

BIOLOGICAL INTEGRITY OF STREAMS IN THE BLACKFOOT RIVER TMDL PLANNING AREA BASED ON THE STRUCTURE AND COMPOSITION OF THE BENTHIC ALGAE COMMUNITY

Prepared for:

State of Montana Department of Environmental Quality P.O. Box 200901 Helena, Montana 59620-0901

Project Officer: Andrew Welch DEQ Contract No. 200012-10

Prepared by:

Loren L. Bahls, Ph.D. *Hannaea* 1032 Twelfth Avenue Helena, Montana 59601

STATE DOCUMENTS COLLED

1"3 2 3 2004 MONTAMA CTATE LICA 1515 E. C. HELENA, TOTAL

May 19, 2004

Printed on Paper Made from 100% Recycled Post-Consumer Fiber

Summary

In September and October of 2003, periphyton samples were collected from 30 sites on 19 streams in the Blackfoot River TMDL planning area in west central Montana for the purpose of assessing whether these streams are water-quality limited and in need of TMDLs. The samples were collected following MDEQ standard operating procedures, processed and analyzed following standard methods for periphyton, and evaluated following modified USEPA rapid bioassessment protocols for wadeable streams.

Siltation index values for Black Bear Creek, lower Buffalo Gulch, lower Douglas Creek, and lower Washington Creek suggest severe impairment from sedimentation and nonsupport of aquatic life uses. Siltation index values for Blanchard Creek, Wales Creek, Frazier Creek, upper Buffalo Gulch, and upper Washington Creek indicate moderate impairment from sedimentation and partial support of aquatic life uses. The low pollution index for Black Bear Creek indicates moderate impairment from excessive organic nutrients and only partial support of aquatic life uses. Diatom metrics suggest minor impairment from both organic loading and sedimentation at most of the remaining Blackfoot tributary sites.

Larger than normal percentages of teratological diatom cells (>1%) suggest that elevated concentrations of heavy metals may be present in Richmond Creek and at the upper site on the West Fork of the Clearwater River. Twenty-two sites supported smaller percentages of abnormal diatom cells (<1%) and 6 sites had none.

Diatoms were present in all of the samples. Most of the 34 major diatom species are either sensitive to organic pollution or only somewhat tolerant of organic pollution. Only one of the major diatom species—*Nitzschia palea*—is most tolerant of organic pollution and this species was most abundant in Black Bear Creek.

In general, diatom species richness, diversity, and equitability were excellent. Most sites had more than 40 species and diversity values greater than 4.00. One site (lower Murray Creek) had 73 species and a diversity index of 4.99, which are exceptional values for a mountain stream. High diatom diversity in these streams suggests moderate nutrient enrichment (little competition for available nutrients) and the absence of extreme natural stressors, such as steep gradients, fast currents, low light, low nutrients, and/or constant cold temperatures. Only one site—upper Douglas Creek—had a low diversity value that indicates unusual stress. This was also the only site where the dominant species contributed more than half of the diatom cells. The cause of stress in upper Douglas Creek was probably excess inorganic nutrients.

Streams where nitrogen-fixing cyanobacteria were common include the West Fork of the Clearwater River (both sites), Deer Creek (both sites), Blanchard Creek, Buffalo Gulch (upper site), Washington and Jefferson Creeks (upper sites), and Seven-Up Pete Creek. Nitrogen-fixing diatoms in the order Rhopalodiales accounted for more than 2% of the cells in the West Fork of the Clearwater River (both sites), Deer Creek (both sites), Black Bear Creek, Blanchard Creek, Jefferson Creek (upper site), and Seven-Up Pete Creek. Nitrogen is most likely the limiting nutrient at these sites.

Introduction

This report evaluates the biological integrity¹, support of aquatic life uses, and probable causes of stress or impairment to aquatic communities at 30 sites on 19 streams in the Blackfoot River TMDL Planning Area of west central Montana. The purpose of this report is to provide information that will help the State of Montana determine whether these streams are water-quality limited and in need of TMDLs.

The federal Clean Water Act directs states to develop water pollution control plans (Total Maximum Daily Loads or TMDLs) that set limits on pollution loading to water-quality limited waters. Water-quality limited waters are lakes and stream segments that do not meet water-quality standards, that is, that do not fully support their beneficial uses. The Clean Water Act and USEPA regulations require each state to (1) identify waters that are water-quality limited, (2) prioritize and target waters for TMDLs, and (3) develop TMDL plans to attain and maintain water-quality standards for all water-quality limited waters.

Evaluation of aquatic life use support in this report is based on the species composition and structure of periphyton (a.k.a. benthic algae, phytobenthos) communities at 30 sites on 19 streams that were sampled in September and October of 2003. Periphyton is a diverse assortment of simple photosynthetic organisms called algae that live attached to or in close proximity of the stream bottom. Some algae form long filaments or large gelatinous colonies that are conspicuous to the unaided eye. However, most algae, including the ubiquitous diatoms, can be seen and identified only with the aid of a microscope. The periphyton community is a basic biological component of all aquatic ecosystems. Periphyton accounts for much of the primary production and biological diversity in Montana streams (Bahls et al. 1992). Plafkin et al. (1989) and Barbour et al. (1999) list several advantages of using periphyton in biological assessments.

¹ *Biological integrity* is defined as "the ability of an aquatic ecosystem to support and maintain a balanced, integrated, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of natural habitats within a region" (Karr and Dudley 1981).

Project Area and Sampling Sites

The project area is located mostly within the Middle Rockies Ecoregion (USEPA 2000). Some of the north side tributaries of the Blackfoot River head in the Canadian Rockies Ecoregion (USEPA 2000). The Blackfoot River begins at Rogers Pass north of Helena and flows west for about 100 miles to its confluence with the Clark Fork River at Bonner, Montana. The surface geology of the watershed is complex, consisting mostly of Precambrian Belt Series Rocks in the uplands and Tertiary basin fill in the Blackfoot Valley (Renfro and Feray 1972). Climax vegetation consists of alpine tundra at the highest elevations, mixed conifer forest at intermediate elevations, and mixed grassland/sagebrush steppe in the Blackfoot Valley near Ovando. The main land uses are recreation, logging, ranching, and mining.

Periphyton samples were collected at 30 sites on 19 tributaries of the Blackfoot River (Table 1). All sites are in USGS HUC 17010203 and are classified B-1 in the Montana Surface Water Quality Standards.

Methods

Periphyton samples were collected following standard operating procedures of the MDEQ Planning, Prevention, and Assistance Division. Using appropriate tools, microalgae were scraped, brushed, or sucked from natural substrates in proportion to the importance of those substrates at each study site. Macroalgae were picked by hand in proportion to their abundance at the site. All collections of microalgae and macroalgae were pooled into a common container and preserved with Lugol's (IKI) solution.

The samples were examined to estimate the relative abundance of cells and rank by biovolume of diatoms and genera of soft (non-diatom) algae according to the method described in Bahls (1993). Soft algae were identified using Smith (1950), Prescott (1962, 1978), John et al. (2002), and Wehr and Sheath (2003). These books also served as references on the ecology of the soft algae, along with Palmer (1969, 1977).

After the identification of soft algae, the raw periphyton samples were cleaned of organic matter using sulfuric acid, potassium dichromate, and hydrogen peroxide. Then permanent diatom slides were prepared using Naphrax[™], a high refractive index mounting medium, following *Standard Methods for the Examination of Water and Wastewater* (APHA 1998). At least 400 diatom cells (800 valves) were counted at random and identified to species. The following were the main taxonomic references for the diatoms: Krammer and Lange-Bertalot 1986, 1988, 1991a, 1991b; Lange-Bertalot 1993, 2001; Krammer 1997a, 1997b, 2002; Reichardt 1997, 1999. Diatom naming conventions followed those adopted by the Integrated Taxonomic Information System (<u>http://www.itis.usda.gov</u>). For taxa not yet included in ITIS, naming conventions followed those adopted by the Academy of Natural Sciences for USGS NAWQA samples (Morales and Potapova 2000). Van Dam et al. (1994) was the main ecological reference for the diatoms.

The diatom proportional counts were used to generate an array of diatom association metrics. A metric is a characteristic of the biota that changes in some predictable way with increased human influence (Barbour et al. 1999). Diatoms are particularly useful in generating metrics because there is a wealth of information available in the literature regarding the pollution tolerances and water quality preferences of common diatom species (e.g., Lowe 1974, Beaver 1981, Lange-Bertalot 1996, Van Dam et al. 1994).

Values for selected metrics were compared to biocriteria (numeric thresholds) developed for streams in the Rocky Mountain ecoregions of Montana (Table 2). These criteria are based on metric values measured in least-impaired reference streams (Bahls et al. 1992) and metric values measured in streams that are known to be impaired by various sources and causes of pollution (Bahls 1993). The criteria in Table 2 are valid only for samples collected during the summer field season (June 21-September 21). [Note: About half of the Blackfoot TMDL periphyton samples were collected after September 21.] These criteria distinguish among four levels of stress or impairment and three levels of aquatic life use support: (1) no impairment or only minor impairment (full support); (2) moderate impairment (partial support); and (3) severe impairment (non-support). These impairment levels correspond to excellent, good, fair, and poor

5

biological integrity, respectively. In cold, high-gradient mountain streams, natural stressors will often mimic the effects of man-caused impairment on some metric values.

Quality Assurance

Several steps were taken to assure that the study results are accurate and reproducible. Upon receipt of the samples, station and sample attribute data were recorded in the Montana Diatom Database and the samples were assigned a unique number, e.g., 3031-01. The first part of this number (3031) designates the sampling site (Monture Creek near mouth) and the second part (01) designates the number of periphyton samples that that have been collected at this site for which data have been entered into the Montana Diatom Database.

Sample observations and analyses of soft (non-diatom) algae were recorded in a lab notebook along with information on the sample label. A portion of the raw sample was used to make duplicate diatom slides. The slides used for the diatom proportional counts will be deposited in the Montana Diatom Collection at the University of Montana Herbarium (MONTU) in Missoula. Duplicate slides will be retained by *Hannaea* in Helena. Diatom proportional counts have been entered into the Montana Diatom Database.

Results and Discussion

Results are presented in Tables 3, 4, 5, and 6 which are located near the end of this report following the references section. Appendix A contains a diatom report for each sample. Each diatom report includes an alphabetical list of diatom species in that sample and their percent abundances, and values for 66 different diatom metrics and ecological attributes.

Sample Notes (Table 3)

Notes on the contents and condition of each sample are recorded in Table 3. Most samples contained varying amounts of sediment and plant material other than algae.

Non-Diatom Algae (Table 4)

Thirty-two genera representing five divisions of non-diatom algae were found in samples that were collected from tributaries of the Blackfoot River (Table 4). Divisions represented by the most genera were Chlorophyta or green algae (17 genera) and Cyanophyta or cyanobacteria (10 genera). The Division Chrysophyta (yellow-green algae) was represented by two genera and the Divisions Rhodophyta (red algae) and Phaeophaeta (brown algae) were represented by one genus each.

Green algae were found in all but 5 samples and cyanobacteria were found in all but 5 samples. Yellow-green algae were found in 8 samples and the red alga *Audouinella* was found in 11 samples. *Heribaudiella fluviatilis*, a rare freshwater brown alga [most other species of brown algae are marine], was found in 7 samples and was abundant in Monture Creek, the West Fork of the Clearwater River, and upper Jefferson Creek. The number of genera of non-diatom algae ranged from 0 in lower Murray Creek to 15 at the lower site on the West Fork of the Clearwater River.

