

$$
\begin{gathered}
\text { Med } \\
\text { K4896 }
\end{gathered}
$$

N OTICE.

The Council of the Ray Society regret that the illuess of their artist, Mr. Wing, and other circumstances, have prevented the publication of the last part of Messrs. Alder and Hancock's work on the Nudibranchiate Mollusca, and the second volume of Mr. Darivin's work on the Cirripedes. These, with the last volume of the Bibliography, are now in the press, and will shortly be issued together.

The volume now sent, 'Botanical and Piysiological Memorrs,' is part of the issue for 1853.

22, Burlington Street;
 April 12th, 1854.

THE

R A Y S O C I E T Y.

INSTITUTED MDCCCXLIV.

LONDON.
mDCCCLIIf.
BOTANICAL AND PHYSLOLOGICAL MEMOIRS,
CONSISTING OF
I.-The pienomenon of rejuvenescence in nature,
ESPFCIALLY IN

'IIE LIFE AND DEVELOPMENT OF PLANTS.

 BY DR. A. BRAUN.

 TRANSLATED BY A. HENFREY, F.R.S., ETC.

 II.-ON THE ANIMAL NATURE OF THE DIATOMEF,

 WITH AN

 ORGANOGRAPHICAL lREVISION OF TIIE GENERA

 established by klitzing.

 BY PROFESSOR G. MENEGIINI.

 TRANSLATED BY CHRISTOPHER JOHNSON, M.R.C.S.E.
 III.-AN ABSTRACT OF THE NATURAL HISTORY OF PROTOCOCCUS

 PLUVIALIS.

 BY DR. FERRDINAND COHN.

 BY GEORGE BUSK, F.R.S., ETC.
 EDited by
ARTIIUR HENFREY, F.R.S., F.L.S.
LONDON:
PRINTED FOR TIIE RAY SOCIETY.
MDCCCLII.

J. F. ADLARD, PRINTER, BARTIOIOMLW CLOSE.

CON'IENTS.

On the Phenomenon of Rejuvenescence in Nature
, Animal Nature of the Diatomea 313
,. Natural History of Protococcus pluyialis 515
933

REFLECTIONS

 ON
THE PHENOMENON

of

REJUVENESCENCE IN NATURE,
 ESPECIALLYIN

THE LIFE AND DEVELOPMENT' OF PLANTS.

By Dr. ALEXANDER BRAUN,
PROFESSOR OF BOTANY IN THE UNIVERSITY OF BERLIN, \&c. Sc.
(Leipsic, 1851.)

TlRANSLATED BY
ARTIIUR IIENFREY, F.R.S., F.L.S., ETC.

TO THE READER.

The present 'Treatise ' On the Phenome non of Rejuvenescence in Nature, especially in the Life and Development of Plants,' was issued to a small circle in May of last year, from the High School of Freiburg, in the Breisgau, to which the Author at that time belonged, and for which it was especially composed, as a Prorectorate Address; its publication to wider circles of the Scientific world has been delayed by many circumstances, partly connected with the change of residence of the Author, through his call to the High School of Giessen ; partly in consequence of the events which afflicted the country with dissensions, and obstructed the calm progress of scientific undertakings. Nevcrtheless, the Author hopes that the substance of the Essay, which contains an attcmpt to combine the sjeccial branches of Botanical rescarch more intimately together and with the entire body of Sciencc, by mcans of certain connecting ideas, and to grasp and trace out the old questions under a new point of view, has not meanwhile grown out of date, so that he may venture to comply with friendly requisitions from many quarters, and
deliver over his little work to more general diffusion. May the reader receive it kindly, as a little nail in the great structure which Natural Science has to erect, to which each labourer seeks to add lis contribution in his own way, and to work for whieh, with voice and pen, is the endeavour, the life, and the happiness of the Naturalist

'IHE AUTHOR.

Giessen ; licbructry, 1851.

Since the original of this work was published, the Author has been chosen to sueceed the late Professor Link in the University of Berlin; and now occupies a position commensurate with his numerous and elaborate contributions to Science. Modestly as he speaks of this remarkable work, the 'Translator has no hesitation in designating it one of the most important of modern contributions to the Philosophy of Botany. Without entering into the discussion of the curious speculations indicated in the title, attention is especially to be called to the lucid exposition of the Morphology of Plants, and to the definite establishment and full illustration of the laws of this branch of botanical seience; to the section upon Cell-formation, again, which eonstitutes a body of faet and theory of the utmost importance to Physiology, Animal as well as Vegetable, since, bringing together and completing the various recent publications on the
subject of cell-development, it clearly demonstrates the necessity of reforming the older views of the character of cellular structures, and, in showing the incontestible evidence now existing as to the essentially primary nature of the cell-contents or protoplasmic structures, at once levels the new field of investigation in Plants, and affords a basis for the clearing up of the analogies existing between the Animal and Vegetable tissues.

The Translator has confined himself to a careful rendering of the text and a slight amplification of the references, especially in cases where English translations exist of the works quoted. To lave revised, in accordance with the present condition of knowledge, certain of the speculations which are now a little out of date, would have been interfering too far with the Author; but the sources are indicated whence the more recent facts may be obtained.
A. H.

Lovdon ; September, 1853.

SUMMARY OF THE CONTENTS.

PAGE

Preface: Origin and object of the Treatise, with addenda to certain special parts ix
Intronuction: Reflections on the appearance and the essential Nature of Rejuvenescence in general; passing to the Phenomena of Reju- venescence in Plants, more particularly, divided into three sections 1
i. Formation of Sprouts as the means of Rejuvenescence of the Vegetable stock 21

1. Individual nature of the Sprouts 23
2. Formation of sprouts as subordinate reproduction, and alter- nation of generations of the plant caused thereby 24
a. Origin of sprouts 25
b. Deficiencies of them 28
c. Complementary conditions 32
d. Distinction of cssential and inessential sprouts 36
e. Importance of the latter in reference to a Character 38
β Economy of Vcgetable life 41
f. Transitional cases 43
if. Leaf-formation, giving rise to the subdivisions of the Rejuvenes- eence in the single sprout 51
3. Phenomena of Rcjuvenescence in the sprout through retro- gressive and vibratory course of the Metamorphosis 52
4. The ascending Metamorphosis considered in its risings and sinkings 60
«. Summary of the Leaf-formations 62
b. Change of proportionate breadth of the base of the leaf in the different leaf-formations 67
c. The same in the longitudinal development of the leaf 70
d. Disappearance of leaf-formation in particular regions 83
5. The individual leaves as links of Rejuveneseence in the course of Metamorphosis 101
PAGE
a. Criticism of Sehultz's doetrine of the Anaphyta of the plant 102
6. Criticism of E. Meyer's and other views of the building up of the plant out of leaves ; and also of Steenstrup's view of the Alternation of Generations in the plant 106
c. Relation of the stem to leaf-formations 108
Explained by the examination of the fundamental organs of the plant 109
d. Course of formation of the leaf 112
c. Observations on Pliyllotaxy 116
iII. Cell-formation, constituting the immediato foeus of the pleno- mena of Rejuvenesecnce 121
7. I'ormation of the Cell, generally 123
a. Departure of the plant and of the Vegretable kingdom from the simple eell 124
a. Unieellular plants in the different; senses of the term 12.
β. Graduated suecession of Multi-ecllular plants 130
b. The simgle ecll, examined by itself 155
a. The various meanings of the word Cell 155
β. Membrane and eontents of the Cell 155
γ. Cells without membrane 156
ס. Coat of the contents (primordial utriele) 156
є. Further subdivision of the eontents 169
九. Nuelcus 174
8. Destruction of the Cell, a preparatory condition to its Reju-
veneseence 176
A. The Cell-membrane 176
a. Dissolution of this 177
a. I'hrough tearing 177
β. Through eomplete pecling (Skimning of the eell) 1.80
γ. Eseape of the Rejuveneseent eell from the old coat (demonstrated more particularly in the aetive gonidia of the Algae) 192
§. Examples of imperfect liberation of gonidia 187
b. Softening and Solution of the Cell-membrane 189
B. Proecsses of Destruction in the contents of the eell 195
a. Solution of Stareh 1.96
b. Disappearance of Fat. 202
Caused by previous desiecation 205
(Illustrated by the history of Chlamidococcus andChlamidomonas).205

PagE
c. Relation of these phenomena to the interclange of substances in animals 217
d. The nocturnal respiration of plants 219
e. The phenomenon of Rejuvenescence of the Cell in its relation to the periods of the day 221
3. Reconstruction of the Cell, considered as a process of Rejuvc- nescence 226
Kind and degree of Reconstruction :
A. Reconstruction without division of the cell 229
B. With division into two Daughter-cells 232.
(Different descriptions of this by Mohl, Unger, and Nägeli) 233
a. Division by gradual constriction (confirmed in Spi- rogyra) 237
b. Division with simultaneous (?) limitation over the whole plane of division 247
B*. Reconstruction with division into two cells, one remaining
as an unchanged Mother-cell, the other cut off as a Daughter-cell (cell-formation by constriction). 250
c. Reconstruction with division into four Daughter-cells 254
Connection of this with halving 256
D. Reconstruction with division into an indefinite number of Daughter-cells 259

1. By division of contents filling the thole cavity of the cell 259
2. By division of a layer of contents investing the wall of the Mother-cell (explained specially in Hydrodictyon) 261
Connecting case 271
e. Partial Reconstruction through formation of Daughter-cells in the contents of the independentlysurviving Mother-cell 272
3. The Daughter-cells produced close upon the cell-wall 272
4. The Daughter-cells formed free in the contents 274
a. Formation of a free Daughter-cell around the pri- mary nuclcus of the Mother-cell 275
b. Formation of free Daughter-cells around secondary nuclei 276
\boldsymbol{a}. Formation of the germinal vesicles of the Pha- ncrogamia 276
β. Of the transitory cells in tho embryo-sac 278
γ. Of the cndosperm cells 278
δ. Cases of abnormal cell-formation 281
5. Appendix, on the union of previously scparate Cells (Con- jugation) 281
PAGE
Attempt to classify the numerons kinds of Conjugation :
A. Conjugation of Similar cells, with the subordinate modifi- cations 284
в. Conjugation of Dissimilar cells 296
Excluded cases 298
Concluding Reflections 305
Comection of the Rejuvenescence of the Individual with that of the Species 306
a. Examination of the reproduction of the Mosses and Ferns in reference to this 308
b. The formation of Varieties, in its relation to the history of the Individuals and of the Species 311
c. Examination of Hybrids (with a particular description of the behaviour of Cytisus Adami) 316
6. Analogous aseent in the higher systematic divisions, from the species to the genus, family, order, class, \&e. 322
7. Rejuveneseence as universal Phenomenon of the course of De- velopment of Nature, in detail and as a whole, as the expres- sion of a constantly re-awakened recollection of the inherent Vital Purpose 324
Explanation of the Plates 327
Index 337
ADDENDUM. At page 9, line 5, insert after
"Rheum with 6, outer, slorter, and 3 inner, longer;" "in Polygonum with 5 , outer, shorter, and 3 inner, longer."

PREFACE.

The idea carried out in the following treatise, namely, of grouping together the phenomena of the graduated organisation of plants, and those of their reproduction, under a common point of view, as processes of Rejuvenescence, and of subjecting them to a minute examination under this point of view, was awakened in my mind several years ago, through an investigation of Hydrodictyon, and aroused anew at the end of that autumn of 1848 through the discovery of the mode of reproduction of Pediastrum, a genus of most elegant liftle Algæ, which are still included by many authors in the Animal Kingdom. At the Annual meeting of our local Association for the advancement of the Natural Sciences, on the 4th of December of the same year, I endeavoured, in a public lecture, apropos to the description of the course of formation and reproduction of the genus of Algæ just named, to develope this idea, and to show that it is the power of Rejuvenescence which principally distinguishes organic from inorganic existeuce, since it is to this that we must ascribe, both the graduated progression of the development of the individual organism, and the repetition of individuals by reproduction. When in the spring of last year, the confidence of my colleagues, and the grace of his Royal

Highness the Grand-Duke, the most serene Rector of our High School, confcrred the Prorectorate npon mc, I dctermined to make this subject, which appeared both capable of a profound treatment and of general interest, the basis of the Introductory Programme which, in accordance with the good old eustom, the Prorector delivers in honour of the birthday of the exalted Patron and Rector of the High School, our beloved native Prince. The main thoughts were soon arranged, and the outlincs traced; the illustrative examples added to the text were to be worked out cluring the printing of the essay, and the natural history of some of the gencra of Algæ more particularly remarkable in refcrence to the sulject, (Pediastrum, Characium, Hydrodictyon, Ascidium, Sciadium, Palmoglea, isc.) was to be given in an appendix. But the storm of the revolution, which broke out in May, and slook our blessed fatherland to the very foundations of its existence, soon interrupted the incipient laborrs ; for our High School was threatened by the tempestuous waves, and it was at the cost of carc and severe cffort alone, that the threads of scientific activity were protected from total disruption in the midst of the session. But, in the ever-memorable days of July, when the fermenting clements of social dissolutiou, which we at length saw gathered within our walls, had vamished before the helpful Brother-land, strong in the spirit of order, like the shades of night before the sun's light; when in the following month our beloved rulce was enabled to return to his blinded pcople, who, ungrateful for his bencficence, had risen in opposition to him ; the season was too far advanced, for the projected discourse to be properly carried out in time, on the basis which
had been previously laid down. Consequently, to avoid offering anything hasty and unworthy of the High School, and yet to avoid withdrawing this essay from the destination to which it had been as a labour of love devoted, there remained nothing else, but to make it follow the invitation to the celebration of the Royal birthday, as a subsequent secondary tribute. The reasons why it has been delayed until now, lie partly in the manifold retardations through current official duties, and partly in the nature of the subject itself, which claimed more time and space in the elaboration of the details, than could be guessed in the original project. For, in the publication of phenomena as yet little known, the examples cited could not well be mentioned without an exact account of personal observations, which rendered necessary repeated diffusive episodes, in which both the votaries of the Morphology and Anatomy of Plants, and Plysiologists in particular, will find many novelties. Where I have depended on the observations of others, the sources are conscientiously mentioned; I connected with this point also the design, to point out to the young who are just entering the realms of Science, who, moreover, were especially kept in view throughout the whole exposition of the chosen subject, the authors who deserve confidence, and from whose writings may be discerned, not only the present state of Scientific Botany, but the problems growing out of this, which will next require to be solved. I had greatly desired to be able to add numerous illustrative plates to this treatise, but I have omitted doing so, in order to avoid further delaying its publication. For the same reason I am obliged to give up, for the present, the appendix which formed part of
the original plan, and which is referred to more than once in the text; a separate treatment of this will the sooner enable me to publish, with a certain degree of completeness, my observations on the natural history of various freshl-water Algæ, in partieular on many genera belonging to the debateable region between the Vegetable and Animal Kingdoms, as well as those that produce active gonidia.

After these remarks, which may explain the delay in the appearance of these pages, I feel eompelled to add a word of justification in referenee to the direction of the researches which form the hasis of the following observations, and which will doubtless be regarded in many quarters as antiquated, and leading away from the strict scientifie path. A vivid eoneeption of Nature, suel as is here attempted, which tries to find in natural objeets, the expression of living action, and not merely the effeets of dead forces, does not lead, as some think, to baseless air-eastles, for it does not set itself to study the life of nature, in any other way than in its revelation through phenomena ; and just as little does it exclude rigid investigation of the laws, governing all natural phenomena; for it is exactly by the investigation of the laws within which, and the forces through whieh life aets, that it hopes to arrive at a perception of what is given to life, aecording to the differenee of its stages. The justification of the effort to comprehend all the phenomena of nature, not only in their external reactions, but also in their: inner eonnection, as the data for an universal history of living nature, lies in the very nature of the human soul, in its conneetion, not merely external but inward and essential, with living nature. As the study of nature
originally arose from the feeling of the intimate relationship between external nature and human nature, it is also its aim to grasp and bring to perception; the furthest depths of this connection.

Partly during the printing of these pages, partly after its conclusion, I met with various literary novelties, of which I could have wished to have availed myself in passages on which they bore, in particular, Mettenius's ' Beiträge zur Botanik' (Heidelberg, 1850), in which occurs an exact description of the discovery of spermatozoids in Isoëtes, mentioned cursorily at page 144 from information derived from a letter from the author.* Gærtner's important work, on the Production of hybrids in the Vegetable Kingdon, (Die Bastardzeugung im Pflanzenreich, Stuttgart, 1849), first reached me after my observations on Cytisus Adlami, p. 316, were printed. There is no absolute decision there even, whether this remarkable intermcdiate species is a hybrid, produced by fertilisation from Cyt. Laburnum, and C. purpureus, or not; on the other hand various notices on the same subject had been published, which I had overlooked, especially the information of Schnittspahn's paper, in the third Year's publication of the Horticultural Society of the Grand-duchy of Hesse, (Mittl. des Gartenvereins im Grossherz. Hess., Darmstadt, 1842, p. 38,) that Adam obtained his plant, by budding C. purpureus upon C. alpinus. \dagger During the first year the grafted buds remained undevcloped, but many inequalities of the surface displayed themselves around

[^0]them, which were gradually developed into buds, and these were developed in the second year into shoots, all but one of which, were C. purpureus. This one shoot had grown mueh thieker, and exhibited a form intermediate between C. alpinus and C.purpureus; this shoot was the parent of the C. Adami of gardens. Unfortmately, this report does not state from what souree H. Sehmittspahn himsclf derived his knowledge of these cireumstances attending the origin of C. Adami. Since C. Adami possesses moloubtedly the nature of a hybrid, if Selmittspaln's information be correct, this plant will furnish the extraordinary case of a hybridation in a vegetative way, (eoneeivable as oceuring throngh a fertilising action of the cells of the graft upon the primitive cell of an adventitions bud,) and its return into the two parent species, within the vegetative region, would then eorrespond to the vegetative origin. That hybridation is not in any way mnusual in the genus Cylisus, is proved by a magnifieent hybrid, between C. purpureus and C. clongatus, which is now, while I write these lines, in most beautiful blossom in the Botanical garden of our High Sehool. It was obtained from the brothers Baumann of Bollwiller, in whose eatalogue for 1847 , it is given as "C. purpurcoclongatus (nobis), unc nouvelle hybride superbc." In form and hairiness of the leaves it resembles C. elongalus; in the form of the ealyx, more C. purpureus. The colour of the flowers is a mixture of light-yellow and pale rosered, the standard being of the latter eolour, the wings and keel of the former; when withered or dry, the red colour beeomes stronger and almost like that of Cytisus Aldami. The blossoms keep fiesh a long time, but set no fruit. Messrs. Baumann were kind enough to furnish
me, by letter, with the following particulars concerning the origin of this fine hybrid. "Our C. purpureo-elongatus was produced from our own sowing, but not by means of artificial fertilisation ; the mother of this plant is C. elongatus, from which we gathered the secds; but near this stood a C. purpureus, and probably the hybrid was produced by insects conveying the pollen from the latter plant to the former. We have never observed in this plant such a change of form as oceurs in C. Aclami." After all this, we look with so much the greater impatience for positive elucidation, based on repeated expcriments, of the mode of origin of C. Adami, and in this for the establishment of several most important physiological facts. In regard to the return of Cytisus Laburnum quercifolius, into the common Laburnum with entire leaflets, mentioned at p. 315 , I shall only mention here, in addition, that I have observed the same phenomenon lately in the Botanic garden of this town, and hore the transition to the parent species took place by a marked separation from the variety and not through graduated intermediate stages.

Since this Prcface is at the same time a Postseript, and as regards the first part of the Treatise a tolerably late one, it affords an opportunity of adding a few more compleinentary observations on the subjects touehed upon in the text. In the first place, in regard to the mode of growth of the Vinc, described at p. 4.6, I must report that the examination of fresh secdlings obtained last autumn, after that passage had been printed, did not confirm the eonjecture expressed in the note, that the scedlings would behave like root-suckers; for they were totally devoid of tendrils at the summit, and displayed in the axils of the
ordinary leaves, resting buds, which had two bud-scales, and therefore resembled, in this respect, not the "Geitzen," but the "Lotten." The derivation of the "Lotten" from the "Geitzen" in the way described, does not occur until the later degrecs of ramification.

To the examples mentioncd in the note, p. 114 of Fern leaves, with the apex of the leaf constantly undevcloped, or only unrolled after long interspaces and in steps, belongs also the genus Neurolepis, the larger species of which, related to N. exaltata, develope their slender pinnate leaves, which often attain a length of 4 or 5 fect, in scveral annual stages or lengths, which are marked in the developed leaf as contracted places, furnished with shorter pinnæ. In N. neglecta, Künze., the commonest species of our gardens, I found four such scetions, of which, however, two often appear to be developed in one year. With this mode of development is comnected the fact that the leaves of the specics of Neurolepis ordinarily cxhibit a little rolled-up knob at the end, and only rarcly their proper leaf-point, rumning out into a terminal pinna.

I have to give a short postscript to the natural history of the Chlamidomonada, relating to the "resting stage" of Chlamidomonas tinyens (p. 215). The said species appeared in great abundance this spring in little rain pools, close to the town, colouring the water bright green. When the "rest" commenced, the cells collected together in pulverulent, partly floating masscs, exhibited a globular form, a diamcter of from $\frac{1}{150}$ to $\frac{1}{75}$ of a millim., granular-punctate, green contents, and one larger vesicle. When the pools dricd up in the month of May, crustlike, palc brick-red coats were found on the ground, the cclls, formerly green, having assumed a palc reddish
colour', the vesicle at the same time becoming indistinct, while the remainder of the contents becamc coarsely granulated, (through the formation of oil?). The plants have remained in this state ever since, not altcring even when the pools were refilled by rain. The resting, but still green condition, seemed to me to correspond to Protococcus Felisii, Kütz., that which had turncd red through desiccation, to Pr. Orsinii, Kütz., at lcast, according to the specimens sent to me by Dc Brébisson as a small variety of that species.

Herewith, I deliver these pages to the Fathers of our High School, my honoured colleagues, with the petition for a friendly reception, as a memorial of the efforts and expansions in Science and in Life, we have shared in an eventful ycar; I deliver it to the Academic Youth, in the hope that they may find therein the threads which connect the separate fragments of knowledge into a wholc, and that the perception of this connection may cncourage them to follow, with double zcal, undistracted, through good and evil times, the study of the material so abundant in all branches of science, and thus to enter more and more into the sacred workshops, in which arc hewn the stoncs for building the great Dome of human knowledge. To the wider scientific public, lastly, I delives thesc pagcs, with the consciousness of having therein published many results of conscientious research which will find their place in the building of Science, even if the connection in which I have here sought to place them, should shape itself very differently in a future, liigher stage of development of Natural History

Dr. A. Braun.

[^1]
CONSIDERATIONS

ON THE

PHENOMENON

OF

REJUVENESCENCE IN NATURE,

ESPECIALLY IN
THE LIFE AND DEVELOPMENT OF PLANTS.

Scientific investigation of the laws of Organic Nature advances, in our times, in two distinct directions, one of which may be called the physiological, the other the morploological. Each, followed in a one-sided manner, has led to multiplied contradiction in theory, which can only be solved by a more profound biological method of contemplation. Both directions hasten towards a profounder comprehension of this kind; the former in a negative manner, since, considering vital phenomena only in their external physical conditions, it is led, at the conclusion of every investigation, to a ground of the phenomenon inexplicable on this side; the latter in the positive way, since, regarding the forms, in connexion with the history of development, as becoming, changing and passing away, it must recognise a specifie and individual vital unity, rumning through all the ehanges of form, unless the temporary produets of development are to dissolve away into inessential appearance, and to lose all internal connexion. The investigation of development, in the smallest as in the largest eirele, is, therefore, the
most profitable and most promising field of aetion in natural history; and the remarks offered here belong to this field, for they diseuss a general question whieh is not foreign to any speeial history of development.

Among the most cssential and general eharaeters of every course of development of a natural objeet, are commencement and term, and, conneeted with these, youth and age. Youth and Age, although falling within the sphere of ordinary human direet experience of life, do not appear to me, in reality, so easily or simply comprehensible in their true meaning and their contrasted relations, as might seem from a mere abstraet eonsideration. Answers to the questions, so readily presenting themselves-How are youth and age distinguished? When does youth eease, and age begin? How do they pass into one another? Which is the more perfeet condition of life? -would penetrate deeply into the intereomection existing among the totality of cosmieal ideas. The purpose of the present Essay only extends to a few refleetions, based on experienec, on the elanging relation of youth and age in the course of the life-time of the individual.

Youth and age are not mere periods of time, into which life may be divided so as to allow us to say,-Youth, eeases here and Age begins; and one docs not pass gradually and continuously into the other, so that youth deereases in the same ratio as age increases; a glanee into life rather demonstrates to us that the phenomena of yonth go through life side by side with those of age, in the most varied conditions of exehange, not merely presenting themselves simultaneously in various departments of life, but erowding into the same region, and contending there. Even the ehild has old teeth, destined to early destruetion (the milk-tecth), and young tecth (wisdom teeth) appear even at a late age. Many organs have already become old and lost their vitality before birth, sueh as the gills of the Mammalia, the teeth of the whate,* \&e.; lizards and snakes form a young skin

[^2]amually, throwing off the old one ; the crab changes even his old stomach for a young one, every year. The cotyledons, and even the radical leaves, as they are termed, lave already yielded to age in the Enothera, the rape, and many other plants, at a time when the flowers still remain in a young condition of buds, and, on the other hand, the floral envelopes have perished when the fruit is only in the commencement of its process of maturation. In the pupa of the grasshopper, all the external organs are fully developed, at a time when the wings are just beginning to be formed. So may Man be a mere child in mental development, when already old in bodily respects. We see youth and age, therefore, presenting themselves alternately in one and the same course of development; we see youth break forth in age, and enter into the midst of the process, for the purpose of completing or metamorphosing the struetures. This is the phenomenon of Rejuvenescence (Verjuingung), which is repeated in infinitely varied ways in all domains of life, but nowhere asserted more distinctly and more accessibly to investigation, than in the Vegetable kingdom. Without Rejuvenescence there can be no progressive development; only the lifeless creation, or rather, that dying in the moment of production, the mineral, is devoid of the power of Rejuvenescence; whence it is also deprived of development and propagation.

Rcjuvenescence appears, in the first place, as a return to an carlier condition of life, whereby is obtained a point of departure for renewed progress ; or, in the extreme case, as a retrogression to the commencement of the entire coursc of development, to attain the aim in a repetition of the development. The former we see in the Rejuvencsecnces of the individual within the course of its individual devclopment, the latter in the Rejuveneseence of the specics through the suecession of individuals. The retrogression just mentioned, introdueing the Rejuvein the fotus of the whale. Aceording to Eschericht the foctus of Balenoplera longimana has 102 teeth in the upper, and 84 in the lower jaw.
nescence, is either morphologieal, the structure returning aetually from a higher stage into a lower formation ; as we see, for example, in annual Rejuvenescence of many herbaccous perennials (planta rectiviva), as also in most woody plants, in the buds, which commence the rejuvenised course of life with leaves of the lowest stage of formation, the bud-seales belonging to the "cataphyllary" (nieder-blatl) formation; * or the retrogression is merely physiological, a chemical dccomposition and dissolution in the strueture already existent, whereby this becomes eapable of a Rejuveneseence of its form, combined with a more or less distinet metamorphosis. Sneh it is in the interehange of materials in animals, with which are conneeted their more gradual and imperecptible, as well as the more sudden and surprising transformations. That the like is not wanting in plants, will be demonstrated in the sueceeding examination of the phenomena of Rejuveneseence in Cell-life.

We have consequently to distinguish a deseending and an aseending direetion in the Rejuvenescence, one retrogressive, the other advancing with new impetus, one undoing the old and existent, the other shaping out the new. Both direetions are necessarily related to that renewal of the vital movement to which we have applied the term "Rejuveneseence," and it is their alternation whieh maintains life in vibration and guards it against untimely rest. The smaller the vibrations in which it oceurs, the more constant will the formative process appear to be, as for example in the processes completing the strueture of a cell not destined to division ; but even

[^3]here the lamellar deposition of the coat of the cell betrays the internal vibration of the formative activity. On the other hand, the phenomena of Rejuvenescence appear so much the more striking and surprising, the decper the depression of life preceding the new upraising; and the more distinct, consequently, the separation of the new lease of life from the old, the more perfect the consumption and breaking through of the old structure by the new. The metamorphoses of insects furnish most beautiful examples.

Inquiring into the causes of the phenomena of Rejuvenescence, we recognise that external Nature, amid which speeial life displays itself, acts in calling and awakening through the influences which the seasons of the year, nay even the hours of the day, bring forth; but the proper internal cause can only be found in the tendency towards completion, which is present in every existence according to its kind, and drives it to subordinate to itself cver more completely the foreign and external world, to shape itself within it, as independently as the specific Nature allows. At the same time, however, a term is set to the task, beyond which the phenomena of Rejurenescence do not proceed. As in mental life there is a time of maturity, when youth and age are as it were intermingled, when the restless strife of acquisition and destruction ceases, when motion is paired with rest, so also in the physical and corporeal there is an analogous condition of maturity and relative rest, when the alternation of clestruction and reformation is only carried on in the small vibrations of the interchange of matcrial, maintaining vital motion and guarding against its being benumbed. In animals we see this condition commence when the organism has attained completion, is "grown-up" as it is called, when nothing more new is formed, but the actually existent enters upon its predestined function, into its service in the more elevated side of animal life. In Vegetable life we see the corresponding phenomenon in thefruit, which Aristotle already regarded as
the aim of the formative aetivity of the Plant. With it is elosed the series of struetures, in the graduated produetion of whieh the plant runs through its metamorploses; in it vegetable life comes to a peaeeful conelusion, yet without the internal vital movement stopping at the same time with the cessation of external growth, for it is not so independent and permanent in any other part of the plant as in the ripening fruit. At this stage of development, therefore, in eomparison with the preeeding proeess, rest comes at the end, but at the same time, aceording to the relation to a higher sphere of life, the aetivity lying in the destination of the final form.

If we compare the struetures of the earlier stages of life with the condition of the final forms, we see that in them also exists a pause, an effort at conelusion, which, however, has to be renomeed before the development ean advanee towards its term. In opposition to sueh fixation at subordinate stages, whieh would beeome arrests of development, eomes the aetive power of Rejuveneseenee, spiming onward the threads of development with new lengths. Thus it is in every single ereature whieh has a development at all, that is in every living thing. But we may give this reflection a wider expansion.

The term reaehed by the individual, is not the last term of development for the greater complex of the whole, nay the individual itself indieates this totality in its dependanee. The individual existenees of Nature are links in the development of that Kingdom of Nature to whieh they belong, and in the widest sense, links in the development of the totality of natural life. Henee the phenomena of Rejuveneseenee present themselves not only in the individual existenee, but comneet themselves again on all hands with the term of the individual existenee, going beyond this, constantly renewing living Nature in her individual members, and thus bearing up and earrying her onwards to her final purpose. To the fruit adjoins itself the seed as the commeneement of a new individual eourse of development, just as the produetion of future
generations is comected with the maturation of the animal organism.

Against this general relation, however, of the phenomena of Rejuvenescence to progressive development, may be raised the objection that the cases of Rejuveneseence last mentioned, on which depend propagation of natural bodies, are, in point of fact, very different in this respect from those first spoken of, those oceurring within the eyele of the individual development; in the one ease the aim of the Rejuveneseence would be a progress in the developinent, while in the other it would be a mere repetition of the like, as is distinetly demonstrated by the invariability of speeies in the Animal and Vegetable kingdoms. Yet this distinction vanishes when we test the gradations of the cases, on both sides, and particularly if we rise above the narrow field of vision of the present, in our examination of reproduction. The appearance of like alone being repeated in nature, is removed in looking back from our present stationary time into former epoelis of the world. There we find really the first beginnings of the species, the genera, nay even of the orders and classes of the Vegetable and Animal kingdoms ; we see at a glance how more or less profound trausformations were connected with the appearance of the higher stages of the Organic Kingdoms, so that genera and species of the ancient world disappeared again, while new ones took their places. But through all this change are expressed not mere aecidental revolutions of the earth, on the one hand of destroying, on the other laying the basis of new soil for the flourishing progress of organie life, - but far rather definite laws, penetrating: into the very details of the development of organie life. 'Ihus, for example, among the Vertebrate series the Fishes appear first, then the Amplibia, and, subsequent to both, Birds and Mammalia. 'The Fishes of the first periods, as fish the lowest of their class,* resemble in many respects the Amphibia, more indeed than the fish subsequently appearing, of higher orders, from the very circunistance

[^4]that the types of the individual classes were less distinct in the first representatives; the special character of the class, which is ever more distinetly impressed in the sueceeding series of Fishes, not yet being fully developed. Equally remarkable is the relation of the first Mammals of the earth, the celebrated Marsupialia of Stonesfield,** to the elass Mammalia generally. The Marsupialia (including the Monotremata) stand, as is well known, below all Mammalia, nearest to the oviparous animals of the preeeding classes, the Birds and Fishes, and not merely in regard to the structure of the organs of generation. but also in that of the brain; while, on the other hand, they adjoin in their external form, in the structure of the extremities and the teeth, the higher orders either of the Herbivorous or the Carnivorous series, the Rodentia and the Fere. We thus see again here the eharacter of the class imperfectly represented in the beginning, and the subsequently diverging series of the class united even to indistinctness. In the geological oceurrence of the separate sections of the Invertebrate animals, also, we find thie developmental comexion many times confirmed, 11 that a determinate fundamental type appears first in a few simple forms, then in the course of cpoehs the number and multiformity of the representatives increase more and more, till finally, when the series of forms is developed to its extreme term, it often suddenly vanishes again from nature, or leaves but a few representatives behind. One of the most remarkable examples of this kind is presented by the family of the Ammonites. \dagger

[^5]The Vegetable kingdom of the ancient world likewise exhibits a periodieal progress corresponding to a gradation of structure still existing, since the oldest periods have exhibited scarcely anything but Flowerless plants (Cryptogamia), which are soon followed by the Gymnosperms (Cyeadaeeæ and Coniferæ), and in some degree by still doubtful Monocotyledons, while the Dicotyledonous plants appear distinctly latest. The results of geological research appear to confirm, more and more, that all this progress of organic nature, from the first onset to our own time, has an essential connexion, and, although disturbed in many ways by the catastrophes which the earth has suffered, has never been altogether interrupted; in a word, that it represents a single history of development, and not a series of separate and independent ereations.

The ancient changes in the living garment of the earth, appear then as Rejuveneseenees of organie nature in mass, and the individual genera and species of the organic kingdoms as subordinate links in its great chain of development. The fact that nature halted at determinate points, in the calm intervals, and during the epochs produeed, essentially at least, only the like, does not remove the relation to the totality of the development. This is the same phenomenon, on a grand scale, as when we see the plant repeat itself in the same form, often hundreds of times, at particular stages of its growth, before the metamorphosis advances to a new stage, as for example, often hundreds, or even thousands, of the ordinary (euphyllary) leaves (Erica, Calluna, Tamarix Abies), bracts (hypsophyllary leaves) (Dipsacus, Cnicus, Celosia), petals (Nymplica, Mescmbryanthemum, Illicium), stamens (Papaver, Dillenia, Helleborus), or earpels (Myosurus, Anemone, Anona), are formed in unbroken sueeession on one and the same axis. But even in these times of halting, by no means the absolutely like is formed. No leaf, cven when belonging to the same formation, exactly resembles another; and with every successive leaf, if the
development advances as far as the terminal blossom, the plant approaches one step nearer the formation of the flower. Neither are the individuals of the same speeies exactly alike; and the eapability of developing certain sets of varieties testifics the developmental power of the species, even within the restriction to the specific type.

We cannot, therefore, ignore a certain relation to the development of the great whole, even in those phenomena of Rejuvenescence which continue the series of individuals in what seems a mere repetition of the like. This relation speaks most meaningly in the lighest region of the whole graduated series of Nature, where the development passes over from the physieal into the spiritual. Who would deny the relation of the production of new generations to progressive development, in the field where it lies nearest to us, namely, in the Human Race? 'The condition of humanity in this respeet falls within the splere of our contemplation, for the aim to whieh the infinite Rejuveneseences thronghout all Nature strive, through the attainment of which our period of ereation is distinguished from all the aneient epoehs, is the very existence of Man, towards whom Nature points, from step to step, ever more distinctly throughout her entire series; and Man again eamnot be considered without that which itself eonstitutes his humanity, the development of Mind. 'Ihe development of Mind eamnot be separated from its substratum Nature, since although Mind itself is destined to rise vietorious over all the obstruetions of physieal life, it must also penctrate baekwards through all the stages of that life, and give them a spiritual signifieation. Only by starting from this standing point, fixing the aim of the entire development in Nature, can we find the true internal comnection of all the gradations of natural life, and by the very conjunetion with the eourse of development of Man, Natural History aequires its highest import. As Nature without Man presents externally only the image of labyrinth without a elue, scientific examination which denies the internal spiritual founda-
tion of Nature, and its essential comection with Mind, leads only to a chaos of unknown matters and forces,* that is of matters and forces which are sealed books to the mind, or more properly of unknown causes which co-operate in a manner to us inexplicable. From this dark chaos no bright path leads up to the mind; nay, it is inconsequent to regard the mind from this point of view as anything but an inessential result of the co-operation of unknown causes. The study of development is pre-eminently calculated to defend us from such a miserable spoliation of Science, for the counection of the perceived phenomena of Being must necessarily lead us to the recognition of the Becoming, as an internal essence (specifically) the samc through all changes.

The comprehension of the individual phenomenon as a member of a series of essential correlative representations, requires not merely the carrying back of the research to the earliest rudiment, from which alone the succeeding transformations can obtain their correct interpretation, but also a continuation of the observation up to the term of the devclopment, whereby is first perceived, on the other hand, the true destination of the efforts in the formative processes. This is equally true of individual organs, whose physiological destination is first distinctly realised when the formation is complete, and of the individual whole, whose specific and generic character is chicfly expressed in the last stage of the metamorphosis, -for cxample, in the flower and fruit of the Plant. This is truc, moreover, of the more comprehensive developmental series in Nature. The character of evcry genus, family, class, \&c., should grasp its type, as it were its ideal object, for which purpose the lower members of the

[^6]series are always less fit than the higher, in whieh it is stamped more plainly and completely. Thus in the Omithorynchus the type of the Mammal is so imperfeetly and aberrantly represented, that doubt could long exist whether it belonged to the series of the Mammalia at all, and the flowers of the Cyeadex are so little like a flower, that it was only after mueh comparative study that the convietion was arrived at, that these plants actually belong to the commencement of the series of Flowering plants (Phanerogamia). If we apply this mode of examination to Nature as a whole, as the developmental series involving all the subordinate series, if we here also seek the solution of the problem, at the term of the development, we are most distinctly direeted to the completion of the development of Mind as the destination of the whole process, heeoming visible at the highest stage of natural life. 'The mind which beeomes developed in Man, is not fitted together, with the physieal organism, from withont, for we belold its evolution indieated in the lower stages of natural life, especially in the Animal kingdom; the spiritual life is rather the purest and most refined representative of the fundamental life, whieh we meet as natural life in the preeeding stages. We may say of Mind, that it is the younyest, and yet the oldest, existenee in mature, destined to attain in its last age, its eternal youth, the freedom fitted to its essential nature. Rising from the groundwork of Nature bearing and supporting them, the spiritual Rejuveneseenees in the history of Man strive towards this aim of internal vital emancipation, driving the mind out of every senility, every fetter of time, to soar upward in a new flight of life.
'Thus is our own history connceted with the history of Nature. The thought of Rejuveneseence in Science, Church and State, now again moves nations, and meets us in the most varied efforts, in ways erossing one another in manifold directions. As yet, alas, we have beeome aequainted almost solely with the negative side of these efforts, the Destruetive ; but in the eyes of the
naturalist this dissolution would tend merely to indicate the proximity of the transition to a new, upgrowing time which will seize the Positive, in all fields, more profoundly, and give it a morc perfect shape. Will this hope be fulfilled? Has not Old Europe rather arrived at a hoary age, and an approach to its dissolution? The answer to this must be written first of all in our own hearts; but if you would seek it externally, look with the eye of the naturalist into the hidden workshops of the future, and you will find an infinitc abundance of germs and buds, which bear the promise of a rich future within them ; you will above all find them in the domain of Science, as the highest region of mental development, from which alone the latest reformations of life can and ought to issue. But these are digressions leading us too widely from the purpose of the foregoing considerations. If however it be true that all the domains of life are parts of a great total development; if it be true that every department of science leads in its more profound establishment to the same eternal idea, which is the foundation of all reality and all truth,-each department must be mirrored in the others, and thus the naturalist may be permitted to contemplate each movement of the human life which surrounds him, in the mirror of Nature; to find in whose lawfully connected government, the key to calm judgment, is often his gain and payment.

In the preceding observations we have sought to regard the phenomenon of Rejuvenescence in its general, external mode of appearance, and to mark out the wide field in which it is repeated in such a multifold and yet essentially always the same way. A profound investigation into the nature of Rcjuvenescence would pre-require somervhat minute rescarch into the cssencc of age and youth. A few more remarks upon youth may be permitted here. According as we regard life as a mere result of external causes, or discover its basis in one original internal endowment, will youth appear to us, in the one case as poverty, want, and crudity, in the other
as the yet undivided fulness and strength of the undeveloped existence, as superabundant wealth of encrgy, striving to unfold itself. These two modes of considcring the question occur, for example, in application to the earliest, youthful stages of the Human Race ; thus we find on the one side the doctrine of the originally animal condition of Man, according to which Man, scarcely distinguishable from apes, probably of black colour, perhaps even sought after his nourishment on all fours or climbing, devoid of art, language and thought ; then gradually discovered speech through imitation of natural sounds, and as it wcre accidentally; and was only led through external necessity, not through internal impetus, through the combat with external nature which his extraordinary defencelessness and holplcssncss brought upon lim, to each flight upward of life in art and civilization, upbuilding all progress from without, not infolding from within. In opposition to this representation stands the doctrine of the paradisaical condition of the first Man, who at his first appearance stood face to face with obedient Nature, as Lord, as complete Man and likeness of God, urged by the fulness within to give outward slape in word and work to his inborn divine ideas. When we acknowledge both the internal and external, in their co-operation in life, we shall easily be able to unite these two views, that is if we disregard the exaggeratious on the one side, and on the other the mythical imagery (which represents the inner potentiality as the external actuality.) The insufficiency of the first view, which logically carried out entirely disowns anything internal and cssential in natural phenomena, may be shown us, if, as was referred to above, we do not find it in our own life, or are disinclined to draw conclusions from that as to life outside ns, by the instinct of animals, in which is revealed so great an abundance of gifts, not given from without, but undoubtedly inborn, as the gift of song, the impulses to art, or to migration, \&cc. The plenomena of mental life in animals, which we ascribe to Instinct, have becn correctly
compared with what has been called, in the material sphcre, the specific formative impulse, or typical force. Instinct is the continuation of the formative impulse in a higher sphere, as is partieularly elearly manifest in the phenomena of the eonstructive impulse, in the formation of envelopes and clothing (Serpula, Phyganea, Psyche), nests and dwellings, as a kind of ulterior and more external material organisation. The specific formative impulse, however, is not an outwardly derived direction of the activity, but one inwardly contained, acting, from internal causes, as inner determination and force. This is shown by the fact, that under like external conditions of existence, the organism shapes itself in a peculiar, specifie, nay even individual way, in each creature, whence the multifornity of the picture which every mingled wood, every meadow, every field, displays to us. Hence in the grove we see the woodruff and the herb Paris, later in the summer the willow-herb and the fox-glove, on the roek the oak-fern, the dragon's-mouth, and the stone-crop, side by side; they take up the same nourishment, and form their structures out of the same elements. What maintains them in the distinctness? It is the same force that enables different animals to elaborate the same food for such eonstantly varying bodily development, and, on the other hand, prevents a considerable ehange of food from effacing the specific type. This internally given force of life is pre-eminently expressed in youth, while in later age the formative forces are more and more fettered to the products of their own activity, and work only in a narrower cirele, till at length their activity, everywhere more hampered in its own products, becomes extinguished.

For the definition of Rejuvenescence, we draw from the foregoing considerations, the conclusion, that the renouncement of forms already attained, and the retrogression to new rudiments, with which Rejuvenescenee bogins, only mark the extcrnal side of the process, while its inner and essential side is rather an inward gathering-
up, as it were a new draught from the proper souree of life, a renewed reeollection of the specifie purpose, or a renovation of the conception of the typieal ideal, which is to be represented in the outward organism. This gives to Rejuveneseence its definite relation to development, which ean only bring into gradually perfeeted representation, that whiel lies in the essence of the ereature, that whieh is inwardly its own.

This inner part of the proeess of Rejuvenescenee may be rendered more elearly compreliensible by sleep, for this also is a phenomenon of periodieal Rejuveneseenee, the Rejuveneseence of the eonseiousness. In slecp the mind is relaxed from the tension in whiel it is held towards the outward world while awake. All images and shapes of thinking life vanish, or appear only as reflected pietures in dreams ; the mind sinks baek into a enndition comparable to that in which it was before it first awoke to conseiousness, therefore, externally regarded, to a lower condition of development, for sleep is older than waking in the history of development of human life. But the mind does not lose itself in sleep, it rather gathers itself up intn new force, new eomprehension of its purpose, and much that erossed the waking thoughits, scattered and entangled, beeomes sifted and arranged through this recolleetion.

Slecp, a neeessary reereation for the mind, is equally required by all the powers of the body immediately serving the mind. 'The inner formative processes, on the contrary, through whiel the body itself is preserved, do not rest during this time of retreat, they rather aet the more undisturbedly and coneentratedly. Henee the rejuvenising power of sleep also for the body, which appears so wonderful to us in many cases, as when sleep occurs at the crisis in severe disenses. But the most remarkable instanee of the eomexion of sleep with bodily Rejuveneseenee, is seen in the pupa-sieep of inseets. Here, where oeeur the most important metamorphoses we know in the Animal kingdom, that of the sluggish eaterpillar
into the light-winged butterfly, the footless or headless maggot into the deeply-segmented fly; - here, also, occurs the greatest retreat and gathering in of life, a deepcr sleep of weeks, months, or even years' duration, whieh may be compared with the embryonal sleep in the earliest period of formation of the organism, the sleep in the egg. Without nourishment and without locomotion, as it were shrouded in its pupa-eoats, the insect prepares the rejuvenised body for its future resurrection into a freer, more mobile existence.

The awakening of the butterfly from the pupa-sleep, recalls to us the awakening of Nature from its winter sleep, in Spring; and this leads us to the proper subjcet of the present considerations, - the Rejuvenescence in Vegetable life. The Vegetable Kingdom is, indeed, the principal workshop of Spring: " the wonderful workshop where myriads of vegetable atoms, in brief space, spin the threads to clothe the trees and weave the verdant carpet of the earth. With all its sunshine over land and sea, with all its swelling streams and brooks, Spring would be barren and empty without leaves and flower's, as a sky without stars. Leaf and blossom alone give life and freshness to the aetive scenc." *

First of all, however, we must here dispel the illusion that all the splendour of the new-born vegetable world, whieh appears so magically in spring, is merely the work of the few days in which it comes so suddenly into view. No, the labour of Rejuvenescence begins earlier in the workshops of vcgetable life, and Spring merely brings the last steps before our cyes. The breath of Spring only urges to its unfolding that which was prepared long before in silencc, that whieh was reserving and strengthening itself during the evil scason of winter. For in the same proportion as the vegetable world advances in summer and autumn, - in shoot, leaf and flower, in wood and fruit, in obedience to the impulse to outward representation, to

[^7]expansion and firmer establishment, does it retreat simultaneously into itself in the formation of buds and sced, to prepare the germs of new life. Thus the greater part of that which unfolds itself in Spring, after winter has passed over it, was already formed in the preceding summer and autumn. Even now in August we find in the terminal and lateral buds of the oak, within numerous, five-ranked bud-seales, the rudiments of the leaves destined for next year; nay, in the mostly paired terminal buds of the lilac (Syringa), we find not only these, but the rich thyrse of blossom for the future year, with hundreds of closely crowded flowers, which at this time indeed appear only as ineonspieuons green nodules, seareely the twelfth part of a line in diameter. In the leart of the tutip) bulb, shielded by three- to four-fold suceulent leaf-scalcs (eataphyllous coats, Niederblall-liulle), exists, in autumn, a little greenish-yellow bud; this is the tulip stem for the next year, with all the parts which it clevates from the cartl nine montlis later, namely, two or three leares, between which lies lidden the blossom, searcely a third of a line ligh, the petals and stamens appearing as extremely small, uniform papillo, scarcely distinguishable, and not yet closed in as in later shape of the flower-bud, while the pistil is visible in the middle as a little, threelobed papilla. The spike of the hyacynth is somewhat more advanced, at the same period, in the interior of the many-scaled bullb, for the three outer petals of each flower already begin to close up. In Ophioglossum, a strange little plant of the allianee of the Ferns, which unfolds ammally only one leaf and one spike, we find in May, in the bud still hidden under ground, enclosed in a cellular covering, (not formed of cataphyllary leaves or bud-scales, but thallus-like, not only the leaf and spike for the next year, but also the rudiment of the leaf for the year after that.

A further penetration into hidden workshops of Rejnvenescence in plants, requires, first of all, a more minute investigation of the bud. The plaut is bud, so long as its existing rudiments are kept, in relation to completion,
in a stage of elose connection of the organs. Those things which are subsequently removed and unfolded, are here still closely approximated, and, as it were, fitted one within another. The bud is, thereforc, properly regarded as an entire young plant, and each new bnd on an old stem as a new plant, as an individual: "Gemmce totidem herbe" was an axiom laid down even by Limmous, and since his day has oftentimes been repeated.* Nevertheless, this coneeption of the bud has remained itself to a certain extent in the eondition of a bud, since the surprising abundance of conelusions derivable from it, have never been properly developed up to the present time. In the first place, however, the idea of the bud as individual still requircs an essential elearing up. Since the word bud merely expresses a certain stage of existence of the thing in question, we must herc rather call this sprout (Spross), in the definite sonse that we here understand by sprout all belonging to onc axis of the plant, that we therefore regard as belonging to a sprout all which is produced direetly from one centre of vegetation (punctum veyetationis), and belongs essentially to one line of development. Eye and bud are only the commencement and young condition of the sprout; and that which we call bud frequently comprehends only one part, and not the whole of the sprout, as when the lower portion of a sprout is alrcady unfolded and the upper part of it alone remains in the condition of a bud. Thus every richly clothed, but gradually progressing and gradually unfolding leafbearing axis, as, for example, the sucker of the willow, the rosettc of the lcttuce before its flower-stalk has arisen, the crown of the palm or of the agave, has a bud (a "heart") hidden among the uppermost leaves, whieh bud, however, passes by almost imperccptible gradations into the unfolded part of the erown, rosette, or shoot. In other cases there is a sharper division between the earlier unfolded parts and those remaining long in the

[^8]bud state, in reference to the period of unfolding and the stage of formation; thus, for instance, in the oak, the beeeh, and other trees, where the leafy shoot terminates in a bud, the shoot does indeed begin again with eataphyllary leaves (bud-seales), and unfolds itself a year later than the preceding portion of the branch, but is, nevertheless, the direet eontinnation of the axis, and therefore belongs to the same sprout. So also when a flower-bud forms the termination of a sprout, on which the preeeding formations were unfolded earlier than the terminal flower, as in the tulip, the ramunculns and the prony. Henee it is not the separated bud which we must regard as an individual, but the entire shoot, whieh in these eases ineludes several superimposed buddings. A Rejuveneseenee in the eourse of formation of the plant, is indeed expressed in each production of a bud ; but we must not, therefore, attribute an equal individual inportance to eaell, for some buddings belong to the individual completion of the partieular braneh (all terminal buds), while others form the eommeneement of the ner individual line of development of a new sprout, as is the ease in all lateral buds. If individual value be attributed to the terminal buds also, it will follow, in referenee to the cases where the terminal bud unfolds gradually, and is renewed in like progression in the eentre, that we must aecord the rank of an individual at last to every single leaf with its supporting internode, since eaeh is a speeially rejuvenised link of the progressive development. And if we attribute an equal importance in this respect to each step of Rejavenescenee, we eamnot stop here, for then every organ of the plant, as internode and leaf, is itself again formed by a series of Rejuvenesecuces, as we see in the cell-formation of the organs; and the single eell itself finally has its own periods of Rejuvenescence. Consequently, if we wish to review the various gradations of the phenomena of Rejuveneseence in vegetable life, we must consider separately: - 1 , the Formation of Sprouts; 2, the Formation of Leaves; and, 3, the Formation of Cells.

1.-THE FORMA'IION OF SPROU'TS.

There cannot be any doubt that the formation of sprouts belongs to the class of the phenomena of Rejuveneseence, for with every sprout commences a new train of development, the relation of which to the entire developmental chain of the speeific vegetable life, we have here especially to investigate. The prineipal spront of the plant takes its origin from the seed, and is indeed merely the direct development of the seedling (embryo), thus grown up from the first point of vegetation of the plant, whieh, traced backwards, leads to the primary germinal vesicle. The lateral sprouts (branehes), although their origin is unconnected with the co-operation of the sexes, agree with the main sprout in that they also are devcloped from speeial centres of formation, distinct, after their first origin, from the prineipal sprout. We shall return in the sequel to the origin of the principal sprout, with which every new vegetable "stock""粦 arises, when examining propagation from the point of view of cell-formation; here we must occupy ourselves with the lateral sprouts, which belong to the sphere of completion (Ausbildung) of the vegetable "stoek" itself.

Unfortunately we are deficient in thoroughly workedout researches on the origin of the lateral sprouts or branches; but so much is known, that the origin of the sprouts is subsequent to that of the leaves, that they derive their origin from the already more developed tissues of the stem, while the first rudiment of the leaf coincides with the earliest stage of formation of tissue underneath the point of vegetation. \dagger While the leaf,

[^9]as essential part of the sprout, lias its history of development intimately conneeted with that of the stem; * on the other hand the formation of the sprout does not seem to lave any essential conneetion with the completion of the stem from whieh it proceeds. This is further confirmed by the eireumstanee that the sprouts are not always distributed, like the leaves, in definitely regulated order on the stem, but in many eases may arise without order at any points of herbaceous stems, \dagger or of the older lignified trink, nay even from the root \ddagger ind the leaf, as the so-ealled adventitious buds.

It is a remarkable indieation for the essential distinetion in the origin of the leaf and spront, that no adventitious leaves oeemr. 'The claraeter of the new formation is expressed most distinetly in the formation of adventitious buds making its appearanee in detaehed fragments of roots of woody plants, as has been deseribed by 'I'r'ceul in Ailanthus, Paulownia, Tecoma, and Maclura. Here, in a deep-seated layer of the cellular bark, a new foeus of development is formed through a loeal thiekening of the ecllular tissue, and on this point again originates a muel more delieate mass of eellular tissue, a new sphere of formation, whieh soon grows extermally, although still enelosed in the tissue of the bark, into a leaf-prodneing point of vegetation, and on the inside strikes, stem-like, into the formative zone (the eam-bium-layer) of the root, there, by the formation of a proper system of vessels, which takes its origin on the limit between the stem of the adventitious bud and the wood-eylinder of the root, aequiring a firm conneetion

[^10]with the lattcr.* The bud breaks out subsequently through the bark in which it was previously concealed. In this instance there ean be no doubt that the sprout is rcally a new, and in this case even an aecidental product, a new commencement of life, which creates its own sphere of formation, its own point of vegetation, and through the development of this, its own axis, around which it arranges its organs. Hercby we are warranted in regarding the sprout as an individual, for, if we may aseribe individuality to the plant generally, in whieh we are certainly justified by the repetition of its mode of appearance in determinate cycles of dcvelopment, wc must, consequently, eonecive the individual as a developmental series of unit power, and set up as its criterion the unity of the point of vegetation from which the series proeeeds, or, in the developed condition, the unity of the axis. According to this, only the simple sprout can be regarded as a vegetable individual, and that this, far as the regetable individual stands behind the animal individual in inmer unity, is actually the analogue of the animal individual, is proved beyond all doubt by comparison with those animals in which "family stocks" are produeed by the formation of sprouts.

The formation of the compound vegetablc "stoeks" (trunks or common stems) is thus a phenomenon of propagation, if we usc this expression according to the meaning of the word and the custom of language, in general applieation to the production of new individuals for the increase and maintenanee of the species of plant. Propagation by the formation of sprouts, on which not only depends the formation of eompound stocks, but in which is also given the possibility of the formation of separate stoeks, has indeed bocn distinguished as mere multiplication from the proper (sexual) propagation, or

[^11]called propagation of the individual, in contradistinction to the propagation of the species effected by the formation of secds.* But, disregarding the contradictions which here exist even in the expression, these definitions by no means reach the true essence of the modes of propagation occurring in the formation of sprouts, for it is incorrect that the formation of the sprout is merely for the object of multiplication, as I shall endeavour to show in the sequel; in like manner it does not always apply, that the new stocks formed by separation of sprouts (cuttings, layers, \&e.) constantly retain unaltered the individual (more accuratcly the variety's) character of the parent, stock, for even without scparation from the stock, particular shoots "sport," as it is called, out of the species. The well-known example of the necurrenee of isolated blue bunches of grapes on stocks of white varietics, isolated bunches of red currants mingled with the white ones of the same stock, isolated pure sulphur-yellow roses among variegated flowers of the red and yellow Austrian briarrose (Rosa cglanteria, var. bicolor) afford proofs of this. 'The remarkable phenomenil relating to this point in the hylrid Cylisus Adami, which displays in particular sprouts the characters sometimes of one, sometimes of the other parent species, will have more particular attention paid to them in another place.

The true import of the formation of sprouts upon the vegetable stock is that of a subordinate propagation. 'Ihe cycle of development given by the sexual propagation (formation of seed) divides again, in the majority of plants, in the most varicd manner, into subordinate scries of development, which proceed out of one another by the formation of sprouts, so that what in more highly individualised beings is completed in the simple individual, is distributed in the plant, through the inter-

[^12]position of a subordinate process of propagation, among a society of individuals, a dcvelopmental series, and a family circle formed thereby. The subordinate nature of this mode of propagation represented by the formation of sprouts is expressed-l. In the comnection of the formation of spronts with the lower stages of development of the plant. 2. In the imperfection of the "spront individua"" in reference to the series of stages of development which specifically belong to the plant. 3. In the complementary relations in which the varions sprouts of the same plant stand towards each other.

In the first respect, all sprouts agrce, with the exception of the secd-sprouts (commonly called ovules), which as standing in the closest relation to sexual propagation, may be here left out of consideration. All other sprouts spring from the so-called vegetative region, while inside the flower, omitting monstrous occurrences in antholyses, no more formation of sprouts takes placc. The cataphyllary (Nieder-blatt) region, the euphyllary (Laub) region, and the hypsophyllary (Hoch-blatt) region, have more abundant or more sparing formation of sprouts according to the peculiarity of the species of plant; nay the production of sprouts is not unknown, as alrcady mentioned, in the descending portion of the plant, the root. How characteristic the formation of sprouts is of the vegetable "stock" is shown by the circumstance that therc exists perhaps not one single plant wholly without the formation of sprouts.* If this assertion look at first strange, considering the number of plants which are diagnosed with "caule simplici" and "simplicissimo," morc accurate cxamination of such plants as appear to want the formation of sprouts, will readily confirm it. A few instances may serve to bear this out. Cicendia filiformis is certainly onc of the simplest plants in this respect. A delicate thrcadlikc stem bears a fow pairs of small cuphyllary lcaves and cuds in a terminal blossom.

[^13]But the rudiments of the formation of sprouts exist in the axils of the lower leaves of this series, and quite as many specimens may be fornd with one or two branches, as perfectly simple. In a similar way, in many other plants which usually possess abmendant ramification, we find specimens which, under the influence of unfavorable conditions, do not complete the branches which really exist in rudiment, and therefore appear quite simple. Such simple " arrests" (Kïmmerlinge) occur, for example, in Lrythrica pmlchella, Gentiana ntricnlosa, Saxifraga trillactylites, Silene conica, Gypsophila mmralis, Papaver Rhicas, Myosnrus minimus, ise. In all these eases, therefore, the want of branches depends solely upon an aceidental obstruction. Other plants appear simple because the formation of sprouts is hidden beneath, or is close down upon the earth, as in the tulip, which forms sprouts in the cataphyllary leaf region (bulbels), also Trollius exropaens, Papaver muticanle, Gentiana verna, which form sprouts in the axils of the gromed leaves ("radical" leaves), whereby the originally simple "stock" passes into a cespitose complexity, and acquires what is called a "radix multiceps." Paris is rleceptive in another way, the simple and one-flowered erect stem being itself a lateral spront from a subterrancan cataphyllary-leaved stem (rhizome). Anmong the simplest plants altogether devoid of sprouts, apparently presenting solely a flower without a stem, is the celcbrated Rafllesia and the parasites nearly allied to it; but it is most probable that the flowers of these plants arise as sprouts out of a thalluslike basis, creeping along under the bark of the nursing plant.* The Melocactece form an exception in the family to which they belong, ungrateful to the admirers of that family, in sending out no sprouts from their green, globular "stocks;" but here also the rudiments of the formation of sprouts are indicated, by headed-down "stocks," sometimes sending ont sprouts from the lower

[^14]portion; moreover, Mclocactus normally exhibits formation of sprouts in the terminal tuft of flowers, in which (as in all Cactere) the flowers stand laterally. The palms are also mentioned as plants which usually form no sprouts; but leaving out Cucifera thebaica, which acquires a multiple crown by the formation of leafy branches, the inflorescences originating in the axils of the leaves are lateral sprouts. Corypha umbraculifera, with terminal inflorescence, has, in the inflorescence itself, i.e. in the hypsophyllary leaf region, an extremely rich ramification, carried out to many degrces, and in addition to this, sends out sprouts from the root, at the time of the maturation of the fruit.* Cycas would have better right than the palms to be regarded as a plant devoid of sprouts, at all events if the coneor Ananas-like male blossom is terminal, as Richard expressly states. But Rumph says of Cycas circinalis, that the stem at first grows very slowly, but afterwards more rapidly, particularly when it has borne the "ananas." Such a continuation of the growth of the stem can, however, only be conceived through the formation of a lateral sprout, if the male blossom is actually terminal, or, if a dircet prolongation of the stem occurs, the male blossom must be a lateral sprout. The female tree of Cycas circinalis is stated by Rheede \dagger to divide frequently into four or five tops when old, which again can only take place by the formation of sprouts. Lastly, in Cycas revoluta, formation of sprouts from the lower part of oldish stcms, mostly close down to the ground, is quite a common phenomenon, and may be seen in every old trunk in our gardens; rccurring moreover in the fossil stems of Cycadcæ. \ddagger Many Ferns, cspecially most trecferns, would appear as sproutless plants, in the strictest sense of the word, were not the cntire Fern stem itself a

[^15]second generation, i.e. a sprout produced from the thallus-like pro-embryo (prothallium). The circumstances are similar in Isoëtes. Thus, even after very extensive investigation, there probably does not remain to us one single plant whieh, through the whole course of its development, from the germinal vesiele to the fruit, is but a single, simple individual, uneomplieated by subordinate propagation.*
'I'he subordinate condition of the propagation presenting itself under the form of the production of sprouts is expressed, secondly, in the fact that the particular sprouts, and indeed the main sprout as well as the lateral sprouts, do not, in the majority of cases, bring into existence all the stages of vegetable metamorphosis which belong to the "stock" as a whole. Consequently there exist, in reference to the share in the graduated strueture of the entire plant, sprouts of different kinds, and the individual sprout on that account mostly represents only more or less imperfectly the history of life of the plant.

The deficiency of the sprout may relate either to its commencement or its conelusion. The formation with which a sprout eommences mostly stands in relation to the region of the parent-shoot from whieh it takes origin. 'Ilhus we frequently see a series of sprouts, aceurately graduated in this respect, arise from suecessive regions of the (absolute or relative) main-sprouts, e.g. sprouts beginning with eataphyllary structures from the cataphyllary region, with euphyllary leaves from the euphyllary region, with hypsophyllary struetures from the hypsophyllary region. Hypericum perforatum and Mentha aquatica are well-known examples exhibiting this phenomenon. But a retrogression of the sprout to a lower formation, as well as an advance to a higher, is possible. The former

[^16]occurs especially when the sprout is destined to be subsequently dcveloped into the central sloot. Thus many lilies exhibit in the axils of the euphyllary leaves cataphyllary buds, which finally fall off as bulbcls, and continue their development in the following year; so also we see the buds formed in the axils of the euphyllary leaves of most trees, intended to overlast the winter and unfold in the next year, commence with cataphyllary structures. In many instances the plant first reaches the lowest stage of its metamorphoses by such a retrogression, the lateral sprout going down to a lower rudiment than the main or original sprout brought forth by the seed. This is a process through which the plant enters more closely into connexion with the earth in the second generation than in the first, and becomes more firmly established in it, preparing a more fixed, enduring and sheltered existence, to the vegetable life, though its cataphyllary formation and the adventitious roots mostly following this. The following remarks may serve to illustrate this case, which is especially important in reference to the biology of perennial herbaceous plants. It is selfevident that the cotyledons of Dicotyledonous plants, although mostly strikingly diffcrent * in shape from all the following leaves, do not belong to the lowest leafformation, but rather bear, essentially, the characters of the second leaf-formation, that of the euphyllary leaves; while, on the other hand, the sheath-like cotyledon of the Monocotyledons is mostly decidedly like a cataphyllary leaf. Now Dicotyledons continue the euphyllary formation directly from the cotyledons, without ever producing cataphyllary leaves cither on the main or the latcral sprouts; pcrennial Dicotyledons, on the other hand, mostly descend from the original leafiness to cataphyllary formation, and this either on the main sprout itself, as in Adoxa, Helleborus niger, Hepatica, and Anemone nemo-

[^17]rosa; or on the lateral sprouts arising from the axils of the cotyledons and the cuphyllary leaves next suecceding these on the main sprout, in whieh case the main sprout dies down either entirely, or at least in the upper part, and this indeed mostly without having carried its development up to blossoming; while the lateral sprouts last through the winter in the form of basilar buds or rumers penctrating into the soil, and in the second year bring forth a more vigorous generation, mostly advaneing to the terminal point, blossom and fruit. This is the condition, for instance, of most of the perennial species of Aster, Solidayo, Achillea, I'anucehm, Mentha, Lysimachia, Hypericum, Epilobium, Lythrum, \&e.; Oxalis stricta and Solanum tuberosum also belong here, in whieh the parent stem dies entirely away, and only the ends of the runners live over the winter as the foundations of a new, more vigorous generation. It is well known that the potato raised from seed does not usually flower, or only exceptionally. Perhaps, however, Physalis Alliehiengi affords one of the best examples of this kind. Between the stalked, broadly lanceolate eotyledons of this plant, spreading out above ground, rises in germination a stem about a span high, with twelve or thirteen (euphyllary) leaves, increasing in size upwards, and when winter approaehes this stem dies down without having flowered. In the axils of the eotyledons and the sueceeding leaves standing elose down to the earth, in the course of the summer, while the sterile main sprout is being developed further upwards, arise buds, whieh, seareely a line long, turn their points at onee obliquely downwards, and subsequently, becoming more and more elongated, penetrate almost perpendicularly into the earth. They are clothed with distant, elasping, apieulated, eataphyllary leaves, bent inwards like a eap at the tips, and these are reddish above ground, whitish beneath. The uppermost of these sprouts penetrating into the earth and laying the foundation of the more vigorous and fertile gencration of the seeond year, hegin again with small, dwarfed, euphyllary
leaflets, and descend gradually on the tips penetrating into the earth to cataphyllary leaf-formation.

The anticipatory condition of the sprout is no less frequent than the retrogressive. It occurs, for example, where we see flowers arise without bracts (Vorblätter), or with such leaves as belong to the hypsophyllary leafformation, from the axils of euphyllary leaves, as in Linaria cymbalaria, Lysimachia Nummularia, Tropcolum, sc.

Morc important for our purpose is the consideration of the deficiencies of the sprouts in the rpper part, i.e. in reference to the formation with which they close. Not every sprout carries the developmental series, whether it take it up lower down or higher up, to its termination in the formation of flower and fruit; but ccrtain determinate sprouts remain fixed at determinate subordinate stages, beyond which they have no power, or only in extraordinary cases, to advance ; nay, there are cven cases where instcad of an advance to the final term in the building onwards of the sprout, a retrogression of the metamorphosis takes place, which is frequently followed by a periodical vibration up and down of the formations, connected with the changes of the seasons. So, for instance, in the oak, the beech, and the chesnut, the sprouts of which produce cataphyllary and euphyllary leaves in regular alternation from year to year.*

These limitations downwards and upwards, which determine the history of the individual sprout, in contradistinction to the history of the life of the entire plant, form the most essential causes of the infinite multiplicity we meet with in the formation of sprouts in vegctables. Far removed, therefore, from morely subscrving to an asexual increase and a multiplication of idcntities, the plant rather devclopes its great multiplicity in this very formation of sprouts, and thercby bccomes a "vegetable"

[^18](Gewächss), i.e. a whole eomposed of subordinate iudividuals.

Lastly, the subordinate import of the sprout is expressed, thircdly, most distinetly in their reeiproeal compensations. For how were it otherwise possible in the frequently so one-sided endowment of the sprout, limited to a few, nay often to a single formation? A mere eataphyllary sprout neeessarily requires the appearanee of euphyllary formation in another series of sprouts, and when these again do not proeced as far as the formation of hypsophyllary leaves and flowers, further ranks of sprouts must be introdueed. Thus in the pine we find on the main-shoot and the branches resembling it (in the earliest youth of the germinating seedling exeepted), only seale-like eataphyllary leaves; the euphyllary formation so requisite to the tree is eommitted to a seeond order of sprouts, to the little branehlets which bear the two, three, or five-fold bunches of aeieulate euphyllary leaves. 'These, however, produee neither flower nor fruit; it is a new rank of sprouts whiel produces the staminal leaves (stamens), and again, another whieh forms the foundation of the eone, on which, as the last formation of sprouts appear the fruit-seales, in the axils of the braeteal seales (hypsophyllary leaves) of the eone. Thus the pine has five qualitatively different orders of sprouts, or, if we count as a separate rank the main-sprout or trunk, differing in its earlier behaviour from the braneles whieh form the erown of the tree, even six.

The most important and interesting point revealed by these investigations, is the definite order of generation in whieh the different ranks of sprouts proeeed one out of another. Only a small proportion, namely, of (Phanerogamie) plants, reaeh the goal of the metamorphosis, blossom and fruit, in the first generation ; the majority attain this term only in the seeond, third, fourth, or sometimes not until the fifth generation of sprouts.* Every

[^19]vegetable species has its specific law in this, and sometimes even nearly related species are distinguished by their eharaeter in this respect;* more frequently, however, the species of a genus, nay even the genera of a family, follow essentially the samc order in the produetion of sprouts. Thus, for instance, the Grasses, Cyperaeer, Orehideæ, Labiatæ, Scrophularineæ, Primulacer, Cruciferæ, Onagreæ, Malvaeeæ, Dipsaceæ, and Compositæ, never attain the flower in the first, mostly in the second, but sometimes not until the third generation; the Plantaginex, as well as the majority of the Seitamineæ, Amentacese, and Legruminosæ, mostly in the third; a few of the last, as Phascolus, Apios, Hedysarum coronarium, and Trifolium montanum in the fourth. But this enumeration of the essential generations of sprouts, or, as they may be called, the system of axes of the plant, merely marks the most general outlines of conditions whieh include an infinite multiplieity of subordinate cases. The number of the axes being equal, they divide, in the first plaee, according to the distribution of the formations on the axes in question. Especially important in this respeet is the behaviour of the last axis, which bears the flower. Whether the last axis sets the flower immediately, \dagger or after the preeeding formation of a definite number of leaves, \ddagger or, finally, an indefinite number of leaves precede the flower, $\$$ are distinctions of importanee even as characters of families. But also with like distribution of the formations, further distinetions oceur in referenee to the region from whieh the next system of the axes arises; as also, lastly, less essential ones, of great importanee however in regard to the habit of the plant, in respect to

[^20]the number of the eo-ordinate sprouts of each rank, the region and the abundance in which the said formations oceur on the various axes, the relative dimensions of these axes, \&e. A few examples placed side by side for the sake of eomparison, may render these further distinetions more clear.

Paris quadrifolia and Iysimachia Nummularia, both have a two-membered chain of sprouts; but the endowment of the two axes is quite different. In Paris, i is a cataphyllary sprout ereeping miderground ; ii, brings forth suceessively a basilar catiphyllary formation, the euphyllary formation, and the flower. In Iysimachia Nommunlaria, i is a creeping euphyllary sprout; ii, immediately produces the flower.

Convallaria majalis and Convallaria multiflora have both three-membered serics of sprouts, both also have the simne distribution of the formations, namely, on axis i , the cataphyllary and enphyllary formation; on ii, the hypsophyllary formation ; while iii concludes with the flower. But they are distinguished in the relations of the emergence of the sloots; in Convallaria majalis, ii, arises from the catiophyllary region of i; in Convallaria multiflora from the euphyllary region. 'They differ, morcover, in reference to the number of the co-ordinate sprouts, since Convalluria majalis possesses only a single sprout of the sceond generation, thus only one inflorescence; Convallaria multiflora numerous inflorescenees, but less numerous sprouts of the third generation, i.e. only a few flowers in eaeh infloresconee. Cyclamen and Centunculus both have two-membered series of sprouts, both the same distribution of the formations and the same regions of origin of the sprouts: i, being a euphyllary sprout; ii, blossoms from the axils of the euphyllary leaves. Here the relative dimensions are the prineipal causes of the very different habit. In Cyclamen, i is a tuberous stoek; ii, the blossom, on the other hand, has an elongated stalk; in Centunculus, on the eontrary, i is a delicate little sprout, while the flower is almost sessile.

Plantago major and Impatiens Balsamina owe their very different habit, in like manner, prineipally to the different relative dimensions. In both, i is a euphyllary sprout; in both the ii, hypsophyllary leaf bearing sprouts (the axes of the inflorescenees), arise from the axils of the euphyllary leaves; from the axils of the hypsophyllary leaves (bracts), finally, iii, the flowers; but i is a short stock in Plantago, forming a rosette upon the ground. In Impatiens it is a very much clongated sprout; ii, on the contrary, is a sprout in Plantago, especially elongated in the lowest part, and thereby forming the shaft, or raehis, as it is ealled. In Impatiens, on the contrary, it is an extremely short stalk, thus hidden in the axil of the leaf ; iii, the flower, is sessile in Plantago, and furnished with a long stalk in Impatiens. In ii is to be added the distinction in reference to the abundance in which the formation oceurs, for in Plantago a great number of hypsophyllary leaves exist, laying the foundation of a rich spike; while in Impatiens there are but few lypsophyllary leaves, which is the eause of the poverty of blossom in the small axillary cyme.

The eomplementary relations of the sprouts beeome still more manifold through the superaddition of a division of a generation, to the consecutive series of generations, which ean start from any generation contained in the vegetable "stock," but in many eases appears even in the first generation, produced by sexual propagation, and then gives rise to the existence of two different eomplementary "stocks." The latter is the ease in all dioceious plants, the former in the monocious, unless the ease oecurs of the terminal structures distributed to the two kinds of flowers being attained by a simple series of gencrations. Cases of monoecia througl division of genération, so that one part of the sprouts belonging to the same generation terminates (immediately, or even in the second or third line) with male flowers, another portion with female flowers, oceur in P'achysandra, Arum, Silphium, Calenthulr, and Eriocrnton, in which the flowers
belonging to the same spike or the same capitule, $i . e$. arising from the same parent axis and thus forming only one gencration, are partly male (the lower or outer) and partly female. The Hornbeam (Carpinus) may furnish an example of a more complieated case. Male and female eatkins arise as eo-ordinate sprouts from the same parent axis, but the male flowers form the seeond generation on the male catkins, the female blossoms the third generation on the female inflorescenees. The division of the generations oeeurs therefore here in the last generation but one for the males, in the last but two for the females; the two kinds of eatkin are, to a certain extent, themselves again "stoeks" "pon the "stoek," the male "stoek" (catkin) with two-membered, the female with three-membered series of generations.* Examples of monoceious condition through mere sueeession of generations are furnished by many Euphorbiacee, for instance, Euphorbia and Bucus, where the male blossoms are produced as lateral sprouts from the sprouts terminating with female flowers. \dagger

Besides the sprouts which present themselves as essential members of succession of generations and of division of generations, and consequently are necessary to the full carrying out of the series of formations up to blossom and fruit, most plants possess other sprouts, which are not necessarily conneeted here, and therefore may be distinguished from those hitherto examined, under the name of inessential sprouls. In plants which possess terminal flowers, i.e. in which the main-spront terminates in a flower, all the lateral sprouts, however numerous and regular they may be, are to be regarded as inessential. The inessential sprouts enrich the "stoek" within the annual period of vegetation, if they sueceed the main sprout quiekly in their development, as is the ease, for example, among aunual plants (summer plants) with all the sprouts; in herbaceous perennials with the

[^21]upper sprouts. If the sprouts remain undevcloped, as buds, mitil the commencement of a new period of vegetation, they maintain and renew the plant, while the old "stock," in so far as it bears such buds capable of development, does not die away, as is scen in pcremnial herbs, half-slirubs, and true woody plants, in which less or greater, merely underground or also an above-ground portion of the "stock" is prescrved. This gives the possibility for the plant to rise up in new generations from the same stock, year after year, and thus repeatedly to produce flower and fruit. Finally, if such inessential sprouts become detachod, whether by dying away of the old "stock," as in the monk's-hood (Aconitum Napellus), the potato, and many bulbous plants ; or, the old "stock" persisting, by a natural solution of the connection with it, as in the young plants springing from the rumncrs of the strawberry,--the sprout becomes a new "stock," and appears as a multiplying sprout, as a natural layer. All these modifications may occur in one and the same plant. Thus the common spurge (Euphorbia Cyparissias), cxhibits two kinds of enrichment-sprouts above ground, namely, in the euphyllary lcaf region, the densely-leaved spreading, mostly barren cuphyllary sprouts, which give the characteristic fulness to the cuphyllary region of this plant; in the hysophyllary region, further, the branches of the umbcls arising from thic circle of hypsophyllary leaves bencath the small terminal capitules, with further bifurcated and scorpioid ramifications of their brancles, forming the rich and finely compound infloresence of this plant. Below the ground, in the cataphyllary region, occur in summer numcrous small, reddish-wlite, little buds; thesc arc the sustaining and renovating sprouts of the plant, arising with a cataphyllary formation, advauced somewhat in devclopment, and destinced to shoot up in the next yoar and rencw the "stock." Other little sprouts, finally, not unlike these, are met with here and there on the branches of the root approaching the surface of the carth, where however they assime an independent
eharaeter, through forming roots of their own, and sooner or later become detached from the parent "stock," thus presenting themsclves as increase-sprouts or layers.

All these modifications in which the inessential sprouts occur, agrec in the circumstance that they represent, in greater or less extension, only repetitions of that which the plant possesses in its essential sprouts. They lie outside the straight line towards the flower and fruit, being interposed laterally, at various heights, as inessential lines of repetition. In many cases the presence or absenee of sueh repetition-sprouts, appears, usually, as sometling accidental and indifferent to the plant, as for instance, when the tulip stem aequires a branch with a lateral flower. In general, however, these repetitionsprouts are of more importanee, and are more necessary to the plant than might appear', so that they must be regarded as in eertain respects essential, thus, namely, in reference to the characlerisation and also to the economy of plants.

That the repetition-sprouts are characteristic, is expressed generally by their influenee on the "habit" of plants, on the architectural design of the "stock," whether as a whole, or in its separate parts, as in the inflorescence especially. Entering more into partieulars we find characteristie features in the arrangement and direction of the branches, in the frequently peculiar arrangements of the leaves and rudimentary traces of such arrangements on the branches, in the laws of eurvature of the lines of arrangement of the leaves on rudimentary branches, especially in the laws of antidromy oecurring on the branches plaeed symmetrically opposite to each other, in the relations of the subtending leaves to the branches, partieularly the eonditions of fusion of the two, \&e. A multiplicity of good and important eharacters would be altogether lost if the inessential branches were removed; nay even the mere presence or absenee of certain modifications of them, as of subterranean or above-ground bulbels,* stolons, \dagger

[^22]above or below the earth, with or without tuberous structures, spine-branches, ${ }^{*}$ \&c., are characteristic of particular species of plants. Thus, in spite of the distinction between essential and inessential sprouts, we must acknowledge, that from a higher point of view all sprouts appear essential. As it is not merely in the last stages of the metamorphoses that the life reveals its peculiarities, since every one of the lower stages also turns outwards a special side of the living essence, not only are those sprouts which bear relation to the attainment of the goal of the metamorphosis to be called essential, but also, everything else in the collective circle of those structures which are destined to represent the plant on all sides, and cannot be removed from that circle without essential interference with the characterisation of the plant. A fewexamples may render more clear the importance of the inessential or repetition-sprouts in the characterisation of the plant.

The peculiar forms of the crowns of trees, for instance of the pyramidal poplar, of the cypress, depend upon the proportion of the vigour and abundance of the repetitionsprouts to the main sprout or trunk of the tree. The relation of arrangement shows itself more distinctly in many Conifers, where the repctition-sprouts over-leap certain tracts which remain without branches, and form tolerably regnlar whorls. In Pinus the tracts between the larger, whorled branches are occupied by the small (essential) leafy branchlets. Essential and inessential sprouts occur in extremely regular alternation in Tropreolum minus, when every third flower-sprout is followed by a euphyllary leaf sprout. When there is $\frac{2}{5}$ arrangement of the leaves on the main-shoot, the enphyllary leaf sprouts derive from this an arrangement according to $\frac{2}{3}$ in the reverse direction. Here also may be mentioned the peculiar cases where the leaves having a many-ranked direction, the branches are nevertheless in distichous arrangement, on account of only part of the leaves pro-

[^23]ducing branches in their axils, as in the Arbor Vitex (Thuja), and several of the branched Mosses, for instanee, Hypnum abietinum, delicatulum, tamariscinum, \&c. Henee arrise pinnate forms of ramifieation, whieh frequently stop at a determinate degree of pinnation; as in the three species of Hypmum just named, the first is simply, the second doubly, the third triply, pinnate. In the Horsetails we see a determinate degree of ramifieation kept to, even in a vertieillate arrangement of the branches.* If we take the eharaeteristie branehes away from sueh a plant, it would lose its peculiar " habit," Imagine, for instance, a T'amarisk (Tamarix) robbed of its numerous minutely-leaved euphyllary leaf twigs, and the fine bushy, thousand-leaved, pyranidal slurub beeomes a simple, meager, naked rod, on which the distant, minute leaves are scarcely visible. Even eharacters applicable to generic distiuction may vanish through removal of inessential branehes. All the lateral spikelets of Loliun and Triticum are inessential, insomuch that a terminal spikelet exists; but with their removal is wholly lost the distinetion between the two genera, founded on the different eommencement of the branehes of these lateral spikelets. Thus also would one of the most important distinctions between the genera Festuca and Bromus beeome impereeptible through the disappearanee of the panicle-branches, namely, the one-sided direetion of the first seeondary branch, which priucipally distinguishes Festuca from Bromus. But inflorescences above all show most distinctly what important and weighty characters of plants are expressed by mere repetition-shoots. All inflorescenees having a terminal flower, evidently consist, with the exception of the main axis of the infloreseenee terminating in that flower, of repetition-sprouts; and yct what distinetion, what multiforminty of structure, exists in these infloresecnces! What a distinetion, for instance, between the simple raceme of Menyanthes and Berberis, the umbel of the coriander,

[^24]the pyramidal panicle of the lilac (Syringa) or the phlox, and, finally, the anthela of Luzula and Ulmaria, rendered so remarkable by the strong development of the lower Hower branches. But the essential lateral parts of the spiked or racemose inflorescence may be developed to most characteristic forms of the inflorescence, by inessential sprout-formation from the bracts (Vorblätter), e.g. to the forked form, by the equilibrium of a homodromous and antidromous sprout, to the screwed form by the predominance of the homodromous, to the scorpioid form by the prevalence of the antidromous sprout. All these characteristic forms are produced by mere succession of inessential generations, which proceed one out of the other according to determinate laws, and are frequently intimately chained together into apparently continuous axes (sympodia).

Another side, on which the sprouts which have been termed inessential in the foregoing, appear in a deep and essential connection with the course of existence of the plant, is their relation to the economy of vegetable life. Formation of sprouts, generally, especially however the formation of inessential sprouts retrograding to the lowest stages of the metamorphosis, gives the plant the means of attaching itself to the most varied conditions, of persisting through periods of continued cold and heat, damp or drought, according as the climate may produce, and guarding against death in all cases of frustrated seed-formation. Under the varied circumstances which may frustrate the fertilisation, under the rcadily possible prevention of the formation of sced after fertilisation has taken place, it is of importance, since the proper individual of the plant (the simple sprout) can only once flower and ripen sced, that the "stock" should have the capacity, by another kind of propagation, namely, the formation of sprouts, of repeating the blossoming and ripening, cither in the same period of vegetation, -whereby, for example, in every many-flowered inflorescence, any temporary disthathace loses its effect uron the whole throngh suces-
sive opening of the flowers, which is especially important in the case of amuals,-or in a succeeding period of vegetation. The latter condition is particularly important for such plants, as, in consequence of the contrivance of the organs of fertilisation, rarcly bear fertile seed, as is the case with most of the Orchideex, -as also for such as through their situation are often prevented from flowering for a long time, as is the case with many water-plants, when the level of water remains long very high. 'Ilhus Liltorella lacustris, which never flowers under water, maintains and increases itself by lateral rumers, year alter year, at the bottom of the lakes of the Black Forest, and only comes into flower when the water retreats, in the driest years, which seareely reenr oftener than once in ten. Similar conditions are exhibited by many nemoral plants, as for instance, the woodruff; when the shade of the wood is too dense, or even when too free an opening of the wood interferes with its flourishing above-ground, it maintains itself many years without flowering by subterramean rmmers, waiting from generation to gencration the return of a season favorable to its suceess. 'Ihe wellknown phenomenon that annual plants alnost entirely disappear in the extreme north and in the Alps, likewise deserves to be mentioned here, since it shows how, in proportion as the ripening of seed is endangered by cold, a formation of sprouts adapted to the persistence through the cold season takes place. Lastly, the formation of sprouts is of especial importance for hybrid plants, which as a rule can only be maintained and increased by naturally or artificially detached sprouts. The frequent experience that hybrids of annual or biennial plants, e.g. the hylrids of the genus Verbascum,* acquire a duration of many years through continued formation of sprouts from the old "stock," is a speaking testimony of the interposition of sprout-formation in cases where propagation by seed is difficult or impossible, since in this instance

[^25]the longer maintenance of the hybrid form is effected by a sprout-formation, not merely inessential in the sensc above denoted, but also quite extraordinary, and altogether absent in the parents of the hybrid.

To these indications respecting the comnection of the inessential sprouts with the economy of vegetable life, we have to add also the consideration of certain cases, which completely remove the sharpness of the former distinction, since, as cases of transition, they may be taken in two ways. In contrast to the essential sprouts, which, as determinatc series of subordinate generations in which the metamorphosis of the plant is carried to its term, represent, according to number, a firmly fixed system of axes, cach successive one bringing something new-we have called the inessential sprouts, lying outside the series and indefinite in number, repctition-generations. But cases occur of real repetition-generations, which do not lie outside the line, but belong to the series of transition generations necessary to the attainment of the goal. Here refcr the strengthening generations-already noticed above*-of many perennial plants, which in the first year are still too weakly to form flowers and fruit. The fortification to the point of fruitfulness may occur either in the next succeeding generation, otherwise essentially like the first, or deviating only in a rctrogression to cataphyllary leafformation, and thus in the second year, if every generation is destined to a year's duration,-or, more or less numerous, and then mostly numcrically indeterminate, in all essentials completely similar generations, may succeed one another, till at length that age of the "stock" is attained in which it advances to the formation of blossom. The latter condition occurs cspecially frequently in trees, and indecd most distinctly in those which have no terminal buds, and conscquently, in the strictest sense, unfold cach new year a generation composed of undoubtedly now individuals (evident lateral buds). Three

[^26]examples, very unlike, but agreeing in the conditions here referred to, the asparagus, the lime, and the vine, may be examined a little more minutely, to illustrate this point.

The common asparagus (Asp. officinalis) differs from other perennial herbs formerly mentioned which arrive at blossom only through strengthening generations, in the cireunstance that it prochuces several strengthening generations in one and the same year, three or four in fact even in the first year, while in the succeeding years the number of generations sprouting out of one another, in one summer, amounts to eight or ten. The single shoots of asparagus are namely, really so many successive grenerations, and not as it might appear co-ordinate memhers of one and the same generation, since the horizontal root-stoek is not a continuous axis, but a sympodium formed by the chaining together of the basilar portions of the individual shoots. Each sncceeding shoot arising from the axil of the second, sub-basilar eataphyllary leaf of the foregoing, hidden in the gronnd, is related antidromously to the foregoing, like the suceessive flowers of a scorpioid inflorescence. From the first shoot, arising from the seed, whieh is the weakest of all, and sends ont the second, already somewhat stronger, from the axil of the first leaf after the cotyledon, the shoots procheed in seorpioid suceession ont of each other, in the above-deseribed way, inerease in strength till about the fourth or fifth year, when the asparagus has attained its perfeet vigour, which remains pretty equal for about fifteen years, and then again gradually deerease with age. A subordinate reaction occurs during this, the last shoots of each year decreasing somewhat in strength. 'I'he shoots of the first, and often even of the second year, are infertile, for the asparagus does not nsually flower mentil the third year. Since three or four shoots are produced in the first year, and five or six in the second, the asparagus requires a series of eight to ten generations to strengthen it up to the point of bearing. All generations, both
the earlier infertile and the later fertile ones, are essentially alike in all other respeets. 'The first shoot bears, after' the eotyledon, a basilar, subterranean, amplexieal sheathing leaf, then in the upraised stem distant smaller and narrower seale-like leaves, whiel might be taken for hypsophyllary leaves if they were not preferably to be regarded as eataphyllary formations, sinee it is their axils that the acieulate, leafless branehlets, arise, whieh here, as in Ruscus, take the plaee of the euphyllary leaves. The shoot thus exhibits two essential axes, the main axis with two gradations of the eataphyllary formation, and the leafless lateral branchlets, whieh represent the euphyllary formation, and are mostly enriehed by others similar (inessential), whenee arises the tufted arrangement of these last branehlets. 'lhese two essential axes are repeated in all the sueceeding sloots, only progressively more rigorously and riehly through the inereased number of leaves on the main axis, and through the oecurrenee of inessential lateral branehes, whieh repeat the upper part of the main axis, and, finally in the most vigorous shoots produee again lateral twigs of the seeond, third, or even of the fourth degree, whenee arises the stately panieled growth of the asparagus. The essential axes are not multiplied by this enriehment until the flower, whieh arises on eaeh side from the basis of the branehes, appears as the third essential sprout-formation of the asparagus. The bearing shoot of the asparagus has thus three different and essential systems of axes or generations of sprouts, but appears, itself, as a whole, only after a series of generations resembling itself, but barren, whiel are indeed repetitions of the like, but nevertheless essential preparatory or transition links.

Like the root-stoek of the asparagus, the stem of the lime is also a sympodium; for the lime, from the first aunual shoot of the germinating tree onwards, never produces terminal buds, the stem being developed forth from year to year from the uppermost lateral sloot. 'The lime, when raised from sced, grows very slowly, and docs not
flower until it has attained an age of full thirty years ; so that the number of necessary strengthening generations is considerable here. When the bearing age is attained, the flower appears in the blossoming generation as the third axial system, since it arises ont of the axil of the winglike first leaf of the lateral buds.
The relations of the strengthening generations are much more complicated in the vine. The germinating vine produces first two small leaf-like cotyledons, and then a weak, u pright shoot, scarcely a span high, with seven to ten, seldom more, euphyllary leaves, which are arranged spirally according to the $\frac{2}{5}$ or $\frac{3}{7}$ order. It is probable that a weak tendril-formation occurs at the summits of vigorous seedlings, and beyond this an apparently direct continuation from the uppermost euphyllary leaf, as we are enabled to make out more clearly on the shoots of the succeeding year ; but the whole of this uppermost portion acquires, in any case, but a very slight development, and dies at the top as the winter comes on.* 'This first main-sprout of the seedling forms the basis of the so-called head (eeps, in French), from which arise the climbing shoots (Reb-schosse), following in the sccond ycar; but these are produced through a peculiar agency. In the axils of the euphyllary leaves, namely, (nay even of the cotyledons,) buds are formed, on which we find, first a cataphyllary leaf, then a cuphyllary leaf, and the trace of a tendril, which latter organs, as well as those following further on, are mostly very stunted in their development, or even wither up before fully unfolded, while a new bud is formed in the axil of the cataphyllary leaf, which becomes more swollen than the chief bud, and is protected by its own two cataphyllary leaves (bud-scales). In this

[^27]way, if the ehicf bud is not unfolded, there arises the appearance of two buds placed side by side, onc drying up and the other fresh. The stuntedly developed chicfbuds are no other than the first "Geitzen" of the vine, which are repeated in a more distinet manner in the following years; from the lateral buds, on the eontrary, are developed in the next years the first "Lotten" of the vine, which at once grow out more vigorously and more slender than the head-shoot of the seedling, and, as the preeeding statements indieate, arise from the base of the stunted " Geitzen," and not directly from the middle-shoot, thus representing properly a secundane, a ramifieation of the second degree. The "Lotten" differs from the headshoot in many respeets; they have never spiral, but always distichous arrangenient of the euphyllary leaves; they bear numerous tendrils, or "forks," as they are called; and, what is most important here, a minute examination shows that they are never simple, but linked sprouts, forming a sympodium. It is well-known that the tendrils of the vine stand opposite to the euphyllary leaves; this is explained by the faet that the tendril, as the temporary apex of a sprout, becomes turned towards the side by the suceeeding sprout, arising from the axil of the uppermost euphyllary leaf, while the new sprout is attaehed upon the euphyllary region, as an apparently direet prolongation. Another point espeeially worthy of rcmark in this is, the regular alternation in the character of the sprouts linked together to form a "Lotte," oeeurring after the first member of this series of sprouts. The first sprout with whieh the "Lotte" conmences is different from all the sueceeding, sinee it commenees with a cataphyllary formation (with the two basilar bud-seales, visible even in the first year), and after this produces mostly more than two (3-5) euphyllary leaves, before it terminates with the formation of the tendril. The tendril, like all the suceceding tendrils, bears a hypsophyllary leaflct, from the axil of whieh arises a brauch, which gives the tendril the well-known forked form. All
the succeeding sprouts (members of the series of generations of the "Lotte") are added upon the foregoing without repetition of the cataphyllary formation, and possess alternatcly one and two cuphyllary leaves before the transition to the formation of the tendrils. From this arises quite a peculiar arrangenent of the tenclrils, which are arranged distichously, but in such a manner that two successive tendrils always fall on the same side, since cvery third leaf of the "Lotte" is without an opposite tendril.* It is further to be remarked, that the imposition of the distichons arrangement of the leaves occurs with prosenthesis on the first or basal sprout of the "Lolte," while all the following commence without prosenthesis; hence arises the uninterrupted continuation of the distichous arrangement of the euphyllary leaves, through the whole chain of sprouts of the "Lotte," while at the origin of the "Lotte" oceurs a crossing of the ranks with the subtending leaf (the basilar catapliyllary leaf of the "Geitz." In the axils of the euphyllary leaves of the "Lotte" new buds are formed, unfolded more or less perfectly during the course of the summer, and representing the branches of the "Lotte," which have a connection similar to the "Lotte" itsclf, i. e. are in like manner chains of sprouts. They are weaker than the "Lotte" from which they arise; very often only very poorly developed, especially on the lower parts of the "Lolten." These are the true "Geitzen" of the vinc, which we met with in a yet almost irrecognisable condition of development on the principal shoot. They form the second annual series of generations, and are distinguished from the "Lotten" by their basal sprouts possessing constantly only one cataphyllary leaf and two euphyllary leaves. Although all "Geitzen" are of similar nature, they originate in two ways, part, namcly, are primary axillary sprouts (those from the axil of the lower cuphyllary leaf of the two-lcaved joints of the "Lolte") ; part secondary (accessory) axillary sprouts

[^28](those from the axil of the mpper leaf of the two-leaved and of the single leaf of the one-leaved joints of the "Lotte"). Therefore, on the two-leaved joints of the "Lotte" the secondary sprout from the upper leaf-axil behaves like the primary sprout from the lower, while it. is essentially different from the primary sprout of the upper, since the primary sprout (which carries on the Lotte") is added on without a cataphyllary leaf and without prosenthesis, and the secondary sprout (which forms the "Geitz") begins with a cataphyllary leaf and with prosenthesis. 'The "Lotten" grow all throngh the summer, and often on until late in autumn, forming a chain, endless in its nature, which is only forcibly broken off by the commencement of winter. 1 have counted as many as twenty-six constituent joints (thus twenty-six tendrils and about forty leaves) in strong "Lotten." The "Geitzen" also die away at the point in winter' the weak and late developed often even down to the base, so that only the cataphyllary leaf with its axillary bud remains. This lowest part of the "Geilz" is of especial importance. In the axil of the basilar cataphyllary leaf of the basal-sprout of the "Geitz," is found a bud (as stated above, in describing the condition in the first year) ; this bud begins with two firmly-connected cataphyllary leaves, and endures through the winter in the closed condition. It is this resting-bud from which the series of generations of the "Lotte," and indirectly the formation of "Geitzen," is repeated in the next year. It is, therefore, first of all a "Lotte" bud, and, if the vine has attained the proper age, which is usually in the fifth or sixth year, at the same time a bearing bud, since the inflorescence appears at the lower parts of the "Lotte" in place of the previous tendril-formation. In this case numerous hypsophyllary leaves occur in place of the single hypsophyllary leaf of the tendril, and the axis ends in a terminal flower; by graduated ramification from the axils of the hypsophyllary leaves arises, then, the richly panicled blossom of the grape, which, in opposition to
ordinary botanieal language, is commonly ealled a "traube" (raceme).

When we seek to separate the essential and inessential sprouts, in this complieated biography of the vine, which could only be given in very rough outline here, we might be inclined to see in the repeated suecession, not of mere simple generations, but even of whole ehains of generations, as oceurring in the "Geitzen" and "Lotten," elearly essential arrangements of sprouts, beeause the same are neeessary transitional links to the attaimment of flower and fruit; but if we take the essential suceession of sprouts, in the sense explained in the preeeding pages, as a series of partially endowed, reciprocally complementary spronts, we must rather aeknowledge that the vine is essentially only uniaxial, since it produces all the essential stages of metamorphosis on one axis, as we see them represented in the basilar sprout of the fertile "Lolte," whieh ineludes eataphyllary, euphyllary, hypsophyllary, and flower formations. All the rest of the members of the succession of sprouts are either preparatory representatives of the same series of formations not fully attaining the goal, or imperfeet repetitions of these. But how charaeteristie is this varied rise and repetition, this linking into a complieated suceession of sprouts, in the developmental history of the vine, and how essentially it lays down the eonditions under which this plant ean live and grow! It is true that if we compare the ordinary methods of eultivation, adapting the vine to our eonditions by systematic erippling, we might wonder at the abundance of superfluity which the vine annually produces. The "Geitzen" are carefully broken off, and the long luxuriant "Lotten" cut baek to a few joints! In the south, on the other hand, when the vine appears as a widow, when not supported by the lofty elm, we see how this superfluity essentially belongs to the economy of the vine; when left to its freedom, it twines itself over the highest trees.

Thus, then, we see that much as the law of superflnity
prevails in the formation of sprouts in plants, as it does everywhere in nature, yet all formation of sprouts, the inessential no less than the essential, possesses a determinate relation to the maintenance and progressive development of the plant. From the consideration of the sprouts as individuals, the vegetable "stock" must appear to us as the living trunk of a family, rejuvenised and increased according to determinate laws of propagation, the differently gifted members of which family we have endeavoured in the foregoing, though only in mere indications, to represent, as arranged according to descent and collateral relation, in their either closer (direct) or looser (indirect) relation to the destination of the whole.* And thus may the import of sprout-formation become clear, as a subordinate propagation, subserving the individual destination in its wider sense. The undeniable interweaving of propagation and development within this circle, may at the same time form an acceptable guide to the destination of the individual in the larger circle of the species, as well as that of this again in the totality of the series of organic creation, \dagger which has already been referred to in the Introduction.

II.-LEAF-FORMATION.

From the Rejuvenescences which the plant experiences through formation of sprouts, by which the subject (or theme) of the plant is many times repeated and variously distributed on the "stock," in subordinate individual

[^29]structures, we pass to the examination of the phenomena of Rejuvenescenee in the individual sprouts themselves. The single links of Rejuveneseence which we meet here, are the leaves built up sueeessively one above another, separated and at the same time held together by stem-formation, forming, as it were, the persistent waves of the vegetable life, flowing towards its goal in alternating rise aud fall, eoneentration and expansion. But before eonsidering these separate Rejuvenesceneewaves of the spront, represented in the formation of leaves, we must examine the greater, upward-striving periods of the metamorphosis (which contain the smaller waves within them), as they manifest themselves in the conditions of the successive leaf-formations.

Previously, however, to traeing the great tide of the aseending metrmorphosis and its subordinate waves, we will eomect this entire seetion with the preeeding, by a minnte examination of ecrtain cases of descending and vibraliny metamorphosis. It has been remarked above, that not every spront earries the metamorphosis towards the goal, that in fact not merely a normal persistence at partienlar formations oeeurs, but in eertain sprouts even a retrogression.* By suel a retrogression the sprout reeurs, as it were, to the eommeneement of its theme, beeoming renovated and rejuvenised in repetition of the impulse, but giving up as a prey to age the relinquished produet of the earlier period of growth. In faet Rejuveneseence of the sprout itself bears great resemblanee to the Rejuveneseence by the formation of new sprouts; indeed, in a physiologieal point of view, and in reference to the vital eeonomy of the plant, these two kinds of Rejuveneseenee are of equivalent import. Both stand related in the same way to the periodieity of the seasons, in both eases is seen the same independenee of the new formation of the foregoing struetures. As in the formation of lateral sprouts, the ehief sprout from whieh

[^30]they are scnt out either dies (Solanum tuberosum, Saxifraiga gramulata), or becomes a mere supporting and subservicnt scaffold, to a certain extent a soil for the now generation, so in the Rejuvenescence in the sprout itself, we again find thesc two cases, since the fore-rumning part of the sprout sometimes dies away, somctimes becomes the support of the rejuvenised continuation. The first case is seen in all root-stocks dying away at the posterior end,** as also in bulbs \dagger dying away externally and becoming rejuvenised in the centre; the latter we find especially in woody plants which posscss terminal buds. On the other hand, there is the essential distinction, in morphological respects, between the two cases here compared, that in the one case the renovated vital movement is undertaken by really new individuals (lateral sprouts), while in the other cases the same individuals (the old sprouts), rise up to new vital activity, which distinction has already bcen remarked upon above, in the introductory consideration of the buds. \ddagger Morcover those sprouts which are incapable of advancing to the uppermost stage, do not in all plants possess the power of Rejnvenescence through retrogression to a lower stage of formation, i. e. the power of forming terminal buds destincd for the succceding period of vegetation; this is rather, indeed, a privilcge of but a few percmial herbs with subtcrraneous percmial stocks, and of a portion of the woody plants. § Among those which posscss this power, again, two cases have to be distinguished: cither

[^31]the sprout, after many years' vibration, runs through, as it were by a fresh impulse, to the goal, and thus concludes its growth, or it sinks back again to infinity, after each new flight upward. Both kinds of behaviour are represented not only among woody plants, but also among peremial herbs and bulbous plants. In Quercus, Fagus, Populus, Xylosterm, and Camellia, all the cuphyllary sprouts return at the tops to cataphyllary formation, continuing their growth in the following year from the tcrminal bud, with a new cuphyllary shoot. They aequire by this the power of infinite growth, which indeed finally finds obstaeles in old trecs, but is made good by taking off slips and grafts. If we eompare with thesc, Acer, Aisculus, Juglans, Rhododendron, \&c.., we find the same condition during a morc or less extensive serics of ycars, but at last, when the growth has elevated the plants sufficicntly above the earth, the shoot is sufficiently invigorated and limited by repeated periodical renovation. It does not return to the formation of cataphyllary leaves, but advances to the formation of the inflorescenec (with or without a terminal flower), and then comes to the end of its growth. In Juglans, only, the female infloreseence is attained in this manner, while the male eatkins appear as latcral branches. Rhododendron is remarkable, from the fact that the terminal shoot of the sprout, which appears (on branehes of full-grown "stocks") mostly in the third ycar, consequently aftcr two intermissions (Absütze) with cataphyllary and cuphyllary formations, overlcaps the cuphyllary formation, and passes at onec from the eataphyllary lcaves (bud-scales of the last terminal bud) to hypsophyllary formations, the bracts from the axils of which the flowers arise. Side by side with the first-mamed cxamples (with infinite rising and sinking Rcjuvencscence), we may place ILepatica, Adoxa, and Oxalis Acetosella, from among the perennial herbs. The Hepatica evcry spring produces a bud composed of eight seale-like cataphyllary leaves, followed by threc cuphyllary leaves; after this, it recurs to the formation of a similar
terminal bud. The flowers arise laterally from the axils of the cataphyllary leaves. The Adoxa, on the contrary, creeps along under ground with a slender stem, rising above the surface every spring to bring forth, after an indefinite number of small, tooth-like, cataphyllary leaves, one to three (mostly two) long-stalked euphyllary leaves, from the axils of which arise the flowering stems, with two smaller, sessile, euphyllary leaves, and the head of flowers. Between the two long-stalked euphyllary leaves the stem recommences its growth as a desceuding rumer, repeating the same process in the following spring, and so on, ad infinitum. Helleborus niger, Anemone nemorosa, Epimedium, Actaa, and Pyrola, may be mentioned as examples of another kind of growth. I will deseribe the first two somewhat minutely, for comparison with ITepatica and Adoxa; the short gromed-stem or root-stoek of the black hellebore annually produces one single euphyllary leaf, which is suceeeded by a terminal bud of two to four eataphyllary leaves. After alternating in this way for four or five years, the euphyllary formation is skipped over,* or only imperfectly indicated, aud the plant attains the hypsophyllary and floral formations, and then rises up above the alternating euphyllary and cataphyllary leaf regions through the clongation of the flowering stem. In like manner, Anemone nemorosa prolongs its creeping, subterraneous growth, with alternations of euphyllary and cataphyllary formations, for several years before it arrives at flower terminating the shoot. The number of annual cataphyllary leaves on the horizontal rhizome increases from year to year, rising gradually to eight, and eaeh of these preparatory sections terminates with a single longstalked euphyllary leaf, till, finally, the last seetion, after producing its proper number of cataphyllary leaves, rises into an upright shaft, producing the three-leaved whorl of euphyllary leaves and the nodding flower. Among

[^32]bulbous plants, the mareissus and its allies, the snowdrop, on the one hand, the tulip and onion (Allium) on the other, may furnish examples. Narcissus poeticus, when arrived at a flowcring age, amually produces a sheathlike, closed, cataphyllary leaf, and four euphyllary leaves, the last of which, bearing the flower in its axil, is devoid of the cmbracing sheath of the preceding. As long as no axillary flower is produced, the imermost cuphyllary leaf of the annual cycle possesses a sheath. Leucojum vernum, similar in other respects, has only three euphyllary leaves, the middle one being that which bears the flower, and is devoid of a slieath; the third, which has again a sheath, is thus alrcady on the retreat back to the eatapliyllary formation. In Galanthus nivalis the ammal cycle is composed of one cataphyllary leaf and two cuphyllary leaves, the upper of these two being without the sheath, and with a flower. While in the heart of the bulb of this plant one annual cycle succecds another in an infinite series, the product of the earlier years dies away, pari passu, at the periphery of the bulb, since not only docs one sheath after another dry up and monlder away, but also the base of the axis of the bulb throws off the superamuated part by exfoliation. The old circles of roots are also thrown off, and replaced by new. 'Ithe tulip displays a different character. While in the narcissus the flower arises as a lateral sprout, in the tulip the heart of the bulb itself shoots up, after mostly three tubularly closed cataphyllary leaves, into a Hower-stem with euphyllary leaves. But before this happens, the development alternates for several years with cataphyllary and cuphyllary formations, annually sending above ground only one cuphyllary leaf, and then returning to cataphyllary formation in the centre. With this frequently occurs the remarkable case, that, in buds not yet arrived at sufficient maturity to produce flowers, the central bud of the bulb simks down into a descending: spur, formed out of the inclosing base of one of the
preceding leaves, in this way leaving the old bulb and descending deeper into the bosom of the earth.*

A retrogression from the hypsophyllary formation to the euphyllary, or even to the cataphyllary formation, is far more rare than the periodical sinking from euphyllary to cataphyllary formation. Ananas affords a normal and universally known example of this case, the summit of the inflorescence returning to the euphyllary formation, attaining complete Rejuvenescence in the "crown," as it is called, and when this is removed and planted producing new blossom and fruit in the third year. The same phenomenon is exhibited by the New Holland genera of Myrtacea, Melaleuca, Callistemon, Beaufortia, and Calothamenus, the brush-like spikes of which owe their strange "growing-through," or innovation, to a similar recurrence to the formation of an euphyllary shoot from the end of the hypsophyllary region. What are called the viviparous grasses, e. g. Poa bulbosa and P. alpina, which occur only in this condition in many places, and behave like Ananas, might appear as paradoxes, but here it is really the hypsophyllary region which is made into an euphyllary region by a retrogression ; \dagger and the tufts of euphyllary leaves arising in this way subsequently become detached, to recommence the ascending development as independent stocks. At the same time the bchaviour of these grasses is not that natural to the species, but that of a monstrosity become a variety. Leafy shoots occur not unfrequently, as a mere accidental monstrosity, at the summits of inflorcscences: I have scen them especially fine in Plantugo lanceolata, where the leafy shoot at the end of the spike became devcloped into a new perfect stock. Even in flowers, retrogression of this kind occurs as a malformation; well-known garden examples are

[^33]furnished by the roses, where the stem grows onward through the middle of the flower, and the Digitulis purpurea monstrosa,* in whieh the terminal flower is grown through in the same way. The female head or eone of Cycas may be regarded as a flower normally grown through, with a retrogression from the (eertainly very imperfeet) earpel-formation to the eataphyllary and enphyllary formations. In Cycus, before the age of blossoming, girdles of scale-like eataphyllary leaves alternate in regular order with girdles of pinnate euphyllary leaves, which latter at all times form the erown of the tree. This alternation has, in our botanical gardens at least, a biemial period, so that the erown of emphyllary leaves undergoes Rejuveneseenee every two years. When the frnit-bearing age arrives, this alternation becomes more complieated, the order being as follows: 1, a zone of eataphyllary leaves (forming before the unfolding of the suceceding parts a large, shortly conieal, terminal bud) ; 2, a zone of euphyllary leaves; 3, mother zone of cataphyllary leaves; 4, a zone of spathulate seed-bearing leaves (earpels), originally packed together in a conieal form, afterwards spread out. In the centre of this head or cone, representing the female blossom, is formed a new eataphyllary bud, with which begins anew the whole eycle of Rejuvenescence, and this is repeated as long as the tree exists. \dagger

I will not close the examination of these points without remarking, that sueh periodieal Rejuveneseence conneeted with the alternation of the seasons, is not always combined with so deeided a retrogression of the metamorphosis as in the above-mentioned examples. The retrogression to eataphyllary formation, in partieular, is very frequently absent (but not universally) in the trees of more southern regions, in whieh the place of transition from one yearling shoot to another is merely marked by

[^34]smaller euphyllary leaves, as for example in numerous New Holland Myrtacea, as also in the South European myrtle. While our firs and pines annually retrograde to cataphyllary budding, we find the limits of the ycarling shoots of the more southern Conifers of the genera Araucaria and Cunninghamia, marked merely by smaller euphyllary leaves. Many evergreen plants, however, of our own climate, exhibit an exactly similar behaviour, as for instance, Juniperis communis and Lycopodium annotinum, in which the yearly leugths are only to be detected by contracted places on the closely-leaved shoots. Among herbaceous plants, Lysimachia Nummularia* and Isnardia palustris belong here, these prolonging their creeping stem by a considerable picce every new year, while the lengths of the previous years die away. Veronica Claamacdrys has the peculiarity herewith, that the euphyllary shoot, from which the inflorescences go out laterally as second axial systems, is erect until the time of flowering, and only bends down its elongating end to the earth after the plant has flowered, striking root then to ascend again in the following year and bear flowering branches. \dagger In Glechoma hederacea, also, the shoots which are erect until the time of flowering, turn back, at least in part, towards the ground, not however to ascend again in the next spring, but to send only brauches upward. \ddagger

The simplest mode in which the periodical Rejuvencscence prosents itself to us, is that in which the same sprout annually produces only one now leaf. Thus in thic brake fern (Pteris aquilina), which annually sends forth from its subterraneous creeping rhizonc only one of its distichously-arranged lcaves, not unfolded until the third year, an euphyllary leaf, often of enormous size, and pinnatifid in beautiful gradation up to the fourth degree. So again in the Opluioglossum, already mentioncd \& above, and at all ceents in our greenhouses the

[^35]large-leaved C'occoloba pubescens. These cases lead to the individual leaf, as a link of Rejuveneseence, the iuvestigation of whieh, however, must be preeeded by the consideration of one point more.

The rejuvenising foree and aetivity of vegetable life does not display itself merely in the partieular eases of periodieal, retrogressive, or alternately advaneing and reeeding metamorphoses, sueh as we have just examined ; it shows itself also in the riscending melamorphosis, in the advancing series of formations, such as oecur as the miversal types in the higher divisions of the vegetable kingdom. Here oeeurs, in the elosest comneetion with the progress from stage to stage, an alternation of vigorous advanee and elieeking retraetion, an increase, a decrense, and a renewed rise of the energy of the ontward representation, a Rejnveneseenee in the truest sense of the word, sinee here with every new onward flight of the old being, the plant appears not in mere repetition of the old form, but by deeply gromded renovation, in a more perfeet and more expressive shape. 'Ihis it is whieh, since Goethe's time, ${ }^{*}$ has been called the melamorphosis of plants, a term borrowed from the transformation of inseets, which has however given rise to mistaken views, \dagger but is eapable of being made the basis of a more profound conception of the phenomenon. Goethe himself, although his theory of metamorphosis is mixed up with varions obseure elements, pointed out many features of the more profound side of the question. He speaks of the metamorphosis of plants not merely as of a series of outward phenomena of tronsitions between the different. struetures, but as of an inward prineiple of the formative process advaneing from one modifieation of form to another. In his eyes the metamorphosis was a foree whieh might be observed ever aeting with a graduated power

[^36]from the first seed-leaves to the final maturation of the fruit, and, by the conversion of one form into another, leading up to the highest point of vegetable life, as it were, by an ideal flight of steps.* This ideal flight of steps which Goethe perceived in the metamorphosis of plants, is a speaking testimony of the profound conception of it entertained by him ; for that which leads the formative process of the plant from one stage to another, which comnects the steps of the series, which causes each succeeding step, although separated from the preceding, to appear as a stage of conversion of the latter, can in reality be only an inner and ideal bond. Only the inner identity of the nature of the plant, through all the change of outward manifestations, can justify us in regarding the gradnally advancing Rejuvenescences as really a metamorphosis, that is, a series of transformations of an essentially identical element. In this sense Goethe speaks, too, of the mysterious affinity of the different external organs of plants, pointing out that the real identity of the organs corresponding to each other at the different stages can indeed only be deduced from that inward connection of the steps of the metamorphosis, and not from mere outward resemblance.

Goethe already directed attention to the great vibrations of the metamorphosis which we here first examine, since he speaks of all alternation of expansion and contraction in the successive leaf-formations. \dagger This is one of the most important factors in his attempt to explain the metamorphosis of plants; for a minute discussion of which, however, it is necessary that we should cast a hasty glance over the series of the leaf-formations them-

[^37]selves. The metamorphosis of plants exhibits three principal divisions : 1, the "stock;" or as it is termed in plants not forming wood, the leerb (kraut); 2, the flower; 3, the fruit. The first two divisions are again divisible each into three stages, while the third prineipal division docs not admit of further analysis. Thus we obtain from $3+3+1$ the number 7 for the stages of form in plants. The character of these seven sections or regions is chicfly expressed in the graduated change of shape of the leaf, while the stem takes a less striking, though still considerable share in the transformation from step to step. We shall therefore consider the steps of the metamorphosis more particularly in regard to the behaviour of the leaf, as it presents itself at the different heights upon the plant, applying to the more cssential gradations which are distinguishable the denominations of so many leaf-formations. As a general rule, as already stated, there are seven of these, which, however, do not exhibit perfect representatives in every plant, for their number may be lessened either by imperfect differentiation, or by falling short of or overlcaping forms.

1. The cataphyllary formation (Nieder-blatter), to which belong the seales and sleathing leaves of subterraneous or aërial buds, bulbs, rumners, and tuberous rhizomes. They are remarkable from their broad basis, small height, and most simple shape and nervation;* they have no laminx, no stalks, 10 subdivision, \dagger consequently never have stipules, and are constantly entire. Their consistence is often fleshy, cartilaginous or leathery, in

[^38]rare instances they arc delicatcly membranous, in which cases the axis which bears them is mostly fleshy; their colour is never a decided green, generally whitish, passing into yellow, flesh-colour, brownish, or even black. Their' development goes on very slowly; they are tolerably enduring, and the chief part of their existence is passed in the winter season.
2. Eupliyllary formation (Laub-blatter).-These are the organs, especially and ordinarily simply called "leaves," which give most character to the vegetative structure or stock. They are readily distinguished from the leaves of the preceding formation by the greater longitudinal development with a narrower base, in general more considerable dimensions, and the green colour, never absent although in many cases concealed. Their especial mark is the blade-structure, with which is ordinarily combined its contrary, the stalk or petiolc structure. Throngh multifold alternations of the conditions of expansion and contraction arises the so frequent production of divided and compound euphyllary-leavcs, to which also belongs, as a special case, the division into main-leaf and accessory leaves (stipules). The multiplicity of conditions of nervation within the body of the blade, corresponds to the multiformity in the outline of the leaf. The consistence is mostly stoutly membranous, frequently leathery, more rarely fleshy. The principal part of the life is passed in the summer ; the duration is considerable, especially in those of fleshy or leathery consistence.
3. Hypsoplyyllary formation (Hoch-blätter), to which belong the involucral leaves and common calyces of inflorescences, bracts and bracteoles, glumes and paleæ, which accompany the flowcr. These again approach in character the cataphyllary leaves, as the stalk and blade-structures, as well as the green colour, vanish more or less or even quite completely.* They are distinguished from

[^39]the eataphyllary-leaves ehiefly by the narrowness of the base, more deliente strueture, and more rapid formation and deeny.
4. Formation of the calicine-leaves (sepals). These form the first proper envelope of the flower, and are again thieker, tougher, and greener than the upper-leaves, mostly have a broader base, little or no laminar expansion, no stalk-formation, and are either simple or but slightly divided.* They are mostly more enduring than the sueceeding formations of the flower, they often outlive these, and frequently take part in the formation of the fruit.
5. Formation of the corolline-leaves (petals), strikingly eharaeterised by delieacy of texture, beauty and variety of eolour, with the exclusion, however, of green. As a rule, they are longer than the sepals, but have a narrower base ; mostly exhibit an extensive laminar portion but no distinet stalk-strueture, often radiant or forked, but very rarely pimate, division. \dagger Exereseent growths doubling the limb or laminar strueture (emergences) sometimes oecur upon the surfaee of the petal, as in Narcissus, Nerium, Lychnis, or longitudinal winglike edges, as in Saponaria, Agrostemma, and the Hydrophyllaeex.
6. Formation of the pollen-leaves (stamens), comprising the smallest and thiekest leaves of the flower, elaracterised by distinet stalk-formation (filament) fromı the narrowest base, with a box-like expansion of the lateral halves of the little developed blade (anther). Folding over of the blade (Ueberspreitung), whieh oceurs but rarely in the petals, is here almost an universal rule, whereby the ehambers of the anther beeome doubled on each side. 'They are distinguished above all the other parts of the flower by the most rapid completion of the

[^40]stiveture, and the greatest perishability after the opening of the blossom.
7. Formation of the Fruit-leaves (earpels). These are again larger, thicker, greener than preeeding parts, but espeeially distinguished by the permanent folding together, passing into confluence. Springing from a narrow base, the lower part expands like a blade, forming the eavity of the fruit by elosing together its own borders or coaleseing with the neighbouring earpels, while the upper part is mostly drawn out (stalk-like) into the style. From the inside of these leaves arise the little seed-sprouts (ovules), so that they beeome the eases of the seeds, running through with these a process of development (maturation), prolonged far beyond the life-time of the flower, and often requiring even more than one year for its completion.*
'Io those who have studied Comparative Morphology in an unprejudieed manner, there ean be no debate on the question as to whether all the struetures of these seven formations are really leaves. On this side the theory of metanorphosis stands on a firm and unshakeable foundation. \dagger But the structure which is to be erected on this foundation, the theory of the formations, giving the true representation of the vital history of the plant as it is displayed in the suceessive transformation of similar fundamental organs, is as yet unfortunately searcely dimly shadowed forth. It is a problem whieh appears so much the more difficult the nearer we try to approach to its solution, for it then is not sufficient to mark the characters

[^41]of the formations by comparison of external forms, which, from the multiformity prevailing in the vegetable kingdom, is an endlcss task; for the true characteristic of the formations must be at the saine time an inward onc: it must comprehend the outward product in its relation to the imner vital tendencies, entering into conflict with the external world,-and thercby endcavour to represent to us the developmental history of vegetable life according to the imer canses leading through all the external complications. 'That the above short description of the leafformations can make no claim to such a character as this, need not lee said; it is merely intended to bring forward a few peculiarities calculated to make cevident the regular alternation of rise and fall in the course of metamorphosis, its successive "accessions" or "flights" (Aufschwïnge), which we desire to examine here as phenomena of Rejuvenescence. The peculiarities which we have chiefly to keep in view here are,-the relative size of the leaf in general ; then, in partieular, the breadth of the base in proportion to the circumferenee of the stem; the height or length of the leaf; the development in breadth above the base (the lamination), and its opposite, the contraction into stalk-formation, on the contrasted proportions of whieh chiefly depend the further working out of the forms of leaves; finally, the solidity or delicacy, and the persistence or caducity. Even the most superficial examination reveals clearly that the path through the formations from "stock" to flower, and again from flower to fruit, does not ascend uniformly, that it docs not exhibit either an uniform decrease in the perfection of the organs, or an uniformly increasing refinement of thcir structure. The assumption of a single rise and fall in the perfccting of the lcaf-formations, the highest point of which should fall in the middle (the cuphyllary formation), is equally opposed to expericnce, for cven the flower, and still more the fruit, contradicts this view.* It is, indecd,

[^42]unmistakeable that the lcaf-formations take three successive onward flights (Aufschwuinge) in the course of the metamorphosis : one in the stock or body of the plant, one in the flower, and, finally, the last in the fruit. A close investigation of this phenomenon shows, that there are also subordinate risings and sinkings even within the first and second regions of elevation.

If we examine, in the first place, in reference to this point, the conditions of breadth of the base of the leaf, we find on the stock or stem of the plant, from the first to the last of its leaves, a dccreasc, sometimes gradual and sometimes taking place by starts, and this decreasc is indeed so constant, that perhaps every exception might be traced to the phenomenon of retrogressive metamorphosis examined above, although it is not equally obvious in all.* But with the advent of the flower a new increase of the breadth of the base of the leaf frequently occurs, the sepals exhibitiug a broader base than the highest
derelopment of the fruit consequent on fertilisation as a pathological condition, a disease. (!) 'Essai de réduirc la Physiologie végétale à dcs principes fondamentaux,' $1828, \mathrm{pp} .32,38$.)

* Among thesc exceptions is the condition of the cotyledons in the numerous dicotyledonous plants in which the opposite half-embracing cotyledons or sced-leaves are succeeded by alternate, morc extensively embracing eupliyllary-lcaves, or wholly or almost wholly embracing cataphyllaryleaves, which latter is the case, for instance, in Asurum. In the monocotyledons, on the contrary, the seed-leaf is always completely amplexicaul. There appears, moreover, a strange case in Convallaria majalis, in which a number of cataphyllary-leaves forming closed sheaths, are followed by one which is only two thirds embracing, (the same which bears the inflorescence in its axil), and this is succeeded by two euphyllary-leaves, which are again completely amplexicaul. C'rocus luteus, also, and other spccies of this genus, exhibit a strange abcrrant condition to be mentioned in connection with the foregoing. A number of completely cmbracing cataphyllary-lcaves, closed round into tubes, are succecded by cuphyllary-lcaves, mostly arranged according to the $3 / 8$ position, the sheath-like basilar portions of which are not closed into tubes, but are confluent together one with another in the direction of the longitudinal path of the line of arrangement of the leaves, (the spiral line cutting through the points of origin of the successive leaves), whence arises as it were a single connceted spiral sleath common to all the cuphyllary-leaves. The breadth of the base of a single leaf consequently amounts here to $5 / 8$ of the circumference of the stem. These are followed by hypsophyllary leaves preceding the terminal flower, the first closed into a tube, like thic cataphyllary-leaves, the sccond, on the contrary, open, and only imperfectly embracing the stem.
hypsophyllary-leaves. This may be observed especially in calices with right-handed overlapping reaching down as far as the base. That the breadth of this decreases again in the region of the petals and stamens, might even be deduced from the fact, that seareely any right-handed (entopic) overlapping occur, since the overlappings do not proceed from the base, but only arise from the overlapping of the petals subsequently expanding above. The stamens, as a general rule, never overlap, and the great number of them whieh stand in a circle in many polyandrons flowers, shows the narrowness of their bases. The bases of the carpels are not expanded transverscly or overlapping, it is true, but their smaller number, in the majority of cases, as well as their close approximation, nevertheless testifies to the greater thickness of their bases. The decreasing breadth of the base in the leafformations of the "stock" may be made clearer by the mention of a few more examples.

Tulipa.-The bulb exhibits 3-4, completely embracing, tubularly closed, eataphyllary leaves, followed by 3-4 enphyllary leaves on the stalk which shoots up, the lowest of the latter being still amplexicanl and closed romen at the bottom, the succeeding embracing in a gradually decreasing extent $\frac{3}{9}$ to $\frac{1}{2}$.

Convallaria Polyyonalum.-The cataphyllary leaves on the horizontal rhizome completely embracing, the margins even overlapping. The first of the euphyllary leaves occurring on the stem rising above ground embraces almost completely, about $\frac{9}{10}$ ths ; the second $\frac{3}{4}$ or $\frac{2}{3}$; all the following $\frac{1}{\frac{1}{2}}$.

Veralrum (nigrum).-The subterrancons cataphyllary leaves, which are best scen in autumn on the still undeveloped central buds of young "stocks," or in the lateral buds of older "stocks," are cmbracing, and form a conc or cup, closed completely, with the exception of a small, senrecly perceptible slit at the upper end, this cap being hroken through above in the subsequent unfolding of the bud. The first six or seven cuphyllary leaves have long
closed sheaths, reaching down to the abbreviated subterraneous portion of the stem ; these are followed mostly by two shcaths, also closed round, but shorter, which arise on the portion of the stem shooting up. The succeeding euphyllary leaves, further separated from each other, and becoming progressively narrower and shorter, are no longer embracing, and exhibit a gradual decrease of the breadth of the base, following something like the ratio $\frac{3}{4}, \frac{2}{3}, \frac{1}{2}, \frac{2}{5}, \frac{1}{3}, \frac{1}{4}, \frac{2}{9}, \frac{1}{5}$, and then remaining more equal, decreasing to $\frac{1}{6}$ as a minimum. The leaf embraeing $\frac{1}{\square}$ is the first whieh produees a branch, the lowest lateral spike of the large, compoundly spicate infloreseence arising on its axil. The small lyypsophyllary leaves, from the axils of which the individual flowers arise, embrace $\frac{1}{6}$ or $\frac{1}{7}$.

