured to cure of fquinting, faw objects fingly, as foon as they were brought to direct the centers of both eyes to the fame object, though they had never been ufed to do fo from their infancy; he remarks too, that there are cafes in which the fulleft conviction of an object being fingle will never make the object appear fo, even by the longert practice, as in the cafe of looking through a multiplying glafs *.

In thofe who fquint, the diftance between the two pupils is confiderably lefis than in other perfons, for when the pupil of the undiftorted eye is feated in the middle of the aperture, as in looking direaly forwards, the pupil of the other eje is drawn clofe to the nofe, fo that the two axes are never pointed at the fame object, though the muicles fo far act in concert with each other, as to move both eyes the fame way at the fame inftant of time. Dr. Jurin obferves, that this vicious habit may cafily be contracted by a child, if he is laid in his cradle in fuch a pofition as to perceive the light with one cye only.

[^25]The moft common caufe of fquinting is, however, an inferiority in the fight of one of the eyes. Dr. Reid afferts, that having examined above twenty perfons, who fquinted, he found in all of them a defect in the fight of one eye. Four of them only had fo much of diftinct vifion in the weak eye as to be able to read with it, while the other was covered; the reft faw nothing diftinetly with the defective eye*.

When the eyes are equally good, we fee with both eyes more diftinctly than with one, by about a thirteenth part; but when the eyes are unequal in their powers, objects appear lefs diftinct with both eyes than with one., It is no wonder, therefore, that fuch perfons fhould chufe to make ufe of one eye only, and to turn the other afide; the weak eye, in this cafe, is generally turned to the nofe, becaufe in that fituation the direction of its axis is as diftant as poffible from that of the good eye ; and befides this, the nofe conceals many objects from its view.

This is, however, not the only caufe of fquinting; it is fometimes, though rarely, the effect of habit, as was intimated refpecting children being laid in the cradle with one eye turned from the light, or covered. When the eye that 〔quints is turned out-wards towards the temples, that caft of the eye is commonly the mere effect of habit.

If the eyes differ much in point of goodnefs, the cure will be extremely difficult. When they do not materially differ in this refpect, the proper and natural cure is to cover the good eye for fome

[^26]time;
time ; for in this cafe the diftorted eye is obliged to act, and to turn iffelf direatly to objects, which in a little time becomes natural and eafy to it. Eiven a very weak eye acquires flenemth 1 y exercife; perfons whofe fouinting feemed almoft incurable, having covered their grod cye for a few minutes only, have been themfeives firprifed to find the ftrength that their bad cye lad acquired by exercife evin fur that fhort perios. When the fquint ha:s procecded entirely from a vicious habit, a cure has been effe: ited by covering the good eye for a fortnight only *.
'The power of this fenfe are limitect, as well as thofe of every other fenfe :ind faculiy of man.
ift. The fight is very limited wih refpect to bodies in motion; for with a certain degree of velocity, as that of a cannon boll through the air, they are not vifible, unlefs very lumi: ous.

2d. The fame eflect is exemplified by the experiment of whirling a lighted coal, as was already intimated.

3d. If two cbjects unequally diftant move with the fame diegree of velocity, the more remete will appear the flow r. 4th. A vifible object moving with any velocity appears to be at reft, if the fpace defcribed in a fecond of time is invifible to the eye. Thus a near object, as the index of a clock, moving flowly, or a remote one, as a planet, moving fwifily, appears to be at reft. 5th. It is well l:nown, that when the eyc is proceeding flait forward, as in a boat at fea, a lateral object, either.

[^27]- Chap. 41 .] Ilow the Eye judres of Difance. 445. at reft, or moving not fo fart, appears to move the contrary way. 6th. If, however, the object is at a very great diftance, it will feem to go the fame way, as when a perfon runs by moonlight, the moon appears to accompany him. 7 th. If two or more objects move with the fame velocity, and a third remains at reft, it will appear in motion while the moving ones feem at reft; this is exemplified by the moon and the clouds.

There are fix natural methods, hy which we judge of the diftance of objects frum the eye. 1 ft . By the angle which is made by the optic axes. For want of this direction it has been obferved, that perfons who are blind of one eye frequently mifs their mark in pouring liquor into a glafs, \&c. 2ndly, and I think moft generally, by the apparent magnitude of objects. By depending upon this method we are very frequently deceived in our eftimates of diftance by any extraordinary large objezts, as in travelling to a great city, cluurch, or cafle, we fancy them nearer then they really are. This furnifhes us alfo with a reafon why animals and other fmall objects feen contiguous to large mountains appear exceedingly fmall; for we inagine the mountain to be nearer to us than it actually is. On the other hand, when we look dowa from a high building, the objects beneath us appear much finailer than they would at the fame diftance on the level ground; the reafon is plainly, becaute we have no diftinct idea of diftance in that direction, and therefore judge by the imprenions upon the retina, whereas cuitom has corrected our judyment in the other care. The third method of determining the diftance
of objects is by the force and vividnefs of the colours, and the fifth is analogous to it, namely, by the different appearance of the minute parts. When thefe appear diftinet, we judge the object to be near, and the contrary when they appear faint or confufed. 6thly, We are affifted in judging of the diftance of any particular objects, by the other objects which are interpofed. On this account, diftances upon uneven ground do not appear fo great as upon a plain; for the valleys, rivers, and other objects that lie low, are many of them loft to the fight. This too is the reafon why the banks of a river appear contiguous when the river lies low and is not feen ${ }^{*}$.
In children the pupil is ufually more dilated than in grown perfons. The reafon of this appears to be, that in childhood the cornea is more flexible, fo as to be very eafily bent into any curvature neceffary for diftinct vifion, and confequently the pupil has lefs occalion to contract. In grown perfons the cornea is ftiffer, they have therefore more necelfity to contract the pupil. In elderly perfons the cornea grows ftill more rigid; for this reafon they are obliged fometimes to hold the candle between the eye and the paper on which they read; and their doing fo is a direct indication that they begin to want fpectacles \dagger.

Children read much nearer than grown perfons, both becaufe their eyes are fmaller, and becaufe their cornea is more fexible. That elderly per-

- Effay on Vifion, quoted by Priefley.
+ Porterfield on the eye, quoted by Prieft. Cp. Per. 6. f. 12.

Chap. 4I.] Prefervation of Sight. 447

fons fee better at a great diftance than younger perfons is generally allowed.

It is a certain and very important fact, that long fightednefs may be acquired, for countrymen, failors, and thofe that are habituated to look at remote objects, are generally long fighted, want fpectacles fooneft, and ufe the deepeft magnifiers; on the other hand, the far greater part of the fhort fighted are to be found among ftudents, and thore who are converfant with fmall and near objects; every one becoming expert in that kind of vifion which is moft ufeful to him in his particular profeffion and manner of life.

Mr . Adams, in his very ufeful effay on vifion, has given fome rules for the prefervation of the fight, which, for the benefit of the ftudious reader, I have thought it proper to infert.
ift. Never fit for any length of time in abfolute gloom, or expofed to a blaze of light. From this rule may be deduced the impropriety of going haftily from one extreme to the other, whether of darknefs or of light, and it may be inferrel that a fouthern afpect is improper for thofe whofe fight is weak and tender. adly. Avoid reading a fmall print. 3diy. Do not read in the dufk, nor, if the eyes are difordered, by candle light. 4thly, The eye fhould not be permitted to dwell on glaring objects, more particularly on the firft waking in the morning. 5 thly. The long fighted fhould accuftom themfelves to read with rather lefs light, and fomewhat nearer to the eye than ufual, while thofe who are fhort fighted fhould ufe themfelves to read with the book as far off as poffible.

$$
\operatorname{CHA}
$$

$$
\left[\begin{array}{lll}
448 &]
\end{array} \quad[\text { Book IX. }\right.
$$

Сн^ар. XLII.

THE GESTATION ANDBIRTHOFANIMALS.

Varietres i,s the Production of Animals.-Protort. of Males to Females.-Grozesh of the Fcetus.-Oriparous ...simais.-Mode of Exij, we before Birth. -W'ing lit of a nazu born Infont.-Mif-
 that of Deaths in Infuwiy, v̛ఁ.

WE have hitherto been occupied in confidering the functions which relate to the exiftence and welfare of animals, let us now direct our attention to thofe which, amidft the decay of individuals, preferve the continuance of the fpecies.

Among the moft minute and imperfect animals, there are fome which may be multiplied from fiagments of the fame fuecies, as the pelypus; others grow from the bodies of thecir parents, and are in due Reafon fet at liberty to feck nourifhment for theniflves; fome almads, at a certain period of their exiftence, naturally divide into feveral parts, each of which afterwards becomes a whole animul of the fame race.

As we arcend in the feale of animal exiftence, a difference of fex peelents itfelf as a leading diftinsion. We find for e races of animak, of which every inctuvilual is poffeffed of both male and female orgms; wthers, an:ong which a fin le female breeds for a whole con munity, and amony which there are very few individual, polfefied of fexual organs.

Chap. 42:] Theories of Buffon and Spalanzani. 449

 organs. In general, however, about half the individuals of a fpecies are males and half females.It is in fome meafure foreign to the objects of the prefent work to enter on thofe theories with which philofophers have, amufed themfelves and their readers concerning the generation of animals. Independent of the indelicacy of the fubject, there is another ftrong objection to their introduction here ; fince thefe theories reft upon no other foundation than conjecture, and forne fallacious, and, I think, delufive microfcopical obfervations. I thall, therefore, content myfelf with referring the reader to the natural hiftory of the Count de Buffon, and for a direct contradiation of his theory to the Abbe Spalanzani. The former of thefe philofophers has derived the principle of animal exiftence from the male, and the latter from the female. The generation of fifhes appears, indeed, greatly to favour the theory of Spalanzani, for in that inftance at leaft, the rudiments of the young animals appear to be contained in the eggs or roe, which the female fifh firtt depofits; and the milt which is afterwards depofited by the male appears only to excite them into action and growth. If we admit thus much of his theory, however, we muft attend him a ftep further, and fuppofe that every female ovum in the ovarium of a female muft itfelf contain ovaria and ova, and by extending the fame idea we mult be led to conclude, that the rudiments of all the animals, which have exifted, do exift, or ever will exift, were originally contained in the ovarium of the firf female of the particular fpecies to which they refpectively belong. This has been therefore called the theory of involu-

Vol. III.
G g
tiOn_{2}
tion, and has been fuppofed equally applicable to animals and vegetables.

In the procefs of generation, the firt marks we fee, after impregnation, of the future progeny, is a minute being without limb or feature, connected by a cord to the internal furface of the uterus, and furrounded by very thin membranes. It feems formed, however, of two maffes joined together, the Jarger of which is the head and the fmaller the body. As the foctus advances in growth the body acquires a larger fize with refpect to the head, finall protuberances make their appearance on the body, which are the future limbs, and the features begin to manifeft themfelves. In this manner the foetus, gradually acquiring a more determinate ftructure, and more evident marks of the fpecies to which it belongs, is at length difengaged from the mother. In different fpecies there is great variety in the perfection of the animal at the time of hirth ; the young of the human fpecies is, perhaps, the moft backward of any in this refpect; for a child, when fix months old, is not fo able to provide for itfelf as a horfe or an afs at the age of as many days.

In many races of animals it fhould be obferved, particularly in birds, the growth of the foetus takes place out of the body of the mother. This is indeed the cafe with all animals which fpring from eggs, and in which we have a very favourable opportunity of obferving the progrefs of the foetus from its firt appearance till it has acquired that ftate of perfection at which it is hatched. During the whole period of its growth it is fupported by a limited quantity

Chap. 42.] while in the Egg. 451 of nourifhment contained within the $\mathrm{egg}-\mathrm{fh} h \mathrm{ll}$, and which is that part of the egg called the yolk.

The human fæetus is furrounded with three membranes; the external of thefe is vafcular, and is called the fpongy chorion; the middle coat, called the medis or true chorion, and the internal one, called the amnion, are not fo. Mr. Hunter has found the fpongy chorion to confift of two layers; that which lines the uterus he calls membrana caduca or decidua, becaufe it is caft off after delivery; the portion which covers the ovum, decidua reflexa, becaufe it is reflected from the uterus upon the ovum. The membrana decidua is, according to.Mr. Hunter, perforated with three foramina, viz. two fmall foramina, correfponding to the openings of the Fallopian tubes at the fundus uteri, and a larger one oppofite its cervix. The decidua reflexa becomes more thick and vafcular as it approaches the placenta, and conftitutes iss mate:nal part.

The foetus appears floating in a tranfparent fluid contained in the amnion, fufpended by the umbilical cord, and the head, being the largeft part, and the infertion of the umbilical cord being at a confiderable diftance from it, falls loweft; a circumfance very neceffary to fafe and eafy delivery. The foetus, when it has nearly obtained its growth, is curled up in an oval form; its back is round, and turned towards one fide of the mother, making that fide more protuberant; its chin is preffed againft its breaft; with its arms it embraces its knees, and its heels are clofe to its buttocks. A moft curious but fomewhat complicated branch of the animal oeconomy, is the means which nature employs for carrying on the

Gg2 nourifh-
nounimment of the foetus. I have already mentioned the umbilical cord, which connects the fæetus to the uterus. One end of this cord is connected to the fubftance called the placenta, and the other enters the mavel of the fartus. The placenta is a fpongy fubftance as broad as the crown of a hat, and about two fingers in thicknefs, and is commonly attached to the upper part of the uterus. The outer furface of the placenta is foft, tender, and fpongy, and commonly bloody, on account of its feparation from the veffl s of the uterus. Its internal furface, where it is corcrial by the membranes, is firm, gloffy, and beautiitul! marked with the ramifications of bloodveffiels. On the outfide the blood-veffels can fearcely be oblerved, as they are there very minute. On the oufficle of the placenta there is alfo an appearance like a divifion into lobes. The umbilical cord is grenerally inferted, not into the middle, but (b) wards the edse of the placenta, which facilitates its feparation after delivery. With the placenta, as has been fuppofed, the arteries of the uterus have a communication, by which, in the firft periods of geftation, the foctus reccives a ferous fluid, and in the latér periods a large quantity of blood.

It has alfo been taken for granted, that the arteries of the umbilical cord communicate with the veins of the uterus, and that thus a circulation of fluids is maintained between the foetus and the mother. Mr. Hunter, however, after numerous experiments, has adopted a different opinion. By a variety of trials by injection he finds, that fluids thrown into the veffels of the umbilical cord never get into thofe of the uterus; and on the other hand, thofe thrown
into the veffels of the uterus find no admiffion into thore of the umbilical cord; he therefure concludes, that the human placenta, as well as that of quadrupeds, is a compofition of two parts incimately blended, viz. an umbilical or infantile portion, and an uterine portion. The former, by maceration, is found to confint of the ramifications of the veffels of the umbilical cord, the other Mr . Hunter confiders as an efflorefcence of the internal furface of the uterus, which forms a membrane, fending numerous proceffes into the fubitance of the placenta; this latter is the membrana decidua. Mr. Hunter does not pretend to fpecify the nature of the union between the fe two portions of the placenta.

The veins of the placenta unite into a fingle trunk, which, leaving the placenta, enters the navel of the foetus. Two arteries, which are continued from the internal iliac arteries, pafs out at the navel of the foctus and enter the placenta; and thefe, with the yein above mentioned, conftitute the umbilical cord. By means of thefe arteries and veins, a communication is maintained between the foetus and the placenta. The umbilical veffels do not run in a direct courfe, but both the arteries and the vein are mutually twifted about each other. The umbilical cord paffes from the foetus to the placenta, through the liquor amnii. The winding courfe of thefe veffeis, and the elafticity of the fubftance which furrounds them, protect them in a great meafure from the bad effects which would otherwife happen, from their being ftretched or prefied, which might put a ftop to the circulation. Befides thefe veffels, however, there is another in brutes, called the urachus,

$$
\text { Gg } 3 \quad \text { which }
$$

which conveys the urine from the bladder to a veffel called the allantoides. In the human feecies, both the urachus and the allantoides are wanting.

There is, indeed, in the human foetus, fomething like an urachus, which goes from the bladder of the foetus to the navel, between the umbilical arteries, but it feems to be of no ufe, as it does not communicate with the bladder.

The umbilical vein, after it has entered the body of the foctus, divides into two branches, one of which enters the vena portarum to be diftributed in the liver ; the other, which is called the ductus veno.. fus, carries its contents to the left vena cava hepatis, which terminates in the great vena cava; and that part of the blood which paffes through the liver alfo arrives at the vena cava. From the vena cava the blood paffes into the anterior auricle, whence there is a paffage into the pofterior auricle, which is clofed up after birth, but which now turns the greater part of the blood received by the anterior auricle, from the anterior to the pofterior cavities of the heart. A confiderable quantity of blood, however, notwithftanding this paffage, does pafs into the anterior ventricle; but all the blood which is received by the anterior ventricle is not fent to the lungs, which before birth are too much condenfed to tranfmit fo large a quantity ; part of it is turned afide by a veffel called the ductus arteriofus, which pafies from the pulmonary artery to the aorta. Thus; befides the blood which efcapes paffing through the lungs by means of the paffage from the anterior to the pofterior auricle, a fecond portion efcapes by the veffel which leads from the pulmonary artery to the
aorta, fo that perhaps not more than a fixth part of the blood which paffes through the reft of the body paffes through the lungs before birth, wherens, after thefe paffages are clofed, every drop which is circulated in the body muft neceffarily circulate alfo chrough the lungs. Thefe paffages, which are peculiar to the foetus, from caufes not afcertained, clofe up very quickly after birth. The blood is returned from the foetus by the arteriæ umbilicales, which are the internal iliac arteries of the adult, but which in the foetus pafs out at the navel, and are continued to the placenta.

The foetus, which in the early periods of geftation was almoft all head, is fill at the time of birth of very different proportions from thofe of the adult body; the head is remarkably large, and the lower extremities remarkably fmall. The growth of the foetus in the uterus is by no means uniform. The weight of chiidren, when born at the full time, varies from fomerhing more than four pounds to a little more than eleven. By far the greater number weigh from five to cight pounds, avoirdupois. At the end of the third month, the bulk of the foetus, wirh the membranes and placenta, is very inconfiderable, as is feen in abortions, which are moft frequent at this period of geftation. During the courfe of the fourth month the uterus becomes too large to remain within the pelvis, and rifing into the abdomen, gives fome flight degree of protuberance. The foetus now increafes much fafter than before; but the principal part of its growth is performed during the three laft months of geflation, when the uterus at length rifes as high as the fo-
4.56 Calculations refpecting Birtbs, E ${ }^{\circ}$. [Book IX, mach, preffing the inteftines towards the backbone. The diftended uterus is now fimulated to contraction, and the pains of child-birth are fucceeded by the effurions of maternal fondnefs.

It appears from a Very accurate regifter, kept in the Lying-inn Hofpital at Dublin, that the proportion of children, is about nine males to eight females; -children dying under fixteen days old, as one to about $f_{i x}$ and an balf; -children fill-born, as one to twenty; -women having twins, as one to fixty; -women dying in child-bed, as one to about eighty-feven.

There is, however ${ }_{2}$ a greater mortality of male children, owing, as Dr. Clarke fuppofes, to their greater fize, and particularly to the fize of the head, which becomes injured in parturition, and conlequently affects the health ; and the proportion is reduced to quite equal before the age of puberty.

If every mother in a great city was obliged to fuckle her own child, the proportion would be one good nurfe in five; and in the country, not one badd nurfe in ten *.

- Clark's Obfervations, Phil. Tr. 76.

Chap. 43.] [457]

Снар. XLIII.

THE GROWTH AND DECLINE OF THE BODY,

> Increafe of the Body before and after Birth.-Difproportion of the Parts decreafes with Growth.- What Parts firft ceafe to increaf: in Size.-Youth.—Maubood.-Firft Symptoms of Decline.-At rwhat Period old Age generally conmences.-Symptoms of. Age.Caufes ruby the Human Frame cannot be of long Duration.

FR OM M the time of conception till birth, the growth of the body proceeds in an accelerated or increafing proportion, that is, the growth in the fixth month, for inftance, is greater in proportion than in the fifth ; from birth till manhood it is gradually lefs and lefs, in other words, the growth of the fecond year is lefs in proportion than that of the preceding, and fo of all the fucceeding years.

The reafon copnmonly affigned for the latter of thefe fats is, that the fibre becoming lefs diftenfible from an increare of folidity as we advance in age, our growth is confequently lefs rapid. But if the rapidity of growth was proportioned to the laxity of fibre, the fertus ought to increafe mott rapidly immediately after conception, and more flowly as its texture becomes more firm. The contrary of this, however, is found to be the fact, fince, in the early periods of geftation the increafe of the feetus is very llow, and its growth is continually accelerated till the birth. From this ftatement it muft be concluded, that
laxity of fibre is only one among other caufes which favour the increafe of the body. As the body advances in growth, its difproportions are gradually loft; the head increafes more flowly, and the lower ex. tremities with more rapidity. The head indeed ceafes to grow much fooner than the other parts; for thefe, and particularly the thorax, feem to gain fize and ftrength for feveral years after the head has afrived at its utmoft dimenfions.

At the age of fifteen or fixteen years, fooner in females than in males, and fooner in warm countries than cold, the figns of puberty begin to manifert themfelves, and feveral changes now take place in the body, which it would be improper to ftate.

When the body has attained its full growth and ffrength, it does not immediately decline, but remains in a fate of nearly equal vigour till between forty and fifty years of age. At this time the bedy begins fenfibly to lofe its agility, and the approaches towards old age, which had hitherto been infenfibly going on, now begin to manifeft themfelves.

But though the body has' now loft confiderably of its agility, yet in perfons of good conflitutions, and who have not been remarkably intemperate, its ftrength remains pretty entire. After the age of fifty, however, the decline of body becomes much more apparent ; there is no longer that fpring and vigour of motion; and labour becomes more irkfome and painful. From the age of fixty to that of feventy the health is frequently pretty good, but the ftrength fails confiderably. Threefcore and ten years is the age of man; and though there may be fome
fome remarkable inftances to the contrary, yet, itt general, exiftence protracted beyond this period is forrow and mifery.

In the whole progrefs of life the body is continually becoming lefs vafcular. The vivid bloom of youth, which is owing to the ramifications of minute arteries in the fkin of the cheeks, fubfides into the moderate hue of middle life, and this into the wrinkled and fhrunk appearance of old age. Similar changes are taking place in other parts of the body, and the coats of the arteries gradually becoming thicker and ftronger with refpect to thofe of the veins; thefe latter become more diftended, and the livid hue of venous plethora fucceeds to the vivid tint of the arterious. A difpofition to folidity invades the body in the progrefs of life, and that which in the child was pliant cartilage, becomes in the old man brittle bone.