Nitrogen-fixing Algae. Cyanobacteria that possess a certain type of specialized cell (heterocyst) are capable of fixing molecular or atmospheric nitrogen under aerobic conditions. These algae have a competitive advantage in waters where nitrogen is in short supply relative to phosphorus and other nutrients. Among tributaries of the Blackfoot River, blue-green algae with heterocysts include *Anabaena, Calothrix, Nostoc,* and *Tolypothrix.* Streams where one or more of these genera were common, frequent, or abundant are: West Fork of the Clearwater River (both sites), Deer Creek (both sites), Blanchard Creek, Buffalo Gulch (upper site), Washington and Jefferson Creeks (upper sites), and Seven-Up Pete Creek. Nitrogen is most likely the limiting nutrient at these sites.

Mat-forming Filamentous Algae. Large standing crops of filamentous algae can interfere with swimming, boating, fishing, and other water uses. Algal genera in tributaries of

the Blackfoot River that are known to produce nuisance growths in North American waters are *Cladophora, Oedogonium, Oscillatoria, Rhizoclonium, Spirogyra, Stigeoclonium,* and *Ulothrix* (Wehr and Sheath 2003). Streams where one or more of these genera were dominant or abundant in periphyton samples are: Monture Creek, Yourname Creek, West Fork Clearwater River, Blanchard Creek, Rock Creek, Douglas Creek, and Braziel Creek. Among the streams represented in this sample set, these are most likely to support nuisance growths of mat-forming filamentous algae.

Pollution-tolerant Algae. Palmer (1969) listed 60 algal genera that are most tolerant of organic pollution. Genera of non-diatom algae in this sample set that are among the top 22 on Palmer's list are *Oscillatoria* (#2), *Scenedesmus* (#4), *Stigeoclonium* (#8), *Ankistrodesmus* (#10), *Phormidium* (#12) *Closterium* (#16), *Spirogyra* (#21), and *Anabaena* (#22). Streams where one or more of these genera were abundant or dominant are: Monture Creek, West Fork Clearwater River, Blanchard Creek, Rock Creek, and Douglas Creek. These streams are the ones that most likely receive the heaviest loads of organic matter. Genera among the 22 most pollution-tolerant algae were common or frequent at several more sites.

Other Indicator Algae. When abundant, certain genera of algae can provide useful clues about environmental conditions. The two genera of chrysophytes that were present in these samples are both good indicator algae. *Tribonema*, which is sensitive to organic pollution and prefers cool waters, was most abundant in upper Deer Creek, upper Monture Creek, and in the West Fork of the Clearwater River. *Vaucheria*, another chrysophyte, requires steady flows of cool water. *Vaucheria* was frequent in Buffalo Gulch (lower) and occasional in Frazier Creek and lower Deer Creek.

The filamentous green alga *Mougeotia* has often been reported to increase in abundance in lakes that are subject to atmospheric deposition and undergoing acidification. Among study sites in the Blackfoot River TMDL planning area, *Mougeotia* occurred infrequently and was common only in the West Fork of the Clearwater River and in Rock Creek.

Diatoms (Table 5)

Diatoms were present in all of the samples. Most of the 34 major diatom species in tributaries of the Blackfoot River are either sensitive to organic pollution or only somewhat tolerant of organic pollution. Only one of the major diatom species (*Nitzschia palea*) is most tolerant of organic pollution and this species was most abundant in Black Bear Creek (Table 5).

In general, diatom species richness, diversity, and equitability were excellent. Most sites supported more than 40 species and diversity values in excess of 4.00. One site (lower Murray Creek) had 73 species and a diversity index of 4.99. These are exceptionally high values for a mountain stream. Only one site—upper Douglas Creek—had a diversity value that indicates unusual stress. This was also the only site where the dominant species contributed more than half of the cells to the diatom assemblage (Table 5). The cause of stress in upper Douglas Creek was probably excess inorganic nutrients.

High diatom diversity in these samples suggests the absence of extreme natural stressors, such as steep gradients, fast currents, low light, low nutrients, and constant cold temperatures, which may prevail in the extreme upper reaches of these streams. The abundance of non-motile, free-living taxa (*Diatoma* spp., *Fragilaria* spp., *Melosira varians*, *Pseudostarosira brievistriata*, *Staurosira construens*, and *Synedra* spp.), attached species (*Achnanthidium* spp., *Cocconeis placentula*, *Rhoicosphenia abbreviata*), and motile, free-living taxa (*Navicula* spp., *Nitzschia spp., Surirella minuta*) suggests a wide variety of substrates, gradients, and current velocities. The disturbance index at most sites was relatively low, which suggests moderate gradients and slower current velocities than most mountain streams (Table 5).

Besides the absence of natural stressors and the presence of complex microhabitats, high diatom diversity in these streams also suggests moderate nutrient enrichment (little competition for available nutrients). Pollution index values, which indicate the amount of organic loading, are generally low for mountain streams. Many are at or below the threshold for minor impairment.

Similarly, siltation index values tend to be higher in Blackfoot tributaries than in most mountain streams.

Most of the sites supported teratological (deformed or physically abnormal) diatom cells. In large numbers, abnormal cells may indicate metals toxicity. However, the percentage of abnormal cells was within acceptable limits at all sites. The largest percentage of abnormal cells (1.74%) was recorded in Richmond Creek (Table 5).

The similarity index ("percent community similarity") measures the cumulative percentage of cells of each taxon that are shared by two stream sites. The similarity index can be used to gauge the degree of environmental change that occurs between sites on the same stream. Similarity index values for Blackfoot tributaries suggest that ecological changes between adjacent sites on the same stream varied from un-measurable (>60% between the middle and lower Monture Creek sites) to extreme (<20% between the two sites on Rock Creek).

The diatom order Rhopalodiales includes genera (*Epithemia* and *Rhopalodia*) that are known to harbor nitrogen-fixing endosymbionts within their cells. These symbiotic nitrogen-fixers are single-celled cyanobacteria (blue-green algae). Nitrogen is likely the limiting nutrient in waters that support large numbers of diatoms in the order Rhopalodiales. Among tributaries to the Blackfoot River, diatoms in the order Rhopalodiales accounted for more than 2% of the cells at the following sites: West Fork Clearwater River (both sites), Deer Creek (both sites), Black Bear Creek, Blanchard Creek, Jefferson Creek (upper site), and Seven-Up Pete Creek.

The following paragraphs highlight the key findings for each stream and each site based upon the major diatom species and core diatom metrics in Table 5.

Monture Creek. Except for a few teratological cells and slightly elevated disturbance index values, diatom metrics indicate that Monture Creek had excellent biological integrity, no impairment, and provided full support to aquatic life uses. Similarity index values indicate little environmental change between the upper and middle sites and virtually no change between the middle and lower sites. Kleinschmidt Creek. Kleinschmidt Creek also supported a few abnormal diatom cells and had a slightly elevated disturbance index (% *Achnanthidium minutissimum*), which indicates minor stress that may be natural in origin.

Yourname Creek. This site had a depressed pollution index and an elevated siltation index, which indicate minor impairment from organic loading and sedimentation, respectively. Three teratological diatom cells were counted here.

Richmond Creek. This stream had an elevated siltation index and supported the largest percentage of abnormal diatoms (1.74%) of all the Blackfoot tributaries. However, both values suggest only minor impairment and full support of aquatic life uses.

West Fork Clearwater River. The upper site had a slightly elevated siltation index and supported the second largest percentage of abnormal diatoms (1.19%). Both values indicate only minor impairment and full support of aquatic life uses. Diatom metrics at the lower site indicate excellent biological integrity and no impairment of aquatic life uses. The similarity index indicates that a moderate amount of environmental change occurred between the two sites.

Deer Creek. The upper site had a slightly elevated siltation index that indicates minor impairment from sedimentation. Judging from the depressed pollution index and the large percentage of the eutraphentic species *Melosira varians*, the lower site suffered minor impairment from excess organic loading and elevated concentrations of inorganic nutrients. The similarity index between the two sites suggests that a moderate amount of environmental change occurred between them.

Blanchard Creek. A large percentage of highly motile diatoms at this site, including *Nitzschia fonticola*, suggest moderate impairment and only partial support of aquatic life uses due to excessive sedimentation. Blanchard Creek also had lower diatom species richness and diversity values than most other sites in the sample set, and the pollution index was just above the threshold for minor impairment.

Wales Creek. The large percentage of motile diatoms in Wales Creek indicates moderate impairment from sedimentation and only partial support of aquatic life uses. The slightly depressed pollution index suggests minor impairment from organic loading.

Rock Creek. Diatom metrics suggest that both sites had good biological integrity and provided full support to aquatic life uses. Rock Creek had a very distinctive diatom flora that included two species that are seldom recorded in North America: *Gomphonema designatum* and *Distrionella incognita*. The latter is restricted to streams that head in the Canadian Rockies Ecoregion. The two sites on Rock Creek supported very different diatom floras.

Frazier Creek. A large percentage of motile diatoms here suggest moderate impairment and partial support of aquatic life uses due to sedimentation. The siltation index here approaches but does not exceed the threshold for severe impairment and non-support of aquatic life uses. The pollution index for Frazier Creek is just below the threshold for minor impairment from organic loading.

Buffalo Gulch. Both sites on Buffalo Gulch support elevated percentages of motile diatoms. The siltation index at the upper site just exceeds the threshold for moderate impairment and partial support of aquatic life uses. The siltation index at the lower site exceeds the threshold for severe impairment and non-support of aquatic life uses. The pollution index indicates that both sites suffer minor impairment from elevated organic loading. The two sites on Buffalo Gulch shared about half of their diatom assemblages, which indicates that only minor changes in environmental conditions occurred between them.

Black Bear Creek. This site had the highest siltation index and the lowest pollution index of all sites in the sample set. The very large percentage of highly motile diatoms indicates severe impairment and non-support of aquatic life uses due to sedimentation. Large numbers of *Nitzschia palea*, a pollution tolerant species, indicates elevated concentrations of nitrogenous organic matter, and the resulting low pollution index suggests moderate impairment and partial support of aquatic life uses. Murray Creek. Diatom metrics indicate that Murray Creek had good biological integrity and provided full support of aquatic life uses. Slightly elevated siltation index values suggest minor impairment from sedimentation. Both sites also supported large numbers of *Planothidium* spp., which are adapted to living attached to sand grains. A low pollution index value at the lower site suggests minor impairment from organic loading. The two sites on Murray Creek shared about half of their diatom assemblages.

Douglas Creek. Diatom metrics indicate progressively increasing organic loading and sedimentation in a downstream direction on Douglas Creek. The upper site was dominated by *Cymbella excisa*, an eutraphentic species that favors elevated concentrations of inorganic nutrients. The large percentage of this diatom resulted in the lowest diversity index (2.64) of all the sites in the sample set. Otherwise, this site had normal metric values for a mountain stream. The middle site was floristically much different from the upper site and was subject to minor impairment from organic loading and sedimentation. The lower site was severely impaired by sedimentation and suffered more serious but still minor impairment from organic loading.

Gallagher Creek. Diatom metrics suggest minor impairment from organic loading and sedimentation in Gallagher Creek. Otherwise, Gallagher Creek had normal metric values for a mountain stream.

Washington Creek. Diatom metrics suggest impairment from sedimentation at both sites on Washington Creek. Impairment was moderate at the upper site and severe at the lower site. Minor impairment from organic loading was indicated at both sites, which had identical pollution index values. The two sites on Washington Creek shared 43% of their diatom assemblages, which indicates a minor amount of environmental change.

Jefferson Creek. Both sites were subject to minor impairment from sedimentation. In addition, the lower site had minor impairment from organic loading. The dominant diatom species at the upper site (*Epithemia sorex*) indicates eutrophic but nitrogen-limiting conditions. The dominant species at the lower site (*Melosira varians*) indicates elevated concentrations of

inorganic nutrients, including nitrogen and phosphorus. As in Washington Creek, the two sites shared 43% of their diatom assemblages.