Valeriana officinalis.-The subterrancous runners exhibit white, one-sidely apieulate, completely embracing, eataphyllary-leaves, closed into tubes by the blending of their borders. Of the alternating, two-ranked euphyllaryleaves succeeding them, the lowest liave likewise a completely embraeing sheathing base, while the last embrace only about $\frac{3}{4}$. The euphyllary-leaves found on the ereet part of the stem are connected in pairs, and embrace $\frac{1}{\mathrm{~L}}$, or, on the triple whorls sometimes oecurring, only $\frac{1}{3}$. The hypsophyllary leaves have an arrangement similar to that of the euphyllary leaves, but the two opposite leaves of each pair do not quite reach one another with their bases ; they are less than $\frac{1}{2}$, finally only $\frac{1}{4}$ embracing.

Heracleum.-The lower and middle cuphyllary leaves of the species of this genus have overlapping sheaths, thereforc they reach somewhat morc than completely round the stem; the upper, already smaller ones, having a less divided and scarcely stalked lamina, usually approximated together, and having the unbel-bearing branches in their axils, exhibit imperfectly embracing sheaths, rapidly decreasing in breadth, about in the proportion $\frac{2}{3}, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}$, or falling still more quickly. Finally, the smill lincar, or almost bristle-like hypsophyllary leaves of the
involuere and involucel exhibit scareely $\frac{1}{10}$ - $\frac{1}{12}$ breadth of the base.

Mahonia Aquifolium.-The eataphyllary leaves (budseales) are about $\frac{3}{4}$ embracing; the euphyllary leaves falling to $\frac{2}{3}$ or $\frac{1}{2}$; the hypsophyllary leaves on the axis of the paniele $\frac{1}{7}$; the little braeteolcs (vorblätter) occurring on the stalk of the flower itsclf, which, however, rarely eome to evident development, are still narrower than the braets (deck-blütter) of the infloreseence.
'Ihus the plant, as a general rule, exhibits the phenomenon of deerease in regard to the breadth of the base of the leaf, yet with two retrogressions (ineonsiderable, however), namely, at the commencement of the flower, and again at the close of series, in the formation of the fruit. Jhe following remarks will show that this decrease in the breadth of the base of the leaf docs not in itself indieate any decreasc in the encrgy of the leaf-formation, but that, on the eontrary, the expansion of the base stands in an antagonistic relation to the development of the middle of the leaf.

Thle development of the leaf in length or height, which is the most influential faetor in reference to the size of the leaf generally, and the vigour whieh deelares itself in its formation, exhibits, in the progressive metamorphosis of the plant, a totally diffcrent eourse from that of the breadth of the base. Both in the first and seeond regions, on the "stock" and in the flower, the longitudinal development of the leaf shows, first an inerease and then a deerease; the commencement of the last region, the fruit, is comnected with another increasc. Thus after a double rise and fall the terminal formation is attained in a third ascent. Reviewing first of all the first region, we find that the first eataphyllary-leaves of a sprout are always the shortest and smallest; this rule prevails, in like mamner, in the first cuphyllary-leaves of plants, or in individual sprouts of plants where the cataphyllary lcafformation is wanting. The eotyledonary commeneement often forms an exception in this respeet, as in referenec
to the conditions of breadth, for the cotyledons of many plants are longer and larger than the suceeeding leaves of the principal sprout, as, for example, in Quercus, Vicia, Casuarina, Opuntia, \&e. The inereasing length in the succession of cataphyllary-leaves, may be seen in beautiful gradation almost everywhere on the subterraneous buds of peremial herbs, and on the buds of trees; see, for instanee, Paonia, where the $6-7$ lower leaves show graduated increase from 3 lines to $1_{\frac{1}{2}}$ ineh,* Malionia Aquifolium, where they increase from 1 to 6 lines, Asculus, \dagger Rosa, \ddagger Rhododendron, § \&e. The increasing length and magnitude of stem-leaves in germinating plants is especially well seen in Acer, Corylus, Vitis, Phascolus, \&c. I'he inereasing length of the leaves is mostly eontinued, more distinctly in the euphyllary than in the eataphyllary formation, till it reaches its maximum in a determinate median region, from which an equally graduated decrease eommences, mostly prolonged even into the hypsophyllary region. It depends on the conditions of extension of the stem whether the maximum of the longitudinal development of the euphyllary leaves lies in the lower abbreviated part of the stem, so that all the euphyllary leaves situated on the developed internodes belong to the deereasing series ; or, when no sueh rosette-like erowding of the lower euphyllary leaves exists, at a determinate height on the shoot itself.\| Examples of the first kind are seen in Nigritella angustifolia, Chrysanthemum Leucanthemum,

[^43]Hieracium vulyatum, Scabiosa Columbaria, Swertice perennis, Aconitum Lycoctonum, \&c.; examples of the sccond in Orchis globosa and maculata, Canna, Hieracium subaudum, Gentiana germanica, Bocconia cordata, Aconitum Napellus, Helleborus fatidus, and Ruta graveolens. Under these circumstances, when the number of leaves is great, the increase and decrease are often very gradual, as for instance, in most specics of Linaria, Linum, Phlox, \&e. Thus in Phlox paniculata, where the sprout begins with pairs of half-embracing subterrancous cataphyllary leaves, $1-3$ lines long, and rounded off at the top, we sce above ground about thirty pairs of broadly lanceolate, acuminated euphyllary leaves, which are only about $\frac{3}{8}$ embracing, and attain their greatest length, of about 3 inches, somewhere ncar half-way up the stem, from which point they decrease, at first almost imperceptibly, morc rapidly in the inflorescence, and finally pass into the hypsophyllary formation. The last finclypointed hypsopliyllary leaves are only about 3 lincs long and scarcely $\frac{1}{4}$ embracing. In other cases the leafformation ascends to its maximum by a few large steps, sinking down again as quickly, as for instance, in Jyydrophyllum canadense. This plant bears upon its condensed lower-stem (rhizome) which crceps on the surface of the ground, distichously arranged, thick, fleshy, persistent, cataphyllary scalcs from $\frac{1}{4}$ to $\frac{1}{2}$ an inch long; the last two scalcs of the sprout* usually pass at their points into a petiolc- and blade-formation, and therefore are already the first euphyllary leaves, distinguished however from the following by thicir persistent fleshy scale-base. These first two euphyllary leaves arc already developed in autumn beforc the sprout shoots up; the first is often only rudimentary, the sccond longer and stronger, attaining a height of 3 to 6 inches. 'These are followed

[^44]mostly by three more cuphyllary leaves (unfolded in the next spring), the first of which is seated either on the ereeping portion of the stem, or raised but a little above the ground on the lowest part of the ereet euphyllary-leaved stem, and it is by far the largest of all, for it equals or even exeeeds in lieight the entire shoot, attaining a length of a foot to a foot and a half. The two following, situated high up on the stem, are, the first 9 to 6 inehes, the second 4 to 3 inelies long. The hypsophyllary leaves suceeeding upon the infloresecnee are totally suppressed in this plant. The exaltation of the leaf-formation expressed in the euphyllary formation appears most strikingly in the eases where this is represented by a single euphyllary leaf, whieh is then mostly of remarkably large size. Thus in Eprimedium alpinum,* where the tolerably numerous subterraneous eataphyllary leaves, from 1 to 5 lines long, are ordinarily followed by a single twiee or thriee divided euphyllary leaf about a foot long, after whieh the metamorphosis springs over suddenly to the small and numerous hypsophyllary leaves, the length of whieh amounts at most.to 1 line, and sinks to $\frac{1}{3} d$ of a line. There is somewhat of a deviation from the usual position of the maxinum of development in length of the leaves, in the rare eases where this oceurs at the end or the begimning of the euphyllary formation, instead of in the middle. We see the first ease in Heliconia cannoidea, \dagger in whieh the deerease of length commences in the hypsophyllary formation; the last in Paonia and Actaa. The bane-berry (Actea spicata) presents on the subterraneous stoek several short-sheathed eataphyllary leaves, inereasing in length from 1 to 3 lines; to these suceeed, upon the erect stem, mostly three eupliyllary leaves; the lowest, largest, very decomposed, is about 1 foot long, while the third,

[^45]uppermost and smallest, mostly only simply trifid, is from 1 to 2 inches long. The hyposophyllary leaves, following the last, and from whose axils arise the flowers of the terminal spike, are from $l_{\frac{1}{2}}$ to 1 line long.

In conclusion, I will describe the phenomenon of increase and decrease in the length and size of the leaves upon the "stocks" of plants, in one more example, where it presents itself in an uncommon grandcur, namely, in the plantain (Musu).* I lave not had an opportunity to examine the subterrancous portion of the stem of this plant, rising upward from a horizontal commencement; when this comes above ground, as a young shoot, we at first see a few cataphyllary leaves, which are probably preceded by a considerable number underground. In M. sapientum they are acuminated, triangular, shiming, dark-brown leaf-sheaths, which manifest the conmencement of the cuphyllary formation by the commencement of petiole- and blade-formation at the summits. Not only the sheath but also the stalk and lamina now grow longer, from leaf to leaf, until the well-known splendour and magnitude of the plantain leaf are attained. 'Ilhe complete development of the sprout of a plantain requires with us sevcral years, in its tropical home at most two years; the outer lcaves die away as the inner unfold. All the leaves of a shoot which has not yet shot forth into blossom, arise close to the ground on an abbreviated stem, and, simply by the rolling of their sheaths round one another, form a tall pseudo-stem, whence Richard called Musa a bulbous plant. Consequently the length of the leaves here determines the height of the entire

[^46]plant. Under thesc circumstances the innermost leaves are the longest; in M. sapicntum I have found them as much as 25 feet long, of which the sheath madc about 13 feet, the petiole 2 feet, and the blade 10 fcet. In M. rubra they are only about 15 feet long, the petiole being longer in proportion than in M. sapientum. From the point where the stem shoots up into the slender flower-shaft, breaking through the stem-like convolution of sleaths, commences the decrease of length of the leaves. In M. rubra I found as many as five euplyyllary leaves on the elongated portion of the stem, the upper three of which, especially, exhibited a considerable decrease, not merely in the length of the sheath, but also in that of the blade ; the last of them was only about 4 fect long, namely, the sheath $1 \frac{1}{2}$, the stalk 1 , and the blade $1 \frac{1}{2}$ feet. 'The internodes bearing these last five eupliyllary leaves measured respectively about $1 \frac{1}{2}, 1,2,3,3$ fect in length. Not quite 2 feet distant from the point of origin of the last euphyllary leaf, followed a transitional leaf, about $1 \frac{1}{2}$ feet long, and of broadly-linear, gradually acuminated form, leading to the hypsophyllary formation; at no more than 2 inches above this, began the long sueeession of approximated, ovate, rosy bracts, the first of which are about 5 inches long, the following sinking down gradually to 3-2 inches. The lowest six bracts of the inflorescence of M. rubra which I examined, bore female flowers in the axils, all the succecding bore male flowers.* Musa also exhibits a beautiful graduation of the breadth of the basc of the leaves. All the leaves of the lower part, up to the flowcring-shoot, are completely cmbraeing. I found, in M. rubra, the uppermost three euphyllary leaves embracing $\frac{15}{10}, \frac{10}{11}$, and $\frac{6}{7}$ of the circumference; the transitional leaf $\frac{3}{3}$, the bracts of the female flowers $\frac{1}{2}$ to $\frac{2}{5}$, those of the male $\frac{1}{3}$. In the plantain, thercfore, we sce the lcaf-formation ascend by gradual

[^47]stages, from a few inehes often to the enormous length of 25 feet, and sink down again, with more rapid steps, to about the same brevity; to whieh it must be added, that on minute examination of the carliest subterraneous leaves of the sprout, and of the cotyledons of the germinating plant, the point of departure would doubtless be found smaller, as, on the other hand, we may conelude, from the file-like rows in whieh the flowers stand in the axil of a braet, that the (in proportion to the flower) large bracts are not the last members of the hypsophyllary formation, but that undistinguishable hypsophyllaryleaves (braeteoles) exist at the base of the individual flowers, forming the true termination of the leaf-formation of the "stock."

A similar rise and fall in the length of the leaves is repeated in the region of the flower. 'The sepals are sometimes immediately eomeeted with the last hypso-phyllary-leaves by their length, often by their whole form, exeepting the usually, greater breadth; this is the ease in Melleborus fotidus, Ruta graveolens, and Phlow paniculata, in which the scpals agree almost perfeetly, in size and slape, with the last hypsophyllary-leaves. But more frequently the ealyx exlibits a new inerease of length in relation to the last hypsophyllary-leaves. 'I'o confirm this I need only refer to the numerous plants whieh possess bracteoles (Vorblütler) on the peduneles of lateral flowers, these braeteoles being almost always very small and slender, and even frequently almost indistinguishably small; see, for instanee, Aconitum, Delpliinium, Viola, Polygala, Colulea and other Leguminosx, Molucella, Calamintha, Gratiola, Convolvulus, \&e. We can also detect this in terminal flowers, c.g. in Dianthus, where the sepals, blended below into a long tube, are preeeded by several pairs of shorter seales; *

[^48]also in Hypericum calycinum, in which the sepals of the solitary terminal flowers are twiec or four times as long, and three to four times as broad as the preecding hyp-sophyllary-leaves; finally, most distinetly in Chelidonium majus, in which the sepals are about three lines long, while the two to three pairs of preceding hypsophyllaryleaves, from the axils of which the lateral flowers of the corymb arise, attain seareely half a line. In the ealyx itself the metamorphosis usually keeps at the same stage, so that at least no remarkable differcnee oecurs among the sepals; yet the cases are not rare in which an evident gradation oceurs within the ealyx itself, an increase of length eorresponding to the suecession of the sepals; as; for instance, in the quinate ealyx of Hypericum calycinum, imbricated in the $\frac{2}{5}$ arrangement, the inner two sepals of whiel are almost twiee as long as the outer two, the third being of intermediate length. The conditions are similar in Polygala, where the innermost two sepals are not merely many times longer than the outer threc, but already exhibit the petaloid colour, forming what are called the wings of the flower.* In Oxyria and the female flowers of Urtica we find a four-leaved calyx, the outer two sepals of whieh are shorter than the imner two; in Rumex a six-leaved, with three outer shorter, and three inner longer. Berberis has a double ternate, Mahonia and Podophyllum a triple ternate, and Epimedium, a triple binatc ealyx ; in all these the inner whorls are formed of longer sepals than the outer. Lastly, in the Cactex, as also in Calycanthus, the gradual increase of length is exhibited most remarkably with an acyclie strueture of the calyx.

The length of the leaf within the flower attains its maximum in the corolla. It is searcely necessary to illustrate, by examples, the proportionate lengtlis of the corolla and calyx ; and the assertion that the petals arc longer than the scpals in the majority of plants possessing

[^49]corollas, will not be contested although we omit to demonstrate it by a numerical comparison, which of eourse would have to be based on a determinate and perfectly known flora. Splendid and eonspieuous cxamplcs of it are furnished by the genera Datura (e.g. D. arborea), Convolvulus, Gentiana (e.g. G. acuulis), Campanula, Cucurbita, Pconia, Dillenia, Hibiscus, \&e. This rclation holds good also in small-flowcred plants, as, for instance, in Vitis, in the Umbellifcre and the Composite. Even in the Monoeotyledons, where generally speaking the abrupt differentiation of calyx and corolla docs not exist, the inner three scgments of the perianth are frequently distinctly longer that the outer threc, as, for instane, in Lachenalia and Uropetalum, of the Lily family, in all the Bromclineer, Commelynex, Camaces, and Nlismaces. The rarer oecurrence of petals shorter than the calyx, is explained, in many eases, by an introversion of one formation into the other, whercby the maximum of longitudinal development becomes displaeed. Thus, in many Ranuneulaccee (e.g. Trollius, Nigella) the petaloid ealyx is succecded by shorter and more eontracted petals approximating to the stamens. In other families also oceur isolated genera, with a petaloid calyx, the leaves of whieh arc longer than the true petals; $e . g$. in Puchsia (ealyx mostly bright-red, rarely white, pctals mostly violet), Ribes (Chrysobotrya), Commarum, and Chimonanthus. The last-named gents has abont eight delicatc ycllow scpals, followed by an equal number of dark purple-red petals, only half as long. In other cascs the small size of the petals is eonneeted with a tendeney, prevailing in many familics, to suppression of the corolla (Sibbaldia, Sagina sp., Paronyclia, Gnidia, Santalum, \&c.), to which we shall return hereafter.

No farther increase of length takes plaee within the corolla itself, at least I am unacquainted with any instanees of it; on the other hand, the deerease which sueeeeds to the maximum of longitudinal development in the sccond member of the flower, not unfrequently eommenees even
within the formation of the corolla. Thus in most cascs of double or multiple corollas we see the inner circles formed of shorter and smaller petals. In Fumaria the iuner two petals are only inconsiderably, but in Hypecoum considerably shorter than the outer two. Jacquinia and Achras exhibit the same thing in pentamerous and hexamerous circles. Asimina triloba has a trimerous calyx, the sepals of which are four lines long. This is followed by three trimerous circles of petals: those of the first circle are 7-S lines long, those of the second about 5 lines, and those of the third scarcely morc than 2 lines long. The stamens are 1 line long; the three-lobed fruit (formed of three carpels) attains a length of $4-5$ inches when ripe! The decrease of length of the inner petals is further shown in all flowers with very numerous petals, whether they stand in a complex cyclic or in an acyelic arrangement, as, for instance, in Illicium, Nymphaca,* and Mesembryanthemum. \dagger Finally, the graduated decrease in length in successive petals is very beautifully exhibited by all "double" flowers, as they are called, and most distinctly of all, in those where the doubling arises merely from formation of pctals in the place of stamens (and often of carpels also), without the superaddition of axillary sprouts. \ddagger 'I'he best examples of this kind are found in the Ranunculaceæ, cspecially in Ranunculus, Clematis,

[^50]Hepatica, Caltha, and Aquilegia. The Camelliea, the Campanulaceæ and Narcissea also cxhibit this kind of "doubling," and the decreasing length of the petals connected with it.

With the transition from corolla to stamen-formation commences a new decrease in length. Far the majority of plants possessing a highly developed corolla, agrec in having the stamens, notwithstanding their considerable development of stalk, shorter than the petals. Cases of the opposite kind, in which the stamens exceed the corolla in length, are rather rare.* Where two or more successive circles of stamens exist, there is often a further degradation in length, the inner stamens being shorter than the outcr. This is the case in Narcissus, Muscari, Daphine, Myricaria, Boronia and other Rutacce, many Mal: pighiacere and Melastomaccer, Lythrum, Cralagus, \&c. An opposite relation of length in successive cireles of stanens docs however occur, to which we shall return in the subsequent examination of the subordinate rises and falls of the metamorplosis.
'Ihe third and last increase in length presents itself in the fruit, often expressed even at the flowering cpoch, by the projection of the points of the carpels (styles and stigmas) beyond the stamcns, as universally in the Campanulaccer, Compositox, and Cactaccex, but often first becoming distinct with the ripening of the fruit. \dagger

Thus the leaf-formations cxhibit altogether threc maxima in reference to length and magnitude, the first falling in the cuphyllary formation, the second in the corolla, the third in the fructification. These maxima become somewhat displaced if we regard the leaf in reference to its inner differentiation, to the more or less distinct development of the contrast bctwcen stalk- and blade-formation, and the completcness of the working out of form con-

[^51]nceted therewith. In the first region, indeed, the euphyllary formation exhibits the maximum in this respect also; in the flower, on the contrary, it is not the corolline but the staminal formation which represents the maximum in relation to internal subdivision, since we detect in the latter the most distinct separation of petiolar and laminar formations. Even vaginal and stipuloid expansions and appendages now and then occur at the base of the stamens, still further confirming the analogy with the euphyllary formation. The same position also denotes the physiological importance of the staminal leaves; for euphyllary leaves, staminal leaves, and earpellary leaves, are evidently the three most essential leaf-formations, to which the most important physiological functions are distributed, and without which a perfect and eomplete plant is inconceivable,* while there is a possibility of all the rest being omitted. At the same time I have hitherto searehed in vain through the Vegetable kingdom for a plant devoid of all the inessential formations at once, possessing, that is, really only leaf, stamen, and fructification.

The maxima of the leaf-formation are again differently distributed when we take the consistence and persistence of the leaves for a standard. In the first region the cuphyllary leaves claim the highest place in this respect also, for although succulent and fleshy cataphyllary leaves are not rare, the majority of them are soon killed by the growing warmth of spring, while the euphyllary leaves of very many plants, fleshily succulent as well as leathery, arc of scveral years' duration. \dagger In the flower, the calyx has the greatest durability, thereby showing a relation on the one hand to the enphyllary formation,

[^52]and on the other to the fruit, which relationship is also particularly confirmed by many abnormal phenomena. In monstrous affeetions of the flower, namely, the calyx on the one side passes very readily into a leafy structure, and, on the other, often aequires a fruit-like development, not only normally, but also in abnormal ways,* while in return the fruit may become calieoid, or cven strike into leafy strueture in antholytic flowers. In the point of view just examined, therefore, the euphyllary formation, calyx, and fruit, form the analogous sections of the three regions.

The preecding indications may suffice to show that the leaf-formation by no means exhibits merely a simple decrease or increase, but, in all respects, a swaying up and down, a series of vibrations, in the last of whieh only is the goal aetually attained. These vibrations are not of equal magnitude or equal foree in all plants ; on the contrary, there oceurs, without affecting the gencral law, a great multiformity in their eonditions. Sometimes the wave expressed in the vigour of the leafformation, rises and sinks slowly and gradually, as we have seen in the vegetative region of Phlox; sometimes it gathers itself up abruptly and suddenly, as in Epimedium and Mayanthemum; sometimes it aseends suddenly and sinks down more gradually, as in Pconia; sometimes it ascends contrariwise, gradually, and sinks down again more suddenly, as in ITeliconia. The transition from one region of ascent to another is marked sometimes by a slight, sometimes by a strong depression. This difference is especially manifested in the transition into the flower, since on the one hand there is not unfrequently a direct passage from the euphyllary formation into calicine formation, (almost devoid of any retrogression in the leaf-formation, and with total omission of the hypsophyllary formation espeeially representing the desecnding

[^53]side of the first region,) as in Gentiana; * while, on the other hand, the leaf-formation often sinks down before the transition into flower, to complete disappearance of the leaf, which as it were emerges anew in the flower. Within the general lines of rise and fall, even, occur other subordinate lines of undulation, corresponding to the individual formations, which will be briefly touched upon hereafter. Every plant has its proper vital lines for these vibrations of the metamorphosis, the constructive representation of which lines will make clearly conceivable, characters which botanists have hitherto only seized in the most fragmentary manner, or have felt obscurely as something indescribable in the habit.

A particularly important phenomenon belonging to this series is the occurrence, at determinate points of transition of the metamorphosis, of the above-mentioned disappearance or non-appearance of leaves which cxist in rudiment, but either do not come to full development, or are suppressed in the earliest stages of formation. \dagger This dipping down of the lcaf-formation, occurring so frequently, and commected with determinate regions, \ddagger is the best evidence of the undulating course of the metamorphosis, and the best criterion for the separate sections. Disappearance of this kind occurs at four differcut places in the process of the metamorplosis, namcly, first at the two points of depression, already considered above, at the points of transition of the three chief rcgions one into another, from stock to flower and from flower to fruit ; and at two

[^54]other, subordinate points of descent which have still to be examined more narrowly, at the transition of the euphyllary formation unto the hypsophyllary formation and of the corolla (or ealyx) into the staminal formation. In order to represent the oceurrenee of regions of vanishing in their relation to the entire graduated series, we will onee more review the series, in the order of the transition of the metamorphosis from formation to formation.

Within the cataphyllary formation we have observed an inerease of strength in the leaf-formation, whieh is continued without any preparatory decrease into the euphyllary formation. The leaf-formation runs progressively from the cataphyllary formation to the euphyllary formation cither without any, or with impereeptible descent at the point of transition, consequently no vanishing ever occurs between these two formations. I shall not venture to decide whether this transition takes place really without any descent, or sometimes, perlhaps, has comneeted with it a slight decrease in the leaf-formation. 'The latter hypothesis seems to be borne out by Adonis vernalis. I found the 7 or 8 cataphyllary leaves of this plant of gradually increasing length, growing from 1 to 8 lines ; a trausitionary leaf following them, and exhibiting the first trace of blade-structure at its apex, was somewhat, shorter than the last true cataphyllary leaf, namely, only about 7 lines long.

In the euphyllary formation we see the attaimment of the maximum of vegetative leaf-formation followed by a decrease, which is frequently continued into the hypsoplyllary formation without any new accession of strength. But the case is not always such; the transition of the euphyllary formation into the lyypsophyllary formation is often effeeted through the medium of a strongish retrogression, whieh may go as far as disappearance, whereby then the hypsophyilary formation is eut off as a distinct wave, since it then possesses its own special rise and fall. The liypsophyllary region, eut off in this way, thus forms within the vegetative sphere a prototype of the flower,
which affords a ccrtain justification of the old application of the name "compound flower," to the capitule of the Compositæ and the spikelet of the Grasses. If we examine the order of capitulous-flowered plants (Compositæ) in refercuce to this point, we find hypsophyllary formation but seldom exhibiting a mere decreasing condition of the leaf-formation, for the involucres or "common calices" are mostly formed of hypsophyllary leaves larger" than those immediately preceding them on the stalk,* and within the involucre itself there mostly occurs a further increase of size of the successive involucral-leaves, as is shown in the so-familiar "involucra calyculata" and " imbricata." \dagger This phenomenon is truly splendidly exhibited in the coloured, radiantly expanded involucres of Carlina, Xeranthemum, and Helichrysum. In the last-named genus (e.g. in II. proliferum), we even find the rare case of hypsophyllary formation far excceding in its ascent the size of the euphyllary lcaves. After the maximum is attained the hypsophyllary formation sinks down agaiu, upon the main axis, to the form of little palex or tceth, often passing into a fibrous dissolution, frequently at last vanishing altogether, (receptaculum paleaceum, denticulatum, fibrillosum, nudum.) I will describe somewhat minutely in this respect Calliopsis bicolor, an oruamental plant generally diffused in gardens, as an cxample. Cataphyllary leaves are absent. We find the leaf-formation advancing, on the abbreviated base of the stock, from simple to simply pinnatifid and bipinnatifid euphyllary leaves. On the ascending part of the stem follows a decreasing series of small-lobed bipinnatifid, simply pinnatifid, and at last simple cuphyllary leaves, which form the transition to a few very small lincar, brownish-coloured hypsophyllary leaves scattered on the stalk of the capitule. The 8 outer leaves of the involucre are already somewhat larger, especially broader,

[^55]than the preceding scattered hypsophyllary leaves; the 8 inner involucral leaves, in the axils of which are seated the 8 florets of the ray, are $5-6$ times as long and broad as the outcr, lighter coloured, and more scarious. This constitutcs the maximum of the hypsophyllary formation; the sncceeding bracts (palcæ) are slorter, alnost filiform, and transparent, with a thin brown central streak. Another example, which cxhibits not only a sinking and reascent, but an actual disappearance, at the transition from the cuphyllary to the hypsophyllary formation, is afforded by Emilia sagittala (Cacalia sonchifolia of gardens.) The large cuphyllary leaves embracing the stem with their arrow- or licart-shaped bases, are followed by a narrow linear transitional leaf, from the axil of which arises the first branch of the corymbose inflorescence. From 2 to 4 leaves are thus wholly suppressed, their cxistence being merely detected by the branches of infloresecnce being apparently devoid of subtending leaves. 'The leafformation rises up again in the involucre of the terminal capitule, composed of 13 equally long, linear hypsoplyyllary leaves, and gencrally vanishes again on the "receptaculum mudhem." A similar disappearance and re-advance of the hypsopliyllary formation, only distributed on distinet axes, is scen in those Umbellifere which are devoid of an involucre, but have an involucel, as for instance in Angelica sylvestris, Seseli montamum and Hipponiaralhrum, and Bupleurum rotundifolium. The leaves of the involucels are at the same time the bracts (subtending leaves) of the outcrmost flowers of the umbellulc, while the subsequent, more internally situated flowers, arise from the axils of suppressed leaves. Thus, the Bupleurum mentioned has only five involucellar leaves, but eight to thirteen flowers in cach umbellule, the central flower not included; thercfore three to eight flowers must spring from the axils of invisible leaves. A third large ordcr, in which the hypsophyllary formation occurs in similar conditions, is that of the Grasses. Here it is universal for the euphyllary formation to be followed
immediately by a suppression of the leaf-formation, which persists through the whole main superstructure of the inflorescence, and only ceases in the spikelets. The leaves often disappear entirely in this region, or they present themselves as more or less evident thickenings, sometimes completely embracing the stem as rings,* and then often curved up and down in wavy lines, sometimes only partially embracing, and then mostly with decurrent borders, \dagger rarely ascending on the axis. \ddagger In Elymus europaus the lowest annular abortive leaf is often elongated into a sharp tooth; in Nardus all the subtending leaves of the spikelets are tooth-like. Only few grasses exhibit a considerable development of the lower leaves on the axis of the inflorescence, such as occurs in Sesleria. In Sesleria carulea they present themselves as tubular, ochraceously-truncated, or irregularly excised, membranous sheaths. § A similar development of the first leaf of the inflorescence occurs not unfrequently as an accident and exceptionally, in other grasses. I have observed a strange form of this phenomenon, and this frequently, in Glyceria aquatica. The transitional leaf occurring here, in the axil of which stands the first socalled semi-verticil of the panicle, has an undeveloped

[^56]middle, simply a protuberance, while the lateral portions growing together on the side opposite to the middle, acquire very considerable development. Hence arises an appearance as though the subtending leaf stood opposite to the branch. It often attains a considerable size and a more or less foliaceous expansion, exhibiting a distinetion into stalk and blade. The sheath usually reaches a length of $1 \frac{1}{1}$ to 2 inches; the blade seated upon this, about of equal length, is double, on account of the absence of the middle, the two halves diverging at an obtuse angle. Among the grasses in which the disappearance of the leaves in the inflorescenee is most complete, so that even the lowermost often does not even leave a protuberant process, are Catapotlium, many speeics of Eragrostis, Ellensinc, Digitaria, and Sorglum. In the spikelets, finally, the leaf-formation comes to light again, frequently gradually, as in Oryza,* and all other grasses in whieh the first glume is very small (Vulpia, Airochloa, Anthox(enthume); frequently suddenly, as in all grasses with two large glumes (IIolcus, Phalaris). Most of the manyflowered grasses exhibit, further, a distinct increase and falling off in the successive hypsophyllary leaves of the spikelet, since the first sterile palex are shorter than the succeeding fertile ones, which themselves again decerease in size towards the point of the spikelet. \dagger It is rarer for the first palex to be the largest, so that a simply decreasing condition exists. \ddagger The reverse, a merely ascending condition of the palex of the spikelet, is exhibited by many one-flowered grasses, in partieular the already cited Riee, and most of the genera allied to Panicum. §

[^57]From the vanishing region at the entrance of the hypsophyllary formation, where this separates as independent, we come to the consideration of that transition in which the disappcarance of the leaf-formation is commonest, to the transition from the lyppsoplyllary formation to the flower. Here where the most important revolution occurs in the metamorphosis, where the leaf-formation is to return in new arrangement and altcred attire, there is most frequently a preparatory total contraction, so that the region of transition into the flower must be designated as the principal brcak in the metamorphosis. The disappearance of the leaf-formation occurring here may extend simply to a last organ, or over the entire hypsopliyllary formation ; in fact, it may even invade the outer formations of the flower. Of the first case, in which only a final section of the hypsophyllary formation undergocs suppression, we have already seen above a fine example in the Compositæ with naked receptacles succeeding a fully-developed involucre; and in the Umbelliferæ with umbellules, the outer rays of which arise in the axils of involucellar leaves, while the inner possess no visible bracts. Such cases are more uncommon on racemose or spicate inflorescences with elongated axes, but Castanea and Acalyplia may be mentioned, the spikes of which have perfectly developed hypsophyllary leaves at the lower part, bearing the female flowers in their axils, while the male flowers succeeding upward arise from the axils of abortive leaves. Here refer also the Aroideæ, which possess a large, often petaloid, coloured hypsophyllary leaf at the base of the spadix, while no further visibly developed leaves occur upon the spadix. Suppression of the last hypsophyllary leaves is nore commonly found when these arc situated on a second axial system, than

[^58]when on the same axis. Thus it is a very common phenomenon for the axis of racemose infloreseenees to have developed hypsophyllary leaves (braets), while those on the flower-stalks (vorblätter, braeteoles) are suppressed. Numerous examples of this are furnished by the Serophularineæ,* Verbenaecæ, \dagger Labiatæ, $\$$ Leguminosæ, $\$$ and also Fumaria and Corydalis, Hedera Helix, Malıonia, Thesium cbracteatum and rostratum.|| The other case, in whieh the entire hypsophyllary formation is composed of abortive leaves, is likewise very eommon, we find it in almost the whole family of Cruciferæ, in Convallaria multiflora, of whieh, besides, there is a variety with developed and even foliaceous braets ; in many Leguminosa, e.g. Trifolimm, in the Umbellifere without involuere and involucel, e.!. Anethum and Fanicnlum. Great numbers of examples might be cited of plants with terminal flowers, where consequently the leaf-formation reappears again on the same axis, in the flower, after the suppression of several leaves, e.g. Solanm, Gilia tricolor, capitata, many

[^59]Boragineæ (Myosotis, Omphalodes linifolia), most of the Hydrophyllex (Phacelia, Hydrophyllum canadense), Cistus salviafolius and monspeliensis, Ulmaria palustris, \&c.

The suppression of the leaf-formation at the transition into the flower may affect, as above remarked, not merely the last section of the leaves preceding the flower, but even the commencing formations of the flower itsclf. Thus we see the calyx, at least its free portion, undeveloped or appearing as a crown of hairs in the Compositæ, many Umbelliferæ, Rubiaceæ, and Valerianeæ, while the corolla is developed fully in these families. Calyx and corolla are suppressed together in Fraxinus, while the nearly related genus Ormus exhibits both; the same occurs in many Amentaceæ, especially of the group of Betulacer.** The perigone of the Monocotyledons is suppressed in many Aroider, e.g. in Calla, while it is visible in Pothos and Acorus ; in the Cyperaceæ, also, where it frequently presents itself in the form of bristles, which may be compared to the pappus in the Compositr ; \dagger and, finally, in the Grasses, in which, however, the inner circle of the perigone, analogous to the corolla, comes to light, wholly or partly, in the form of little scales (lodiculce) \ddagger

[^60]We now come to the transitions within the flower itself. The transition from the calys to the corolla eorresponds to that from the eataphyllary to the euphyllary formation, and takes place like this, without any, or with an insignifieant retrogression of the leaf-formation, on which aecount no suppression oceurs between these two formations. We have above seen, in many eases, an increase of the leaf-formation within the ealyx, and recognised in this the expression of the renewed impulse received in the first half of the flower ; the contrary ease, a deerease of size following the order of suecession of the sepals, expressing an indentation in the line of impulse aseending to the corolla, is a rare phenomenon, and is only represented by faint indications. Thus in the Gentianc, Gerania, Nicotiana, even in the Roses and Brambles, the inuer sepals are somewhat shorter than the outer. Of all cases of this kind, the ealyx of Acantlous exhibits the most striking charaeter, whieh, however, from the irregularity of the whole flower, cannot be explained simply in this way. It is composed of four pieces, an upper, broadest and longest (the second sepal); a lower, somewhat narrower and shorter, which has two points (it is formed from the confluence of the first and third sepals) ; finally, two lateral, which stand further inwards, and are mueh shorter than the upper and lower pieces.* These little lateral sepals are thie fourth and tifth, consequently the last two leaves of the calyx. The ealyx is preceded by two very narrow linear braeteoles, whieh are about half as long as the ealyx ; a broader and longer braet, having sharply-toothed borders, bears the flower in its axil. Here, therefore, we see a deseent from the bract to the bracteoles, an ascent from the two bracteoles to the outer sepals, and another deseent from these to the two inner, and finally, from these to the corolla a fresh aseent of the leaf-formation.
That whieh is found only in rare and faint indieations

[^61]in the transition from calyx to eorolla, is a very frequent phenomenon in the transition from the corolla to the stamen-formation. As the hypsophyllary formation is not unfrequently cut off from the euphyllary region by sinking down even to the suppression of the leaf-formation, so we see the stamen-formation frequently cut off similarly by a region of suppression, from the preceding formation. It is often diffieult to deeide here whether the parts subjeet to abortion, whieh may oceupy one or more eircles, are to be regarded as suppressed inner petals or suppressed stamens. As imperfectly developed leaves, they are, looked at by themselves, neither one nor the other ; but eomparative examination shows that the abortive eireles are certainly to be attributed sometimes to one and sometimes to the other side, and in this sense are to be regarded sometimes as inner cireles of the eorolla, and sometimes as outer eireles of stamens. Thus in the Primulaceæ for example, we have reason to consider the abortive eirele as an inner corolline eirele, sinee the corresponding eirele of the flower is developed in some of the genera of the allied family of the Myrsiner (e.g., Jacquinia), as also in many of the genera of the likewise related Sapoteæ, aetually in the form of an inner eorolla, never in the form of a circle of stamens. The same holds of the Erieaceæ, in which I have seen the abortive eircle developed abnormally, in Erica baccans, as an inner corolla. The same oceurs in the Jasmineæ, for some of the species of jasmine exhibit an inner corolla almost normally. In the Oxalidex and Geraniaeere we must also assume an abortive inner corolla, the traces of whieh exist in the form of glands or little seales. In abnormal flowers of Pelargonium, I have often found some of the organs actually developed into the form of petals. That the abortive eirele of the Geraniaceæ is to be regarded as an inner eorolla, is still more distinetly proved by the mode of arrangement of the parts of the flower in the genus Monsonia, belonging to this order. Monsonia possesses not merely two, but
three quinate circles of stamens, which though $\frac{1}{3}$ prosenthesis are placed in a ternary rclation of altcrination, while the abortive circle still belongs to the binary condition of alternation (though $\frac{1}{2}$ proscnthesis). In thc Crassulacere likewise, the abortive circle may be regarded as an immer corolla, although the arguments for this are less direct. On the contrary, the abortive circle is in some cases decidedly an outer circle of stamens, for instance, among the Monocotyledons, in the Burmanniacea and Pontcderacex, among the Dicotyledons, in many Malvaccæ and Tiliacex, c.g., Helicteres, Hermannia, moreover in the Ampclidcæ and Rhamnce. Both mited, i. e., two abortive circles, a suppressed imucr corolla and a suppressed outcr circle of stamens, at the same time, occur in the Crassulacese which have only one circle of stamens properly developed, as for instance Cicassula and Iilleat; likewise in Erodium, of the family of the Geraniacco, and the allicd Linum; in Bleria and Azulea, of the heath family.* As we have secn in the conditions of the transition to the flower, cxamince above, that the whole of the preceding liypsophyllary formation frequently vanishes, so this is repeated here. Not merely particular segments, but cven the cutire corolla may vanish. We have already scen an approximation to this in the exceptional cases, in which the maximum of the leaf-formation within the flower is not attained in the corolla, but already in the calyx, while the petals appear small and imperfect. \dagger The apetalous flowers produced in this way occur in very many families, \ddagger and allow their true nature to be readily decided when we

[^62]accurately make out the conditions of relationship. Thus, for example, the genus Glaux agrees so elosely with the type of the very sharply-defined Primulaeex, that we lave no hesitation in aseribing the apetalous condition of this genus to the suppression of two eircles of petals. The Chenopodiaceæ, Amarantaeeæ, and Sclerantheæ, are connected so unmistakeably with the petaliferous families of the order of the Caryophyllacer, partieularly with the Alsinea, that we at onee regard them as Apetale produced by the suppression of the corolla, espeeially when we take into consideration how such a suppression oecurs in partieular eases among the Silenece and Alsinece, and may even be demonstrated in one and the same speeies, sometimes in all gradations, as for instance, in Stellaria media, whieh is found with very different sizes of the petals down to complete abortion of them (var. apetala). The conditions are similar in the apetalous state of Peplis among the Lythrariex, Isnardia among the Onagreæ, Chrysosplenium among the Saxifragee, Sterculia among the Tiliaceæ, and Pistacia among the Terebinthaceæ. In Plytolacca decandra, the quinate corolla vanishes together with a ten-membered outer eirele of stamens, which latter exists perfeetly developed in P/h. icosandia.

I will only add, to these already too widely extended remarks on the subordinate retrogression of the leafformation which is frequently interposed at the transition to the stamen-formation, and whieh eauses an independent separation and uplifting of this most important section of the flower, that the ascending condition in the suceession of stamens or of eireles of stamens, mentioned above as an apparent exeeption,* is explained by this, eorresponding exaetly to the rise in the magnitude of the hypsophyllary leaves, whieh we have already examined. \dagger This phenomenon is met with, for example, in Aloe, Anthericum, Ornilhogatum, in whieh the three

[^63]inner stamens are longer than the threc outer, also in the Cruciferæ, in the well-known tetradynamous condition; in Asarum, with six outer shorter, and six inner longer stamens; in Rheum, with six outer shorter, and thrce inner longer ; in Owalis and Limnanthes, with five outer shorter, and five inner longer; in Monsonia, with ten outer shortcr, and five inner longer; lastly, most beautifully in Hibiscus and other Malvaceæ, in which numerous quinate circles of stamens are piled up into a more or less abundantly clothed column. Most of the Ranunculacex, in particular Anemone decidedly, cxhibit a gradual increasc of length of the stamens, together with an acyclical, spiral arrangement of them; and many of them a decrease again at the close of the formation, as in Pconia Montan, the innermost, shortened, and abortive staminal leaves of whieh, form by their confluence the well-known crimson crown round the germen, which Decandolle considered as onc of the principal supports of his theory of the torus.*

The structure of the chinese Peony just notieed, leads us to the cxamination of the transition from the stamenformation to the fruit, the last ehasm which the plant has to pass over in its path to the goal. In this transition to the last stage of the metamorphosis, a complete suppression of the leaf-formation oceurs far more frequently than at the transition from the corolla to the stamenformation, a cireumstance of especial importance for a correct insight into the structure of most flowers. In the Monocotyledons only, in which in gencral the formations arc less sharply separated, a direct transition, uninterrupted by intcrmediate abortive cireles, is the more frequent condition, while in the Dieotylcdons this oceurs as the rulc only in few families, particularly such as cxhibit affinity to the Monocotyledons in other respeets; in many others not at all, or only in isolated genera. This also furnishes the cxplanation of the rarity of

[^64]abnormal transitions between these two formations, a transformation* of stamens into carpels, or, retrogressively, of carpels into stamens, \dagger while the transitions between calyx and corolla, as well as between petal- and stamen-formation are comparatively far more frequent. The abortive circles must here be accounted partly to one and partly to the other of the formations adjoining, the altered conditions of arrangement and number so frequently occurring in the fruit affording a distinct support for this in many cases. The abortion of an inner circle of stamens is exhibited most convincingly by many species of Juncus, which occur sometimes hexandrous and

[^65]sometimes triandrous,* also by the Irideæ, Graminaeer and Cyperaceæ, \dagger Alisma and Actinocarpus, \ddagger Cerastium semidecandrum, and tetrandrum, Mcenclia quaternella, the tetrandrous speeies of Sagina, the pentagynous Campanulacex, e. I., Campanula Medium, § Drosera, II Tamarix, 9 Viola, \&e. On the other hand, an outer eirele of stamens is abortive in Triglochion palustre, while in 15 . maritimum both eireles are fully developed; in most of the digynous Solanacer (i. e., with two earpels), in like manner, while in Nicoliana quadrivalvis the fruit becomes four-chambered, by the development of both eireles; morcover, in most of the Gentianeæ and Apoeynex, the Serophularinex and Labiatr, the genera of Rutacere with a double eirele of stamens, the digynous and trigynous Alsinece and Silenece, as well as the pentagynous genera Malachium and Agrostemma.**

An inner eircle of stamens vanishes, together with an outer cirele of earpels, for instance, in Stellaria media (pentandra), in most of the Diosmer, Cneorum, Celastrineæ, Ludwigia, and Isnardia, Circaa (?), †† Hederacer, Umbellifere, \&e. It is probable that in the Polygonere there is a suppression of $1 \frac{1}{2}$ to 2 eireles of stamens, and one cirele of earpels. In Rosacer, Pomacer, Amygdalineæ, Myrtacer, and Philadelplus, there is certainly a suppression of several eireles of stamens at the transition to the fruit; probably also we ought to assume two abortive eireles between the stamen-formation and the fruit in the flowers of the Papilionacer. A glanee back over

[^66]the cramples previously mentioned of the oecurrence of abortive cireles at the passage from calyx and corolla to stamen-formation, taken in comparison with the instances just brought forward, of abortion of leaf-formations at the transition to the fruit, leads to our remarking that they are almost throughout derived from different natural fanilies, whieh gives rise the observation, that a suppression at both the said points of transition at once is among the less frequent cases. Thus abortion oeeurs merely at the first point in the Primulacex, Geraniacex, and Malvacex, solely at the second place in the Rutacer, Onagrex, Solanacer, \&c. Cases where it is met with in both regions are furnished by the apetalous Caryophyllacex, e. g. Stellaria media apetala, Sclerantius; also by the apetalous Leguminosx and Rosacea, but most convineingly in Limnantlies. This genus exhibits five sepals, and five perfect petals alternating with these; next, also alternating, five glandular seales, the traces of an abortive inner corolla ; these are succeeded by two pentamerous circles of stamens, the outer of which, lying opposite the petals, arc shorter, the inner, opposite the sepals, larger; finally, five earpels, which arc opposite the inner stamens, and therefore lead to the supposition of the abortion of one circle.
In many plants, intermediate structures occur in the position of the abortive cirelcs, between flower and fruit, softening the abruptness of the passage from the acute and transitory stamen-formation to the calm and enduring structure of the carpel. In many cases these transitional structurcs are but stunted, as, for example, in the circle of glands whieh sueceeds the three circles of stamens in the flower of the cinnamion tree; very often they are more devcloped, as in the two circles of laneeolate, sinuatebordered leaflcts inside the staminal circles of Aquilegia, and the above-mentioned structure of Preonia Moutan. It is remarkable that these transitional struetures sometimes assume eompletely the shape of an inncr corolla. We have already noted above the affinity of the calyx
to the fruit; so, just as in the aseent from ealyx- to stamen-formation, the corolla lies between the two, we again find the petal formation, as a perigymium, in the deseent from the stamen-formation to the fruit-formation. In many Limes the similarity between the perigynium and the corolla is perfect, while in other species of the same genus normally developed stamens ocenpy its plaee. The resemblance to petals is less marked in the perigynium of the Byttneriaeeæ and Dombeyaecæ; in the Malvaeeæ, especially distinetly in Hibiscus, it forms the inside of the tube, from the ontside of whieh the eireles of stamens pass off at various heights.

Lastly, we have still to consider the eases in whieh, at the last stage of transition of the metamorphosis, the suppression aequires such extent, that the entire stamenformation beeomes involved, or, on the reverse, this exists, and the fruit-formation is suppressed. The necessity of these two formations to propagation, makes it a condition that, in such cases, the plant bears two kinds of flowers, -staminate (male) and pistillate (female) flowers, united on the same "stoek," or distributed on distinet "stoeks." Examples of this kind neeur not merely scattered singly in the most diverse families, but there are even entire families in whieh this condition appears as the rule. 'L'o the former belong diœeious species of the genera Lychnis, Silene, Rhamnus, Rumex, the gemis Rhodiola of the family of Crassulaeeæ, the genera Smilax and Ruscus, of the alliance of Liliex, and Zea and Coix among the Grasses; to the latter belong the Palmæ and Cueurbitaceæ. In all these the male and female flowers have the same type, but differ in the eompletion, sinee the plant is ineapable of combining the eontrast of stamenand fruit-formation within the ideally limited space of one flower. In the male flower the leaf-formation sinks down after bringing forth the stamens, without aequiring power to rise again to fruit-formation; in the female flower the latter is attained by an earlier retrogression of the leaf-formation, suppressing the stamens,
whereby space is gained for its uew uprising in the fruitformation.*

Let us now turn from the examination of the undulation which the metamorphosis of the plant follows in its greater soarings and subsidings, to the consideration of the individual steps in which it completes its conrse, the single leaves. The leaves present themselves to us as the single waves in the great stream of vegetable development, a stream flowing and ebbing with a periodicity regulated by law. As we have regarded the sprout as the first subordinate Rejuvenescence of the plant, as we have further considered the regions and formations on the sprout as circles of Rejuvenescence of the metamorphosis, so have we now to examine the individual leaves (with the internodes bearing them,) as links of Rejuvenescence within these larger circles. In this spliere, the theory of Rejuvenescence already presents itself to us in a declared form and developed into a system in recent scientific literature, \dagger but truly, in spite of much that is to the point

[^67]and suggestive, on the whole in a mamer of little use, because deficient in firm morpholngical foundations.*

Schultz's theory of Rejuvenescence makes strikingly prominent the difference between animal and vegetable Rejuvenescence : animals repeat, as Schultz expresses it, \dagger the eontrast of living and dying, the unity of which forms the Rejuvenescence, in all their internal organs, and there thereby undergo continuous dissolution and reformation, the effete parts being at the same time east off like a husk. Plants, on the contrary, never rejuvenise an internal organ onee eompleted, but repeat the contrast of living and dying only in their outer members, advaneing eonstantly beyond the eompleted struetures to new produetions. This peculiarity lies in the nature of vegetable growth, which goes on solely by repetition of the same parts, by Anaphytosis. For Schulta to eombat the theory of metamorphosis, as he does, by this doctrine of the anaphytosis of plants, is an ineonceivable eontradietion, eutting off all purpose or aim from the doctrine itself. The doctrine of anaplylosis, which is charaeterised as the theory of the constant self-rejuvenescence of plants through living repetition of the same parts, aiming at the object of demonstrating the laws of this repetition characterising the whole growth of plants, eannot really stand in contradiction with the theory of metamorphosis of plants, which, in like manner, leads baek to the original likeness of the vegetable parts or organs repeating themselves in various forms. \ddagger Sinee the links or members of the Rejuvenescence of the plant (Anapliyta) are not exactly of similar character as they sueceed one another,

[^68]but present themselves in a series of modifications, the theory of metamornhosis is necessary to the completion of the doetrine of anaphytosis, since its object is to demonstrate the laws ruling over the various modes of appearance of essentially similar parts, the definite course of transformation of the anaplyyta progressing through a series of stages. As the animal combines a metamorphosis with its internal process of Rejuvenescence, so does the plant also with its external, only the metamorphosis of the plant, in correspondence with the peculiarity of its anapliytosis, does not present itself as an internal recasting of the organism, as in the animal, but as an externally projected, many-stepped process of development. A doctrine of anaphytosis without recognition of metamorphosis, robs the plant of its inmost principle of life,-the principle of development, the graduated revelation of the internal foundation of its existence; it denies progress and aim in the processes of vegetable construetion, and is compelled to aseribe the differenee of the links of the Rejuvenescence to the accident of external influences, while this is rather the expression of the gradual triumph of the speeifie inward essenee over external nature.

If it be truc that the plant runs through its metamorphoses in a proeess of Rejuvenescence charaeterised by a series of stages and links; that, to use Schultz's expression, it possesses a plyytodom, progressing by anapluytoses, our first object must be to define the links of the Rejuvenescence aceurately. But this fundamental eondition of a correct theory of Rejuveneseence, is exactly that in which Sehultz's exposition is deficient. 'Ihe "anaphyton," or simple link of Rejuvenescence, by the eontinned repetition and manifold combination of which the whole strueture of vegetables is explained, is indeed theoretieally eharacterised as a totality fitted out with all essential vital apparatus, and as an independent vegetable individual; in what, however, we really discover how the anapleyta proceed one out of the other, and how they combine, is
nowhere clearly shown ; it is termed a universal morphological or phytodomic element, the primitive link or element of all extcrnal organs of plants, from the varied combinations of which are formed the root, stem, and leaf, which have been incorrectly regarded as cssentially different organs of the plant;-but where the limits of the single anaphylon are to be found in these structurcs, how it is to be recognised in its combinations and scparated as an independent constituent part, remains, in most cascs, altogether obscure. Much of what Schultz ascribes to the cmaplyylon is applicable to the cell; but Schultz's anaplyylon is not the cell, for Schultz imagines thercin a morphological mity, in which it is csscntial to cmbrace the various principal modifications of the tissue, as organs of the individual life. Such a morphological unity, the varied combinations of which wonld explain the varicty of the cxtcrnal parts of plants, has, in reality, 10 existence whatever, as unprejudiced examination readily shows. When we trace the anaphyton in Schult\%'s "construction" of vegetable structure, we find the most diverse things thrown together without the slightest morphological tact." We meet with the anaphyton at one time as an internode bomeded by nodes, or as an articulated picee of the petiole of a compound leaf; at another time, however, as any given piece of an inarticulated trunk bearing a bud, or capable of producing one; or cyen as a totally arbitrary picce of a root (as such without articulations), which is said to be composed of as many anapliyla as pieces it can be cut into capable of producing adventitions buds; further, the anaplyyton appears as a longitudinal strip of a flat leaf; \dagger lastly, actually as a circular Rejuvencscence-layer in the interior

[^69]of the perennial trunk.* The parts of the flower again are regarded partly as simple anaphyta, partly again as composed of a number of anaphyta. \dagger

When we gather all this together, we cannot wonder that even an admirer of Schultz's doctrine of the Anaphyton says, that it is a Protens, which we cannot grasp, and which everywhere slips away from us, yet lies at the base of all actual shapes. \ddagger To those who test the new system for themselves, in the living plant, it will certainly be clear from Schultz's explanation, that this Proteus is a mere thing of the imagination, existing neither by itself nor in its combinations, which are forged out of actualities found in the most diverse sections of the vegetable organism: sections partly existing as such, partly purely imaginary. The correct perception that there exist in the plant multifold phenomena of Rejuvenescence, repeated in diverse morphological regions, and subdivisions (Giliederingen) conditioned thereby, is completely reversed by Schultz's system, in that all these perceptible subdivisions (not to consider the merely hypothetical) are regarded as essentially like members of the plant, and

[^70]misused for an atomic theory of anaplyyta (anaphytenatomistik), which ean far less attain to the comprehension of the living course of the shaping-out of the plant, developing the parts out of the whole, than even the atomic theory of cells, sinee its atom is not a real, like the cell, but an imaginary unity.

The repeated attcmpts to represent the plant as a series of leaves growing one out of another forwards, and firmly intergrowing with one another backward, appear to rest more definitcly upon the real and essential subdivisions of the strueture of the plant, and it is no great step from here to the idea that the plant is to be regarded as a scrics of generations, the individuals of which are represented by the leaves, and the metamorphosis of the plant as an alternation of generations, through whieh, after numerous preparatory and ascxual individuals, the gencration finally arrives in the flower at the formation of the sexual individuals elosing the serics.* 'Ihis attempt to trace baek the whole plant to the leaf-formation, has been earricd out most ingenionsly by Ernest Mcyer, \dagger and recently supported through anatomical rescarches by Hanstcin. \ddagger

Here also we refer Gaudichand's§ aceounts of the morphological construction of the plant through repetition and combination of individually independent vegetable elements (Plyyta,) cach of which is regarded as composed of three regions; leaf above, internode in the middle, and root bclow, -as also the building up of the plant of stages (or storcys) as explained in the cssays of Hoeh-

[^71]stetter on the structure of the grass-plant.* All these attempts to compose the plant of leaves are wrecked upon the fact of the existence of the stem as an original, independent and comnected structure, the more or less distinct articulation of which certainly depends upon the leafformation, but the first formation of which precedes that of the leaves. The graduated metamorphosis of the plant requires the stem as a bridge between the steps; the theory of the arrangement of leaves requires it as the basis upon which the leaves form their regulated ranks; the comparative norphology of the lower plants demonstrates the independence of the stem, since it never shows leaves without stem, although certainly stem-formation without leaves ; \dagger finally the history of development brings the stem before our eyes, in its earliest period of formation, as the visible foundation, out of which the leaves are developed. \ddagger

[^72]A more detailed examination of the stem from these four points of view, would lead us ton far from our subject; but it may be permitted to discuss somewhat more closely the first point, the import of the stem in reference to a theory of metamorphosis assuming a vital contimity and not an atomic composition of the stages. We have above characterised the leaves as those parts, in the repeated formation of which is especially expressed the Self-rejuvenescence in vegetable life, and through the sucecssive emergenee of which the metamorphosis aequires its graduated structure. That this graduated structure requires a connecting organ, different from the leaves, and not formed from them, an organ which is not lost in the individual stages, but rather carries up the process of development beyond the one-sided development of the stage,--this it is which we would here briefly put forth, so that we may aequire a basis, out of and upon which the midulation of the metamorphosis flows. A general characterisation of the fundamental organs, distingnished by essential differenees in the direction of development, such as the general contemplation of vegetable structure and vegetable life in its relations to external nature impresses them upon us, may hence not be misplaced here as a preliminary settlement of our position (Orientirumy). The difficulty of comprising the phenomena in such a general view will serve as an exense for the imperfection of its execution.
it is called, laas been often questioned and disputed, I lave satisfied myself beyond the possibility of doubt of the excentrieal origin of the leaves around a central apex of the stem. The often ell-long erceping subterraneous stolons of Struthiopteris yermunica are elothed with seale-like eataplyyllary leaves, whieli on the points of the rumers eoming up above ground, pass gradnally into the ordinary euphyllary leaves of the ereet stem. They are arranged according to the $\frac{8}{8}$ type, about an inel distant from cach other, 1 ineli long, but decurrent for a length of about 2 ineles; the undeveloped leaves situated on the nascent points are closely erowded. Traking away all the leaves already more than 1 line long, there remain still about 8 rudiments, the outermost of whieh are ahout $\frac{2}{2}, \frac{1}{3}, \frac{1}{8}$ of a line higsh, the rest scarreely measurable. The four innermost appear as slightly-vaulted papillæ, gradually diminishing in size around a central papilla, whieh is the largest, and therefore eaunot possibly be mistaken for one of them.
'The Vegetable kingdom, like cvery kingdom of nature, each of its divisions, each genus, and each species, has, in virtue of its peculiar internal essence, its special destination. With this special purposc it enters into the circle of the multifold life of nature, which meets it partly as a friend, partly as a foe, partly favouring and bcaring it up towards its object, partly limiting and interrupting the carrying out of it. Hence, every created thing which, in realising itself, enters into the totality of natural life, has to overcome the detracting influence of the lower kingdoms, above which it has to clevate itself. The vegetable kingdom is preceded by the kingdom of the shaped and shapeless elements, the kingdom of inorganic nature. We behold in this, the kingdom of universal combination in rest and motion, the kingdom of gravity and cohesion, of universal mechanical antagonism ; in detail the kingdom of the homogeneous and unchangeable, in which every change of matter is at the same time a destruction; and, where it attains to shape, the kingdom of fixed and motionless form. Throughout all this region there is indecd a development of the whole through detached shaping out of the individnal parts, but the individual parts have no progressive vital development, no transformation as such, and no Self-rejuvenescence of being. But above this kingdom of bondage the plant rises in more emancipated developınent of life. It acquires shape, not through a mere act of formation, but through a process of development running through different periods, in which it overcomes more and more inorganic nature and its bondage, subordinates it as a means, bringing the peculiar, more highly gifted naturc, in it and through it, to cver freer and more perfect unfolding. We see the gradual solution of this problem realised in the metamorphoses of the plant. The elevation above the earthly, mercly passively physical, is expressed evenin theascending growth,* which is constantly combined with the progres-

[^73]sive metamorphosis. The single organs of this graduated elevation, the links of the ascending growth, in which the internal impulse towards an inereasingly purer and more victorious representation of its true nature finds its graduated accomplishment, are the leaves. It is a peculiarity of vegetable life that it fixes itself at caeh stage, bringing eaeh to its own permanent and strictly limited development. Hence each leaf is a thing limited and unalterably fixed at a determinate stage of the metamorphosis.

Since, then, the plant does not exhaust its life in the single representation, this being rathor only a stage beyond whieh the metamorphosis advances to new representations, sonve organ must exist scrving as the means for this advance, in which the life is not expended in the establishment of the stage, is not terminated in a partial realisation, but which, retaining its independence, seeures a future development, rises beyond each representation until the last, as a more aetive central point, constantly renewed and sending out now radii, and only loses its import as an individual centre of formation when the last and most perfeet representation, the aim and coneluding strueture of the metamorphosis, is attained. This organ of the plant is the stem or axis. The stem is not ordinarily continued beyond the last radii, eoinciding with the limited or terminal stage. Its terminal prolongation is lost, without any final strueture belonging peculiarly to itself, among the last leaves of the sprout, whether this eoncludes with a flower or not, in the former case, thercfore, among the carpels.* But this must not be supposed to mean

[^74]that the stem takes no part in the metamorphosis; for it is rather in the terminal prolongation of this, that the gradual changes of purposc lying at the foundation of the metamorphoses are prepared, to pass over from it to the developing radii, so that the stem shows, more or less strikingly according to the structure of the leaves, the characters and functions of those leaf-formations of which it constitutes the support. Thus we see the lower stem colourless and devoid of stomates, like the cataphyllary leaves; the middle stem green, and furnished with stomates, like the euphyllary leaves; that part of the floral axis which bears the carpels often developed even into a fruit-structure (Fragaria). Thus stem and leaves together form one whole, the ascending vegctation, in which the metamorphosis is revealed, throwing out its halting points in the leaves, and advancing, through the medium of the stem, to further stages.

Opposed to the ascending vegetation (Pflanzenwuchis), as a whole, stands the root, without which the former would be baseless. In the universal bond of nature all the higher must rest upon the lower, grow forth within and out of this, find its basis and seek the material for its realisation in the lower realm, and thus as it were, descend into and absorb the lower, which it is to overcome. This necessary vital direction, first of all acting in opposition to the true purpose, but in the sequel becoming again subscrvient to it, finds its representation in the root. The root, as a downward growth, is produced in contrast not merely to the stem, but to the whole ascending growth of the plant; it originally follows simply the attraction of gravitation in its growth, penctrating perpendicularly downwards, and is diverted into

[^75]deviating direetions only in its braneles. Thus it gives the plant its basis and conneetion with the inorganie soil, and espeeially supplies that material, by the assimilation and subordination of which the entire plant beeomes realised. In eorrespondenee with its direetion of growth, it forms a contrast to the total aseending development of the plant ; it therefore has no metamorphosis. For the same reason it is devoid of leaves, these being the steps in the course of the metamorphosis.

Thus, then, stem, leaf, and root present themselves as essentially different parts of the vegetable organism, as its fundamental organs depending on the differenee of the directions of development of vegetable life. The sure and exaet distinetion of these forms the basis of Morphology. 'Ilat the study of the lower plants leads us to structures in which the different directions of vegetable life do unt appear clearly distinguished, is no reason why we should deny their essential and ineonvertable differenee when they present themselves really separated, as is almost everywhere the ease throughout the higher elasses of the Vegetable kingdom.

Leaves and stem form together, as above remarked, one whole, opposed to the root; if we regard the leaves as rays, the stem forms the centre, neeessary to the idea of the rays; if we regard them as waves, the stem represents the level on whieh the undulations originate, forming the troughs between the waves: a mode of viewing the phenomena suggested by the theory of the arrangement of leaves. Not only in the fully-developed leaf, do we see that it is not sharply eut off from the stem, but runs gradually into it, as shown in the formation of the pulvinus, in decurrent margins, \&e.: this is indieated even in the earliest appearanee of the leaf, primarily a seareely distinguishable papilla, extending laterally into a little ridge (ruming back as it were into the stem), the papilla sinking down outside (below) quite gradually into the stem. How the leaf is really formed, how it takes its first origin in the stem, and by growth emerges from this, is a problem whieh the
research, recently so industriously devoted to the history of development, has not yet been able fully to solve. The idea of Schleiden, that the leaf is pushed out, as it were, from the stem, the apex first cmerging, and the lower parts being gradually extricated by development at the base,* is devoid of exact demonstration, which can only be given by a complete history of the development, accurately illustrating the succession of the individual cells, of the apce of the stem, and the rudiments of the leaves arising from it, which certainly exist before they are elevated as papillæ. The assertion of Schleiden, that the leaf is formed by a process of cell-formation advancing from the apex to the base, has been contested by Nägeli, \dagger who, resting on complete observations on the formation of the leaf in the Floridex, Characex, and Mosses, \ddagger sets up the contrary doctrine, that the original growth of the leaf advances by cell-formation at the apex and at the circumference, that is, from the base upwards and outwards, and that only the later growth, connected with final completion of the structure of the leaf by expansion of the cells, begins at the point and circumference, and progresses towards the base. How far these results, derived principally from the Cryptogamic plants, are applicable to the leaf-formation of the Phanerogamia, can scarcely be safely determined, from the deficiency of researches on the latter. That supplementary cell-formation, presenting itself in all or only isolated parts of the first ccllular structure, following the original cell-formation (doubtless progressing according to accurately defincd rules in the higher no less than the lower plants), that supplementary devclopment which Nägeli calls aboormal or accidental, appears to be of great importance to the ulterior devclopment of

[^76]the leaf of the Phanerogamia; but that Schleiden's theory of leaf-formation is only partly warranted, even in this second stage of growth, is shown by Grisebach's discovery, that several points of vegetation or foci of development frequently present themselves within the leaf, and an intercalary cell-formation occurs not only at the base, but at various points.* Even the last stage of growth of the leaf, depending on the more expansion of the cells, docs not always, or in all parts of the leaf, progress in the desecnding (centripetal) direetion, as followed indisputably, even before Grisebach's researehes, from the observations of Steinheil (especially on the leaf of the Magnolias) and Munter (on pimate leaves \dagger), although the difference between the growth by eell-development and cell-formation was not actually distinguished in them. \ddagger

The general and partial gradual unrolling, advaneing toward the apiees, and the final expansion of the Fernleaf connected with this, is a well-known phenomenon, whieh has been ineorreetly regarded as an evidenee against the foliar nature of this organ.§

[^77]The tendrils of the Cucurbitacea, certainly belonging to the leaf-formation, behave, leaving out of view the suppression of the bladc-formation, exactly in like manner, and the pinnate leaves of the Dicotylcdons have not only a centrifugal expansion-growth of the petiolar apparatus; but the latcral leaflets unfold distinctly in ascending order, while at the same time each individual leaflet completes its own growth by a centripetal expansion,*

In spite of the imperfection of our insight into the laws regulating the formation of the leaf, we may at least regard it as certain, that the leaves are developed forth from an axis formed beforc them, and that this axis, whenever leaf-formation occurs, is developed into a stem after the rudiments of the leaves have come into existence ; it may be further regarded as certain, that the formation of the leaves is not simultaneous but successive; \dagger so that between two following leaves there always exists at the outset, a separating structure, the axis, permanent as such, whether it may be developed as an internode or not. If we conceive the leaf in relation
similar apiculated terminal structure, of which Martius ('Ieones plant. erypt.,' t. 60, ii) has represented an interesting series, but erroneously referred to a distinct species (M. mumila). The Hymenophyllum interruptume figured by Kunze ('Anal. pteridograph., t. 30), likewise deserves mention here.

* The phenomenon may be seen especially well in the Mahonice with pinnate leaves, the lower pinnules of which are already expanded, green, and coriaceously hardened, while the upper are still seareely half as large, half folded together, reddish, and soft.
(Vide also 'Proccedings of the Linnean Society of London,' May 6th, 1852, in a paper by Dr. Alexander on the leaf of Guarer grandifolia, Dene. In this the upper leaflets are developed after the lower have fallen off, periodical growth at the apex of the petiole going on for several years.-A. H.)
\dagger This holds good even of the leaves of whorls, as transitions and substitutions of verticillate and spiral arrangements sufficiently testify. Although recent observations on the development of the parts of the flower describe the eireles of papille, forming the earliest representatives of the circles of the flower, as coming to light simultancously in all the segments, we must remember that these papille are by no means the carlicst rudiments of the leaf-formation, but that to solve this question by means of the history of development, it would be neecssary to go baek to the origin of the colls, or groups of cells, which subserquently rise up as papille.
to the axis, as a ray, or in relation to the spiral series to which it belongs, as a wave, we reeognise in any case, in the intimately conneeted origin of the stem and leaf, an alternation of emerging and retiring formation, of rising and sinking, radiation and concentration ; and this it is whieh we have eharaeterised above as a course of development advancing in repeated aets of Rejuvenesecnee, as it were in an undulating flow of the metamorphosis. This would be the place to examine the definite proportions whieh the leaf-formation adheres to in its spiral undulation, and the conditions of arrangement of the leaves arising from these ; to traee them from the simple rudimentary plans $\left(\frac{t}{2}, \frac{1}{2}\right)$ with which the plant, as a whole, eommenees and whieh are mostly repeated at the beginning of a new braneh, through all the complieations whiel eome in during the progress of the metamorphoses, and mostly attain their maximum in the hypsophyllary region;* then, further, to show how the simpler plans $\left(\begin{array}{ll}(20 \\ 3 & 2 \\ 2\end{array}, \frac{3}{5},\right)$ reeur, but in cyelic combination, in the flower, how here a new series of eomplieations is established in the harmonious combination of the cyeles, and how finally in the fruit, the arrangement frequently returns to the simplest condition. But to carry this out would demand an exposition of the theory of Phyllotaxy, which would far exeeed the limits allowable in the present treatise.

Note.-The more reeent researehes on the Phyllotaxy of Plants will be found compared in Sehleiden's 'Grundzïge, '2te Ausg.ii, p. 177 ('Prineiples of Botany,' p . 263-6), to whieh are to be added, a later treatise by the brothers Bravais ('Essai sur la disposition générale des feuilles rectiseriées,' 1840), an essay by the Swede Silverstrahle (translated in Hornsehueh's 'Archv. scandinavisehen Beiträge,' i, p. 382), agreeing in its conclusions with the first treatises of the brothers Bravais ; and the works of

[^78]Naumann, whieh, originally seattered through Leonlard and Bronn's 'Jahrbuch der Mineralogie' (1842), and Poggendorff’s 'Annalen' (1842-43), were subsequently collected by the author into an independent treatise (Ueber den Quincunx als Grundgesetz der Blattstellung,' 1845). Since I have indicated the occurrence of simpler and more complicated conditions of the arrangement of leaves, and a determinate cycle in which these appear in the plant, I may be permitted to introduce here ineidentally an observation on the actual existence of series of different conditions of arrangement, as asserted in Selimper's, and my own works, but questioned in the essays of the brothers Bravais. I feel the greater inelination thereto from a remark of Schleiden ('Grundz.,' p. 176 ; ' Prineiples,' p. 265), who characterises the theory of the Bravais, who sought to trace back to a single, irrational angle of divergence, alike for all, the modes of arrangement regarded by us as different and expressed by a series of rational divergences, as far preferable, sinee it indicates a simplieity of the law, and under like possibilities that explanation is always to be preferred which embraces the greatest number of cases under one point of view. But the theory of rational divergences which first recognised as such the multiformity of the eases which observation reveals, and then strove to subordinate them to a general law, should have been upheld on this very ground, in opposition to a theory which, in contradiction to itself, first denies the multiformity of the cases, to insinuate under them an abstract unity, and subsequently (in the sccond part) eannot avoid admitting that the rational and in reality dissimilar cases do oecur in plants. 'Io deny the multiformity of nature without sufficient proof is certainly not the right way to introduce unity of law into phenomena. 'The assertion of the Bravais that all supposable arrangements of leaves of the main chain are formed on a plan of equal irrational divergence, is just as contrary to nature as a system of erystallography would be that denied the
existence of all the forms of a regular system bounded by a definite number of surfaces, on the ground that they all belonged to a single serics terminating in the sphere, a surface without any boundaries. I am far from intending by this to take away all valuc from the labours of the brothers Bravais; the more complicated modes of arrangement are often so difficult to distinguish that the cloubt as to their existence, as actually different, is often readily explicable, but, on the other hand, in the simple conditions, there cannot be the slightest doubt that they cxist in the greatest mathematical accuracy, which indecd is admitted by the Bravais themselves. Hence arises with the Bravais a diversity of explanation of phenomena which evidently belong to the same scries, a circumstance which by no means harmonises with the formulary praise which Schleiden gives to the theory of Bravais. Schleiden would certainly not have arrived at such a judgment had the subject of phyllotoxy bcen more experimentally familiar to him. At the same time, the question here is not so much of the preference as regards method of a theoretical exposition, as the establishment of a scrics of facts. I cite in support of my own convictions, gained by many ycars' study of the modes of arrangement of leaves, an obscrver whose trustworthincss is declared by most important labours in an analogous field. Naumann has not the least doubt of the actual and distinguishable occurrence of most complicated conditions of arrangement $\left(\frac{55}{1+4}, \frac{89}{230}, \frac{114}{372},\right)$ and refers the incredulous to the investigation of the Cactacer and Compositæ, remarking that in the sun-flower, a blind person will be able to distinguish the above-named allied plans of arrangement with the fingers, although they depend upon immeasurably small differcuces in the angle of divergence (Poggend. 'Annal.' 1843, p. 554-55). According to my own and Naumann's (Ueber den Quincunx, pp. 70-71) observations, not only $\frac{2}{5}$ and $\frac{3}{8}$ occur in the Cacteæ but also $\frac{5}{13} \frac{8}{21} \frac{13}{34}$, in a manner which even Bravais could not help acknowledging as not merely apparently but actually rectilinear and rational.
'Ihese most clear and decisive eases belong chiefly to the genus Echinocactus, in which, in combination with a most crowded arrangement of the leaves, the pulvini of the leaves are blended in vertical lines, so that these present themselves more elearly than all oblique lines. If, then, in another genus of the Caetaceæ (Mumillaria), the usually still more complicated modes of arrangement are less easily and surely distinguishable, beeause the leaves are not so elosely crowded and the pulvini are separately developed, we eertainly must not eonclude from this that we have here a different irrational mode of arrangement, essentially distinet from the rational arrangement of the Echinocacti. As regards Naumann's method, of examining, measuring, and naming the arrangement of the leaves from the point of view of the vertical lines, it may be added that within a certain domain this has the same practical applicability as the mode of definition and denomination founded on the fundamental spiral ; but if we go back to the genetic suecession of the leaves, which is indubitably represented in the fundamental spiral, Naumann's method appear's contrary to nature. While on the one hand it appears to afford a simpler explanation of the verticillate arrangement, on the other hand it is ineapable of expressing, even in the formula of nomenclature, the actual and essential connection of the vertieillate and spiral arrangements as the transitions in the plant demonstrate thern, whenee it must appear especially useless in the department of anthonomy or construction of diagrams of flowers. Sehleiden further makes the objeetion to the whole study litherto of the phenomena of the arrangement of leaves, that it has kept solely to fully-developed plants, instcad of tracing the subject in the history of development, whence all theories are devoid of safe foundation (l. c., p. 175, Transl., p. 264); in this he is partly right and partly wrong, for everything has its time. What is requisite in the first place is an actual review of the conditions of arrangement of leaves occurring in the vegetalble kingdom, the mode of their occurrence, their
distribution in plants, their transitions and alternations, and all this can only be afforded by a more or less per-fectly-developed eondition of the plant. A suffieiently large number of leaves must have been formed before we can safely judge of their arrangement, sinec a measurement of the divergence of the earliest rudiments of the leaves is as impractieable as every later dircet measurement. Hence the investigation of the earlicst rudiments in reference to this point will be of little use until the eondition of arrangement of the full-grown plant is known. Even those conditions frequently coming with the completion of the development, disturbing the original arrangement, as for example, the unilateral pushing together of the leaves when there is mequal thiekening of the sides of the stem, the moving back of leaves by unequal adhesion of the base, the apparent elange of the arrangement of the leaves from revolution of the stem, \&e., require 11 great researeh into the rudimentary strueture to set them aside. Thus the method of determination may be perfected, without directly tracing the first origin of the leaves, to such a degree that the modes of arrangement are almost everywhere to be arrived at, and a comparative investigation, carried out properly by means of the method we possess, is eapable of bringing Phyllotaxy to sueh results, that it makes each individual casc comprehensible in orderly eonneetion with the entire system of the arrangements of leaves. The true side of Schleiden's objection is, that this is not the final result, the final establishment of Phyllotaxy, sinec for its completion we necessarily require the clueidation of the eonncetion of the external arrangement of the leaves with the internal arrangement of the cells in the apex of the stem, from which the leaves cmerge, and in which, simultancously with their origin, is laid the foundation of their arrangement, - a problem toward the diffieult solution of whieh, the study of development has not yet made the slightest step, at least in the realm of the Phanerogamia; moreover this also includes the explanation of the organie
processcs in the colls themselves, through which their arrangement is determined, as well as the forces with whieh the organism works; in a word it ineludes at its final point the Physics of Organization, of which botanical seienee has at present scarcely a foreshadowing. Therefore, everything at its proper time!

III.-CELL-FORMA'IION.

In proceeding to the subject of Cell-formation, we pass over a series of phenomena of Rejuvenescenec which should be intercalated between the second and third sections, namely, the processes of Rejuvenescence which frequently occur in the development of the leaf itself, and through which the leaf aequires its subdivision and compound nature,-as well as the Rejuvenescenee of growth also oceurring in the ultcrior completion of the parts of the leaf, of which we have spoken already in examining the leaf;* we farther pass over the phenomena of Rejuvenescence in the later completion of the stem, which occur both in the longitudinal growth and the increase of thickness, the former espccially as intercalary growth of the internodes, \dagger the latcral as periodically renewed growth of the cambium zone of the stem, between the wood-mass and the bark, whereby originate the annual rings in the trunks of the Coniferous and Dicotyledonous trces. All these, as well as the already examined phenomena of Rejuvencscence, necessarily lead finally to the eonsideration of the cell, as the simplest sphere of formation in the course of the life and growth of the plant, from which all development starts, which in infinitely varied repctition and nodification accompanies the entire devclopment, and to the indcpendent representation of which the conclusion of the devclopment once

[^79]more returns. The investigation of cach link, of each organ of the plant, leads back to the simple cell: the formation of the stem advances by division of a simple apical cell;* the formation of the leaf starts from a single lateral cell in the vieinity of the apex of the stem ; \dagger every lateral sprout is originally a cell, which, instead of remaining as a mere part of the tissuc of the parent spront, becomes the primary cell of a new developinental series. \ddagger 'I'o penetrate everywhere to these first rudiments of structure, to follow out from them the comrse of development of the tissues of all parts, and to make out the laws according to which the cell-formation progresses to produce the various arrangements on which the structure of the plant essentially depends, is one of the most difficult, but, at the same time, most profitable tasks, to the aceomplishment of which Naigeli, in particular, has quite recently opened the path by accurate and methodical description of the history of the cell-formation and growth of numerous plants belonging to the lower orders of the Vegetable kingdom, from which alone the way ean gradually be levelled up to the higher. \$

I'he investigation of cell-formation is no less necessary

[^80]in plyssiological than in morphological respects; for to thic cell is committed all the vital activity of the plant; the material and form of the plant are produced in and through it. In the cell resides the wonderful power of preparing the organic substances, which no other chemical laboratory has the means of forming; in it the force of endosmotic absorption and excretion, and that admirable circulation, not yet physically explained, by which the contents are, in the most varied manners, either imperceptibly diffused, or driven in active currents; in it the force of organic production of form and of growth, and, finally, the force of transformation and reconstruction, on which depend the multiplication and propagation of plants. The cell is, therefore, the immediate focus of Rcjuvenescence, the point from whence come all the phenomena of Rejuvenescence in the building up of the articulated (or complex) organism of the plant. Hence, if we wish to become intimately acquainted with the phenomenon of Rejuvenescence, we must search it out in the cell itself. In the outset we distinguished two periods in the process of Rejuvenescence, the period of retrogression, of solution and removal of the old, and the movement of renewed progress, the repeated construction and reformation ; accordingly, after a preliminary consideration of the formation of the cell in general, we sha!l examine the phenomena of Rcjuvenescence in the life of cells in detail,-in the Destruction (Entbildung), and Reconstruction (Neubildung) of cells.

I.-FORMATION OF THE CELL.

Cell-formation is one of the most essential peculiarities, one of the most constant characters of the plant. In cell-formation, espccially, the vegetable organism shows itself to be detcrmined in its formation from within; through this the plant cuts off its structure, as a whole, as in the smallest subordinate sphere of life, from with-
out, interposing a boundary structure, the cell-membranc, as a medium for the intcrcourse with the external world, and a protection from direct attack. Although the plant be developed almost infinitely through the unlimited nature of the process of sprouting, its life appears in every cell (with a few exceptions) as in a circumscribed and in a peculiarly inwardly determined sphere of formation, so that the cell also is, in a certain sense, an individual, and, in fact, has been pre-eminently regarded as the individual of the plant by many authors.*

As the single plant begins with a simple cell, so does the Vegetable kingdom. In the lowest stage of this the plant presents itself as a simple cell, and the first repetition of cell-formation is, at the same time, propagation. The farther we trace up the stages of the Vegetable kingdom from this point, the greater is the multiplicity of the division of the originally simple sphere of life into subordinate spheres, and the more frequently is the cellformation repeated: the vegetable organism becomes multi-cellular. While the cell constitutes actually the sole individual of the plant in Uni-cellular plants, in the higher plants it becomes a sphere of formation subordinate to the more developed individual organism. With the less perfect organisation of the plant, as compared with that of the animal, with its peculiar deficiency in a permanent and thoroughly pervading central relation of the parts, the vegetable cell, as a subordimate part of the organism, possesses a far greater individual independcnce than the cell of the animal tissue, manifoldly changed in its structure, and more insolubly comected to the whole.

Unicellular plants, in the strictest sense, are represented properly ouly by those in which the whole cycle of life is completely shut up in one cell, the first reconstruction or division being at once the commencement of

[^81]a new cycle; in which, consequently, the whole vegetative life is run through in the same cell where the propagation also finally appears. But in a wider sense, there are other Unicellular plants, if, namely, we regard those as one-celled, in which the conclusion and renovation of the cycle by the formation of a germ does not occur until after several generations of cells, yet the vegetative life is passed through, not in a rigidly combined series of cells, but in separate cells.* These cases are of two kinds. In cases of one kind the vegetative life is really completely shut up in one cell, but the formation of germ-cells in this cell is attained, not directly, but through the mediation of one or more transitory generations of cells. \dagger Such plants are truly Unicellular, as far as regards vegetation, \ddagger since the transitory cells neither possess a special and peculiar vegetative development, nor contribute to the formation of a uniform vegetative tissue, but appear only as a rapidly over-passed, transitional stage previous to the formation of germ-cells,-as germ-cells, as it were, which divide once or more times before they arrive at the point from whence a new vegetative cycle can begin again with germination. § In the other cases the multipli-

[^82]cation of the cell happens in the vegetative sphere, the cells increase in number by a succession of divisions before the vegetative eyele eloses with fruetifieation ; but the plant is ineapable of keeping intimately eonneeted the generations of cells thus produeed, of building forth the organism as a whole, in these divisions; it breaks up more or less completcly into the individual eells, whieh thus, although members of a definite cycle of vegetation, lead a separate individual life. We sce that which is completed by the higher plants in an organ nically connected series of eclls, represented here by an alternation of generations of unicellular vegetable individuals.* It is therefore impossible to draw a strict line between Unicellular and Multiecllular plants in this respeet, sinee there exist numerous intermediate stages leading from the most intimate union to total scparation.

The completion of the contrast of growth and differentiation of the organs does not always keep paee with the simplicity or eomplexity of the tissue. Even among the Uniccllular Λ lgr, most strictly so called, we find the general opposition of growth of the plant expressed more or less distinctly in the unieellular individual; in fact we find that the very fundamental organs of the plant, stem, leaf, and root may be represented with more or less evident distinctness by parts of one and the same cell. 'The graduated succession which we detect, in this respect, among the Unieellular Algæ, is so well adapted to enlarge the ordinary conception of the ecll, that we cannot omit a bricf examination of it here.

The simplest condition of the unicellular plant would

[^83]be, when the cell exhibited no other difference of its sides and parts beyond the contrast of contents and membrane, therefore was completely uniform over its whole periphery. According to the description Nägeli gives of his family Protococcaccæ, Protococcus* may be regarded as the representative of this stage, being a genus of which the individuals are globular cells, producing free, likewise globular germ-cells, in their contents, after their vegetative growth is completed. But it appears to me doubtful whether, strictly speaking, such a condition of the cell, completely equal in its relations to all sides, ever occurs. If Protococcus, as is probable, possesses moving (swarming) germ-cells, these cells will doubtless be found to exhibit, in the moving stage, an elongation, so as to have a principal axis, and two different extremitics, one of which bcars the cilia, while the coloured contents of the cell are crowded into the other. In Hydrodictyon, which genus must likewise be included in the family of Protococcaceæ, the cells, connected into a net-like colony, have also a distinct longitudinal extension in their ulterior development, without, however, any difference in the two ends, since the extremities are both joined in a similar manner to the ends of the adjacent sister-individuals to form the network. But a distinct contrast between the upper and lower end of the cell presents itself in the same family, in the genus Ascidium, the free colls of which attach themselves to foreign objects by one end (that elongated and bearing the cilia at the period of swarming), whilst the free extremity (originally the more obtuse) bccomes prolonged into a short point. In the tubular cavity of the cell, the contents form a coating over the inside of the wall, by a simultaneous division of which, after the vegctative developmentis completcd, numerous germ-cells arc formed, finally swarming out of the expanding mother tube,

[^84]which becomes torn at the side or bottom.* The contrast in the development of the upper and lower ends of the cell presents itself still more strikingly in Botrydium. The young plant is a globular cell, which might be readily mistaken for a Protococcus, but, with further development, a lyyaline prolongation is produced below, penetrating into the earth and branching like a root, while the upper part of the cell swells up more and more into a large obovate vesiele. The mucilaginons contents form a lining to the walls, containing numerous ehlorophyll vesicles. After the growth is eomplete, numerons germ-cells are formed out of the lining eoat of the wall, and these do not appear to swarm, but are set free by the membrane of the parent-cell becoming gelatinously softened, collapsiing, and finally dissolving. In Vaucheria the lower part of the cell grows out in like manner into a branched pale-coloured root, and the upper part is elongated in a still more considerable degree into a stem-like filament, which grows on and on by apieal development until its growth is finally arrested by fructifieation. From the ascending filament arise lateral prolapsing branches, endowed with speeial faculty of apieal growth, some of these being large and ereet like the main stem, others small and divergent. A single moving germ-cell is produced in the point of each ereet branch;

[^85]in the horizontal branchlets are formed, in each case, one thick-coated, resting spore.* Bryopsis goes still further than Taucheria in the development of different parts from one and the same cell; for in this the cell produces roots on one side, and, on the other, erect stems, with apical growth, multiplying themselves by ramification. On these stems are formed distichous, or spiral series of shorter branchlets, with limited apical growth, these clothing the stem likc leaves, and finally, when the canal of communication with the stem has become closed up, falling off like leaves. The numerous moving germ-cells of Bryopsis \dagger are formed in these branchlets. The genus Caulerpa \ddagger forms the last link in this series of remarkable shapings of the simple cell. In this the undivided cell forms in its development a creeping stem, growing on ad infinitum at its apex, from which (besides inessential branches, repeating the main stem, and, like it, unlimited,) proceed two kinds of branches with limited growth, different from each other and from the main stem, namely, to the under side divided roots, to the upper leaf-like branches which, originally cylindrical, expand into laminæ in subsequent growth, and present different forms according to the species; in Caulerpa prolifera, for example, lingulate and obtuse, in C. denticulata§ broadly lanceolate, deeply toothed, and somewhat acute, in C. plumaris pinnatifid or cut like a comb. Much as these structures remind us, by their form, of the stem-leaves of the higher plants, they are merely hollow prolongations of the one cell,

[^86]which developes itself into the form of stem, root, and leaf. The origin of organs of distinct kinds, which is connected in the higher plants with a very complicated multiplicity in the cell-formation, appears here to be attained simply by development of one and the sane cell, separating itself into different directions of growth.

The simplest plants with a many-celled cycle of vegetation, whether this be comected or broken up into constituent members, stand far behind the plants with a unicellular cycle last considered, in regard to organic differentiation. In this series again, nature ascends by a scale of different types, from a minimum of contrast in growth, to a progressively more distinct realization of the various directions of formation. That which was attained in the former cases through the differentiation of the individual cell, without isolation of its parts one from another, is here reached in the most manifold gradations through the formation of cells differing among themselves, this happening cither merely by a difference in the generations of cells, or by a different character of the cells of the same generation. The distinctions occurring here may relate either to the mode of origin of the cells (combined or free formation), to the generative capability (permanent cells and mother-cells), or to the mode of final development (predominant growth in one or other direction, the different shaping of the contents and of the walls). Thus arises an infinite variety in the genealogy, arrangement and final development of cells, which becomes the more difficult to trace the higher we ascend in the vegetable kingdom. I confine myself to a few indications from the lower groups of the vegetable kingdom, especially from the Algæ, the deep study of which appears the more important the more fully the science becomes conscious of its object-to penetrate into the regulated course of development of vegetable structures in all their infinite complications.

The simplest conditions are exhibited by those plants in which all the generations of cells, except the transition-
generation leading from one generation-cycle to another, are alike. As long as mere vegetative multiplication lasts, similar generations are formed; with the commenccment of fructification is formed a last generation of cells, different from the preceding, constituting at the same time the first generation of the new cycle, and as such, although originally different, exhibiting in its final development the same characters as the succeeding vegetative generations. The last gencration (that of the germ-cclls or spores,) is either imperceptibly or perceptibly different from the foregoing, which circumstance gives room for a series of subordinate gradations. Among the instances of the former condition are the Chroococcaceæ,* to which are allied (with more intimate connection of the vcgetative generations of cells) the Oscillariex, and a part of the Palmellaceæ, \dagger to which are related the Hormidia, \ddagger with Prasiola. In all these the propagative colls agree with the vegetative in their origin, and are only distinguished from them by the circumstance of becoming free at last, while the vegetative cells of all or at least of several immediately succeeding generations remain combined

[^87]in families, either loosely (by thin or gelatinous enveloping membranes), or more firmly (by tougher cell-eoats). The second case, in whieh the reproductive cells show important differences from the vegctative gencrations, is represcnted by a few Palmellaceæ with swarming transitional generations, and by the Diatomacer. In the former the reproductive cclls originatc, like their predecessors, by division, but they soon assume a pcculiar form and, furnished with cilia, break through the enveloping mombranc of the old family to commonce the vegetative cycle anew, after a short period of motion; * in the latter, the Diatomacco, the transitional generation is formed in a way essentially dificerent from the preceding divisiongenerations, for two cells beeome connccted by simple or double eonjugation, and, form one or two reproductive cells by the combination of their contents at the point of conncetion ; these reproduetive eclls are originally globular and altogether unlike the very peculiarly shaped vegetative cells of this family, but, by an uninterrupted growth, soon acquirc the shape of the parent-cells, from which the first gencration of the new cycle originating in this way is distinguished mercly by greater sizc. \dagger

[^88]In the cases hitherto examined we could observe, in the series of successive generations of cells, only one different from the rest, the transitional gencration, which is at once the last of the old and the first of the new cycle of generations. In the Desmidiacer, the Zygnemacear, and in Palmoglaa, the transitional generation is divided into a double one, since the last generation does not pass directly into the first, but the first generation of the succeeding cycle is produced, as a new structure, in the germination; so that we have here to distinguish three kinds of generation of cells,-the commencing generation, the concluding generation, and the intermediate vegetative generations. In the Desmidiaceæ, after a long series of vegetative generations of cells, which sometimes remain connected in rows (Desmidium, Didymoprium, Hyalotleca), sometimes vegetate as completely separate cells (Micrasterias, Euastrum, Closterium, \&c.), therc occurs a conjugation of two cells and union of their contents in the point of comnection, whence is formed one,* or, more rarely (by double conjugation), two \dagger reproductivc cells, wholly different from the prcceding vegetative generations in the form and aspect of the cclls. They are always globular' and thick-coated, sometimes smooth, \ddagger sometimes rough, like the ancient spiked mace-heads, with simple or manypointed, forked or hooked spines; $\$$ and they do not pass, like the swarming-cells of the Palmellaceæ and the reproductive cells of the Diatomacer, directly and by unintcrrupted growth into the primary generation of the now vegetative scries, but persist for a long time in a condition of rest, during which, excepting as regards

[^89]imperceptible internal processes, they remain wholly unchanged.

To distinguish these from the direct germ-cells (gonidia), I shall call them seed-cells (spores).* The development of these spores has not yet been observed, but it may be assumed as certain that they do not pass, as such, into the primary generation, but produce this at the period of germination by an internal transformation of their contents, and bring these to light as a new generation, with a dehiseence of the old envelope. Certain early conditions observed in Closterium and Euastrum, namely, families of unusually small individuals, enelosed in transparent, eolourless vesicles, \dagger render it even probable that in certain gencra of this family, a number of individuals are produced from one spore, by a formation of transitory generations oecurring already within the spore. 'The enclosing vesicle is probably the dissolved and swollen-up internal cell-eoat of the spore, which holds the young individuals combined for some time after the outer eoat of the spore has been thrown off. 'The behaviour of the spores of the family of the Zygnemaceæ, Which appears to be closely allied to that of the Desmidiaceæ, confirms the eonjecture as to the development of the spores of the latter. I'lie filaments of the Zygnemacce are composed, like those of the Desmidiaecæ with conneeted cell-gencrations, merely of one kind of vegetative cells, which inerease by repeated halving. \ddagger The last

[^90]cells originating in this way are ordinarily shorter than those of the earlier generations, and enter into conjugation* in the well-known way, subject to many modifications. Through the union of the contents of the two conjugated cells, is formed, either in one of the two cells, or' in the link connecting them, a globular or longish smooth spore, clothed with a multiple coat, from which the young plant is developed after a lung stage of rest. In Spirogyra the coats of the seed-cell (spore) are thus torn, -first the outer, thimer, water-clear coat, next the inner, thicker, yellowish spore-coat is stripped off, and the contents, transformed into the germ-cell and clothed with a new coat, emerge in the form of a spindle-sliaped body, having both ends of like character, \dagger which bears great resemblance to the solitarily living cells of the Desmidiaceous genus Spirotania. \ddagger But the observations of 'Thwaites, who saw the contents of the ripe spore separate into four portions in certain Zygnemaceæ, particularly Mesocarpus and Staurocarpus, § testify that a formation of several germ-cells or young plants in one spore may occur in this family.

Essentially different from the conditions of the Desmidiaceæ and Zygnemaceæ is the propagation of Palmoglaa, a genus which has hitherto been reckoned anong the Palmellacere, to which, although the occurrence of a conjugation of the cells might incline one to the opposite view, it is certainly more intimately related

[^91]than to the Desmidiacex. While, in the Desmidiacere and Zygnemaeex, the last generation of vegetative cells produces the seed-cells (spores) as a new generation, since the latter shape themselves out free in the interior of the eonjugated parent-cells, through the loosening of the contents of the latter from the walls,--in Palmoglea the last vegetative gencration passes directiy into the formation of seed-eells (spores), since the cells combining in pairs by conjugation, enter into perfect mion, i. e., not merely mix their eontents in a new strueture, but merge or flow one into another entirely (coat and contents) like two drops of water. The large seed-eells (spores) originating in this way gradually aequire a thiek coat and oily contents, passing into a summer-sleep, overlasting the hot and dry season, till, with the recurrence of the cold damp season, the contents become metamorphosed and divided, while the coat of the seedcell swells up and dissolves into jelly. 'Thus the primary vegetative generation is produced as a new generation out of the seed-cell, the contents first formed by blending, dividing again, and becoming freed from the coat of the mother-eell.*

So far as we have hitherto examined the differentiation connected with the suecession of generations of the cells, we have found solely like cells within each generation; we have secu, moreover, all the terminal links of the multiplied series attain the conelusion of the cyele (as fructifieation-eells) in the same way, aceidental execptions being of course excluded. The further complications arise not only from a greater difference presenting itself in the successive gencrations, but from the eells of the same generation also exhibiting different characters. 'I'le latter, again, may happen in two ways: cither two dauglter-cells originating in one and the same mothercell (therefore two sister-eclls) are unlike each other, or the daughter-cells of distinet mother-cells belonging to

[^92]the same generation (that is the first-cousin-cells) differ from each other. The first condition is of especial importance in regard to the development of the organic differences in vegetative structurc, since on it depends the apical growth and the ramification of many-celled plants; on the latter depends, among other things, a duplicity of fructification, occurring even in the lowest groups of the Vegetable kingdom, and which we shall liere, in the first place, briefly cxamine. Numerous Algæ produce two (or sometimes even three) kinds of reproductive cells, either two kinds of moving or motionless gonidia, or gonidia and spores, or, lastly, two kinds of spores, which last can also occur in the higher groups of the Cryptogamia. Probably this phenomenon is more generally diffused among the Algæ than can be accurately demonstrated at present ; therefore when I mention many doubtful cases here, it is with the express purpose of directing attention to an object deserving of further investigation.

Among the examples of plants with two kinds of moving germ-cells, large (macrogonidia) and small (microgonidia) the Water-net (Hydrodictyon) alrcady mentioned above, is especially worthy of mention. The unicellular individuals of this Alga, hitherto incorrectly arranged with the Zygnemaceæ,* ${ }^{*}$ are united in their earliest stages into a colony, forming a bag-shaped net. All the cclls of such a net are sister-cells, for they all originate in one and the samc mother-cell, but they do not all behave alike when fructification commences. In certain cells are formed somewhat larger and less numerous gonidia (according to the size of the mother-ccll, 7000 to 20,000), in other cells of the same net sonicwhat smaller and more numerous gonidia (30,000 to 100,000). Only the former (the macrogonidia) formanew net, which they do after a short tremulous movement (lasting about half an hour'), without lcaving the mother-cell, by uniting together into a daughter-nct, which is gradually set frec by the solution of

[^93]the coat of the mother-cell. The microgonidia, on the other hand, distinguished not only by their smaller size but by a longer shape, a small parietal red vesiele and four long eilia (whieh appear to be very short in the net forming macrogonidia), swarm out from the bursting mother-cells, move about very actively, often for the space of three hours, and after coming to rest, beeome green Protococcus-like globules, which vegetate for some time and at length die away without any further propagation. Thus we see here formed in previously indistinguishable sister-cells of the same net, brood-eells of two kinds, which are both direet germ-cells or gonidia, but are developed one into a fertile generation, the other into a sterile generation fated to destruction ; both aetive, but in different degrees, one, moving for a short time, forming a net, the others, "swarmers," never reunited into a colony.* 'I'wo kinds of aetive germ-eells, (maerogonidia and microgonidia, oecur also in Chlamidococcus pluvialis (Ilematococcus pluvialis, Flotow \dagger) a plant allied to Chlamidomonas and the Volvoeinex, into the complicated history of which, however, I eannot enter further here, lest I should be led away too far into the debateable ground between the Animal and Vegetable kingdoms. Another example, belonging to the group of the filiform and branehed fresl-water Algax, is furnished by Draparnaldia, from whieh Stigeoclonium is searcely generically distinct. Draparnaldia mutabilis, the numerous speeies of Stigeoclonium, as well as the very nearly related Chectoploree, are among those plants in which the formation and birth of active germ-eells may be most easily observed, and indeed have very frequently been

[^94]examined.* In the three genera named there is formed, in each cell of the branches, after their last vegetative division, an active germ-cell, which, furnished with four cilia and a parietal red vesicle, breaks through the side of the cell-wall in swarming out. In Stigeoclonium protensum, K. (?), however, I have found, towards the end of the period in which this plant appears, a modification of the mode of formation of the active gonidia, in which each cell gave birth not to one, but (by perpendicular division of the contents) two to four smaller, more roundish swarmers ; as to the germinative powers of which, however, I have no experience. In Draparnaldia mutabitis, also, I observed an analogous formation of microgonidia, not produced by perpendicular, but by further contimued horizontal division of the cells. Nägeli \dagger meutions an observation on Melosira varians, according to which the parietal colour-vesicles of this Diatomacean sometimes become detached, and move in the manner of swarm-cells, which might indicate an occurrence of active microgonidia, together with the abovedescribed formation of larger, notionless germ-cells. Many examples may be cited of the conjoined occurrence of gonidia and true spores; many of these, however, still require more accurate investigation. In the family just named, the Diatomacer, certain genera seem to exhibit, as a second mode of reproduction, a formation of sced-cells with numerous young individuals, such as we have assumed above of Closterium; so also Schizonema and Micromega. \ddagger In the Desmidiaceæ, on the contrary, a

[^95]formation of gonidia seems to oeeur sometimes together with the spore-formation, and this in a double way. The formation of numerous small swarmers in unconjugated eells is mentioned by Ralfs as a not uncommon phenomenon, but in so indistinet a way, that we eannot form a satisfactory idea of it.*

The aetive corpuseles found by Ehrenberg in a Closterium, whieh lie deseribed as monad-like Infusorial animaleules, under the name of Bodo viridis, \dagger might be referred here.

Aceording to Morren, \ddagger there is a totally different proeess in Closterium Lunula, where, through conjugation of two individuals, a single large aetive germ-eell is formed, whieh eommenees a revolving movement in the comeeting eanal of the parent-eell, already inside the eoats, then leaves the torn coats, and, after swarming from ten to twenty minutes, sinks down and immediately germinates, i.e., beeomes elongated and returns to the form of the old Closterium.

If these statements of Morren are correet, there oceurs in the Closteria a double elaraeter of the reproductive cells formed through eonjugation, these sometimes appearing as direet germ-eells (gonidia), and sometimes as true seedcells, it being meertain whether the two eases oceur in one and the same speeies, or separately in different speeies. § The two-fold fruetifieation of Vaucheria has been spoken of already above (p. 128) ; it follows also, from the observations of J. Agardh, \| that large spores are formed in addition to the small gonidia in Bryopsis. Moreover, the simultancous oceurrence of gonidia and spores is beyond doubt, in the large genus Eddogonium

[^96]and the allied genus Bulbochate, in which particular cells, in Edogonium those of the unbranched filament, in Bulbochcote those of the branches, swell up and produce within a motionless seed-cell, acquiring a special membrane, often quite removed from the membrane of the mother-cell, and destined to a long stage of sleep, while the contents of the rest of the cells, when otherwise sufficiently abundant in quantity, become converted into an active germ-cell, bearing a crown of. numerous cilia. In Eddogonium the birth of the swarming-cell takes place through a transverse dehiscence of the parent-cell at the anterior end; in Bulbochate by disarticulation of the small cell bearing the bristle, and rupture of the wall separating it from that of the large cell.* Certain species of Edogonium (GE echinospermum and apophysatum) are especially remarkable, since they produce, in addition, two kinds of swarming cells, macrogonidia and microgonidia, the latter of which originate in special, very short cells, arranged mostly in groups between the larger cells. The macrogonidia germinate as soon as they come to rest, and grow up into normal filaments; but the microgonidia, although they germinate, produce only two-celled dwarfs, which die away without developing any further. The genus Coleochicete \dagger affords another example of the united occurrence of gonidia and spores. Individual terminal cells of this genus are developed into

[^97]sporangia, in whieh several resting spores are formed by division of the coat lining the wall, while the contents of the rest of the cells are frequently converted into a gonidium, whieh in C. scutata breaks through the upper wall of the eell, and in C. pulvinata enterges laterally, to swarm. The gonidia of this genus appear to possess only two eilia. In the marine Algæ of the genera Mesogloa** and Myrionema, a double, in Ectocarpus \dagger a triple, fruetification has been observed; but it is very doubtful whether large resting spores ocemr in these genera, besides aetive gonidia, sinee Nägeli has pointed out that in Ectocurpus the contents divide into numerous small germ-cells, not only in the roundish apieal cells of the branehes, but in the longish, many-eelled points of the branehes, and in the expanding artieulation cells of the stem. On the other hand, in the Fueoidex, (in the strictest sense,) the oeeurrenee of large resting-eells, together with very small swarming-cells, regarded by Deeaisne and Thuret \ddagger as spermatozoids, is beyond donbt. Both kinds of fructifieation are formed, in the Fucoidere, in the terminal eells of the jointed filaments which clothe the interior of the fruetification eavities. The extremely small gonidia are of pale colour, and have a parietal red point. According to the authors eited, they exhibit two extremely delieate filaments, one in front vibratile, the other, behind, said to be passively swayed about. § The

* Kützing, 'Plyye. gencralis,' t. xxvii, 1.
\dagger Vide Crouan ('Amı. des Sc. nat.,' 1839, p. 24.8, t. v) ; and Nägeli, 'Algensystcme,' p. 145, t. ii, f. 1-6. (Alsc Thuret, 'Amn. des Sc. nat.,' 3 ser., xiv, p. 25, pl. 24.-A. H.)
\ddagger Decaisnc et 'Thuret, 'Recherclics sur les Antheridics et spores des Fucus,' ('Ann. des Sc. nat. i, iii, 1845,) t. i-ii.
§ The position of the cilia is thus importantly different from that usual in the active gonidia of the fresh-water Algæ; on the other hand, the swarmingcells of the Fucoidex do not agree at all in form with the spermatozoids such as we are aequainted with in the Characex, Mosses, and Ferns. Whether, like the spermatozoids, they are formed in special, minute cellutes, or originate by simple division of the contents of the large parent cells, is unfortunately unknown. The character of the contents of the "swarmers" of the Iucoidex renders it unlikely that they possess the power of germinating, but it cannot be deduced from this that they have a fertilising action.
larger spores, on the contrary, exhibit a strong membrane and dark olive-brown contents. After they are sown the membrane swells up, and the contents become divided, at least in some genera of the Fucoideæ, into two, four, or eight parts, which pass at oncc into germination, a process which reminds us of the above-described behaviour of the spores of the Closteria and certain Zygnemaceæ. As a last example of the occurrence of double fructification in the group of Algæ, I mention Chantransia. The ordinary, long-known fructification of this genus consists of globular, very thin coated germcells, laving a central rose-coloured vesicle in the light verdigris green contents, which germ-cells are formed separately in the terminal cells of the tufted lateral branchlets, and are set free by the rupture of the parentcells. They have no independent motion, but probably germinate directly after they are discharged; on this point, however, we have no certain observations. In the same plant, and indeed on the same "stocks" and branches, there occurs more rarely a second kind of fructification,* in which the cells forming the links of the branches swell strongly at the side, and form a large thick-coated spore in the protruberance, which becomes shut off as a distinct cell.

Chantransia therefore exhibits two kinds of motionless reproductive cells, the smaller of which are probably immediately-germinating gonidia, the larger resting

[^98]spores. Two kinds of thick-coated and resting spores, macrospores and mierospores, which are both found in the same way, in fours in mother-cells, oceur, lastly, in many Lyeopodiaceæ, , in the allied genus Isoëtes, \dagger and in the genera of the Rhizocarpeæ, Marsilia, Pilularia, and Salvinia. In the examples last named we have advanced very far beyond the original simplieity of the vegetable structure whieh we had before us in the first examples; they only admit of eitation here, in so far that they likewise exhibit essentially similar generative scries of mothereells, and finally go out into distinetion of fruetifieation eells. \ddagger

In the higher groups of the Vegetable kingdom, the differenee of the fruetifieation-eells is preeeded by a still more important difference of the vegetative generations of eclls. The distinetly qualitatively differeneed reproductive cells (fertilizing-cells and germ-cells) form the conelusion not of similar, but of unlike series of generations of eells, and, moreover, not of all, but only of ecrtain series of generations, while a still greater number of series attain their purpose and destination within the vegetative organism, without arriving at fruetifieation in the last generation. While in the lowest plants, all vegetative eells, as mere repetitions of the same thing, belong to one rank, in the higher the eells divide, in the eourse of the generations, into different ranks, by whieh the organism is eompleted on a different side, and through which is eaused a more neeessary coherence and more intimate combination than

[^99]we liave seen in the lower stages, where each cell strives to vegetatc for itself alone. The development of different ranks of cells, with which is connected the realisation of the organic diffcrences in the vegetative sphere, in the higher plants, is chiefly attained by the above-mentioned production of daughter-cells of different kinds in one and the same mother-cell, therefore by differing sister-cells. We will examine this condition in a few examples of the simplest kind, so as to indicate the path by which nature advances in the production of the multiplicity of cellformation of one and the same plant.

We mect with the first separation of vegetative permanent cells from series of generations terminating in reproductive cells, in the Nostoc-like Algæ. The necklace-like filaments of Nostoc, composed of a row of cells, exhibit at one or both ends, as also here and there in the course of the filament, particular cells distinguished from the rest by size, regular rounding, thick membrane, and pale, homogeneons contents; while the remaining, smaller, thin-coated cells, filled with darker and often granular contents, continue to multiply in rapid succession by division, until they finally, in the last generation, fall apart as germ-cells, exhibiting no perceptible difference from the prcceding generations. The large terminal and interstitial cells just named remain almost unchanged, neither undergoing further vegetative division, nor taking part in the propagation.*

The origin of these peculiar boundary-cclls can only take place by ccrtain of the cells dividing into two unlike daughter-cclls, onc of which becomes a vegetative permanent cell, the other a mother-ccll of a series of uniform generations of cells, tcrminating in fructification. It is probable that the very first ccll (the germ-cell) divides in this way into two unlike cells, \dagger and then, when a filament

[^100]has been formed, this must be repeated, but in the reverse direction, by the cell at the opposite cnd, as well as by certain others lying in the midst of the filament. This first division into two unlike cells may be regarded as the rudiment of an apical growth, which, however, is arrested at the first step, since, after the production of a single cell of the sccond ordcr, the further division of the cell of the first order of the second degrec (the apical cell), produces mercly cells of the first order. Anabaina (to which may be added Sphcerozyga and Sypermosira*) and Cylindrospermm are distinguished from N^{\top} ostoc by the occmrence not merely of two, but of threc modifications of cells, since the cells multiplying by continued division (the cells of the first order) do not all behave alike in the last, generation, but partly expand into larger, thick-coated seed-cells, doubtless destined to a long period of rest, and partly remain small and thin-coated, and then perhaps perform the function of a second kind of reproductive cells, corresponding to the more gonidiumlike germ-cells of Nostoc, but, perhaps, at least in many cases, die away as sterile cells, when the filament breaks up. In Anabaina several of the intermediate cells of each section are developed into the larger seed-cells; in Cylindrospermum the lateral cells immediately bounding the temimal or interstitial cells.

I'he filaments of the Nostochineæ exhibit, otherwise, no pereeptible contrast at the two extremities, and their intertwined and irregular position admits of no distinction into an upper and lower end. \dagger In the group of the Scytonemex and Rivulariex (excluding the Mastichotricheæ) a contrast of this kind is distinctly present, but still without any root-like formation of the lower end,

[^101]which is formed by a vegetative permanent-cell, like the boundary cell of Nostoc. In Tolpothrix and Schizosiphon several such vegetative permanent,-cells frequently occur at the base of the filament, and in these very genera, as in Scytonema and Euactis, the formation of them is repeated at intervals in the course of the filament, where they appear as interstitial cells, which by subsequent parting of the filament, and the lower part overgrowing the upper, bccome basilar-cells of seeming branches. In the Scytonemeæ, the filaments are of pretty uniform structure throughout the whole length, but in the Rivularieæ they run out above into a more slender capillary point or flagellum. It is not yet made out whether the distinction of the upper and lower end of the filament of the Algæ of this group is caused by an apical growth continued on beyond the formation of the first basilar cells, but this much is ccrtain, that the cells of the filaments multiply, in their further growth, as in the Nostochineæ, by repeated halving, which, however, does not terminate simultaneously in all parts of the filament, but continues longer in some parts than in others. In the Scytonemer it is carried on farther in the points (not mercly of the entire filaments, but also in the individual sections).* In the Rivulariaceous genera Mastichothrix, Mastichonema, Rivularia, \&c., in the lower; in Eluactis, in the intermediate parts. With this is associated a distinetion of the cells belonging to the different parts of the filament, becoming continually more evident with the progress of the division, and espceially marked in the last generation. In the Scytonemer the cclls pass into germ-cells, in the last gencration, mostly only at the upper part of the filament ; in Euactis only in the intermediate; in Mastichothrix and Mastichonema only in the lower, and thicker, not in the upper capillary portions; in Rivularia, lastly, the eclls of the lower thicker part cxhibit another diffcrence, for the

[^102]lowermost (adjoining the basilar permanent-cell) becomes a large cylindrical, thick-coated seed-cell, as in Cylindrospermum, while the following shortcr cells, richer in contents, are perhaps to be regarded as a sccond kind of germ-cell.*

From these examples of less decided and often still unsettled contrast of growth in the rows of cells chained together into filamonts, let us direct our attention to certain others, in which the contrast of ascending and descending growth becomes more evident, on the one side by distinct root-formation, on the other by undoubted terminal development of the row of cells (cell-forming apical growtli). This condition is cxhibited in the simplest way, namely, by a filancut-stem always single, in Ulothrix and Cidogonium, two genera, otlierwise very different, which receut Algology lias extracted from the carlicr chaos of Confervec. Ulothrix zonata \dagger has active germ-cells, of which S-16, or in weaker parts of the filament sometimes only four are formed in one mothercell. These arc of longrish-ovate form, having four very fine cilia at the anterior pale extremity, and a red vesicle elongated in the transverse direction in the interior, lying at the side, about the middle. After swarming for at most two liours, these germ-cells come to rest, and immediately germinate. The cell then becomes elongated in two opposite directions, growing out in one, into a slender, lyyaline, simple (or bifureated at the point) fixingroot; at the other, cxtending cylindrically, and forming the commencement of a green filament-stem. Usually on the second day the first cell divides into two, about in the middle of the upper green cnd, and thus are produced a lower root-bearing end, dividing no farther, and an upper end which, after growing to not quite twice its

[^103]original length, separates again into a posterior longer, and an anterior shorter, cell; which latter repeats the same process, and so on. Thus, by a continually repeated division of the apical cell into two unlike cells, is formed a series of cells of a second order, the link-cells of the filament, the first of which is at the same time the rootcell. The filaments of Ulollurix zonata, once formed, grow no more in thickness, but gradually increase in diameter, from the base to the summit, in such a manner that the anterior parts often appear thrice or four times the dianteter of the posterior, lying nearer the root.* 'Ilie root-cell, as well as those next succeeding it, remain unaltered and are infertile; the following link-cells, on the contrary, after they have attained a length about twice their diameter, divide into two equivalent cells, consequently into cells of the second generation of the second order, whereby, since no further elongation takes place, cells are produced of aliout cqual length and breadth. Still farther forward, therefore in the thicker part of the filament, this division is repeated ouce or twice more, so as to give, rise to cells of the third or fourth generation of the second order, the length of which is only $\frac{1}{2}$ or $\frac{1}{4}$ their diameter. Finally, in the cells of the last generation of the second order, the germ-cells are produced by division of the contents alternately in the three directions of space. \dagger The filaments of Cilogonium, in their earlier development, follow the same course as those of Ulothrix zonata, but differ in the subsequent subordinate division of the original link-cells, since these do not divide into equivalent cells, but into unlike cells, forming series of link-cells of the second degree, which is moreover accompanied by a longitudinal extension of the subordinate link-cells. The lowest link-cell, which expands at the base into a discoid, often elongately lobed root-foot, and is always of

[^104]greater diameter, and more bellied out than the sueceeding, is the only one whieh divides no more, and constantly remains sterile. The resting spores of this genus are formed in the swollen end-eells of the subordinate rows of links.*

The Ramification, like the apieal growth, of the manyeelled Algæ, depends upon a division of the cell into two unlike parts, onc of whiel retains the charaeter of the mother-cell, and the other deviates; while, however, in apieal growth the differing eell belongs to a higher order of cells, in ramification the differing cell returns, on the contrary, to a lower order, sinee it becomes a cell of the first degree of the first order, that is, the primary eell of a new series of generations.

Ramifieation is cxhibited in its simplest form in Sirosiphon (IIassullia) and Itaplosiphon. \dagger Particular cells of the rows whieh form the filament-stem of these Algo, divide in the perpendienlar direction into two unlike cells, one of which, mostly larger, remains as a link-cell of the prineipal filument, while the other, elongating in the horizontal direction, emerges from the stem as a new axis, and then divides again, at right angles to the new axes, in to two mulike cells, -a new apical cell, and a first link-cell of the branch. The further development of the branch takes place, as in the prineipal axis, by repeated division of the apieal eell, which is followed subsequently by a division of the link-cells. The ramifieation proceeds in a different way in the Cludophora (the branched Conferve of the older authors), in whieh the branches, solitary, or sometimes opposed in pairs, sprout forth from the upper margin of the link-eell, where a bagging out, as it were a new laterally projeeting apex of the cell, is first formed, which, by division of the thus cnlarged eell into the old and new parts, becomes the first cell of the branch.

[^105]The ramification in Chantransia, Bulbocheote, Chetophora, and Colcochete pulvinata, exhibits similar characters. In the last two examples there occurs, in addition, a descending ramification from the lower margin of the link-cells ; so that, in many cases, an ascending branch springs from the upper border, and a descending branch from the lower border of the same cell. With the exception of the reversc direction, the mode of origin of these desceuding root-, or rather stolon-like branches, is the same as that of the ascending.

A further scries of very varied organic differences next arises in the relations of the cell-formation of the branches to the cell-formation of the stem. If the cell-formation in the branches is limited, and the branches fall short considerably in size of the stem, they admit of comparison with leaves. Thus, for example, in Draparnaldia, in which the branches mostly arising in pairs from one cell of the stem, as well as the branchlets of the second order springing from thesc, are formed of much smaller cells than the stem, the upper, larger, forming the hyaline capillary points of the branches, while the lower and slorter, abundantly furnished with green coutents, produce within them the germ-cells. The large cclls of the stem of Draparualdia are sterile vegetative-cells; only the apex of the long stcm bchaves in the same way as the branches, and is, like them, fertile, and terminated by a capillary point. In Batrachospermum, on the contrary, the stem is unlimited in its growth, formed of a series of link.cclls, which originate through the repeated division of a dome-shaped apical cell, and undergo no furthcr tramsverse division. From the upper border of the young, still very short link-cells arise 5-6 radiatelyarranged projections, which are very early cut off, in the shape of special cells, fiom the ecutral cavity, which remains as a link-coll, and these new cells then grow out, by limited link-formation, into the small, again much ramified branches, forming the peculiar globular whorls
stem, starting from uniform* or dissimilar \dagger division in the link-eells; how, moreover, the vessels are formed in the parenelyma of the stem in the vascular plants, i.e., how their origin is conneeted with the generative suecession of the rest of the cells. \ddagger It must likewise be demonstrated how the cell-formation in the leaf, progressing aceording to fixed laws, produces the simple eellular plate, such as is exhibited by most Mosses, and the many-layered plate, with varied arrangement and direetion of the eclls in the different layers, of the higher plants; how here again the formation of the vascular bundles enters into the tissne in the most diverse distribution, and how these vascular bundles are conneeted in their origin with those of the stem. Finally, it must be demonstrated how, beyond all the generations of cells arriving at vegetative permanence and at their final term in the graduated construction of the organism and the eontrast of its organs, eertain series of generations, withdrawing themselves from the vegetative termination, finally attain their destination preparcd, proteeted, and supported by all the other scries, in the formation of reproduetive eells.

We have here stated a problem, the solution of which

[^106]still lics far away from us ; yet these observations may serve to make clear the importance of the cell as the organ of the graduated self-determination and isolation of life in all its formative movements, as the constantly renewed point of scparation in growth advancing by successive links, and to indicate how the subordinate sphere of life of the cell is the more intimately interwoven in the totality of the organism, the more the specific vital purpose separates into its factors.

Examining the individual cell more closely, we must, in the first place, observe that the term cell does not correspond exactly to that to which we especially apply it, for we understand as cells not merely the membranous vesicles or utricles which form the tissue, but also their contents; we apply the name cell not alone to the little chamber formed by the completely closed-in wall, within which the vegetable life conceals itself, but also to its living inlabitant, the more or less fluid and inwardly mobile body, which is bounded, within the chamber, by its own more delicate coat (the primordial utricle). The cell is thus a little organism, which forms its covering outside, as the muscle, the snail, or the crab does its shell. The contents enclosed by these envelopes form the essential and original part of cell, in fact must be regarded as a cell, before the covering is acquired. From the contents issues all the physiological activity of the cell, while the membrane is a product deposited outside, a sccreted structure, which only passively shares the life, forming the medium of intercourse between the interior and the external world, at once separating and combining the neighbouring cells, affording protection and solidity to the individual cell in comection with the entire tissue. Hence the development of the cell-coat, as a product of cellular activity, always stands in inverse proportion to the physiological activity of the cell. In youth, thin, soft, and extensible, the cell-coat allows abundant nutrition and advancing growth; subsequently thickened and therewith hardened by the deposit of lamellie, it
compresses the contents within continually narrower boundaries, more and more excludes intercourse with the external world, and puts a term to growth. Thus the life of the plant builds its tomb in the very cell-dies away at last in its own work.

That the origin of the cell precedes its enclosure by a cell-membrane, is shown most distinctly in those cascs in which the cell originates free, that is, without contact with the mother-cell, or where it becomes free by being expelled immediately after its production. 'Ihe last condition occurs in the swarm-cells, or active gonidia of the Alga, which so long as the motion lasts, possess no cell-mombrane separable from the contents, and must be regarded as bounded merely by the primordial utricle, which is intimately connected with the contents. It is well known that by the action of dilute acids or spirits of winc, the contents of the ecll are contracted and wholly or partially removed from the cell-membrane, which thus appears as a structure clearly separated from the contcuts. 'I'he active gonidia of Gidlogonium, Bulbochete, Ulollivia', Draparnaldia, Stigeodonium, Chatophora, Mydrodiclyon, and other genera which I have repeatedly examined in refcrence to this point, contract, when so treated, entirely, without leaving a colourless membranc at thic boundary of the original dimensions, which docs always occur after germination has commenced. Thus the gonidia of Ulothrix and Hydrodiclyon exhibited a liyaline vesicle, the contents of which were contracted on the application of tincture of iodinc, a few hours after they had come to rest, on the same day that they were born. That these gonidia possess another membranc, intimately connected with the contents (the primordial utricle), is testified by their smooth and exact outline, and further by the phenomena which present themselves in the solution frequently taking place soon after birth in weak gonidia. In such cases the cell is scen to acquire a globular form and swell up; through absorption of water, large hyaline cavities originate, displacing the contents,
except at a few points. The soon succeeding eollapse and dissolution of the eell is distinctly opposed for some time by a membranous bounding-structure. In very large gonidia, espeeially those of Vauchcria clavata, this membrane exhibits considerable thiekness, so as to be clearly distinguishable as sueh, but in this very case it shows that it possesses totally different properties from those of the cell-membrane subsequently enveloping it: while the cell-membrane, be it ever so delicate, appears tough and extensible, the primordial utricle is fornd soft and brittle, so that the slightest injury destroys its eontinuity, which, however, takes place so as to seem rather a separation or flowing apart of the substance than a tearing through.* It is this primordial utriele which bears the numerous vibratile cilia clothing the whole surface of the cell in Vauchcria, these appearing to be formed out of the substance of the coat itself and mere proeesses of it. Iodine eauses these cilia to contract to a certain extent, and acquire a brownish-yellow eolour, which eolour presents itself the more distinetly, the more abundantly and closely the eilia are collected together, as, after Vauchoria, is the ease espeeially in Cddogonium and Bulbocheete, where they form a dense erown of eilia. The body of the germ-cell aequires a deep brown eolour with tincture of iodine; the hyaline apex mostly existing in the stage of motion, as well as the primordial utricle, indistinguishable from the contents in small swarming-cells, have this colour, sometimes appearing a little lighter. This eolouring agrees with the well-known behaviour of the primordial utriele of the cells of the Phanerogamia. \dagger The eilia disappear with the commencement of the rest, and before the formation of the proper cell-membrane, not only in Vauchcria, but in all Algre where the germ-eells have a ciliary motion of short

[^107]compresses the contents within continually narrower boundaries, more and more excludes intereourse with the external world, and puts a term to growth. Thus the life of the plant builds its tomb in the very cell-dies away at last in its own work.

That the origin of the cell preeedes its enelosure by a cell-membrane, is shown most distinctly in those cases in which the cell originates free, that is, without contact with the mother-cell, or where it beeomes free by being expelled immediately after its production. The last condition oecurs in the swarm-eells, or active gonidia of the Algæ, which so long as the motion lasts, possess no cell-membrane separable from the contents, and must be regarded as bounded merely by the primordial utricle, which is intimately connected with the contents. It is well known that by the action of dilute acids or spirits of wine, the contents of the cell are contraeted and wholly or partially removed from the cell-membrane, whieh thins appears as a structure clcarly separated from the contents. The active gonidia of Cidoyonium, Bullochate, Ulollvix, Draparnaldia, Stigeoclonium, Chatophora, Iyydrodichyon, and other gencra which I have repeatedly examined in reference to this point, contraet, when so trcated, enlirely, without leaving a colouless membrane at the bomindary of the original dimensions, whieh does always oecur after germination has commeneed. Thus the gonidia of Ulothrix and Mydrodiclyon exhibited a liyaline vesiele, the contents of which were contraeted on the application of tincture of iodine, a few hours after they had come to rest, on the same day that they were born. That these gonidia possess another membrane, intimately connected with the contents (the primordial utriele), is testified by their smooth and exact outline, and further by the phenomena which present themselves in the solution frequently taking place soon after birth in weak gonidia. In such cases the eell is seen to acquire a globular form and swell up; through absorption of water, large hyaline cavities originate, displacing the contents,
except at a few points. The soon succeeding collapse and dissolution of the cell is distinctly opposed for some time by a membranous bounding-structure. In vcry large gonidia, especially those of Vaucheria clavata, this membrane exhibits considerable thickness, so as to be clearly distinguishable as such, but in this very case it shows that it possesses totally different properties from those of thic cell-membrane subsequently enveloping it: while the cell-membrane, be it ever so delicate, appears tough and extensible, the primordial utricle is foimd soft and brittle, so that the slightest injury destroys its continuity, which, however, takes place so as to seem rather a separation or flowing apart of the substance than a tearing through.* It is this primordial utricle which bears the numerous vibratile cilia clothing the whole surface of the cell in Vaucheria, these appearing to be formed out of the substance of the coat itself and mere processes of it. Iodine causes these cilia to contract to a certain extent, and acquire a brownish-ycllow colour, which colour presents itself the more distinctly, the more abundantly and closely the cilia are collected together, as, after Vaucheria, is the case especially in Edogonium and Bulbochecte, where they form a dense crown of cilia. The body of the germ-cell acquires a deep brown colour with tincture of iodine; the hyaline apex mostly existing in the stage of motion, as well as the primordial utricle, indistinguisliable from the contents in small swarming-cells, have this colour, sometimes appearing a little lighter. 'This colouring agrees with the well-known behaviour of the primordial utricle of the cells of the Phanerogamia. t 'the cilia disappcar with the commencement of the rest, and before the formation of the proper cell-membrane, not only in Vaucheria, but in all Algæ where the germ-cells have a ciliary motion of short

[^108]duration. The primordial utricle scems to retract its processes into itself, before it secretes the cellulose upon its surface. Different, and especially instructive in reference to the relation of the cilia to the internal body of the cell, is the behaviour in a series of Algoid plants, in which the eiliary motion is of lengthencd duration, and which on this account lave been hitherto ineluded among the Infusorial animalcules, namely, the Chlamidomonada and the Volvoeineæ.* In Chlamidococcus pluviatis, already mentioncd above (p. 138), the active cells, bearing cilia at the acute extremity, are borm naked, like the swarming cells of other Algre ; but within a few hours the periphery of the body exhibits a delieate, hyaline coat, which, by subsequent fluid secretion during the about threc-days-long duration of life and growth of these "swarmers," becomes removed farther and farther from the body of the cell, forming a separate membrane, as it were, a loose coat around it. 'The ciliary motion persists throughout this formation, only it gradually becomes weaker and less active, since the cell-membrane becoming gradually pushed up further from the base of the two long cilia, more and more hampers their vibratile motion. We have here, therefore, indubitable evidence that the cilia belong to the proper body of the cell and the primordial utricle bounding it, and not to the surrounding eell-membrane. \dagger Another Alga belonging to the same group, which I have called Glcococcus, produces, instead of the more solid cell-membrane, a semifluid gelatinous envelope, aromend its green body, which bears two very long cilia at its acute extremity, and these become en-

[^109]tirely absorbed into the gelatinous envelope.* In Gonium, Folvor, Pandorina, and a plant similarly formed of cight closely comnected cells, which perhaps is Kützing's Botryocystis Morum, each cell likewise possesses two cilia, which, issuing from the internal body of the cell, project through the gelatinous envelope, and set the whole family in motion by their vibrations.

