

P1363373

Library
of the

University of Toronto
$d a+c i 1866^{\prime}$
This issure is later than 1885 becanse it adubtroses Penningta (iz\&s),

Digitized by the Internet Archive in 2018 with funding from University of Toronto

BRITISH BEES.

BRITISH BEES:

AN INTRODUCTION

TO THE STUDY OF THE

NATURAL HISTORY AND ECONOMY OF THE BEES

by

W. E. SHUCKARD,

AUTHOR OF 'ESSAY ON THE FOSSORIAL HYMENOPTERA,' 'COLEOPTERA DELIHEATED,' 'ELEMENTS OF BRITISH ENTOMOLOGY, MONOGRAPHS OF THE ' DORYLIDA, ' ' AULACID.E,' ETC. ETC.; AND TRANSLATOR OF BURMEISTER'S 'MANUAL OF ENTOMOLOGY.'

LONDON:
LOVELL REEVE \& CO., 5 , HENRIETTA STREET, COVENT GARDEN.
1866.
J. E. TAYLOR AND CO., PRINTERS, LITTIE QUEEN STREET, LINCOLN'S INN FIEIDS.

TO

WILLIAM WILSON SAUNDERS, ESQ., F.R.S., TREAS. \& V.P.L.S., F.Z.S., treasurer of the royal horticultural society, ETC. ETC. ETC.,
IN TESTIMONY OF THE ABILITY, ZEAL, AND LIBERALITY with which he culdivates and promotes THE SCIENCE OF ENTOMOLOGY;
AND AS AN ACKNOWLEDGMENT OF MUCH KINDNESS, extending over many vears,
This Eolume
IS RESPECTFUTAY INSCRIBED,
BY HIS FAITHFUL SERYANT,
W. E. SHUCKARD.

PREFACE.

A few words are necessary explanatory of the course pursued in the following work, as regards the citation of authorities.

All the facts recorded without reference to authoriw ties, are the result either of personal observation or of diligent study, which, from the length of time that has intervened, have become so blended in my mind that I can no longer separate their sources. I may, however, state that observation has, certainly, as often anticipated the perusal of the discoveries of others, as their record has stimulated direct observation to confirm them.

The habits of animals, in which instinct is the sole prompter, are so uniform, that these, once well observed, may be considered as permanently established. The slight deviations that have been occasionally noticed, although temporarily infringing, do not abrogate the in.. flexibility of the law which regulates this faculty ; and
the descendants inevitably resume the economy of the ancestor.

The merit that attaches to the discovery of such facts is due merely to patience and diligence, very common attributes; and the repeated mention of the supposed first observer must, necessarily, in a work of this kind, which is far from being of a strictly scientific character, diminish the interest of the narrative by interrupting its connection, and thus making it an incongruous mosaic. The omission to cite authorities may also take place without any wish to detract from the merit of the discoverer, which is patent to all by his own record in the archives of science.

Before concluding, I wish to express my best thanks to Thomas Desvignes, Esq., for the kindness and willingness with which he lent me, for the purposes of this work; my own selection from the Bees of his choice collection of British insects.

I now dismiss the book-truly a labour of lovewith the hope that it will fall into the possession of many, who may be sufficiently interested in the subject to induce them to become ardent entomologists, by showing them within how small a compass much agreeable instruction lies.

June, 1866.

CONTENTS.

CHAPTER I.

