1914
 T16

TANNFR

Bacteria in Deep Wells and

Surface Waters

Chemistry

M. S.

1914

Nof

.8

为

Digitized by the Internet Archive in 2013

FRED WILBUR TANNER

B. S. Wesleyan University, 1912

THESIS

Submitted in Partial Fulfillment of the Requirements for the

Degree of MASTER OF SCIENCE

IN CHEMISTRY
in
THE GRADUATE SCHOOL of THE

UNIVERSITY OF ILLINOIS
1914
(S)

UNIVERSITY OF ILLINOIS

THE GRADUATE SCHOOL

FRED WILBUR TANNER

ENTITLED BACTERIA IN DEEP WELLS AND SURFACE WATER.

BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF
MASTER OF SCIEAICE

Recommendation concurred in:
$\left\{\begin{array}{c}\text { Committee } \\ \text { on } \\ \text { Final Examination }\end{array}\right.$

INDEX

Part I (A)
Bacteria in Deep Wells Page
Part I (B)
Bacillus colon in Ground Waters 9
Bacillus colon in Deep Wells 12
Isolation of Bacteria. 18
Part II
Surface Waters 25
Bibliography

BACTERIA IN DEEP WELTS AND SURFACE WATERS

Of all living things, bacteria are most widely distributed over the surface of the earth. As is the case with higher animals, we find a definite habitat for a particular species of bacteria. There are certain places where some oan exist in greater numbers than can others. We sometimes find species in an environment quite different from the normal.

Part I (A)

Bacteria in Deep Wells.
Water coming from underground sources was, until recently, considered sterile. Many older text books claimed that there were no bacteria in water from underground sources. More recently, however, investigators have reported bacteria in deep well waters, until at the present time, most text books grant that a ground water may contain bacteria.

Frankland reports from 6 to 26 cells per co. in a Kent well sunk in chalk. He givea no information with regard to the methods used in securing the results. Breunig ${ }^{22}$ found from 6 to 30 bacteria per cc. in some artesian wells at Kiel. The medium used is not given. Hueppe is reported to have found only four in a deep well at Wiesbaden where a special investigation was
carried on. In the Haing wells Egeer found four colonies. Savage ${ }^{2}$ claims that deep well water having been filtered through layers of earth should contain few bacteria and should be subject to very little variation. On celatin the number of bacteria is usually less than 50 per cc. and on agar less than 1 per cc.

Prescott and Minslow ${ }^{3}$ quote analyses of deep wells and springs in the neighborhood of Boston in which the number of baoteria varied from 0 to 12 . They reach the conclusion that water absolutely free from bacteria is not ordinarily secured from any source.

Thresh ${ }^{4}$ gives many instances of bacteria in ground waters and especially of the intestinal flora coming under his own observation. Some of these will be mentioned later.
"isur Nutior \& t
\therefore

The results in the following table indicate the number of bacteria found in some Illinois deep wells:

Sample No.	Depth (ft.) 282	Agar	Gelatin
27452	400	0	55
27474	160	1	0
27475	160	28	1
27476	120	$-\infty$	30
27477	211	4	6
27545	895	0	10
27557	113	4	20
27568	2000	1	3
27582	126	0	9
27611	126	0	2
27612	270	4	6
27672			

EXPERTMENTAL

It was thot advisable to investigate the character of the colonies found on some of the plates of water from underground sources. These wells are looated at different points in the state of Illinois and all are strictly speaking deep wells. Only those samples were considered which were known to be from wells which had been pumped for some time. Very often it was found that a badly contaminated deep well water came fron a now well which had been thoroly flushed out.

The work here presented was done on the samples as they came to the State Water Survey for the routine analysis.

Method of Procedure. The water was plated on agar and incubated at $37^{\circ} \mathrm{C}$ and on gelatin at $20^{\circ} \mathrm{C}$. After these plates had been counted, colonies were picked off by means of a aterile platinum wire and transferred to agar slants. These cultures were later plated, in dilution, on gelatin in order to secure a pure culture. The cultural characteristics were then determined by means of the different standard media and the results recorded on the charts of the Society of American Bacteriologists.

Sample A.

A well 1382' deep located at Odell, Illinois, furnished this water. It was comparatively new, but had been pumped for some time before the sample was sent in. The well is cased with iron pipe and the cover is water tight. The water is securec from the St. Peter sandstone. The number of bacteria on agar was 26 and on gelatin, 1000. The high number of bacteria on gelatin may have been due to the fact that the casing had not been thoroly flushed out when the sarple was taken. The two following bacteria were taken from the gelatin plates and subjected to the different kinds of media mentioned below. The colonies were of the sane general shape varying only in size. All grew on the surface and were colored slightly brown.at their centers. The gelatin plates began to liquefy in less than forty-eight hours.

I. Bacillus subtilus.

Diameter: Less than 1 micron.
Spores: Formed toward middle of the rod.
Motility: Motile when taken from fresh broth medium.
Gram: Positive.
Broth: Turbid with pellicle.
Gelatin plate: Gelatin is liquefied in about 40 hours. Thru the liquid granules occur.

Potato: Rioh wrinkled growth.
Milk: Coagulated.
Indol: Negative.
Nitrates: Not reduced.
Gas: Negative.
2. Baoillus Flourescens liquefaciens.

Diameter: Iess than 1 micron.
Spores: No spores could be found.
Motility: Positive.
Gram: Negative.
Broth: Sediment-broth assumes green color.
Agar: Iuxuriant growth - agar is turned green.
Gelatin plates: Gelatin rapidly liquefied. Greenish color.
Potato: Scant dark colored growth.
Milk: Coagulated and cesoin is digested.
Indol: Slightiy positive.
Nitrates: Ammonia is produced.
Gas: No gas is formed.

Conclusions. Neither of these forms are of any sanitary significance. Bacillus subtilis is a form abundant on grass. Bacillus floresceus liquefacieus is a common water form.

Sample B
The source of this water was a 90^{\prime} drilled well. The casing is sunk thru rock and clay and the water is pumped from the rock by an iron pump. Since the cover is of oement and watertight, no surface water can get into the well. The number of bacteria on agar was 7 and on gelatin, 67. The chemioal analysis showed a normal water for such a source. The tests for Bacillus colon were negative. The oolonies on gelatin were evenly distributed and had begun to IIquefy the gelatin in less than 43 hours.

I. Bacillus Vulgatus.

Diameter: Less than 1 micron.
Spores: Negative.
Motility: Positive.
Gram: Positive with pellicle.
Broth: Turbid with pelicie.
Agar: White.
Gelatin plates: Round Iiquefyers.
Potato: Scanty growth.
Milk: Coagulated. Partial digestion of casein.
Indol: Positive.
Nitrates:
Gas: Negative.

Conclusions. Bacillus vulgatus has no sanitary significance. It is a rather common form.

Sample C

The source of this sample was a 2500^{\prime} well. The oasing was put down thru rock and sandstone and had been pumped for a long time. The count on agar was 30 and on gelatin, 6. Large liquefying colonies of a flourescent green were present aa in many of the deep well waters. the colony picked off had the following characteristic.

I. B. arborescens.

Diameter: Slender motile rod.
Spores: Negative.
Motility: Positive.
Gram: Negative.
Broth:
Agar: Yellowish.
Gelatin plates: Rapid liquefyer - Dark opaque colonies with hairy projections.

Potato: Orange colored growth.
Milk: No change.
Indol: Negative.
Nitrates: Reduced.
Gas: No gas.
Conclusions. Bacillus arborescens is found in soil. This might explain its presence in a water.

Sample D
A well drilled in drift 1135' furnished this water.

The well is cased with iron pipe and has a water tight cement cover. No feed lot, privy or stable is near the well. The gelatin plates were covered with liquifiers which made large saucer-like depressions in the medium. From this sample of water the following organism was isolated.

I. Bacillus mycoides.

Dismeter: Large bacillus.
Spores: Positive.
Motility: Positive.
Gram: Positive.
Broth: Cloudy with pellicle.
Agar: White growth irregular edge, after spreading.
Gelatine plates: White with many branches.
Potato: White. No discoloration.
Indol: Negative.
Nitrates: Reduced to nitrites and amonia.
Gas: Negative.

Conclusions. Bacillus mycoides is a common species of bacteria and might easily get into a water.

In all the above cases, it is realized that these different possibilities allowing bacteria to get into a ground water. The well might be a new one which was not thoroly flushed out when the sample was taken. Or, it might have a bad casing allowing surface water to enter.

Since bacteria have been reported in deep wells
from different parts of the world, it seems probable that certain forms do live in deep well waters.

PART I. (B)

Bacillus Colon in Ground Waters.

The presence of Bacillus colon in a water has been accepted by most sanitarians as a sufficient indication that the water has, in some way, received sewage pollution. Bacillus colon was discovered in 1885 by Emmerich while working on the feces from cholera patients. Since it was found to be present in such large numbers, in that part of the intestine termed the colon, it was given the name Colon Bacillus. When it was first discovered, it was thot to be an inhabitent only of the human intestine. This theory, however, was very soon to be disproved. Flint ${ }^{5}$ worked on the feces from the animals in the Chicago Zoological Garden. He found Bacillus colon in the excreta from the snake, llama, white rat, bear and a few others. He concluded that Bacillus colon was not a sufficient basis on which to condemn a water. Belitzer ${ }^{6}$ and Dyer and Keith ${ }^{70}$ obtained results to the same effect that Bacillus colon was not only present in the human intestine, but rather widely distributed thru the intestines of most warm blooded animals. Nuch other work has been reported by various men on Bacillus colon and its ubiquity in warm blooded animals.

Numerous instances are cited of its occurrence in the cold blooded animals. Amyot ${ }^{22}$ tried to prove the pres-
ence of Bacillus colon in fish. He could not find it in twenty-three fish, incluaing fourteen varieties. Johnson ${ }^{24}$ examined sixty different fishes from the Illinois and Mississippi rivers. He succeeded in isolating Bacillus colon from forty-seven. In forty-one of these the organism was isolated from the intestine. He cites the carrying of Bacillus colon by fish as a method by which a pure water could be apparently polluted. As mentioned before, Flint proved it in the snake. Moore and Wright ${ }^{25}$ could not find it in the frog. Eyre ${ }^{26}$ reports its presence in the fish and also in some warm blooded animals.

Prescott ${ }^{76}$ found an organism similar in all characteristics to Bacillus colon on grains from fields where animal contact was improbable. Even in this case will arise the possibility of birds distributing Bacilli Coli over such areas. One of Prescott's conclusions was that care should be used in interpreting an analysis of a water where Bacillus colon was found to be present.