The absence of a proper cell-membrane in the newborn gonidia of the Algæ is placed still further beyond doubt, when their origin and birth is closely observed. We will examine both somewhat more closely in Ulothriw and Edogonium. In Ulothrix, as above mentioned (p.149), the cells of the filament undergo many divisions, but always in the same direction, at right angles to the longitudimal axis of the filament (horizontal division). As soon as the division is completed, the contents may be separated from the newly-formed wall by acids or tincture of iodine, which proves that such a separation is

[^110]possible, when a cell-membrane is very young and delieate. With the eommencement of fructification a new law of division displays itself, namely; a suceessive division of the contents in the three directions of space, beginning with two perpendieular divisions crossing at right angles, whieh are followed by the horizontal division, and sometimes by another perpendieular division. These divisions succeed one another so rapidly, that it is seldom possible to see the first divisions without the last. Even this circumstance renders it improbable that a formation of cell-membrane takes place at once after every division, enelosing the segments ; and the phenomena oecurring at the birth of the germ-cells, whieh I shall subsequently describe, show completely the inadmissibility of such a supposition. By progressive division, first two, then four, then eight, and finally sixteen eells originate, in the way described, in the individual link-eell. If each division were immediately followed by a secretion of cell-mennbrane, the origimally simple chamber of the mother-coll must become divided, suceessively, into two, four, eight, and sixteen chambers, the soft plates of eell-membrane of the newly-formed walls, sinee they would immediately tonel, must grow together, and the last parts (the germcells) produced by the process of division would thus be placed in a framework formed of a four-fold enclosure, and solidified by the cohesion of the vesieles paeked one inside another. Not the slightest trace of such an apparatus of ehambers ean be seen at the birth of the germ-cells. If, then, the separate divisions of the contents are, nevertheless, followed by formation of cell-membrane, the entire series of special parent-eells must, in the few hours in which division and birth takes place, not only be formed, but also immediately re-absorbed, an assumption which here, as in other eases of transitory eellformation,* would appear altogether arbitrary, and

[^111]unsupported by any observations. The birth of the germ-cclls of Ulothrix zonata takes place in the following way:-'Ihe mother-cell opens laterally by the tearing of the cell-membrane ; the innermost delicate layer of the membrane of the mother-cell does not share in this rent, but, swelling and expanding by absorbing water, and loosened by this expansion from the onter membranes of the mother-ccll, it protrudes in the form of a sac. Only rarely does this sac tear during its protrusion, and let out the germ-cells singly: in most cases it by degrees emerges entire, and, as a globular vesicle, still holds the germ-cells, alrcady actively moving, imprisoned for some time in its interior. Finally the sac bursts, and the germ-cells separate rapidly in all directions. Even after the emptying it may be still detected as a dclicatc water-clear vesicle, withont the slightest trace of secondary mother-cell membranes in the interior. Sometimes miscarriages occur, demonstrating the absence of the latter still more absolutely. It happens, namely, sometimes, that the germ-cells do not become detached from the mother-cell vesicle, but remain coherent with it. Such vesicles are born like the others; the included germcells become separated from one another by the expansion of the vesicle, without being able to leave its walls. In these cascs, again, no trace of interposed membranes can be seen. I have observed a very similar process, without, however, a tearing of the vesicle, in which indeed the active germ-cells combine into a regularly-arranged colony, in Pediastrum.*

In (Edogonium \dagger only a single germ-cell is formed in
envelupe is formed, often alternating with more delicate membranous lamelle, in which, thercfore, the omission of the formation of these envelopes is very striking. Sec, as an example, the figure of Glacocystis vesiculosa in Nägcli's 'Einzclliger Algen,' t.iv, F. 'I'he multiplication takes place through simple or double halving, i. c. vegetative development and formation commences sometimes dircetly after the first division into two, sometimes after the second; the two transitory cells first formed produciug no membranc. The first ease is represented in fig. n, the last in figs. o and f of the plate cited.

* Vide phates iii and iv, and the detailed deseription in the dppendix
\dagger (Sce 'I'hurct, 'Am. des Sc. mat.,' 3 ser., xiv, 17, pl. xix.-A. II.)
each eell of the filament. The birth of these is effected by an extremely regular bursting of the parent-cell in the direction of a transverse ammlar fold, oêcurring near the anterior end of the cell, so that the eell opens as it were by a lid, the detached upper portion often remaining fixed at one side, and opening only laterally, the result of which is of eourse a knee-like bending, when the opening eell lies in the middle of the filament. The eell-contents previonsly lying elosely applied upon the cell-wall, and merely betraying the impending birth by their darker colour, are then very gradually extruded through the opening of the box-like eell, exhibiting, even during the movement, at the posterior end lifted up from the bottom of the cell, a brighter spot, which after the birth becomes more distinctly developed as the nipple-shaped, hyaline apex, bearing the wreath of eilia. During the birth the germ-eell is here also preeeded by an extremely delieate vesicle, which gradually expands into a large sae, the posterior end of which, however, never leaves the mother-eell. 'This sae is often not torn through for several minutes, but then it sets free the swarm-cell, already revolving while inside, which darts away from it like an arrow. The vesicle is here neither more nor less than the innermost layer of the mother-cell, still soft, taking no share in the dehiscence of the mother-eell, and expanding by the absorption of water. It is coloured distinetly blue by the applieation of tineture of iodine, even without previous treatment with sulphurie acid. That the germ-cell set free from its prison in the manner deseribed, does not yet possess a eell-membrane, but represents merely the mass of eontents of the mothereell, is testified, as in Vaucheria, by its want of cohesion. I onee saw, in Edogonium apoplysatum a small torn-off pieee of the cell-contents left behind and assume the shape of a separate globule, which did not arrive at birtl and movement, but remained in the cell. Probably the original cause of the tearing in this case was a slight adhesion of the cell-contents to the eell-walls, at a small
point in the hinder part of the cell. In Vaucheria clavata I have often seen a separation of the germ-cell into two about equal portions, through a constriction* occurring during the birth between the anterior, already born, and the posterior portion still jammed in the elastically contracting mother-cell (the club). I observed a similar case in Stigeoclonium subspinosum. A germ-cell half born, i.e., protruded through the lateral opening of the mothercell, became constricted by the contraction of the small orifice of the elastic mother-cell, in such a way that the posterior portion could no longer penetrate. The part which had emerged, bearing the cilia, acquired a tremulous motion, which became the stronger the more the constriction cut it off from the posterior imprisoned portion, till at length it hung only by a fine thread. Finally, the born portion broke loose and hurried away, while the unborn piece remained behind in the mothercell. The entire process lasted some minutes. \dagger

That the formation of the cell-membrane does not take place until after the cell is separately constituted, is further shown by all those cases in which the formation of new cells takes place freely and without contact with the membrane of the mother-cell. In the formation of the resting seed-cells of Eidogonium we see the thickish cellcontents, composed of greenish coloured mucilage, mixed

[^112]with ehlorophyll and stareh vesicles, which, in the earlier vegetative period of the cell, form a lining of the wall, retreat from this membrane, and present themselves as a new, everywhere free eell destined for reproduction. The cell-body thus detaehed from the walls, appearing in a new form, with a new vital direetion, presents itself with regular form and boundaries, before a trace of the cell-membrane subsequently elothing it is visible. It mostly assumes a perfeetly globular form, even when the mother-eell is longish ;* in this first period of formation its surface appears somewhat uncven from the projection of chloroplyyll-vesieles; the whole internal eavity is filled up, and of deep green colour. Very slowly and gradually there appears, first a simple, afterward a double, and sometimes even a triple-layered membrane upon the surface, while the ehlorophyll and starch formations in the contents progressively vanish, and give place to reddislo oil-drops, which at length oeeupy nearly the whole cavity, and give the sced-cell a brownishred, sometimes cyen a red-lead coloured appearanee. 'The seed-eells of the Zyynnemacece originate in the same way as those of Cidogonium, with the single distinction that in the former the contents of two ehanbers beeome united to form one seed-ecll. \dagger 'The formation of the cell-membrane, succeeding the slaping out and limitation of the cell, as a seeondary phenomenon, may be well observed also in Sphlaroplea. \ddagger The links of this Conferva are of musual length, $10-20$ times as long as broad. The distribution of the contents is extremely elegant, and allows, in some measure, of a comparison with that in Spirogyra, with this differenee, however, that the chlorophyll forms, not spiral, but annular bands, 20 or 30

[^113]of which girdle the internal cavity as green zones, in cach cell. In the median line of thesc zones are formd, as in the spiral bands of Spirogyra, starch-vesicles, from five to seven in each ring; the surface of the rings, moreover, appears spotted with very finc granules, and the margins irregularly denticulated. The outcr surface of the zones lies flat upon the cell-wall, the inner surface projects with a strong "keel" into the cavity. The whole series of zones are connected together by a delicate, colourless, mucilaginous layer or primordial membrane, which lincs the whole of the internal surface of the cell-membrane, and which is traversed by extremely delicate lines and hranched and anastomosing green longitudinal streaks issuing from the teeth of the zones. But the strangest peculiarity of the conformation of the cell-contents of Sphicroplea lies in the chambering which occurs in then. Each zone supports a delicate, colourless diaphragm, arising from the ammular keel or ridge, and stretched across the cavity of the cell. These septa, which convert the cavity of the cell into a many-chambered tubc, have no association at all with the external cell-membrane, they are merely connected with the mucilaginous layer, and formed of the same substance as this. I have had no opportunity of tracing the origin of these chambers, as I havc never been able to find Spliceroplea in a sufficicntly young state ; but it can scarcely be doubted that their presence and arrangement is to be explained by the production of a row of water-bubbles in the originally hoinogencous contents (protoplasm) of the cell, which idea is borne out by the not unfrequent occurrence of larger and smaller intermediate vesicles lying in the zoncs themselves. The whole of this artfully arranged structure of cell-contents collapses as soon as the fructification commences. First the zoncs become somewhat detached from the cell-membranc, so that the internal tube appears constricted by bands and articulated ; then the primordial utricle, with the septa, vanishes altogether, the green zoncs
beeome broken up irregularly; we see them fall in, tear up, and separate into little amorphous masses. From this solution the eontents soon gather up into a new strueture; the irregular green pieees beeome rounded, and take the shape of regular, aeeurately defined globules, of which two or three times as many are produced in eaeh parentcell, as there were previously ehlorophyll zones present in it. In the first period after their origin, these balls, developing into seed-eells, exhibit a weak vibratory or revolving motion, but they soon come to rest, and become enelosed in a smooth, colourless cell-membrane, whieh, however, is shortly afterwards peeled off again, and replaeed by a seeond, rough and papillose eell-membrane of eonsiderable thiekness.* The originally green eolour of the contents is gradually ehanged into a brownish, brownish-violet or, in other speeies, bright red-lead eolour.

Nägeli has observed in Bryopsis Balbisiana and other Algæ, \dagger an abnormal formation of free eells out of the broken-up eell-eontents of old cells, not unlike the normal formation of the seed-eells of Spliceroplea; these observations also confirm the secondary formation of the cellmembrane on the surfaee of portions of contents already individualised, i.e. shaped out into eells. With the lastnamed phenomena may be assoeiated the processes of reorganisation, also observed by Nägeli, in injured and partially deeaying eells, \ddagger whieh show that the surfaee of eontents retraeted from the cell-membrane by partial disturbanee, elothes itself anew with membranc by continuous seeretion of eellulose, and indeed that the healthy portion of the cell-contents has the power of eutting itself

[^114]off from the decay commencing in another part, by a sharp line of demarcation, and of coating this boundary with cell-membrane.

The constitution and defined material isolation of the cell before the formation of the cell-membrane, has been observed in the free formation of the germ-cells of the Phanerogamia, as well as in the germ- and seed-cells of many Algæ. According to Wilhelm Hofmeister's researches on the Origin of the embryo of Phanerogamia,* researches widely extended and carried out with admirable acuteness,-after the formation of a few nuclei the protoplasm accumulated in the end of the mother-cell of the germ-cells (the embryo-sac) next the micropyle, divides into two or three longish, rounded balls, each of which encloses one of the nuclei. 'These balls display no trace of a cell-membrane in their earliest condition, and when they lie long in water, fall away into an amorphous semifluid mass; but they very soon become coated with a cellular membrane, and then are no longer liable to destruction, even from a long-continued action of water. 'I'hese cells formed free in the contents of the embryo-sac, are the first rudiments of new plants, the germinal vesicles, as they are termed, only one of which is usually developed, through fertilisation taking place subsequently to their formation.
'That which does not admit of doubt, in the cases just considered, where it is possible to observe the processes on the free surface of newly formed cells, namely, the secondary production of the cell-membrane around the already existing and defined body of contents of the ccll, must certainly hold good also of those cases where the division of a mother-cell into two daughtcr-cells is apparently effected through the formation of a membranous scptum. If it be once certain that the cellmembrane is formed by secretion on the surface of the

[^115]cell, in this case also the formation of the scparating membranc must be secondary, that is to say, the division and opposite limitation of the contents of the two new cells must take place before the scptum can be formed between them by a secretion derived from the two sides and uniting at the surface of contact. Whether in this kind of cell-formation, which is most simply distinguished by the term cell-formation by division,* the separation of the two cells takes place simultancously over the whole surface of contact, as Neigeli seeks to demonstrate, or advances gradually, as it werc by an amular constriction, from the periphery to the centre, as Mohl represents in some examples, and Unger assumes as the universal law of vegetative cell-formation, is onc of the most difficult problems in the study of cells. In a subscquent passage I shall cudeavour to establish the existence of both conditions. If, in the latter ease, namely the division of the contents by a gradually advancing incision and shinting off, the sccretion of cellulose kept pace with the division, it would naturally result that the division would seem to be effected by an amular process of the cellmembrathe growing inward from the wall.

If we have recognised that the sccondary formation of the cell-membranc is the gencral rulc, there can only exist one more difference of opinion, mamely, as to when the sccretion of the cellulose or allied substance on the surface of the contained mass commences. In most cases the commencement of this secretion would certainly coincide with the conclusion of the external limitation of the cell-mass, as the moment in which the creation of the cell, as an individualised spherc of formation, appcars completed, and the outward developmient of the cell bogins; and the very young cell may thereforc frequently possess a delicate ccll-membranc in such cases, wherc it

[^116]appears to be still devoid of a coat. Only transitory cellformations, as I have endeavoured to show in certain cxamples above, remain without a coat of cell-membrane, and in the active gonidia of the Algæ (with the exception of the permanently moving cells of the Volvocineæ), the commencement of the formation of the cell-membrane, in all probability, does not commence until after the stage of ciliary motion, the endurance of which is, however, mostly very short, never extending beyond a few hours.

We have already ascribed, in the foregoing, the accurate limitation of the cells not yet clothed with a cell-membrane, to a coat belonging to the very body of the cell, not to be confounded with the cellulose envelopes; and we have sought especially to characterise as an example of this, the ciliated coat of the gonidium of Vaucheria, which may fully claim the title proposed by Mohl-"primordial utricle." Whether, however, the occurrence of such a coat, distinguishable from the remaining mucilaginous contents or protoplasm of the cell, as we see it in Vaucheria, is an universal plienomenon, or whether the primordial utriele described by Mohl* is not rather a mere coat of protoplasm, a layer of mucilage lining the inside of the cell-wall, \dagger produced through the protoplasm, originally wholly filling the cell, becoming exeavated by a cavity filled with watery fluid, is a question which requires for its settlement more exact and extensive researches than we at present possess. Isolated, easily observed cases do indeed indieate that the mueilaginous layer of full-grown cells is not a simple protoplasmic investment, but is composed of two or three differently organised layers, the outermost of which, representing the proper coat of the cell-contents, is very probably formed in the earliest period, as the original

[^117]boundary structure of the cell-mass (the portion of contents becoming individualised into a cell), and in this case, just like the coat of the gonidium of Vaucheria, claim may be made to the title of primordial utricle. Thus, in the Characeæ we find a mucilaginous layer, thicker or thinner in proportion to the age of the cell, in circulating motion; but outside the circulating mucilage exists a motionless soft coat, to which are attached the regularly arranged chlorophyll vesicles. In the earliest stage of formation of the cell, before the commencement of the circulating motion, the mucilaginous contents, surrounding a nucleus, fill up the whole cavity of the cell. The flowing movement, which carries along with it the muclens still visible for some time, first commences alter a hollow space filled with water has been formed in the cell; but the scparate formation of the primordial membrane taking no share in this motion, must have been completed before the commencement of the circulation. In Cidogonium, in the contraction of the contents comected with the death of the cell, we frequently see the mucilaginous layer divide into a double utricle, an onter, lighter coloured, and an inner, darker coloured, and never contracted. The compound nature of the mucilaginous layer of Cdogonium may be detected even in the living cell, by the different arrangement of the chlorophyll in the two laycrs. In the outer layer the chlorophyll forms delicate longitudinal streaks, anastomosing licre and there, and thus forming a network with narrow meshes; the chlorophyll vesicles, which are ultimately arranged in rows, are formed in thesc originally amorphous streaks. Inside this light-green, long-streaked net, we see, especially clearly in (EF. fonticola and W. capillare, a coarser, darker green net, forming a few irregular meshes, extending more in a cross direction, in which net are imbedded large starch vesicles (in the former species one or two, in the latter a greater number). In this inner layer is found also the parictal nuclens, remaining visible for a very long time. Finally, in

Hydrodictyon, I have most clearly observed a composition of the mucilaginous layer of three distinct lamellæ. When the cells of the full-grown Water-net are treated with dilute lydrochloric acid, the entirc contents are ordinarily contracted from the cell-membrane as a closed utricle or tube, smootl on the surface, and no laminar separation can be detected in it. Sometimes, however, and as it appeared to me, in diseased cells, previously near their dissolution, there occurred, as in Cidogonium, a separation into an outer paler, and an inner, dark-green utricle, the former exhibiting a smooth, the latter a rough surface, and remaining connected here and there with the outer utricle by thick mucilaginous threads or trabecula, which originated through the inner, more strongly contracting utricle, drawing out the mucilaginous substance of the outer in the form of filaments, at these points, where it does not become completely detached from it. 'This phenomenon would not speak in favour of a membranous structure and consistence of the outer utricle; but further investigation shows that this outer utricle is not simple, but formed of two distinctly different layers, an extremely dclicate pellicle, accurately defined insidc and out, and a less sharply defined, somewhat thicker layer of mucilage, -which two layers separate from one another at various places, so that they may be very clearly distinguished. The entire contents of the cell of IIydrodictyon exhibit, procceding from without inwards, the following scctions:

1. The primordial membrane. It is of scarcely measurable thickness, colourlcss, opakish, and very finely and uniformly punctated, which depends on its being composed of closely conjoincd, extremely minute globules, which, according to my estimate, can be at most between Towth and sous th of a millim. in diametcr. 'This extremely delicate structure has a totally diffcrent claaracter from the inmost layers of the cell-membrane, for it is diminished in diameter, and retracted from the cell-membrane by the action of acids, while the immost layers of the cellulose remain comected with entire cell-membrane,
and indeed swoll up more strongly than the outer layers, thus often falling into wave-like folds. 'The layers of the cell-membrane do not exhibit the slightest trace of punctation, or of a composition from globules; they are always homogeneous and hyaline.
2. The outer mucilaginous layer. This is thicker than the primordial membrane, but far thimuer than the inner mucilaginous layer. When separated from the primordial mombranc, its outer surface appears rough and wavy, as also its imer surface, which is connceted here and there with the imer mucilaginous layer by stretehed mneilaginous threads, and hence often appears torn on the inside. It is also opakish, of a ycllowish colour, and exhibits largish, irregular, and indistinetly defined muci-lage-gramules.
3. The inner mucilaginous layer. This is the thickest of the threc layers, rough on the outside, wavy, and exhibiting large, strong projections on the inside, depending on the starch-vesicles occurring in it. Only this layer is green, and, indeed, in vigorous and healthy cells, of a continuous green colour, strewn over besides with innumerable, mostly rather largish, dark-green granules, about $\frac{1}{1 \text { mou }}$ th of a millimet. long, which sometimes form interrnpted, curved, and much intertwinced rows, but more frequently appear uniformly scattered. I'hese granules are not yet distinguishable in young cells. This layer also contains the starch vesicles, which appear as bright globules, of at most $\frac{1}{T 50}$ th of a millim. thickness. Their number increases with the age of the cell; while the young cell, in the first day of the formation of the nct, possesses only a single starch vesicle, on the second at most 2 , on the third $3-5$, on the fourth $5-10$, vesieles, the full-grown cell, about threc weeks old, displays several thousands of them, which give the Water-net a beautifully punctated appearance,* and were wrongly

[^118]imagined by Areschoug* to be the rudiments of the active gern-cells. When the cells are less perfectly doveloped, the internal mucilaginous layer exhibits a reticulated appearance, forming very irregular green meshes on a yellow ground. Whether, in this case, these are real reticulated perforations, or the chlorophyll merely is contracted within a continuous mucilaginous layer, I shall leave undecided. I mention this reticulated structure in order to observe, that although it vanishes subsequently on the more vigorous development of the cells, it is a normal occurrence in the young cells, aud commences even on the first day of existence, by the green contents, originally uniformly filling up the cell, contracting into a broad grecn zone, which divides more and more in the succeeding days, and so gradually passes into the formation of a many-meshed net, a phenomenon which at the same time indicates that the separation of the contents into the various layers occurs in the very earliest youth of the ccll.
4. The fluid, which fills up the intcrior of the threefold sac. It is of watery consistence, and no further organic parts can be distinguished in it.

Thus, then, it is shown that the cell-contents form a far more perfectly organised body than is ordinarily imagined; that they exhibit a multiplicity of differences of organisation, which are no less important than the differenccs of the ccll-membrane, to which vegetable anatomists have hitherto almost cxclusively paid attention, and which after all may themsclves be merely results of special peculiarities of the contents. As the modifications of the structure of the ccll-wall have been uscd, not only for the distinction of the different kinds of tissue, but even for the characterisation of the great divisions of the Vegctablc kingdom, so must the differences of the organisation of the cell-contents, which have hitherto found

[^119]some application only in systematic Algology, as generic characters,* be taken more and more into aecount.

Among the essential parts of the organisation of the cell, is also the cell-nucleus or eytoblast, as it were a cell in the cell, mostly containing in its interior again a nuelcolus (nuelear corpuscle, Zernkörperchen). Nägeli's extensive researehes \dagger have demonstrated its oceurrenee in all divisions of the Vegetable kingdom; only in partieular families of the Algæ, as, for example, in the Palmellacer, \ddagger Chroocoecaceæ, Oscillatorineæ, and Nostochineæ, as also in the large-eclled Cladophore, and the unicellular Algæ, with unlimited growth of the ecll (Vaucheria, Codium, Cauterpa), no trace of a nucleus has yet been discovered. Schleiden§ was the first to direct attention to the importance of the nuclcus and its relation to the original formation of the cell. It undoubtedly originates before the cell is outwardly defined; it is thus, in the truest sense, a eentral organ, around which the vital eirele of the new eell is drawn. $\|$ Originally it is always situated more or less in the centre of the protoplasm; 9 by the subsequent development of a cavity in the interior of the eell, it mostly becomes parictal, i. e., imbedded in the layer of mueilage forming the internal

[^120]investment of the cell; thus in the filaments of the genera Edlogonium and Ulotlorix. It then often appears surrounded by radiating streaks of mucilage, e. g., in the embryo-sac of the Phanerogamia,* frequently becomes the starting point and centre of the circulation occurring in such threads of mucilage, as is seen most beautifully in the hairs of the stamens of Iradescantia; \dagger or, finally, it is itself carried along by the current, as is the case in the Characer (where, however, it soon vanishes) and Vallisneria. \ddagger More rarely the nucleus retains its central position in the hollow cell also, when it appears as if suspended in the centre of the cell by an apparatus of radiating mucilaginous threads, as may be seen most beautifully in Spirogyra.§ In Zygnema it is held in the centre of the cell by a strip of mucilage, which connects two large starch-vesicles, these being again connected with the wall of the cell by radiating mucilaginous filaments, rich in chlorophyll. The Fucoidex\| also exhibit a central nucleus, occupying the middle of a delicate circulation-network. In Closteriun 9 the nucleus, with its colourless mucilaginous envelope, is maintained in the centre of the spindle-shaped cell by the green lamellæ of contents, arranged radiantly around the long axis of cell, which lamellæ are interrupted by it in the middle of the cell. In many cases it seemed to me to be surrounded, as by a band, by a cavity containing water. In the cells of the delicate links of the antheridium of the Characex, lastly, the nuclei are so large that they occupy the greater part of the cell, sometimes occupying the centre, sometimes pushed a little to one side.

[^121]I have prefaced with these few indications of the structure of the cell, in order to give a preliminary characterisation of the essential parts, the behaviour of which will be of importance to us in the phenomena of Rejuvenescence of the cell.
iI. Destruction (Entbildung) of the cell.
"The question of the multiplication of cells includes," says Schleiden,*" "the origin and the life of the entire plant." With better right may we say that the examination of the Rcjuveneseence of the cell includes that of the whole life of the plant; for there are plants which rum through their entire vegetative vital development in one single cell, consequently without multiplication, but not without partial Rejnvenescence of the cell. The multiplication of cells itself is nothing else than a phenomenon of Rejuvenescence of the cell. All Rejuvenescences in cell-life, however, are connected with a more or less deeply invading destruction of the already consolidated parts of the cell standing in opposition to a progressive development. These phenomena of undoing and stripping off the proper earlier structures of the cell, are what we havc here to examine first of all, and this, first in reference to the eoats, then in refcrence to the contents of the cell.

I'Ine cell-membrane, by its hardening and lamellar thickening, sooner or later becomes an obstacle to the growth and the vital development of the cell or its suceessors, the daughter-cells forming within the mother-cell membranc. Numerous cells attain the aim of thcir life with the complete formation of the ccll-wall, as, for example, all liber- and wood-cells, the spiral vessels, \&c. In other cells, on the contrary, we see the living process overcome the straitening case, sometimes through mechanical

[^122]bursting, and sometimes through chemical softening and solution. The cases of forcible tearing of the cell-membrane are themselves of varied kinds ; we distinguish:- 1 , tearing of the cell-membrane, without its being wholly peeled off; 2, complete peeling of the cell-membranc, skiming of the cell ; and, 3 , slipping-oul of the rejuvenised cell-structure from the old membrane.

1. One of the most beautiful examples of the tearing of an outcr ccll-membrane, from its not keeping pace with the growth of the inner cell, has been described by Schimper* in the paraphyses of Diphyscium foliosum. These paraphyses are composed of a simple row of cells, which become very considerably elongated during the completion of their development. As soon as they have attained about half their length, the outer cell-membrane splits annularly in the middle of the cell, like a circumscissile capsule; the two halves separate and remain attached upon the links as bell-shaped or bowl-shaped collars, while the cells continue their longitudinal growth, sometimes opening and retracting thcir walls in the same manner a second time. I have observed in certain Confervæ, especially Ulothrix Braunii, \dagger and Zygogonium cricetorum, conditions comparable with the process in Diphyscium. The dclicate filament of the first-named plant is composed of a row of cells, which divide by double horizontal division, each into four cells. The membrane of the mother-cell of this group of four cells tears crossways, during this process of division, into two equal halves, which remain as short, abrupt sheaths on the upper and lower ends of each four-celled group. Zygogonium ericetorum exhibits the same phenomenon in manifold repetitions, and even in cells which have ceased to divide, and are only undergoing elongation; but the

[^123]persistent, double or triple, firmly connected sheaths are not so elearly distinguishable as in Ulothrix Bramnii. The escape from the mother envelope is exhibited in a different way in the Seytonemex (especially finely in Arthrosiphon) and Rivularice (especially in Schizosiphon and Euactis). Here it is not the individual eell, but a whole scries of cells, which breaks through the enveloping membrane. In these genera a common eoat of either leathery or gelatinous consistenee is formed around the whole row of cells, through the eells separating only by their side-walls (not at the joints of the link-cells.) With the progress of longitudinal growth, this produetion is repeated, so that numerons layers are formed, the outer of whieh, however, are suceessively broken through at the upper end, remaining as open fumnel-shaped sheaths, one fitted inside another, no longer shutting up the upper end of the filament. In Arthrosiphon these funnels are short, pale-eoloured, and transparent, whenee this elegant genus is especially fitted to exhibit the true structure of the compound sheatlis in the said group of Algæ. In Scylonema the sheathing fumels are longer, thinner, and very firmly comneeted, so that the entire sheath assumes morely the appearance of one manylayered sheath, clearly streaked with oblique lines, however, in the longitndinal seetion. In Euactis, lastly, the delicate and soft funnels separate into loose lamello, whence the lateral view whiels is obtained by the microscope exhibits the appearance of a fibrous breakingup of the outer surface of the sheath. The phenomenon of unilateral rupture of the eoats is exhibited again in another way by the remarkable genus Urococcus,* of the family of the Palmellacer.

The large, globular, brownish-red or blood-red cells of this genus, throw off colourless layers of cell-membrane,

[^124]which, as in Glcoocapsa, appear to be separated by intermediate layers of softer jelly, whence arises a distinetly concentric structure of the envelope. But the enveloping layers of Urococcus do not retain their original form and integrity; not increasing themselves in size, they are pushed off on the upper side by constantly succeeding inner coats, being at first merely attenuated at one side, but subsequently, as it seemed to me, actually broken through. Since this emcrgence from the old coats is always repeated on the same side, a membranous-gelatinous peduncle is produced, formed of cups fitted one into another, so as to give an annularly streaked, apparently shortly articulated aspect. The red cell, which occupies the summit of this peduncle, sontetimes divides, and this of course produces a subsequent dichotomy of the peduncle. If the periods of the formation of the separate enveloping layers were known, the age of the little plant, whose history is preserved in the gelatinous peduncle, might be determined by the number of rings. As a last example to be included here, I may mention the formation of the so-called veil of Zonaria Pavonia.* The fanshaped thallus of this Alga possesses two unlike surfaces, one of which, the outer or back surface, in reference to the early unrolling of the thallus, is clothed with a layer of smallish cortical-cells, these becoming coated with a thickish membranous layer, comparable to the cuticle of higher plants, by more active development of membrane on the side next the surface. From these cortical-cells are developed the fructification-cells and paraphyses, in alternating zonc-like collections (sori). The former originate from a division of the cortical-cells, parallel to the surface of the thallus, into two unlike daughter-eells, the lower of which retains the charaeter of a cortical-eell, while the upper emerging from the surface of the thallus, becomes the mother-cell of the spore ; \dagger the latter (the

[^125]paraphyses) originate by similar clevation and division of the cortical cells, which, however, is repeated several times. The cuticle, at the same time, is incapable of sharing in this development of the cortical cells; it is separated from the sorus as a connected pellicle, pushed upward, torn up at one side and thrown over, so that it looks not unlike the indusium of an Asplenium.
2. The complete stinning of the cell, the real peceling off of an outer cell-membrane, while the inner follows the new development of the contents, is displayed in the germination of the Mosses* and Ferns ; \dagger it doubtless occurs also in the germination of all the thick-conted spores of Algac, when they awaken from the stage of rest. It was seen by Vaucher in the Zygnemaceæ, \ddagger and according to my own researches (already mentioned above, p. 135) it is double in Spirogyra, § for two membranes are stripped off in succession. The strange skinning of the newly-formed spores of Spluceroplea has also been mentioned (p. 166). And the peculiar manner in which the spore of Equiselum frees itself from its mother-cell membrane, splitting into two right-wound spiral bands, $\|$ may be called a skinning. But we find skimning of the cells connceted not unfrequently with the vegetative development and multiplication of the cells by division, among the Unicellular Algx. The stripping off of the mother-cell mombrane connected with the multiplying division of many Desmidiacex, was deseribed and figured by Focke in Closterizm I'Trabecula. 'The eell-membrane

Kz., "germ-cell," (keim-zelle,) Näg.) ; but Decaisnc, ('Classif. des Algucs,' p. 26,) states distinctly that the spores escape from it by rupture, while it remains behind upon the thallus as an empty perisporc.

* W. P. Schimper, 'Recherches sur les Mousses,' t. i.
+ Leszczyc-Suninski, 'Zur Entivicklungsges. der Farrenkräuter,' (1848,) t. i.
\ddagger Vaucher, 'Hist. des Conferves d’Eau douce,' t. iv, f. 5; t. vi, f. 4.
§ (Sec Pringshcim, Transl. from the 'Flora,' in 'Annals of Nat. Hist.,' 2 d ser., vol. xi, p. 210.-A. H.)
|| Mohi, ('Flora,' 1833, p. 45, and 'Verm. Schrift.', p. 72, t. ii, figs. 6, 7), represents these bands as left-wound, an crror which probably arose from neglecting the use of the mirror in the first lithographing.

4 Focke, 'Pliys. Studicu.', p. 75, t. iii, f. xvii. According to Ralfs,
tears at both cnds, and the two stick-shaped young ones strip it off, slipping out from the two opposite sides of the old coat, like a finger from a glove. I have observed a similar skinning in Euastrum (Cosmarium) margaritiferum.* In Closterium (Penium) curtum, \dagger on the other hand, I saw the mother-cell membrane tear cross ways, in the middle, during the division, so that its two halves separated and were stripped off by the two now individuals on opposite sides. I have observed a very peculiar mode of the phenomenon of skinning in a new genus of Palmellacer, which I have called Schizochlamys. \ddagger The globular cells of this little Alga produce a hyaline cellmembrane, which becomes removed to some distance from the green body of the cell by subsequent secretion of fluidish jelly; soon, however, (probably from endosmose,) becoming unable to withstand the cxpansion of the jelly, it splits in the direction of an cquatorial circle, by a clean line, into two similar halves, or, if the dehiscence takes place by two circular lincs cutting at right angles, into four similar pieces. 'llhis splitting and peeling of the membrane, either coincides with a division of the internal cell-mass, or it occurs without any such division. By frequent repetition of this process the cell gradually becomes surrounded by an accumulation of old fragments of the nuembranous shell, which are held together by the cxtremely transparent jelly set free. The division of the cell may bo either a simple halving, in which case each part is iumediately clothed again with a hyaline ccllmembranc, or doublc, through the cclls produced by the first division scparating immediatcly into two cells, withont previously acquiring a coat of ccll-membrane, and thercfore

[^126]without skinning.* I have also seen a skiming of the cell by irregular tearing and exfoliation of the outcr lamellæ of very much laminated cell-membranes, exhibited very beautifully in Chroococcus decorlicans, \dagger a species very closely allied to Ch. rufescens (Näg. 'Einz. Alg.,' t. i, a) and Ch. turgidus (Kütz. 'tab. phyc.,' 6). I have also met with irregular bursting and pecling off of the outcr coats of multicellular familics, or sometimes also of isolated colls surrounded by manifold coats, in a Glcoocapsa, with dark purplisl-brown coats, standing near to Gl. Magma (Kütz. 'tab. phyc.,' 22); also in Glaocystis vesiculosa, Näg., and Gl. ampla (Glaocapsa, Kz.). Nägcli also figures a skimning in Pleurococcus miniatus (l. c., t. iv, e. 6).
3. The slipping-out, or bettcr, the expulsion from their old membrancs of rejuvenised cells, intimately transformed, and passing into a renovated development, is distinguished from the skinning of the cells just examined, in that the cell-membrane is not stripped off the resting body of the cell, but, vice versa \hat{t}, the coat, remaining in its place, drives out the contents scparating from it, after the latter have burst the envelope. This occurs particularly in the cases where the cell discharging its contents is fixed, either by an independent attachment, or belonging to tissue, by connection with its fellows. In free cells no accurate limit can be drawn between sliznning and slipping-out of the contents. Slipping-out is the ordinary process by which the reproductive cells of many Alga, Lichens, and Fungi, emerge from thcir mother-cell chambers; if they are active, it is at the same

[^127]time a "swarming-out," in which the peculiar motion begins sometimes during the birth, or cven before the birth, inside the parent envelope. The orifiee in the mother-cell membrane, as in "skinning," may be either an irregular rupture or a regular dchiscenee. The contents left in the old eoat are either undivided, entering upon their altered destination as a whole, or divided, i.e. separating into sevcral cells in the transition to a new course of life; the cells coming to light are sometimes naked gonidia, sometimes sporcs already clothed with a now cell-membrane. We have alrcady had eause to examinc, in detail, many of the examples to be cited here, so that it suffiees merely to reeall them to reeolleetion. A single aetive gerin-cell frees itself from its chamber by dehiscence of the latter at the apex in Vaucheria (vide supra, p. 163) ; in Gongrosira Sclerococcus* by tearing at the apex or the side, aceording as the mother-cell is an apical-cell or a link-cell; by bursting of the back-wall of the cells of the circular thallus adherent by its lower surface, in Coleochcete scutata (vide supra, p. 141) ; by a lateral splitting of the eells of a shrubbily-branched thallus in Coleochate pulvinata (p. 142), Chaetophora, Stigeoclonium, and Draparnaldia (p. 138) ; by annular dehiscenee at the upper end of the cells in Edogonium (pp. 141 and 162); by disarticulation of the laterally attaehed bristlecells and breaking-open of the scpta separating them from the link-eell of the filament in Bulbochate (p.141). A singlc resting eell is set frec from its coat (the perispore), and this by dehiseence at the apex, in Chantransia (p. 14:3), Chroolepus (?), and the Fucoidcæ in the extended scnse. \dagger 'I'wo active germ-eclls slip out from a mothercell, breaking through it laterally, in Ulothrix Braunii

[^128](see p. 177) ; by breaking through the back-wall of the cell of a crecping filament in Aphanochete repens.* I have observed four active germ-cells expelled through a breaking across of the mother-cell exactly in the middle in Conferva bombycina; $\dagger \mathrm{J}$. Agardh likewise saw four active gonidia cmerge from the cells of Enteromorpha clathrata; $\ddagger 4,8$, or 16 break out latcrally, in the way described above (pp. 148, 161), from the parent-cell of Ulothitix zonata. Chlamidococcus pluvialis (pp. 138, 158) may be mentioned again here. Four (rarely two or cight) active cells cmerge from the thick-coated, resting (seed-) cells by irregular dehiscence of the cell-membranc, dhring which operation the innermost extremely delicate layer of the mother-cell membrane becomes detached, partially cmerging as a vesicle, and tcaring subsequently to the outer thick cell-membranc. The gonidiun-like cells gradually produce an extremely delicate membrane over themselves in the way above described, inside which they finally divide again into 4 (ravely 2 or 8) parts, or, when the formation of microgonidia takes place, into 32 parts, which begin to move about inside the roomy coat even beforc they swarm out. In Pediastrum (p. 161) $4,8,16,32$, or 64 active gonidia, enclosed by the vesicular inner layer of the mother-cell, break out by a tear in the old cell. A larger number of active gonidia,

[^129]formed in like manncr by repeated division of the cellcontents, break through the mother-cell of Cystococcus,* Characium, \dagger and Ectocarpus. \ddagger Vcry numerous swarm-ing-cells, not formed by successive division of the green contents, but by simultaneous division of the mucilagenous layer alone, issue through irregular lateral bursting of the parent tubc in Ascictium (p. 128), Hydrodictyon, § Chatomorpha area, \| Bryopsis; \uparrow through tearing open of thic apex of the tube in the genus Derbesia, ${ }^{\text {** }}$ separated by Solier from Bryopsis, as also in Saprolegnia ferax, K. (Achlya prolifera, $\dagger \dagger$ Nees.) ; by a hole formed regularly at the upper margin of the cell in Cladophora $;++$ by a most elegant, lid-like dehiscence in certain species of the genus Chytridiums parasitical on

* Nägeli, 'Einzell. Algen,' p. 84, t. iii, e.
+ Ibid., p. 86, t. iii, D.
\ddagger Crouan, ('Ann. des Sc. nat.,' 1839, p. 248, 1. v). According to Thuret, ('Amn. des Sc. nat.,' 1845, p. 274), the gonidia of this genus have two cilia.
§ In particular from these cells in which no new net is formed, (see above, page 137.
|| According to J. Agardh. ('Ann. des Sc. nat.,' 1836, p. 194, t. xii, f. 1.)

TIbid., l. c., p. 200, t. xii, f. 9.
** 'Ann. des Sc. nat.,' 1847, t. vii. The genus Derbesia includes Bryopsis tenuissima and Lamourouxii of authors, the fertile branchlets are shorter and more inflated than in Bryopsis, they let the mass of the germ-cells eseape at once by bursting at the apex, while in Bryopsis, according to Agardh, the germ-cells cseape singly by a small, lateral, pipple-like aud outwardly projecting orifice. The germ-cell of Derbesia possesses a wreath of cilia, like those of Cidoyonium.

H Vide Unger, 'Einiges zur Lebensgeschichte der Achyla prolifera,' ('Limæa,' 1843, p. 129, t. iv.) I have repeatedly observed the mode of origin of the gonidia from the mucilaginous layer of the fructifying endcell; I could only detect a single, short cilium, while Thuret describes two.
$\ddagger+$ According to observations on Cladophora glomerata, (June 1847), and fructa, (August 1847). Meyen observed the birth of the aetive spores iu the former species, ('Nov. Acta.,' t. xiv, ii, p. 445, l. xxvii, f. 5, 6.) In regard to the number of cilia my observations agree with Thuret's; I found two in C. ylomerata.
\$ The Chytridia form a new genus of micellular, parasitical Algæ, or, if it be preferred, of aqualic Fungi, related to Saprolegnia about as much as Ascidium is to Bryopsis. The entire plant is composed of a single, balloonshaped eell, which penetrates into the Algae npon which it grows by a mote ir less developed root-like base. The inflated portion of the cell is filled with colourless mucilage, from which are formed, not through suceessive
other Algæ. In several of the last-named gencra, au active whirling motion of the gonidia occurs, even inside the mother-eell, as especially in Ascidium, Hydrodictyon, Chaetomorpha area, Bryopsis, and Cladophora; in Derbesia, Saprolegnia, and Chytridium, on the eontrary, the motion does not bceome evident until after the birth of the previously crowded germ-cells. In Phormidiunn, Lyngbya, Scytonema, Tolpothrix, Calothrix, Mastichonema (see p. 147), and other allied genera, longer or shorter filiform pieees of comnceted, motionless gonidia are seen to emerge gradually from the sheaths eommon to the whole rows of cells, and open above, breaking-up into the separate joints after they are set free. Here, as in all the preeeding cases, it is doubtless the clasticity of the walls which effects the expulsion of the germ-cells; the bursting of the mother-cell coats is eaused either by the turgidity of the germ-cells, or if these do not wholly fill the cavity (as in Ascidium, Hydrodictyon, and Cladophora), by inereased absorption of water after previous softening of the eell-mombranc. We see the effeet of elastieity most elearly in the well-known smoke- or clond-like explosion of the spores in eertain families of Fungi, especially in Helvolla* and Peziza, \dagger in which the rows of eight spores are cast out with great force from the clavate or fusiform parent-tubes, forming the thecal membrane (hymenium) of these Fungi.

[^130]I will add to these examples of the setting-free of the cells destined for the Rejuvenescence from their "superannuated" envelopes, a few very strange examples of normally imperfeet release of the germ-cells. I have applied the name Sciadium* *o a minute Unicellular Alga, which displays an originally obovate tube, gradually becoming elongated into a cylindrical form, obtuse above, and prolonged into a slender attached pedicle below. The contents consist of uniformly green mucilage, in which a small vesiele may sometimes be distinguished, but only in the earliest stage of growth. The pediele is transparent and colourless, and secretes at its base an originally yellowish-brown, afterwards dark-brown mass, which gradually expands into a disk-shaped foot. When the growth is completed, the green contents become divided into several masses, developing into a series of $5-8$ germ-cells; the cell-membrane dehisees, throwing off its summit as a finger-stall shaped cover, but the germ-cells instead of leaving the opened tube, all colleet at the point of exit with their inferior, narrower, and somewhat pedicellately elongated ends stieking in the tube. Thus is produced a eapitule, and by the advancing growth of the young family, an umbel formed of individuals exactly resembling the parent individual from which they originated. The emptied mother-cell tube remains as the stem and support of the umbellate family, and gradually beeomes filled from above downwards with the same yellow and reddish-brown secreted substance, whieh it cxhibits at its own base. The imperfect birth of the germ-cells just described, is repeated at the transition to the third, and mostly even to the fourth generation, so that little arborescent groups are produced,

[^131]with twice or thrice repcated umbellate ramification, till at length the cells which form the outermost umbellules, scatter out their germ-cells, which, aftcr a short swarming,* fix themselves again to be devcloped into ramified stocks of new families. Nägeli has described another case of ramification through imperfcet birth of germ-cells, in the genus Valonia. \dagger I have obscrved a still more wonderful mode of imperfect birth in Saprolegnia capitulifera. \ddagger The formation of the fruit-clubs and germ-cells takes place as in S. ferax, only the formation of the fruit-clubs is never repeated by the clevation of the bottom and growing-through of the fruit-club, but by the formation of opposite, divergent lateral branches, close beneath it. 'The fruit-club, as it is called, i. e. the cell cut off from the remainder of the stem, from the contents of which the germ-cells are produced, finally opens at the apex, and the germ-cells (40 or 50 in number) move actively towards the mouth, in front of which they make a halt, and, crowding ${ }^{11}$, closcly together, form a globular capitulum. I conld not clearly make out what really kept them back here. But the duration of this capitule is very short, for within only a few hours the germ-cells leave this, their first station, slipping out of a membranous coat, probably formed during their period of rest, and swarming again for a short time after this skiming. All that remains of the capitules is a collection of cmpty vesicles, unless a fcw germ-cells accidentally remain sticking in them, when these immediately begin to germinate, scoding ont an acutc tubular process.

It scarcely requires to be mentioned, that the phenomena of mechanical relcase from "superannuatcd"

[^132]euvclopes obstructing the further development or rcjuvenised formative action, such as we have here cxamined in the life of the cell, are repeated in the compound organism of the plant. I'hus we sec that the first lcaves and roots of Marsilia and Pilularia break through the tissue of the proembryo, the first roots of most of the Monocotyledons, as well as all the subsequently appearing adventitious roots, through the cortical tissue of the stcm. The leaves of Ophioglossum break through the cellular cover under which they are formed; the young sporange of the Hepaticæ breaks through its outer coat above, leaving it behind as a sheath at the base; the sporange of the Mosses tears it in two at the base, and lifts it up as the calyptra. In like mamer many Agarics tear open the veil which encloses them in their young stage. The bark of many trees exhibits a proccss of pecling off. We find a periodical exfoliation of the periderm in Rubus odoratus, Spircea opulifolia, and particularly distinct in the Birch and the Strawberry-tree (Arbutus Andrachne); a peeling of the outer libcr-layers in the Vine and Clematis; a scaling-off of the bark in the Plane, the Apple, the Fir, \&c. The tuberous stem of Isoëtes scalcs off at its circumference. Finally, the emergence of the embryo from the seed-coats in the germination of Flowering plants, presents itself as a complete "slipping out."

We now pass to another mode, in which cellstructure advancing to a rejuvenised vital activity frees itself from the cnvelopes previously formed by itself, namely, to the phonomena of chemical softening and solution of the cell-mombranc, which take place sometimcs as a swelling-up, tcrminating in dissolution, and sometinics as an imperceptible resorption. The clange of the cell-membranc into a more or less fluid jelly which is at length wholly dissipated, at the advent of thic serics of gencrations, is a very fiequent phenomenon among the lowest groups of the Alga, as, for instance, in
the families of the Palmellaceæ,* Chroococcaceæ, \dagger Nostochineæ, \&e., only unfortunately we are very defieient in satisfactory investigations into these gelatinous structures, both in morphological and ehemical respects. While they were formerly mostly regarded as excretions through the cell-walls (extra-cellular substance), Nägeli, \ddagger if I do not misunderstand the passage, explains them as outer layers of the cell-wall itself, under the name of envelopingmembrane (Hïll-membran).

In Glaocapsa, Glaocystis, and the other examples mentioned above, this explanation seems to me undoubtedly correct, while in other eascs the gelatinous mass appears to be a real secretion on the surface of the ecllmembrane ; as, for instance, in the gelatinous envelope, whieh, aecording to I'hwaites, surrounds the eonjugated individuals of the Diatomacex, or the amorphous, very fluid jelly in whieh many of the Desmidiacer live, as, for instance, Penium curtum, the individuals of which undergo the "skimning" above deseribed, in their division, § inside this jelly. In many cases these gelatinous envelopes appcar not so much like altcred and swollen layers of ecll-membrane, as coats originally seereted in a fluidgelatinous form. At the same time undoubted cases slow that a gelatinous softening, swclling-up, and final solution of ccll-membrane, formed of eellulose of normal eharacter, does really occur. My observations on the frequently mentioned Water-net (Hydrodictyon), afford an opportunity for a minute description of such a process. The eells of this plant exhibit, in their full-grown condition, a tough and firm ecll-membrane, about $\frac{1}{400}$ th millim. in thiekness. By close examination, we may distinguish three layers in this, the outermost of which is the thin-

[^133]nest, the middle the thickest; both the inner laycrs are colourless, the outermost is of a pale yellow tint. When treated with dilute sulphuric and tineture of iodine, they exhibit different behaviour. The external layer, which I shall call the cutiele, neither swells up evidently, nor becomes coloured ; the inner two, on the contrary, acquirc a violet colour, more or less intense aceording to the eircumstanees, and swell up, so that the membrane as a whole appears twice or thriee as thiek as at first. The innermost layer here becomes thicker than the middle one, whieh was previously the thiekest, at the same time becoming folded in waves on its surfaec, and allowing us to make out clearly a composition out of two subordinate layers. If strong sulphuric acid is applied, the circumferenee of the eutire cell is pereeptibly contracted; the eutiele, however, does not share in this diminution of size, but gradually separates, forming numerons wavy or vesicular elevations, from the inner layers of the cellmembranc, under whieh eircumstances it can be readily ascertained that it extends over the surfaces of articulation of the cells, and therefore completely encloses the individual cells, like the inner layers. A long-continued action of strong sulphuric acid dissolves the eell-wall, the euticle however appearing to withstand this longer. A swelling-up of the cell-membrane, exactly similar to that produced artifieially by acids, takes place in the natural course of life of the Water-net, at the period of propagation. As soon as the germ-cells are formed in the interior, the cell-membrane appears thickened, and its internal surface somewhat wavy. While the sporcs are eommencing their originally very slight movements, the cutiele tears. From this time those eells in which large gonidia, destined to form new ncts, have been produced, arc distinguished from those which eontain small gonidia destined to swarm out.* In the former, mamely, the entire cell-membranc expands very perceptibly and uniformly in the course of a few minutes, the cuticle,

[^134]now too small, being peeled off in little strips By this expansion the cell-membrane is removed to a little distanee from the layer of macrogonidia previously lying elose upon it, and these, now gaining space, commence a more active tremulous motion, soon uniting together into a new net inside the mother-eell membrane, and in this combination settling to rest. The young net enelosed by the membrane of the mother-cell now grows rapidly, the mother-cell membrane eontinues to expand for a short time longer, becoming at the same time continually less distinet, and by the sceond day it has entirely vanished. In those eells, on the other hand, eontaining microgonidia, the eell-membrane does not expand uniformly, but forms a bulging enlargement, at one or other part where the cutiele is torn, which bursts and lets out the microgonidia in a dense swarm, moving most actively. Emptied by the swarming out, it remains unchanged, and is for a long time distinguishable as an empty coat, a proof that the more rapid solution of the net-forming mother-cell is produeed by internal canses. Other cells whieh do not arrive at fructification, never exhibit the process of softening. While, under favorable cireumstances, the entire process of vegetation of the Mydrodictyon net is completed in 3-4. weeks, in which time the individual eell is enlarged (longitudinally) more than a hundred-fold (sometimes even 4-5 hundred-fold);-other nets, in unfavorable conditions, exhibit a slower development, vegetating for four or five months without attaining the normal dimensions. In the cells of sueh retarded nets, never attaining to fructification, we observe a proportionately thicker and very firm cellmembrane, whieh exhibits in the sectional view a delieate transverse striation (pore eanals ?) which I never eould detect in normally developed cells.*

[^135]The contents of these cells mostly exhibit an abundant formation of oil, of which scarcely any perceptible trace otherwise occurs, and they decay finally with various phenomena of dissolution ; but the cell-membrane is still firm and uninjured after the death of the contents. All this proves beyond doubt the relation of the softening and solution of the membrane to the processes of Rejuvenescence in the contents of the cell. A similar softening and solution of the cell-membrane occurs in Botrydium* at the period of formation of the germ-cells. The vesicle, of a leek-green colour at the time of the vegetative completion, assumes a sea-green colour at the period of ripening, which results from the thickening and clouding of the cell-membrane which occurs at this time; the previously indistinguishable laminated structure of the membrane becomes clearly visible about this time, and the cell-membrane, become limp by softening, collapses, finally melting away, and leaving the germ-cells behind upon the ground. The solution and resorption of the parent-cell membranes, so frequently occurring in the tissues of plants, which have been most accurately observed in the formation of the spores of the Ferns and Mosses, \dagger as also in the formation of the pollen of the Phanerogamia, undoubtedly depend upon similar processes. The gelatinous thickening of the membrane of the mother-cell mentioned both by Nägeli \ddagger and Unger, \S is probably intimately connected with the quickly succeeding resorption.

We may also again call attention here to analogous occurrences in the compound structure of the plant. As the old envelope of the individual cell becomes softened and dissolved, and vanishes imperceptibly, in the trans-

[^136]formation advancing to a new individualisation, so are the compound masses of cellular tissue, whieh do not themselves beeome rejuvenised, but enclose parts in process of Rejuvenescence, dissolved and destroyed. Thus, in the development of the seed of the Planerogamia, the enveloping tissue of the nueleus (the axis of the ovule or seed-bud) is first resorbed in mass, as the embryo-sae increases in size; soon afterwards, the tissue formed in the embryo-sae, the albumen or cndosperm surrounding the embryo, is again either wholly or partially consumed, while the embryo enelosed by it advanees in its development inside the seed. A similar process takes place again in germination, for in albuminous seeds a softening and solution of the albumen takes place at this period. We find examples of a gelatinons swelling up of very thiek-eoated albumen-eells, at the period of germination, especially in many Palms (Pheenix, Manicaria, Playlelephas), and many Leguninosæ (Cercis, Cathartocarpus, Ceralonia, Gledilschia, Tamarindus, Bauhinia, Parkinsonia, Dialium, Mimosa, \&e.) A similar gelatinous unfording of the cells oeenrs also in the internal layer of cells of the testa (the epithelinm of the seed), as, for instance, in the quinee and many Cruciferes. The remarkable expansion of eertain layers of eclls of the sporefruit of Marsilia, producing at the delisence of the fruit the gelatinous mass issuing in the form of a long worm, on which are attached the likewise gelatinous indusia enelosing the individual sori, also deserves mention here.*

While the phenomena of putting off the old elothing of the eells, examined up to this point, have displayed to us only the external side of the process of Rejuveneseence, the eonsideration of the phenomena of solution, through which the newly-shaped products are prepared in the eontents of the eells, must neeessarily earry us deeper into the essence of Rejuveneseence. The process of solution and transformation in the contents of lhe cell, invades more or

[^137]less all parts of these; we see it most elearly in the behaviour of starch or of amylon, of the fixed oils, as also of the mucleus. There are certain products of cell-life which furnish a measure of the age of the cell. While the formation of chlorophyll is especially proper to the more vigorous youth of the cell, we see in the formation of starch and oil, in the interior of the cell, just, as in the formation of cellulose-layers upon its surface, the commencement of a limitation and quieting of the vital activity, which marks the more advanced age, with the distinction, however, that the preponderating formation of cell-membranc (the process of lignification) usually results in the permanent death of the cell, while the filling of the cell with starch or oil brings with it a condition of sleep, from which it may awake, under certain circumstances, even after thousands of years, as is proved by the well-known experiments on the germination of grains of wheat from the tombs of the Egyptian kings. This is more particularly true of the condition of rest produced by formation of starch, while the formation of oil, although frequently, is not always accompanied by a condition of the eell in which it is capable of Rejuvenescence.

The formation of ehlorophyll stands in inverse proportion to that of stareh and the fixed oils, in the cells ; while starch and oil appear in greatest abundance in the old age of the cell, and are again either wholly or partially destroyed in its Rcjuvenescence, the green colouring matter, on the direct reverse, vanishes in the old age of the cells, reappearing in their Rejuvenescence. Thus the leaves of the ivy are coloured more or less with brownish red in winter, and grow green again in spring. The cmbryos of many seeds are green in the earliest period of formation, but as the seed ripens, passing into the stage of sleep, they beeome white, from the chlorophyll disappearing and the cell beeoming filled with starch or oil, till finally, in germination, awakening to new life, they again acquire a green colour. The contents of the spores
of many Cryptogamia also include chlorophyll before they are mature, but lose the chlorophyll, and become yellow, brown or red,* through formation of oil, or white, \dagger through formation of starch, in ripening; till at length the chlorophyll reappears in the germination. Chlorophyll, however, this green colouring matter of plants, so characteristic of the Vegetable kingdom in its total manifestation, so intimately connected with the independent \ddagger vegetative process, is one of the vegetable substances which has hitherto been least subjected to accurate investigation, in reference to its chemical conditions, its genctic connection with other substances of the cell-contents, and its transformations; may even in reference to the shapes in which it occurs, either alone or combined with other substances, in the cell,-so that we are compelled to rest satisfied with these brief indications.§

We will trace more in detail the play of formation, solution, and reformation in the contents of the cell, in the phenomena exhibited by starch. Schleiden calls starch the most widely diffused substance in the Vegetable kingdom, saying that he is not acquainted with a single plant which does not contain more or less starch at some season or other, at all events at the period of the rest of vegetation.|| This particular occurrence of starch at the period of resting vegetation, in the organs in which the plant preserves its life for a future season of vegetation,

[^138]during the period of rest (the winter or summer sleep), points to the destination of starch in the economy of vegetable life. Thus we find starch deposited in especial abundance in tuberously thickened roots (e. y., Curcuma leucorhiza), in the subterraneous stolons forming propa-gation-tubers (potato), in perennial rhizomcs (Iris, Arum, Isoëtes*), in subterranean buds and bulbs (Liliaceæ), in the seeds of the Phanerogamia, either in the albumen (Graminaceæ, Polygoneæ, Chenopodiaceæ), or the embryo (Leguminosæ, Castanea, Disculus), and also in the spores of many Cryptogamia (e. g., Characeæ and Rhizocarpex. . We find some starch deposited even in the bark and alburnun of trees in the winter. At the re-awakening of vegetation a new formative activity sometimes presents itself in these same organs and the same cells, as in the embryo and spores awakening from the seed-sleep; sometimes the tissue filled with starch is merely subservient, preparing nourishment for other organs in course of development, by the process of solution taking place in it, dying away itself after fulfilling this destination, as is the case in the albumen of seeds, the tubers of the potato, the thick cotyledon of the chesnut. But the occurrence of solution of starch is not confined merely tosuch Rejuvenescence connected with the changes of the seasons : I have observed it oftentimes in the Algæ in the midst of summer, and without a preceding period of rest, in progress of transition to propagation, in particular in the preparatory stages of the formation of gonidia. Hydrodictyon exhibits the following phenomena in this respect. The grains of starch \dagger forming gradually in the course of the period of growth of the net, make their first appearance as minute globules (or vesicles?) from $\frac{1}{600}$ th to $\frac{1}{500}$ th of a millim. diameter, of

[^139]higher eolour than the surrounding green mass, which exhibits the dcepest colour immediately around them. I could not observe how these first globules, or vesicles, originated in the green mass; the first of them displayed itself immediately after the gonidia uniting to form a net had passed into a condition of rest, before the eavity of the cell had become excavated, and with each succeeding day appeared new ones, which did not seem to have been formed by division of the first, but to have an independent origin. Even by the second day these vesicles were found surrounded by a more or less evident border, originally green, and with a somewhat sinuous or dentieulated outline, but soon assuming the shape of an aeeurately defined, exaetly circular envelope. 'Ithe larger globule originating in this way was from $\frac{1}{200}$ th to $\frac{1}{150}$ th millim. in diameter, and did not subsequently inerease in size; it exhibited a yellowish or light yellowish-green colour, the nueleus (the globule first formed) always appearing somewhat lighter than the envelope. On applying tineture of iodine, these globules assumed a violet colour, the nucleus seeming to me lighter, more of a winc-red; after a previous bleaching, by keeping a lougish time in alcohol, the envelope was coloured darker, the nucleus paler blne-gray; by a stronger action of iodine, so dark that the eolour was no longer clistinguishable. On the application of solution of eaustic potash, the envelopes swelled up to about three or four times the diameter, and finally vanished entirely, while the nucleus remained unaltered.* No lamination eould be seen in the swelling coats. Thus it eannot be doubted that the envelope, originally infiltrated with ehlorophyll, was composed, in its fully-developed eondition, of stareh, while the starehynature of the nucleus remains very doubtful. The described mode of formation of the starch-granules of Hydrodictyon appears to tally better with the theory of Fritsche and Schlciden, that the concentrically striped

[^140]starch-granules originate by external formation of layers around a nucleus, than with that set up by Münter and Nägeli, of an inner (centripetal) formation of layers.* Examining the behaviour of these starch-grains at the commencement of propagation, we find them disappear in the inverse order of the origin of their parts, the envelope first dissolving, the nucleus remaining distinguishable for some time, till at length this likewise ranishes without leaving a trace. This entire process of solution is ordinarily completed in one night; the formation of the gonidia and the above-described softening of the cell-membrane follows at its heels. I have observed an exactly similar disappearance of the starch-granules slortly before the commencement of the formation of the gonidia in Cladophora glomerata, the cells of which, as in Hydrodictyon, contain a great abundance of starch-

[^141]granules ; also in Ulothrix, where the eells contain about six, and in Ascidium and Pcdiastrum, where the cells have only a single stareh-grain. In Chlamidococcus the starehgrains vanish at the commencement of the division of the active cells (to be described hereafter).

The formation of fixed oil is intimately conneeted with that of starch in the eeonomy of cell-life; its appearance, in like manner, announees the repose of age in cell-life, its disappearance the begimning of Rcjuveneseence. We meet with fixed oil in the eells, cither mixed with starch, substituted for it, or gradually displacing it ; its oceurrence is perhaps still more general than that of stareh, since it exists cven in the Fungi and Plycochromifcrous Algæ. Like starch, it is met with in greatest abundanee in those parts in whieh vegetation is destined to rest and to await a future re-awakening, for instance, in tuberous stolons (C'yperus esculentus) and rhizomes (Isoëtes,* Aspidium Piliz mas.); in the secds of the Phancrogamia, either in the albumen (Euphorliu, Umbelliferæ, Vitis), or in the embryo (Cruciferæ, Compositæ, Cueurbitaceæ, Amygdalce, Juglandex); in the resting spores of Ferns, Lycopodiacex, Mosses, \dagger Hepatiex, \dagger Lichens, \S and many

[^142]Algæ (e.g. Vaucheria, Spirogyra, Spharoplea, Cedogonium, Bulbochcete, Cylindrospermum, Rivularia, Palmogleat. In the spores of Characeæ we find a small quantity of an often dark-yellow oil among the numerous starch-grains; the large spores of Marsilea also contain a dirty-yellow fixed oil, besides starch. That the collections of fixed oil, so frequent in tubers and seeds, are at least partially used up as nutriment, i. e. become transformed in such a manner that they may subserve the vegetative processes over again, is a fact not admitting of doubt, although not yet sufficiently explained in its chemical relations. Certain experiences of the Algæ referring here, not only confirm this transformation of the fixed oil, but also indicate that the necessity of a condition of rest for most seeds, as well as for most tuberous and bulbous plants, is connected, at least in part, with this transformation of the fixed oils.*

In Spirogyra the green spiral bands undergo a remarkable change in those cells destined for conjugation ; their regular course becomes interrupted by curvatures of different kinds; the beautifully toothed margins vanish; among and beside the simple or compound starch-grains previously present, lying in the median line of the bands, numerous oil-drops are found, at first very small, but some becoming as large as the starch-grains, which are distinguished from the latter even by their brilliancy, but still more certainly on the application of iodine. Through the union of the contents of the con-

[^143]jugated cells, the continuity of the spiral bands is finally wholly loosened, the originally green contents of the spores become sometimes lighter, sometimes darker brown, and appear densely filled with oil-drops of different sizes. I have negleeted to examine whether or not the few stareh-grains present at the formation of the spore are still retained when it is ripe; at all events, the drops of oil form the most important part of the contents. The contents of the spore appear totally elianged when it is about to germinate; the multitude of large and small oil-drops has vanished, and the opake mueilage, now become green, again exlibits, but indistinetly, a few small drops or vesicles. Newly-formed spiral bands become visible, as dark, very elosely approximated, frequently somewhat flexuous, oblique streaks, even before the germinating internal cell has broken through its double envelope.*' (See pp. 135 and 180.)

The strange formation of the spore in Palmoglea, by complete mion of two vegetative cells into one single seed-cell, has been already examined (p. 136). During the gradual growing together and fusion of the two eombining cells, we may traee the formation of fixed oil step by step. Before the beginning of the combination, the cells are filled with finely granular green contents, in whieh we see arise, during the progress of the union, shining drops, at first very small and distant, gradually growing larger, eoming in contact and coaleseing, so that the intermediate eontents almost entirely disappear, and the complete spore appears filled merely with a mixture of oil-drops of the most varied size. During this process the colour of the cells elanges from green to a light yellowish-brown. Vegetative eells, with homogencous green contents, originate subsequently through transformation and division of the eontents of these oleaginous seed-eells. The process of the new-formation which I

[^144]have not succeeded in seeing in its stage of transition, must doubtless depend upon a complete internal dissolution of the contents of the seed-cell by transformation of the fixed oil, preceding the division and external assumption of new shape. Since Palmoglaa does not grow in water, but on damp rocks and moss, and in its formation of seed coincides with the commencement of the warm and dry season of the year, it is probable that the gradual transformation of the oil begins even in the period of dryness, even requires the drying up as a condition of this process. That which I can only express as a conjecture in regard to Palmoglea, is a certainty in the following examples. Penium curtum* is a small Desmidiaceous plant allied to Closterium, growing in rain pools, which are alternately quickly filled and dried up in the changes of weather. In late autumn and in spring many pools in the neighbourhood of Freiburg appear filled with bright green clouds, which are formed by the social growth, and the very fluid, widely extended gelatinous investment of the cells. The gradual ascent of these delicate green clouds from the muddy bottom, when the little basins of water fill again after a dry period, presents a

[^145]beautiful and peculiar aspect. The formation and subsequent solution of the oil, as I have observed it in thesc little plants, is not conneeted, as in the preeeding cxamples, with formation of spores, but oceurs in the vegetative cells; the formation of seed, in Penium curtum, doubtless taking plaec through conjugation, has not yet been observed. In fresh vegetating individuals the eontents of the longest cell, somewhat constricted in the middle, exhibit the following charactcr : in the middle of the eell exists a rarcly clearly distinguishablc nueleus; in the middle of cach half a large globc, which Nägeli calls a chlorophyll-vesicle, but which I found completely filled with starch, at least ccrtainly in older cclls. The rest of the light-green gencral mass of the eontents is traversed in each half by ten to twelve darker green, somewhat granulated longitudinal bands, which, seen from the apex of the cell, appear like thickish platcs, arranged radiantly around the long axis, and united in the middle. If Penium curtum is cultivated for a length of time in a dish of water, all the individuals undergo a peculiar alteration, some sooner, some latcr. 'The dark-grcen longitudinal strcaks bceome indistinct and irrcgular, till at length they disappear, whilc a quantity of lighter and more brilliant globulcs appcar, which, increasing in size, wholly displace the grcen eontents of the ecll, so that the previously bright green eell at last assumes a palc, dirty ycllow aspect. Accurate examination shows that the brilliant globules now filling the eells are not the spores, as miglit perhaps be conjeetured, nor stareh-grains,* but really drops of oil. 'Tincture of iodine searcely perceptibly alters their colour, while the two large globules of starch still cxisting in the two halves of the cell aequire a dark violet tint. If oil of turpentine is applicd to a specimen not quite dried up, the globules of oil coalesce into larger irregular drops; when more completely dricd

[^146]up they all clearly run together, and fill the cell in an uniform mass, by which the two starch-grains previously hidden among the crowd of oil-drops, become very distinctly evident. With this condition of formation of oil commences a stage of rest in the life of this little organism ; the cells no longer increase by division; the stimulus of light no longer produces any movement; the gelatinous envelope vanishes without any new formation of jelly. Unless peculiar circumstances arise, the individuals gradually die away, entirely losing their colour. But if the water is allowed to dry up (as happens from time to time in the natural liabitations of this plant), and the dried remains are again immersed in water, after a shorter or longer period,* new gelatinous clouds rise up afresh on the following day, in which are found a multitude of new, again freshly vegetating individuals, containing, instead of the former oil vesicles, homogeneous green contents, in which the green longitudinal bands are again soon to be distinguished. The multiplication by division also soon commences again. That these rejuvenised, revived individuals are not a brood originating from spores, is shown by their size, which agrees with that of the dried-up individuals. \dagger

I have observed still more completely the Rejuvenescence, caused through drying up, in the probably oleiferous cells of the Chlamidococcus pluvialis, already many times referred to. \ddagger

[^147]Normal fully-developed cells of this multiform creature, sometimes like a plant, sometimes like an animal, present the appearance of globules, from $\frac{1}{50}$ th to $\frac{1}{25} t h$ millim. in diameter, with a thick tough cell-membranc, and granular-punctate, opaque contents, somctimes of brown, sometimes (at other periods or in othcr localities) bright red colour. In the inass of the dark contents lic hidden scveral other structures, which at this period are completely conccaled, namcly 4-6 starch-globules, of $\frac{1}{300}$ th, or at most $\frac{1}{\text { wioth }}$ th millim. in diametcr, in which, as in those of Irydrodictyon, a nucleus and an envelope may be distinguished, acquiring a dirty violet colour with iodine, the nucleus becoming rather redder. Sulphuric acid causes a considerable swelling up of the coat. There also appears to exist in the centre of the cell a large, very delicate nuclear vesicle, which, however, is so covered up by the rest of the cell-contents, that it can only be very indistinctly perccived, and camnot even be clearly displayed when the contents are squeczed out. When these resting globular cells are placed in water, they give birth, in the way already described (p. 184), to four gonidium-like swarming cells. Even before the
persons, I venture to draw attcntion to the very wide diffusion of this spccies. Von Flotow, the discoverer of Chlamidococcus phevialis, found it, in the jear 1841, in a shallow hollow in a granite slab forming the foot-bridge across the lirosel-graljen, near Hirschberg; subsequently (184.6) also in excavations in the granite rocks of Opizberg, near Hirschberg, where the rain-water collected. Dr. Mettenius found it recenitly, also, in cavites of granite rocks, at Harlass, near Heidelberg. I found it for the first time in shallow hollows of horizontal sandstone slabs, on the walls of several bridges near Frciburg, in Fcbruary, 1848, accompanied cyerywhere by a beautiful Rotifcr (Philodina rosea), and in onc shady spot associated with Mastichonema phuviale. The pastor Brumner found it last winter in the district of Donaucschingen, in several churchyards, in the basins cut to hold holy water of the (sandstonc) gravestoncs, and also in the iron vessels fixed on the tombs for the same purpose. I found it at Neuenberg, in Switzerland, in the ycars 1844 and 1848, in the hollows formed by ancient denudations of the calcarcous rocks bordering the lake, and in this place of cspecially bright red colour. Kützing indicates it also from Bohemia (according to Corda), France (Brébisson), and Scotland (Greville), as he regards LIcmatococcus Corde, Meneghini, and Protococcus nivalis, Grev., (Scott, 'Crypt. Flora,' t. 231,) as the same plant as Ilamalococcus pluvialis, V. Flotow, on which point 1 do not yet venture an opinion.
commencement of the division of the contents by whieh the latter are formed, a change begins in the colour of the parent-cell, the red colour retreating to some extent from the periphery, and a yellow (somctimes rather greenish) border forming round the dcep red inner mass. The young swarmers also, for a short time after they issuc out, have only a narrow yellow rim round a dark red middle. During the two to three days' period of movement and growth of these swarming. eells,-in which they grow to about four times the original size, changing their obtusely ovate form, at the same time, to a reversed pear-shaped, apiculated shape, and forming a delicate enclosing membrane (p. 158),-important ncw ehanges take place in the eontents of the cells. The red colour becomes more and more concentrated into the middle of the ecll, so that a sharply defined bright red nueleus is formed, in the interior of whieh a lighter space is often clearly pereeptible, corresponding to the nuelear vesicle above mentioned, around which the red colouring matter forms a covering, mostly complete, but sometimes imperfect and interrupted. The rest of the cell-contents have become a brilliant green, and in them may be clearly distinguished the above-mentioned starch-globules, as well as many more smaller grcen granules. The ciliated point of the ccll, often drawn out like a beak, is colourless. This first moving generation is succeeded by a not yet accuratcly determined number of similar active generations, populating the water for some weeks, and often giving it a bright grcen colour, till at length universal rest rceommences, and the cells sink to the buttom or attach themselves to the sides. The transition from one active generation to another takes place through a transitory resting generation of extremely short cluration. The full-grown swarming-cells finally come to rest within their wide shirt-like cnvelope, and almost simultancously divide into two cclls, whieh, without bccoming active, divide again into two cells. Thus, within the motherenvelope are produced four daughter-eells (more properly
grandchildren), which begin to move soon after they arc completely formed, and, tearing open the delicatc enveloping vesicle, part company. The whole of this process of development is gone through very rapidly, being completed in one night and the succeeding morning. The second active generation, thus formed, resembles the first, with the single distinction that the active cells are green from the first, and have a smallcr red nucleus in the intcrior. The subsequent active gencrations bear a gencral resemblance to the preceding, but many modifications present themselves. Thus, for cxample, we not unfrequently sec the full-grown swarmcclls assume strange two-lobod, or cven four-lobed, shapes, begimming to divide before they come to rest; or sometimes a transverse construction and bisection of the cell takes place, caused by a partial protrusion of it from the loose shirt, \&c. The formation of cavities (Vacuoles) is a pretty constant phenomenon in the later active generations, and there may be several of them cccentrically placed, with the red nucleus retaining its central position, or a single central vacuole, causing a latcral displacement of the red nuclcus. If watcr-cavitics of this kind displace the green mucilaginous layer entircly, in places, so that they come in contact with the primordial utricle, the form is produecd which Von I'lotow called Hamatococcus pluvialis lacunosus, and has represented in pl. 25, figs. 69 and 70, loc. cit. The red nucleus often becomes very small in the last gencrations, so that it very much rescmbles, especially when rendered parictal by the formation of a central vacuole, the red corpuscle occurring in the gonidia of many genera of Algæ, belonging to very diverse families, and which was called the "eyc", in the Volvocineæ, by Ehrenberg.*

[^148]A total disappearance of the red colour not unfrequently occurs. In the later stages of the cycle of generations arrives, finally, the formation of microgonidia, already mentioned (p. 138) ; many individuals, instead of producing four daughter-cells, undergoing further division, so as to give birth to a brood of sixteen or thirty-two minute cells, which, before they separate, form a mulberry-like body, but, separating at length, commence a very active swarming inside the pareut envelope, terminating in the rupture of this coat, and the rapid dispersion of the little "swarmers." These are of longer shape than the large "swarmers,", only about $\frac{1}{150}$ th, rarely $\frac{1}{100}$ th millim. long, of yellowish or dirty yellowish-green colour, with reddish ciliated points.* They do not exlibit increase of size, like the large "swarmers," never become coated with a perceptible and loose membrane, and have no further power of propagation. Most of them die after they have settled to rest, dissolving away; others turn into little red globules, and it is doubtful whether they can grow up to the normal size. If we now further examine low the cycle of active generations is closed and carried over to the resting vegetation, we find that the large "swarmers" of the last active generation, when their growth is completed and they have attained the stage of rest, instead of dividing again, remain undivided, assume a perfectly globular form, and in the course of a few days become clothed by a thick, closely applied cell-membrane, while the earlier, loose, distant membrane gradually disappears. The contents, which at the commencement

[^149]of the rest were all green, except the little red nueleus, or even often entirely green, now gradually beeome red again, passing from green through many tints of brown, or of brilliant golden green and golden brown, into red. These globular, thiek-coated cells (the same as those with whieh we began) behave like seed-cells or spores, passing into a state of perfect rest. They do not exhibit any growth, and after the membrane has attained its proper thickness, and the contents their red eolour, no further visible alteration takes plaee, so long as they are kept in water. I have preserved them for several monthis in water, without any new development taking place; on the eontra'y, they at length began to be bleaehed and to die away, if they were not devoured by the rapidly multiplying Rotifer (Philodina roseola). A desiecation must take place before a new eyele of gencrations can begin. 'This is the peenliarity to whieh I especially wished to draw attention here. Even a short stage of dryness renews the Rejuvenising power of the resting eells, and this is retained for a great length of time in the dried coudition, as might be dedueed from the mode of oceurrence of the plant, and may also be easily proved by artificial experiments. Perfeetly dry speeimens placed again in water ordinarily produee aetive gonidia the next morning. I have made the most remarkable experiments on this point, on speeimens which Herr von Flotow was kind enough to send me. Specimens gathered at Hirsehberg, in Silesia, in March, 1848, plaeed in water at Freiburg in April of the same year, exhibited new-born active young within 22 hours; speeimens dried in 1846, in about 32 hours; finally, original specimens obtained from the stone slab over the Frosehgrabe in 1841, after about three days' soaking. These last had therefore retained their vital foree during a preservation of seven years in an herbarium.* In order to complete the main features of the pieture of the alternating generations of this multiform ereature, I must notice that, in addition

[^150]to the described active generations (macrogonidia and microgonidia) and the concluding generation passing into the spore-like condition of rest, there are other generations which, as compared with the gonidium-like and spore-like conditions, must be regarded as the proper representatives of the vegetative development. These are gencrations endowed with quiet and slow vegetative growth, which multiply by pure vegetative division, unaccompanied by any swarming movement. It depends solely upon external conditions whether the resting-cells which I have characterised as seed-cells (spores), at once give rise to the new active generations, or to a series of quietly vegetating generations of cells. The former is the case when the seed-cells are totally immersed in water; the latter when they occur on a spot which is at once damp and exposed to the air,* as is the case in the native condition, especially in the milder intervals of winter and in the damp season of approaching spring, but temporarily also, at all other seasons, on the margins of the little basins inhabited by Chlamidococcus as often as they are filled by showers of rain. In cultivating it in the house, I have but rarely observed these vegetative generations, while in the native stations they certainly occupy the most important place in the alternations of the various conditions of life, as may be concluded from the thickness of the crusts and membranes formed by such vegetative multiplication. \dagger The formation and multiplication of these vegetative generations also take place by the division of the cell-contents, either by simple division, the first generation being transitory, or by double halving (apparently quartering). But the newly formed cells do not slip out, like the young "swarmers," from the mother cnvclope; they remain in the same place and position. The membrane of the mother-cell appears to become softened, expands, and bccomes gradually

[^151]drawn out to nothing, rather than regularly burst open ; it at length vanishes in some indistinguishable way, the daughter-cells meanwhile aequiring a tolerably thiek, closely applied cell-membrane of their own. The division is repeated many times in this way, and as the cells all remain in intimate contact, first small families, but by degrees large conglomerates of cells, are produced. The size of the single eells in these groups varies from $\frac{1}{100}$ th to $\frac{1}{s_{0}}$ th millim.; their shape is not truly globular, but partly bounded by flat surfaees, as results from the alternating divisions aceording to the three directions of space. In this neighbourhood I have ordinarily found the colour light brown. If ignorant of the rest of its history, one would be led, by the form and mode of division of the cells, to regard these crusts as belonging to a Pleurococcus.*
In the same erusts oecur isolated large eells, loosened from their connection with the others, perfeetly globular in form, and appearing to divide no more, but to have past again into the condition of resting spore-cells. They are distinguished from the rest by their darker contents

[^152]and thicker cell-membrane. Probably the return of these to renewed resting vegetation takes place by a passage through the series of active generations. Every shower of rain will wash away these loose ripe cells of the crusts of Chlamidococous; carried into collections of rain-water they will soon produce the active brood, which, returning to rest after a few active generations, settles on the margins of the little puddles, and then recurs to the resting mode of vegetative multiplication. At least this seems to me the normal cycle of the life of these little amphibious and amphibolic Algæ. What we intended especially to examine in these, is the appearance and disappearance of a probably oily red colouring matter in connection with the conditions of old age and Rejuvenescence of the cells. We found this most abundantly developed in the resting seed-cells, arrived at the entire pause of the vegetation, we saw it vanish almost entirely in the active generations succeeding one another in rapid Rejuvenescence, and endowed with power of very rapid growth. The red colouring matter seems to play the same part here as we have ascribed to the formation of oil in the instances previously examined. Since the capability of preserving the life in the dried condition, and the necessity of the desiccation as a preparative for future Rejuvenescence, may be supposed to have a similar cause in Chlamidococcus and in other minute Algæ, it is not improbable that the red colouring matter is, in this case, either itself of oily nature, or occurs in combination with a fixed oil.* The mode of appearance of this in the cells testifies in favour of this assumption to some extent, to some extent, however,

[^153]against it, since the red colour does not always present the drop-form peeuliar to oil. In completely red restingcells the entire contents (with the exception of the starchvesicle) appear saturated with the red colour, no separate red drops being distinguishable ; but I sometimes found in the dishes of water in whieh I cultivated the Chlamidococcus, resting-cells (diseased?) in which the brownishgreen contents were somewhat retracted from the tough cell-membrane, and between the membraue and contents long flattened drops of deeidedly oily aspect and dark yellowish-red colour had been formed. The connected red nuelcus, sueh as oceurs especially in the active cells, readily breaks up into many oil-like drops, as, for instanee, when diseased cells decay in water, as also when they die from being dried up;* when the cell is crushed; as also, lastly, when sulphuric acid is applied, whieh moreover gradually gives the red drops a dirty violet colour. Oil of turpentine, on the contrary, in reeently dried-up cells, spreads the red colour uniformly through the whole eontents, or in a greater abundance at the cireumference of the cell.

The formation of oil presents itself with greater elearness in the slecping state of Chlamidomonas. Several species of this genus, hitherto included in the Animal kingdom, but nearly allied to Glcoococcus and Chlamidococcus, present themselves in the beginning of spring, in such abundance that they produce a striking green coloration of the water; a few weeks later they vanish, leaving no trace, and are not noticed again throughout the whole year. I have obscrved the circumstanees attending this disappearance in a speeies whieh I call Chlamidomonas obtusa. \dagger I brought this home in the

[^154]swarming condition in April of last year. The large, dark green swarmers, differing from other similar green swarming cells by the remarkable truncation of both ends, multiplied for some time longer, and here and there produced very minute, paler and more brownish-yellow microgonidia; in the course of a few weeks no more active cells could be found in the water, the full-grown swarmers having all gradually come to rest and sunk to the bottom. The originally longish shape of the cells had changed into a perfect sphere with the transition to rest ; the colour of these resting-cells, originally still green, now gradually passed into a light yellowish-brown, at
applied membrane (not standing away from the coutents) of the old swarming eclls; also by the absence of the little stareh-vesieles in the interior, while, however, as is usual in most of the Palmellaceæ, a siugle large "ehlorophyll utricle" (starch-utricle?) exists in the intcrior. There is no central red nucleus, as in the gonidia of Chlanidococcus, hat some speeies have a parietal reri spot (an "eye"). The motion is effected by two cilia, as in Chlamidococcus. As in that genus, there is a growth of the gonidia during "swarming," which lasts over the day and night. There is also a formation of microgonidia. The speeies of this genus are doubtless very numerous, but the distinction of them among themselves, as well as from the swarmingeclls of many other Algx, is very difficult without a complete aerpuaintance with the history of their lives. The new specics meutioned, Chl. obtusa, occurs in the Rhine valley, near Frciburg, in sand-pits, which are occasionally almost completely dried up in summer. The macrogonidia grow during their period of swarming, from $\frac{1}{60}$ to almost $\frac{1}{30}$ millim. long; they are longisli, of equal dianeter on both sides, and very obtuse, almost truncated, laving a colnurless place at the ciliated extremity, presenting the form of a notch. In regard to other points, the contents are dark green, fincly granular, willı a large vesiele at the posterior extremity, a roundish lighter space in front of this, and no red point. They nultiply by simple or double halving in several successive generations. Sometimes a further continuation of the division of the full-grown macrogonidia oceurs, forming sixteen or thirty-two maerogonidia from $\frac{1}{200}$ to $\frac{1}{120}$ millim. Iong, of ovate shape, and lighter colour, tending towards brownish-yellow. The resting (seed-) cells are globular, about $\frac{1}{30}$ millim. in diameter, at firsl green, subsequently light yellowish-brown, finally flesh-red; they lave a tough, colourless, and transparent membranc. Another species, Chl. tingens, occurs in cnormons quantity in the puddles of the sandstone quarries at Lorettoberg, near l'reiburg, in the month of Mareh, iu mild seasons sometimes even in January and February. The swarming eells are smaller than in the preeceding, $\frac{1}{20}$ to $\frac{1}{6 j}$ millim. long, ovate, lighter green, likewise destitute of a red spot, and the membrane is more distinct in the old age. Inerease by double, rarcly by simple halving, in the former case with deenssating sections. I lave secen the formation of microgronidia in this speces also, but not minutely observed the resting stage. (Sce prefaec.)
the same time a number of small, sharply defined, brilliant globules were formed in the interior, having quite the appearance of drops of oil. In this altered eondition the Chlamidomonada remained, exhibiting neither growth nor inerease. At the end of the month of May, in the hope of eausing a renewed development, I allowed the dish to dry up, but it was in vain; cven when I poured water on them again about a month after, no perceptible alteration occurred. I let the mass dry up again, and added watcr again in the middle of Deeember following; towards the end of Deeember, and in the eourse of January, active Chlamidomonada actually reappeared. All the resting globules had meantime changed colour to some extent, appearing light reddish; the first "swarmers," also, formed by the halving or quartering of the eontents of the resting globules, and brought to light by a rupturc of the tough coat, at first exhibited a reddish or grecnish-red colour, which only passed gradually into pure green, the drops of oil vanishing at the samc time. Only a small proportion of the resting-cells came to such development in cultivation in the house; others divided, without loss of the reddish colour, into quietly vegetating cells comnected in groups, in a manner similar to that I have deseribed in Chlamidococcus ; othcrs remained unchanged until spring, at which time, however, I did not pursuc the investigation any further. There is no doubt that future investigation will deteet in the Volvoeinex resting stages for the winter slcep, similar to those here examined in Chlamidococcus and Chlamidomonas.

Colleeting together the phenomena of dissolution we have bcen examining, eonneeted with the Rejuvenescences in Cell-life, we find that it results from them, that the development and propagation of the Vegetable organism docs not consist of a bare series of formative processcs, but that proeesses of de-formation or "undoing" enter as necessary links into the eoursc. The plant, however, differs essentially from the animal in this respeet; while
in the intcrchanges of material of the animal organism, formation and deformation intermix in simultaneous oecurrenee, dissolving and newly shaping in the same epoeh, the two processes are more separated in the plant, rumning into one another in periodical alternations. In the Vegetable kingdom, as in the Animal, the nitrogenous substances (proteine and the substances allied to it) form the especial substratum and aetive medium of the vital activity,* while the unazotised substances, rich in earbon, play a more passive part in the organism, on the one hand protecting, on the other limiting, narrowing, stupcfying, and even extinguishing the vital force. The animal organism frees itself from the superabundanee of carbonaccous substanees, whieh it receives for the most part already formed in its food, through the uninterrupted proeess of respiration, in whieh the carbon is destroycd (burnt) by the aid of the oxygen derived from the atmosphere, and excreted in the form of gas. It is different with the plant; it does exerete the substances rieh in carbon formed in the internal organism of the eell, out of the eell-sap, not, however, destroying them, but depositing them either as organic structures on the eonfines of the cell-organism (formation of membrane from cellulose, and the allied substances, gelin, amyloid, Lichen-starch, $\& e$.$) , or it seeretes them in the interior of the cell itself$ as globular, frcquently laminated masses (stareh or inuline), or in the form of drops (fixed oils). The formation of the cellulose membrane \dagger is especially characteristie, in this respeet, of the plant, securing to the cell-formation of the plant, in all eases, its peculiar separateness and independence, however varied the mode of ultimate

[^155]development may bc. It is to this carbonaccous apparatus of the cell that the cntire structure of the plant owes its extcrnal and internal combination and solidity; but it is at the same time the cause of the gradual fixation of the product, the relative absence of motion, which distinguishes the vegetable structure, in contrast to the internally and externally more mobile animal organism. It is remarkable that the most striking of all the phenomena of motion of plants, the swarming movement of the gonidia and spermatozoidia, occur in such cells as arc either yet without their cellulose coating, or which never aequirc one. Thus, conscquently, the life of the plant becomes fettered by the vegetative process itsclf; the continuous secretion of cellulose, and the thickening of the cell-wall caused thereby, obstruct more and more the intercourse with the outside, as in like manner the accumulation of highly carbonized deposits in the interior of the cell-contents obstructs the internal movement. 'I'hus all vital activity must at last come to a pause, unless this entombing and suffocating process of formation beconies opposed by a dissolving and emancipating process. It is just this which we have sought to cxamine in the foregoing pages; we have seen it make its appearance at a definite period in those parts which are destined to carry on or repeat the development, destroying preceding constructions, and making space for now formations, more or less interrupting the old coursc of completion, and often causing the life to turn off in now directions. We havé secn that the solid cell-membrane becomes soft again, bursts, or dissolves away; we have secn the starch dissolved, the fixed oils vanish. But the most important occurrence in this process of destruction is not mercly a solution of that which had become solid, not mercly a process of transformation of the substances secreted in the formative process, into new material for structure (e. g. starch into dextrine and sugar), but, at all events in part, an actual destruction (combustion) of the lighly carbonized substances present in excess,
similar to that which occurs in animal respiration. It is well-known that in the germination of mealy seeds, as also in the sprouting of mealy tubers, an abundant excretion of carbonic acid is associated with the conversion of the starch into sugar, and that this, connected with perceptiblc evolution of heat, is caused by a decomposition of sugar; it is well-known that beets and carrots lose the sugar they contain, at the period of the unfolding of the flower, which is accompanied with abundant excretion of carbonic acid; it is further known, through Saussure's expcriments, that the internal parts of the flower, in the delicate tissue of which the formative process deposits the smallest quantity of highly carbonised substances, take up oxygen from the atmosphere and excrete carbonic acid more abundantly than any other parts of the plant; again that the anthcrs are especially distinguished among these, in which organs important processes of solution of the tissue are connected with the ulterior development of the pollen. In the ncctaries undecomposed sugar is excreted. There is no doubt but all processes of solution and transformation in plants are accompanied by excretion of carbonic acid. Observations of the lower plants promises much more profit in this respect. In Hydrodiclyon I have seen cells in the stage preparatory to the formation of gonidia (in which the starch globules had already vanished), secrete gas bubbles in unusual quantity; I neglected to examine these chemically, but they doubtless consisted of carbonic acid, sincc they were visible very early in the morning and later in the day when the sky was overcast, and since other nets, in a vegetating stage, cxhibited at the same moments no such evolution of gas.

The cxamination of the proccsses of solution and desstruction, which we see introduce the new structure at determinate turning-points of vcgetable life, and which are all characterised by absorption of oxygen and excretion of carbonic acid, leads us to the comparison of the nocturnal respiration of plants, in which, according
to the facts known about it, we can in like mamer perceive nothing else than a periodical interruption of the diurnal process of formation, by a process of deformation and de-carbonisation, although this docs not so profoundly affect the plant. It is true we cannot obscrve in it any perceptible solution of cell-membrane, starch granules, and the like, but there is no doubt of the occurrence of an interruption in the deposition of these structures, probably through the interposition of a process of combustion of the materials out of which they originate, while still dissolved in the cell-sap. It is indeed not very adventurous to refer the lamellar deposition of the cell-membrane, and the coneentrically laminated structure of the starch-grain, to this daily periodicity of the cell-life. The great number of layers which may be distinguished by suitable treatment in the cell-membrane even of plants of short life (Hydrodictyon, Cladophora, Botrydium), is not opposed to the assumption that they are diurnal layers, and it is imaginable, under this hypothesis, that bright and dull days, as well as the age of the cell and other circumstances, may effect important modifications in reference to the formation of distinguishable layers. Ammual rings, or better, annual layers, may doubtless be demonstrated in cells of peremnial duration. The lamination described by Mohl,* in the walls of liber-cells, for instance of Cocos and Calamus, which exhibit the peculiar phenomenon, that the thick and not very numerons layers, which are separated from cach other by dilute sulphuric acid, are composed of an outer, broader, and softer, and an inner, thinner and firmer layer, may perhaps be compared with the condition of the annual rings of the wood of Dicotyledons, in which, in correspondence with the reverse order of formation, each ycarly ring cxhibits an inner, broader, and looser, and an outer, narrower, and denser half. I

[^156]found in the lowest internodes of the stem of the perennial Chara ceratophylla, formed in the year previous to that in which it was examined, that the cellmembrane, about $\frac{1}{16}$ millim. in total diameter, was composed of two very distinct portions of about equal thickness; while the thinner cell-membrane of the young internodes of the stem exhibited no such sub-division. In each of the two portions I could make out about 10 subordinate layers, which, however, were themselves of compound nature. The agreement of the nocturnal process of respiration of plants with the phenomena of dissolution, through which we have seen the transition to distinctly new formations prepared, is confirmed by the epoch in which the latter usually make their appearance. Observation of the Algæ has furnished us with most interesting facts in reference to this. 'Irentepohl* already observed that the expansion of the summits (the preparation for the formation of the germ-cell) in Vaucheria clavata took place especially in the night, and the exit of the active germ-cell on the succeeding morning. Ungert confirmed this, for he characterises it as a remarkable phenomenon that the unloosing of the gonidia of Vaucheria mostly occurs between eight and nine o'clock in the morning. According to the statements of Thuret \ddagger and Fresenius, \& the same phenomenon is repeated in other Algæ. I have satisfied myself in all the green Algæ with active gonidia which I have had an opportunity of observing, that the preparation for the formation of gonidia, and particularly the disappearance of the starch-grains mostly connected with this, begins in the night, and in general advances so far in one night, that the formation of the gonidia can be completed and their birth take place on the following morning. I will first

[^157]of all refer again to Hydrodictyon as an example. The reason why the mode of formation of the new nets in the eells of the old one has hitherto been so rarely and so inaeeurately observed,* doubtless arises from the time at which this process commences. If a single fully-developed net of this plant, or even mere fragments of nets, are placed in a shallow saucer of water, we may almost eertainly reckon upon finding fully-formed young nets in some of the old cells on the next, or at all events on the seeond morning, and these in eells whieh exhibited no alteration whatever. \dagger If we wish to see the origin of these young nets, we must not lose the earliest hours of the morning, for the tremulous movenient commeneing after the formation is complete, and the final union of the gonidia into a net (see p. 137) takes plaee shortly after sun-rise, in the middle of summer between four and five in the morning, at the end of summer between six and eight o'eloek, and only in dull days of autumn, in whieh, however, the formation of new nets rarely oceurs, sometimes as late as ton o'eloek in the morning. The swarming out of the mierogonidia of Mydrodictyon always takes place rather later in the day than the formation of the nets, in summer usually between seven and nine, in autumn between ten and two o'elock. As the swarming lasts several hours, the aetive eondition may often be observed late in the afternoon (sometimes at five o'eloek in the evening). \ddagger

[^158]The gradual changes which take place in the waternets preparing for fructification, converting the contents of the vegetative cell into thousands of gonidia, must be observed by night; but it sometimes happens that the particular cells do not advance far enough in the dissolving preparation, in the course of the night, to enable the influence of the morning's light to complcte the formation. Such cells exhibit the earlier preparatory stages, otherwise rapidly passed through in the course of the night, with especial distinctness. Some thus remain all day without any perceptible alteration, completing the preparatory stages in the second night, and maturing the gonidia on the second morning.

As a second instance, I will bring forward Ulothrix zonata, a Conferva frequent in the mountain brooks of the Schwarzwald, descending also into the plains in the Dreisam. The mode of growth and the formation of gonidia have already been examined (pp. 148, 159). If a little tuft of this Alga is placed under the microscope in the morning, filaments of two characters are seen; some (still vegetating) with parietal contents of the clearest, brightest green, leaving the ends of the cells almost free, in which green contents exist scarcely perceptible pointlike granules, a few small starch-globules, and a large likewise parietal nucleus, which it is not easy to sce ; the others (in the condition of fructification) of somewhat torulose aspect, and with more concentratcd, darker contents, divided into 4,8 , or 16 masses (gonidia). We rarcly find transitions from one structure to the other,namely filaments with darker and more opake green contents not yet divided, in which the fine granules arc more strongly devcloped, but the starch-granules cither lost, or only their little nuclei visible,-bccause the transitional stages are usually passed through in the night, and the formation of gonidia completed carly in the morning. Birth and swarming of the gonidia, which latter mostly lasts more than an hour, may be observed all the morning. All the mature cells are usually emptied
by the afternoon ; those not emptied by that time develope no further. Once, however, I saw birth of gonidia occur between six and seven o'clock in the evening; it was on a very dull and rainy day in July, ou which the weather suddenly eleared up between five and six o'clock. I have made similar experiments on many other freshwater Algæ ; e.g., on Draparnaldia mutabilis, in which I observed the birth of the aetive gonidia in Mareh from eight in the morning, in May from six, and the swarming until cleven, A.m., at most. In Stigeoclonium protensum (?) the birth and movement of the gonidia took place in May between six and ten, a.m; in Chatophora tuberculata, in August, between eight and two, A.m.; in Ascidium ucuminatum, in July, from six, A.m. to three, p.m., and even still later, but none so late as dusk. The Edoyonia also ordinarily emit their large gonidia in the morning ; in summer and in bright weather carlicr, in winter* and in dull weather later. Sinee the swarming of the gonidia lasts several hours, in this genus, it may be often observed in the afternoon. In Chlamidococcus pluvialis, both the birth of the first generation of gonidia, and the production of the succeeding generations by division of the earlier, oceurs in the morning, after nocturnal preparation, and the same is the ease in the formation of new families in the Volvocincæ, for instance in Pandorina elegans. What we have here seen in regard to the time of formation of the gonidia of the Algre, is trine also of the vegetative multiplication of their cells. Thus Focke \dagger has observed that the division of the Luastra commences carly in the morning, and has advanced so far by evening, that the complementary halves acquire their complete form and full size before night. I have made the same observation in regard to the first cominencement of the division of the cells in Spiroyyra. For a long time I could not

[^159]succeed in finding it, although I frequently met with cells recently divided. Not until I selected the carliest hours of morning for the observation, and at last took the precaution of placing specimens in spirit before sunrise, so as to be able to examine them at leisure later, was I able to make out completely the process of division of the cells in this genus. I shall describe it in the next section of this treatise.

All these observations furnish the one common result, that the processes of solution and deformation, the more important as well as the slighter, occur at night, under the influence of determinate degrees of temperature,* while, on the other hand, they confirm the experience that the influence of light awakens the plastic processes, formation of substances as well as production of form, in the plant. \dagger A number of well-known phenomena in the great processes of Rejuvenescence of the Vegetable kingdom have an intimate connection with these facts. It is well known that vegetable life awakening from the winter sleep requires, above all things, warm, dull, and damp days, especially the warm showers of spring, to enable it to dissolve the winter provision of nutriment, on which the influence of light of the increasing days may exercise its newly-shaping force; equally well-known are the effects of the northern summer, which brings many plants into flower and fruit more rapidly than our temperate cliniate. It is the influence of light, increased by the long days, which causes a more rapid development of all products of form, an abbreviated course of the metamorphosis, just as we see the plants on high mountains also advance with more rapid steps to flower and fruit, through less luxuriant development of the vegetative

[^160]preparatory steps, whence we find many come into flower sooner on the mountains than in the valleys or plains, as is the case with the heather (Calluna vulgaris), and Parnassia palustris.* In the equatorial regions, on the contrary, where the seasons run into one another, forming as it were an minterrupted spring, where, day and night being of the same length, the most intense action of light (through the altitude of the sum and the transparency of the atmosphere) is combined with the greatest heat and moisture, where consequently the eonditions for both factors of the process of Rejuvenescence in vegetation, dissolution and reconstruction, are united in high and equal degree throughout the whole year,-there we behold the most luxuriant development of the Vegetable kingdom in "stock," flower, and fruit, whose epoehs of verdure, blossom, and ripeness, more separated in other zones, are therc most intimately interwoven.

III.-RECONSTRUCTION OF THE CEIL.

The process of solution and destruction in the cells, which we have just examined, prepares for a renewed process of construction; the slighter and less pereeptible the process of solution, the more will the reconstruction appear like a mere eontinuating formation; the more forcibly and profoundly it takes place, the more distinctly will the reconstruetion appear as such, as is most of all the case in the formation of cells of propagation. All formation of new cells, therefore, is strietly a process of Rejuveneseence of the cell; sometimes total, when the entire contents are metamorphosed; sometimes partial, when only a portion of the contents pass over into new cellformation. If the transformation of the entire cell-con-

[^161]tents is combined with a division of them, a multiplication of the cell takes place, constituting the basis of the formation of tissues in plants where the cells remain connected togcther, multiplication of the individual where they scparate. The various modes of origin of new cells, which appeared so differcnt and irreconcilcable at first sight, now all come together finally as cases mercly differing in degree of an essentially identical process, the re-shaping of the cell-contents. The idea of origin of cclls outside, between or on the surface of existing cells, formerly advocated by Mirbel, has proved intenable ; neither the vegetative development nor the propagation of plants exhibit anything but production of new cells by transformation of pre-existing ones.* This has bcen called propagation of cells, but it must be observed here, that in the majority of cases the entire contents, i. e. the whole active living organism of the cell, passes directly into the new structure, so that nothing remains bchind, unchanged, of the old cell (the mother-cell), except the passive membranous wall. The daughter-cells are therefore not to be considered as young produced by the mother-cell, existing contemporaneously with it, nourished by and gradually developed in it, but as the rejuveniscd and metamorphosed mother-ccll itself. \dagger This is most strikingly evident in those cases where the entire and undivided cell-contents become loosened from the membrane of the mother-cell, and, shaping themselves in a different way, bccome a new cell: as is the case, for example, in the formation of gonidia and spores in Edlogonium, Bulbochate, \&c., and in the formation of the

[^162]pollen-cells in their special mother-cells.* The whole conception of the formation of new cells (daughter-cells) in old ones (motlcr-cells), as it has grown up since first brought forward by Schleiden, \dagger now requires a further elucidation, since it has been extended from the so-called free cell-formation, to which alonc it is perfectly applicable, to the far morc common cell-formation by division, whence has ariscn a nomenclature, to the equivocal character of which I must here direet attention. It is a mistake to apply the word cell sometimes to the cell with a membrane, sometimes to the cell without a membrane, and sometimes to the membrane without the cell. Since the contents of the cell constitute the essential part of it (see p. 155), since it forms, before the secretion of the (cellulose-) membranc (pp. 156-167), a separatc entity, possessing its own, essentially proper, membranous boundary (the primordial utricle, pp. 169-173), we must call this internal body the ecll proper, unless we restriet the terni cell to the cuclosing wall or chamber, and give the internal body another name. If the name is restricted to the intcrual body, we cannot, in the great majority of eases, say that new cells are formed in the old, but merely that they are formed out of the old, for even the primordial utriele shares in the division, in the propagation of cells by division. Therefore when daughtercells are said to be formed in the mother-cells, or to slip out from the mother-cells, or mothcr-cells are said to be dissolved and absorbed, these phrases must be adnitted only as conveniently abbreviated expressions, "mothercell" being herc used instead of maternal cell-membrane. Finally, there are cases in which the expression, that daughter-cells are formed in mother-cells, cannot be applicd, even in this abusive sense; these arc the cases above mentioned (p. 159) of division of cells which pos-

[^163]sess no cellulose layers at all, such as we have undoubtedly observed in the transitory generations of cells, through which is effected the formation of the gonidia of many Algæ, (Ulothrix, Characium, Pediastrum, Cystococcus, Chlamidococcus, \&c.)

Having made these preliminary observations, I shall endeavour to bring together, in a connected summary, the various kinds of reconstruction of the cell, begimuing with the cases of entire metamorphosis of the contents.
a. Reconstructiun without division of the celif. -Here the character of the rejuvenised cell either remains essentially the same, $i . e$., the repeated reconstruction appears merely as a development of the cell advancing by periodical Rejuvenescence, as is the case more or less evidently in the completing development of all vegotative cells; or the character of the rejuvenised cell becomes different, the previously vegetative cell acquiring a reproductive destination, at the same time being freed, in its renewed structure, from the envelope previously formed. In the latter case the rejuvenised cell will be regarded as a new one, notwithstanding that, if we leave out the inessential membrane which it throws off, it is still the old, in reference to its essential part, the internal body, as much as it is in the former case, only its shape being clangred. The intermediate stages to be enmmerated will show that these two cases are not so different as they seem at first sight. We accordingly distinguish-

1. Reconstruction without division in vegetative cells, prepared by the periodical nocturnal respiration; cxpressed in the lamellar deposition of the cell-membrane (p. 220).
a. 'The layers of cell-membranc are intimately adherent together, and form a firmly-mited, compound cellmembranc, the layers of which are sometimes clearly evident, but often only to be made out by artificial loosening by means of chemical reagents, e. y. Mydrodictyon, Cladophora.*

[^164]b. The outer layers of the cell-membrane beeome, sooner or later, eraeked and peeled off, which takes place either by rapid growth of the cell, not inelusively of the outer membrane, as in the paraphyses of Diphysciuna (p. 177), or through more or less abundant seeretions of jelly alternating with the lamellæ of the cell-membrane, as already mentioned in the deseription of the phenomena of "skimning" in Glcocapsa, Glcocystis, Pleurococcus miniatus, Chroococcus decorticans (p. 182), Urococcus (p. 178), and Schizochlanys (p. 181). The last-named example, each new membrane being thrown off by a regular deliseenee before the new one is formed, eonneets this group of eases very elearly with the sueceeding series. The eell, as it were, new-born after every "new skinning," is not regarded each time as a new eell, simply because its eharaeter does not suffer any pereeptible elange.
2. Reconstruction without.division in the transition to fructification, or retroyressively from this to germi-nation.-In both eases the vital process of the eell aequires with the reconstruetion a new direetion of the physiologieal aetivity, an altered destination; in the former case, a transition from the vegetative growth to the swarming condition of the gonidium, or the sleeping condition of the spore; in the latter, on the contrary, from the slceping condition to the vegetative development. If in sueh a transition no throwing off of a membrane formed in an earlier condition takes place, as is usual in the passage of swarming gonidia into germination,* and oceasionally happens in the transition of

[^165]cells formed by vegetative growth into spore-slecp (see Chlamidomonas, p. 215), the cell is regarded as one and the same before and after tlis transition, in spite of the diffcrence of the condition; but if the earlier envelope is broken open or cast off in the transition to the new statc, the cell in its altered condition is regarded as a new one. The loosening of the new cell from the old cell-membrane takes place either by a contraction of the whole internal body (including the primordial utricle), as, for instance, in the formation of spores of most of the Edogonia; or it seems, vice versâ, to be a swelling up of the contained mass by occurrence of a sccretion of cellulose, which separates the primordial utricle from the cell-membrane, as in the gonidia of Edoyonium, Draparnaldia, \&c. The reason of the loosening of the contents of the special mother-cell shaping themselves into a pollen-cell, from the wall of the former, is explained by Hofmeister* by the specific nature of the substance secreted all over the outer surface of the primordial utricle, which substance, not adhering to the thickening layers of the walls of the special mother-cells, forms the primary (subsequently the inner) nembrane of the pollen-ccll. The following cases may be cited, differing in the behaviour of the new cell to the membranes of the mother-cell:
a. The new cell slips out of the membrane of the parent-cell: as in the active gonidium of Vaucheria, Gidogonium, Bulbochate, Draparnaldia, Stigeoclonium, Chatophora, Coleochate (sce p. 183); the motionlcss gonidium of Chantransia (p. 183); the spore of the Fucoidere (p. 183).
6. The membrane of the parent-cell pecls off the new cell: as in germinating cell devcloping from the sporc of Mosses and Ferns, which throws off a mere incrusting membranc; and of the Zygnemacces, which breaks through a multiple spore-coat (p. 180).

[^166]c. The new eell throws off the membrane of the mother-eell by splitting of the latter into uneoiling spiral filaments: as in the spore of Equisetum (p. 180).
d. The new eell beeomes free by the gradual solution and resorption of the membrane of the mother-eell : as in the pollen-eell of the Phanerogamia, the tetraspores of the Florider, and the spores, produeed in fours, of the Mosses, Liverworts, and Ferns, so far as they really originate in speeial mother-eells. In the germs Archidium, whiel produees the largest but fewest spores of any of the Mosses, it appears from Selimper's deseription that the spores are formed singly in the primary mother-eells, and beeome free through resorption of the latter.*
b. Reconstruction with division of the cell into two daughter-cells.- Here we find repeated exaetly the same variations as we have seen in the reeonstruetion without division; on the one side, retention of the previous eharacter (at least in essentials), and ordinarily eombined therewith intimate eonneetion of the newly-formed eells with the remains of the mother-cell; on the other side, decided alteration of eharaeter, mostly eomneeted with emaneipation from the membranes of the nother-eell. The first case is again eharaeteristie of the divisions conneeted with the development of the vegetative tissues, the latter of the transition to the formation of reproduetive eells. Leaving out of view the division whiel oceurs, the analogy with the phenomena of reeonstruction of the eell without division is perfeet. Thus, for example, the membranes of the daughter-eells originating by division, if these retain the elaraeter of the mother-eells, bear exaetly the same relation to the membrane of the mother-eell, to whieh they immediately adhere in their origin, as the thiekening layers of the mother-cell where no division oecurs, so that if it be correet in the one ease to speak

[^167]of the formation of two cells inside each mother-cell, it will be cqually correct in the other to call it a formation of one cell inside each mother-cell. In many cases, indeed, it is altogether indifferent as regards the development of the plant, whether such division takes place or not. Compare, for example, H. von Mohl's description of some of the epidermal cells of Viscum album,* which is equally fitted to illustrate the inessentiality of individual cell-divisions, and the agreement of the behaviour of the membranous layers of new cells produced by division, with that of simultaneous thickening layers of undivided cells. In like manner it is often indifferent in the formation of reproductive cells, whether the contents of the mother-cell are transformed into a spore or gonidium undivided, or divided into two cells. Thus in Coleochate scutata, two gonidia are sometimes formed in one parentcell (by division of the contents) instead of one ; in Aphanochate repens (p. 184), on the contrary, it often appeared to me that only one gonidium existed instcad of two (through omission of the dividing process); in Stigeoclonium there occurs, in addition to the ordinary formation of gonidia, a formation of microgonidia, in which several gonidia are produced, instead of one, in a mother-cell (see p. 139).

As to the great, even universal extent of the occurrence of division, and, in fact, halving of the cells, in the development of the tissues of the vegetable organism, all the most trustworthy of modern phytotomists, particularly Mohl, Nägeli, Unger, and Hofmeister, are agrecd, although they differ, in some respects, in thcir ways of conceiving the dividing process ; t even Schleiden, who,

[^168]starting from the observation of cell-formation in the embryo-sac of the Phanerogamia (the formation of endosperm cells), formerly regarded free cell-formation as thc general law, (‘ Grundzüge,' 1st cd., p. 195,) subsequently, resting upon Nägeli's researches, allowed cell-formation by division a determinate although far too limited a place, ('Grundzüge, 2 d ed., p. 201 ; ' Principles,' pp. 34, 568.) In the vegetative development of the Algæ I have met with no other mode of cell-formation, so that I must agree perfectly with Kützing, when he says, " the origin of the tissuc of Algæ by division is universal." ('Phyc. Gen.,' p. 60.) But more than this, the propagative cells of very many Algre are formed by division, of which I shall hereafter mention examples. In the Characeex, the development of which I have been working out for several years, all the cells, not only of the vcgctative tissue, but those of which the antheridium and the jointed filaments contained in it are composed, and even the spore, are formed by cell-division.

The mode in which the process of division of cells takes place has been represented in different ways. While Unger* explains the division of the cell-contents by the origin of a dissepiment (a partition), Nägeli, \dagger comprchending morc correctly the relations of dependence between the formation of membrame and the contents, states, vice vers \vec{u}, that the formation of the scptum procceds from the contcnts, previously divided into two

[^169]halves; and Hofmeister,* in addition, directs attention here more particularly to the primordial utricle, bounding and cutting off the two parts from each other, even before the origin of the cellulose dissepiment.

According to this representation, the septum is formed by the two individualised portions of contents into which the mother-cell divides, and which secrete cellulose upon their whole surface after they become separately constituted, touching by their flat adjacent surfaces; whence of course the cellulose layers formed on the surfaces of contact become united, and thus form what appears a simple septum, which, however, from the nature of its origin, is composed of two plates, standing in unbroken connection with the other parts of the new cellulose lining which coats the sides of the cell turned towards the wall of the mother-cell. Referring to the $a b$ origine existing contact of the daughter-cells with the whole internal surface of the wall of the mother-cell, in formation of cells by division of the wholc contents, Nägeli calls the formation of cells by division "Parietal cell-formation." Under the hypothesis that the contents become completely divided before the formation of the septum, he regards the latter as simultaneous through its whole extent. In contradiction to this last assertion, Mohl \dagger describes in Confervæ, particularly in Conferva (Cladophora) glomerata, a cell-formation taking place, by gradual constriction of the cell-contents, in which the formation of the new layers of cell-membrane begins, before the completion of the division, over the whole surface of the primordial utricle, and, since it penetrates the fold which the primordial utricle forms at the place of constriction, causes the formation of a septum penctrating gradually from the circumference to the centre. In another place, ${ }_{\ddagger}^{+}$

[^170]where Mohl describes the formation of the cells in young points of stems and roots, and in the cambium layer of Dicotyledons, he expresses a conjecture that the division of the cells he observed in the Confervæ is a totally different process from the multiplication of cells in the liigher plants, since in cells dividing in this way no nucleus can be found, while in the cell-formation of the Plancrogamia these play an essential part. In the multiplication of the cells of the Phanerogamia, moreover, he never could observe a gradnal coustriction of the primordial utricle. In scekiug to advance this difficult point ncarcr to its solution, I remark, first of all, that the essential part of the problem is not so much the question whether the ccllulose scptum is formed in gradual progression towards the centre, or simultaneously over its entire surface, but the question, whether the cellcontents are divided by gradual ammular constriction (with in-folding of the primordial utricle), or through simultancous separation in the place of the entire sectional plane, and the formation of two new coherent primordial ntricles. The succecding formation of the scptum might be simultancous in its entire extent, even in the first casc, if, namely, the formation of membrane on the whole surface of the primordial utricle, did not take place until the division was complete; and, on the contrary, the formation of the septum might advance in annular increments, in the second case, if the secretion of membrane on the newly-formed plate of the primordial utricle, did not take place over the whole surface simultancously, but at the periphery earlier than in the centre. In the first placc, it is certain, notwitlistanding Nägcli's objcctions, that the description given by Mohl of the ccll-division taking place in Cladophora, by gradual constriction of the contents, corrcsponds to the truth. I have secn this process so complctely and clearly in the large spccies of

Zeit., 1844, pp. 289, 291, ('Transl. in 'T'aylor's Scicntific Mcmoirs,' vol. iv, р. $96 .-$ А. H.)

Spirogyra, that not the smallest doubt could remain of the actual existence of the division completed by gradual advance from the periphery to the centre.* The observation in Spirogyra is the more inportant, since a nucleus exists in this genus, which assumes an equally important part in the division to that it bears in the division of the young cells of the Phanerogamia. Consequently this takes away the principal reason brought forward by Mohl in favour of the total difference of these two modes of cell-formation, so that one might seek to explain the distinction of the ordinary process of cell-formation, characterised by the previous formation of new nuclei and the sudden appearance of a line of fissure between them, from the division by gradual constriction, by the greater or less rapidity of an essentially identical process, and to regard the first even as a gradually completed division, only rumning through its course so rapidly that the transitional stages are concealed from observation. On the other side, it is true, an objection to such an assumption may be found in the analogy of the process of cell-division, such as occurs in young tissues, with free cell-formation. In both the new cell-formation is introduced in the same way by the formation of the nucleus, and if, in free cell-formation, a mass of contents situated around the shortly previously formed nucleus, becomes bounded and cut off simultaneously over the whole periphery (so far at least as observation reaches), analogy would lead us to suppose that in cell-formation where the entire contents of the cell part into two masses, surrounding the newly-formed nuclei, each of these masses of contents will bring as much of its periphery as is not otherwise previously determined,-therefore its surface of contact with its fellow,--simultaneously to definition and completion in its whole extent. The sharpness of the distinction in the idea of ordinary celldivision, according as we try to bring it into agreement

[^171]with the constrictive division of the Conferva-cclls, or with free cell-formation, becomes softened to some extent, if we reflect that the process which we have termed constrietion is by no means a mere meehanical proecss of folding-in, but rather a process of definition advancing in the form of an annularly penetrating ineision, that in this case also the extcrnal division is preceded by the internal, first cxpressed in the formation of two new nuclei, as may be demonstrated at least in Spirogyra. Conscquently the question is, essentially, in which cascs docs the cell-formation complete the development of the boundaries on all sides and in all parts simultancously, and in whieh does it advance gradually and aceording to definite laws. On this point, I am convinced, nature will be found to cxhibit a far greater multiformity than has hithicrto been suspected. As the cell in its subsequent devclopment displays somctimes an all-sided growth, sometimes a one-sided, sometimes a two-sided, or a growth regularly distributed in varying intensity in a still more complicated way, there certainly exists a variety of cases of regulated progress in the very first development of the boundaries of the cell. Thus, in the lower plants, there undoubtedly exists a division advancing from one end of the cell to the other. In Chlamidococcus pluvialis, in whieh the division of the coll in the later active gencrations often begins cven before the cessation of the movement (sce p. 208), I have very frcquently seen the division advance very gradually from the posterior to the antcrior, still ciliated extremity. A onesided advance of the division from the upper and of the ccll to the lower (which corresponds to the ciliated extremity of swarming gonidia) may bc conjecturcd of the Diatomaceæ with fan-shaped cclls and dichotomous peduncles (Gomphonema), as also of the Palmellaecæ with delicate peduncles issuing from the internal cell-mass. (Dictyospluarium, Näg.) As regards the ordinary cclldivision, apparently taking place simultancously over the whole surface, it is a question whether or not the pri-
mordial utricle of the mother-cell (analogous to the nucleus of it) is here totally dissolved and reconstructed. For the former view, for a total solution and reformation of the primordial intricle, it seems to me that no sufficient reasons can be found, at all events in ordinary vegetative cell-formation; but if a total solution of the primordial utricle does not take place, but merely an interruption of its contimuity in the periphery of the placc of division, the hypothesis of a completion of the primordial utricle for each of the daughter-cells, through a formative movement issuing and advancing from the parts already formed, which is demonstrated by observation in Cladophora and Spirogyra, appears to me not improbable, even for the seeming simultaneous division. The principal distinction between these two cases depends evidently on the age of the cell at which the division takes place. There are cells which never become old, but in their earliest age, by dividing, give up their existence again, or rather continue it in a new generation, till age is finally attained in a last generation, which ncver undergoes division. This is the condition in the cells of the young tissues of the higher plants, which often divide again when scarcely formed, still small, and thin-walled, with comparatively large nuclei, and abundant viscid contents. 'To such cells, which have not yet lost the character of youth, belongs the apparently simultaneous cell-division. Hofmeister* cxpressly remarks that this kind of cell-formation takes place everywhere that the volume of the mother-cell does not vcry considerably exceed (at least about sixtecn times) the circumference of the nuclei of the now daughter-cells to be formed. On the other sidc, there arc cells (probably only in the lowest stages of the Vegetablc kingdom) which may be said never to be young, since they display from their carlicst origin the characters of old cells; for instance, a nuclcus (perhaps sometimes altogether dcficient) very small in

[^172]proportion to their frequently very considcrable size, a large internal cavity filled with watery fluid, parietal distribution of the consistent portion of the contents, fully-developed starch-grains, \&e. To such old-born cells belongs the gradually advaneing multiplying division, as has been deseribed by Mohl.

1. Reconstruction with division into two daughtercells, in the domain of vegetative cell-formation.
a. Halving through cvidently gradual constriction; Old-cell-division.-The primordial utrieles of the daughtereells are eut off by a proeess of formation advancing gradually from the periphery to the centre ; the formation of the eell-membrane commenees before the conclusion of this cutting off, the septum is eonsequently formed in the shape of an annular ridge (or properly a double-plate) gradually increasing in breadth, finally elosing-in in the centre.
a. Without a mucleus? Here refers the cell-division of Cladoplora, in whieh at least no nueleus has yet been found. It has been deseribed in detail by H. von Mohl,* in Cladophora glomerata, as above mentioned.
β. With a nucleus.-My observations on this point, to be brought forward here, were made on Spirogyra nitida and jugalis, which are probably both forms of one and the same species, the former $\frac{1}{\pi}-\frac{1}{10}$, the latter about $\frac{1}{8}$ millim. in diametcr. The position and character of the nuelens of Spirogyra are well known; it appears particularly sharply and distinctly when spirit is applied, which however generally disturbs its originally eentral

[^173]position, and draws it to the side, through the contraction and partial tearing up of the radiating mucilaginous threads fixing it in the cavity of the cell. Before the application of iodine it has a homogeneous aspect, and the line of demarcation between its body and the surrounding mucilaginous envelope runuing out into radiating filaments, is difficult to see ; on the application of spirit the outline becomes clear, and the interior acquires a granularpunctate aspect; the large nucleolus always existing also appears punctated in the interior. The nucleus is somewhat lenticularly compressed in relation to the longitudinal axis of the cell, its larger diameter amounting, in Spirogyra nitida, on an average, to about $\frac{1}{33} \mathrm{~d}$, that of the nucleolus $\frac{1}{150}$ th millim. The size of both increases somewhat during the ulterior development, and most considerably just before the commencement of the division of the cell, at which time its lenticularly-abbreviated shape is also somewhat elongated. I have not been ablc to make out clearly whether there is a division of the nucleus here, or a solution of it followed by the formation of two new nuclei, or how the nucleoli behave in this doubling. When the cell is near to division, two new nuclei present themselves in place of the original, considerably smaller than it, and with proportionate nucleoli. The two new nuclei touch at first, but I never saw them lying flat upon one another, as if produced by division; they always had rounded surfaces. The circumstance that the two new nuclei are surrounded by a common, abundant mucilaginous envelope, not existing previously, seems to me to speak rather for a solution of the original nucleus, than for a division of it. Simultancously with the appearance of the two new nuclei, we discover an extremely delicate line upon the surface of the cell-contents, indicating the division now beginning also at the periphery; this line is, however, so delicate at first, that when we have the margin of the cell in focus, no trace whatever of a grooving or constriction of the primordial utricle can be detected, and the spiral chlorophyll bands, three of
which ordinarily exist in $S p$. nitida, at this period retain their course wholly uninterrupted. The two nuclei now gradually separate from one another, the mass of mucilage still cnveloping and connecting them becoming at the same time drawn out lengthways, and finally lost in longitudinal mucilaginous cords ruming between them; an accumulation of granular mucilage often remains midway between the two. Contemporancously with the separation of the new nuclei progresses the division commencing at the periphery, and by no means as a coarse constriction or folding, but in the form of an extremely delicate incision, continually advancing decper into the cavity of the cell, with the sharp edges of the surfaces of section reaching close up to the membrane of the mothercell, without being rounded off or separated by an ammular intercellular passage. In cases where the distance of the two nuclei equalled once or twice their shorter diameter, the scparation penctrating from the periphery extended scarcely to a sixtlo part of the diameter of the cell; where the nuclei were removed to a distance of about four times their diametcr, I found the division advanced to $\frac{2}{5}$ ths, so that the part still open of the connection between the two daughter-cells, was limited to $\frac{1}{5}$ th the original diametcr. The process of this gradually incising partition of the daughter-cclls can hardly be otherwise explained, than through a gradually progressing formation of two plates of the primordial utricle, gradually shatting off the daughter-cells, these plates starting from the line of limitation which has made its appearance in the primordial utricle of the mother-cell, and advancing towards the centre of the faces of contact of the two daughtcr-cclls. If we cause contraction of the primordial utricle, and loosen it from the cell-membranc, by the application of acids, in those cells also, which are not yet completed, the walls of the incision retreat from each other, to that the mass of contents enclosed by the primordial utricle in such cells, appears constricted in the middle by a widely opencd groove, more or less deep
according to the degree of division. By this means also we may satisfy ourselves that the secretion of cellulose in the notch of the primordial utricle begins before the termination of division, consequently that the septum is originally an annular ridge, not reaching to the middle. I could already distinguish its rudiment in cases in which the notch occupied about ${ }_{5}$ th of the diameter. Extremely thin and delicate as the septum is in its earliest rudiments, it separates completely from the walls of the retreating notch of the primordial utricle, and appears as a ridge attached at right angles on the cell-wall, without an intercellular passage, diminishing to inappreciable thickness at the bottom of the notch. That the contents of the two daughter-cells are not merely apparently (by adherence of the two portions to a septum thinner in the middle), but really directly connected, in these stages of trausition, follows, not only from the already described connection of the two nuclei by the mucilaginous mass drawn out into a filament, but also from the behaviour of the spiral chlorophyll bands. As soon as the peripherical groove has attained a distinguishable depth, an interruption of the regular course of these bands takes place; they become pushed forcibly into the interior of the cell at the point of transition, becoming, at the same time, loosened from the primordial utricle for some distance from the notch. The more they are bent into the centre of the cell, the more they are attenuated at the point of transition, till at length the connection is dissolved. I could trace their uninterrupted course from one cell to the other distinctly, even in cases where the diameter of the isthmus did not amount to more than $\frac{1}{5}$ th of the diameter of the cell. After the division is completed, the position of the nucleus remains excentrical for some time longer, nearest to the newly formed wall; but it soon retreats to the middle of the cell, the mucilaginous filaments radiating from it, which were at first directed in greatest number and thickness to the newly formed septum, finally run principally to the lateral walls of the
cell. The impereeptible inerease of length during the rapid course of this proeess, is a proof that the alteration of position of the nueleus is a real change of place, and not effeeted by a one-sided complementary growth of the eell (like that in the Desmidiaece). Henee we ordinarily find the nucleus again in its charaeteristie central position, as in the older, larger eells, even in newly-formed eells seareely more than half the length of the mother-eells. When the eells have attained the normal dimensions, by doubling their length, the process of division is repeated, till at length fruetifieation commenees. Excepting the proeesses relating to the nueleus, no pereeptible phenomena of solution oceur as preparatory to the division of the eells; in partieular, no change is deteeted in the green bands or the stareh-grains existing in them. I have a little more to add in regard to the cell-membrane, especially the relation of its different layers to the series of generations of eells. In the larger Spirogyre a double membrane may be elearly deteeted: an outer, whieh envelopes all the eells of the filament in eommon, whieh I will eall the euticle (Ueberhaut, cuticula) ; and an imner, the true cell-membrane, whiel, when superfieially examined, seems to belong to the individual eells, but, in reality, represents a very eomplieated system of eneasements. Between the outer and inner eoat, we may sometimes distinguish by its darker eolour a membranous layer, which however is neither a simple nor a speeial membrane, but belongs to the system of layers of the internal membrane. The eutiele is very thin in Sp.nitida and jugalis, at most $\frac{1}{900}$ millim. thiek, more transparent than the proper eell-eoat, from whieh it is distinguished also by its behaviour with aeids and solution of potash, as it does not swell up. On the surface it exhibits very numerous, irregularly seattered, sharply eireumseribed, cireular bright points, seareely $\frac{1}{1200}$ th millim. in diameter, which in the sectional view of the cutiele appear as streaks running erossways through it. These streaks are still more distinetly seen in $S p$. lubrica, in whiel the
cutiele ($\frac{1}{150}$) is far thieker than the cell-membrane. When tineture of iodine is applied, the said streaks aequire a brown eolour, while the mass of the eutiele remains uneoloured, whieh, as well as the general aspeet, makes them look like little eanals perforating perpendieularly through the eutiele. We have no observations on the mode of origin of this eutiele, but I should rather ineline to regard it as an inerustation-membrane, than as the primary cell-membrane of the first eell of the filament. The more complieated structure of the proper cell-membrane only beeomes evident after long aetion of solution of potass, when the membrane, about $\frac{1}{\text { moo th }}$ th millim. thick, swells up to almost three times the thiekness, and displays elearly at least the prineipal constituents of which it is composed. It eonsists, as examined from within outward, of a series of layers, the immost of whieh elothes one eell only, the seeond two, the third four, the fourth eight eells, \&e. The first and seeond layers, from within, are most elearly distinguishable, and one or other of them is the thiekest of all, aecording to the age of the eells; the further outwards, the thinner and less distinguishable beeome the lamellæ, so that usually only four of these ean be distinguished, the outermost of which, however, (of course only in old filaments composed of numerous eells,) we must regard as eomposed of several. These various layers are the membranes of so many different eells eneased one within another. The inmost layer alone constitutes the speeial cell-membrane of the individual actually vegetating-eell; at the time of the full development of the eell, it is thiekest of all. The second layer is the membrane of the immediately preeeding mother-eell, it therefore eneloses two eells, and beeomes attenuated by the extension whieh it must neeessarily undergo during the period of growth of the daughter-eclls, so that it is only about half as thiek as the fully-developed membrane of the daughter-eell. The third layer is the cell-membrane of the penultimate mother-eell (the grandmother-eell) ; it eneloses four cells,
and is about half as thick as the second, \&cc. By the increased expansion and corresponding attenuation, which the cell-membranes of the mother-cells lying further back in the series of generations undergo, it is conceivable that they must bccome constantly lcss clearly distinguishable as separate laycrs, and finally vanish cotirely. Each such layer, or rather special cell-membrane, is itsclf again composed of numerous extremely delicate lameller, formed successively during the lifc-time of the individual cell, which, however, can only be detccted in the inncr thicker layers, and there very indistinctly. The character of the scpta is most intimately connceted with this system of cucasing of the cell-membranes. Between two sister-cells the scptum is composed of the mere continuation of the innermost cell-membrane (that belonging to the individual cell), clearly passing over into this, and increasing in thickness in equal proportion during the growth of the cell. The structure, as composed of two lamellæ, may be detected even in the very thin septa of young sistercells, in the swollen-up condition. No intercellular passage exists at first in the periphery of the septum, but it is gradually formed during the increase of thickness of the septum, and is situated between the membrane of the mother-cell and the two daughter-cell membranes forming the scptum. The septum between two pairs of daughtercells (between the first-cousin-cells), is formed of the membranes of the daughtcr-cells and those of the mothercclls, thus of four laminx; the intercellular passage existing at its periphery is situated between membrane of the grandmother-cell and membrane of the two adjacent mother-cells. The scptum between two double pairs of of first-cousin-cclls (between sccond-cousin-cells), is formed of the membranes of the daughter-cells, mothercells, and grandmother-cells, thus of six laycrs; the intercellular passage lics between the adjacent grand-mother-cell membrancs and the membrane of the great-grandmother-cells, which, however, (together with all the membranes lying outside it,) is so thin, that it appears as
if in contact with the cuticle. All this may be very exactly traced out in the larger species of Spirogyra; and I add, in conclusion, that all the subdivisions of the cellmembrane (exclusive of the cuticle) swell up most strongly in the vicinity of the intercellular passages.