PAGE
PRELIMINARY OBSERTATIONS, COMPRISING GENERAL REMARKS UPON THE USES OF BEES IN THE ECONOMY OF NATURE, THEIR DIVISION INTO SOCIAL AND SOLITARY, AND A NOTICE OF THEIR FAYOURITE PLANTS1
CHAPTER II.
GENERAL HISTORY OF BEES 17
THE EGG 18
THE LARVA 19
THE PUPA 22
THE IMAGO 23
CHAPTER III.
SKETCH OF THE GEOGRAFHY OF THE GENERA OF BRITISH bEES 61
CHAPTER IV.
NOTICE OF THE MORE CONSPICUOUS FOREIGN GENERA 101
CHAPTER V.
PARASITES 'OF REES AND THEIR ENEMIES 109
CHAPTER VI.
PAGE
GENERAL PRINCIPLES OF SCIENTIFIC ARRANGEMENT 118
CHAPTER VII.
BRIEF NOTICE OF THE SCIENTIFIC CULTIVATION OF BRITISH BEES 142
CHAPTER VIII.
A NEW ARRANGEMENT OF BRITISH BEES, WITH ITS RA- TIONALE, AND AN INTRODUCTION TO THE FAMILY, SUB- FAMILIES, SECTIONS, AND SUBSECTIONS 153
CHAPTER IX.
A TABLE, EXHIBITING A METHOD OF DETERMINING THE GENERA OF BRITISH BEES WITH FACILITY 17
EASY DISTRIBUTION OF THE BEES 176
CHAPTER X.
THE SCIENTIFIC ARRANGEMENT AND DESCRIPTION OF THE GENERA, WITH LISTS OF OUR NATIVE SPECIES, AND AN ACCOUNT OF THE HABITS AND ECONOMY OF THE IN- SECTS, WITII INCIDENTAL OBSERTATIONS SUGGESTED BY THE SUBJECT 184
andrenide (subnormal bees) 185
gen. 1. Colletes 185
gen. 2. prosopis 191
gen. 3. sphecodes 196
gen. 4. andrena 200
gen. 5. cilissa 211
gen. 6. halictus 214
gen. 7. macropis 220
gen. 8. Dasypoda 224
CONTENTS.xiii
APIDE (NORMAL BEES)
pagb
scopulipedes (brush-LEGGED bees) 227
gen. 9. panurgus 227
GEN. 10. EUCERA 231
GEN. 11. ANTHOPHORA 236
GEN. 12. saropoda 242
gen. 13. ceratina 245
NUDIPEDES (CUCKOO BEES) 249
GEN. 14. NOMADA 249
gen. 15. melecta 255
GEN. 16. EPEOLUS 258
GEN 17. STELIS 262
gen. 18. celioxys 265
dasygasters (artisan rees) 269
gen. 19. megachile 269
gen. 20. Anthidium 279
GEN. 21. CHELOSTOMA 283
GEN. 22. Heriades 288
GEN. 23. ANTHOCOPA 290
GEN. 24. osmia 294
cenobites (social bees) 302
gen. 25. Apathus 302
gen. 26. bombus 307
gen. 27. APIS 318
INDEX 363

LIST 0F PLATES．

Note．—才 signifies male；$f, f e m a l e ; ~ i, ~ n e u t e r . ~$

Plate I．
1．Colletes Daviesiana，ơ 우． 2 o．Prosopis dilatata．
2 ¢．Prosopis signata．
3．Sphecodes gibbus，of 우．
Plate II．
1．Andrena fulva，δ 우．
2．Andrena cineraria，of q ．
3．Andrena nitida，ơ q ．
Plate III．
1．Andrena Rosæ，ơ ㅇ．
2．Andrena longipes， $\begin{gathered}\text { o } \\ \text { ㅇ．}\end{gathered}$
3．Andrena cingulata，ơ 9 ．

Plate IV．
1．Halictus xanthopus， $\begin{gathered}\overparen{*}\end{gathered}$ ．
2．Halictus flavipes， $\begin{gathered} \\ \text { 앙 }\end{gathered}$
3．Halictus minutissimus， た．

Plate V．
1．Cilissa tricincta，ठ q ．
2．Macropis labiata，of \circ ．
3．Dasypoda hirtipes，才 ㅇ․
Plate VI．
1．Panurgus Banksianus， ot 9.
2．Eucera longicornis，δ of．
3．Anthophora retusa，of q ．

> Plate VII.

1．Anthophora furcata，$\delta ?$ ．
2．Saropoda bimaculata， ot +
3．Ceratina cærulea，δ 우．
Plate Vili．
1．Nomada Goodeniana， δ^{π} 아．
2．Nomada Lathburiana， ठ ${ }^{\circ}$ ．
3．Nomada sexfasciata，ơ 우．

Plate IX.

1. Nomada signata, of q.
2. Nomada Fubrician , ơ \circ.
3. Nomada flavoguttata, o ${ }^{\circ}$.

Plate X.

1. Nomada Jacobære, of ㅇ.
2. Nomada Solidaginis, of + (that marked ${ }^{\circ}$ * should be q).
3. Nomada lateralis, of 우.

Plate XI.

1. Melecta punctata, סf 우.
2. Epeolus variegatus, of ㅇ.
3. Stelis phroptera, of \circ.

Plate XII.

1. Colioxys Vectis, of it.
2. Megachile maritima, $\begin{gathered} \\ \text { 아 }\end{gathered}$
3. Megachile argentata, of 오.