The quantity of earth in the compofition of the different parts of the body is continually increafing; the mufcles become infenfible to the ufual fimuli; the vigour of the circulation is diminifhed; and in the few, the very few, who efcape the numerous pitfalls of difeafe and accident, this rigidity and infenfibility increafing, neceffarily puts an end to exiftence.

That modern difcoveries, or the improvement of the medical art, fhould be able to protract for any confiderable period our mortal exiftence is a notion that will only be entertained by thofe who are ignorant of the phyfiology of the animal frame, and indeed of every other branch of fcience. It is the natural confequence of extenfive knowledge to
abate our confidence; while impudence, dogmatifm, and vain and vifionary feculation, are the genuine offspring of ignorance. Medical fkill may indeed be fuccerffully appliéd in occafionally arrefting the progrefs of thofe difeafes, which might otherwife prematurely interrupt our mortal career; yet even in thefe inftances, thofe who have fudied moft, and practifed moft, will be the moft fenfible of the impotence of human knowledge in this important art; but he who is at all acquainted with the delicate and fragile texture of the human frame muft be abuindantly fenfible, that it is a fabric which was not meant to endure for ever.

In the gradual decline of life, to which all muft fubmit, let us earnefly embrace that confolation which religion affords us. That which fweetened the cup of death to Socrates is through life the cordial of the chriftian; it is a confideration that will moderate profperity, and will deprive adverfity of its moft poignant forrows; it will cheer us in life, and at the hour of death it is the only circumftance that can impart a ray of comfort to the human foul.

Chap. I.] [46I,]

Bоок X.

OF T゙HE HUMANMIND.
CinAp. I.

OF THE STUDY OF THE HUMAN MIND.
Our Knowledge of Mind limitod.-Confufed by Metathyfics.Plan of this Inquiry.-T'he Firft Part refpects the Inffruments and Modes of Aifion of the Humax Mind.-The Second, the Springs or altive Pozwirs. -The Third, the mot important Quefions in Marals, E゙c.
"T NO W thyfelf," is a faying of great antiquity, and an author, whofe fentiments are defervedly converted into maxims, has afferted, that "the proper ftudy of mankind is man." It is, however, a circumftance fufficient to mortify thic pride of reafon, that even on the fubject moft interefting to us, we mult be content with a limited portion of knowledge ; we muft not extend our expectations too far. Even with refpect to our own minds, there are fome points which appear to be removed beyond the reach of our refearches, while others are, perllaps unneceffarily, involved in doubt and difputation. It is unfortunate indeed, that in no branch of fcience whatever the imagination has more wantonly fported than in this; in no fcience have men appeared fo defirous of deferting the only fure
fure guide, experience; in no inftance has it been thought proper to refort fo little to proof and obfervation, or to attribute fo much to conjecture and theory.

Metaphyfical fubtleties, and hypothefes carried to 2 vifionary extreme, have, therefore, greatly contributed to confufe this branch of knowledge; though when extricated from thefe, I apprehend full as much is known in this fcience as in any other, and perhaps more than in moft. On this account I thall carefully avoid all thofe difputed points concerning identity and diverfity, exiftence, infinity, \&cc. that have divided the learned from time to time. I confider them, in truth, as utterly foreign to my purpofe, and as tending to eftablifh no one ufeful principle. It will be unneceffary alfo to examine the origin of our ideas, or to enter into nice difquifitions concerning fpace, duration, \&xc. \&cc. as fuch inquiries are certainly more curious than ufeful. I fhall further avoid all fanciful theories refpecting the nature of our perceptions. Some of them, I confefs, are plaufible, but I rather chufe to lay the ground work of my reafoning on actual experience; let thofe who fo incline, extend at their leifure their rêfearches further.

That fcheme, which reduces human nature to the feweft principles, if thefe can be demonftrated adequate to every moral effect, is moft fatisfactory to the rational inquirer. The more of nature we difcover, the more fimple fhe appears in her operations: it is unphilofophical unneceffarily to multiply caufes. It is evident, for inftance, that there exifts in men a relifl for beauty, as well as for moral excallence,
cel.ence, and an antipathy to vice and deformity. But how are thefe affections generated? It is an indolent method of philofophizing to ftop at whatever is not eafily underftood. Final caufes and inherent inftinct have faved the labour of many a painful inveftigation.

With refpect to the actual exiftence of innate ideas or principles, the reader will perceive that I am not anxious to renew the controverfy. Innate ideas, I believe, have been in general given up by philofophers fince the time of Mr. Locke. A moral principle has, indeed, been contended for by fome writers of the higheft reputation, as being innate in man. It may be confidered either as a fixtla fenfe, as fomething infeparable from the foul or mind of man, or as a general inftinctive refult of his mental organization. I muft obferve, however, that the exiftence of fuch a principle has never yet been fatisfactorily proved, though, on the contrary it is not eafy to difprove it; I fhall, therefore, as much as poffible, avoid the controverfy, and endeavour, as far as obfervation enables us, to account for the operations of our minds in the fimpleft and eafieft manner, and to have as little recouric as poffible to principles which are involved in doubt or obfcurity.

The elementary part of this book will naturally divide into two branches. The firf part, will extend to the end of, the eighth chapter, in which I fhall endeavour to explain the inftruments and the modes of action of the human mind. The fecond will extend from the ninth chapter to the thirteenth, in which the fprings or incentives that proluce
action in the mind, and influence its movements, will be examined.

The materials, upon which the human mind is principally to act, are the traces or veftiges left by external impreffions on the five fenfes. Of thefe a fimple effect on any one fenfe produces what is called a fimple idea, the word idea fignifying an image or reprefentation in the mind of an action, quality, or fenfation ; thus white and fweet are fimple ideas.

An idea, compounded of feveral fimple ideas, is called a complex idea, as man, horfe, tree, \&c. which are evidently compounds of a number of fimple ideas of figure, colour, folidity, \&c. and fometin?es for diftinction's fake, when many complex ideas are compounded in one, the difciples of Mr . Locke call it a diccomplex iden, as bomicide.

Imprefions on the funfes are often fo entwined or affociated together, thai the idea of the one fhall nor be recollected without that of the other. This junction happens when two imprefions are made on the fenfes at the fame time; thus the wobitenefs and roundmess of a globe may be affociated; the form and the found of a mufical inttrument; the name with the thing, fo that on the fight of the thing or object ive immediately recollect the name. Iceas may affociate with imprefions, if an impreffion is made on any of the fenfes, while an idea is predominant in the mind. Thus the fight of a particular place will often recal fome interefting train of thought, that may have been entertained there. When I peak of ideas being affociatech, connected, combined, \&ec. I would be underfood of the fame thing, viz. the implexion or junction of ideas thus explained.

The retention of ideas in the mind is called memory. The act of combining old ideas into new ones, invention, and frequently imagination or fancy. The act of examining and comparing them judgment. Under thefe heads I propofe explaining the primary operations of the mind, and thefe will conftitute the firt part of the prefent inquiry.

The fecond part of this book will confift of an inquiry into the common fprings of action in the mind. Thefe I fhall endeavour to prove to be ultimately the fenfes of pleafure and pain. Love is the idea of pleafure, combined with fome other idea; batred the idea of pain, combined in the fame manner. Defire and averfion are active love and hatred *.

The third part, which extends from the thirteenth chapter to the conclufion of the work, will confilt of the application of thefe principles to the inveftigation of fome curious fubjects, and to the theory of morals. This, as it is the moft extenfive part of the fubject, is neceffarily the moft imperfect, and the chapters that conflitute this part, are rather exhibited as confirmations of the preceding principles, than as a complete fyitem.

* The natural appectites of man are,

1f. The common call of nouri/bment for the body, 2 d . The defire of propagating the fpecies.

The natural pleafures of man are,
1 ft . The fatisfying of thefe appetites, 2 d . The general pleafure refulting from the moderate and proper exercife of the organs or faculties.

С н A P. II. $^{\text {. }}$

OF PERCEPTION.

The Senjes the great Source of Information.-Difintion betreen Senfation and Perception.-Senfes correEz each other.-Whether the fanse obijicts pruduce fimilar Purceptions in different Men.Idcas.

TH A T the mind is obliged to the fenfes for the great mafs of its information, is now an eftablifhed principle. The proofs of this doctrine I fhall decline entering upon for reafons already afligned. I would only obferve, Firft, That I do not fee why we are furnifhed with fenfes by the author of nature, if not for this purpofe. Secondly, The fenfes feem entirely adequate to all the information we are poffeffed of. Thirdly, Perfons wanting any of the fenfes appear entirely deftitute of the ideas of that fenfe. A gentleman, blind from infancy, affured me, he never remembered to have experienced in a dream any thing like what the fenfe of feeing is defcribed to be. Nay, thofe who have all the fenfes complete, derive plainly their knowledge from the exercife of them. A child does not fhrink from a candle till it has felt the painful fenfation of burning, or is warned againft it in terms exprenling pain, of which it forms a judgment from pain already experienced.

A very proper diftinction is made by Dr. Stuarr, between fenfation and perccption. Senfation implies " that change in the ftate of the mind which
is produced by an impreffion upon the organ of fenfe ; of which change we can fuppofe the mind to be confcious without any knowledge of external objects. Perception expreffes that knowledge we obtain, by means of our fenfations of the qualities of matter *."
\dagger Senfations may be communicated from without; ift. by actual contact with the object itfelf; 2dly, by the intervention of fome medium: and it amounts to the fame, whether we perceive the qualities of bodies by a communication with the bodies themfelves, or by the effects which they uniformly produce on fome medium which communicates with our fenfes. Thus, when we fee a body wobite, we do not fay that the light is perceived by our fenfes, but the whitenefs of the body, or that property in the body which fo difpofes the rays of light
as

* Outlines of Mor. Phil. p. 21, 22.
\dagger The different fenfes by whofe operation we difeern the qualines of external objects, have been already ftated to be five in number. Touching, tafting, fmelling, hearing, and fight. They may perhaps all be refolved into that of feeling; yet the diftinction is correft, as they are certainly different inftruments of feeling or perception. In thofe of touching and tafte an actual contart with the body, which is the object of the fenfe, is requifte. In the others the fenfation is effected through the operation of fome medium. Thus fight is in reality the effect of the rays of light upon our optic nerve; found is a vibration of the air, which affects the organs of hearing ; and freell depends upon the emanation of certain particles from a body, which aft upon the organ of feent.

That fome fenfes are more acute in certain animals than in others, is an obvious fact. The power of fmelling in fome of the canine fecies is beyond any thing that we are able to conHh_{2} ceive. When, thercfore, we fpeak of fmells, taftes, colours, founds, we mean that certain effects are uniformly wrought upon our fenfes in certain circumftances, and to the unknown caufes we affign thefe names.

The information of the fenfes is the laft refort of human teafon; I mean their joint information, for it appears they correct each other. It has been already ftated, that the judgments we form of material things are not fo much the effect of an impreffion on any one fenfe as of thofe of feeing and feeling combined \dagger. Simple impreffions or perceptions are not to be defined, nor do they, from that agreement and analogy which exifts between the ferifes of all mankind, require definition.

It is of no confequence whether the fenfes of different men perceive exactly alike, though it is probable there is not much difference in this refpect. It is of no confequence, whether one man fees ob-
ceive. Cats and owls have undoubtedly a power of feeing with a much fmaller portion of light than any human being. It is probable that in different men fome fenfes may be more acute than others.
*There is undoubtedly fomething in objects which excites fenfations, but the fenfations themfelves cannot exift without a fubject on which to act. The difputes therefore of philofophers, whether fmells are in the nofe or in the perfon who fmells them, \&cc. \&c. are merely de lana caprina; and there muft be a union of caufes to produce fuch effect. Such difputes may ferve to exercife the human faculties, but they undoubtedly make no addition to our flock of real knowledge.

+ See Book 9. c. 37.

Cnap. 2.] Mode of conveying Perceptions.
jects larger than another, or whether the fame compofition affords to each precifely the fame tafte or fimell. We communicate our ideas of fenfations by the help of relation; we call a thing fmall when compared with another; we call the tafte of a certain viand fweet, or a found grave or deep, and we have nothing further to do to be clearly underftood, than to mark the proportionate differences and relations.
It is to be remarked, that all objects that prefent themfelves to our fenfes do not make fuch impreffions as to leave ideas behind them. Many times the mind is too much engaged with one train of thoughts to admit another. An impreffion or fenfation being perceived by the mind, the trace or veftige it leaves behind is called an idea.

Whether the mode of conveying perceptions from the fenfes to the underftanding, is by a vibratory motion of the nerves * or by any other means, is of no confequence to the prefent inquiry. It is fufficient to fay, that the fenfes are firt affected by external objects, that thefe impreffions leave behind them veftiges which are called ideas, and from the natural or voluntary combination of two or more of thefe, a new idea may be formed.

[^28]
CHAP. III.

OF IDEAS. -

Ideas of Senfation and Reffexion.- Simple and complex.-Modes and Subffances.

ID EAS being , the images of impreffions, want their force and vivacity. Ift. Ideas of fenfation are the mere reprefentations of effects wrought on the fenles. 2dly, We give names to the particular actions of our own minds, as perception, thinking, doubting, reafoning, and thefe Mr. Locke calls ideas of reflexion *.

It is probable many of our firf ideas are complex, that is, the refult of feveral fenfations combined or united together. A child will hardly diftinguifh between the figure and colour; as in a glafs globe, it will have the idea of the globe itfelf, before it will diftinguifh between the roundnefs and the brightnefs of which it is compounded; they are nevertheeefs as diftinct ideas as fweetnefs and hardnefs, which may exift in the fame fubftance, and one of them not be perceived as united with the other. " Though the hand feels fofrnefs and warmth in the fame piece of wax, yet the fimple ideas in the fame fubject are as perfectly diftinct as thofe that come in by diftinct fenfes." Simple ideas will be recollected in objects differing in every refpect but that one, from thofe by which we originally re-

[^29]ceived them. Though a horfe, for inftance, may poffers no obvious quality in common with a book, but that of external colour, as blacknefs, yet that quality will be recollected to be the fame in both ; and thus we learn that colour is not the neceffary concomitant of figure, by finding the fame colour united with different figures; and in the fame manner, probably, we learn to disjoin all thofe fimple ideas that enter by the fame fenfe, as folidity and warmth, \&c. \&cc*.

All our ideas of fubftances are complex, and are compounded of the various fimple ideas jointly impreffed, when they prefented themfelves to our fenfes. We define fubftances only by enumerating thofe fimple ideas; and fuch definitions may fometimes produce an idea tolerably clear of the fubftance, in the mind of one who never immediately perceived the fubftance itfelf ; provided he has feparately received by his fenfes all the fimple ideas, which are in the compofition of the complex one of the fubftance defined \dagger.

Words reprefenting complex ideas do not always precifely excite the fame idea in different perfons. Some of the fimple ideas may have made a

[^30]fronger imprefion on one man than another, and fome may have totally efcaped him. The word man will, with a painter, call to mind feveral minute circumftances in the external appearance; with an anatomift the fkeleton, nerves, $\& \mathrm{c}$. will hardly efcape animadverfion; with a metaphyfician, the mind, or more properly the modes of acting, the powers and faculties will be recollected. In all complex ideas, however, which are the immediate objects of fenfe, and which are not decomplex, or compofed of fucceflive impreffions, the more obvious qualities will ferve to mark the idea, and identify it to every man; as the idea borfe, tree, \&rc. can never be differently apprehended. It is otherwife with more abitract and remote terms; the word virtue may be very widely conceived of by different perfons, as the cuftoms of their countries, the courfe of their ftudies, or their turn of thinking, may determine; hence in all arguments, terms fhould be minutely derined.

All complex ideas are combinations of fimple ideas affociated together, as will be explained in the chapter of afföciation.

Befides this divifion of ideas into fimple and complex, metaphyficians have adopted others, which it may be of fome ufe briefly to explain *. A principal divifion is into fubftances and modes, that is, modifications of matter or forms of exiftence.

Hence follows a divifion of modes into fimple and mixed modes. Simple modes of duration, are whatever diftinct ideas we have of any parts of it, as hours, days, \&c. \&cc. Simple modes of colour,

- Sce Locke, B. 2.

Chap. 3.] Modes and Subfances. 473
are white, blue, \&xc. \&xc. Simple modes of pace are any particular lengths of it, is an inch, a foot, \&xc: Simple modes of motion, are fiding, walking, \&c. It would be ufelefs to enter into any more particulars of this kind, as thefe diftinctions are pointed out rather with a view to the works of others than to the prefent treatife. I would wifh to obferve, that the generai terms colour, Jpace, \&c. do not furnifh any difinet idea; we can have no clear idea, but of a particular colour, \&xc. as will be explained when I come to fpeak of words.

Mixed modes are defined by Mr. Locke to be "fuch combinations of fimple ideas, as are not looked upon to be the characteriftical marks of any real beings that have a feady exiftence ; but fcattered and independent ideas, put together by the mind, are thereby, diftinguifhed from the complex ideas of fubftances*," fuch are bypocrify, drunkennefs, \&c. The ideas of mixed modes are acquired firft from experience; as by feeing two men wreftle, we acquire the idea of wrefting. 2d. By putting together in the mind feveral fucceflive actions, as a lie.

[^31]
СНАР. IV.
 OF ASSOCIATION.

Syncluronous Afociations.-Succeffive Alociations.-A great Pare of our Knowledge conffes of the latter.-Common Senje. -Train of Ideas. - In cwbat Manner the Train of Ideas is carried on.Relations of Contiguity E'c. - How thefe are formed in the $^{\text {a }}$ Mind - How the Train of Ideas is regulated. - Infuence of the l'ill.

TH E word affociation was, I believe, firft ufed in this fenfe by Mr. Locke; the doctrine is notwithftanding very ancient. Plato and Ariftotle in many of their writings, evidently allude to this connexion of ideas. Some of the Stoics remark its effects in fpeaking of cuftom, opinion, \&zc. and Antoninus is very clear upon the topic*. Hobbes has a whole chapter upon the train of ideas \dagger, and makes confiderable ufe of the doctrine through the whole of his work.

\dagger "In a difcourfe on our prefent civil war (fays he) what could feem more impertinent than to afk, as one did, what was the value of a Roman penny? Yet to me the enherence was manifelt enough. For the thought of the war introduced the thought of the delivering up the King to his enemies; the thought of that, brought the thought of the delivering up of Chrift; and that again the thought of the thirty pence, which was the price of that treafon: and thence eafily followed that malicious queftion; and all this in a moment of time; for thought is quick."-Leviathan, pt. I. c. 3 .

I do not find that any one difcovery has been made in the frience of mind fince the time of Hobbes.

Two fenfations happening at the fame time will become united, and the ideas will be united of courle; thus the ideas of the figure and colour of bodies, admitted by the eye, are united, and thefe may be united with another idea admitted by the touch. As the ideas of roundnefs and whitenefs by the former, and folidity by the latter, are affociated together in the complex idea of a ftone. If mufic is heard, while we behold the inftrument, the found will be affociated with the vifible appearance, and the former will at any time reçal the idea of the latter, when we do not fee the inftrument *. Names become affociated with things, and things with actions \dagger. Affociations formed from imprefions made at the fame time, are called fynchronous. But it is evident that impreffions remain fome moments

[^32]on our fenfes, and die gradually away *; if another impreffion therefore is made while the former remains, they will be affociated, and the one fhall recal the other to remembrance: the affociation being weaker or ftronger in proportion to the ftate of the idea or impreflion with refpect to its vividnefs. An idea may in the fame manner be affociated with an impreffion or fenfation, or two ideas may be affociared together, and this kind of affociation from contiguity of time may be termed fucceflive. Thofe complex ideas which are formed from fynchronous impreflions are more vivid and diftinct, than thofe formed from fucceffive ones.

Propofitions founded upon fynchronous impreffions, are little elfe than complex ideas of fenfation; as in the propofition "s the dog barks," the idea of the thing is as much affociated with the aftion as with any of its qualities: and here is no room for diffent, unlefs we could find that our fenfes had deceived us.

Propofitions founded on fucceffive impreffions, are much more liable to deception ; yet of thefe conlifts by far the more valuable portion of our knowledge. It is remarkable, how in forming the fe propofitions, frequent experience leads us to drop the intermedjate ideas, and connect the two cxtremes of the propofition, calling it felf-evident,
where it.docs not take place, ideas are not fuggefted more readily than words are in ordinary cafes. When the ideas expreficd are fuch as we have been little accultomed to attend to, a difcourle or compofition is undertlood by us with difficulty, as well as when ideas arc expreffed by unufual words.' Gerard on Gen. pt. 2. f. a. note.

- See Sir Iface Neivton's Optics, and b. ix. c. 41.
as if it was really the effect of fynchromous impref. fions. "We may obferve (fays Mr. Locke *.) that the ideas we receive from fenfation, are often in grown people altcred by the judgment without our taking notice of it. Thus a globe of any uniform colour, as of gold or jet, being fet before our eyes, the idea thereby imprinted, is of a flat circle varioully fhadowed. But being accuftomed to perceive what kind of appearances convex bodies are wont to make in us; the judgment alters the appearances into their caufes; and from that variety of finadow or colour, frames to itfelf the perception of a convex figure of one uniform colour." A man who reads or hears with attention, takes little notice of the characters or founds, but of the ideas that are excited in him by them. Thus we find the intermediate, affociating ideas are dropped, and the more remote caufes immediately connected with the effects. In the inflance of the globe, the firf complex idea prefented, is that of a circle affociated with certain fhades of colour; on approaching and examining it by the touch, we find that this is really a convex figure and of a felf colour, we therefure affcciate the ideas of the convexity and colour with the former idea of the circle fo fhadowed, and the one occurs not alone, but always accompanied with the other, and fo immediately that we feel it as if it had been from fynchronous impreffions. It is unneceflary to multiply inftances; it is obvious that the fight of blood never fails to

$$
\text { *. B.2.C. } 9
$$

alarm the mind inftantancoufly, though no more productive of fear or horror from its natural properties than any ciner fluid. "Painters, Itatuaries, anatomitts, architects, fee at once what is intended by a draught, picturc, \&c *." Something like this occurs in moral propofitions, as, "intemperance is productive of ill health." Here it is plain that common experience fo frequently unites the confequence to the caufe, that omitting all the inter. mediate fteps neceffary to form the conclufion, the mind is fatisfied with the affertion, and calls it felfevident. This is what fome authors (if I am not miftaken) mean by common fenfe; and indeed thefe conclufions are fo generally right, that although it may be for the interefts of virtie, occafionally to examine them by the principles of reafoning, men in moft cafes have very littie occafion for any other appeal than to therr common feelings, to determine on the juftice or injuitice of particular actions; ideas of juftice being founded in the truth of things, and fo confirmed by experience, that the conclufions are as ready at hand, and almoft as clear yis that "the fun fhines ;" "what is, is ;" or any other of thofe maxims that are really felf-evident.