A similar gradual progression of the cell-division will doubtless be found in other Conferver not yet accurately examined in this respect. Observation of the process of division in Cidogonium and Uothrix, which genera lave a lateral nuclens, would be very interesting. The relationship which exists betwcen the Desmidiaceæ and the Zygnemacex, as also the occurrence of a central nuclcus observed in many of the genera of that family, leads to the conjecture that their division corresponds to the process in Spirogyra. In the Diatomacex the presence of a nucleus is still doubtful; the age at which the division takes place, however, leads us to expect a gradual progress of the division. Most genera of the two families last named, present us, at the same time, with cxamples of complete separation of the two cells formed by division, the membrane of the parent-cell either gradually vanishing or being peeled off. (Sec pp. 180, 181.)
b. ILalving with (apparently?) simultaneous definition of the entire surface of division. Young-cell-division.This is the ordinary mode of formation of the cells in young developing organs of the Phanerogamia,* Vascular Cryptogamia, Mosses, \dagger Characeæ, Floridex, \ddagger and Tucoidce. \& The formation of the special mother-cells of the pollen of the Phanerogamia, $\|$ and of the spores of the Cryptogamia, when this takes place through repeated halving, also belongs here ; in like manner the formation

[^174]of the cells of the embryo of the Phanerogamia, and in many eases even the formation of the endosperm-cells.* Numerous researehes on this kind of eell-formation agree essentially in the following points: the nucleus of the mother-eell is more or less completely dissolved; in its place are produced two new nuclei, cither near together, or at a distance. Between these suddenly appears a line of division (really a plane of division) whieh indicates a parting of the cell-eontents into two portions, caeh of which eneloses one of the nuclei. The two portions of contents are originally bounded only by their primordial utrieles, whiel immediately scercte a new cell-membrane over the whole of their surfaec, and thus form a septum between them at the surface of eontaet. Many observations testify that the two daughter-eells are eompletely separated, by the shutting off of their primordial utricles, before the origin of the septum. Thus Mohlt frequently observed two primordial utricles in one eell, in cambium, as well as in the tips of stems and young leaves of various plants; Hofmeister.t. represents sueli a case in the embryo of Leucojum cestivum, and also, in the deseription of the formation of the special mother-eclls of the pollen of Passiflora, and Pinus, \& endeavours to show the formation of the septum to be subsequent to the division of the primordial utricle. With regard to the behaviour of the nucleus, it must be remarked, that according to the observations of Mohl and Nägeli, the formation of the two new nuclei takes plaee in many eases through division of the nuelcus of the mother-ecll $\|$ (without solution of this). It seems to

[^175]me very doubtful whether two different conditions of this case really occur, since a rapid reconstruction of the nuclei of the daughter-cells out of the still accumulated mass of the nucleus of the mother-cell, in a state of solution at its periphery, may readily be looked upon as a division of the latter.

How far either the partition of the primordial utricle, or the formation of the dissepiment between them, is really, or only apparently, simultaneous over the whole face, can scarcely be decided in the present stage of observation. Very few observations speak in favour of the latter assumption. In one case, certainly referring here, namely, to the " young-cell-division," in the formation of the stomate-cells (see the preceding note), Mohl asserts that he observed the formation of a septum beginning with the production of an annular ridge. I should consider as an indication that the division of the primordial utricle also begins at the periphery, the formation of the at first simple zone of granules, subsequently doubled by a clear line of division, at the equator of mother-cells of the pollen of Pinus* preparing for division, and already provided with two nuclei, - a phenomenon which seems to indicate a conflict of the two newly-formed centres, expressing itself first of all at the periphery of the plane of division, when they are defining their boundaries. I shall hereafter mention a structure

[^176]analogous to this zone of granules in the description of the formation of the gonidia of Hydrodictyon.
2. Reconstruction, with division into two daughtercells, in the domain of fructification.
a. The newly-formed eells are neither eonneeted together, nor with the membrane of the mother-cell. The eells produecd by division either divide anew (as a transitory generation), without having aequired a eell-membrane, or, if no fresh division oeeurs, they are set free, naked and furnished with eilia, by tearing of the mother-eell. Here belong the gonidia of many Algr, of whieh mention has bcen already frequently made. Either two gonidia are formed in one mother-cell (by simple division of the eontents), as in Ulothix Braunii (see pp. 177, 183), Aplunochate repens (p. 184.) ; or four, eight, sixteen, or thirty-two gonidia, aceording as the division is repeated onec or more times, as in Ulva, Enteromorpha, Ulothria zonata (p. 184), Characium (р. 185), Chlamidococcus (pp. 184, 206, \&e.), \&e.
b. 'Ihe newly-formed cells, frec (active) at their birth, become united into a regularly arranged eolony after birth. 'This oeeurs in Pedicastrum (p. 184).
c. The newly-formed eells become eombined into families before birth, cither united by formation of firm mombranes, as in Scenedesmus (Nägeli, 'Einz. Algen,' t. v. a), or held together by a development of gelatinous matter, as is the ease in the Volvoeiner.
b** Reconstruction, witif division, into two cells, one of which remains as the mother-cell, the other being shut off (abgegliedert) as a daughter-cell. In the eases comprehended under B , the two eclls formed by the division of the mother-eell are either alike in cvery partieular, or, if they differ, take an equal share in the process of Rejuveneseenee through whieh they are formed, appear both equally aetive agents in the reeonstruetion, and therefore are regarded as equal daughter-eclls of one mother-cell (destroyed by the
division). But there are other cases in which the rejuvenising activity appears solely, or at least prineipally, in a definite part of the mother-cell, whieh beeomes finally cut off, as a newly-formed daughter-cell, by division of the contents and formation of membrane, from the other relatively inaetive portion, retaining unchanged the properties of the mother-eell.

The distinetion of a shutting off of this kind from ordinary division, is especially evident whenever the behaviour of the nueleus can be observed, as is the case in certain examples described by Hofmcister, which I shall mention hereafter. • In such cases, namely, instead of the formation of two new nuclei, a single new nucleus presents itself in some portion of the mother-cell (often a prolongation or bag-like protrusion), upon which the part of the mother-cell containing the nucleus separates as a distinet ccll. The original nucleus remains during this process in unaltered existence, or, if it has vanished before the formation of the daughter-cell, no new nueleus is formed in the part remaining as mother-eell during the eutting-off of the new cell. Nägeli* and Hofmeister \dagger have applied to this modification of cell-division the term "tying-off" (Abschnïrung), a name, however, only properly applicable to those cases where the daughter-cell becomes externally detached from the mother-cell. Multiplication of cells by the formation of shut-off branch sprouts likewise belongs here.

1. The shutting-off (Abgliederung) of a claughter-cell, in the domain of vegetative cell-formation.
a. The apex of the cell is shut-off as separate cell.
a. Without nucleus? Herc rcfers the formation of the mothcr-cell of the active gonidium, as also of the motionless spore of Vaucheria, under the hypothesis, that in both these eclls a proper membrane is formod (sharing the formation of the septum), before their

[^177]contents are metamorphosed into a fruetification-cell; therefore that they have a vegetative existenee, short though it be, previously to the fructification. In the later behaviour, the diffcrence presents itself, that the gonidium leaves its mother-cell by slipping out, whilc the spore appears to tear away the membrane of the mother-cell with it. The formation of the fruit-elub of Saprolegnia also belongs here. The process of shutting off the apex may be repeated many times, in a retrogressive order, in the same cell, as oceurs not unfrequently in Saprolegnia, where a seeond, and often a third picce of the coll is developed, underneath the first fruit-club), into a gonidiumcase or sporc-case (both are met with). Or the shutting off is repeated in an apce reproduced by a growing through of the empticd fruit-sac, as likcwise oceurs in Saprolegnia (particularly S. ferax, S. prolifera) and in Vaucheria clavata.*
β. With a nucleus. A remarkable example of this is furnished by the origin of the saeculate appendage of the embryo-sae of Bartonia, deseribed by Hofmeister. \dagger

The upper end of the embryo-sac (the mother-cell of the germinal vesicles and cudosperm-cells), aftcr three frec germinal vesielcs have becn formed in it, produees a prolongation penctrating into the eanal of the micropyle, which, after the previous formation of a nueleus, becomes shut off from the cmbryo-sac as a scparate ecll. In general the primary nucleus of the cmbryo-sac is not dissolved during this process. The first division of the germ-cell (the germinal vesicle) of the samc plant \dagger affords another example. The originally roundish, nucleated germinal vesiele beeomes elongated in the form of a tubular ecll, the nucleus at the same time vanishing. In the front part of the eell, turned away from the micropyle, a somcwhat flattence nucleus is now formed, and in eonsequence of this a separation of this anterior extremity as a dis-

[^178]tinct cell, while no new nucleus is formed in the longer, posterior part of the cell. According to Hofmeister,* the second cell of the proembryo (the cellular filament first developed from the germinal vesicle, the suspensor) is formed in a manner essentially the same, in Monotropa, \dagger Gagea, \ddagger Fritillaria, Martynia, and Limum.
b. A lateral growth from the cell (a cell-branch) becomes shut-off as a separate cell. This process also may be repeated in the same mother-cell when several branches arise from it one after another, as occurs in Cladophora glomerata. The branches arise sometimes from the upper margin, sometimes from the lower, and sometimes from the middle of the cell ; sometimes from the upper and lower border at the same time, as mentioned already of Chatophora and Coleochate pulvinata (p. 150). According as the ramification commences in the earliest youth of the cell, or at a later epoch, in somerwhat advanced development of the cells, the shuttingoff of the branch may exhibit distinctions of mode and • kind, analogous to those we have characterised as young cell-division and old cell-division.
a. Without a nucleus? Ramification of Cladophora, Chantransia, Chroolepus, Draparnaldia, Chetophora, \&c. In many of these genera the nuclei have certainly been merely overlooked.
β. With a nucleus. Here belong the Fucoideæ and Floridex, in the ramification of which, according to Nägeli's conjecture, § the original nucleus remains in the cavity of the mother-cell, while a new nucleus is formed in the protrusion beeoming the branch-cell.

With these "baggings-out" of the cells, giving origin to the branches of the lower plants, may be compared, to a certain extent, the thylls, those remarkable cell-like structures which fill up the wide vessels of wood in old

[^179]age, and, according to the researches of an anonymous ${ }^{3 \%}$ author, sprout forth as little utricular protrusions from the cells of the surrounding tissue, and penetrate through the thin-walled eanals of the dots into the vessels. In these thylls, which appear quite as true, partial, and loeal Rejuveneseenees of the cells, nuclei are formed at a time when those of the mother-cell have long since vanished, never becoming renovated.
2. Shutting-off of a daughter-cell in the domain of fructification. The shut-off and detached daughter-cell becomes a spore, while the mother-eell remains vegetative. This case doubtless occurs in the spore-formation of many Fungi, particularly the true Hymenomycetes, \dagger many Gasteromycetes, \ddagger and most Hyphomycetes. $\$$

The multiplieation of the cells in the Algal genus Wrococcus (Nägeli, 'Algensyst,' 169) and the fermentation Fungi, \|l also takes place by the shutting off, and frequently eomplete tying-off (Abschnürung) of either terminal or laterally budding daughter-cells. But as all the cells are of like character here, these cases would be more properly referred to the domain of vegetative cellformation.
c. Reconstruction, witil division into four daughter-celis. - lirom the pregnant discoveries of Ad. Brongniart｢ and H. v. Mohl, ** ${ }^{*}$ on the formation of the.

[^180]pollen-grains of the Phanerogamia and the spores of the Cryptogamia, the formation of four daughter-eells in each mother-cell appeared to be a case of very frequent occurrenee, widely diffused in the condition of transition to fructification. From more reeent researches, however, on the processes which precedc the formation of both the pollen-grains and the groups of four spores, ${ }^{\text {* }}$ in the mothercell, the nature of the formation is not so simple as it at first appeared. The pollen-grains and spores are not formed immediately in fours in the mother-cell, but singly in speeial mother-cells, so that the origin of the number four is to be examined in the latter. According to Nägeli's researches, this takes place in two ways. \dagger The mother-cell either divides at first into two daughter-cells (primaryspecial mother-cells), which then each divide again into tivo (seeondary special mother-eells) ; or the mothereell divides immediately into four daughter-cells, in which case, consequently, only one generation of speeial mothereells (merely primary) is formed. Only the second ease belongs to the present section of our subject. From researches hitherto made, it seems to follow that in the first mode of origin the group of four (secondary) speeial mother-cells are usually placed in one plane ; in the latter the four (primary) special mother-cells in two planes, or in the order of the angles of a tetrahedron. If this relation of the arrangement to the mode of origin were constant, it would be an easy means of ascertaining the direct or indirect formation of the group of four special mother-cells, at a later epoch, from the arrangement, nay even in many cases from the form (in a great measure dependant on the original position) of the spores or pollen-grains. \ddagger But this relation is not constant. Ac-

[^181]cording to Nägcli's* observations (on the formation of the pollen of Lilium), the tetrahedral arrangement of the four special mothcr-cclls oceurs also when they are formed in the second generation, when the two primary special mother-eells first produced are divided, not in the same, but in a different dircetion, produeing a decussating arrangement of the two pairs.t On the other hand, it follows from Hofmcister's description of the formation of the pollen in Pinus, \ddagger that four special mother-cells lying in one plane may be produced by simultaneous formation. But what scems to us of still more importance here, is the observation, that not merely the various modes of arrangement, but even the cases, whieh we should suppose very essentially different in their mode of formation, of primary and sccondary, direct and indirect formation of special mother-eells, are not exelusive of caeh other in their natural occurrence, sinec they sometimes oecur in substitutive alternation in one and the same plant. Naigeli has named Althuea rosea as a plant in which the special mothcr-cells are formed in one gencration (four at a time), and also sometimes in two successive genc-
shape, with a longitudinal keel,) c. I., in Polypodium vulgarc, Ceterach offieinaram, Asplenium Ruta muraria, Aspidium Tilix fonsina, \&e.; the latter (produeing the form of a triangular pyramid rounded at the base,) in Pleris longifolia, scrrulata, Allosorus crispus, Nolochlona maranke, Osmanda regalis, \&e. (lI. von Moh1,' 'Verm. Schrilt.,' 60, 70.) In the Mosses and Hepatieæ the tetrahedral arrangement scems to be predominant, likewise in the Lyeopodiaeer and Rhizocarpex, in the latter of whieh this is indieated by three short lines united in the form of a tripod, both on the small and imperfeetly developed large spores, (Mettenius, 'Beiträge znr Kenntniss der Rhizoearpeen,' t. i, of Salvinia.) In the Floridex there oceurs a third mode of arrangement, in addition to the quadratic and tetrahedral, namely, the lincar, (Kütz., 'Plye. gen.,' p. 100,) "spermatidia quadrijuga." See, for instanee, t. 60, iv, Hypnophycus muscifornis, and t. 62, iii, Calliblepharis ciliala.

* Nïgeli, 'Entwick. des Pollens,' p. 18, i. ii, f. 19, 20, 21.
\dagger The sliape of the four seeondary speeial mother-eells, (and consequently of the pollen-grains or spores,) is in this easc, however, different from that in the tetrahedral arrangement through direet formation; in the former ease the four portions, (as in the quadratic arrangement,) have the form of quarters of a sphere, in the latter the form of a three-sided pyramid with a rounded base. If the two modes of arrangement require to be distinguished, the former may be ealled the decussate, the latter the pyramidal or telrahicdral in a restrieted sense, (See also Nägeli, 'Neueren Algensysteme,' p. 190.)
\ddagger 'Bot. Zeitnng.,' 1848, 671.
rations (two and two). Hofmeister mentions the opposite case as oceurring in Tradescantia, in which the special parent-cells are usually formed two and two (in one plane or decussating), sometimes, however, all four simultaneously (in tetrahedral position).* This remarkable eircumstance indicates an intimate connection of the two eases, to whieh we are still more definitely attracted by eertain observations on the behaviour of the nueleus before the direet quartering. In the first place, we must here reeall the remarkable course of development of the spores of Anthoceros, described by H. von Mohl, \dagger and also by Nägeli. \ddagger At the sides of the central nucleus of the mother-cell, here, as an exception, not vanishing, two new nnelei are formed (called by Mohl, from their granular contents, "granule-cells"), whieh after some time divide, thus producing four nuelei, whieh, gradually retreating from each other, assume a tetrahedral arrangement. Around these four nuclei the special mother-eells are simultaneously formed, by division of the entire contents of the general mother-cell. Still more expressive are the observations made by Hofmeister on the formation of the pollen of Pinus. \S The large nueleus beeomes dissolved; two secondary nuelei are formed; between these two the granules of the cell-sap aceumulate as an annular zone at the equator of the cell; the zone of granules soon splits into two parallel zones, indieating the separation of the primordial utriele into two halves. Up to this point all the mother-eells behave alike, but the subsequent development takes place in two different ways. Either the indieated division into two primary special mother-eells is earried out, and two secondary special mother-cells are formed again in each of them; or the eommencing halving of the primordial utricle is inter-

[^182]rupted, the two secondary nuclei vanish, and in place of cach one of them appear two tertiary, making four nuclei in a coll, which cither lie in one plane, or are arranged like the angles of a tetrahedron, and the formation of the four special mother-cells now takes place directly around these. Supported by these observations, we might certainly conjecture, that all those processes of cell-formation which, according to the external definition of the cells, appear as direct quarterings, are essentially the same as the double halving, only distinguished from the latter by skipping over one step of the course of the formative process, advancing, mamely, from the first halving, already indicated by the formation of two sccondary nuclei in the interior of the cell, without completing this, to the succeeding halving.

In the multiplication of the Uniccllular Algæ, especially in the family of the Palmellacere and those nearest allicd to them, we meet with undoubted cases of true quartering (in the sense just explained), together with apparent quartering. 'The latter results from the first halving, which produces merely a transitory generation of cells, being followed immediately by a sccond.* Here also the arrangement of the cells in one plane not unfrequently alternates with the decussatc, as I have observed, for example, in Chlamidococcus pluvialis. Nügcli gives gemine (and tetrahedral) quartering as the character of the genus Tetrachocnccus, the independence of which he, however, doubts himself, placing it as a sub-genus under Pleurocococcus, and leaving it undecided whether the form of Alga thus characterised does not belong to Pl. vulgaris. \dagger I have observed intermingled, in Protococcus viridis, mere halving, apparent (decussating) and truc (tetrahedral) quartering; the latter two distinguishable by the form of the cells, from which alone I could draw inferences as to the mode of formation in this case.

[^183]d. Reconstruction with division of the contents of the mother-celi into an indefinite number or daughter-cells.-The cases to be mentioned here all belong to the fructification of the Algæ, Lichens, and Fungi; they have hitherto been included, especially by Nägeli, not under cases of cell-formation by division, but of free cell-formation, from which, however, they are essentially distinct. While, in free cell-formation, the mother-cell, notwithstanding the formation of daughtercells taking place in it, preserves its own vitality, that is, continues to exist as a living cell, consequently possesses, in addition to the daughter-cells, vitally active conteuts bounded by the persistent primordial utricle, and often still furnished with a well-preserved nucleus;-in the cases to be examined here, as in all formation of daughtercells by division, the mother-cell dies at the very first formation of daughter-cells : which is especially indicated by the constant dissolution of the primordial utricle of the mother-cell. The entire contents of the mother-cell, at most with the exception of a watery fluid containing but few organic constituents, become applied to the formation of the daughter-cells, and not by actually existing daughter-cells gradually consuming it, but in such a way that the whole contents (so far as available for reconstruction) are divided among the daughter-cells at the earliest definition of the boundaries of the latter. Hence the cells do not originate with free bounding surfaces, but in original contact both with each other and with the wall of the mother-cell; but they may separate subsequently, or, if the watery contents of the mother-cell are excluded from the new structure, even at the first completion of their formation.

1. The daughter-cells are formed by the division of contents filling the entire cavity of the mother-cell.This case presupposes that the whole contents are mucilaginous, and capable of sharing in the process of reconstruction.
c. The daughter-cells lie in one row in the mother-
cell.-The cylindrical eell of Sciadium (see p. 187) possesses uniformly distributed green contents, which are interrupted in perfectly developed eells by light eross streaks, and are dividcd into a row of 5-8 about equal masses, whieh become gonidia. I eould not deteet nuclei in the individual segments of the contents passing into the formation of gonidia. Probably the conditions are similar in Oplisocytium (Näg. ' Einz. Alg. iv, A). It seems to me probable that the formation of spores in the cylindrical or fusiform mother-cells (asci) of the Liehens, Pyrcnomyeetes, and Discomyeetcs, bclongs to this kind of cell-formation. The greatcr concentration of the contents whieh accompanies the formation of resting spores, causes the exelusion of the watery portion of the contents of tlic mother-cell, and hence a detaehed position of the spores presenting itself in the earlicst period of their isolation. The development of the spores of Peziza Acetabutum, as described by Corda,* leaves scarcely a doubt in this respeet. In the equably diffiused, opake, and granular fluid contents of the mother-tube is formed a row of globular struetures, standing at regular distinnces, ealled by Corda drops of oil, which, from their relation to the subsequent formation of the spores, appear to be miclei. Around these nuelei a lighter atmosphere is formed, the darker granular mass aceumulating in the form of zones between them: whieh reminds us of the analogous phenomena in Hydrodiclyon, and in the formation of the pollen of Pimus and Passiflora. Soon aftcr this, the individual globular nuelei appear surrounded by masses of contents and membranes, consequently as the central structures of so many longish spores, whieh are scparated by a light, watery fluid, containing but very few granules.
2. The daughter-cells fill up the mother-cell irregu-larly.-I think we may reckou here the formation of the gonidia of Chlorococcus (aecording to Nägeli), \dagger also of
[^184]Chytridium (p. 155), in which genus the nuclei scattercd through the whole contents of the mother-cell, are clearly distinguishable before the formation of the boundaries of the gonidia. Perhaps the formation of the spores of many Fungi, in particular the genus Erysiphe, * belongs here.
2. The danghter-cells are formed by the division of a mucilaginous layer coating the inside of the wall of the mother-cell.-Since this by no means very rare mode of cell-formation-to which the term "parietal cell-formation would seem apt, were it not already used in another sense-has never yet been acurately described, I shall give a somewhat detailed account of it, as I observed step by step in the formation of the gonidia of Hydrodictyon. I have already spoken of the strange mode of reproduction of the Water-net (pp. 137, 222) ; and the characters of the coll-contents (pp. 171, 197) and the cell-membrane (p. 190), before the commencement of reproduction, have also been explained; so that, taking up the subject at that point, I may commence immediately with the description of the phenomena through which the beginning of the formation of gonidia is announced. The first stage, introducing the formation of the gonidia, comprises the period of solution and disappearance of the starch-grains. The mucilaginous layer' (i. e. the more consistent, formative contents resting against the cell-membrane, the subordinate divisions of which have been described above, and which retain their parictal position up to the completion of the formation of the gonidia) changes its aspect in a remarkable manner at this period. 'Ihe fresh transparent green becomes more opakc, and the entire mucilaginous layer acquires, cven before the solution of the starch-granules is completed, a peculiar, regular appearance, closely beset with lighter spots, which appearance, however, is only distinctly perceptible when the focus is adjusted to the bottom of the

[^185]mucilaginous layer. These spots are not the starch-grains undergoing solution, as might be conjectured, for their number is much larger than that of the latter, the not quite lost nuclei of which may still be remarked here and there, and not in, but between the spots. The little green granules of the contents, which, for the sake of brevity, I shall eall chlorophyll-granules,* do not disappear with the stareh-grains, but separate from each other at the pcriod of the formation of the spots, and become aeeumulated as darker boundary lines between the brighter spots. By adjusting the focus up and down we may asecrtain that seattered chlorophyll-granules oceur also above and beneath the light spots, while the spots themselves are roundish spaces, free from granules, existing in the thiekness of the mueilaginous layer. Simultaneously with these processes the green colour of the mueilaginous layer passes more into a brownish, a clange of colour which shows itself still morc clearly in the next stage, especially in those cells in which microgonidia (swarmers) arc to be formed. Still more striking alterations present themselves in the second stage of the formation of gonidia, in which the mucilaginous layer exhibits a picture diametrieally opposed to that just deseribed. The granules retreating towards the bright spaces, the earlier dark net-work of the granules is replaced by a net-work of lighter boundary lincs; the former bright spots, on the contrary, beeome darker areolx through the colleetion of granules into groups. When the new distribution of the contents is complete, the light intermediate streaks appear as everywhere pretty equally broad, light-yellowish (not green) lines, sharply defined upon the dark ficld; the latter displays little polygonal (mostly hexagonal, rarcly pentagonal or heptagonal) green plates, with

[^186]a more or less brownish tinge, sometimes appearing wholly filled with granules, sometimes displaying a lighter space, free from granules, in their centres. In correspondence with the slape and the (in the same mother-cell) tolerably equal size of the plates, they are so arranged that mostly six are grouped round a central one. The size of the plates varies according as they are to form macrogonidia (net-formers) or microgonidia (swarmers); in the former ease the diameter amounts to about $\frac{1}{100}$ th millim., in the latter to $\frac{1}{200}$ th or $\frac{1}{150}$ th ; the latter, moreover, exlibit a less regular, more oblique shape, and less numerous (only 4 -10) chlorophyll granules. The membrane of the parent-cell begins to thicken by swelling-up in this stage. In the third stage, finally, is effected the complete separation of the little plates, and the formation of the gonidia. The plates, already previously clearly defined against the light intermediate streaks, begin to round off at the corncrs, and to become convex at the surface, previously lying flat against the cell-membrane, so that the tabular form passes, not at once into a globular, but into a lenticular form, which compression may still be observed in a slight degrce subsequently, in the stage of motion. During this rounding, the lighter intermediate streaks vanish, the gonidia come into direct contact, triangular intercellular spaces only appearing at each point wherc three meet. This stage is ordinarily of very short duration, passing at once into the fourth, that of the movement of the gonidia, which differs in degree and duration, according to the kind and destination of these. Although the phenomena of the motion of the gonidia of Mydrodictyon have bcen spoken of already, we cannot pass them over entirely here, since certain points come under consideration in it, which have an influence on our judgment respeeting the mode of cell-formation which we are now engaged with. Both in the macrogonidia and microgonidia the movement at first presents a mutual, originally scarcely pereeptible erowding and pushing, which, when in full course, is comparable with the move-
ment of a dense erowd of pcople in whieh no one em leave his place. The signal for freer and more active motion is given by the processes taking place about this time in the membrane of the mother-cell. The cellmembrane has begun to thicken even in the second stage of the formation of the gonidia, and the swelling-up made still further progress in the third, but the resistance of the cuticle hinders the extension of the eireumference of the cell-membrane. This obstacle is now removed by the euticle eraeking, first in one, and soon in several pliees, which gives the cell-membrane, now beeoming soft and limp through the swelling-up, room to expand. Ihis is the epoeh in whieh the movement of the gonidia changes, cither simultaneously throughout the cell, or more frequently gradually spreading from the spot where the first dehisecnce of the cuticle oceurred, into a lively trembling and jerking, which Treviranus not inaptly compares with the ebullition of boiling water. But even in this very rapid motion the aetual loeomotion of the gonidia is extromely slight, so that, for example, free spaecs, such as oceur in eells where vacuitics existed in the mucilaginous layer, are not filled up by gonidia. In the maerogonidia, dostined to form nets, the motion stops here; in the mierogonidia, on the eontrary, a whirling is added to the trembling motion. While, namely, up to this time, the whole mass of microgonidia had retained their peripherieal position, representing as a whole the form of a sac, corresponding to the form of the mueilaginous layer, even in their movement, this strange bond is now dissolved, the gonidia leave the periphery, and whirl about in varied intcrmixture through the whole eavity of the eell, till at length, through the bursting of one or more bulging protrusions of the ccllmembrane, they leave the cell in a dense swarm, and eontinue the swarming motion for a long time in freedom. Both the macrogonidia and mierogonidia exhibit various peculiarities, during the period of motion, which were not pereeptible before its commencement. The macro-
gonidia retain their roundish or rounded polygonal form, but exhibit at one side a hyaline margin, which occupies about a third part, or even lalf of the eircumference ; the mierogonidia, on the other hand, become distinctly longish, the more acuminated end, at the same time, appearing transparent. The green granules enclosed in the interior are still distinguishable in both, but less sharply, sinee they begin to blend together; the colour is again bright green, in the net-formers darker, in the swarmers more of a yellowisll-green. The fifll stage, that of rest, is connected in the macrogonidia with their union into a young net, which union begins even in the last period of the movement, so that gonidia, already united in groups, are seen still jerking and pulling backwards and forwards. When they have come to complete rest, and united perfeetly into a new net, the elongation of the previously roundish gonidia begins; the green granules in their interior beeome eompletely blended into a homogeneous mass; the rudiment of the first starchgrain makes its appearance ; the newly formed cell-membrane becomes distinguishable. The microgonidia, also, which swarmed-out, and whiel never unite into nets, but merely become irregularly heaped together, exhibit, after they lave come to rest, this transition of the granular contents into a homogeneous green mass, as well as the formation of a small stareh-grain and the production of a distinet cell-membrane, by means of which they often become colerent together in groups; on the other hand they show no trace of elongation, and in general do not inerease in size, ${ }^{*}$ while in the young nets the increase of

[^187]size advances with astonishing rapidity, the cells of the net, under favorable circumstances, increase to 600 times the length, and 240,000 times the volume in the course of a fect weeks.*

After this description of the processes taking place in the course of the formation of the gonidia of the Waternet, it is not difficult to perecive its similarity to other modifications of cell-formation by division. Secking, in the first place, the import of the light spots which characterise the first stage of the new eell-formation of the Water-net, it is beyond doubt that they represent the centres of so many new cells, consequently are cither aetual muelci, or, since we cannot detect any defined outlines, accumulations of albuminous substance analogous to muelei. The net-work of gramules between the light spots, oceupying the boundary-lines of the future gonidia, reminds us of the formerly mentioned production of a zoune or plate of gramules, appearing in the division of the mother-cells of pollen, as also of the zones of granules in the mother-cells (asci) of the spores of Pesiza, and shows that the regions becoming parted off to form new cells are in contact at first. The light streaks which are displayed in the second stage, between the concentrating and isolating tabular portions of the contents, appear to be formed by a secreted matter, which is immediatcly re-dissolved and destroyed, but which effeets the solution of continuity between the individual gonidia, and between them and the membrane of the parent-cell.

[^188]Perlaps it is the same substanee in a state of solution, but still viseous, which retains the aetive gonidia for some time at the periphery of the eavity of the mother-eell, so that the maerogonidia, in whieh the stage of rest and mutual attaehment begins pretty soon, eannot unite otherwise than in the tubular form given by their mode of origin, into a net-like colony. We sometimes pereeive in the interior of newly-formed nets, still enclosed in the membrane of the parent-cell, eolourless balls of mucilaginous consistence, without distinet outlines, whieh are coloured yellow by iodine. In the swarm-like eseape of the microgonidia, through the burst dehiseence-saes of the mother-cell, likewise, we sometimes see the swarm interrupted by a mass of mueilage mixed up with and clogging them. Whether these masses of mucilage are the still undestroyed remains of the above-mentioned secreted connecting substance of the gonidia, I do not venture to decide. Ordinarily, after the complete formation of the gonidia, the contents of the mother-eell exhibit, besides the gonidia, nothing but water-elear fluid.

As a proof that the gonidia of the Water-net do not originate free in the contents of the mueilaginous layer, but separate from one another by mutual demareation of boundaries, out of an originally eontinuous mass, I may mention the not unfrequent oceurrence of twin-gonidia (even of triple groups) in whieh, on swarmers, two (or three) ciliated points may be distinguished, whieh are sometimes side by side, sometimes placed at right angles to cach other, or are even on directly opposite sides. It is easy to make certain that such forms are not produced by blcnding of previously separate gonidia, but that the light line of division, as formed in the sccond stage, is omitted between the two platcs or groups of contents; that, conscquently, the mutual extermal definition between two (or three) inwardly separated eells, has not, or only imperfectly, been effected.

The formation of the gonidia of Ascidium (p. 12S),

Cladophiora, and probably also of Chatomorpha (p. 185), agrees cssentially with the mode of cell-formation here described; moreover, judging from the statements of authors, those of Endococcus (Nägeli, 'Einz. Algen.,' p. 17) and Bryopsis, in which genus the accurate tracing of the process, especially in reference to the behaviour of the chlorophyll vesicles, would be especially important. The formation of the gonidia, as well as the spores, of Saprolegnia, likewise referring here, cleserve a more minute cxamination, on account of their somewhat aberrant character. 'Ihe apices of the filaments, swelling up into longish clubs or cylinders, and becoming shut off as scparate cells, in which the gonidia of Saprolegnia are formed,* are filled at their formation with a gramular mucilage. Subsequently several cavities present themselves in the interior of the mucilaginous mass, along the axis of the club, which cavitics, gradually increasing in size, become blended into a single cavity traversing the entire tube, not, however, of very large size. 'The contents thus converted into a thick parictal mucilaginous layer, soon aequire an undulated surface, forming little rounded eminences, which project more and more, while the intermediate furrows continually ent in decper until they at length reach the cell-wall. In this manner the mucilaginous layer becomes divided into numerous hemispheres, attached by their flat sides upon the cell-wall; these, however, immediately become rounded into globules, separating simultancously from the cell-wall. This completes the formation of the gonidia, which immediately commence their movement, continuing it for some time after they have been expelled from the mother-tube.

[^189]Druing the time they are in motion, the gonidia exhibit a longislı sliape, in the transition to rest they re-acquire the original globular form. The rest is followed immediately by germination. All these processes, from the formation of the clubs to the swarming out of the gonidia, are the work of a few hours.* The occurrence of large resting spores, which has escaped most observers, \dagger is a normal phenomenon in the later period of the existence of Saprolegnia, occurring sometimes simultaneously with the formation of the gonidia, usually, however, after that is terminated. The spores are formed in globular or pear-shaped, expanded cases, at the tips of slender divaricated lateral branches; the tips of the erect shoots more rarely swell up into such bulging spore-cases. In exceptional cases spores are formed also in cylindrical terminal tubes, agreeing in form with the gonidiumcases. The mode of formation of the sporcs agrees in all essentials with that of the gonidia. The granular mucilaginous contents of the future spore-cases become darker and more opake than those of the gonidium-clubs, but, as in them, become applied upon the wall of the cell. In this stage several large vesicles, arranged at regular distances, make their appearance in the dark mass of the mucilaginous layer.

When we compare the number and distance of these vesicles with those of the future spores, it scarcely admits of doubt that they are nuclei, from which proceeds the formation of the spores, especially since we may often distinguish a similar lighter vesicle in the developed sporcs. The formation of nuclei is followed by the production of elevations on the internal surface of the

[^190]mucilaginous layer. The somewhat distant elevations become more and more rounded, and the mueilaginous layer, drawing itself apart betwcen them, becomes finally wholly contracted into them. The hemispheres thus formed are therefore not closely crowded, as in the formation of the gonidia, but separated by largish interspaees. The next process is the rounding and detachment from the cell-wall, in consequenee of which the spores lie free and loose in the interior of the spore-ease, and are not seattered until this decays. The form of the spores is always globular; the size varies in Saprolegnia prolifera from $\frac{1}{50}$ to $\frac{1}{30}$ millim., while the gonidia in the stage of motion are only $\frac{1}{100}$ milim. long; the colour is brown; the contents are at first fincly granular, subsequently iutermingled with drops of oil; the membrane is at first imperceptible, when fully developed thiek and evidently double. In the cylindrieal spore-eases, the hemispherieal elevations are formed in pretty regular alternate order on the two opposite sides of the cell-wall, so that they are interposed like the teeth of two wheels or racks; but the detaehed spores fall into a single linear row. In the expanded eases the arrangement of the spores does not exlibit any definite order. 'The number varics very mueh aeeording to the size of the eases. I have seen as many as twenty spores in one ease, while in many other instanees there were only four, three, two, and not very uufrequently there was only one.

The formation of the spores of Leptomitus lacteus resembles that oceurring as an exception in the eylindrical cases of Saprolegnia; the spores detached from the wall of the mother-tube are arranged in a single row.* The formation of the spores in the sporangia of Coleochate takes place in a manner similar to that in the

[^191]globular cases of Saprolegnia. The spores are flatcompressed, however, before their separation, longish afterwards; their colour is green at first, subsequently brown. The number of spores in C. pulvinata amounts to 5-8.

Finally, I mention here the formation of spores in Splucroplea, already described (see p. 164),* as a case which connects the two sections D. 1. and D. 2., the formation of an indefinite abundance of new cells through transformation of contents filling up the entire cavity of the cell, on the one hand, and of contents excavated into a parietal investment, on the other. Before the commencement of fructification, the cell-contents of Sphceroplea represent a parietal investment, which, however, does not maintain itself as such in the preparatory stage of formation of the reproductive cells, as in the foregoing examples, but collapses entirely, whence the spores produced by its transformation are not seated upon the cell-wall even in their earliest state, but lie free in the cavity of the cell, arranged, according to the proportion of their size to the diameter of the long tubular mother-cell, either in one row, as in Sph. Leibleinii, K., or in two or more, as in Sph. Trevirani, K. \dagger and Braunii, K. From the position of the sporcs, it would be more correct to apply the term free cell-formation to this, than to the preceding cases; but even here it is the entire contents, with the mere exclusion of a watery fluid, which break up into a number of newly individualised masses. That these masses separate at their first production, only loosely fill the mother-cell, and are little or not at all in contact, arises from the condensation of the contents connected with the formation of resting spores, and the abundant quantity of watery fluid which is thus cxcluded. All the more consistent portions of the contents, the viscid mucilage, the previously annularly arranged chlorophyll, with the

[^192]extremely minute green granules in it, as well as the stareh-grains* (not vanishing in the process of solution), are taken up at the very first origin of the spores. They are not gradually consumed, but enclosed in the first strueture, whieh also explains the phenomenon that the spores do not commenee with minute rudiments, and gradually inerease in size in the mother-eell, but, on the contrary, are larger in the first epoeh of their formation than they are subsequently, when their mass has beeome more condensed. Thus this case appears as a reformation of the whole eell-eontents eombined with division, peeuliarly modified by the condensation of the newlyformed eells, and the retraction from the wall of the mother-cell conneeted with this, a retraction sueh as we have also seen in reconstruction without division in the spore of Gidogonirm, or as we are aequainted with in the family of the Zygnemaeex (in the intermixture of the eontents of two eells to form one spore).
e. Partial reconstruction through formation of daughter-celld in the contents of surviving mothlir-celis.-'Ihis kind of eell-formation is distinguished from all the preeeding bythe cireumstance that the mother-eell is not lost in the reeonstruetion, but survives the formation of the daughter-eells, the contents of the mother-eell being only partially, not entirely, applied to the formation of new eells. While in all the foregoing eases the newly-formed cells appear as more or less considerable transformations of the mother-eell, we behold here a re-produetion or new-formation in the most complete sense, since the old cell persists as sueh, in spite of the reproductions taking place in it. In all the foregoing eases, nothing remains of the mother-eell after the formation of the daughter-eells but the inessential membrane; here, on the contrary, we see the daughter-cells enelosed in the living, undividedly persistent contents of the mother-eell.

1. The daughter-cells originate (without a nucleus?)

[^193]close to the cell-wall, against which they are firmly applied during their completion.-This is the character of the formation of the germ-cells of Valonia described by Nägeli. In the long tubes, when full-grown measuring $\frac{1}{2}$ to $1_{\frac{1}{2}}$ inch in length, of this unicellular marine Alga, the organic contents form a thin investment to the wall, while the large cavity is filled with salt water.* The mucilaginous layer is boset with reticularly arranged or scattered chloropliyll-vesicles. At particular spots, especially at the bottom, more rarely in the apex of thic cell, are formed the germ-cells, sometimes singly, sometimes connectcd in groups. According to Nägeli, they originate as minute colourless globules, which acquire as they grow an evident membrane and green granular contents, chlorophyll-vesicles being formed in their interior. The fully-developed germ-cells adhere as flattencd disks to the wall of the cell. Those which occur at the upper end of the mother-cell usially germinate in the still surviving mother-cell, breaking through its membrane, probably locally softened, stopping up the orifices again with their bases. The peculiar ramification of Valonia arises from this growth of the young indiriduals out of the old one. 'lhe gcrm.cells at the lower part of the tube, remaining undeveloped, probably only become free through the decay of the parent individual, to become developed as separate individuals forming new family-stocks. The casc here mentioned is distingnished from the mode of cell-formation minutely described in Hydrodictyon, under D. 2, by the circumstance that only particular points, and not the whole of the parietal mucilaginous layer, passes into new cell-formation ; moreover that the new cells exhibit a gradual increase in size in the surviving mother-cell, while in Hydrodictyon they attain at their first production the full size which they are destined to acquire inside the mother-cell. Nägeli's description affords no information as to the behaviour of

[^194]the chlorophyll-vesieles on those parts of the wall of the mother-cell where the formation of the germ-cells oeeurs.

Botrydium doubtless belongs to the same family as Valonia. My observations on the formation of the germcells of this genus, already mentioned (pp. 12S, 193), are not sufficiently complete to decide whether it can be properly cited as an example here. In Botrydium the germ-eells are sessile all over the inside of the wall of the vesicular epigrous portion of the cell, placed pretty close together, yet not in eontact. They exhibit a rather considerable difference of size in the same individual, which seems to indicate a growth inside the mother-cell. Simultaneously with their eompletion the mother-eell swells up, softens, and collapses. Aeeording to Kützing,* however, the spores often germinate before the collapse of the mother-cell, breaking forth on its surface as a granular conting.
2. The danghter-cells (mostly several, rarely only one) are formed (around muclez) free in the contents of the mother cell.-I'he term "free cell-formation," which certainly meets most of the modifications to be examined here, has litherto been applied to many other kinds of cell-formation already treated above. Looking at the mere words, we may use this expression in two very different signifieations, aecording as we intend to call the cell-formation free in its result or in its origin. In the first sense we speak of free cell-formation in contrast to the formation of eonneeted tissue, under which cireumstances the daughter-cells may stand originally in most intimate contact with the mother-eell and with each other, but not be grown together, or not so firmly that they cannot finally become free by the rupture or resorption of the mother-cell. We have seen sueh formation of free cells under a. 2 (formation of the gonidia of Eidogonium, of the pollen-grains, \&c.), в. 2 (formation of the gonidia of Ulothrix, Characium, \&c.), D. 1 (Sciadium, Chytridium),

[^195]D. 2 (Ascidium, Cladophora). Free cell-formation in the second sense, in which it was uscd for instance by Nägeli,* likewise comprehends two very different series of cases, viz., either the origin is only so far free, that the daughter-cells formed through the transformation of the whole contents of the mother-cell (with or without division of them), separate at the very moment of their constitution, from the membrane of the mother-cell, by contraction of their mass, and separate from each other in the same manner, as we have already examined under A. 2 (formation of spores of (Edogonium), D. 2 (Spharoplea) ; or the origin is free even in relation to the definition of the boundaries of the original mass of contents from which the new cell is formed, the daughtercells being formed, not out of the whole contents of the mother-cell, but out of the separate, unconnected portions of them. It is this last series of cases that especially merits the name of free cell-formation, if this term is to be retained; and then the circumstances whether the newlyformed cells are applied upon the mother-cell (e. l), or not,_-and, in like manner, whether they subsequently become connected together into a continuous tissue (as we shall see in the endosperm-cells), or not,-are to be regarded as less essential.
a. A free daughter-cell is formed around the primary nucleus of the mother-cell.- The case here mentioned differs from those examined under A. 2, e.g. the formation of the pollen-grain in its special mother-cell, in the circumstance that the danghter-cell does not take in the whole of the contents of the mother-cell, but lies free in the contents of the latter, so that other daughter-cells may subsequently originate in the contents of the same mother-cell. This strange and most rare case was

[^196]observed by Hofmeister in the embryo-sac of Funkia carulea,* and described in the following manncr. About the time of the opening of the flower, before fertilisation, but aftcr the germinal vesicles have been formed, a new cell is formed around the still existing primary nucleus of the cmbryo-sac, which cell only occupics a small portion of the intcrnal cavity of the cmbryo-sac, in its lower third. After the formation of this cell the original nuclcus becomes dissolved, and two or more muclens-like structurcs appear in its place in the daughter-cell, but no further cells seem to be formed around them. The formation of this contral daughter-cell belongs to the many structurcs occurring in the embryo-sac which vanish again vcry quickly. The same observer describes a similar process in the cudo-sperm-cells of Ornilliogalum sulphureum, \dagger in which, after they have bccome parenchymatously connceted, a new daughtcr-cell not filling up the mother-cell is likewise formed around the still prescnt primary nucleus, which cell sometimes becomes doubled by division, and arome which still other frec cells appear subsequently to be formed.
b. Several free danghter-cells are formed around newlyformed nuclei. \ddagger-The nucleus of the mother-cell frequently survives during the formation of free daughtercells of this kind, indicating persistent vitality in the contents of the mother-cell by the mucilaginous radii procecding from it. The number of daughter-cclls appears never to be accurately defined. All the cascs refcrable herc occur in the cinbryo-sac of the Phanerogamia, in fact, it is doubtful whether anything similar occurs anywhere else in the devclopincnt of plants. We have to examinc:
a. The formation of germinal vesicles.-The cmbryosac , or germ-sac, as it is termed, is the last cell of the

* Hofineister, 'Die Enstehung des Embr. der Planerog.,' p. 13, t. viii, f. $8,9,10$. A similar phenomenon is described in Asphodelus luteus, p. 10. \dagger L. e., p. 14, t. xiv, f. 17-19.
\ddagger Hofmeister, I. c., p. 11, is especially to be consulted regarding the origin of the nuclei themselves.
mother-plant, the uppermost in the axial row of cells of the ovnle, destined to become the focus of the reproduction, the mother-cell of new individuals; the germinal vesicles forming in it are the real rudiments of the new individuals, the unicellular germs of new plants. They are formed already before the period of the scattering of the pollen, free nuclei originating in the upper part of the embryo-sac (the end turned to the apex of the nucleus and the micropyle), in which the protoplasm is principally accumulated, around which nuclei soon appear sharply defined masses of contents, which are, as it were, "eut out" of the general mass of contents of the embryo-sac. The number of germinal vesicles is mostly three, * rarely more, \dagger sometimes only two, \ddagger and very rarely only one exists, in which case, however, the larger number is indicated at the earliest period of formation by their nuclei, two of which disappear again without cells having been formed around them. § The newly-formed germinal vesicles are roundish at first, but soon extend longitudinally; at first they are only slightly in contact, but as they increase in size become crowded together more elosely in the upper end of the embryo-sac. Ordinarily only one of them becomes developed into an embryo, this outstripping the others in growth even before fertilisation, \| or the latter even die away and dissolve about that cpoch. I At the period of fertilisation the germinal vesicle destined to development presses its end lying next the micropyle firmly against the inside of the wall of the embryo-sac, against the outside of which the pollen-tube is applied, which double connection may go as far as actual growing together. In other respects the germinal

[^197]vesicle remains wholly free during its development into suspensor (vorkeim) and embryo, becoming developed without any connection with the other phenomena of cell-formation in the cmbryo-sac, cven interfering with and displacing and destroying them, so that it affords us, not merely in its first formation, but also in its further bchaviour, the example of the freest and most iudcpendent cell-formation which the plant exhibits.
β. Formation of transitory cells in the cmbryo-sac.In addition to the germinal vesicles not arriving at development, already mentioned, other cells are met with in the cmbryo-sac which only show themselves for a short time; free cells, which are dissolved again and vanish without leaving a trace when scarcely formed, or even before completion, as merce nuelei. Among these arc especially the cells presenting themselves at the lower (chadazal) portion of the embryo-sac, agreeing more or less in number and form with the germinal vesicles, but never developing into embryos, and which are described in Hofmeister's often-cited essay in the majority of the plants investigated by him.* 'These strange antipodes of the germinal vesiele originate either simultancously with the latter, or somewhat later, \dagger and, in execptional cases, even earlicr ; \ddagger they mostly disappear again before fertilization, \$ often even as mere nuclei ; in rarer cases they persist for some time after the fertilization, and vanish during the formation of the endosperm-cells. ||
γ. Formation of the endosperm through free cellformation in the embryo-sac.-'I'He vitality of the embryosac is retained uninjured as a whole, in spite of the

[^198]formation of germinal vesicles and transitory cells taking place in both its ends; its primary nucleus ordinarily survives,* ${ }^{*}$ or even increases considerably in size after the formation of the germinal vesicles. \dagger The nucleus of the embryo-sac is only dissolved during or sloortly before the period of fertilisation, and then a profound reconstruction commences in the interior of the embryo-sac, expressed in the production of daughter-cells, likewise free, \ddagger but so numerous that they soon exhaust the independent life of the former, and the entire cavity becomes filled up by the colering newly-formed cells. The tissue produced in this way is the endosperm, or, as it is called, the albumen of the seed, in which the developing embryo of the new plant then becomes imbedded. The en-dosperm-cells, like the germinal vesicles, originate as free nuclei in the fluid of the embryo-sac, \S which subsequently become surrounded by masses of contents and clothed with membranes. The cells thus formed very soon combine into a continuous parenchyma, in which there is no longer evidence of the origin from free cells.|| The cellular filling-up of the embryo-sac with endosperm-cells is not however completed at once, but proceeds gradually from the periphery to the centre, the successively formed endosperm-cells applying themselves in layers upon the inside of the wall of the embryo-sac. TT The formation of

[^199]these layers appears to take place with espeeial regularity in the Graminaceæ. According to Hofmcister's observations,* the nuclei imbedded in the mucilaginous layer whieh lines the embryo-sac arrange themselves with a certain regularity, beeoming distributed at equal distances on the inside of the wall of the embryo-sae. As a cell is formed around eaeh of these nuelei, and on all simultaneously, the embryo-sac beeomes lined with a layer of eells, the first of the endosperm. On the inside of this a sceond layer of eells is soon deposited in a similar manner ; this is followed by a third, and so on. Leaving out of view the lamellar repetition, this process of eellformation clothing the wall reminds us very mueh of that examined under D. 2 ; the exhaustion of the contents of the embryo-sac (i. c. the mother-coll) oceurring with the formation of the last, imermost endosperm-cells, is related to D. 1.

When we consider the whole of the phenomena of cell-formation in the embryo-sae eomeetedly, we behold the case, unique in its kind, of a mother-cell in which different kinds of danghter-eells are produeed at different periods. None of these daughter-eclls belong any more to the tissues of the mother-plant; all, as eells originating free, are in a eertain sense reproduetive cells, new individuals; but of the many sisters, only one, the first-born, is ordinarily dostined to become perfeetly developed, while the majority of the others are compelled, in their earlicst ehildhood, to perform nursing-serviee to the chosen one. I'lie differenee of the cells formed in the embryo-sac may indeed be eompared with the occurrence of bimorphous, partly fertile, partly sterile gonidia in the Alga:; the parenchymatous conjunction of the originally free endosperm-cells reminds us of the regular eombination of the previously free gonidia of Ilydrodictyon and Pediastrum.

[^200]Nägeli* treats, in the section on free cell-formation, the phenomena of abnormal cell-formation, which are observed in decaying contents of old cells. The mode of formation of these abnormal cells certainly agrees most of all with the cases last discussed, but has the peculiarity that the new structures escaping the solution and decay of the rest of the cell-contents are incapable of development, or only of abnormal development, descending into diseased structures or pseudo-organisms. The character of these abnormal cells is most varied and changeable; especially remarkable is the occurrence of globular, resting, sporelike cells (e. g. in old Closteria), \dagger as also the appearance of active, Infusorioid structures, which occur not unfrequently in the interior of decaying cells of green freshwater Algæ (e.g. Edlogonium, Spirogyra), \ddagger and are distinguished from normal swarming-cells by their irregular form, varying size, slower motion, and mostly brownishyellow contents, succeeded by hyaline, finely granular mucilage. In Splucroplea I have often seen such pseudogonidia formed in the same cells with normal spores. Abnormal structures of this kind have doubtless often been confounded with the normal reproductive cells of the Algæ. The future will certainly unfold many intcresting phenomena in this hitherto little-worked field.

In the preceding summary of the modifications in which the proccss of Rejuvenescence of cells advances to now constructions, we have seen division of the cells nccur as a very ordinary accompaniment of the reconstruction, and this in manifold ways. With these pro-

[^201]cesses of division are connected, in the first place, the development of the tissue with its varieties, even the development of the contrasts of the external organs (in the higher plants), and, lastly, the multiplication of the individuals, both through vegetative increase, and through true reproduction. The formation of free reproductive cells, may also be termed division, in so far that their origin depends upon a parting of the contents of the mothercell. In opposition to this effort towards division and separation, towards the development of multiplicity, both from the repetition of the like and the shaping out of the various vital tendeucies in structures of many kinds-the plant mimifests, on the other hand, in certain periods of conclusion and transition, an effort toward reunion of the divided, either by gathering up and combining the homogeneous, or bringing together opposites. In the ligher divisions of the vegetable kingdom we meet with this phenomenon in many forms. The intimate combination of the organs at the higher steps of the metamorphosis, the fusion of parts in the individual whorls of the flower, adherence even of entire whorls to each other,** but in particular the blending of the earpels into closed germens, exhibit the effort at reunion of the separated in the morphologieal field, as the phenomena of fecundation do in the pliysiological. But even in the lowest plants, which do not possess the variety of organs and the contrast of sexes, whose whole cycle of vegetative life is limited to the development of a single cell, or a series of similar cells, we find acts of this uniting and collecting vital tendeney. Among the principal of these is the phenomenon occurring in the Algæ and Fungi, to which the name of conjugation of the cells has been applied; a phenomenon which always occurs at the close of the vegetative development, ordinarily at the termination of a series of unicellular generations produced by dividing-increase, and is for the purpose of forming, directly or indirectly,

[^202]reproductive cells, the transition-cells to a new vegetative cycle.* In the preceding summary of the conditions of cell-formation, I have purposely avoided mixing up those caused by conjugation ; as the opposite of all kinds of ccll-formation combined with division, they deserve a separate examination, through which, from the insufficiency of most of the descriptions of the cases belonging here, I purpose, at the same time, an attempt at placing the subject in its proper light (Orientirungs-versuch), to guide in future investigations. In the following collocation we restrict the idea of conjugation to those cases in which: l, two previously really separate cells unite ; \dagger 2 , the combination takes place by actual anastomosis, not by mere application together of the cell-walls $\ddagger \ddagger 3$, an immediate intermixture of formative cell-contents occurs. \S Thus, in true conjugation, two previously separate cells are united in such a manner that in the combined state they can only be regarded as one cell, the two halves of which sometimes remain distinguishable, connected by a narrow isthmus or by a canal (trabecula), but sometimes coalesce so completely that the earlier boundaries entirely disappear. In such union, either all parts of the combining cells (membrane and contents) enter into conjugation, or the cell-membrane, and then either the whole or only the outer, remains out of the combination, bursting so as to let the inner membrane or merely the contents (with the primordial utricle) conjugate. In this case it may happen that the contents divide within the cell-membrane shortly bcfore the conjugation, so that two cells are formed

[^203]through double eonjugation of the contents of two dehiseing mother-cells, which extrude their contents. The conjugation-eell formed in either of these ways, is either itself a reproductive-cell, or the latter is formed by a further metamorphosis of the combined contents within the conjugation-cell, and this mostly takes place either in one of the halves of this, or in the connecting piece between the halves; it is mostly a resting spore, more rarely an aetive gonidium, rarest of all the combined eontents divide into a number of eells in their transformation for the purpose of fruetification. These, and other less essential differenees, produce the multiformity of cases in which the phenomenon of eonjugation presents itself, espeeially in eertain families of the Algæ, while as yet it has only been observed in one genus of the Fungi, here, however, in a modifieation deviating from all the rest. In the following summary I shall endeavour, as far as possible, to plaee all the known examples.
a. Conjugation of similar cells.- The uniting eells may be either free and isolated, as in most Diatomaeer and Desmidiaceæ, or they may be links of a many-celled filament, as in the Zygnemaecæ. In isolated eells the union mostly takes plaee by the sides of the cells, cither by parallel or by erossed approximation (copulatio lateralis parallela, s. decussata); very rarely by the apiees of the cells (copulatio apicalis). In the jointed (manycelled) filaments the union takes plaee either by eaeh two suecessive cells of the same filament anastomosing with their adjacent ends by lateral proeesses, whieh we will eall chain-union (copulatio catenativa) ; or by the links of two different filaments (or, as may equally happen, different parts of the same filament overlying through bending), uniting by their sides: yoke-union (copulatio conjuyativa), in whieh ease the cells may be either bent like a knee in order to reach caeh other (conjugatio genuflexa), or be united without bending, by processes growing out to meet each other and eoalescing into a transverse eanal : ladder-like union (copulatio scalaris). These distinetions,
however, are less essential than those on which the following subdivisions are founded :

1. The conjugating cells unite entirely (with membrane and contents), and, completely coalescing without throwing off a membrane, form a seed-cell (spore).-The spore originates here as the direct result of conjugation, not subsequently through a further transformation of the contents after the conjugation; the conjugation-cell is itself the seed-cell, and does not produce the latter as a new cell within itself. Here refers Palmoglaa, the remarkable, of its kind unique,* conjugation of which was only represented in its commencement by Kützing, \dagger described in its further course by Thwaites, but, since he assumed an absorption of the cell-membrane of the combining cells, mistaken by him exactly in its most essential peculiarity, \ddagger I have mentioned my own observations on the conjugation of Palmoglaa above; $\$$ the minute description of the process, with remarks on the species in which the observations were made, will follow in the description of the plates.
2. The conjugating cells, leaving behind the outer membrane, unite directly to form a reproductive cell.The occurrence of this case is not improbable, but has not yet been made out with certainty.
3. The conjugating-cells combine merely their contents (bounded by the primordial utricles), to form the reproductive cell; the dehiscent cell-membrane is deserted.The conjugation of many Diatomaceæ\| very probably belongs here. The mode in which, according to the

[^204]deseriptions of Thwaites,* the cell-contents emerge from the splitting siliceous cell-coats, and, speedily uniting between the emptied shells of the mother-cells, acquire the globular form, renders the assumption tolerably safe, that the masses of contents unite here. No membranous eanal formed by an internal cell-membrane, inside which the masses of contents unite, seems to exist here. Since the conjugating individuals are always held together by an abundant gelatinous seeretion appearing at this time, it is not difficult to conceive the persistence of the pair of eells in their approximated position, even without the formation of membranous tubes of conjunetion. The reproductive cells of the Diatomaees formed through conjugation have no seed-sleep, but, although not aetive, pass direetly, in the manner of gonidia, into vegetative developinent.
a. The contents of the two cells unite without precious division;-in this way one gonidium is formed by two mother-individuals. 'Thus in Himantidium. \dagger
6. The contents divide in both cells before the union into two masses; - in this case two gonidia are formed by two mother-cells through double conjugation. Aceording to 'Ihwaites's representation, the division of the contents preceding conjugation is transverse in Eunotia, erossing the direction of division in vegetative increase.
a. The new individuals developed from the two gonidia, soon surpassing the mother-cells in size, cross the shells of the mother-cells. Thus in Eunotia turgida. \ddagger
β. They take a position parallel to the shells of the mother-cells. Thus in Cocconema, § Gomphonena, \| and Sclizonema.
4. The conjugating-cells unite with participation of

[^205]the external membrane; the reproductive-cell is formed through contraction of the contents clothed by the internal cell-membrane.-The formation of the reproductive-cell (in the cases to be mentioned, of a spore) is conscquently here not a direct result of the conjugation, but it is formed subsequently in the interior of the conjugationcell, in the strongly expanded isthmus of this. The clelicate internal membrane, with the contents enclosed by it, drawing itself out of the (on account of the thickness of the outer membrane, rigid) extremities of the doublecell, forms a sced-cell, at first cruciate-four-lobed, then bluntly quadrangular, and finally globular, clothed by a many-layered thickened membrane, within the persistent four-horned coujugation-cell. From Ralfs's representation this is most probably the way in which the process is to be understood in Cylindrocystis Brebissonii, Menegh. (ex. p.)* The participation of the outer membrane in the conjugation is beyond doubt; this is the principal character distinguishing the genus Cylindrocystis from Penium. The resemblance of the quadrangular intcrnal cell to that of Tetmemorus, in which this is undoubtcdly formed of a delicate cell-membrane, testifies in favour of the existence of the latter in this case also. From the cruciate or quadrangular shape of the spore, it may be conjectured that the conjugation of genus Staurocerus, \dagger likewise belonging to the group of Closterina, as also that of the Zygnemaceous genus Staurocarpus, \ddagger Hassall (Staurospermum, Kg.), bclong here.
5. The conjugating cells unite with participation of the outer membrane; the reproductive-cell is formed out of the mere contents, as a new cell, inside the mother-cell. -This casc (occurring in the majority of the Zygncmaceæ) differs from the preceding by the non-participation

[^206]of the inmost lamella of the cell-membrane in the formation of the reproductive cell.
a. With ladder-like (scalariform) yoke-conjugation.
a. The spore in the conneeting canal or middle piece of the double cell. In Zygogonium.*
β. The spore in one half of the double cell (in the eavity of onc of the two conjugating mother-cells). Ordinarily the ease in Spirogyra, \dagger and Zygnema. \ddagger
γ. A spore in cach half. This case occurs only as abnormal in Spirogyra, and appears to depend upon an ineomplete carrying through of the conjugation, the union-processes coming into contact, but not anastomosing. \$
b. With knec-shaped (geniculate) yolc-conjugation.
a. The spore in the uniting canal or middle piece. In Mesocarpus. ||
β. The spore (or the gonidium) in one of the halves of the double-cell. Here belong Sirogonium, 9 with a spore formed exactly as in Spirogyra, and the genus Mougeotia** still enigmatieal in its mode of reproduction, probably possessing an active gonidium, leaving the mother-cell directly after its formation.
c. Chaintike (catenate) union of the cells of the same filament.
a. The spore in the lateral eomecting-canal of the eonjugated-eells. This case is not yet known, but it is

* Vaueher, 'Histoire des Couferves,' t. vii, f. 3-4; Hassall, l. e., t. 39 .
\dagger Vaucher, I. e., t. iv and v; Hassall, 1. e., t. 18, 25, and 27-32.
\# Vaueher, l. e., t. vi, f. 4 ; t. viii, f. 1, 2 ; Hassall, 1. e., t. 38.
§ Vide Kützing, 'Phye. General,' t. 15, f. 1, 3, 4, 6 (of Spirogyra quinina.
|| Hassall, 1. c., t. 42-45.
9T Hassall, l. e., t. 26.
${ }_{* *}$ Hassall, (1.e., p. 1.72,) indeed, asserts that Mougeotia is propagated by zoospores, but gives no further information regarding their formation. Vaueher (1.e., p. 79 , t. viii) formed out of Mougeotia the section "conjugées à tubes intérieurs," and deseribes the emergenee of already elongated manyeelled young filaments from the old eells, a phenomenon which may be explained as aecidental development of gonidia remaining in the mothercell.
conceivable that Hassall's strange Mesocarpus notabilis* belongs here; this would require the assumption, that the uniting canal, becoming filled with the contents of the two conjugated-cells, pushed aside completely the septum between them.
β. The spore in one half of the double-cell (in the cavity of one of the mother-cells). This is the case in Hassall's second division of the Spirogyree, \dagger which Kützing has distinguished as a peculiar genus, under the name of Rhynchonema. ${ }_{\ddagger}$
d. Lateral, parallel union of isolated cells.-Here belongs the conjugation of Closterium Lunula (see p. 140), in which, according to Morren's express statement, $\$$ three different membranes take part in the formation of the canal of union, an inner and an outer cell-membrane, and a membrane (the primordial utricle) immediately enclosing the green mass. The globular reproductivecell formed in the connecting canal, is an active gonidium, which begins to revolve even while within the canal, and soon breaks through the gelatinously swollen membrane of the latter. Very often two approximated individuals divide again and conjugate before they have become completely separated: whence result conjugated doublepairs.|| According to Ralfs' description of the conjugation of Penium Jenneri, it resembles that of Cl . Lunula, a large globular spore being formed in the interior of a connecting canal, narrow at the points of issue, like that of Mesocarpus. ${ }^{\text {- }}$

[^207]c. Conjugation of branched filiform cells by chub-shaped branches, which unite at their points. - The only known example is the remarkable genus of Mildew Fungi Syzygites, diseovered and figured with a master's hand by Ehrenberg.* Ereet, diehotomously branehed, inaitieulate flocei, therefore unicellular filamentous little plants, grow side by side in dense tufts. The uppermost branches of the forks eurve, like a pair of tongs, towards each other, and send out (usually on the imer side of the arms) elavate or pear-shaped branehlets. These fruitelubs, sometimes the opposite ones of the same fork, sometimes those of different forks intermingled through the social growth, unite by their apiees. Ehrenberg eould not detect an actual anastomosis with eertainty, but it most probably does occur. In the middle of the spindle-shaped conjugation-body thus produced, the granular contents of the filaments aseend in a current from both sides, and colleet into a globular mass, whieh beeomes intimately combined with the membrane of the middle-piece of the spindle, and shut off from the lateral pieces by septa, and finally becomes free between the two lateral portions, without these being torn. The globular body beeomes brown, and at length black, during its development, and is a thick-walled ecll, in whieh, if we may put faith in Corda's figure, free spores are formed, imbedded in a soft amorphous mass. \dagger
6. The conjugating cells, after deliscence of the outer membrane, unite through the inner; the reproductive cell is formed out of the mere contents, as a new cell inside the conjugation-cell.-I'his is undoubtedly the condition in the majority of Desmidiaeeæ. The union almost always takes place between isolated cells in this family; even in the genera with the cells connected into filaments

[^208]or ribands (IHyalotheca, Didymoprium, Isthmosira), the conjugation does not commence until the filaments have broken up into their individual links. In Bambusina alone, according to Ralfs, occurs the case of isolated cells conjugating with others still constituting links of continuous filaments, and thus becoming attached, like parasites, upon the filaments. The dehiscence of the external cell-membrane is especially evident in Tetmemorus and most Closteria; it always takes place in a transverse direction, in the middle between two halves. While the dehiscing outer membrane opens more or less widely on one side (like the dehiscing cells of Qudogonium), the delicate internal membrane protrudes as a tubular process, to unite with the corresponding process of the other cell. If, at the same time, the internal cell-membrane remains connected with the outer cell-wall, the halves of the dehiscent cell-membrane mostly remain approximated together and connected with the uniting canal and the spore, which usually fills this up (e.g. in Closterium acerosum, lineatum, \&c.) ; but if the loosened internal cell-membrane gradually extricates itself from the outer, the halves of the latter become separated and are readily thrown off ($e . g$. in Tetmemorus).
a. Conjugation in a parallel position.-This is peculiar to the group of Closterina. In the species with curved cells the union takes place (with rare exceptions) by the convex side, so that the conjugated specimens have their points diverging.
a. The halves of the dehiscent cells separate from each other all round, the internal ccll-membrane entering into conjugation gradually emerging wholly or almost entirely. The spore formed from the contents lies loose in the delicate conjugation-cell. I'his is the case most evidently in 'Tetmemorus; * according to Ralf's figures, Docidium, \dagger and a section of the Closteria having longitudinally

[^209]striate and truncated ends,* seem to exhibit a similar behaviour.
β. The halves of the dehiscent cell only separate a little on the side turned towards the other individual, at which the internal membrane emerges, while they remain connected on the outer side; the internal membrane remains as an internal investment in the outer; the spore mostly fills the uniting canal so completely, and is in such close contact with its walls, that the latter is scarcely distinguishable. This is the condition in Penium \dagger (with the exception of the species mentioned previonsly), and the unstriped Closteria \ddagger (with the exception of the above-mentioned Cl. Lunula).

Closterium lineatum§ also belongs here, but with the peculiarity, known only in it, that two spores are formed between two individuals. As I have had an opportunity of observing the process of conjugation minutely in this very species, $\|$ I am able to explain the mode of origin of the really double spore (not two-lobed, as Ralfs terms it). The very much elongated, only slightly curved specimens of Clost. lineatum, lie close together in pairs before conjugation, sometimes with both the convex sides in contact, sometimes with the convex side of one touching the coneave side of the other. The eell-membrane dehisees transversely, citlier simultaneously in both, or in one earlier than the other, in the middle of the cell, previously marked outside by an annular line, and inside by an interruption of the green contents, 9 but this takes place in such a manner that the two halves only separate a little on the side turned towards the other individual, remaining connected on the opposite side, so that the

[^210]cell bccomes broken geniculately, though only at a very obtuse angle. The opening produced by the slight dehiscence of the outer cell-membrane, forming a crossslit in one side, is immediately occupied by two thickened projections of an internal cell-membrane issuing out. I'hese two thickened processes are the ends of two deli-cate-walled daughter-cells, meeting in the centre of the mother-cell, and which are probably formed by division of the contents of the mother-cell very shortly before the beginning of the conjugation. Since only these internal cells enter into the conjugation, we have here, not, as appears at first, a simple conjugation of two cells, but, strictly speaking, a conjugation of two pairs of cells; since, moreover, the two issuing processes, which unite with the two coming to meet them from the other side, are the ends of the two internal cells, Closterium lineatum affords the rare example of a copulatio apicalis. The individuals destined to conjugation lying near together, the thickened projections do not grow out into long processes, but apply themselves, in the form of everted lips, directly upon the corresponding parts of the other individual, or, if this has not yet pushed out its thickened processes, upon its closed external cell-wall. This process of the commencement of conjugation cannot be described better than by comparing it to the contact of four thickened firmly apprcssed lips in a kiss mouth to mouth. The thickened projections are originally transparent and almost colourless, since only a few green granules can be observed in them, often in distinctly circulating motion, entcring at the back and retiring from the front into the interior of the ccll; the green contents soon follow, however, in abundant quantity. The four protuberances next become so densely filled with green matter and pressed so closcly together, that the coupling growth and anastomosis taking place during this crowding up cannot readily be traced, but it is clearly shown by the result. Sometimes the delicate membrane of the protuberance bursts under the pressure of the contents,
so that the latter become diffused, or form an irregular aecumulation between the two mother-individuals, which of course frustrates the formation of the spores. In normal development the whole mass of green contents enters in a short time into the two conneeting canals, which swell up from the middle, where they are in contact, out, in opposite directions, into obovate or almost globular saes, which wedge themselves in elosely between the four legs or horns of the conjugated individuals. In each of these sacs the contents become balled into a globe, which becomes clothed with a cell-membrane, at first delicate and smooth, afterwards thiek and granulated. In this way, therefore, two spores are formed, completely separate in their origin, which so closely fill up the delicate sac-like canals of union in which they are formed, that as they lie between the mother-individuals, they appear like free globules, but are persistently connected with the mother-cells by the empty and colourless lateral parts of the two closely approximated uniting-canals, which extend into the valve-like openings of two empty shells. 'These connecting pieces, formed from the inner membrane, are readily distinguished, by their want of eolour, from the outer membrane or shell, whieh appears straw-coloured after the contents are emptied out. A not unfrequent abnormity affords a further proof of the origin of the two spores through eonjugation of opposite, completely distinet pairs of eells; this is the occurrence of only one spore between two mother-individuals. In this case only two corresponding halves (or horns) of the mother-individuals become emptied, while the two others remain densely filled with green contents, which, in spite of the dehiscence of the outer eell-membrane, cannot flow out.
b. Conjugation in crossed (decussate) position.-This oceur's in the entire group of forms allied to Euastrum, and also in many genera formerly united with Desmidium.
a. The halves of the dehiscent cells separate by an!
anmular slit, the protruded internal membrane entering into the coujugation becomes very strongly developed. The spores become free by the disappearance of the enlarged saccate coujugation-cell; this also sets the halves of the old cell-membrane free, from which the interual membrane does not seem to be drawn out as in Tetmemorus. This case occurs in Euastrum ${ }^{\text {* }}$ and the genera intimately allicd to, and difficultly separable from it, Micrasterias, \dagger Cosmarium, \ddagger Xanthidium, §Staurastrum (Plycastrum, K.)\| The complete separation of the halves of the mother-ccll membrane does not, however, seem to be constant, for Ralfs gives figures of the same genera, and even of the same species, as those above cited, which exhibit halves connected together at one side. ${ }^{[1}$
β. The halves of the dehiscent cells separate only at one side, in order to emit the connecting canal formed out of the internal membrane, not expanded into a sac ; they do not become detached. The spores are formed either in the middle of the connecting canal (as in IIyalotheca,*** Bambusina, $\dagger \dagger$ and Isthmosira (Spherozosma, Ralfs), $\ddagger \ddagger$ or in onc of the halves, in a manner similar to that we have scen in Zygnema and most of the Spirogyra, a case which is only known with certainty in Didymoprium \oint among the Desmidiaceæ, but perhaps occurs also in the genus Desmidium. || \|

[^211]7. The conjugation takes place with participation of the entire membrane; inside the double-cell thereby formed the internal membrane contracts into narrower limits, away from the wall of the expanded isthmus, forming a cruciform or quadrangular internal cell; inside the latter the contents contract again to form finally a globular spore.-This ease is required by the preceding as conclusion of the scries. If we have placed Staurocarpus properly under 4, and if it be correet that, as Ralfs* remarks, in passing, in the description of the conjugation of Tetmemorus, there exists a species of Stanrocarpiss in which a globular spore is formed inside the quadrangular cell by further contraction of the contents, this ease does really oceur.
b. Conjugation of dissimilar cells.- I know of no other cases to place in this entire second section, but the conjugation of Vaucheria asserted by Nägeli, \dagger which case, however, although I eannot but confirm Nägeli's observations, is not yet placed beyond doubt in my mind. A certain reeiprocal aetion of the slender hookshaped sterile branchlets or horns as they are ealled (the anthers of Vaucher), and the thick inflated lateral branchlets which produce the spore in the extremity, cannot well be denied. Even Vaucher \ddagger described the applieation of the former upon the latter, and figured it. in Vaucheria sessilis; Hassall§ observed that in those speeies in which the spore-forming branchlets emerge in considerable numbers from the base of a simple horn, as in Vaucheria geminata, the spore-forming branchlets, vice versâ, apply themselves upon the horn, and subsequently remove again and curve backwards. Aceording to Nägeli's and my own obscrvations on Vaucheria

[^212]sessilis, after the separation of the horn from the spore, the former appears open at the point, and a considerable space, doubtless shut off as a separate end-cell before the separation, empty; the spore is at this time likewise surmounted by a more or less distinct tube, empty and open at the summit, which undoubtedly is the open end of the mother-cell of the spore. The open end of the emptied end-cell of the horn on one side, the open end of the mother-cell of the spore on the other, together with the fact that the two were previously connected, certainly render it very probable that this connection is a real conjugation, that, therefore, the contents of the endcell of the horn are united with those of the mother-cell of the spore to form the spore itself. The application of the horn upon the spore-bearing branch ought then to take place before the formation of the spore, on which point my observations are deficient, but which is in agreement with Nägeli, figure 21.* However, on the one hand, the circumstance is puzzling that many species seem to possess no trace of the said open tube surmounting the spore, \dagger while other species exlibit open tubes in the spore-branchlets with no horns corresponding to them, as, for instance, V. polysperma, Hassall, \ddagger with very numerous, linearly arranged spores, but only very few

[^213]horns, which, moreover, as in Vauch. sessilis, exhibit an empty open end-eell at the period of maturation of the spores. The genus Vaucheria, whieh has already so mueh oceupied naturalists, still requires, therefore, further and more minute investigations in reference to the formation of its reproductive organs. In eonclusion, I will mention eertain other eases whieh bear some resemblanee to the phenomena of conjugation, and lave been, in faet, really regarded as sueh. In Saprolegnia, whieh exhibits so mueh likeness to Vaucheria in morphologieal respeets, we find a strueture similar to the horns of Vaucheria. At the period of the formation of the resting-spores, between the lateral branehes swelling up into pear-shaped spore-cases, appear frequently, but not constantly, slender vermiform branehlets, whieh, when they reaeh the sporeeases, apply themselves firmly upon these, and indeed sometimes twine round them in irregular eoils; no aetual anastomosis takes plaee however. Coleochate pulvinata (see page 161) exhibits a phenomenon whieh may be compared with this. The sporangium of this speeies origimates by the expansion of the last or last but one cell of a filament, and is, in itself, a simple cell, which, however, acquires a most complete eellular envelope through the close application upon it of eellular branchlets, partly arising from the eell immediately preeeding it, partly reaeh over like bridges from branehes situated lower down or neighbouring filaments. 'The direetion, differing from the ordinary ereet growth, in whieh the branches eombining with the sporangium come in from all sides, sometimes horizontally, and sometimes even deseending, shows, although there may not be so intimate a comneetion and so direct a co-operation for the formation of the spore as in conjugation, that there is, nevertheless, here, a similar reeiproeity of attraetion and seeking-out of the parts, as well as a material assistanee in the sporeformation, through the eonneetion of the mother-eell of the spore with the numerous smaller eells forming the envelope, doubtless effeeted through the proeess of endosmose.

Distant as the plysiological importance of these phenomena of application just described stands, from the application of the pollen-tube on the embryo-sac, and through the medium of this, on the germinal vesicle, connected with the fertilisation of the Phanerogamia, the resemblance between the processes of the two phenomena is unmistakeable.

Some of the Diatomacex afford another case, to bc placed here as it were in an appendix, which perhaps might be regarded as an instance of arrested conjugation. While I have seen in many genera of this family an actual conjugation of completely separate cells (p. 286), in the group of the Melosirece the large reproductive-cell which commences the new series of generations' (the sporangium,* as it is termed), is formed out of the contents of a single grown-out cell, the shell or membrane of which, dividing in the middle, separates to allow space for the expansion of the newly-formed, more vigorous primary-cell. Thwaites, \dagger who describes this process in scveral species, thinks that it may be brought into agrcement with the conjugation occurring in other groups of the same family, by assuming the division of the contents of the mother-cell into two portions previously to the formation of the new cell, these portions, instcad of devcloping into separate cells, as in the vegetative increase by division, combining together again immediatcly in order to produce the reproductive-cell. Although this hypothesis is not yct substantiated by direct observation, it deserves attention, since it opens a common point of vicw for the phenomena of reproduc-

[^214]tion of the Diatomaceæ, and in itself presents nothing impossible. The transition from a still incomplete division to conjugation, is quite as conceivable as the advance from a first incomplete division to a second, such as we have become acquainted with in the quartering of cells (p. 254). I will mention one more case hore, which can scarcely be cxplained otherwise than as a rcunion of two cells which have begun to divide, namely, the not vcry rare abnormal occurrence of division of individuals into three parts by two constrictions, in Euastrum and allied Desmidiaceæ. Nägeli has figurcd such a specimen of Euastrum (Cosmarium) Menegliniii, Bréb.* The formation of the sporcs of Spirogyra mirabilis \dagger might be caused by a process similar to that in Melosira, if that species rcally, as Hassall states, forms spores in all the cclls of filaments which do not enter into conjugation with others; this would be the more conceivable in Spirogyra, since the external division of the cells is preceded in this genus by the division of a nucleus, and since the division is gradual.

Lastly, the supposed conjugation of the contents of two adjacent cells in the formation of the spores of Cidoyonium, and of Bulbochote, with which it has a very peculiar relationship, deserves an explanation. Decaisnc \ddagger and Hassall§ have noticed the strange circumstance, that in the said two gencra, the ccll which immediately precedes the swollen mothcr-cell of the spore, has little or no grecn contents. Hassall thinks we may deduce from this a passage of the contents of the lower cell into the upper, and hence compares the process of sporeformation of CElogonium with that of the Spirogyra of the section Rhynchonema, with the distinction, however,

[^215]that the contents of the one cell do not make their way into the next cell by a lateral connecting canal, as in the said Spirogyra, but probably through an opening in the partition separating the two cells. Leon le Clerc* has already correctly objected to the idea of such a conjugation of the contents of the two adjacent cells, in the Cedogonia, that we not unfrequently find the lower as well as the upper neighbour-cell of the sporiferous cell filled with unattenuated green contents, and that sometimes two, and even three and four cells containing spores follow in immediate succession. These statements are perfectly accurate, and Hassall's endeavours, partly to set them aside, partly to turn them so that they shall not oppose his theory, are unsuccessful. In the first place, as regards the occurrence of several sporiferous cells in succession, it must be remarked that two adjacent sporccells are met with more or less frequently in all species, and I have often observed three to four in succession in Edogonium apophysatum and Landsborouglii. \dagger If there were only two, it might still be asserted that one had attracted the contents of the cell next below it, the other the contents of the cell next above it, in order to form the spore out of coupled contents; but when three or four sporiferous cells follow in succession, such a coupling is no longer conceivable. In reference to the contents of that cell which precedes a single, or several successive spore mother-cells, it must be noticed of Edogonium, that these are certainly ordinarily, but not unvariably, poorer in solid constituents, particularly in chlorophyll, than those of other sterile cells, but at the same time are never wholly devoid of colour or of granules, as, on the contrary, is generally the case in Bulbochote. A similar,

[^216]only less striking alternation, of more richly filled and poorer, darker and lighter cells, occurs also in the sterile or merely gonidium-bearing filaments of most of the Cdogonia ; in those species, moreover, which have the formation of microgonidia mentioned above,* the longer cell which precedes every group of the short cells in which the small swarmers are formed, is found poor in contents, like the ante-cell of the mother-cell of the spore. None of these phenomena can be explained by a subsequent wandering of the cell-contents, produced by union of previously separate cells, but are all caused by the distribution of the contents in the very formation of the cells. For in Edogonium occur secondary processes of cellformation in the filaments, posscssing the peculiarity that the individual cells of the filament divide, not into. like, but more or less strikingly unlike cells, and in such a way that the upper of the two cells produced by division is the shorter and richer in contents, the lower the longer and poorer in contents. The difference of the two sister-cells is slighter in filaments or fragments of filaments remaining sterilc, as also in those in which merely macrogonidia are to be formed, and it is mostly very striking, on the other hand, where the formation of spores (or microgonidia) is to take place. The anterior shorter cell, filled with more concentrated contents, becomes, in this case, the mother-cell of the spore. This process of cell-formation, division into unlike halves, is frequently repeated in the lower cell, this again dividing into a shorter, fuller, upper, and a longer, lower cell, \&ce. Thus, in sporiferous filaments, a second, third, and fourth spore mother-cell may be added successively to the first. The same is exhibited in the formation of microgonidia, wherein I have seen the number of short mother-cells of

[^217]microgonidia, added on to one another in this way, amount to six or seven, which indicates a five- to six-fold repetition of the division in the descending order. 'The formation of the globular or ellipsoidal expanding mothercell of the spore of Bulbochecte is peculiar, and deviates somewhat from the similar process in Eddogonium. The spore-bearing cell (the sporangium) usually presents itself in this genus as a branch at the upper margin of a stemcell, and mostly as the first (more rarely the second) cell of the branch, surmounted by a small bristle-bearing cell, or even by two cells, one narrowly tubular, and filled sparingly with green contents, on which the second, hyaline and bristle-bearing, is seated like a little lid. The origin of the branch bccoming developed into a sporangium, takes place, as in Cladophora, through formation of a bagging out process at the upper margin of the stemcell. Into this protruded sac the densely-fluid, green contents of the stem-cell (containing starch-granules) gradually travel, and this in two portions. In the first place merely the lower half of the stem-cell loses its coloured contents, and then it is shut off from the upper, still green half, by a delicate horizontal partition ; soon, however, since the protruded sac, not yet shat off from the stem-cell, continucs to grow and to expand toward a globular form, the green contents travel out of the upper half of the stcm-cell, into the sac-like branch, after which the partition is formed between this and the stem-cell. The stem-cell bearing the sporangium often appears perfectly hyaline after this proccss, and always divided in the middle by a horizontal septum, a division which never occurs in the other stem-cells. Only as an exception have I seen stcm-cells more or less densely filled with green contents, notwithstanding that they borc a sporangium at the upper margin ; the division of the cell did not cxist in this casc. The formation of the one to two little cells beside the bristlc, at the tip of the sporangium, does not take place until after the protruded sac is shut off from the stem-cell. From this sketch of
the process it will be clear, that in Bulbochacte, as in Edogonium, a concentration of the formative contents, at the cost of the sterile sister-cell, is connected with the production of the cell destined to form a spore, but that there is not any union of the contents of two previously separate cells. These cases, therefore, are allied, not so much to the phenomena of conjugation, as to the phenomena of division into cells of unequal power and of different destination, mentioned under B^{*} (p. 250).

CONCLUDING REFLECTIONS.

Thus have we eompleted our design of subjeeting to minute inspeetion, in the example of the development of the Vegetable Organism, the phenomenon of Rejuvenescence, a phenomenon profoundly conneeted with the essence of natural life, and lying at the base of all progressive movement of life and development, with its multifariously complieated aseending and deseending vibrations, in the largest as in the smallest eircle of Nature, sinee this movement is sustained in every case only by renovation. We have examined it in the Formation of Sprouts, by which the individual vegetable stoek is expanded into the trunk of a family, whieh, in essential or inessential combination, distributes the individual functions amongst its nembers; we have traeed it in the sprout itself, in the formation of its graduated and artieulated interlinked strueture, in the great tide of the graduated metamorphosis, as in the individual waves of this, the Leaves; finally, we have reeognized again in the smallest sphere of formation, in which the vegetable strives to establish its everywhere only imperfectly attained individuality, in Cell-formation, with whieh every eyele of development eommenees, and by the divided or undivided, homogeneous or heterogeneous, eombined or free renovation of which, the plant earries to fulfilment the multiplicity of strueture of all its organs, and indeed lays the foundation for the vital continuation of the species beyond the limit of the
old strueture, in renewed construction of the organism. The examination of Cell-formation leads back, therefore, in all the wider circles of Rejuvenescence, into the plastic life of the plant, nay, it leads us even beyond the eircle of the individual development and the related close family union in the sprouting vegetable stock, to the true reproduction of plants, which presents itself, in eonneetion with the less perfeet renovations of Cell-formation in the preceding eireles of development, as the most deeided and freest reeonstruetion of the cell, and at the same time as the reeommencement dating itself furthest baek, the most eomplete Rejuvenescence. As in the formation of the individnal, each new stage arises with a new seetion of Cell-formation, so also does the transition of one individual developmental process to another; and thereby the intercalation of the individual life in the eompound life of the species, in every ease, takes place through a new impulse in the eell-formation. Consequently Cell-formation is not merely the eommeneement of, and the means to, the produetion of subordinate tissues ; it is, at the same time, through the law of alternation of generations, subordination and serial arrangement, prevailing in its progressive renovation, the commencenent of every eomprehensive eomplication in the organisin of the plant, of the single organ as of the speeial stage in the series of organs, of the single lines of development or the subordinate axes of the vegetable stock, as of the individuals beeoming developed into separate stocks. Thus the consideration of the Cellformation in the Rejuveneseenee of the Individual is most intimately eonneeted with that of the Rejuveneseence of the Species; indeed so intimately that the boundary between the two is often diffieult to draw, as we have seen in the foregoing pages, at the lowest stage of the Vegetable Kingdom, in a portion of what are termed Unicellular plants, plants with generations of vegetative eells separating from each other (p. 125, \&e.) And, just as we see here, at the lowest stage, the cell-division (p. 233) else-
where belonging to the development of the combined organism, appearing as a mode of reproduction, so also in the higher groups of the Vegetable Kingdom, we see Sprout-formation extricated in most varied ways from the subordinate relation to the "whole" of the vegetable stock, and serving for the formation of independent individuals.*

The interweaving of the reproduction and the individual development is exhibited in a very strange manner in that division of the Vegetable Kingdom in which a decided contrast of sexes first appears, \dagger namely, plants of the Moss and Fern kind, in which the fertilization,which we have been used, from its mode of occurrence in the whole realm of the Phanerogarnia, as well as in the Animal Kingdom, to imagine comnected with the origin of new individuals, - does not coincide with the commencement of the individual cycle of development, but on the contrary falls in the middle of this, becoming the means of transition from a lower to a higher stage of the metamorphosis. In both cases it is a single cell in which the subsequent development is called forth through the influence of the malc sex, but in one case it is the primary cell of the entire generative cycle, i.e. of all the cells which, by their connected succession, represent the individual; in the other case it is a cell occurring within the cycle itself, and merely forming the begimning of a new segment of it. In the Phanerogamia it is the germ-cell, \ddagger formed, after the entire accomplishment of the metamorphosis, in the uppermost central ccll of the seedsprout, (the embryo-sac of the ovule, which receives the impregnation by means of the advance of the pollentube up to the embryo-sac; with it the entire individual

[^218]development recommences. In the Mosses and Ferns it is the central cell of the arehegonium,* (a sproutlet which may be compared with the nuclens of the ovule, which is impregnated, in a manner not yet accurately known, through the spermatozoids formed in the antheridia; the development of this, however, is not a recommencement of the entire eycle, but only an advance to a new and higher stage of the metamorphosis, which, unfolding in comection with the pre-existing preparatory structure, carrics over the individual life only after more or less complex intermediate stages of formation, to the production of the true reproductive cells (spores), with which, and without further impregnation, the now cycle of development commences. The point of trausition marked by the occurrence of impregnation, is, again, different in the Ferns and Mosses. In the Mosses, the transition from the Algoid prothallium to the leaf-forming stem takes place before the impregnation, which causes ouly the development of the spore-forming eapsule; in the Feriss, on the contrary, the preparatory structure does not go beyond the leafless prothallium, and the advance to the leaf-forming stem depends upon the impreguation. 'This mode of viewing the case, very strange as the introduction of the impregnation into the midst of the cycle of the individual development may be, appears to me more in accordance with nature, to interrupt less the natural comection and to correspond better with the graduated course of the metamorphosis, than that given by the discoverer of the arehegonia of the Ferns, \dagger according to which the thalloid product of germination of the spore of the Ferns is compared, as the bearer of the impregnation organs, to the flower of the Phanerogamia, while the spore from which it is developed is termed a

[^219]flower-bud detached from the mother-plant. On such a theory, the now individual cycle of development would not hegin with the sporc, but with the ccntral cell at the base of the archegonium.* Applying this view to the Moss, the first (lowest) stage in the cycle of its individual life would be the formation of the sporangium, the second stage that of the confervoid prothallium, the third that of the leafy stem, which would finally bear, as the term of the development, the impregnation-organs, antheridia and archegonia. The more minute investigation of the still imperfectly ascertained processes of impregnation in the Rhizocarpeæ and Lycopodiaceæ, as also those of the Gymnosperms, (Cycadeæ and Coniferæ, aberrant among the Phanerogamia, and perhaps having an affinity to the higher Cryptogamia, will certainly enable us to place the strange conditions in the reproduction of the Mosses and Ferns in clearer conncction with the reproduction of the Phanerogamia, while the investigation of the Characeæ and Florideæ promises a new point of attachment for the lower department of the Cryptogamia. \dagger

That an actual inipregnation docs occur in the Mosses and Ferns is indicated not merely by the well-known experience of bryologists on the dependence of the fructification of diœcious Mosses on the social growth of the two sexes, ${ }_{\ddagger} \ddagger$ but also the occurrence of hybrids, which were known in the Ferns even before the discovery of the

[^220]impregnation organs,* and have lately been observed in the Mosses.t I mention this oeeurrenee of hybrids among the Ferms and Mosses, in order to adjoin some remarks leading us baek to our subject. If hybrids are formed in Mosses and Ferns, this takes plaee in a preparatory strueture whieh belongs to the mother-plant; the individual entering into the state of hybridation, (aeeording to the ordinary aeeeptation of the term,) beeomes eomposed, consequently, of one part whieh is mother-plant, and one part whieh is hybrid. The hybrid must develope, as it were, grafted on the mother-plant. Not until the seeond generation, that developed from the spores of the hybrid, ean the preparatory strueture assume the hybrid nature, and this, aeeording to the analogy of most Phanerogamous lybbrids, might be sterile by itself, and only in ease of impregnation from one or other parent speeies, develope to an ulterior strueture reeurring more or less to this. The prothallia of the

[^221]Ferns are so alike, and at the same time so transient, that it would seareely be possible to institute profitable observations ; so mueh the more is investigation of the hybrids of the Mosses, whieh, when onee attention is direeted to them, will eertainly be found in greater numbers, to be reeommended to bryologists. The two hybrid Mosses observed by Bayrhoffer, seem, from his aecount, actually to have possessed the characters of the mother-plants, (Physcomitrium fasciculare and pyriforme,) in respeet to the vegetative organs, while the fruit is stated to have exhibited, espeeially in the strueture of the peristome, a distinet approximation to the eharacter of the supposed father, Funaria hygrometrica. From the oceurrence of numerous arehegonia upon one and the same moss-plant, we might expeet even to find, when the hybrid impregnation only affeeted particular of them while others were fertilized by the proper speeies, two kinds of fruit perfeeted on the same "stoek," normal and hybrid fruits.

Supposing these views to be aetually true of the hybrids of the Mosses and Ferus, it might afford us a further confirmation of the hypothesis, that the individual cyele of development of these plants does not begin with the spore, bat with the eentral cell of the arehegonium, whieh is ealled into life by impregnation. If, on the other hand, we keep to the old eoneeption of the commeneement of the individual with the spore, these strange proeesses will appear merely as a further proof of the intimate connection and interlacement of the individual development and reproduction, in which respeet they are of espeeial interest here, particularly when we place them in relation with the cases already mentioned, * which indicate the possibility of the oeeurrence of aberrations ordinarily conneeted with the reproduetion, in the midst of the individual development, (in the wider or narrower sense!) in the higher divisions of the Vegetable Kingdom.

It is well-known that those very varieties of plants whieh are most important and interesting, those in whieh

[^222]the most considerable deviations from the normal charaeter of species oceur, are not produced on the individual stoek, to whatever influences of nature and art this may be exposed, but are conneeted with the reproduction in their origin, since they grow up, as it were aecidentally, from seeds. Among these are many varieties very striking in reference to the degree of division of the leaves, e. g. simple-leaved forms of plants whieh, in the parent-form, have ternate or pinnate leaves (Fragaria vesca monophylla,* Fraxinus excelsior simplicifolia), \dagger and vice versâ, divided-leaved modifieations of plants, with normally undivided leaves or leaflets (Almus ghutinosa laciniosa, Betula alba laciniala v. dalecarlica), \ddagger C'orylus Avellana laciniata, Cytisus Laburmum quercifolius, Vilis vinifera laciniosa; § also marmed varieties of normally spinous plants (Robinia Psendoacacia inermis); \| varieties in referenee to the colour of the leaves (Fagus sylvatica sangninea, 9 Corylus tubulosa

[^223]atropurpurect, colour and donbling of the flower (Tulipa, Dianthus, Primula, Dallia, \&c.); as also, finally, the numerous varieties, chiefly marked by the condition of the fruit, which we have among our cultivated orchard and other fruits. The origin of the varieties mentioned here does not depend so much upon an alteration gradually insinuating itself into the external conditions of cxistence, as upon a development, under favorable conditions, of the multiformity possible within the limits of a certain type, which is implied especially in the fact that very different varieties may arise from one and the same sowing, even from the seeds of one and the same fruit, and this without influence of impregnation from a foreign source, and under equal external circumstances.* The development of this multiplicity takes place ordinarily, as stated, by means of reproduction, and it may disappear in the same process ; the new varieties grow up from seed, and may in like manner return to the parent-form by sowing. But sometimes a similar production and a similar retrogression of the variety takes place by means
forest near Sondcrshausen, in Thuringia; it is propagated by euttings, since when sown it mostly returns to the common green beech. Sec Bechstein, 'Forstbot.,' f. 1, p. 229. Ibid., (267,) mention is made of a eopper oak, (Quercus pedunculata sanguinea,) of which a single tree is said to exist in the Lauchner Forest, near Gotha.

* According to Van Mons, this sometimes goes so far that a peeuliar variety springs from cach siugle sced, e.g., from the ten seeds of a pear, were developed an equal number of new sorts of pear. Cultivation of coursc has an influcnee upon the production of new varieties, yet not on the individuals directly exposed to its effeets, but on thcir progeny. In most cases it is impossible to demonstrate a definite relation of the influenee of cultivation upon the qualities of the varieties thenec arising; it appoars rather, on the whole, as if the unusual conditions, favorable to a luxuriant state of development, afforded by cultivation, awakenod in the plant the inward impulse to the display of all those variations possible within the more or less narrowly circumseribed limits of the specics. Aeeording to the experience of gardencrs, in particular of the celebrated Belgian orchard-fruit grower, Van Mons, this impulse is only gradually awakened in the wild plant subjeeted to cultivation, often requiring scveral gencrations, until it has attained its maximum and is finally extinguished in the formation of constant varietics. At the same time, the fatt of experience is remarkable, that improved varictics propagated by cuttings acquire so much the more inelination to return to the parent form the longer they are propagated in this way. (Sce Godron, 'De l'Espeee et des Races,' p. 83, where also are chumerated the treatises of Van Mons not within my reach here.)
of mere vegetative development, so that even the individual vegetative "stock" may comprehend several varieties within its limits at successive points in time, or at collateral points of space. Here refer many wellknown facts, as, for example, that the wild Hepatica (II. nobilis) with its lovely blue six-leaved flowers, if transplanted from the slady mountain-groves into a garden, usually produces, even in the next year, double and in addition mostly red flowers; in like manner that the Periwinkle (Vinca minor) often aequires white or brownish-violet flowers in place of its blue ones, in gardens. If we sum up mentally the successive annual products, such stocks striking into varicty appear composed of two modifications of the species; the Hepatica, for instance, the annual Rejuvenescence of which is effected by direct continuation of the main axis,* looked at in this way, represents a stem bearing simple blue flowers at its lower parts, and double red oncs above. But that which we only sce here by the mental combination of what is separate in time, meets us in actually united in other cases, in which the formation or retrogression of the variety only occurs on particular sprouts of a branclied stock, or in which several of the modifications in which the species may appoar, present themselves so distributed on different parts of one and the same stock, that it is impossible to determine to which modification the stock originally belonged. Cases of both kinds are known in Vines and Currants, which bear two kinds of bunches of fruit, \dagger of Melons with two kinds of fruit, \ddagger of Rose "stocks" which bear two kinds of flower, $\S \& c$. I have observed cases of the first kind in

* Sce p. 54.

\dagger See Metzger, 'Landw. Pflanzenk.,' ii, 913 and 917, where it is stated of the red Traminer that it often brings forth white bunches when old, and of Klavner, (Burgundy, that it not unfrequently bears blue and red bunches on the same "stock;" I have often seen isolated red-berricd bunches on "stocks" of Ribes rubrum with white berrics.
\ddagger Sce Sageret, 'Ann. dcs Se. nat.,' t. viii, 309, (1826.)
§ On the variety of Rosa Eglanleria, with flame-red flowers, (R. bicolor,
the Laburnum with incised leaflets (Cytisus Laburnum quercifolius), as also in the more or less incised variety of the Beech (Fagus sylvatica asplenifolia) in the Carlsruhe Botanic Garden, the ordinary parent-form reappearing with the perfectly marked variety, on isolated sprouts of these plants. The same phenomenon has also been observed in the Parsley Vine.* The strangest cases belonging here are not those in which the modifications are combined with the sprouts, as subordinate individuals of the "stock," but those where the process of separation of the varieties extends only to some limited part of the organs, or even to single groups of cells, and perhaps even to the individual cell, as exhibited by the phenomenon so frequently occurring among cultivated plants, of plants with variegated leaves (e.g. in Cabbages, \dagger) divided irregularly into several colours, striped or dappled flowers (in Tulips, Pinks, Roses) \ddagger and fruits (in Gourds, Apples, Grapes, \&c.) § One of the most beautiful examples of this kind is offered by Mirabilis Jalappa. The three varieties, with deep-red, nankinyellow, and white flowers, are not unfrequently found two or even all three united on the same "individual," in such a manner that there are stocks with the flowers striped with : 1. red and yellow, 2. red and white, 3. yellow and white, and 4. red, yellow, and white ; and not unfrequently, also, isolated single-coloured flowers present themselves on the same stock, these being

Jacq., I have often seen isolated shoots bearing pure sulphur-yellow flowers, (R. lutea, Mill., sometimes cven flowers divided into thic two colours.

* See Babo and Metzger, l. c., p. 35, where the authors state that they have detected, on vigorous stocks of this varicty, isolated branches with leaves which were merely five-parted and undistinguishable from the leaves of the white Gulcdel.
\dagger Here belongs what is called the federloohl, a variegated winter cabbage (Brassica oleracea accphala,) which represents a mixture of the green and red cabhares, (Metzger, 'Kohlarten,' 20.)
\ddagger The striped rose, frequent in gardens, is a Rosa gallica, with white, redstriped flowers, on which sometimes occur half or even entirely red flowers.
§ Thus in the two-coloured Morillon, (Morillon panaché.) Sce Babo and Metzger, 'Wein. and Tafeltrauben,' 169 , heft. ix, t. 4.
of three kinds, red, yellow, and white, in the fourtlt casc.

Analogous cases of hetcrogeneous composition of the vegetable stock occur in hybrids of Phanerogamous plants, through return to the parent form on the hybrid stock itself, whereby it may happen that two specifically different species may present themselves unitod, together with the hybrid, upon the same stock. This, however, is a far rarer phenomenon than the occurrence of several varicties on the stock, for hybrids, as the celcbrated experiments of Kölreuter* showed, ordinarily return by way of reproduction, to one or other parent species, after having been impregnated by this for several gencrations. 'l'se only certainly known instance of the recurrence of a hybrid plant to the parent species on the stock itsolf, has been found recently in the generally diffused garden intermediate species, between Cytisus Laburnum and C. purpureus (C. Laburno-purpureus, Walpers, \dagger C. Adami, Poiret), \ddagger the hybrid nature of which, in spite of the contrary assertions of Loudon $\$$ and Reissek, $\|$ camnot well be

[^224]doubted, since the French authors* unanimously assert it, and this assertion finds strong support in the sterility of C. Adlami, observed by Hénon and Seringe, and confirmed by the behaviour of the specimens in the Carlsruhe and Freiburg Gardens, C. Aclami bears its name after the nurseryman Adam, of Vitry, near Paris, who raised it in the year 1826. The mother-plant is said to be C. Laburnum, the father C. purpureus. \dagger In its arborescent growth and many-flowered racemes it far more resembles the common Laburnum, than the low shrubby C. purpurcus with its two-flowered inflorescences hidden between the leaves; but the racemes are shorter and not so full of flowers. The dirty red colour of the blossom, the smoothness of the leaves, calyx, and germens, which are villous in C. Laburnum, remind us more again of C. purpureus. During the last ten or twelve years it has been observed in most diverse places (thus in Lyons,

Freunden der Natur in Wien,' i, p. 12, extracted in the 'Flora,' 1846, p. 623, and 1848, p. 26, in Hornschuch's essay ou the 'sporting' of plants, with which cxtract alone I am acquainted,) a shrub of Cytisus Laburnum, in the Vieuna Botanic Garden, which had previously always borne only the ycllow blossom proper to this species, suddenly produced, in the spring of 1S46, on some of its branches, the red flowers of C. Adami, and liere and there red aud sellow flowers mingled in the same racemes; nay, a twig perfectly representing C. purpureus is said to have sprung from a yellow-flowering branch of this slırub. Hornschuch found, in the occurreuce thus narrated by Reissck, an analogue of the many other remarkable stories of transformation which the reported from old and recent sources, (for example, the growth of a Lolium branch from a wheat stock, the occurrence of isolated oat spikelets on wheat spikes, the transformation of oats into rye by a particular mode of treatment, \&e.,) and a striking proof of the possibility of conversion of oue species of plant into another. Without entering gencrally into the contested question, the present case admits of a simple, and I think not very hazardous explanation, in the assumption that an unknown hand had engrafted sciolis of C. Adami in the said shrub of C. Laburnum, that at the time of the observation there existed recurrences of the C. Aldami to C. Thehurnum, and that the shoot of C. purpureus mentioned grew out of such a graft, (certainly not out of a Laburnum branch.)

* Héron (and Seringe,) 'Ann. des Sc. phys. et nat. de la Soc. d'Agricult. de Lyon,' ii, 375, (1839.)-Buchinger, 'Flora,' 1842, i, 378. -Kirshleger, 'Institut.,' 184.3, p. 372, and 'Essai de Tératol. Végr.,' 71, (1.845.)-Cherrcul, 'Ann. des Sc. nat.,' 2 sér., vi, 186, (1816.)
\dagger Kirschleger, l. c.

Strasburg, Schiltigheim, Munich, Vienna, Carlsruhe, Friburg (and England), that single shoots present themselves upon the stocks of C. Adami, which (without any mediating transitions)* represent quite purely the yellowflowered and villous C. Laburnum, or, what is much more striking from the great difference of the habit, branches perfcetly characterised as C. purpureus. Ordinarily only one or othcr of the two parent species appear in this way, \dagger but sometimes both on the samc stock. \ddagger The formation of sprouts, and indeed the formation of twigbuds, is conscqucutly the turning point here, with which the rccurrence of the hybrid into the paront-species occurs; the recurring buds devclope into stronger or weaker twigs, which in all parts belong cntircly to one or other parent-specics (stem-, leaf-, flower-, and fruitformation). Sometimes, however, the case occurs of the recurrence to the parent-species first in the small twigs of the inflorescence, i. e, in the transition to the single lateral buds of the raceme, whereby the flowers belonging to the parent-species originate in the inflorescence of the hybrids and mixed racemes are formed. Three kinds of these are possiblc, namely: 1, C. Adami mixed with

[^225]flowers of C. Laburnum: 2, C. Adami mixed with flowers of C. purpureus ; 3, C. Adami mixed with flowers of both parent-species. Hitherto I have only observed the first of these three cases, to which also belong the mixed racemes described at Hénon, the isolated yellow flowers (belonging to C.Laburnum) being displayed among the ordinary rose-red flowers of C. Adami.* These mixed racemes, at the same time, exhibit the peculiarity that the yellow flowers set fruit, while the rose-red fall off immediately after the flowering, so that in the recurrence of C. Adami to one or other parent-species, the fertility lost in thehybrid reappears. But the strangest thing that happens in the recurrence of C. Adami to C. Laburnum, is the phenomenon of mixed flowers, which belong, both in the calyx and the corolla, partly to C. Adami, partly to C. Laburnum, in which even single segments of the calyx and single petals are halved, the former appearing half reddish-brown and sinooth (C. Adami), half greygreen and villous, the latter half red (C. Adami) and half yellow (C. Laburnum). A raceme in which this occurred \dagger exhibited, carefully counted up, among the 32 flowers it bore, 21 unaltered flowers of C. Adami, 3 pure flowers of C. Laburnum, and 8 mixed flowers, the 7 of which, compared in the subjoined table, \ddagger exhibited the following conditions of intermixture in calyx and corolla.§

[^226]| No. of the Flower. | Sepal. | Petal. | Together. |
| :---: | :---: | :---: | :---: |
| I. $\left\{\begin{array}{l}\text { Adami } \\ \text { Laburnum }\end{array}\right.$. | $\begin{gathered} 4 \frac{1}{2} \\ \frac{1}{2} \\ \hline \end{gathered}$ | $\begin{aligned} & 3 \frac{1}{2} \\ & 1 \frac{1}{2} \end{aligned}$ | $\left.\begin{array}{l}8 \\ 2\end{array}\right\} 10$ |
| II. $\left\{\begin{array}{l}\text { Adami } \\ \text { Laburnum }\end{array}\right.$. | 4^{4} | 4_{1}^{1} | $\left.\begin{array}{l}8 \\ 2\end{array}\right\} 10$ |
| III. $\left\{\begin{array}{l}\text { Adami } \\ \text { dabmam }\end{array}\right.$ | 21 | $3 \frac{1}{2}$ | $\left.{ }^{6}\right\} 10$ |
| III. \{ Laburnum | $2 \frac{1}{2}$ | $1 \frac{1}{3}$ | $4\}^{10}$ |
| iv. $\left\{\begin{array}{l}\text { Adami } \\ \text { Laburnum }\end{array}\right.$. | $2{ }^{2} \frac{1}{2}$ | 3 2 | 5 $4 . \frac{1}{2}$. ${ }^{1}$, |
| v. $\left\{\begin{array}{l}\text { dami }\end{array}\right.$. | 2 $2 \frac{1}{2}$ | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | 4.2 |
| v. $\left\{\right.$ Laburnum ${ }^{\text {¢ }}$ | $2 \frac{1}{3}$ | 3 | $\left.5 \frac{1}{2}\right\}$ |
| vr. $\left\{\begin{array}{l}\text { Adami }\end{array}\right.$ | $2 \frac{1}{2}$ | 1 | $\left.3 \frac{2}{2}\right\} 10$ |
| VI. $\{$ Laburnum | $2 \frac{1}{2}$ | 4. | $\left.6 \frac{1}{2}\right\}^{10}$ |
| vir. $\{$ Adami . | 1. | 0 | $1\} 10$ |
| vir. $\{$ Laburnum | 4. | 5 | $9\}^{10}$ |

It need searcely be remarked, that these mixed flowers appearing on Cylisus Aclami, are fully analogous to the previously examined examples of mixed flowers (and fruits) ; the only distinetion is that there it was partial sporting of one variety into the other, here a similar reversion of the hybrid form into the mother-speeies.

We have devoted our attention to this entire series of strange eases, in whieh the ordinary law of the invariability of the specifie and individual charaeter within the vegetable stock appears to be suspended, beeause they serve us as a proof of the intimate conneetion of the course of development of the individual with the history of the speeies. As the aberrations in the course of the individual metamorphosis are espeeially fitted to afford us an insight, into its law, -since they reveal the internal conncetion and the essential similarity of its foundation, through unusual transitions, through anticipatory* or retrogressive \dagger interweaving, or finally by complete return

[^227]of the formations to the starting point,*-so must the last-examined deviations from the usual mode of transition to new organic destinations, belonging ordinarily to the eyele of development of the speeies, not of the individual, point to the common eharaeters, which connect the transition from individual to individual, with the transition from one strueture to another within the individual organism of the plant.

In the Introduction we endeavoured to scize the points eommon to these two domains, as the process of Rejuvenescence, and the minute investigation of the phenomena of Rejuvenescence in the eourse of life of plants, carried out in the three main sections of our reflections, enable us now the more readily to examine from the same point of view the Rejuvenescences of the speeies through reproduction. The transition to the new individual finds its analogue within the species, in Cell-formation, as the freest modification of it, as we have seen espeeially in the formation of the germ-cclls (germinal vesieles) of the Phanerogamia ; it finds its analogue, further, in Sprout-formation, here again representing the most independent modifieation of it; for while the sprouts belonging to the cyele of development of the "stock" are unfolded, either in permanent combination with the mother-stock, or if they separate from it, are connected with it in the earliest period of development, yct the embryo, as primary sprout of a new vegctable "stock," is always free from its earliest formation. As in the various gradations of the interlinking (Gliederuny), which the vcgetable stock aequires through its Rejuveneseences in Cell-formation, Leaf-formation, and Sprout-formation, we could not avoid recognising subordinate kinds of reproduction, since we could not deny even to the ecll, but especially to the sprout, a certain individual import ;-so, on the other hand, the serics of individuals produced by true reproduction appears as an

[^228]interlinking (Glicderung), only in a free condition, and the species as a whole, developing itself in this formation of links, as it were a vegetable "stock" of a higher kind.

That we might go still further in this direction, in the attempt to scizc the conception of the natural continuity of the esscnce, we have already indicated in the Introduction. For as the individual appears as a link of the species, so does the species as a link of the genus, the genus as a link of the family, of the order, the class, of the kingdom; the kingdoms of Nature cven as the great principal links of the organism of Nature ; a view with which, indecd, we give to the Natural System its trac and objective import, which is entircly lost in the mere subjective abstract conception of the natural divisions.*

[^229]It is true that the eommon origin and the historical connection among the links of the more comprehensive divisions of the Vegetable Kingdom, cannot be so readily demonstrated as is the case with the history of the individual in Cell-, Leaf-, and Sprout-formation, and the history of the Speeies, the formation of the Individuals
(morphological) individuals, which sometimes are developed in permanent conneetion, as compound family-stoeks, as in the "stoek" formation of the zooplytes and plants, caused by sprout-formation, sometimes separate completely, as in the Entozoa, Aphides, Medusæ, and in the ease not unfrequent in the Vegctable Kingdom, of natural separation of the buds. Iudeed Nature goes still further in plants, for it gives to the smallest cireles of formation subordinate to the morphological individual, usually called the cells, such an independence of the vital funetions, that these may be regarded in a certain sense as individuals, which, in the higher plants, lead a life interwoven in the totality of the organism, but in the lower, separating, often acquire an isolated individual existence, (pp. 124, 125, et seq.,) in both eases representing an alternation of generations of subordinate kind in their suceession and multiplieation, eff'cted by a proeess analogous to reproduetion. Aeeording to the axiom that merely the individual really cxists, those who recognise the individnal of the plant in the cell, must interpret the cells of the plants as alone real beings, and the stock, the sprout, the leaf, de., as inessentiai aggregates. But where remains the individuality of the cell, as external appearance, when we see that even this has its transformation, its successive renovation, so that, extemally regarded, it does not remain the same, but constantly becomes another, so long as the vitality cndures in it, (pp. 176 et seq., 226 et seq.)? The reality, therefore, cannot be immediately coneeived, not cven the smallest eircle, in the detached phenomenon, but in cvery ease only mediately in the recognition of essence 011 which the contiunity of the phenomenon depends. Now just as the individual is realised through a ehronological suceession of formatious and material division into subordinate links, this is likewise realised in a complex of a higher order, represented by the individuals, by means of which, just as in the individual, it runs through its eircle of forms in chronological succession and matcrial exteusion; in like manner the genus, as a more highly gencralised whole, is realised through the circle of the species, the family through the gencra, \&c.; so finally Nature, as a whole, is realized through the process of devclopment, which brings into existenee all the links of its organism, successively and contemporaneously, and the totality of eaeh system of links in all these eircles certainly cannot be ealled less real, in its representation through the links, than the parts whieh, without the whole, would not exist. For the asscrtion that merely the individual is real to have any meaning, the species, genera, families, classcs and kingdoms, must be regarded as individuals of a higher order: a view whieh may be considered well founded, in so far as all these complexes depend upon special practical destinations of uatural life, just as Nature, as a whole, as shaped ont upon our planct, is to be regarded as an individual, which, although ereated aecording to the same eternal primary type, certainly possesses its own mode and way, different from the Nature of the other celestial spheres.
effected by reproduction, and the eirele of Varieties whieh eome into existence in the course of reproduetion ; but the flora of the aneient world,* and the geographieal distribution of the plants of the present epoeh, \dagger afford us important indiees at least, pointing to the eonneetion in time and space of the history of development of the Vegetable Kingdom as a whole and in its parts.

We have examined Rejuveneseenee in general and more particularly in the proeesses of Vegetable life, and rising from the narrower eirele of the development of the single being, we have sought for it again in the wider circles of the Organism of Nature, and in this way arrived at the eonvietion, that it lies at the foundation of all subdivision in life, all graduated development; that it is this, through which not only the single being progresses from one formation to another, but the whole chain of being is earried onward from generation to generation; through which the smallest step of the organie strueture is introdueed, the greatest transitions of Nature earried into effect, and the metamorphosis in the individual, like the transformation of Nature as a whole from age to age, brought about. At the eonclusion, then, of our refleetions, the question will not appear premature, if we ask, What property of life it really is whieh deelares itself in the Phenomenon of Rejuvenescence? In the first plaee, a general aeknowledgment must be made that the orderly sueeession of phenomena of Rejuveneseenee, whieh presents itself to us in every natural development, eannot be explained through the effort of external natural forees, but points to an internal eause. Every train of development exhibits in its course an adherence to plan which

[^230]can only have its ground in an internal vital destination ; it exhibits, at the same tinne, an indcpendencc of all extermal influences which testifies to the intcrnally given force of vitality. 'the manner and way in which the internal immaterial nature of life manifests itsclf more particularly in the Phenomenon of Rejuvenescence, we may call, in the true sense of the word, a reminding (Erinnerung), being the exertion of a power which, in opposition to the outward revclation and superannuation of life in appearance, grasps anew the ideal (innere) destination and turns it outward with new force, in order to carry it over every onesidedness or imperfection in the external representation, to repeated (and in proportion to the progress of the development) more and more refined complication of the original vital purpose. The recollection (or reminding) of the inherent design of life presents itself to us within the determinate stage of development in the repeated representation of the same vital form; it presents itself to us, retrogressively, in the reproduction of long overpassed, or, in advancing development, in the production of new vital forms, which are, in both cases, however, involved in the original destination. Must we not call it a reminding (or recollection) when, in the course of generation, the old specific nature returns to life with each new individual? It is not still more strikingly a reminding when, in the coursc of the Rejuvencscenccs, a long-relinquished parent-form suddenly returns to existence? as we have seen in the striking back of varietics and the recurrence of hybrids into the mother-species, with so remarkable an instance of which we have become acquainted in Cytisus Adami? The advance to now shapes, proportioned to the coursc of development, brought about through the Rejuvenescence, has been minutely examincd in the metamorphoses of the individual being, where it is most accessible to our limited observation; does not this reveal most distinctly the intcrnal prescrvation and making good of the original vital destination, through all intermediate elestinations which are
required for its entrance into combination with the lower steps of nature, from which the development starts? As in the Individual, then, so certainly in all Nature, with which the individual is combined through the common destination lying at the very foundation of all life. This comnection is testifice to us by the unity of the final term, in which we see the structure of cntire Nature reccive its key-stone. Is it not here again the recollection of the original destination of created lifc, which carrics up step ly step the development of Nature, from the first stirrings of life, through infinitcly numerous links of Rejuvenescence, to the appearance of Man? Finally, is it not this which impels even Humanity to Rejuvenise itself from race to race in ever more decply searching recollection of its high purpose, comprelenending that of all Nature, and connecting it with the Eternal Source whence all internal Law and Forec of Life derive their origin?

PALMÓGLCEA MACROCOCCA. Kinz?

EXPLANATION OF THE PLATES.

PLATE I.
Palmoglea macrococca, Kützing ?* (Coccochloris Brebissonii, Thwaites).

All the figures are from spccimens from the Höllenthal, near Freiburg. The figures 21-28 and 1-13 of Pl. II represent the conjugation of the cells, and the consequent formation of the spores, as described at pp. 135, 202, and 285 of the text. Magnificd 350 diam.

Fig. 1. A cell with a distinguishable gelatinous envelope.
Fig. 2. A cell which has attained the maximum of longitudinal growth.

Fig. 3. A cell beginning to divide.
Fig. 4. A pair of cells produced by division, the two portions still in contact.

Figs. 5 and 6. The same, but the two daughter-cells, still enclosed by the common enveloping membrane of the mother-cell, have already separated, without however exhibiting distinguishable spccial cnvclopes.

Fig. 7. Two cells, considerably clongated and possessing special coats, enclosed by the common mother-envelope.

Fig. S. A cell of moderate length with two vesicles in

[^231]the interior, the nature of which is doubtful; between the two, and more to the side, exists a lighter space (frequently observable).

Fig. 9. A similar eell, in which the dark-green portion of the contents forms a pretty sharply eireumseribed mass with a constrietion in the middle.

Fig. 10. The same cell turned one quarter round, the green mass appearing narrower and with a bright spot beside it.

Fig. 11. Another cell in the same position, with a still more compressed green body in the interior, reminding us of the genus Mesotconium, Näg. ('Einz. Algen., t. iv, B.)

Fig. 12. The same cell seen from above.
Fig. 13. A similar cell, in which the plate-like green mass is interrupted in the middle.

Fig. 14. 'Iwo very slort eells, shortly after their production by division, with plate-like compressed green masses placed obliquely in the interior.

Figs. 15-10. Rows of cells in contact, without distinguishable enveloping membranes, sueh as are sometimes produced by rapidly succeeding divisions in very active vegetation. The arrangement of the eells in this ease shows that the division constantly occurs only in one direction.

Figs. 17-20. Cells treated with tineture of iodine, whereby the green masses in the interior are coloured brownish, and a dark brown mueleus becomes visible, which, however', does not appear sharply defined, and certainly contains no stareh.

Fig. 21. A cell preparing for conjugation, furnished with a lateral wart-shaped projection.

Fig. 22. I'wo similar cells in contaet by their wartshaped projections.

Figs. 23-27. Cells conjugated by union and anastomosis of the lateral processes, with the connceting piece of variable length.

Fig. 28. The same, but one eell erossing the other.

21

Tuffen West Clarmo Lith.
Fénry, Teerny terelis,

PLATE II.

Figs. 1-14. Palmoglaa macrococca. (Continued from PL. I.)
Fig. 1. Two cells, laterally connected, pushed aside in opposite directions.

Figs. 2-4. Conjugated cells, in which the end of one is attached to the side of the other.

Fig. 5. Conjugation carried further, by the widening of the connecting piece. (The cells from fig. 21, pl. 1, to this figure, already exhibit evident drops of oil in the interior.)

Figs. 6-9. Transitional forms produced by still further advanced conjugation, but still two-lobed; they often persist in this form.

Figs. 10-12. Seed-cells formed by complete union of two conjugated cells. These, as also those represented in $6-9$, are almost filled with large drops of oil, and have a thicker coat than before the conjugation.

Fig. 13. Seems to be an union of three cells, which I only met with once.

Fig. 14. A group of four cells, enclosed by a tough coat, probably produced by the division of the contents of a seed-cell.

Figs. 15-22. Schizochlamys gelatinosa, A. Br.
This forms a gelatinous coating over water-plants, as also swimming masses, on the peat-moors of the Black Forest. (See pp. 181, 230, in the text.) Magnified 600 diametcrs.

Figs. 15-16. Two cells which throw off their cellmembrane by regular splitting into two halves, without themsclves dividing.

Fig. 17. A cell which, after throwing off its earlier
cell-membrane, has formed a new one, somewhat removed from the green internal eell at one side.

Fig. 18. The cell-membrane thrown off by splitting into four pieces, with simultancous division of the eell into two daughter-cells.

Fig. 19. As in fig. 18 ; but the two new eells have already become eoated with ccll-membrane.

Fig. 20. The same; but the detached eell-membrane split only into two parts.

Tig. 21. The detaehed cell-membrane has broken up into four portions, the internal cell has become transformed by double halving into a group of four deeussating cells.
lig. 22. The same; but the eells have already separated and beeome coated with new eell-membrane.

$$
\begin{aligned}
& x=1 \\
& z \\
& =y \\
& =\frac{y}{x}
\end{aligned}
$$

9

PEDIASTRIJM GRANULATUM

PLATE III.

Pediastrum granulatum, Kütz.*

Numerous modifications, all derived from one and the same littlc pool of water, near Freiburg. Figs. 1-9 represent the reproduction. (See pp. 161, 184, 200, 2Ј0.) Magnified 400 diameters.

Fig. 1. An old disk, in great part emptied by birth of gonidia. The emptying of the cells of this specimen, the first in which I observed the reproduction, took place before my eycs in the order of the letters a to e; this was on a day in autumn, (Nov. 24, 1848,) in the afternoon ; the empty cells not marked had lost their contents before the commencement of the observation, probably in the morning of the same day. Several of the empty cells, (for instance, a, b, c, c, distinctly exhibit a cross slit, through which the contents have been discharged; in the rest the emptying has taken place on the opposite side, so that the slit is invisible in this position of the disk. One cell is in the act of discharging the gonidia, thesc having in part cntered into the projecting portion of the hernialike vesicle formed by the swollen innermost lamella of the mother-ccll membrane, in part still remaining in the internal cell-cavity. Threc other cells still possess their perfect contents, but in different conditions. 'Two of them are filled by sixtecu extremely closcly crowded gonidia, only half of which arc visible, as they form a

[^232]double layer. The third, not yet emptied cell, is in the actual transition to the formation of gonidia ; it exhibits the first divison of the contents into two halves, one of which already appears halved again.-The arrangement of the sixteen cclls of the entire disk is an unusual one, $1+6+9$, the outcr circle in this case being incomplete, and a cell of the inner circle, opposite the break in the outer circle, possesses one horn.

Fig. 2. The new-born family, immediately after the birth, seen from the corner. It is derived from the cell a of the disk represented by figure 1. The iunermost lamella of the mother-cell has wholly emerged from the old cell as an extremely thin vesicle enclosing the gonidia; the gonidia in the interior of the mother-vesicle moving actively.

Tig. 3. The same family, in the same stage, seen on the surface.

Fig. 4. The same, in a later stage, namely, a full quarter of an hour after birth, in the same position as fig. 2. The gonidia, now at rest, have arrauged themselves in a plane in the plane of section of the equator of the mother-vesiclc.

Fig. 5 . The same, in the same stage, showing the surfacc. 'The sixtcen gonidia, united into a colony, form a circular sixtecn-colled disk, in the arrangement $1+5$ +10 ; but they do not adhere firmly together. A slight emargination is already visible on the outside border of the cells.

Fig. 6. Another young family in the same stage as fig. 5, about half an hour after birth. The arrangement $5+11$.

Fig. 7. Another of the same age, exhibiting the arrangement $6+10$.

Fig. 8. The families represented in figs. 2, 3, 4, 5, one hour after birth. The cmargination of the cells has advanced further.