Plate XIII.

1. Anthidium manicatum, δ ㅇ.
2. Chelostoma florisomne, ठ 9

Plate XIV.

1. Osmia bicolor, $\overparen{刃}$ 오.
2. Anthocopa Papaveris, ot 9
3. Osmia leucomelana, $\begin{gathered}\text { o } q .\end{gathered}$

Plate XV.

1. Apathus rupestris, δ of. 2ठ. Apathus campestris (the sexual sign to this should be of).
2 \%. Apathus vestalis.
2. Bombus fragrans, 우.
3. Bombus Soroensis, δ^{σ} (var. Burrellanus).

Plate XVI.

1. Bombus Harrisellus, 아.
2. Bombus Lapponicus, +
3. Bombus sylvarum, f.
4. Apis mellifica, of 우 ㅇ.

BRITISH BEES.

(HYMENOPTERA.)

CHAPTER I.

PRELIMINARY OBSERVATIONS,

```
COMPRISING GENERAL REMARKS UPON THE USES OF BEES IN THE
ECONOMY OF NATURE; THEIR DIVISION INTO SOOIAL AND SOLI-
        TARY; AND A NOTICE OF THEIR FAVOURITE PLANTS.
```

IT is very natural that the "Bee" should interest the majority of us, so many agreeable and attractive associations being connected with the name. It is immediately suggestive of spring, sunshine, and flowers,-meadows gaily enamelled, green lanes, thymy downs, and fragrant heaths. It speaks of industry, forethought, and compe-tence,--of well-ordered government, and of due but not degrading subordination. The economy of the hive has been compared by our great poet to the polity of a populous kingdom under monarchical government. He says : -
"Therefore doth Heaven divide
The state of man in divers functions,
Setting endeavour in continual motion ;

> To whieh is fixed, as an aim or butt, Obedience : for so work the honey bees; Creatures, that, by a rule in nature, teaeh The aet of order to a peopled kingdom. They have a king, and offieers of sorts: Where some, like magistrates, correet at home; Others, like merelhants, venture trade abroad; Others, like soldiers, armed in their stings, Make boot upon the summer's velvet buds; Whieh pillage they, with merry marel, bring home To the tent-royal of their emperor : Who, busied in his majesty, surreys The singing masons building roofs of gold; The civil citizens kneading up the honey; The poor mechaniek porters crowding in Their heary burdens at his narrow gate; The sad-ey'd justiee, with his surly hum, Delivering o'er to éxeeutors pale The lazy yawning droue."-Henry $V ., 1,2$.

Nothing escaped the wonderful vision of this "myriadminded" man, and its pertinent application.

This description, although certainly not technically accurate, is a superb broad sketch, and shows how well he was acquainted with the natural history and habits of the domestic bee.

The curiosity bees have attracted from time immemorial, and the wonders of their economy elicited by the observation and study of modern investigators, is but a grateful return for the benefits derived to man from their persevering assiduity and skill. It is the just homage of reason to perfect instinct running closely parallel to its own wonderful attributes. Indeed, so complex are many of the operations of this instinct, as to have induced the surmise of a positive affinity to reason, instead of its being a mere analogy, working blindly and without reflection. The felicity of the adap-
tation of the hexagonal waxen cells, and the skill of the construction of the comb to their purposes, has occupied the abstruse calculations of profound mathematicians; and since human ingenuity has devised modes of investigating, unobserved, the various proceedings of the interior of the hive, wonder has grown still greater, and admiration has reached its climax.

The intimate connection of "Bees" with nature's elegancies, the Flowers, is an association which links them agreeably to our regard, for each suggests the other; their rivacity and music giving animation and variety to what might otherwise pall by beautiful but inamimate attractions. When we combine with this the services bees perform in their eager pursuits, our admiration extends beyond them to their Great Originator, who, by such apparently small means, accomplishcs so simply yet completely, a most important object of creation.

That bees were cultivated by man in the earliest conditions of his existence, possibly whilst his yet limited family was still occupying the primitive cradle of the race at Iindoo Koosh, or on the fertile slopes of the Himalayas, or upon the more distant table-land or plateau of Thibet, or in the delicious vales of Cashmere, or wherever it might have been, somewhere widely away to the east of the Caspian Sea,-is a very probable supposition. Accident, furthered by curiosity, would have early led to the discovery of the stores of honey which the assiduity of bees had hoarded; --its agreeable savour would have induced further search, which would liave strengthened the possession by keener observation, and have led in due course to the fixing them in his immediate vicinity.