On this principle of affociation depends the neceffary fucceffion of ideas in a train, of which any one may fatisfy himfelf by attending to the operations of his own miad. Ideas are introduced by an agreement in fome of the parts of which com-
plex ideas are compofed. Shakefpear, defcribing 2 meŕchant's fears, fays,

> " My wind, cooling my broth,
" Would blow me to an ague, when I thought
"What harm a wind too great might do at fea.
" I fhould not fee the fandy hour-glafs run,
"But I thould think of thallows and of fats;

* And fee my wealthy Arg'fie dock'd in fand.
"Should I go to church,
"And fee the holly edifice of fone,
" And not bethink me ftraight of dangerous rocks *?
It is remarked, that the train of ideas almoft always depends upon the relations of contiguity in time or place, caufe and effect, refemblance or contrariety; all of which, it is obvious, depend on the principles of affociation already explained. It has been fully proved, that ideas are affociated by contiguity of time, the former impreffion remaining vivid fome moments after it was firf made, and the other during that time occurring, they become united. That affociation which arifes from unity of place is no other than recollection, the place making a part of the complex idea of any action. Caufe and effect are affociated by contizuity of time ; for, as Mr. Locke obrerves, " we get there ideas from our obfervation of the viciffitude of things, while we perceive fome qu ities or fubftances begin to exift, and that th "receive their exiftence from the due application .ad operation of other beings *." The relation al refemblance is

[^33]no other than recollection of that particular idea, in which the object prefent, and the object remembered, agree. When two ideas are formed, agreeing in any quality or qualities, they are faid to be related; and the degrecs of relation are as they agree in fewer or more qualities. Refemblarce in one fimple and very common quality, as black, round, \&cc. will feldom recal an idea, unlels very recently or very ftrongly imprinted, the mind being confufed with the multitude of objeets poffefing that quality.

The afociation of ideas with their contraries feems to arife, ift, When the idea fo remembered is only a negative idea, and terives its exifence from its pofitive; thus cold is the iwant or lecreafe of heat; ficknefs is the want of health; powerty of riches; Exc. ed. When the deas are comected in point of time *, as muft be the cafe in a change from one ftate to another, fuch are the ideas danger and fafety. 3d. Perhaps two things, which are oppofite, being perceived at once, the mind is more forcibly ftruck by each of them, the ideas are confequently more vivid, and more liable to be recollected.

The train of ideas is often regulated by fome end propofed to onilelves; for where we have an object in view, fuch ideas as are connected with it will of courfe be fuggefted. By thefe means we are frequently impofed on; a paffion or an intereft will lead on a train of arguments favourable to

* " Eye-witneffes generally relate in the order of time, without any exprefs defign of doing fo."- I Larticy on Man. .
them, while we imagine we are acting with the utmoft imparciality *.
' The indirect influence of the will,' fays Dr. Stuart, ' over the train of our thoughts, is very extenfive. It is exerted chielly in two ways:-Ift, By an cffort of attention we can check the fpontareous courfe of our ideas, and give efficacy to thofe affociating principles which prevail in a ftudious and collected mind; 2d. By prastice we can ftrengthen a particular affociating principle to fo great a degree, as to acquire a command over a particular clafs of our ideas.'
- Should any one be furprifed at this difpofition in our nature to affociate any ideas together for the future, which once prefented' themfelves jointly, confidering what great evils, nud how much corruption of affections is owing to it, it may help to account for this part of our conflitution, to confider, "that all our language, and much of our memory, depends upon it ;" fo that, were there no fuch affociations made, we mult lofe the ufe of words, and a great part of our power of recalling palt events, befide many other valuable poivers and arts which depend upon them."

Hutclingon on the Pafrons, f. i. p. 11.

C н A p. V.

> . MEMORY*.

Lacas of Menory-Difin:zuiped froms Incus of Imagination, Gudgmen: concerning Difance of Fatts.-Mernory in 2ioung and Old Perjens.-Recoliciitu:-Curtainty.

1T appears, that ideas of memory are diftinguifhed from ideas of imagination; ift, By being more vivid; 2dly, By the affociated ideas of time, place, and other circumfances that accompany them. As ideas, by being often repeated, become more vivid, it is a common remark, that petfons inclined to habits of falfnood, by often repeating the fame ftory, are themfelves at laft impofed on by the vivacity of the idea, fo as to miftake it for an idea of memory. Madmen are almoft always deceived in this way. In dreams, the vividnels of the new fcene, and no affociated ideas appearing by which to mark thofe ideas derived from menory, caufe us to mittake it for a feries of real impreffions.

It feems probable, that we judge of the diftance of facts recorded by the memory, ift, From the idea growing fainter, yet retaining the principal

* Memory is that faculty by which traces of fenfations and ideas recur, or are recalled, in the fame order and proportion, accurately or nearly, as they were once actually pre-fented.-Hartley on Man, Introduc.

Chap. 5.] Why Memory is week in Children, Esc. 483 affociated circumftances; 2dly, From cnumerating ideas of facts, which we know, by the order of ideas, to have fucceffively happened fince that point of time in which the idea firt occurred. 'The death of a friend, or any intereftirg event, often related, appears to have happened but yefterday, as we term it, on account of the vividnefs of the idea correfponding to the nature of a recent event *.' Miftakes are here prevented in perfons, who retain their fenfes, by the fecond means of judging, viz. by enumerating facts that have fince occurred, \&xc.

Memory is weak in children; ift, probably, becaufe the organs are flaccid and weak; 2dly, For want of a number of ideas, which experience furnifhes, and which afterwards ftrengthen the powers of affociation. Memory is now and defective in old perfons; ift, Becaufe, probably, a rigidity of fibre may render the organs of thought lefs active ; adly, Becaufe the paffions are weaker, there is in reality lefs life, of courfe a fluggifhnefs of mind will generally accompany that ftate. Impreffions are eafily made on the fenfes of children, but do not remain. On the contrary, it is difficult to make fuch impreffions on older perfons as to produce ideas, but when made they are lafting. Hence the neceffity of inuring the mind to action and ftudy through every ftage of life, fuch perfons frequently retaining their mental agility and powers longer than others.

Ideas are more eafily recollected, ift, By being vividly and diftinctly impreffed; 2dly, By being

* Hartley on Man, prop. 42.
ftrongly
ftrongly affociated. Thefe two caufes will generally concur, for the more vivid an impreffion is, the longer it remains on the fenfe, and of courfe the more ideas it will be affociated with. A fentiment, when quoted from a book or a poem by another aurhor, as appofite to his fubject, often makes a more diftinct and vivid impreffion than in the original writer. The inprefion is more vivid, becaufe we are apt to fancy that fome peculiar excellence induced another author to quote it; it is more vivid too, becaufe it is more diftinct ; it is better remembered, both for this reafon, and becaufe (like all diftinct ideas) it becomes affociated with time, place, and other circumftances, as well as with the ideas of him who quotes it *.

The following are the modes of memory pointed out by Mr. Locke, which may be of fome ufe as definitions. 'When an idea recurs without the prefence of the object, it is called remembrance; when fought after by the mind, and brought again in view, it is recoliection; when held there long under attentive confideration, it is contemplation; when ideas float in the mind, without regard or reflexion, it is called reverie; when the ideas are taken notice of, and, as it were, regiftered in the

[^34]memory, it is attention; when the mind fixes its view on any one idea, and confiders it on all fides, fudy *.'

That ideas are commonly recollected in a train has been already noticed. It has, indeed, been difputed, whether we have any further power in recollection, than, ift, Exciting a certain degree of activity in the mind, and awakening it to the different affociations \dagger; and, adly, When two trains of ideas occur, directing the attention to one in preference to the other. The order of time, place, \&c. have great influence in recollection.

In recollecting a company, we are obliged to have refpect to the order of place, to the courfe of converfation, or fome other of the common relations. Recollection in order of time happens from fome part of two idcas becoming entangled with each other, as the mind, when waking, is feldom without fome idea, fo no one is perfectly gone before the introduction of another. Recollection from place happens by the tranfition which the mind makes from the firf idea to the place, and from the place to the fecond idea; it is the fame in

* Locke, b. ii. c. 19.
+ - The mention of a perfon often makes us recolleet, that there is fome purpofe for which we want to fee him ; but fometimes, when we cannot call to mind what it particularly is, the fight of that perfon brings it quickly into our thoughts. In confequence of the fuperior force of fenfations, which enables them to fuggeft conceptions by means of much weaker relations than ideas can, it often happens, that an object occurring to the fenfes gives a very quick and feemingly unaccountable turn tp the courfe of the thoughis." -Gerard on Gen. part ii. F. 3.

486 Meens of Arengtheninig Memory. [Book X. recollection from refemblance. Recollection from caufe and effect is the fame as recollection in order of time; only it is to be remarked, that we look up.on every thing as being both a caufe and effect of fome other thing, though of what, or in what manner, we may be ignorant; and this is the refult of experience.

An idea frequently recollected becomes affociated with a number of other ideas in the different repetition, of it ; it will therefore be more predominant, andi more apt to be recalled on future occafions; and this conftitutes the power of habit over our turn of thiaking, which may be acquired from reading frequently the fame book, or converfing much with the fame perfon.

Diftinct memory thus depending on affociation, the fimple ideas are often found to remain, while the circumftanices firft connected with them are utterly loft. Thefe the mind forming into new combinations, we call invention.

As memory is fo much dependant on affociation, it is evident, that what influcnces the latter will have much off.et in detcraining the peculiar excellence of any man's memory. Some are found to have a memory aciapted to the remembrance of hiftorical facks, fome to poctry, \&xc. Ideas formerly received are fo many hooks (if I may be allowed the exprefion) that fatten on thofe ideas which afimilate with them.

The diftinctnefs, livelinefs, and connected circumftances of ideas, leave almoft no room for miftakes in judgment, as far as depends on the memory. Ideas of memory, by frequent reperition, may

Chap. 5.] Connexion of Memory with Organization. 487 may be retained equally perfect and vivid as when firt imprinted; it follows, therefore, that when, from the clearnefs and vividnefs of the ideas, we feel that they have remained unconfufed in the mind, our reafoning, as far as refpects them, will fall nothing fhort of abfolute certainty.

How far the memory is dependant on the corporeal organs, has been often difputed. Some ftriking inftances, to prove a very clofe dependance, have been furnifhed by different authors. An Italian poet is related to have fallen dangeroufly ill, and when he recovered, to have forgotten the very letters of the alphabet. Pliny fpeaks of a perfon, who, by a dangerous fall, forgot his mother and friends. Meffala Corvinus, by a difeafe, forgot his own name. Valerius Maximus relates, that a citizen of Athens, by a blow of a ftone on the head, forgot all he knew of polite literature, though in other refpects he retained his memory *. In the Memoirs of the Royal Academy, 17 II, there is an account of a young man, who, in a fever, forgot every thing he knew; but afterwards learned very quickly ; fo, retaining his faculties, he loft his former ideas \dagger.

We muf, however, be cautious of giving too implicit credit to thefe relations. Authors, as well as all other men, are too fond of the marvellous. It is certain, that the foul or mind of man cannot act, unlefs the inftruments with which it is to act

* Plin. Nat. Hift. 1. vii. c. 24 .
\dagger See inftances of extraordinary memory, Plin, Nat. Hift. 1. vii. c. 24 .

488 Extracrdinary Powers of Memory. [Book X, are in a proper flate. The mind is, therefore, affected by the infirmities of the bodily frame; yet, in lunacy, and other mental complaints, medicine is found to have but a feeble effect. That a perfon, from a mere corporeal injury, can have any one fubject cradicated from his memory, while he retains others, is not to be believed.

Great memory is feldom confiftent with imagination. The mind, in that cafe, feems to be too much occupied with old ideas to be difposed to form new ones. I have heard a gentleman, of a remarkably ftrong memory, complain, that when he fat down to compore, he experienced great difficulty, from being incumbered with the thoughts, fentiments, and language of other authors.

Chap. 6.] [489]

Снар. VI.

OFINVENTION.

Invention; rwhat.-Ideas of Memory and Inagination.-Invenn tioun and Yudgment.

THE mind may be equally employed in making true as falfe combinations of ideas; in forming a fyttem, and connecting ideas by their natural relations, as in depicting Centaurs, and making witty allufions ; in either of which cafes it is faid to invent. In the former there feems to be a greater mixture of judgment, and this kind of invention is fubfervient to real fcience. On the contrary, when the invention confifts in drawing ftrong and lively pictures or reprefentations, either falfe in themfelves, or heightening by rhetoric real facts, it is called imagination; when it confifts in wild and unexpected combinations, it is called fancy*.

From the two laft chapters it appears, that invention is altogether dependant on the principle of affociation. When a perfon is poffeffed of a mind fufficiently active to be eafily affected with the relations pointed out in the preceding chapters,

* " When ideas, and trains of ideas, occur, or are called ap in a vivid manner, and without regard to the order of former actual impreffions and perceptions, this is faid to be done by the power of imagination or fancy."-Hart. 1 ntrod.

490 Ideas of Inacyination \mathcal{B} Ideas of Mennory. [Book X. we fay of him, that he has an inventive genius: a quick difcernment of thofe relations between complex ideas, will lead him to combine them into new ones, or to new arrange the order of his thoughts, which will amount to nearly the fame. In an active mind, the idens will be mose vivid, and fuch a mind will notice many relations that would efcape ordinary perfons. When a mind is more converfant, and more affected with the relation of caufe and effect, fuch will conftitute a genius for the fciences. A genius for the arts is more forcibly frruck with the relation of refemblance.

Hence, firt,' it follows, that the memory muft be ftrong to fupply a genius for either arts or fciences with materials for new improvements; and, 2dly, The mind muft be active, and eafily affected by the feveral relations.

The diftinction between ideas of memory and ideas of imagination has been already mentioned. Ideas of memory muft neceffarily be more lively than ideas of imagination commonly are at firf. Ideas of imagination are only formed from the ideas of memory, fo that at moft the figure is but at fecond-hand, and maft alfo be lefs perfect than what nature has acually prefented to cirr fenfes. Yet, if we remember what was faid refpecting the frequent repetition of an idea, it will be found, that ideas of imagination may, by this means, become fully as vivid as ideas of memory, which is the cafe with perfons addicted to falfhood, as has been already remarked. But I will even go beyond this, and affert, that a number of vivid ideas, being combined into one complex one, and each having

Chap. 6.] Invention and Yudgment.

 491 its dependant train of ideas, the complex, or rather decomplex idea, by frequent repetition, will produce a ftronger fenfation than any one of its conflituent parts. Hence it is a felf-evident fact, that the intellectual pleafures and pains, though deducible from the fenfible ones, are in reality ftronger and more vivid, as any perfon may fatisfy himfelf who confiders a little the nature of avarice, ambition, or love.It has been cuftomary to eftablifh a radical diftinction between invention and judgment, as if they were diftinct powers of the mind, and not the fame power differently employed; but the only two great diftinctions that I perceive in the human mind are, memory and genius, which, it is certain, do not always meet in the fame perfon. Perhaps the reafon they are feldom found to exift together, in any confiderable degree, may be a certain inertnefs in minds of the former caft, which enables them to retain ideas in the grofs, but which difables them from feparating, analizing, or making new combinations. A very vivid mind is not only ftruck with an object as a whole, but every conftituent part is obferved, and makes, if I may fo exprefs it, a feparate impreffion; thefe parts are, therefore, liable to become feparately affociated with parts of other complex images, and the fame vividnefs and activity of mind will produce naturally thefe frequent affociations.

Снар。

Сняр. VII.

OF JUDGMENT.

Judgment; rubat.-AVent.-Probability.

WHEN the mind examines and compares objects or ideas, recalling in a feries, and turning them over, fo as to diftinguith their natures, qualities, or relations, it is faid to judge. To the act itfelf, or the power of performing it, we give the name judgment, and often the conclufion or inference is called a judgment.

Ideas are objects of the judgment ; firft, in diftinguifhing one idea from another: this act of the mind has given rife to the technical terms ufed by logicians, identity and diverfity. Mr. Locke calls this the firft act of the mind, which, he obferves, " it does without any pains or dectuction, by its natural power of perception and diftinction." 2dly, Ideas are objects of the judgment, in perceiving the relation which one bears to another, or the particulars in which they agree one with another. Thus, by the firft, we obferve, that blue is not purple; and yet, by the fecond, we perceive, that purple approaches nearer the colour blue than yellow does. Or, to give a plainer inftance-We perceive by the firft act of judgment, that two is a different number from four; and, by the fecond, that they have this property in common, that they are both even numbers.

Chap. 7.]

Mr. Locke obferves, that truch and falfehood belong properly only to propofitions *. Truth is, firt, a conformity of the idea with the name; in other words, that in the minds of different perfons the fame name fhall fuggeft the fame idea. - 2 ndly, A conformity of the idea with fome real exiftence. 3dly. A conformity of one idea with another.

The caufe that a perfon affirms the truth of the propofition, twice two is four, is the entire coincidence of the vifible and tangible idea of twice two with that of four, as impreffed upon the mind by different objects. We fee every where that twice two and four are only different names for the fame impreffion. Where the numbers are fo large, that we are not able to form any diftinct vifible ideas of them, as when we fay, twelve times twelve is equal to one hundred and forty-four, a coincidence of the words arifing from fome method of reckoning, and refembling the coincidence of words, which attends the coincidence of ideas in the fimpler numerical propofitions, is the foundation of our rational affent ; for we often do, and might always verify the fimpleft numerical propofitions by reckoning up the numbers \dagger.
Thofe judgments, which relate to determining the probability of future events, appear to be little more than accurately remembering, and felecting fuch principles as relate to the matter in contemplation. We can guefs at the future only from the paft. As when certain appearances happen, we remember, that the fame appearances were formerly

[^35]attended with certain confequences; the whole event is therefore prefented to our minds, though not yet completed. The great difficulty is, to recollect accurately in what particular circumftances the prefent matter agrees with the paft, and the degree of probability will be in an exact proportion to the circumftances in which they agree.

Thus we fee memory furnifhes the materials for the judgment; the conclufions drawn partake much of the nature of invention. In this the two faculties in a manner meet; and for this reafon I conclude they are radically the fame, only differently exerted. Reafoning is a chain of judgments founded one upon another. It is the arithmetic of words.

Chap. 8.] [495]

Снар. VIII.
 OFWORDS.

Atpraz and general Terms.-Ufes and Abufes of Words.Thinking in Language.

TJORDS were adopted as the figns of ideas, which are images of things; they are a fort of coin current among men to transfer their thoughts to one another *. Words ferve likewife to reprefent collections of ideas, as is the cafe in general terms.

On examining the principles of language, it appears, that the firt words of every language relate immediately to things, their properties or actions. Men in a very rude ftate of fociety, have little ufe for abitract or general reafoning. All our adverbs, conjunctions, and prepofitions, were originally verbs or \dagger fubflantives.

To number would be extremely difficult without words: they ferve to diftinguifh numbers, of which

* Words, in all men's mouths (that fpeak with any meaning) ftand for the ideas which thofe that ufe them have, and which they would exprefs by them. Thus a child that takes notice of not'ing more in the metal he hears called gold, than the yellow colour, calls the fame colour in a peacock's tail gold; a nother, that has better obferved, adds to fhining yellow, great weight; and then the found gold ftands, when he ufes it, for a complex idea of a fhining yellow, and very weighty fubftance.'-Locke, b. iii. c. 2.
+ See Mr. Horne Tooke's Epea Pteroenta; and Eflays Hittorical and Moral.
we could have no diftinct vifible or tangible ideas. The niceft obferver cannot have a diftinet idea of ninety-nine, and another of an hundred, but by the words.

When we obferve any quality, or fet of qualities, that are connected with feveral different objects, we conflitute thence an abitract word, fuch are roundnefs, whitenefs, buman nature, \&c.

Generai terms are formed, by obferving that there are fome qualities in which certain things agree, though differing in others; we rank, therefore, all the objects fo agreeing under a general head, or clafs them. Thefe general terms do not excite any idea unlefs a particular one. Thus, if by the word man any idea is excited, it mult be that of a particular man. The word animal is ftill more general, and if any diftinct idea accompanies it, it is only that of a particular animal. Yet in this cafe there is no danger of confulion, if the gencral term is well undertood, that is, if the particular qualities to which it is meant to refer are defined, and difinctly pointed out, then any man or any animal will ferve completely to reprefent the whole clafs in thofe agrecing qualities, which the general term ferves to exprefs *. It is manifeft this is a refinement of human invention to prevent the inconvenience of conftantly reierring to proper names, which would be almoft as laborious as the contrivance of Swift's philofophers, to converfe without

* In the whole bufinefs of genera and feccies, the genus, or more comprehenfive, is but a partial conception of what is in the fpecies, and the fpecies of what is to be found in each individual.-See Locke, b. iii. c. 6.
words, by bringing the thing fpoken of within fight of the parties.

The general terms reprefenting mixed modes, fuch as parricide, virtue, \&c. have only to be defined in the fame manner, by pointing out the actions or qualities they are defigned to reprefent, and there will be no danger of confufion or miftake.

Words reprefenting complex ideas, which are objects of our fenfes, are defined by enumerating the fimple ideas of which they are compounded.

Words reprefenting fimple ideas cannot properly be defined, for it is impoffible to analyze the idea white, fweet, \&c.

It is unneceflary to fay any thing of the nature and ufe of thofe words called particles. Such a difquifition would be better adapted to a grammatical treatife, than to the prefent work.