Fig. 9. The same again, but four hours after the gomidia ceased to move, (four hours and a half after
birth.) The emargination of the border-cells has passed into the formation of horns. The cells are not even yet closely connected together, but exhibit spaces between them, so that in this stage the disk exhibits a resem. blance to that of Pediastrum pertusum, (Näg., 'Einz. Alg.,' v. 2, as P. Selencea,) which species, however, does not lose the orifices in the full-grown condition. Not until the second day, after an interruption during the night, of the rapid changes of form of the cells, do the cells become closely applied together; the horns acquire their proper shape and length at the same time.

Fig. 10. A half-grown disk of four cells, two of which meet in the middle. A starch-grain is visible in each cell, as is usual in the middle age. The mother-vesicle is still visible here, while in ordinary cases it disappears altogether by the second day.

Fig. 11. An older four-celled disk, the four cells meeting in the middle. The families formed of four cells are extremely rare in this species.

Fig. 12. Disk of eight cells, in the arrangement $2+6$, which is more frequent in this species than the arrangement $1+7$. The inner two cells are notched on the outer border, which is connected with the position of the two outer cells opposite to them.

Fig. 13. A similar disk, but with the inner two cells not notched, but interposing an obtuse-angled prolongation into the commissure of the outer cells alternating with them.

PLATE IV.

Pediastrum granulatum, Kg .

(Continued from PL. III.)
Fig. 1. Disk of eight cells, placed $1+7$, derived from the same mother-disk as the four-celled disk represented in fig. 11 , of P l. 3.

Fig. 2. Tull-grown cight-celled disk, $1+7$. The contents of the cells dark green, and granular ; the starchgrains no longer visible. The cell-walls in the interior' of the disk are tinged slightly erimson, which eolour, however, only occurs sometimes in full-grown specimens.

Fig. 3. Eight-eelled disk arranged $1+6+1$, a very rare exceptional ease.

Fig. 4. Disk in $1+5+10$, which is the most frequent case with sixteen cells, (sec fig. 5, Pl. III.)

Fig. 5. Disk of sixteen cells, $6+10$, the inner six differently arranged from those of fig. 7, Pl. III.

Fig. 6. A similar one, but the outer circle so elosely adjoined to the inner that the arrangement appears spiral.

Fig. 7. Abnormal disk of fifteen eells, in whieh, however, one in the outer cirele is larger than the rest, and doubtless stands in the plaee of two, from omission of the last division in the formation of gonidia. The likewise irregular arrangement may, therefore, be regarded as $5+10+1$.

Fig. 8. Elliptieal disk of sixtcen eells, $\check{0}+10$.
Fig. 9. A similar disk, but the five inner cells in a different position.

Fig. 10. Elliptical disk of thirty-two cells, $7+11+14$. The colonies of thirty-two cells are rarer in this species
(
than the sixteen-celled ; I have observed in these, besides that figured, the following kinds of arrangement:

$$
\begin{aligned}
& 1+5+10+16 \\
& 1+6+10+15 \\
& 1+5+11+15 \\
& 1+6+11+14 \text { (spiral.) } \\
& 5+11+16 \\
& 6+10+16 \text { (sub-spiral.) } \\
& 7+10+15 \text { (elliptical.) }
\end{aligned}
$$

I have never met with specimens with sixty-four cells in this species, but Nägeli, (l. c., t. v, B, l, g,) figures a sixty-four-celled specimen, arranged $2+7+12+19+24$; in the scarcely specifically distinct P. Boryanum.

PLATE V.

Cytisus Adami.

Diagrams of mixed flowers, partly striking baek to Cytisus Laburnum, on which see p. 319 in the text. The outer eirele represents the calyx, the brown parts of it belong to C. Aclami, the green to C. Laburnum. In the inner circle (eorolla) the red colour signifies C. Adami, the yellow C. Laburnum.

I N D EX.

Aealypha, 89.
Aernthus, 92.
Achillca, 30.
Achlya v. Saproleguia.
Aconitum Napellus, 37.
Actra, 55, 73.
Adouis vernalis, 84.
Adoxa, 29, 31, 55.
Adventitious buds, 22.
Ajuga genevensis, 22.
Alisma, 98.
Allium Sehœenoprasum, 97.
Aluus glutinosa laciniata, 332.
Alternations of generations, 51,52, 106, 126, 322.
Althæa rosea (Pollen-formation), 256.
Ampelidex, 94.
Amylum v. Starch.
Anabaina, 146.
Anagallis, 22.
Ananas, 57.
Anaphytosis, 102.
Anarrhinum bellidifolium, 71.
Anemone nemorosa, 29, 55.
Angeliea sylvestris, 86.
Anthoceros, 257.
Apetalous flowers, 94 [250.
Aphanochæte, 184, 209, 230, 233,
Apiocystis, 132, 209.
Apios, 33.
Aquilegia, 99.
Arauearia, 59.
Arehidium, 232.
Armoraeia rustieana, 97.
Aroidex, 89, 91.
Arthrosiphon, 178.
Aseidium, 125, 127, 185, 186, 200,
Asimina, 79. [209, 267, 286.
Asparagus, 44.
Aspidium remotum, 310.
Aster, 30.
Balsamincæ, 33.
Bambusina, 291, 295.
Bartonia, 248, 252.
Batrachospermum, 150, 151.
Beceh v. Jagus.
Berberis, 77, 90.
Betula alba laeiniata, 312.
Betulacce, 91.
Botrydium, 128, 193, 220, 274.
Botryocystis, 159, 209.

Breadth of the base of leaves, 67 .
Bromus, 40.
Bryopsis, 129, 140, 166, 268.
Buds, 18.
deseent of, 56,57 .
Bulbochæte, 141, 151, 156, 157, 183, 201, $209 . \quad[303$.
pretended conjugation of,
Bupleurum rotundifolinn, 86 .
Buxus, 36.
Calliopsis bieolor, 85.
Calluna vulgaris, 226.
Calycanthus, 77.
Campanula medium, 98.
Carex, 101.
Carpels, 65.
Carpinus, 36, 53, 62.
Castanea, 89.
Cataphyllary leaves, 62,84 .
Caulerpa, 129, 174.
Ccll-contents, 155, 171.
solutions in this, 194.
Cell-formation, 121, 123.
abnormal, 266, 281.
free, $164,167,238$, 259, 272, 275.
by eonstrietion, 254.
by division, 16S, 232, 240, 250.
period of, 224.
Cell-membrane, 156, 176.
lamination, 220, 229. solution of, 189. stripping of, 18, 230. tearing up of, 177. skinning of, 180, 188.
Ceutunculus, 34 .
Chætomorpha, 185, 186, 268.
Chætophora, 139, 151, 156, 183, 208, 224, 231, 253.
Chantransia, 14:3, 151, 183, 231.
Chara, 221.
Charaece, 152, 175, 234, 247. [250.
Characium, 125, 185, 209, 229, 230,
Cheiranthus Cheiri gynantherus, 97 .
Chelidonium marus, 77.
Chimonanthus, 78.
Chlamidococcus, 138, 158, 174, 184, 196, 205, 211, 216, 224, 229, 238, 250, 258.
Chlamidomonas, 214, 216.

Chlamidomonas, obtusa, 215.
tingens, 215.
Chlorococcum, 213, 260.
Chroococcaceæ, 131, 174, 190, 197.
Chroococcus, 131.
decorticans, 182, 230.
Chytridium, 185, 261.
Cicendia filiformis, 25.
Cilia of the Algæ, 157, 158.
disappcarance of, 230.
Citrus Mcdica, 82.
Cladophora, 150, 174, 185, 199, 220, 235, 236, 239, 24:0, 253, 268.
Clostcrium, 133, 175, 281, 291.
accrosum, 291.
curtum v. Pcnium.
juncidum, 292.
Lciblcinii, 292.
lincatum, 291, 292.
Lunula, 140, 204, 289.
striolatum, 292.
Trabecula v. Docidium.
Coccoloba, 60.
Cocconoma, 286.
Colcochæte, 141, $270 . \quad[253,298$.
pulvinata, 151, 183, 208,
scutata, 142, 183.
Commarum, 78.
Compositx, 85, 89.
Coufcrva bombycina, 184, 205, 209.
Conjugation, 282, 283.
of similar cells, 284.
of dissimilar cells, 226.
Convallaria, $34,68,90$.
Corypha umbraculifera, 27.
Cosmarium v. Euastrum.
Crassulaceæ, 94.
Crocus, 67.
Crucifcrex, 33, 90, 96, 97.
Cuticle, 191, 244.
Cycas, 12, 27, 58.
Cyclamen, 34.
Cylindrocystis, 287.
Cylindrospcrmum, 146.
Cymatoncma, 141.
Cyperaceæ, 33, 91, 98.
Cystococcus, 125, 185.
Cystoscira, 248.
Cytisus Adami, 24, 31.
Laburnum qucrcifolius, 312,
Dcrbesia, 185, 186.
Dcsmidiaceæ, 133, 139, 174, 247, 283, 290.
conjugation of, 290. movement of, 203.

Desmidium, 294.
Destruction of the Ccll, 176.
Dianthus, 76.
Diatomaccæ, 132, 139, 190, 247. conjugation of, 285.
Diclinous flowers, 100 .
Dictyospherium, 132, 209, 238.
Didyınoprium, 291, 295.
Digitalis purpurea monstrosa, 58.
Diphyscium foliosum, 177, 230.
Division of Gencrations, 36.
Docidium, 291.
Trabccula, 180.
Doubling of Flowers, 79.
Draparnaldia,. 139, 151, 156, 183,
Droscra, $98 . \quad[208,224,231$.
Dysphinctium, 203.
Ectocarpus, 125, 142, 185.
Elymus Europæus, 87.
Emilia sagittata, 86.
Endococcus, 213, 268.
Endosperm-cells, 248, 278.
Eurichment-sprouts, 37.
Entcromorpla, 184, 250.
Epilobium, 30.
Epimedium, 55, 73, 77.
Equisctum, 180.
Ericacca, 94, 97.
Eriocaulon, 35.
Erysiphe, 261.
Erythreca pulchclla, 26.
Euactis, 147, 178.
Euastrum, 133, 224, 295.
margaritifcrum, 181, 294.
Mcneghinii, 300.
Eunotia, 286.
Euphorbia, 22, 36, 37.
Euphyllary leaves, 63, 84.
Exococcus, 254.
Fagus, 20, 31, 62.
sylvatica sanguinca, 312 .
asplcnifolia, 315.
Fasciation, 122.
Fermentation Fungi, 254.
Ferns, 27, 307, 309.
hybrid, 309.
Festuca, 40.
Fir v. Pinus.
Florideæ, 253, 255.
Fragaria vesca monophylla, 312.
Fraxinus excelsior simplicifolia, 312.
Fuchsia, 78.
Fucoidex, 142, 183, 253.
Fucus, 126, 142, 183.
Fuircna, 91.

Fumaria, 79, 90.
Fundamental organs of the plants, 108, 112.
Funkia cærulca, 276.
Galanthus nivalis, 56.
Gencrations, successions of, 32. division of, 35 .
alternations of, 51, 52, $106,126,344$.
Gentiana, 83, 92.
Geraniacere, 93.
Germ-cells, 134.
Germinal vesicles, 167, 276.
Gesueriacer, 33.
Glaux, 95.
Glechoma hederacea, 59.
Gleichenia, 114.
Glœocapsa, 131, 132, 182, 190.
Glœococcus, 159, 209.
Glœocystis, 131, 161, 182, 190.
Glyceria aquatica, 87.
Gomphonema, 238, 286.
Gongrosira Sclerococcus, 183, 209.
Gonidia, 134, 137, 140.
active $137,141,148,157$,
$158,162,169,183,261$.
duration of motion of, 212.
period of motion of, 221.
Goninm, 159.
Gramineæ, 33, 86, 91, 98, 100.
Hæmatococcus pluvialis v. Chlamydomonas.
Halving of cells, 233.
Haplosiphon, 150.
Hassallia, 150.
Hedysarum coronarium, 33.
Heliconia cannoidea, 73.
Helichrysum arenarium, 22.
Helleborus fæotidus, 72, 76.
niger, 29, 55.
Hepatica, 29, 54, 314.
Heracleum, 69.
Himantidium, 286.
Hormidium, 131.
variabile, 208.
Hyacinthus, 18.
Hyalotheca, 291, 295.
Hybrids, formation of, $42,310,316$.
Hydrocharis, 101.
Hydrodictyon, 125, 127, 137, 156,
171, 185, 186, 190, 197, 199, 208, 219, 220, 261.
Hydrophyllum canadense, 72.
Hymenophyllum interruptum, 115.
Hypccoum, 79.

Hypericum, 28, 30.
calycinum, 77.
Hypnum abictinum, \&c., 40.
Hypsophyllary leaves, 63, 84.
Impatiens Balsamina, 35.
Increase-sprouts, 38 . [124.
Individual, the vegetable, 19, 23,
Isoëtes, $28,53,144,189,197,200$.
Isoëtaceæ, 255.
Isthmosira, 291, 295.
Jacquinia, 79, 93.
Jamesonia, 114 .
Jasione percmnis, 71.
Jasmineæ, 93.
Juncus, 97, 107, 111.
Juniperus, 59, 65.
Jurinca Pollichii, 22.
Labiate, 33, 90, 98.
Leaf-formations, 51, 101.
of the Algæ, 152.
disappearance of, 83 .
Leafy-shoots, 57.
Leaves, formation of 62,84 .
Leguminosæ, 33, 90, 99, 194.
Lemania, 154.
Length of leaves, 70.
Leptomitus lacteus, 270.
Ligustrinæ, 33.
Lime v. Tilia.
Limnanthes, 96, 99.
Linaria, 22, 31.
Litorella lacustris, 42.
Lolium, 40, 87.
Lycopodiaceæ, 144, 255.
Lycopodium annotinum, 59.
Lysimachia Nummularia, 31, 34, 59.
Lythrum, 30, 80.
Mahonia, 70, 71, 77, 90, 96, 115.
Malvaceæ, 94, 96, 99.
Marsilia, 194.
Mastichonema, 147, 187.
Mastichothrix, 147.
Melalcuca, 57.
Mclocactus, 27.
Mclosira, 139, 299.
Mentha, 28, 30.
Mcrtensia, 114.
Mesocarpus, 135, 288.
notabilis, 289.
Mctamorphosis, 60, 320. ascending, 60. descending, 52. vibrating, 52.
Mirabilis Jalappa, 315.
Mousonia, 93, 96.

Mosses, hybrid, 310.
Mougeotia, 288.
Musa, 74.
Myrtaceæ, 98.
Nardus, 87.
Narcissus, 53, 56, 80.
Nasturtium pyrenaicum, 22.
Nicotiana, 92, 98.
Nostoc, 145, 155.
Nucleus, 174.
division of, 241, 24.8.
solution of, 195, 241, 248.
Nymplıea, 79.
Oak v. Qucreus.
Gidogonium, 141, 148, 150, 156 , $157,161,163,170$, 175, 183, 196, 201, 209, 212, 224, 227, 231, 247, 281.
apoplıysatum, 141, 162, 301. eapillare, 170.
echinospermum, 14], 302.
fonticola, 141, 170, 224.
Landsboroughii, 164, 301.
supposed conjugation of, 300.
Enothera bicmis-muricata, 42. muricata, 71.
Oil (fixed), 193, 195, 200. disappearance of, 204, 205.
Ophiocytium, 260.
Ophioglossum, 18, 59, 189.
Orchidete, 33.
Ornithogalum sulphureum, 276.
Oryza, 88.
Oscillaria, 131, 197.
Oxalidere, 93.
Oxalis Acetosella, 54. stricta, 30.
Oxyria, 77.
Paehysandra, 35.
Pæonia, 71, 73.
Moutan, 96, 99.
Palmellaceæ, 131, 174, 190, 213.
Palmoglœa, 133, 135, 202, 285.
Pandorina, 159, 209, 212, 224.
Panieum mirabile, 88.
Papilionaeex, 98.
Paris quadrifolia, 26, 34.
Parnassia palustris, $226 . \quad$ [249.
Passiflora (Pollen-formation of), 248,
Pediastrum, 125, 161, 184, 200, 209,
Pedieularis palustris, 71. [250, 266.
Penium, 292.
curtum, IS1, 190, 203.
Jenneri, 289.

Pcrigynium, 100.
Pctals, 64, 93.
Pcziza, 1S6, 260.
Phascolus, 33.
Phlox panichlata, 72, 76.
Phyllotaxy, 116.
Plysalis Alkekengi, 30.
Phytolacca, 95.
Pinus, 32, 39
(Pollen-formation of), 24S, 249, 256, 257.
Plantago lanceolata, 57. major, 35.
Platyzoma, 114.
Plcurococcus, 131, 258.
miniatus, 182, 213, 230.
Poa alpina, 57.
bulbosa, 5 ?
Podophyllum; 77.
Polemoniaceæ, 33 .
Pollen-grain, 22S, 254.
Polygala, 77.
Polygoucæ, 94, 97, 98 .
Polyconum,96(vide addend.et corrig.)
Prasiola, 131.
Primordial utricle, 156, 169, 170.
Primulacere, 33, 95, $97,99$.
Propagation of cells, 227.
Protococeus, 125, 127. viridis, 209, 212, 213,
Pteris agnilina, 59.
Pulmonaria officinalis, 71.
Pyrola, 55.
Quartering of cells, 254.
Qucreus, 18, 20, 31, 36, 54, 62, 65, pedunculata sanguinca, 313.
Rafllesia, 26.
Reconstruction of the Cell, 226.
partial, 272.
with halving, 232.
with quartering, 254.
with division into
many portions, 259.
Resorption of eells, 193.
Respiration of plants, 217.
Rhamner, 94.
Rhcum, 96.
Rhizoearpex, 144, 255, 256.
Rhododendron, 54.
Rliynchonema, 289.
Ribes, 78, 314.
Rivularia, 147, 148.
Rivularice, 146, 17 S .
Robinia Pscud-acaeia inermis, 312.
Root, 111.

Root-sprouts, 2.2.
Rosa Eglanteria, 314. gallica, 315 .
Rosaceæ, 98, 99.
Rubus ldreus integrifolius, 312.
Rumex, 77, 100.
Rumex Acetosella, 22.
Rutaceæ, 80, 99.
Salvia, 90.
Salix, 53, 101.
Saprolegnia, 252, 268, 295.
eapitulifera, 188, 269.
ferax, 185.
Sareococea, 36.
Scenedesmus, 250.
Selizochlamys, 181, 230.
Schizonema, 139, 256.
Schizosiphon, $147,178$.
Sciadium, 187, 209, 260.
Serophularineæ, 33, 90, 98.
Scutellaria, 90.
Scytonema, 147, 178, 186.
Scytonemæ, 146, 178.
Seed-cells v. Spores.
Sepals, 64, 92.
Series of generations, 32.
Sesleria, 87.
Sirogonium, 288.
Skinning of cells, 180, 188.
Slipping out of cells, 182, 231.
imperfeet, 187.
Solanacer, 98.
Solanum tuberosum, 30, 37, 53 .
Solidago, 30.
Spermosira, 146.
Sphæroplea, 164, 271, 281.
Splıærozyga, 146.
Spirogyra, 135, 175, 180, 196, 201, 224, 239, 241, 281, 289. lubrica, 244. mirabilis, 300 .
Spores, 134, 164.
Sprout-formation, 21. relative to eharaeter, 38 . to ceonomy, 38, 41.
Stamens, 64.
Starch-grains, 198, 206. solution of, 195, 197.
Staurocarpus, 134, 281, 296.
Stauroceras, 287.
Staurospermum v. Staurocarpus.
Stellaria media, 95, 98, 99.
Stem-formation, 108, 110.
Stigeoclonium, 139, 156, 163, 183, 208, 224.

Strengthening generations, 29, 43.
Struthiopteris, 108.
Sustaining sprout, 37.
Swarm-eells v. gonidia.
Swarming out of eells, 183.
Syzygites, 290.
'lamarix, 40, 98.
Tanacetum, 30.
Terminal bud, 53.
Tetmemorus, 291.
Tetrachococeus, 258.
Tetraspora, 132, 209.
Tetraspores, 255.
Thesium, 90.
Thuja, 40.
Thylls, 253.
Tilia, 45, 53, 100.
Tiliaceæ, 94.
Tolpothrix, 147, 186. [257.
Tradeseantia (Pollen-formation of),
'Transformation of pistils into stamens, 97.
[278.
Transitory Cell, in the embryo-sae,
Trifolium moutanum, 33.
Triticum, 40.
Tropæolum, 31, 39.
Tulip, 18, 26, 56, 68, 313.
Ulothrix, $125,156,159,175,200$.
zonata, 148, 184, 208, 223.
Braunii, 177, 183, 208, 250.
Ulva, 125, 184, 250.
Unicellular plants, 124.
Urococeus, 178, 230.
Valeriana officinalis, 69.
Valonia, 180, 273.
Vaucheria, $128,140,157,163,174$, 183, 209, 212, 221, 251.
conjugation of, 296.
Veratrum, 68.
Veroniea Cliamxdrys, 59.
Vesiele, ehlorophyll, 199.
Vesieles, germinal, 167, 275.
Vinca minor, 314.
Vines v. Vitis.
Vitis, 46.
vitifera laeiniosa, 312, 315.
Volvocince, 158, 208, 216, 250. eve of, 209.
Volvox, 159.
Willow, v. Salix.
Yonaria Pavonia, 179, 24 s.
Zygnema, 175, 288.
Zygnemacea, 133, 135, 164, 174, Zygogonium, $288 . \quad[180,287$. criectorum, 177.

ON THE

ANIMAL NATURE OF DIATOMEE,

WITH AN
ORGANOGRAPHICAL REVISION OF THE GENERA, established by kützing. By Professor G. MENEGHINl. TRANSLATED FROM THE ORIGINAL ITALIAN EDITION,
(Venice, 1845.)

NO'TE.

By an oversight, the references to pages in the Annotations, p. 496 et seq., are erroncous, not having been altered to adjust them to the difference of the paging in this volume and the original essay. The following corrections must be made $:-4=346 ; 7=34.5 ; \quad 8=349 ; \quad 9=350 ; \quad 10=351$; $12=353 ; \quad 13=354 ; \quad 16=357 ; \quad 20=360 ; 23=363 ; \quad 25=364 ;$ $90=421 ; 106=445$.

In reference to the discussion on the subject of measurement at p. W18, it may be worthy of attention that Kützing confesses that Ehrenberg's figures, drawn with an amplification of 300, are not smaller, but sometimes even larger thau his own, which are magnified 420 times. (Note on Epithemia ocellata, 'Kicselschal. Bacillaricu,' p. 34.)

ON TIIE

ANIMAL NATURE OF DIATOMEA.

The Diatomeæ are mieroscopic beings provided with a siliceous shield or shell, on which aceount their form remains unehanged; they are easily subjected to observation, and easily distinguished from other minute organisms, whether belonging to the animal or the vegetable kingdom. The earlier observers considered them to be animals undoubtedly; and animals they were deeidedly prononnced by Ehrenberg. On the other hand, almost every Algologist has aetually taken them for plants, and in this opinion all are agreed who have more reeently treated on the elementary structure of organic beings, and on the distinetions that constantly separate animals from plants, even at their first origin. In support of their animal nature, the important observations of Ehrenberg certainly possess great value, but these are insufficient; because the same arguments have induced the illustrions author to inelude in the same class of Polygastric Infusoria the Desmidieæ also, which now by universal consent are aeknowledged to be true Algæ.

If a new opinion do not actually spring from between these two, there is revived under another name the ancient theory of Phytozoa and Zoophytes, the Nemoures of Gaillon, the Psychodiarian kingdom and the Arthrodieæ of Bory St. Vineent, the Green Matter of Priestley, the metamorphoses of Agardh, and we are advaneing direetly to the theory of spontaneous generation, and the other of defeetive specific limitation, in accordance with which
species and genera, whether animal or vegetable, are considered to be transitory forms of the same organic type. Kützing does not admit any essential distinction between animals and vegetables. He maintains that the same being may, at various periods of its development, assume one nature or the other. The following is his theory in a few words. Every organic being is constituted of vegetable elements and animal elements, and according as the one or the other prevails, the being becomes an animal or a vegetable; in the first stages of the development of superior beings, and permanently in those of inferior rank, the two elements are equally balanced. And this is the case, in the author's opinion, with the Diatomex, which, on this account, camnot be absolutely referred either to one series or the other, but constitute the ring or circle which unites together all organie beings into one kingdom. Long controversies have sprung up between the supporters and the opponents of this doctrine, who, to obtain victory, mutually accuse one another of logical crrors, of sophisms, and of paradoxes.

The analysis of this controversy would be tedious and of little profit; whilst on the other hand, sound logical principles may guide us to a rigorous estimate of the facts. And, in truth, the natural sciences are entitled to boast of a language that is adequate to the purpose, if we avoid the abuse of Ontology. The words Animal and Plant, like words in common use, as Species, Genus, Order, Class, Kinydom, do not denote any existing thing in particular. 'I'o the naturalist there exist individuals only, as to the philosopher there exist only bodies. Species is a synthetical comprehensive expression, abstracted from all the individuals so similar to each other, that they may all be considered as originating from the same parents. Genus is a still larger abstraction, comprehending all the species that resemble each other in some important characters ; and so we advance to the denominations animal and plant, expressions of ideas existing only in the mind of man, and therefore entirely subordinate
to impressions already received and to those which may be received hereafter. These ideas are hence more or less incomplete in every observer, nay, incomıplete in all, because no one has seen every animal or every plant. On this account we not unfrequently meet with organisms of an ambiguous nature, which at first sight appear equally to belong to the animal and the vegetable kingdom. But yet with regard to this ultimate division of organic beings, we ought to proceed in the selfsame path which we find necessary to follow in respect to the first divisions of Species and Genera. When a naturalist meets with a species that appears to belong to two different genera, and to form a transition, so to speak, between one and the other, he decides according to the importance and the value of the characters, either to modify the definitions of the two genera, or to propose a new one, or to fuse both together into one. He would sin against Ontology should he assert that he found the two genera included and combined in the ambiguous species. The genus has existence only in our minds, and not in the species. In the latter we can only discover some or all the characteristics of the genus; that is, certain signs which constantly subsist in every sister species, whatever may be their diversity in other respects. Thus Kützing, when he says that in the Diatomex the two elements, the animal and the vegetable, are combined and in equilibrio with each other, gratuitously imagines the idca of a combination, which in reality can only take place between different substances, and hence he applics his conjecture to the expression, instead of applying the latter to the former. And he draws his conclusion from the example he uses, instituting this sanc comparison between the organic and inorganic kingdom, and deducing from it analogous consequenecs; the gradual transition from one to the other is as it were their conjunction, through the same intermediate ring or circle of Diatomex.
'The phosphate of lime, he says, which constitutes so large a portion of the bones of amimals, the silica of

Diatomex, and the other mineral elements which are found united with organic tissues both of animals and plants, represent the combination of the inorganie with the organie kingdom. Aceording as the one or the other prevails, life or death is triumphant. The word mineral is in this instance so exalted, as to signify, not an intelleetual abstraction, but something unknown, idcal, metaphysical. With the same right that he terms phosphate of lime or silien mineral, I can equally apply the word mineral to earbon, hydrogen, or to the triple combimation of O . H. and C., or the quadruple eombination O. H. C. A., since these substanees also, as well as the former, do not solely of themselves manifest those general properties which we comprehend in the abstract expression Life. Nor ought we to allow ourselves to be deluded by the abuse with whieh ehemists apply the word organic to some material elements of living beings. It is a convenient but dangerous mode of expression. The same remote elements constitnte living and dead bodies; and admitting that some combinations are found in the former which are wanting in the latter, and that others ean by no means be produeed artifieially, still what we term life does not reside solely in these. The same ehemieal combination may be alive or dead, without any knowledge of the cause on our part. It is only by comparing this with other known faets, and not by observation, that we suppose its proximate cause to be the mutual arrangements and the motion of molecules. So that, whenever any substanee forms an integral portion of the tissues of a living being, it does not belong to the mineral kingdom, hut to this being, and therefore to the organic kingdom. It is only when, independently of those manifestations whieh eonstitute life, this substanee within a living being obeys physieal and chemieal laws as it would obey them out of the body, (like ealeulous eoneretions within animals, and erystals in the interior of regetable eells, and inerustations whether internal or extermal,) so that they issue from the medium within which
they live or the vchicles that introduce them, and cnviron, suffocate, and kill the animals or the plants or their tissues :-then only I should denominate this substance a mineral thus associated with an organic being. In the shields of a Diatomean, as well as in the discs of Acalephæ or Gasteropoda, in the epidermis of Crustacea, in the bones of Vertcbrata, this so-called inorganic substance is, at least in part, within the same conditions as the albumen or fibrine or any other proteine combination which constitutes the rest of the tissue. In the Diatomeæ, as well as in the Mollusca, the solid shield adapts itself to the successively growing dimensions of the animal, as in the Vertebrata the bones grow pari passu with the other tissues. And since this growth has nothing in common with the crystallisation or successive deposition of minerals, we are forced to allow that this manifestation is of necessity comprehended in our idea of life.

Kützing, therefore, when speaking of Diatomcæ, ought to have dwelt upon the fact that in these beings silica exceeds the other material elements, and ho ought only to have instituted a comparison between the proportion of this substance, and that which is elsewhere met with among the other material combinations proper to organic beings and at the same time common to them with minerals. Perhaps he would have shrunk from this comparison, for the more the second prevail over the first, the less is the manifestation of lifc. But we are not endeavouring in this place to learn whether a being is more or less easy to be distinguishod. A serpent coiled up and an eagle circling the heavens are certainly different in their manifestation of life, but the one and the other is cqually different from a stone. Where life ceascs, dcath takes place; for thesc, being opposite states, admit of no transition.
'Ithe other opinion of Kützing, which, though forcign to our present subject, we fccl bound to oppose, is the one which suggested to him the theory of two vitalitics combined together in equitibrio or in inequilibrio. The
same being, he says, may pass from the animal to the vegetable nature, or from the latter to the former, and again return to its original state. This opinion is not new, for it was previously held by Agardh, by Gaillon, and by Bory St. Vincent; but the facts whieh lead Kützing to adopt it are so preeise and so ivell described, that they do not admit the easy eharge of ineorreet observation, by whieh many have hitherto been satisfied to answer arguments dedueed from similar faets. He sees microscopie beings corresponding exactly with the deseriptions and figures given by Ehrenberg, furnished with organic peeuliarities, and presenting vital phenomena generally regarded by Ehrenberg and others as eharaeters of animal life, assume in their successive and natural development, form, organisation, and life, sueh as are generally attributed to plants. And from these plants he sees reproductive bodies generated, similar to the seeds of superior and spores of inferior plants, equally endowed with charaeters of animality, becoming, however, subordinated to those of vegetable life. The fact is true, and may be easily verified by any one in the habit of making mieroscopie observations. And the explanation of this faet appears to me equally easy. If there are beings which, when they attain their perfeet development, prove themselves to be deeidedly vegetable, although during the first portion of their existence they presented some phenomena of animal nature, this proves that those phenomena do not exelusively belong to animals, and that we cannot draw from them absolute charaeters of animal nature. 'The imperfection, whieh we have already shown to be inherent in every notion we can form of the animal or vegetable kingdom, begins to diminish after such sonsiderations, and it is under this point of view that we purpose to undertake the examination of Diatomex, earefully separating in the charaeters they present, those which they hold in eommon with vegetables from those in common with animals, and inquiring if they do not possess some exclusively with one or the other which
may decide the question. The comparison of animals with vegetables has been treated and discussed in all its forms so many times, and by so many celebrated authors, that the mere mention of it may excite a fear that we are about to recite things antiquated or stale, or at least well known by every one. Therefore I shall abstain from the useless display of cheap erudition, and shall apply myself solely to the most recent results of scientific investigation.

The most certain manifestations of animal life are those of sensibility and motion, cither of the whole body or of its various parts. It is uselcss to enter into minute particulars in order to prove that the word sensibility, like all other abstract terms, is merely a name by which we understand a class of phenomena whose cause is unknown. Hence the abstract expression has come to denote the cause itself, and by conventional agreement we say that sensibility causes the phenomena of sensation. It is sensation only that really exists, for that is a change that we have experienced. Analogy leads us to conjecturc, according to certain indications, that similar changes occur in all other animals, and, therefore, that there is a property common in all these beings, which we call sensibility. We see that in many cases these indications become so transient that we are entitled to attribute their apparent absence to the imperfection of our mcans of observation.

With respect to motion, since it manifests itself objectively, and this its manifcstation is always induccd directly or indirectly by external causes, the distinction betwcen vegetable and animal motion has been suggested to our minds, not by the action itsclf, but rather by the quality of those bcings hitherto regarded as plants or animals on othcr grounds. And if we wish to find clements of distinction in the phenomenon itself, we look for them in the conncction between external stimulants and the motion produced, as also in the instruments by which it is cffected. We endeavour to prove that in
plants all movements are determined by the plysical or chemical influence of cxternal agents. In animals, on the other hand, the laws of inorganic nature are not sufficient to explain the connection (otherwise more mediate and remote) between the external impression and the organic movement. Which distinction, besides being relative to the degree of our knowledge, has, moreover, a value limited entirely to the coarser phenomena, not being applicable to those of nutrition and growth; for all these are accomplished by determinate movements that cannot be explained by merely physical and chemical laws. "If nature," exclaims Humboldt, "had endowed us with microscopic powers of sight, and if the integuments of plants were transparent, the vegetable kingdom would by $n 0$ means present that aspect of immobility and repose under which it appears to our senses." And the same may be said of the instruments; for the muscles of higher animals very soon disappear when we examine more simple or smaller animals, nor certainly can we deny animality to those minute Iufusoria in which we are unable to distinguish either museles or any other distinct organs.

Having then ascertained the insufficiency of these two principal characters, it became necessary to look for others, not in the simple manifestations of a supposed subjective property, but in the objective qualities themselves. And these not in their external form, for we know not the limits of its varicty, but in the internal organisation, in the state of the more remote organic elements, in their origin and formation, or in the chemical matcrials of which they are constituted. This difficult inquiry is assisted by rocent discoveries, through which science is now put in possession of a most important truth,--that within the superior organic type, as well in the vegetable as in the animal kingdom, there is included, so to speak, in a summary manner, the history of the lower, which present in a permanent form their various intermediate states: that the same histological and
morphologieal faets which appear manifest in the morc simple organisms, are repeated in the more complicated; that the primitive organic structure is very similar in the two kingdoms ; in short, that in the first instance every plant, every animal, and every tissue in the onc or the other, proceeds solely from cells. And since the primitive state, whieh in superior beings is only transitory, remains permanent in the inferior, we have thus, as well in plants as in auimals, very simple beings, reduced indeed to the simplicity of a single ecll. We do not here inquire whether we have viscera, systcms, tissues, on the one hand, or roots, leaves, flowers, or even fronds or spores, on the other; the difference we are endeavouring to determine is in the primitive cell, that cell which represents the ovum or the spore as transitory beings, or the Protococcus and the Gregarina as permanent beings. 'Ihe field is open, and its boundaries are well defined. The vegetable cell on one part, and the animal eell on the other, but both alike in their first origin, in their formation, in every successive change.

If a dangerous rock prosent itself here, and if we camnot stcer entirely clear of it, we ought at least to point it out in order to prevent shipwreck. The means by which we endeavour to augment the power of our senscs have a limit. The mieroscope reveals the presence of a eorpuscle only the 100,000 th of a millimetre in size ; yet, since this eorpuscle may be large in comparison with those whieh entirely elude our vision, can we ever' boast that we are able to pereeive the internal structure even of larger bodies than this? Henee there is always great danger of believing that to be simple whieh in reality only seems to be so, and which the wonderful artifiee of organisation may conceal from our cyes by its transparcney, or by the compaet nature of its parts. Since the impossibility of penetrating deeper into structure is inhcrent in the means we resort to for the purpose, we may still avail ourselves of comparison as a guide, deducing nothing from obscrvation beyond what is com-
parative. But the greater peril lies in the very nature of the subjeet ; beeause two bodies, very different in degree of organie simplieity, may appear very similar to each other in our eyes, though armed with great magnifying powers. And sinee we are now strictly endeavouring to diseover the eharaeters of an element, whieh in respeet to us is more simple than any other, it is to be feared that in some eases we may take some more eomplex thing for a cell.

Every organie being, if observed at the first. instant of its appearance, presents itself as a simple eell. Whenever we have a cell before our eyes, this eell is either the rudiment of an ulterior organism, or it is eapable of existing byitself and remaining permanently in the same condition, or it is an elementary part of some organie tissue from which it has been separated. Everything anterior to the appcarance of the eell, eonsidered in its general eondition, may, in the aetual state of our knowledge, be eonsidered as still meertain, or not fully demonstrated ; and therefore it is that we take our starting point from the already beatiful and well-formed cell, beeause it is always identieal in respeet to its principal characters. Its external coating solid, quite continuous, transparent, without any indieation of partieular structure, viz,, without a heterogeneous disposition of moleeules. The eontained substance liqnid, solid or gascous, different from what remains outside the eell. Nueleus adhering to the inner surface, or detached within the eavity. Nueleolus within the muclens, distinct by a different refraction of light or by eolour, or by a different appearance under ehemieal reagents. Another general faet, common to all living eells, is an ineessant mutual interehange of materials between the fluid within and that external to the eell, through the solid tegument of the eell itself eausing perpetual variations in the quantity and quality of the former.

So far the conditions are eommon to the two organie kingdoms. We will now compare together such
elementary or primordial cells taken from beings respecting whose animal or vegetable nature there can be no doubt. If both these be subjected to the action of chemical reagents, they manifest different results; hence we are led to conclude that there exists a difference in their chemical composition.

It is useless to insist upon this mode of chemical reasoning; it may suffice here to quote the results of chemical researches. The nucleus is composed of a quarternary azotised substance (O. H. C. A.) ; this applies equally to an animal and a vegetable cell. The solid tegument, again, of the animal cell is always a combination of proteine with water, $i . e$. a quaternary azotised substance also. (C. $.^{40} \mathrm{H} .{ }^{62} \mathrm{O} .{ }^{12} \mathrm{~A} .{ }^{5}$) ; whilst that of the vegetable cell always consists of an unazotised ternary substance, isomeric with starch ($\mathrm{C} .{ }^{24} \mathrm{H} .{ }^{20} \mathrm{O} .{ }^{10}$). The contained liquid, also, is always ternary, unazotised in the vegetable cell, quaternary and azotised in the animal. The included solid substances are promiscuously ternary or quaternary ; the former prevailing more in vegetables, the latter in animals; and among the former, chlorophyll (?) starch, and gum are found exclusively in the vegetable cell. Chemical reagents, too, disclose an essential peculiarity in the regetable cell. An extremely fine, thin membranc, granular in structure, of a quaternary azotised composition, like that of the nucleus, lines the inner wall, and hence immediatcly surrounds all the contents of the cell, including the nucleus, with which, in most instances, it is in direct continuity. This fine membrane is so thin, and adheres so elosely to the inner wall, that, in order to perceive it, we must resort to physical or eliemical agents to detach it. It exists in every cell, and precedes the formation of the wall; if it seem to be absent in any case, the reason is that in most instances it soon disappcars.

These are positive facts; and in most instances the experiments by which they are confirmed admit ncither contradiction nor doubt. But in the special case of a
cell respeeting which we have to deeide whether it belong to one kingdom or the other, the ehemieal test is redueed to data so preearious as not to afford the same certainty. If the wall of a cell treated with iodine be, as well as the nueleus, eoloured brown, we may pronounce it to eontain azote, and to be formed of a quaternary material. If, again, treated with sulphurie acid, and subsequently with iodine, it assumes a violet eolour, there ean be no doubt of its being isomeric with starel, since it has been ehanged into that substanee. But if these trials fail or prove uneertain, as very often happens, we must of neeessity suspend our judgment. With respeet to the eontained substance, besides the promisenous elaraeter of some materials already mentioned, some also which are exelusive, as, for instanee, ehlorophyll or starcl, may lead to errors. 'The stomaelis of a Polygastrie Infusorium may be filled with these vegetable substanees, and their transpareney and minute size may eause them to appear very simple.
'The suecessive ehanges in a cell furnish other very important eharaeters to distinguish the two kingdoms, but give rise, at the same time, to new and grave diffienlties. Its extension, the excess of one diameter over the other, the variety of forms it ean assume, are frequent conditions. 'The disappearance and reabsorption of the nueleus oeeur' in every cell at some period of its existenee; but in the eells of highter plants the fine imner membrane or primordial utricle soon disappears. Here is a diffieulty as to distinetion to be overeome. This remains permanent, partieularly in the Algæ, if not in all inferior plants. The enlargement of the wall, whieh in the animal cell takes plaee in a lomogeneous manner, is effeeted in the plant by the deposition on its imer surface of suceessive strata, eontinnously or variously formed into eireles, spiral bands, or other intermediate forms, yet of a ternary substanee, and varying little from that before mentioned ($\mathrm{C} .^{34} \mathrm{H} . .^{24} \mathrm{O} .^{10}$). These are produeed at a mueh later period, and then only in the eells form part of a complieated tissue. Then the
wall is not only enlarged, but suecessively impregnated with various substanees, as lignine ($\mathrm{C} .{ }^{12} \mathrm{H} .{ }^{16} \mathrm{O} .{ }^{8}$), with carbonate of lime, with silica, or, finally, with a quaternary azotised substance, as eonstantly liappens in a portiou of the supcrior wall of the epidermal cells which forms the so-called cuticle, and in the thiek cellular wall of marine Confervæ. Thus the elongation effeeted in animal cells, on their nuelei and on their nucleole passing into distinet fibres, has only a remote eounterpart in the liber cells of plants, in the hypothalline tissue of Lichens, in the so called seminal threads of Charæ and Musci, and in some modifieations of Kützing's amylide eells. But these fibres, so distinct in the superior animals, and in many of the inferior, as in Sponges, for example, entirely elude observation when we examine microseopie beings.

In animals, as well as in plants, new eells are organised in the interior of their predecessors ; but in vegetables the formation of the eells always seems to be endogenous; in animals, on the other hand, it takes place perhaps usually in the extra eellular fluid. The multiplication of vegetable cells is proved to occur in three modes.

1. Many nuclei appear floating together with granules of a different nature. Around each of these collects a minute vesicle, which successively increases, compresse's the whole of then, and, along with them, terminates by filling the maternal ecll, whieh, softening and liquefying, is finally absorbed and disappears.
2. The internal substance of the cell divides into two or four portions, whieh, from their origin, are seen to be surrounded by a distinet primitive fine membrane and each to be furnished with its respcetive nueleus, whilst the primitive nucleus and membrane of the maternal cell disappear. And, eonscquently, only one or two diaphragms divide the eavity among them, and, by detaehing thamselves, constitute the walls of the new cells.
3. In the third mode of cellular multiplication it is
the wall itself of the maternal cell that, by infleeting itself into an annular fold, eonstricts the fine primitive membrane, which in such a ease is persistent, and divides it into two portions, so that on arriving at the centre, it eompletes the diaphragm.

In the animals there have hitherto only been observed with exactness the first two modes of endogenous formation of eells.

If now we deseend from the comparative examination of the vegetable and animal eell, eousidered generally, to the special examination of the more simple organisms among vegetables, excluding all those that can be considered of an ambiguous nature, we shall find almost eountless numbers which present in perfeet clearness, and in their primitive as well as in their permanent state, the most simple condition of a cell and its suceessive ehanges.

Among animals, on the other hand, we certainly have, as a primordial and transitory state, the egg or ovum, especially in the lower animals, whieh are very convenient for observation ; but as representatives of their permanent state reduced to its extreme simplicity, we possess solely the genus Gregarina, of whiel we know six distinct species, all of them Entozoa, all organised as simple cells, but endowed at the same time with contractility and expansibility quite sufficiently to put their animal nature beyond doubt. For, when we consider the more simple Infusoria, the Monades, the Vibriones, and Paramecia, we soon perecive that their simplicity is apparent only. In respeet to these (Monades, \&c.) we have not to take merely aecount of properties inherent in a simple cell, but must rather seek to estimate those which belong to tissues whose organie elements escape our sight. Chemieal reagents exert only a complex action upon the entire matcrial of the body, whence we suppose it to be prineipally eonstituted of an azotised substance. And here I dwell upon the peeuliarities of such Infusoria; for if, on one hand, they denote an organisation far more
complicated than what was formerly ascribed to these, they may, ou the other, claim to represent the ordinary conditions of the elementary cell.

Ehrenberg has described and delineated in many socalled Polygastric Iufusoria, a mouth and anus, many vesicular stomachs, secerning glands representing the masculine sex, and ovaries along with these, together with one or more eyes in very many. The existence of such organs, in certain species, seems to be a fact now placed beyond controversy and beyond doubt. But the criterion by which the organs themselves are judged by analogy to exist in other microscopic beings, are not equally certain. Thus in the Closteria, and generally in all the Desmidieæ, it is clear that Ehrenberg is egregiously mistaken.

He supposed to be a stomach the nucleus, which, in Closteria, as in Zygnemata, is, from the first, suspended in the middle of the cell, and is large, transparent and colourless: but in order that these might systematically be termed Polygastric Infusoria, he applied the names of stomach and spermatic glands promiscuously to grains of starch and gonidia in their different states of development. Chlorophyll and all the rest of their contents he arbitrarily represented as ovaries.

The introduction of a coloured substance, accomplished ouly once in a Closterium, and only into one of the vesicles situated at the two extremities, proves no more than this, that the supposed terminal apcrtures may really be found in certain species at certain periods of their existence. And we know that in vegetable cells, at certain periods, there are formed in cortain parts of the plant, circumscribed and regular apertures through which the contents issue forth. The mere presence of an apcrture, and the introduction of exterior solid substances through this opening, cannot, therefore, be an absolute character of animality; for this, like other characters, is only of value as it is in accordance with the
general conditions of organic beings. Having observed the presence of eycs in Infusoria we forthwith proclaim as eycs every red opaque spot, not merely in Infusorial Animalcules but in all microscopic objects, and the prosence of cyes is adduced as an incontcstable proof of their animal nature. The observations of Kützing, alrcady quotcd, on the metamorphoses of Microglena monalina into Ulothrix zonata, and of Cryptomonas pulvisculus into Stigeoclonium stellare, clcarly show that elcmentary vegetables may not only manifest an apparent movement but may also present a body similar to the so-called cyc in Infusoria, and the last is probably nothing more than a cell-nucleus.

Finally the division into two equal parts, or as we term it the dechuplication, may take place in a being of complex organisation in a mode apparently similar to that by which it is cffccted in a simple cell. Not only in the lower Infusoria, as Monades and Vibriones, but in Polypi also, we sce a transparent arca appear first, and subscquently a line of demarcation in the place where a truc division is effeeted at a later pcriod.

Having premised these gencral considerations, let us examine the Diatomex, availing oursclves of the special and often cited labours of Ehrenberg and Kützing, as well as of scattered obscrvations by other authors, and adding to these the result of our own rescarches.

Every Diatomean is formed of a siliccous shicld and a soft substance therein containcd. According to Kützing, this shield consists of purc silica, or, in some cascs, perhaps, of silica combined with alumina. Nägcli, further, says that the silica is depositcd in the outside of an organic membranc, which he belicves to be of a vegetable nature. In fact, an organic membranc ought to exist, for the silica could not bccome solid cxcept by crystallising or depositing itself on some pre-existing substance. On the other hand, we cannot admit, with Nägcli, that it has becn deposited externally; for in
many genera, and especially in the Aclmanthidia, the siliceons shield is covered with a very delieate dilatable membraue, itself containing siliea, as is proved by its sustaining unchanged the aetion of fire and aeids. Therefore, eomparing this shield with other organie formations, whether animal or vegetable, containing, in like manner, either silica or some other so-called mineral element, wo may reasonably consider it to be formed of an organie tissue pernieated by silica. This permeation may oecur either in the wall of a simple cell, as is seen in the epidermal cells of many plauts, or within minute cells, as in various plants and animals. The aetion of heat or of acid, in these cases, destroying the organie matter and leaving the siliea untouched, does not alter the apparent form of the organ, beeause the skeleton remains unaltcred.
Externally to the shield, Kützing observed a thin stratum, which he denominated cement, which may be made visible either by desieeation or by calcination, and produces either a simple opacity, or lines, points, and maculæ, sometimes irregularly disposed, sometimes regularly. He supposes it to be a silieate of iron or of alumina. Independently of the chemieal materials whieh it may contain, this outside integument seems to me the more important inasmueh as even without resorting to the mcans indieated by Kiitzing, I observe it to be constant, not merely in the species enumerated by him, but also in many others, and I could almost assert that it exists in all. For to me it appears to correspond with that fine mombrane of the Aclinantlictia above mentioned, which, according to Kützing's owı observations, is always visible whenever the two new individuals, (into which evcry Diatomean is resolved in its multiplieation by deduplication) (sdoppiamento) begin to separate. The lines and points supposed to belong to the sulbaeent shield belong very frequently to this kind of covering.
'Ihe shield itself is formed of at least four picces, or valves, united together in a four-sided figure-tetragon.

The mode of union is unknown. But the existence of a kind of artieulation whieh permits an opening and elosing, like the valves of a shell-fish, deseribed by Corda in a speeies of Surivella, has been denied by other observers. Be this as it may, whether spontancous after death, or induced by external means, this separation does take plaee in a regular manner. Now, if we suppose an organic ecll witli a wall permeated by silica, and with a four-sided figure, we ean easily suppose that all the sides will meehanically support cach other. Morcover, we shall mect with numerous faets by a different kind of analogy, viz., that with solid animal tissues belonging cither to the internal skeleton or the external tegument.

The four valves are equal in length, but in many species and genera one pair exceeds the opposite pair in breadth. In order to establish an uniform language it is eonvenient to term those primary valves or surfaces whieh exhibit along the middle the line of division in the act of deduplication, whieh, since it is formed here in a normal manner, runs parallel to the other two surfaees, denominated lateral. Along the primary surfaces we frequently see longitudinal lines, which terminate at the two extremities in small apertures. From their internal surface there project into the cavity linear marks variously formed but always longitudinal; these are termed vitla.

The lateral surfaces have frequently a round aperture, of greater or smaller size, in the centre, and from this a fissure extends towards eael extremity. This fissure either loses itself gradually, or expands into the regular terminal apertures. When this oecurs, each of these surfaees is divided into two distinct valves. On these lateral surfaces we observe the striæ, lines, and transverse costæ, no less admirable for their beautiful appeirlance than for their constant regularity in mumber, dircetion, and proportion. When many individuals are united together to form one eompound being, like a polyp,
for instance, it is always by the lateral surfaces that they touch each other; and since all other characters sometimes fail, we can affix to them the denomination lateral from this principal one.

Besides the vittæ before mentioned, in some genera (Biddulplia, Clemacosphenia, Terpsinoë) there are other solid substances in their internal cavities; these are variously arranged.

These essential peculiarities of the shield may perhaps be legarded as indicating a complex structure, very different, therefore, from what would be prescribed by a simple cellular wall. Ehrenberg deduces from it an argument to compare it with the shell of Mollusca. The Arcellinæ may be cited among the Infusoria. Kützing states, in reply, that among vegetable cells there is found a peculiar conformation of the walls, with prominences, depressions, points, lines, papillæ, and perforations, disposed in a regular manner; he refers to grains of pollen, as an instance. He might have added the more appropriate instance of the Desmidieæ, which would be very closely allied to the Diatomex, if the latter, like the former, could be referred to the vegetable kingdom. If not equal in constancy and regularity, the Desmideæ display a greater degree of complication; and we must remember the different nature of their substance, for in the vegetable cell, when lime or silica predominates, the wall becomes uniform and regular (?) (in the text uniforme ed $i r$ regolare.)

The soft internal substance is brownish yellow, or of a gold colour. It is so described by Kützing. At first it is almost always homogeneous; at a later period it becomes granular, and divides into lobes, or contracts into many spherical borlies, or only into one larger globule. The development, forms, and distribution vary in different groups, but are characteristic in the greater number of these. Usually at first there is formed a continuous membrane, which afterwards splits longitudinally, and at
a later period transversely, forming four lobes, which at a later period divide into minor portions. Hence Kützing infers that this substance corresponds with the gonimic matter of Confervæ and Algæ in general. And he adduces, as a principal argument, that by means of alcohol he can extract from thi Diatomeæ a colouring matter similar to chlorophyll.

There exist, besides, among this substance, minute, colourless, and transparent spherical globules, varying, in the same species, in number, size, and disposition, at different stages, and we may add, according to various conditions, even under the eye of the observer. Kützing describes then as oil globules, because he saw them rum one into another, as well on the inside as the outside of the shield. And he adds that these oil globules, in appearance and position, exactly resemble grains of starch in other Algæ, for which they scem to be substitutes, as happens in the cotyledons of Crucifcre. 'The oil globules of Kützing are regarded by Ehrenberg as glands representing the male sex, and the supposed gonimic substance he thinks belongs entirely to the ovaries.

Finally, among the various bodies which constitute the internal substance of Diatomer, we have to mention some globules (globelli), more or less numerous, which are found disposed cither in transverse arches (archi), round the median aperture of one lateral surface, but in very few species. These Ehrenberg regarded as stomachs, being led to that opinion by sceing them coloured with indigo-an effect, however, that could only be produced by kecping the Diatomex a long time in watcr laden with this colouring matter, and often renewed. Kützing believes this circumstance sufficient to show that they are not to be deemed gastric sacs, but mercly solid corpuscles, which, being situate near an opening, exerted an especial attraction upon the colouring matter. He makes no other remark on their nature.

Whilst unable to confirm or refute the opinions of Ehrenberg, we seem to have observed facts sufficient to disprove those of Kützing. First, besides the three substances or bodies of a different nature described by this author (the gonimic matter, the oil globules, and the presumed stomachs of Ehrenberg), we observe in all species when examined alive, and in many after death, a colourless substance, mostly extended in the form of a membrane, and which seems to stand in continuity with the remaining contents. Indeed Corda observed and figured it, and Ehrenberg, as well as Kützing limself, makes frequent mention of it in his descriptions. I dare not assert anything as to the nature and functions of this fine membrane ; but I do assert, notwithstanding, that in its appearance, in its form, and its behaviour under the action of chemical reagents, it differs from the thin membrane or primordial utricle of the vegctable cell, to which it might be compared.

With respect to the so-called gonimic substance, its identity with the endochrome of the Algæ is not at all proved. Its colour is different, and it is differently coloured by chemical reagents. The resemblance to it in some instances, as in Melosira, in regard to conformation and successive alterations, is only in appearance. In the cndochrome of Algæ the monogonimic substance begins by presenting a granular appearance, then it becomes distinctly granulated, and changes into the polygonimic substance so minutely described by Kützing. But these clanges do not occur in the coloured substance of Diatomer. If we insist upon a parallel, we can only comparc it to the cryptogonomic (crittogonomica) substance of Byssoidia, Callithamnia, Griffithsice, and Polysiphonice. It divides into parts, which successively undergo ulterior division. And in regard to these changes, we may observe that there is an essential distinction between those that occur during life and those that take place after death, the greater number lappening in the latter condition. And, during life, besides the changes
detected on eomparing individuals of the same species, those whieh take place under direct observation merit partieular mention. The lobes described by Kützing are seen to swell, and in some plaees to project and retraet successively.

The identity of this substanee with endochrome is contradieted by Kützing's own experiments, which will be found very exaet, by any one who may repeat them. 'Ihese prove it to be very rieh in nitrogen; it emits ammonia eopiously when decomposed by heat, and this can only procced from a substanec abounding with it, whieh such a decomposition compels to yield it up. Nor, on the contrary, do I belicve that there is any weight in the argument from the solubility of its colouring principle in aleohol, for this is not a property peculiar to chlorophyll or to any substanec of vegetable origin. Finally, I may add that if a portion of chlorophyll could be demonstrated in the interior of Diatomex, this would by 110 means invalidate their animal nature; we might still smppose that they had swallowed it for food.

As to the oil globules, I fully agree with Kützing: that they have this appearanee ; for some of them liquefy, possess a high refractive power, and may be artifieially squcezed out, so to speak. Without any diseussion of the instances in which oily substances are met with in vegetable cells, I argue that they are equally present in the two kingdorns. For, I ask any one habituated to the use of the microscope and to observations on Infusoria, whether the presence of globules of an oily appearanee be not a constant faet, not merely in minute animaleules, but in almost every portion of animal substance? The so-called Sarcode of the French microscopists assumes, in fact, the form of oil globules. I observe, too, that the number and volume of these globules inerease considerably after death, and that during life they are situated upon a longitudinal line extending from one extremity to the other. And I rely upon the observation that there is some motion and suc-
cessive alteration in them, as if these minute globules mixed themselves with larger ones, and separated again from them.

Finally, with reference to the supposed stomachs of Elrenberg, hitherto no fact enables me to satisfy myself. I will only remark that, exactly in the median region of Navicula, corresponding to the large aperture, the membranous production before mentioned may be seen extended across, during life; and this, vanishing after death, leaves in its stead an ample transparent area, of circular figure, and surrounded by those granules that take colour with indigo.
We will now continue the analysis of Kützing's anatomical and physiological observations. All the Diatomer, he says, give out throngh their apertures a mucous substance, which he ealls jelly, to identify it with the vegetable jelly; this either diffuses itself in water, or collects into varions shapes, or contains entire and determinate simple or multiple series of Navieulæ, forming one or more gelatinous tubes, which, detached or connected into bands, assume the form of the Phycoma of true Algr. I confess that I have no arguments to eontrovert the foregoing indication of the origin and formation of the peduncles in Achuantheæ, Gomphonemcex, and Ulnarix; but to any one who has observed these beings, the explanation will not be satisfactory at all. It would be more probable to suppose that this peduncle should represent the original cell within which the siliceous frustules were successively developed. We might again make this supposition in respect to the gelatinous tubes containing the Navieule of Schizonema, Micromega, and other allied genera. But be it a simple product of secretion, or of itself an organic portion, this substance may equally belong to an animal and to a vegetable. Kuitzing declares it to be a gelatinous substance, or isomeric with starch; but adduces no experiment to prove it. The trials I have made seen to indicate a ternary non-azotised composition ; for when burned,
it has not the odour of horn, but of aniseed, and the produets of distillation have rather an aeid than an alkaline reaetion.

Accorling to Kützing, the propagation or multiplication of Diatomeæ takes place in three modes; by development of the gonimie substance, by division, and by formations analogous to seeds or gemmules.

The first is merely suppositious, and therefore requires no further notiee.

Division is always longitudinal, and takes plaee underneath a fine external silieeous membrane, by the formation of eontiguous diaphragm-walls whieh divide the internal cavity. Thus the eontents are longitudinally divided. And this division is complete if the two new individuals detaelh themselves, and so aequire individual liberty. It is imperfect if the fine silieeous persistent membrane, and the seereted gelatinous substanee retain them eolleeted together. This mode of reproduetion, (whieh Brèbisson distinguished by the name of chuplication and deduplication from the reduplieation of Desmidiex,) deserves the most attentive observation. The foregoing exposition presents the faet in its most rude and superficial general appearance, and makes us feel aeutely the want of a more eireumstantial deseription peeuliar to various forms. It is only after having established faets relative at least to the principal generie types, that we can establish, on a scientifie basis, the general idea of multiplieation by duplication. A few observations suffice, however, to prove that this does not oeeur in so simple a manner as we are taught to believe by comparing it with that in vegetable eells.

In the Aclunanthidia, for example, it is deseribed and figured that the prineipal surfaees, whieh oceupy the intermediate spaee between the two superior and the inferior valves, commence by presenting fine transverse lines, and next a strong longitudinal line along the middle; then there appear two new intermediate valves eontiguous to eaeh other, the superior (valve?) of the
new inferior individual, and the inferior one of the superior. My observations convince me that the affair does not proceed with so muel simplicity. I have often seen the two lateral valves separated, and the intcrmediate space thus largely amplified. In other cases there appeared only a new inferior valve complementary to the superior, the inferior individual thus remaining incomplete. Finally, in others, between the complete superior individual and the incomplete inferior valve, there appeared a new individual, with both its valves; but nearer together, smaller, finer, with lines much less distinct. The exact exposition of this and other observations relating to it, will form the subjeet of another Memoir. It may suffice for me to intimate here just enough to demonstrate, that in this phenomenon there is more complieation than that of a simple eellular deduplieation (sdoppiamento.)
'I'he third mode of reproduction discovered by Kützing, and that upon which he founds his principal argnment in support of the vegetable nature of Diatomeæ, is comparable, he says, to the formation of spores or of buds (gemma) in plants. The Melosirce consist of globularshaped individuals united together by means of a fine external siliceous permanent membrane, into a filiform series, in a manner perfectly similar to the articulations of a Conferva. Each of these consists of two principal valves, in form like two sections of a sphere or polyhedron, inserted upon a cylindrical wall, by means of which the two valves or principal surfaces are united together and continuous. Kützing saw some of these presumed articulations to be dilated, as also oceurs in those which contain the spores of Cedogoxia. 'Ihough he observed nothing more, this was sufficient for him to declare as a fact the propagation by spores.

The other fact has reference to those Navieulx which have a simple or multiple sheath, constituted of what he states to be a gclatinous substance consolidated into
the form of phyeoma. In some speeies of Schizonema and Micromeya, he found contained within the same substanec, globular bodies, whieh he saw suceessively enveloped in now phycoma, whilst the ineluded substance, at first mimutcly gramular, grew into so many Naviculx. The obscrvation is valuable, and furnishes a very important subject for study. For, whilst in other eases the difficulty of keeping pace with the successive development of the same individual obliges us to observe comparatively, different individuals, in respect of whieh there may always exist a doubt whether they really belong to the same species, here we have, as it were, a whole brood, consisting of individuals which present, at the same time, all the phases of their dovelopment. And this expression of (covey or) brood is not here used at random ; since no direet argument beyond that from external resemblanee, tends to show that these reproductive bodics are true spores; whilst, in the animal kingdom we find equally mmerous analogies, as well in the ovaries of Polyps and other inferior amimals, as in many Ovipara of superior classes. And in faet the bag of a spider, with the thousands of small eggs that it eontains, secms to me quite as like as the spore of an Alga to the organ of propagation of a Schizonema or a Micromeya.

Finally, in respect to the movements of Diatomer, Kützing's opinion evidently accords with ours; since, after treating at some length on the question of their animal or vegetable nature, he arrives at the singular eonelusion that Diatomex consist of three substances: 1 , one inorganie, constituting the shield; 2 , one organie and vegetable, constituting the internal gonimic substanee, the external envelope, and the peduneles; 3 , one organie and animal, from which are formed the organs of motion. We eannot admit this third opinion, inasmueh as he assigns organs of motion even to the lower vegetables and their spores, similar to those which, aceording to him, partake of something like animal lifc.

Ehrenberg discovered, in some Naviculæ, a distinet foot, similar to that of Gasteropod molluscs, projecting from the median aperture and from the fissure in the inferior valve. In some Surirella, again, he observed extensible and contractile cilia protruding and retracting through numerous perforations in the margin. Certainly such organs are not to be compared with the vibratile cilia recently discovered on the surface of the vegetable beings before mentioned. But (independently of the presence of these organs, which hitherto have only been seen by Ehrenberg and Corda) the motions of Diatomex, as admirably deseribed by Kützing himself, are so different from the motion of Oscillatorieæ, Desmidieæ, Protococcoideæ, and the spores of other Algæ, that they must certainly be referred to a different origin. Careful experiments may exclude all exterior causes, from the mediate impulse of other bodies, from evaporation, chemical and other ageney. There still remains admissible the supposition of currents produced by the continued interchange between the exterior and interior liquid. But, with equal right we may admit the other supposition, that in a being whose nature, for other reasons, we believe to be animal, the movements may be effected by the admirable vital powers through organs which escape our sight by their minuteness. I add that, even in the smallest Naviculæ, observed with high magnifying powers, there is seen, during their motions, an agitation and a kind of sparkling, or, to speak more scientifically, a rapid and indeterminate change in refraction of light at their extremities, precisely in the situation of apertures existing there in the shield. Hence I venture to infer that though we cannot draw an absolute proof in support of the animal nature of these beings from their movements, it is still right to bestow particular attention on these facts.

Resuming what has been hitherto said, and comparing the arguments which seem to indieate the vegetable nature of Diatomere with those whieh favour their animal
nature we are of necessity led to the latter opinion. If we suppose them to be plants, we must admit every frustule, every Navicula, to be a cell. We must suppose this cell with walls penetrated by silica, developed within another cell of a different nature, at least in every case where there is a distinct peduncle or investing tube. In this siliceous wall we must recognise a complication certainly unequallcd in the vegetable kingdom. It would still remain to be proved that the eminently nitrogenous intcrnal substance corresponded with the gonimic substance, and that the oil globules conld take the place of starch. The multiplication would be a simple cellular deduplication (sdoppiamento), but it would rcmain to be proved that it takes place, as in other vegetable cells, either by the formation of two distinct primitive utricles, or by the introflection or constriction of the wall itself. Finally, there would still remain unexplained the external motions and the internal changes, and we must prove Ehrenberg's observations on the exterior organs of motion to be false. But, again, admitting their animal uature, much would remain to be investigated, both in their organic structurc and their vital functions; excepting this, so far as we know, we have only one difficulty to overcome, that of the probably ternary, non-azotised composition of the external gelatinous substance of the peduncles and investing tubes. But as the presence of nitrogen is not a positive character of animal nature, so the absence of it is not a proof of vegetable. And in order that the objection should really have some weighlt, it would be well to demonstrate that this substance is isomeric with starch. For then, supposing all the arguments in favour of the animal nature of Diatomeæ were proved by new and more circumstantial observations, this peculiarity, if it deserve the name of objection, might still be regarded as an important discovery. We should then have in the animal, as well as in the vegetable kingdom, a ternary substance similar to that forming the basis of the vegetable tissue.

I conclude, however, that in the actual state of science, the Diatomer are to be enumerated among animals, but at the same time much remains to be accomplished in order to disclose their intimate organisation and vital phenomena. In the sadness of the reflection we are consoled by the saying of the immortal author of 'Cosmos,' that there is a field open for great discoveries where at present we see only scattered and unconnected facts.

ORGANOGRAPHIC REVIEW

OF TH\&

GENERA OF DIATOME A,

ESTABLISHED BY KÜTZING.

1. Epithema.-Lorica in sectione transversali trapezoidea; strice transversales valida interdum granulata v. moniliformes.

The eharaeteristie trapezoidal figure of the transverse section results from the cireumstance that the two prineipal surfaces are parallel to each other, whilst the lateral ones, again, are more or less eonvergent.

The supcrior surface is convex, the inferior coneave, but usually with a mueh less deeided eurve; for which reason they are not exactly parallel. In some species, again, the inferior surface is plane, and the superior strongly convex, and carried down to the lateral surface, whence the section, instead of being trapezoidal, proves semieireular. Besides, the superior surface, instead of being regularly eontinuous, may present prominent longitudinal costr. At least this is the ease in my Epithemia costata, which oceurs in Dalmatia, parasitic on Biddulplica. (E. major e latere semielliptica apicibus acutis non prominentibus, e facic elliptico elongata, dorso longitudinaliter costata, costis ad latera transverse striatis.) 'Ihis species has the form of a grain of coffee applied by its plane surfaee, and furrowed (solcato) longitudinally along its convex surface. It is $0.043^{\prime \prime \prime}$ long, $0.034^{\prime \prime \prime}$ broad, $0.017^{\prime \prime \prime}$ high. And these longitudinal costre might perhaps indicate (accennare) an association of individuals,
such as we have in the genus Himantidium, inasmuch as the multiplieation by bisection (dimezzamento) occurs precisely in that direetion. In sueh a case we should have both in the genus Epithemia and the Mimantidia, ineomplete division and lateral adhesion of individuals in the family Eunotiex, and the first example of polypariform association through adherence by one of the primary surfaces, in this respect corresponding to the Synedra, with this difference only, that the latter adhere by one extremity. Ehrenberg observed four individuals thus eonnected in the E. Westermanni. The comparison is justified also by this, that in my Epithemia there appears a kind of foot, whieh projeets at the two extremities, with truneated appendages.

In all Epithemice the two prineipal surfaces present, at each extremity, two small apertures, united to similar apertures in the opposite extremity by fine longitudinal lines. The transverse striæ of the lateral surfaees are very evident, and in some speeies (E. ocellata, E. Argus,) terminate on the dorsum in round apertures. They are furnished with eilia, aceording to Corda, in his Navicula ciliata, which to me appears to be an Epithemia rather than a Cocconema, as supposed by Ehrenberg (C.gibbum). The internal substance appears to be uniformly extended at the origin, divided subsequently into two lateral masses; it is brownish-yellow, or green. A series of minute oily drops occupies the median line. Many succies live in fresh water, many in the sea, and some are found in a fossil state. Kützing enumerates twenty-one species, to which we think two others (\mathbb{E}. costata, \boldsymbol{E}. ciliata,) ought to be added.
2. Eunotia.-"Lorica in sectione transversali trapezoiden, stria transversules tenuissimce."

Although the only eharaeter by whieh this genus is distinguishad from the preceding be the fineness of the transverse strix on the latcral surfaees, yet the distinction appears to be justified by the circumstance that the

Eunotice are never found adrate and parasitic, as is constantly the case with the Epithemice. They are all found in fresh water, the greater number are exotic, many rare. When observed laterally, they are frequently seen to be more gibbous or prominent on the dorsum, which proves that the prominences themselves are placed transrersely. Thirty-six species are enumerated by Kützing. It would seem that he ought rather to refer to the Eunotia formica than to the Epithemia gibba, the Eunotia No. 6 (pl. 2, fig. $27 a b$,) of Bailey, which has very well-marked transverse strix; and this uncertainty, were there no other, renders the distinctive characters of the two genera somewhat doubtful.
3. Himantidium.-Lorica in sectione transversali rectangula; stric transversales tenuissima, densissima, individua in fasciam transversaliter at arcte conjuncta.

If we could distinguish the IImantidia from the Eunotia by the incomplete division, from which there result associations or polyparies in the form of a band, as in Odontidia and Frayillaria, there would still remain the character of the entire family, i. e. the difference between the two primary surfaces. And since these associations are not always numerons, as in the three typical species (II. Soleirolii, II. Veneris, II. guyanense), we find it to be justly remarked by Kützing, that this genus is not yet well established, a remark that derives increased value from the fact already stated, that there is a lateral association even in the Epillicmica (Epithemia costata, Men.). This very resemblance, however, attracts attention to another circumstance, viz. the parallelism in the IImantidia of the lateral surfaces, which, in the Epithemia, are essentially convergent. Of the ten known species, four only are European; they are all inlabitants of fresh water.

Of the three genera now cnumerated, Kützing constitutes his family of Eunotiex, which only possess in common the single character of convexity in one and concavity
in the other, of the two prineipal surfaees; a eharaeter which reappears in various genera of stomatie Diatomex. Abstracting this elaraeter, the Himantidia would be referable rather to the family of Fragillariex, with whieh they seem to have a greater affinity.
4. Meridion.-Individua cuneifornia, prismatico-rectangula, in corpuscula flabelliformia vel fascias spirales arcte conjuncta. Stria transversales valida, pervic.

Kützing eompares the Meridiex to the Gomphonemeæ, whieh they really resemble, in the cuneate form of their single frustules, when viewed in front. But Gomphonemex have a median aperture, and interrupted transverse strix, on account of whiel they belong to another order. In the order Astomatiex, the author himself quotes the Odontidia as allied to this genus; but the Synedre appear to me to approaeh it still more nearly; from these the Meridia in like manner rather differ in their euneate form-which is inconstant,-by their ovate obtuse figure at the one and their aeute figure at the other extremity of the lateral surfaees. The observation of M. Zinckem on the vittæ, whose presenee is inconstant, beeomes very important. This fact proves, in my opinion, that there is no foundation in truly natural eharacters for the primary distinetion whieh Kützing establishes between the vittated and the simply striated Diatomer, by whieh so many natural affinities are openly transgressed, and so many forced allianees are effeeted, as we shall soon perccive. In the scanty state of our aetual knowledge respecting the true organisation of these beings, it is impossible to cstablish a natural classifieation of them. In order to deviate from this as little as possiblc, it would be requisite to consider all the charaeters colleetivcly, as we do in all other beings, whether animal or vegetable. And cecry distinction based upon a single character, besides being purcly systcmatic, loses all value as a faeility for classification so soon as exeeptions occur, as in the present instances. Kützing says that at first the interıal
substance entirely lines the inner wall of the shell, it becomes divided afterwards into minute portions, which terminate by concentrating themsclves in distinct globules. I believe that these changes only occur after death. Bailey succeeded in extracting a greenish resinous substance by means of alcohol. Only two well-defined species inhabit the fresh water of all Europe; two others are doubtful.
5. Eumeridion.-Individua cunciformia, prismaticotrapezoidea (?), in flabellum vel fasciam convolulam coalita, lemum stipitata. Stria transversales pervia, valida.

As Kiitzing has only seen dried specimens of the Meridion constrictum of Ralfs, upon which he has constructed this genus, it seems that we may asscrt from the exact description of this author, quoted at length by Hassall, that there is no indication whatever of that gelatinous pedicel like a cushion, upon which Kützing asserts that the frustules are arranged in a fan-slape, as in the Synedice. Perhaps this erroncous impression may be founded on Ralfs' figure and description of the dried specimen, compared with the living oue. Thesc are his graphic words:-"As, however, they are not arranged in a plane, as in Meridion circulare, but stand nearly erect, somewhat like the staves of a tub which is broader above than below, when they arc dry and fall down they necessarily scparate, and gaps are produced in the circular outline. In the dried specimens I find some of the frustules arranged in a circle, which however exhibits the gaps already noticed, whilst others seem to be fasciculated." Therefore there remain only the trapezoidal section from the inclination of the lateral surfaces and the constriction of these near the apex, which characters, though undoubtedly of value to discriminate species, are not sufficient to establish a genus.

The superfluous division of genera, whilst it disguises the trine affinities of objects, and fruitlessly complicates
the study of them, has the additional mischief of exalting, in some degree, the value conventionally attached to characters, and compels us to form a distinct family of every genus. Such is the case with this attempt of Kützing in respect to the last two genera with the name of Meridiona, though they do not really differ from the preceding genus Erunotia, or the following one Fragillaria, except by a slight modification of form. Yet a similar modification does not seem sufficient to distinguish the two genera Meridion and Eumeridion. In general, characters deduced from the form of single individuals, certainly deserve a preference in comparison with those furnished by associations of numerous individuals into polypariform bands; but inasmuch as we do not know the relation between outward figure and internal organisation, the subdivision of families founded only upon this character seems premature, to say the least.

6. Denticula.-Individua libera singularia vel binatim

 conjuncta, a latere primario oblonga l. linearia, secondaria transversim striata l. costata; stria pervia, valida.The morphological character of this geuus is the predominance of the primary surfaces over the secondary, and the continuity of strix crossing these latter. We shall have an opportunity of returning to this particular subject when treating of Surivella. At present it is sufficient to observe, that whilst the first five species described by Kützing, and figured in plate 17 of his work, show the greatest affinity, not merely one to another, but also with the subsequent genus, the two others, D. constricta and D. undulata, display only how vague is the artifice of this system which brings together objects so dissimilar, and separates those which are truly allied. In these two species there is not only wanting the predominance of the primary over the secoudary surfaces, but instead of transverse strix, there arc elevated coste, and in one of them (D. undulala) even vitto are visible, as they are in Surivella solea, to which it hears so gieat a resemblance,
and yet, notwithstanding all this, it is ineluded in the grand division of Diatomea non vittate. The name of any seetion and the eharaeter whence it is derived, ueed not be constant when the seetion itself is founded upon an assemblage of other eharacters, and its true charaeters consequently derived from affinity. But when this charaeter is isolated, it entirely loses all the systematie value it can possibly liave, so soon as it is wanting in eonstancy.
7. Odontidium.-Tndividua quadrangula, a latere secondario transversim striata, lanceolata, in fasciam biconvexam arcte conjuncta.

The Odontidia are merely a filiform series of Denticula. Whilst among the Himantidia there are promiseuously enumerated speeies of which the individuals are eoneatemated, and speeies with individuals merely geminate (II. Arcus), here, on the contrary, two genera are distinguished by this charaeter solely. And the same eharaeter -the euneate form of the frustules-by whieh the genus Meridion is distinguished from Himantidium, is again met with in Odontidium, but inconstantly and irregularly. I do not wish to infer from this that these generie distinetions may not be appropriate, because in the pancity of our knowledge respeeting the intimate organisation of these beings, there is 110 adequate support for this opinion or the contrary; but it seems to me a clear inference that in an organologieal point of view these characters possess little value. 'Then, the number of transverse striæ varies in the same speeies, probably aceording to age. Six speeies inhabit fresh waters, prineipally alpine, one only (O. syriacum) inhabits the sea, onc (O ? glans) is found fossil, and one (Fragillaria grandis, Ehr.) is uncertain, to whieh, as an uneertain species, we may add the Syrinx annulata of Corda, whieh, if the figure ('Alm. Carlsb.,' 1833 , tab. iv, figs. 45,46 , be correet, has the singular character of continuity of the transverse strix even over the primary surfaces.
8. Fraglllaria.-Individua linearia lavissima symmetrice formata, in fascias vel rectas vel curvas, biconvexas, arcte comjuncta.

The singular individuals which constitute the filiform aggregations of Fragillarice, are so like Naviculæ that there is often a doubt whether a particular species should be referred to the Fragillarice or to the genus Diadesmis, in which the filaments are formed of Naviculæ possessing the essential character of a median aperture in the lateral surfaces. In fact, this doubt pervades all the new species enumerated by Ehrenberg and by Kützing, with a note of interrogation, among the Pragillaric. Thus the absence of transverse striæ does not seem a constant character, or at least it seems that it ought not to be considered essential, inasmuch as some of these doubtful species (F.? anceps, F.? ampliceras) are striated. And Bailey describes and figures numerous and evident striæ, even in F. pectinalis, merely observing that "it requires a high magnifying power and skilful management of the light to render these apparent." In this genus, too, as well as in the preceding one, and with a little more regularity, we have frequently a cuneate form of frustule, resembling that of Meridion. There is a highly important fact, in an organographical point of view, presented by the Fragillaria, in the variable length of the filaments as compared with the invariable length of the frustules composing it, a variation probably induced by age. In the paucity of our positive knowledge respecting the successive development of these beings, we must take this fact into consideration. The internal substance presents great variety of distribution, as is shown by Kützing's reducing to F. pectinalis all the specics on which Ehrenberg lad founded his character deduced from this substance. The four species safely refcrred to this genus inhabit fresh waters.

8 (bis). Grammatonema, a genus hitherto ill defined, regarded by the author as intermediate betwecu Fragillaria and Diatoma, and to which Kïtzing, besides the
speeies of Agardh (G. striatula, G. Jurgensii), adds, in his work on Baeillariæ, three marine species of Fragillaria enumerated by Harvey (F. cliatomoides, Grev., IF. aurea, Carm., Fr. Carmichaelii, Grev.), though with respeet to the last, Harvey himself objects to its position. I am mueh more satisfied with the other plan suggested by Harvey, to place it in Striatella, for as the vittre are well marked in this genus, the species seem to belong to it. Kützing himself, in the Phyeologia Germaniea, united the two speeies (striatula and Jurgensii) of Agardh into one eorresponding with the Arthrodesmus striatulus of Ehrenberg, changed the naned Grammonema into Grammatonema, and referred this genus to the Desmidieæ. As to the Frag. diatomoides of Greville, with which I was favoured by Harvey, I think this eonelusion right. It is a true Desmidiean, for it has no siliceous shield. And it is to be obscerved, that how perfeetly socver it may resemble the Frayillarice in form, it wants the longitudinal eanals and terminal perforations of the primary surfaces; and the internal substance is similar to that of the Desmidieæ. But as to the Conferva striatula (E. B.), Sowerby's figure eertainly represents a Diatomean. Wallroth has favoured me with a specimen thus named, eollected by Jürgens, and it proves to be a Grammatophoria. 'I'o the same genus, too, belongs the Diatoma striatulum, supplied by Lenormand, whilst the Tragillaria striatula, whieh I reeeived from the same author, really belongs to the genus Iragillaria, and corresponds perfeetly with the T. virescens of Ralfs. So there remains no small doubt in respeet to this genus, whieh ean only be removed by a eomparison of original speeimens.
9. Diatoma.-Individua (linearia) quadrangula, symmetrice formata, primum in fascias conjuncta, demum. soluta et per isthmum gelineum molle phus minusve distinctum angulis concatenata.

The speeies with striated and perfectly linear frustules (D. vulgare, D. mesodon, D. tenue,) are preeisely similar
to Oclontidia; and those with perfectly smooth frustules (D. pectinale, D. vitreum, D. hyalimu,) to Fragillarice. Therefore there remains no other character to distinguish them exeept the angular eonnection into flexuose chains; this charaeter appears again in other genera (Tabellaria, Grammatophora, Rhabdonema,) of distant sections. We shall leereafter have occasion to resume this subject. We will only observe now, that this condition is always associated with another, that of a peduncle by which the chains are affixed to submerged objeets. Perhaps it happens more frequently and more remarkably than in Odontidia and Fragillarice that we find in Diatoma the euncate form of frustules, and it is surprising to see the inconstancy of the forms which Kützing, with incomparable diligenee, has been able to collect, describe, and figure, referring them to different species. Three species (D. mesoleptum, D. elongatum, D. Eltrenbergii) differ greatly from the others, being contraeted in the centre of the prineipal surfaces, and two of them (D. elongatum, D. Ehrenbergii,) still more because they are incrassato-capitate at the extremities of their lateral surfaces. (In respect to the D. Ehrenbergii, Kützing cites as synonymous my Glcoonema Heuffleri, beeause in the specimen I sent him he saw only the Diatoma, which is parasitic on the Glcoonema, which he did not notice, and so he made me appear to confound a Diatoma with an Hydrurea. In the arbitrary seleetion he makes of some characters from external form to separate genera, families, and orders, we cannot help feeling surprise in finding united in the same genus species which present differenees so marked. The eharacter of flexuose concatenation, independently of organographic condition, (which as we shall see is of little value, reappearing in other groups,) ought to have much less systematie value than those taken from the conditions of form, which may be supposed to have a direct bearing upon internal organisation. For my part I think it would be much more natural to place the smooth specics (D. pectinale,
D. vitreum, D. hyalinum, in the genus Fragillaria; those striated with elliptico-lanceolate lateral surfaces (Diatoma vulgare, D. mesodon, D. tenue, D. mesoleptum,) in Odontidium. There would remain, as distinetly generie, the only two species whieh have capitate extremities on their lateral surfaces, (D. elongatum, D. Elrenbergii.) These two proposed unious would be justified on both sides, for whilst the Odontidia have forms little different from Diatoma, the Diatoma are little different from Fragillaria. But I wish it to be well mederstood, that it is not my object to propose changes in the nomenclature or systematie arrangement of Diatomex. I only intend to institute an organographie examination of the proposed genera and groups. And organographieally we shall probably have more important distinetions than those of form between Diatoma and the Pragillaria; the latter have constantly two apertures at each extremity of the principal surfaees, which seem to be wanting in Diatomice, without adverting to the resemblance between the Diatoma tenue var. dimotum and the very singular Bacillaria.

The character by which the last four genera (Denticula, Odontidium, Tragillaria, Diatoma,) are colleeted together into one family, namely Fragillariex, is the conformity of the two primary surfaces; nor do I know how the genus Meridion is exeluded, even by the minutest charaeters. Kützing, indeed, eites the affinities with Himantidia among Eunotieæ, with Diadesmis among the Naviculeæ, with the various genera of Striatellex and Tabellarice among the Vittate. The relation appears to us rather one of analogy than of affinity, being the polypariform association of many individuals-conditions which associate together almost every form; and by this rule Melosira might be allied to Fragillaria. As to internal substanee, Kuitzing says it is originally uniform in the shield of all Fragillarieæ, then divided into minute particles, mixed with oily globules, or contracted into a spherieal mass.
10. Cyclotella.-Individua singularia vel binatime conjuncta, disciformia; latus primarium distinctum, annuliforme; lutera secondaria plana. (Lorica bivalvis, valvis planis, orbicularibus, annulo interstiali conjunctis.)

With this genus there commences a series of forms which have a type totally different from the preceding. In the former the two primary surfaces are always distinct, whilst in those under consideration they unite in a continuous cylindrical superficies. In the one the lateral surfaces have always one diameter larger than the other, so that they become more or less lengthened; whilst in the other they are flat and circular, or convex and concave, but always segments of a sphere. In the preceding series we have, indeed, among the Odontidia, the Fragillarice, and Diatome, such a convexity of the principal surfaces as is almost round, but the extremities remain always distinct; and in the lateral surfaces the strix or any other processes run transversely without interruption. Here, on the other hand, we have a very evident radiated arrangement. 'This same arrangement is presented in another family (Coscinodisceæ) of another group; and there we shall have occasion to mention it again. In the genus Cyclotella we find species brought together which in fact possess great similitude of external form. But those from fresh water (C. operculata, C. Meneghiniana,) are free from attachment, and surrounded by a gelatinous substance; whilst the marine species (C. scotica, C. ligustica, C. maxima,) are parasitic. But if, again, we observe that the strix or radiating puncta of the former are wanting in the latter, we shall find, in that circumstance, reason to suspect that even in internal organisation, to us entirely unknown, there may be very remarkable differences. Hence the observations of Nägeli, on what he terms a new species of Gallionella, and which certainly ought to be referred to this genus, are very valuable. (See Henfrey's translation of Nägeli's ' Nemoir on Vegetable Cells,' in Ray Socicty's Reports, 1846, T'ab. VI, figs. 1, 2, 3; 'Tab. VII, figs. 27, 28.)

Among Kützing's speeies this could only be referred to C. scotica, to whieh the author assigns a diameter of $\frac{1}{80}$ "' whilst Nägeli says that his species varics from $0.014^{\prime \prime \prime}$ $0.027^{\prime \prime \prime}$; but not being able to decide withont comparing them together, it is better, to avoid confusion, that the supposed Gallionella should be named Cyclotella Nägelii. In this speeies, whieh he cxamined whilst living, Nägeli describes and figures a nueleus of colourless mueus attached to the wall of one of the two lateral surfaees; from this, various colourless mueous threads extend themselves, (sap eurrents, as in the Spirogyree, whieh run along the wall itself, or more rarely into the eavity, one of which, however, constantly gocs across through the axis of the cell, to the central point of the opposite overlying circular surfaec, where it forms a nucleus so soon as there appears a diaphragm dividing the cavity itsclf into two. This happens as woll in individuals that have no siliecous shield, as in those that possess one; for Nägeli believes the shicld to be extcrnal, and referable to an extracellular substanec. A similar appearance of araehoid threads radiating from a centre was seen, too, by Kützing, in Melosirca salina. Globules of chlorophyll, says Nägeli, are distributed in two circles near the obtuse ends of the cylinder, or are disposed in rays round the nuclei of the two eircular surfaccs. It cannot be denied that such obscrvations favour the vegetable nature of this being, but eertainly they cannot destroy the value of many other's that support the opposite opinion. In my Cycl. melosiroides, named by Kützing C. Menegliniana, I obscrve that the deduplieation (scloppiamento) constantly occurs in individuals of smaller diamcter, which on that aecount attain a height proportionally and absolutely greater, that is, a larger breadth of the interstitial ring. The Euganean hills afford a now species to this genus, in their thermal springs. Cyclotella concentrica: C. margine in lateribus secundarus concentrice definito, radiatim striato. Diameter varying from $0.008^{\prime \prime \prime}$ to $0.02^{\prime \prime \prime}$, and the striated margin occupies about half the radius.

Taking also intoaccount the two doubtful species (C.minutulu, C. Rotula), which Kützing justly suspects may be frustules of Melosira, we have thus nine species in this genus.
11. Pyxidicula.-Individna singnlaria vel binatim conjuneta, non coneatenata, libera vel versilia; latus primarium obsoletnm (nullum) latera seeondaria convexa. (Loriea bivalvis, valvis convexis, amulo interstiali destituto.)

It is really surprising that although Agardh, Kützing, Ehrenberg, and Brèbisson, have described and figured the Cymbella or Frnstulia operenlata as the type of this genus, and corresponding perfectly with the foregoing generic character-Kützing himself, without acquainting us with the mistake of others, or his own, should now form the type of the preceding genus from this same species, preserving the name at first proposed, but altering the sense; and at the same time should describe, as a new species of Pyxidicula, the P. oper enlata of Bailey, which seems either identical with that of Ehrenberg, or very similar to it, and to that formerly so described and figured by the authors named above. The fact is, that the specimens of Brèbisson and Lenormand, in my possession, belong to Cyelotella, and not to Pyxidicula. The other species (P. major) described and figured by Bailey and Kiitzing, seems rightly to belong to the tribc of areolated Diatomere. Of the species included in flints (P. globata, P. prisea, we can say nothing organographically, so uncertain is their nature. The P. adriatica is a being equally singular, of which we know nothing in an organographical and physical point of view. The same may be said of Ehrenberg's two genera (Goniothceinm, Rlizosolemia), which Kützing places doubtfully at the end of Pyxidiculce.
12. Ponodiscus.-Individua singularia vel concatenata, stipitata; latus primarinm obsoletum (mullum) latera secondaria convexa. Stipes lateralis. (Lorica bivaluis, stipitata valvis convexis, subliemisphericis.)

The only species (P. jamaicensis) is too incompletely known for anything positive to be inferred.
13. Podosira.-Individua concatenata, distinctissime stipitata, lorica ut in pracedenti genere. Stipes centralis.

The Podosirce are merely coneatenated Pyxidiculce, and this concatcnation results from the persistenee of the fine external membrane within whieh the deduplieation (sdoppiamento) takes place, precisely as in the next genus, in which examples are not wanting of an uniting isthmus and pedunele, by which the Melosiver also sometimes beeome stipitate. To the two species of Kützing (P. hormoides, P. Montagnei, both cxotic, we ean add one from the Adriatic :

Podosira adrialica: P. articulis splucericis, vix depressis. Sig. Stalio found it in Dalmatia, parasitic upon Callilhammion Borreri. The articulations are in transverse diameter, which is the longer $0.046^{\prime \prime \prime}$, in longitudimal diameter $0.04^{\prime \prime \prime}$, or a little more, and frequently the two diameters are equal, and the form perfeetly spherieal. Though not differing from P. hormoides, except in the lesser depression of the articulations, I still consider it different beeanse of the eonstaney of that eharacter. Kützing, to whom I sent it, suspeets it to be the same as in P. hormoides. For my part I hesitated a long time whether I should not refer it to a form of Melosira monoliformis, sinee in the Melosire, even, the interstitial ring is at first absent; but besides that I have found its absenee in very numerous specimens to be absolute, I found nothing that I could refer to the annular channels of the Melosirce. Every artieulation is constituted of two valves, perfectly hemispherical, which scparate on being pressed; and cach pair is contained in a eylindrieal sheath, which embraecs and surrounds the contiguous lalves of the two articulations. This sheath has a rcmarkable firmuess, for when the artieulations are broken or separated, it remains wide open and unaltered in figure. It is crossed transversely by fine strix, cight of whieh are contained in $0.0075^{\prime \prime \prime}$. Slley are formed of as many series of minute points, projecting like papillæ. It
often happens that the two articulations are separated a little from each other, and the external tube is then contracted in the intermediate space, perhaps indicating the origin of the isthmus. I never succeeded in observing more pairs connected together. The stipes is little inferior in length to the diameter of the articulation. Longitudinal folds are always present, which I believe to be six, since there are always four (at least?) on each surface. I have never succeeded in obtaining a sight of that central aperture in the lateral surfaces, from which Kützing says he has seen the stipes to issue both in Podosirce and Melosira, especially the marine species. Finally, I observe that within the articulation there appcars an open space, which is entirely owing to the internal substance, for it is destroyed wholly by fire or acids.
14. Melosira.-Individua concatenata, adnata. Lorica bivalvis, valva cingnlo v. annulo interstitiali tenerrino maxime lyyalino conjuncta.
"* Lysigonium.-Articnlis globosis vel ellipticis, prope utrumque finem carina annuliformi instructis."
"*** Gallionella.-Articulis cylindricis, non carinatis."
The Melosirce in general may be regarded as polypariform associations of Cyclotelle, and the comparisou prevails principally in the second sub-genus. The distinction of the two sub-geuera is also proposed by Hassall (Sphcorophora, Meloseira), but it is to Kützing we are indcbted for establishing it upon the important character of the carina, which occurs only in the first two species (M. salina, M. nummuloides), a character on whose organographic value we cannot decide anything, but which merits some cousideration in a morphological point of view. For that projecting ring bounds the lateral surfaces; whilst in the other species, with sides more or less convex, thise are continuous, as it were, with the primary surfaces. In all the species we may notice the double furrow which forms a ring counceting the body of each individual laterally to the interstitial ring;
this furrow or canal presents apertures disposed in a regular manner. Kützing believes these supposed apertures to be seetions of the canals themselves, that is, portions of them seen in projection. I'his opinion is the only one consistent with the fact, that the filament being cylindrieal, and therefore presenting itself indifferently on every side, these apparent apertures are always seen arranged near the margin. Ehrenberg's assertion that they are more numerous in some speeies, does not seem to be eonfirmed. 'This appearance is still more eomplieated, inasmueh as these fine tubular eanals projeet from the internal surface of the shield, and a slight furrow externally eorresponds with them. This condition is evident in Melosira distans, in which, owing to the greater depth of the furrow, the apparent perforations remain separated from the margin. The interstitial ring presents peeuliarities of which we have no instanee in the preceding genera. Its tenuity and the great variety of its extension are important characters. But here we must add the very important one of the ehanges it undergoes during observation. It is not uneommon to see the two halves of the artieulation separate themselves slowly, and enlarge at the same time with the ring. 'This fact is not decisive in respeet to the great question of the animal nature of these lueings; for it is not subject to a subsequent eontraction, and beeause in plants we have the analogy of Spirogyra, in which, on the rupture of the outer tube, the extremities of the articulation, which were inflected like the finger of a glove, expand themselves as if by elasticity; but many faets controvert this inference. In support of the opposite opinion, is the frequent enlargement of a partieular articulation, in a manner similar to that of the CEclogonia. But Hassall justly observes, "for this endoehrome never beeomes condensed into a distinct organ or sporangium;"... for this reason, the resemblance is redueed to a mere appearance. As to this supposed endoehrome, proofs are certainly wanting that it is an ovary, as Ehrenberg supposes; but they are
also wanting to show that it consists of gum, starch, or chlorophyll, which would be necessary were it a gonimic substance, as advanced by Kützing; and analogy even is wanting, for we do not sec, in any Alga, a similar disposition of the internal substance. The often quoted resemblance to the Confervæ cannot even be deemed apparent; for in no Confervæ are distinct spherules met so regularly, or disposed so symmetrically. During desiccation it happens in the marine species, as in the Podosira already described, that the internal substance adheres to the inner wall in the form of oily globules surrounded by a distinct, transparent margin, and compressed one against another in the form of regular polygons. Ehrenberg also speaks of diaphanous vesicular spaces, which he regards as stomachs. Kützing enumerates, figures and describes nineteen species, marine, freshwater, and fossil, besides the four doubtful ones placed at the end, and the famous ferruginea (M. ochracea, Ralfs,) which he proves not to belong to the class of Diatomex.

We have a new species in the Euganean thermal springs; this is so different from all the others, that it might serve as the type of a separate genus, which, meauwhile, I propose as a subgenus, with the name of Pleurosira; articulis cylindricis non carinatis istlmo laterali angulatim concatenatis. The specific description will be as follows:-Melosira (Pleurosira) thermalis: major, articulis cylindricis solitiariis, isthmo laterali anyulatim concatenatis, disco laterali levissimo. Hab. inter Cladophoras et Lyughyas in thermis Euganeis temp. +30 R.

The diameter varies from $\frac{5}{100}$ to $\frac{8}{100}$ of a millimetre (5 to 8 centomillimetres). The length of the articulations is so variable, that I did not think it proper to mention it in the description. The slortcst scarcely exceed the diameter, but others are twice or thrice as long. In the smaller spocimens the interstitial ring exceeds a little in breadth the two lateral circular bands which form part of the secondary surfaces. A distinct and large circular canal, evidently projecting into the internal cavity, and,
eorresponding to an external furrow, bounds the ring itself on both sides, and is easily diseernible, also, from the diminished thiekness of the wall. Where this ring is most dilated, it presents two fine eireular strix, whieh divide it into three bands, the central one being the marrowest. In the longer artieulations this eentral band is as broad as the others, or broader, and finally there appears a third cireular line, and a corresponding diaphragm, whieh divides it. The wall of the two bands resulting from the division of the central one, grows thieker, and these beeome similar in every respeet to the lateral valves of the two contiguous artieulations. But $n 0$ sooner are the two artieulations eomplete, than they detach themselves from one another, and nothing remains to connect them but a lateral isthmus, in appearanee like a joint (forme apparente de cernicra) (hinge), as in Diatome and Grammatophorce. The internal substanee, in dried specimens, is in the form of spherules, adhering tenaeiously to the internal wall of the secondary sturfaees; and one row only of these spherules adheres also to the interstitial ring by the side of the eanal, in a similar mamer to the teeth of the M. sulcata. Only whilst the two artienlations are being completed, these globules are found in the intermediate space. On one oeeasion I have seen an artieulation inflated as in M. varians. The isthmus is indistinetly unilateral and alternate.

At first sight of this singular Diatomean, the mind instantly reeurs to the figure of the Odontella ; and this resemblanee is more strongly suggested by the figure given by Bailey of his Gallionella, (pl. 11, fig. 8,) which Kützing refers to Odontella polymorpha, a figure which, except for the eontraetion eorresponding with the eireular canals, coincides perfectly with our speeies. Were it only that Bailey, when comparing his Gallionella with Diatoma auritum, insists upon its eylindrieal form, its want of appendages, and the mode of eomneeting the artieulations by a' "flexible hinge-like ligament," I believe that Bailey might with justice regard his species
as belonging to Gallionella or Melosira, and I propose to name it Melosira (Pleurosira) Baileyi.

The celebrated Kützing, to whom I communicated these remarks, replies, "your Melosira (Pleurosira) thermalis is in no respect different from the Odontella polymorphia. I have compared your specimen with that of Montagne. There are even found the delicate (zarten) points upon the shield, as in the other which I have inadvertently omitted in my figure. Your specimen is certainly an Odontella, although the articulations are cylindrical (teretes), for it is the same also in the O. currita. I think of uniting, in future, the Biddulphiex with the T'ripodisciex."
Although I have had an opportunity of examining fragments only of Montagne's Isthmea polymorpha, adhering to an imperfect specimen of Polysiphonia subtilissima from Cayenne, with which the celebrated author favoured me, I am still positive in treating the mattcr differently. It is admirably figured by Kützing; the articulations are not cylindrical, and though obtusc and slightly prominent, the lateral processes are very evident. Whether this belongs to the same genus as other Odontelle, and whether that genus belongs to the family of Biddulphiex, and to the order Areolatæ, is a question to which we shall return.

Now, resuming all that has refercnce to the family of Melosirex, we shall find, as a character common to them all, the circular figure of the vertical scetion parallel to the lateral surfaces; a character which, as well as the other, of a radiated disposition of the striæ upon the lateral surfaces, we shall find repeated in the family of Coscinodiscex, which, having the shield of a cellular structure, belong to the tribe of Areolatie. Perlaps we may suspect some Melosirce (sulcata, decussata, lirata, to be furnished with the same organic condition, and hence arises a fresh doubt respecting the systematic value that has been ascribed to it.

In general we may also say, that in the Melosirexe the
development of the lateral surfaees prevails over that of the primary ones, whieh we find finally to disappear in certain genera (Pyxidicula, Podosira,) as well as in some species of Melosira (varians, orichalcea), the increased length of the articulations involving the corrcsponding development of the primary surfaees. And it is to be obscrved, that although in this family the primary surfaces differ precisely as much in form as they do in the three preceding ones, yet we find in these the same organic eharacter as in the greater number of the other gencra, viz., the presence of longitudinal furrows or camals. The separation of one lateral surface or valve from the other, with the consequent dilatation of superficies, which the primary surfaees exhibit before the duplieation takes plaee (though verified to some degree in other genera, yet in the Melosire better than elsewhere), presents an mudeniable analogy with the rectuplication of Desmidice, which Brèbisson distinguishes from the de(dup) ication of Diatomex. The particular disposition of the intermal substance, the currents or mucous threads radiating from a centre, the enlargement of some articulations, and the dilatation of the interstitial ring, are isolated faets, which however merit particular attention in the prancity of our knowledge.
15. Campylodiscus.-Individua singularia, disciformia; discus curvatus vel tortuosus, rotundato-ellipticus radiatus.

Although I have hithcrto only been able to examine that onc speeies of this genus (C. clypeus,) whieh is found in the fossil flour of Santa Fiore, in the kieselguhr of Franzensbad, and constitutes the entire substance of the tripoli of Eger, I think I can add something to what Kützing says of it. He indicates, indecd, in fig. $\overline{5}$, the thickness of the margin, which, in this instance, represents the primary surfaces uniting together into a continuous superficies, but neither in the other figures nor in the description does he notice it any
more. Now, this superficies merits the more consideration because, referring it, as analogy requires, to the primary surfaces, it offers an exception to the general law that the transverse striæ are wanting. For these are very evidently continuous, and therefore may be compared to those upon the lateral or secondary surfaces of Denticula, of Odontidium, and Diatoma. We noticed the same condition before, treating of Odontidium, in the Syrinx armulata of Corda. But there remains that other character of the primary surfaces which seems to have the more organic importance,-the longitudinal division.

I have not seen the intermediate gradations, but I have certainly seen two individuals, one superimposed upon the other, and adhering closely, which might fairly be regarded as procceding from the deduplication (scloppiamento) of one individual. This brings new support to the affinity of this genus with the Melosirce suggested by Kützing. 'That inieroscopical observations are to be interpreted with the severe scrupulosity of critical logic is well known to those who habitually use that valuable instrument; and the prudent caution will be more requisite when we have before us a fact at variance with many others. I ought not, therefore, to suppress a doubt that occurred to me relative to the continuity of these transverse strize over the primary surfaces. In hundreds of individuals I have succeeded in obtaining a front view of the margin, and in secing it crossed by those thick strix which correspond to the radii of the lateral surfaces. These are among the microscopic objects which may be regarded as gigantic, and in respect to which we may banish all suspicion of illusion. But it may be supposed that in all such cascs I have had before me only one of the lateral valves, and that the interstitial ring was wanting. Individuals geminate through an antecedent deduplication might have removed that doubt. But these are rare, and owing to the complication produced by the superposition of fonr similar transparent valves, I could not safely decide whether the strix
were continued through the entire depth of a eylinder which I could only sce obliqucly or in front.

As to the interruption of the radii, which is regarded as a specific character, this is not at all eonstant, and may, perhaps, depend upon the imperfeet state of the specimens. The dotted appearance of the central dise always presents that regularity which Kützing only represented in the fig. 5 before mentioned. Similar puneta may also be seen in the spaces between the radii. The eentral aperture described by Ehrenberg is rightly denied by Kützing. A sort of analogy in form connects this gemus with some species of the next; the only distinetion I believe to be a repetition of that very important eharaeter of transverse strix on the primary surfaces.
16. Surirelia.-Individua singularia navicularia, margine striata; latus secundarium primario majus, linea meclia longitudinali lavi percursum.

Ihis genus is divided into four distinet sections. The first eomprises the flexuose speeies, (S. clypeus, S. Campilodiscus, S. flexuosa, S. elegans, S. spiralis, S. Myodon); and really one is at a loss to find the motive that could induec Kützing to separate these generieally from Campylodisci. In fact there only remains, in my opinion, the above-mentioned claracter of striæ continued over the primary surfaces in Campylocliscus clypous to distinguish that genus. But the doubt already expressed as to this eharaeter, aequires still greater weight when we eompare these Campylodisci with the flexnose Surirella.

In the S. Campylodiscus Kützing represents (Pl. xxviii, fig. 26, $c,(l$,$) the lateral valves detached, which give a$ perfect figure of a Campylodiscus, and their inclined margins vicwed in front $(a, b$,$) resemble transverse strix$ on the primary surfaces.

The specics (S. didyma, S. solea, S. regula, S. multifasciata, S. thermalis,) narrower in the centre than at the extremities of their lateral surfaces (medio plermaque constricte) are, in the opinion of Kützing himself, so
allied to the Synedre, that there remains no character to distinguish them except that they are free, whilst the latter are parasitic and affixed.

I confess that I cannot comprehend by what motive Kützing divides the numerous species that follow into two sections, (oblongæ, ellipticæ et ovatæ.) Were there a difference, how small soever, but constant, this might have a systematic value as rendering the distinction of species more easy ; but we have only to compare together the two species craticula and bifrons, which figure in the two sections, to convince ourselves that the distinction proposed is not based on a constant character. And it causes real surprise to find entmerated in the second of these sections a species (S. angusta), which it is truc has not the median contraction, but, from similitude of form, would by any one be supposed to belong to the section preceding, which we say is allied to the Synedree, and in which section we have the S. regula and S. multifasciata both equally wanting in that character. Comprising, then, in a single group, both these sections, we assert that here exists that important character of the secondary surfaces exceeding the primary, which, as before stated, forms the contrast with the Denticula. But cven among the latter there is not wanting an instance of the opposite condition (D. undulata.) The new Surirella Jenneri, of Hassall, as well as Denticula constricta, has the primary surfaces perfectly equal in dimension and form to the secondary. After all I believe that affiuities and distinctions are rather to be sought in internal organisation than in external form, the latter having no organographical valuc except as an indication of the former. With regard to structure, though we are still far from having sufficient data whercon to establish any principle of classification, yct we find in Surirella, more, perhaps, than in any other genus of Diatomere, a multiplicity of organs and a complex organisation. The S. striatula, of which 'Turpin and Corda have given figures of little accuracy and in a great degree imaginary, supplied to Ehrenberg
materials for numcrous and valuable observations. It would appear that Kützing, anxious to establish the vegetable nature of Diatomeæ, designedly passed over this argument, and sought to distract attention by creating new species out of the various forms assumed by S. striatula at successive periods of age and degrees of development. Such we may suspect to be his S. Pala and S. ovata, as well as the S. ovalis of Brèbisson, who, as carly as 1835, and not in 1838, had made public his S. biscriata, a name, therefore, which ought to be retained in preference to the later one (S. bifrons) of Ehrenberg. Bailey, too, noted the quick and lively movements of S. striatula, and I had frequent opportunities of observing it in our Eugancan warm springs. I could eompare together living individuals, anong which there occurs an indescribable complication of internal structure, and dead skeletons, such as are represented by Kützing. Nor can I omit here the S. yemma, in which Ehrenberg discovered numerous extensible and contractile cirrhi which appeared to serve as organs of motion. It appears that Kützing had secn something similar in S. solea, (Pl. iii, fig. 61, 2a.) And in regard to S. gemma we must remember the lateral openings from which, according to Ehrenberg these cirhi are protruded; openings which it would secm must exist also in S. fastuosu, and which remind us, also, of those before mentioned in some species of IEpithemia, as the eirrhi remind us of the cilia of E. ciliala (Navicula) of Corda. It appears to me that it is now with Diatomere as it was with Mollusea down to the time of Cuvier, and that anatomy has to effect the same bencficial revolution in their natural elassification, which it produced in the system and nomenclature of Conchylia.

Kützing finally aseribes to the same genns Surirella, as the last scetion or sub-genus (Podocystis), that species which I found to be so common in our sea, and which he therefore names adriatica; this association is truly singular, for whilst we see that the second sections are
merely distinguished from Synedra because they arc not affixed, we find the Podocystida stipitate and affixed. Yet do I intend to maintain that it is not allied to the other Surivella. I only notice how vacillating are the principles of the proposed classification. The Podosphenia of Hassall, excluding the synonyms, seems to belong to this sub-genus.
17. Bacillaria.-Individua bacilliformia prismaticorectangula, linearia, primum in seriem rectam tabulatam transversim conjuncta, dein in series obliquas dimota.

The singular appearances assumed by the only species of this genus (B. paradoxa) and the liveliness of its motions have long been celebrated (Müllcr). The principal organographical character that distinguishes it from the Fragillarice is the same that allies it to a different group of the family, viz., the interruption of the transverse striæ in the median linc of the secondary surfaces, to which is added the parallelism of the primary surfaces. Hassall overlooked the former of these characters in the figure he gave of this species. The physiological character of mobility of the frustules, and the symmetrical disposition which they assume, becomes the more important, inasmuch as they do not recur in any other Diatomex ; and therefore we bclieve that they merit this particular mention.
18. Synedra.-Individua bacillaria, prismatico-rectanyula, demum uno vel altero fine adnata: latus secundarium primario aquale, vel angustius, linea lavissima media longiludinali percursum.

* Scaplularia.-Minuta, rarissime adnata, lavissima; (non transversim striatce.)

The cleven specics enumerated in this sub-genus are only classed together by negative characters, viz., the want of the characters of other genera more or less allied. In gencral it is only required that they should have their secondary surfaces marked with trausverse strie, cither
continued or interrupted, to be placed among the Denticula or the Surivelle. In one (S. quadrangula) we have the character of Denticulce, the excess of the primary surface over the secondary; in othcrs (S. virginalis, S. constricta,) we have the median contraction of the primary surfaces characteristic of the second section of Surivelle. Thus, indced, all these speeies only want the central aperture to bclong to the Navicula or Achnanthidia (S. Biasollettiana). Certainly we cannot say that the prescnce or absence of these characters is of little importance; we have only to remark that with the highest powers of the mieroscope it is often impossible to deeide with certainty whether they have the tramsverse strixe and the median aperture or not.
** Echinaria: lavissima, demum affixa et plerumque radiatim agyregata.

I'he seventecn species contained in this scction do not differ materially from those in the former, except in being affixecl. Many of them arc attcnuated at the extremities of their primary surfaecs; but those destitute of that charactcr (S. amplhicephala, S. tenuissima, S. tenuis,) have great analogy in form with the Ulnaria. We have also speeies in this section that are eurved in their secondary surfaees (S. curvula, S. Arcus,) and in their primary ones, (S. lunaris, S. bilunaris,) which resemble the Funotice and Achnantlidia. The S. amplicepphala is distinguished from all by its dilated extremities.
*** Ulnaria: affica, fabellatim disrupta, in latere secundario, excepto spatio medio longitudinali lavi, transversim striata.

Although the twenty-four speeies of this section have nothing in common but the general character of all the Synedree (their bacillary form and the absence of a median aperture), still we find enumerated among them speeies that are unattached, (armoricana, sigmoidea, vermicularis,) and even destitute of the characteristic strixe (vermicularis); and this becanse the spirit of system(spirito
systematico) has not gone the length of separating them from the other speeies with whieh in all other respeets they have superior affinity. And as to the transverse strix, this character of their interruption at the median line, whieh is not only stated in the definition of the section and of the genus, but is even taken for the basis of elassification in the primary division of Diatomece non vittatce astomatica, clearly fails in very many speeies, (premorsa, aequalis, mesolepta, Ulna, danica, splendens, armoricana, sigmoidea, scalaris,) in which these strix are continuous, as in Denticula. The D. oblonga may be compared with the above-named species. And it is also to be remarked, that though the transverse strix are eontinuous in thesc species, as Kützing has aecuratcly delineated them, still the charaeteristie transparent median line remains visible when the objeet is withdrawn to the remotest extremity of the mieroscope, which proves that there must be a longitudinal furrow traversing all the striæ; and to aseertain its depth it would require that the screw regulating the movement of the stage or of the mieroscope should be micrometric. This slight furrow is also visible in a fragment that aecidentally presents the transverse section of such a Synedra. The type of this seetion is S. Ulna, and many other species as well as this (acuta, oxyrhyncus, amphirhynchus, valens, armoricana, sigmoidea, vermicularis,) have the primary surfaees perfeetly linear; but others, again, have the extremities of these surfaees attenuated (debilis), like the greater part of those of the preceding seetion; others only rotundate, (premorsa, spectabilis, scalaris;) in reverse of thesc many are contracted in the middle, and cuneatc and truncate at the extremities, (lanccolata, mesolepta, aequalis, vitrea, danica, splendens, biceps, capitata.) Among the latter we have three, (danica, biceps, capitata, which, in the important character of capitate extremities of the secondary surfaces, resemble the amplicephala of the preceding section. And in the greater number of speeies in this section, as well as in some eomprised in the
former, (notata, Martensiana, Vaucheric,) the form is so similar to that of Navicula as to leave nothing but the want of eentral aperture to distinguish them. Finally, there are not wanting in this section species more or less curved. Those that are eurved in the secondary surfaces (mesolepta, biceps,) might be regarded as similar to Eunotica, but they differ essentially in being attached. Those again which are eurved in the primary surfaees (Ulna, tergestina, armoricana, sigmoidea, vermiculans,) have analogy only with the Aclmanthex. As to the Sigma, Kützing himself avows his suspieion that it may belong to the Raphidogloca.
**** I'abularia; bucillis in stipite brevi, horizontaliter crescente, tabulatim disruptis.

Exelusive of two (S. Gallionii, S. Arcus,) all the species (9) of this seetion want the transverse strix ; and all have that linear form, slightly attenuated at the extremities of the primary surfaees, whieh we have notieed in many species of the preeeding seetion. The distinetive charaeter of this section, the stipes on whieh the frustules grow side by side contiguous to each other, is very important in an organographical point of view. And by this eharaeter the species described and figured by Hassall under the name of S. lunaris would seem to be related to the S. Arcus, if it be really distinet.
***** Grullatoria; stipite elongato sape ramoso, bacillis plerumque geminatis lavibus.

Among the six species of this section, whieh in their aspeet call strongly to mind the family of Liemophorex, two are perfeetly linear on the primary surfaees, (S. crystallina, S. gigantea, and one of them (gigantea) has the extremities of the secondary surfaees eapitate. The rest have the primary surfaees attenuato-truneate at the extremities. All are smooth, wanting strix.
****** Rimaria; bacillis in tabulam connatis, demum modo Diatomatis disruptis et angulis alternis cohcerentibus.

Besides the sectional character which intimates an analogy with Diatoma, the only species that figures here (S. rumpens) differs from all the other Synedra by the tumid and rounded extremities of the primary surfaces.

From this rapid examination of the sections into which the seventy species of Synedra are divided, and to which Kützing adds seven more as uncertain, it appears that very different relations might be established among them; and that if in the greater portion an evident similitude in form would seem to indicate a very distinct genus, in many there appear indications of resemblance to genera and families totally different. We must therefore repeat, in this instance, that in the want of data whereby to judge of the organic importance of character, and in the arbitrary nature of the selection, of necessity resulting, Kützing has achieved a supremely laborious and diligent task, by discriminating, describing, figuring with wonderful accuracy, and distributing with some sort (quacunque) of systematic order so immense a number of species. As to the organographical considerations which can be instituted in this genus, they reduce themselves to the single one of length predominating over breadth, and the cminently bacillary form derived from it. Thus Kützing observed the opposite characters of Synedra and Surirella; that the lateral surfaces exceeded in one, the primary surfaces again in the other. But it is not in this that the opposition really exists. For even among the Surirella we have some (medio plerumque constricte) of those which do not cxhibit the boasted prevalence of the latcral surfaces, and which, therefore, we might with equal propriety cnumerate among the Synedra; whilst almost all Synedra of the first section (Scaphularia), and some of the second (Echinaria) want cven the last distinctive character that would remain, -of being affixed. 'I'he surfaces, which in all Synedree are really reduced to the smallest dimensions, are the two which in Surirelle
of the last two sections, (oblonga, ovata, elliptica,) and in the sub-genus Podocystis, still remain very evident, viz., the terminal surfaees. Kützing observes, that in conformity with the flattened form of the Surirella, and the lengthened form of the Synedre, the intermediate spaces are plaeed laterally on the median line of the first, and are aecummlated at the extremities of the seeond. But this accumulation never oecurs until after death. Whilst they are alive the internal colouring substanee is mostly situated along the median line of the lateral surfaces, or sometimes along the sides of these, and then in four to eight distinet lobes. In some speeies it is disposed in symmetrical and equidistant transverse fasciæ. In the eentral region there is often a transparent spaee, and many other varieties are met with; these are quite sufficient to indieate a complicated organisation, but we do not know how to interpret them rightly. Finally, we ought not to pass over in silence the important organie condition of two very distinct longitudinal lines on eaeh of the primary surfaces, terminated at both extremities in minute perforations; a condition elearly delineated by Kützing in seventeen speeies, and whieh, in the smaller ones, we may suppose to have been obscure, or even unobserved.

Comparing together the four genera (Campylodiscus, Surirella, Bacillaria, Synedru,) whieh constitute the family of Surirelleæ, it is casily pereeived that the last two only deviate from the Pragillarieæ by the eharacter of interrupted striæ ; and the first two deviating sensibly in the succession of species from the eireular shape of the lateral surfaees, or of the transverse section, establish a transition between the Melosireæ, and the group formed of these two genera, along with the Fragillarieæ and the Meridieæ. Henee it is impossible to establish an organographical character that shall embraee the entire family and strictly represent its type. For even restrieting the organographical data we possess to the predominance of the vertical surfaces (primary and seeondary), with the
greatest reduction of the terminal ones (inferior and superior), such as we have in the Fragillarier and the Meridieæ, but without the predominanee of the primary over the lateral, as in the former, -what valuc these eharaeters have, in what relation they may stand to internal organisation, I do not believe that we can deeide in the actual state of science.

The five families (Eunotica, Meridiea, Frayillarica, Melosirece, Surirellece, united together and arranged in two groups, as they have the striæ continuous (the first three), or interrupted (the last two), constitute the order Astomatica, or those wanting a eharacter that is regarded as essential to the following order.
19. Cocconeis.-Individua singularia elliptica, depressa, latere secundario foraminifero adnata, nunquam stipitata, latere superiori medio longitudinaliter impressosulcato.

The general form of Cocconeis is that of a disk of an ellipsoidal figure, with surfaees more or less exactly parallel, plane, or slightly eurved. It corresponds, thicrefore, to the figure of Campylodiseus and the flexuosc Surirella; for in this genus, as in those, the secondary surfaces prevail so mueh that the primary are reduced to a simple margin. We know these to be the secondary surfaces by the transversc or radiating striæ with which the superior surfaee in many species is marked, and by the central perforation of the inferior surface; and because the division which is effeeted parallel to these corresponds to the marginal fascia which represents the primary surfaces. Contrary to all the genera hitherto examined, it is preciscly by one of these secondary surfaces that the Cocconeis adheres to those filiform algre, on whieh it lives parasitically. Henee their resemblance to the Epithemice is only in appearance. 'Ihe individuals multiplied by duplieation bccome quiekly frce, for it is rare to find them geminate; but they soon adhere parasitically to $\Lambda l g a$, and collect together in great mul-
titudes. Most of the freshwater species are perfectly smooth. It is remarkable that the form of C. Pediculus (C. Kützinga, Breb.) is conico-truncate; this is not noticed by Kützing in his definition, much less in the figure, on which account, before asking for his opinion of my own specimens, I thought he was describing a different species. Hence, in the duplication, the superior individual becomes smaller than the infcrior; and from the same condition it rcsults, that the margin appears bilineate when it is simple, as Kützing figures it, and trilineate as the same Kützing describes it in the specific definition, when it is merely in the course of duplication. The marinc species display on their supcrior surface very elegant transverse granulated strix, which cither extend across the entire breadth without interruption, or radiate either from a median line or a central space. In only a few species the strix are longitudinal, or concentric and waved (flexuose). The ulterior characters by which the thirty-four specics of this most elegant genus are distinguished one from another, are still very slight.

20. Doryphora.- Lorica simplex bivalvis quadrangula

 navicularis non concatenata, apertura in latere secundario mulla; linea suturali media longitudinali; stipitata.The prineipal characters of the family are wanting in the single species of this genus (D. amphiceros.) Fixed at one of its extremities by a stipes, and wanting the central apcrture in the secondary surfaces, it differs from the Surivella only by the continuity of the transverse strix. In respect to the central aperture, Kützing obscrves, that it may cven be wanting in the Navicula themselves, and may be wanting in some individuals though prosent in others of the same species. On a eharacter like this is based the difference of the orders. With more right, and supported by numerous facts, I can assert that there is a continuity of the strix in many Surirella. Hence I regard the Doryphora as allied to these, and particularly to the Podocystida.

Now with regard to the family of Cocconideæ I can only repeat what has been said of the genus Cocconeis, that it presents a new type of organisation, differing from the preceding, summarily, in this, that the temnogenesis is effected transversely in the direction of the body, though vertically in respect to the point of attachment ; in other words, that in these the surfaces becomc superior and inferior, which in the others were lateral.
21. Achnanthidium.-Individua simplicia, singularia vel binata, libera; a latere primario linearia genuflexa.

Admitting it to be proved that in the species of this genus (A. microcephahom, A. delicatulum) there positivcly exists a median aperture in one of the lateral surfaces and not in the other, and that two perforations exist at the extremities of the primary surfaces, as stated in the definition of the order and in that of the family : admiting this, we should still have to decide whether the uncertain relations of these characters to other families, and their inconstancy, will give us any right to ereet a distinct genus on principles so slight and precarious. This is, indeed, a systematic experiment that is not sufficiently established on an organographical basis.

22. Achnanthes.-Individua solitaria vel binata vel

 numerosa in fascias plus minusve elongatas transversaliter conjuncta, stipite laterali adnata.In the want of striæ three species (minutissima, exilis, parvula,) present great analogy of form with the prcceding. In one of these (parvula) therc is wanting the charaetcristic angular bending, for which reason it becomes very similar to Odontidium and Diadesmis. The other ten species (striate) diffcr only by very slight characters from each other. Besides the organic difference between the two sccondary surfaces, the constant median aperture of the inferior or ventral, (Ehrenberg,) and besides the process of duplication, which may be studicd, in all its details, in the Achnanthides better than
in any other Diatomeæ, the stipes truly merits particular consideration. Its constant eollocation proves that the Achnanthides are, like the Surirella, adherent by one extremity, and the insertion of the stipes becomes oblique only beeause the duplieation always takes place on the side of the dorsum ; that is, in other words, from the two individuals which are formed at the expense of the first one, only the one corresponding to the dorsal surface is ultimately separated; and the same thing oecurs with those that follow. As to the internal substanee, Ehrenberg says it is divided into many rounded portions, which in 1 . longipes colleet in the middle, like rays, around the median aperture. In the A. salina (A. brevipes, Ehr.) the same Ehrenberg deseribes this substance as separated, from the first, into four lobes, whieh finally divide and resolve themselves into moveable corpuscles.
23. Cymbosira.-Individua vel solitaria vel binata, stipilata; in series isthmo gelineo concatenato.

The essential character by which the single speeies (C. Agardhii) generally differs from the Achnanthides scems to indieate that in this the duplication happens promiseuously either in the inferior individual or the superior. The series eonsisting of solitary individuals may be considered as originating from the suecessive duplieation of only one superior or dorsal individual. The same may be supposed of the series of geminate individuals alternately conjoined; but when the conjunction is unilateral the supposition is admissible that after the first duplieation is accomplished the second is effected in an inferior individual, and repeated in the inferior one through the successive links of the chain. We may notice that the dimensions vary greatly in different individuals, but are constantly the same through all of one series. The speeimens from Cayenne, parasitic on Polysiphonia subtilissima, (along with Podosyra Monlagnei and Odontella polymorphia,) differ from the

Adriatie speeimens by their larger eurvature and more deeided transverse striæ.

The family of Achnanther is also distinguished from all others by the complieated structure of the shield. 'The primary surfaces, Kützing says, are formed of three pieees, two lateral, transversely striated, and one median traversed by two longitudinal striæ with terminal perforations corresponding to their extremities. Hence every individual will appear to be formed of eight valves. T'o me it appears, on the contrary, that these transversely striated lateral portions ean by no means be distinguished from the secondary surfaces; there being neither angle nor joint to indieate the supposed distinction. I do indeed find that the two halves of each lateral surface are inelined to eaeh other like a roof, and they easily become detaehed one from the other, thus constituting, together with the two primary surfaces, at least in appearance, six valves. The internal fumnel. shaped appendage which aceompanies the central perforation of the inferior valve, is really very remarkable.
24. Cymbella.-Indivictua solitaria vel geminata, libera (nec adnata nec inclusa), curvata incequilatera; latere primario uno (interiori ventrali) angustiore, altero (exteriore, dorsali,) latiore; lateribus secundariis aqualibus (transversim striatis) ; aperturis mediis marginalibus approximatis.

In general form, in the parellelism of the curved primary surfaees, in the inelination of the seeondary surfaces, in the trapezoidal transverse seetion, and in the mode of attachment when parasitie, (C. Pediculus,) the Cymbellce are very similar to the Epithemica. They differ essentially from these by the two perforations placed in the border of the inferior side of the lateral surfaees, and therefore sufficiently near each other to seem united into one when placed obliquely. They have, moreover, a distinet aperture at each extrenity. 'The difficulty of making out these characteristic perforations
in the minuter species renders uncertain the generic arrangement of some among the fifteen species cnumerated by Kützing.
25. Cocconema.-Individua ut in genere pracedenti sed stipitata, stipite ex uno apice cymbellarum crescente.

Without concerning ourselves with the generic value of the character which is wanting in six of the eleven species ascribed to Cocconema, it is most interesting to consider that whilst some Cymbella adhere parasitically to submerged bodies by their ventral surfaces, like Epithemice, the Cocconema, again, adhere with a stipes by one of their extremitics. Are we hence to infer that the adhering side may be either one of the primary surfaces or one of the secondary (Cocconoidex) or finally one of the extremities? Or must we regard adhesion as a primary character in judging of the organographical correspondence of the various surfaces and different types, and make other characters subordinate to it, such as the one derived from the division which sometimes takes place in the dircetion of that surface, sometimes transversely to it? Again, admitting the first case, ought we not, at least, to ascribe to this character a value superior to that of the presence or absence (at least when they are doubtful,) of the central and terminal apertures? Or, finally, that adhesion of the only species of Cymbella which is said to be parasitic (C.pediculus), is it not merely ventral in appearance, as seems sometimes to be the case in cortain Achnanthides?
26. Syncyclia.-Individua cymbelliformia transversim in fascias circulariter in curvas connata, in substantia gelinea molli amorplia nidulantibus.

The genus Syncyclia (S. salpa, S. quarternaria) represents, among the Cymbellex, the genus Eumeridion in the order Astomaticæ, the Epithemia costata in the family of Eunotica. Whenever the lateral surfaces are
inclined to each other, by the different extension of the two primary surfaces, the associated series must be formed circularly, as it is effected in a circular or at least a curved manner in the plane of the associated series, whenever the primary surfaces are cuneate, and the convergence of the lateral surfaces is in the direction of one extremity (Meridion, Odontidium, Diatoma.)
27. Encyonema.-Cymbelle longitudinaliter seriate tubo gelineo simplici tenerrimo molli inclusa.

The gelatinous tube within which the Cymbellæ referred to this genus are included (E. paradoxum, E. prostratum,) might perhaps be compared to the stipes of Cocconema, and thus serve to explain its origin. We must, in that case, suppose the stipes to represent the gelatinous sac within which the Cymbellæ is developed.

In all the family of Cymbelleæ (Cymbella, Cocconema, Syncyclia, Encyonema,) we may repeat what has been said before of the genus Cymbella, since the distinction of genera is based upon characters merely accessory. We may here refer to what Kützing says of the internal substance. This is disposed in two laminæ extended upon the lateral surfaces, which present a median notch (emarginatura) corresponding to the convex side, and are collected together into a very fine transverse membrane.
28. Sphenella.-Individua solitaria, cuncata, libera, nec aflixa, nec stipitata, involuta.

The Sphenella only differ from Naviculce in their cuneate form, perfectly similar to that of Meridion, by which, too, the associations (S. angustata) become flabelliform and quasi circular ; but they differ from Meridion by the central perforation of both secondary surfaces, and by the interruption of the transverse strix of the same surfaccs, (S. glacialis, S. vulgaris.) Hencc there remains a greater similitude to the Naviculce, and the distinctive characters are so slight, that the generic
arrangement of at least two species (S.? parvulca, S.? Lenormandii,) out of the seven remains uncertain.
29. Gomphonema.- Corpuscula silicea a latere primario cuneata, basi affiwi vel stipitata, stipite gelineo.