To this remote period, possibly not so early as the discovery of the treasures of the bee, may be assigned also the first domestication of the animals useful to man, many of which are still found in those districts in all their primitive wildness. The discovery and cultivation of the cereal plants will also date from this early age. The domestication of animals has never been satisfactorily explained, but all inquiry seems to point to those regions as the native land, both of them, and of the graminece, which produce our grain ; for Heinzelmann, Linnæus's enthusiastic disciple, found there those grasses still growing wild, which have not been found elsewhere in a natural state.

Thus, long before the three great branches of the human race, the Aryan, Shemitic, and Turonian, took their divergent courses from the procreative nest which was to populate the earth, and which Max Müller proposes to call the Rhematic period, they were already endowed from their patrimony with the best gifts nature could present to them; and they were thus fitted, in their estrangement from their home, with the requirements, which the vicissitudes they might have to contend with in their migrations, most needed. They would eventually have settled into varying conditions, differently modified by time acting conjunctively with climate and position, until, in the lapse of years, and the changes the earth has since undergone, the stamp impressed by these causes, which would have been originally evanescent, became indelible. That but one language was originally theirs, the researches of philology distinctly prove, by finding a language still more ancient than its Aryan, Shemitic, and Turonian derivatives. From this elder language these all spring, their common origin
being deduced from the analogies extant in each. These investigations are confirmed by the Scriptural account that "The whole earth was of one language and of one speech," previous to the Flood, and it describes the first migration as coincident with the subsidence of the waters.

That violent cataclysms have since altered the face of the then existing earth, the records of geological science amply show; and that some of mankind, in every portion of the then inhabited world, survived these catastrophes, and subsequently perpetuated the varieties of race, may be inferred from those differences in moral and physical features which now exist, and which have sometimes suggested the impossibility of a collective derivation from one stock. The philological thread, although generally a mere filament of extreme tenuity, holds all firmly together.

That animals had bcen domesticated in a very early stage of man's existence, wc have distinct proof in many recent geological discoveries, and all these discoveries show the same animals to have been in every instance subjugated; thus pointing to a primitive and carlier domestication in the regions where both were originally produced. That pasture land was provided for the sustenance of these animals, they being chicfly herbivorous, is a necessary conclusion. Thence ensues the fair deduction that phanerogamous, or flower-bearing plants coexisted, and bees, consequently, necessarily too,-thus participating reciprocal advantages, they recciving from these plants sustenance, and giving them fertility.

These islands, under certain modifications, were, previous to the glacial period, one land with the continent of Europe; and it was when thus comnected that those
many tropical forms of animal life, whose fossil remains are found embedded in our soil, passed hither. By the comparatively rapid intervention of geological changes, some of the lower forms of life went no further than the first land they reached, and are, consequently, not even now to be found so far west as Ireland: the migration appears elcarly to have come from the East. Thus, although we have no direct evidence of the presence of "bees," yet as inscets must have existerl here, from the certainty that the remains of insect-fceding reptiles are found, as well as those of herbivorous animals, it may be concluded that "bees" also abounded.

Claiming thus this very high antiquity for man's nutritive "bce," which was of far earlier utility to him than the silkworm, whose labours demanded a very advanced condition of skill and civilization to be made available; it is perfectly consistent, and indeed needful, to claim the simultancous existence of all the bee's allies. The earliest Shemitic and Aryan records, the Book of Job, the Vedas, Egyptian seulptures and papyri, as well as the poems of Homer, confirm the early cultivation of bees by man for domestic uses; and their frequent representation in Egyptian hieroglyphics, wherein the bee occurs as the symbol of royalty, clearly shows that their ceonomy, with a monareh at its head, was known ; a hive, too, being figured, as Sir Gardner Wilkinson tells us, upon a very ancient tomb at Thehes, is early evidence of its domestication there, and how carly, even historieally, it was brought under the special dominion of mankind. To these particulars I shall have occasion to refer more fully when the course of my narrative brings me to treat of the geographical distribution of the "honey bee;" I adduce it now merely to
intimate how vcry early, even in the present condition of the earth, bces were beneficial to mankind, and that, therefore, the councction may have subsisted, as I have previously urged, in the remotest and very primitive ages of the existcncc of man ; and that impcratively with them, the entire family of which they form a unit only, was also creatcd.