Braziel Creek. Braziel Creek was subject to minor impairment from sedimentation. The siltation index approached but did not exceed the threshold for moderate impairment. In other respects, Braziel Creek had normal metric values for a mountain stream.

Seven-Up Pete Creek. Aside from a few abnormal diatom cells, Seven-Up Pete Creek had excellent biological integrity for a mountain stream. However, this stream supported the smallest number of diatom species (36) of all the sites in the sample set.

Modal Categories (Table 6)

Several ecological attributes assigned by Stevenson and Van Dam et al. (1994) were selected from the diatom reports in the appendix. Modal categories of these attributes were extracted to characterize water quality tendencies in tributaries of the Blackfoot River (Table 6).

The majority of diatoms at most sites in the Blackfoot River TMDL planning area were non-motile, alkaliphilous, nitrogen autotrophs that prefer fresh waters, moderate BOD levels, high oxygen levels, and elevated concentrations of inorganic nutrients. However, the modal categories at some sites represent significant departures in water quality when compared to most other sites in the sample set. These departures, which may reflect increases or decreases in water quality, are discussed below.

Although most of the sites were dominated by non-motile diatoms, Blanchard Creek, Black Bear Creek, and the lower site on Washington Creek were dominated by highly motile diatoms. Meanwhile, Frazier Creek, the lower sites on Buffalo Gulch and Douglas Creek, and the upper site on Jefferson Creek were dominated by moderately motile diatoms. These sites are most likely to have sedimentation problems. Diatom species that prefer circumneutral (as opposed to alkaline) pH values were most abundant in Monture Creek and Kleinschmidt Creek. These streams are likely to have lower pH values than the other streams.

Nitrogen autotrophs were in the majority at all sites except lower Deer Creek, where facultative nitrogen heterotrophs accounted for the majority of the diatom cells. This site likely receives heavier loads of organic nitrogen than other sites in the sample set. At site 20 on the West Fork of the Clearwater River and site 10 on Rock Creek, most cells were represented by species that have not been classified with regard to nitrogen uptake.

The modal category for oxygen demand was "continuously high" at several sites. This is the nominal category for mountain streams. Most diatoms were in the "fairly high" category in Richmond Creek, Blanchard Creek, Wales Creek, the lower site on Washington Creek, and the upper site on Jefferson Creek. Moderate oxygen demand was the modal category at most of the remaining sites. Most cells were represented by species that have not been classified with regard to oxygen demand in lower West Fork Clearwater River, upper Rock Creek, Buffalo Gulch, and Seven-Up Pete Creek.

Beta-mesosaprobous was the usual level of saprobity at most sites. This represents a dissolved oxygen saturation level of 70-85% and a biochemical oxygen demand (BOD₅) of 2-4 mg/L. However, saprobity levels were higher at three sites where most of the diatoms indicated **more** organic loading (alpha-mesosaprobous): Yourname Creek, lower Deer Creek, and lower Jefferson Creek. The alpha-mesosaprobous level corresponds to 25-70% saturation of dissolved oxygen and 4-13 mg/L BOD₅. Saprobity levels were unclassified for the majority of diatoms in lower West Fork Clearwater River and upper Rock Creek.

Most sites in the Blackfoot River TMDL planning area were dominated by eutraphentic diatom species. Two sites—Wales Creek and Upper Deer Creek—were dominated by mesoeutraphentic species. Meso-eutraphentic is the next trophic level below (less enriched than) eutraphentic. Five sites were dominated by species that tolerate a wide range of trophic levels ranging from oligotrophic to eutrophic: Monture Creek (all sites), Kleinschmidt Creek, and lower Rock Creek. Trophic status for the majority of diatoms remains unclassified in the lower West Fork Clearwater River and upper Rock Creek.

References

- APHA: 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- Bahls, L.L. 1979. Benthic diatom diversity as a measure of water quality. Proceedings of the Montana Academy of Sciences 38:1-6.
- Bahls, L.L. 1993. Periphyton Bioassessment Methods for Montana Streams (revised). Montana Department of Health and Environmental Sciences, Helena.
- Bahls, L.L., Bob Bukantis, and Steve Tralles. 1992. Benchmark Biology of Montana Reference Streams. Montana Department of Health and Environmental Sciences, Helena.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use In Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. EPA/841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Beaver, Janet. 1981. Apparent Ecological Characteristics of Some Common Freshwater Diatoms. Ontario Ministry of The Environment, Technical Support Section, Don Mills, Ontario.
- Hieber, Maggi, C.T. Robinson, S. R. Rushforth, and Urs Uehlinger. 2001. Algal communities associated with different alpine stream types. Arctic, Antarctic, and Alpine Research 33(4):447-456.
- Johansen, J.R. 1999. Diatoms of Aerial Habitats. Chapter 12 in Stoermer, E.F., and J.P. Smol (eds.), The Diatoms: Applications For the Environmental and Earth Sciences, Cambridge University Press, New York.
- John, D.M., B.A. Whitton, and A.J. Brook (eds.). 2002. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University
- Karr, J.R., and D.R. Dudley. 1981. Ecological perspectives on water quality goals. Environmental Management 5:55-69.
- Kawecka, B. 1990. The effect of flood-control regulation of a montane stream on the communities of sessile algae. Acta Hydrobiology 32:345-354.
- Krammer, Kurt. 1997a. Die cymbelloiden Diatomeen: Eine Monographie der weltweit bekannten Taxa. Teil 1. Allgemeines and *Encyonema* Part. J. Cramer, Berlin.
- Krammer, Kurt. 1997b. Die cymbelloiden Diatomeen: Eine Monographie der weltweit bekannten Taxa. Teil 2. *Encyonema* part., *Encyonopsis* and *Cymbellopsis*. J. Cramer, Berlin.
- Krammer, Kurt. 2002. *Cymbella* Volume 3 in Diatoms of Europe, Horst Lange-Bertalot, ed. A.R.G. Gantner Verlag K.G., Germany.
- Krammer, K., and H. Lange-Bertalot. 1986. Bacillariophyceae, Part 2, Volume 1: Naviculaceae. In Ettl, H., J Gerloff, H. Heynig, and D. Mollenhauer (eds.), Freshwater Flora of Middle Europe. Gustav Fischer Publisher, New York.

- Krammer, K., and H. Lange-Bertalot. 1988. Bacillariophyceae, Part 2, Volume 2: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig, and D. Mollenhauer (eds.), Freshwater Flora of Middle Europe. Gustav Fischer Publisher, New York.
- Krammer, K., and H. Lange-Bertalot. 1991a. Bacillariophyceae, Part 2, Volume 3: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig, and D. Mollenhauer (eds.), Freshwater Flora of Middle Europe. Gustav Fischer Publisher, Stuttgart.
- Krammer, K., and H. Lange-Bertalot. 1991b. Bacillariophyceae, Part 2, Volume 4: Achnanthaceae, Critical Supplement to Navicula (Lineolatae) and Gomphonema, Complete List of Literature for Volumes 1-4. In Ettl, H., G. Gartner, J. Gerloff, H. Heynig, and D. Mollenhauer (eds.), Freshwater Flora of Middle Europe. Gustav Fischer Publisher, Stuttgart.
- Lange-Bertalot, Horst. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64:285-304.
- Lange-Bertalot, Horst. 1993. 85 new taxa and much more than 100 taxonomic clarifications supplementary to Susswasserflora von Mitteleuropa Vol. 2/1-4. J. Cramer, Berlin.
- Lange-Bertalot, Horst. 1996. Rote Liste der limnischen Kieselalgen (Bacillariophyceae) Deutschlands. Schr.-R. f. Vegetationskde., H. 28, pp. 633-677. BfN, Bonn-Bad Godesberg.
- Lange-Bertalot, Horst. 2001. Navicula sensu stricto: 10 Genera Separated from Navicula sensu lato; Frustulia. Volume 2 in Diatoms of Europe, Horst Lange-Bertalot, ed. A.R.G. Gantner Verlag K.G., Germany.
- Lowe, R.L. 1974. Environmental Requirements and Pollution Tolerance of Freshwater Diatoms. EPA-670, 4-74-005. U.S. Environmental Protection Agency, National Environmental Research Center, Office of Research and Development, Cincinnati, Ohio.
- McFarland, B.H., B.H. Hill, and W.T. Willingham. 1997. Abnormal *Fragilaria* spp. (Bacillariophyceae) In streams impacted by mine drainage. Journal of Freshwater Ecology 12(1):141-149.
- Nicholls, K.H., and D.E.Wujek. 2003. Chrysophycean Algae. Chapter 12 (pp. 471-509) in Wehr, J.D., and R.G. Sheath (eds.), Freshwater Algae of North America: Ecology and Classification. Academic Press, New York.
- Palmer, C.M. 1969. A composite rating of algae tolerating organic pollution. Journal of Phycology 5:78-82.
- Palmer, C.M. 1977. Algae and Water Pollution: An Illustrated Manual on the Identification, Significance, and Control of Algae in Water Supplies and in Polluted Water. EPA-600/9-77-036.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Rivers and Streams: Benthic Macroinvertebrates and Fish. EPA 440-4-89-001.
- Prescott, G.W. 1962. Algae of the Western Great Lakes Area. Wm. C. Brown Company, Dubuque, Iowa.
- Prescott, G.W. 1978. How to Know the Freshwater Algae. Third Edition. Wm. C. Brown Company Publishers, Dubuque, Iowa.
- Reichardt, Erwin. 1997. Taxonomische Revision des Artenkomplexes um Gomphonema pumilum (Bacıllariophyta). Nova Hedwigia 65(1-4) :99-129.
- Reichardt, Erwin. 1999. Zur Revision der Gattung Gomphonema. A.R.G. Gantner Verlag, Distributed by Koeltz Scientific Books, Konigstein, Germany.

Renfro, H.B., and D.E. Feray. 1972. Geological Highway Map of the Northern Rocky Mountain Region. American Association of Petroleum Geologists, Tulsa, Oklahoma.

Smith, G.M. 1950. The Fresh-Water Algae of The United States. McGraw-Hill Book Company, New York.

- Stevenson, R.J., and Y. Pan. 1999. Assessing Environmental Conditions in Rivers and Streams with Diatoms. Chapter 2 in Stoermer, E.F., and J.P. Smol (eds.), The Diatoms: Applications For the Environmental and Earth Sciences, Cambridge University Press, New York.
- Stewart, W.D.P., P. Rowell, and A.N. Rai. 1980. Symbiotic Nitrogen-Fixing Cyanobacteria. Pp. 239-277 in Stewart, W.D.P., and J. Gallo (eds.), Nitrogen Fixation, Academic Press, New York.
- USDA. 1976. Climax Vegetation of Montana (map). U.S. Department of Agriculture, Soil Conservation Service, Cartographic Unit, Portland.
- USEPA. 2000. Level III Ecoregions of the Continental United States (map). National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon.
- Van Dam, Herman, Adrienne Mertens, and Jos Sinkeldam. 1994. A coded checklist and ecological Indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology 28(1):117-133.
- Weber, C.I. (ed.). 1973. Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents. EPA-670/4-73-001. U.S. Environmental Protection Agency, National Environmental Research Center, Office of Research and Development, Cincinnati, Ohio.
- Wehr, J.D., and R.G. Sheath. 2003. Freshwater Algae of North America: Ecology and Classification. Academic Press, New York.
- Whittaker, R.H. 1952. A study of summer foliage insect communities in the Great Smoky Mountains. Ecological Monographs 22:1-44.
- Woods, A.J., Omernik, J.M., Nesser, J.A., Shelden, J., and S.H. Azevedo. 1999. Ecoregions of Montana (color poster with map), U.S. Geological Survey, Reston, Virginia.

Table 1. Location of MDEQ periphyton sampling stations in the Blackfoot River TMDL Planning Area in 2003.