Metcalf ${ }^{8}$ reports Bacillus colon on some South Carolina rice fields.

Smith ${ }^{9}$ found colon like bacteria on a field of rye in western Massachusetts.

Since colon organisms have been found in so many different places, even where animal contact was improbable, the question can be raised whether its presence can be taken as an accurate indication of pollution. If it has as wide
spread distribution as it seems to have, it is easy to imagine how it might gain access to a safe potable water. Prescott has indirectly proposed in one of his publications that this organism might originally have been a plant form, and finding the intestine of animals such a favorable abode, had taken up its habitation there.

In 1894 Kruse ${ }^{10}$ in a paper in which no experimental date is given, advised against the use of this organism, as an indication of pollution. He said that we were dealing with a group of bacteria and not a single organism. Since it was found in the air, water, and earth, he believed it could not be taken as a sufficient indication of pollution. 11
Beckman found Bacillus colon in the city supply of Strassburg. This water is taken fram deep wells. In his work, he used large quantities.

Maroni ${ }^{12}$ after examining some deep and shallow wells about Parma concluded that B. colon had no sanitary significance.

Weissenfeld ${ }^{13}$ Iike Kruse stated Bacillus colon could be found in all waters if large enough quantities were taken. During his work, he studied about thirty samples of a supposedly good water.

On the other hand, we have those who contend that no good water should contain Bacilli coli. Chick ${ }^{14}$ has this view. Savage ${ }^{2}$ states that sufficient evidence has not yet been produced to discard Bacillus colon as an indication of
pollution. Whe same statement has been made by Noore.

BACIILUS COLON IN DEEP WELLS

That we should find any indication of pollution in a ground water is queer, but since bacteria have such a wide distribution, it is possible. Many instances are given of contamination of under ground waters.

Horton ${ }^{15}$ in examining deep well and spring waters in Ohio often met with organisms resembling Bacillus colon. All shallow wells were excluded and only those wells which were cased, were considered. Bacillus colon was found twice at an interval of a month. The chemical data showed no pollution. Horton concluded that (1) Bacillus colon in ground water should condern them and (2) the fact that water may come from underground sources should not be a guarantee of its purity.

Nankivell ${ }^{16}$ points out that water from wells in chalk are liable to intermittent pollution and should be purified. Microörganisms may get into the water thru fissures and swallow holes from many miles distant, to infect an apparently pure water supply.

Thresh, in his book on water supplies, quotes many instances of finding Bacillus colon in deep well waters. He says, "There are few if any waters in which Bacillus colon cannot be found if a sufficient quantity is taken."

The following work was done on a series of nineteen tubular wells, constituting the supply for a city of about
eleven thousand inhabitants. The positive test for gas formation varied in the water, bat were usually present in 1 cc. samples. These wells vary from 80^{\prime} to 125^{\prime} in depth. They are all connected to the same pump suction so that it is impossible to secure a sample of water from any one well to see which one is furnishing the gas formers. Water is taken from the gravel deposits of a nearby river. page No. 16
The following table/shows both the chemical and bacterial analyses of the water from June 25, 1906 - May, 1914.

It shows a variation in quality which may be due to the intermittent entrance of another kind of water. The chlorine which is a valuable constituent by which to judge the quality of a water varies between 61 and 35 p.p.m. Similar variations can be seen in the residue, oxygen consumed and nitrogen content. The number of bacteria is not excessive, but the almost constant presence of gas formers is a bad indication.

These wells are located near a large river carrying a very highly polluted water. The drainage from the surrounding country is towards the river, since the land slopes gradually away from it. No observations had ever been made to determine the direction in which the ground water moved. The soil is of sand and gravel. There is no impervious stratum to protect the ground water from the surface water which might get in.

Since the soil is so sandy, we may assume that
there is more or less in filtration of surface water. We can hardly asswne that the same standard of purity would be secured here as would be the case with a sand filter. There would not be a proper rate of filtration nor a satisfactory arrangement of sand and gravel to secure the highest efficiency. Old wells, fissures and cess pools might allow polIuted water to get into the water bearing stratum with insufficient purification.

There is a possibility of some underground connections with the badly polluted river. The following table has been prepared to show the relation of the constituents of the river water, the city water and water from two wells and of about the same depth, located within a half a block of the city wells.

River	Oity Wells	Private Private
	Well	Well
	No.l	No. 2

Laboratory No.	27414	27416	27261	7262
Date	4/20/'14 4	4/20/'14	3/28/'14 3/2	/'14
Turbidity	50	0	2	0
Color	30	0	0	0
odor	2 c	1 V	1 e	1 e
Residue	332	498	357	617
Chlorine	13.6	42.	10	14
Oxygen Consumed	7.3	. 5	1.6	1.5
Nitrogen as Pree Ammonia	3.520	. 024	. 000	. 000
Alb. Ammonia	3.200	0.000	. 000	. 000
Nitrates	2. 64	. 000	. 004	. 000
Nitrites	. 030	-7.20	7.20	13.20
Alkelinity	154.0	274.	246.	264.
Bacteria per co. Agar	16.000	50	0	8
Gelatin	35,000	80	1	1
Gas Formation 10 cc.		1 +	1 -	1 -
1 ce.	1 +	2 -	2 -	$2-$
0.1 ce.	$2+$	2 -	2 -	2 -
. 01 ce.	$2+$			

$$
\therefore \quad 1 \quad 1
$$

. 11 . 1

1,1
111

1111.111111111
\qquad
111
11
1

The analytioal results show a decided difference between the river water and that taken from the wells. Pollution from this source is improbable, altho a small amount of river water might account for the variation in the city well water.

Gas forming bacteria have been present in 10 cc. samples of the water in over 90 per cent. of the analyses made. The I oc. samples are positive in nearly 50 per cent. of the serples analyzed. In the 0.1 cc. samples a much better showing is made with only 9 positive tests from 64. At six different times, gas formers were isolated and found to have oharacteristios agreeing with Bacillus colon. Very rarely were there any liquefying bacteria present, but flourescent colonies quite often appeared. Some of these proved to Bacillus flourescens Iiquifacieus and Bacillus flourescens non-liquefacieus, as inaicated below.

ISOLATION OF BACTERIA

The methods of isolation were those commonly used and recommended by the Society of merican Bacteriologists. The samples of water sent to the State Water Survey are packed in ice. Some of the samples which were studied were taken by representatives of the State Water Survey, by which meana, we hoped to eliminate the danger of contamination by having inexperienced men take the samples. When the sample was brought to the laboratory it was plated on litraus lactose agar, plain agar and plain gelatin. The red colonies devel-
oping on litmus lactose agar were picked off and purified by the usual methods.

Confirmatory tests were made according to the chart of the Society of Amerioan Bacteriologists. In addition, Fndo's medium and Russell's medium was used. Both of these speaial media gave reactions characteristic of Bacillus colon.

The following oharacterisitics were assumed to be typiaal of Bacillus colon:

Shape: Bacillus 2-3 microns X .5 micron.
Motility: Motile with flagella.
Spore: Negative.
Gram: Positive.
Gelatin colonies: Smail, thin colonies. No liquefaction.
Gelatin stab: Thin growth more vigorous at the surface.
Agar stab: Very scanty growth.
Agar stant: shick growth.
Iftmas milk: Acid and ooagulation after a few days.
Indol: Present after 3 axys at $37^{\circ} \mathrm{C}$.
Potato: Brown growth.
NItrate: Reduced.
Lactose: Fermented giving gas and acid.
Dextrose: Fermented giving gas and aoid.
Laccharose: Fermented giving usually gas and acid.
The ohart giving the characters of the gas former isolated from the deep wells, is attached. Characters were not always constant. The motility varied somewhat, but gas formation was constant. The organism from the deep wells
has charaaters identical with those of Bacillus colon. In this case the bacteriologiaal analysis is more delicate than the sanitary chemical.

Attermpt to Trace Source of Pollution.

Realizing that slight contamination was possible from these wells, aalt was used as a means of trying to determine the source of pollution.

Different methoda have been used to trace pollution of underground waters; ohief among these have been salt, lithium aalts, flourescein and bacterial suspensions such as Bacillus prodigiosus.

Salt has been used in many instances for such purposes. Maccollie ${ }^{17}$ used this method to demonstrate to the oitizens of Georgia the results which would be obtained, were a deep well used to dispose of sewage. It was found that a 124^{\prime} drilled well would carry away an unlimited supply of water and it was proposed to use this as a method of disposing of the sewage. A large amount of salt was put down the well and the chlorine oontent of the surrounding wella watched. The ohlorine increased in the wells and springs in the vicinity, showing that there was underground connection with each well and spring. This demonstrated What would have resulted, had the well been used to carry away the sewage.

$$
\text { Dole }{ }^{18} \text { in a paper on the use of flowrescein in }
$$ tracing water courses, comes to the following conclusions:

(1) In studying the sanitary character of a well, it is more valuable to study the underground flow than to analyze the water itself.
(2) Foreign substances put into an aquifer and traced from point to point, are of great value in this study.
(3) With the flourescope 1 pt . of flourescein in 10 billion pts. of water can be detected.
(4) Flourescein is a particularly valuable flow indicator for fissured and cavernized rooks.
(5) It progresses at a slightly slower rate than the water in which it is suapended.
(6) It is not decolorized by pessage thru sand, gravel manure; it is slightly decomposed by oalcareous soils.
(8) It is entirely decolorized by peety formations and by free acids except by arbonic acid. These conclusions give the limitations of this ohemical in tracing ground waters.
M. Trillat ${ }^{19}$ has used many colored substances to trace motion of underground waters and claims that flourescein can be detected in dilutions of $\frac{1}{2,000,000,000}$. He claims that before this dye is used in this capacity, a study of the soils should be made to determine the presence of any matters which might decompose the dye.

Marboutin, F^{20} gives an account of this dye when used to trace underground waters and comes to about the same conclusions that others have.

Martel ${ }^{21}$ shows that this aye even in very concen-
trated solutions decolorizes rather quickly when kept in the sunlight. When it is kept in complete darkness, which would be the aase in the earth, it did not change even after long periods of time.

Gehrmann ${ }^{22}$ reports aome work of Alba Orlandi and Roudelli, who used a suspension of Beollius prodigrosus. They found that this organism found its way thru soil two honared meters, when poured on the ground. In the same paper is quoted the work of Pfulil, who found that it took the same organism a short time to pass thru twenty-four feet of gravel. Gehrmann also reports an instance, coming under his own observation, where wells two to three hundred feet deep located too near an old canal were subject to entrance of contaminated water. No experimental data is given in this paper.