As Cocconeme from Cymbella, so Gomplionema only differ from Splienella by the stipes; on which account species are now referred to Gomphonema whieh formerly belonged to Splienella (G. olivaceum). And with respect to the whole thirty-three species of Gomplonema, it is still doubtful whether they ought not rather to be placed among the Splenella. Independently, therefore, of the value which the presence of the stipes may have as a generic elaraeter, it is important to consider it in an organographical point of view. Kützing supposes the Gomphonema to be at first free, like Sphenella, and that afterwards they affix themselves by means of the (gelatinous) substance of the stipes, which in his opinion they seerete from the inferior extremity. No direet observation confirms this hypothesis, and it is at least as just to admit the other, that the Splienellce are at first attached, like the Comphonema, and afterwards become free. Ehrenberg says, that the Gomplionema ean become free and again adhere. The circumstance of a tubular cavity through which this stipes runs, aecording to Kützing, and the laceration that is produced in this tube, when in the act of duplication the two new individuals separate from each other, effecting a dichotomy, if by any means it, could be reconeiled with the idea of a simple secretion, certainly agrees better with the supposition that the stipes in Gompluonema, like that of Cocconema, may be compared with the tube of Encyonema, and, like that, capable of its own proper growth, and therefore endued with life. But it remains to be proved that the stipes ean divide itself from above downwards, to produce the dichotomy, as maintained by Kützing. There is little to be remarked on the form of Gomplonema. 'The primary surfaces are coustantly cuneiform-truneate. In one only
(curvatum) they are curved. The sccondary are obovatoacute in the first eleven species; elliptico-lanceolate in four, (dichotomum, affene, intricatum, lanceolatum;) in all the rest they are distinctly capitate or more or less panduriform.
30. Sphenosira.-Individua in filrm complanation anceps rectum arcte conjuncta, a latere secundario apicibus incequalibus; apertura media distincta.

Kützing himself observes, that the single species of this genus (S. catena) belongs rather to the genus Diadesmis of the following family, because, although the apices of the secondary surfaces are unequal, it wants the constant character of all Gomphonemex, the cuneiform primary surfaces; whilst we see represented the associated form of Sphenella angustata.

The Gomphonemeæ, according to Kützing, (Sphenella, Gomplionema, Splienosira,) are related to the Licmophoreæ in form and development. They differ by the absence of the vittre, and the presence of a central perforation in the lateral surfaces. The internal substance is disposed in two laminæ extended over the primary surfaces ; in opposition, therefore, to what takes place in the preceding family of Cymbelleæ. Ehrenberg notices, also, colourless vesicular spaces. We must not omit, that even in Gomphonemeæ the primary surfaces are traversed by the usual two longitudinal strix, terminating, superiorly at least, in distinct apertures.
31. Navicula.-Individua singularia libera, regrlaria, rectanyula, prismatica; apertura media rotında.

In this genus, the richest of all in species, and the type of a family the richest of all in genera, from which some have adopted the name Naviculex rather than that of Diatomex for the cntire class, the constant character is the symmetry of cach pair of surfaces as well as of both cxtremities. We have scen this character, with a few exceptions, in the family of Fragillariex, and still more in the Surirellere. Hence it follows, that in some genera
(Denticula, Synedra,) or in some species (Surirella) of these we must resort to other characters to cstablish the distinction, more especially as the forms are frequently very similar. This essential character-that of the entire family-is the presence of a central aperture in both the secondary surfaces. But this character is wanting in some species of Navicula (Oxypluyllum, vulpina, \&c.) and in one of the subscquent gencra; and Kützing obscrves that it is often very difficult to discover the aperture on account of its minutencss, and that it is absent in some, though evident in others of the same species. Thercfore, without attempting from this to argue in opposition to the organographical importance of the character itself, it is certainly of diminished value systematically considered; and Kützing acted prudently, in doubtful cases, by regarding evident affinities of figure, so as not to scparate similar objects from one another. Kützing divides the large number of species (137) into six groups, according to their shape;-lanceolatce, oblonga l. elliptica, gibba, constricta s. nodose, lunata, sigmoidec. The greater number of species belonging to the first scction (lanceolata) have preciscly the form termed navicular, the primary surfaces lincar, and the sccondary longatoelliptical, with their apices more or less acutc. We have scen above that the first section of Synedra (Scaplutaria) have this same form ; and after the admission of Kützing himsclf and his cxample in respect to one species, it is truly surprising to sec the Scaptularia and Navicula lanceolata gencrically separatcd from each other. Some of the species referred to this first section show a gradual transition to the different forms of the succceding sections. But in all thesc we find species described and figured in Kützing's work so similar to one anothcr, that therc occurs a wcll-grounded suspicion respecting the propricty of the distinction. And here it is proper to observe, that in Diatomcx, more perhaps than in any other class of organised beings, it is difficult to pronounce a certain decision on the valuc of characters. In animals,
as well as in plants, the multiplication by reproduction is accompanied frequently by alterations more or less important in size and external form. When, again, the multiplication is effected by simple division, both the forms and dimensions remain constant. Nor will we here enter upon the difficult question that relates to reproduction; neither do we intend to define in what this differs from simple division, though a division it eertainly is. In the Diatomeæ the distinetion is easy. In thesc a reproduetion certainly takes place, sinee mixed among the larger individuals of every speeies we often see some smaller, some very small, and others of every intermediate size. But their enormous abundance seems to proceed from division (divisione) rather than doubling (dimezzamento). Now, in doubling (dimezzamento), the forms and dimensions (of the secondary surfaces) continue perfectly equal. Hence that wonderful uniformity in myriads of individuals which present themselves to our observation, all of which, perhaps, were derived by suecessive partition from a single one. Hence the natural tendeney that must be felt by every observer to distinguish more speeies when, among these individuals mathematically equal to one another, he sees some rather different in form and dimension; or when he sees other thousands of individuals differing only by slight conditions from the former, but all precisely equal one to another. If, again, he then happen to meet with forms mingled among them, different but in degree, and which suceessive observation proves to belong to the same speeies, he refleets upon the difference that prevails among them, as well in proportion as in dimension, and he easily believes, again, that these differences are really greater than those frequently proposed to distinguish species. Kützing, for example, gives us four figures of Navicula viridula, (Pl. iii, fig. 44; 1, 2, 3, 5, 6: Pl. iv, fig. 10, 15 : Pl. xxx, fig. 37.) These he properly refcers to the same speeies, although the proportion between the breadth and length, the degree of eonvergenec of the sides, and the ventral
prominence, are ccrtainly unequal. If wc eompare the threc figures of Navicula nodosa (Pl. iii, fig. 57; 1, 2, 3,) we shall see in one of these (2) a median cnlargement that is wanting in the others. Certainly we find minor differences when comparing species with speeies. If we look to dimensions, it is only in some species that Kützing observes and figures the two extremes in size, as, for example, in N. amplisbaena, (Pl . iii, fig. 42.) For the rest he contents himsclf with noting the largest size. But Ehrenberg obscrves also the smallest extreme that he mects with, and delincating exaetly the intermediate forms, puts in cvidence the spceifie characters that remain independently of age and degrees of development. 'Ircating of the dimensions of these microscopic beings, I cannot avoid making a few obscrvations. Mohl has discussed the incthods of mierometry in a profound manner, showing the comparative degrec of aceuracy to be attaincd by them. From that inquiry it appears that the camera lucida is the most exact and safest of all; I have found it more convenient than any other. Taking a glass micrometcr (by Plössl) in which a millimetre is divided into 100 parts, I copy the image of it by the camera lueida, repeating the opcration many times to ensure the exactncss of my copy. Though exccuted with an exeellent maehine, the diamond-marks are never perfeetly equidistant, and are always too broad to exelude slight inaecuracics. On this account many trials are required to obtain a sufficient approximation. From this copy I can ascertain with prccision the amplifieation obtaincd, which is always rclative to the vision of the individual. Whenever I wish to detcrmine the size of an object, I copy the image with the same combination of eye-glass and object-glass, with the same camera lucida, at the samc distance; and measuring that upon a graduated scale, I obtain the dimensions sought for by an easy reduction. To abridge and facilitate the inquiry, I construct a decimal seale on a copy of the micrometcr ; upon this I ean draw the divisions, if the magnifying
power do not exceed 600 diameters, and by causing the image from the camera lucida to fall upon it, I lave its measurement immediately taken. I have constructed one of these scales for every combination of my microscope, and thus by a simple application of the camera lucida, I can measure every object without at all changing the conditions of the observation. I dwell upon the method I pursue in my microscopical researches, to prove that I devote to it scrupulous accuracy. The screw micrometer also gives millimillimetres, and by the addition of a nonius even decimillimillimetres; but besides that it is inconvenient to keep it applied to the plate of the stage, and that therc is great loss of time and interruption of the obscrvation in applying it when its use is required, it has always the great inconvenience of waste of trouble. In ten observations with the screw micrometer, we scarcely find two that perfectly agrce. With the camera lucida one only is sufficient. I think it unnecessary to bring arguments against the method of applying a glass micrometer over every object we wish to measure. Still the plan of a micrometer fixed in the eye-glass, and previously corrected by examining another micrometer as the object of observation, posscsses great convenience, though not perhaps scrupulous accuracy. But we have not merely to measure the objects we are about to describe; we must also define that mcasurement. It would seem so simple a thing for all to use the same standard, and there is so much convenicnce in the metrical measure and decimal notation, that it excites real wonder to see how prevalent among men of science is the habit of preferring the duodecimal measurcment peculiar to every country, and expressing that in rulgar, not decimal fractions. The evil would be less were any onc (standard) adopted, constantly used, and defined. But the matter is worse than this. Ehrenberg speaks perpetually of a line, without stating the standard; at the same time he gives its equivalent in metrical admeasurement, and from this it appears that his line is
equal to two millimetres. This line is one peculiar to himself; for the line of English measure, which is the smallest of all, cxcceds two millimetres in measurement. Kützing makes use of a linear measure with the same notation as that used by Ehrenberg,-three small marks, which usually indicate the millimetre, to the right of the cipher. It would appear that lee intends to speak of the same conventional line; at least I arrive at this conclusion from the following comparative table of the extreme length of some species of Navicula, deduced from direct olservation, from the eipher of Ehrenberg and that of Kititzing, on the double supposition of the line being eonventionally equivalent to two millimetres, aud to the line of the Parisian inch $=2.707$ centim., and from Kützing's figures.**

Navicula amphisbena	0.070 millim.
Eharubcrg, 就"	$0 \cdot 100$
Kiitzing, ${ }_{20}^{10}$ Kitzing's figure, 0.021 (1290)	${ }_{0}^{0.076-0.000} 0$
Naviculara cuspilduta	0.070
	0.133
Kiitring,	0.087-0.117
	0.0576
Navicuta appendiculata	0.027
Kiilziug, ${ }^{\text {b }}$	$0 \cdot 037-0.050$
Küzing's figure, $0.0093^{\circ}\left(\begin{array}{l}\text { (19? } \\ \text { ? }\end{array}\right.$	0.022
Navicula viridula	0.047
Kiuzing, ${ }^{\text {lam }}$	0.062-0.084
Kützing's figure, 0.0192 (${ }^{\text {(290 }}$)	0.0457
Nuvicula gracilis	0.054
Kützing, ıl'"	0.076-0.104
Kützing's figure, 0.0207 ((990)	0.04 .9
Navicula major	(1)235
Ehronberg, ${ }^{1 / \prime \prime}$	0.333
Kïtzing, ${ }^{\text {[1/ }}$, ${ }^{\text {a }}$	0.222-0.300
Kutzing's figure, 0.058 ((190)	$0 \cdot 130$
Navicula oblonga	0.135
Ehrenberg, ${ }^{\text {III }}$	$0 \cdot 166$
Kützing, '11"	$0 \cdot 180-0.24 .6$
	0.110

It results from this table that the eiphers of Kützing express, in fractions of a line (equal two millimetres),

[^233]measurements in general a little exaggerated; not so mueh, however, as those of Ehrenberg ; and the figures (in Kützing's plates) are rather below the truth, whieh we may explain on the supposition that for the sake of cconomising space-a bad ceonomy-he has not chosen to figure the larger individuals. I may add, by way of confirmation, the measurement of the striæ whieh mark the shields of every species in eonstant proportion. In the N. viridis, (the viridula of Ehrenberg, not of Kützing, $)$ Ehrenberg states that $13-15$ strix are comprised in $\frac{1}{100}$ of a line, and Kützing 12-14. I find seven of these striæ eonstantly in a centimillimetre, 70 in a deeimillimetre, and then with a power of 686 I always find 0.00098 met. between one stria and another, with the utmost exactness. Having direetly inquired of Kützing limself, he politely told me, in reply, that he made use of a micrometer by Plössl, marked upon glass, in whieh the Paris line is divided into thirty parts, and that he plaeed his object upon this mierometer whenever he wished to measure it. At the same time he favoured me with a copy of his mierometer magnified 100 diameters. Now in this copy every division, said to equal $\frac{1}{30}$ of a line, is 0.00498 met. ; henee such a line would be $=$ 0.00149 met., or something more than half the measure of the line of Vienna, which is 0.002638 nuct. Finally, I cannot quit the subject of dimensions without making another observation. When we examine many individuals of the same species, we find both large and small in the process of deduplieation. And we find many of the same size colleeted together whenever this is the ease. Henee it seems that deduplication may oceur at any age. And it scems to me that the greater the dimensions, the less frequent is this proeess ; and I never saw the largest species doubled. It is a question, when does this process ecase? Is it only the larger individuals, in whieh no division takes plaee, that propagate their speeies by true reproduction? or are some individuals clestined from their earliest origin to multiply by deduplieation and others by reproduction? This
is an inquiry that refors as well to Naviculce as to all the other Diatomex, and we have notieed it alroady when treating of Cyelotella.

The forms of Acrieula of the three following scetions (elliptica, gibba, nodose,) greatly resemble those of the Surirella, differing only by the median aperture. Instances of vittx oecur in N. paradoxa.

The two speeies referred to the section lunata belong to two types cutirely different. The one (N.? genufleaxa) has the two primary surfaces curved, and is a true Achnanthiclea withont a stipes; the other, again (N. lunata), has the sceondary surfaees eurved, and hence has analogy only to those Synedice whieh, exaetly under this point of view, we have compared to the Elenotice.

Thic sigmatella, or sigmoid Navieulce, to the curvature of the sceondiary surfaces whieh we sec in some Synedra, mite the habitual lanecolate form of the Neviculce, in which all the cleven are very like caeh other. The greatest diffcrence is that presented by the primary surfaces, which are cither lanceolate also, or lincar.

Now, considering the Newicula collcetively in an orgrinological view, we find, especially in the larger forms, very important conditions. Along the primary surfaecs rim two lines or small camals, terminating at their extremities in distinet formmina, as we have already found in all the preceding families. And it is aromen these foramina that the valuable observations of Ehrenberg on N. major: (viridis, Ehr., not Kützing) demonstrate the eurrents produeed in the ambient liquids, flowing as if they issued by one extremity and entered by the other. In each of the secondary surfaces are three ample perforations, one in the centre and two at the extremitics; and, projeeting from the lattcr, soft bodics, whieh Ehrenberg supposes analogous to feet, and subscrvient to motion. And it is also in the before-mentioned species that Ehrenberg saw elearly the ingestion of indigo, and indisputable movements in the internal organs "connceted (with the body) by an irritable hyaline jelly, henec often
exhibiting a tremulous motion." Whoever has observed many living Naviculce may yet, even after long study and persevering laborions examination, find himself obliged to confess, as I do confess, inability to deeipher the complex organisation; but he may also declare, eonseientiously, that he has seen, in thesc, numerous phenomena perfeetly analogous to those presented by animals, and to which no vegetable ever presents any similar.
32. Anphipleura.-Individua singularia navicularia prismatica longitudinaliter sulcata, apertura media mulla.

Kützing observes that mere regard to similarity of form eaused this genus to follow the Navicula, though the want of a median aperture cxcludes it from the Naviculeæ. He might have said the same of some Synedre. It is a circumstance worthy of remark, that on aecount of the two projeeting lines of the secondary surfaees, the division cannot take place without a species of reduplication. The one of the three species whieh is sigmoid (A. rigida) is curved on the primary surfaces, and under a double aspeet manifests an analogy (not an affinity) with the Achnanther. Although the eentral perforations are absent, the terminal ones seem to remain in the Amphipleurce.
33. Ceratoneis.-Individua navicularia libera sin. gularia rostrata, prismatica, quadrangula; apertura media distincta, terminalibus mullis.

The rostrum only, Kützing says, distinguishes this genus essentially from Navicula. The first species (C. laminaris) differs but very slightly in form from some Naviculce, (N. cuspictatce, N. rostrata,) but if the terminal apertures bo really absent in this and present in the others, thic organographic diffcrenee is great. Of the other four species, onc is sigmoid, (C). Pasciola,) one contorted and spiral, (C. spiralis,) and two mercly arched, (C. Closterium, C. Arcuss). But in the last the symmetry of the primary surfaces is romarkable, whence there
results a deeided analogy to the Epilhemia, whilst the resemblance to the Achnantheæ, observed by Ehrenberg, is not apparent; and I said to the Epithemice rather than the Cymbellex because neither Ehrenberg nor Kützing take any notice of a median aperture on the lateral surfaces; with this we are not to confound the umbilieus projecting from the ventral surface.
34. Stauroneis.-Indivicha libera, singularia, navicularia; apertura media bransversali.

The numerous species (34.) of this genus, divided into three sections leves, (genuince,) punclate (Stictoncis) striatce (Slauroplera) do not differ from Navicula execpt by the transverse direction of the aperture, a condition on whose organographical valuc we camot pronounce any judgment, not knowing the office of this aperture, nor its relation to internal structure. Still it is right to observe that in many species it does not seem to be the aperture itself that is placed transversely, but rather the depuression, at the bottom of which is found a round perforation, as in Nevicula, and, as in these, there is a sort of funnel stretehing into the cavity, which becomes visible when we look in front of the primary surface.
35. Ampmiproma.-Individua libera, singularia, aperturis leminalibus binis medtis, nee marginalibus.

From the figures of two out of three species, which Kützing deseribes in this genns, it appears to me that we may believe the two terminal apertures constituting the essential character of this genus, to be nothing more than the usual mimute foramina which serve to terminate the two longitudinal lines or canals that traverse the primary surfaces of almost all Naviculce. Nor perhaps are central apertures wanting in the lateral surfaces; but these are seen in profile in the figures referred to. The so-called wings, (alce) or projections, belong, therefore, to the secondary surfaces, and constitute the only distinetive character of the Amphiprore.
36. Amphora.-Indivitua libera, singularia, aperturis medtios binis lateralibus, terminalibus mullis l. obsoletis.
'The Amploora are Cymbellae with primary surfaces equal, and seeondary surfaees symmetrieally convex, instead of plane and inelined. We have yet to learn whether the two median lateral perforations exist on one part only or both. In the first ease the analogy would be complete; in the sceond, cvery Amphora might be " called a double Cymbella. And indeed the two individuals into whieh every Amphora divides itself, by dcduplieation greatly rescmble two Cymbella. Yet perhaps this rescmblanee is only apparent. In the Cymbelle there is one primary surface, the dorsal, whiel forms the eonvexity. Again, in the middle of the Amplorece the convexity is itself referable to that one of the seeondary surfaecs whieh remains. The Cymbella, in subdividing, give origin to two eomplete individuals. The two individuals proeeeding from the division of the Ampliorce are wanting in one of the two lateral eonvexities; their lateral surfaee, of new origin, ought to beeome eonvex, like the other. In the Cymbella there oceurs a simple division or deduplieation; in the Amphore the division or deduplieation is suceceded by a speeies of reduplieation. It results, from this eonformation, that in the Amphorce the navieular figure is only apparently similar to that of the Navicula. 'The one is navieular in the sceondary surfaces, the other in the primary, beeause of the prominenee of the seeondary. The division of Naviculce is parallel to the elliptieal or rhomboidal surfaces; in the Amphore it is vertieal to these (surfaecs). I therefore absolutely exelude the A. atomus from this genus, as it is a Navicula or a Synedra. The doubt raised by Kützing as to the A. clliptica appears a eertainty to me; no ecntral aperture in the primary surfaecs being admissible. On the same motive I assert that if the A. acutinscula do tivly bclong to this genus, the figure 1 (Pl. V, fig. 82) is incorrcct, for it represents a median aperture; and equally so is the thitrd figure (Pl. XX, fig. 1S) of the
A. hyalina, by the same author. In respect to the median lateral perforations, besides the already expressed doubt whether they exist on both the primary surfaces or only on one, it is also to be observed that they are wanting in six, (A. venela, A. aponina, A. coff caformis B. Fischeri, 1. acutiuscula, A. borcalis,) out of the eighteen species assigned by Kützing to this genus.
37. Dindesmis.-Individua navicularia in fascias clongatas (biconvexas) arcta conjuncta; apertura media singulares et leminales lince distincta.

In 1836, Kïtzing published (Dce. xvi, n. 153) the new genus Brachysira: "frons minutissima constitula e frustulis paralleliter et irregulariter coadunatis." Now, in lis Monograph of Diatomex, he makes no mention cither of the genus or the species (B. aponina) which was nothing nore than N. appendiculata. Nay more, there is emmerated among the Naviculex the Brachysira sericuss of Brebisson, and Bailey's fine observation on N. mujor (N. viridis, Ehr.) is suppressed, "that it is not rare to meet with four, sometimes even cight, united laterally." The genus Diadesmis is established, however, in which the Navicule are arranged in rows exactly as in the species just described, only perhaps with more constancy and regularity. Yet the foundation of this genus is justified loy analogy with other families, and by that similarity of genus in the parallel series which perlaps is supremely attractive in systematic classification. But independently of the value of the genus, which I do not controvert, the organic condition of this concatcnation in the Diadesma and Splicnosira scems to furnish important considerations. If the central aperture of the secondary surfaces were really stomatic, serving to the ingestion of aliment, we might suppose that, in respect to the individuals contained in the midst of these fascio, that, unlike the terminal oncs, they took their nutriment mediately. Although such a condition occurs in other classes of animals, yet in our case it is purely
hypothetical. Now in opposition to this hypothesis stands the fact of all the Diatomer destitute of this aperture. Instead of it, we find in almost all of them the presence of two terminal perforations of the primary surfaces, always so situated, even in associations of numerons individuals, that they can perform their functions freely. The minuteness of these apertures would be adapted to the tenuity of the food they were intended to receive, and might, in some degrec, explain why nothing can be discerned as to the nature of this food or the conformation of the digestive organs, whilst in other Infusoria, even of smaller dimensions, the substances received can be clearly distinguished. And although the terminal apertures of the sccondary surfaces may seem to belong to organs of motion, (as Ehrenberg has described, in some of the larger species, and as appears indicated also by the nature and direction of the movements themselves,) still it is a reasonable supposition for any one to believe that the median aperture is subservient rather to the generative function.
33. Frustulia.-Individua navicularia, in substantia yelinea amorplia nidulantia.

The only character that distinguishes this genus from the Navicula is the presence of a mucous envelope. In one of the two species (F. maritima) the Navicule are included in various numbers within a distinct cell. Again, in another, (F. salina) the enveloping mucus is amorphous. By the same character Ehrenberg comprehended also in this genus that N. appendiculata of which Kützing had constructed his genus Brachysira. Organographically, the Frustulice show the transition of the free to the included Naviculer.
39. Berkeleya.- Phycoma gelineume molle basi globosum, ramos filiformes nuviculis dense aggreyatis replelos cmiltens.

In this and the two succeeding gencra (Raphidoylona, Ilomreocladia, there is not increly wanting the primary
character of Navieulex, the central aperture, but even the form of the shields corrcsponds to that of many Synedra of the scetions Scaphularia and Echinaria; hence they scem rather to belong to the family of Surircllex in the preceding order.
40. Raphidoglea.-Plyycoma globosum getincum molle, intus fasciculis navicularum in fila radiantia dispositis farctum.

The principal character of this genus is taken from the amorphous disposition of the gelatinous substance, in which the Naviculx, or rather the Synchre are immersed. Under this point of view the genus BerKeleya is intermediate between the Praphidoglea and the Homoocladia. But it is the characteristic disposition of these Synedre, that whilst they are mixed together in a disorderly manner in the preecding genus, and fascieulated almost in a parallel manner in the following one, in this they are arranged in fissiform fascio, confluent by the pointed extremities. Whether we consider the first or the second of these characters, I doubt whether we can regard them as sufficient to distinguish the three genera. In one of the four species enumerated by Kützing (R. manipulata) the great variety in the size of the Synedrex is remarkable; lic says they vary from $\frac{1}{233}$ cd to $\frac{1}{60}$ th of a line, but with an amplification of 420 diameters he delincates them from 7 to 25 millimetres, corresponding therefore to 0.0166 millim. -0.0595 millim.
41. Honcocladia.-Playcoma filiforme ramosum, ex tubo gelineo intus fasciculis navicularum linearium clongatarum bacillariarium farclo compositum.

In confirmation of what has boen already stated of the diffieultios attending the distinetion of these genera, 1 have subjoined the description of a new Homeooladia, which in external figure bears a striking rescmblance to the Raphidoglece, and in its association of filaments might perhaps be referred to the BerFeleyce.
II. Teloides pumila, parasitica, adnata, filis tenuibus e centro rudiantibus, dichotomis sensim attenuatis; synedris, continue fasciculatis, mectioeribus, e facie linearibus, e latere oblongo ellipticis, obtusis.

Schizonenza helioides, Zanard, in litt. Ad Uloam latissimam legit Dalmatice Sandri. Frons. 3 mill. vix attingens Rivularice adspectum omnino prasefert. Fila ad basim 0.02 mill. vix crassa et, ut in Rivulariis, rotundata. Longitudo Synedrarum 0.039 mill., latitudo 0.0043 mill.

In this genus, too, we may notice the greatest variety of dimensions. Thus, for cxample, Kützing gives the length of the Synedra of II. pumila $\frac{1^{\prime \prime \prime \prime}}{\sqrt{4}}$, which, referred as he states to the Paris line, corresponds to 0.079 millim. But in the figure with an amplification of 420 linear, it only equals 0.016 mct., and therefore corresponds to 0.0353 millim. Now I find the length to vary in my spccimens from 0.045 .7 millim. to 0.078 millim., and therefore not far from the cxtremes above described. This same species also presents in its thick inferior trunk, and in the fascieulato-fusiform disposition of its Synedro, rather more relation to the two preeeding gencra. Kützing refers my Sehizonema ruorum to this genus Iromceooladia; and justly, for it ecrtainly does not belong to the Schizonema. But I think he might just as properly refer it to the Berkleya, on aecount of the thickness of the walls of the mucous threads, and the uniform confusion (affastelmento) of the Syncdræ. As to the dimensions of these last, Kützing says they correspond to those of the Raphidoglaea interrupta; but this accords little with Kützing's figure magnified 420 lincar; this is 0.023 metr., and tharcfore correspouds to 0.054 millim. ; it aeeords much less with the measurcmont indicated ($\frac{1_{25}^{\prime \prime \prime}}{2{ }^{\prime \prime}}$, which is $=0.108$ millim., though the greatest length of these Synedræ in my IL. lubrica is $=0.04$ millim. Of the seven species yet known in this genus, two only (anglica, Murliena,) present marginal strix on the lateral surfaces; this makes them fur more similar to the Syncelice.
42. Schizonema.-Plyjeoma filiforme tenue luxum, ex tubo gelineo (cceloma) ramoso naviculas abbreviatas longitudinaliter seriatas fovente compositum. Spermatia externa simplicia tubo adnata sessilia.

The characteristic differences between this genus and the following onc (Mieromega) assigned by Kützing, correspond with those proposed by Agardh (Conspect. crit. Diatom. 1830), in which, after rejecting the division, previously suggested by Greville, of the two genera Monema and Schizonema, he is induced by observation to admit it in fact, obstinately insisting on rejecting it in name. It is a lamentable thing, and the primary source of the confusion that all deplore in the synonyms of botany and zoology, that a mistaken vanity frequently induces authors to maintain their own errors with pertinacity, and blindly to reject the opinions of others. Greville divides the Schizonemce of Agardh into two, Monema and Schizonema; Agardh maintains that the difference between them rests solely on a different degree of organic development, which it is often difficult, to diseover; therefore he reeasts the two genera into one. Somewhat later Agardh finds certain species in which the character defined by Greville, as distinetive of the genus Sclizonema, is evident. When he discovered his own error he ought to have restored to Greville both the genus Monema, and the species taken from it. But it was too hard a case; so he turned round to establish a new genus (Nicromega), and refer to it the true Sclizzonemce of Greville; thus taking away from that author all the species that he had judiciously clivided into two genera. The scholars blindly follow their master. The same story, changing the names, may be applied to many questions of synonyms. If the two gencera be really distinet, their names onght to be Monema (Selizonema, Ag. and Kütz.) and Selizonema (Micromega, Ag. and Kütz.) ; nor can we adopt the opinion of Ehrenberg, who, disapproving of the clision in the word Monema (Mononema), as if there were no legitimate cxamples,
rejects it as erroneous, and substitutes in its stead a new name (Neunema) applicable to the two genera which he reunitcs. It is doubtful whether the right of priority ought to be assigned to the IIydrolinum of Link, which along with a Monemu, comprised an Alga (Conferva Hermanni), aud thercforc cannot be considered sufficiently definite. The name AIonema, which on account of its elision should be written Monnema, applied to the species constituted of a single tube including the Naviculæ, and placed in comparison with the rest, (Schizonema), referable to the species where the single series of Navicule have a proper tube, and the union of these threads (fili) constitutes the frond, is so much the more exact since the second, Schizonema, both by ctymology and generic character of Agardh himself, as mentioned already, (Systema Algarum, 1824,) denotes this condition in a graphical manner. There is still an important character described by Kützing in reference to the position of the organs which he terms spermatia. These are external in IIonnema (Schizonema), immersed again in the Schizonema (Jicromega), as if intimately allied to the simple or compound structure of the external tubc. Now after the consideration of such characters, the result of an attentive examination is my conviction that some species referred by Kützing to the first of these gencra belong rally to the second; and, for the reasons just stated, these will be all entitled to the name assigued by Kützing, whilst all the other species of Schizonema should become Monnema, and those for which the name Micromega was nselessly created, should bccome Schizonema.

This discordance of opinion as to the arrangement of some species in onc or other of the two genera, which, independently of their names, appear so distinct and so clearly defined, arises from the great difficulty of discerning the parallel tubes, including the particular (singole) serics of Naviculze. In some species the wall of the cxternal tube is clearly distinct, and the Navicule are
confused within; but in some others it seems as if instead of a tube there is a mucous mass in which the Navicule are immersed. Then there remains a doubt whether the serics of these Navicule are included in distinet tubes or in simple eanals hollowed out of the common mucous mass. It may perhaps be suspected that the tubes visible in specimens that have been moistencd, do not really exist during life, and originate in a change that has taken place after deatl. And it is quite certain that the partial tubes waste away sometimes, as well during life as by some alteration happening after death, so that they appear evident in some but not in other parts of the same specinen. The character indieated by kütziing of the so-called spermatia, external in Momneme (S'chizonema, Kütz.), and internal in Schizoneme (Micromega, Kütz.), would therefore assist us very much, were it constant and capable of being verified. But Kiitzing limself only found these spermatia external in a single species (S. Iemue). Therefore there only remains the sole negative character of the absence of partial tulbes, and whencver we succeed in obscrving these, the speecies must undoubtedly be referred to the sneceeding genus. The absence of partial tubes, and consequently confused disposition of the Naviculæ, is evident in the following species.

Monncma quadripunctatum, Grev.

Kützing changed Lyngbyc's specific name (Bangia quadripunctata) as crroneous, and substituted that of Schizonema lenellum; establishing the length of the Naviculx, from lyngbye's original specimens, to be $\frac{1}{115 \prime}$, which, in the Paris line, would cqual 0.0235 millim. But, with an amplifying power of 420 , he represents it no more than 5.5 millim., which is equal to 0.0131 millim. Estimating this line conventionally at 2 millim., $\frac{1}{\text { tis }}$ th of this would be 0.017 millim., and there would be more agreement. But upon an original specimen with the same name he establishes another specics (S. Whlrenbergii)
which he pronounces synonymous with the Naunema Dilluynii of Ehronberg. In this he says the Naviculæ are $\frac{1^{10}}{10}$ long, or 0.0246 millim.; but he represents them 5 millim. with a power of 420 , corresponding therefore to 0.012 millim. Here again there is ground for the same consideration, as to the slight difference we should meet with between the size of the figures and the admeasurement, were the latter understood as expressed conventionally in lines equal to two millimetres. It seems to be so from the figures of Lyngbye and Greville, but not from either of the two species of Kützing. We are led to this supposition by an observation of Harvey, who says, that in the M. quadripunctatum the Navicule are larger than in any other English species, whilst by Kützing's description, and still more by his figures, there would seem to be only two of these in which the Naviculæ are of smaller dimensions. Harvey says, that specimens from Carmichael differ in external appearance from those of Mrs. Griffiths, though agrecing as to internal structure.

I received from Lenormand a spccimen from Calvados, with the name Schizonema quadripunctatum, in which the length of the Naviculæ was $0.024^{\prime \prime \prime}$.

Here it seems right to mention some different species, all belonging to the genus Monnema.

Monnema tenuissimum, Kütz., (Schizonema.)

Having been favoured by Kützing with an authentic specimen of this his spocics, I could with certainty compare it with specimens from Venice sent to me by Kellner. I have ascertained that the length of the Naviculæ $=0.022$ millim. This would agree sufficiently with that indicated by Kützing in the description, where he says it is $\frac{1}{10}$ th of a Paris line, or $=0.0246$ millim. But he figures these Navicule with an amplification of 420, no more than 4.5 millim. which corresponds to 0.0107 millim. Here it seems, then, that the measurement expressed in the description ought really to be understood
in relation to the Paris line, or still better, to the smaller one of Vienna, whilst, on the other hand, the figure would disagree less with the admeasurement interpreted by the eonventional value of 2 millim., although $\frac{1}{110}$ th of sueh a line would be equal to 0.0184 millim.

Monnema tenue, Kütz., (Sehizonema.)

As in the preeeding speeies, I also find in the anthentie speeimen of Kützing; as well as in othors whieh I have examined, that the size of the Navieulæ corresponds to the measure deseribed in the definition in the line of Paris ($\frac{1}{10}=0.027$ millim.) whilst the figure given with an amplifieation of 420 diameters is only 5 millim., and therefore eorresponds to 0.012 millim.

In this species Kützing observed the presenee and development of the spermatia.

Kützing observes that his S. temue does not eorrespond with the S. tenue of Agardh, therefore he ought to have changed the name.

Execpt for the figure of Agardlh there is reason to suspect that it belongs to a trine Schizonema, though published together with Micromega, which eombine a eoriaeeous eonsistence with the essential charaeter of partial tubes ('Ieon. Algar. Europ.,' fase. i, tab. 3.) I find, on the other hand, that the Schizonema frequent in the Lagunes of Veniee, by me denominated S. adriaticum, is refcrable to this specics, and not to the proeeding one, where Kützing would place it, and I persist in regarding it as eorresponding to the definition and description whieh Agardh gives of this his own species.

Under the name of Schizonema comoides, to whieh it ecrtainly does not belong, I received from Lenornand a beautiful speeies allied to the preceding, but in whieh the Navieulx are eonstantly smaller, seareely measuring 0.018 millim. in length. In these, the so-ealled external spermatia are very abundant. This is an important speeies, beeause the Navieulx, being very stipitate, and
many times seriate, it becomes cxtremely difficult to convince one's self that the partial tubes are absent, and the presence of external spermatia is really in accordance with that absence.

From the Lenormand I also received, under the name of Schizonema Grevillci, inapplicable to it, another very beautiful species, with very fine short threads, in which the Naviculæ are not only still shorter (0.017 millim.) but also narrower (0.0045 millim.) and very acute.

Monnema rutilans, Ag., (Schizonema.)

In authentic specimens from Kützing and Jürgens, I find the length of the Naviculæ 0.025 millim., and thicir breadth only 0.004 . Kützing says their length is $\frac{1}{100}$ '" or 0.027 , with the usual contradiction of a much smaller figure. In this the Naviculæ are only 7.7 millim., which, with a power of 420 corresponds to 0.018 .

I have no specimens of the two forms which Kützing considers to be varieties of the preceding, with the names S. parvulum, S. lubricum.

Monnema Hoffmanni, Ag., (Schizonema.)

In a specimen with which I was favourcd by Kützing, I find the Naviculæ 0.03 millim. long, and 0.0064 broad, corresponding to the description of Kützing, and larger than his figure (9.5 millim. $\frac{1}{420}=0.0226$).

I cannot understand why Kützing gives this form as a varicty of the preceding, whilst in external characters, in the dimensions and the shape of the Naviculx, there are distinctive appearances sufficient and comparable to those by which other species are distinguished.

Monnema ectocarpoides, Mgh.

Schizonema viride, Ktz.
The enforcement of the law of priority is, without
offenee to modesty, or culpable eharge of vain glory, as applieable to matters of our own as to those of another. Kützing, in quoting the name given to this species by me, of neeessity eondomns the one proposed by himself, since I had previously established, though I had not published it. He might have spared me one of the two names, but he would not. In the deseription, he gives the size of the Navicula $\frac{1}{100}$ of a Paris line or 0.027 millim. But in the figure, with the same power of 420 cliameters, he delincates the Navieulie 8 and 15 millimetres $\operatorname{long}=$ $0.019-0.038$ millim. On the other hand, I have never found the Naviculx shorter than $0 \cdot 02$, or longer than 0.031 , either in the anthentie speeimen of Kützing, or in the uumerons ones from the Adriatie. 'The breadth is eonstantly a fifth of the length.
'This form, too, is regarded by Kützing' as a variety of the S. rutilans, I know not on what motive.

As to Ehrenberg's synonym (Naunema balticum), quoted by Kützing; that author determines the length of the Naviculec $\frac{1}{72}$ of his eonventional line; equivalent to $\frac{1}{\text { wi }}$ of a millimetre, or 0.0069 millim., he draws it no less than 16 millim., and speaks of transverse striæ, 18 to 20 of which are included in $\frac{1}{5 \sqrt{6}}$ of a line, which, notwithstanding the amplification of 2300 diamcters and upwards, are not to be disecrned in the figure.

Monnema Dillwynii, Grev.

Kützing states the longth of the Navieulæ to be $\frac{1}{25}$ th of a Paris line, or 0.0318 , but he figures the length as 6 millim., with an amplifieation of 420, whieh eorresponds to 0.0142 . In authentie speeimens reecived from Berkeley, and corresponding perfeetly with Kützing's description and figure, I find the length of the Naviculæ 0.022 millim., the breadth of the primary surfaees 0.007 , that of the seeondary 0.005 .

Monnema Lenormandi, Ktz. in litt, (Sehizonema.)

Under the name of Schizonema Dillwynii, Lenormand favoured me with a Momnema from Calvados, diffcring greatly from the preceding. I wrote to Kützing, who replicd that he had already ereated a speeies with the name S. Lenormandi, sending me in confirmation a fragment of his specimen. The Naviculæ are 0.0255 millim. in length, and attain a breadth of 0.04 in the primary surfaces, when they are near the state of duplication.

Monnema sordictum, Kütz., (Sehizonema.)

Kützing establishes the length of the Naviculx $\frac{1}{\text { rom }}$ $\frac{1}{150}$ th of the Paris line, or $0.0270-0.0225$ millim., and moreover refers to this species speeimens from the lagmes of Venice, corresponding in all other characters, the Naviculo being 0.0245 millim. in length, and 0.0064 "in breadth, both on the primary surfaces, whieh are linearirotundate, and on the elliptieo-linear, obtuse secondary. In a specimen with which I was favoured by Kützing, I was not able to see the Navieulæ clearly, but they seemed to me somewhat smaller, not, however, so much so as in this author's figure (o millim. $\frac{1}{420}=0.0119$).

Monnema Grevillei, Harv.

This is one of the most instructive speeies, for the Naviculx are frequently placed transverscly, in such a way as to demonstrate the total absence of partial tubes. It is interesting also from the large size of the Navieuler, which exhibit the proeess of duplication very clearly. In these, too, Kützing saw the central aperture. In the specimen with which I was favoured by Berkeley, under the name of S'. Gircoillei (Alg. Danm.) and S. quadripunctatum, Ag , I find the greatest dimension of the Navicule to be 0.034 millim. in length, and 0.016 in breadth, as well on the primary surfaces, which are a sort of parallelogran with the angles slightly rounded, as on the sccondary, that are broadly elliptico-obtuse. 'This differs little from
the figure given by Kützing, magnified as usual, 420 diameters, which, being 13 millim. long, eorresponds to $0 \cdot 0309$. But the dimensions given in the definition $\left(\frac{1}{96}=\right.$ 0.564 millim.), are much greater.

Monnema subinconspicuum, Mgh.

I found it at Triestc, parasitic upon Ectocarpus arctus, along with other Diatomer.

The threads, or filaments, are scarcely a millimetre long, and are 0.085 broad. The Navieule are 0.02 long, and 0.005 broad, as well on the primary surfaces as on the sccondary.

The simplicity of the filaments liad led me to believe that the species corresponded to Naumena simplex of Bhrenberg, excluding the synonym of S. temue of Agardh. But the dimensions stated in the description ($\frac{1}{20}-\frac{1}{48}$ th of a line, or $0.0052-0.0104$ millim.), and the paucity of the Navicula ineluded in the gigantic figure, scem to contradict that association.

Among the speeies ascribed by Harvey to the genus Monnema (regarded by him as a simple sub-genus), the four following are unknown to me; spadiceum, Grev.; virescens, Harv.; dubium, Harv.; crinoideum, Harv. Three others (implicatum, parasiticum, comoides), belong to the subsequent genus. 'The last (prostratum) is an Encyonema.

Of the remaining species described by Kützing as Schizonema, and, therefore, wanting in partial tubes, I infer from dircet observation of authentie speeimens, that some belong to the following genus; araneosum; trichoceplualum; Smithii; lielmintlosum; scoparium; sirospermum. Of others I belicve the same, from the figures of Kützing, which disclose either partial tubes or so regular a linear arraugement of Navieulæ as is never met with in Monneme; minutum, lumile, floccosum, crispum, plumosum, capitatum, Bryopsis, Arhuscula, hydruroides, mucosum. But the two species lutescens and striolatum, which I do not possess, appear to be true Monnema.

Finally, with respect to Schizonema illyricum, in which

Kützing describes and figures the Navicule as disfigured by desiccation, I ought to state that I have observed such Naviculæ and thought them specifically characteristic of a Sclizonema, which, for this reason, I denominated S. Cercaria. I have ascertained subsequently that the Naviculæ of many species undergo a similar alteration. It takes place more frequently in the Micromege or true Schizonemce of that genus than in Monnema. It appears that sometimes, perhaps in certain physiological or abnormal conditions, the solid substance of the shicld is redissolved. The appendages, too, with which the disfigured Naviculæ seem, in such cases, to be furnished, are due to the partial tube, which closes upon them (vi si addossa), grows thin, and bursts.
43. Micromega.-"Phycoma filiforme ramosum, tubo communi exlerno cinctum, ex naviculis serialis compositum. Series navicularum singulares tubulis internis minoribus propriis (secunduriis) vel fibris tenerrimis curvatis bicrispis cincte. Spermatia immersa, ex dilatatione navicularum oriunda."

From what has previously been stated, it would secmi to be proved that, by the laws of nomenclature, we ought to maintain the name of Schizonema for this genus: 1st. Because Agardh established this genus (Systema, 1824) with a definition indicating an essential generic character which distinguishes it from the preceding, "fila fasciceformia e filis angustioribus coadunatis composita, granula elliplica includentibus, in que iterum secedunt." 2d. Bccause, in the very description succecding the dcfinition, hc insists upon this organic condition "Composita (planta) sunt e pluribus individuis licet filiformibus, iterum includentibus eadem fere corpuscula qua in Trustulia ct Meridione invenimus." And he adds this cxcellent character of the mode of branching, "Ramosa apparent, et ab aucloribus ita describuntur, guod lantum ex fissione filorum orilur." 3d. Of the ten species ascribed in this work, for the first time, and all contemporancously, to
the genus Schizonema, four (Smithii, corymbosum, apiculatum, ramosissimum) really belong to it in the scnse we have assigned; threc, again, belong to the genus Monnema (rutilans, quadripunctatum, Dillwynii) ; two are uncertain (lucustre, Grateloupii) ; and one (micans) must be referred to another genus (Raphidogloa). 4th. The distinction established by Greville is well expressed in the character of the genus Monnema, of which he takes M. quadripanctalmm as a type, establishing, at the same time, as the type of Schiizonemce, the S. Smithii. 5th. When A gardh (1828) discovered the strueture of Micromega, he found that many species, which he had formerly ascribed to the geuns Schizonema, presented the same appearances, and he referred some of them to his new genus in his 'Conspectus criticus' (1830). A greatcr or less rigidity of cartilage is not a sufficient character for the distinction of gencras ; and, in fact, we find that it lends little aid in the determination of species, when employed, as it is by Kützing, in his subdivision of the genus Micromeya into two sections. It varies, morcover, exceedingly in the same species.

In respect to Kützing's definition, we have only to notice the fine erisped fibres which he seems to have secn encircling the scries of Navicula sometimes, instead of the characteristic partial tubes. I have never happened to sec these fibres. In every speeies I have been able to examinc, I always saw, with greater or smaller degrec of difficulty, but always distinctly, the partial tubes. Sometimes, certainly, I have seen these tubes so fine, so transparent, so colourless, that, at first sight, they only secmed to be finc margins. By the aid of some reagent, especially of a solution of iodine more or less concentrated, with or without the addition of sulphuric acid, moderating or intcrrupting its previons or subsequent reaction, I have succecded in elearly perceiving the partial tubes. I camot suppose that the action of these reagents would produce such a coagulation of the surrounding amorphous mucous substance, as to
simulate the tubes thenselves; for the coagulation could not produce regular tubes, and moreover the presenee of these tubcs is always accompanied by a regularly seriated disposition of the Naviculæ. There can only remain the supposition already mentioned, that besides the presence of a single enclosing tube, as in Monnema, and that of partial tubes, eharaeteristic of the Schizonemce, there may be a third condition, that of a continuous mucous substance in which single Naviculæ or the entire series of then may be imbedded. And this third eondition according to the changes induced, and espeeially in eonsequence of desiccation and perhaps of the use of chemical reagents, may simulate either one or both these opposite conditions. Finally, in respeet to the partial tubes, I perceive that frequently, where they remain empty of Naviculæ, they are so contracted and contorted as to appear like notling but the finest threads, which often unite the remaining Naviculæ together by their apiees. And the condition I have before described, when treating of the filiform appendages with which Navieule sometimes appeared to be furnished (v. S. Illyricum,) is the same which is scen also in the figure given by Ehrenberg of his Naunema Agardhii. Therefore, without pronouncing any judgment on the fibres indieated by Kützing, I express merely my own supposition that their apparent presenee may be produced by the partial tubes themselves.
'I'o the organie condition of the so-ealled internal spermatia, prudently notieed by Kützing, I think we ought to refer the eircumstance of the great varicty of dimensions presented by Navieule, not only in the sume species, but very frequently in the same specimen. Varicties are often met with in different individuals which an attentive examination compels us to recognise as belonging to the same speeies, while within the same thread all are foumd to be equal. In the Schizonema, on the other hand, we find, mixed amongst the larger Navicule, other's that are less, and some very small, scarcely visible with
the highest powers of the mieroscope. It seems as if the so-ealled external spermatia of the Monnema become detached before development, as Kützing observed, in one species; and that in the Schizonema, on the contrary, these spermatia, if we regard their internal colloeation, beeome developed within the cavity of the generating frond.

This is one of the prineipal reasons why the determination of speeies beeomes extremely difficult. Others may be mentioned: the immense number of speeies ; the exeessive variations of external form ; the want of agreement between the measurements indicated by Kützing in his descriptions and those of his figures, and those also dedueed by direet observation from authentic specimens; finally, the very intricate synonymy, impossible to disentangle when we have not before the eye, authentic specimens of all the species, to institute a comparison.

Kützing describes and figures twenty-four with wonderful aecuraey. To these I think that eighteen, aseribed by him to the preceding genus, ought to be added; and not a few still remain to be denominated and deseribed. We will be as coneise as possible.

> Scliizonema implicatum, Harv.
> Mieromega intricatum, Kütz.

Kützing does not give any reason for changing the name.

Sclizonema parisiticum, Griffiths.
Kützing says the Navicule are $\frac{1}{1 \pi}$ th of a Paris line, or 0.0235 nillim. He figures the largest of them 4 millim., corresponding to 0.0095 . In an authentic specimen reeeived from Berkeley, as well as in those from Lenormand and Brebisson, under the name of S. rutilans, and corresponding exactly with the first, I find the greatest length of the Naviculæ 0.02 millim., and the greatest breadth 0.005 .

Schizonema bombycinum, Kütz., (Micromega.) Sclizonema patens, Kütz., (Micromega.)
Schizonema flagelliferum, Kütz., (Micromega.)
Schizonema lineatum, Kütz., (Micromcga.)
Kützing says the Naviculæ are $\frac{1}{110}$ to $\frac{1}{100}$ th of a linc in length, or 0.0246 to 0.027 millim. The largest of his figures is 6.5 , corresponding to 0.0155 . In an authentic specimen from Spalato, with which Kützing obliged me, and in the corresponding ones from Zara, collected by Sandri, the extreme length of the Naviculæ is 0.02 , and the greatest breadth of the primary surfaces is 0.0047 millim.

Schizonema floccosum, Rudolph, (not Kütz.)
The length of the Naviculæ indicated by Kützing is $\frac{1}{60}$ th of his line, or 0.045 millim. In specimens collected in Dalmatia by Vidovich, which correspond with the description, the greatest length of the Naviculæ is 0.04 .6 , the breadth of the primary surfaces 0.005 millim., in single individuals; the breadth of individuals very near a state of duplication was almost double, and that of the secondary surfaces, which are elliptico-rhomboidal, $0 \cdot 009$. In this very distinct species the cxtraordinary thickness of the partial tubes is remarkable; they arc often more than doublc the breadth of the Naviculæ.

Schizonema lyalinum, Kütz., (Micromega.)

The length assigned by Kützing is $\frac{1}{65}$ to $\frac{1}{\pi 0}$ th of a line $=0.0416$ to 0.0338 millim. 'I'he greatest length, in plate xxiv, is represented $\left(\frac{120}{1}\right) 7.5$, or $0.0179^{\prime \prime \prime}$, and the greatest breadth, in plate xxv, $1 \cdot 5$, or 0.0036 millim. In numerous specimens from Dalmatia, transmitted to me by Vidovich, and corresponding perfectly to the descriptions and the figures, I find the greatest length 0.034 , and the
greatest breadth of primary, as well as of the linearlanceolate secondary surfaces, 0.004 millim.

> Schizonema tenellum, Kütz., (Micromega.)
> Schizonema Hyalopus, Kütz., (Mieromega.)
> Schizonema ramosissimum, Agardh.

Kützing says that the Navieulx are $\frac{1}{80}$ th of a line long, or 0.045 millim., but he figures them only as $7.7=$ 0.0183 , and the very sniall 0.0024 . In a speeimen from Lenormand, and in some from Dalmatia, collected by Vidovieh, corresponding in extermal appearance, and other chanacters, with Kützing's figures and description, I also find the greatest length 0.02 S , the breadth of the primary surfaces : 005 , and that of the elliptico-elongate obtuse seeondary surfaces $0 \cdot 0064$ millim.

In an authentie speeimen from Chamin, obligingly sent to me by Desmavieres, with the name of Sclizonema apiculahom, whieh is cited by Agardh himself as belonging to S. ramosissimum, and which differs a little from the preceding, the Naviculx attain 0.054 in length; more frequently they are only $0 \cdot 042$. 'The primary surfaces are linear' ; the scoondary, elliptico-clongate, mather larger, are a quarter of the length in breadth. Many smaller ones (0.02) are mingled with the others.

Under the same name of S. remosissimum I received from Harvey and Berkeley a species entirely different from Kütziug's, and corresponding perfectly with the deseription and figure given by Kützing of his S. striolatum. In this the transverse striæ upon the extermal surface are very evident. Although Kützing does not state the dimensions of the Naviculæ in his definition, those represented in his plate, and caleulated by the nsual rule as equalling half the cindieated amplification, would be twiee as large. In our own, the greatest length is 0.018 millim., and is not quite three times the breadth of the primary surfaecs. In the figure of S. striolatum, the greatest
lengtl is $7 \cdot 5$ millim. $\left(\frac{420}{1}\right)=0 \cdot 18$, and is almost four times the breadth.

Schizonema setaceum, Kütz., (Micromega.)
The length assigued by the author $\frac{1}{58}$ to $\frac{1}{60}$ of a line $=$ 0.0467 to 0.045 millim., delineated 8.2 millim. $\binom{420}{1}=$ 0.0195.

In an authentie speeimen from Kützing, and in those that I refer to this species, I find the Navieulæ 0.02 millim. long, but eonsiderably bronder than the figures of this author; the primary surfaces being 0.004 , and the secondary 0.07 , whence the shape becomes manifestly elliptieal.

Schizonema aureum, Kütz., (Mieromega.)
Although Kützing has indieated no other locality than Sidnouth, I refer to this speeies some speeimens that I eolleeted at Zava, whieh eorrespond perfeetly with this author's description and figure. 'The Navieulæ are 0.032 millim. long, (Kützing says they are $\frac{1}{80}$ line $=0.0338$ millim.; and represents them 7 millim. ${ }_{2}^{40}=0.0166$,) and are 0.006 in breadth of primary surface, and a millimillimetre more in the secondary, In this speeies I have seen single Navieulæ with swollen internal spermatia, as Kützing delineates in lis M. polyclados, to which at first I thought it must belong.

Schizonema corymbosum, Ag.
Schizoncma myxacanthum, Kütz., (Mieromega.)
The greatcst length of the Naviculæ, according to the author, $\frac{1}{55}$ th of a line $=0.0492$ millinn. (aecording to the figure only 0.022). 'To this I believe I ought to refer a specimen I eollected at 'lrieste, the Naviculs of which attained 0.0 .5 in longth, and 0.009 in breadth, as well in the primary lincar, as in the sccondary elliptico-acute surfaecs.

The partial tubes are very evident, and so is their confluence at the apex, from which is derived the digitatomultifid ramification.

Sclizonema apiculatum, Ag.

The $\frac{1}{5}$ th of a line, which Kützing assigns as the length of the Naviculæ, correspouds to 0.04 .92 millim. As usial, the figure gives a measurement of half the size. In specimens from Lenormand and Brèbisson, I find the length of the Navicule 0.04 millim., the breadth of the primary surfaces 0.01 , of the secondary 0.012 , and the figure of both perfectly corresponding with the description and the delineation of Kützing.

Schizonema medusinum, Kütz., (Micromega.)

In specimens so denominated by the author, I find the Naviculæ 0.036 millim. long, 0.0047 broad in the primary surfaces, and a millimillimetre more in the secondary. Kïtzing docs not state the dimensions; from lis figure, I iufer the length only to be 0.0262 , and the breadth in proportion.

Schizonema chondroides, Kütz., (Micromega.)

I regret that I have been unable to study this species, on account of the peculiar mode of prolification at the extremities.

Schizonema spinescens, Kütz., (Micromega.)

Found in Venice, by Zanardini. The Naviculæ (0.042 millim. long, and 0.0062 broad,) differ little from the dimensions indicated by Kützing (${ }_{60}$ th of a line), being about twice the size of the figure ($9 \cdot 6$ millim. $\frac{120}{T}=0.022$).

Schizonema albicans, Kütz., (Micromega.)

If the specimens from Dalmatia, which I think ought to be referred to it, really belong to this specics, the name is not well chosen ; indeed it indicates a condition which the author confesses not to be constant, (vel olivaceo-virescens) and which is common to many species in a state of decay. Length of Naviculæ $0 \cdot 036$, (Kützing says $\frac{1}{90}$ th of a line $=0.03$ millim., and figures them 6 millim. $=0.0142$), the breadth of the primary surfaces 0.0061 , of the secondary, which are broadly elliptical, it is a millimillimetre more.

Schizonema torquatum, Harv. (Micromega polyclados, Kütz.)

It is on Kützing's authority that I refer to his species the authentic spccimen which I received from Berkelcy with the name above mentioned. In this I find the length of the Naviculæ 0.03 millim., and the breadth 0.005 in the lateral surfaces, which exceed the primary by a millimillimetre. 'The dimensions, therefore, (not described by Kützing, are something less than twicc those of his figure. Kützing is right in remarking that my Schizonema nebulosum, which I crroncously considered belonging to the genus Frustulia, corresponds to this species in the form and dimensions of the Naviculæ. Although when dried upon paper it only forms a light cloud, yct, when diligently cxamined, it proves similar in ramification to Harvey's specics.

Schizonema pallidum, Ag., (Micromega.)

In a specimen gathercd by mo at Tricste, and corresponding perfectly with the description and figures, I find the greatest length of the Navicule to be $0 \cdot 04$, whilst Kützing says it is $\frac{1}{58}$ th of a linc $=0.049$ millim. The
breadth, both of the perfectly linear primary, and the elliptico-elongate secondary surfaces is about 0.008 . We slall find a perfect agreement with Kützing's figure by supposing, as usual, that it represents one laalf of the indicated amplification of 4.20 diameters, the Naviculæ being here 8.5 millim. long.

I believe that some specimens, also collceted at Trieste, by Zanardini, (which are perfectly similar to the preceding in exterinal appearance, but of which the Naviculæ are shorter and more slender,) belong to a different species, not described by Kützing. In the one, the length is five times the breadtly ; in the other it is six times in respect to the sccondary surfaces, and more than eleven times in respect to the primary. Lelıgth 0.036 ; breadth of the primary surfaces 0.006 , of the secondary, 0.0035 millim.

Schizonema comiculatum, Λ g., (Micromega.)

Althongh I might be supported by Kiitzing in the detcrmination of this species, and though my specimons perfectly agree in external appearance with the figure given by this author, still I cannot but confess some doubts as to the species itself. And, in the first place, Kützing attributes a larger size to the Navicule than to those of the preceding species. He says they are no less than $\frac{1}{30}$ th of a line, therefore 0.054 millim., and in conformity to this he represents them $1 \cdot 1$ millim., with an amplification one half less than what he assigns tohis figure. On the other hand, I find the greatest length 0.03 , and the greatest breadth, whether of the exactly linear primary surfaces, or of the elliptico-clongate secondary, 0.007 . The length being rather more than four times the breadth, the form of these Navicule corresponds with that represented by Agardlı (Icon. Aly. Fiurop., tab. 4.) I find that the figure given by Λ gardh himself docs not correspond with it in external appearance; the figure agrees much better with the preceding species.

It is true that we can find this form more or less rich
in penieillate branehes, whieh would seem to justify the opinion of Kützing, who regards the Micromega penicillatum of Agardh as a variety of the same speeies, but without notieing whether the Schisonema penicillatum, Chanvin, should also be placed there; but the same specimens more denuded have no resemblanee to Agardh's figure. For this reason, before I consulted Kützing, and before he published his work, I had given the name of AFicromega divaricatum to the one I had eolleeted very abundantly at Zava.

Schizonema Blyttii, Ag., (Micromega.)

The following speeies are aseribed by Kützing to the preeeding genus.

Schizonema minutum, Kütz.
Schizonema lumile, Kütz.
Schizonema araneosum, Kütz.
Schizonema eomoides, Ag.
I am indebted to the eelebrated Berkeley for an opportunity of studying this speeies, and of convineing myself of the existence of speeial tubes, whieh easily eseape observation, owing to their own tenuity and the size of the Navieulx, whose uninterrupted series are narrowly stipate. It is by these eharaeters, and by the form and proportion of the Navieule themselves, that I was led to the exaet determination of the speeies, though the dimensions are very different from those indieated by Kützing. He says the Navieule are as mueh as $\frac{1}{5 s}$ th of a line in length, or 0.04 .9 millim., (and le represents it, with a power of 4.00 diameters, 8.9 millim., which would be about half the size indieated, , and I, again, found it no more than 0.024 in length, 0.005 in breadth of the secondary (qu. primary?) surfaces, and very variable in the always broad secondary surfaees, whieh attain to 0.012 millim.

Schizonema floccosum, Kütz.
If, as secms probable, there exist partial tubes in this species, and we ought therefore to retain it in this genus, it is necessary to change the specific name, for there is already a Schizonema floccosum of Rudolphi. By the customary laws, we ought to name it S. Kïtzingii.

> Schizonema crispum, Montag.
> Schizonema plumosum, Kütz.
> Schizonema capitatum, Kütz.
> Schizonema trichoceplahem, Kütz.

I find a Schizonema, from Marscilles, with which I was favoured by Solier, and in which the Navicula are 0.025 in length, to correspond exactly with the definition and the figure of Kützing. He says they are as much as $\frac{1}{\text { reo }}$ of a line $=0.0225$ millim. There are evidently partial tubes, and the figure of Kützing leads us to suspeet their existence.

Schizonema Bryopsis, Kütz.
Schizonema Arbuscula, Ehrenb. (Naunema.)
Although Ehrenberg asserts that there are no partial tubes, still he admits that this species forms a transition to the genus Micromega. Kützing's figure, by analogy with other species, induces us to admit their presence.

Sclizonema hydruroides, Kütz.
I cannot help observing that Kützing, the most acute obscrver and most faithful painter of nature, has in this species also clearly delineated the special tubes, though he has placed it in the genus Schizonema.

Schĩonema Smithii, Agardh.

The testimony of Kützing, and a comparison with an authentic English specimen, obligingly supplied by Berkeley, convince me that the Schizonema which we have most abundantly of all in the Lagunes of Venice, belongs to this speeies. I was led away before from this conclusion by the exelusive locality of Sidnouth, indicated by Kützing, and the comparison of specimens with which I was favoured by Harvcy, of which we shall speak by and by, by the difference of measurement, and the evident presence of partial tubes. Kützing says the length of the Naviculæ is $\frac{1}{50}$ th of a line, or 0.054 , and, as usual, gives a figure less than half the size he mentions, (- 1.1 millim. $\left(\frac{400}{1}\right)=0.026$.) I find the greatest length to be constantly 0.044 , the breadth of the secondary elliptico-elongate surfaces 0.012 , and that of the primary slightly elliptico-truncate 0.012 . As to its generie position, I observe that Harvey places this speeics in his section Schizonema, corresponding to the Micromegle of Agardh and Kützing.

Finally, though incidentally, it is right to make a remark here on the practice, with even the most conscientious authors, of copying references without verification. Both Harvey and Kützing copy from Agardh the reference to Ulva fcelida of English Botany (1 l . 2101), whilst in that classical work there is only the Conferva freticla, and the Ulva foetida of Vaucher is mercly cited, by mistake, as synonymous.

Schizonema sirospermum, Kütz., (Micromega.)

Though not appertaining to this series, I here advert to this species, because the specimens just mentioned, with which I was favoured by the celebrated Harvey under the name of S. Smithii, belong to *it. Kützing informed me that he had reccived then, without a name,
from Ralfs, and that he liad named them as above. 'To him, therefore, I leave the deseription. Length of Navieulæ 0.0337 millim.; breadth of the elliptieo-elongate seeondary surfaees as much as 0.007 ; that of exaetly linear primary surfaecs 0.01 . In this speeies I elearly saw the so-ealled internal spermatia, in form at first ellipsoidal, afterwards globose, varying in diameter from 0.028 to 0.05 , furnished with a double envelope, within whieh the internal granules grew gradually in size. Similar in external appearanee to Kützing's figure of the following speeics.

Schizoncma helminlosum, Chauv.

The specimen with whiel I was favoured by Berkeley corresponds perfeetly with the figure and deseription of this speeies given by Kützing, varying a little in the assigned dimensions of the Navieulx. Length 0.052 millim., (Kützing says $\frac{1}{10}$ th of a line $=0.54$; he figures it $1 \cdot 1 \frac{12 p^{\prime \prime \prime}}{}=0.26$ millim.,) breadth of the elliptieo-trumeate primary surfaees as much as 0.00 S , and of the elliptieorotundate seeondary 0.012 ; less, therefore, than one third of the length, whieh is the proportion indieated by Kützing. In this speeies I have never been able to sec the eentral perforation with distinetness. As to the delieately erisped fibres, described and figured by this author, I have assured myself that they are nothing more than the margins of thiek partial tubes.

Under the same name of Selizonema helmintosum, and with the indieation of Chauvin (Alg. de la Norm., Fasc. IV, No. 77), I reeeived from Lenormand a Schizonema from Calvados whieh differs very mueh from the preeeding in the dimension of the Navieule, though very similar to it in external appearance and in the forms of the Navieule. These are 0.32 long, and 0.007 broad. As in other speeies, there are mixed among the larger Navieulæ, others smaller, some very small. Henee we may suspeet that the English speeics do not exactly eorrespond with
the Freneh. We are induecd to form this opinion by the observation of Harvey, "The frustules are larger than in S. Smithii, longer and blunter, double, and rather densely set." This is applicable to the speeimen from Berkeley, but not to this one of Chauvin, which ouglit to be authentic.

Very different, both in extcrnal appcaranee and in the extreme tenuity of the threads (fili), is another Schizonema, also from the Coast of Calvados, obligingly supplied by Lenormand, with the namc Schizonema helmintosume var. Claauv., in whieh the Navieulæ are 0.0185 in length, and 0.006 in breadth, as well of the exactly linear primary surfaees, as of the elliptical seeondary. The partial tubes embrace the navieular series closely, and frequently after, when the Naviculæ have eseaped, contraet into fine threads or become deformed and wasted.

Schizonema laciniatum, Harv.

I received specimens of this beautiful species from Harvey himself, and found the Navieulæ 0.027 long, and 0.007 broad, in the primary surfaces, which are almost exaetly linear, and in the elliptico-rotundate secondary 0.0065 . This agrees with Harvey's observation "Frustules very minute and exccedingly numerous." This would seem to refer to a speeies different from that deseribedandfigured by Kützing, with thename S. scoparium, in which he says the Navieulæ are $\frac{1}{50}$ th of a line in length $=0.054$ millim., and to which he assigns as an uneertain synonym this of Harvey, and the S. Smitliii of Mrs. Wyatt, (Aly. Danm. No. 15 l), which, aeeording to the indication of Harvey, would rather scem to belong to the onc before mentioned as S. sirospermum.

Schizoncma mucosum, Kütz.

From Kützing's figure we should be indueed to suspeet the presence of partial tubes in this species also. As to
the synonym of Agardh (S. tenue), it seems more casy to suppose that some mistake may have oceurred in the denomination of a speeimen, though received from the author himself, than to suspeet so ineorrcct an observation as would result from the deseription and figure of this his own species given by Agardh, (Icon. tab. 3.)

Among the species aseribed to this genus or sub-genus by Harvey, two remain still to be mentioned.

> Schizonema obtusum, Greville. Schizonema Wyattia, Han.

We ought, finally, to add some species which we eonld not possibly include in any of the preecding.

Schizonema Statianum, Mgh.

S. parusiticum, lubricum, viride vel viridi-rufescens, filis setaceis, longe productis, apice allenuatis, irregulariter ramosis, ramis divergentibns brevilus; naviculis arcte seriatis mediocribus (0.03), lonyitudine latitudinem sextuplo superante, e facie exacte linearibus, e latere elongato elliplicis; parum angustioribus obhusiusculis.

Sig. Stalio sent me specimens of this species, found at Lesina, in Dalmatia.

It attains the length of three or four centimetres, is very mucous, and adheres strongly to paper. The threads (fili) attain almost a deeimillimetre in thickness near the base. It resembles none of the before-mentioned species in external appearanee, exeept the S. helmintosum var. of Chauvin. 'The partial tubes are very slender, but distinct. Kützing, to whom I sent it, acknowledged that it was new.

Schizonema papillosum, Mgh.

S. parasiticum, pumilum, mucosissimum, viride, filis ullra setaceis subsimplicibus vel ramulis spiniformibus
acutis ornatis, papillis minutissimis regulariter clispositis omnino tectis; naviculis arcte seriatis mediocribus (0.0264) longitudine latitudinem fere quadruplo superante, e facie leviter elliptico truncatis, e latere anguste ellipticis, obtusiusculis.

Sig. Botteri sent it from Lesina to his friend Zanardini, by whom it was communicated to me.

It scarcely attains two centimetres in length; the threads are about two decimillimetres in thickness, the colour dark green. The greatcst brcadth of the primary surfaces is rather less 0.007 ; that of the sccondary 0.0043 ; the papillæ appear hemispherical or slightly conical; they are 0.0007 in height, and are arranged in a quincunx.

Sclizonema Corinaldi, Mgh.

S. parasiticum, pumilum, viride, filis subsimplicibus setaceis, naviculis seriatis, minutis (0.016) lonyitudine latitudinem fere quintuplo superante, e facie exucte linearibus, e latera anguste ellipticis.

Corinaldi found it at Genoa, and Solier sent it to me, without a name, from Marseilles.

It is parasitic, like the preceding, growing on Scaphularia scoparia, or upon Polysiphonice, and in like manner is about two centimetres long. The threads, slightly mucous, are a decimillimetre and a half in thickness. Ithey are usually simple; the few ramifications are short and divaricate.

Schizonema Zanardinii, Mgh.

S. tenuissimum, pallide virens, filis capillaribus in ramos arachnoideos corymbosos monosiros sensim solutis, naviculis laxe seriatis mediocribus (0.025), longitudine latitudinem quadruplo superante, e facie exacte linearibus, e latere ellipticis.
(Schizonema, Sp. nov. Zan. in lit.)
Zanardini found it plentifully in the Laguncs of Venice. Form : globular tufts, of three or four centimetres in diamcter, whieh, dried upon paper, form an uniform spot, in which, by a lens only, the separate threads can be distinguished. Though Kützing assured me that this was a now species, yet by its mode of ramification it resembles S. flagelliferum.

This long speciological discussion may to some appear misplaced, or at least at variance with the proposed plan of this essay, intended as an organographieal and physiological examination of the gencra. The principal ground of my defence is the great importance of Kützing's most valuable work, and the respect that is duc to so great an author. Who would darc to subject so immense a collection of most delicate observations to critieal examination, unless he were able to counterpoise them with a scries of his own obscrvations, if not equally numerous, at least sufficient to prove the critic in possession of means and praetice, and diligence and honesty of obscrvation? Sueh has becn my object, and if I have crred in any respeet, for I must admit that it is easy to err in sueh minute researehes, I hope, notwithstanding, to have demonstrated both the excellence of the instrument expressly made for me by Amiei, of which I am sure that no onc possesses its cqual, Mohl only excepted, and the good intentions by which I cndeavour to prove my gratitude to the most graeious Prince who bestowed upon me so munifieent a gift. I belicve, too, that an cxamination of various specifie forms is neccssary, that we may dcduce from them somc considcrations as to the organology of the genus.

The prescnec of minute Naviculec among the larger, to
which we have adverted in many specics, seems to me to prove-what might easily be deduced from the observations of Kützing-that the so-called Spermatia are developed within the fronds, if we may use an expression taken from the vegetable kingdom. I could never perceive that these smallcr Naviculx were included in distinct tubes, or that they constituted an uniform series in the order of their size. It seemed, rather, to be constantly the case that they were dispersed through the tubes of the larger ones. From this it scems that we may conclude that when the spermatium is mature, when its envelopes are broken $11 p$ and about to be reabsorbed, the young Naviculæ, passing from tube to tube, are finally dispersed. And continuing to supply the want of sufficient observations by induction, we may suppose that these do not begin to divide until they have attained their greatest dimensions. It then becomes intelligible how the partial tubes originate, through the persistence of the thin external membranc, which we know, by preceding observations, manifests itself distinctly whenever the deduplication takes place. Only we must suppose that the silica is reabsorbed, while the membrane remains in Monnema, on the contrary, it disappcars. It is most important to observe how these series of Naviculæ are formed within the proper tubes. It is, in fact, the result of observation that their disengagement is always effected in the plane of the primary surfaces. The series may present either the primary or the secondary surfaces. In either case the Naviculæ may be found arranged one bchind another, either contiguous or more or less apart. They arc sometimes imbricated with the primary, never with the secondary surfaces; and when the imbricated series is viewed on one side, the Navicula present themsclves with their secondary surfaces entircly free and inclined obliquely. Thercforc we must suppose, so soon as the deduplication (scloppiamento) has takeu place, the two now individuals, rotating upon one of the sides of their surface of contact, as uporl a linge, represent, in some
manner, a box which opens, and the two primary surfaces coming into contaet, the disengagement or separation becomes more or less complete. If these deduetions be legitimate, as to me they appear to be, the result is that the suceessive growth of the entire frond is due to a double element; the elongation of each series by incessant deduplieation, and the intercalation of new series between those that pre-existed. The comparative examination of the extremities is important in respect to the elongation. In various speeies the single partial tubes tend to detach themselves from their reciprocal union, either uniformly from the base (flagelliforme, mectusinum, Zanardiuni), or merely towards the summit, in a sort of fan-shape (helmintosum, lucinaturu). Again, we find the multiplieation of the series principally effeeted near the apiees, and accomplished more quickly from the elongation of the pre-existing ones, on which aecount the extremities are clavate (Arbuscula, clavaturn.) Where these two proeesses advanee, pari passu, the resulting extronities are obtuse (patens, Bryopsis, intricatum). Where the elongation of the first scries always preeedes the appearance and formation of the now ones, the apiecs are acute (floccosnm, Kütz. romosissimum, Hyalopus, arancosun, Sunithii, torynatum). It is characteristic, too, of some species (chondroides, trichocephalum, capitatum, corymbosum, spinescens), to have the prolification terminal, which manifests a succession of distinet periods of vegetation. Hinally, the partieular condition of the S. mysacan/hum demonstrates a contemporaneous elongation of the series, which the resistance of the external envelope compels to flow towards the apex, until, that resistance being overcome, a palmate disposition of the branelics is produeed.

As to the Naviculx, we know still less of them than in the preeeding genera. Ehrenberg says that some of thein are striated, but this is not confirmed by Kützing, nor have I seen strix in any speeies. Yet in some I have seen the two longitudinal lines of the primary surfaees doy-
which arc considered to be canals. I have not been able to sce the median aperture, which Kützing describes and figures in some species (helmintosim). As to the distribution of the internal snbstance, though nothing positive ean be deduced from the observation of specimens dried and softened, or even preserved in alcohol, it is yet remarkable that even in such a state it presents different conditions that are constant in each species. In most instances it is collected along the central part of the lateral surfaces, so that it exposes a colomrless longitudinal area in the centre of the secondary surfaces, and only the two extremities of the primary surfaces are colonrless. Sometimes, too, the median line of these last is colourless, because the colouring matter is lodged (nicchiata) in the four inner angles. It is not unusual to find it condensed in a single central globe. In a few species only I have scen it constantly divided into two portions corresponding to the extremities, whilst the median area of the entire body of the Naviculæ remained uncoloured.
44. Dickiela.-Phycoma foliaceum (plylloma) basi substipitatum. Navicula in membrana gelinea irregnlariter sparsa.

Kützing does not describe the structure of the so-called membrane of the only species (D. ulvacea) of this genns, and I anı sorry that I cannot consult Berkeley's description. This incmbrane may be formed of cells including the Naviculæ, as in Frustulic, or of clongated cells or tubes, as in Schizonemee, or of a singlc capacious flattened cell eomparable to that in Monnemice; or, finally, this socalled gelatinous substance may be a mass entirely continnous, in which the Naviculoc may be imneersed, as indieated lyy Kützing " in der gallertartigen Haut cingebettete," as we have suspected of some spceies regarding which there scems to be a doubt whether they belong to the Monnemae or the Schizonema.
'The last seven gencra, (Frustutia, Berkeleya, Raphi-

Tcea, Momeocladia, Schizonema, Micromega, and Dickiea) constitute the group of Schizonemer. The substance which surrounds and includes the Naviculæ in these gencra, which scems to be the same as the peduncle in Achnanthides, Podosire, and many other genera, is termed jelly (gelinea), by Kützing, who, under this denomination, compares it to that of the true Algæ. The observations adduced in the preceding memoir confirm the absence of nitrogen, and its ternary composition. Now we know, from the obscrvations of Schmidt, Lœwig, and Kölliker, that a similar substance, destitute of nitrogen, ternary, insoluble in caustic potash, and isomeric with starch, constitutes the external coriaccous stratum in the Ascidia, simple and aggregate, and forms the gelatinous mass in which groups of individuals of compound Ascidia are lodged. These authors found that the presence of this substance is a character common to all the 'I'unicata, and it is supposed that the Doliolum medilerraneum ought to be placed in the same family from this character'. This discovery, which I bcfore supposed possible, has therefore now entered the domain of science. As the presence of a quaternary azotised substance is no exclusive character of animal nature, so the presence of a ternary non-azotised substance, isomeric with starch, is no more an exclusive character of a vegetable nature.

With respect to origin and formation of this substance, it is undecided whether, as Kützing asserts, we are to regard it as a product of secretion, or rather as existing. per se. All animal secretions are formed in the same manner. The theory of Goodsir, Bowman, Henle and Mandl has recently reccived confirmation from the labours of Lereboullet on the biliary vessels of the Aselli and those of Gros on the production of butyraccous vesieles on the internal surface of the mammary utricles. It is now proved that whatsocver the animal secretions may be, they are effectuated by a production of new cells on the scereting surface, and the accumulation of liquid
which penetrates within them by endosmosis through the double wall dividing their cavity from that of the produeing cell. When these vesicles become detached, they either maintain a life of their own, as in the epidermis and its productions, or they burst and pour out their contents. If such be the origin of the gelatinous substance enveloping the Schizonemex, we must allow that the seeerning surface is either external or internal to some particular organ. And these little eells, invisible from their minuteness or tenuity, may eontinue to live, or at least to pour out their contents, before or after they issue from the secerning organ. But all this is hypothetical, and wanting in any support of observed faets. Again, considering the history of the suecessive development of Diatomaceæ, it is more probable to suppose the possible permanenee, extensibility, and progressive growth of one of the embryonal tunies, of which we have numerous examples, were there no other, in all animals that undergo metamorphoses.

The Schizonemeæ and the other seven gencra (Navicula, Amphiplcura, Ceratoncis, Stauroneis, Amphiphora, Amplora, Diadesmis), before mentioned, constitute the great family of Navieuleæ. The Naviculeæ, says Kützing, when treating of their affinities, very mueh resemble individuals of the preeeding familics, with which they were formerly confounded; but they are to be distinguished as well by the central aperture of the two lateral surfaces as by the regularity and symmetry both of these and the primary surfaccs. He says, on the other hand, that this aperture is frequently absent, cspecially in the Sehizonemeæ, or at least escapes observation by its minutencss. Now I add that we have this same regularity and symmetry of form in the Synedro, and, with few execptions, in all the family of Surirellex. So that there is good rcason for inquiring what essential charaeter remains to distinguish the Naviculex? The considcration beforc addueed with regard to the origin and nature of the investing substance in Schizonema would secm to me to furnish some reason
for bringing hither the affixed Synedra, in a physiologieal point of view, only that this union would be one of analogy rather than affinity, inasmueh as we find eorresponding conditions in almost all the families. It is still true, as Kützing observes, that here the included are the prevalent forms, occurring with the free and naked forms, whilst the linear association is only represented by one genus Diadesmis, and the stipitate forms and eateniform assoeiations are entirely absent. But, with respect to the morphologieal signifieation of this predominant inelusion, I am far from agreeing with Λ gardh and Kützing in regarding it as indieating a higher organisation. In the theory of Agardh, where every inferior being represents an elementary organ of superior beings, the mere aggregation of many individuals, whieh, taken together, form one eollective individual, is sufficient to mark a step towards organie superiority or perfection. But we have too many examples of similar aggregations even in the lowest members of both organie kingdons to satisfy ourselves with this eharaeter of complieation. It is not the mere aggregation of organs, but rather their mutual conenrrenee in the formation of new organie assemblages (congegni) that establishes the superiority in plants, as well as in animals. For this reason the Amelidx are the lowest among the Articulata, even whilst the number of joints, all cqual to one another, of which they are constituted, is indeterminate. For this reason I believe that the opinion is well founded whieh regards Synpetalous flowers as superior in organie complieation to the Dialypetalous, as the flower in general is the most complieated apparatus of the plant, like the head of an animal. And without wandering from the question into extraneous digression, I shall content myself with reealling to memory what I have intimated before in relation to the involving substanee, to sustain the opinion that the ineluded forms are to be regarded as inferior to all the others; and the affixed, stipitate, and eoneatenated, as intermediate between these and
those that are free; which last, conditions being cqual, are superior to all the rest.

Regularity, then, and symmetry of form appear to me characteristic of inferiority, nor do I consider new arguments necessary to maintain a principle which is universally adopted in all natural classifications.

I am sorry to repeat here what I have said so often already, that we are entirely wanting in true data to judge of the affinities of Diatomeæ, among themselves as well as with other beings, and of the degree of their organic complication ; for we are completely ignorant, as it were, of what this organisation is. And as to this, Kützing only informs us that the internal substance, which he terms gonimic, extends itself in a thin strip (fettuccia) along the secondary surfaces, then divides itsclf transversely in the middle, and finally contracts itself into one, two, or rarely more globular portions (grumi). We have already found contrary to the opinions of Ehrenberg, some more important particulars respecting the Naviculo. Nor have we anything different to add, generally, as to all the family.

The Naviculeæ, together with the two preceding families (Cymbelleæ and Gomphonemeæ), constitute the group of Distomaticæ, a group characterised solely by the organic condition indicated by the name, and which we have so often found to be wanting.
'Ihe other two families (Cocconoideæ and Achnanthex.) which, comprehended under the name of Monostomatice, constitute, in union with the preceding, the grand division of Stomatico-appear to be much more nearly allied. 'The entire system, I am obliged to repeat, is constructed upon isolated and inconstant characters, and on that account cannot fail to be vacillating. But it is equally neccssary to allow that, in the actual state of science it would have been difficult to do better; and we must also regard it as a principle suggested by sound reasoning, to attribute great importance to the prescnce or absence of the central aperture in one or both of the sccondary
surfaces, for that condition ought to be referred, of necessity, to important peculiaritics of internal structure. And therefore it becomes difficult to conceive how the exceptions can be so numcrous as to render this character so insufficient for classification.

The Stomaticex, together with the Astomatices, of which we have already spoken, constitute the great order of Striated Diatomex, which is proportionally, much more extensive than the two following.
4.5. Podosphenia.-Bacilli a latere primario cuncati a latere secundario obovato-lanceolati, aflixi. Stipite nullo (vel obsoleto).

With this genus commences the order of Diatomer furnished with Vittox, or internal prominences, which divide the cavity of the shicld more or less incompletely into distinct chambers ; and here, too, commences the family of Liemophorex, in which is reproduced the cuncate form of the Gomphonemex. This genus represents, in the Liemophorex, the genus Splienella of the Gomphonemere, for, like that, it is distinguished from other gencra of the same family by the more or less complete absence of the stipes. The obovato-lanceolate figure of the sceondary surfaces is precisely that of the Spluenelle and of the Gomphonemex in general. The cuncate form of the primary surfaces is, in Podosplenia, always more dilated at the summit and acute at the base, so that they resemble a triangle more than a trapezium. Of the nine species described and figured by Kützing, only one (P. Ehrenbergii) presents transverse strix on the sccondary surfaces. The essential character of Gomphonemex, the median aperture in both sccondary surfaces, is absent.

They present also the character of Vittæ. But if we carefully examinc those vittr, they are merely the same longitudinal lines which run along the primary surfaces of almost all the preceding Diatomer, the same lincs which in many cases are produced by distinct canals
furnished with terminal perforations. And here let us not forget how these canals evidently projeet into the eavity of the Melosireæ, forming more distinet vittæ than others ever do ; on which account, if we ought really to found on this charaeter the distinction of orders, the family of Melosireæ or the genus Melosira at the least, ought undoubtedly to be referred to the order Vittatæ.
46. Rhipidophora.-Bacilli a latere primario cuneati, altero latere obovato-lanceolati, stipitati.

We encounter the same difficulty in distinguishing Phipidophora from Podosphenia that is experienced when practically applying the generie distinction established between Sphenella and Gomphonema, and in all other similar cases (Cymbella and Cocconema, \&e.) ; these differ only in the stipes, which is very variable in length, and not always entirely wanting in the first of these two genera.

The large size of some among the fourteen species enumerated by Kützing permits us to observe elearly the conformation of the shield. Let us suppose a eylindrical artieulation of Melosira, and so compress it unequally on one of its sides, and in the direction of both pairs of opposite surfaces, that the resulting form shall be cuneate, and the two incomplete diaphragms formed by the internal prominence of the longitudinal canals shall extend, like these, and lose themselves towards the pointed extremity which forms the base. Such is the structure of Podosplenia and Rhipidopliora. Viewed on one side, that is on the lateral surfaces, they present an obvate areh (fornice) marked on the periphery of the surfaces themselves. And the margin of this areh is thiekened by the presence of the eanal, which, seen in front, presents in the eurve its brightness, with an appearance of perforation.

It would be important to ascertain how the deduplication takes place. Whenever one of the frustules, (Bacilli) separates into two, one of the vittæ previously
existing remains, and a now one appears in the internal side. Does the formation of the new vitta precedc or follow the median deduplication? I have not made such obscrvations as enable me to decide, but it scems to me that the formor is the casc.

And the distribution of the internal coloured substance bears a great resemblance to that of Melosire, especially in a state of desiccation.

As to the stipes, as well in this genus as the next one, I have to repeat what has been said of Cocconema.
47. Licmophora. - Bacilli flabellati a latere primario anyusle cuneati, allero latere lineares basi et apice rotundati. Stipes crassus rigidus.
'the resemblance of this to the preceding genus is only apparent. But a true affinity conncets Licmopliora to Synedra, from which it only differs by that character which, though regarded as essential to the Meridiex is found very inconstant in Fragillariex and reappears in many species of Surivella. The vitto, in Licmophora, are not to be compared with those in Rhipielopleora. They are nothing more than the usual longitudinal canals projecting into the cavity, by which the apparent perforations or sections of their cavities appear very near the margin of the summit. The distribution of the interinal coloured substance is different from that in the two preceding genera, and greatly resembles that of Synedra.

If we compare these with the sections Tabularia and Grallatoria, we cannot at all recognise the allegred affinity.

For this reason, I think we ought to exclude the Licmoplora divisa from this genus, and place it in the preceding onc.

The four species that remain, (fulyens, radians, flabellala, Menegliniana,) thongh described and figured by Kützing with so much diligence, are very difficult to
distinguish, owing to their great variability in size and proportion, on which account, too, their form is very inconstant.
48. Climacospimenia.-Bacilli a latere primario cuncati, vittis longitudinalibus moniliformibus, altero latere obovato-lanceolati, disseptis transversatibus in loculos divisa.

The two species contained in this genus (C. australis, C. moniligera), have nothing in comınon except the moniliform vittæ. But in what these really consist we cannot ascertain from the figures. In the first, Kützing does not delineate the secondary surfaces, and from the figure any one would say that he had drawn a Synedra. The second, again, resembles a Podosplenia.

After this analysis of the family of Licmoploreæ (Podosplienia, Rhipidophora, Licmophora, Climacosphenia), we ean only repeat what has bcen said of the first two genera. And as, in our opinion, we ought to exclude from it the genus Licmophora and units this to the Surirelleæ, it will also be right to change the name of the family. Thus limited, it will remain allied to the Gomphonemeæ more than to any other. As to the so-called interanea, we have already recorded their arrangement in distinct globular masses as in Melosira. Ehrenberg, treating of Podosphenia, says that this organie condition is peculiar to young individuals; and he says he can distinguish, in the midst of the others, two of these globules, which he regards as represcuting the malc organs. Ifc asserts that, in some species, he has also seen the gastric cells. But when they grow old, Ehrenberg himself says that this internal substance aecumulates in a ecntral mass, which is frequently radiated. Kützing, again, deseribes the internal substanee as disposed in two strips (feltucce), applied to the primary surfaces, which divide themselves transversely into two or more parts, and finally resolve themselves into globules. But he ecrtainly must have taken these partieulars from the genus Liemophora.
50. Striatella.-Bacilli tabulati longitudinaliter vittati; vitta pervia mumerosce densa striaformes, stipes lateralis.

Though the only spccies of this genus (S. unipunctata), is common in the Adriatic, I confess myself unable to form a elear idea of its structure. The complication it presents in external appearance, and whieh is reprodueed in the figures of Kützing, seems to procecd from vittæ of the surface opposite to the one observed shining through; there result from this, vitix, strongly and faintly marked, altcrnating with each othcr. Does each one of these vittæ include a canal? And how far do they project into the cavity? The singular condition described and figured by Kützing of smaller tablets (tavolette) attached to larger ones, indicates a peculiarity of development, which has 110 analogy in the remainder of the class.
51. Tresselica.-Bacilli late tabulati, non concatenati, dense longitudinaliter vittati; vitte medio interrupta alternantes, stipes mullus?

This genus, too, is reduced to a single species (T ! interrupta), and, therefore, it is impossible to judge of the value of the characters that distinguish it from the preceding or the suceceding, whilst we do not know the organie importanee or the true strueture of the vittw. 'The breadth of the tablets is remarkable, being five times more than the length. 'There is frequently an absence of a few vittæ, accompanied at the same time by a deformity or derangement of those contiguous. It appears that this eondition precedes the deduplication, but we have no observation in point. It still remains, also, to determine the figure of the lateral surfaccs.

52. Hyalosira.-Bacilli tabulati quadrati, concate-

 nati lateraliter stipitati, interrupte vittati; vitta alternantes medio lineolis subtilissimis conjuncta.At first I was afraid that I was led, by want of skill in observing, to believe that I could see in the two longer
(rectangula, obtusangula) of the four spccies of this genus a continuation of the vittæ from one margin to the other, instead of their being interrupted and alternating, as they are figured and described by Kützing. Continuing my observations, I succceded at last in finding one individual exhibiting to my sight the alternations described. Hence I became convinced that the latter condition is not mocrely inconstant but even the least frequent. The secondary surfaces, neither described nor figured by Kützing, are elliptico-acute, and on these are inscribed the smaller concentric ellipses, which mark the margin of the incomplete diaphragm formed by the nearest vittæ.
53. Rhabdonema.-Bacilli tabulati concatenati lateraliter stipitati, interrupte vittati et transversaliter striati; vitta capitata. Strice transverse sinis longitudinales numerosas formantes.

I have only had an opportunity of observing one (R. adriaticum) of the three species of this genus; and it is because I must therefore limit myself to this that I cannot agree to what Kützing represents in his description and figure. He omits to indicate the form of the tablets, which can only be obtained by observation of the secondary surfaces, or by a longitudinal section; and it is entirely from this form that the appearances are derived, on which the specific distinctions are supported. In the Adriatic species, the figure of the secondary surfaces is linear in the contre, and cuneato-attenuated (assottigliata) at the cxtremities. The frustulcs (bacilli), thercforc, arc thick in the middle, have laterally the two primary surfaces strongly inclincd together towards the outside, and are much attcnuated in the cxtreme margin. The vittre arc nothing more than canals projecting into the internal cavity, and projecting slightly, indeed, at the surfacc, in the middle, and continuous from ouc cxtremity to the other. In specimens dricd and softened again, the canals themsclves include air collected irrcgularly into bubbles more or less extended. Hence the appear-
ance of interrupted and eapitate vittie. The appearance of four transverse series is produced by the form of the frustules (bacilli). The transverse strix are continuous even across the vitte and eanals; and it is only by attention to the slight projection of these, that, in withdrawing the objeet by slow degrees from the mieroscope to bring different parts into foeus, we ean sce first the strix of the intermediate spaces and not those of the canals, then the latter and not the former, and vice versâ if the object be brought near again. 'They then appear always in interrupted longitudinal series, but sometimes in the intermediate spaecs, and sometimes on the vittre; and we can never sec them on both at once. Near the margins, the difference of surface diminishes, and therefore the striæ appear continuous.

In the figure which Ehrenberg gives of R. arcuatum, (pl. xx, fig. 8,) the secondary surface is represented simply elliptico-acute, and the vitto appear entirely eonfined to the extremity. I suspect this figure to be taken from the extermal aspect rather than from direct observation; and from analogy with our species, I shonld be indueed to believe that the primary surfaees remain parallel to each other quite to the attenuation of the extremities, and, therefore, that the series of the apparent vittec beeomes double rather than quadruple.
'Ihe four genera, (Striutella, I'cssella, Hyalosira, Thabdomena, which constitute the family of Striatellex, are eertainly conneeted by a great affinity. Still it is diffieult to determine their mutual relations, or the connexion of the entire family with others. Kützing places the Striatelleæ in comparison with the genera Prayillaria, Diatoma, and Aclinanthes, as they do not specially differ from the two former except in the abundance of vittæ, to which, I belicve, the two usual longitudinal canals are correspondent. From Achnantlies they differ as well in form as in the absence of a central apcrture. We will compare them with the next family when we have treated of it, contenting ourselves at present with intimating that
they are more closely allied to the Fragillariere than to any other preceding family.

Kützing rightly observes, that the Striatellex are found indifferently, sometimes free, sometimes affixed. It seems, however, that they were all originally in the second of these conditions. Still, in the association of individuals resulting from deduplication the Striatelleæ repeat all the forms of the Fragillariex. Finally, as to the interanea, Kützing says they are at first clisposed uniformly, then collected into small spherules, which become condensed into a central globe. 'This last coudition is characteristic of the single species of the genus Striatella. But with regard to Hyalosira and Rhabdomena, I think it important to mention the wasting away of the coloured internal substance into longitudiual strips parallel and intermediate to the vittæ.
54. 'Terracyclus.- Bacilli late tabulatia inflem arcle connati, longitudinaliter continuo et arcte vittati; a latere secunclario utroque apice late rotundati, ventro mectio maxime inflato, stipes nullus.

The presencc of vitto solely distinguishes the single species (T '. lacustris) from Odontidium. The lateral surfaces are convex, and traversed by trausverse and arcuate costre. I lave not seen the straight median costa figured by Hassall, nor the absence of these costre in the space in the centrc, as figured by Kützing. But because the modian lobe is strongly convex, its plane is different from that of the latcral lobes; hence, when the costr of one can be secn, those of the other cannot, and vice versâ. I can in $n 0$ way comprchend Kützing's rcason for enumerating this genus anong the Diatomea stomatica, except by supposing that he regarded as a large central apcrture the entirc median cavity, which scems to be open when, obscrving the lateral surface too nearly, the corresponding convexity escapes from the ficld of view. Fragments of organisms, similar to 'Tetracyclus, are very common in the fossil flour of Santa Fiore.
55. 'Tabellaria.-Bacilli adnati obsolete stipitati, demum semivoluti, concatenati, interrupte longitudinaliter vittati; a latere secundario ventre et apicibus inflati.

The variation of form in the frustules (bacilli) of this genus is very remarkable. On this aeeount it becomes so very difficult to distinguish between the two principal species (T' flocculosa, T' fenestrata) of this genus, common in fresh water throughout Europe; and the synonyms beeome so eomplieated and obscure.

Henec Kützing rightly sought the limits between the two species in the fine eharacter of alternate vitte in 1. Jocculosa, and opposite vittæ in T! fenestrata. With regard to these vittæ, I observe that they are alike arranged in fine strie, which continue without interruption even where the vitte are altermate. 'Their alternation in T'. flocculosa is not at all constant, and Hassall, too, makes this remark.

After a long and attentive observation, I believe I have convineed myself that the structure of the Tabellariece is something different from that described and figured by our author. 'I'he primary surfaees have a reetangular figure; the seeondary are linear, or rounded merely at the extremities (as I find in authentie speeimens of T. fenestrata, from Jurgens), or swollen eirenlarly in the middle, or at the ends, as seems constant in I! flocculosa. It follows that the form is that of a cylindroid, strongly compressed, or of three smaller cylinders, the central one larger than the others, united together by parallel walls, and placed at a distanee less than the diameter even of the lateral cylinders; I never obtained a sight of any aperture. The internal eavity is variously divided by incomplete diaphragms. When one only exists, as is frequent in T. fenestrata, it is clearly seen to be furnished with a large central perforation, and to contain a eanal, which, running along the internal wall of the primary surfaces to where the diaplragm detaches itself, comes to communieate with another similar canal, hollowed in the free margin of the diaphragm itself. When
we observe such a frustule (bacillus) on one of its secondary surfaces, the large central aperture eludes the eye; still it may be seen, but only across the transparent surface itself.

In this species we may frequently see two similar diaphragms. In the T. flocculosa, as many as nine may be met with (Hassall). I'hey are not all equally easy to be seen in specimens that have been dried and softened. A green substance seems to be coagulated within them; and where this is wanting, the transparency prevents our distinctly seeing either the canals or the diaphragms.

It is a frequent condition of the T. flocculosa that this coloured substance is found in one lateral half, and not in the other, of the same canal; hence the alternating character of the so-called vittæ. So there does not exist a canal continuous to open extremities, which traverses the frustules (bacilli), as authors describe and delineate, but many apertures (fenestre), arranged in a series, in which bubbles of air remain imprisoned, unable to make their escape without rupture of the shield.

In the T. fenestrata, everyindividual has two diaphragms when the development is complete. When deduplication takes place, two individuals are produced, each having one diaphragm.

The second cliaphragm afterwards appears, and, at a later period, another deduplication. It is still a question whether both the new individuals equally divide; whether a new diaphragm appears in both or in one only; whether on the inner or outer side; and whether among the four individuals resulting from the second deduplication, those are equally prolific which retain the primitive diapluragms, or those which have new ones only,-or both together? In the T. flocculosa it is rare to sec one diaphragm only; and, again, it often happens that two contiguous frustules (bacilli) possess different numbers of them. Therefore, besides the inquiries indicated above, another might be instituted on this species, -whether or not the decluplication is always subsequent
to the formation of a diaphragm? a circumstance in which the essential difference between this and the preceding species scems to residc.

In the fossil flour of Santa Fiore, besides the 7 ? amplicephala, we find many fragments which cannot all be referred to the two preceding species. The vittr scem to have disappeared in all, owing to the absence of colouring matter, and the under-mentioned conditions of the shield are elearly seen in all.

It is justly obscrved, by Hassall, that there is a difference, in the mode of comection, between the two common species (flocculosa, fenestrata). In the sceond, there is a distinct cushion (cussinctto), in the form of a hinge, comecting one frustule to another. In the first, the angles are nearer together, the linge is wanting, and there remains in its stead a sort of detached border, showing that the very fine external membrane has been laccrated, yiclding to the excessive distension, but persisting partially to maintain the union, and without retracting itself, as it must do, in the other species, to originate the linge.

This diversity of condition appears to me in accordance with the different period of development at which the deduplication oceurs in the two species, as well as with the other considerations already mentioned. I think that we ought to take this fact into account, as also serving to support my opinion, as to the nature of this external membrane.

Besides the two living species, and the fossil one just mentioned, Kützing deseribes another, discovered by Lenormand; and enumerates three from America, the discovery of which is duc to Ehrenberg.
56. Terpsinoe.- Bacilli tabulati adnati, obsolete stipitati, demum semisoluti et isthmo concatenati, vittis transversalibus abbreviatis marginalibus (non perviis) capitatis in latere secundario nodosi.

If we imagine a scries of frustules of Tabellaria joined
together, not laterally, but the head of one to that of another ; or, in the direetion of breadth instead of length, we shall form the most just idea of the only species of this genus, (T. musica). And though I could not study it in the very small fragment with which Kützing favoured me, I still think I can assert that here also, as well as in the preceding genus, the canals run without intcrruption along the attachment and the free margin of the diaphragms ; and the apparently capitate vittæ are produced either by animal matter, or an open space in those imprisoned canals.

Fragments, similar in appearance to what is seen laterally in the margins of the frustules of Terpsinöe, are met with in the fossil flour of Santa Fiore.
57. Grammatophora.-Bacilli oblongato tabulati, adnuti demum semisoluti et isthmo concatenati; vittce longitudinales semper bince, medio interrupta, plus minusva curvatce.

Kützing, treating of G. marina, the most common, remarks that by calcination the exterior inflexions of the vittr disappear, and that, on this account, a greater distinctness is acquired by the canals, in which these vittæ are situated, and which extend uninterruptedly the entire length of the frustules. He represents these canals, by two delicate lines, one external, the other internal, to each vitta, as well in this species as in all the others. I see the external line clearly, and to me it scems to indicate the conjunction of the secondary valves with the primary. The striated margins, scen in many species (tropica, gibla, gibberula, serpentina) belong to the lateral surfaces; and when, as in G. marina, they are smooth, they turn yellow by the action of heat, like the remainder of these sccondary surfaces. On account of this coloming, it is difficult to see the external arches of the vitto, for these lines rim at a tangent to them. I suspect that along this suture there rims a finc canal, hollowed out in the
thickness of the wall, the cavity of which appears as a furrow, or rather as a perforation, at the extremities. The oval aperture (fenestra), which is visible in the middle of the secondary surfaces, belongs to them in appearance only, as in the preceding genera. It is only secn because of the transparency. In Gramnatophora, also, the appearance of intcrruptcd vittæ, is produced by the presence of diapluragms pierced by an ample central elliptical pcrforation, and containing a distinct canal along their attachment to the wall. Ehrenberg, too, describes thesc diaphragms, which dividc the intcrnal cavity regularly into threc distinct compartments. This arrangement is also slewn by heat, and by acids; and the various portions separate themselves so neatly, that we may, in a certain manncr, cffect a most accurate dissection. In this genus, these diaphragmes lave the characteristic condition of very various degrecs of flexature, which are constant in each species, and impart to them the most elcgant appearances. In the deduplication, the line of division between the new individuals, and the fine lincs which form the boundarics of the two new lateral surfaces, precede the appearance of the corresponding diaphragms. These are the fine lines delincated by Kützing within the vitte, and regarded by lim as the internal margins of the canals, in which he believes the vitto themselves to mect together. I'lhe deduplication of Grammatophora greatly rescmbles that of Achnantlidizunn.

Elrenberg describes the internal substance as consisting of a contral transparent and colourless body, containing small gastric vesicles, and tcrminated at cach extremity by threc-lobed dark-grecn appendages, which project into the thrce corresponding cavitics. 'The cushions (cuscinctti) or hinges that retain the frustules in conncction are vcry evident, in all the thirteen species of this genus, as in the Tabellaria fenestrata; and this remark gocs to confirm what we have said of that spccics.

Thic family of Tabellaricæ (I'etracyclus, Tabellaria, T'erpsinöe, and Grammatophora) constitute by themselves
aloue the order Stomaticæ. The two preceding families (Licmophorece and Striatellea) are comprised in the order Astomaticæ. These two orders constitute the tribe of Diatomeæ vittatæ.

Any one examining these beings with diligence will entirely convince himself that the distinction of the two orders is altogether insufficient. No Tabellaria has a central perforation in the secondary surface, at all to be compared with that of the Diatomcæ, constituting the order Stomaticæ in the preceding tribe. Nor have I succeeded, moreover, in discerning the other four perforations, described by Ehrenberg as existing in the middle of the terminal surfaces. As to the four genera comprised in this family, since the sole charactcr by which they were united together, and which was brought to establish the principal distinction between the Eragillarieæ and Striatelleæ, has becn proved to be erroneous, it will remain to be inquired whether there be other distinctive characters. I firmly believe that Tabellarieæ and Striatelleæ ought to constitute one family, since the diaphragms, which Ehrenberg considers charactcristic of the second exclusively, are not wanting in the first. The only doubt that I could rationally entertain would arisc in respect to the genus Terpsinöe. The figure of the lateral surfaces, the total form of the frustules, the arrangement of the vittæ, the direction of the apparent transverse canal, finally, the similarity to the other allied genera in external aspect, would inducc us to regard the frustules as connected to the head of cach other, rather than laterally ; as we have alrcady stated, to give a clearer idea of the subject. But then, how can we reconcile the transverse deduplication with all the other instances in which, on the contrary, it is longitudinal? For if we would attribute a greater dcgrce of gencrality to this law than to any other ; sctting out from the direction of the deduplication, always parallel to the secondary surfaces, to decide upon the correspondence of all the other parts with each other, we must then withdraw the title of
general from the other law (which is laid down as general), that the direction of the vittec is always longitudinal. In either ease, the genus Terpsinöe varies entirely from its allies, so that I think it must be regarded as the type of a distinct family.

Owing to the mere presence of vittæ, Kützing has elevated the group of three families just examined, no less than to a degree superior to that of an order, and which he denominates a tribe. The analysis we have instituted appears to me suffieient to prove that this eharaeteristic condition is solely due to the larger development of an organ whieh really exists, or is in some degree represented, in the various families of the preceding tribe. And though, systematically, we might wish to assign it a great importance, yet in a natural elassification it must certainly be subordinate to the assemblage of eharaeters. Therefore, abstracting this character, and lonking solely to natural affinities, I believe that the Liemophorex ought to be placed near the Gomphonemex, with the exception that the genus Licmoplior is to be placed by the side of Synedra, and therefore in the family of Surirellex; and all the other vittated Diatomex must be ranged in the order Eragillariere.

5S. Coscinodiscus.-Individna solitaria, libera, lorica bivalvis silicea, in latere senndario disciformis, cribrata.
'I'he only essential eharaeter that distinguishes this genus from the Cyclotello, is the areolation of the secondary surfaces. And it is entirely on this aecount, that, whilst belonging to the first tribe, it is placed in the last. We ought to repeat here, that when treating of Cyclotella, we notieed the points and radiated lines in the lateral surfaees of the freshwater speeies (operculata, Meneghiniana) and the fossil ones, (minulula, Rotula,) a cireumstanee that imperiously requires an union of the two genera. In what relates to this areolation, the expression cribrata, of Kützing, includes a false idea, inasmuch as these eells are not perforations at all, as this author
states (lorica perforata). The observation that, by placing the object alternately nearer to, or more distant from, the microscope, the cells and their intermediate spaces appear successively in light and shade, is sufficient to prove that the appearance is produced either by simple depression or elevation, causing a difference in the surface, or perhaps by minute cavities in the thickness of the wall itself.

Kützing takes no notice of the marginal perforations described by Ehrenberg, who enumerates as many as twenty-five in C. lineatus.

Ehrenberg describes the internal substance, either collected into a globular mass in the centre, or radiating irregularly all round fron the centre towards the circumference, or more frequently arranged in small distinct globules, like those of Melosira. He sees, also (C. patina), a globular gland, and a contractile diaphanous area which he believes to belong to the male sex.
59. Actinocyclus.-Individua solitaria, libera; lorica bivalvis silicea, disciformis (breviter cylindrica) cellulosa; cellule radiis pluribus lavibus interrupta. Septa interna nulla.

In a specimen of chalk marl, from Oran, in my possession, which consists almost entirely of Coscinodisci, Dictyoche, Melosire, and spiculæ of sponges, I could not possibly find a single Actinocyclus, although seven out of twenty-four species of this genus are indicated in this substance. I'his proves only one circumstance, which, for other reasons, can easily be imagined, that in the same formations the species and gencra appear to be different at different points. I think, also, that I ought to introduce two observations equally applicable to this genus and both the preceding and subsequent genera.

Among the innumerable valves of most species of Coscinodiscus, more or less regularly curved, many are found to be flexuose or curved in various ways; there is this varicty of curvature in valves perfectly similar to each other in every other character. Considering, then,
that in A. undulatus the six apparent rays are produeed by a similar flexuosity, a doubt necessarily arises, either that the two genera are not suffieiently distinet, or that the eharaeters dedueed from this flexuosity are not suffieient to distinguish the speeies. There oceurs, also, naturally to the mind, a comparison under this aspeet of the Coscinodisci with Campylodisci and the flexuose Surirellce.

In some individuals exactly referable to Coscinodiscus eccentricus, and which preserves both the valves, there are seen five ineomplete radii, whieh vanish entirely when the objeet is withdrawn so far from the mieroseope that the surfaee only is visible. I eonelude from this that these radii are so many internal partitions (setti). On this supposition, the speeies would not belong to any one of the three genera. Besides Ehrenberg having also found it alive near Cuxhaven, in the North Sea, it would seem improbable that sueh an organie condition could have eseaped so expert an observer ; and we must, therefore, suppose that a different thing is referred to.

Kützing describes and represents the radii to be perfeetly smooth; Ehrenberg, again, though he does not express it in his figures, says that they are finely punctated. In almost all the speeies there are indieated marginal apertures eorresponding to the radii. In many, whiels Elurenberg observed alive, the eoloured internal substance was variously grouped into many lobes near the centre.
60. Actinoptychus.-Individua solitaria libera, lorica bivalvis silicea disciformis (breviter cylindrica), cellulosa; cellula radiis septisque internis radiantilus pluribus interrupta.

The beautiful observations of Ehrenberg are fruitful in very important partieulars relative to some speeies of this genus, (duodenarius, sedenarius, octodenarius.) Of these partieulars, Kützing takes no notiee. The triangles into whieh the dise is divided by the radii, appear alternately clear and dark, precisely as happens in Actinocyclus undulatus, where that appearance is evidently produced
by the flcxuose state of the surface. A line traverses the middle of these triangular spaces. The marginal perforations correspond to the lines which border the triangular spaces in A. selenarius, to which again they run in the middle of those of A. duodenarius and of A. octodenarius; and the internal septa (setti), according to Elrenberg, always correspond to those radii which do not terminate in an aperture. We learn, too, from the figures, that the areolation of the surface is continued without interruption even over the radii, and that, besides the indicated apertures, there are visible also those of the opposite surface, which alternate with the former. And Elurenberg observes, that on this account there occurs an optical illusion not easy to explain. Hence arises a suspicion that an equal number of septa (setti), but alternating with each other, project from the inner superficies of both surfaces without reaching the opposite surface, and so the marginal apertures belong sometimes to one, sometimes to the other.

All the species do not seem to have the same structure. In some, at least, (ternarius, senarius, octodenarius,) the radii are figured smooth, as in Actinocyclus; it is not said that the triangular spaces are alternately clear and obscure, nor that they are traversed by a longitudinal line; and there remain doubts as to the marginal apertures.

As to the internal organisation, little can be colleeted from the observations of Elrenberg.

Finally, it deserves attention, that the fourteen species enumerated in this genus differ almost exclusively in the number of radii. Two only, (senarius, hexapterus,) having the same number, are much different from each other. Three have unequal numbers.

The family of Coscinodiscea (Coscinodiscus, Actinocyclus, Actinoptycluss) is, even in the opinion of Kützing, more nearly allicd to that of the Melosirex than to any other. I believe that both the Campylodisci and flexuose Surirella are to be regarded as allied to this family.
61. Lithodesmium.-Individua a latere secundario triangula in corpus prismaticum articulatum conjuncta.

The several frustules are united together by a shorter intermediate body, in whiel Ehrenberg observed a granulated surface ; this, he says, appears in young individuals only, whieh are, therefore, pliable when dried. He regards this granulation as indicating the process of siliccous ossifieation.

The only speeics of this genus (L. undulatiuma) inhabiting the North Seas, is too little known to exclude all doubt as to its nature.
62. Ampuitwirns.- Individua a latere secundario quadrangula (depressa) ad angula istlimo molli concatenata. Calence breviter stipitata aduatce.

Kützing limself observes, that the species of this genus may easily be thought to belong to the Isthmice. The only difference is that upon whieh the distinction of the entire fanily is founded, that is, the angular figure of the lateral surfaces. This charaeter is, indeed, extremely conspicnous, and in want of other data may serve very well to distinguish genera. But that this is of itself sufficient to separate, not families mercly, but even orders, will be coneeded with difficulty in a natural classifieation.

I found the very beautiful A. antediluviana among some speeimens of Biddelp)hia quinquelocularis, from Calvados, obligingly supplied by Brèbisson. The smooth fascia deserves attention; it traverses the frustule in the dircetion of its length. It is sometimes absent, sometimes double, or even triple. The appearanee of the areolation is different from that of the allied genera. It seems produced by minute projecting papillæ. The ample round apertures are very evident, eorresponding with each of the four angles of the seeondary surfaces, as deseribed by Ehrenberg, but omitted by Kützing from his description as well as his figure.

Kützing docs not acquaint us with his authority for referring as a doubtful synonym of this species to the Isthmia vesiculosa of Agardh, which, from that author's description, would rather appear to be a Desmidiea. In my monograph of the Desmidiex (1840), I had regarded this species as the type of a genus, which at that time was by Kützing denominated Isthmosira.

I have not happened to meet with the A. adriatica recently published by Kützing, (Phycologia Germanica, p. 115,) which, by the strong prominence of its angles, is much more allied to the Istlmia.

It is to be observed, that this projection varics very much in the preceding species, as stated by Ehrenberg, and as I have observed in the spccimens before mentioned. The other species, A. parallela, which hitherto has only been found in a fossil state, secms to be very distinct.

63. Auphipentas.-Individua pentagona.

Both species of this genus are of a doubtful nature. Collecting here together all that is referable to the family of Anguliferæ, (Lithodesmium, Amphitetras, Amphipentas,) I can only repeat what was before said of the second of these genera. The first is uncertain in its nature, but, at all events, can have no affinity with the second. The last has some resemblance, at least in external appcarance.

The two families, Coscidonisceæ and Angulifcræ, constitute the order Disciformes. I know not what character can have led Kützing into this union, for the very name of the sccond family contradicts that of the order. I believe that the Coscinodiscca cannot be separated from the Melosireæ, and that the Anguliferæ, cxcluding the genus Litloodesmium, ought to be united to the Biddulphicæ.
64. Tripodiscus. - Individud singularia? libera?
lorica bivalvis diseoidea cireularis, in utroque latere (sceundario) tribus processibus appendiculata.

The only species of this genus, which of itself constitutes the family of Tripodiscex, does not essentially differ from the Coseinodisci, except by three short appendices projecting from each of the lateral surfaces, which are tubular, and terminate in an aperture. Ehrenberg, also, suspects the presence of other smaller marginal apertures. I'he areolation of the surface is so confusedly represented in the figure, as to lead to the belief that even the organie condition is complieated, which gives that appearance.
65. Isthmin.-Individua trapezoidea vel rhomboidea, compressa, cellulosa, zona transversali ex cellutis minoribus formata, notata, stipitata, istlmis majoribus in catenas subramosas irregulares conjuneta. Divisio oblique transversa.

The eomplieated synonymy of the two speeies of this gemus (enervis, nervosa) justifies the new name given by Kützing to the seeond. The Conferva obliquata of Smith belongs to the first, and therefore Ehrenberg was in error when he bestowed upon it a new speeifie name (enervis). The other required to be named, and Kützing was fully entitled to eall it I. nervosa. By the laws of synonymy, therefore, the two mames obliquata and nervosa ought to remain. The longitudinal costre of this latter are quite extraneous to the surface; they projeet slightly into the interior eavity. Both in the one and the other the silieeous eellular membrane of the median portion persists, whilst within it a formation of two lateral valves takes plaee, which eomplete the two individuals preceding from the deduplication. This process reminds us of that of the Achnanther, and approaches the reduplication of Desmidiex.

The transverse zone, represented by Kützing in the median portion, is neither constant nor regular. I believe it to be produced by the permanence of some portion of the
cellular siliceous external membrane, which is lacerated in the deduplication. A portion of it may remain in the middle, whilst its lateral extremities are denuded, or vice versá, the former may remain denuded, and the latter covered. It still remains to be explained how the formation of the new valves takes place, whether they are organised in situ, or project by degrecs from the companion valves, to which they are contiguous from the beginning, the intermediate ring only developing itself subsequently (consequentemente), as in Melosira.

The gelatinous isthmus, which connects the individuals together, and the stipes by which the entire chain is affixed, seem to prove the presence of an extcrior gelatinous membranc.
66. Odontella.- Individua lavia, compresso teretiuscula medio fasciata utroque apice comibus binis lateralibus instructa et concatenata, adnata.

I am compelled, by the want of specimens, to confine my examination to that one only of the five species of this genus which I have already treated upon in reference to my Pleurosira thermalis; and I can only insist upon what I have stated on that occasion. The individuals of Odontella polymorpha, have an elliptic cavity in the middle, and at the extremities are compressed in the direction of the greater diameter of that cllipse; but vicwed laterally, they present an obtuse, but linear edge (canto). The lateral processes, by which the individuals arc connceted together, are very evident. The difference, thercfore, between this form and that of Pleurosira thermalis, and of P. Baileyi, is very great. Another important difference exists in the conjunction of the modian ring with the two latcral valves. In my Pleurosira there is on both sides a large, distinct, circular canal (canaletto), evidently projecting into the inmer cavity, and corresponding to an external furrow. But in the Odontelle there exists ncither furrow nor projection ; and I really doubt whether there be a fine canal. A
like condition exists in both with respect to the delieate points on the shield, which Kützing says he has omitted in his figure of Odontella; these being absolutely referable to the internal substance, as in the Melosirce.
67. Biddulphia.- Individua concatenata, punctatocellulosa (cellulis in lineas rectas transversales ordinatis), utroque latere obtuse dentata (dentibus marginalibus majoribus) septis transversalibus internis loculosa.

The inner eavity is not divided into distinet transverse cells, beeause the septa, far from being eomplete, only projeet in a very little way. Their greatest prominenee corresponds with the extremities of the frustule, and thence they proceed, growing more slender, towards the margins of the lateral valves, to whieh they exelusively belong. A similar elevated rim (orlo) in the internal eavity limits, also, the lateral processes by whieh the frustules are commeeted together. Each of these processes terminates in an aente corner (spigolo), and has therefore a three-sided figure, and is situated obliquely.

The terminal surfaces (lateral in respeet to the ehain) are smooth, or they present an elliptico-elongate figure, traversed, parallel to the smaller axis, by two lines whieh mark the conjumetion of the two lateral valves with the median body. Corresponding externally to these lines, is a deep furrow, whieh is elcarly seen in the projecting eorners (spigoti); internally there is a projecting fold (cercine), like an incomplete diaphragm of the areolar border. Henee the form of the frustules is very different from that indieated by Kützing, who represents them as flattened eylindroids. For they are almost parallelopipeds, and when they are united together by an external siliecous cellular membrane, more or less ineompletely persistent, they constitute a prismatieo-quadrangular filament. When they are free, the extremities are thinned, rounded, and lobed, aeeording to the number of ineomplete eells. 'Ihe two primary surfaees are smooth; they present transverse elevations and depressions in
correspondenee with the cells above mentioned. The lateral processes are more or less completely denuded of the fine cellular membrane, and are united in concatenation with eaeh other by a eushion (cuscinetto), bounded externally by a precise line, but internally inregular.

The deduplication takes place in this genus as in those preeeding. The double ligament merits observation, which remains to unite the median lobe of both surfaees of each extremity with the corresponding (ligament) of the adjoining frustule. This ligament, from the gradual elongation, breaks across in the middle, maintaining its rigidity.

In the Adriatie we have the two speeies, quinquelocularis and trilocularis. To the second I refer a form with smaller and less elongated frustules, whieh at first I thought a new speeies, and as such communicated it to Kïtzing, who, on the other hand, believed that it belonged to the quinquelocularis. I note this circumstance to indieate an important organic condition. When the frustules are empty and diaphanous, we can easily see, owing to the transpareney, the eostæ of the surface opposite to the one observed, and especially the two extreme ones, which correspond to the least thickness, and can therefore be seen along with those of the anterior surface. The number of the so-called cells is then apparently increased by two. It happens in this way that the quinquelocularis sometimes resembles the septemlocularis.

Kützing ascribes to this genus, as a doubtful species, the Denticella Frayillaria, of Ehrenberg.

In the quinquelocularis, I onee saw a frustule broken in the direetion of the conjunetion of the lateral valves with a median cincture, and surrounded by 4-6 polyhedral corpuseules, of a diameter equal to one fourth that of the frustule, and of a cellular strueture, adhering to the margin of the fraeture.

Finally, we eannot but remember the Istlimia nervosa, which scems to differ from Biddulpliia in no
other respect than the trapezoidal figure of its primary surfaees.
68. Zygoceros. - Individua libera (?) compressa utrinque corniculis doubus perforatis instructa, non concatenata.

The two speeies of this genus, (Z. Surivella, Z. Rhombus) were observed in a living state by Elrenberg, who saw that they were always free, and thenee established, principally on the want of stipes and of eateniform eonjunetion, their generie distinetion from Biddulphia.

He observerl, also, the smooth median faseia whieh he compared to that of the AFelosirce. Having regard to the rhomboidal figure of the scetion, and the large terminal perforations of the two lateral processes, the comparison with the genus Ampliitetras is mueh eloser.

In the chalk marl of Oran, I saw a fragment which I eould not better refer to any other genus of Diatomes. It was an oblong body, with three lobes on eaeh side, and two lobes with a large cireular perforation at the two extremities. The space corresponding to the two median and more prominent lobes, was divided from the two others by means of two very distinet lines, and the whole surface was regularly areolated.

The family of Biddulphix (Isthmia, Odontella, Biddulplica, Z.lgoccros,) has affinity, aecording to Kïtzing, with none but the following one (Angulate); and in the letter before referred to, he intimated to me his thoughts of reuniting them to the Tripodiseiex. Here I remind the reader of what I have said on the genus Amphitetras, and of the family of Anguliferæ, whieh, perhaps, exeluding the genus Litliodesmium, seems strictly to eonnect itself with the Biddulphiex. If there really exist also an affinity with the Tripodiseer, as Kützing maintains, that affinity may suggest the transition to the Coseinodiseer and thenee to the Melosirex.

In respect to the internal organisation of the Biddulphiex, we learn, from the fine observations of Ehrenberg,
that there is always a coloured substance disposed in lobes, which he supposes to represent the ovaries, in the midst of a transparent and colourless body.
69. Triceratium.-Iudividua libera, lorica bivalvis triangula, in utroque latere tridentata vel corniculata, non concatenata.

The perfect resemblance of the primary surfaces, and the large apertures of the three processes in the secondary, render this genus precisely intermediate between Amp/hitetras and Zygoceros; nor, indeed, can I comprehend how Kützing could place them in three separate families, and even in two distinct orders. As to the minute apertures, which Ehrenberg states to be uncertain, in the conjunction of the lateral valves with the median fascia, we may suppose that they are only apparent as in the Biddulphice, where they certainly do not exist. Of the four species hitherto described, two (Favus, striolatum) were observed by Ehrenberg and by Sonder in a living state, in the North Sca.

Like Zygoceros, the Triceratia become detached completely in deduplication, and, therefore, do not, like Amplitetras, form cateniform chains. They possess, also, a more decided motion. This character, however, does not appear to me of so much importance as of itself to fix the limits of distinct families ; and Kützing himself, who proposes a separate family (Angulate) for the genns Triceratium, comprises Zyyoceros in that of Biddulphiex, where the catcnxform association is so preponderant.
70. Actiniscus.-Individua solida radiata, stellam amulantia.

Although, besides a species exclusively fossil (A. Stella), omitted by Kützing, one of the other two has becn observed alive by Ehrenberg (A. Pentasterias), and the other exclnsively in this state, (A. Sirius,) still we
have no positive data as to the internal organisation of the genus.
71. Mesocena.-Individua libera solitaria, annulum circularem aut angulosum sape spinescentem referentia.

On the five speeies of this genus we can only repeat what has been said of Actiniscus.
72. Dictyocha.-Individua reticulata spinosa, libera, solitaria.

Independently of the distinctive eharaeters of the ten species (onc, the D. gracilis, being added by Kützing) whieh merit attention by the variety of form, size, proportion, disposition, and even number (D. aculcata, D. trifenestrala) of the (maglic) cavities, as well as the presence and length of the spines, already noticed by Ehrenberg, this author's olservations on some of these species that may be studied in a living state (aculcata, Speculum, Fibula) are very valuable. Lrom these it appears that the animal is soft, and quite external to the silieeous body which it bears on the surfaee, like a dorsal shield (scudo), as the Arcellec bear their ealeareous shell.

Though observations are wanting to show that the organisation proved only in some speeies of this last genus (Dictyocha), is common to the whole family of Actiniscea, yet we may infer by analogy that it is so. In fact, we eamot interpret the structure of those beings in any other way than by supposing the body of the animal to be external.

And how slight soever, may be our knowledge of the Dictyocha, it is still more than suffieient to prove an organie type not merely quite different from that of the other familiescomprised in the sameorder (Appendieulatæ), and in the same tribe (Arcolate), but even from the type of all the other Diatomex.

I believe that whatever be the rank assigned to the group of Diatomer in the Koologieal series, the first
division ought to be that of true Diatomeæ and Actinisceæ. Yet, in the actual state of science, we may eharacterise the first as completely lorieated, the second reduced, in the dermal skeleton (dermoscheletio), to the presence of a simple dorsal shield. It is indeed true, that, in other classes of animals (Mollusca), the characters derived solely from the dermal skeleton have not so high a taxonomie value. It is possible that we may come to establish the basis of classification, even in Diatomer, upon the particulars of their intimate organic structure ; but since this may never be realised, I believe that, provisionally at least, this character should be considered the principal one.

I'he order, therefore, of Appendiculatæ (Tripodiseieæ Biddulphieæ, Angulatæ, Actinisceæ) is the most artificial of all, and even in that respect inconsistent. By the same title that Zygoceros and Iriceratium are inscrted, we ought also to insert Amplitetras and Amplipentas (if they be true Diatomex). The Biddulphiex constitute a very natural group, when we unite the Anguliferæ and exclude Lithodesmium and the Angulatr. There would remain some doubt as to the genus Odontella, in respect to the want of areolation in the shield. Tripodiscus would remain intermediate between this group, and the Coscinodiscer. Finally, the Actinisceæ, in my opinion, ought to be entirely excluded.

Thus the entire tribe of Areolata (Disciformes, Appendiculata,) would be reduced to three groups only, (Coscinodisceæ, Tripodisceæ, Biddulphieæ,) to which, this denomination really belongs. And here, we cannot but adduce some considerations on the organie condition that gives origin to it. In the Biddulphieæ, the structure of the shield seems evidently cellular. In the Coscinodisces we have supposed it to be such on account of the optical phenomena it prosents, and examination eonfirms this supposition. Comparing, then, the tribe of Arcolate with the preceding, under this point of view, and independently of the animal or vegetable nature
of Diatomeæ, considered as organised beings, we find ourselves of neeessity, reduced to a dilemma. Either the shield of the Areolatic has a structure entirely different from that of the other Diatomex, or the shield of the latter has a compound structure, which eseapes the cye, though armed with the highest magnifying powers, owing to the tenuity, and minuteness of its elementary parts. Perhaps some one may attempt to elude the question, by admitting that this shield can be no other than a product of secretion. But, besides that, the produets of secretion are living beings, organised and susceptible of their own ulterior organic modifieations, as we lave previously demonstrated : in either mode it is necessary to admit a partieular organisation in the sccreting organ, because its products assume a partieular configuration and texture. If, therefore, the vital and organic power be understood as limited solely to the soft substance, and extended afterwards to the solid, it always comes to be the same thing-the peculiarity of organisation. The difference is reduced to the soft or solid constitution; nor docs this isolated condition prove, in my opinion, the mincral condition of a tissue which does not present any character either of crystallization or inorganic deposition.

Of the two diseordant opinions, I believe we ought to admit that which supposes by analogy the usual elementary structure to prevail in the shields of all Diatomeæ. And, in truth, the presence of striæ, points, depressions, clevations, manifests, in many even of those not arcolated, a structure neither uniform nor continuous. We find, too, that independently of this condition, many degrees of correlation conneet the genera of the last tribe to some of those of the two preceding. The Odontella are rightly placed near the Biddulpliia and Istlmia, though they do not possess an areolated shield. And if a decided organic affinity be undeniable in the entire organisation of such beings, it is reasonable to suppose, that cven in the structure of an organ common to them
all, the differences may be produced only by a slight modification in form, and principally in the dimensions, of the organic elements.

It remains to be decided what this structure is. The shield of the Biddulphiex seens to be a very simple cellular tissue. It is true, sufficient observations on its origin, formation, and suecessive growth, are wanting; but although we have no direct observations (which may deceive), we ought necessarily to admit it to be such. It will then be the same as that of other Diatomex, which often appears to be a very simple, uniform, and continuous vitreous lamina, but this appearance, perhaps, arises from the minuteness of the cells of which it is constituted, or from their complete obstruction and perfect continuity.