C03MONTC30 3031-01 47 01 56 113 npground C03MONTC10 3032-01 47 03 07 113 c03MONTC10 3033-01 47 07 34 113 c03MONTC10 3033-01 47 07 34 113 c03KLSMC01 3035-01 46 53 52 113 c03RHMDC01 3035-01 47 19 37 113 c03RHMDC01 3035-01 47 19 37 113 c03RHMDC01 3039-01 47 19 37 113 c03CLRWF20 3034-01 47 14 11 113 c033DEERC10 3042-01 47 70 18 113 c033DLFC10 3314-01 47 70 18 113 c033BUFLG10 3314-01 46 46 33 113 c033BUFLG20 3314-01 46 46 33 113 c033BUFLG10 3315-01 46 46 33 113 c033BUFLG20 3314-01 46 46 33 113 c033BUFLG20 3314-01 46 46 33 113 c033BUFLG20 3314-01 46 46 48 113 <th>Station states and the state of the state of</th> <th>Montana DEQ Station Code</th> <th>Hannaea Sample Number</th> <th>Latitude</th> <th>Longitude</th> <th>Sample</th>	Station states and the state of	Montana DEQ Station Code	Hannaea Sample Number	Latitude	Longitude	Sample
pground C03MONTC20 3032-01 47 03 07 113 pground C03KLSMC01 3033-01 47 07 34 113 ceek C03KLSMC01 3035-01 47 07 34 113 commode C03KLSMC01 3035-01 47 07 34 113 commode C03KLSMC01 3035-01 47 15 10 113 commode 3035-01 47 15 10 113 113 constribution 3038-01 47 15 10 113 113 constribution 3039-01 47 14 01 113 113 constribution 3039-01 47 14 01 113 113 constribution 3041-01 47 14 01 113 113 constribution 3041-01 47 12 41 113 113 constribution 3042-01 46 56 20 111 112 constribution 3315-01 46 56 20 111 112 constribution 3315-01 46 46 33 113 113 113 113 11	Monture Creek near mouth	C03MONTC30	3031-01		113 13 01	9/10/2003
pground C03MONTC10 3033-01 47 07 34 113 ceek C03KLSMC01 3035-01 46 59 58 113 c03YRNMC20 3035-01 46 51 52 113 c03YRNMC20 3035-01 47 19 37 113 c03TLWF10 3037-01 47 15 10 113 c03CLRWF20 3039-01 47 15 10 113 c03CLRWF20 3039-01 47 14 01 113 c03CLRWF20 3034-01 47 14 01 113 c03DEERC10 3034-01 47 12 41 113 c03BLHDC10 3041-01 47 12 41 113 c03BLHDC10 3041-01 47 00 18 113 c03BLLSC10 3313-01 47 00 13 112 c03BUFLG20 3314-01 46 48 113 c03BUFLG20 3315-01 46 48 113 c03BUFLG20 3316-01 46 48 113 c03BUFLG20 3317-01 46 48 113 c03BUFLG20 3317-01 46 48 113	Monture Creek above Highway 141	C03MONTC20	3032-01		113 10 57	9/10/2003
eek C03KLSMC01 3034-01 46 59 58 113 C03RHMDC01 3035-01 46 53 52 113 C03RHMDC01 3037-01 47 19 37 113 C03CLRWF10 3037-01 47 15 10 113 C03CLRWF20 3038-01 47 14 01 113 C03CLRWF20 3039-01 47 14 01 113 C03CLRWF20 3041-01 47 14 01 113 C03BLHDC10 3041-01 47 12 41 113 C03BLHDC10 3041-01 47 12 41 113 C03BLLDC10 3042-01 46 55 40 113 C03ROCKC10 3312-01 46 56 20 113 C03BUFLG20 3315-01 46 47 47 112 C03BUFLG10 3315-01 46 48 33 113 C03BUFLG10 3315-01 46 48 33 113 C03BUFLG10 3315-01 46 48 33 113 C03BUFLG10 3315-01 46 48 43 113 C03BUFLG10 3315-01 46 48 43 113 C03BUFLG10 3315-01 46 48 43 113 <t< td=""><td>Monture Creek above Monture Creek Campground</td><td>C03MONTC10</td><td>3033-01</td><td></td><td>113 08 47</td><td>9/11/2003</td></t<>	Monture Creek above Monture Creek Campground	C03MONTC10	3033-01		113 08 47	9/11/2003
C03YRNMC20 3035-01 46 53 52 113 C03RHMDC01 3037-01 47 19 37 113 C03CLRWF10 3037-01 47 15 10 113 C03CLRWF20 3038-01 47 15 10 113 C03CLRWF20 3039-01 47 14 01 113 C03CLRWF20 3040-01 47 12 41 113 C03BLHDC10 3041-01 47 70 18 113 C03BLHDC10 3041-01 47 70 18 113 C03BUFLG20 3041-01 47 70 18 113 C03BUFLG20 3312-01 46 56 40 113 C03RUCKC10 3315-01 46 47 47 112 C03BUFLG10 3315-01 46 48 37 113 C03BUFLG10 3315-01 46 48 33 113 C03BUFLG10 3317-01 46 48 33 113 C03BUFLG10 3317-01 46 48 33 113 C03BUFLG10	Kleinschmidt Creek near mouth at Rock Creek	C03KLSMC01	3034-01	59	113 01 51	9/11/2003
C03RHMDC01 3036-01 47 19 37 113 C03CLRWF10 3037-01 47 15 10 113 C03CLRWF20 3039-01 47 15 10 113 C03CLRWF10 3039-01 47 15 10 113 C03CLRWF10 3039-01 47 15 10 113 C03BLHDC10 3041-01 47 12 41 113 C03BLHDC10 3041-01 47 00 18 113 C03BLHDC10 3041-01 47 00 18 113 C03BLHDC10 3041-01 47 00 18 113 C03BLFC20 3314-01 46 55 40 113 C03BUFLG20 3314-01 46 46 33 113 C03BUFLG10 3315-01 46 46 33 113 C03BUFLG10 3316-01 46 46 33 113 C03BUFLG10 3318-01 46 48 33 113 C03BUURYC20 3318-01 46 48 43 113 C03BUURYC10	Yourname Creek below Bridge	C03YRNMC20	3035-01	53	113 06 05	9/12/2003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Richmond Creek above logging road	C03RHMDC01	3036-01	7 19	113 34 32	9/13/2003
C03CLRWF20 3038-01 47 15 10 113 C03DEERC10 3040-01 47 14 01 113 C03DEERC20 3041-01 47 14 01 113 C03DEERC20 3041-01 47 12 41 113 C03BLHDC10 3041-01 47 00 18 113 C03RDCKC20 3041-01 47 00 18 113 C03RDCKC10 3312-01 46 55 40 113 C03RDCKC10 3313-01 46 56 20 113 C03BUFLG20 3314-01 46 47 47 112 C03BUFLG20 3315-01 46 48 37 113 C03BUFLG10 3315-01 46 48 37 113 C03BUFLG20 3315-01 46 48 37 113 C03BUFLG10 3315-01 46 48 03 113 C03BUFLG10 3321-01 46 48 03 113 C03DUUGC20 3321-01 46 48 03 113 C03DUUGC20	West Fork Clearwater River, upper	C03CLRWF10	3037-01	47 18 15	113 36 22	9/13/2003
C03DEERC10 3039-01 47 14 113 C03BLHDC10 3041-01 47 12 113 C03BLHDC10 3041-01 47 01 113 C03BLHDC10 3041-01 47 01 113 C03BLHDC10 3041-01 47 12 113 C03BLHDC10 3042-01 46 55 40 113 C03ROCKC10 3312-01 47 70 113 C03ROCKC10 3313-01 47 70 112 C03BUFLG20 3314-01 46 47 71 112 C03BUFLG20 3315-01 46 48 713 112 C03BUFLG10 3316-01 46 48 713 112 C03BUFLG10 3316-01 46 48 713 113 C03BUFLG10 3316-01 46 48 713 113 C03BUFLG20 3316-01 46 48 713 113 C03BUFLG20 3318-01 46 48 713 113 C03BUFLG20	West Fork Clearwater River, lower	C03CLRWF20	3038-01	47 15 10	113 35 00	9/13/2003
C03DEERC20 3040-01 47 12 113 C03BLHDC10 3041-01 47 00 113 C03BLHDC10 3041-01 47 00 113 C03BLHDC10 3041-01 47 00 113 C03BLACC20 3311-01 46 55 113 C03ROCKC10 3313-01 46 56 113 C03BUFLG20 3314-01 46 47 112 C03BUFLG10 3315-01 46 48 113 C03BUFLG10 3316-01 46 48 113 C03BUFLG10 3316-01 46 48 113 C03BUFLG10 3318-01 46 48 113 C03BUFLG10 3318-01 46 48 113 C03BUURYC10 3318-01 46 48 113 C03BUUGC20 3318-01 46 48 113 C03BUUGC20 33210-01 46 48 113 C03BUUGC20 3321-01 46 48 113 C03MASHC10 33222-01	Deer Creek, upper	C03DEERC10	3039-01	47 14 01	113 39 18	9/14/2003
C03BLHDC10 3041-01 47 00 18 113 C03WALSC10 3042-01 46 55 40 113 C03ROCKC20 3311-01 47 00 03 113 C03ROCKC10 3312-01 47 00 03 113 C03ROCKC10 3313-01 46 56 20 113 C03BUFLG10 3315-01 46 47 47 112 C03BUFLG10 3315-01 46 48 37 113 C03BUFLG10 3315-01 46 48 37 113 C03BUFLG10 3315-01 46 48 37 113 C03BUFLG10 3316-01 46 48 37 113 C03BUFLG10 3316-01 46 48 31 113 C03BUFLG10 3319-01 46 48 03 113 C03BUFC20 3319-01 46 48 03 113 C03DOUGC10 3322-01 46 48 03 113 C03BVASHC10 3322-01 46 48 03 113 C03WASHC20 3323-01 46 48 08 112 C03WASHC20 3324-01 46 48 08 112 C03WASHC20 3325-01 46 46 08 112 C03UEFSC10	Deer Creek, lower	C03DEERC20	3040-01	47 12 41	113 33 18	9/14/2003
(0) 3042-01 3042-01 46 55 40 113 (0) 370CKC20 3311-01 47 00 03 113 (0) C03ROCKC10 3312-01 47 02 10 112 (0) C03RUFLG20 3314-01 46 56 20 113 (0) C03BUFLG10 3315-01 46 47 47 112 (0) C03BUFLG10 3315-01 46 48 37 112 (0) C03BUFLG10 3316-01 46 48 37 113 (0) C03BUFLG10 3316-01 46 48 37 113 (0) C03BUFLG10 3316-01 46 48 37 113 (0) C03BUFLG10 3316-01 46 48 31 113 (0) C03BUFLG10 3319-01 46 48 03 113 (1) C03DOUGC10 3321-01 46 48 03 113 (0) C03DOUGC20 3321-01 46 48 03 113 (0) C03WASHC10 3322-01 46 46 18 112 (0) C03WASHC20 3324-01 46 46 48 112 (0) C03WASHC20 3325-01 46 46 48 112 (0) C03UEFSC30 3325-01 46 46 48 112 (0) C03UEFSC10 3325-01 46 46 48 <td>Blanchard Creek, lower reach</td> <td>C03BLHDC10</td> <td>3041-01</td> <td>7 00</td> <td>113 24 18</td> <td>9/14/2003</td>	Blanchard Creek, lower reach	C03BLHDC10	3041-01	7 00	113 24 18	9/14/2003
(0) (0) (0) (1) (0) (0) (1) (1) (1) (1) (0) (1) (1) (1) (1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (Wales Creek near mouth	C03WALSC10	3042-01	55	113 06 48	9/15/2003
) C03ROCKC10 3312-01 47 02 10 112 C03FRZRC10 3313-01 46 56 20 113 C03BUFLG20 3314-01 46 47 47 112 C03BUFLG10 3315-01 46 46 33 113 C03BUFLG10 3315-01 46 48 37 112 C03BUFLG10 3316-01 46 48 37 113 C03BURYC20 3317-01 46 48 31 113 C03MURYC20 3319-01 46 48 29 113 C03DOUGC10 3319-01 46 48 03 113 C03DOUGC20 3321-01 46 48 03 113 C03DOUGC30 3321-01 46 48 03 113 C03DOUGC30 3322-01 46 46 18 112 C03MASHC10 3322-01 46 46 18 112 C03WASHC20 3322-01 46 46 08 112 C03WASHC20 3325-01 46 46 08 112 C03UEFSC30 3326-01 46 46 30 112 C03UEFSC30 3326-01 46 46 30 112 C03UEFSC30 3326-01 46 46 68 112	Rock Creek above Highway 200 (lower)	C03ROCKC20	3311-01	00	113 01 55	9/11/2003
C03FRZRC10 3313-01 46 56 20 113 C03BUFLG20 3314-01 46 47 47 112 C03BUFLG10 3315-01 46 48 37 112 C03BUFLG10 3315-01 46 48 37 112 C03BURC10 3315-01 46 48 37 113 C03BURYC20 3317-01 46 48 31 113 C03MURYC10 3319-01 46 48 29 113 C03DOUGC10 3319-01 46 48 03 113 C03DOUGC20 3321-01 46 48 03 113 C03DOUGC20 3321-01 46 48 03 113 C03DOUGC20 3321-01 46 48 03 113 C03MASHC10 3322-01 46 46 18 112 C03WASHC20 3323-01 46 46 18 112 C03WASHC20 3325-01 46 48 08 112 C03UEFSC10 3326-01 46 48 08 112 C03UEFSC30 3326-01 46 46 34 112	Rock Creek at state land section 24 (upper)	C03ROCKC10	3312-01	7 02	112 55 25	9/11/2003
C03BUFLG20 3314-01 46 47 47 112 C03BUFLG10 3315-01 46 48 37 113 C03BUFLG10 3316-01 46 48 37 113 C03BURC10 3316-01 46 48 37 113 C03MURYC20 3317-01 46 48 31 113 C03MURYC10 3318-01 46 48 29 113 C03DOUGC10 3319-01 46 48 03 113 C03DOUGC20 3320-01 46 48 03 113 C03DOUGC20 3321-01 46 48 03 113 C03DOUGC20 3322-01 46 48 03 113 C03DOUGC30 3322-01 46 46 18 112 C03WASHC10 3322-01 46 47 07 112 C03WASHC20 3325-01 46 48 08 112 C03UEFSC10 3325-01 46 46 30 112 C03UEFSC30 3326-01 46 46 30 112	Frazier Creek near mouth	C03FRZRC10	3313-01	56	113 07 24	9/25/2003
C03BUFLG10 3315-01 46 48 37 112 C03BKBRC10 3316-01 46 46 33 113 C03BKBRC10 3317-01 46 48 31 113 C03MURYC20 3317-01 46 48 31 113 C03MURYC10 3318-01 46 48 29 113 C03DOUGC10 3319-01 46 48 03 113 C03DOUGC20 3320-01 46 48 03 113 C03DOUGC30 3321-01 46 48 03 113 C03DOUGC30 3322-01 46 46 18 112 C03MASHC10 3322-01 46 47 07 112 C03WASHC10 33225-01 46 46 18 112 C03WASHC20 3325-01 46 46 03 112 C03UEFSC30 3325-01 46 46 30 112 C03UEFSC30 3326-01 46 46 30 112	Buffalo Gulch near mouth	C03BUFLG20	3314-01	47	112 46 19	9/25/2003
C03BKBRC10 3316-01 46 46 33 113 C03MURYC20 3317-01 46 48 31 113 C03MURYC10 3318-01 46 48 29 113 C03MURYC10 3319-01 46 48 29 113 C03DOUGC10 3319-01 46 47 07 113 C03DOUGC20 3320-01 46 48 03 113 C03DOUGC30 3321-01 46 46 18 112 C03GALGC10 3322-01 46 46 18 112 C03GALGC10 3322-01 46 47 07 112 C03WASHC10 3323-01 46 47 07 112 C03WASHC20 3324-01 46 46 18 112 C03WASHC20 3325-01 46 46 08 112 C03WASHC20 3325-01 46 46 30 112 C03UEFSC30 3326-01 46 46 30 112 C03JEFSC30 3326-01 46 46 30 112	Buffalo Gulch, upper	C03BUFLG10	3315-01	48	112 44 27	9/25/2003
C03MURYC20 3317-01 46 48 31 113 C03MURYC10 3318-01 46 48 29 113 C03MURYC10 3319-01 46 48 29 113 C03MURYC10 3319-01 46 47 07 113 C03DOUGC20 3320-01 46 47 07 113 C03DOUGC30 3321-01 46 46 18 112 C03GALGC10 3322-01 46 46 18 112 C03GALGC10 3323-01 46 47 07 112 C03WASHC10 3323-01 46 47 07 112 C03WASHC20 3324-01 46 46 08 112 C03WASHC20 3325-01 46 46 08 112 C03WASHC20 3325-01 46 46 34 112 C03WASHC20 3325-01 46 46 36 112 C03UEFSC30 3326-01 46 46 34 112 C03JEFSC30 3326-01 46 46 34 112	Black Bear Creek near mouth	C03BKBRC10	3316-01	46	113 05 37	9/26/2003
C03MURYC10 3318-01 46 48 29 113 C03DOUGC10 3319-01 46 47 07 113 C03DOUGC20 3320-01 46 48 03 113 C03DOUGC30 3321-01 46 48 03 113 C03DOUGC30 3321-01 46 48 03 113 C03DOUGC30 3321-01 46 46 18 112 C03WASHC10 3322-01 46 47 07 112 C03WASHC20 3324-01 46 45 45 112 C03UEFSC10 3325-01 46 48 08 112 C03JEFSC30 3326-01 46 46 34 112	Murray Creek above lowest road crossing	C03MURYC20	3317-01	48	113 04 55	9/26/2003
C03DOUGC10 3319-01 46 47 07 113 C03DOUGC20 3320-01 46 48 03 113 C03DOUGC30 3321-01 46 51 41 113 C03DOUGC30 3321-01 46 51 41 113 C03DOUGC10 3322-01 46 46 18 112 C03WASHC10 3322-01 46 47 07 112 C03WASHC20 3324-01 46 45 45 112 C03WASHC20 3325-01 46 46 08 112 C03JEFSC10 3326-01 46 46 34 112 C03JEFSC30 3326-01 46 46 34 112	Murray Creek above highest road crossing	C03MURYC10	3318-01	48	113 08 10	9/26/2003
C03DOUGC20 3320-01 46 48 03 113 C03DOUGC30 3321-01 46 51 41 113 C03GALGC10 3322-01 46 46 18 112 C03GALGC10 3323-01 46 47 07 112 C03WASHC10 3323-01 46 47 07 112 C03WASHC20 3324-01 46 45 45 112 C03JEFSC10 3325-01 46 46 34 112 C03JEFSC30 3326-01 46 46 34 112	Douglas Creek above second reservoir	C03DOUGC10	3319-01	47	113 07 39	9/27/2003
C03DOUGC30 3321-01 46 51 41 113 C03GALGC10 3322-01 46 46 18 112 C03WASHC10 3323-01 46 47 07 112 C03WASHC20 3323-01 46 47 07 112 C03WASHC20 3324-01 46 45 45 112 C03JEFSC10 3325-01 46 46 34 112 C03JEFSC30 3326-01 46 46 34 112	Douglas Creek above Murray Creek	C03DOUGC20	3320-01	48	113 03 52	9/27/2003
C03GALGC10 3322-01 46 46 18 112 C03WASHC10 3323-01 46 47 07 112 C03WASHC20 3324-01 46 45 45 112 C03WASHC20 3324-01 46 46 46 112 C03JEFSC10 3325-01 46 46 34 112 C03JEFSC30 3326-01 46 46 34 112	Douglas Creek near mouth	C03DOUGC30	3321-01	51	113 00 09	9/27/2003
C03WASHC10 3323-01 46 47 07 112 C03WASHC20 3324-01 46 45 45 112 C03UASHC20 3325-01 46 48 08 112 C03JEFSC30 3326-01 46 46 34 112	Gallagher Creek near mouth	C03GALGC10	3322-01	46	112 44 55	9/28/2003
C03WASHC20 3324-01 46 45 45 112 C03JEFSC10 3325-01 46 48 08 112 C03JEFSC30 3326-01 46 46 34 112	Washington Creek above Cow Gulch	C03WASHC10	3323-01	47	112 39 55	9/28/2003
C03JEFSC10 3325-01 46 48 08 112 C03JEFSC30 3326-01 46 46 34 112	Washington Creek above Highway 141	C03WASHC20	3324-01		112 42 00	9/28/2003
C03JEFSC30 3326-01 46 46 34 112	Jefferson Creek above Madison Gulch	C03JEFSC10	3325-01	48	112 41 37	9/29/2003
	Jefferson Creek above Highway 141	C03JEFSC30	3326-01		112 44 18	9/29/2003
k Road C03BRZLC10 3327-01 46.48.25 112	Braziel Creek above Nevada Creek Road	C03BRZLC10	3327-01	46 48 25	112 50 18	9/29/2003
Seven-Up Pete Creek headwaters C03SVNPC01 3328-01 46 56 44 112 3	Seven-Up Pete Creek headwaters	C03SVNPC01	3328-01	56	112 31 25	10/24/2003