Words may pervert our realoning, either through paffion or ignorance. As words, by being connected with objects, become in fome meafure capable of exciting pleafure and pain, fo they may contribute to prejudice us for or againft an object, when frequently united with it, as is evident in the ufe of the epithets good, fine, elegant, frightful, bad, \&x..*

Whatever

* "It ought to be remarked, that the words and phrafes of the parents, governors, fuperiors, and attendants, have fo great an influence over children, when they firf come to the ufe of language, as inftantly to generate an implicit belief, a ftrong defire, or high degree of pleafure. They have no fufpicions, jenloufies, memories, or expectations of being deceived or difappointed; and therefore a fet of words expreffing pleafures of any kind, which they have experienced, put together in almoft

Yol. III.
K k
any

Whatever difputes or mifconceptions arife from ignorance of words, they generally happen in the names of mixed modes, or abftract general terms; for in the ufe of thofe words, which only reprefent complex ideas of fenfation, there can fcarcely be any miftake. The miftakes alluded to ufually happen, ift. From an idea being omitted, which ought to have been comprehended in that definition of a gencral term, which every man makes in his own mind. As in cbance-medley, man- Ω augbter, murder, the principal idea is the fame, yet the refpective words fuggeft an idea materially different. 2ndly. From ideas being admitted, which ought not to be comprehended in the general term. 3 dly , From an oblcure or confufed view of the meaning. 4thly. Difputes often arife, becaufe a man may have a part of the ideas, which are comprehended under the general word, more ftrongly affociated with his other ideas than the 个eft; of courfe he will have a partial view, and his reafoning will be biaffed by a kind of prejudice.

The firt end of language is to make known our thoughts to others, in which we fail, ift, When we ufe words without clear and diftinct meanings; adly, When we apply received names to ideas, to which the common ufe of language does not apply them; 3dly, When we apply them unfteadily. The fecond end of language is to make known our
any form, will raife up in them a pleafurable flate, and oppofite words a painful one. Whence it is eafy to fee, that the fine language expreffing praife, and the harfh one expreffing difpraife, muft inftantly put them into a flate of hope and joy, fiar and forrow refpectively."-Hartley, Prop. 47.
thoughts with as much eare and quicknefs as porfible, and this men fail in when they want either names for complex ideas, or abftract and general terms. The third end of language is to convey the knowledge of things, and this cannot be done, but when the ideas agree with the reality of things**

Other abufes of language, not noted above, are, ift, Affected obfcurity; 2nd, Taking words for things, as abborrence of a vacuum, fubftantial forms, $\& c$. to which I may add, taking memory, judgment, imagination, for diftinct powers, and almoft for diftinct beings, inftead of what they really are, only different modes of the mind's acting ; 3dly, Figurative language.

The frequent ufe of abftract and general terms makes us think in language more than we otherwife fhould do ; yet it is feldom that a chain of thought is carried on in a regular chain of words, as if we were explaining our thoughts to another, unlefs indeed when we con over a fpeech or any tranfaction where language is immediately concerned.

[^36]
Снар. IX*.

OF PLEASURE AND PAIN.

> Pleafure in confequence of Action.- By Afociation.-By Paffon.Utility.-Surprize.-Variety.-Regularity.—Imagination.
" FO excite us to the actions of thinking and motion (fays Mr. Locke) the author of nature has joined to feveral thoughts and fenfations a perception of delight; without this we fhould have no reafon to prefer one thought or action to another, motion to reft; in which ftate man, however furnifhed with the faculties of underftanding, \&rc. would be a very idle inactive creature, and pass his time only in a lethargic dream. Pain has the fame effect (continues he) to fet us on work that pleafure has; fince we are as ready to avoid that as to purfue this."

It is evident that pain and pleafure are relative terms, expreffive of an alteration in the fate of the perfon, bodily or mental. ift. Some degree of pleafure or pain attends almoft every impreffion on the five fenfes. 2dly. Relief from an uncafy fituation is pleafure; thus, the wants confequent on our natural appetites are painful, and to fatisfy them pleafant \dagger. 3 dly. The recollection of the ideas of thofe

- At this chapter the fecond part of this book commences, or that which treats of the active powers of man.
+ The appetites, which are the fprings of the paffions, ares hunger, thirft, and the defire of procreation. The bodily affȩtions
thore things which are hurtful to the body, or ideas affociated with them, is productive of trouble to the mind, and the contrary *, as will be amply proved in the progrefs of this volume.

So far is evident from experience. To afcertain the nature and caufe of painful and pleafurable fenfations is an inquiry of fome difficulty. Anatomifts and phyfiologits are, I apprehend, very generally agreed in one point; it will therefore be fufficient to fubjoin the opinion of one of the moft eminent, efpecially as the fubject has been in part inveftigated on a former occafion \dagger. 'All I fhall affume (fays Dr. Monro) is what is founded on experiments, that fenfation and motion do depend upon the nerves; that fenfations are pleafant as long as the nerves are only gently affected, without any violence offered to them; but as foon as any force goes beyond this, and threatens a folution of union, it creates that uneafy fenfation, pain.' \ddagger

If we examine the whole of human life, we fhall find almoft the whole of pofitive pleafure to confift in action of fome kind. Sleep will hardly come under the denomination of pofitive pleafure. It is defired, becaufe it produces a relief from wearinefs, and is a flate to which our bodies naturally tend
fections productive of pain and pleafure, and which are connected with the fenfe of feeling, are, ficknefs and wearinefs, and to thefe we may oppofe the feeling of health and vigour, and the fenfation of life, or the pleafure attending the moderate action of our fenfes.

* The expreffion of pain in the countenance is much the fame, whether bodily or mental, only differing in the degree,
+ See book ix. c. 36 .
\ddagger Chefelden's Anatomy, chap. Nerves.
when fatigued; otherwife it is a fate of infenfibility, and it would be an abufe of language to call it pleafure. Some impreffions are primarily grateful and others difagreeable. That the painful and difagreeable are fuch by an intenfe degree of agitation, which ftrains and prejudices the organs of fenfe, is probable. It is alfo probable, that the agreeable follow the general law of our nature, and are pleafing on account of the gentle yet lively action or agitation excited in us. There will remain little doubt of the truth of this doctrine, if we confider that light and heat in a moderate degree are productive of pleafure, and in greater quantities hurt by their intenfenefs; that many acids, \&cc. which, when diluted, are agreeable to the tafte, are highly painful when applied pure and unmixed *. In fine, abolute reft is the death of fenfe. Motion is the very characteriftic of animal life; and moft of our intellectual as well as fenfible pleafures feem to depend on a moderate increafe of action. Recalling an old idea, which is connected with a train of other ideas, is manifefly pleafing; and this appears to refult from the gentle agitation imparted to the organs of thought. "The mufic was like the memory of joys that are paft, mournful, but pleafant, to the foul." The pleafures of the imitative arts, of figurative language, of the fublime, the
* "There is no one, of ever fo little underftanding in what belongs to a human conftitution, who knows not, that, without astion, motion, or employment, the body languifhes; and is uppreficd, \&cc." "In the fame manner the fenfible and living part, the foul or mind, wanting its proper and natural exercife, is burthened and difeafed," \&ec.

Shaftefury Enq. Con. Firtuc, b. ii, p. ii. f. I.
beautiful,
beautiful, and ftill more, the pleafures of variety, will meet an eafy folution on this principle *.

Of pains, fome are pofitive, as really affecting the body t, others only affecting the mind by being connected with painful ideas; and further, pain is generally confequent on the abfence, or deprivation of pleafure ; that is, our expectations are difappointed, and we are robbed of the pleafure of hope, for we are ever in purfuit of pleafure; but the pain is always greater in proportion as the expectation was probable. Thus, there are many founds, which, though very diffonant, fcarcely give us pain; yet to a good ear the fmalleft diffonance in mufic is offenfive. The fame may be obferved in painting, architecture, \&c.

Our ideas flowing naturally in a train, whatever is introduced forcibly, and bearing not an immediate connection, pains the mind, becaufe it diftracts it with the variety of ideas, which are crouded together by the collateral circumftances introduced by it, as well as thofe depending on the former train of thought.

- This is to be underfood, however, as nothing more than an attempt to account for the nature of pleafiure and pain; and, I own, it appears to me the moft rational I have feen. The eftablifhment or rejection of this doftrine will not affeet the truth of my general principies; and I can flart fairly with this felfevident maxim, that pleafure and pain are the effects of certain impreffions on all our fenfes, and that the cravings of the appetites are painful, and the gratification of them adminilters pleafure.
+"Since the pains of feeling are far more numerous and violent than thofe of all our other fenfes put together, the greatelt part of our intellectual pains are deducible from them. -Hartley on Man, prop. 13.

504 Plenfure and Pain from Afociation. [Book X.
An impreffion, which was painful, will leave a trace or idea of pain behind it, and a pleafurable impreffion an agreeable idea; thefe, it is plain, may be excited by any of the aflociated circumftances. But the ftrongeft relation is that of caufation. What we conceive to be the caufe of painful or pleafurable funfations will be intimately combined with thofe iueas; and hence we always love or hate moft vehemently what we conceive to produce pleafure or pain. But as the principle of affociation is not confined to the relation of caufe and effect alone, any other circumftance affociated by contiguity of time or place, or even by refeinblance, will partake of the paffion. It is well known that the very word phyfic conveys a difagreeable idea to children, who have been compelled to take naufeous draughts, and they can fcarcely endure the perfon of the apothecary. The mention of particular medicines will fometimes excite vomiting in very delicate and irritable habits. Some medicines, palatable in themfives, from the idea of their painful effects, we naufeate.

IThe fenfible pleafures are greater in number than the fenfible pains. Of this, waving any abftract reafoning, fuch as the love of life, and the pleafures of habit, any man may be convinced, who will be at the trouble of enumerating them. Now our intellectual pleafures and pains are combinations of the fenfible, and of courfe our pleafures will be more numerous than our pains. Ideas feem to have a fimilar effect on the mind to what fome applications are faid to have on the body, which are fedatives when applied in Jarge quantities, and fti-

Chap. 9.] Intellesfual Pleafures very mumerous. 505 mulants in finall. "The fight of tortures chills the whole foul, and produces almoft a total ftagnation of thought *;" but relations of tortures have never any fuch effect, and men feem to find them agreeable, by the avidity with which they liften to them. The truth is, a very violent mental agitation is required to produce pain, and every moderate agitation will produce pleafure: a proof that the intellectual pleafures muft be very numerous, and the intellectual pains very few. A defcription of a ftorm or battle, which is really compofed of painful or difagreeable ideas, will excite in very few a degree of agitation which arifes to pain, and moft people experience an actual pleafure from thefe defcriptions. The very deformities of nature, a rugged and frightful hill, or a form of lightning, give us pleafure, when exactly copied; and we read with pleafure even of ill actions, and fee the cruelties of tyrants reprefented on the theatre with a kind of folemn delight \dagger. This can only refult, Ift, From the mental agitation, which thefe trains of thought produce. 2dly, From fome agreeable ideas, which may be connected with the train of thought; for the mind is ever ready to turn and embrace pleafing affociations, and feldom fond of

* Gerard on Genius, part ii. f. 4 .
+ At the fubfiding of grief there is a certain melancholy pleafure. A diftant view of the misfortunes of others affords a fimilar fenfation; but they produce pain if they touch us nearly ; and fome hearts are fo fufceptible, that they are moved much eafier than others. On the imagination being excited to action, we feel a moff agreeable fenfation; and it is a common maxim among authors, to leave fomething to the imaginasion. nerally connected with rude nature, and imperfect characters.

The pleafure refulting from narratives of apparitions, enchantments, \&c. may be accounted for on the fame principles; and from the pleafure attendant on them refults the ealy belief which men afford to fuch fancies.

The pleafure of utility refults from the ideas of pleafure that are affociated with the ends of any work or undertaking. Hence thefe pleafurable ideas become affociated with the employment itfelf. Though in fome inftances this effect may be counteracted ${ }^{*}$, the general principle holds neverthelefs true.

Pleafure

* "A prifon is certainly more ufeful to the public than a palace; and the perfon who founds the one is generally direited by a much jufter fpirit of patriotifn than he who builds the other. But the immediate effects of a prifon, the confinement of the wretches fhut up in it, are difagreeable, and the imagination either does not take time to trace out the remote ones, or fees them at too great a diftance to be much affected by them."-Smith's Theor. Mor. Sent. part i. C. 3. c. 3.

On the contrary, we may add, the pleafure, the gaiety, the greatnefs of thofe who inhabit the palace, naturally affect the mind with pleafing fentiments.
"Trophies of the inftruments of mufic or of agriculture, imitated in painting or ftucco, make a common and an agreezble ornament of our halls and dining rooms. A trophy of the fame kind, compofed of the inftruments of furgery, of dificting and amputation knives, \&c. would be abfurd and fhocking. Inftruments of furgery, however, are always more finely polifhed, and generally more adapted to the purpores for which they are intended, than inftruments of agriculture. The remote effects of them too, the health of the patient, is agrecable;

Chap. 9.] Pleafure from Surprife and Wariety. 507

Pleafure may refult from furprife on feveral accounts. The agitation which a moderate furprife occafions is agreeable; but the furprife which is united with the fatisfaction of finding ourfelves fafe, after fancying we were in danger, is fill more exquifite; and, perhaps, the moft exquifite of all is, when we find occafion for felf commendation, as in folving a problem, $\varepsilon \tau c$.

The pleafure of variety feems to be the effect chiefly of the moderate, and yet lively agitation, which feveral trains of thought induce.

Though it appears from all that has been faid, that gencle agitation is in general productive of pleafure, yet the mind has likewife a natural love of cafe, and will not bear much fatigue; a little exertion foon tires it; for this reafon, regularity is pleafing, and the contrary. We readily embrace a regular figure; the train of thoughts llow naturally t.o the different parts; we comprehend it; our mind is fatisfied with it. We purfue, with a kind of eafy emotion, a regular feries; and hence it is, that men have been fo fond of reafoning from univerfal axioms. The irregular pleafes in the works of nature from cuftom, and the ideas connected with them. Neverthelefs, where the end is pleafure, we may lay it down as an univerfal rule, that
yet as the immediate effect of them is pain and fuffering, the fight of them always difpleafes." $I b$.
"Infruments of war are agreeable, though their immediate effect nay feem to be, in the fame manner, pain and fuffering ; but then it is the pain and fuffering of our enemies, \&c. With regard to us, they are immediately connected with the agrceable ideas of courage, victory, and honour." 16.
508 Pleafures of Imagination. [Book X. an object ought to poffefs fome degree of variety, without entirely departing from that uniformity we love.
The pleafures of the imagination I have afferted to be much more numerous than the pleafures of fenfe; and thefe refult, firf, from whatever of the beautiful is purfiche? matualiy by the ubject defrribed. Qdly, From, the alfe ciatio ss o. pleature originally dedined from oul luites with othul ideas.

Chap. 10.] [509]

С н А Р. X .

OF LOVE AND HATRED.

Defnition of Lorve.-Origin of the Social Pafton.-Diflike and Hatted. - Defire and Averfforn.

IOVE is the idea of pleafure affociated with another idea. Some of the firft impreffions of pleafure an infant receives are by the gratification of its appetites. Its firf emotions of love are, therefore, towards the being that fupplies it with food, \&xc. ; and it is obfervable, infants never fail in this love. The idea of pleafure is in reality firft united with the food itfelf, and of courfe tranfferred to it, and thence to the object by whom it is fupplied. All our wants are fatisfied (particularly in our tender years) by means of our own fpecies; hence the moft agreeable ideas are united with them, and fo often repeated, that in time the love of mankind becomes, in a manner, a neceffary part of ourfelves; and from this fource may proceed the focial affections.

Dinike and hatred are the oppofites to love, and. refult from the idea of pain combined with another idea. A child fhall have no dinike to a certain medicine, till after it has produced naufea, or fome painful fenfation, and thenceforward he will fcarcely hear it named without exprefling his averfion.*.

The

* The idea of pleafure being annexed to a thing, conftitutes it, as we fay, good. 'The idea of pain (either immediate or related)

The paffions have been analyzed, and thus reduced to love and batred by fome of the oldeft writers on the fubject now extant. It is evident, that defire and averfion are the fame pafions made active. Inanimate things may be the objects of love or dinike. "The houfe which we have long lived in, the tree whofe verdure and hade we have long enjoyed, are looked upon with a fort of refpect \dagger." The Dryads and Lares, a fort of genii of trees and houfes, were probably firft fuggefted by this kind of affection.

Defire or the fenfation of want, may be either fenfual ur innaginary ; it may be fixed on the pleafure of gratifying an appetite, or on the delight accruing to the eyes or ears from the perception of beauty. When initruction, education, or prejudice of any ki d, raife a defire or averfion towards an object, it muft be founded an an opinion of fome quality, for the perception of which we have the proper fenfes. Thus, if beauty is defircd by one, who has not the ienfe of fight, the defire muft be raied by fome apprehended regularity of figure, fwectnefs of voice, fmoothnefs, or foftn-fs, or fome other quality perceptible by the other fenfes (without relating to the ideas of colour \ddagger.) or from the commendation of others.
lated) evil. "Thefe (as Mr. Locke obferves) are the hinges on which the pafions turn." See Locke, b. ii. c. 20.
t Smith's Theory Mor. Sent. part ii. f. 3. c. 1.
\ddagger Hutchefon.

Chap. II.] [$\left.511 \begin{array}{ll}\text { I }\end{array}\right]$

Снар. XI.

OF BEAUTY.

Of Beauty in general.-Original.-From Afociation.-Nature and Art.

WE may fay in general of beauty, that it is fome quality in objects capable of exciting unmixed ideas of pleafure, independent of the gratification of, any of the animal appetites. This definition does not differ much from that of Platn, " To du oұsws «xt axouns nou *." Perhaps we give this pre-eminence to the pleafures not depending on appetite, as they are the mort innocent, and leaft liable to difguft and fatiety \dagger.

The principal diftinction between the pleafure afforded by fublime objects, and that by thofe which we term beautiful, feems to be, that the latter is pure unmixed pleafure from the gentle agitation, whereas the former borders upon pain (arifing from fome compound of the paffion of fear) and is often not unmixed with actual pain, and always requires a greater exertion, and produces a more violent agitation of the organs of fenfe.
*"The pleafant to the fenfes of fight and hearing." -Plato, Hippias major.
+Ib . Beauty is never properly applied to the fenfe of tafting, as it feems too coare an enjor ment to be reckoned among the sational ores.

The pleafure afforded by rifible objects * is not that tranquil pleafure which arifes from the contemplation of beauty, neither is it pure or unmixed pleafure. Contempt, or fome painful paffion, is generally in fome degree compounded with the rifible idea.

The primary conflituents of beauty feem all of them to be fuch as promote gentle agitation, and thus increafe our fenfe of life. Such are, ift, Lively colours, where they are not fo ftrong, or the application fo continued, as to produce pain \dagger. The young man couched by Chefelden thought fcarlet the moit beautiful colour, and of others the gaycft gave him moft pleafure. The firf time he faw black it gave him great uneafinefs \ddagger. 2 dly, Variety and contrafts of colours, where the tranfition is lively,

- Rifibility is often productive of pleafure, as are fome other affections which have no relation to what is called brautful. Beauty feems mof properly applied to a pleafing idea excited by fome external object; but moft fr:quently our ideas of beauty arife from affociations, as the fenfe of propriety, cafe, \&cc. \&ec.
t" It is evident that gay colours, of all kinds, are a principal fource of pleafure to young children; and they feem to ftrike them more particularly, when mixed together in various ways."-Hartley on M. Prop. 22.
"In adults the pleafures of colours are very languid in comparifon of their prefent aggregates of pleafure formed by affociation.-Ibid.

Green, the middle colour of the feven primary ones, is moft grateful.
\ddagger Chefelden's Anatomy, p. 301. The boy couched by Chefelden was moft pleafed with red, perhaps, becaufe it was the completeft excrtion of his newly acquired faculty. He dreaded black, probably, becaufe it reflored him to his former fate, and was in fact a partial negation of fenfe.

Chap. 11.] Source of the Beautiful in Compofition. 5 I 3 without being too abrupt. Fermales of tafte make much ufe of this principle in the choice of their ornaments of drefs. 3 diy, Certain founds and combinations of them, analogous to thofe of colour juft mentioned. 4thly, Flowing eafy motion, without that violence which gives a double fenfation of pain, viz. befides the harh effect to our fenfes, an affociated pain, by putting ourfelves in the place of the object. 5 thly, The agitation which a waterfall, a varied profpect, or an high afcent, produces, may be a fource of that kind of pleafure we afcribe to beauty, even independent of the affociated ideas, Hence it follows, that figures, which poffefs variety without any thing harf or abrupt, the waving line, running water, and many of thofe conftituents of beauty remarked by painters, are naturally and primarily fuch. Thefe when fo difpofed as not to contradict any attachment eftablifhed by cuftom, and fill more when they coincide with it, as when nature is imitated in a fine landfcape, or defcribed in a poem, never fail to give pleafure; and hence it appears, that authors have miftaken who have defcribed that which is moft fit and regular as the moft beautiful. Admitting, in the inftance adduced by Plato *, that the wooden fpoon might be molt ufeful and proper; yet if even the value is fet afide, I apprehend the golden one would be allowed to poffefs the moft intrinfic beaury.

The affociations that arife originally from the pleafures of fenfe may become fo dittant, that we lofe fight of their origin ; and to an object in this

- Hippias Maj.

Vol. III.
L. 1
cafe cpithet beautiful. Though it is probable, that moft frequently fome of the primary conftituents of beauty will be compounded with it, and of this mixed nature are moft of the objects we denominate beautiful, as a fine houfe, a landfcape, a running horfe, \&oc. On this account it is worth obferving, we often find a whole to poffefs beauty, which by no means refides in the conftituent parts*. The fimple conftituents of beauty have but little influence when put in competition with the defire of gratifying the appetites, or the fear of pain; to illuttrate this, I fhall only mention a univerial and common prejudice. There is nothing really deformed in ferpents; on the contrary, many of the acknowledged conltituents of beauty, fuch as lively colours, variety, $\& x$ c. are found in them; yet from a knowledge of their noxious properties we cannot by any means bring ourfelves to view them with that pleafure which beautiful objects ought to infpire. An object which is beautiful will impart a virtue to every thing connected with it. Things prepofterous and deformed in themfelves are reconciled to us when worn by a beautiful perfon; and hence futhion derives its extenfive influence. On the contrary, what is worn by ruftics is leffened in our eftimation by the awkwardnefs of the wearer. Men admire the very defects of their miftreffes, and often judge of beauty by their peculiarities.

- Hippias Maj. ad. fin.

Chap. 11.] Uniformity and Diverffty of Tafle.

> "Amatorem quod amicæ
> "Turpia decipiunt cæcum vitia aut etiam ipfa hæc
> "Delectant; veluti Balbinum polypus Hagnæ *."