In the welis on which this work was done, it was thot best not to use flourescein on account of the possibility of coloring the water too much. Since these wells furnish the only supply for a city of 9897 inhabitants, and since it is difficult to remove this chemical effectively under ordinary conditions, salt was used in an attempt to see if there was any seepage from the surface.

One ton of fine salt was evenly divided between eleven privy vaults. This was placed in them on the same afternoon, the chlorine content of the water having been previously determined. The plot showing the location of these privys with respect to the water works is given.

When this experiment was sterted the chlorine content was 42 pts. per mil. From the table it will be seen that this changed soarcely at all.

Date		From	To	CC	P.P.M.	Remarks.
March	16	22.5	26.7	4.2	42	No salt.
"	17	22.5	26.9	4.4	44	Salt added.
*	17	21.	25.3	4.3	43	
"	18	21.6	26.	4.4	44	
*	18	22.	26.5	4.5	45	
"	19	21.	25.3	4.3	43	
*	19	21.7	26.1	4.4	44	10 gals. water add-
"	20	21.6	26.1	4.5	45	ed to all vaults.
"	20	21.8	26.2	4.4	44	
"	21	22.8	27.2	4.4	44	
*	21	21.5	26.	4.5	45	
*	23	18.5	22.8	4.3	43	
"	23	20.5	24.8	4.3	43	
*	24	19.	23.4	4.4	44	
"	24	19.	23.3	4.3	43	
"	25	22.	26.2	4.2	42	
n	25	22.5	26.8	4.3	43	
"	26	20.5	24.7	4.2	42	
"	26	20.	24.2	4.2	42	
"	27	21.	25.2	4.2	42	
*	27	24.5	28.8	4.3	43	$3 / 26$
*	28	21.5	25.8	4.3	43	
*	28	20.5	24.7	4.2	42	
"	30	21.5	25.8	4.3	43	Heavy rain night of
"	30	21.	25.2	4.2	42	$3 / 29$
"	31	20.5	24.7	4.2	42	
H	31	20.5	24.7	4.2	42	
April	1	20.5	24.7	4.2	42	Heavy rain night of
	2	21.	25.2	4.2	42	$3 / 31$
"	3	21.	25.2	4.2	42	
"	4	22.5	26.8	4.3	43	
"	6	21.5	25.8	4.3	43	All day rain from
"	7	22.	26.2	4.2	42	6:00 A.M.
"	8	22.	26.2	4.2	42	
"	9	21.5	25.7	4.2	42	
"	10	23.	27.2	4.2	42	
"	11	22.	26.3	4.3	43	
"	13	23.	27.2	4.2	42	
"	14	22.	26.2	4.2	42	
"	15	20.	24.2	4.2	42	
"	16	20.5	24.6	4.1	41	
"	17	22.5	26.6	4.1	41	
"	18	22.5	26.6	4.1	41	Pumped for fire $2 \mathrm{hrs}$.
*	20	22.5	26.5	4.	40	sample taken 45 min
W	23	22.	26.1	4.1	41	after fire out.
"	25	20	24.1	4.1	41	

Since there was no increase in the chlorine content, it is quite apparent that there is no direct connection with pollution from surface sources.

PART II.

Surface Waters.

At one of the large filtration plants on the Mississippi river two kinds of bacteria have been troublesome.

Brief Description of Filter Plant. The plant is of the rapid sand type furnishing about $4,000,000$ gallons of water per day. The water is taken from the Misaissippi river and has a normal chemicel content for that water. The raw water is coagulated with alum, filtered and disinfected with calcium hypoohlorite.

On the plates made from the sterilized water, large liquifiers were quite numerous. On the raw water these colonies were also present, but aince a higher dilution was used, they were not so numerous.

Plates of the treated water have at times contained thousands of amall colonies. These have made their appearance periodically. They are described later by chart.

A few of the monthly analyses and the average reduction in bacteria are shown in the following table:

DATE	R A	W	ST	ILIZED	GENTMRAL	ERFIUENTT
1913	Ager	Gelatin	Agar	Gelatin	Agar	Gelatin
Jen.	770	2600	10	85	6	116
Feb.	740	2200	47	60	12	340
March 3	70	5500	20	7000	5	17
Maroh 23	680	82000	162	1240	6	7
April 11	530	6500	90	155	0	0
May 3	340	2600	43	760	6	440
May 12	1700	3800	35	36	3	25
July 1	233	50000	800	7400	9700	3000
July 14	1200	1200	33	65	34	89
Aug.	1500	6900	250	220	97	96
Sept.	1250	3000	114	300	210	60
Oot.	310	7600	76	260	45	80
Dec. 3	1600	5100	325	550	70	63
$\begin{gathered} \text { Dec. } 30 \\ 1914 \end{gathered}$	86	430	36	35	1	2
Jan.	320	3600	43	52	4	10
Feb.	130	640	55	110	2	2

These analyses show the effect of treatment on the bacteria content. The presence of large liquefiers often made counting difficult. This mas often the case before the plates had been incubated fifteen hours. After isolating them from several different samples, they were found to be Bacillus flourescens liquefacieus. This organism is present in most waters, both those on the surface and those from the ground.

It was noticed here as in other cases that where liquefiers were present on gelation that the agar colonies would spread making accurate counting difficult.

Just how these bacteria get into the treated water is difficult to say. Apparentiy, all are not killed by hypoohlorite. They may develop in some way in a part of the plant after the water has been filtered.

The following table gives results which were obtained by treating the strain with hypochlorite. The counts were made from agar incubated at $37^{\circ} \mathrm{C}$.

Available Chlorine $(\mathrm{pts.per} \mathrm{mil})$	Untreated	Ireated
.0	121	118
.1	170	170
.2	98	105
.4	120	116
.6	230	225
.8	60	75
1.0	200	190
1.2	175	100
1.4	150	130

The resulte show that this strain is not affected by aaloium hypoohlorite. Filtration does not entirely remove them for they are found in the sterilized water and in the general effluent. They have no sanitary significance and so can be looked on merely as peouliarities of this water.

On the same water there developes at times thousands of minute colonies. These grow slowly at $20^{\circ} \mathrm{C}$ on gelatin. When these appeared on the gelatin plates oolonies were taken off and put on agar slants. After the oulture was purified, the characteristics were determined on the standard media. The attached chart shows them. This organism is not a gas form and so is not a member of the colon group. According to IIigula's classification it has the characteristios of Miorococcus candicans.

DETAILED FEATURES．

NOTE－Underscore required terms．Observe notes

 and glossary of terms on opposite side of card．1．MORPHOLOGY ${ }^{(2)}$ Vegative Cells，Medium used．A．g．ant．． temp．．．3．7．．．．as age． 2 ． 4 HRears long chains，flaments，commas，short spirals，
long spirals，clostridium，cuneate，clavate， Limits of size．／ $14 . X .8 .8 \mu$
Slze of Majority．．．．．．．．．．concave

$\underset{\text { Aging－Block }}{\text { Agar }}$

Orientation（grouping）
， $\begin{aligned} & \text { Orientation of Chains，parallel．} \\ & \text { irregular．}\end{aligned}$
Form，elipiptical，short rods，spindted，clavate， Limits of Size．
．．．．．．．．Size of Majority
（Orlentation（grouping）．
Agar $\quad\left\{\begin{array}{l}\text { Chains（No．of elements）}\end{array}\right.$
Aanglig－Bleck
Orientation of Chains，paraliel，
Location of Endospores，central，polar
Form，round，elliptical，elongated．
Limits of Size．．
Wall，of Mick，thin．
Sporangium wall，adherent，not adherent
Germination，equatorial，oblique，polar，bipolar， 4．Flagella No．．．．．．．Attachment polar，bipolar，per－ itrichiate．How Stained．

8．Involution Forms，on．．．．．．．．．．in．．．days at．．．${ }^{\circ} \mathrm{C}$ ． $1: 10$ Watery fuchsin，gentian violet，carbol fuchsin． Spectier Stains alk
aram． Glycogen

Neisser．
11．CULTURAL FEATURES（a）
1．Agar Stroke．
Growth，invisible，acanty，modergte abundant， Form of growth，fliform，echinulate，beaded，
spreading，plumos，aroorescent，rhizoid．
Elevation of growth，fat，effuse，raised，convea．
Lustre，glistening，dull，retaccous， Lustre，glistening dull，cretaccous Topography，smooth，contourel．rupose，verrucose．
Optical Characters，
opaque．
translucent，opal－ Chroment，iridescent．
Odor，absent，decided，resembling．．．．．．．．．．．．．．．．．．．．
Consistency，slimy，butyrous，viscid．member coriaceous brit tle．
Melium grayed，browned，reddened，blued，greened．
2．Potato．scanty，moderate abundant transient persistent． Elevation of prowth，fat，effuse，caised convex． Instre，plistening，dull，cretaceous． Chromogenesis（8）．．．．．．．．．．．．Pigment in water insoluble，soluble；other solvents．
Odor，absent，decided，resembling， $\begin{gathered}\text { ans．．．．．．．．．．．．．．．．．．} \\ \text { Consistency，slimy，butyrous，viscid，membranous }\end{gathered}$ coriaceous，brittle．butyrous，
cedium graved．orowned reddened，blued Medium grayed，browned．reddened，blued，greened． Stroke invisible，scanty，moderate，abundant．
Form of growth，Aliform，echinulate，beaded． spreading，plumose，arborescent，rhizoid． Elevation of growth，fat，efiuse，raised，convex． Topography，smooth，contoured，rugose，verrucose． Chromogenesis（ M
，olued，greened Liquefaction begins in．．．．．d，complete in．．．．．．．d．
Agar Stab． Growth uniform，best at ton best at bottom；sur－
face growth scanty，abundant；restricted，wide－ Lipe of puncture $\frac{\text { fliform }}{\text { beaded，papillate，}} \begin{aligned} & \text { vil } \\ & \text { lous，plumose，aroorescent：liquefaction．}\end{aligned}$

5．Gelatin Stab．
 Liquetasction，crateriform，nopiform，infundibuli－ form，saccate，stratiform；begins in．．．．．．．．．．d． complete in．．．．．．．．．．．．．．
6．Medium Auorescent browned
Nurface
Srowth，
branous，none， Cloudings，none，moderate，strong：transient， persistent，none，
Odor，absent，decided，resembling．