	_
1	F 2

Table 2. Diator	the State of Montana to evaluate biological inte	
values,	values, expected response to increasing impairment or natural suess, and criteria to rating revers or provosiven integrity.	
rating fo	rating for any one metric is the rating for that site.	

Biological Integrity/ No. of Species Diversity Index ² Impairment or Stress/ Counted ¹ (Shannon) Use Support	No. of Species Counted ¹	Diversity Index ² (Shannon)	Pollution Index ³	Siltation Index ⁴	Disturbance Index ⁵	Disturbance % Dominant .% Abnormal Index ⁵ Species ⁶ Cells ⁷	% Abnormal Cells ⁷	Similarity Index ⁸
Excellent/None Full Support	>29	>2.99	>2.50	<20.0	<25.0	<25.0	0	>59.9
Good/Minor Full Support	20-29	2.00-2.99	2.01-2.50	20.0-39.9	25.0-49.9	25.0-49.9	>0.0, <3.0	40.0-59.9
Fair/Moderate Partial Support	19-10	1.00-1.99	1.50-2.00	40.0-59.9	50.0-74.9	50.0-74.9	3.0-9.9	20.0-39.9
Poor/Severe Nonsupport	<10	<1.00	<1.50	>59.9	>74.9	>74.9	6.6<	<20.0
References	Bahls 1979 Bahls 1993	Bahls 1979	Bahls 1993	Bahls 1993	Barbour et al. 1999	Barbour et al. 1999	McFarland et al. 1997	Whittaker 1952
Range of Values	0-100+	0.00-5.00+	1.00-3.00	+0.06-0.0	0.0-100.0	~5.0-100.0	0.0-30.0+	0.0-100.0
Expected Response	Decrease ^y	Decrease ^y	Decrease	Increase	Increase	Increase	Increase	Decrease
	:							

¹Based on a proportional count of 300 cells (600 valves)

²Base 2 [bits] (Weber 1973)

³Composite numeric expression of the pollution tolerances assigned by Lange-Bertalot (1979) to the common diatom species

⁴Sum of the percent abundances of all species in the genera Navicula, Nitzschia and Surirella