Hence we may in a great meafure account for both the uniformity and diverfity of tafte prevalent among mankind. There are fome objects and qualities, which intereft and are pleafing to every man; others, with men differently circumftanced, receive a colour from other ideas, with which they may be connected. The human form is the mort pleafing of all forms to every man, becaufe from fociety he has derived all his choiceft pleafures; but whether white or black is to be preferred, whether an aquiline or a flat nofe, will, perhaps, depend on early affociations to determine.

The influence of affociation over our fenfe of beauty is further obvious in this, that fcarcely any man exifts, who doss not annex to particular fets of features good and bad moral ideas; and thefe will probably be drawn from particular perfons. I knew a celebrated painter, whofe beft hiftorical figures all bore fome refemblance to himfelf; and others have been known, who conftantly copied their own wives as the perfection of beauty.

Rural beauties are fo compounded of the primary conftituents of beauty, united with fo many things that gratify our appetites and fenfes, together with many complex pleafures, fuch as fports and paf-

[^37]516 Rural Beauties. [Book X. times, the amorous pleafures, Sxc. that it is no wonder thefe, with the encomiums of others, which have always an influence on imitative animals, fhould make them the almoft unceafing theme of poets. Of the beauties of art I fhall treat in another chapter.

Chap. 12.] [517 l

Chap. XII.

> OF CUSTOM.

> Pain from Cuftom.-Pleafure.-Admiration.

TW O obfervations naturally occur, when we contemplate the force of cuftom: ift. That when we have been long ufed to fee two things together, we do not with perfect pleafure endure to behold them feparate. This is, in truth, a fpecies of difappointment. The idea appears incomplete; there is a want, and a painful fenfe of want. Thus a cow with but one horn, or a dog with one ear, is a difagreeable object, though, doubtlefs, if they had been created with but one, two would have been accounted a deformity.

2dly. It is commonly remarked, that cuftom will make us love almoft any thing, and will reconcile us to, almoft any condition. The force of cuftom here feems to depend entirely on the principle of affociation. We have already feen that pleafures are more abundant than pains. I here is, therefore, fcarcely any ftate in life, which will not be productive of many agreeable ideas ; thefe ideas become connected with the objects and actions which have occurred, while they have remained impreffed upon the mind; the idea, therefore, that imparted the pleafure, and the other idea, will become blended together; nay, the renfe of pleafure will be transferred from the former to the L1. 3 latter,
latter; fo that it may recur united with a fenfe of pleafure, even when the object that originally imparted the pleafure is forgotten. Thus it is not at all uncommon to hear perfons fpeak in rapturous terms of their paft fituation, when it is impoffible for them to recount the reafons why it was fo agreeable ; or, if they were to attempt to recount them, they would probably not affign the true caufes. Actions and things in themfelves indifferent thus borrow pleafures from others, and by this means attach us to them, as we have feen that fafhions, without any one original principle of beauty, nay, even deformed in themfelves, obtain refpect and admiration from the beauty of the wearer.

It is thus that card playing, and fome other habitual vices, not in themfelves pleafant, acquire an empire over us. The defire of imitating others has, we will fuppofe, been our firf motive for engaging in them; they have been united in the courfe of our purfuing them with the pleafures or fociety, the occafional gratification of avarice, the pleafure of furprife, \&cc. and thus afterwards ap.pear as pleafant themfelves from their borrowed. luftre.

Whether the love of life itfelf is an innate principle has been difputed; for though infants fear pain, yet they have no apprehenfion of dearh, till reafon has fo far made a progrefs, as to inform them that it is connected with pain, and life with happinefs. The love of life is generated from the fenfe of pleafure refulting from the goods we poffefs in it; and this affords no inconfiderable proof that the good in the world overbalances the evil. So ftrongly, in-
deed, are the ideas of life and happinefs affociated, that moft men would rather live miferable, than not live at all : thus again we fee that an affociated affection may overcome and counteract the natural affections, and even thofe that gave it birth.

It will be unneceffary to add any more in this place on this fubject, or to endeavour to prove more at large the influence of cuftom. To an attentive reader, many facts throughout the remainder of this work will occur to confirm it, and almoft all that has been faid of a fenfe of beauty derived from affociation will apply likewife to moral beauty *. It is obfervable, that every nation and every age has a fafhion in thinking as well as in drefs; and the whole caft of thinking will be more uniform than men ufually fuppofe. The fports of nations partake of the nature of their government, and their political prejudices and interefts. Gladiators and mock battles were the favourite amufements of the warlike Romans.

Men love what is uncommon at firft, becaufe what produces mental agitation produces pleafure ;

[^38]and there is no paffion produces fo much mental agitation within the limits of pleafure as admiration; they afterwards expect a renovation of that pleafure, which was only the effect of furprife; and often the very recollection of that pleafure will keep alive the paffion.

Chap. 13.] [521]

Снар. XIII.

THE PASSIONS.

Of the Paffions in general.- Particular Paffons. - Afociated Pafions.-Patirnal Love.-Sympatby.-Avarice.-Ambition. -Lare.

IT may prove of the higheft importance in morals to analyze the feveral affections and parfions. The general caufe has been already traced to the fimple fenfe of pleafure and pain; we have feen further what it is that is called a fenfe of beauty *; and now, from the feveral modifications and combinations of thefe, we fhall, perhaps, be able to form at leaft a conjecture how other more complex paffions come to be formed.

Love having been proved to proceed from an idea of pleafure combined with another idea, and dijlike, or hatred, from an idea of pain combined in the fame manner; defire and averfion have been Shewn to be no other than thefe paffions more actively exerted. Love in the extreme, without defire, is admiration. Defire, when applied to the gratifying of certain natural wants of our bodies, is called appetite. Foy is the poffeffion of a thing loved, a lively fenfe of prefent good. Grief is a fenfe of difappointment, or good loft. Fear is the fenfe of pain, or averfion, united with grief. Anger

* Hartley denominates the paffions, "aggregates of the ideas, or traces of the fenfible pleafures and pains." How they necome united into the molt common affections it is our buinefs to explain.
is an extreme of averfion, united with a defire of removing the object. Revenge is a continuance of anger. Envy is anger excited through the defire of poffefing what another man is poffeffed of. Hatred is the continuance of envy or refentment. Hope is 2 mixture of defire and joy. Pride is felf-fatisfaction, and is to ambition what joy is to defire. Contempt is a low degree of hatred or averfion, withour any mixture of anger or of envy. Curiofity is defire excited by the natural love of action, often ftimulated by appetite, or quickened by the love of beauty. Sbame is fear arifing from the focial affections; that is, a fear of having done fomething that may leffen us in the efteem of others; it is the oppofite of Va nity. Defpair is nothing but an excefs of grief. Perhaps the annexed fcheme may contribute to elucidate the progrefs of the paffions.

There

There is fcarcely; any fuch thing as a fimple paffion; even thofe which I have here fpecified are generally compounded with each other. Whatever ideas are predominant will determine the bent of the paffion, much depending on the peculiar tone of the organs at different times. Some paffions more eafily mix than others.

Paffions, naturally terminate, when their end is accomplifhed. This, however, does not happen in all cafes. It was remarked, that an imprefion, as it is more vivid, remains proportionably longer on the organ of fenfe; all the component fimple parts of it are more ftrongly impreffed, and it is affociated with a greater number of ideas. Impreffions accompanied with pain or pleafure are more vivid in proportion to the degrees of pain or pleafure, and fuch we muft remember are all paffions. Thefe impreffions and ideas are of courfe more vivid than any others, of courfe affociated with a greater number of ideas, all of which will ferve to recall them, and thus a paffion becomes the caufe of its own continuance, and by this means influences our train of thinking.

From what has been ftated it appears, that parfions are transferable from one object to another. An idea being often repeated with an idea which we love, and which of courfe gives us pleafure, we come at laft to love the idea which was at firft indifferent. What is more common than to love the children of thofe whom we efteem, and that for no merit or beauty in the children themfelves? In parental love, the paffion is in part transferred from felf to the offspring. The mother, during
her pregnancy, connects the idea of the infant in her womb with a number of agreeable ideas, with pleafure and with hope; hence maternal love is ftenaser at firft than paternal. The idea of duty, and the example of others, tend to increafe the paffion; afterwards cuftom, and the little cares about them. It is obfervable, that the love of parents is weak at firft; but love rufhes in by little affociations as from a thoufand fources.

On this principle depend fome of the ftrongeft affections that fway the human race. Every defire, for inftance, is attended with a degree of uneafinefs; to remove it, therefore, is plealure. Now, when men once perceive certain agreeable confequences from obtaining an object, a defire of obtaining it enfues; this defire will be liable to be renewed, and will be renewed fimply as a defire, without any retrofpect to the firft motives. This is evidently the cafe in avarice, where, dropping the immediate fteps between money and happineís, men form a connection, which does by no means naturally and immediately exift, and love the treafure for its own fake. "The fame might be obferved concerning the thirft of knowledge, the delight of reading, planting, \&c. Thefe were firft entered on with a view to fome farther end, but at length become habitual amufements; the idea of pleafure is affociated with them, when the firft reafon is quite vanifhed out of our minds ; nay, we find this power of affociation fo great, as not only to tranfport our paffions and affections beyond their jult bounds, both as to intenfenefs and cluration, but alfo to transfer thein to improper objects, and fuch
as are of a quite different nature from thofe to which our reafon had at firt directed them *."

I fhall clofe this fketch of the paffions by a fhort account of fympathy or focial affection, and afterwards, by the hiftory of thofe moft powerful incentives to action, avarice, ambition, and the paffion of love between the different fexes.

The pleafures of fympathy are generated, ift, by that love to our fellow creatures, which is the effect of early obligation \dagger. 2dly, Becaufe the fight of any enjoyment excites in us the pleafurable ideas of that enjoyment, and unlefs envy interferes, thefe will ever have their due effect. Thefe feelings are increafed by the praife that is beftowed on benevolence, \&xc. and the hope of reward in another life. Sympathy in the misfortunes of orhers has a double effect; when beheld at a diftance, as in theatrical reprefentations, I believe moft men find fomething rather pleafing than otherwife in them, and this arifes from the pleafure that attends moderate emotion, even though derived from a painful fource. In perfons of very delicate fenfitions, this affection often degenerates into actual pain; and on beholding real woe, it is fuch to all who retain the common characteriftics of humanity. Compaffion, or the defire of relieving diftrefs, is no

- Preliminary Differtation to Law's Tranflation of King's Origin of Evil.
+ The focial pleafures and affections may, as Dr. Hartley obferves, be much indebted for their increafe to the pleafures of the palate. Since it has been cuftomary in all ages to fatisfy our appetites in the company of our neareft connections, the idea of pleafure will become combincd with them.
other than a wifh of removing pain. The fight of a wound excites immediately ideas of pain in our minds, and we feel a fenfation of the fame nature (though weaker) according to our memory of fimilar pains, or, as we by defcription judge of them, from the pains that we realiy have felt. To relieve diftrefs, therefore, is actually taking off pain from ourfelves; to the act of relieving we give the name generofity. The idea of the pleafure is afterwards excited by hearing of an act of generofity, nay, is affociated with the very word itfelf, the mentinn of which, I believe, in moft people, excites a grateful fenfation. By thefe means, the virtue of fympathy may be conftantly maintained, and every amiable paffion cherifhed.

It has been already intimated whence the paffion of avarice derives its origin. The natural wauts of man, it is true, are very few; yet in the prefent flate of fociety, thefe wants are not to be fupplied without fome exertions on our own parts. The firt defign, then, of human beings, is, to acquire fuch a competence as will fatisfy the calls of nature. But obferve what habit does. By a continued purfuit, we grow eager in the chace; the firft object is loft fight of; we annex the idea of pleafure to the means or the inftruments, and fancy riches have fomething in themfelves defirable. A pafion different from the firft is now generated; one man's example imparts freh vigour to another, and the end of life is forgotten in the ardour of an imaginary purfuit *. When the idea of pleafure is once

- "Et propter vitam, vivendi perdere caufas."-Juv.
transferred thus to the inftrument, we fee a child prefer a piece of money to many actual gratifications that might be enjoyed immediately. I knew a covetous man, who hired a very uncomfortable large houfe, a third part of which he did not inhabit, becaufe he thought it a good bargain to procure an houfe of that fize at the fame rate as a friaiier. The fame man left a pleafant farm and a good eftate, and bought a commifion in the army, purely becaure he could procure it at a cheap rate.
" Avarice is checked, ift, By the ftrong defires of young perfons, and others, after particular gratifications. 2dly, By confidering the infignificance of riches in warding off death and difeafes, alfo fhame and contempt in many cares; and in obtaining the pleafures of friendMip, religion, \&cc. 3dly, By the eager purfuit of any particular end, as learning, fame, \&xc. *." We may obferve, that avarice is only the paffion of little minds, and will be chiefly predominant in uncultivated perfons, whofe attention cannot be drawn from it by nobler purfuirs; and in old people, whofe fenfual paffions are decayed.

Ambition feems to be founded, ift, On the hatred or averfion to poverty, and all its concomitant difadvantages and inconveniencies. 2dly, On the experience that we are indebted to our fellow. creatures for many conveniencies of life; and from the habit generated even in children, of endeavouring to pleare them, in order to obtain many objects

* Hartley, prop. 48.
of pleafure to our fenfes. 3dly, Many of the conftituents of natural and artificial beauty are poffeffed by thofe in high ftations, we therefore annex pleafurable ideas to thofe flations, and love them on that account. 4thly, Cuftom, and the words ufual in commendation, being applied to fuch perfons, increafe the paffion.

A mbition will take a different courfe, according to the difpofition or caft of thinking in different perfons. Thus if a man is habitually fenfual, his ambition will fill have an inclination towards what may gratify his appetites. One man, perhaps, from education or example, has acquired a habit of admiring fine cloaths; another, from natural timidity, avoids fhame and poverty. Commonwealths promote ambition of a different kind from that which is prevalent in monarchy. Ambition takes a different courfe, according to the time of life. It is to be remarked, that the primary conflituents of this parfron (as indeed in all others) will be obfcured fometimes by the affociated affections. The praife beflowed on the heads of certain feets of philofophers led many men to defpife the natural objects of ambition, riches and pomp; and the natural dinlike to poverty and dirt was fubdued and forgoten.

The pafion of love (and efpecially between refined perfons) is of a very complex nature, and far removed from the fenfual appetite, with which it is fometimes even very nightly connected. It is a well known fact, that an accomplifhed woman of fortune and family run off fome years fince with an Italian eunuch, whom the married for love.

The

The truth is, that befides the appetite, the focial paffion, as before explained, and this, heightened by the protection a weaker perfon feems to claim from us; the fenfe of beauty; admiration of particular accomplifhments; the refpect due to high birth or 'fortune; the commendation of others, and habit, in many refpects concur more or lefs to form the paffion.

Men of the world are all of them fenfible what fuccefs may be derived from a pleafurable ftate of mind, in which the object, whom they wifh to pleafe, may happen to be. On this account they fudioufly mingle in all the pleafures and amurements, of whatever kind, in which that 'perfon is found to delight. It is a maxim of Lord Chefterfield, " Muke a perfon in love with themfelves, and they are certain to love you in return "." The pleafure of receiving gits is directly connected with the object that beftows them; where prefents cannot be made, praife and commendation are the ordinary means, and if their fincerity is not doubted, feldom fail of fuccefs. I que? ion not, but it might almoft fecure the fuit of a lover to be the mefienger of fome very agrceable piece of intelligence to his miftrels. Pleafurable ideas, we know, are naturally connected with perfonal beauty, riches, high birth, great qualities, or fame. Some impoltors, under the mafk of being perfons of rani, have infinuated themfelves into the good graces of females; nor could the difagreeable ideas naturally annexed to

[^39]falfhood and deception, afterwards vanquifh the attachment. In fine, if by any means a man can become the affociate of agreeable ideas, on the principles every where proved, I think, throughout this book, he may foon hope to obtain a part in the affections of his miftrefs; and this may ferve to account, in fome meafure, for the many whimfical connections we are every day witneffes of.

> " When Mifs delights in her fpinnet, "A fidler may a fortune get;
> "A blockhead with melodious voice,
> " ln boarding fchools may have his cloice;
> "And oft the dancing mafter's art
> " Climbs from the toe to touch the heart;
> or In learning let a nymph delight,
> " The pedant gets a nifrefs by't "."

There is no greater miftake, than that the world is governed by motives of intereft. Cool felf-intereft acts in very few inflances. Where mankind are not fwayed by the natural affections, that is, by thofe ideas with which pleafure is naturally connected, they are generally determined by fome prejudice, that is, an idea with which pleafure or pain is fantaftically combined.

There is, perhaps, no paffion fo improvable by affociation as love; it is connected with many ideas that tend to refine, foften, and elevate the foul, and to increafe the paffion under the appearance of increafing prefent pleafure. We are not to wonder, therefore, that it has proved fo copious a means of

- Cadenus and Vaneffa.
playing
playing with our \therefore elings in poetical and dramatic compofitions. To fee and fympathize with ambition we muft be particularly circumftanced, and then our thoughts are generally too ftrongly bent on the purfuit to attend to imagination. Ambition is an active, love a fedentary paffion.

Some conclufions in favour of the practicabiity of virtue will enfue from the preceding principles. In the firt place, much of the government of the paffions will hence appear to be in our own power, by avoiding pernicious affociations, and by early care; hence we may learn how to reftrain the enthufiafm of avarice and ambition, by tracing them to their fource. In our choice of friends and books alfo, we may learn to be cautious to avoid thofe from which ill habits or prejudices may be derived; we may learn further to be aware of the effecis of cuftom in acquiring a fondnels for trifes, and efpecially for gaming, and other unnatural propenfities; we may learn to direct our affections to proper objects, to affociate the pleafing with the ufeful, or, by force of reafon and refolution, to difentangle thofe improper combinations whinh we may have formed. This, indeed, feems to be the great ufe of reafon and fcience, viz. to enable us to purfue the chain of affociations, which our affections may have extended, and to difcern plainly. the littlenefs of the common and ruling paffions of mankind.

[532] [Book X.

Снар. XIV.

OF REASONING*。

Common Senfe; rubat.-Defertive Reafoning -Analogical Refe funing.-IV'rong Data.—Pleafures of Renfoning.

REASONING may be defined a chain of judgments, following and depending upon one another, by which fome general conclufion is attempted \dagger.

The defign of this chapter will principally be to exhibit fome detached obfervations, fuch as may fupply us with a few cautions againt the molt common defects in reafoning, which will be found in general to depend upon a falfe or unnatural affociation of idens. Thus, repeated obfervation of the proper and ufual relations of things produces a prefumption in the mind, that thofe which are accidental may be equally well founded; and this appears to be the undoubted caufe of what is called prejudice.

- With this chapter the third divifion, or the mifcellaneous part of this bcok, commences.
t "Senfe and menory are but knowledgge of fact, which is a thing paft and irrevocable; fcience is the knowledge of confequences, and the dependence of one fact upon another, by which, out of what we can prefently do, we know how to dn fomething eife when we will, or the like another time." Hobbes Leviatho pt. I.c. 5 .

When the train of ideas flows in its natural courfe, that is, according to the true relations of things, then the opinions and conclufions formed will be juif. When it is warped out of its natural courfe by an accidental affociation, then fuch opinion, and every action founded upon it, will be falfe. Thus, while men annex the idea of honour to patriotifm, and that difinterefted benevolence which prompts a generous fpirit to difregard its own intereft in contending for the fafety and welfare of others, they reafon according to the common order of nature; but if they by any means narrow the fentiment, and can perfuade themfelves that it is lawful to deftroy or injure fome for the fake of others, that falfe notion of honour is generated, which produces war, devaftation, and conqueft; if to this they annex the idea of infult, as heightening the honour, and add the idea of cruelty to infult, which the warmth of paffion may readily lead them to do, or if it fhould feem a mark of courage to tafte the blood of their enemies, they will think it honourable and right to torture, and perhaps to devour them *. That the univerfe mult have a firlt caufe, that a firft caufe

* "The beginnings of this corruption may be noted in many occurrences, as when an ambitious man, by the fame of his high attempts, a conqueror or a pirate by his boafted enterprizes, raifes in another perfon an elfeem and adniration of that inmoral and inhuman character, which deferves abhorrence; 'tis then that the hearer becomes corrupt, when he fecretly approves the ill he hears; but on the other fide, the man who loves and efteems another, as believing him to have that virtue which he has not, but only counterfeits, is not on this account either vicious or corrupt." -Shaftbury's Enquiry con. Virtue, b. 1. p. 2. f. 3.
muft be felf-exiftent, that a felf-exiftent being muft be eternal, that an eternal and felfexiftent being muft be without imperfection, is a chain of reafoning that leads directly to a knowledge of the wifdom and goodnefs of our Creator, and ought to infpire us with a defire of imitating his perfections; but if, from perfonifying the deity *, men flall once give room to conceive of him as having parts and paffions, fancy will foon be fportive on the occafion, and the amours of Jove, and the contentions of the Geds, will become a part of the popular religion. What effect fuch an error mut have on morals is obvious. While furrounded with the bounties and mercies of God, we can never altogether lofe the idea of his goodnefs; if, therefore, to the admiration of the deity, the idea of vice or paffion fhould be annexed, thefe will lofe their deformity, and, however contrary to men's better judgments, fuch vices may even be heid in efteem.

Some refpectable writers have endeavoured to make a diftinction between reafon and what they call common-fenfe. But, perhaps, all that can be fairly afferted is, that fome propofitions are more nearly connected with fenfible imprefions than others, and

* Becaufe we can have no difinct ideas, but thofe combinations which we form of fenfible imprefions, mankind have in all ages been inelined to perfonify the invifible firt caufe of the univerfe, ior the fake of having a diftinet idea of him; and as the human form is the moff familiar to them, as well as the mof honourable, they have generally adopted that. This deception of our nature ferfevered in, has led them to aflign hima appetites, pafions, $\& \varepsilon$. the fame with the evil prineiple, and hence the origin of all fuperfition.-Sce Lffays Hiftorical and Moral.
therefure the train of reafoning is lefs liable to be diverted into a wrong conclufion, than in abftrufe fpeculations, or thofe which are far removed from being objects of the fenfes, where the variety of affociations affords a greater fcope for error. Thus, " that things equal to one and the fame thing are equal to one another;" " that nothing material exifts without a caufe;" " that, therefore, this world has a firft caufe," and fuch like, are propofitions immediately connected with experience, and therefore admitted without hefitation. That the angles of a triangle are equal to two right angles, is a truth no lefs certain, but cannot be demonftrated without a confiderable train of reafoning. This remark -will apply to many difputes in morals, theology, \&cc. Thofe facts which lie neareft the teftimony of our fenfes will meet the eafieft reception.
I have called reafoning the arithmetic of words, in which falfe conclufions may be drawn, either from wrong data, or from an error in the operation. It will follow, that the conclufions of our reafon, and our immediate feelings, may be fometimes at variance. It is common to fay, "I feei confuted, but not convinced;" that is, on fome former occafions, by common experience, you have united certain confequences with cretain things or actions; and another perfon, by a certain chain of reafoning, fome one ftep of which may be falfe, but to which you have not attended clofely enougin to detect the error, now exhibits a different conclufion. Paffion iefelf will often play the part of the fophiit, and determine men to act in contradiction to a conclu-
fion founded on commen experience *: "Video meliora, proboque, deteriora fequor."