Sedimeut，compact，flocculent，granul，
viscid on agitation，abundant，
Milk．
Milk， $\begin{aligned} & \text { Cleaing without coagulation．} \\ & \text { Coagulation }\end{aligned}$
Coagulation
Extrusion of whey begins in．．．．．．．．days，
Coagulum
slowly peptonized，
rapidly peptonized．
Peptonization begins on．．．．．d，complete on．．．．．．d Reaction，1d．．．in 2d．2．34d．．．．．10d．．．．．20d．．．． Consistency，slimy，viscid，unchanged．
Lab ferment，present，absent．
Acid alkaline acid then alkaline，no change．
Prompt reduction no reduction．partial slow
Guction．
Grintin Colonles．
Growth，slow，ranid
Growth，slow ranid．round，irregular，ameboid mycelioid，flamentous，rhizoid． crateriform（liquefying）iobate，erose，lacerate，
Edge，eutire undulate，
limbrate， Edge $\begin{aligned} & \text { eutire，undulate，lobate，erose，} \\ & \text { pimbrate，} \\ & \text { Nlamentous，foccose，curled } \\ & \text { Liquefaction，cup，saucer，spreading．}\end{aligned}$
10．Agar Colonies． Gorm，punctiform，round，irregular，ameboid mycelioid，flamentous，rhizoid，
Surface smoath，rough，concentrically ringed，radi－ ate，siriate．
Elevation，fiat，efuse，raised，convex．pulvinate．
umbonate Edge，entire，undulate，lobate，erose，lacerate Inimbriate，foccose，curled． granular，grumose，filamentous，foccose，curled
11．Growth，scanty，copious．
Giastasic action，absent，feeble，profound．
Sedium stalned（Fermis．Soliution）．
Growth copious，scanty，absent．
Medium stained．．．．．．．．．．．．．．．．．．
13．Cohn＇s Solution．
Growth，copious，scanty，absent．
Medium fluorescent，non－fluorescent．
Medium Auorescent，non－tuoreschinsky＇s Solutiou．
Growth copious，scanty，absent
Fluid viscid，nd in Bouillon．
16．Per cent inhibiting growth．．．．．．．．．．．．．．．．．．．．．．．unre
Strained，febtained from peptone，asparagin
18．Best media for long－continued growth．．
19．Quick tests for differeatial purposes．
III．PHYSICAL AND BIOCHEMICAL FEATURES

2．Ammonia production，feeble，moderate，strong．
3．Nabsent，maskea by acids．
Redute in nitrate brota
Presen，not reduced．

nitrates．

Presence of nitrites．．．．．．．．．ammonia．．．．．．．．．．．．．．．．．
Indol production，feeble，moderate strong
5．Toleration of Aclds：Great，medium，slight． Acids tested．
．Toleration of NaOH ：Great，medium，slight．
7．Optimum reaction for growth in bouillon stated in terms of Fuller＇s scale．．．．．．．．．．．．．．．
8．Vitality on culture media：brief，moderate，long．
Temperature relations
Thermal death－point（ 10 minutes exposure in nutrient broth when this is adapted to growth o organism）．．．C
Optimum temperature for growth．．．．．．．．．C．：or best growth at $15^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}$ 37° C． 40° ， 500 C ， $60 \circ$ Maximum temperature for growth．．．．．．．．．C． Minimum temperature for growth．．．．．．．．．．．．
10．Killed readily by drying：resistant to crushed ice or liquid air）
12．Sunlight：Exposure on ice in thinly sown aga plates：one－half plate covered（time 15 min utes），sensitive，not sensitive．
Per cent killed
13．Acids produced
14．Alkalles produced
15．Alcohols ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Ferments；pepsin，trypsin，diastasertase pectase，cytase，tyrosinase，oxidase，peroxidase lipase，catalase，glucase，galactase，lab，etc．．．
17．Crystals formed：
18．Efect of germicides

Substance
Method used

V．PATHOGENICITY
1．Pathogenic to Animals
Insects，crustaceans，fishes，reptiles，birds，mice，rats， guinea pigs，rabbits，dogs，cats，sheep，goats cattle，horses，monkeys，man．．．．．．．．．．．．．．．．．．．
2．Pathogenic to Plants ：

3．Toxins，soluble，endotoxins，
4．Non－toxin forming
4．Non－toxin forming．
5．Immunity bactericidal．
7．Loss of virulence on culture media：prompt gradual，not observed in

BRIEF CHARACTERIZATION Mark＋or O，and when two terms occur on a line erase the one which

Chains，filaments	
Endospores	
Capsules	
Zoogloea，Pseudozoogloe	
Motile	
Involution forms	
Gram＇s Stain	
苟	Cloudy，turpid
	Ring
	Pellicle
	Sediment
$\begin{aligned} & > \\ & \text { 留 } \end{aligned}$	Shining
	Dull
	Wrinkled
	Chromogenic
	Round
	Proteus－like
	Rhizoid
	Filamentous
	Curled
E	Surface－growth
	Needle－growth
$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	Moderate，
	Abundant
	Discolored
	Starch destroyed

Grows at $37^{\circ} \mathrm{C}$
Grows，in Cohn＇s Sol． Grows in Uschinsky＇s Sol

Gelatin（4）

Blood－serum
Casein
Agar，mannan Acid curd Rennet curd Casein peptozized Indoli（5） Hydrogen sulphide Ammonia（5） Nitrates reduced（5） Fluorescent Luminous
Animal pathogen，epizoon
Plant pathogen，epiphyte
Soil
Milk
Fresh water
Salt water

Sewage

Iron bacterium
Sulphur bacterium

DESCRIPTIVE CHART-SOCIETY OF AMERICAN BACTERIOLOGISTS

Prepared by F. D. CHESTER
F P. GORHAM
ERWIN F. SMITH

Endorsed by the Society for general use at the annual Meeting, Dec. 31, 1907.

glossary of terms.

AGAR HANGING block. a small block of nutrent agar cut from a poured plate, and placed on a cover-glass, the surface next the glass having been first touched with a loas from a young fuid culture or with a dilution from the same It is examined upside down, the same as a hanging drop.
AMEBOID. assuming various shapes like an ameba.
AMORPHOUS. without wisible differentiation in structure.
Al:BORESCENT, a brancled, tree-like growth.
BliadED. in stab or stroke. disjointed or semi-conEuent colonies along the line of incculation.
brief. a tew days, a week.
BRITTLE. growth dry, friable under the platinum needle.
bulLate, growth rising in convex prominences, like a blistered surface.
BCTYROUS, prowth of a butter-like consistency.
chans.
Short chains, composed of 2 to 8 elements.
Long chalns. composed of more than 8 elements.
ciliate. having fine, hafr-like extensions like clila.
CLOLDY. said of fuid cultures which do not contain pseudozoogloeae.
coagclation, the separation of casein from whey in milk This may take place quickly or slowly, and as the result either of the formation of an acid or of a lab ferment.
CONTOLRED, an irregular, smoothly undulating surface. like that of a rellef map.
CONEEX, surface the segment of a circle, but flattened.
COPROPHYL dung bactería.
CORIACEOCS, growth tough. leathery, not vielding to the platinum peedle.
CRATERIFORM. round. depressed, due to the liquefation of the mediun.
CRETACEOCS, growth opaque and white. chalky.
CrRled, composed of parallel chains in wavy strands, as in anthrax colonies.
DIASTASIC ACTION, Same as DIASTATIC, conversion of starch into water-soluble substances by diastase.
echinctate, in agar stroke a growth along line of inoculation. with toothed or pointed margins: in stab cultures growth besiet with pointed outcrowths,
EFFT'SE, growth thin, veily, unusually spreading.
ENTIRE, smooth. having a margin destitute of teeth or notches. EROSE. border irregularly toothed.
FILAMENTOES, growth composed of long. irregularly placed or interwoven filsments.
FILIFORM, in stroke or stab cultures a unfform growth along line of inoculation.
FIMBRIATE, border fringed with slender processes, larger than Giaments.
FLOCCOSE. growth composed of short curved chains. pariously oriented.
OCCCLENT
FLOCCCLEAT, sald of fuids which contain pseudozcogloeac. 1. e.. small adherent masses of bacteria of various shapes and floating in the culture fluid.
FLCORESCETT. having one color by transmitted light and another by reflected limht.
M'S STAIN, a method of di
GRabr's STAIN. a method of durerential bleaching after gentian violet, methyl violet. etc. The + mark is to be given only when the bacteria are deep blue or remain blue after counterstaining with Bismark brown.
grimose cloted.
INFCNDIBULIFORM. form of a funnel or inverted cone.
iRIDESCENT, like mother-of-pearl. The effect of very thin alms. LaCERATE, having the margin cut into frregular segments as if torn.
IOBATE, border deeply undulate. produclog lobes (see undulate.) LONG. many weeks, or months.

MAXIMUM TEMPERATURE, temperature above which growth does not take place.
MEDICM, several weeks.
MEMBRANOUS, growth thin. coberent. like a membrane.
MINIMUM TEMPERATURE, temperature below which growth does not take place.
MYCELIOID, colonies having the radiately flamentous appearance of mold colonies.
NAPIFORM, liquefaction with the form of a turnip.
NITROGEN REQUIREMENTS, the necessary nitrcgenous focd. This is determined by adding to nitrogen-free media the nitrogen compound to be tested.
OPALESCENT, resembling the color of an opal.
OPTIMUM TEMPERATURE, temperature at which Rrowth is most rapid.
PELLICLE. in fluid bacterial growth either forming a continuous or an interrupted sheet over the fluid.
PEPTONIZED, said of curds dissolped by trgpsin.
PERSISTENT, many weeks, or months.
PLCMOSE. a fleecy or feathery growth
PSELDOZOOGLOEAE, clumps of bacteria, not dissolving readly in water, arising from imperfect separation, or more or less fusion of the components. but not having the degree or compactness and gelatinization seen in zoogloeae.
pulvinate, in the form of a cushion. decidedly convex.
PCNCTIFORM, very minute colonies, at the limit of natural vision.
RAISED. growth thick, with abrupt or terraced edges.
RHIZOID, growth of an irreqular branched or root-like character.
as in B, mycoides.
RING. Same as RIM, growth at the upper margin of a liquid culture, adhering more or less closely to the glass.
REPAND. wrinkled.
RAPID. Developing in 24 to 48 hours.
SACCATE. liquefaction the shape of an elongated sack, tubular. cylindrical.
SCUM. foating islands of bacteria, an interrupted pellicle or bacterial membrane
SLOW, requiring 5 or 6 days or more for development.
SHORT. applled to time, a few days, a week.
SPORANGIA. cells containing endospores
SPREADING. growth extending much beyond the line of inoculation, i. e., several millimeters or more.
STRATIFORM, liquefying to the walls of the tube at the top and then proceeding downwards horizontally.
THERMAL DEATH-POINT, the degree of heat required to roung lluid cultures of an organism exposed for 10 minut (in th-alled test tubes of a diameter not exceeding 20 m in the thermal water-hath The water must be tept aitatel so that the temprature shall be unform durin agitated so that the temperature shall be uniform durine a NSIENT a few
TURBID. cloudy with flocculent particles: cloudy plus floceulence.
LMBONATE. having a button-like, raised center,
UNDULATE. border wavy. With shallow sinuses.
VERRC'COSE. growth wart-like. with wart-like prominences.
VERMIFORM-CONTOURED, growth like a mass of worms. or intestinal colls.
VILLOUS. growth beset with hair-like extensions.
VISCID, growth follows the needle when touched and withdrawn. sediment on shaking rises as a coherent swirl.
ZOOGLOEAE, frm gelatinous masses of bacteria, one of the most typical examples of which is the streptococcus mesenteroides of sugar vats (Leuconostoc mesenterioides). the bac-
terial chains being surrounded by an enormously thickened firm covering, inslde of which there mas be one or many groups of the bacteria.