⁵Percent abundance of Achnanthidium minutissimum (synonym: Achnanthes minutissima)

⁶Percent abundance of the species with the largest number of cells in the proportional count

Cells with an irregular outline or with abnormal ornamentation, or both

⁸Percent Community Similarity (Whittaker 1952)

⁹Species richness and diversity may increase somewhat in mountain streams in response to slight to moderate increases in nutrients or sediment

C03MONTC30	Unknown alga has short, branched filaments with barrel-shaped cells
C03MONTC20	Sample slightly putrid, contains macrophytes
C03MONTC10	Sample includes a stick ~0.25 in. thick and ~3 in. long
C03KLSMC01	Sample very silty and slightly putrid; contains macrophytes and mart (calcium carbonate precipitate)
C03YRNMC20	Metosira varians is the visually dominant diatom in this sample
C03RHMDC01	Sample contains moss
C03CLRWF10	Sample mostly moss; Epithemia turgida and Rhopalodia gibba are visually conspicuous diatoms
C03CLRWF20	A very diverse sample (15 genera of non-diatom algae)
C03DEERC10	Sample mostly moss
C03DEERC20	Sample mostly moss; Chaetophora in this sample is senescent
C03BLHDC10	Sample mostly decaying leaves
C03WALSC10	Sample mostly twigs and decaying leaves; Cladophora is covered with Cocconeis pediculus
C03ROCKC20	No notes
C03ROCKC10	Sample mostly macrophytes; a very dirty sample (fine particulate organic matter and sediment)
C03FRZRC10	Sample very silty (fine inorganic sediment)
C03BUFLG20	Sample mostly moss and leaves; very silty
C03BUFLG10	Sample silty and contains fine particulate organic matter; Chamaesiphon is an epiphyte on Rhizoclonium
C03BKBRC10	Sample contains moss; very silty
C03MURYC20	Sample contains moss; very silty with fine particulate organic matter
C03MURYC10	Sample contains moss; very silty with fine particulate organic matter; Closterium cells are very large
C03DOUGC10	Sample contains macrophytes; very silty
C03DOUGC20	Sample mostly macrophytes; heavy sediment
C03DOUGC30	Sample contains macrophytes; very silty
C03GALGC10	Sample very silty; contains moss
C03WASHC10	Sample contains macrophytes and Nostoc (ear-shaped colonies); Closterium cells very large
C03WASHC20	Sample very silty; contains plant parts and detritus
C03JEFSC10	Sample contains macrophytes; some silt and fine particulate organic matter
C03JEFSC30	Sample contains moss; very silty
C03BRZLC10	Sample very silty, decaying leaf
C03SVNPC01	Sample mostly moss; silt and fine particulate organic matter common

nerinhyton samples collected in 2003 from the Blackfoot River TMDL Planning Area. Samula notas for Table 3.

.

Table 4. Relative abundance of cells and ordinal rank by biovolume of diatoms (Division Bacillariophyta) and genera of non-diatom algae in	peripriyion samples concerce nom ne created and the reaction of the	Taxa MONTC10 MONTC20 MONTC30 KLSMC01 VRNMC20 RHMDC01 CLRWF10 CLRWF20 DEERC10 DEERC20
--	---	--

Man and An and An and an an W	DNTC10	MONTC20	MONTC30	KLSMC01	MONTC10 MONTC20 MONTC30 KLSMC01 YRNMC20 RHMDC01 CLRWF10 CLRWF20 DEERC10 DEERC20	RHMDC01	CLRWF10	CLRWF20	DEERC10 L	JEERC20
Cyanophyta Amohithrix	f/5									
Anabaena	1						f/8	L	0/7	
Calothrix								C1/1		
Chamaesiphon										
Hydrocoleum		9/0	-113							
Merismopedia		0/0	2				c/10	o/10	f/2	a/2
Nostoc Oscillatoria	a/2	f/3	d/2	f/3		f/2		f/6		
Phormidium	ļ									
Tolypothrix								c/7	r/9	f/4
киодориута			Į			010	0/11	0/11	0/6	
Audouinella			0/1	C/4		5	- 10	- 0		
Chlorophyta			0110					0/13		
Ankistrodesmus			110					115		c/6
Chaetophora								0		5
Cladophora			!	ļ			C F/ 1	0 17	110	0/10
Closterium		0/4	c/5	¢/0	Ĩ		0/13	01/1	017	21 10
Cosmarium			0/0		c/1		Ľ		4.	0/0
Hormidium							C/1			
Microspora							a/3	11	210	0/10
Mougeotia							C/D	74	C/O	0, 10
Oedogonium		f/2	f/3		f/3		6/0	8/0	C/ 3	C/D
Pediastrum			o/11							
Rhizoclonium					a/2					
Scenedesmus		o/5	o/10				Į	2		013
Spirogyra	c/4			c/2	c/4		c/ /	a/1		C11 71.0
Staurastrum		r/7						a/3		CL I
Stigeoclonium			0/8							
Ulothrix							Q	011		0/0
Zygnema	a/1						a/2	71.10		0/0

 ・ ・ ・	AONTC10	MONTC20	MONTC30	KLSMC01	C20*MONTC30*KLSMC01%YRNMC20*RHMDC01_CLRWF10_CLRWF20_DEERC10_DEERC20	RHMDC01	CLRWF10	CLRWF20	DEERC10	DEERCZ
Chrysophyta <i>Tribonema</i> Vaucheria	c/6						0/12	c/9	f/4	0/11
Phaeophyta Heribaudiella			a/4			c/4	d/1	r/14	o/8	
Unknown			c/6							
Bacillariophyta	1/3	a/1	1/p	a/1	d/1	a/1	f/4	a/2	f/1	a/1
No. Non-Diatom Genera	ß	9	12	4	4	3	12	15	6	11

Table 4. Relative abundance of cells and ordinal rank by biovolume of diatoms (Division Bacillariophyta) and genera of non-diatom algae in periphyton samples collected from the Blackfoot River TMDL Planning Area in 2003: d = dominant, a = abundant, f = frequent,

	-	
1	9)

HDC10 MALSC10 ROCKC10 ROCKC20 FRZRC10 BUFLG10 BUFLG20 BKBRC10 MURYC10 MURYC20 Table 4. Relative abundance of cells and ordinal rank by biovolume of diatoms (Division Bacillariophyta) and genera of non-diatom algae in periphyton samples collected from the Blackfoot River TMDL Planning Area in 2003: d = dominant, a = abundant, f = frequent, c = common; o = occasional; r = rare.

	LHDC107W	ALSC10#R	OCKC10 R	OCKC20 F	RZRC10 © B	UPEG10 B	UFEGZU_B		
Cyanophyta Amphithrix Anabaena Calothrix Chamaesiphon Hydrocoleum Merismopedia Nostoc Oscillatoria Phormidium Tolypothrix	c/6 c/5 d/2	0/4		6/1 0/7	0/4 0/5	0/6 c/4 o/5	C/4	o/3 c/2	
Rhodophyta Audouinella					0/3				
Chlorophyta Ankistrodesmus Chodochara		o/5		f/5					
Criaetopriora Cladophora Closterium Cosmarium	o/7 c/3	c/2		r/8		c/3	c/3		o/2
Hormidium Microspora Mougeotia Oedogonium Podiastrum		r/6	0/3	c/3					
Rhizoclonium Scenedesmus Spirogyra Staurastrum	c/4	0/3	, (c/4 o/6		f/2			
Stigeoclonium Ulothrix Zygnema			- ğ	d/2					

c = common; o = occasional; r = rare.	ccasional	r = rare.								
·····································	BLHDC10	WALSC10	ROCKC10	ROCKC20	%FRZRC1) (BUFLG10	BUFLG20	BKBRC1	0.MURYC10	MURYC20
Chrysophyta Tribonema										
Vaucheria					0/2		f/2			
Phaeophyta Heribaudiella										
Unknown										
Bacillariophyta	d/1	1/b	f/2	1/b	a/1	a/1	a/1	a/1	f/1	c/1
No. Non-Diatom Genera	9	5	2	8	4	S	ę	2	-	0

Table 4. Relative abundance of cells and ordinal rank by biovolume of diatoms (Division Bacillariophyta) and genera of non-diatom algae in periphyton samples collected from the Blackfoot River TMDL Planning Area in 2003: d = dominant, a = abundant, f = frequent, c = common or a consistent.

-			
	-		

Table 4. Relative abundance of cells and ordinal rank by biovolume of diatoms (Division Bacillariophyta) and genera of non-diatom algae in periphyton samples collected from the Blackfoot River TMDL Planning Area in 2003: d = dominant, a = abundant, f = frequent, c = common; o = occasional; r = rare.

C = CUITINUT, O = OCCASIONAL, I = TALC.	DOUGC10	DOUGC20	DOUGC30	GALGC10	DOUGC10, DOUGC20, DOUGC30+GAEGC10+WASHC10, WASHC20*JEFSC10-JEFSC30+BRZLC10_SVNPC01	WASHC20	JEFSC10	JEFSC30	BRZLC10	SVNPC01
Cyanophyta Amphithrix Anabaena Calothrix										
Chamaesiphon Hydrocoleum				0/3						r/5
Merismopedia Nostoc			11/1		f/2		c/5			c/3
Oscillatoria Phormidium Tolypothrix	c/3	o/6	a/4	o/2	c/3	f/3 o/6		f/2		
Rhodophyta Audouinella	f/2	c/3				f/2		0/4		
Chlorophyta Ankistrodesmus										
Chaetophora Cladophora		0/4	f/3							
Closterium Cosmarium		0/5	c/5 o/9		o/4 r/6	0/5	o/6 o/7	o/6	• 0/3	0/4
Hormidium Microspora										
Mougeotia		Ĩ	<u>(</u>		o/5					
Oedogonium Pediastrum		1/0	7/D							
Rhizocloníum							f/2	0/5		
Scenedesmus		ç	0/10							
Spirogyra Staurastrum		C/2	0/0					r/7		
Stigeoclonium Ulothrix Zygnema	c/4 0/5		o/8			0/4	c/4	c/3	a/1	

Chrysophyta <i>Tribonema</i> Vaucheria			0/7							
Phaeophyta Heribaudiella							d/1			<i>t</i> /2
Unknown										
Bacillariophyta	d/1	d/1	d/1	c/1	1/1	a/1	c/3	a/1	a/2	a/1
No. Non-Diatom Genera	4	9	10	2	5	5	6	9	2	4