Errors moft frequently happen in what is called reafoning by analogy. Analcgical reafoning is groundel on the relembling parts of complex ideas, and as long as we are careful to note the proportions of thofe refembling parts, and how far in each of the compared ideas they may be connected with, and influenced by others, it will generally prove a fafe method of reafuning ; but as the affociations are not near fo ftronys in this relation, as in that of caufe and effect, as the relation is more complex and more removed from common experience, this mode of reafoning will more frequently deceive us. Thus, " if we argue from the ufe and action of the ftomach in one animal to thofe in another, fuppofed to be unknown, there will be a probable hazard of being miftaken, proportional in general to the known difference of the two animals, as well as a probable evidence for the truth of part, at leaft, of what is advanced, proportional to the general refemblance of the two animals; but if, on examination, the fomach, way of feeding, Exc. of the fecond animal fhould be found, to fenfe, the fame as in the firft, the analogy might be confidered

- As botily pain is an unufual fate, and can never be entirely forgotten, however engaged the perfon may be, but will of courfe awaken the attention frequently to fuch objects and ideas as are connected nith it ; fo a paffion, being an unufual ftate of mind, fomething analogous to the fuffering of the body, will frequently awake it from other purfuits, and turn it to thofe ideas which are conneeted with it.
as an induction, properly fo called, at leart as approaching to it *."

Reafoning may likewife be defective and falfe, from accepting an axiom or conclufion drawn from a former judgment as an intuitive principle, or from an imperfect or partial view of the fubject, and from what has been faid of cultom, it is evident that it may have a great influence over our reafoning. Since ideas by repetition become more vivid, and acquire more force if affociated with pleafurable fenfations, it follows that it will require much force to overcome this Пavery, which the mind fabricates for itfelf, and that no lefs than demonftration from an actual appeal to the fenfes, or from acknowledged principles, wiil be able to undo it \dagger.

The

- "It is often in our power to obtain an analogy where we cannot have an induction, in which cale reatoning from analogy ought to be admitted; however, with all that uncertainty which properly belongs to it. "-Hartley on Man. Prop. 39. " The analogous natures of all the things about us are a great affiftance in decyphering their properties, powers, laws, \&ic. inafmuch as what is minute or obfcure in one may be explained and illultrated by the analogous particular in another, where it is large and clear; and thus all things become comments on each other in an endlefs reciprocation."-Hartley Prop. 39.
+ The following may be taken as a general abftract of the moft common fallacies which occur in reafoning.

Itt. Taking an accidental conjunction of things for a neceffary connection; as when from an accident we infer a property; when from an example we infer a rule; when from a fingle act we infer a habit. 2 d . Taking that abfolutely, which ought to be taken comparatively, or with certain limitations. The conftrution of language often leads

The pleafures of fuccefsful rearoning refult, ift, From the action it gives to the mind; 2dly, From the pleafure connected with the end we propofe to ourfelves from the inveftigation. In fact there is a pleafure attendant on the accomplifhment of every end or defign ; for as all the firft actions of men have a tendency to the gratification of their appectices, and the fulfilling of this defign has ever been attended with agreeable fenfations, we expect the fame on the accomplifhment of every intention or action whatever.
into this fallacy; for in all languages it is common to ufe abfolute or general terms, to fignify things which carry in them fome fecret comparifon; or to ufe unlimited terms to fignify what, from its nature, muft be limited. 3d. Taking for the caufe an occerfon or concomitant. 4th. Begging the queftion ; i.e. alluming the thing to be proved from the premifes. $5^{\text {th. Miftaking the queftion. When the conclufion of }}$ the fyllogifm is not the thing that ought to be proved, but fomething elfe that is miftaken for it. 6th. When the confequence is miftaken; as if, becaufe all Africans are black, it was taken for granted that all blacks were Africans. 7th. Propofitions that are complex, and imply two aflirmations, whereof o:e may be true and the other falfe; as when it is afirmed, that juch a mann bas left off playirg the fool-if granted, it implies that he has played the fool; if denied, feems to innly, that he does fo flill.

Chap. 15.] [539]

С н А $P . X V$.

OFTHEFINEARTS.

Mufic.—Painting. — Poetly. —Irit.

THE chief \{ources of pleafure in rworks of art are, itt, As far as they contain of the primary conftituents of beauty. 2d, Refemblance to thinge which have pleafed in our former life. . 3 d, Utility. 4th, A fenfe of the ingenuity required. 5 th, Fafhion, and a deference to the opinion of others.

Mufic is agreeable, I might alnoft fay entirely, from the combinations of notes naturally agreeable, or from the proper contraft of thele notes; from the variety of emotions produced by thele combinations, and from thefe emocions being judicioully contrafted; and I fuppofe good compofers, whether acquainted or not with this general theory, have recourfe to thefe principles *. Very littie of the pleafure of mufic has any relation to the gratification of appetie, or is at all difociared pleafure. Indecd, the remembrance of certain founds, which may have been combined with other ileas of actions

- It is worth confideration, whether the agrecable founds are not the molt frequent, and the difonant the mon unvommon, sec. Thofe founds and combinatio s of founds which refemble the human voice may, perhaps, by afiociatiun, give rife to the agrecaile of mufic.
or paffions, may, by recollection, be productive of affociated pleafure, as well as of various emotions ${ }^{*}$.

Painting derives its chief power of pleafing from the happy imitation of olyects that have the power of renewing agreeable fenfations; yet here much depends on a jruicious ufe and difpofition of the primary elements of beauty: lively colours, proper conerâts, the waving line, are always attended to by excellent painters.

Poetry depends little on the primary ingredients of beauty ar pleafure, except in what refpects the mealure of the verfe; and one reafon for the pleafure of verle I apprehend to be, the agitation occafioned by renewing ideas and fenfations, fuch being the return of founds, and this efpecially when properly enlivened with new ones. Perhaps in defcriptive poetry the beauties of contraft may be proper to be attended to; thus it fieals fome of the beauties of both mufic and painting ; but its chief power over the mind is derived from the affociated or factitious fenfe of pleafure, and from a reprefentation of thofe objects which, by interefting the paffions, produce mental emotion. It is remarked, that imperfect characters are mof agreeable in poctry; the reafons I fufpect to be thefe: ift, Bocauf: we find in them a picture of ourfelves, and ofen a fort of excufe for our own frailties. adly, Becaufe there is more of the fublime in occafional fallies of vice or paffion, than in uniform goodnefs. 3dly, Becaufe of the contraft between the grool ard bad parts of the character, the latter

[^40]really fetting off and making more confpicuous the former. I have already mentioned the pleafure of figurative language, refulting from the variety of thought and emotion introduced by the two trains of ideas *; and it is remarkable that, " when figurative words have recurred fo often as to excite the fecondary idea inftantaneounly, they lofe their peculiar beauty and force \dagger." It is a miftake, when critics tell us that florid language is not the language of paffion; experience amply convinces us of the contrary. The truth is, that forrow, refentment, or any violent palfion (provided the reafon is not injured) renders the mind more active, and though it never wanders very far from the fubject, yet it indulges itfelf it many excurfions, ftill recurring to its origin.

The fame qualities, but differing in the degree, are required to form both the poet and the orator; in the latter more folidity is wanted. An oration, if compofed like a poem, would be too florid and defultory. Quincilian points out the firt qualification of an orator to be a good man: this, above every other circumftance, predifpofes the hearers in his favour; befides, it fuppofes him more inti-

[^41][^42]Wit is the calling together two or more differing ideas by fome nịe and unexpected connection, relation, or correfpondence. The pleafure of wit confifts, ift, In furpife. 2dly, In the agitation producel by vonety, and the different trains of thought. ally, In feveral agreeable ideas, which muft be of courfe reralled *.

* "The fame hind of contrafts and coincidences, which in low and comic things wotit be wit and humour, become the brilliant paffages that aftect and ftrike us moft in grave poetry." -Hartley.
"Omnia noftra, dum narcuntur, placent."—Quint. I. x. c. 3. The action of the mind in forming any work is pleafing; and even if it is fuch as carried with it a good deal of labour and confequently fome pain, we feel joy on perfecting it.

Chap. 16.] [$\begin{array}{lll}543 &]\end{array}$

Снар. XVI.

OF MORALS.

Ufe of the Doctrine of Afociation in Morals,-Tiwo Theories of Morals.-A Moral Senfe.-Tbe Argunnents againft a Moral Senfe.- A frong Argument for Divine Revelation.

THE principal ufe of the doctrine of affociation, when applied to morals, will be, to induce us to reflect how little of our happinefs depends immediately on fenfual enjoyments, and how we may enlarge and improve our lot of pleafure, by cultivating thofe intellectual delights, which neither injure our health nor reputation, and yet are replete with the molt exquifite delight.

Another point which this doctrine tends to eftablifh, may, I think, be made of advantage to mankind, viz. that what is naturally good or ill in a temper depends on a few principles, which may be in a great meafure counteracted by other ideas and affociations fufficiently grounded and enforced. Hence it follows, that we may be in a confiderable degree the framers of our own difpofitions *; and inafmuch as reafon muft be our guide in morals, civilization is eminently of ufe to fociety, the great

* Difpofition is a general term, implying the bent or general direction of the mind. Thus we fay, an angry difpofition, \&cc. or, teffinefs is a difpofition to be angry.
advantage of which feems to confift in the increafe of intellectual pleafure *.

Among moral writers, two thenries, materially different, have long exifted refpeeting the nature of our fentiments of virtue and vice. Our love of the former, and deteftation of the latter, is by the one party afferted to be an inftinctive principle, independent of knowledge, or of former ideas admitted by the five fenfes; and by the other, to be nothing more than the refult of experience or information.

For the firt of thefe hypothefes, the arguments are many and forcible. ift. There are, it is obferved, in all languages, words equivalent to duty and intereft, which men have conftantly diftinguifhed in their fignification. 2d. The emotions which are produced by the contemplation of what is right and wrong in condut, are different from thofe which are produced by a calm regard to our own happinefs; fo much fo, that we judge extremely differently of the conduct of other men, and of our-

[^43]felves in the fame circumftances. 3d. The fentiment of approbation or difguft which is excited by any action is inftantancous, and not the effect of reafoning or deduction; thefe fentiments are alfo excited even in children, long before they have learned to make ufe of their reafon, or to form in their own minds any regular judgment concerning the good or evil confequences of action. 4thly. The gencral agreement of all nations (only making fome allowances for local circumftances) with refpect to moral excellence or moral turpitude, is alfo cited as a proof that there fentiments muft proceed from fome general and inftinctive principle. 5 thly. It is afked, what is meant by the term confcience, and that uneafy fenfation which accompanies guilt, if there is nothing conftitutionally in man to direct him in the purfuit of good and the abhorrence of evil?

In oppofition to this doctrine it is urged, with fome plaufibility, ift, That the moral fenfe improves* with years and knowledge. What moral ideas, it is faid, had the favage girl caught in the woods of Champaine? What had the young man of Chartres, who recovered his hearing at the age of twenty-four \dagger ? Uninformed perfons of every nation

* This argument is, however, not decifive, fince any one of our fenfes, and even our bodily powers, may be improved by practice and inflruction.
+ A young man of the town of Chartres, between the age of twenty-three and twenty-four, the fon of a tradefman, and deaf and dumb from his birth, began to fpeak of a fudden, to the aftonifhment of the whole town. He gave them to underfland, that, about three or four months before, he had heard the

[^44]nation have rot an exquifite moral fenfe, and infants very little of it. 2dly, We feel, and refent as ftrongly, any thing which contradicts the religion or cuftoms of our country as thofe vices which are generally difallowed, and this can by no means be fufpected to be innate. 3dly. What is called virtue is generally profitable. Nor does it at all derogate from the honour of virtue, that it is founded on the immutable principles of truth: a much more honourable extraction than blind inftinct. 4thly. The necefity which all religious
found of the bells, and was greatly furprifed at this new and unknown fenfation. After fome time a kind of water iffued from his left ear, and he then heard perfectly well with them both. During thefe three months he was feduloully employed in liftening, without faying a word, and accufoming himfelf to fpeak foftly, fo as not to be heard, the words pronounced by others. He laboured hard alfo in perfecting himfelf in the pronunciation, and in the ideas attached to every found. At length having fuppofed himfelf qualified to break filence, he declared that he could now fpeak, though as yet but imperfeelly. Soon after, fome able divines queftioned him concerning his ideas of his paft flate; and principally with refpect to God, his fould the moral beauty of virtue, and deformity of vice. The young man, however, had not driven his folitary fpeculations into that channel. He hid gone to mafs, indeed, with his parents; had learned to fign himfelf with the crofs, to kneel down, and to allume all the grimaces of a man in the act of devosion. But he did all this without any manner of knowledge of the intension or the caufe; he faw others do the like, and that was enough for him. He knew nothing of death, nor did it even ever enter his mind. He led a life of pure animal inftinct; and though entirely taken up with fenfible objects, and fuch as were prefent, he did not feem to have made fuch refiections even on thefe as might have been expected; though he did not want undérfanding.-Mem. Acad. Science 1703, p. 18, cired by Buffon.

Chap. 16.] Trbecry of a Moral Senfe.
perfons admit of a divine revelation to teach us our duty, and the great imperfection of all the fyftems of morals that have proceeded from the Heathen fages *, feem greatly to militate againft the hypothefis of an innate moral principle.

There ate fome points it is added, in which all men agree; becaufe there are fome deductions, which all men endued with fenfes nearly alike, cannot fail to draw. There are fome ideas which will be affociated in every mind that reflects. Of this nature are the common opinions of virtue and vice. Every being fenfible of pleafure and pain mult alfo be fenfible of love and hatred. - Very little experience will convince any man that particular actions are attended with ill effects, and others in like manner with good ones. No matter whether to ourflves or others, we have the idea good and bad annexed to the actions, before we have the idea of the perfons to whom they relate; we have them from our own experience; or fomething adequate : we love the one and hate the other, we love whatever promotes the one, and the contrary.

We very early come to have a fenfe of injuftice, fince whatever difappoints the appetites, or is productive of prefent pain, generates refentment in an infant. Thefe ideas are regulated by reafoning and education, and men in time learn to diftinguifh between a misfortune merited, or which they have brought upon themfelves, and one which is brought upon them by others; they learn too to diftinguif

[^45]543 Necefity of Divine Revelation. [Book X. between chance and defign, and hence our hatred to injuftice, \&cc.

The quick fenfe of honour and fhame, it is further alledged, can be no argument in favour of inftinctive morality, for we are much more ahatined of natural defects; there are few men that would not rather be called knaves than fuols.

The reafon men are afhamed of fenfual enjoyments, is the loathing and difgult that foliow excefs in them ; there is no excefs, no dilguft, no fatiety in the pleafures of imagination, we can therefore bear to reflect upon them.

Should we reject on thefe grounds the doctrine of an inftinctive moral fenfe, the argument will, in my opinion, be extremely cogent in favour of the neceffity of a divine revelation to confirm men in the right path of reafon, and counterat thofe errors which faile affociations may. produce.

Chap. 17.] $\quad\left[\begin{array}{lll}549 &]\end{array}\right.$

Снар. XVII.

OF GENIUS.

General Obfervations on wubat confitutes Genius.-Of the Varieties in Geriuss.-Genius oppofed to Dulnefs.-Different Ciaft of Genius.

CO ME men, it is well known, feel more acutely impreffions on their fenfes than others, and thefe impreffions probably remain longer vivid on fome than on others. It feems not unlikely therefore, that this faculty of feeling more acutely, and the impreffions on the fenfes dwelling longer vivid in fome men than in others, enables them to form more extenfive combinations, and connecting together more effectually their ideas, may conftitute what is called genius, in oppofition to ftupidity or clullnefs*. Such a faculty will enable men to acquire knowledge more eafily, by more readily admitting perceptions ; to retain it better by the frequent repetitions, which fo many affociated ideas muft prosluce ; and to exprefs it more readily from the connexion of ideas, which will recal each other in a more complete and regular feries. Men of this

* Genius on thefe principles feems to be an active power of quickly combining fimple ideas, or of difcovering their combinations. Dulnefs to be no more than a Sugriihnefs of mind, which is incapable of following the combinations of notes in a fine piece of mufic, or of the colours in a good landfeape, though the fimple ideas may be obvious enough.

$$
\mathrm{Nn}_{3} \text { defcription }
$$

defcription will have more objects of pleafure and of beauty than ordinary minds. Relations which would have efcaped the majority of mankind, will be impreffed on their fenfes, and combinations will be formed of which others could have no conception. Their minds branched out, in a manner, to more objects, will in fact have more fources of pain and pleafure ; only that as the portion of pleafure is greater than that of pain in the world, their pleafures will be proportionably more numerous.

But there are other differences fubfifting among men of apparently equal genius, which feem difficult to be accounted for. One man fhall excel in an art for which another poffeffes no qualification, who yet is at the fummit of excellence in fome other. That the paffions muft have an effect in forming our difpofition * and caft of thinking, cannot well be difputed; and the paffions being no more than modifications of the appetites, on them mult in fome meafure ultimately depend the turn of mind in particular perfons.

I can eafily conceive that one fenfe may be foa perfectly and delicately organized, as to be more fufceptible, to diftinguifh more nicely, and to prefent the ideas of that fenfe more perfect than the other fenfes; and this is probably the cafe with

[^46]thofe who poffefs a very fine mufical ear without any acutenefs of undertanding. But in general this delicacy is extended to all the mental organs, or, to fpeak more properly, perhaps, to the mind itfelf. Hence a genius for all the fine arts commonly exifts in the fame perfon, and if they have applied only to one, we may reafonably conclude an early bent to have determined the preference.

It is alluwed that a quick perception, a proper degree of retention, and a facility in recalling its ideas, are as effential to a found judgment, as to a fine imagination ${ }^{*}$, the great difference feems to be, that the one feleets and dwells upon fuch ideas as are neceflary to its immediate purpofe in difcovering truth ; the other felects only fuch as give pleafure, and does not dwell long upon any. It is probable therefore, that this is chiefly a difference in temper and difpofition. Acuteners of feeling is

* The philofophic genius, according to Dr. Gerard, differs from a genius for the arts, in this, that the former is chiefly employed upon the relations of effects and caufes, and the latter is attracted by the relation of refemblance, confequently the one divells on a few principles, the other purfues every light and fanciful affociation.
"' he philofopher defcribes minutely all the appearances of his object; his defign requires it; every one of them involves fome truth; inattention to any one of them may prevent the difcovery of truth, or occafion error; thofe of them which feem leait Itriking, often lead moft direetly to truth, or lead to the moft important truths. A poet, on the contrary, would overlook by far the greateft part of there appearances; they are unfit to pleafe, and for that reafon attract no thare of his attention : he fixes on a few that are moft friking, and labours to fet thefe in a ftriking light." -Ger. on Gen. pt. 3.f. f.
certainly ever connected with fine parts, being in fact no other than quick perception; but it is certain, that among men of equally acute feelings, fome are lefs violent and fanguine than others. I can ty no means confent to refer this difference altogether to education, for perfons who have had every poffible care taken of their temper in early youth, will often, when fet at liberty, break out, and become of very unruly difpofitions in maturer age ; and perfons will refemble their parents in temper, who have never feen them:

" Naturam expellas furcâ, tamen ufque recurrit."

This fact we can refer to no one principle in human nature but the paffions. Thofe whofe animal appetites are ftronger than thofe of others, will be more fanguine in all their defires, of courfe will fmart more for a difappointment, and in a word, mult be more fubject to paffion.

The old maxim, "Poeta nafcitur," has been accounted a vulgar error, and it is certain much depends upon early habit, and this habit is always acquired from the circumftances of youth. But this does not entirely account for the difference of men's purfuits, whofe mental powers feem equal, and whofe fituations are fimilar. If once it is agreed, however, that a degree of coolnefs is neceffary to certain ftudies, and that others are more connested with paffion, we fhall not long be at a lofs to account for this feeming paradox in the human mind, upon the principles already eftablifhed.

There are other caufes of diverfity in natural genius, fuch as difference in the degree, \&xc. One another; another man may have a more lively perception, and a little difference in principle will produce a great one in the effects. Thefe perfons may feem men of equal talents, and yet the bent of the genius will be different in each, and their qualifications different. After all, it is difficult to fay what may be the effects of cultivation. Many excellent practical muficians are certainly not mein of genius, nor ever poffeffed, as I have been informed, of a natural genius for their own art. What moft commonly influences the purfuits and difpofitions of men is, I am perfuaded, cultom *, early affociations, and a predilection for certain occupations' generated by fome agreeable butt fortuitous circumftance. Thus, in relating the life of the poet Cowley, Dr. Johnfon informs us, that, "In the window of his mother's apartment, lay Spencer's Fairy

[^47]554 Accidental Direftion of Genius. [Book X.
Queen; in which he very early took delight to read, till by feeling the charms of verfe, he became, as he relates, irrecoverably a poet. Such (adds this great moraliff) are the accidents, which fometimes remembered, and perhaps fometimes forgotten, produce that particular defignation of mind, and propenlity for fome certain fcience, which is commonly called genius. True genius is a mind of large general powers, accidentally determined to fome particular direction. The great painter of the prefent age had the firt fondnefs for his art excited by the, perufal of Richardfon's treatife *"

[^48]Chasa

Снар. XVIII,

OF TASTE.

Of Agreement and Dijagreement in $\Psi_{\text {ajpe }}$.-Of a Standard of Taffe.