Whatever be the structure of the Arcolate, it can never be regarded as belonging to the walls of a cell. Indeed, on the supposition of the vegetable nature, and of the inferior rank that the Diatomeæ would oceupy in the class Algæ, we must assert for these, as for all the others, the same condition of a simple cell. For in a system where the distinction of monogonimic, polygonimie, and coelogonimic cells is adduced as of high taxonomic value, a character of so much higher importance cannot be lightly neglected.

The study of microscopic beings presents much greater' difficulties than that of the microscopic parts of larger organisms. The ideas that we habitually form to ourselves of the great and the small, are relative to the capacity of our senses, and he who sharpens thoose senses the most by the aid of physieal instruments, most extends the relations of those ideas, to distant confines. In this way we come to persuade ourselves, that in nature there exists no absolutely great nor absolutely small. 'The minutest organisms are not, therefore, the most simple in construction, and their organisation frequently baffles all means of obscrvation. It follows, from these reflections, that in the study of beings of a given family
or elass, it assists us greatly if we seleet those that present the greatest complication of structure, because the comparison of these may reveal the organisation which others disguise under an assumed simplieity.

In the three tribes we have examined (Striatr, Vittatre, Arcolatre), Kützing arranges all the Diatomex whieh he believes to form a seetion of the first of the two classes into which he divides all the Algæ. No one who considers that even the Cliaræ are eomprised in the same class, will feel any wonder at this assemblage. But without calculating either the degree or the position attributed to the group of Diatoncer in the Organic Kingdom, and attending only to the examination of their ulterior division, I believe that the observations addueed may serve to demonstrate that in the three proposed tribes we have umatural dismemberments and assoeiations. The same conclusion prevails also in respeet to the six orders (Striatr, astomatiex and stomatiex; Vittatæ, astomatieæ and stomatiex ; Areolatæ, disciformes and appendieulate,) as well as to the ulterior divisions in the first two, taken from the continuity or interruption of the strix and the presenee of one or two stomatic apertures. Mueh more naturally established do we find the nineteen familics, (Eunotice, Mcridiex, Fragillariex, Melosirex, Surirelleæ, Cocconoidex, Achnanthex, Cymbellex, Gomphonemere, Naviculex, Licmophorex, Striatelleæ, 'I'abcllaricæ, Cosconidisceæ, Anguliferæ, Iripodiscere, Biddulphiex, Angulatre, Actiniscex ;) respecting these we have seen that, in the aetual state of science, few ehanges would be fully justified. Such changes appear to me to be the following :- the union of Meridieæ with Fragillariex; the separation of the genus Licmoploora from the family that bears its name, to join it with Bacillaria and Synedra in the family of Surirellex; to examine it again eomparatively with that of Naviculex, to decide upon the presence, constaney, and value of the eharacter of a median aperture, which alone serves to separate them; the comparison, under this point of
view, of the Licmophoreæ (excluding the genus Licmoplor (a) with the Gomphonemeæ; the necessary fusion into one only, of the two families Striatelleæ and Tabellarieæ, the character of median aperture given as distinctive of the second being absolutely false, with the separation of the genus Terpsinöe as a distinct type; the removal of the Coscinodisceæ, and probably of the 'Tripodisceæ, among the Melosireæ; the grouping together of the three families, Anguliferæ, Biddulphieæ, and Angulatæ, excluding Lithodesmium as uncertain; and leaving there the genus Odontella, which demonstrates the affinity of the entire group with the Melosireæ; finally, the decided separation of the Actinisceæ from all the other Diatomex.

These changes being admitted, and the principle being conceded, to its full extent, not to allow absolute value to any character taken separately, the Diatomer would be divided into two sections; the Actinisceæ, and all others that could be comprised under the name loricatce, unless we should refuse to acknowledge that the first (section) have really any bond of alliance with the second, except the siliceous nature of the dermo-skeleton. In the loricata it would be hasty to separate the genus Terpsinöe from all the others, which might be reduced to eight families only:-1, Eunotiex; 2, Fragillariex, (uniting with them the Meridicæ, the Striatelleæ, and the Tabellarieæ;) 3, Melosircæ, (comprising the Coscinodisceæ, I'ripodisceæ, Anguliferæ, Biddulphieæ, and Angulatx; 4, Cocconoidex ; 5, Achnantheæ; 6, Cymbellcæ; 7, Naviculex (with all the Surirellex;) 8, Gomphonemce (with all the Licmophoreæ, cxcept the genus Licmophora.) 'Ihese families, too, might be separated into two groups, according as the temnogenesis takes place by simple deduplication, (Eunoticæ, Fragillariex, Naviculeæ, Gomphonemex, Cymbellex, and Cocconoidex,) or by reduplication, (Melosireæ, Achnanthcæ.) I do not believe, lowever, that this distinction is so essential as it may seem; for cven in this case it appoars to me that the
evident complication of the process in the sccond group, proves the like of the apparently simple process of the first. In fact, it is indeed always necossary that the two new lateral valves of the two individuals be organised, even in simple Naviculex, and the separation of the two pre-existing always precedes the deduplication. It does not, therefore, appear to me that we can entirely agrec with Ehrenberg in what he adduces to distinguish the process of deduplication (sdoppiamento) from regencration and reproduction. We cannot say that anything gives way, where the formation of new valves appears, and that the division is effectuated by that. 'The division is merely the last stage of the process, and the persistence of the two exterior valves docs not seem to me sufficient to prove that a total regeneration of the two new individuals has not occurred. Nor can any one prove that a reabsorption of organic substance and a local renewal (ripristinamento) of organisation has not taken place. And since the new parts which make their appearance change the individual essentially, and do not belong at all to its individual growth, as Ehrenberg sagaciously observes, from this it clearly follows that it had previously ceased to enjoy individual life. If I were not afraid of appearing too transcendental, I would compare the progressive deduplication (sdoppiamento) in the Diatomex, with the successive developinent of the terminal bud (gemma) of the Scrtulariex. This unfolds itself (si sdoppia) into two organisms, which, in smaller dimensions, might appear almost equal ; but one of these enjoys an individual life, the other, again, becomes halved (si sdoppia), and so on indefinitcly.

As respects the rank and position to be allowed the Diatomex in zoological classification, it results from the observations hitherto collected, that nothing positive can be asserted. No onc, henceforth, will have a right to contradict the authoritative opinion of Ehrenberg, who ascribes them to the class of Polygastric Infusoria.
[Kützing has recently published (‘ Botanische Zeitung,' 3d of April, 1846, No. 14, p. 249) some new Diatomeæ, discovered by Brèbisson, at Falaise. An Achnantlidium, a Gomplionema, two Navicula, a Ceratoneis, two Synedra, and a new genus belonging to the family Striatelleæ.
73. Pleurodesmium.-"Trichoma articalatum fasciceforme, articuli plani sape geminati, fascia transversali media lyalina notati, ex sulcis longitudinalibus obsolete punctatis (perforatis?) costati; costis rugulosis.

And thus is completed the number of seventy-two genera proposed (in the preceding entumeration Kützing omitted number 49 by mistake) ; and the number of species is brought up to more than eight hundred.]
(For further information in regard to these genera, and additional ones since proposed by Kützing, see his 'Species Algarum,' 1849.-ED.)

ANNOTATIONS.

Page 4.-Without engaging in controversy, rather to show our high estcem for Kützing, we deem it neccssary to subjoin a few words, lest we should seem desirous of cluding the question, or not duly weighing the reasons of this excellent author. "There do not exist in nature definite (scharfe) boundaries between species, classes, and kingdoms, and our having admitted thesc theoretically, leads us to regard some inferior animal forms as plants, and some vegctable forms as animals. The limiting of the boundaries between the two organic kingdoms is always a problem. All metaphysics should be excluded from the study of nature, in which we can only proceed by the empirical way, and therefore we ought to restrict ourselves to what we see, observe, and understand." These thoughts, expressed by Kützing, ("Ueber die Verwandlung der Infusorien in niedere Algenformen:' Preface,) are strictly logical. But the conclusiou deduced by the author is not lcgitimate, that we ought to admit a common point of departure for the two kingdoms. If it be absurd to admit the problem to be solved positively, it is equally so to admit that it is decided ncgatively. The contradictions to which he alludes, as produced by the false supposition of the existence of a limit betwcen the two kingdoms, belong to authors or books, and not to the science. The very examples, the vibratile cilice of Surirella Gemma (Ehrenberg), and of the spores of Vaucheria clavata (Unger), have an answer in the obscrvation of Siebold. All the observations on the mobility of the sporidia of the inferior Algæ, of the spores of Vaucheria,
of the Zoosperms, of Splagna, Chara, Marchantice, Filices, and, lastly, of Fucaceac, prove nothing more than this, that vegetable beings, in certain stages of their development, and in certain conditions, possess a mobility that simulates animal mobility. It is a positive fact, that the complicated animal organisation discovered by Elurenberg in many of his polygastrie Infusoria, eannot be recognised in some that are referred by analogy to the same class; but it does not at all follow, from this, that we ought to regard these sporidia and the spores of Algæ as animals; for, besides their want of this organisation, they manifest an evidently vegetable nature by their subsequent development. Neither ought we to deny an animal nature to other beings in whieh this complieated organisation exists. 'The multiplication by division, or', in other words, temnogenesis, is not, as Ehrenberg believed, exelusively animal. By good right we admit it in vegetables also. But is the organie process by whieh it is accomplished the same in the two kingdoms? If the eharaeter, in its generality, eannot serve for the distinetion, it only follows that there is a necessity for further researehes in order to discover the peculiarities.

The Closteria, and Desmidieæ, in general are plants, and not animals. In the aetual state of seience, we are eompelled to admit this proposition. The organie strueture, the physiological phenomena, the history of their development, the chemiealmaterials they contain, manifest, in these beings, a perfect correspondence with others, which, in every point of view, eorrespond with the abstract idea of a plant. But what they present in eommon with other beings, evidently animal, is merely an appearance, or, at the most, a resemblance, in external form. Ehrenberg was misled by this appearanee, and guided by this fallaeious similitude, thonght that he discovered in the Desmidiex, the same organie peeuliarities which proved the animality of other beings. Ought he to have reasoned thus? However, the most accurate observer, and the man of genius, is liable to error. Nor by this can
his merit ever be impaired, or the bencfits he has eonferred on science be diminished. The loss will acerue only to those who, disdaining the fatigue of observation, eontent themselves with the authority of a master, and accept indifferently his real diseoveries and his errors. Heaven be praised, the day of authority has passed away, and he who bends to the yoke, may wander in peaee, but scienee will not proceed the loss, and may even derive advantage from these crrors. From the study of the Desmidiere, and comparing them with animals, valuable knowledge on the intimate structure of vegetables has been derived.

The very beautifnl observations of Flotow, upon what he terms Hrcmatococcus plaviatis, seem to prove its animal nature. Nor does the appearance of some Algæ (determined by Kützing from the figures as Ulothrix tenerrima, U. tenuissima, Gloiodictyon viride, \&.c.) in the vessel where the supposed IIcematococeus had remained immersed in water for some time, after having been previously dried for fourteen months, certainly demonstrate that these represent a different stage in the existence of the same being. If such were the case, we must infer from it, that in despite of all appearances of animal nature, this Hrematococcus was really nothing but the germs of some Algæ, and therefore vegetable.*

We are led preeisely to this conclusion by the still more accurate and valuable observations of Kützing, on the metamorphoses of Microglena monadina into Ulothrix zonata, and of Chlamidomonas Pulvisculus into Slygeoclonium stellare. Some may raise a doubt whether the globules, from which the filaments of Stygeoclonium are developed, were preciscly the same as those that moved at first, and were furnished with a red spot and a ciliary appendage; and again, whether they were previously mixed together, and confounded with the others, owing to their resemblance in external aspeet, or only made their appearance (comparsi) subsequently. But

[^234]still, admitting that we are treating absolutely of the being that is regarded as an animal by the author, and denominated Chlamidomonas, and that the Stygeoclonium aetnally derives its origin from it, the conclusions from this fact may be reduced to the following; that the germs of Stygeoclonium possess motions similar to animals; that they are provided with a red spot similar to the eyes of Infusoria; that they even sometimes possess a terminal cilia; sometimes a transparent space or an aperture by which they fix themselves, to vegetate; and the supposed Chlamidomonas Pulvisculus is nothing more than the germ of Stygeoclonium. As to the other organisms, as well animal as vegetable (I'traspora, Palmella botryoides, Protococcus, Gyges, Pandorina, Monas, Gloeocapsa, $\&(c)$ which seem to have an origin similar to that of Chlamidomonas, Kützing merely intimates their similarity of form.

Our author rightly distinguishes the two methods pursued in the study of organic beings; to consider them either with Linuæus, completely developed, or with Goethe, in their successive development. 'I'he definitions of the former are derived from an empirieal synthesis; I do not allow that such can only be arbitrary, because no empirical idea can be defined; for it appears to me that we can know nothing more than we learn by our senses, and therefore I rather believe all those definitions to be arbitrary which are not logieally empirical. The history of the successive development of a being, approaches more nearly to the true idea that we ought to form of it, not beeause that idea is absolute, for there can be nothing in nature absolute to us who form part of nature herself, but because the notion or conception of a thing is so much the less incomplete, the more numerous the points of view are from which we consider it. And thus, in examining the successive stages of development, we always fall into arbitrary error, for time has no interruption, and in this respeet there is an imperfection inherent in our nature; for we
want a measure for the fraction into whiel time, as well as space, is naturally divided.

It is true that, in the study of nature, we ought to proceed independently and abstractedly of any preconceived idea, attending to phenomena only; but still it, is necessary to seleet these phenomena one from another, to eompare them, to separate those they possess in eommon, and those in which they differ, thus gradually ascending to synthesis. Every metaphysical idea, assumed \grave{a} priori as the basis of a doetrine, is of necessity arbitrary. But synthesis, logically executed and preeeded by the analysis of individual faets, leads us seeurely to the attaimment of knowledge. 'There may be error' in the observation, or in the deduction, but never in the method.

When Kützing, combating the prineiple of the existence of a preeise limit between the animal and the plant, concludes that there exists no suel limit, he only substitutes one metaphysieal prineiple for another, and therefore wanders from the maxims laid down by himself just before.

When he demonstrates that movements, and the organs by which these are performed, are not exelusively those of animals, and that there may be an appearance of an eye, a stomach, and a mouth, in vegetables, he controverts his own theory of a double nature, animal and vegetable, in the same being.

The observed faets are valuable. They prove the insuffieieney of the charaeteristies given by anthors to distinguish animals from plants. And, even if it should remain impossible for our most remote posterity to decide, whether given beings ean, or ought to be ineluded in the abstract idea of a plant, or in that of animal, this will not suffice to confound the two ideas, because their empirical nature is relative, indeed, but not arbitrary.

Perhaps the most important observation of Kützing, on this subjeet, is that of the different vital phenomena presented by the most simple vegetables, aceording to the prevalenee in them of the external gelatinous (cellulose)
membrane, or of that internal one which he terms amylaceous, and which is the primordial utricle (of azotised quaternary substance) of Mohl. In this second case, there are movements, and cilix by which they are effected. The sporidia of the lower Algæ, the spores of the Vaucherice, the spirilla of antheridia, the filaments of Oscillarieæ, are either destitute of a gelatinous sheath, or it is softened and almost dissolved. The air promotes the development of the gelatinous substance, light and heat that of the amylaceous.

Inseparable from the preceding question is that of speciological and generic limitations. It is a demonstrated and very important fact, that many organisms described as spccies and genera of the inferior Algæ, arc merely transitory forms of morc complicated beings. The consequence to be logically deduced, is the cxclusion of these supposed species and genera from the catalogue of beings. He who desires to continue the enumeration of them as such, ought, to be consistent with himself, to establish species and genera cven of the transitory forms of all other beings in mature, unless he maintain that the transitory forms of inferior organisms differ in this respect from those of the superior, inasmuch as they can persist as such, live, and multiply. I bclieve that this position cannot be impugned even as respects the most clevated organisms, since Tcratology furnishes a sufficient number of examples to prove the possiblc permanence of cvery transitory form; and in the inferior organisms, multiplication is confounded with simple increase. It would remain to be decided whether we could always clearly distinguisl reproduction from multiplication, and if so, whether we posscss positive data to dctermine the attainable point of organic perfection of which every bcing is capablc. But, since wc are oftentimes destitute of this secure criterion, we ought to obtain data by observation, and to consider that developmout to be the highest which is the highest we are able to obscrve. Nor can any one assert that if develop-
ment be arrested at some intermediate form, this has not oceurred from the want of favorable circumstanees, and ought not to be considered transitory. As Monstrosities arc classified, to facilitate study, or lead to the attainment of general notions (concetti), so I allow that the transitory forms of the inferior organisms should be classified, compared and, if you please, named systematically; but that they ought to figure in the same rank with forms permancntly attained, and truly specific, I can never logically allow.

Page 7.-Some regard the epidcrmis as a product of secretion, and thereforc destitute of organisation and lifc. Rceent inquiries as to secretions, prove that they are aceomplished by a process exactly similar to that of nutrition and growth. The question is now redueed to decide whether the product of epidermal sccretion eeases to live whilst it still forms part of the animal structure, and when this ehange takes place. I am glad it is in my power here to introduce a note I have reccived from the learned Moses Benvenisto.
"The epidermis, as well as the more complicatcd parts, whiel dcrive their formation from it, and possess charaetcrs and functions in common with it, is eertainly organised. But this organisation is of an inferior grade to that of many other tissues, because it is simply eellular and not vaseular or fibrous. It is similar to the produets of sceretion which abound in nueleate eellules, not elongated into fibres, nor developed in eanals; but with the difference, derived in part from the eontaet of air, inpart from the aetion of absorbent vessels, that this cxtcrnal secretion possesses no elementary liquid to maintain the cclls disaggregatcd, floating, and inflated; henee result only cells thatare closcly united, compressed, and disposcd in numerous superimposed layers. But I hold a middle course between those who say that the epidermic substance is inorganic and dead, and those who will have it to be existing per se, and living by a life of its own. In my opinion it has an organisation, and therefore a life,
but of a low degree, and is also the product of secretion from another more noble and complex element of the body over which it is extended. What is this gencrating element? This is a necessary inquiry, and not less important than interesting to the physiologist and medical practitioner. This element certainly forms part of the tegumentary membrane, in which the epidcrmis constitutes the ultimate layer and most superficial covering. I do not believe that it can be the follicles or crypta, because these minute organs afford mucus, oil, or cerumen, a liquid adapted to lubricate, but not to organise, capable of accumulation, but not of concretion; for when once covered with epidermis, we cannot conceive how their apertures can still secrete oil (sego) or any other liquid whatever ; so that if the cutis be considered as the same with the mucous follicles, the epidermis is thin where these are abundant, and, again, it presents the greatest thickness where these are rare, or absent, as in the palm of the hand, or the sole of the foot; finally, because very often in morbid thickening of the epidermis, we do not find the follicles varying from their natural condition. But I bclieve that the organs producing the epidermis, at least in most places, and in most instances, are the papillæ which possess so many vessels of every kind, that we cannot suppose them wanting in the function of sccretion. And indced we observe that wherever the papillæ are most numerous, most developed, and most vascular, there the cpidermis is the most manifest. It is thickest on the palms of the hands and the soles of the feet, whore, to serve the office of touch, the papillæ are most numerous, and are organised and arranged in a particular manner. It is thickest on the tongue, where the sense of taste requires an abundance and prominence, of the papillary organs. And spaking of mucous membranes, wherever they exist there also exist sensitive papillæ, animated by nerves of sense, that is in the vicinity of the natural orifices of the body. According to the most recent teachers of pathological anatomy, and
especially Professor Rokitansky, hypertrophy of the papillæ is detected beneath the condensed epidcrmis, in inveterate ichthyosis, and in common warts. All accumulations of epidermis which assume the form of scales, spring from papillec developed in the form of cylinders, villi, and rami. According to Cruvcilhier, accidental horn is a morbid product of papilla of the skin, crowded together, and twisted into a papillary substance. But with regard to hairs growing physiologically and pathologically, as well as to hom, which scems always to be formed by an agghtitination of the skin, we must remember that, as they are composed of two different elcments, one an cxternal cnvelope of cpidermic nature, and the other, an oily mechulla, varying in colour, so both the papillie and the follicles concur in their formation. Both the one and the other are altered in different ways, preciscly according to their accidental, or pathological production."

As to the organisation of bone, there still remains a doubt with respect to the presence of saline particles mineralogieally deposited in the parictes of the bone-corpuscles; yet it is proved, that in the numerous concentric laminic that constitute the walls of bonc canals, in the radiating tubes that traverse them, and in the bone-corpuscles themselves, the calcarenns substance is in the same condition as the protcinc, with which it is found intimatcly minted.

Recent obscrvations have proved, what might icasonably be supposed, as to the shells of Mollusea, that they have a decidedly cellular structure, the lime, together with proteine, constituting the walls of the cells.

We know that the same is truc of the silex in the epidermis of Graminerc and Equisetaceæ, and of the lime in Corallines and othcr marinc Algæ.

Page 8.-" A cosmical history of the universc, resting upon facts as its basis, has, from the nature and limitations of its sphere, neccssarily no conncetion with the obscurc domain embraced by a history of organisms, if
we understand the word history in its broadest sense. It must, however, be romembered, that the inorganic crust of the earth eontains within it the same clements that enter into the structure of animal and vegetable organs. A physieal eosmography would, therefore, be incomplete if it were to omit a consideration of those forms, and of the substances which enter into solid and fluid combinations in organic tissues, under conditions whieh, from our ignorance of their actual nature, we designate by the vague term of vital forces, and group into various systems in accordance with more or less perfectly coneeived analogies. The natural tendency of the human mind, involuntarily prompts us to follow the physical plenomena of the earth through all their varied series until we reach the final stage of the morphological evolution of vegetable forms, and the self-determining power of motion in aninal organisms." (Humboldt Cosmos, vol. 1, p. 348. Otte's translation.)

Page 9.-Nägeli appears to me to have treated more profoundly than any other modern author on the limits of the two organic kingdoms, (Ueber die gegenwärtige Aufgabe der Naturgeschichte, inbesondere, der Botanil. II, Th. Zeitschr. fïr wissenschaftliche, Botanik. II Heft., 1840.) But yet objection nay be made as to the differential charaeter established by him, of a cellular membrane, ternary in the vegetable, quaternary in the animal : the primordial utricle of the permanent vegetable eell in the Algæ (amylid-cell of Kützing), whieh, like the nucleus to which it is always eonnected, eonsists of a quaternary azotised substanee, is sometimes, perhaps, not even accompanied by a ternary membranc (gelin-cell of Kützing) ; the cellulose itself bccomes permeated by nitrogenated matter (Payen, Kützing); and finally, an abundant ternary substance, isomeric with starch, is present in the organisation of animal beings, (Schmidt, Loewig, Kölliker.) The suggestion of Nïgcli that the chief cause of animal sensibility and mobility, resides in that characteristie (quaternary, azotised) quality of the eell-
wall, seems eonfirmed by the valuable observations of Kützing, already referred to, respecting the mobility of the inferior Algæ, of sporidia, of spores, and spirilla. But even if we admit this idea, we ean deduce no other than the following prineiple from the faets hitherto known. The primordial vegetable eclls (internal or naked primordial utriele), have, like animal cells, the wall constituted of a quaternary azotised substanee, and possess a mobility similar to animal mobility. Yet there remain material differenees in the contents. But, if this were not so, if obscrvation failed to detect a material difference between the rudiments (primordia) of the two kingdoms, no one, from that eircumstanee, would have a right to maintain that the difference does not exist. When we compare together the rudiments of plants, or those of animals, do we find material differenees corresponding to the almost infinite varicties of form and organisation whieh ensue with suceessive development? It is neecssary to repeat, that our senses are limited, and that if we desire to pass beyond those boundaries by powers of reasoning, we may do this by no other means than reliance upon other fiacts exactly observed. 'L'aking advantage of instances in whiel the power of our senses is improved, we reason upon others where that power is more limited. 'Ihus, in respect to the rudiments of organie beings, the observation of their successive development proves that even when those rudiments do not manifest material differences to our senses, these still exist.

Still we ought, in every way, to be extremely eautious in deducing anything from these observations which may seem to prove the animal nature of vegetable germs, cven when they are made with great accuraey; inasmueh as we can eontrovert them by others equally exaet of a contradietory nature. Such are those made by Nägeli upon his Conferva glomerata, var. marina, and upon the Achlya prolifera. In the former, espeeially, he could trace the entophytic development of the Bodo viridis, whieh, at a certain period, almost exactly rescmbles sporidia, but
does not at all partieipate in the successive ehanges that these undergo in germination.

Page 10.-Nägeli has digested in an able manner all the facts relating to vegetable movements. The first series of movements is intimately connected with growth, and in regard to this we do not possess sufficient data to establish a general difference between the two organic kingdoms. The seeond is referable to the different positions assumed by various organs of plants under the influence of external agents; and those movements are explained by an accumulation of juices in determinate tissues, excited by these agents, or by the elasticity of the cellular membrane. The movements of individual parts of certain organs are mechanically produced by the desiccation or intumescence of various tissues. But still the question remains almost untouched in respeet to the locomotion of the inferior Algæ, sporidia, spores, and spirilla. The impulse communicated by endosmosis and exosmosis, has certainly a large share in the phenomena; but, after all, there remains the fact of vibratile ciliæ, which seem to take part in these movements.

Page 12.-The Protococcus and Gregarina are beings that ;present the greatest degree of simplieity in their permanent state. Though, down to 1842, I had limited the genus Protococcus to those vegetable beings only which really present the greatest possible simplicity, other authors, and Kützing in partieular, continue to insert species of more complicated organisation; hence some confusion is created whenever we refer to this example of organic simplicity.

I admit into the genus Protococcus only those vegetables which, according to our means of observation, are reduced to a simple eell. When the period of reproduction arrives, the wall of this cell is either reabsorbed, or is laecrated, and its contents are poured out; the rudiments of new individuals make their appearance, which are never visible in the cavity of the maternal cell. The development of
new individuals oeeurs, on the other hand, inside the maternal cell of Chlorococcus and Hematococcus.

The genus Gregarina was proposed by Dufour, and very well deseribed by Siebold. Kölliker examined six species (Die Lelire von der thierischen Zelle. Zeitschr. fïr wissenschaft. Botan. II Heft, p. 40.) 'they are simple cells, containing very minute granules (granelli), small drops of oil, and a central vesicle filled with a transparent liquid, with a few oily drops, and a dark round nucleus. They move by the expansion and eontraction of the cellular wall. Their reproduction is effeeted by an endogenous cell-formation. The contents separate into two globular portions, which aceumulate around two nuclear vesicles newly produced; the membranes form round the two globules, and thus arise two filial cells, which, after the redissolution of the maternal cell, separate from each other and begin to enjoy their individual life. The same author supposes that some speeies of Bodo, Monas, Spirillum, Vibrio, \&e., equally belong to this new family of Unicellulur Infusoria, but we have no direet observations to prove this.

Page 13.-Collecting together all that has hitherto been observed as to the first origin of cells, the supposition we are able to form is the following. The first elements we are able to perceive are the so-called elementary granules (granelli) in animals, and the mucous granules in plants. These are very minute solid corpuscules, of a quatermary azotised substance, capable of growth, but not of multiplication, nor of ulterior development. In the midst of these appear the mucleoli in plants. Around every mueleolus, mueous granules colleet together, forming a speeies of crust. The body resulting from this is a nucleus or eytoblast. Around this appears a membrane of a quaternary azotised substance, which is the so-called primordial utriele. Upon the external surface of this, a membrane of ternary composition, not azotised, is organised; this is the true cell-wall, which alone remains
after the primordial utricle and the nucleus have disappeared. Whatever may be the mode in which the new cells appear, we may assert, on good foundation, that the previous formation of a nucleus is constantly followe 1 by the primordial utricle, and in consequence by the cellular wall. The uncertainty and variety are referable to the first formation of the nucleus, to the contents which remain confined, or are successively formed between the nucleus and the primordial utricle, and to the mechanism forming the cell wall. It is not yet decided whether this origin of the cells is exclusively endogenous, or may not even be exogenous. Recent inquiries as to the nature of yeast, (Hygrocrocis, Leptomitus, \&c.,) seem to prove that nuclei alone, or, perhaps nucleoli, may separately give origin to cells. In such a case the mucous granules wonld be foreign to the new plant, and would contribute immediately to its formation; the nucleoli would be its germs. Every one sees the difficulties that are to be encountered in this research, the cautions that arc to be used in drawing conclusions from every fact observed, and the necessity of advancing always from the known to the unknown. Hence, in denominating the organic elements which are before our eyes, we are not to commence with what appears the most simple, but rather with that which is decidedly organised and clearly characterised.

In animals, besides the solid elementary granules already referred to, there are small vesicles incapable of ulterior growth and reproduction. They are simple. drops of oil envcloped in a stratum of congulated albumen, and may be imitatcd artificially. Other vesicles are capable of growth, but not of multiplication. 'They contain liquid albumen, and one or more oily drops, as, for example, the vitelline vesicles. Perhaps thicy are analogous to globules of chlorophyll in plants, or thosc of starch.

The nucleoli are vesicles similar to the preceding; they consist of a contained fatty substancc, and an envelope of proteinc. They arc susceptible of growth
and multiplication, which takes plaee by division. Their original formation is as yet unknown. The nuclei are vesieles formed of albumen or fibrine, or perhaps of caseine, eontaining, besides the nucleolus, an albuminous liquid, oily drops, and elementary gramules. The formation of nuclei is entirely obscure; but it seems proved that it eannot take plaee without the persistenee of the nucleoli. The nuelei are multiplied endogenously, and in consequence of the multiplication of the nucleoli. The eontents of the nucleus eolleet round the nueleoli originating from the division of the primitive nueleolus, constitute their partial integument, and set them free by the reabsorption of the maternal vesieles. The muelei are not only eapable of uniform growth, and of multiplieation, but also undergo numerous modifications, especially conversion into fibre. The cells have walls soluble in acetic acid, and are, therefore, composed of a combination of proteine, cither simple, or penetrated with horn, gelatine, chondrine, calcareous salts, \&c.; and they contain, besides the nucleus, water, albumen, fat, extractive matter, salts, and other compounds peculiar to the various organs.

Whether the formation of the animal cell be endogenous or exogenous, it requires the pre-existence of the nueleus, upon which the membrane begins to appear, whieh by degrees separates and dilates, surrounding it, and holding it adherent to a point within its wall.

More rarely, the formation of a eell takes place within a collection of granules having a nueleus in its centre. The gelatinous substance whieh superficially surrounds or unites and amalgamates the granules, becomes coagulated, so to speak, and is consolidated into a cellular membrane.

These partieulars are mostly taken from the work of Kölliker, in which there may be found a critical analysis of the physieal and chemieal theories proposed by authors to explain the facts adduced.

Page 16.-Nägeli gives an ingenious explanation why the multiplication of cells is always endogenous in
plants, and exogenous in animals. He supposes that the quaternary azotiscd substance acts catalytically on the circumjacent materials to produce organisation. In animals, therefore, the cellular wall acts upon the extracellular materials; whilst in vegetables, the ternary gclatinous envelope being once formed, the catalytical action of the nitrogenous portion is limited to the interior of the cell itself. We are indebted to Mohl for the discovery of cells that remain permanently limited to this membrane alone, (so called amylid-cell,) and thus we find an explanation consistent with this theory, and also with the facts recently observed in the development of yeast.

Though it be true that systematic distinctions are always baffled by nature when they are based upon the materiality of characters taken absolutely, it is yet true that general laws admit of 110 exception, and that a single one would suffice to destroy their generality. The appearance of exceptions proceeds from the complication in which natural facts occur, a complication that frequently disappears, when, instead of characters taken absolutely, we obtain a view of the organic and vital conditions which give rise to them.

Page 20.-The Tabasheer of the Bamboo, which consists almost entirely of pure silex, seems to be a product of simple excretion, and therefore in its nature inorganic. But in all other cases in which the presence of silex is manifest in plants, as in the epidermis of Gramineæ, Palms, and Equiseta, the part which it takes in the formation of the cell-wall is undeniable.

The stomatic cells of Equiseta merit particular attention, both from the silex they contain, and the transverse striæ they present on the internal surface. This resemblance to the shield of Diatomcæ might lead us to belicve that we ought to regard it as an argument for maintaining the vegetability of the latter. I do not think that I ought to dwell upon such an objection; I only notice it because I would not appear to be, or pretend to bc, unacquainted with it. Yet it seems to me important in
another point of view, the apparent complication that the simple cell-wall may assume when penctrated by silex.

Page 22.-In the description of Diatomer it often happens that the valves arc confounded with the surfaces. The surfaces are remarkably distinguished by established characters into primary and sccondary. In descriptions, it appears to me right to admit; for the sake of brevity, the denomination surface (faccia) for the primary, and side (lato) for the secondary. But the valves do not exactly correspond to the surfaces. The lateral valves wre never absent; they sometimes exist solely, as in Pyaidicula and Podosiva. In many cases, principally in Achnanthex and Melosirex, the lateral valves are so bent or curved as to form parts of the primary surfaces.

But the valves, which exactly correspond with the primary surfaces, are seldom distinct; and perhaps even where there is an acute angle for a boundary, as in Navicula, we camot say that there is a complete disjunction. In most cases, the two primary surfaces, and therefore the corresponding valves, unite into a continuous plane, with a re-entering curve. The distinetion of terminal surfaces, very evident, especially in the Surirelleæ, is most important. When there are distinct terminal surfaces, the primary surfaces are very limited. But these terminal surfaces may belong to the primary valves, or the secondary, or lateral. If we take the Eunotiex, it seems evident that the more or less acute or obtuse extremitics belong to the lateral valves, and thereforc the two primary remain entirely separated. But in the Surirelleæ, these seem again to belong to the primaries, and to participate with them in the process of deduplication.

Page 23.-The solid products which, under the form of incomplete diapluragms, project into the inner cavities of Biddulphia and Terpsinöe, belong to the lateral valves. I can say nothing of Climacosphania, but in the Istlmia nervosa we have something similar, though less developed. I think we may also refer the scpta of Actinoptyclues to
the same. Perlaps Terpsinöe may be placed by the side of Biddulplia in the Family of Melosireæ, by the samc eharacter. Their principal diffcrence from Vittæ, is in their transverse as well as longitudinal direction. The Vittæ belong to the primary valves as well as to the surfaces. These peculiarities of structure are eertainly very important, beeause we must reasonably suppose that they bear a direet relation to the internal organisation of these beings.

But if we consider that in the same genus (Isthmia), we have two species very similar to each other, one of which always presents those incomplete diaphragms, whilst the other is always devoid of them, we are of necessity led to exclude this eharaeter from the basis of classification.

Page 25.-The colourless membranc, which conneets all the internal organs of Diatomeæ together, constitutes the principal portion of their body, as Ehrenberg has well observed in many placcs. Its transparency impedes our view of its organisation. It seems that the vesicles observed by Ehrenbcrg in some species, and supposed to belong to the male organs, were direetly hollowed out of this substance. Their dilatation and contraction seem rather to indicate a respiratory function. I belicve the tube that runs longitudinally from one extremity of the Navieule to the other, and perhaps represents their organ of digestion, to be hollowed out, in like manner, from this substance, and void of a proper membrane.

Pagc 90.-In the Ceratoneis Fasciola, Elirenberg describes and figures a distinet median aperture in the centrc of the latcral surfaees.

Page 106.-Kützing, in the Plyycologia Germanica, assigns to the Naviculæ of Micromega pallidum, instead of $\frac{1}{38} \mathrm{~d}$ of a linc, $\frac{1}{80}$ th $=0.034^{\prime \prime \prime}$.

NATURAL HISTORY

OF

PROTOCOCCUS PLUVIALIS。

By FERDINAND COHN.
[Abstracted from the 'Nova Acta Acad. Cæs. Lcop. Carolin. Naturæ, Curios, Bonu,' tom. xxii, pp. 605-764, 1850.]

By GEORGE BUSK, F.R.S.

,

ON THE

NATURAL HISTORY

of

PR0T0COCCUS PLUVIALIS, Kutz.

Hermatococcus pluvialis, Flotow. Chlamidococcus versatilis, A. Braun. Chlamidococcus pluvialis, Hlotow and A. Braun.

The author commences his paper by referring to the observations of Flotow, on the same subject, under the name of Hamatococcus pluvialis, ('Nova Aeta Ae. C. L. C. N. C.,' vol. xx, p. 11,) and to whieh he assigns the highest merit. He proceeds to give an abstraet of Flotow's observations as an introduetion to his own.

However various the metamorphoses undergone by the Hamatococcus in the course of its development, they may, nevertheless, be referred to two prineipal forms,the still and the motile. The former, II. pluvialis quiescens, forms a sort of crust on the margin and bottom of the vessel in whieh it is kept; the other, II. pluvialis, swims about in the water.

The motile form is from 0.0003 to 0.0012 of a Paris ineh in diameter, and eonsists of a eolourless mueous envelope, probably open in front, within whieh is contained the true mother-cell, and which is either eentrie or exeentrie. I'he eontents of the latter are grumous and vesicular, and either altogether of a carmine red
eolour, or of one inelining to blood red or green, with a eentral, multiform, red nueleus; seldom altogether green. The mucous envelope is frequently wanting, or is so closely applied to the eell as to be searcely apparent. The red nueleus appears to have a speeial eoat, which, however, probably does not exist; it appears as a hollow vesiele, plaeed on or near to the inner surfaee of the wall, and presents on one side an opening, or, only half or two thirds of it may exist. The nueleus is detaehed by pressure, and in the spot where it was situated appears a eolourless vaeuity. The anterior extremity of the mother-eell exhibits either none, or eobweb-like proeesses, whieh are but seldom apparent, partieularly in the globular or ellipsoidal forms whieh represent H. pluv. rotundatus. Or there exists, at the anterior extremity, a wart-like transparent proeess, from whiel arise simple or bifureate, filamentous clongations or tentacles, as in the form II. pluv. papillatus. When this proeess is eonieal and attenuated we have I. pluv. rostellatus. Not unfrequently short setose hairs spring from the periphery of the mother-eell, stretehing aeross the spaee between this and the mueous envelope, and whieh characterise II. pluv. setiger.
'I'hese motile forms, which may be eomprehended under the eommon name of Π. pluv. versatilis, are transformed into the still form, beeoming round, and retraeting the various processes above noticed; whilst the mucous envelope is condensed into a papyracous membrane.

Ihhis still Trematococcus pluvialis, quiescens, aquaticus, genuinus, from 0.0001 to 0.0029 Paris ineh in diameter, forms loose masses without its being retained, however, by any speeial mueous hypothallus. It sometimes has, and sometimes has not a mueous envelope; the mother-eell is cither entirely filled by the sometimes grumose-granular, sometimes grunose, or even gelatinous contents, so that the boundary line is redued to eapillary thickness or is completely obliterated; or it is only partially filled, and the contents then form in smaller and, most usually, central
globular mass, which is probably contained in a second cell. 'This was evident, however, in only one case.

As more intimate constituents of the contents, both in the still and in the motile form, numerous more minute spherules are to be considered. The red formative material is to be referred to the sphere of fructification, the green to that of vegetation. Consequently the green spherules in Heematococcus must be regarded as germ gramules, or gonidia, whieh, when larger and internally organised by a eell nueleus, become green gemmules. When these gemmules, in the form just described, escapc from the mother-cell, they resemble the innumerable dependent forms commonly associated under Protococcus Monas; they exhibit an instance of retrograde mctamorphosis, producing a succession of similar organisms, which, shooting out in succession in a longitudinal direction, constitute confervoid filamentous forms, or, sprouting out, expand into Ulva-like growths. Amongst the latter, one is very remarkable, foliaceous, of a quadrangular figure, consisting of many eells, which, like a simple Hamatococcus cell, is carmine red in the centre and green towards the margin.

The green gemmules, however, are capable of progressive development, destined to reproduce the Hamatococcus at once, when, for instance, the individual to which they belong possesses sufficient red formative mucus for its penetration and fructification. This is apparent from the cireumstance that the two-coloured, still forms whieh are entirely filled with red and green gemmules, in process of time become altogether red. And in this ease the red coloration gradually extends from the eentral nucleus, as its original seat, towards the periphery, whilst in the retrograde metamorphosis the red coloration of the globules proeecds from without to within.

In whatever way the spores formed of this red substance escape, they develop themselves, and at an 111favorable time of year and dormant condition of vitality, float, in flocculent aggregations, on the surface of the
water. They then increase in size, become organised internally, and surrounded with a membranc derived from a thiekening of the peripherie layer of the spores. They are thus transformed into $I I$. pluv. atomarius, which, in the coursc of further development, becomes of a rose-red colour and gelatinous, surrounded with a mucous envelope, and constitutes the form of H. pluv. mucosus; which is finally transformed again into the normal form. The dispersion, therefore, of the red spores is not a procceding without object, or a morbid proeess, but subservient, in an incredible degrec, to the multiplication of the plant.

In a favorable season, and when the vegetative power's are in full activity, the spores, after their expulsion, remain adherent to each other, conneeted by a mucous material, afterwards becoming free, and successively transformed into the motile form of Hamatococcus.

Another motile form is of a smaller size, distinguished by its active motion, and characterised as I. pluv. porplyyroceplialus. It has a flask-like or obovate form, 0.0002 0.0004 Paris inch in length, with a red eapitate projection at the anterior extremity, and ventrieose posteriorly.

In general, from the motile condition all these forms pass immediately into the still form. But the alternation between the still and motile forms depends altogether upon external conditions, and is by no means eaprieious. Whether the still form, upon its division, develop motile individuals, depends upon the light and temperature.

Multiplication by division (status viviparus) oecurs both in the still and in the motile forms. The contents of the mother-cell, surrounded by a mueous envelope, divide into four (frequently morc) portions, cach of which ineludes a central particle of red matter, and surrounds itself with a gelatinous membrane.

The division frequently commences in the motile condition, and continues in the still. The younger individuals, with red mucous globules, spores, buds, and
green gonidia, and consequently furnished with all the requisites for existenee, burst the mother-cell, and become free. Should they belong to the second generation, and consequently arise from the division of already motile cells, the young individuals frequently remain in connexion, and revolve together until at last they beeome detached from each other. From this circumstance arise aggrcgations of 4, 5, 6 minute globules; even 8 individuals oeeur together in a mucous envelopc. Some cells divide even into 12 or more, and revolve in common like a Volvox.

Other forms of division are noticed. Besides this mode, multiplication by gemmation takes place, both in the still and motile forms (innovatio). Within the mueous envelope there is formed a parietal, colourless vesiele, into whieh the red atoms pass from the mothercell, and thus gradually colour the young individual.

The author proceeds to describe the effects of desiecation, \&c., upon the appearance and colour of the varieties of Hemutococcus, and notices the extraordinary power of vitality after desieeation for many months, when the Ifrematococcus has becn slowly dried; and even after quiek drying, it would seem that development is possible by means of spores and gemmules from the form named II. atomarius. And cven in some cases after such individuals lad been swallowed and evaeuated by Infusoria, for instance, by Plilodina roseola. Even momentary exposure to a boiling tempcrature does not destroy thcir vitality altogethcr, though it does so partially.

A summer temperature, however, very much promotes the devclopment of the Hamatococcus, so mueh so, in fact, that oeeasionally all the stages arc gone through within eight days. Commonly, the motile forms rctain that condition only for a few days or hours. When some in the motile form arc placed in a glass of watcr, within twenty-four hours a red border appears at the margin of the watcr as it evaporates, consisting of still vesieles undergoing division, whilst bencath it is a
broader, greener, reddish band containing the motile individuals. The motions of the various forms of Hematococcus are then deseribed, (p. 623,) and, from tho deseription, appear to be very like those of Euglena viridis. In faet so much so that Flotow himself compares them with those of Astasia pluvialis, deeming, however, that species, which is either identical with, or elosely allied to Euglena, as an animal Infusorium. He goes on to say, however, "that there is no appearance, in the Hamatococcus, of animal organisation, partieularly of a mouth, intestine, or stomach; nor is the admission of indigo into the interior ever observed."

Flotow considers that the source of the motion of the globules of Hamatococcus is quite problematical.

Having thus premised an abstract of the more important points in F'lotow's researehes, from whieh the above are extracts, the author proceeds to detail his own obscrvations, which he says are to be considered only as supplementary, in a great measure, to those of Flotow, which he regards as of the highest value.

On the $2 d$ January, 1850 , some partieles of sand containing Protococcus pluvialis which had been collected by A. Braun, were placed in a deep glass vessel and eovered with snow-water. The first moving forms were noticed on the Sth of January. The Protococcus had been in a dry state in the herbarium for two years. Other experiments showed that this retention of vitality endured through many years.

In his experiments the author found great convenience in the employment of little glass vessels in the form of a truneated cone, about two inches deep and one inch and a quarter in diameter, with a flat bottom polished on both sides. These little vessels were filled with water to the height of two to three lines. It was only in vessels of this kind that he was able to follow the development of a number of various eells throughout its whole course. Although he agrees in the main with the views expressed
by Flotow, the author differs from him, at the commencement, in one important particular. Flotow looked upon Protococcus pluvialis as a multicellular plant, the individual cells of which are held together by a common parent vesicle. Although he does not express himself particularly with respect to the kind and mode of this connexion, it may be taken that he regarded it something like that which obtains in Nostoc, or rather, perhaps, like the structure of Polycoccus punctiformis, Kutz., in which numerous cells are said to be surrounded by a thin, common cell-membrane. (Kütz., 'Phycol. Gcrm.,' p. 148.)

This view, however, is undoubtedly erroneous. The P. pluvialis is in all its phases a unicellular plant.

The idea of a unicellular plant, as first propounded by Nägeli, as a systematic principle ("Gattung. einzelliger. Algen.' Zurich, 1849,) does not apply throughout to the extent in which he employs it. He certainly includes under the term a number of genera, having a certain degree of internal relationship, as indicated by the fact that previous phycologists had united them in large natural orders, (Chamapliycea, Kg.; Ulvacea, Harvey; Palmellece, Decaisne, Endlicher, \&c.) On the other hand, the definition of a unicellular Alga, "that in it the individual is a single cell," is too wide or too narrow, (l. c., p. 1.) Too wide, because this definition may be applied with equal right to other Algæ, which must be reckoned among the multicellular, such as Edlogonium, which is a Confcrva, or Prasiola, onc of the Ulvaccæ, as Desmidium and Gallionella, or as Tetraspora, all of which are declared to be unicellular Algæ. 'I'oo narrow, because it is only by straining the definition that such things as Pediastrum, Spharastrum, which form definitely bounded bodies, and many Palmellea, can be included under it. Just as little do the characters assigned to a mincellular plant bear a comparative scrutiny. The unicellular Algæe arc said-]. to present morely a reproductive, and, normally, only a double kind of cell-formation ; this is, how-
ever', contradietory to the doctrine of Alternation of Generations, which is extensively applicable among the organisms in question. For it is only after a series of divisions that the true reproductive formation of spores takes place. And Closterium, or Eunotia, which, after numerous divisions, produce true spores by eonjugation, differ from Spirogyra and Ulothrix solely in this, that in the latter the parenteell, whieh conneets each pair of divisional individuals, being eonverted into a eutieular substanee, is persistent, whilst in the former it is soon dissolved. Whenee it is also ineorreet to say-2. that unicellular Algæ are normally separate and without organie comneetion, beeause the containing and interstitial gelatinous substance should not be regarded as sueh. At all events I have been unable to perecive any essential distinetion between the enveloping substance in Fragillaria and Mougeotia, genera which are equally readily separable into distinet eells, and in Nostoc and Apiocystis.

As far as this, therefore, I agree with the reviewer of Nägeli's obscrvations, (in Mohl and Sehleehtendal's 'Botan. Zeit.,' 1849, Nos. 41-45,) but when he goes on to assert "that there are no such things at all as unicellular Algex, and that each eell is only part of a system of eells contained one within the other, (l. c., p. 801,) it is impossible for me to comeide with him.
'lhere are, undoubtedly, unieellular Algæ, that is to say, Algæ, the fluid contents of which, sometimes containing already organised partieles, are enclosed in a single, semifluid, nitrogenous envelope, and this again in a eell-membranc, often consisting of several layers of different kinds ; and which, morcover, possess the faculty of dividing themselves into several sceondary cells, for the most part equivalent to the primary eell. To these unicellular Alga belongs Protococcus pluvialis:
'llat this is the ease is most elearly seen in the still form, which is most distinetly eharaeterised by its eell membrane, a more or less thiek, though always colourless, envelope. In some eases it is gelatinous, and then
surrounds the contents with a broad, peculiarly refractive ring, (Fig. 33.) In cases where this tunic does not exhibit a double contour line, it is manifested by the dark and slarp border surrounding the contents, and which, especially on the transition of the motile into thic still form, is the first and most certain critcrion of the incipient changc. Thus it resembles the membranc of many Protococcaceæ and other Algæ. It never secretes true thickening layers on the surface. Although this cell-membrane exhibits all the optical characters of one composed of cellulose, I have found it impossible to demonstrate the presence of that principle by means of iodine and sulphuric acid; it is not coloured by those reagents even after the contents of the cell have been expressed. But this does not show that the membrane is not of a vegetable nature, because other Protococcaceæ behave in the same way; nor can cellulose, by those reagents, be shown to exist in Oscillatoria, Nostoc, Merismopadia and other unicellular Algæ.

The still ccll always assumes a deep, almost black colour, upon the application of a watery solution of iodine; but this does not depend upon the coloration of the ccll-membrane itself, but upon the circumstance that the nitrogenous contents, coloured by the iodine, are seen through the transparent tunic.

The contractility of the contents when exposed to the action of acids or alcohol, proves that they are endowed with the same properties as the primordial utricle of Mohl, the amylid-cell of Kützing. But there is no evidence of the existence of any special laycr of the contents, which could be exclusively designated as a "primordial sac;" it would much rather appear as if the entire contents of the ccll (endochrome of authors), in most cascs, were to be regarded as essentially homogencous, and that it is only the outcrmost, for the most part densest pcripheral portion of them which possesses the faculties, which in other plants, particularly in the large-celled Algæ, appertain to an also optically distinct laycr. (Vide 'Ueber dic Rotation des

Zellsaftes,' in Nitella flexilis; by Göppert and Cohn, Botanische Zeitung, 1849, No. 37 -40.)

There are, however, phases of development in which the colourless or almost aqucous cell-contents can be distinctly defined from the denscr, coloured, gclatimous, peripheral substance. Whilst, therefore, in most cases, the still form, according to Kützing's tcrminology, would have to be regarded as hologonimic full-cells, in which the solid contents completely fill the cell, so, when the primordial sac and cell-juice are separated, they would necessarily come under the denomination of calogonimic, hollow cells.

The contents vary very much in consistence, colour, and solid constituents.
'Ihe red and green portions of the contents appear to be of equal physiological importance.

The green colour is removed by ether, on the evaporation of which solvent there remain green, afterwards colourless drops. Dilute sulphuric acid at first renders the colour palcr ; but its prolonged action produces a bright verdigris hue, which gradually becomes more and more intense, and often almost a bluc green. Hydrochloric acid has a similar effect; a tinge of brown is produced by nitric acid. Carbonate of potass scarcely affects the green colour; it is gradually but totally destroyed by caustic potass, the contents at the same time swelling and becoming transparent.

The red colour is also to some extent soluble in ether, but is less affected, or scarcely at all by any of the other reagents above cnumerated. It differs, thercfore, from the crythrophyll or the acidified anthocyanine of chemists, as well as from the colouring mattcr of litmus and phycoerythrin, which, according to Kützing, is peculiar to the Floridcæ. In its chemical relations it scems most ncarly allied to the phycohæmatin of Rytiphlea tinctoria, but the latter is insoluble in cther. It also scems to be related to the orange coloured oil, which, according to Nägeli, is formed, under morbid conditions, in many unicellular Algæ.

The contents of cells which have been long dricd, generally assume an oily appearance. The oily material, then resembles in every respect the red globules which have been described as being oil, in various species of Chroolepus, such as C. oleiferum, hercynicum, velutinum, auroum, and Jolithus. Like the latter, also, it is capable of becoming green.

The ehange of eolour from green to red in Euglena appears to be a process very nearly allied to that which takes place in Protococcus, if it be not identical with it. Great confusion and mueh contradiction is evident in nearly all writers who have referred to the subject of the eolouring matter in plants, and accurate researches on the subject would appear to be of the greatest moment.

The red substance of Prot. pluvialis is not always of an oily aspeet; it only becomcs so in more advanced age. Whether it really be oil, the author does not venture to deeide, although the relation of the material towards light, alcohol, and ether (and he might have added, water), are in favour of its being oil. And according to his researches, oil is much more generally distributed than has been supposed, among the lower Algæ; occurring in many true brown spores, such as of Eddogoniun, Spirogyra, Vaucheria, \&c.

When still or motilc cells are brought in contact with a very weak watcry solution of iodine, thcy become internally, in most parts, of an intense violet or blue colour. The author, however, does not believe that this colour aetually, in all cases, depends upon starch, as in the present state of chemistry it would appear necessary to eonclude that it did. He was satisfied that the red substance was invariably and entirely coloured blue. When some of the cells were ruptured, all the previously red globules had bccome entirely dark blue, so that the red eolour was wholly removed, whilst the green substance of the cell with its granules was not so mueh altercd, though also bluish. The larger drops also appeared bluc, so that there was no difference whatever, in this respect,
between their reaction and that of stareh, whieh also frequently oceurs in similar small globules. But that the red, oil-like, or at all events, fluid substanee, should be actually identical with the colourless, solid starch, which always presents a definite strueture, ean searcely be asserted. May there not, however, in the Vegetable kingdom, be a coloured fluid, exhibiting the same reaction with iodine, in all respeets as starch? If this be the ease, the infallibility of the blue reaction with iodine, as a eriterion of the presenee of starch, would become questionable ; and, partieularly in the case of the unicellular Algæ, in which large-grained stareh does not oecur, would this observation be of importanee. Nägeli had notieed the blue colour assumed by this orange-coloured oil on the addition of iodine, especially when it was collected into large blue-green drops by means of alcohol.*

Of great importanee, moreover, is the relation of the green and red colouring matters to eaeh other. For, notwitlistanding their different cliemieal and physieal conditions, the one passes into the other, and vice versá. I'he observations hitherto made on this subject, indicate that the red eolour whieh normally is always formed as the cells become drier, particularly in moist air, depends upon a less saturation of the eells with moisture; is the attribute in faet of a lower hydrate of chlorophyll. But that a defieiency of water is not the sole cause of the change of colour, is proved by longer observations of the vegetation of Protococcus. Nor does light either appear to be the exclusive eause of this phenomenon, whieh remains still in eonsiderable obscurity.

With respeet to the solid constituents of the Protococcus eell-eontents, they may be distinguished into chlorophyll vesielcs, eolourless or green granules, the above-mentioned amylaceous granules, and the nueleus.

[^235]The term ehlorophyll-vesicle (ehlorophyll-blaschen) was first introduced into the anatomy of the Algæ by Nägeli, although Meyen had previously expressed a similar view respecting the structure of the chlorophyll. Nägeli regards them as minute membranous vesieles, containing a mucus coloured with chlorophyll, only apparently prescuting the aspect of nuclei or hollow spaces, frequently forming stareh in their interior, and which are found in the Palmellaceæ, Desmıdieæ, Vaueheriaceæ, and multicellular Algre. In Prot. pluvialis, they present the appearance of mimute green rings, about $0.002^{\prime \prime \prime}$ in diameter, the interior being sometimes darker, sometimes more elear, and frequently almost opaque. They occur prineipally in the green cells, to the number of one, two, three, four, or more. Rarely observed in the red cells. They are coloured dark brown or violet, by iodine. The author smpposed that in Prolococcus they stood in connexion with the division of the cell; but could not determine with certainty that their number corresponded with that of the secondary cells. Kützing looked upon them as gonidia or eell-nuclei, assigning to them the function of propagation of the individual ; but Cohn does not coincide in this view, though ignorant of their true nature with respeet to the life of the eell.

The sometimes colourless, sometimes green granules, are very minute, none being more than $0 \cdot 001^{\prime \prime \prime}$ in size. The colourless may be regarded as protoplasma- (mncus, schlcim-) granules, the green as ehlorophyll granules, which latter must not be confounded with the ehlorophyll vesicles.

Whether there be a true eell-nucleus in Protococcus, Cohn has not asccrtained with eomplete eertainty. It is known, moreover, that in most of the other Algr, and particularly the unicellular, it has not yet been made ont satisfactorily, whether, in the first plaee, a nueleus docs occur, and if it does, what its function may bc.
'l'he presence of stareh has above been stated to be donbtful.

Microscopical analysis, therefore, demonstrates, in the still cells of Protococcus, whatever aspect they may present, the following elements :

1. A closed cell-membrane ; 2. contractile, sometimes colourless, sometimes green, sometimes red, cell-contents : the latter in innumerable droplets, the two former frequently condensed or separated into more solid granules; 3. lastly, one or more chlorophyll vesicles, and in certain stages a cytoblast. All these clementary parts occur also in the cells of other plants, and there is, consequently, no difficulty in the referring of all such forms, when in the state of rest (the special value of which is only shown by the history of their after-development) to the simple vegetable cell.
'This inquiry, however, is far more difficult in the case of the much more variously constructed motile forin.
'This form was considered by Tlotow to consist of a larger parent vesiele, surrounding mumerous smaller red and green cellules, and itself again surrounded by a mucous envelope, within which were two tentacula, often placed upon a beak-like projection.

The first thing ascertained by Coln was the nonexistence of the mmeous envelope. 'The optical appearanees distinctly showed the existence of, not an enveloping, at all events fluid mucus, but of a solid membrane.

Althongh this statement does not accord with the notions hitherto entertained with respect to similar appearances of an enveloping mucous layer in other Algæ-which has been regarded by Kützing as a gelatinous or mucous envelope, consisting of jelly (gclin), and termed by him a gelatinous cell (gelin-zelle) or tube, or sometimes amorphous gelatine; and which has been designated by Nägeli as an "enveloping membrane (hïllmembran), who supposes its outcr layer to consist of a liomogencous, semifluid gelatinous substance,-Colin states, that at all cvents, in the case of Protococcus, a structure so abnormal and different to what exists in all other
plants, does not oceur. The central coloured globule, lying in the colourlcss cnvelope, is certainly sharply defined, but not as in the still cells, surrounded with a strong double contour line, but with a delicate simple onc, which gives it a peculiar soft appearancc. Either by mechanical means, or by chemical reagents, the internal globular mass may suddenly be made to lose its contour, and to spread so as entirely to fill the cavity of the colourless envelope. From which it would appear that the internal globular body is not surrounded by any special cellulose-membrane, but only by one readily destroyed by chemical or physical agency, probably nothing more than a dense layer of protoplasm. Whilst, on the other hand, the external membrane represents a true cellmembrane, enclosing between itself and the colourcd substance a colourless, aqueous fluid, probably pure or nearly pure water.
'The motile form of Protococcus, thereforc, consists, as it were, of two cells, one within the other, both of which, however, differ essentially from the common vegetable cell: the external having a true cell-membrane and aqueous contents; the other, or internal one, with denser, muco-gelatinous, coloured contents, but without a true, rigid (starre) cell wall. Coln proposes to call the external transparent vesicle the "cnveloping cell" (hüllzellc), and the internal coloured one, the "primordial cell." The term "primordial sac, or utricle," which nearcst corrcsponds to this organism, can only be applied to its peripheral laycr, and not to that together with the contents; and the tcrm "amylid-ccll" of Kützing involves a chemical crror.

Neither of these bodics are truc, porfect cells, inasmuch as the former wants the primordial utricle, and the second is without the truc cell-membrane. Ithe two together would represent the perfect cell; and the entire aspect eorresponds, extcrnally perhaps, to a plant-cell in which the primordial utricle has become detached from the cellmembrane and contracted itsclf into a globular mass in
the interior. But in the present case the course of development is completely opposed to this view.

On the other side, again, the primordial cell corresponds to the cytoblast of the common plant-cell, not only because, like that, it is free, and for the most part excentric, floating in the interior of the cell, but also in its relation to the development of the cell-membrane, in whieh it agrees in its fumetion with that assigned by the theory of Schleiden and Schwam, to the nucleus, in the formation of the cell-membrane.

The form of Protococcus, named by Flotow Itam. pluo. versatilis setiger (fig. 15), presents a.perfect amalogy between the primordial cell and the meleus of the common plant-cell. He states that the filaments which proceed from the central mass to the peripherie cell-wall, are tubular, giving passage to the red molecules from the central mass. 'These filaments, however, which proceed from the outer wall of the primordial cell towards the imer surface of the enveloping cell, correspond morphologically to the so termed mucous filaments (sapstreams) by which the cytoblasts are commonly retained in the centre of their cells. That they also correspond chenically with these, is proved loy the fact that they are rendered more distinct by iodine, and that they ean be made to retract by means of reagents; and, in fact, they exhibit, in the course of developinent, peculiarities which eharacterise them as consisting of protoplasm.
'Ihe existence of these delieate threads passing from the central mass to the enveloping cell, and the appearance oceasionally of little partieles having molecular motion, serve to show that the contents of the enveloping cell are not of a gelatinous consistence, but of an aqueous nature. And the continuity of the primordial cell-wall with the filaments shows that it is surrounded only with a denser layer of protoplasm, and is not cnclosed in a rigid membrane of cellulose.
The form versatilis, thercfore, of Prot. plavialis is to be regarded as a cell with clear aqueous contents, in
which a central, also cellular, mass of protoplasm, or a primordial-sac-like organism, performs the part of a nucleus.

The most distinctive characteristic of the primordial cell, and what appears to constitute its most essential importance in the life of the cell in general, but partionlarly in that of the Zoospore (schwärm-zelle), consists in its being the contractile element of the vegctable organism, that is to say, that from an intrinsic activity it possesses the faculty of altering its figure, without any corresponding change in volume.

It was Ehrenberg who first asserted that there was an absolute boundary between animals and plants; finding even, as he fancied he did, in the smallest of the former, -the Infusoria,-which had previously been regarded as mere unorganiscd masses of mucus, the same systems of organs as those by which the most highly-developed animal is characterised, that is to say, distinct nutritive, motile, vascular, sexual, and sensitive systenis. Siebold called the existence of these organs in question, regarding the organisation of the Infusoria as a homogeneous parenchyma, in which he recognised only a mucleus, and in one division a mouth and œesophagus. Nevertheless he asscrted that plants and animals were essentially distinct, and that there was no transition from one to the other, the nature of the plant being always immotile and rigid, whilst the animal possessed the faculty of contracting and cxpanding its body. This contractility, he observes in another place, is the only certain diagnostic character, all others being invalid.

It is not, however, the animal organism itself which is contractile, but only a single tissuc in it ; all the rest, skin, bones, and connective tissuc, are as rigid or passive as the verctable membranc, or at most elastic; in the higher animals the muscles only are contractile, and only in the lowest, viz. the Infusoria, the entire body.

Whence Eeker assumed the existence of a special contractile substance, which sonetinnes occurs in a formed
state, as a contraetile eell or as muscular substanee, sometimes amorphons, as in the bodies of the Infusoria, Rhizopoda, and Hydroida. Kölliker confirmed this view, and carried it out particularly in the case of the Iufusoria, which he deelared to be unieellular animals with a contraetile cell-membrane and contents.
'Ithe eontractile substance is eliaracterised by the following attributes:-it is lomogeneous, or finely granular, transparent, of the consistence of albumen, gelatiniform, soft, more refractive than water, but less so than oil; insoluble in water, but gradually decomposed ; destroyed by eaustie potass; congulated and eontracted by earbonate of potass, as well as by alcohol and nitrie acid; having the power of forming aqucous eavities, which originate either by the separation of the water eontained in it, or by its reeeption from without; owing to whiel the remainder becomes denser and more granular; and, lastly, it presents the appearance, in water, of contraetile drops, which move like an Amoba.

All these properties had already been observed by Dujardin, in a substance of which the Infusoria and Rhizopoda are prineipally composed, and which he termed "Sarcode;" the aqueous spaees or hollows he named "Vaeuoles," regarding them as the most eharactcristie feature of the substanee; these spaees had been erroncously regarded by Ehrenberg as stomachs.

All these properties, however, are possessed by that substance in the plant-cell, which must be regarded as the prime scat of almost all vital activity, but especially of all the motile phenomena in its interior-the protoplasm. Not only do its optical, chemical, and physical relations eoincide with those of the "Sarcode," or eontraetile substance, but it also possesses the faculty of forming "vacuoles," at all times, and even externally to the eell; a property, it is true, which has for the most part been hitherto overlooked or misinterpreted.*

[^236]These clear, aqueous spaces, the so termed vesicular contents, are presented in all young cells, and play a considerable part in cell-division, and the sap-currents; they are in all respects analogous to the vacuoles of the sarcode, as already supposed by Meyen.

From these considerations it would therefore appear as certain as it can be made by an empirical deduction from the premises in such a subject, that the protoplasm of Botanists, and the contractile substance and sarcode of Zoologists, if not identical, arc at all events in the highest degrec analogous formations.

Whence, the distinction between animals and plants, viewed in the above light, must be thus understood; that in the latter, the contractile substance, as the primordial utricle, is enclosed within a rigid, ligneous membrane, which permits only an internal motion, evidenced in the phenomena of circulation and rotation; while in the former it is not thus enclosed. The protoplasm, in the form of the primordial sac, is, as it were, the animal elcment in the plant, in which it is confined, being fiee only in the Animal kingdom. Or, to express the thought, broadly, the cnergy of the organic vital activity, realised in motion, is esjecially connected with a nitrogenous, contractile substance, which, however, in the plant, is "cribbed, cabined, and confined" by a rigid, incrt membrane, absent in the animal.

The above motile attributes belong eminently to that form of the primordial sac to which the anthor has given the name of primordial cell, under which term le means gencrally to designate that form of the primordial sac which in itself assumes the figure of a cell, and is cither entirely without any rigid cell-membrane, or at least may exist independent and isolated from it. Such is the case, particularly in the Zoospores (Schwärm-sporen) of the Alga.
'This is exactly the condition presented in the primordial cell within the enveloping cell, in the motile form of Protococcus pluvialis.

The colourless protoplasm often constitutes by far the
greater part of the primordial coll, which then appears as an almost cntircly colourless, sharply-defined globule, owing to the fact that the protoplasm is invariably surromeded, where it is free, by a sharp border, as if by a membranc. It is only in the middle or at one end of the globule that there gencrally remains a deposit of the green substance in the form of a ring or lateral mass, (Fig. 26.)
'Ihe same colourless protoplasm occurs in all cells, even where the other colonred substanees are muel developed; especially does it always appear as a delicate, almost imperceptible layer constituting the outer boundary of the colonred primordial cell, the periphery of which then becomes sharply defined, and as it were surrounded by a delicate, tramsparent, membranc. (Fig. 16.) Besides this, the colomleas protoplasm seems to oceur exclusively at the anterior extremity of the primordial cell, where it is produced into a conical elongation or beak. (Figs. 18, 36.)
'The green sulbstance appears sometimes as a thin and fluid, sometimes gelatinons, sometimes more solid mueus, and is perhaps more abrudant and better developed in the motile than in the still form.
'The red substanee generally forms only a central mass of greater or less size ; more rarcly it constitutes exclusively the eontents of the primordial cell. It is interesting to trace all the stages of the transition from the green into the red sulistance, and one stage or phase especially has long been regarded with great interest, in which the red pigment is reduecd to a single minute granule, attached to the interior or to one side of the primordial cell, then representing what is described by Ehrenberg as the "red eye spot" of the Infusoria, and which was discovered by Kützing, Fresenius, and 'lhuret; in the spores of Algæ.

The three substances just considered present themselves in the form of colourless, red, and green globulcs, granules, and drops; but besides these, the primordial cells contain, at times, vacuoles, chloroplyyll-vesieles,
starch, and larger colourless granules of unknown material.
'The so termed "vacuoles" occur, in greater or less number, in the interior of the primordial cells; they must be regarded as clear aquenus secretions from the colourless or coloured protoplasm, which is consequently forced from the centre of the cell towards the pe:iphery. They are formed, and change, both in number and figure, under the eye of the observer, and present the aspect of large, hollow, clear vesicles, which have the effect of causing the coloured contents to appear frothy (Figs. 21, 27) ; and they are frequently developed in such number, that the coloured protoplasm seems only like a green deposit on the wall, and even there to be wanting in parts. By them it is that the internal watery cell-contents, as in the common plant-cell, become definitely separated from the more dense peripheric protoplasm (the primordial utricle). The chlorophyll-vesicles resemble, in all respects, those already described in speaking of the still form. They are occasionally wanting in every form of cell, but generally so in the more minute, one or two-coloured primordial cells. (Fig. 41.)

By starch granules are meant, in this case as in the still cells, very minute, colourless, strongly refractive particles or granules, rendered blue by iodine, and which, on the first appcarance of the contents, are present in great abundance in certain stages.

The colourless granules, which were met with only on one occasion, in almost all the cells in the vessel, especially in the smallest, were highly refractive, splerical, transparent corpuscles, visible through the coloured contents. 'They werc neither coloured nor changed by iorline, acirls, or alkalies. They resemble similar corpuscles which occur in Euglena viridis at certain times.

The author then proceeds to describe the infinite varicty in appearance of different individual cells, owing to the varying quantities or arrangement of the elements above described; almost the only part of a motile Pro-
lococcus cell whieh is alike in any two individuals being the enveloping cell.

The anterior projection, beak or rostellum, is always an immediate prolongation of the eolourless protoplasm, forming the outermost boundary of the primordial eell, but into whieh, speaking generally, the colonred substance is not eontinued.
'Ihe contraetile movements of the primordial cells is usually very slow, but oceasionally more rapid, in that ease very closely resembling those of Euglena viridis. These more rapid elanges of figure aud appearanee, take place partienlarly upon the partial evaporation of the water in which the cells are contained. But if this evaporation proeeed finther, and fresh water be not added, further and more important changes take place in the primordial cells of Prolococcus pluvialis, whieh may be comprehended under the term of "deliquescence." 'Ihis process is exclusively eharacteristie of the vegetable primordial cell, partieularly in all zoospores on the one side, and also in the Infusoria on the other.

Tlie phenomena in question present two stages or phases. In the first, the outlines appear less sharply defined, beeause the eoloured substance is somewhat retraeted from the border of the primordial eell. It is then elearly evident that the colourless protoplasm constitutes the speeial smooth boundary membrane of the primordial cell. The cells beeome flattened, and at the same time wider. The contents also are now altered; previously more homogeneous and transparent, they now beeome thronghout granular, and the red substanee runs together into large drops. At this time eommenees the formation of vaeuoles, the number of whieh eontinues to inerease. In this way the interior of the primordial eell again becomes eolourless, elear as water, and the granular, coloured contents, eompressed against the walls. The figure of the eell, in the meanwhile, is so mueh expanded that it comes to be applied upon the wall of the enveloping eell, ultimately filling it
altogether, (Figs. 27, 28,) so that the entire zoospore appears to consist of only a single, coloured, granular, vesicular disc, corresponding in size with the original enveloping cell.

The Protococcus pluvialis has true motile organs, namely, two long vibratile cilia arising from the primordial cell, and which, passing through two openings in the enveloping cell, move about in the water. These organs, during the life of the cell, move so rapidly that it is then difficult to perceive them; they are only recognisable by the currents they produce in the watcr. But when the motion is slackened they are evident enough. They are also rendered very distinct by iodine.

They are always placed upon the extreme point of the conical elongation, on the anterior end of the primordial cell, and in such a manner as to appear to be immediate continuations of its substance, and as that process itself consists of protoplasm, it is evident that the cilia must be regarded also as composed of the same substance. They appear in some cascs to possess an adhesive property. They resemble, in fact, in all respects, the socalled proboscis of certain Infusoria, such as Euglena and the Monades, and not to differ organologically from the non-vibratile but retractile filaments of Aconita and Actinoplerys.

It is only that portion of the vibratile filaments beyoud the enveloping cell that exhibits any motion, the portion within the outer cell is always motionless, and in that part of their course the filaments appear to be surrounded with a sheath. 'Ihis seems to be the case, not only from the greater thiekness at that part, but also from the circumstance, that when, from the passage of the cell into the still condition, the cilia disappear, the V-shaped, or forked internal portions remain visible. And it is then, also, that the openings through the enveloping cell become, for the first time, visible (Fig. 4.6.) Such are the "encysted zoospores" (umhiüllte Schıär!n-zcllen.)

There are, however, forms in whieh the enveloping membrane cannot be distinguished at all, and in general does not exist: these forms are designated "naked zoospores" (nackte Sehwärmzelle.) They are true primordial eells; that is to say, their external boundary is formed of nothing but the contractile cell-contents, or protoplasm; a true, solid, and rigid vegetable cellmembrane is wholly wanting. They thas correspond in their strmeture with the zoospores of most of the other Algae (Voucheriu, Didogonium, \&c.) These naked zoospores originate in various ways, and belong to various stages of development. The following varieties of this kimel of primordial cell may be distinguished.
L. 'Those which differ from the encysted only in the absence of the enveloping eell. This form corresponds with the yomger condition of the eneysted zoospore, arising from the division of the eell, around whiel the cnveloping cell is not yet formed.
2. Another form arises immediately from the still eell, distinguished by its verucose figure, and its, for the most part, eimabar red colour. It is of small size, and, narrow in slape (Fig. 32.) On "deliquescence" taking place, the primordial cell becomes expanded, and at the same time flatter and of a lighter colour, the coagulated red droplets exhibiting a lively moleeular motion in the interior: In this ease, also, large colourless vesieles are then developed in the interior.

In certain conditions, this form of primordial eell resembles, in its form and aspect, the genus Astasia of Ehrenberg.
3. Are very minnte naked zoospores, not more than $0.002^{\prime \prime \prime}$ to $0.005^{\prime \prime \prime}$ in size, mostly globular. They contain chlorophyll granules and red droplets, more rarely chlorophyll-vesicles, and colourless granules of unknown nature, as described above (Fig. 4.1.)
4. Perhaps the most remarkable of all the numerons aspeets presented by Protococcus pluvialis, is the form of naked zoospore named by Flotow Hamatococcus porphy-
rocephalus. It is in the form of extraordinarily minute (from $0.001 \mathrm{y}^{\prime \prime \prime}$ to $0.004^{\prime \prime \prime}$) globules, consisting of a green, red, and colourless substance (protoplasm) in unequal proportions. The colourless protoplasm, in these, as in all primordial cells, constitutes the outermost delieate boundary; the red substance is for the most part agglomerated towards the anterior end in minute spherules, the granular green substance occupies more the under part, whilst the middle is most usually colourless. The shape varies extremely.

Hence it is apparent that the naked zoospores, although as regards their development not of equal value, are all construeted in an analogous manner, varying only in their mutable form, size, and colour. But they are all true primordial cells, which before desiecation undergo deliqueseence, having no rigid, solid, ligneous inembrane, being enveloped only in a mutable layer of protoplasm, and with colourless green and red contents, in part organised into granules and droplets, rarely eontaining colourless granules of unknown nature, and chlorophyll vesicles, and always moved by means of two longer or shorter vibratile filaments.

Having thus gone over the anatomical description of the various forms of Protococcus, the author proceeds to the history of its devclopment.

1. The Protococcus pluvialis is a micellular Alga, a simple ecll, or at least the individual represents an organism which exhibits the conditions of a sinıple cell; eaeh multiplieation of the eell reproduces the species, and is at the same time an act of propagation; each dissolution of the parent-cell into sccondary ones constitutes a new generation; eaeh sccondary cell is an independent individual of the same species.
2. The Protococcus pluvialis is a plant subject to an "alternation of generations;" that is to say, the complete idea of the species is not exhibited in it until after a serics of gencrations. The forms of development which can be possibly comprehended in the idea of the speeies, do not
in reality make themselves apparent until a series of independent suecessive generations has been gone through.
3. The individuals of eaeh such generation are eapable of propagating themselves in new generations. The individuals of the seeond generation, are among themselves, speaking generally, of equal value; as respeets the individuals of the parent generation, they are sometimes of equal value with then, sometimes not.
4. If the sceondary eells are not of equal value to their parcut-cells, a series of suecessive generations must preecde the last generation, the individuals of whieh are again equivalcut to the first mother-eell. The number of these generations does not appear to be determinate.

Let us assmme that a parent-cell (A) has produced a number of secondary cells (13) which are of unequal value to their pareut. 'The individuals of this seeond generation propagate a third generation equivalent to their parent-cells (в) or not equivalent (c.)

In the first ease there may also be a fourth generation ($B^{\prime \prime}$), a fiftlı ($\mathrm{B}^{\prime \prime \prime}$), and more, whieh are all equal among themselves, and to their parents, but not equal to the parent-eell of the first generation (A); until at last a gencration is produeed which is not equivalent to its own parent. Now this is cither equivalent (Λ^{\prime}) to the first generation, and the eyele eloses with it, or it is still not equivalent to it (e). la that case, it cither propagates again a number of equivalent generations, (c^{\prime}. $\mathrm{c}^{\prime \prime}$. . .) or non-cquivalent ($\mathrm{D}, \mathrm{E} . .$.) until at last onc appears, Λ^{\prime}, whieh is equivalent to the first generation, and thus the cyele eloses. By equivalent, the author means suelı individuals or generations as correspond with each other in their essential, physiologieal, and organologieal relations, although they may differ in unessential properties, such as colour, size, internal eonsistenee, \&e. Non-equivalent, are those generations whieh in their strueture and vital rclations exhibit essential differenees, sueh as "still" and "motile" cells, and among these, again, their various forms; but partieularly those whieh are derived from a different mode of propagation.

There is a large number of different modes of propagation in Protococcus pluvialis, which, indeed, are all fundamentally analogous, but produce very different forms.

The main distinction depends upon the number of divisional individuals produced from a parent-cell. Their number appears always to be a sub-multiple of 2 . A cell may produce $2,4,8,16,32,64$ individuals.

The propagation depends upon a division of the cellcontents, particularly of the colourless or coloured protoplasm, or of the primordial sac. This body, without any demonstrable influence of a nuclens, is capable of subdividing into a determinate number of portions, in the ratio just stated. Each of these portions acquircs a globular figure, in the next place surrounds itself with an envelope of protoplasm, and then represents a visible organism, which, after the resorption of the parent cellmembrane, is capable of existence as an independent reproductive individual.
'The protoplasm which constitutes the external boundary of this body, like all organised protoplasm, is capable of secreting a rigid vegetable cell-membrane. 'I'wo conditions now may present themselves.

1. Either, such a rigid, ligneous membrane is formed within the mother-cell, around the portions of protoplasm separated by division as above, that is the primordial sacs: in which case there are produced only still secondary cells, usually different in their structure from the parent-cell. This process takes place only when the parent-cell itself belongs to the still form, that is to say, when the cell-contents or the primordial sac are closely surrounded by a rigid, tough, ligneous membrane :
2. Or, the secondary individual, surrounded only by a tunic of protoplasm, is liberated in this condition as a primordial cell, and developes two vibratile filaments; it then has the faculty of motion, and represents a naked zoospore. This process may take place as well in the segmentation of still, as of motile primary cells. Here, also, two conditions arc possiblc.
a. Wither, the zoospore docs not develop, during the period of its motility, any rigid, tough, ligneous membrame, but only when the motility has eeased, whereupon the zoospore passes into the still form. This is the ease in the peeuliar naked zoospores, of minute size, whieh are prodnced in greater number than 2 , that is to say, to the number of $8,16,32,64$, from the parent-ecll. They camot multiply until they have assumed the still form:
b. Or, the zoospore, during the period of its motility, aequires a delicate but rigid membrane, whieh, however, is separated from the primordial eell by an aqueous fluid; it then represents the encysled zoospore. These are capable of propagation by segmentation, reprodueing, however, only motile forms, although sometimes nonequivalent ones.

Besides this, the primordial eell in the eneysted zoospore may produce a second, rigid, tough, ligncous membrane, around its whole periphery, by whieh it is closely surrounded, whilst the delieate, onter cnveloping cell is removed. In this way the encysted zoospores pass into the still form, and the eycle of possible developmental forms is elosed.

These appear to be the essential laws to whieh all the phenomena attending the development of Protococcus pluvialis may be referred; and the anthor then proceeds to partieular instanees.

It is diffieult, from the numerous uninterrupted links of a chain of phenomena, to select that whieh should be regarded as the representative of the normal condition, and to which all the rest might be referred; but, on the other hand, it is indifferent where the eommencement is made, and the anthor thercfore eommenees with the still form, which, within a rigid, tolcrably thiek, ligncous membrane, indicated by a double contour line, eontains uniformly red, opaque, granular contents, contraetile in alcohol, and presenting in the eentre a eytoblast (?) in the form of a lighter colomred vesicle
(Fig. 2). This form arises from the metamorphosis of the cncysted zoospore into the still.

It may undergo changes, which may be distinguished as essential and non-essential. The latter have reference to the change in form and colouring of the contents; the former, to propagation.
'The latter process takes place by the division or scgmentation of the contents, at first as above stated, into two, then into four, eight, or sixteen, when the division usually terminates, and the scgments pass into the motile form ; although further still generations may arise in the same way. The segmentation takes place in the following mode. In the first place the cell becomes elongated, so that its diameter in one direction is twice as great as in the other (Fig. 5). Then a constriction of the contents is perceptible about the middle of the length of the cell, which gradually deepens, and the cell contents or primordial sac are divided into two halves (Fig. 6). These are separated by a line which forms betwcen them; and finally each is organised into a distinct globule (Fig. 7), which becomes surrounded with a ligneons membrane. The membrane of the parent-cell is passive during this process-contimning, for a time, to surround (sometimes in a gelatinous form) the secondary cclls; it is finally dissipatcd, and they thus become free. The part played by the supposed cytoblast in the process of segmentation is very doubtful.

During their dissolution, the cell-membrane of the defunct parent-cells is gradually converted into a mucoid substance, rctaining the sccondary cells more or less in connccted masses. In this way arises the Prot. pluvialis, leprosus, of Flotow. It is known also that other uniccllular Algæ and Infusoria (Chlamirlomonas, Euglena, Monas, Vibrio, Zoosporcs, Diatomaccæ, \&c.), minder certain circumstances, form similar envelopes, cither by the sccretion of a mucoid substance, or the transformation of their ccll-membranc into such.

After a certain number of such divisions, all in the
still form-usually after the third or fourth-the ultimate segments, instead of surrounding themselves with a ligneous mombrane, become free, in the naked condition, and developing the two motilc filaments, represent a motile primordial cell. (Fig. 12.)

The way in which the vibratile cilia are produced is quite obscure.

The production of motile zoospores may take place on the first segmentation of the contents of the primary, still form, or after the intervention of an uncertain number of such divisions as said before ; but it is clear that the segments of the contents of a still cell may at any time assume the motile condition, and that their proonged retention of the still form depends upon various external conditions. But with division, on the other hand, it does not appear possible for the still form to be changed into the motile, whilst the contrary may undoubtedly take place.

The production of the enveloping cell around the primordial cell is then described, as in a former part of the paper; and the analogy between this process and that of cell-formation, given by Mohl, Nägeli, Schleiden, \&c., pointed out. (Figs. 16, 17, 20, 21.)

The encysted zoospores, thus constituted, grow for a time very considerably, and after a certain time exhibit a tendency to propagate, that is to say to divide.

The contents of the primordial coll (which alone is potential in this act) exhibit lines of division into four symmetrical portions, most distinctly shown by the chlorophyll vesicles. 'Then, in directions corresponding to these lines, the cell-contents are divided into four contiguous portions, which gradually become isolated, and assume a globular form, afterwards develope the two vibratile cilia, and upon rupture of the parent-cell, become free, and swim away. (Figs. 12, 13.)

A new enveloping cell is afterwards developed, and these secondary motile colls become a second gencration of encysted spores, which, though in some respects unlike, yet must be regarded as equivalent to their parent.

Sometimes the enveloping cell is developed around each sceondary primordial cell, whilst still within the parentcell.

After a certain number of generations of this kind, their course is interrupted. A delieate doublc line is perceptible around the primordial cell, which is the first indication of the new, rigid, ligneous membrane, which is formed around it (Fig. 46). The motile zoospore, in other words, is again transformed into the still form. The primordial cell is converted into a primordial sac, and the eyele is elosed.

Besides these, which arc the most usual modes of propagation, viz. that of the still cells into two, and of the motile, into four sceondary cells; there are a number of others whieh may be considered as irregular, and in whieh forms are produeed, which do not re-enter the usual eyelc until they have gone through a serics of generations.

The cell-contents, for instance, of the still form, instead of dividing first into two, and then these again eaeh into two secondary cells, and so on, may at once be subdivided into four scgments, as takes place in the motilc form. (Fig. 8.)

More frequently and regularly, under certain circumstances, the cell-contents of the still form dividc at once into eight portions, whieh become naked zoospores of small size (Figs. 31, 32). It is not quite elear what becomes of this form of motile zoospore, but there seems reason for bclicving that thcy oceasionally develope an enveloping eyst, and thus beeome cneysted zoospores, and oceasionally sccretc a cellulose tissue and become still eells; but most of them probably perish without any further change. They would thus correspond with the smaller motile spores observed by Thuret and A. Braun in other Algæ (IYydrodichyon, Achlya, the Fueoidex, \&e.) associated with the larger germinating spores, and which themselves were deprived of the germinative fueulty.

In the same way that the "still" parcut-cell may pro-
duce, instcad of two, eight secondary cells, so, on the other hand, may the motile eneysted zoospore, whieh normally produces four secondary cells, divide into only two. (Figs. 22, 23, 35.)

It appears that both longitudinal and transverse division of the primordial cell may take place; but that the vibratile eilia of the parent-cell retain almost to the last moment their function and their motion, after the primordial eell enclosed by it has long been detaehed as a whole, and bceome transformed into the independent seeondary cells. (Fig. 38.)

The individuals of the secondary generation, when the encysted parent-cell divides into two, are for the most part equivalent to their parent; but should the latter divide into more than two, its progeny then is very dissimilar to it. For the eneysted zoospores may also divide into a generation of cight, sixtecu, thirty-two, aceording as the primordial eell has been partitioned into eight, sixteen, or thirty-two portions, which beeome organised into as many independent primordial eells. The individuals of the secondary generation are of eourse smaller, in proportion to the greater mumber of parts into whieh the primordial parent-cell was subdivided, and they are also the more dissimilar to it in proportion to the less quantity of its substance that they may contain.
'I'hese minute zoospores, however they may originate, are always true primordial cells, and, under unfavorable cireumstanees, perish as sueh. What becomes of them under other eircumstances is not very easy to determine. It is certain, however, that they can pass into the still form, assuming a globular shape, losing the vibratile cilia, and sccreting a ligneous membrane. They sometimes undergo this ehange whilc still within the parentcell. They thus constitute a mulberry-like mass, which gradually inereases in size as the individual cells grow (Fig. 40). They are also, after their liberation from the mother-cell, sometimes seen to form an enveloping
cell around them, thus becoming encysted zoospores, differing from the larger form of that kind only in size (Fig. 41).

The author once observed four cells arranged as it were in a cross, and connected to each other by the anterior end (Fig. 25), and which, from their structure, appeared to be referable to the encysted motile zoospore. It is a very remarkable circumstance, and one difficult of explanation, that in this case each of the four larger primordial cells was connected with each of the two contiguous cells by two transverse processes, which passed through the enveloping cell-membranc. In this respect there was a resemblance to Chlamidomonas pulvisculus and Trachelomonas volvocina, Morren, which remain connected by the beak or vibratile cilia. ('Recherch. sur la Rubefact.,' Tab. II, fig. iii b, Tab. V, figs. 9, 8.) I think, however, that this condition is to be explained upon the supposition that four primordial cells have been formed within a parent cell by the usual mode of segmentation, but that instead of their being completcly separated from each other, they remain connceted, and that then, after resorption of their common, parent envelopingcell, also develope in the usual way special cnveloping-cells, which are of course in contact in the centre, and necessarily assume a cruciate figure. A smaller portion, which in the organisation of the segments was not taken into any of them, has become an independent but more minute primordial cell, lying between the arms of two of the primordial cells constituting the cross. The above process seems to be analogous to what takes place in Gonium or Volvox, in which the individual segments, after division, are retained in connexion.

Having thus gone over the various morphological and developmental conditions of the Protococcus, the author proceeds to its biology.

The most striking of the vital phenomena presented by this organism is that of periodicity. Certain forms, for instance encysted zoospores, or certain colours, ap-
pear in a given infusion, at first exelusively, then principally; they gradually diminish, beeome more and more rare, and finally disappear altogether. After some time their number again increases, and reaches, as before, an ineredible amount; and this proeeeding may be repeated several times. Ithus a glass whieh at one time presented only still forms, contained some weeks before nothing but motile oncs, and would again in a few weeks contain nothing elsc.

The same tliing may be obscrved with respeet to the segmentation. If a number of motile eells are transferred from a larger glass into a small eapsule, it will be found, after the lapse of a few hours, that most of them have subsided to the bottom, and in the eourse of the day, they will all be observed to be on the point of subdivision. On the following morning the divisional generation will have become free; and on the next, the bottom of the vessel will be found eovered with a new generation of self-dividing cells, which again proeeed to the formation of a now gencration, and so on. This regularity, however, is not always observed.

The influence of every ehange in the extcrual conditions of life, upon the propagation, is highly remarkable. It is only neecssary to pour water, from a smaller into a larger, shallower vesscl, or one of a diffcrent kind, at once to induee the eommencement of segmentation in numerous eells. The same thing oecurs in other Algæ; thus the Vancherice almost always develope zoospores, at whatever time of year they may be brought from their natural habitat into a room.

Light is conducive to the manifestation of vital action in the motile zoospores, and they always seek after it, eollecting themselves at the surfaee of the water, and at the edges of the vessel.

But, in the propagative act, on the contrary, and when they are about to pass into the still eondition, the motile Protococcus-cells seem to shun the light; at all events they then seek the bottom of the vessel, or that
part of the drop of water in which they may be placed, furthest from the light.

Too strong sunlight, as when it is concentrated by a lens, at once kills the zoospores. A temperature of unduc elevation is injurious to the development of the more active vital activity, that is to say, for the formation of the zoospores; whilst a morc moderate warmth, particularly that of the vernal sum, is extraordinarily favorable to it. Frost destroys the motile, but not the still zoospores.

When kept in the dark, the zoospores become blanched, that is to say they acquire a pale green colour, almost without granules or red substance; the chlorophyllvesicles, moreover, are not visible, so that the contents of the primordial cell appear as a soft, homogeneous, substance. The membrane is of a soft gelatinous consistence ; the motile zoospores continue their movement uninterruptedly, without, as is usual, sinking to the bottom, or passing into the still form, or into the stage of segmentation.

Under the influence of light, the cells give out a large quantity of oxygen. It is perhaps the continued greater evolution of gas by the motile spores, as compared with those in the still condition, that causes them by preference to rise to the surface, and the latter to sink.

Strychninc and morphine, even in the proportion of 1 part to 150 parts of water, had no immediatc influence on the motion and life of the cells, whilst a solution of iodine so weak as not to render starch anywhere visible, acts at once as an active poison. Colm observed that when he had stareh granules together with motile zoospores on the object glass, and added a very dilute solution of iodine, the motile cells, by their death, show themselves to be much inore sensitive reagents with respect to iodine, even than starch. Rapid cvaporation of the water in which the motile formis of Protococcus may be contained, kills them at once, but a more gradual, such as takes place in deep glasses, causes
them merely to pass into the still form, in which they retain their vitality for years.

Cohn observed very frequently that the contact of metal witl the water in whieh the Protococcus-cells were, was destructive to their life.

In the still form, the phenomena attendant upon the cessation of life, are somewhat different from those in the motile eells. In certain eireumstances, the contents, particularly in the red zoospores, dissolve, from the periphery, into innmmerable minute droplets. Or a peculiar dissolution of the coloured eontents takes plaee, in sueh a way that they lose their colour, also from without to within, so that at last the eell appears dense and opaque, but altogether colourless, and is deprived of all vitality. (Fig. 43.)

The paper then concludes with some general eonsiderations.

1. The question arises, whether the Prolococcus is necessarily to be regarded in all its stages of development as a Plant; or whether it should not rather be referred to the Animal kingdom.

To any one who reads the writings of the most distinguished observers on this subject, it appears almost incomprehensible, that any doubt eould exist whether any organism, when sufficiently investigated, slould be an animal or a plant. For all, nearly without an exeeption, agree in this, that an animal and a plant are essentially and typically of distinct strueture, and that this essential diversity must also be expressed in the most minute and lowest organisms; and that, therefore, there can be no question of any real analogy between an animal and a plant, to say nothing of a relationship or a transition from one into the other.

It appears, however, to Cohn, that the question of animal or plant has been stated too generally, and requires to be defined with greater preeision. As the question is generally put, it would inelude the inquiry
as to whether the Protococcus pluvialis were allied to the Lion or to the Oak. All our common notions of the two kingdoms bcing derived from such higher organisms as those, and not from those of the invisible world.

But the Protococcus is as far from the Lion as it is from the Oak; there are observable in it, properties which would appear to find their analogies only in certain animals or certain plants, viz., among the Infusoria or the Algæ.

Of the latter, again, the more highly organised, multicellular forms must be excluded, these belonging manifestly to the Vegetable Kingdom. A Fucus, for instancc, is incontestably differently constructed from a Protococcus cell. It is only the so-called unicellular Algæ of Nägeli, the Palmelleæ and Diatomaceæ, about whose proper position there can exist any possible doubt.

In the same way, of Infusoria, next to the Rotifera, all those among the Polygastrica of Ehr. must be excluded, which have distinctly a mouth and anus, as well as an intestinal canal, or at least an œesophagus. With respect to these, also, no doubt can arise as to their proper position in the scale of animated nature.

Besides these, however, there are Infusoria, having neither intestine nor anus, which do not take in any solid nutriment, and in which the existence of a mouth is not demonstrable by direct observation, and can only be surmised from analogy. These constitute the division of the Anentera, Ehr., Astoma, v. Siebold. With respect to these, it may certainly be reasonably questioned, whether an organism should be more properly referred to this division of the Infusoria, or to the Algæ just mentioned. It cannot but be doubtful whether a given creature is to be regarded as belonging to the Monadina, Cryptomonadina, Volvocina, Astasice, Bacillaria, Amceba, Arcellince, \&c., or whether it sliould not be referred to the Cryptococсасеœ, Protococcaceœ, Palmellea, Desmidiea, and Diatomacea. It may even be questioned, whether some of thesc natural families be not more nearly related with some families in the other kingdom, than with their
neighbours in the kingdom to whieh they themselves belong, or whether even certain divisions from both natural kingdoms might not properly be assoeiated. It is only with this limitation that the question, as here eonsidered, must be understood,-whether Protococcus pluvialis is to be regarded as animal or plant; or, since of the abovementioned genera of Infusoria some only present any similarity with it, whether it is to be eonsidered as an animal belonging to the Monadina, Cryptomonadina, Volvocina, or linglence, or whether it should not be referred, as an Alga, to the family of the Palmelleæ.

Althongh lilotow, after mueh eonsideration, eomes to the eonehsion that Protococcus pluvialis must be regarded as a plant, the reasons upon which he is indueed to come to this eonclusion do not appear to be well chosen. They are,-l. its eapability of revival after having been dried for months and years ; 2. the viability of separate portions of its substance; 3. the oeenrence of gemmation whieh, moreover, in the proper sense of the word, is more than doubtfin. All of which eiremmstanees may be observed occasionally in the Animal Kingdom.

By Morren, on the other hand, this organism, under the name of Discenca morpurea, is arranged among the Infusoria in the family of the Cryptomonadina, Ehr., and has assigned to it a plaee close to Trachelomonas volvocina, Morren, (non Ehr.) Focke also eonecives that the reasons above assigned by Flotow for the vegetable nature of Protococcus, are the rather ealeulated to prove its animal nature.

According to Ehrenberg, for an organism to be eharacterised distinetly as an Infusorinm, it is requisite that it should possess a complete organisation analogous in all respeets to that of the higher animals; on the other hand, however, Dujardin, Siebold, Kölliker, \&e., eontest this, considering spontaneity and contraetility alone, as indispensable eriteria.

Now to consider Protococcus pluvialis in both these points of view.

First, as regards Ehrenberg's doctrine. The organisation of Protococcus may very plausibly be referred to that of the anenterate Infusoria, as understood by that observer; in this case the enveloping cell might perhaps be explained as the shield; the primordial cell as the proper body of the animal; the chlorophyll-vesicles, colourless granules, and cytoblasts, as the testes; the red and green globules as ova; the frequently existing red pigment spots as eyes; the vibratile cilia as a proboscis ; the hyaline spot as mouth; and the vacuoles as stomachs. At all events the organs which Ehrenberg has figured and described as of such nature in Trachelomonas, Volvox, Euglena, Chlamidomonas, Closterium, Buastrum, \&c., present such appearances that, although they are in reality organised in an essentially different way, they cannot be optically distinguished from what they are represented to be.

On the other side, these bodies correspond in all respects with the organisms which are found either absolutely in indubitable plants, or in the spores of snch plants.

Whence it is apparent that the proof of an animal organisation offered by Ehrenberg, does not suffice in doubtful cases incontestably to prove the animal nature of a doubtful creature when alive, because formations are prcsented even in plants which camnot be directly shown to be distinct by optical or chemical means, but only indirectly, with the aid of analogy.

If, on the contrary, that view of the structure of the Infusoria be the more correct, which regards them only as simple contractile cells, and all the above elementary parts as parallel, not with animal but with vegetable organisms, we arrive at more comprehensive conclusions.

Onc of the charactcristics of Prolococcus is this, that it affords analogics, at different periods of its growth, not with one only, but with many gencra hitherto considered distinct. 'Ihus the motile, or "swarming," form agrees with the genus Pandorina, Elir., or more closely still
with Chlamidomonas, from which, indeed, it is seareely to be distinguished. But the latter, according to Colm, has not yet been observed in the "still" condition.

But Pandorina and Chlamidomonas have long enjoyed ouly a very doubtful charaeter as animals; Kützing haviug arranged the former among the Palnellaceer, as Botryocystis morum; and Siebold the latter among the Algæ, in spite of the only certain character admitted by him as distinctive of an aumal nature, viz, the contractility of the body.

Protococcus pluwialis, however, presents the most striking analogies with genera in which this property is exhibited in the highest degree, the genera Euglena and Astasia, which, according to our present knowledge, must be regarded as indubitable animals, their claim to be so considered having even never yet been called in question by any careful observer.*

Among the points in which the elosest resemblance exists between Prolococcus and Euglena, may be enumerated the following :-

1. The red inatter in the latter presents precisely the same eharacters, and, like that of Protococcus, is coloured blue by iodine, and contains corpuseles not to be distinguished from the chlorophyll-vesicles.
2. The colourless extremities of Euglena manifestly correspond with the colourless elongation of protoplasma at the two ends of the Protococcus eell; the beak also of Euglena, with its single eilium, precisely corresponds with the biciliated extremity of Protococcus.
3. The eye-spot of Liuglena appears to be chemically analogous with the red pigment spot in certain stages of the zoospores of Prolococcus; it is equally coloured blue by iodine.
If to the above it be added that Euglena, at least according to Dujardin, Siebold, and Kölliker, equally presents the characters of a simple closed cell, it will be

[^237]apparent that the motile form of Euglena is constituted on the same type as the primordial ccll of the motile form of Protococcus.

The author then details some observations on the development of Euglena viridis.

Euglena is not always motile; at certain times it passes into a state of rest. To this end, it assumes a globular form, developes more opaque, denser contents, and forms around itself, a rigid, colourless membrane ; in this state it cannot be distinguished from the still form of Protococcus pluvialis, and as in that plant, the cclls are often united into floating expansions. In this form, and particularly when aggregated into these expansions, it has already been occasionally placed among the Algæ; Microcystis Noltii, Kg. appears to be the still form of Euglena sanguinea, and M. olivacea, Kg. is probably to be referred to Euglena viridis.
'This stage, however', of the so-called process of becoming encysted, is not, as commonly supposed, connected with the decease of the organism, but within the membrane, segmentation goes on; the colourcd, enclosed globular body subdividing exactly as in Protococcus into two, four, eight, sixteen, thirty-two, or morc portions. These isolated, primordial cells, as they may be called, become free, by rupture of the rigid wall enclosing them; and either resemble their parent, or when much smaller, are very dissimilar to it, assuming more the appearance of grcen, cyeless Monads.

On the other hand, the motile form of Euglena, also, just like the motile zoospore of Protococcus may subdivide into two, or it may be into more, also inotile secondary individuals. Whence it is manifest that the development of Euglena viridis, procceds on preciscly the same type as that of Protococcus pluvialis.

With respect to the motion of the Protococcus cells ; it is to be noticed that Ehrenberg, and with him all later obscrvers, agrce that animal motion is voluntary, arising from internal psychical causes, that it is conscious
and directed to some object; whilst that of plants would appear to depend upon external physieal canses or stimuli ; that it is not voluntary, nor directed to any object, but automatie (vide Elhr., Abh. d. Bcrl. Ak. 1830). Cohn, however, from numerous observations expressly direeted to this point, is disposed to call in question, the existenee of this cssential distinction between the motions of the Infusoria, and that of the vegctable zoosporc.

Leaving out of thic question the more highly organised Infusoria furnished with the manifest mouth and cesophagus, the motion of a large part of the Anentera, Elr. Astoma, Siebold, is not cssentially different from that of the zoospores of certain Algr.
'lowards the end of the paper, Coln obscrves, that in the eourse of its preparation lie had only been able upon optical and physiologieal grounds, to render it probable, that the rigid cell membrane of the still form and the tender enveloping cell of the motile zoospores, eonsist of the same non-nitrogenons material, of whiel the rigid membranc of all plant-cells is composed-viz.: cellulose ; he had, however, sinee suceeeded, by ehemical means, in plaeing this fact beyond donbt. If a drop of water enntaining some still and motile zoosporcs, be brought in contact simnltancously with a very dilute watery solution of iodine, and modcrately dilnted sulphuric acid, the "enveloping" colls of the motile and the eell-menbbrane of the still form, immediately assume a beautiful blue colour (Fig. 47). In performing this experiment, it is nceessary to employ neither a too concentrated, nor a too much diluted sulphurie acid.

The author concludes by some general observations on the subject of the "Alternation of Generations," exhibited in such instances as Protococcus pluvialis, and on the importance of the history of its development, with relation to a systematic arrangement of the Algro. Most of our species and genera, are based merely upon differcnces in size, form, and thiekness of thc cell-wall, and the colour, consistcnee, and intimate organisation of the contents. But
the history of the development of Protococcus pluvialis, shews how very uncertain such characters arc. It camot be doubted, moreover, that the great diversitics cxhibited in the above respects, at different stages of its growth, by Protococcus pluvialis, exist also in other Algæ, if they were duly sought after, and that researches in other species, from the same points of view as those embraced in the present memoir, would probably recluce very materially the large number of genera and species of Algæ.

Thus we sec that a single species, owing to its numerous modes of propagation, can pass through a number of very various forms of development, which have been either erroneously arranged as distinct genera, or at least as remaining stationary in those genera, although, in fact, only transitionary stages. Thus the still Protococcus cell, (Fig. 2,) corresponds to the common Protococcus coccoma, Kg . When the border becomes gelatinous, it resemblcs P. pulcher (Fig. 70); and the small cells, P. minor. The encysted motile zoospore is the genus Gyges granulum among the Infusoria, resembling also, on the other side, P. turgides, Kg. and perhaps, P. versutilis, Braun. The zoospores divided into two (Figs. 23, 30), must be regarded as a form of Gyges bipartitus, or of P. dimidiatus. In the quadripartite zoospores, with the sccondary colls arranged in one plane, we have a Gonium (Fig. 37). That with cight scgments (Fig. 38,) corresponds to Pandorine Morum, and that with sixteen, to Botryocystis Volvox (Fig. 4.4). When the zoospore is divided into thirty-two segments, it is a Uvella or Synncrypta (Fig. 4.0). When this form enters the "still" stage, it may be regarded as a form analogous to Microhaloa protogenita; this Algal genus is probably, speaking gencrally, only the product of the Uvella division in the Euplence or other green forms. The naked zoosporcs (Fig. 32), finally, would represent the form of a Monad, or of an Astasia; the caudate varicty, approaches that of a Bodo.

A critical and comparative consideration of the foregoing facts would therefore appear to render untenable alnost all the principles which modern systematists have hitherto adopted as the basis for the construction of their Natural Kingdoms, Families, Genera, and Species.

But it must not hence be concluded, that the result of these investigations implies the existence of a state of complete anarchy in the domain of microscopic organisms ; or that any one form among them, may assume any other form indifferently; that, in fact, there are no real species in the invisible world. Such is by no means the case.

Critical enquiries such as the present, have for their result-like the spear of Telephus-the healing of the wound they inflict. It is manifestly better,- althongh at the expense of erroneous notions, long admitted as in-fallible-to substitute, by the aid of a complete and continnons history of development, a much more defined, because natural idea, of Genus and Species, for that litherto set up, in artificial, but, at the same time, unnatural Systems.

DESCRIPTION OF FIGURES.

Fig.
1.-A small "still" cell of Protococcus plwvialis, revived after desiccation. The contents grumous, almost filling the cell-membranc.
2.-A very large cell, in which the red, finely granular contents, fill up the membrane, and have in the centre a clearer space. (cytoblast?)
3.-A green cell with chlorophyll-vesicles, containing an excentric, reddish, lighter-coloured vesicle (nucleus?) surrounded by an opaque red ring.
4.-A cell which had been dry for six years, undergoing segmentation after its revival ; one half is green and granular ; the other red, presenting an oil-like substance.
5.-A cell which has assumed an elliptical figure preparatory to its dividing.
6.-Division further advanced.
7.-Completed division. The secondary cells appear to have a cellulose coat, and are surrounded by the mother-cell, which has become gelatinous.
8.-Division into four.
9.-The same, still surrounded by the parent-cell.
10.-Commencement of division ; a green, small cell, with a red zone at the border, and red central substance, as wcll as a lighter coloured nucleus.
11.-A "still" cell, containing, within a distant, dense, colourless coat, a coloured globule also surrounded with a membranc.
12.-A large naked zoospore, grecn, with red central substance, and a colourlcss spot at the antcrior end, with two vibratile cilia, originating, cither in the division of an encysted zoospore or from a "still" ccll.
13.-An irrcgular-shaped, quadrangular, flat, Euglenalike zoosporc, with chlorophyll-vesicles, colourless antcrior cnd, and two cilia.

Fig.
14.-A green eell with red eentral substanee, on the point of assuming the motile form.
15.-An eneysted zoospore, with filaments of protoplasm, (P. setiger, Flotow), a distant "enveloping eell," two cilia, chlorophyll-vesieles, \&e.
16.-An eneysted zoospore, with distant "enveloping eell," green, gelatinous, primordial eell; red, granular, disseminated eentral substanee, and a eolomless point, (P. papillalus, Flot.)
17.-A very small, globular, eneysted zoosjore, (P. rotunclalus, llotow.)
18.-An eneysted zoospore, pointed at both ends, altogether green, (P. rostellatus, Flot.)
19.-Commeneing division of the primordial eell into two.
20.-A young pyriform primordial eell, around whieh the "enveloping cell" is just beginning to show itself distinct from the primordial eell.
21.-An older cell, with eolourless vaeuoles.
22.-Commencing division into two ; the wholly green, primordial eell, elosely surrounded by the enveloping cell, shows a constriction in the middle.
23.--Commeneing division into two; eaeh seeondary primordial eell has developed an enveloping eell around itself, whilst still within the parent eell.
24.-Commencing division into four.
25.-An unusual and ineomplete division into five; four pointed, encysted zoospores, not completely parted after the resorption of the common "enveloping eell," remaining eonneeted by processes arising from the point where the eilia are plaeed; a smaller portion has beeome organized into a naked primordial eell, also conneeted with the others. (Vide fig. 39.)
26.-Only half of the primordial cell eonsists of the green globular substanee; the other half is a colourless granular protoplasm, enclosing in the eentre a red substanee resembling a nueleus.
27.-An eneysted zoospore in the commeneement of

Fig.
deliquescence. The primordial eell is resolved into grecen and red granules, forms clear vacuoles, aud is on the point of filling up the enveloping eell.
28.-An cncysted zoospore which has deliquesced; the primordial cell has entirely filled the "euvelopiug cell," and beeome resolved into green and red granules.
29. - An encysted zoospore, which has passed into the "still" eondition; the spherieal, wholly grcen, primordial eell, has aequired a elosely investing cellulose eoat, whilst the "euvcloping eell," has beeome resolved into a muccid substanee, on which the eilia are no longer visible.
30.-Division of a "still" eell into two elliptical seeondary cells, whiel present a nucleus in the centre, and remain enelosed by the parent cell, become gelatinous. (Vide fig. 7.)
31.-Division of a "still" cell into eight : the pareut cell is resolved into a gelatinous substanee, and eneloses cight small, eylindrieal, red zoospores.
32. -Two of thesc zoospores after their escape.
33.-Yellow-green "still" eell, with gelatinous envelope.
34.-An eneysted zoospore, the primordial eell of which is on the point of division into two. The remote, cnveloping cell supports the two eilia, whose presence is only indicated by the eurrent they produce.
35.-An clliptieal eneystcd zoosporc, the primordial eell of whieh is already divided into two seeondiry eells. The vibratile cilia and transparent projeetions upon which they are placed, are visible within the parent-cell.
36.-One of the seeondary cells after its liberation.
37.-Division of an encysted cell into four ; the globular, green, gramular, secondary cells, almost fill the parent-cell; arranged sonnething like the eells in Gonium pectorale.
38.-Division of an encysted zoospore into cight globular,

Fig.
seeondary, primordial eells, whieh almost fill the parent-eell. Their disposition resembles that of Botryocystis morum, Kg.
39.-Ineomplete division of an eneysted zoospore into four, also eneysted seeondary eells, whieh remain eomeeted in the eentre after the removal of their eommon enveloping cell. This seems to represent a further development of that given in figure 25.
4.0.-Division of an eneysted eell into thirty-two minute, spherieal, entirely green, primordial eells, whieh eompletely fill their delieate parent-eell. This arrangement corresponds to the genus Splecerastrum tesserale, Kg., or to Uvella virescens, Ehr., or to Syncrypter volvox, Ehr.
41.-Zoospores from the last-deseribed form eseaped from the parent-cell. One of them (a) shows the formation of a membrane around it.
12.-An eneysted zoospore with a spherieal primordial eell, the green, non-granular eontents of which, are retracted to one side, in a ereseentie form, whilst a colourless vesielc oceupies the other half. I'his modification appears to depend upon a defieient supply of water.
43.-A red cell, whieh, by desieeation, has beeome colourless, showing grumous contents with oilglobules.
44.-A large red "still" eell, the eontents of which are divided into numerous ($64 ?$? segments.
45.-A red eneysted eell.
4.6.-A red "still" eell, originating in the transition of the cell represented in fig. 45 into the "still" eondition.
47.-An eneysted zoospore, treated with iodine and sulphurie aeid.
** All the figures are magnified under a power of 500 linear.

INDEX OF GENERA OF MICROSCOPIC ALGÆ TREATED IN THIS VOLUME.

Achnanthes, 407.
Aclnanthidium, 407.
Aetiniseus, 487.
Aetinoeyelus, 477.
Aetinoptyelius, 478.
Amphipentas, 481.
Amphipleura, 421.
Ampliprora, 422.
Amphitetras, 480 .
Amphora, 423.
Anabaina, 140.
Aphanoehrte, 184, 209, 230, 233, 250.

Apioeystis, 133, 209.
Arthrosiphon, 178.
Aseidium, 125, 127, 185, 186, 200, 209, 267, 286.
Baeillaria, 399.
Bambusina, 291, 295.
Batrachospermum, 150, 151,
Berkeleya, 426.
Biddulphia, 484, 512.
Botrydium, 128, 193, $220,274$.
Botryocystis, 159, 209, 559.
Bryopsis, 129, 140, 166, 268.
Bulbochæte, 141, 151, 156, 157, 183, 201, 209, 303.
Campylodiscus, 394.
Caulerpa, 129, 174.
Ccratoneis, 421.
Chætomorpla, 185, 186, 268
Chætophora, 139, 151, 156, 183, 208, 224, 231, 253.
Chantrausia, 143, 151, 183, 231.
Characium, $125,185,209,229,230$, 250.

Chlamidococeus, 138, 158, 174, 184, 196, 205, 211, 216, 224, 229, 238, 250, 258, 498, 518.
Chlamidomonas, 214, 215, 210.

Chlorococcum, 213, 260, 508.
Chroococcaceæ, 131, 174, 190, 197.
Chroocoeeus, 131, 182, 230.
Cladophora, 150, 174, 185, 199, $220,235,236,239,240,253$, 268.

Climaeosphenia, 465, 512.
Closterium, 133, 140, 175, 204, 281, 289, 291, 292, 259, 497.
Cocconeis, 405 .
Coceonema, 286, 410.
Coleochæte, 141, 151, 183, 208, 253, 270, 298.
Conferva, 184, 205, 209.
Coseinodiseus, 476.
Cosmarium v. Euastrum.
Cyclotella, 385.
Cylindrocystis, 287.
Cylindrospermum, 140.
Cymatonema, 141.
Cymbella, 409.
Cymbosira, 408.
Cystococeus, 125, 185.
Cystoseira, 248.
Denticula, 379.
Desmidium, 294.
Desmidiaceæ, 133, 139, 174, 203, 247, 283, 290, 497.
Diadesmis, 424.
Diatona, 382.
Diatomaeeæ, 132, 139, 190, 247, 283, 345.
Dietyocha, 488.
Dietyosphærium, 132, 209, 238.
Didymoprium, 291, 295.
Doeidium, 180, 291.
Doryphora, 406.
Draparnaldia, 139, 151, 156, 183, 208, 224, 231.
Dysphinctium, 203.

Echinaria, 400.
Encyonema, 411.
Endococcns, 213, 265.
Enteromorpha, 184, 250.
Epithemia, 374.
Euactis, 147, 175.
Euastrum, 133, 181, 224, 294, 295, 300.

Eumeridion, 378.
Eunotin, 286, 375.
Exococcus, 254.
Fragillaria, 381.
Trustulia, 425.
Gallionclla, 389.
Glie:ocapsa, 131, 132, 182, 190, 499.
GHoococcus, 15?, 209.
Glecocystis, 131, 161, 182, 190.
Glisoorlictyon, 495.
Gomphoncma, 2:38, 256, 412.
Gongrosira, 18:3, 209.
Gonimm, 159.
Grallat oria, 402.
Grammatonema, 351.
Grammatophora, 473.
Gyges, 409, 559.
Hrematococcus v. 498, 505, 51.8, also v. Chamidomonas.

Haplosiphon, 150.
Hassallia, 150.
Himantidium, 286, 376.
Homecocladia, 426 .
Hormidium, 131, 208.
Hyalosira, 466.
Hyalothcca, 291, 295.
Hydrodictyon, 125, 127, 137, 156, $171,185,186,190,197,199$, 20S, 219, 220, 261.

Istlimia, 482.
Isthmosira, 291, 295.
Lemania, 154.
Leptomitus lacteus, 270.
Licmophora, 464.
Lithodesininm, 480.
Lysigonium, 389.
Mastichonema, 147, 187.
Mastichothrix, 147.
Mclosira, 139, 299, 389.

Mcridion, 377.
Mcsocarpus, 135, 288, 289, 369.
Mcsogena, 4.8S.
Micromega, 4:37.
Microhaloa, 559.
Mounema, 430.
Mougcotia, 258.
Navicula, 413.
Nostoc, 145, 155.
Odontclla, 483.
Odontidium, 380.
©edogonium, 141, 148, 150, 156, $157,161,162,163,164,170,175$, $183,196,201,212,224,227$, $231,247,281,300,301,302$.
Ophiocytium, 260.
Oscillaria, 132, 197.
Pilmellacco, 1.31, 174, 190, 213, 499.

Palmoglee, 133, 135, 202, 285.
Pandorina, 159, 209, 212, 224, 499, 559.

Pediastrum, 125, 161, 181, 200, 209, 250, 266.
Pcnium, 1S1, 190, 203, 289, 292.
Plcurococcus, 131, 182, 213, 230, 258.

Plcurodesmium, 4:95.
Pododiscus, 387.
Podosiria, 388.
Podosplicnia, 462.
Prasiola, 131.
Protococcus, 125, 127, 209, 212, 213, 258, 499, 507, 518.
Pyxidiculi, 387.
Raphidoglæa, 426.
Rhabrlonema, 4.67.
Rhipidiphora, 463.
Rhynconemn, 289.
Rimaria, 4.02.
Rivularia, 146, 147, 14:S, 178.
Saprolcguia, 185, 188, 252, 26S, 269, 298.

Sarconncea, 36.
Scaphutaria, 399.
Scencdesmus, 250.
Schizochlamys, 181.
Schizoncma, 139, 286, 4.28.

Schizosiphon, 147, 178.
Sciadium, 187, 209, 260.
Scytonema, 146, 147, 178, 186.
Sirogonium, 288.
Spermosira, 146.
Sphreroplea, 164, 271, 281.
Sphrerozyga, 146.
Splienella, 411 .
Sphenosira, 413.
Spirogyra, 135, 175, 180, 196, 201, $224,239,241,244,281,289,300$.
Staurocarpus, 134, $281,296$.
Stauroceras, 287.
Stauroneis, 422.
Staurospermum, v. Staurocarpus.
Stigeoclonium, 139, 156, 163, 183, $208,224,360,498$.
Striatella, 466.
Surirella, 396.
Syncyclia, 410 .
Synedra, 399.
Tabellaria, 470.
Tabularia, 402.
Terpsinoe, 472, 512.
Tcssella, 466.

Tetmemorus, 291.
Tetrachococcus, 258.
Tetracyclus, 469.
Tetraspora, 132, 209.
Tolpothrix, 147, 186.
Triceratium, 487.
Tripodiscus, 482.
Ulothrix, 125, 148, 156, 159, 175, $184,200,208,223,250,360$, 498.

Ulnaria, 400.
Ulva, 125, 184, 250.
Urococcus, 178, 230.
Vauchcria, 128, 140, 157, 163, 174, 183, 209, 212, 221, 251, 296.
Volvocinex, 158, 159, 208, 216, 250.

Zygnema, 175, 288.
Zygnemaceæ, 133, 135, 164, 174, 180, 287, 359.
Zygogonium, 177, 288.
Zygoceras, 486.

COUNCIL OF THE RAY SOCIETY,

Read at the Tenth Auniversary Meeting, held at Hull, Sept. 12th, 1853;
W. SPENCE, Esq., F.R.S., in the Chatr.

The Ray Society was established in the year 1844, for the purpose of publisling and supplying to its Members, original works, trauslations, and reprints of works, that were not likely, on account of their expense, to be published in the transaetions of existing societies, or to be undertaken by publishers, in eonsequence of the improbability of their meeting with a remunerative sale. The Council of the Ray Society feel it neeessary to remind the Members of this faet, as it will explain, on the one hand, why their works eannot be of a highly popular charaeter, and on the other hand, why they feel that they have a elaim on the support of all those who are anxious to promote the study of Natural History Seience. As to how the Soeiety has fulfilled its mission, they would appeal to the twenty-two volumes which have already been issued to the Members. Many of them are standard works on the subjeets to which they have been devoted, and all have contributed to advance a knowledge of the prineiples and faets involved in the study of the seiences of Zoology and Botany.

Sinee the last Anniversary Meeting of the Soeiety, whieh was held at Belfast, in September, 1852, the following works have been distributed to the Members:

1. Vol. I of Mr. C. Darwin's Monograph of the family of Cirripedes; iueluding the Sea-aeorns (Balani).
2. Vol. III of the Bibliographia Zoologix et Geologiæ, by Professor Agassiz; erited by H. E. Striekland, Esq., F.R.S.

The Couneil had hoped that they should have been able to have announeed at the present Meeting the distribution of two other works, but eirenmstanees over whieh they have had no eontrol have prevented their being able to do so. One of these works, the sixth and last part of Messrs. Alder and Haneock's work on the Nudibranehiate Mollusea, has been deferred on aecount of the wish of the authors to use
all the materials in their possession up to the present time, and thus to render the work as complete as possible.

The publication of the second volume of Mr. Darwin's work on the Cirripedes has also been delayed, in order to enable the anthor to include in it his researches upon collections of animals belonging to this family which have been recently made.

Instead of a mixed volume of papers by foreign authors on subjects in Zoology and Botany, the Council have resolved, at the request of many of their botanical Members, to publish a translation of Dr. A. Braun's work on the Rejuvenescence of Plants. This work will be edited by Mr. Henfrey ; and Meneghini's paper on the Animal Nature of the Diatomacece, and an abstract of Cohn's paper on the Natural History of Prolococcus pluvialis, will be added. This book is nearly completed, and will be speedily issued, with the sixth part of Messrs. Alder and Hancock's Monograph. The publieation of Hoffimeister's work on the Reproduction of the Cryptogamia, whieh the Council had thought of translating, they are glad to state has been undertaken by Mr. Highley, and they hope will shortly appear, so as to be accessible to the English student.

For the year 1854 , the Council propose, if no moreseen circumstance arise, to publish the fourth volnme of the Bibliograplay of Zoology and Geology. They have also great pleasure in announcing that they have received the plates of Professor Alhman's work on the British lresh-water Zoophytes, and that this work, with thirteen coloured plates, in imperial 4to, will be one of the publications for 1854.

The Comeil would especially eall the attention of the Members to their financial condition. Last year they had to report that $£ 657$ were due on that and the past years. They have now to report that $£ 707$ are cluc. Of this sum :

| $£ 336$ | $18 s$. | is rlue | for | 1853, |
| ---: | ---: | ---: | :--- | :--- | :--- |
| $£ 144$ | $13 s$. | $"$ | $"$ | 1852, |
| $£ 91$ | $6 s$. | $"$ | $"$ | 1851, |
| $£ 84$ | $12 s$. | $"$ | $"$ | 1850, |
| $£ 50$ | $8 s$. | $"$ | $1847-8-9$. | |

During the past year the number of Members who have withdrawn or died amounts to 45 , and 8 Members have been added; so that there are now 709 on the list.

The Council would again urge that the only limits they have to their labours are the funds derived from their subscriptions, and that just in proportion as these are increased, are they enabled to publish a larger amount of matter to present to the Members for their subseription of one guinea per annum.

The Council appointed, last year, J. S. Bowerbank, Esq., Treasurer; and Dr. G. Johnston, of Berwick-on-Tweed, and Dr. Lankester, London, Secretarics.

Abstract of 'Treasurer's Account from June, 1852, to May, 1853.

beceive	£ s. d.	expendeid	\& s. d.
Cash in hand at last audit	86116	Bookbinding	29150
By subscriptious	542170	Engraring, printing, \&cc.	761510
		Printing letter-press	22603
		Editing	54.6
		Collector	24. 10 7
		Books	2136
		Secretary	1250
		Advertising	$8 \quad 3 \quad 3$
		Local Sccrctaries' Expenses	910
		Postage, Stationery, \&c.	9611
			56614
		Cash in hand	6372
	£629 86		$£ 62986$

Auditors:

George Shadeolt.
James Tennant.

Moved by Professor Balfour; seconded by R. M'Andrews, Esq. :
That the Report now read be adopted, and printed for circulation amongst the Members of the Society.
Moved by J. Hogg, Esq. ; seconded by R. J. Bell, Esq.:
That the thanks of this Mecting be given to the President, Council, Treasurer Secretaries, Local Secretaries, and Auditors, for their services during the past year.
Moved by Dr. Lee; seconded by A. Strickland, Esq. :
That the following Gentlemen be requested to act as a Council for the following year.

Professor D. T. Ansted m.a. f.r.s. F.L.S.

Charles C. Babington, Esq., m.a. F.r.S. f.L.S.

Robert Ball, Esq., ll.d. m.r.i.a., Scc. R.Z.S.i.
Professor Bell, Sec. r.s., F.l.s.
J. S. Bowerbank, Esq., f.r.s. f.l.s.

George Busk, Esq., f.r.s. f.l.s.
W. B. Carpenter, m.d. f.r.s.

Professor Daubeny, m.d. f.r.s.
Sir P. dc M. G. Egerton, Bart., m.p. F.R.S.

Professor Edward Forbes, f.r.s. F.L.S.

ProfessorGoodsir, m.d. F.r.S. L. and e.
A. Henfrey, Esq., f.r.s. f.l.s.

Sir W. Jardine, Bart., f.r.s.e. l.s.
Rev. Leonard Jenyns, m.a. f.l.s.
G. Johnston, m.d. ll.d. F.r.c.s.e.
E. Lankester, m.d. Ll.d. F.r.S. f.L.S.

Professor Owen, d.c.l. F.r.s. f.l.s.
Robert Patterson, Esq., Pres. Nat. Hist. Soc. Bel.
Professor John Phillips, frir.s.
Prideaux J. Sedby, Esq., f.l.s.
W. Spence, Esq., f.r.s. F.l.s.

IIugh E. Strickland, Esq. m.a. f.r.s. F.G.S.
G. Waterhouse, Esq., f.z.s.
W. Yarrell, Esq., F.l.s.

$$
\begin{aligned}
& 3, \ldots+2-2+2
\end{aligned}
$$

[^0]: * These points are further referred to in editorial notes.-A. H.
 \dagger This probably means C. alpinus, Lamk., the same as C. Laburnum, L., and not C. alpinus, Mill., for the C. Adcumi of gardens returns on all hands into C. Lahurnum, L., and not into C. alpinus, Mill.

[^1]: Freiburg, Briesgav; May, 1850.

[^2]: * See Stannius, 'Lehrb. der Vergleieh. Anatomic,' p. 411., on the teeth

[^3]: * There arises great difficnlty in rendering these terms applied to the different orders of leaves, since we have none corresponding to them in English. They are so frequently used, not only in a substantive but an adjective way, both in this treatise and in other recent German works, and have such a definite meaning, that we venture to invent new words and to use them in this translation. The word "nieder-blatt," (lower leaf), signifying cotyledons, the bud-scales at the base of branches, or the scales of rhizomes, is rendered by cataphyll; "laub-blatt," (leafy-leaf), stem leaves gencrally, by exphyll; "hoch-blall," (high leaf), leaves belonging to the inflorescence, by hysophyll.-A. H.

[^4]: * Agassiz. Poissons fossiles, Introduction, xxx.

[^5]: * Phaseolotherium Bucklandi, and Thylacotherium Prevostii, Owen. Vide Buekland, 'Mincralogy and Gcology,' $\mathrm{i}, 72$.
 \dagger The transition period possesses the single genus of the family of Ammonites, the Goniatites, the trias period the genus Ceratites, the Jurassic age 11 sections of the genus Ammonites, the chalk period 14 scetions of the same genus, 10 of which are peeuliar, and besides these the gencra Crioceras, Aneylocerus, Scaphites, Hamites, Plyehocerus, Buculites, Turrilites, and Heticoceras, all of which occur exclusively in the chalk formation, with the exception of Aneyloceras, of whiel genus the Jura formation already possessed species. Then the family of the Ammonites vanishes totally. See Lcopold von Bueh on Ammonites, and D'Orbigny, 'Palæontologie Française,' i, 433.

[^6]: * The sadness of such an essence-less view of nature, which of course must strive to cradicate from the ideas and language of seicnce, all which from its own standing point appears anthropomorphic, does not strike us in its fulness, simply from thic fact that the desired cradication camot be so readily carried out, on account of the intimate and immemorial blending of the more profound ideas with human language. Sce Schleiden, 'Dic Pflauze und ilir Leben,' 15. 'The Ilant,' translated by A. Henfrey.

[^7]: * Elias Fries, "der Fruhling" (Spring). "Archiv Scandinav. Bcitrag,' i, pp. 192, 214.

[^8]: * For instance, by Röper, ('Limnaa,' 1826, p. 434,) and quite recent]y by J. N. Carus, ('Zur näheren Kemmiss iles Generationsucchsels,' 30.)

[^9]: * The word "stock" is used here and elsewhere in the sense of what may he called a phylidom (like a polypidom), indicating the total organically connected structure composed of a number of partially independent links or members.-Trans.
 \dagger Vide Nägeli, 'Zcilschrift fur Wissenschaltt. Botanik,' Heft iii, iv, 1ر. 153, 177.