Ach. minutissimum 27.29 34.84 23.99 3 Ach. minutissimum 27.29 34.84 23.99 3 Cocconeis placentula Cocconeis placentula 8.77 5 Cymbelta excisa 9.76 8.77 5 Cymbelta subturgidula 9.76 8.77 5 Diatoma wugaris 9.76 9.76 16.72 Diatoma vulgaris 7.53 28.74 16.72 Encyonopsis krammeri 7.53 28.74 16.72 Epithemia sorex 7.53 28.74 16.72 Eomphonema silesiacum 7.53 28.74 16.72 Eomphonema silesiacum 7.53 28.74 16.72 Eomphonema silesiacum 7.53 28.74 16.72 Gomphonema sorex 6 16.35 5 5 Gomphonema designatum 16.35 5 5 5 Gomphonema kobayasii 16.35 5 5 5 Gomphonema kobayasii 16.35 5 5 5 5 Gomphonema kobayasii 16.35 5	25.96 14.50				14.50	
9.76 9.76 7.53 28.74 <i>tum</i> 16.35 a 1.	23.99 33.57				14.96	5.09
9.76 9.76 7.53 28.74 16.35 a 16.35 10 10 10 10 10 10 10 10 10 10 10 10 10		7.95	6.86	18.03		7.82
9.76 28.74 16.35 28.74 28.74	8.77					
9.76 1.53 28.74 <i>tum</i> 16.35 <i>a</i> <i>a</i>					12.08	
تان 7.53 28.74 tum 16.35 ها عام م						
16.35 28.74 tum 16.35 16.35 a 1 16.35 a 1 16.35						
ata 28.74						
tum a sii a a sii tum	16.72					
a si tum a si tum						
<u>gustatum</u> signatum bayasii nutum nutum <u>adiata</u> ca <u>adiata</u> ta a fa a <i>a</i> <i>istriata</i> <i>a</i> <i>istriata</i>						
ngustatum esignatum obayasii ninutum <u>enella</u> tica tica tica ta ta ta ta ea ea ea ea				6.41		
Somphonema designatum Somphonema kobayasii Somphonema minutum Aelosira varians lavicula cryptotenella lavicula reichardiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana litzschia finearis litzschia palea litzschia paleacea litzschia paleacea litzschia paleacea litzschia paleacea lanothidium spp. Seudostaur. brevistriata						
Somphonema kobayasii Somphonema minutum Aelosira varians Aelosira varians Aelosira varians Aavicula cryptotenella lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana lavicula reichardtiana litzschia finearis litzschia palea litzschia paleacea litzschia paleacea						
comphonema minutum felosira varians lavicula capitatoradiata lavicula cryptotenella lavicula enigmatica avicula tripunctata lavicula tripunctata litzschia fonticola litzschia palea litzschia palea litzschia paleacea litzschia paleacea litzschia paleacea litzschia paleacea litzschia paleacea					12.20	
<u>retosira varians</u> <u>lavicula capitatoradiata</u> <u>lavicula cryptotenella</u> lavicula enigmatica lavicula tripunctata lavicula tripunctata litzschia fonticola litzschia palea <u>litzschia palea</u> <u>litzschia paleacea</u> <u>lanothidium spp.</u> ^{seudostaur. brevistriata}			7.30			
lavicula capitatoradiata lavicula cryptotenella lavicula enigmatica lavicula terichardtiana lavicula tripunctata litzschia fonticola litzschia palea litzschia paleae litzschia paleaea lanothidium spp. seudostaur. brevistriata		11.69				43.96
lavicula cryptotenella lavicula reichardtiana lavicula tripunctata lavicula tripunctata litzschia dissipata litzschia palea litzschia palea litzschia paleacea lanothidium spp. seudostaur. brevistriata						
lavicula enigmatica <u>lavicula reichardtiana</u> lavicula tripunctata litzschia dissipata litzschia palea litzschia palea litzschia paleaea litzschia paleaea litzschia paleaea litzschia paleaea litzschia paleaea			5.34	5.10	•	
lavicula reichardtiana lavicula tripunctata litzschia dissipata litzschia linearis litzschia palea litzschia paleacea litzschia paleacea litzschia shreviata				10.68	6.53	
lavicula tripunctata litzschia dissipata litzschia fonticola litzschia palearis litzschia paleacea lanothidium spp. seudostaur. brevistriata						
litzschia dissipata litzschia fonticola litzschia palea litzschia palea litzschia paleacea lanothidium spp. seudostaur. brevistriata						
litzschia fonticola litzschia linearis litzschia palea litzschia paleacea lanothidium spp. seudostaur. brevistriata						
litzschia linearis litzschia palea litzschia paleacea Panothidium spp. seudostaur. brevistriata						
litzschia palea litzschia paleacea tanothidium spp. 'seudostaur. brevistriata						
litzschia pałeacea łanothidium spp. seudostaur. brevistriata						
lanothidium <u>spp.</u> seudostaur. brevistriata bhoireachana abhraviata						
Seudostaur. brevistriata Proiecenhania abhraviata		11.35	5.99			
Dhoirochtania abhraviata					6.18	
			16.56			

•

rens 7.84 7.84 6.17 9.44 7.84 11.11 6.17 9.44 r 3.90 3.36 56 50 59 40 49 46 r 3.90 3.36 4.18 3.44 4.89 4.37 4.51 4.10 r 3.90 3.36 4.18 3.44 4.89 4.37 4.51 4.10 r 2.60 2.57 2.62 2.76 2.34 2.53 2.66 2.66 r 2.60 2.339 3.357 4.20 3.70 2.61 14.96 r 27.29 34.84 23.99 33.57 11.69 16.56 18.03 14.96 r 0.00 0.00 0.00 0.00 0.02 0.16 0.12 0.12	stress; <u>underlined and bold</u> values indicate severe stress; all other values indicate no stress and full support of aquatic life uses when compared to biocriteria (thresholds) in Table 2. Observed stress may be natural or anthropogenic. Species/Metric ² MONTC10 MONTC20 MONTC30 KLSMC01 YRNMC20 RHMDC01 CLRWF10 CLRWF20 DEERC10 E	ia (thresholds) ii 210 MONTC20	ds) in Table 2. Observed stress may be natural or anthropogenic. C20 MONTC30 KLSMC01 YRNMC20 RHMDC01 CLRWF10 CLRWF20 DEERC10 DEERC20	Served stre	YRNMC20	RHMDC01	CLRWF10	CLRWF20	DEERC10	DEERC20
46 55 56 50 59 40 49 46 3.90 3.36 4.18 3.44 4.89 4.37 4.51 4.10 2.60 2.57 2.62 2.76 2.34 2.53 2.58 2.66 2.65 12.70 10.96 7.25 $\underline{35.30}$ $\underline{24.95}$ 2.58 2.66 2.729 $\underline{34.84}$ 23.99 $\underline{33.57}$ 4.20 3.70 2.61 14.96 27.29 $\underline{34.84}$ 23.99 $\underline{33.57}$ 4.20 3.70 2.61 14.96 27.29 $\underline{34.84}$ 23.99 $\underline{33.57}$ 4.169 1.74 1.19 0.12 0.00 0.20 0.46 0.70 0.34 1.74 1.19 0.12 0.00 0.12 0.12 0.12 0.12 0.12 0.12	Staurosira construens Surirella minuta Synedra rumpens Synedra ulna			7.84		11.11	6.17	9.44	19.72 9.68	
3.90 3.36 4.18 3.44 4.89 4.37 4.51 4.10 2.60 2.57 2.62 2.76 2.34 4.89 4.37 4.51 4.10 2.65 2.57 2.62 2.76 2.53 2.58 2.66 2.729 34.84 23.99 33.57 4.20 3.70 2.61 14.96 27.29 34.84 23.99 33.57 11.69 16.56 18.03 14.96 0.00 0.20 0.46 0.70 0.34 1.74 1.19 0.12 0.00 0.70 0.34 0.00 0.34 0.00 2.30		55	56	50	59	40	49	46	52	44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.18	3.44	4.89	4.37	4.51	4.10	4.56	3.62
5.65 12.70 10.96 7.25 35.30 24.95 23.25 7.48 27.29 34.84 23.99 33.57 4.20 3.70 2.61 14.96 27.29 34.84 23.99 33.57 4.20 3.70 2.61 14.96 27.29 34.84 23.99 33.57 11.69 16.56 18.03 14.96 0.00 0.20 0.46 0.70 0.34 1.74 1.19 0.12 0.00 0.70 0.34 0.00 12.66 2.30			2.62	2.76	2.34	2.53	2.58	2.66	2.65	2.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10.96	7.25	35.30	24.95	23.25	7.48	23.80	10.78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dex		23.99	33.57	4.20	3.70	2.61	14.96	2.92	5.09
0.00 0.20 0.46 0.70 0.34 1.74 1.19 0.12 0.00 0.00 0.12 0.00 0.34 0.00 12.69 2.30			23.99	33.57	11.69	16.56	18.03	14.96	19.72	43.96
0.00 0.00 0.12 0.00 0.34 0.00 12.69 2.30			0.46	0.70	0.34	<u>1.74</u>	1.19	0.12	0.12	0.48
	% Rhopalodiales 0.00		0.12	0.00	0.34	00.00	12.69	2.30	3.03	4.03
Similarity Index ³ 51.64 64.22 34.09	Similarity Index ³	51.64	64.22					34.09		26.75

A major diatom species accounts for 8% or more of the cells at one or more stations in a sample set. Values for major species are shown only where they equal or exceed 5% of the cells in that sample.

²Species that are sensitive to organic pollution are in *italics*; species that are somewhat tolerant of organic pollution are underlined; species that are very tolerant to organic pollution are in bold face type.

³Percent Community Similarity (Whittaker 1952) when compared to the diatom assemblage at the adjacent upstream station on same stream.

when compared to biocriteria (thresholds) in 1 able 2. Ubserved stress may be natural or anthropogenic Species/Metric ² BLHDC10 WALSC10 ROCKC10 FRZRC10 BUFLG10 BUFLG20	biocriteria (II BLHDC10	WAL-SC10		DSERVED SITE ROCKC20	ss may be n FRZRC10	BUFLG10	ds) in 1 able 2. Ubserved stress may be natural of anthropogenic. C10 ROCKC10 ROCKC20 FRZRC10 BUFLG10 BUFLG20 BKBRC10 MURYC10 MURYC20	BKBRC10	MURYC10'I	AURYC20
Achnanthidium deflexum			11 20	5.13 26.68					25 ZO	
Acri. minuissimum Cocconeis ntacentula	10.26		5.43	70.00	13.84	21.29	12.76		15.47	7.59
Cymbella excisa			8.70							
Cymbella subturgiduta										
Diatoma mesodon										
Diatoma vulgaris		17.81								
Distrionetta incognita				13.00						
<u>Encyonema silesiacum</u>		6.28								
Encyonopsis krammeri			18.91							
Epithemia sorex	7.31									
Epithemia turgida										
Gomphonema angustatum										
Gomphonema designatum			16.20							
Gomphonema kobayasii			7.17						5.00	
Gomphonema minutum			5.65							
Metosira varians										
Navicuta capitatoradiata	6.01	5.37			6.28		7.74			
Navicuta cryptotenella					6.51	13.71	6.15		۰.	
Navicuta enigmatica										
<u>Navicuta reichardtiana</u>		10.84					14.24			
Navicula tripunctata					13.84					
Nitzschia dissipata							13.55	9.72		
Nitzschia fonticola	32.67				12.21					
<u>Nitzschia linearis</u>								5.45		
Nitzschia palea	8.73							19.79		
<u>Nitzschia paleacea</u>										
Planothidium spp.					7.68	9.36	6.83		15.12	30.15
Pseudostaur. brevistriata				14.82					L	
Rhoicosphenia abbreviata									6.51	

Table 5. Percent abundance of major diatom species¹ and values of selected diatom association metrics for periphyton samples collected from the Blackfoot River TMDL Planning Area in 2003. <u>Underlined values</u> indicate minor stress; **bold values** indicate moderate actives and full support of aniatic life uses.