NOTES

(1) For decimal system of group numbers see Table 1. Thls Fill be found useful as a auick method uf showing close rela-
tionships inside the genus, but is not a suffictent characterization of any organism.
(2) The morphological characters shall be determined and (nutrient agar) growths obtained upon at least one solid medium (nutrient agar) and in at least one liquid nedium (nutrient to 48 hours, and growths at $20^{\circ} \mathrm{C}$ not older than 48 to 72 hours. To secure uniformity in cultures. in all cases preliminary cuitira-
tion shall be practiced as described in the revised Report of the
Committee on Standard Metbods of the Laboratory Section of the Committee on Standard Methods of the Labo
American Public Health Association, 1905 .
(3) The observation of cultural and blo-chemical features shall cover a period of at least 15 dars and frequently longer, and shall be made according to the revised stamdard Methods above referred to. All media shall be made according to the same ndard Methods
 (5) quefaction.
(5) Ammonia and indol tests sha (6) Titrate with N NaOH us
dicator: make titrations at seme times from blank. The difference gives the amount of acid produced.
The titration should be done after boiling to drive ofl any Co 2 present in the culture.
(7) Generic nomenclature shall begin with the year 1872 (Cobn's first important paper).
(Koch's discovery of the poured plate method for the separation of organisma).
(8) Chromogensis shall be recorded in standard color terms. TABLE 1.
A NUMERICAL SYSTEM OF RECORDING THE SALIENT CHARACTERS OF AN ORGANISM. (GROUP NUMBER.)
$\begin{aligned} 100 . & \text { Endospores produced } \\ 200 . & \text { Endospores pot produced }\end{aligned}$
Aerobic (Strict)
Facultative anaerobic
Anaerobic (Strict)
Gelatin Hqueged
Gelatin not liquefied
Acid and gas from dextroge
Acid withust gas from dextrose
No acid from dextrose
No trowth with dextrose
Acid without gas from dextrose
No acid from dextrose
No growth with dextrose
Acid and gas from lactose
Acid without gas from luctose
No acid from lactose
No growth with lactuse
Acid and gas from saceharose
Acid without gas from saccharoee
No acid from gas from sachase
Nitrates reduced with evolution of alas
Nitrates not reduced
Nitrates reduced without gata formation
Finorescent
Fiuorescent
Vivetet chromogens
Blue
Green
Yellow
Yellow
Orange
Red
Brown
Non-chromorenle
Dlastasic action on potato starch, strone,
Diastasic action on potato starch, feeble
Acid and gas from plycerine
Acid without gas from gly
No acid from glycerine
No growth with glycerine

The senus according to the arstem of Misula given its proper symbol which precedes the number thus: (7) BaCILLUS COLI (Esch.) Mig. becomes B. 222.111102 Bacillus alcaligenes Petr. \quad " \quad B. 212.333102

DETAILED FEATURES.

NOTE-Underscore required terms. Observe notes and glossary of terms on opposite side of card

1. MORPHOLOGY (2) Formp, round, short rods, long rods, short chains long chains, Alaments, commas, short spirals,
long spirals, clostridium, cuneate, clavate, curved. size.../.M.
Size of Majority
incate...concave

2. Sporangla, medium used.
age.....eilipt....days
Form,
drumsticks short rods, spindled, clavate, Limits of Size......... Size of Majority
Agar Orientation (grouping).
Hanging-Blect
Location of Endospores. central, polar
Frorm, round, elliptical, elongated.
Limits of size.
Size of Majority,
Sporangium wall, adherent, not adherent.
Germination, equatorial, oblique, polar, bipolar
3. Flagella No.......Attachment polan, bipolar, per itrichiate. How Stained.
4. Capsules, present on.....
5. Zoogloea, Pseudozoogioea.
6. Involution Forms, on..........in... days at... ${ }^{\circ} \mathrm{C}$. 1:10 Watery fuchsin, gentian violet, carbol fuchsin
Loeffer's alkaline methylene blue. Special Stains

Fat.... Glycogen

Neisser.
II. CULTURAL FEATURES (3)

1. Agar Stroke.

Growth, invisible, sanatu moderate, abundant,
Form of growth, flifown, echinulate, beaded, spreading, plumose, arborescent, rhizoid.
Eleaded,
glevion of
growth, flat, effuse, raised, convea. Lustre, glistening, dull, cretaccous.
Topography, smooth, contoured, rugose, verrucose
Optical Chas racters, opaque, translucent, opal Chromoge iridescent
 coriaceous brititie. Medium grayed, browned, reddened, blued, greened. Potato.
Growth, scanty moderate, abundant, transient persistent. slevation of plumose, arborescent, fhizoid. Lustre, glistening, dull cretaceous.
Topography, smooth, contoured, rugose, verrucose, Chromogenesls (8) Yer.1/8.W Pigment in water insoluble, soluble; other solvents
Odor, absent, decided, resembling.
Consistency, slimy, butyrous, viscid, membranous coriaceous, brittle.
Medium grayed, browned, reddened, blued, greened Strive invisible, scanty, moderate, abundant
Form of growth, fliform, echinulate, beaded Form of growth, Aliform, echinulate, beaded
spreading plumose, arborescent, rhizoid, Elevation of growth, flat, effuse, raised, conves. Llevatre, glistening, dull, cretaceous.

Chromogenesis (8).. Medium grayed, brownea, reddened, blucd, greened Aquefaction begins in......d. complete in....... Agar Stab,
Growth uniform, best at top best at bottom; sur
face growth scanty, abundant; restricted, wide Line of puncture filiform, leaded, papillate, vil

Date of Isolation

Gelatin Stab.
Growth uniform, best at top, best at bottom.
Line of puncture. aliforin, beaded, papillate, vil Line of puncture, Aliform, beadea. papiluate,
lous, plumose, arboreseent
Liquefaction, crateriform, napiform, infundibuli Liquefaction, crateriform, napiform, infundibuli orm, saccate, stratiform; begins in.
complete in................
Mutium Auorescent, brown
6. Nudium Aluorescent, browned...

Surface growth, ring, pellicle, flocculent, mem-
branous, none Clouding shight, moderate, strong; transient persistent, none; fluid turbid.
odor, ahsent, decided, resembling.
Odor, ahsent, decided, resembling.....................
Sediment, compact. flocculent, granular,
Miscid on $\frac{\text { compact, focculent, granuiat, }}{\text { agitation, abundant, scont, }}$
Clearing without coagulation
Coaguation prompt, delayed, absent.
Extrusion of Whey begins in..........days.
Coagulum slowly peptonized, rapidiy peptonized. Peptonization begins on.....d, complete on.....d
 Consistency, slimy, viscid, unchanged. Lab ferment. present, absent.

- Litmus Mikaline, acid then alkaline, no change

Acid, alkaline, acid then alkaline, no chanqe.
Prompt reduction, no reduction, partial slow
Gelatia Colonles.
Growth, $\frac{\text { slow rapid. }}{\text { punctiform, }}$, irnd, irregular, ameboid,

Elevation, flat, effuse, raised, convex, pulvinate,
crateriform (liquefying)
Edge, eutice, undulate, lobate, erose, lacerate,
Liquefaction, cup, saucer, spreading.
10. Agar Colonies.

Growth, slow, rapid, temperature...................
Surface smooth, rough, concentrically ringed, radi-
ate, striate.
Elevation, flat, effuse, raised, convex. pulvinate,
Edge, entire, undulate, lobate, erose, lacerate,
fimbriate, floccose, curled.
Internal structure, amorphous, finely-, coarsely.
aranular, orumose, filamentous, floccose, curled.
11. Starch Jelly.

Growth, scanty, copious,
Medium stained..............ion
Growth copious, scanty, absent.
Medium stained.
Growth, copious, scanty, absent.
Uschiasky's Solution.
Growth copious, scanty, absent.
Fluid viscid, not viscia.
15. Sodium Chloride in Bouillon.
16. Ger cent inhibiting growth.... Bouilon ororm, unre-
17. Nitragen. obtaine fecble, absent. prom peptone, asparagin,
18. Best media for long-continued growth...
19. Quick tests for differential purposes
III. PHYSICAL AND BIOCHEMICAL FEATURES.

2. Ammonia production, feeble, moderate, etrong. absent, masked by acids.
. Nitrate in nitrate broth,
Reduced, not reduced.
Presence of nitrites.
nitrates. ammonia.
4. Indol production, feeble, moderate, strong
5. Toleration of Acids: Great, medium, slight.

Acids tested.
6. Toleration of NaOH : Great, medium, slight.
7. Optimum reaction for growth in boullon, stated in terms of Fuller's scale
8. Vitality on culture media: brief, moderate, long
9. Temperature relations:

Thermal death-point (10 minutes exposure in nutrient broth when this is adapted to growth of organism).............

Optimum temperature for growth........C. : or Optimum temperature for growth............ or
best growth at 150°
$\mathrm{C}, 20^{\circ}$
$\mathrm{C}, 25^{\circ}$
C,
30° best growth at $15^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$.
Maximum temperature for growth.
... C .
Minimum temperature for growth...........C
10. Killed readily by drying: resistant to drying.
11. Per cent killed by freezing (salt and crushed ice or liquid air)...................
12. Sunlight: Exposure on ice in thinly sown agar plates: one-half plate covered (time $15 \mathrm{~min}-$ utes), sensitive, not sensitive
Per cent killed.
13. Acids produced
14. Alkalles produced
15. Alcohols
; pepsin. drypsin, diastase, invertase, Tipare, catalase, glucase, galactase, lab, etc.....
7. Crystals formed
18. Effect of germicides

IV. PATHOGENICITY.

Pathogenic to Animal

Insects, crustaceans, fishes, reptiles, birds, mice, rats, guinea pigs, rabbits, dogs, cats, sheep, goats, attle, horses, monkeys, man
2. Pathogenic to Plants
3. Toxins, soluble, endotoxins,
4. Non-toxin forming.
5. Immunity bactericidal
6. Immunity non-bactericidal.
7. Loss of virulence on culture media: prompt, gradual, not observed inmonths.