DISA GREEMENT of tafte, if we but attend to the principles explained in the former part of this book *, will be found to arife from particular affociations \dagger; and agreement in tafte from the natural affections common to all mankind. The moft perfect agreement will be between thofe whofe genius, fludies, and other circumftances moft perfectly accord,

National tafte is influenced by the fame caufes, which influence that of individuals \ddagger, and a night affociation will frequently produce the moft fantaftical cuftoms. The tyranny exercifed over the female fex, the jealoufy of the Afratic nations; and the neglect of their women, fhewn by fome nor-

- See c. xi.
+ From affociation, if glaring colours, or any other thing fhould be regarded by the country as a fign of levity or any other ill quality in the wearer; or if any colour or fafion is ufed by ruftics, or men of a difagreeable profeffion or temper, thefe ideas recur with the fafhion or colour.
\ddagger Almoft every perception will introduce a different train of ideas in every different perfon, according to the different circumftances with which it may have been moft frequertly affociated in each perfon's mind, and confequently often according to their particular occupation or profeffion.
thern barbarians, does not proceed from a coldnefs in the natural temper of the latter, nor from the more lively paffions of the former ; the truth is, in the rude ftate of thofe northern people, their other wants are fo many, that they cannot attend to the pleafures of luxury. But the fouthern nations by the aid of a fine climate and a fertile foil, are more adranced in civilization than thofe of the north, though not arrived at that point when the mind is enabled, by reafon and philofophy, to refift or correct falfe affociations. The one party have little notion of pleafure, the others have miftaken notions of it. A fingle movement in the intellectual world influences a train of ideas; and if wrong, produces a feries of mifconduct. It is certainly a confituent of female beauty to have limbs frmaller and more delicate than thofe of men; but mankind are ever defirous of pleafure and beatuty to excefs; the Chincfe, therefore, endeavour to produce a degree of beauty beyond what miture has eftablifhed as perfection, and cramp the fect of their women even to deformity: the fame motive will ferve to explain many fantafical faflions which occur to our own obfer. vation. What induced forse of the Indians to colour the teeth biack, was fuppofing it efiential to men to differ from the brutes in every refpect, and therefore it was neceflary not even to have teeth of the fame colour.

Deviations from nature happen chicly in a Rate a few removes from barbarifin. True refinement brings men round to the primitive fimplicity from which they have been diverging. Whether the theory of a mosal fenfe is aimitted or not, it is fiul higlily probable, that there is in all things a certain perfecs

Chap. 18.]

perfection of which mankind is naturally emulous. The ideal characters, and the golden age of poets, exhibit the original traces of the confcioufnefs of this perfection, written in the breaft of every man. It is on this ftandard of excellence in human nature that a ftandard of tafte probably depends. As men approach more or lefs this point of perfection, they are called polite or ruftic, civilized or barbarous; and though the point itfelf has never, perhaps, been attained, nor ever will be attained by any, yet men there will be in every age who approach nearer to it than the great mafs of mankind, and in fome ages they will abound more than in others; from the number of thefe we are to form our judgment of the tafte of any given period; thefe, in fact it is, who lead the fafhion in thinking; and although there are degrees in this intellectual excellence, yet all men will be admirers and judges of perfection in arts or in morals, in an exact proportion as they approach perfection themelves, provided only they have made themfelves perfectly acquainted with the principles of that art of which they prefume to judge.

Снар. XIX.

OF OPINION.

Paradox of the Stoics. - Explanation. -The fenfible Pleafures more numercus than the fenfble Pains. -The farme with the intelle eruat Plenfures and Pains.

IT was a dogma of the ftoics; that good and evil depend upon opinion-Take away the opinion (fay they) and the evil is removed *. This paradox is, perhaps, not wholly incapable of explanation. Certain it is, that if we except the fenfible pleafures and pains, much of our temporal happinefs and mifery does depend upon opinion; that is, upon an imaginary eftimation or fear acquired from affociations of ideas. What renders a particular walk or apartment agreeable after being for fome time habituated to it? but that the idea of the place becomes entwined and connected with the pleafures enjoyed in it. What gives value to the lover's keep-fake or the mifer's gold ? not that either are of any ufe to them, but the one is affociated with the pleafure of fympathy, the other with that of convenience \dagger. The moralifts; therefore;

* Sce M. Anton. Med. Arrian Paffim.
+ Darknefs and obfcurity are the only means by which the cye can be materially deceived in judging of bodies.-The fancies, therefore, of apparitions, whenever they arofe, rooft probably took their rife from fome mifconception of this kind; and, indeed, the little probability there is that men could be deceived

Chap. 19.] Pleajures of Intellect.

fore, who affert that we may be, in a great meafure, the fafhioners of our own happinefs, are, perhaps, not materially miftaken. The fenfible pleafures are more numerous than the fenfible pains; but the greater part of our happiners is intellectual, or formed by the imagination. If, therefore, we can become fuch mafters in reafoning, as to analize and decompofe thofe paffions which the imagination forms, the fairy fabrick is diffolved, and our uneafinefs is removed. Nor need we be prevented from uniting together agreeable aggregates of ideas, in which work nature will affit, and for the reafon above intimated, viz. becaufe the fenfible pleafures are more numerous than the fenfible pains, and becaufe the mind is only active in purfuit of pleafure.
deceived in the open day, made obfcurity be always chofen as the proper feene for terrors of this kind. Nay, the fear and caution which people mult have in the dark ou account of the danger there is of falling or injuring themfelves; the opportunity it affords for ambufcades, \&c. and being the common time for committing murders, \&c. muft increafe this apprehenfion. Befides it deprives us in fome meafure of fociety, and cuts off many pleafing trains of ideas which objeets in the light introduce. After all, probably fo much of our happinefs depends on the action of our fenfes, that the deprivation of any one of them is attended with proportionable uneafinefs. Much ufe has been made of this primciple in the glomny confruation of religious buildings, \&c. fupertition being the common effspring of fazr.

Сhap. XX.

OF THE FREE AGENCY OF MAN.

Predefination, or fatal Necefity, not connected with the Doctrine of the Afociation of Ideas.-Inconfiflency of. the Fatalifs.-Motive and Action in Morals twally different from Caufe and Effet in Pbyfics. -The Onus Probandi in this Queftion lies on the Fa-talifs.- Queflion concerning the Infurence of Motives.-Argument of the Fatalifts from the Divine Prefience. Abfurd and borrible Confequences refulting from the Doctrine of Fatality.-Modefly and Humility recommended in philefopbical Studies.-Thofe Sciences to be preferred which are moft connected suith practical Utility.

THAT the doetrine of the affociation of ideas fhould, in the mind of any vifionary writer, have cver been connected with the fatal neceffity of humpan actions, is, I confefs, to mee a matter of furprife. Miferable, indeed, muft be the ftate of non!, if he was endued with no power of regulating or directing the train of his ideas; if they muft flow for ever in one necefiary, unbroken channel, or if external objects alone were to dictate to us what to think. It is obvious, that if this was the cafe, there could be no variety, and fcarcely any change in the purfuits of men : the thoughts mult flow from each other in one uninterrupted feries, and man could not be an accountable, and fcarcely a rational creature.

It is, however, plain, that we have a power of interrupting the train of thought, of dwelling more intenfely.

Chap. 20.] Inconfftency of the Fatalifs. $56 x$ intenfely upon particular ideas, and even of occafionally diverting our reflections and contemplations into new channels; and this power alone is fufficient, in my opinion, to conflitute man a free agent *. Indeed thofe authors, who contend moft for the doctrine of a fatal neceffity, are among the firft to recommend an application to ftudy, and the cultivation of the mind; whereas; if the mind is endued with no fpontaneous energy whatever, no felf-directing agency, furely fuch a recommendation is inconfiftent and abfurd \dagger.

On any queftion of ferious importance, analogical reafoning fhould be admitted with the utmoft

[^49]
562 Motive and Action in Morals different [Book X.

 caution; and yet a fenfelefs and puerile analogy has been called in to the aid of an argument, which cannot be fupported by pofitive proof. Motive and action in morals, have been compared to caufe and effect in phyfics *. That fome motive in the mind precedes every human action is certain, and thus far the analogy is juft; but the motive may as well be in the will itfelf, as the mere refult of any external caufe. If, indced, the analogy was true in all its parts, a duman being would be altogether as fubject to the laws of inert matter as a block of * marble or of wood. Whatever is fubject to an abfolute neceffity, can never be the incipient caufe, or the beginner of motion or action of any kind; it muft be altogether under the command and direction of external objects; it mult be altogether inert or paffive, having no principle of action in itfelf. On this account, as I before intimated, there would be much more uniformity in the actions- The arguments by which the atheifts have attempted to prove this analogy, are the mof albfurd and puerile that can well be imagined. "Every cffect," fay they, " muft proceed from fome caufe, and this caufe mult be dependent on another." The direet conclufion from this is, "that there is no where any origin or beginning of motion, but every thing is neceffarily produced by an etcrnal chain of caufes and effects, without any independent origin." Such reafoning as this exaclly refembles that of the Indian, who fuppofes the earth to reft on a crocodile, the crocodile on an clephant-but what does the elephant reft on? In fact, to compare the operations of the mind to any of the qualities of matter, is to compare, as Dr. Clarke obferves, a fquare to the colour of blue, or a triangle to a found. It is like the blind man, who, being afked what idea he had of farlet, faid, he fancied it mult be fomething like the found of a drum.

Chap. 20.] From physical Caufe aird Effer. of men, if they were fubject to a fatal influence, than there appears to be; there would be no difficulty in deciding what muft be their conduct in any given circumftances.

A freedom of deliberating, chufing, and determining upon things, is whar every man feels in himfelf*. It is the dictate of nature and common fenfe; one of the fint perceptions we have of the operations of our own minds. It does not lie with us, therefore, to prove, that the human mind is free; but it lies with the opponents of liberty to prove, that it is zot free; and this ought to be done upon direct, pofitive, experimental cvidence, and not upon fanciful anal, ogies or conjeEture.

The only argument which the fataluts have ever been able to adduce, which at all bews upen the point, is this-that men act from motives, and thefe motives are dependent upon fituation and external circumflances. This, then, is realy the point at iffue between the fatalift,s, and the alvocates for the free agency of man. The former fuppofe the influence of motives from external cautes to be abfelute and unlinited; the later allow the influence of mocives to a certain extent, but they deny that: it is ablolute and unlimited.

In the prefent fate of human Lnowledge, it is, indeed, a fpecies of dogmatilm not to be endured, to pretend precifely to afcertain how far the in-

* "As it is in the motions of the body, $f o$ it is in the thoughts of our minds; where any one is fuch, that we have power to take it up, or lay it by, according to the preferenoe of the mind, there we are at liberty."-Locke's Effay, B. ii. c. 21 .

564 Point at iffue with the Fatalifts. [Book X.
fluence of external motives extends over the mind of man. That external caufes fhould have a certain weight and influence with us, is certainly confiftent with the wifdom of Divine Providence, and confiftent with that order and regularity which he has every where eftablifhed. If men were to act entirely independent of all influence from external caures and circumftances, the world would be an entire fcene of confufion and diforder; if, on the contrary, they were endued with no power of choice or deliberation, the whole would be an inanimate uniform mafs, fubject to certain and definite laws, as much as inert matter. In this, therefore, the fame happy medium appears to be eftablifhed as in other inftances. Man, from his natural relation to external things; from that wonderful connection which exifts between the borly and the mind, is fubject to a certain influence from fituation and circumftances; bue there is ftill in his own mind a power of reflecting, deliberating; and deciding upon his motives and conduct.

Another argument in favour of fatality is deduced from the prefcience of the Deity. "If God foreknows all things (it is alleged) then every cvent muft be predetermined." But this argument refts upon the fame prefumptuous foundation as the preceding, which would pofitively determine the precife degree of infuence that external caufes muft have upon the mind of man. Dogmatifm certainly never was the road to truth, and is utterly inconfiftent with that modefty and humility, which is the very characteriftic of a real philofoplier. The prefcience of the Deity! Who will dare to
fay that he is able to define it? Who will dare to allege that he underfards every particular circumftance and attribuse of the Divine exiftence? To fay that God connot exercife his own powers in that way which is moft agreeable to the ends that infinite wifciom propofes, and infinite goodnefs would dictate, is, to define and limit onnipotence ! and to affirm that God cannot conftitute man a free agent, cannot in this inftance difpenfe with his own prefcience, is to fay, that God is not omnipotent. This was long my own opinion; and I was happy to find it confirmed by the excellent and judicious Dr. Henry More, whofe fentiments on this fubject were pointed out to me by a friend. " It is true (fays he) we cannot otherwife think of God's fore-knozoledge, but as being every way clear and perfect, and without poffibility of error, as to thofe objects about which le judges or pronounces. And furely he does always judge and determine of things according as they are; that is to fay, of a contingent thing, as it is contingent; and of a neceffary thing as it is neceflary. Whence it comes to pafs, that thofe things which are contingent ant? proceed from a free principle of acting, are allowed to be feen by God's conient.
" But, not to confine God's omziifcience within narrower, nor afcribe to it wider bounds than we do to his omnipotence, which all fuppofe to be an ability to do whatever implies not a contradiction; let us difpatch the difficulty in a few words, by faying, that the fore-knowledge of contingent effects, which proceed from a free principle of acting, does either imply a contradiction, or it does not. If it doss
imply a contradiction, then fuch effects are not the object of God's oimnifcience, nor determined by it, nor rightly fuppofes to be determined at all. But if it does not imply a coneratiction, then we actually confers, that divine prefocince, and buman freereill, are not inconfiftent, but that they may ftand together."

The moft decifive argu:nent, however, againft the fatelifts, is, the extravagant conclufions to which this gloomy and comiortlefs ductrine leads, and the horrible confequences which are attached to it. If man is a neceffary agent, he cannot poffibly be an accountable being; for how prepofterous is the thought, how inconfiftent would it be with every principle of juftice, to punifh any being whatever, or in any degree, for what he could not have avoided? In a theological view, therefore, this doctrine appears to conduet directly to atheifm; for we cannot conceive of the Deity in fuch a manner as to fuppore him wantonly crucl or unijut. To fay that future punifhments are not to be (as the orthodox party conceive) eternal in their duration, does not remove the difficulty; to punifh at all for involuntary offences, is cruelty and injuftice. The fyytem of free agency, on the contrary, is confiftent with all the attributes of God, and is highly confolatory and inftructive to man. This fyitem refts upon the cleareft bafis of juftice. Man is created free; he has good and. evil placed before him, with the ftrongeft and moft conciliating motives in the Chriftian difpenfation to purfue the one, and to avoid the other. If he perverfely takes the wrong courfe, and proves incorri-

Chap. 20.] Confequences of Fatalifm. 567
gibly wicked, every principle of reafon and equity, fanctions the juftice of his punifhment. - Into the nature of that punifhment, it is not my prefent bufinefs to inquire. It will doubtlefs be fuch as to fatisfy infinite juftice, yet tempered by the fweet and falutary exercife of infinite mercy.

If the divine laws are thus outraged by the prepofterous hypothefis of a fatal neceffity; human laws, I fear, will not ftand upon a much firmer foundation. To punifh any criminal for an error which he could not avoid, is certainly not only cruel, but wicked in the extreme; and yet fuch mult be the cafe, if the doctrine of the fatalifts is true *.

On the whole, it is the part of true philofophy to avoid equally the dangerous extremes of an arrogant dogmatifm, which profeffes, like the ignorant opponents of Socrates, to know every thing,

[^50]and of that perplexing fkepticifm which would deprive the human underftanding of capacity and intelligence. As finite beings, many facts are neceffarily placed beyond the reach of our refearches. They are neither fuited to our faculties, nor our fituation in this life; and where we have no bafis of fadt on which to reafon,e error will generally be the confequence of our indulging in vifionary fpeculations.

To confole us for this deficiency, we may, fill remark, with fatisfaction and gratitude, that if much is concealed, much alfo is known. There is an immenle fund of practical knowledge perfectly within the grafip of our faculties. There is fearcely any human fcience, which, to know it well, is not fufficient to employ the moft protracted exiftence of man. It will be more confiftent with happinefs, as well as with modefly, to acquaint ourfelves with thefe, before we launch into the unfathomabse abyrs of metaphyfical fpeculation; nor indeed can any thing be more difguting, than to hear a loquacious difputart, who is unacquainted with the plainef and moft ufful branches of knowledge, prefuming to arraign the appointments of omnifcience, to "re-judge his juftice ;" to annihilate the intellectual, and to confufe and difturb the moral worid. Much greater is his mesit, much founder is his judgment, who fabricates the fimpleft machine, or plans or execures the plaineft undertaking that may be praatically ufeful to mankind.

Yet we may innocently amufe our curiofity; we may innocently gratify our thirft of knowledge; we may irnocently exercife our faculties. But let

Chap. 20.] Utility recommended. 569

us, in the name of reafon, exercife them on their proper objects; let us feek for knowledge where it is really to be found; let our curiofiry employ itfelf where fact, experiment, ant obfervation, may lead to fome certain conclufion. The book of nature' is open to us; the material world is difplayed for our infpection, and for our improvement; the intellectual world is covered with an almoft impenetrable veil. What God' has chofen to reveal of himfelf in the holy fcriptures, may be eafily comprehended; what he has chofen for the prefent to keep in referve, no mortal efforts will ever be able to develope. The fimpleit and moft unlearned perfon who ftudies with a pure heart, and an undepraved mind, the facred volume, is practically wife ; the brighteft underftanding, the moft exalted genius, who attempts to go beyond it, becomes inevitably a fool.

> THE END.

I N D E X.

Amorption, III. $3+4$.
Acids, II. 11.

- vegetable, III. 43.
—— animal, III. 8g.
Adans's, Mr. I. 6ı.
Agate, IT. 108.
Agriculture, III. ${ }_{3} 6$.
Air, I. 36 I.
-- Balloons, I. 533.
Air, alkaline, \&c. I. 408.
Air, atmofpheric I. 410.
Air, fixed I. ${ }_{3} 89$.
Air gun, I. 443.
Air, hepatic, I. 40%.
Air, inflammable 1. 395.
Air, nitrous I. 401.
Air, phloginticated I. 35%.
Air, properties of, I. 424 .
Air, vital, I. 371.
Air pump, I. 432.
Alabafter, II. 66.
Alcalies, II. 5.
Alum, II. 84.
Amber, II. 31.
Amethyff, II. 103.
Animals, ftructure of, III. 84 , 101.

Antimony, II. 161.
Arfenic, II. 138.
Arteries, III. 之71.
Arts, III. 539.
Abeftos, II. 77.
ASplaltum, II. 309.

Affociation, III. 474.
Attraction, I. 17.
— of cohefion, I. 18.
capillary, I. 18.
—— of combination, 1.
19.

Aurora Borealis, I. 350.
Azotic gas, 1. 385 .

B.

Balloons, air I. 533°
Balfams, III. 57°
Barbadoes tar, II. 309.
Barytes, 1I. 57, 8 o.
Bafaltes, II. I23.
Battery, electrical I. 319.
Beauty, III. 511 :
Bell, I. 453.
Bifmuth, II. 15%
Black, Dr. his great difcoveries, I. 66, 365.

Bleaching, II. 16.
Blood, II I. 92.
-_ Circulation of, III. 336.
Body, human, its growth and decline, III. $45 \%^{\circ}$
Boerliaave, I. 66.
Boiling, I. 106.
Bolognian ftone, IT. 285°
Bones, III. 106.
Borax, IT. 51.
Boyle, I. 3, 63, 76, 155.
Brain, III. 297.
Brafs, II. 175°
Bread,

I N D EX.

Bread, III. 65.
Breezes, land and fea, I. 467.

C.

Calcarcous earth, II. $\varsigma^{6}, 6$ I.
Caloric, 1. 70.
Camera obfcura, I. 2.36.
Camphor, III. 5^{8}.
Carbonaceous principle, II. 292.

Carbonic acid gas, I. 389.
Carnelion, II. 188.
Catoptries, I. 185.
Cellular fubitance, III. 22 .
Charcoal, II. 293.
Chimnies; 1. 132.
Clay, II. 5S, 82.
Coals, II. 297.
Cobalt, II. 152.
Cohefion, I. 18.
Cold, artificial, II. 26.
Cold, I. 147, 502.
Colours, 1. 184, 237.
Colouring matter of vegetables, III. 65.

Combuftion, I. 12%.
Conductors, 1.80, 8z.
-_ electrica!, I. 28% 345.

Congelation, I. 104.
Copper, II. 213 .
Cofinetics, II. 158.
Crawford, Dr. I. 68.
Cryftal, II. 105.
Cryftallization, I. 24.
Cryftals, Iceland, II. 6 z.
Cuftom, III. 517.
D. -

Delaval, I. 162.
Deluge, proofs of, II. $305,347$.

Dew, II. 55°.
Diamond, II. 98, 317.
Diana's tree, II. 249 .
Digeftion, III. 347 .
Dioptrics, I. 18 I.
Divifibility, I. 12.
Dying, art of, III. 6%.

E.

Earths, II. 55.
——ponderous, II. 80.
——— compound, II. I 17.
Earth, ffructure of, II. 320.
Earthquakes, II. 406.
Echn, I. 46 I.
Elafticity of air, I. 452.
Elętricity, I. 281.
-- animal, III. 389.
Electrical machine, J. 304.
Electrometer, I. 328 :
Electrophorus, I. 327.
Elements, I. 6.
Emerald, II. 102.
Evaporation, I. 26, 120.
Excretion, III. 342.
Expanfion, I. 88.
Extenfion, I. io.
Eye, III. 161, 42 б.

F.

Farina, III. 6I.
Fat, III. 91, 226.
Fecula, III. 60.
Fermentation, ILI. 69.
Fire, I. 70.
Fires, common, I. sjz.

- engine, II. 512.

Flame, I. I 30.
Flint, II. 59, 105.
Fluid, I. 98.
Fluids,

I N D E X.

Fluids, elaftic, I. 106, 119 .
Fluidity, I. 99.
Fogs, II. 5 99 .
Fountains, artificial, II. 496.
Fronklin, Dr. I. 289.
Free agency of man, III. 560.
Freezing, I. 104.-II. 445.
French chalk, II. 75.
Fulminating filver, II. 246.
———-- gold, II. 26I.
G.

Galieo, I. 152.
Garnet, II. 103.
Gas, carbonic acicl, 1. 389.
Gems, II. 98.
Genius, III. 549.
Generation. III. 459 .
Geftation, III. 451.
Glands, III. 105.
Glafe, II. 1.10.
Glauber's falt, II. 2 j .
Glue, III. ŋ̧.
Fodd (pronfs of a) 1. 384.
Gold, II. 253.
Gravity, gravitation, I. 27 .
Gravity, fpecific, I. 29.-II. 476.

Gregory, I. 156.
Grottoes, fparry, II. ךо.
Gum, III. 4 6.
Gun metal, II. 222.
Gun powder, I. 134.
Gypfum, II. 65.