[^10]: * The essential intereonncetion of the leaf and stem is cxpressed in the completed structure also, in the faet that there is no sharply defined limit between the leaf and the portion of stem bearing it. Remark, for instanec, the pulvini gradually lost in the stem of Larix, Picca, Caclea, Cacalia arliculata, \&e., and stems winged by the decurrence of the borders of leaves.
 \dagger In Euphorbia, Linaria, and Anagallis, from the internode below the cotyledons.
 \$ Frequently in woody, rarcly in herbaccous plants, e. g. Euporbia Cyparissias, Linaria, Rumcx acctosclla, Ajuga yonevcnsis, Nasturlium pyrcnaicam, Jurinea Potlichii, and IIclichrysum arcnarizm.

[^11]: * 'Trécul 'Recherches sur l'Origine des Bourgeons Adventifs.' 'Anm. des Sc. Nat.,' '3 sér. viii, 26S, 181.7. 'The eases there described as two different modes of origin, and represented in Plate vii, fig. 6 under l and l, may probably be only stages of one aud the same process.

[^12]: * Link, 'Element. Philos. Bot.,' p. 208. "Gcmma individuum continuant, cum semina speciem propagent." We have already shown above that the lateral sprout, morphologically considerod, is no conimuation, but a now begimning.

[^13]: * 'The lealless plants of the lowest ranks of the vegetable kinglom are temporarily passed over in this assertion.

[^14]: * See R. Brown 'On the Female Elower and Fruit of Raflesia Ainoldi,' \&e. 'Trans. Limn. Soc.;' xix, 3, p. 232 (notc).

[^15]: * Vide Mohl, in Martius's 'History of the Palms.' The palms are also very subject to subterrancous branching, and lateral sprouts sometimes break out from old leaf-axils on full-grown trunks.- A. II.
 \dagger Hist. Matabar., iii, t. 20, liq. 3.
 \# See plates in Buckland's '(icology and Mineralogy; t. 58, fi0, 61.

[^16]: * See on this subject, Hofmeister, 'Frucht-bilding, \&e. der höher. Kryptogamen," Leipsie, 1851. He however regards the fronds of ferns as branches, a view whieh does not appear admissible. The first produet from the prothallum is the primary axis of a new individual, eontinued by a terminal growth, but forking of the rhizome may oeeur, and this must depend on the formation of secondary sprouls. In Isoëlos the stem appears simple.- Λ. I1.

[^17]: * The first leaves of the sprouts have been compared with the cotyledons of the main sprout, a ground for which is indeed to be found in their position, but ouly rarely in their forms.

[^18]: * The same is the ease with Adoxa, which erecps along the ground and rises and deseends in undulations with the alternation of cuphyllary and cataphyllary formations.

[^19]: * If we include the seed-bud (ovule) as the last gencration of sprouts, we have, for all plants which do not possess a " cerminal" or "central" ovnle, a

[^20]: still further term in the scrics of generations, and the really uniaxial plants are then recluced almost to none.

 * Note the gencra Echium, Arabis, Sagina, Silene, Polentilla, Viola, Iysimachia, Veronica, \&cc. Sce the Ratisbon 'Flora,' 1842, 692.
 \dagger Cypcracce, Orchidex, Crucifere, Balsamince, Primulacete.
 \ddagger Granincs and Iridece have onc bract (Vorblatt) ; Labiate, Scrophularinese, Lythrarice, and Leguminose, have two; Gesnoriacco have three.
 § Polemoniacer, I ligustrinere.

[^21]: * It is similar in Quercus, only here both the female and the male flowers form the second generation within their iufloresecnces.
 \dagger Sarcococca exhibits the reverse.

[^22]: * Thus in the genus Saxifraga; in S. gramulata, and S. bulbifera.
 \dagger See the genera Caiex, Epilohium, Hieracium, Faleriana, T'iola.

[^23]: * Sce I'runus, I'yrus, Crutagus, Rhamur.

[^24]: * Equiselum riverse and LE. syloaticun.

[^25]: * I have observed this phenomenon also in the hymid between Uinothere biennis and muricata, not unfrequent in the district of Freiburg.

[^26]: * Sce pp. 29, 30.

[^27]: * Unfortunately I have no seedlings of the vine at disposal at present. On those formerly observed I notieed no formation of tendrils, but have seen this in the radical sprouts (suckers), which behave just like the secdlings in the arrangement of the leaves and other respeets. The statements as to the conditions of the lateral axes of the first and second year are also derived from the latter. (The supposition mentioned above was not coufirmed by later observation. See author's preface, Trans.)

[^28]: * I have found this constant, not only in Fitis vinifera but also in several American vines.

[^29]: * The study of sprouts is the broadest and fairest field in Morphology, but as yet, unfortunately, the least cultivated. What. C. Schimper long since accomplished in this department, but has not yet published, I have already mentioned in a public lecture on "the Vegetable Individual," which 1 shall print after this discourse. The phenomenon of the essential and necessary succession of sprouts long known in the vegetable kingdom, agrees completely with that oceurring in the animal kingdom, the so-called alternation of generations, brought into its true position chicily by Sars and Stecnstrup. I have shown this by a detailed eomparison in the above-mentioned lecture.
 + Vietor Carus has given important hiuts upon the amalogy of the alternation of generations with the succession in the series of organic beings, in his before-mentioned Essay "Zur Nüheren Kenntniss des Generations wechsels,' p. 54.

[^30]: * See page 31.

[^31]: * Anconone nemorosa, Epimedium alpinum.
 \dagger Naccissus, for cxample. 'The terrestrial species of Isoëtes, particularly I. hystrix and I. Duriai, afford on especially fine instance of this kind. See ny description of them in the 'Exploration Seientilique d' Igerie.'
 \pm Distinction of lateral and terminal buds, pp. 1S-20.
 Formation of terminal buds does not occur, for instance, on the middle leat-bearing chicf sprout of Urtica wrens and Mercurialis anmua; since these plants are also devoid ol lateral buds, they die away altogether alice the fruit is quite natured. Jrbica dioica and Mercurialis peremnis die down only to the eataphyllary region, liom which arise the cataphyllarysprouts lasting over the winter. Carpimes, Sirlier, L'tmus, Mozers, Machere, Tilim, Diospyysers, and C'alyrenthes, are examples of woody plants withont terminal buls.

[^32]: * As in Rhododendron (sce above) and Pyrolu.

[^33]: * This is not the place for a mirnte description of this strange phenomeum. The description of it given by Henry, 'Nov. Act. Cur.,' vol. xxi, p. 1, leaves some guestions still open, which I shall take up at another opportunity.
 \dagger The lowest glumes of the spikelels are mostly mateered licre, many of them even hating flowers in hair axils. Vide Mohl, 'Rot. 'Zeit.,' 1845 , P. 33, t. i, fig. 2.

[^34]: * Vide the 'Flora,' 1844, No. 1, t. i.
 \dagger Vide Rheede, 'Hort. Malabar', iii, t. xiii, xx, ospeccially t. xvii, whero this growing-through of the lemale blossom is represented.

[^35]: * Vide A. de St. Milaire, 'Leçons de Butanique,' p. 103.
 \dagger Ihid., p. 105.
 \ddagger lid., p. 105.
 § Sce ante, p. 18.

[^36]: * 'Versueh die Metamorphosic der Pflanze zu erklären,' Gutha; 1790.
 + 'That Gocthe was not even free from the erroneous notion that one organ of a plant might be actually transformed into another, e. g. stamens into petals, or ovaries into leaves, is evident from the very first paragraph of his Introduction.

[^37]: *Vide Goethe, 1. c. § 6.
 † Gocthe, I. c. "From the secd up to the highest development of the stem-leaf, we observed first an expansion, after which we saw the calyx arise from a contraction, the petals from an expansion, the reproductive organs by another contraction, and shall now soon make out the greatest expansion in the fruit and the greatest contraction in the seed. In these six steps Nature completes, without pausing, the eternal work of the propagation of vegetahles."

[^38]: * In dicotyledonons plants even these are mostly parallel-nerved, and the parallel-ncrved appearance of the euphyllary leaves of the monocotyledons is but a sign that the cuphyllary leaf-formation is less characteristically developed in them, and hence is nore like the cataphyllary formation than is the case in the dicolyledons.
 \dagger There arc exceptions to this in the cataphyllary-leaves scparating into two distinet seales, in the buds of certain trecs, e.g., Betula, Carpinus, Corylus, Fagus, and Quercus. This structurc may be regarded as a transition towards the euphyllary-leaf formation, the leaf being here divided into two stipules and an abortive central leaf. In Quercus the first bud-scales are still undivided. These conditions are described by Doll,--Zur Erklärung der Laubknospen der Amentacen,' 1848.

[^39]: * Stalked lypsophyllary-leaves are a rarity, e. g., in Podolepis; the formation of a stalk occurs more frequently above the sheath-like part of the leaf, as for instance, in the formation of awns on the glumes of the grasses.

[^40]: * Sepals with pinnæ (Rosa), with stipules (Peganzm), or with a ligulestructure (Mesembryanthemum), are rarc exceptions.
 \dagger Ex. gr. Schizopetahum. Drummondia.

[^41]: * The ripening of the fruit and sceds occupics two scasons in many Conifers (Juniperus communis, l'inus,) and many oaks (Quercus Cerris, Suber, rubra, dec.)
 \dagger Wigand ('Kritik und Geschichte der Lehre von der Mctanorphose der Pflanzen,' 1846, p. 118,) very correctly calls "the great law of the unity of all axial and of foliar organs," the nuclens of the doctrine of metamorphosis, remaining behind whon we lave subtracted the multifold and strange chothing with which it is ordinarily enveloped. On the other hand, the problens of giving to the discovered nucleus its truc matural investments, does not appear to be sufficiently recornised. Multiplicity will not be wanting in the true clothing, and we shall certainly lave in own in strangeness and oddity in nature.

[^42]: * Agardh goes so far on this false hypothesis, as to regard the higher

[^43]: * Decandolle, 'Organographic,' t. xxi, figs. 1, 3.
 \dagger Ibid., t. 20.
 \ddagger Malpighi, 'Anat. Plant., t. xii, fig. 59.
 § Henry, 'Knospenbilder,' Nova. Acta. Nat. Cur., xxii, 1, t. xxii.
 Both eonditions are found eombined, consequently a double maximum in the euphyllary formation, a lower in the abbreviated part of the stem (in a rosette of what are termed radical leaves), and an upper, on the shoot, mostly, it is true, distributed through two seasons, in many biennial plants, c. I., Pedicularis nalustris, Anarrhinum bellidifolium, (Einothera murieata, as also in perennials with biennial sprouts, e.g., Jusione perennis and Pulmoneriu oficinalis. 'This phenomenon, however, does not properly belonrs here, but to the case mentioned ahove at page 59 of retrorressive metamorphosis within the euphyllary formation.

[^44]: * That is to say, in casc it has sufficient force to blossom. Young plants, and the weaker lateral shoots of older ones, altemate for several years between cuphyllary and cataphyllary formation, like the examples mentioned at pp. 54-55.

[^45]: * Other examples of onc-lcaved cuphyllary formation are furnished by Muluxis monophylla, and very many exotic Orchidacere; also by many Aroidex, c. y., Arum echinatum, (Wall. pl. as. rar. t. cxxxvi) ; by Gesncriacer, as in Platyslenma violoides, (Wall. 1. c., t. cli); by Seenguinariu; iud lastly by many Cyperacex, as for cxample, Scirpus mucronatus.
 \dagger Richard, 'Comment. de Musac.,' t. ix.

[^46]: * The following statements are derived from two speeies in the botanic garden of this town (Freiburg), one large, with overhanging infloreseenee and numerous flowers in the axils of bracts, whieh appears to bo Musa sapientum, and a smaller, with erect inflorescence and beantiful rosy bracts with only three flowers in each axil. In our garden this bears the mame of MI. rubra. On this especially have I been able to investigate minutely the distribution of the leaves upon the stem in referenec to height. The arrangement of the middle-leaves is $\frac{3}{7}$ in both, of the bracts $\frac{1}{1}$. In the statements of the conditions of lengh of the two speeies I slall distinguish them as M. sapientum and M. rubra.

[^47]: * According to Rumplt, in Musa paradisiaca 12 lo 20 bracts lave female flowers, and 12 to 20 of them in cach axil; so that a single inflorescence bears 100 to 200 fruits.

[^48]: * The two to three pairs of scalc-like leaves beneath the ealyx of the pinks increase in length in the ascending order, and therefore belong properly to the new advanee of the leaf-formation commencing in the flower, forming an epiealyx, as occurs also in the mallow.

[^49]: * The same occurs in Diplerocerrpus.

[^50]: * Nymphraea alba has about twenty-four petals, the inmost and shortest of which cxhibit a gradual transition into the staminal formation.
 + Many species lave more than one hundred petals.
 \ddagger In the inajority of double flowers the "doubling" is complicated by the formation of sprouts in the axils of the petals. The sprouts thus appearing are again imperfect flowers, with undeveloped axes, and mostly formed of few petals and oceasionally several stamens. Hence arises an apparently irregular accummlation of large and small petals, interposed in various directions, and often intermixed, with isolated stamens, ol which it eannot be aecurately determined which organs belong to the parent flower and which to the progeny. This occurs frequently, for instance, in double May flowers, Pinks, Crucifere, Mallows, and Roses. However, doubling sometimes occurs with and without axillary inercase in the same plant. Somelimes the axillary produets of double flowers aequire greater completeness, as is shown most beautifully in the case not mufrequently occurring in gardens of Althere roseu, first observed ly G. Engelmamn. Vide Engelmam, 'De Antholysi,' t. i, fig. 6.

[^51]: * For cxample: Ribes stanincume, Fuchsia, Cynoglossum stamincum, Hydrophyllum magellanicum, Hyssopus, Vaecinium stamincum, Eriea staminca, carnea, multiflora, \&c.
 \dagger Leguminosæ, Cruciferx, (especially the Siliquose), Geranincex, Palmee, ise. See also Asimina triloba, above, page 79.

[^52]: * Only such plants as do not claborate their own nutriment, parasites on living plants and parasite-like vegetables which are nourished like Fungi on decaying remains, can dispense with the leaf-formation.
 \dagger Ex. gr, in the Cyeadex, Conifere, Pahme, Aloe, and Aguve, Crassulacese, Aizoidece, Busus, Ilex, Citrus, Laurus, and the endless lost of evergreen trees of the tropieal zones. In the silver fir the duration of the acicular leaves extendis to seven or cight years.

[^53]: * I have observed this in especial beauty in a malformation of Citrus medica, where the calyx formed as it were an open citron surrounding the inner natural fruit.

[^54]: * Sce especially G. campestris, in which the first two scpals are completcly foliaceous.
 + This phenomenon belongs to what botanists call abortus, against the multifold groundless and superficial assumptions of which Schleiden very justly inveighs repeatedly, ('Grundzügc,' ii, 188.) The correct application of the comparative method will guard us from such idle speculation, aud indicate to us with ecrtainty suppression of leaf-formation, even in eases where observation of the course of development is perhap's never capable of affording a demonstration.
 \ddagger Another scrics of abortious, here left entirely out of view, is conuccted with the zygomorphic and antagonistic structure of what are called irregular flowers.

[^55]: * See, for instance, Hieracium subeudum and allied specics, Leontodon squamosus, C'alunanche ccrrulca.
 \dagger Ex. gr. Chrysanthemem Leucanthomem, Turaracurn, Scorzoncra, Cynara.

[^56]: * Thus, for instance, the lowest abortive leaf of Triticum, Secale, Oryza, \&c., while the succeeding do not embrace ; in Gtyceria fluitans and aquatica several of the lower abortive leaves are annular.
 \dagger Especially finc in Melica altissima and Phalaris arundinacea. Very beautifully so in the lower abortive leaves of Lolium, Pore compressa, Cynosurus, and Dactylis. The obliquely descending borders are even confluent on the lowermost. The overlooking of these abortive leaves led to the crror of regarding the glume of the spikelet of Lotizm as its subtending leaf. This mistake might be pardoned in a superficial examination, but it is incomprehensible how any onc could sce the truc condition clearly, and even draw it, and yet retain the false explanation, as Turpin has donc. Sec his plate of Lolium pereme in the 'Diet. des Sc. Nat.,' and the explanation given of the figures.
 \pm Thus, for example, the lowest and not always distinguishable abortive leaf of Alopecurus agrestis.
 § These ochraceous leaves are followed by one or the other unilaterally developer bract; at the base of the uppermost lateral spikelet, on the contrary, they vanish entircly, as in other grasses. In Oreochlon they are not so strongly developed, and only the lowest are one-sided. See on this pmint also Röper, 'Zur' Hora Meklenburgs,' ii , 12.

[^57]: * In Oryza the spikelet begins with four sterile palce, followed by only one fertile. The first two or three sterile paleæ appear only as small teeth. Leersia is distinguished from Oryza mercly through the still more imperfect development of the first four palex of the spikelet.
 \dagger Thus, for instance, in Bromus, Festzea, Poa, Daetylis, Secale, Melica, Molinia, Phragmites, Chloris.
 + 'Thus in T'riodia, Agrostis, Calamagrostis.
 § 1 decrease may take place in these in an abnormal mamer, when, namely, the axis or rachis of the spikelet develops additional palce (and flowers in their axils). An interesting ease of this kind occurs almost

[^58]: normally in a Panicun cultivated in gardens, which I have named P. (Fchino-
 chlou) mirabile. This species, allied to P. slagninzm, very freçuently prescuts, besides the three ordinary glumes and the normal palea (dcek-spelzc) enclosing the flower, a second smaller palca, which, like the first, conceals a perfeet flower in its axil.

[^59]: * Wx: gr: Digitalis, Antirrhinum, many spocics of Linaria, Verbaseum Blattaria, while in Verbuserm Thorpsus, and the allied species, as also in Serophulariu, Givatiola, sec., the bracteoles are developed.
 ot Verbena, Aloysia, while Vitere exhibits developed bractooles.
 \ddagger Teucrium, Prenella; in many other genera of the family the bracteoles are visible. Scutellaria exhibits a beautiful transition to the suppression of the bractcoles, for in many species, for instance S. alpina, they exist only as searcely perecptible prapille. Salvia presents a series very instructive in this respect. S., patens and dulcis have solitary flowers standing in the axils of bracts, without visible bractcoles; S. coceinea, splendens, and involuerata, have threc-flowered, S. farinosa (trichoshyla, Bischoll'), and confertiflora many-llowered cymes without visible bracteoles ; S. Horminum three-flowered eymes with developed bracteoles of the middle flowers, but not of the lateral flowers ; S. glutinosa, lastly, has three-flowered eymes with developed bracteoles of both the middle flowers and the lateral flowers.
 § Pisum, Galega, Podalyria curstralis; in Colutea and Iapinus the extroncly small bracteoles at the base of the calyx are often scarecly visible; in other gencra, Phaseolus in particular, they are more considerably developed.
 || I have purposely chosen only such examples as at once show the existence of the supposed bracteoles, cither by the visible presence of these in other genera of the same family, or even other species of the same genus, leaving out of the question other grounds for the assumption. In the family of the Fumariacese they are visible in Dielytru; in the Berberidex in Berberis itself; in the genus Hedera in H.capitata; in the genus Thesium in all the other indigenous species except the two mentioned above.

[^60]: * In Alnus and Betula the calyx is indistinguishable in the female flower, but visible in the male; in Carpinus and Corylus, on the other hand, the male flower is devoid of a visible calyx while the female possesses onc.
 \dagger The three scales in the flower of Fuivena do not belong to the perigone, but correspond, as Necs correctly assumes, to the inner circle of stamens. They stand decidedly inside and not outside the three fully-developed stamens. Sce, for other points, the in other respects accurate description of the flower of the Fuirene, by Schlechtendal, ('Bot. Zcit.,' 1845, p. 849.)
 \ddagger The inner perigonial circle is perfect, composed of three little scales, in Stipa and the Bambusee; in most of the other grasses it is imperfect, the leaf falling posteriorly being suppressed. Sometimes the abortion extends to the inner circle of the perigonc, as in Crypsis, Alopecurus. As regards the foundation for the assumption of an outer, constantly abortive perigonial circle, it can only be observed here that it is derived from the comparative study of the rudiments of the branches of the monocotyledons and the rules of insertion of lateral flowers dependent thereon. Under the lyypothesis that it possesses a double perigonc, the flower of the Grasses stands in the axil of its bract exaetly like the braeteolate flower of the Iridex. The same attachment of the flower is probably to be assumed of the Cyperaccæ also, only in this family the bracteole (the inuer palca) is constantly suppressed, while in the Grasses it is fully developed, except in a few cases (Trichondium, Alopecurus).

[^61]: * The two lateral pieces are $1 \frac{1}{2}$ to 2 limes long, the lower about 15 lines, the upper 17 lincs.

[^62]: * In this and similar cascs no circle seems to be absent, since when two succeeding circles are suppressed, the alternation of the properly developed circle is restored.
 \dagger Sec pages 78, 79.
 \ddagger To prevent misunderstandings, I must remark that the condition of abortion is not the explanation of all apetalous flowers. There are families in which the metamorphosis actually progresses dircetly from the calyxformation to the stamen-formation, without any suppressed intermediate formation corresponding to the corolla; thus, for instance, in the Polygonex and Laurinex.

[^63]: * Sce page 80.
 \dagger See page 85.

[^64]: * Deeandolle, 'Organographie,' $i, 1$ I.

[^65]: * I use this term in the sense explained above, pp. 60, 61.
 \dagger The oceurrence of such transitions is in most eases a certain indication that no abortive circle exists, but the eases must be elosely examined, in order that a mere multiplicatiou of the organs of one or other formation, such as may happen throngh an alteration of relative position or through axillary formations, may not be taken for a substitutive aberration of structure. Consulting the sections on the transformation of pistils into stamens, (218), and stamens into pistils, (220), in Moquin Tandons 'Teratologie,' we find that after separating the doubtful from the trustworthy and accurately known eases, the examples mentioned belong to thrce families of the Monocotyledons, (the Liliacex, Colchicacex, and Palmæ), and eight families of Dicotyledons, (the Ranunculaceæ, Magnoliaeeæ, Papaveraceæ, Cruciferæ, Crassulaceæ, Erieaceæ, aud Primulacex). I have myself observed most of these, as well as many other less known eases. To the latter belong, for instance, the transformation of the carpels into stamens in Allium Schenoprasum, which seems to oceur as eommonly in the ehives cultivated in gardens, as the opposite ease of the inner stamens turning into earpels in the eultivated Sempervivum tectorum. This transformation is exhibited in the chive in the most varied degrees; it is further remarkable from the faet that the stamens appearing in the place of the three earpels, have extrorse anthers, while the anthers of the six normal stamens are introrse, a condition whieh reminds us of the similar double charaeter of the anthers in the Laurinex and Polygoneæ. Strange too, is the occurrence of three more shorter stamens, whiel are confluent with the three replacing the earpels, and which I can only regard as axillary structures like those oeeurring in double flowers, (see note, p. 79.) In this ease we find inside the decomposed germen, which las passed over into a staminal formation, a new more or less perfeetly developed whorl, the organs of which alternate with those of the preceding whorl. Another ease, apparently also little known, but equally frequent, oceurs in the cultivated horse-radish (Avmoracia ruslicana). The two carpels are here trausformed more or less completely into stamens, while two other organs, absent in normal flowers, make their appearance as earpels. The reverse ease, the transformation of all the stamens into earpels, is shown by Cheiranlhus Cheiri gynantherus, Dee., a monster whieh las beeome a variety in the Paris garden, and for which I am indebted to M. Gay.

[^66]: * Juncus supinus is ordinarily triandrous, the varicty which is hold as J. nigritellus, Don, is hexandrous.
 \dagger At least in the Cyperince, the Caricince may be different; sce below.
 \# Alisma and Actinocarpus arc rudimentarily enncandrous, like Butomus.
 § The suppressed circle of stamens appcars developed in the double Campanula Medium of gardens. In this case the first circle of stamens becomes the inner corolla, the abortive cirele the circle of stamens. The form and arrangement of the earpels remain unchanged.

 II Both circles are developed in 7rosophyllum.
 IT In Myricaria (Tamarix germanica, L.) both eireles are developed.
 ** See the 'Flora,' 1843, No. XXII, ct scq.
 $\dagger \dagger$ Sce the 'Flora,' 1835, J, 179.

[^67]: * At the same time, all dielinous flowers do not behave in the same way; on the contrary, there exist great and essential differences in the structure of flowers with separated sexes, which, however, are often difficult to make out. While in the cases above considered the unisexual flower presents itself merely as a one-sided development of an hermaphrodite flower, its origin depends in other eases, like the sex in animals, on the different mode of devclopment of parts, which, aceording to their position in the flower, are like, as is the case, for example, in the Willows, in which the same leaves appear in the male as stamens and in the female as earpels. The observations whieh I have made on the so-called hermaphrodite flowers of Carex, in particular of Carex stricta, seem to testify the same for this genus. In Hydrocharis we mect with a ease which stands mid-way between the two mentioned modes of origin of unisexual flowers. In this plant the flower is composed of six altemating trimerous whorls. The first and second (ealyx and corolla) behave alike in the male and femate flowers. The third, fourth, and fifth, appear as perfectly developed stamens in the male flower, while the sixth consists of blunt processes which sometimes have been ealled staminodia, sometimes abortive pistils. In the female flower, on the contrary, the third and fourth whorls appear as blunt processes, (staminodia and nectaries of authors) while the fifth and sixth beeome fully developed in the form of earpels.
 + C. Hl. Seluultz, 'Die Lehre von der Auaphytose oder Verjüngung der Pflanzen, ein Sehiissel zur Lrklarung des Waehsens, Blühens und Pruehtragens der J'flanzen,' 1813; and 'Neues System der Morphologie der Phanzen nach don Organisehen Bildungsgesetzen,' 18.7.

[^68]: * This is not the place to carry this out furtlicr by demonstration of the morphological crrors in the said works; the botanist aceustomed to morphological rescarches finds proof of the above assertion in every paragraph, e. g., in § 34, where leaves in leaf-axils, and buds in branch-axils of forked stems, are spoken of. See also the critique of Mohl, in the 'Botanische Zcitung,' 1843, p. 667.
 \dagger Die Lehre von der Anaphytose, 89.
 "The plant represents the most varied shapes by modifications of a single organ." Gocthe, 'Metamorph.,' §3.

[^69]: * Schultz's doctrine is in this respect certainly much more variegated than the "ehaotic hash of the theory of metamorphosis." 'Neues System,' p. xvii.
 \dagger Broad flat leaves arc said to originate by lateral (sympleuric) fusion (symphytosis) of normal stalk-shaped anaphyla. 'Neues Syst. der Morph.,' page 2.

[^70]: * 'Anaphytose,' § 41.
 \dagger The flower is to be eoneeived only physiologieally, and not morpholosieally ('Anaphyt.,' p. xi), and yet its formation is explained from morphologieal elements, i. e. anaphyta (ibid., p. 62). Although eomposed like the individual parts of the plant, that is, the parts of the vegetable "stoek," of anaphyta, the parts of the flower are said to possess only an apparent and no real similarity to these, and to be essentially different from them (p.67). Sinee the parts of the flower, as anaphyta, are explained, at the same time, like the individual parts of the plant, as independent individuals (p.92), and since the whole plant is said to repeat itself, with all its essential funetions, in caeh anaphyton, it is impossible to see, from Schultz's doetrine, whence eomes the asserted essential difference of the anaphyla of the same plant. Sehultz's own distinetion, namely, the anaphyta of the vegetable "stoek," as mere individual (!) (ascxnal) individuals, and the anuphyla of the flower (enanaphyta) as sexual individuals, cannot be recrarded as essential, and removing all real similarity, since, on the one hand, the parts of the flower must still have an individual existenec, and, on the other hand, the anaphyla of the vegetable "stoek" must have aseribed to them, from the production of new anaphyla, not merely individnal cxistenee, but power of propagration. Hence Schultz's opposition to Metamorphosis appears wholly groundless on this side.
 \pm Vide 'Botanische '/citung,' IS \&3, p. 741

[^71]: * See the explanation, according to this theory, by Stecustrup, in his 'Alternation of Generations in the Lewer Classes of Animals,' p. 128. (Ray Socicty's Publications, 1843.)
 \dagger E. Meyer 'Dic Metamorphose der Pflanze und ilne Widersacher,' Linuæа, vi (1832), p. 401.
 \ddagger Harstcin, "plantarum vascularum folia, caulis, rudix utrum organa sint origine distincta, un ejusdem organi diverse tantam partes?" Limnæa, xxxi (1848), p. 65.
 § Gaudichaud ' Recherehes sur l'Organographie, la Physiologie, et l'Organogénie des Vegetaux,' 1841.

[^72]: * 'Jahreshefte des Vereins fur Vaterländische Naturkunde in Wurtemburg,' 1847, p. 1; and 1848, p. 144. The leaf and the segment of the halm beneath it form, according to Hochstetter, a whole, which he calls a stage or storey (Stockwerl), and which consists of three parts, the foot (intcrnode of the halm), the trunk (the leaf-sheath), and the head (the blade of the leaf). Each new stage is produced from its predecessor by a branch being given off at the node between the foot and the trunk. In this way each leaf is regarded as the terminal prolongation of the internode of the stem, which original relation is supposed to be clearly preserved in Juncus, on the round stalk-like and erect highest leaf (according to Hochstetter, homologous with the point of the sterile halm), from which we see the inflorescence cscape laterally through a slit. Hanstein also regards the leaf as terminal, sinec he asserts that each new leaf originates through uplifting of the centre of the point of vegetation: "Puncli vegetationis centrum in novum extenditur folium," l. c., p. 83.
 \dagger In the higher classes of plants even we meet with eases of the development of the stem without leaves, as well-known in tendrils and thornstructures. The sterile haln of the Rushes (Juncus conglomeratus, \&e.) affords an equally familiar, though less notieed case.
 \ddagger The recent researehes on the commencement of leaf-formation leave no doubt on this point. See the works of Schleiden, especially on the origin of the cotyledons in the embryo and the coats on the nucleus ("Wiegmann's Archiv,' 1837, and clsewhere) ; Von Mereklin ('Zur Entwicklungsgeschichte der Blatt-gestalten,' $1846:-$ on the development of the forms of Leaves, trans. in 'Anu. des Sc. nat., 2d ser. Botanique,' tom. vi, p. 215, 1846); Adr. de Jussicu, on the formation of the embryo of Monocotyledous ('Ann. des Sc. nat.' Juin, 1839); Duchartre, on the organogeny of the parts of the flower of the Onagracee, Primulacex, Malvacer, Nyetagincee ('Amm. des Se. nat.,' 1812-1-5-8.) Even in the lems, in which the teaf-nature of the frond, as

[^73]: * Stems growing downwards or creeping horizontally only occur in the retrogressive or in persistent low stages of metamorphosis.

[^74]: * Among the exceptional cases in which the stem acquires a development rising beyond the last leaf, or, if it is a lateral sprout, appears in an independent strueture devoid of any leaf-formation, becoming itself developed in a radiating manner, are: 1 , the free eentral plaeenta; 2, emergenee into tendrilformation; 3, emergence into thorn-formation; 4, emergence into bristleformation (Setaria, Chenopodium aristatum); 5, the soft needle-like ramification of Asparagus; 6, the leaf-like summits of the stems and branehes of Ruscus, Medeola asparagoides; and 7, the above-mentioned strrile halm of

[^75]: Juncus, which presents itsclf alone, in place of the cuphyllary formation, bearing only eataphyllary leaves at its basc. The development of these enormous leafless stem-summits deserves a closer investigation; so far as I could trace it, I found nothing which could warrant thic idea that these green halms were leaves, in particular no sheath at their base. The smallest and youngest that I could dissect out always appeared as clongated conical points, and no other punctum vegetationis could be distinguished.

[^76]: * Schlciden, 'Grundzüge du Wiss. Botanik,' ii, 113, (2d Ausg.) 'Principles of Scientific Botany ${ }^{\prime}$ (London, 1849), p. 26$]$.
 \dagger 'Ueber das Wachsthum und den Begrifl des Blattes,' Zcitschr. f. wiss. Botanik, 1847, 153; 'Wachsthums-geschichte der Blätter der Laubmoose,' Ibid, 1845, p. 175.
 \ddagger With regard to the two last-named families, I can fully confirm Nägcli's observations through my own.

[^77]: * Grischach, 'Beobachtungen über das Thachsthum der Vegetations organe in 13ezng auf Systematik.' (Weigmann's Arehiv, 1844, 134.)
 \dagger 'Observationes sur la mode d'aceroissement des fenilles.' (Amn. des Sc. nat. 1837.)
 \ddagger 'Bcitrag zur Lehre vom Wachsthum der Pflanzen,' Bot. Zeit., 1843, p. 785.
 § Especially remarkable, in this respect, are certain Ferns, in which the points of the leaves are never totally umrolled, as in the narrow, simply pinnate Platyzoma mierophyllum, and the Jamesonire rescmbling them in habit (e. g. J. imbricala, Hook. et Grev., t. 178, serlaris, cimnamomea, verticalis Kunze, 'Die Farrnkräuter in Colorirten Abbildungen,' t. 71 and 82). Still nore remarkable are many species of Glecichenia and Mertensia, in which the development of the leaf is arrested above the first pair of pimmulcs (and in multipinnate rudinents often repeated in several degrecs of the ramification), so that the point, sceming to form a bud in the bifurcation, cilher remains permauently undeveloped, or is only unfolded in the succeeding season, and then again in like manuer only imperfectly. This sectional devclopment of the leaf, in which we behold one of thic most remarkable phenoincna of Rejuvenescence within the leaf itself, appears capable of lasting through many ycars, on which head it would be very desirable to obtain more accurate information from obscrvers in the native countries of these Ferns (sce Kaulfuss, 'Das Wesen du Farrukräuter'), 1827, p. 36). That the leaves of these Ferns do not possess, however, as might seem, an unlimited growth, is proved by the leaves of the young Mertensim with a

[^78]: * Vide Compositx, Dipsacce, Plantagincx, Protcacce, Piperacex, Zingiberacex, Сурсгасеæ, Aroidex.

[^79]: * Sec page 113.
 \dagger Sec Grisebach, 'Ueber das Wachsthum der Vegetationsorgane,' Wieg. mann's 'Archiv,' 1843, i, 267.

[^80]: * Definitely demonstrated in the Floridere, c. I., in Polysiphonia and Iherposiphonia (Nägeli, 'Zcitschrift,' heft 3 and t, p. 207, t. 6-8) ; Dclesseria hypoglossum (idem, heft 2, 1. 121, t. i); Laurencia (Nägeli, '1) ie neueren Algensysteme,' t. 8, f. 4); Characer, Musci (Naigeli, '/acitschifif', heft 2, p. 138, t. 4) ; Equisctacex (idem, heft 3 and 4, p. 167). If the apieal cell divides vertically into two equivalent cells, consequently into two apieal cells, diehotomy results (sec Dictyota, in Nägeli's 'Algensysteme,' t. 5, figs. 12-16), and by rapid repetition a fien-like expansion. Probably the fasciation, as it is termed, of the Phanerogmia, originates in this way.
 \dagger So at least in the Floridex, Characex, and Mosses. (See Nägeli in the alreadly mentioned places.)
 \ddagger Sce the formation of branches of Echinomitrion furcatum, in Nägeli's 'Zeitschr.,' heft 2, p. 138, t. ii, figs. 2-6. Among the cases of which we have an exaet description, is also the origin of the seed-sprout or ovule of Orchis, which, aceording to Hofmeister, ('Enstehung des Einbryo der Phanerogamen,' 1849, p. 1, t. 1) is developed from a single cell of the placenta, which is first divided into two superposed cells, the upper of which by subsequent division forms the cellular coat, the lower the axial row of cells.
 § Sce the treatises relating to this in Nägeli's 'Zeitschrift fur wiss. Bolanik.' (1845-47), as also his 'Kritik d. neuer. Algensystene u. Versuch eines eigenen Systems d. Algen und Florideen,' 1847°.

[^81]: * Schleiden, 'Grundriss der Bol.,' p. 28, and 'Grundzïge', 11, 1. 4. ('I'rinciples of Sc. Butany,' London, 1849, 1'. 126.)

[^82]: * Uniecllular plants occur in the series of Fungi and Algæ, whieh have very varied correspondence in morphological respeets. In regard to the latter I refer to Nägeli's most recent work ('Gattungen einzelliger Algen,' 1849), in which is laid a new and solid foundation for the knowledge of these plants, so interesting in this respect, but hitherto (with the exception of the Diatomaeeæ and Desmidiaceæ), from want of observation on the devclopment, only most superficially known, and heaped together in the most chaotic manner in the Systems of Algæ.
 \dagger Vide Nägeli, 'Einzelliger Algen,' p. 28.
 \ddagger In systematie respects, also, the uniecilular genera are most eloscly connected, sinee many genera with transitory ecll-formation in the passage to spore-formation exhibit great agreement with those without this (excepting in this one eharaeter). Thus Cystococcus, Näg. (1. c., p. 84, t. 3, e), witl transitory cell-formation, corresponds with the genus Prolococcus (as limited by Nägeli), with immediate or simultancous sporc-formation ; Characium, A. Br. (Näg., l. c., p. 86, t. 3, D), perfeetly eorresponds to the genus Ascidium, A. Br.; Pediastrum, Meyen, in many respeets to the genus Ifydrodictyon, Roth.
 § This case is repeated in multieellular Algæ, Ulothrix, Ulva, Porphyra, (Niig. 'Algensyst.,' t. 1, f. (i1, 62), Ectocarpus, (ibid., t. 2, figs. 3, 4, 5); similar eases oceur even among the Fucoidex, since, aecording to Deeaisne

[^83]: and Thuret, the originally simple spore of Fucus canaliculatus breaks up into two, that of F. nodosus into four, of F. scrratus and vesiculosus (doubtless by repetition of division) into cight spores. (Vide Decaisne and Thuret, 'Sur les Anthéridies et les Spores de quelques Fucus,' 'Anı. des Sc. nat.,' 1845.

 * Here refer the Diatomacex, Desmidiacex, and most of the Palmellacex. For the course of the generations of the first, sce Thwaites ' Further Observations on the Diatomacex,' ('Amm. and Mag. of Nat. Hist.,' 1848, sce. ser. i, 161.)

[^84]: * According to Nägcli's limitation of this chaotic genus. (Vidc Nïgcli, 'Die neucren Algensysteme,' p. 153.)

[^85]: * Ascidium acuminatum, Λ. Br., occurs ncar Freiburg, in waterbuts or troughs, or on stones or conferve in rills flowing from springs. It resembles in aspect Characium Sieboldii, A. Br., occurring in similar situations, from which it is easily distinguished by the more bulging form of the cell, more apiculated at the apex, and never containing more than one starch-vesicle. The swarming germ-cells are $\frac{1}{200}$ th - $\frac{1}{5}$ th of a millim. long, longish, and furnished with two cilia at the narrower end, $1 \frac{1}{2}$ to 2 times as long as the germ-cell. After the germ-cell has settled down by the ciliated end, the plant grows rapidly, is at first slender and attenuated upwards and downwards; subsequently it becomes bellied out, almost ovate, running out suddenly into a sharp point abovc. The full-grown cell is about $\frac{1}{20}$ millim. long. While young, the cell -is filled up uniformly with green conteuts, later they form a rather thick coat over the wall, uneven on the inner free surface. When the formation of germ-cells commences the stareh-vesicle disappears, and the coat lining the wall becomes subdivided into $50-60$ gomidia.

[^86]: * Vaucheria, moreover, passes into a many-eelled condition in the preparation for spore-formation, for the points of the branches on whieh sporeformation occurs, become shut off into distinct cells. Vide Unger, 'Die Pflanze in momente der 'Thierwerdung,' (1843), and 'Thuret, 'Sur les Organes locomoteurs des Spores des Algues,' ('Ann. des Se. nat.,' 184.3.)
 \dagger Vide the seetion on Bryopsis, in Nägcli, ('Algensysteme,' p. 171;)
 'On the Formation of Spores,' J. Agardh, ('Ann. des Sc. nat.,' 1836.)
 \ddagger Vide Nägeli's important researehcs in Caulerpm prolifera, ('Zeitsehr. fur Wiss. Bot.') heft 1, (1844, p. 134.
 § Deeaisnc, 'Plantes de l'Arabie heurense,' 'Areh. du Mus.' ii, (1839,) f. vi, B .

[^87]: * Vide Nägeli, ‘Einzellige Algen,' p. 44, t. 1. In Synechococcus, Glaothece and Aphanothece the cells of all the generations become elongated and divided in the same direction, and would, if they did not separate from each other, form filaments, like Oscillaria; in Merismopadia the generations are divided alternately in two directions of a plane, whence flat, single-layered plates are formed; in Chroococcus, Gleocapsa, and Aphanocapsa the division takes place alternately in three directions of space, whence arise globular or finally sliapeless families. Directing our attention to the difference in the position of the axes and the planes of section of the cells, in the last-named cases, we may distinguish in the succession of the otherwise similar generations, subordinate cycles, in one case with two members, in the others with three. There is also another respect in which the sueceeding generations are not always exactly alike, the last, generations frequently remaining snaller than the carlier, as, for example, is ordinarily the case in Glcoocapse, where the size of the cells diminishes with the increasing magnitude of the familystock (phytodom).
 \dagger Ex. gr. Shichococcus, (Näg., l. c., t. iii, c); Hormosporce, (Nüg., t. iii, 13) ; Pleurococcus, (Näø., t. iv, E) ; Gleocystis, (Nüg., t. iv, F) ; Palmella, (Näg., t. iv, D) ; Porphyridium (Näg., t. iv, II) ; the first two forming rows of cells, the last four solid groups of cells.
 \ddagger In the genuine Hormidia, not living in water, I have found no other proparation but a breaking up of the filaments into single cells. Henee Hormidiuns seens to me most elosely allied to Stichocoscus and Hormospora.

[^88]: * Vide the genera Tetrispora, (Naig., t. ii, c) ; Dictyosphicrium, (Näg., t. ii, E) ; Apiocystis, (Niig., t. ii, A) ; the first of which forms a cellular plate, the seeond a free solid group of eells, the third a solid group attaehed by an attenuated base like a stalk. Besides the alternation in the direetion of the divisions, there oeeurs in these genera a further slight distinetion in the generation of eells, in that one or two generations of eells are alternately transitory, that is, they divide anew before they have attained the usual size of the veretative cells.
 \dagger Vide Thwaite's 'Obscrvations on the Diatomacex,, 'Amı. and Mag. of Nat. Hist.,' vol. xx, (1847,) t. iv; (Eunotia turyida), t. xxii ; (Cocconema lanceolatum, Gomphonema minutissimum IFimantidiunn pectinale), series 2, vol. $\mathrm{i},(1848$,) t. xi, (ATelosira and Cyclotella.). The denomination of the reproduction eells produced throngh eoujugation as sporangia (sporaugial frustules) by Thwaites, depends on a too widely stretehed comparison with those of the Desmidiaeex. Aceording to Thwaites's own deseription, the reproductive cells of the Diatomaceix pass dircelly into vegetative cells, which is not the ease in the Desmidiacea. The strange phenomenon that the primary generation formed through the eonjugation attains about double the size of the parent cells, is simply explained by a gradual deerease of size in the series of vegetative generations formed by division, a phenomenon to which I have already called attention above in the easc of Gleocapsa.

[^89]: * Vide the illustrations in Ralfs' excollent Monograph of the British Desmidiacces, (London, 1848), for instance, t. iii, (Didymoprium) ; t. xvi, (Cosmurium) ; t. xxiv, (Tetmemorus) ; t. xxv, (Penium) ; t. xxvi, (Docidium); t. xxvii, xxviii, (Closterium) ; also Nïgeli, 'Einzell. Algen.,' t. vii, f. 6 , (Cosmarium rupestre).
 \dagger Ralfs, l. c., t. xxx, (Closterium lineatum).
 \ddagger Ralfs, l. c., t.iv, (Desmidium); t. xxv, (Penium) ; t. xxix, (Closterium), \&c.
 Kalrs, l.c., t. vii, (Mierasterius) ; t. xii, (Euastrum); t. xvi, (Cosmariun); 1. $x \times i i$, (Phycustrum), \&c.

[^90]: * Many nuthors call these eells sporangia; but if we compare their behaviour with that of the spores of the higher orders of Cryptogamia, in which, in like manner, only the internal substance is developed into the germ-plant, the coat being thrown aside, we must regard them as true spores, while, on the other hand, those spores of the Algre passing directly into germination, to which belong in particular all swarming-spores, differ importantly from ordinary spores, and would be better termed Gonidia.
 \dagger Vide Ralfs, l. c. t. xxvii, and Focke, 'Physiologische Studien,' (1847,) t. iii, fig. 27.
 \ddagger So far as my observations extend, the filaments of the Zygnemaceæ appear, like those of Desmidium, to be formed merely by repeated division into equivalent cells, thus to possess neither apical growth nor distinction into an upper and lower end. I have never found the radical structure by which they are often attached otherwise than lateral. Unfortunately I

[^91]: have not been able to follow the observation of the germinating plant as far as the commencement of root-formation. (See Pringsheim, on Spirogyra, 'Flura,' 1852 ; Transl. in 'Annals of Nat. IList.,' 2 d ser., vol. xi, 210.-A. H.)

 * Vide Hassall, 'British l'resh-water Algw,' (IS45) t. xviii-xlix.
 \dagger The germination of the Spirogyrre was olsserved by Vaucher ("Hist. des Conferves d'ean donce,' 1903). I have seen it take place in the abovedeseribed way in July of the present year, in Spiroyyra retiformis, which had been eollected with ripe spores eleven months previously. I shall mention hereafter some of the remarkable changes in the contents of the spores occurring as preparatory to germination. (See Pringsheim, 1. c.-A. H.)
 \ddagger Vide Ralfs, l. c., t. xxxiv, f. 1, 2.
 I am only aequainted with these observations from the report in the 'Botanische 'Leitungr,' 184.f, p. 498. ('Aun. Nat. Hist.,' xvii, 262. See on this subject also Pringslecin on Spirogyra, l. c., p. 290.-A. H.)

[^92]: * Vide the figures in P1. 1, and the more minute description of Palmoglece in the Appendix.

[^93]: * Kützing, 'Species Algarum' (1849), p. 448.

[^94]: * I must reserve the history of this remarkable plant, to whieh I slall return several times, for another opportunity. My own observations were chiefly made in the summer of 1846, and the results made known at the meeting of the Swiss "Naturforschende Gesellsehaft," at Schafllhausen, in August, 1847.
 \dagger 'Nova Aet. Nat. Cur.,' vol. xx, ii, 1844. (Also Cohn, 'Nova ^eta,' xxii, p. 397, an abstraet of which paper is ineluded in this volume. Also Schaeht, 'Die Pflanzenzelle,' Berlin, 1852, p. 124.-A. H.)

[^95]: * Vide Treviranus, 'Verm. Sclıiften,' ii, 1, p. 73 (1817-Draparnaldia); Kiitzing 'über dic Verwandlung der Infusorien in niedere Algen-formen' (1814-Stigeoclonium stellere) ; Fresenius, "Kur Controverse uber dic Verwandlung von Infusorion in Algen' (1847-Cheotophora). I have myself observed the active germ.cells of Draparnaldia mutabilis, Stigeoclonium thermale (June 1847), subspinosum (May 1847), protensum? (May 1848), tenue (July 1849), Chotophora tuberculata (Aug. 1847), and elegans (Scpt. 1817).
 \dagger Vide Nügeli, 'Gatt. cinzelliger Algen,' p. 10.
 \ddagger Vide Kiitzing, 'dic Kiesclschaligen Bacillarien oder -Diatomacecn' (184f), t. xxv, f. 8; t. xxvii, f. 11; t. xxviii, f. 1.

[^96]: * Ralfs, "the British Desmidiex, p. 9.
 \dagger Fhrenberg, 'Infusionsthierehen,' t. ii, f. 15.
 \# Morren, 'Mémoire sur les Closteries.' ('Ann. des Se. nat.,' v, 1836.) (Sce also Smith, 'Ann. Nat. Hist.,' $2 d$ ser., vol, v, 1.-A. H.)
 § It is remarkable that Ralfs, who has seen the formation of spores in so many Desmidiaecæ, says nothing about it in reference to this very Closterium Lumula, and the allied species Cl. Ehreubergii and moniliferum.
 || J. Agardh, 'Algie maris moditerranei' (18.12), p. 4.

[^97]: * In Edogonium fonticola A. Br. (' Kg. Sp. Alg.,' p. 368), a species which occurs almost everywhere in the pools formed by ruming springs, the formation of the "swarmers" may be observed throughout thie whole year, while the formation of the resting sporcs occurs but rarely. In a. capillare, the commonest specics of the genus, I have hitherto met with "swarmers" alone. I have observed both kinds of fructification in E. Landsboroughii (Hass.), vesicatum (Vauch.), frisciatum (Hass.), Brannii, Kg., echinospormum, A. Br. (Kg. 1. c. 366), apophysatum, A. Br. (ibid.), Butbochacte setigera, Ag., and minor, A. Br. (Kg. l. c. 422). Cymalonema confervaccum, Kg. (Sp. Alg. 375), behaves cxactly like (Edogonium in the bursting of the cells, but I have not yet succeeded in observing the swarming out. (See also Thuret, 'Zoospores des Algues,' Anu. des Sc. nat., 3d ser., xiv, p. 17, pl. 19.-A.H.)
 \dagger Vide Nügeli, ' Λ Igensysteme,' p. 166, v, f. 22-31. I have observed the formation of spores, as well as of gonidia, in both species of this gromes, (\therefore scutula, Brib., and pulvinula, A. Br. (Kg. 'Sp. Alg.,' 424).

[^98]: The decision of their true import therefore requires, on the one hand, further observations completing the history of their formation and life ; and, on the other, the diseussion of the question, whether the formation of active, and, as we have scen, in many eases sterile gonidia, is not to be regarded as a precursor of the formation of spermatozoids, just as in a higher group, the formation of two kinds of spores, the former of which are likewise, in many eases, sterite, must be regarded as an antieipation of the contrast of pollen and embryo-sae. (See 'Thuret, 'Comptes Rendus,' April 25, 1853; Transl. in 'Annals of Nat. History,' $2 d$ ser., vol. xii, p. 64, who shows that the antherozoids do fecundate the spores of Fucoider.-A. II.)

 * I observed this in Oetober of last ycar in a form of Chantransia chalybea, Fries, very frequent at Freiburg, whieh Kützing ('Sp). Alg.,' 4.30) mentions as Ch. chalyber, var. radians.

[^99]: * Göppert coneludes that both the small and large spores are capable of germination, from observation of two different forms of the young plants in Selaginella denticulata. ('Uebersieht der Arbeiten der Schles. Ges. fur Vaterl. Cultur.,' 1845, p. 129.) (Proved ineorrect.-A. H.)
 \dagger According to a recent note in a letter from Dr. Mettenius (Nov. 1844), spermatozoids are developed in the small spores during the germination of the large spores, which confirms the analogous obscrvation of Nägcli on Pilularia. ('Zeitschr.,' 1846, 188.)
 \ddagger (On this subject, much developed since the above was written, eonsult the Report on the Higher Cryptogamia, by A. Henfrey, in the 'Amals of Nat. History,' $2 d$ ser., ix, 441, whieh also gives most of the new literature of this subjeet.-A. H.)

[^100]: * These cells have been hitherto incorrectly regarded as seed-cells, (spermutia, Kg.).
 \dagger Very young plants of Nostoc (or IIormosiphon?), exhibited a short filament enclosed by a gelatinous vesicle, having a boundary-cell only on one side, and this lying outside the gelatinous vesicle.

[^101]: * These three genera are so loosely definea by Kützing, that we eannot form any elear idea of his distinetions. Anabaina seems to me to be only sterile Spherozyga, and Spermosira to differ merely by shorter and more discoid cells, and Nodularia may be a sterile condition of the last form.
 \dagger I found indieations of sueh a contrast in Cylindrospermum Iumicola, Kg., and other speeies, in whieh one end deeidedly eomes to its full development Jater than the other.

[^102]: * In many species of Scytonema and Tolpelhrix the lower end of the sections may grow out in this way into new points.

[^103]: * It sometimes appeared to me as though the sced-cell, or the so-called mambrium of Rivularia originated by re-fusion of several previously separate cells, analogous to what occurs in P'almoglaa; but I could not attain a complete conviction of the truth of this.
 \dagger Vide Kützing, 'Phyc. gencralis' (1843), t. Ixxx. (Also Schacht, dic Pflanzenzelle,' 1842, p. 120.-A. H.)

[^104]: *Hence the great variability in the diameter of the filament, which

 † Vide N̈̈geli, 'Algensysteme,' f. 737, t. i, f. 53, 51.

[^105]: * I am not aequainted with any genus of Alga with simple filaments formed solely by cell-forming apical growth without subordinate division of the link-cells. Among the ramificd Algx, Batrachospermum forms its stem in this way.
 \dagger Kützing, 'Spec. Alg.,' p. 894.

[^106]: * Vide Styptocculon, in Kiitzing's 'Plyyeol. generalis,' t. xviii; in Lenunia also, the formation of the componnd tissue stirts from a simple row of tinkcells origimating by horizontal division of an apical cell, which link-cells divide first by a cross-wise perpendienlar segmentation into fomb, then by recurving horizontal division into cight equal cells. In what way the scparation in the peripherical and central cells next takes place, and how the division proceeds in the interior, it is not casy to determine; but the result shows that the division occurring in the interior is far outstripped by that in the periplicrical cells, since a rind is formed outside composed of two layers of very smalt cells, while the interior is oceupied by many-times larger cells, separating from one another in the centre, and forming a medullary cavity.
 \dagger Vide Plilola (Kïtz. 'Phye. gencral.,' t. 46, vi); Nuccaria (ibid., t. 44, iv); Alsidium IIclminthochorlon (ibid., t. 45, xi) ; Laurencia (Nëggli, 'Algensyst.,' t. 8).
 \pm Unger's treatise on the 'Genesis of Spiral Vessels' (Limmea, 1841, 38^{5}, t. 5) shows that the so-called vessels of plants are only rows of cells of peenliar kind. ('Transl. in 'Amm. des Sc. nat.,' $2 d$ ser., t. dvii, p1. 226. Sce also MIohl, 'Verm. Schriften', 291 ; Selacht, 'I'flanzenzelle,' 185.-A. H.)

[^107]: * So says Unger, 'die Pflanze im Momente der Thierwerdmig', 1845, p. 36.
 † Vide IH. von Mohl, 'Motanischc Zcitung,' 1841, p. 276. (Transl. in 'Scientific Memoirs,' vol. iv, p. 93.-A. H.)

[^108]: * So says Unger, 'die Phanze im Momente der 'Thicrwerdung,' 1815, p. 36 .
 \dagger Vide H. von Mohl, 'Botanische Zcitung,' 184.1, p. 276. (Transl. in 'Scientific Memoirs,' vol. iv, p. 93.-A. H.)

[^109]: * Von Sicbold ('de finibus inter regnum animale et vegetabile,' 1844, p. 12) was the first who distinctly claimed the Volvocince for the vegetable kingdom. (See Williamson, 'Proc. Manchester Phil. Soc.,' vol. ix; 'Trans. Mic. Soc. of London,' 1853 ; also Busk, 'Microscop. 'Trans.,' 1853, p. 31. -A. H.)
 \dagger Vide Von Elotow, 'Act. Acad. Nat. Cur.,' xx, p. 2, 184.4, t. 25, f. 58-70; in reference to which figures, however, I must observe, that, I have never found the cilia retracted completely within the membranc. (Comparc Cohn, 'Nova. Act.,' xxii, and Abstract in this vol. ; also Schacht, 'Dic Pflanzenzelle,' p. $124 .-A . H$.)

[^110]: * The genus Gleococcus cxhibits the following characters: ovate, green cells, with a colourless point, from which a reversed funnel-shaped, lighter space extends inrrards, together with a largish vesicle at the posterior extremity. Multiplication by simple or double, in the last case decussating halving, after which the cells remain loosely connected together by secretion of soft gelatinous confluent coats, forming globular, and, finally, amorphous families. The cells of all the generations succeeding each other during the formation of these families (excepting the transitory cells in the case of double halving), are provided with two very long persistent cilia, which only disappear when division conmences. The cells exhibit a feeble motion inside the enveloping and connecting jelly, the anterior end jerking in and out, or suddenly retracting a little. The last generation of the family leave the gelatinous mass and swarm out, to settle down quiekly in some other place. It is probable that the formation of a new family is preceded by a longish stage of rest,-perhaps there are several resting generations, -but we have no observation on this point. In Gl. mucosus the full-grown cells are $\frac{1}{6 \pi}$ th to克th of a millimeter long, the "phytodoms," or family stocks forming at the bottom of little ponds, attain the size of an apple, and are of compressed globular, often lobed shape, till they at length break up, and conc to the surface of the water in irregular fragments. The gelatinous mass has a peculiar greenish spotted aspect, which depends upon subordinate groups of gencrations being more closcly packed together. Another form, perhaps specifically distinct (Gl, minor), appears in the springs at Freiburg, in the spring, in the form of light yellowish-green, oftert pear-shaped "stocks," at most as large as a hazel-nut, attached to the sides of the gutters of the springs, finally becoming detached, swinming, and shapeless. The cells are somewhat smaller. iofth to $\frac{1}{3}$ th of a millim. long.

[^111]: * The absence of formation of cell-membranc from many generations of cells may be ascertained with especial clearness in many Palmellacee, in which, instead of a thin, firm, cell-membranc, a thick, soft, gelatinous

[^112]: * Sce the vivid description which Unger gives of this process (l. c., pp. 23-27). But where the author of this interesting treatise asserts that the escape of the germ-cell of Tuucheric is passive, and not a really independent act, I cannot agree with him. The swelling up of the club before it tears, together with the hemispherical vaulting of the lower eross-wall pressed downward in the filament, show elearly that the contents of the club undergoing conversion into the germ-cell, acquire a development which the firm membrane of the parent-cell cannot follow, so that this is brought into a condition of violent stretching, which results at length in a rupture, and, in consequence of the contraction of the walls, the gradual squeezing out of the germ-cell.
 \dagger. (I have observed in a species of Chlamidomonas, while four active gonidia were being set free by the solution of the cellular membrane connecting them as produced from a resting vegetative cell, one of them divided into two, so that five were produced. I saw the entire process, which occupied about an hour.-A. H.)

[^113]: * Thus especially in Edogonium Landsboroughii, Hassall.
 † Vide Nägeli, 'Ueber freie Zell-bildung.' 'Zeitsehrift,' 1847, p. 27. (Transl. in Ray Society's publications, 1849, p. 98.)
 \ddagger My observations on this remarkable genus of Algæ were made in the autumn of 1847, on Sphceroplea Bruunii, Kz., ('Sp. Alg.,' 462.) (Vide also Fresenius, 'Spluer. anmulina,' 'Bot. Zeitung.,' 1851, vol.g ix, 241. - -1.1 .)

[^114]: * Kützing ascribes to the spores of a Spheroplea an outer coat formed of a filiform strueture wound spirally round the inner membranc, whieh doubtless depends on a misconeeption.
 + Vide Nägeli, 'Ueber freie Zellbildung,' 1. c., 24-26, t. iii, f. 1-3. (Transl. in Ray Soeiety's publientions, 1849, pp. 96-98, t. ii, f. 1-3.)
 \ddagger Vide Nägeli, 'Wandständ. Zellbildung,' \&e. 'Zeitsehr.,' 1844, p. 91-95, t. i, lig.: 8, 11, 12. (Transl. in Ray Society's publieations, 1845, pp. 268-71, pl. vii, figs. 8, 11, 12.)

[^115]: * Vide ILofincister, 'Der Enstehung des Jmbryos der Phanerogamen,' (1819), p. 4 et seq.

[^116]: * Unger, 'Ueb. merismatisehe Zellbildung bei der Entwicklung des Pollens,' denominates this process merismatic cell-formetion; (Nïgeli, 'Zeitschr.,' 184t, p. 73,) calls it parietal cell-formation around the vhote contents. (Ray Socicty T'raus., 1845, p. 252.)

[^117]: * Vide H. von Mohl, 'Bemerk üb. den Bau des veg. Zelle.,' Bot. Zeit., 1844, p. 275. ('Trans. 'Taylor's Scient. Memoirs,' vol. iv, pp. 91-92); and ' Ueb. die Saftbew im Innern der Zellen,' 'Bot. Zeit.,' 1846, p. 74. ('Transl. Aunals of Nat. Hist.,' vol. xviii, p. 1, 1845.)
 †'Inis is Natreli's view, ("/citschr.,' 1844, p. 91,-1847, 1. 38), 'Transl. in Ray Sóciety's publications, 1845, p. 268,-1849, 1. 110.

[^118]: * Vaucher, 'Histoire des Conferves d'Eau douce,' 1803, deseribed the starch vesieles as grains brillens, and considered them the male organs of Hydrodictyon.

[^119]: * Arcschoug, 'Dc Hydrodictyo Utriculato,' 'Disscrt. Bot.,' Lmmde, 1839, Linuxa, 1842, and Hassall's 'Tresh-water Algx,' 225.

[^120]: * Sce especially the family of the Zygnemaceæ, as also the Desmidiacco, in which latter Niggeli has fomeled ihe more accurate diagnosis of the gencra in part upon the condition of organisation of the cell-contents, ('Einzell. Algen.,' p. 100, t. vi-viii).
 \dagger ' 'Zcitschrift. fur Wiss. Botanik,' 1844, pp, 34-68. 'Transl. in Ray Socicty's publications, 1845, pp. 215-246.
 \ddagger In the genus Chlamidococcus, at least allied to the Palmollacex, (sce above, pp. 138 and 158), I lave found in the centre of the cell a vesicle filled with fluid, doublless corresponding to the mucleus, surrounded and consequently lidden by the oily (?) red colouring matter of this plant. In most of the truc Palmellacer there is a chlorophyll-vesicle in the centre of the cell.
 § 'Beiträge zur Phytogenesis,' 'Muller's Archiv,' 1838. Transl. in Scicntific Memoirs, vol. i, p. 281.
 || Vide, in refercnec to this cspecially, Nägeli, 'Ucber Entwicklung des Pollens,' (1842), and Hofmeister, 'Enstchung des Embryo der Phancrogamen,' (1849).
 | H. von Molı, 'Bot. Zeit.,' 1846, p. 76. ('Amu. Nat. Hist.,' xviii, 3. - А Н.)

[^121]: * Vide Hofmeister, l. c., t. ii, f. 18-26.
 \dagger Neyen, 'Pflanzen Physiologic,' ii, t. viii, f. 6-10.
 \ddagger Ibid., f. 2, and Schleiden, 'Grundzüge,' p. 293, f. 91, 'Principles of Sc. Botany,' r. 93, f. 95.
 §Schleiden, 'Grundz.,' ii, t. i, f. 7 ; 'Principles,' t. i, f. 7.
 I| Nägeli, 'Zeitsehrift,' 1844, p. 43, t. ii, f. 1-3. (Sphucelaria scoparia and Zonaria Pavonia.) Transl. in Ray Soc. public., $1845, \mathrm{p} .222$, pl. vii, fig. 1-3.

 TVide Focke, 'Phys. Studien.,' t. iii, f. 11 and 26; Nägreli, 'Einz. Algen.,' t. vi, c, D, e.

[^122]: * 'Grundzaige,' i, 304 (2te Aufg.) 'Priuciples,' p. 102.

[^123]: * W. P. Sclimper, 'Recherches sur les Mousses,' (1848,) p. 52, pl. vi, f. 42-46.
 \dagger Kützing, 'Spec. Alg.,' p. 346. 'The above-mentioned species can searecly be included in the same genus with Ululhrix zonala, since it forms only two germ-cells in a mother-cell, which, moreover, possess not four, but only two cilia, as in the aquatic Iormidia.

[^124]: * Vide Hassall, 'British Fresh-water Algæ,' (1845,) t.lxxx, especially figs. 4. and 6. A form belonging to this genus, apparently standing between U. Hookcriamus and U. insignis, occurs on the elevated moors of the Blaek Forest.

[^125]: * Vidc Kützing, 'Phyc. Gen.,' t. xxii, 1, and Nägeli, 'Algensyst.,' p. 180, t. v, f. 2, 3, 7 .
 \dagger Kützing and Nägeli regard this as the secd-cell itself, ("Spermatium,"

[^126]: Closterium Trabeeula belongs to the genus Docidium; according to Nägeli, to the genus Pleurolanium. Focke, moreover, eonfounds it leash iwo distinet species of this genus under his Closterium 'Trabeenla.

 * Focke, I. c., t. ii, fig 17, represented in division, but without notice of the skinning.
 \dagger Ralfs, 'Brit. Desmidice,' t. xxxii, f. 9.
 f Kiitzing, 'Sp. Alg.,' p. 891. L'erhaps Hassall's Sorospora vireseenn, (Hass., t. Ixxviii, f. 8, (i,) may beloner to my Sechizochlan!ys gelatinosa.

[^127]: * Vide plate ii, and the explanation.
 \dagger The eells of this new species are smaller than in its two allies, from Tho to $\frac{1}{80}$ millim. in diameter, and verdigris green; the colourless membranous layers tougher, more elearly distinguishable. When the divisions of the eell suceeed rapidly, the thin coat exhibits but four layers; when the division is intermitted, numerous (8-10) layers of membrane are found, often appearing thickened on one side, and finally exfoliating irregularly. Tincture of iodine colours the contents reddish or yellowish-brown, the coats golden yellow. It oceurs on the walls of the tufa eaves near St. Aubin on the Neurburger Sca.

[^128]: * Observed in July, 1817. The almost globular gonidia possess four cilia, like the allied genera Chectophora, Stigeoclonium, \&e.
 \dagger Algoe ryenosperneere ct anyiuspermere, Küting. In regard to the existence of a perispore, vide the ubservations on \%onreria, p. 179. Decaisne and Thuret also figure perispores visible even after the slipping out of the spores in fiuens nodosus and servalus, ('Amn. des S'e. nat.,' 1815, t. i, c, f. 21, aud 1. ii, f. 32).

[^129]: * Aphanochate is a new genus of Algæ, which perhaps will have to be united with Merposteiron, (Kz., 'Sp. Alg.,' p. 424,) from which it differs through the albsence of the vertical torulose brauches. The bristles, which frequently spring from the back of the cells, are not sheathed, as in Coleochecte, yet articulated in the upper part, but at the same time so delieate that the upper portion is difficult to make out. The formation of the pairs of germ-cells takes place by division parallel to the septa. The germ-cells are nearly globular, possessing two cilia. A. repens occurs not unfrcquently ncar Freiburg, particularly on Cidogonia, Vaucherice, Mongeolia, Sirogonium, Conferva, \&c. I observed the swarming of the germ-colls in August, 1847.
 \dagger Observed in October, 1847. It is remarkable that the formation of the germ cells of this very common Conferva has been but seldom observed.
 \$'Ann. des Se. nat.,' 1846, p. 199, t. xii, f. 6. According to 'Thuret, ('Ann. des Sc. nat.,' 1845, p. 274), the gonidia of Vlva and Enteromorpho possess four cilia.

[^130]: division but by a simultancons process, very numerons small globular germcells, which exhibit a sharply-defined darker nueleus in the interior, and possess a siugle very long cilium. From their want of colour, and the aetivity of their motion, these gonidia resemble the most minute monads. Their extrusion occurs either through the easting off of a lid, or through mere tearing of a nipple-shaped point. Of fifteen different species which I have observed in the vicinity of Freiburg, Ch. ollu is the largest, and at the same tine exhibits the lid-like deliscence most beautifully; it grows on the anterior wrinkled end of the bulging parent-eells of the spores ol Cdogoniunz lundsboroughii, the root penetrating into the folds and aittaching itself to the spore. The free inflated portion of the cell is ovate, with the lid somewhat thrown up at the edges and apieulated like a short nipple in the middle. The germ-cells are about ${ }_{30} \frac{3}{0}$ millim. in diameter.

 * Vide Bulliard, 'Champignons de la France,' ii, t. 242.
 \dagger Ibid., t. 154, and Corda, 'Ieones Fungorum,' iii, l. vi, 95. (Also Tulasne, 'Amn. des Sc. nat.,' 3e sér., xvii, 72.)

[^131]: * Vide K̈itzing, 'Sp. Alg.,' p. 490, who places this little plant in the neighbourhood of Bryopsis. 'To me, Ophiocytium, Niig., ('Einz. Alg.,' t. iv, A), seem the nearest allied genus; young specimens completely resemble Characium and Ascidium. The only species, Sc. Arbuscula, oceurs near Preiburs on various filiform Alge, especially on Gidogonium Landshoroughii and Faucheria racemose, in the water reservoirs of the Botanie garden.

[^132]: * The swarming germ-cells of the last generation appear to possess two eilia.
 \dagger Nägeli. 'Algensyst.,' p. 156, t. ii, f. 12-14.
 + Kützing, 'Spee. Alg.,' p. 160. The observations were made in August and September, 1847, on specimens from the Tili Sea in the Black Forest; which vegetated luxuriantly on deeaying pieces of Nuphar pumilum (Spenneriannem), but whiel also rapielly attached themselves upon flies falling into the water.

[^133]: * Vide, for instance, Palmella, (Nägeli, ' Einz. Algen.,' t. iv, n.)
 †. Ex. gr., Gleocapsa, (ibid., t. i, F,) Aphanocapsa, (t. i, в,) Gleothece,
 (t. i, G), Aphanothece, (t. i, H.)
 \ddagger 'Einzell. Alg.,' p. 13.
 \$ Vide supra, p. 181.

[^134]: * Vide supra, p. 137.

[^135]: * (This striation seems analogous to that sometimes occurring in libercells of certain Phanerogamia, as first described by Schacht. Sce a notice on this point (by the present translator) in the 'Journ. of Microse. Science,' vol. i, p. 233, (i853.)-1. H.)

[^136]: * Vide supra, p. 128. My observations were made on the smaller speeies of this genus, B. Wallrothii, Kütz.
 \dagger For the latest reseaehes on this head, see Hofineister, ' Fruchibildung, \&c., der hölher. Kryptogamen,' 1850.
 \ddagger 'Zur Entwieklungs-gesehichte des Pollens der Phanerogamen,' 1842.
 8 'Ueber Merismatisehe Zellbildung bei der Entwieklung des Pollens,' 1844.

[^137]: * 'Explor. Scientifique d'Algérie,' Bot., t. xxxviii, f. 24-26; Schnizlein, ' Iconographia.' Marsileacce, f. 4.

[^138]: * Vide the spores of Vuuchcria, Spirogyru, Cidoyonium, Bulbochote, \&e. According to Mohl, the spores of Jungermannia contain chlorophyll in youth (eorreet, A. H.). In C'hlamidococcus plwiulis, the green colour vanishes entirely in the resting generation (the seed-cells, spores) which become reddish-brown or bright red; the active generations (gonidia), on the eontrary, gradually become green again; (see farther on.)
 \dagger Thns in the spores of Characer.
 \ddagger It is absent, as is well known, from most parasitical plants, Cryptogamia as well as Phanerogamia.
 § (On the complex ehemical conditions of ehlorophyll; See Morot, 'Aun. des Se. nat.', 3me ser., Bot., tom. xiii, p. 160-A. H.)
 || 'Grundzüge,' 2te Aufg. 1, p. 180, ('Prineiples,' p. 18.). Schleiden here forgets to mention the Fungi, in which, as in the fungoid Phancrogamie parasites, stareh-formation appears to be absent. In the Phyeochromiferous

[^139]: Algæ, (Chroococcacex, Oscillatorinex, Nostochince, \&c.), both starch and chlorophyll are deficient. (Nägcli, 'Einz. Alg.' p. 5.)

 * In the cake-slaped rhizome of Isö̈tes lacustris there is an abundant quantity of starch, but only slight traces of oil, while in the rhizomes of the terrestrial speeies there exists a preponderance of lixed oil ; (see p. 200.)
 + See ahove, pl. 172, 192.

[^140]: * Whether or not the nucleus would dissolve by longer action of potash requires a repetition of the investigation.

[^141]: * Sehleiden ('Grundzüge,' 3te Auft., p. 187, Transl., pp. 11, 567) ; Müuter ('Uber das Amylum der Gloriosa superba,' \&e.; ' Bot. Zeit.,' 1845, p. 198); Nägeli ('Zeitsehrift,' 1847, p. 117). In spite of the many researehes upon stareh we possess, the origin and development of the stareh grain requires a new and eareful investigation, sinee none of the views hitherto put forth are sufficiently supported by direet observations. The theory of eentripetal lamination is apparently borne out by the greater softness of the imer layers, but I would suggest that the eavity of the coneentrie stareli grains is always so small that, taking into aceount the enormous enlargement whieh the stareh grain undergoes during the formation of the layers, an expansion of the outer layers alter their formation must be assumed, such as is searcely eonceivable. The small stareh-granules whieh so frequently oceur among the layers, seem to possess no eavity at all; in the sometimes single, sometimes assoeiated starch granules found so frequently in the interior of ehlorophyll vesieles, (I found 10-12 of them in one chlorophyll-vesiele of the uppermost foliar joints of Chara hispida), no traee of a eavity ean be distinguished. Henee the conjeeture may be admissible that the eavity in the larger grauules is not an original but a secondary phenomenon, resulting from thic disappearance of the nueleus. If the stareh grains are not eells themselves, but bodies seereted by the cell-eontents, like the eell-membrane, with whieh they are so elosely allied elemieally, thin eoneentrieal formations from the outside is by far the more probable. I would eompare their origin with that of pearls in the oyster shell, disregarding of course the aecidental charaeter of the latter. As many pearls, when in contaet with their shell, beeome eovered up hy the later lancllte of the shell, struetures resembling stareh grains oceur in Hydrodictyon, as abnornal formations, enelosed between the lanellie of the eell-membrane. I shall deseribe these more minutely at another opportunity, together with ollher strange struetures oecurring in the eell-membrane of IIyilrodictyon.

[^142]: * Especially in the terrestrial speeies: I. hystrix, Durieu; and I. duricei, Bory, ('Explor. Seient. d'Algérie,' Bot., t. xxxvi), as also those which grow on spots only overflowed in winter, as I. selacea, Bose., I. adspersa, ^. Bramn, I. velaha, Λ. Br., (ibid., i. xxxvii). All these contain only a little stareh but a great abundance of fixed oil, in the short tuberous stem, while our ahways aquatie I. lacustris exhibits but little oil with abundance of starch. The olcagimous Isoüles all have the power of surviving a long time in a perfectly dry condition. I. hystrix and Duricei grow upon the dryest hills of Λ Igeria, in loose sand, close to the surfaec of the ground, where they are exposed during cight or nime months to the greatest drought and the most burning lieat of the sun. Aecording to the experience of Durieu, the tubers of these speeies still remain alive, after having been kept dried for five or six years; I myself have seen a speeimen of Isoëles selaeea revive and vegetate alter it had lain almost two years in an herbarium.
 7 Aecording to W. Sehimper, ('Rechereh. sur les Mousses,' p. 77), the eontents of the spores of Mosses are oily, without a traee of stareh.
 \ddagger Aecording to Mohl, ('Verm. Sehrilt.,' pp. 87, 90), the developing spores of Anthoceros eontain stareh-grains, while the ripe spores contain only a mueilaginous fluid in which oil-drops are intermixed.
 § The spores of the Liehens (Moh1, 'Verm. Sehrift,' p. 75) often contaiu an oil-drop.

[^143]: * Schleiden ('Grundz.,' 2te Auft. ii, p. 432 ; 'Principles,' p. 462, in the clapter on Germination) proposes the question, "Whence does it arise that the couditions which can and must introduce a determinate process into the cmbryo, are capable of remaining a long period without action?" and he connects with this the conjecture that the cause of this phenomenon may depend upon unknown slow chemical processes. The observations which follow indicate that one of these processes must be sought for in the gradual transformation of the fixed oil i.hrough contact with atmospheric air, which contact is brought about or else inereased by drying. The wellknown phenomenon that many oily seeds, for instance those of the Cucurbitacere, germinate more ecrtainly and readily after having been kept dried for a number of years, than in the first year, is certainly explained by this.

[^144]: * Vide Pringsheim, translated from the 'Flora,' 1852, in 'Ann. of Nal. Hist,'2d scr., vol. xi, p. 210.- A. H.

[^145]: * See above, p. 181. Ralfs ('British Desmid.,' p. 109) included this little plant, discovered by Brćbisson, first placed under Closterium and then scparated from it in the genus Penium, among the Eurastra, and in the genus Cosmarium, a mistake from whieh a more thorough regard to the arrangement of the cell-eontents would have saved him. Aeeording to Nägeli, Peniun curtum should be referred to the genus Dysphinctiom, subgenus Actinotonium; it is very like the D. Regelianum figured by him, ('Einz. Alg.,' 109 , t. vi, E), but differs in the more numerous green longitudinal bands. The plant here named is also remarkable for exhibiting the pceuliar movement of the Desmidiaeex more regularly and more actively than the other nembers of the family, a motion very different from that of the Diatomaeex. It is a remarkable sight to behold all the individuals in a dish of water in a slort time turn their long axes toward the light, and thus arrange themselves in beautiful strcaks in the gelatinous mass. Observation with the mieroseope shows that it is the younger half of the cell, distinguishable as suel for a long time after division, whieh here turns toward the light. For those who belicve in the animal nature of the Dcsmidiacex, I will add, that the cell-membranc of I'enizm is totally destroyed by a red heat, so that it is not a siliecous lorica; on the other hand, it remains uninjured when boited in solution of potash.

[^146]: * Meyen observed the cell of Closterinm Lanula densely filled with starch grains, ('P'llanzenph.,' iii, 437.)

[^147]: * I have not yet made out how long the life can be retained in the dricd condition, in Penium curtum.
 \dagger I have not unfrequently secn a filling of the old cells with drops of oil, similar to that in Penium curtum, in other Desmidiacex, in Diatomacce, Pediastrum, Conferoa bombycina, and exceptionally, as above mentioned, in Hydrodietyon. In most cases this formation may end with the death of the cell; this is tolerably certain in Pediastrum particularly.
 \ddagger Sce above, pp. $138,158,184,200$. I can only indicate here the most essential clements of the strange history of this creature, embracing a complicated alternation of generations; to trace it completcly through all its normal and abnormal complications, would require a separate cssay and numerous pictorial illustrations. As the obscrvation of the many interesting phenomena afforded by this plant is by no means difficult, and as it is desirable that these observations should be repeated by many

[^148]: * I have observed an "eye" of this kind in the swarming gonidia of Hydrodictyon, Ulothrix zonata, (vide Kütz., 'Phye. gen.', t. Ixxx,) Uloth. Braunii, K., Hormidium variabile, K., Draparnaldia, Stigcoslonium, (in scveral speeics, Chatophora, (likewise many,) Colcochate pulvinata, Cladophora glomerala; therclore in genera belonging to five different families, not

[^149]: counting the Volvocincx (Volvox, Pandorina, Botryocystis Morum?.) In the genus Chlamidomonas there are species with and others without the red point. The red point scems to be absent in Vaucheria, Qidogonium, Bulbochate, Conferva bombycina, Aphanochatc, Gougrosira, Ascidium, Characium, Sciadium, Pcdiustrum, Apiocystis, Dictyospherium, Tetraspora, Protococcus viridis, Glcococcus. The minute size and light eolour may have caused it to have been overlooked in many eases.

 * Hamutococcus pluvialis porphyroccpahes, Von Ilotow, l. c., p. 469, t. xxv, f.74. I must observe, however, that I have never observed the hammering movement of the slender red anterior end, there deseribed; the motion was effected, as in the large swarmers, by two cilia, whieh became visible by the application of tineture of iodine.

[^150]: * Sce Von Flotow, in regard to this, l. c., p. 500.

[^151]: * Probably in such cases no perfect dessication takes place. † IIrmatococcus plubialis, var. leprosus, Von Flotow, l. c:

[^152]: * In this condition Chlamidococcus pluvialis exlibits such a decided vegetable elaracter that the advocates of the widest extension of the animal kingdom, if ignorant of its active condition, could hardly conjecture it to be an animal being. But even the active state of Chlamidococers camot be regarded as possessed of animal life, if the swarming of the gonidia of the Algee resulting from eiliary motion-which oceurs from the Palmellacere unwards to the Fueoidex, and also has its analogne in the higher Cryptogania, (Characex, Mosses, Ferns, and Rhizocarpex) in the movement of the spermatozoids, likewise produced by deliente cilia, - is to he regarded as a phenomenon of veretable life, which, in spitc of our ignoranee of the eause and modus operandi of this motion, docs not secm to admit of doubt, from the way in which it presents itself as a normal condition eonnected with the vegetative life. Although the plenomena of motion are of louger duration in Chlamidococcus than is usual elsewhere in the swarming gonidia of Algæ, the kind of movement is cssentially the same, namely, an uninterrupted revolution round the long axis, combined with an advance towards the side of the ciliated point. In Chlamillococcus the direction is constantly to the left, as in the gonidia of Cdogonium, while the gonidia of Vaucheria, as also the oval fanily-stocks of Pandorina, revolve constantly to the right. With regard to the duration of the movenent, Protococcus viridis, the aetive gonidia of which continue their swarming even in the night, forms an intermediate link between the ordinary belaviour and that of Chanidococens and the Volvocinees.

[^153]: * Nägeli ('Einzell. Algen.' p. 9), likewise ascribes the red colour occurring in many Palmellacco, partly as a normal (Pleurococcus miniatus, Palmella miniala) partly as an abnormal phenomenon (I'achygonium, Chlorococcus, Endococcus) to the formation of an orange-coloured oil in the place of the chlorophyll. Probably all these have the power of retaining their life a long time in the dried condition, in Pleurococcus miniatus, at least, I am quite certain of it. In the crusts of Prolococcus viridis, growing on walls, also, the cells of the uppermost layers, most liable, become dried up, often acquire a brownisl-red colour, the origin of which is probably to be explained in the same way.

[^154]: * According to my observations, all aetive forms die when dried up. I cannot confirm the existence of a Hematococcus pluvialis atomarius, such as Von Flotow thinks we may believe in. The preservation of Chamidococcus, both in the dry and frozen state, certainly occurs only tlrough the resting, thick-walled form.
 \dagger Chlanidomonas (a name certainly sounding strangely in the vegetable kingdom) is distinguished from the genus Chlamidococcus by the elosely

[^155]: * According to Payen, all young organs of plants, in thcir carliest stages of development, contain a predominance of nitrogenous substances.
 \dagger Cell-membranes formed of eellulose have hitherto been found in the animal kingdom only in the sac-shaped envelopes of the Ascidia. Sce Sclmidt, "Zur Vergleichenden Physiologie der wirbellose Thier," (1845) Transl. in "Taylor's Scientific Mcmoirs;" Löwig and Kölliker, "De la Composition et de la Structure des Enveloppes des 'J'mieiers," ("Ann. des Sc. Nat.,' 1846, p. 193.)

[^156]: * 'Botanische Zcitung,' 1844, p. 309, t. ii, figs. S, 25, 26. ('Trans. 'Scientific Memoirs,' vol. iv, 1. 103, pl. i, ii, figs. S, 25, 26.)

[^157]: * Aeeording to Meyen, 'Pflanzenplıys.,' iii, p. 430.
 † 'Die Pflanze im Momente der Thicrwerdung,' p. 27.
 + "C'est surtout le matin qu'on trouve le plus grand nombre de spores des Conferves en mouvement," 'Ihuret, "Sur les Organes Loeomoteurs des Spores des Algues,' ('Ann. des Se. nat.', 1843, 1. 2(68.)
 § 'Zur Controverse über die Verwandlung der Infusoricn in Algen,' p. iv.

[^158]: * The most reeent treatisc on this subject, by Morren (‘Mém. de l'Acad. Roy. de Bruxclles,') xiv, (1841,) is an almost incomprchensible tissuc of crrors.
 \dagger In deeper vessels of water the propagation does not eommenee so soon, which is certainly explained by the diminished contact with the atmosphere, especially with the oxygen required for the proeess of solution.
 \ddagger In regard to the relation of the occurrence of the swarming-out mierogonidia to the net-forming macrogonidia, I may add that it appears to depend, in part, upon external circumstances. Many days I saw only netformation, in others both net-formation and swarming, on others, again, cspecially on dull and rough days, formation of swarmers in unusual quantity uaaceompanied by any net-formation. It is strange that the formation of swarmers, on the whole more frequent than the formation of new nets, has not been more frequently observed by carlier investigators. Treviranus saw then but did not observe their origin. ('Beiträge zur Pliysiol.,' p. 81.)

[^159]: * Edogonium fonticola, which vegetates all through the winter in the holes in running brooks, and developes the longest filaments at that season, exhibits formation of gonidia even in winter when brought into the honse.
 \dagger 'Physiol. Studien.' (1847,) p. 47, 1. ii, figs. 1, 4, 5.

[^160]: * More exact observations are yet to be made on this point in the Alga. The rapid commencement of the formation of gonidia in Algr brought into the house, doubtless depends on the slighter degree of cooling oecurring during the night indoors.
 \dagger Sce the observations on Euastrum mentioned in the preceding page. I shall describe more minutely, in the Appendix, the important changes of form which the new-born cells of Pediastrum undergo in the course of the first day, and after a nocturnal rest, again on the second day.

[^161]: * Parnassia palustris flowers on the higher mountain tracts of the Black Forest, for instance on the Schauinsland and Feldberg, in spots more than 3000 feet high, by the middle of June, while in the lowlands its flowering does not commenee until the middle or end of July.

[^162]: * Further rescarches are required to decide the relation of the in many respects cnigmatical formation of the ycast-cells, (the first cells of the formentation fungus,) and other analogous cases of what is termed generatio spontanea, to cell-formation in the normal course of development and propagation of plants. (Sce Sclllciden, 'Grundz.,' 2 d Aufl. 1, p. 203, 'Principles,' pp. 36, 569, L. i, fig. 9, and Karsten, 'Urzengung, Botanische Zeitung,' 1848, p. 457.)
 \dagger I cannot enter at length into the opposite view of Karsten, ('De Cella Vitali,' 1844,) but I may remark that so far as relates to cell-formation it totally contradicts my experience.

[^163]: * Aecording to Hofmeister (' Ueber die Entwieklung des Pollens,' Bot. Zeit., 1848, p. 431), the nueleus even survives this transition.
 \dagger "The process of propagation of eells by the produetion of new eells in their interior, is the general law in the vegetable kingdom." (Sehleiden, 'Grundz.,' 2 Aufl. i, p. 305, 'Principles,' p. 103.)

[^164]: * Sec H. v. Mohl, 'Vermischte Schriften,' 1. xiii, f. 13, 14.

[^165]: * What becomes of the very rapidly vanishing cilia in this transition I lave not been able to make out with certainty. According to Unger, they are not thrown off in Vaucheria, but drawn in and smoothened down. In Aphenochate repens I once saw, on a gonidium passing into the state of rest, in place of the large cilia, two extremely short processes, which exhibited a jerking movement, (alternately stretching forward and retracting,) for a short time longer. The gonidia of Characium Sieboldii cxhibit, after they have already attached themsclves by their ciliated extremities, a tremulous motion lasting for almost a quarter of an hour, and evidently commencing in the delicate stalk. These phenomena certainly speak rather for a retraction than for a casting off of the cilia.

[^166]: * IIofmeister, 'Ucber die Entwickluug des Pollens,' ('Bot. Zcitung,' 1815, p. 431.)

[^167]: * 'Recherches sur les Mousses,' p.77, t. 7, figs. 1-6. According to Schimper, the capsule of Archidium contains $18-20$ spores 3 th millim. in diameter.

[^168]: * 'Ueber dic Cuticula von Viscum album,' (Bot. Zeit., 1849, p. 593, t. ix, p. 59.)
 \dagger Note the following passages: "These rescarches have led me to the conclusion, that all vegetative coll-formation is a marietal cell-formation" ($=$ cell-division). (Nägcli, 'Leitschrift,' 1847, p. 49, Transl. in Ray Socicty's publications, 1849 , p. 121.) -" 1 s regards, in the first place, yegetative cell-formation, I believe I am justified by eomprelıensive rescarches in the Alga, Fungi, Floridex, Mosses and Clare, in the Vascular Crypto-

[^169]: gania, and in the Pbanerogamia, in deelaring it a general law, that here two daughter-eclls origimate in a parent-eell, or in other words, that one cell divides into two." (Ibid., p. 66, Trans., p. 137.) - "By formation of septa, (eell-division,) therefore, the body of the plant grows ; by formation of septa the mass of the organie elements, the eells, \&e., inereases. Since every plant is produced ont of a simple eell, its growth only division and partial separation (individualization) of the original one, it is not to be wondered at that, notwithstanding the multiplieation of the One cell, a conneetion of its parts, intensive as well as extensive, eontinues to exist." (Unger, 'Ueber Merismatisehe Zellbildnng;', 1844.) See also Hofmeister, 'Die Enstelung des Embryo der Phanerog.,' p. 1, (note,) and p. 61.

 * 'Ueber Merismatisehe Zellbildung,' 1844.
 \dagger ' Zeitsehrift,' 1844, p. 73 et seq. (Ray 'Translation, 1845, p. 252); 1847 , p. 51 et seq. (ibil., 184.9, p. 123.)

[^170]: * 'Die Entstchurg des Embryo der Plancrogamen,' p. l; 'Ucber der Entwicklung des Pollens,' (Bot. 'Zcit., 1848, p. 655.$)$
 i 'Ueber dic Verinchrung der P'flanzen-zellen durch Theilung,' (Vermischte Schriften, 1845 , p. 362 .)
 \ddagger 'Linige Bemerkungen üher der Bau der Vegetabilischen Zelle,' (Bot.

[^171]: * See the subsequent description.

[^172]: * 'Dic Entstchung des Embr. der Phanerog.' p. L.

[^173]: * 'Vcrmischte Schriften,' p. 362, t. xiii. With regard to the mauylaycred membrane marked b in fig. 5, and c in fig. 14, I venture to remark that the same is wrongly described at page 365 , as a connected tubular envelope of all the cells, as it were a colossal branched ecll. Only the gelatinous, slimy investment marked a, (fig. 5 ,) and d, (fig. 14,) forms such an universal cnvelope; the many-layered membranc, on the contrary, forms a very complicated system of encasement, since its innermost layer cncloses only two cells, its immost one but thrce cells, and so on outward a progressively larger number of eclls. In the further description, indeed, especially at pp. 363-69, the assertion made at first is partially corrected by Mohl himsclf.

[^174]: * See, for instanee, the course of development of the ovule of Orchis, in Hofmcister, 'Die Linstehung des Embryo der Phancrogamia,' pp. 1-3, t. i. \dagger Närcli, 'Zcitschrift,' 1845, p. 138, t. ii, iii.
 \ddagger Ibid., 1845, p. 119, t. i, ('Growth of Delesseria Hypoglossum') and 18 17, p. 207, t. vi, vii (Polysiphonia.)
 \$ Ibid., 1844, p. 73 et serf.
 i\| Nägeli, 'Entwicklungsgeschichte des Pollens,' 1842 ; Hofincister, 'Ueber dic Entwicklung des Pollens,' ('Bot. Zcitung,' 1848, 1p. 425, 649.)

[^175]: * Hofmcister, 'Dic Enstchung des Embryo der Phancrogamen,' 1849, e. g., p. 35, t. xii. (IIonotropa) ; p. 40, t. iii. (Burtonia.)
 † ' Bot. Zcitung.,' 1844, p. 200, (Trans. in 'Sc. Memoirs'' vol. iv, p. 96.-A. H.)
 \ddagger 'Dic Enstchung des Embryo,' t. vi, f. 20.
 § 'Ueber Pollen,' 'l3ot. Zcitung.,' 1848, pp. 654, 671.
 | Vidc Nägeli, 'Zcitschrift,' 1844, p. 75. (Trans. in Ray Socicty's publications, 1845 , p. 254,) where is described, of Sphacclaria, a division of the central nucleus of the mother-cell preceding the division of the cell, whilc in Zonaria Pavonia, and Cystoscira, the parent nucleus is said to

[^176]: vanish, and be replaced by two new ones. Nägeli further deseribes the division of the nueleus in the cells of the hairs of the stamens of Tradescantia (1. c., p. 67 ; Ibid., 1847, p. 102 -Translation in Ray, vols., 1845, p. 246, 1849, p. 168, while according to Hofmeister, ('Enst. des Embryo,' p. 8, t. xiv, figs. 20,28) the membrane of the parent nueleus is absorbed, so that only the mueilaginous and no longer sharply defined body of its contents, is divided into two globular balls, whieh becume the new nuelei. Aecording to Mohl, ('Vermischte Sehriften,' p. 252,) the nucleus of the mother-cell becomes divided, in the formation of stomates, to form the nuelei for the two boundary eclls of the stomatal opening. According to Nägeli, ('Linneza, 1812, p. 237 ,) on the other hand, the formation of the two new nuelei is preeeded by a disappearanee of the nucleus of the mother-cell.

 * Hofmeister, 'Bot. Zcit.,' 1848, p. 671, t. vi, f. 22, 24. In Passifora, on the contrary, the zone of granules is replaced by a granular plate oceupying the whole surfuce of division. See t. vi, f. 8,9 .

[^177]: * 'Zeitschrift,' 1847, p. 60, (Ray Transl., 1810, p. 131,) 'Einzell. Algen,' p. 18.
 \dagger 'Enst. des Embryo der Phanerog.' r. 61.

[^178]: * Vide Unger, l. e., fig. 13.
 \dagger 'Enstehung des Embr. der Phancrog.,' p. 39, t. ii, f. 34-40.
 + Hofmeister, l. e., p. 40, t. iii, f. 4-11.

[^179]: * Mofmeister, l. c., p. 6.
 \dagger lidid., p. 36, t. xii, f. 9—14.
 \ddagger Ibid., p. 22, t. ix, f. 9-14.
 § 'Mcitschr.' 1847, pp. 71, 72, (Modes of Cell-formation, 8 ^ and B.) (Ray Transl., 1819, pp. 141, 142.)

[^180]: * ' Untersnch. üb. dic Zellenartig. Ausfullung. der Geffisse,' ('Bot. Zcit.,' 1845, pp. 225, 241, t. ii.)
 + See Plhoclus, ' Ub. der Kcimkorncrapparat. der Agaricen,' \&e., ‘Nov. Act. Nat. Cur.,' xix, 11, (1842,) p. 171, t. 56, 57. Corda, 'Ic. Fung.,' iii, t. 7-9; iv, t. 10, figs. 134-139; v, t. 10 .
 \ddagger Sce Tulasne, 'De la Fructification des Scleroderma comparée à celle des Lycoperdon et Blovista,' 'Aun. des Sc. nat.,' 17, (1842,) p. 5, t. 1, 2, 'Sur les Genres Polysuccum et Geuster,' ibid. 18, (1842,) p. 129, t. 6.
 § Sce Schleiden, 'Grundz.,' ii, pp. 38, 39, figs., 106, 107, (‘Principles,'. pp. 153, 154, figs. 122,123 ; Corda, 'Ic. Fung.', ii. t. 10, fig. 68, (Verticillium;) iii, t. 1, fig. 23, (Botryltis); iv, t. 10 , fig. 132 (Isaria).
 \| See Saceharonyces Cerevisic, in Meyen, 'Pllanzen-physiol.', iii, p. 455, t. x, f. 22.

 II, 'Sur la Génération et le Dévcloppement de l'Embryou,' 'Ann. des Sc. nat.,' 1827.

 * 'Ueb. der Bau und dic Form der Pollenkörner,' (1834); 'Ub. dic, Lintwicklung und den Bau der Sporen der Kryptogamisclie Gewäclise,' ('Flora,' 1833,) 'Vermisclite Schriften,' 1. 67.

[^181]: * Here belong the formation of the species of the Ferns, Mosses, and Hepatice; both kinds of spore-formation in the Lycopodiacere, Isoëtacex, and Rhizocarpex; and one kind of spore-formation in the Floridex.
 \dagger 'Zur Entwick. des Pollens der Phancrog.,' 1842.
 \# Quadratic (situated in one plane) position and clongated form of the pollen-graiis occurs principally in the Monocotyledons; tectrahedral position and roundish form almost universally in the Dicotyledons, (Mohl, l. c., p. 34.) Both eases are likewise repeated in the spores of Ferns, the former (longish

[^182]: * 'Bot. Zcit.'' 1848, p. 430, t. iv, f. 22-25.
 \dagger 'Ueber die Entwiek. der Sporen von Authoccroв levis,' (Linnæa, 1839 ;)
 'Verm. Schrift.,' p. 84, t. iv.
 \ddagger ' 'Zeitsehrift,' 1844, pp. 49-54, t. i, f. 31-40. (Ray Transl., 1845, pp. 229-233, t. vi, fig. 31-40.)
 § 'Bot. Zcit.,' 1848, p. 671.

[^183]: * I have already direeted attention to the eircumstance, above,(p.160, note.)
 † Nägeli, 'Zeitsehrift,' 1847, p. 70, (Ray Transl., 1849, p. 140,) 'Neuer. Algensyst.,' p. 127.

[^184]: * 'Icones Fungorum,' $\mathrm{ui}, \mathrm{p} .38$, t. vi, figs. 95, 96.
 † 'Zcitschrift,' 1847 , p. 23, (Ray Transl., 1849, p. 96,) 'Einz. Alg.,' p. 17.

[^185]: * Sce Corda, 'Icon. Fung.,' ii, 1. xiii, f. 100.

[^186]: * These granules are not chlorophyll-vesicles, as in Vaucheria, Chara, \&e., they have more the aspeet of dense, mostly longish granules, without any enveloping membranc. When the ehlorophyll is extracted by spirits of wine, these, like the remainder of the eontents, become bleaehed, but remain distinguishable; the shape, however, beeomes irregular through the action of the spirit.

[^187]: * I cannot let this opportunity pass without mentioning one observation, which perhaps somewhat modifies what has been said above. In the vessels of water in which I cultivated IIydrodiclyon I frequently found isolated IIydrodictyon-cells, in groups of four united irregularly together, which became developed, but under these circumstances assumed irregular, bulging, nodulated, or even branched forms. Whether these hernits arose from individual mierogonidia, which, as an execption, had arrived at a development, or from macrogonidia seattered through aecidental rupture of the mother-eells in the stage of notion, I could not decide by direct observation,

[^188]: but the latter seems to me more probable. I have also observed similar hermits in Pediastrum.

 * The cutire development of the Water-nct to the period of repetition of the formation of gonidia, is completed in about 3-4 weeks in cultivated suecimens; in the wild state, with more vigorous regetation, a longer time may perhaps be necessary. The size of the cells at the period of the production of the net, at which time their shape is almost globular, amounts to to millim.; the fully developed cells frequently exhibit, in the wild state, a length of $5-6$ millimetres, a thickness of $\frac{1}{-1} \frac{1}{3}$ mill. ; when cultivated indoors, on the contrary, they attaiu only $1-1 \frac{1}{2}$ mill., in subsequent generations even only $\frac{1}{3}-\frac{1}{2}$ mill. in length, but the propagation, nevertheless, happens at the proper time.

[^189]: * The formation of free sporangia in the interior of the swollen points of the filaments, described and figured by Nägeli, ('Zeitschr.,' 184.7, p. 28, t. iv, figs. $1-6$,) is totally different from this. I lave likewise scen it, so rarcly, however, that I could not trace the whole course. It seemed to me not to belong to the sphere of the normal phenomena of devclopment of Saproleynia, and is just as enignatical as the occurrence of sessile globular excrescences with rotating and subsequently repeatedly dividing contents, observed in the same plant.

[^190]: * The statement of Mcyen, ('Pflanzen-physiologic,' iii, p. 457, t. 10, f. 19,) that the active gonidia are formed in separate mother-cells inside the club, is incompatible with iny observations. Perhaps the key to this difficulty lies in the above-rnentioned observation that the gonidia of Saprolegnice capitulifera acquire a nombrane shortly after birth, (sce p. 188.) It is conceivable that Meyen's observation was made on another peculiar species in which the gonidia acquire a membrane even before birth.
 \dagger I find it mentioned only by Schleiden, ('Grundz.,' Ite Aufl., ii, p. 36.)

[^191]: * Leptomitus lacteus is in cvery respect allied to Saprolegnia. The dichotomous filaments are not articulated any more than thosc of Saprolegnia, but only divided into sections by regular strictures; these sections have been taken for closed cells. It is only in the fructification that isolated, mostly terminal scetions are actually shut off, swell up to some extent, and become spore-cases. No active gonidia scem to occur.

[^192]: * (Sce also Fresenius, on Sphceroplea annulina, 'Bol. Zeitung.' 1851, vol. ix, p. 241.-A. HI.)
 † Meyen, 'Pflanzen-phys.,' iii, t. 10, f. 17.

[^193]: * Each single spore cncloses several of the cxisting starch-grains in its structurc.

[^194]: * 'Neueren Algensyst.,' pp. 155-157, t. ii, f. 7-24.

[^195]: * On a new Botrydium, in 'Nov. Acta.,' xix, ii, 3SS, t. 69, 4.

[^196]: * 'Zcitsehrift,' 1846, p. 51, (Ray Translation, 1849, p. 123.). "In free cell-formation a greater or smaller portion of the contents becomes isolated, or even the whole contents of the cell. On the surface of this is formed a complete membrane, altogether free at its outer surfaee, (in eontact neither with the wall of the mother-eell nor those of its sister-cells.)"

[^197]: * Hofmeister, l. e., Sorghum, t. xi, f. 22, 23; Canna, t. iv, f. 3, 5 ; Godetic, t. v, f. 5.
 \dagger L. c., Tunkia earulea, p. 16.
 \ddagger L. c., Potygonum orientule, t. xii, f. 18-20.
 § L. c., Ayrostemma Githayo, t. ii, f. 20-22.
 || L. c., Ǩea Mays, t. xi, f. 4; Godetia, t. v, f. 5, 6, aud 'Botanische Zeitung,' 1847, t. viii, f. 10, (Godetiu.)
 - L. c., Canna, t. iv, lig. ©

[^198]: * They appear to be absent from Polygonum orientale, (t. xii, f. 18, 19), Agroslemma Gilhago (t. ii, f. 18-22) Godelia, (t. v, f. 4, 5); they are especially numerous in Sicyos (t. xiii, f. 3-5) ; often only a single one, but of unusual size, presents itself in Hyacinthus orientalis (t. vi, f. 3).
 † L. c., Orchis, t. ii, f. 2, 3, 4.
 \ddagger L. c., Crocus, t. iv, f. 14.
 § L. c., Ecbulium, t. xiii, f. 6-9.
 || 1. e., Hyacinthus orientalis, t. vi, f. 4, b; Helicunthus annuus, i. xiii, f. 18-20.

[^199]: * L. c., Sorghum, t. xi, f. 22; Iyacinthus, t. xiv, fig. 2; Erodium, t. iii, f. 17 ; Helianthus, t. xiii, f. 17. More rarely the nucleus of the embryo-sae vanishes before the formation of the germinal vesicles, e.g., in Orchis, t. i, f. 32.
 \dagger L. c., Agrostemma, t. ii, f. 18-22; Bartonia, t. ii, f. 34-40; Fritillaria imperiulis, t. viii, f. 6-9.
 \ddagger The rarer case of formation of endosperm by cell-division has been mentioned previously, (p. 248.)
 § Sce Hofmeister's figures of Godetia, ('Bot. Zeitung.,' 1847, t. viii, f. 25, a;) Fritillaria imperialis, ('Enstehung des Embryo,' t. viii, f. 11 ;) Eelialium, (l. e., t. xiii, f. 11;) Hclianthus, (t. xiii, f. 20;) Linum, (t. xiv, f. 4,8 .)
 || Sce Schleiden, 'Beiträge zur Botanik,' t. vi, f. 69, 76, 77. (From the albumen of Chumeredorea Sehiedeana.) (See trausl. in Taylor's 'Se. Mem.,' vol. ii, p. 281, t. xv, f. 1-10.-.$~ H)$.
 " See Schleiden and Vogel, 'Ueber das Albumen,' 'Aet. Nat. cur.,' xix, ii, t. 42, f. 42, 43 (T'etragonolobus purpureus,) and f. 49, 50 (Buptisies

[^200]: exaltata;) also Hofmeister, 1. c., t. xii, f. 25 (Polygonum orientale;) and t. xiii, f. 21, (Helianthus anmeus.)

 * L. c., p. 30, t. xi, f. 25, 26, 29, (Sorghum bicolor.)

[^201]: * 'Zcitschrift,' 1847, p. 24, t. iii, f. 1-3 (Bryonsis Balbisianum.) (Ray Society's transl., 1849, p. 98, t. ii, f. 1-3.-A. H1.)
 \dagger Meyen, 'P'llanzen-phys.' iii, t. 10, f. 24, (also figured by Focke, 'Physiol. Studien,' pl. iii, f. 12.-A. H.)
 † (See Pringsheim, on S'pirogyra, Transl. in 'Annals of Nat. Hist.,' 2d scries, vol. xi, p. 210. Mso consult on this point Itzigsohn, 'Bot. Zeit.,' 1853.-A. H.)

[^202]: * Whence arise the perigynous and epigynous insertions.

[^203]: * Sec abovc, p. 132. (Diatomaceæ) ; pp. 133-135, (Dcsmidiacce, Zyynnemacer.)
 f This exeludes the plenomena in the formation of the spores of Melosira, Oiclogonium, and Bulbochete, subsequently to be examined more closely, which have been mixed up with conjugation.
 \ddagger This excludes the mere application of other cells upon the mother-cell of the spores, such as occurs in Colcochate and Saprolegnia, as also the union of the pollen-tube with the embryo-sac.
 § This excludes the anastomosis of the colourless cells of the leaves of Sphaynum, Dicranum glaneun, and certain other white-leaved Mosses, as also the union of loug tubular spiral-fibre-cells to form vessels.

[^204]: * Similar cases oceur in the animal kingdom, in the Infusoria. Sce Kolliker on Actinophrys Sol, in Siebold and Kölliker's 'Zcitschrift,' 184.9, b. i, p. 207, (Transl. in 'Quarterly Journal of Mieroseopic Scicnce,' vol. i, p. 98, et seq.) The forms figured as Actinophrys difformis, by Ehrenberg, ('Infusionsthierchen,' t. xxxi, f. 8,) doubtless represcnt eonjugating states of Actinophrys Sol.
 \dagger Assuming that his Palmoglaca Meneghinii, ('Tab. Phycol.,' 24, iii,) aetually belongs to this genus, and not to Cylindrocystis.
 \ddagger 'Annals of Nat. History,' 1849, 2 d serics, vol. iii, p. 243, t. үiii, f. c, (as Coccochloris Brelissonii.)
 § Sec pp. 135, 202, and pl. i, figs. 1-2S, pl. ii, figs. 1-14. || Sce p. 132.

[^205]: * 'Annals of Nat. History,' 1847, vol. xx, pp. 9, 343; 1848, ser. 2, vol. i, p. 161.
 \dagger Thwaites, l. c., 1847, vol. xx, p. 22, f. ^, 〕—7.
 \neq Ibid., t. iv.
 § Ibid., t, xxii, f. c, 1-3.
 || Ibid., t. xxii, f. з, 1-5.

[^206]: * Penium (Cylindrocystis) Brebissonii, Ralfs, 'British Desmidicæ,' F. 153, t. xxv , f. 6 .
 \dagger Elirenberg, 'Infusionsth.,' tab. vi, f. 94. Ralf3, l. c., t. xxx, f. 4, Stauroceras subulata, K.;) ibid., f.3, (St. Acus, K.;) f. 5, (St. ccutum, Breb.) \ddagger Hassall, 'British Freshwater Nlgx,' t. 47-49.

[^207]: * Hassall, l. c., t. 46.
 \dagger Hassall, 1. e., p. 152, t. 33 and 34; Nägeli, 'Algensysteme,' p. 151, t. iii, f. 22-25.
 \ddagger 'Spee. Alg., p. 443. The genus Rhynchoneme, although based on a very remarkable character, is scarcely natural, since both kinds of conjugation sometimes oceur in one and the same species. I have observed this especially in Spirogyra Weberi, in which, however, the ehain-union is more common than the yoke-union.
 § 'Mém. sur les Closteries,' 'Ann. des Se. nat.,' 2 ser., v, 325, t. 9 (1836.) (See also Smith, on Closterium, 'Annals of Nat. History,' sec. ser. vol. v, p. 8, t. i. - A. H.)
 $\|$ Morren, l. e., t. 9, f. 22, 23, (Smith, l. e.)
 बT Ralfs, l. c., p. 153, t. 33, f. 2.

[^208]: * 'Verhandl. der Gesellsch. naturforsch. Freunde zu Berlin,' 1 band., p. 98, t. ii, iii (1829.)
 \dagger Corda, 'Prachtllora Europaischcr Schimmelbildungen,' (1839,) 1. 49, t. 23.

[^209]: * Ralfs, I. c., p. 146, t. 24, f. 3.
 \dagger lbid., t. 2G, f. 4.

[^210]: * Ralfs, l. c., t. 29, f. 2, (Closterium striolatum) ; fig. 6, 7, (Closterium juncidum.)
 \dagger Ibid., t. 25, f. 1 and 5, Penium margaritaceum and truncatum.)
 \ddagger Ibid., t. 27, f. 2, (Clost. accrosum ;) t. 28, f. 4, (Closl. Leibleinii.)
 § Ehrenberg, 'Infusionsth.,' t. 6, f. viii, 4.) Ralfs, l. c., p.174, t. 30, f. 1.
 If In the middle of May, 1848, in specimens from the peat-holes of the Mooswald, near Freiburg, especially rich in Desmidiacee.
 | The two picces are mostly of unequal length.

[^211]: * Ralfs, 1. c., t. 12, (Euastr. oblongum ;) t. 14, f. 5, (E. pectinatum,) \&e.
 \dagger Ibid., t. 6, f. l, (Nicrasterias denticulata, with the mace-like spores beset with forked spines ; the conjugation itself is not represented.)
 \ddagger Ibid., t. 16, f. i, (Cosmar. Botrylis;) f. 2. (C. margaritiferum) \&e.; Nägeli has also described the conjugation in a species of this genus, his C. rupestre, (l. c., p. 118, t. vii, f. 6.)
 § Ibid., t. 18, (Xanth. armalum.)
 If Ibid., t. 20, f. 5, (St. dejectum; t. 21, f. 5, (St.orbicnlare;) t. 22, f. 3, (St. hirsutum;) f. 9, (St. polymorphum;) t. 23, 1. 9, (St. brachiatum,) \&e.
 it E. g., of Cosmarium naryaritiforum, t. 33, f. 6; Cosm. Broomei, t. 33, f. 7; Arthrodesmus Incus, t. 20, f. 4.
 ** Ralfs, l. c., p. 53, t. 1.
 It Ibid., p.59, t. 3, (as Didynoprizm Borreri.)
 $\ddagger+$ Ibid., p. 67, t. 6, ł. 2 (I. excavala;) t. 32, f. 2, (I. vertebrata.)
 \$§ Ibid., p. 55, t. 2, (Didym. Grevillii.)
 IIII Ibid., t. 4, where Ralfs represents spore-like globules in the interior

[^212]: of the cells of an uneonjugated piece of Desmidium Swourtzii. Might another filament have been conneeted with this, and again detaehed after being emptied?

 * L. e., p. 146.
 \dagger Sce 'Algensyst.,' p. 175, t. iv., f. 21, 22.
 \ddagger 'Hist. des Conferves d’Eau Douee,' (1803,) j. 17, t. ii, f. 7.
 § Hassall, l. e., p. 49, t. 3, f. l.

[^213]: * See, on this point, Karsten on 'Conferva fontinalis, L.,' in the 'Botanische 'Zeitung,' 1852, p. 89, et seq., pl. 1, wherein he describes the conjugation in all its stages.-A. H.
 \dagger Thus, for example, in Vaucheria terrestris and hamata, in which, at the same time, in spite of the strange position of the spore on the back of the horn, an union of the inrolled point of the horn with the spore does occur, as is represented very beautifully, and cven with emptying of the endcell of the horn, by Thuret, ('Sur les Org. Locomot. des Spores des Algues,' 'Ann. des Sc. nat.,' $2 d$ ser., vol. xix, t. 15, f. 49, (1843,) in a form doubtless belonging to V. hamata. In V. geminata the little tube above the spore is likewise wanting, but Nägeli has scen a scar on the summit of the spore, which indicates the previous union with the horn, and indeed, aceording to Hassall's observations, not with the point but with the side of the horn. The form of the horn in V. cruciata, (Vauch., l. c., t. ii, f. 6,) nearly allied to V. geminata, is intercsting, since two little side horns issue from the principal horn, from their position evidently destined to union with the two spores.
 \ddagger L. c., t. 4, f. 6. I have observed this species also near Freiburg.

[^214]: * See p. 141, note.
 \dagger See 'Thwaites, 'Further Obs. on Diatomacex,' 'Annals of Nat. Hist.,' sce. ser., vol. i, p. 161, t. xi, xii, (1848.) The reproductive cell is formed cither between the halves of an isolated eell, separating from them in the subsequent development, (Cyclotellu, t. xi, f. D,) or between the halves of a cell which is a link of a filament, sometimes parallel and beconing developed in eonneetion with the old filament, (Melosira, t. xi, f. s, c, and Orthrosira, t . xii, f. Es,) sometimes pushing aside the halves of the mother-eell by seeretion of gelatinous matter, and developing at right angles to the old filament, (Aulocosiru, t. xi, f. в.)

[^215]: * Nägeli, 'Einz. Algen.,' t. vii, f. 7, b, (as E. crenulatum, Ehrenb.?)
 \dagger Zygnema mirabile, Hassall, l. c., p. 156, t. 35.
 + 'Essai sur une Classification des Algues,' (1842,) p. 39. The figure given at t. 14, f. 5, belongs to Bulbochate spheerocarpa, A. Br., (setigera, Auct., ex. p.)
 § L. c., pp. 180-194, t. 50-53, (U'dogonium; t. 54, (Bulbochucte.)

[^216]: * 'Sur la Fructification du Genre Prolifera de Vaucher,' 'Mém. du Muséum,' iii, (1817,) p. 462. The old name of Prolifera was founded on an error, and was therefore changed to Edogonium by Link.
 \dagger Celogonium Landsboroughiii, (Hassall,) is the speeies described and figured, (t. 23, f. 1,) by Le Clere, as Prolifera rivularis. Le Clere represents four adjacent sporiferous cells in ©Ed. Rothii also, 1. e., f. 8.

[^217]: * Cidogonium echinospermum and apophysatum. See p. 141. The numerous, elosely superstratified little cells, which Le Clere, 1. e., f. 9, figures between the larger eells, in a filament supposed to belong to Prolifera rivularis, (Edogon. Landsboroughii,) and in the explanation of the plate takes for spiral-filaments, are doubtless emptied mother-eells of mierogonidia. (See Thuret.).

[^218]: * Reproduction by propagula, (in the Mosses and Liverworts,) by bulbels, runners, tubors, \&ce., see p. 40.
 \dagger (This expression, as well as various other references of the same nature, must be cheeked by comparison with subsequent researches. Thuret, Närcli, Itzigsohn, Tulasne, Berkeley, and Broome, have pointed out conditions indicating that sexuality is universal.-A. II.)
 \ddagger Sce p. 276.

[^219]: * Sce Gottsche, on the 'Tructification of the Jungermannise geocalyccer,' ' Nov. Act.,' xxi, ii, 445, t. 30, f. 8. The bicellular condition of the endogonium of Calypogeia Trichomanes there representea is certainly preceded by a unicellular stage.
 † Leszezyc-Suminski, 'Zur Entwickl. der Farrnkränter,' Berlin, 1848.

[^220]: * Aceording to Suminski's here certainly incorrect representation, the embryo of the new individual is formed in the central cell of the arehegonium, through the penetration of the tail of a spermatozoid into it.
 \dagger (The above was printed in 1850 ; the speculation then put forth has been realized to an extent searecly to have been expected so soon ; the rescarehes of Mettenius, Nägeli, and above all Hofmeister, have carried on this subject almost to completion in its main features in the higher Cryptogamia; the lower Cryptogamia, (Thallophytes,) still require extensive investigation. For the facts, as also the literature, see the "Report on the Reproduction of the Higher Cryptogamia,' by the present translator, in the ' Λ nnals of Nat. Hist., 2 scr., vol. ix, p. 441.-A. II.)
 \ddagger See Sehimper, 'Recherch. sur les Mousses,' p. 55.

[^221]: * The discovery of the antheridia of the Ferms was made by Nägeli in the year 1842, and published in 1844, ('Zeitsehr. fur Wiss. Bot.,' hoft 1, p. 165 ;) the above-mentioned treatise of Suminski, in which the arehegonia were first deseribed, dates from 1848; the first obscrvation of a hybrid fern was published by Martens, in ' Bulletin de l'Aead. Roy.' de Bruxelles, 1837. The hybrid there mentioned of Gymnogramma (Ceropteris) chrysophylla and calomelana, subsequently named G. Martensii, was soon followed by a seeond between G. chrysophylla and distans, (G. Massoni, Auet.,) deseribed by Bernhardi in Otto and Dietrieh's 'Gartenzeitung,' 1840, p. 249; Regel has enumerated several more hybrids from the same genus in the 32 d No. of the - Botanisehe Zeitung,' for 1843. I myself found, in the year 1834, in a mountain valley near Baden, among Aspidium Filix mas, and A. spinulosum, (the normal form together with the variety dilatata,) several rhizomes, all within a small space, of a fern whieh stood about mid-way between the two species named, and probably was to be regarded as a hybrid product of them. I ealled it Aspidium remotum, and formerly regarded it, doubtfully, as a varicty of A. rigidum, whieh it resembled, not only in habit, but in degree of formation and mode of decrease of the pinnæ. I have never sinee been able to find it again, either in the original station or anywhere else in the Black Forest, but it has maintained its existenee in the Botanic Garden of Carlsruhe, whenee it has passed into the gardens of Freiburg and Leipsie. See Döll, 'Rhein. Flora,' p. 16.
 \dagger Sce Bayrhoffer, 'Uebersieht der Moose, Lebermoose und Flechten des T'aunus,' ('Jahrbuch. des Vereins f. Naturkunde im Herzogth. Nassau,' 5 heft, 1849,) where two supposed hybrids are mentioned, namely, 1 , of Physcomitrium fasciculare, and 2, of Physcomitrium pyriforme, with Funaria hygrometrica.

[^222]: * See page 2%.

[^223]: * Raised by Duclicsuc, in the year 1761, from seeds of the common Preyrerice vesca, and usually returning, when the seeds are sown, to the parent-form with ternate leaves. Duchesne, 'Hist, des Fraisiers,' p. 124; Godron, 'De l'Espèece et des Races,' p. 36.
 \dagger Fr. simplicifolia, W., (heterophylla, Valı.) In De Candolle's 'Prodromus,' (viii, p. 276,) it is mentioned as a peculiar species, oceurring in England and Ireland, while Sprengel, ('Syst. Veget.', i, 97,) places its nativity in North America! De Candolle, to establish the specific distinction, gives, in addition to the form of the leaf, certain characters derived from the size and form of the fruit, which, however, 1 an compelled to regard as an mimportant individuality of De Candolle's speecimens, since the trees of the simple-leaved ash, cultivated in the Botanic Garden of Carlsruhe, agree exactly with the common ash, (l. excelsior;) in their fruit. Persoon, in reference to the origin of this varicty, says expressly, ('Syn.,' ii, 604,) "e semimibus Fraxini clatioris vulgaris ortam vidi." Spenner found, on the Schienberg, near Freiburg, a completely analogous varicty of Rubus Idcous, with leaves resembling those of R. areticus.
 \ddagger Both occur, probably only isolated, in Sweden and Lapland. In gardens they are increased by eutings, and when sown probably recur to the entirc-leaved parent forms. 'I'he other examples named are known only as garden-plants.
 § The parsley-vinc, as it is called. Sec Babo and Metzger, 'Wein u. Tafeltrauben,' p. 33, h. ii, 10.

 I| A single specimen of this was obtained by Descemet from a sowing in 1803, and it is now gencrally diffused. Its sceds furnish the spiny parentform again. (Sce Chevreul, 'Considérations gén. sur les Variations,' \&c. 'Aun. des Sc. nat.' 3me sér., vi, 157, 1846; Trans. in 'Journ. Hort. Suciety,' vol. vi, p. $61,1851$.

 9 The copper-becel universally diffused in gardens is derived from a

[^224]: * Sec his preliminary reports ('Vorlaufige Naehrichten) of experiments relatiug to the sexes of plants, particularly the third serics, (1766,) p. 51 , where is deseribed the "complete eonversion of one natural species of plant into another," namely Nicotiana rustica into N. paniculala. The first, impreguation of N. rusticd with N. paniculata produced a hybrid, which assumed completely the charaeter of the parent plant in the "fourth ascending step," i. c., after three transitional generations produeed by repeated impreguation with N. paniculata.

 | otiana rustica $\circ ?$
 paniculata o $\}$
 paniculata
 paniculala
 paniculala
 paniculata |
 | :---: |
 | | |

 \dagger 'Repertorium,' $\mathrm{i}, 634,(1842$,) where two figures of it are eited. (The 'Botanist,' i, t. 7. 'Bot. Register,' t. 1965.)
 \ddagger The authorship of the name C. Adami is thus stated everywhere; where Poiret has given a notice or description of Adam's new plant, I do not know.
 § According to Loudon, (as appears from a note in the 'Bot. Zcitung,' 184.3, p. 133,) Adam obtained his new Cylisus by grafting a bud of C. murpureus on C. alpinus (?). I eannot consult the source of the statement hore cited, ('Gard. Mag.,' xii, 225, and xv, 122.)
 || Aceording to Reissek, (Haidinger, 'Berichte über die Mittheil. von

[^225]: * Kirchleger says, indced,-"J'ai pu même, en 1844, obscrver tontes les transitions de ces trois sortes de branches (avec leurs infloresecnees et leurs fleurs) les unes aux autres," but this assertion is certainly incorrect. Kirschleger was ecrtainly deceived by the mixed inflorescences and flowers, which I shall describe more minutely.
 \dagger I have observed this in Carlsruhe and Freiburg, where I never saw both parent species produced out of the same stock. Buchinger found the same. I mention this circumstance expressly in order to remark that the explanation given by Chevreul, (1. c.) by which the recurrence of C. Adami to its parent species as a decomposition of the hybrid into its two portions (somewhat as in a chemical decomposition) is inapt.
 \ddagger This is expressly asserted of the tree occurring in the garden of Prof. Schweighaiuser, at Sehiltighcim, which was deseribed by Kirschleger. (This occurred also in the specimen in the garden of L.W. Dillwyn, Esq., of Swansea, where the shoots bearing the blossoms of the parent species were fertile, ripening seed, while the liybrid blossoms were sterile as usual.- Λ. H.) Since it is probable that all the specimens of C. Adami diffused in gardens are cuttings of a single mother-stock, the distinction, whether only one or both parent-species present themselves, becomes of less importance.

[^226]: * In refercnce to the hybrid nature of C. Adami it is not unimportant to remark that the reverse phenomenon, namely, racemes of C. Laburnum intermixed with single flowers of C. Adami, has not been observed either by others or by myself. If these mixed racemes depend on a partial recurrence of the hybrid to the parent-species, this case cannot occur at all.
 \dagger In the Carlsrulic Botanic Garden, May 1843.
 \ddagger Compare here the outlines in plate V and the accompanying explanations. The eighth mixed flower was not in perfect preservation.
 § I neglected to examinc accuratcly the condition of the stamens and ovarics of thesc flowers.

[^227]: * Compare the frequent eases of a petaloid uppermost cuphyllary leaves in Tulips, Callha, Trollius, the petaloid ealyx of the double Primroses, of Rubus casius with petaloid inner scpals, (1cl. Nat. Cur.,' xv, i, i. 31, f. 2,) of Sempervivum lectorum with stamens of the inner eirele passing into earpels, \&e.
 \dagger Rosa, Ramunculus, Adonis, with the outermost, sepal passing into cuphyllary formation; similarly Rosa and Linum with sepaloid first petal ; the half double flowers with partial conversion of the stamens into petals, \&re.

[^228]: * As in the cases of flowers appearing green, (anthochloroses,) in which all parts of the flower often return more or less perfectly into the cuphyllary formation.

[^229]: * The true recognition of the organism of Nature and its composition of members or liuks, as objective facts, cxpressed by Nature itselfi, is essentially necessary to the liigher shaping of Natural History as a unity. The tendeney existing in the contrary direction, disregardiug one-sided philosophic hypotheses, is caused anong botaiists chicilly by the previously prevailing cultivation of the Artificial system, and the difliculty of the construction of the truly Natural. Limmens himself, moreover, the founder of the most importaut Artificial system in botany, regarded species and gencra, empluatieally, as objective works of Nature, ('Phil. Bot.') $\$ 162$,) and explained the elasses and orders of the Artificial system as a makeslift, until the Natural were detected, ($\$ 161$.) It is remarkable to find even such authors as arce inelined to an objective view of the conecptions of the genus and species, making the asscrtion that merecty the individual really exists, (thus $c .1$. in Spring, 'Ueber die Naturhist. Begriffc von Gatung, Art und Abart," 1838, p. 22,23 .) To acknowledge the individual as really existing, and deny the matural actuality of the more comprchensive complexes of the organism of nature, is in ineonsequenee, depending on the deception by which the individual scems to be immediately given in the phenomenon, while it is casy to sec that the individual, as such, i.e., as a single being, can only be conceived mediately, in the recognition of the inmer unity which runs through the series of phenomena, in which it displays itself. Child, youth, and man, eaterpillar, chrysalis, and butterfly, are not to be conceived from external appearance, but only in consequence of their immaterial essence, as one and the same single being. The external continnity of the successive serics of appearances of the individual, affords no ground for regarding it essentially differently from the comprechensive systematic complexcs, for the same recurs cench in the successive appenances of the species, where successive links (the individuals) stand in direct conneetion in the reproduction. That the individual has no right to be considered as real in other senses than the species, genus, \&c.., is indiented especially in the alternation of generations, as it is called, which cxhibits the remarkable ease of the individual, in the higher sense, (the biologicat individnal,) breaking up into a limited or mnlimited series of subordinate

[^230]: * See pp. 7-9. The law of development becomes more and more evident in the newer works on the eharacter of the vegetable kingdom in ancient epoels. See, in reference to this, the latest comparative view by Ad. Brongniart, in his 'Tableau des genres de Végét. Fossiles,' p. 93, (1849.)
 \dagger Note, for example, the native country of the family of Cactcx, the enctus-like Euphorbix, the Epacridex, the group of the Heliophilex in the family of the Cruciferæ, the rich gencra Stapelia, Pelargonium, Aloë, Agave, \&c.

[^231]: * The species of the genus Palmoglea, established by Kützing, cannot be certainly determined cither by the characters given in the 'Spec. Algarum,' or by the figures given in the "Tabule Phycologice.' In the species represented in our plate, the jelly-like ecll-envelopes are sometimes distinguishable singly, sometimes nol, which renders doubtful even the section in which we are to seek the species. The germ-cells vary in length from in to $\frac{1}{20}$ millim., average, thercfore, $1 \frac{1}{2}$ to $\frac{1}{6}$ of a line, so that the distinctions founded on size, given by Kiitzing, likewise furnish no safe eritcrion. From the variability of the characters, it is not improbable that many of the species brought, forward by Kützing, in particular P. rupestris, macrococca, vesiculosa, lucida, rufescens, and crassa, will have to be combined as forms of one and the sanic species.

[^232]: * In giving a name to this specics I select that determination which scemed least donbtful; I must observe, however, that scveral of the specics distinguished by Kützing probably belong to the same species, so particularly P. Boryanum, K.; subulatem, cruciatum, K.; and atso in part P^{\prime}. Selencea, Auct., namcly, with the exclusion of P. Selenceu, Ralfs., (lunare and clegans, Hass.) ; and P. Selencu, Naig.; (pertusum, K.) The length of the horns, as also their clavate rounding off, is variable; punctated condition of the cell-wall, on the contrary, I found constant ; but it is only distinguishable in full-grown and empty specimens.

[^233]: * In the present translation the decimal numbers indieate millimeters or parts when not otherwise marked, and parts of a line are given in eommon fractions with the sign '". -Ed.

[^234]: * Sce the following paper in this volume. Also on Chlamidococcus and Chlamidomonas in 'Braun on Rejuvenescence.'-ED.

[^235]: * The yellow oil, of which there is a considerable quantity, in the winter spores of Volvor, (the so-called V. aureus, Ehr.,) is coloured bluc-green by iodinc.-ED.

[^236]: * Sometimes, as in the zonspores of Volvox, these vacuoles calibit rlyythmical contractions.-[ED.]

[^237]: * 'This is now, by no means, the casc.-[Ed.]