BRIEF CHARACTERIZATION Mark + or O, and when two terms does not apply unless the one which

Diameter over 1μ
Chains, filaments

Endospores
Capsules
Zoogloea, Pseudozoogloea
Motile
Involution forms
Gram's Stain
Cloudy, turpid
Pellicle
Sediment
Shining
Wrinkled
Chromogenic
Round
Rhizoid
Filamentous
Curled Surface-growth Moderate, absent
Abundant Discolored Starch destroyed Grows at $37^{\circ} \mathrm{C}$.
Grows, in Cohn's Sol.
Grows in Uschinsky's Sol.
Gelatin (4)
Blood-serum
Casein
Agar, mannan
Acid curd
Rennet curd Casein peptozized Indol (5)
Hydrogen sulphide
Ammonia (5)
Nitrates reduced (5)
Fluorescent
Luminous
Animal pathogen, epizoon
Plant pathogen, epiphyte Soil
Milk
Fresh water Salt water Sewage
Iron bacterium
Sulphur bacterium

DESCRIPTIVE CHART-SOCIETY OF AMERICAN BACTERIOLOGISTS

Prepared by F. D. CHESTER
$\left.\begin{array}{l}\text { F P. GORHAM } \\ \text { ERWIN F. SMITH }\end{array}\right\}$
Endorsed by the Society for general use at the annual meeting. Dec. 31, 1907.

GLOSSARY OF TERMS

AGAR HANGING BLOCK, a small block of nutrlent agar cut from a poured plate, and placed on a cover-glass, the surface next the glass having been first touched with a loop from a young fluid culture or with a dilution from the same
AMEBOID. assuming various shapes like an ameba.
AMORPHOUS. Without visible differentiation in structure.
Al:BORESCENT, a branched, tree-like growth.
BLADED. In stab or stroke, disjointed or semi-confuent colonies alogg the line of inoculation.
BRIEF, a few dass, a week.
BRITTLE, growth dry. frlable under the platinum needle
BLLLATE. growth rising in convex prominences, like a blistered surface.
BITTYROCSS, growth of a butter-like consistency.
CHAINS.
Short chains, composed of 2 to 8 elements.
Long chains, composed of more than 8 elements
CILIATE, having fine. hair-like extensions like cilia.
CLOEDY. said of fuid cultures which do not contaln pseudozoozloeae.
COAGCLATION, the separation of casein from whey in milk. This may take place quickly or slowly, and as the result either of the formation of an acld or of a lab ferment.
CONTOLRED, an irregular, smoothly undulating surface. Itse thet of a relief map.
CONVEX. surface the segment of a circle, but flattened.
COPROPHYL, dung bacteria.
CORIACEOUS, growth tough, leathery, not gielding to the platinum needle.
CRATERIFORM, round. depressed, due to the liquefaction of the medium.
CRETACEOCS, growth opaque and white, chalsy.
CT'RLED, composed of parallel chains in wavy strauls. as in anthrax colonies.
DIASTASIC ACTION, Same as DIASTATIC, conversion of starch into water-soluble substances by diastase.
ECHINLLATE, in agar stroke a growth alcng line of incoulation. With toothed or pointed margins : in stub cultures growth beset with pointed outgrowths.
EFFCVSE, RTowth thin, veliy. unusually spreading.
ENTIRE. smooth. haviag a margin destitute of teeth or notches. EROSE. border irregularly toothed.
FILAMENTOLS, growth composed of long. frregularly placed or interwoven filaments.
FILIFORM, in stroke or stab cultures a uniform growth along line of inoculation.
FIMBRIATE, border fringed with slender processes, larger than filaments.
FLOCCOSE, growth composed of short curved chains, variously oriented.
FIOCCELENT, sald of fluids which contain pseudozcorloeac. 1. e.. small adherent masses of bacteria of varlous shapes and floating in the culture fluid.
FLICORESCEST, having one color by transmitted light and another by reflected light
GRAM'S STAIN. a method of differential bleaching after gentian violet, methyl violet, etc. The + mark is to be given only when the bacteria are deed blue or remain blue after RTMOSE clotted.
INFUNDIBULIFORM, form of a funnel or inverted cone
IRIDESCENT. Ilke mother-of-pearl. The effect of very thin fims. ACERATE. bavigg the margin cut into irregular segments as If torn.
LOBATE, border deeply undulate, producing lobes (see undulate.) LONG, many weeks, of months.

MAXIMUM TEMPERATURE, temperature above which growth does not take place
MEDICM. several weeks.
MEMBRANOUS. growth thin, coherent, like a membrane.
MINIMUM TEMPERATURE, temperature below which growth does not take place.
MYCELIOID, colonies having the radiately filamentous appearance of mold colonies.
NAPIFORM, liquefaction with the form of a turnid.
NITROGEN REQUIREMENTS, the necessary nitrcgenous focd. This is determined by adding to nitrogen-free media the nitrogen compound to be tested.
OPALESCENT, resembling the color of an opal
OPTIMUM TEMPERATURE, temperature at which growth is most rapid.
PELLICLE, in fuid bacterial growth either forming a continuous or an interrupted sheet over the fluid.
PEPTONIZED, sald of curds dissolved by trypsin.
PERSISTENT, many weeks, or months.
PLCMOSE, a fleecy or feathery growth.
PSELDOZOOGLOEAE, clumps of bacteria, not dissolvine readily in water. arising from imperfect separation. or more or less fusion of the components, but not haviag the dearee of compactness and gelatinization seen in zoogloeae.
PULVINATE, in the form of a cushion. decidedly convex.
PI'NCTIFORM, very minute colonies, at the limit of natural vision.
RAISED, growth thick, with abrupt or terraced edges.
RHIZOID, growth of an irregular branched or root-like character. as in B. mucoides.
RING. Same as RIM, growth at the upper margin of a liquid culture, adhering more or less closely to the glass,
REPAND. Wrinkled.
RAPID, Developing in 24 to 48 hours.
SACCATE, liquefaction the shape of an elongated sack. tubular. cylindrical.
SCUM, foating islands of bacterla, an interrupted pellicle or bacterial membrane,
SLOW, requiring 5 or 6 dass or more for development.
SHORT, appled to time. a few days, a week.
SPORANGIA, cells containing endospores
SPREADING, growth extending much beyond the line of inoculatio,
STRATIFORM, liquefying to the walls of the tube at the top and then proceeding downwards horizontalls.
THERMAL DEATH-POINT, the degree of heat required to kill young fluid cultures of an organism exposed for 10 minutes (in thin-walled test tubes of a diameter not exceeding 20 mon. in the water must be kept agitated so that the temperature shall be uniform duriag the exposure.
TURBID. cloudy with flocculent particles: cloudy plue focculence.
MBONATE, having a button-like, raised center.
UNDULATE, border wavy. With shallow sinuses.
VERRECOSE. growth wart-like, with wart-llke prominences,
VERMIFORM-CONTOURED, growth like a mass of worms, or intestinal coils.
VILLOUS. growth beset with halr-Iike extensions.
VISCID, growth follows the needle when touched and withdrawn. sediment on shaking rises as a coberent swirl.
ZOOGLOEAE, firm gelatlnous masses of bacterla, one of the most typical examples of which is the Streptococcus mesenterioides of sugar vats (Leuconostoc mesenterioides). the bacterial chains being surrounded by an enormously thlekened firm covering. inside of which there mas be one or many grouds of the bacteria.

NOTES.

(1) For decimal system of group numbers see Table 1. This Will be found useful as a quick method of showing close relaof any urganism.
(2) The morphological characters shall be determined and (nutrient agar, growths in abtained upon at least one solld medium to 48 bours Growths at $3 \%^{\circ}$ in C shall be in general not older than 24 To secure uniformity in at $20^{\circ} \mathrm{C}$ not older than 48 to 72 hours. tion shall be practiced as described in the revised Aepory cultivaCommittee on outandard Methods of the Laboratory Rection of the
American Public Health Ae
(3) The observation of cultural and bio-chemical features shall cover a period of at least 15 davs and requently longer, and shall be made according to the revised Standard Methods above referred to. All media shall be made according to the same (4) Gelatin stab
(4) Gelatin stab cultures shall be held for 6 weeks to deter(5) Ammonia
day, nitrite tests at end of 5 th day. (6) Titrate with $\frac{\mathrm{N}}{50} \mathrm{NaOH}$, using phenolphthalela as an indicator: make titrations at same times trom blank. The difference gives the amount of acid produced.
The titration should be done after bolling to drive of any C 02 present in the culture.
(7) Generic nomenclatare shall begin with the year 1872 (Cobas Species oomenctare

Species nomenclature shall begin with the year 1880
(Koch's discovery of the poured plate method for the separation
(8) Chromogensis shall be recorded in standard color terms.
(8) TABLE I

A NUMERICAL SYSTEM OF RECORDING TEE SALIENT CHARACTERS OF AN ORGANISM. (GROUP NUMBER.)

Endospores produced
Aerobic (Strict)
Gelartin liqueficd)
Gelatin liquefed
Acid and gas from dertrose
Acid without gas from dextrose
No acid from dextrose
Acid and gas from lactuse
Acid without gas from lactose
No acid from lactose
No growth with lactose
Acid and gas from saccharose
No acid from saccharose
No growth with saccharose
Nitrates reduced with evolution of gas
Nitrates reduced without gas tormation
Violet chromogens

Green

Orange
Red
Rewn
${ }_{\text {Pink }}^{\text {Brown }}$
Dis-chasicmogenic actio on potato starch, atronf,
Diastasic action on potato starch, reeb
Acid and gas from glycerine
Acid without gas from glycerine
No acid from ras fremine
No growth with glycerine
The genus according to the system of Migula is given its proper symbol which precedes the number thus: (7) Bacillus Coli (Esch.) Mig. becomes B. 222.11110 $\begin{array}{lllll}\text { Bacillus alcaligenes Petr. } & \text { B. } & \text { B. } & 212.333102 \\ \text { PSEUDOMONAS CAMPESTRIS (Pam.) }\end{array}$ $\begin{array}{lllll}\text { PSEUDOMONAS CAMPESTRIS (Pam.) Sm. " } & \text { Ps. } 211.333151 \\ \text { BACTERIUM SUICIDA Mig. } & \text { if } & \text { Bact. } 222.232003\end{array}$

Source Mississippi River

DETAILED FEATURES.