H.

Hail, II. 547
Hair, II. 230°.
Halley, I. 263, 2 \%4.
Halo, I. 266.

Tarmattan, I. 47%.
Harthorn, II. 8.
Hatred, III. 509.
Ilead, III. 110.
Hearing, Ill. 416.
Heart, III. 265°
Heat, I. $70,137$.
—— Scale of, 145°.
Horns, III. 231.
Ifurricanes, I. 475.
Hyacinth, II. 102.
Hydraulics, II. 480.
Hydrometer, IJ. 473.
Hydrophenous fione, II. ıc6.
Itydroftatics, II. 450.
Hygrometer, I. 419.
I.

James's Powders, II. 169.
Jafper, JI. rog.
Ice, II. 445.
Ideas, fimple and complex, III.
4\%
Jelly, III. go.
Ignis fatuus, I. $\mathbf{j} 16$.
Ignition, I. 12%.
Inflammable fubflances, If. 271.

Inflection of light, I. 276.
link, IT. 189.
--- fympathetic, II. 155°
Intefines, III. 238.
Invention, III. 489.
Iris, I. 257 .
Iron, II. 17°.
Judgnenent, 1II. 492.
L.

Lamp, Argand's, I. 131.
Lamp black, II, 294.
Larynx,

I N D E X.

Larynx, III. 257.
Latent heat, I. 99.
Lava, II. 121.
Lavoifier, I. 3^{67} - III. 7^{2}.
Lead, II. 202.
——black, II. 296.
Lens, I. 88 r.
Lenifes, I. 211.
Leyden phial, I. 287, 359.
Liberty, III. 560.
Light, I. I48. 164.
Lightning, I. 338.
Lime, II. 56, 61.
Lime, phenomenon in flaking, I. 84.

- Liverftone, II. 8r.

Love, III. 509.
Lunar cauftic, II. 245°
Lungs, II. 263.
Lymphatics, III. 293.

> M.

Magic lanthorn, I. 235°.
Magnefia, II, 57, $7+$.
Magnetifn, I. 39.
Magnets, artificial, I. 5 r.
Manganefe, II. 146 .
Manna, III. 53.
Manures, III. 30 .
Mariners compafs, I. 45.
Marle, II. 63.
Marrow, III. 107.
Matter, I. I.
Memory, III. 482.
Mercury, II. 226.
Mefentery, III. 233 .
Metals, II. 125°
Meteors, I. 504.-II. 350.
Mica, II. $\boldsymbol{\imath 6 .}$
Microfcopes, I. 229.

Mind, human, III. 46 I.
Mineral tallow, II. 316.
—waters, II. $5 \%^{2}$.
Mirrors, I. 189, 19 C.
Muifture, I. 417.
Molybdena, II. 143.
Monfoons, I. 467.
Montgolfier balloon, I. 535.
Moonftone, II. Io8.
Morals, III. 543.
Motion, I. 35 .
Mountains, II. 350.
Muriatic falts, II. 38.
Mufcles, III. 150.
Mufcovy glafs, II. 77.
Mufcular motion, III. 382.
N.

Naphta, II. 308.
Needle, magnetic, I. 45.
Nerves, III. 3 II.
Newton, Sir Ifaac, I. 15%.
Nickel, II. 149.
Nitre, II. 28.

- cubic, II. 34°

Nitrous ammoniac, II. 36.
0.

Ocean, JI. 53 r.
Oils, fat, III. 53 .

- effential, III. 55.

Omentum, III. 234.
Onyx, II. ro8.
Opacity, I. 250.
Opal, II. io4.
Opinion, III. 558.
Optics, I. 185.
Orang Outang, III. 103.
Ores of metals, II. 13 I .
—affaying, \&cc. II. 133.
Oxyds,

$$
I N D E X \text {. }
$$

Oxyds, vegetable, III. 42.
Oxygen gas, I. 371.
P.

Pain, III. 500.
Parhelia, I. 268.
Paffions, III. 521.
Perception, III. 46 万.
Peritoneum, III, 232.
Petrifactions, II. 62.
Petroleum, II. 309.
Pewter, II. 200.
Phofpliorus, I. 171. -II. 2 \%\%.
Physiognomy, III. 164.
Plants, 11I. 3.
-- nouriflment, \&c. III. 35.

Platina, 11. 266.
Plating, art of, II. 251 .
Pleafure, III. 500.
Plumbago, II. ag.
Poles of the magnet, I. 44.
Porcelain, 1I. 9 .
Pottery, II. 94.
Pules of the air, I. 454.
Pumice fane, II. 122.
Pump, common, 11. 505 .
Pump; forcing, II. 504, 5 H .
Pupil of the eve, III. 429.
Putrefaction, III. 81.
Pyrometer, I. 145.
Pyrophorus, 1I. 91, 287 .
Q.

Quartz, II. 104.
R.

Rain, II. 540.
Rainbow, J. $256,259^{\circ}$
Reamer, I. 91.
Reasoning, III. 532.

Reflection of light, I. 180, 185°
Refraction of light, I. 179, 199.

Repulfion, I. 33.
Refine, III. 59.
Respiration, III. 365° Rivers, II. $5 ; 6$.
Rods, conducting, I. 34 .
Roots of plants, III. 7 .
Ruby, II. 102.
Rumford, count, I. 8 I.
Rupert's drops, II. 113.

S.

Sal ammonic, II. 48
Salt, common, II. 39.
Salts, II. 1.
Sapphire, II. 102.
Saturation, I. 23.
Sea, I. 174.-II. 531.
Secretion, III. 34 r.
Senfes, III. 40 r.
Sight, I. 2 88. -III. 42 ©.
Siliceous earths, II. $9^{8 .}$
Silver, II. 230.
Siphon, II. 465.
Skin, III. 227.
Slate. II. 97.
Slickenfides, 11. 1×50
Smelling, III. +14 .
Snow, II. 546.
Soap, II. 7 .
Soap rock, II. 75.
Solidity, I. 10.
Solution, 1. 22.
Sound, I. 452.
Spar, Derbyshire, II. Gq.

- ponderous, II. 80.

Sparry acid, II. 16.
\longrightarrow tartars, II. 51.
Speaking

I N D EX.

Speaking trumpet, I. 463.
Spectacles, I. 224.
Springs of water, II. 55 I.
hot, II. 566.
Starch, III. 63.
Stars, falling, I. 514.
Steam of boiling water, I. ino.
__ engine, I. iro.-II. 432.

Steel, II. 183.
Stomach, III. 235°
Suction, I. 44 I .
Sugar, III. 48.
Sulphur, II. 289.
Sun, I. 175°
Swine ftone, II. 73.
Syphon, II. 467.

T.

Tallow, mineral, II. 316.
Tafte, III. 4 II, 555 .
Teeth, III. I22.
Telefcopes, I. 156, $159,227$.
Temperature, I. 83.
Tendons, III. 104.
Terras, II. 123.
Thermonieters, I. 65, 90.
Tin, II. 195.
Topaz, II. 102.
Torricelli, I. $+2 \%$.
Touch, III. 488.
Tourmalin, II. 103.

Touchfone (the) II. 25%
Tungttein, II. 71, 144.

V.

Vacuum, I. 426.
Vapour, I. 106, ir8.
Vapours, veficular, \&xc. II. 541.

Vegetables, III. 1.
Veins, III. 285.
Velocity of light, I. 171.
Vermillion, II. 235.
Vifion, I. 182, 218.
Vitriolic falts, II. 23.
Voice of man, III. 256, 379 .
Volcanic products, II. 120.
Volcanoes, II. 357.

> W.

Water, II. 425 .
Waters, mineral, II. 57^{2}.
Water-fpouts, I. 351, 48%
Wax, vegetable, III. 54.
Weather, I. 519.
Wedgewood, Mr. I. 96.
Winds, I. $4^{6} 4$.
Windpipe, III. 259.
Wood, III. 4.
Words, III. 495°
Z.
Zinc, II. 170.

DIRECTIONS FOR PLACING THE PLATES.
Vol. I. Pl. r...to face page 190.
2. - - - 192.
3. - - - 196.
4. - - - 204.
5. - - - 206.
6. - - - 208.
7. - - 212.
8. - - - 214°
9. - - - 216.
10. - - - 222 .
11. - - - 228.
12. - - - 238.
13. - - - 246.
14. - - - 264.
15. - - - 279.
16. - - - 304.
17. - - - 305.
18. - - - 306.
19. - - - 373.
20. - - - 454.

Vol. II. Pl. 1. to face page 328 .
2. - - - 384.
3. - - - 390.
4. - - - 444.
5. - - - 463.
6. - - 472.
F. - - 502.
8. - - 512.
9. - - - 586.
10. - - - 554°

Vol. III. Pl. I. to face page ia
2. - - - 152.
3. - - - 154.
4. - - - 298.
5. - - - 210.
6. - - - 214.
7. - - - 216.
8. - - - - 220.
9. - - - 222.
10. - - - 251.
11. - - - 252.
12. - - - 284.
13. - - - 292.
14. - - - 334.
15. - - - 436.
16. - - - 440.

Some tight GUTTERS

L-areace $\left(-\frac{1}{3}\right.$
$\frac{20}{\frac{1}{4}}$

[^0]: * See his excellent Thefis on the Phyfiolngy of Plants, Manch. Mem. vol. ii.

[^1]: * To determine this queftion abfolutely, it may feem, that the moft certain and obvious method would be by injections, the great fource of our knowledge of the anatomy of animals. They have been employed by Bonnet, Dr. Hope, and others, but they have failed. They rife a confiderable way into plants, but as, in different cafes, they take different courfor, from this and other circumflances there is reafon to believe, that their courfe, and that of the fap, are materially different from ench: other.
 + Du Hamel and others.-See Phyr. des Arbres, Tom. I. p. 67.

[^2]: * It may ftill be afked, Why the fap flows mof from the fuperior margin of each incifion, fuppofing it to arife from the Vol. III.

 C roots?

[^3]: * From the experiment above recited, it appears, that the flow of the proper juice is not influenced in the fame degree, as that of the fap, by an alteration in the poflure of the veffels from which it iflues. To what caufe this is owing, does not elearly appeat.

[^4]: * Statical Efflys, vol. i. p. 49.
 + Mem. de l'Academie des Sciences, 1748.

[^5]: * Pyro from the Greek rue (fire) means any thing prepared or cxtracted by fire.-Empyreumatic has the fame etymology and incaning.

[^6]: ${ }^{5} 4$
 the

[^7]: - Having thus accuratcly determined the nature and quantity of the conftituent elements of the materials fubmitted to fermentation, we have (adds M. L.) next to examine the products refuiting from that procefs. For this purpofe, I placed the above 5 to libs. of fermentable liquor in a proper apparatus, by means of which I could accurately determine the quantity and quality of gas difengaged during the fermentation, and could even weigh every one of the products \{eparately, at any period of the procefs I judged proper. An hour or two after the fubfances are mixed together, efpecially if they are kept in a temperature of from $15^{\circ}\left(65.75^{\circ}\right)$ to $18^{\circ}\left(72.5^{\circ}\right)$ of the thermometer, the firf marks of fermentation commence; the liquor turns thick and frothy, little globules of air are difengaged, which rife and burft at the furface; the quantity of thefe globules quickly increafes, and there is a rapid and abundant production of very pure carbonic acid, accompanied with a fcum, which is the yeafl feparating from the mixturc. After fome days, lef: or more, according to the degree of heat, the intefline motion and di/engagement of gas diminifh; but thefe do nor ceafe entirely, not is the fermentation completed for a confiderable time. During the procefs, 35 libs. $50 \approx$. 4 gros. 19 grs. of dry carbonic acid are difengaged, which carry along with them 13 libs. 14 oz .5 gros of water. There remains in the veffel 460 libs. 11 ox. 6 gros. 53 grs, of vinous liquor, fightly acidulous. This is at firlt muddy, but clears of itfelf, and depofits a portion of yeaft. When we feparately analyfe all thefe fubstances, which is effected by very trouble-

[^8]: * The moft friking and characteriftic differences in the fabric of different animals are however noticed; but to deferibe minutely the natural economy of every diftinct race of amimals, would require an immenfe treatife, and indeed has never yet been done.

[^9]: H 3
 relation

[^10]: * By the word conn'yl is meant the large extremity of a bone, refembling the knob of a clubbed ftick.

[^11]: * The cure of thefe difagreeable excrefcences is very obvious from this account; rothing is indeed required for this purpofe, but to cover them with any foft adhefive fubfance, which will protect them from friction, when they will naturally decay, and in time come off fpontaneounly.

[^12]: * Tiie terms anterior and pofterior auricles and ventricles of the heart are ufed as deferiptive of the fituation of them in man. In quadrupeds, the anterior auricle and ventricle, or thofe which perform the rame purpofe, are placed towards the righ: fide, and the pofterior towards the left.

[^13]: - As a pulfe is only to be perceived in the arteries, thiscircumfance will enable the moft unfkilful to diftinguif the naute of any blood-veniel.

[^14]: - Fordyce on Digeftion, p. :zz.

[^15]: * M. Sage.

[^16]: - Bon. Cont. p. 7.

[^17]: * The colour proceeds from the blood, which they contain in minute vefiels.

[^18]: - The contemptible vanity of Cafar, in preterding to perform feveral mental operations at once, proceeted from a real ignorance of the human mind. The reply of the jutly celebrated penfionary De Witt was much more judicious, and ought to be imprefied on the mind of all young perfons. On being alked how he contrived to tranfact fuch a'multiplicity of bufinel's in the courfe of a day without neglect or diforder, hé anfwered, "I make it a rule al:vays to attend to one object $2 t$ a time."

[^19]: * The tongue is a more nice teft of the warmth of a body than the fingers, for we can feel a warmth at the larger end of an egg with the tongue, which is not perceptible by the fingers.

[^20]: Vol. III.

[^21]: * Monro on Comparative Anatomy.

[^22]: * Hunter on the pigmentum of the eyc. . See his Animal Economy.

[^23]: * The cryfalline lens in fifh is completely fpherical, and is more denfe than in terrefrial animals. This difference is to be accounted for from the different refractive power of the medium in which they live. The rays of light, in paffing out of one medium into another, undergo a refraction proportioned to the difference of their denfities. As water, therefore, is a more denfe medium than air, the eyes of fuch anmals as inhabit the former mult have a greater refraktive power than thofe which live in the latter, for the production of ditinet vifion.

[^24]: * Monro's Comparative Anaromy.
 + Sce boo!k iii. chap. 6.

[^25]: * Reid's Inquiry into Human Mind, p. 267 .

[^26]: * Reid's Inquiry into Human Mind, p. 253 .

[^27]: * Reid's Inquiry into the Human Mind, p. 253.

[^28]: * Such is the theory of the ingenious, but vifionary Hartley,

[^29]: * Lockc, E. 2. c. 2.

[^30]: * The moft enlarged underftanding cannot frame one new fimple idea; nor by any force deftroy thofe that are there."

 Locke.

 + The word fubftance generally applied, means no more than the fuppofed, but unknown fupport of thefe qualities, which are capable of prolucing fimple ideas in us. The ideas of particular fubtlances, are compofed from fuch combinations of fimple ideas as are obferved to exift together, and fuppofed to flow from its particular internal conflitution. Locke, B. 2. c. 28.

[^31]: *Locke, B. 2. c. 22.

[^32]: * "The names, fmells, taftes, ard tangible qualities of natural bodies, fuggeft their vifiblelappearances to the fancy, and vice verfa." -Hartley on Man. c. i. f. 1. prop. 5.
 + "It is remarkable, however, as being agreable to the foperior vividnefs of vifible and audible ideas, that the fuggeftion of the vifible appearance fom the name, is the moft ready of any."-Ibid.
 "The tranfition from the words to the ideas, is generally much eafier than from the ideas to the words. A perfon wi:o is learning a ftrange language, will be able to underftand a book in that language long before he can write or fpeak it. Even in one's native tongue, one can readily underlland what is written or fpoken in the beit and properelt terms, though he could not have uied thefe terms for exprefing the fame ideas, \&ec. 'Ihis proceeds from the influence of cuftom, sic. The ideas are more familiar to us than the words; they are often raifed by their proper objens, or fuggelled by other words: and their familiarity makes them be fuggefted readily. That this is the true caufe, is confirmed by obferving that where

[^33]: * Merchant of Venice, f. I. $\quad+$ Lecke, B. ii. c. 26.

[^34]: * We remember that beft, which we underfand moft perfealy. What we underiland, Atrikes us with its whole furce: of what we underfland imperfecty, it is only the part underftood that makes any impreffion on us; of the relt we have no perception: even that part'makes but a faint impreffion. It would acquire additional force from its connexion with the other parts, if the whole were underftood.'

 Ger. on Gen. part ii. f. g.
 memory,

[^35]: - B. ii.c. 32.
 + Hartley on Man, Prop. 38.

[^36]: - See Locke, b. iii. c. g.

[^37]: * The drefs of a judge or a clergyman, even when feen on the flage, is accounted elegant and refpectable, and fuggefts correfpondent ideas.

[^38]: * "In the reign of Charles II. a degree of licentioufnefs was deemed the characteriftic of a liberal education. It was connected, according to the notions of thofe times, with generofity, fincerity, magnanimity, loyalty, and proved that the perfon who afted in this manner, was a gentleman, and not a puritan." Smith's Th. M. S. pt. 6. f. 2.

 In the fame manner as you are induced to love and imitate whatever is connected with a pleafurable or beautiful object, you will endeavour to avoid what is connected with pain or deformity. Hence men often act in extremes. Lord Bolingbroke afferted, that what firft gave him a diftafte to religion, was the puritanic feverity in his own family.

[^39]: * One of our comic writers prefcribes, that a man muft firft make a woman a friend before he ventures to appear as a lover.

 Vob. III.
 M m
 falhood.

[^40]: - See Dryden's Ode to St. Cecilia.

[^41]: * "Though the metaphor began in poverty (of language) it did not end there. When the analogy was juft (and this often happened) there was fomething peculiarly pleafing in what was both new and yet familiar, fo that the metaphor was then cultivated, not out of neceffity, but for ormanent, 'Tis thus that cloaihs were firft afumed to defend us againft the cold, but came afterwards to be worn for dilination and decoration." -Harris's Philological Enquiries.

[^42]: + Hartley, prop. 46.

[^43]: * "It is of the utmof confequence to morality and religion, that the affecions and pafions thould be analyzed into their fimple compounting parts, by tracing the fteps of the allociations which concur to form them; for thus we may learn how to che. ith and improve good ones, check and root out fuch as are mifchievous and immoral, and how to fuit our manner of life, in fome tolerable meafure, to our intellectual and religious wants," \&cc. "The world is, indeed, fufficiently focked with general precepts for this purpofe; and whocver will follow the fe faithfully, may expect good fuccefs. However, the doctrine of affociation, when traced up to the firft rudiments of underianding and affection, unfolds fuch a feene as cannot fail boch to intruct and alarm all fuch as have any degree of interefted concern for themfelves, or of a benevolent one for others." - Hartley.

[^44]: Yoz. III.
 Nn
 found

[^45]: * See Eflays Hiftorical and Moral. Effay, Principles of Morals.

[^46]: * How far the natural frame of the body or the violence of appetite may influence the mind, is not eafy to define. A delicate habit unable to bear the extremes of cold and heat, or any other inconvenience, may difpofe the perfon to be cautious, fufpicious, frefful. The fame may in the end render him avaricious. On the other hand, there are paffions which almoft entirely depend on early affociations of ideas.

[^47]: * Much of the diference between the fcientific genius, and the genius for the arts will depend on early habit. "Perfons (fays Dr. Hartley) who give themfelves much to mirth wit, and hemour, mult thereby greatly difqualify their underfandings for the fearch after truth ; inafinuch as by the perpetual hunting after apparent and partial agreements and difagreements, as in words, and indirect, accidental circumftances; whilf the true natures of the things themfelves afford real agreements and difagreements, that are very different or quite oppofite, a man mult by degrees pervert all his notions of things themfelves, and become unable to fee them as they really are, and as they appear to confiderate, fober minded inquirers. He muft lofe all his affociations of the vifible ideas of things, their names, fymbols, \&cc. with their ufual practical relations and properties; and get in their ftead accidental, indirect, and unnatural conjunctions of circumftances, that are really foreign to ench other, or oppofitions of thofe that are united." -IIartiey p. 4.6.

[^48]: * Johnron's Lives, vol. I. P. 4s

[^49]: * It is impoffible to obferve, without a fmile, men boafting of being the difciples of Mr. Locke, who have apparently never read a page of his writings, or, if they have looked into them, have evidently mifunderfood them. With how much jultice this real philofopher is reprefented as a favourer of the abfurdities of the fatalifts, will appear from the following paffage: "This at leaft (fays Mr. Locke) I think evident, that we find in ourfelves a power to begin or forbear, continue or end feveral actions of our minds, and motions of our bodies, barely by a thought or preference of the mind ordering, or, as it were, commanding the doing or not doing fuch or fuch a particular action. This power which the mind has thus to order the confideration of any idea, or the forbearing to confider it, or to prefer the motion of any part of the body to its relt, and ruice verfa, in any particular inflance, is what we call the will." Locke's Efiay, B. ii. c. 21 .
 + If there is no degree of freedom or fpontaneity in human actions, what is meant by the words deliberation, prudence, and judgment? If the opinion of the fatalifts is true, our interference in any matter or action is fuperfluous; and yet who is there that does not perceive, that the courfe of a dangerous difeafe may be impeded by the calling in of a phyfician? a matter which was eutirely within the choice of the patient himfelf.
 Vor. III.
 O。
 caution;

[^50]: - In the courfe of a very few years, it will fcarcely be credited, that a book has been lately publifhed on this very principle, and the argument of the author is briefly this. Man is a neceffary agent, he is therefore not an accountable being; his actions are all determined by his fituation and circumftances, taking in amongt thefe his education and the degrec of knowledge he has been enabled to acquire. What are called crimes therefore are only mifakes, perfectly involuntary on his part, and he therefore (whether he is a thief, a murderer, or a parricide) 'ought not to be punibed, but infrufed and reafoned with. As no criminal ought to be punihed, all laws or regulations muft be perfectly nugatory in fociety, and even pernicious; marriage is law, and therefore it is pernicious, and ought to bs abolifhed.-It is happy for the caufe of truth, when fuch books are publifhed ; for if the farcaltic genius of a Swift could have more effectually burlefqued the doctrine of nẹceffity, I am no judge of irony.