	-	

Table 5. Percent abundance of major diatom species ¹ and values of selected diatom association metrics for periphyton samples collected from the Blackfoot River TMDL Planning Area in 2003. <u>Underlined values</u> indicate minor stress; bold values indicate moderate stress; <u>underlined and bold</u> values indicate severe stress; all other values indicate no stress and full support of aquatic life uses when compared to biocriteria (thresholds) in Table 2. Observed stress may be natural or anthropogenic.	ce of major d River TMDL <u>I and bold</u> v biocriteria (t	iatom specie Planning Ar alues indicat hresholds) ir	pecies ¹ and values of selected diatom association metrics for periphyton samples collected ng Area in 2003. <u>Underlined values</u> indicate minor stress; bold values indicate moderate dicate severe stress; all other values indicate no stress and full support of aquatic life uses ds) in Table 2. Observed stress may be natural or anthropogenic.	es of selecte <u>Underlined v</u> ess; all other bserved stre	d diatom as: <u>values</u> indic values indic ss may be r	sociation me ate minor stre cate no stres natural or an	trics for peri ess; bold va s and full su thropogenic.	phyton sam ulues indical upport of aqu	ples collecte te moderate Latic life use	s s b
Staurosira construens Surirella minuta Synedra rumpens Synedra ulna								8.53		
No of Species Counted	38	6.7	57	51	г. 1	ц.	U C	50	5	С.Е.
Rocios Diversity	2 7 8	77	5 F F F				1 50	00	7 t C	5 C T
opecies Diversity Pollution Index	00 7.57 0	4.12 2 45	9.1-1 2.86	0.07 2 80	4.44 0.40	4.4 - 0 28	4.09 0.25	4.03 201	3.90 2.60	4.99 2.23
Siltation Index	59.67	42.92	11.41	2.62	<u>59.88</u>	41.03	<u>62.76</u>	1.32 75.47	22.67	29.32
Disturbance Index	2.00	1.14	11.30	26.68	2.91	0.56	0.68	1.30	25.70	4.56
% Dominant Species	32.67	17.81	18.91	26.68	13.84	21.29	14.24	19.79	25.70	13.32
% Abnormal Cells	00.0	0.34	0.22	0.34	0.12	0.33	0.11	00.0	00.0	0.12
% Rhopalodiales	7.31	1.37	0.00	0.00	1.86	1.90	0.91	2.37	0.35	0.00
Similarity Index ³				17.43			49.72			51.04
¹ A major diatom species accounts for 8% or more of the cells at one or more stations in a sample set. Values for major species are shown only where they equal or exceed 5% of the cells in that sample.	counts for 8% ceed 5% of t	6 or more of the cells in th	the cells at c nat sample.	one or more	stations in a	sample set.	Values for	major spec	ies are shov	ų

²Species that are sensitive to organic pollution are in *italics*; species that are somewhat tolerant of organic pollution are <u>underlined</u>; species that are very tolerant to organic pollution are in bold face type.

³Percent Community Similarity (Whittaker 1952) when compared to the diatom assemblage at the adjacent upstream station on same stream.

Species/Metric ² and DOUGC10, DOUG	DOUGC10	DOUGC20	DUGC30	C20 DOUGC30 GALGC10 WASHC10 WASHC20 JEFSC10	VASHC10	VASHC20	JEFSC10	"JEFSC30 BRZLC10 SVNPC01	BRZLC10	SVNPC01
Achnanthidium deflexum										ľ
Ach. minutissimum										
Cocconeis placentula		7.77		7.00	17.53	5.64	17.25	8.93	20.84	15.01
Cymbella excisa	63.52									
Cymbella subturgidula										
Diatoma mesodon										
Diatoma vulgaris		17.49								
Distrionella incognita										
Encyonema silesiacum										
Encyonopsis krammeri										
Epithemia sorex							30.42			
Epithemia turgida										9.93
Gomphonema angustatum										
Gomphonema designatum										
Gomphonema kobayasii					6.12				11.96	
Gomphonema minutum										20.80
Melosira varians				16.44				25.64		
Navicula capitatoradiata			19.24		6.96			6.38		
Navicula cryptotenella				12.11					<i>R</i> •	
Navicula enigmatica										
Navicula reichardtiana					13.69		5.59	8.24		6.03
Navicula tripunctata										
Nitzschia dissipata		11.09	5.19			24.31			11.96	
Nitzschia fonticola										
Nitzschia linearis			5.08			9.61			5.24	
Nitzschia palea			8.76							
Nitzschia paleacea							9.79			
Planothidium spp.				16.44					7.17	8.28
Pseudostaur. brevistriata									7	10
Rhoicosphenia abbreviata						8.29			/ .4U	14.07

Table 5. Percent abundance of major diatom species ¹ and values of selected diatom association metrics for periphyton samples collected from the Blackfoot River TMDL Planning Area in 2003. <u>Underlined values</u> indicate minor stress; bold values indicate moderate stress; <u>underlined and bold</u> values indicate severe stress; all other values indicate no stress and full support of aquatic life uses when compared to biocriteria (thresholds) in Table 2. Observed stress may be natural or anthropogenic. Species/Metric² DOUGC10 DOUGC20 DOUGC30 GALGC10 WASHC10 WASHC20 JEFSC10 JEFSC30 BRZLC10 S	e of major di River TMDL and bold ve biocriteria (th	atom specie Planning Arr alues indicate bresholds) in DOUGC20	s ¹ and value ea in 2003. e severe stre Table 2. O DOUGC30.	becies ¹ and values of selected diatom association metrics for periphyton samples collected ing Area in 2003. <u>Underlined values</u> indicate minor stress; bold values indicate moderate dicate severe stress; all other values indicate no stress and full support of aquatic life uses dis) in Table 2. Observed stress may be natural or anthropogenic. C20 DOUGC30 GALGC10 WASHC10 WASHC20 JEFSC10 JEFSC30 BRZLC10 SVNPC01	d diatom ass <u>alues</u> indica values indic ss may be r WASHC10 ,	sociation mel ite minor stre ate no stres atural or ant WASHC20	rics for perigess; bold va s and full su hropogenic.	ohyton samp lues indicat pport of aqu JEFSC30	ples collecte te moderate Latic life use BRZLC10	SVNPC01
Staurosira construens Surirella minuta Synedra rumpens Synedra ulna		8.80								
No. of Species Counted	42	67	63	68	55	54	41	63	48	36
Species Diversity	2.64	4.72	4.80	4.67	4.54	4.40	3.68	4.44	4.24	3.81
Pollution Index	2.76	2.45	2.28	2.15	2.48	2.48	2.62	<u>2.18</u>	2.57	2.69
Siltation Index	16.90	39.77	61.51	36.89	42.02	61.44	27.74	38.63	38.61	18.09
Disturbance Index	0.12	2.97	3.57	0.89	3.00	2.32	0.93	0.93	0.00	1.42
% Dominant Species	63.52	17.49	19.24	16.44	17.53	24.31	30.42	25.64	20.84	20.80
% Abnormal Cells	0.23	0.91	0.00	0.44	0.48	0.77	<u>0.35</u>	0.00	0.34	0.71
% Rhopalodiales	1.40	0.11	0.65	00.0	1.32	0.00	33.68	0.70	0.00	10.76
Similarity Index ³		24.69	44.04			43.32		43.12		
¹ A maior diaton enories accounts for 8% or more of the cells at one or more stations in a sample set. Values for maior species are shown	counte for 80	c more of	the calls at (ane or more	stations in a	sample set	Values for	maior spec	ies are shov	c,
A major utation species accounts for 0 % of the cells in that sample	ceed 5% of 1	the cells in th	at sample.							-
² Species that are sensitive to organic pollution are in <i>italics</i> ; species that are somewhat tolerant of organic pollution are <u>underlined</u> ; species	o organic po	llution are in	italics; spec	ies that are	somewhat to	olerant of orç	janic pollutic	on are <u>under</u>	rlined; speci	SS

that are very tolerant to organic pollution are in bold face type.

³Percent Community Similarity (Whittaker 1952) when compared to the diatom assemblage at the adjacent upstream station on same stream.

4	1	

Table 6. Modal categories for selected ecological attributes of diatom species in the Blackfoot River TMDL Planning Area. Modal categories that that represent inferior water quality when compared to the best sites in the sample set are given in bold letters.	
---	--

Ecological	The Indentified	いたち、ことをないないで、「ちょう」になっている。	「「「「」、「「」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、	語言など思いたいないない	Hole Station 2419	And the state of the state	and the state of the state of the state	1 1 "A	the as a training to get the so the filly is	Pra inter
Attribute	MONTC10 MONTC20 MONTC30 KLSMC01 YRNMC20 KHMDC01 CLRWF10 CLRWF20	MONTC20	MONTC30	KLSMC01	YRNMC20	RHMDC01	CLRWF10	CLRWF20	DEERC10 DEERC20	DEERC20
Motility ¹	not motile	not motile	not motile	not motile	not motile	not motile	not motile	note motile	not motile	not motile
pH ²	circum- neutral	circum- neutral	circum- neutral	circum- neutral	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous
Salinity ²	fresh	fresh	fresh	fresh	fresh	fresh	fresh	fresh	fresh	fresh
Nitrogen Uptake ²	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	not classified	autotrophs	facultative heterotroph
Oxygen Demand ²	continuously high	continuously continuously continuously high high high high	continuously high	continuously high	moderate	fairly high	moderate	not classified	continuously high	moderate
Saprobity ²	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	alpha-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	not classified	beta-meso- saprobous	alpha-meso- saprobous
Trophic State ²	variable	variable	variable	variable	eutra- phentic	eutra- phentic	eutra- phentic	not classified	meso-eutra-	eutra- phentic

 $^1 \text{Dr.}$ R. Jan Stevenson, Michigan State University, digital communication. $^2 \text{Van}$ Dam et al. 1994


Table 6. Mov that	dal categories represent infer	Table 6. Modal categories for selected ecological attributes of diatom species in the Blackfoot River TMDL Planning Area. Modal categories that that represent inferior water quality when compared to the best sites in the sample set are given in bold letters.	ological attrib ty when comp	utes of diatom ared to the bes	species in the st sites in the s	Blackfoot Rivi ample set are	er TMDL Planr given in bold	ning Area. Mo letters.	odal categories	that
Ecological Attribute	*** <u>\$</u> BLHDC10	· 今日日日C10 会社会にでいた。 · 今日日DC10 会社会にでいた。 · 今日日DC10 会社会社会になった。	ROCKC10	0.01 ROCKC2010, FRZRC10, WBUFLG10, BUFLG20, BKBRC10, MURYC10, MURYC20	FRZRC10	Land BUFLG10 Will B	angelangen and a	JELG20 BKBRC10 MURYC10	MURYC10	MURYC20
Motility ¹	highly motile	not motile	not motile	not motile	moderately motile	not motile	moderately motile	highly motile	not motile	not motile
pH ²	alkali , philous	alkali- philous	not classified	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous
Salinity ²	fresh	fresh	not classified	fresh	fresh	fresh	fresh	fresh	fresh	fresh
Nitrogen Uptake ²	autotrophs	autotrophs	not classified	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs
Oxygen Demand²	fairly high	fairly high	not classified	continuously high	moderate	moderate	not classified	moderate	moderate	moderate
Saprobity ²	beta-meso- saprobous	beta-meso- saprobous	not classified	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous
Trophic State ²	eutra- phentic	meso-eutra- phentic	not classified	variable	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic

¹Dr. R. Jan Stevenson, Michigan State University, digital communication. ²Van Dam et al. 1994

Table 6. Modal categories for selected ecological attributes of diatom species in the Blackfoot River TMDL. Planning Area. Modal categories that that represent inferior water quality when compared to the best sites in the sample set are given in **bold** letters.

Ecological Attribute		DOUGC20	DOUGC10 DOUGC20 DOUGC30 GALGC10 WASHC10 WASHC20 JEFSC30	GALGC10	Station WASHC10	WASHC20	建業できょうね。 派JEFSC10 年	-	BRZLC10 SVNPC01	0 SVNPC01
Motility ¹	variable motility	not motile	moderately motile	not motile	not motile	highly motile	moderately motile	not motile	not motile	not motile
pH ²	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous	alkali- philous
Salinity ²	fresh	fresh	fresh	fresh	fresh	fresh	fresh	fresh	fresh	fresh
Nitrogen Uptake ²	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs	autotrophs
Oxygen Demand ²	continuously high	moderate	moderate	moderate	moderate	fairly high	fairly high	moderate	moderate	not classified
Saprobity ²	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous	alpha-meso- saprobous	beta-meso- saprobous	beta-meso- saprobous
Trophic State ²	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic	eutra- phentic

¹Dr. R. Jan Stevenson, Michigan State University, digital communication. ²Van Dam et al. 1994