NOTE-Underscore required terms. Observe notes and glossary of terms on opposite side of card.
I. MORPBOLOGY (2)

Limits of Size
Size of Majority............... Ends, rounded, truncate,

Agar

$\left\{\begin{array}{l}\text { Orientation (grou } \\ \text { Chains (No. of e } \\ \text { Shart chains, } \\ \text { Orientan } \\ \text { Orregular. }\end{array}\right.$

ing).... chains ains,

Sporangia, medium usedtemp. .
Form, elliotical, short rods, spindled, clavate,
Lrumsticks.
Size of Majority
Agar
$\left\{\begin{array}{l}\text { Orientation (grouping)........... } \\ \text { Chains (No. of elements)...... } \\ \text { Orientation of Chains, paraliel. }\end{array}\right.$ Orientation of Cbains,
irregular.
dospores, central, polar.
3. Endospores. Endospores, central,

Limits of size..
Size of Majority
Sporangiuns wall, adherent, not adherent
Germination, equatorial, oblique, polar, bipolar,
by stretching. 4. Flagella No. No......Attachment polar, bipolar, peritrichiate. How Stalned.
5. Capsules, present on.......
6. Zoogloea, Pseudozoogioea.
7. Involution Trorms, on.........in....days at... ${ }^{\circ} \mathrm{C}$. 1:10 watery fuchsin, gentian violet, carbol fuchsin.
Loeffler's alkaline methylene blue. Loeffer's alkaline methylene blue.
Special Stains
Special Stains
Gram...........
Fat..................................
Neisser.
11. CULTURAL FEATURES (3)

Agar Stroke.
Growth, invisible, scanty, moderate, ahundant
Form of
spreading plum, fliform, echinulate spreading, plumose, arborescent, rhizoid.
Elevation of growth, fiat, effuse, raised, convex. Lustre, glistening, dull, cretacaus. Optical Characters, opaque, translucent, opal. Chrompgenesis (8) Greenish.
Odor absent, decided, resembling..................... coriaceous brittile,
Medium grayed, browned, reddened, blued, greened. - Potato. scanty, moderate, abundant, transient, persistent.
Form of grow, fliform, echinulate, beaded.
spreading, plumose, arborescent, rhizoid. Elevation of growth, fat, effuse, raised. convex. Lustre, glistening, dull, cretaceous.
Topography, smooth contoured, rugose, verrucose, Chromogenesis (8) B.C.O.W.1 Pigment in water: insoluble, soluble; other solvents.
Odor, absent, decided, resembling.................
Consistency, Modium grayed, browned, reddened, blued, greened.
Stroke invisible, scanty, moderate, abundant. Form of growth, Aliform, echinulate, beaded. Elepation of growth, flat, effuse, raised, convex. Lustre, glistening, dul, cretaccous. Chromogenesis
Medium grayed, browneä, reddened, blued, greened. Liquefaction begins in.....d, complete in.......d. 4. Agar Stab.
Growth uniform, best at top, best at bottom; sur-
face growth scanty, abundant; restricted. wideface growth scanty, abundant; restricted. wide-
apread. Litue of puncture fliform, peaded, papillat

Date of Isolation
Name B. Flourescens
aroup No. (1)
5. Gelatin Stab.

Gelatin
Growth uniform, best at top, best at bottom.
Line of puncture, fliform, beaded, papillate, vil lous, plumose, arborescent,
Liquefaction, crateriform, napiform, infundibuliform, saccate stratiform; begins in..........d, complete in..........d.
6. Nutrient $\frac{\text { Buorescent }}{\text { Browti. }}$, browned..............

Urface growth, ring, pellicle, Nocculent, memClouding, slight, moderate, strong; transient. Dersistent, nones fuid turbid.
Odor, absent, decided, resembling................... viscia on agitation, focculent, granula
Milk.
T. Milk. ${ }^{\text {Clearing }}$ without coagulation.

Cleaging without coagulation.
Cxtrusion of whey begins in.days.
Peptonization begins on.....d, complete on.....d Reaction, 1d...2 2d.... 4d...... 10d..... 20d.... Medium browned, reddened, blued, greened.
Lab ferment. present, absent.
8. Litmus alkaline, acid then alkaline, no change.

Acid, alkaline acid then alkaline no chane.
Prompt reduction, no reduction. partial slow re9. Gelaction Colonies.

Growth, slow, rapid. round, irregular, ameboid. mycelioid, filamentous, rhizoid. Erateriform (liquefying) iobate, erose, lacerate, fimbriate, filamentous, floccose, curled
10.

Growth, slow, rapid, temperature...iŋ...............

Elevation, flat, effuse, raised, convex, pulvinate.
umbonate, undulate, lobate, erose, lacerate.
Entire,
ambriate, foccose, curled.
fimbriate, floccose, curled. finely. coarsely
Internal structure, amorphous, fnely, coarsely.
granular, grumose, filamentous, foccose, curled.
11. Starch Jelly.

Growth, santy, copious. feeble, profound.
Medium stalned
Medium stalned........ Solution).
Growth copious, scanty, absent.
Medium stained.
Cohn's Solution. scanty absent
Growth, copious, scanty, absent.
Medlum fuorescent, non-fluorescent
14. Uschinsky's Solution.

Sluid viscid, not in Boullon.
6. Ger cent inhibiting growth.... Chioroform, unre-
17. Nitrogen. Obtained from peptone, asparagin, glycacoll, urea, ammonia salts, nitrogen.
18. Best media for long-continued growth.
19. Quick tests for differential purposes.

2. Ammonia production feeble moderate,

\qquad absent, masked by acids
3. Nitrate in nitrate broth,

Reduced, not reduced.
Presence of nitrites.........ammona
nitrates.........free nitrogen.........
4. Indol production, feeble, moderate, strong.
5. Toleration of Acids: Great, medium, slight Acids tested.
6. Toleration of NaOH: Great, medium, slight.
7. Optimum reaction for growth in boullon, stated in terms of Fuller's scale.
8. Vitality on culture media: brief, moderate, long.

Temperature relations
Thermal death-point (10 minutes exposure in nutrient broth when this is adapted to growth of organism).
Optimum temperature for growth.........C. : or best growth at $15^{\circ} \mathrm{C}, 200 \mathrm{C}$ $37^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$
Maximum temperature for growth
...c.
10. Filled readily by drying: resistant to drying
11. Per cent kllled by freezing (salt and crushed ice
or liquid air)................ plates: one-balf plate covered (time 15 minutes), sensitive, not sensitive.
Per cent killed.
13. Acids produced
14. Alkalles produced
15. Alcobols
16. Ferments; pepsin, trypsin, diastase, invertase pectase, cytase, tyrosinase, oxidase, peroxidase. lipase, catalase, glucase, galactase, lab, etc....
17. Crystals formed:
18. Effect of germicides:
Substance \mid Method used.

IV. PATHOGENICITY

1. Pathogenic to Animal

Insects, crustaceans, fishes, reptiles,birds, mice,rats, guinea pigs, rabbits, dods, cats, sheep, goats, cattle, horses, monkeus, man
2. Pathogenic to Plants :
3. Toxins, soluble, endotoxins
4. Non-toxin forming.
5. Immunity bactericidal
. Immunity non-bactericida
7. Loss of virulence on culture media: prompt
gradual, not observed in....................months.

BRIEF CHARACTERIZATION
Mark + or O, and when two terms does not apply unless both apply

3000000000	Diameter over 1μ		
	Chains, filaments		-
	Endospores		
	Capsules		
	Zoogloea, Pseudozoogloea		
	Motile		7
	Involution forms		
	Gram's Stain		
	$\begin{aligned} & \text { 뭏 } \\ & \text { 훙 } \end{aligned}$	Hours, turpid	
		Ring	
		Pellicle	t
		Sediment	+
	良	Shining	
		Dull	\pm
		Wrinkled	
		Chromogenic	+
		Round	\pm
		Proteus-like	
		Rhizoid	
		Filamentous	
		Curled	
	$\begin{aligned} & \text { Qu } \\ & \text { De } \end{aligned}$	Surface-growth	
		Needle-growth	
©	\%	Moderate, absent	
		Abundant	
		Discolored	大
		Starch destroyed	
	Grows at $37^{\circ} \mathrm{C}$.		+
	Grows, in Cohn's Sol.		
	Grows in Uschinsky's Sol.		
		Gelatin (4)	+
		Blood-serum	
		Casein	
		Agar, mannan	
		Acid curd	
		Rennet curd	
		Casein peptozized	
	Indol (5)		$+$
	Hydrogen sulphide		
	Ammonia (5)		
	Nitrates reduced (5)		
	Fluorescent		
	Luminous		
	Animal pathogen, epizoon		
	Plant pathogen, epiphyte		
	Soil		
	Milk		+
	Fresh water		
	Salt water		
	Sewage		+
		bacterium	
		ohur bacterium	

DESCRIPTIVE CHART-SOCIETY OF AMERICAN BACTERIOLOGISTS

Prepared by F. D. CHESTER F P. GORHAM ERWIN F. SMITH $\}$ Committee on Methods of Identification of Bacterial Species.
Endorsed by the Society for general use at the Annual Meeting, Dec. 31, 1907.

GLOSSARY OF TERMS
AGAR HANGING BLOCK, a small block of nutrient agar cut from a poured plate, and placed on a cover-glass, the surface next the glass having been first touched with a loop from soung fluid culture or with a dilution from the same It is examined upslde down, the same as a hanging drop. AMEBOID, assuming various shapes like an ameba
AMORPHOCS, Without visible differentiation in structure. AliBORESCENT, a branched, tree-like growth.
BI:ADED. in stab or stroke. disjointed or semi-confuent colonies along the line of inoculation.
Blisef, a few days, a week.
BRITTLE. growth dry. friable ander the platinum needle.
BULLATE. growth rising in convex prominences. like a blistered surface.
BCTYROCXS. qrowth of a butter-like consistency.
CHAINS.
Short chains, composed of 2 to 8 elements.
LTE halns, composed of more than 8 elements.
CLOLDY. said of fluld cultures which do not contain pseudozoogloeae.
COAGCLATION, the separation of casein from whey in millk. This may take place quickly or slowly, and as the result This may take place quickiy or slowly, and as the resur
either of the formation of an acid or of a lab ferment. CONTOC゙RED, an irregular, smoothly undulating surface. like that of a relief man.
CONVEX. surface the segment of a circle, but flattened. COPROPRYL dung bacteria.
CORIACEOC'S. growth tough, leathery, not yielding to the matinum needle
CRATERIFORM. round. depressed, due to the liquefaction of the mediun.
CRETACEOCS. arowth opaque and white, chalky.
CTRLED. composed of parallel chains in wavy strands, as in anthrax colonies.
DIASTASIC ACTION, Same as DIASTATIC, conversion of starch into water-soluble substances by diastase.
ECHINLLATE, in agar stroke a growth alcng line of luoculation. With toothed or pointed margins; in stab cultures growth beset with pointed outgrowths.
EFFI'SE, growth thin, veily. unusually spreading.
ENTIRE, smouth. having a margin destitute of teeth or notches. EROSE, border irregularly toothed.
FILAMENTOU'S. growth composed of long. irregularly placed or interworen flaments
FILIFORM, in stroke or stab cultures a unfform growth along line of inoculation.
FIMBRIATE, border fringed with slender processes, larger than fiaments.
FLOCCOSE, growth composed of short curved chains, variously oriented.
LOCCCLENT, sald of fluids which contain pseudozcogloeac. 1. e. small adherent masses of bacteria of varlous shapes and floating in the culture fluid.
FIfORESCENT, having one color by transmitted light and another by reflected light.
iolet methyl method of differential bleaching after sentian when the bacteria are deed blue or remain blue after counterstaining with Bismark brown.
GRCMOSE clotted.
INFCNDIBULIFORM, form of a funnel or Inverted cone. IRIDESCENT. like mother-of-pearl. The effect of very thin alms. LACERATE, baving the margin cut into irregular segments as If torn.
border deeply ondulate, producing lobes (see undulate.) LOSG. many weels. or months.

MAXIMUM TEMPERATURE, temperature above which growth does not take place
MEMBEANOUS growth thin. coherent. like a membrane
MINIMUM TEMPERATURE, temperature below which growth does not take place.
MYCELIOID, colonies baving the radiately filamentous appearance of mold colonies.
NAPIFORM, liquefaction with the form of a turnip.
NITROGEN REQUIREMENTS, the necessary nitrcenous focd. This is determined by adding to nitrogen-free media the nitrogen compound to be tested.
OPALESCENT, resembling the color of an opal.
OPTIMUM TEMPERATURE, temperature at which growth is most rapid.
PELLICLE. in fuid bacterial growth either forming a continuous or an interrupted sheet over the fluid.
PEPTONIZED, said of curds dissolved by trypsin.
PERSISTENT, many weeks, or months,
PLIMOSE. a fleecy or feathery growth.
PSECDOZOOGLOEAE, clumps of bacteria, not dissolving readily in water, arising from imperfect separation, or more or less fusion of the components, but not having the degree of compactness and gelatinization seen in zoogloeae.
PULVINATE, in the form of a cushion, decidedly convex
PCNCTIFORM. very minute colonies. at the Ifmit of natural vision.
RAISED. growth thick. with abrupt or terraced edges.
RHIZOID, growth of an irregular branched or root-llke character, as in B. mucoides.
RING. Same as RIM, growth at the upper maraln of a liquid culture, adbering more or less closely to the glass.
REPAND. wrinkled.
RAPID, Developing in 24 to 48 hours.
SACCATE, liquefaction the shape of an elongated sack. tubular. cylindrical.
SCUM. floating islands of bacteria, an interrupted pellicle or bacterial membrane.
SLOW. requiring 5 or 6 dass or more for development.
SHORT. applied to time, a few days, a week.
SPORANGIA. cells containing endospores.
SPREADING, growth extending much beyond the line of inoculation, i. e.. several millimeters or more.
STRATIFORM, liquefying to the walls of the tube at the tod and then proceeding downwards horizontally.
THERMAL DEATH-POINT, the degree of heat required to kill roung fluid cultures of an organism exposed for 10 minutes (in thin-walled test tubes of a diameter not exceeding 20 mm.$)$ in the thermal water-bath. The water must be kept agitated so that the temperature shall be uniform during the exposure.
transient. a fent dass.
rURBID. cloudy with flocculent particles: clouds dlus Øocculence.
UMBONATE, having a button-like, raised center.
CNDULATE. border wavy. With shallow sinuses.
VERRCCOSE, growth wart-like, with wart-like prominences.
VERMIFORM-CONTOURED, growth like a mass of worms. or intestinal colls.
VILLOUS, growth beset with hair-like extensions.
VISCID, growth follows the needle when touched and withdrawn. sediment on shaking rises as a coherent swirl.
ZOOGLOEAE firm gelatinous masses of bacteria, one of the most typical examnles of which is the Streptococcus mesenterioides of sugar vats (Leuconostoc mesenterioides). the bacterial chains being surrounded by an enormously thlckened arm covering. inside of which there may be one or many groups of the bacteria.

NOTES.

(1) For decimal system of group numbers see Tabie 1. This will ${ }^{(1)}$ be for decimal useful sys a Will be found uspful ag a quick method of showing close rela-
tionships inside the genus, but is not a sufficient characterization
of any organism.
(2) The morphological characters shall be determined and
described from growths obtained upon at least (nutrient ggar) growths obtained upon at least one solid medium (nutrient ggar) and in at least one liquid medium (nutrient to 48 hours, and growths at $20^{\circ} \mathrm{C}$ not older than 48 to 72 hours. To secure unliormity in cultures, in all cases prellminary cultivaCommittee on Stacticed as described in the revised Report of the
Mmethods of the Laboratory Section of the
American Public Health American Public Health Association, 1905.
(3) The observation of cultural and blo-chemical features shall cover a period of at least 15 days and frequently longer, above referred to. All media shall be made according to the same Standard Methods.
(4) Gelatin stab cultures shall be held for 6 weeks to determine liquefaction.
(5) Ammonia and indol tests shall be made at end of 10th day, nitrite tests at end of 5th day.
(6) Titrate with N NaOH, us
(6) Titrate with N NaOH, using phenolphthaleln as an indicator: make titrations at same times from blank. The difference gives the amount of acid produced.

The titration should be done after bolling to drive off any a the culture.
(Cohn's first important paper)
Species nomenclature shall begin with the year 1880
(Koch's discovery of the poured plate method for the separation of organisms).
(8) Chromogensis shall be recorded in standard color terms. TABLE 1.
A NUMERICAL SYSTEM OF RECORDING TEE SALIENT CHARACTERS OF AN ORGANISM. (GROUP NUMBER.)

The genus according to the system of Migula f given its proper symbol which precedes the number thus: (7)

BACILLUS COLI (Esch.) Mig. becomes B. 222.111102 Bacillus alcaligenes Petr. PSEUDOMONAS CAMPESTRIS (Pam.) Sm. BaCTERUM SUICIDA Mig.
$\begin{array}{cccc}\text { ecomes } & \text { B. } & 222.111102 \\ \text { "/ } & \text { B. } & 212.333102 \\ \text { " } & \text { Ps. } & 211.333151\end{array}$

BIBIIOGRAPHY

1. Moroorganisms in Water. Peroy and G. C. Frankland. 1894. p. 105.
2. Water Supplies. Savage.
3. Chapter IX.
4. Elements of Water Bacteriology. Prescott and Winslow. 1913. p. 23.
5. Examination of Water and Water Supplies. 1912.
6. Notes on the Distribution of B. coli. Flint. Jour. Amer. Med. Assn. 1896. Vol. 26. p. 410.
7. Zur Lehre über das Baoterium coli commune. Belitzee. Rev. Jahresbericht über die Fortschritte in der Lehre den pathogenen Mikroarganismen. Vol. 25. p.326.
8. a Notes on Normal Intestinal Bacilli of the Horse and of Certain Other Domesticated inimals. Dyer and Kieth. Tech. Quarterly. Vol. 6. p. 256.
7.6 The Dcourrence of Organisms of Sanitary Significance on Grains. Prescatt.

Biol. Studies of Pupils of W. T. Sedgwick. 1906.
8. Organisms on the Surface of Grains with Special Reference to B. coli. Metcalf.

Oot. 6, 1905. Science. Vol. 22.
9. Ocourrence on Grain of Organisms Resembling the B. coli communis. E. G. Smith.

Science. Vol. 2l. p. 710.
10. Kritische und experimentelle Beiträge zur hygienischen Beurteilung des Wassers. Kruse.

Ze1t. 1. Hyg. Vol. $\underline{27} . \mathrm{p} .1$.
11. Ueber die typhus ahnlichen Bakterien des Strassburger Wasserleitungswasser. Beokmann.

Arch. f. Exp. path. und Pherm. Vol. 33. p. 466.
12. Bakterium coli commune. Maroni.

Arch. per le Science medich. Vol. 22. p. 261.
13. Der Befund des Bakterium coli im Wasser und das Teirexperiment sind keine branchbare Hulfmittels fur die Hygienische Beurteilung dea Wassers. Weissenfeld.
zeit. I_{H} Hyg. Vol. 35. p. 78.
14. The Distribution of Bacterium coli comme. Chick.

The Thompson Yates Lab. Reports. Report 3. p. 1.
15. The Colon Bacillus in Ground Waters. Horton. Public Health. Vol. 28. p. 419.
16. The Sand Filtration and Purifioation of Chalk Waters. Nankivell. 1911. Jour. of Hyg. Vol. 11. P. 235.
17. Experiment Relating to Well Contamination at Quitman, Ga. Mac Callie. Water Supply Paper. No. 110. p. 145.
18. Use of Flourescein in Tracing Waters. R. B. Dole.

Water Supply Paper. No. 160. p. 73.
19. Sur l'emploi matieres coulerantes pour la recherche de l'origin des sources et des eaux d'infiltration. Trillat. Compt. Rend. 1899. Vol. 128. p. 698.
20. Contribution $a^{\prime} I^{\prime}$ tude des eaux souterraine. Marboutin. Compt. Rend. 1901. Vol. 132. p. 365.
21. Sur l'application de Ia flourescein a l'hydrologie souterraine. Lartel.

Compt. Rend. 1903. Vol. 137. p. 225.
22. Bakteriologische Untersuchungen des Trinkwassers der Stadt Kiel im august und September 1887. Kiel 1888.
23. Is the Colon Bacillus a Normal Inhabitant of the Intestine of Fishes. Amyot.

Public Health. Vol. 27. p. 400.
24. Isolation of B. coli from the elimentary tract of fish and the Significance thereof. Geo. A. Johnson. Jour. Inf. Dis. Vol. 1. p. 348.
25. A Comparison of B. coli oommunis from Different Species of Animals. Moore and Wright.

Jour. Bost. Med. Soc. Vol. 4. p. 175.
26. Distribution of B. coli in Nature. Evre, J. W. H. Lancet (1904). Vol. 1 . p. 648.
佂