In America, where Apis mellifica is of European introduction, swarms of this bee, escaping domestication, resume their natural condition, and have prcssed forward far into the uncleared wild; and widely in advance of the conquering colonist, they have taken their abode in the primitive, unreclaimed forest. Nor do they remain stationary, but on, still on, with every successive year, spreading in cvery direction; and thus surely indicating to the aboriginal red-man the certain, if even slow, approach of civilization, and the consequent necessity of his own protective retreat:-a strong instance of the distributive processes of nature. It clearly shows how the wild becs may have similarly migrated in all directions from the centre of their origin. That they arc now found at the very ultima Thule, so far away from their assumed incunabula, and with such apparent existing obstructions to their distributive progress, is a proof, hall we no other, that the condition of the earth must have been geographically very different at the period of their beginning, and that vast geological changes have, since then, altered its physical featurcs. Where islands now exist, these must then have formed portions of widely swecping continents; and seas have been dry land, which have since swept over the same arca, insulating irregular portions by the submergence of irregular intervals, and thus have left them in their present condition, with
their then existing inhabitants restricted to the circuit they now occupy. That long periods of time must necessarily have elapsed to have effected this by the methods we still see in operation, is no proof that it has not been. Nature, in her large operations, has no regard for the duration of time. Her courses are so sure that they are ever eventually successful ; for, as to her, whose permanency is not computable, it matters not what period the process takes; and she is as indifferent to the seconds of time whereby man's brevity is spanned, as she is to the wastefulness of her own exuberant resources, knowing that neither is lost to the result at which she reaches. Consuming the one, and scattering broadcast the other, but in unnoticeable infinitesimals, she does it irrespective of the origin, the needs, or the duration of man, who can only watch her irrepressible advances by transmitting from generation to generation the record of his observations; marking thus by imaginary stations the course of the incessant stream which carries him upon its surface.

That other bees are found besides the social bees, may be new to some of my readers, who will perhaps now learn, for the first time, that collective similarities of organization and habits associate other insects with "the bee" as bees. Although the names "domestic bee," "honey bee," or "social bee," imply a contradistinction to some other "bee," yet it must have been very long before even the most acute observers could have noticed the peculiarities of structure which constitute other insects "bees," and ally the "wild bees" to the "domestic bee," from the deficiency of artificial means to examine minutely the organization whereby the affinity is clearly proved. This is also further shown in
the poverty of our language in vernacular terms to express them distinctively; for even the name of "wild bees," in as far as it has been applied to any except the "honey bee" in a wildered state, is a usage of modern introduction, and of date subsequent to their examination and appreciation. Our native tongue, in the words "bee," "wasp," "fly," and "ant," compasses all those thousands of different winged and unwinged insects, which modern science comprises in the two very extensive Orders in entomology of the Hymenoptera and the Diptera; - thus exhibiting how very poor common language is in words to note distinctive differences in creatures, even where the differences are so marked, and the habits so dissimilar, as in the several groups constituting these Orders. But progressively extending knowledge, and a more familiar intimacy with insects and their habits, will doubtless, in the course of time, supervene, as old aversions, prejudices, and superstitions wear out, when by the light of instruction we shall gradually arouse to perceive that "His breath has passed that way too;" and that, therefore, they all put forth strong claims to the notice and admiration of man.

It is highly improbable that ordinary language will ever find distinctive names to indicate genera, and far less species: and although we have some few words which combine large groups, such as "gnats," "fleshflies," "gad-flies," " gall-flies," "dragon-flies," " sand wasps," "humble bees," etc. etc.; and, although the small group, it is my purpose in the following pages to show in all their attractive peculiarities, has had several vernacular denominations applied to them to indicate their most distinctive characteristics, such as "cuckoo bees," "carpenter bees," "mason bees," "carding bees,"
etc., yet many which are not thus to be distinguished, will have to wait long for their special appellation.

The first breathings of spring bring forth the bees. Before the hedge-rows and the trees have burst their buds, and expanded their yet dclicate green leaves to the strengthening influence of the air, and whilst only here and there the white blossoms of the blackthorn sparkle around, and patchcs of chickweed spread their bloom in attractive humility on waste bits of ground in corncrs of fields,-thcy are abroad. Their hum will be heard in some very favoured sunny nook, where the precocious primrose spreads forth its delicate pale blossom, in the modest confidence of conscious beauty, to catch the eye of the sun, as well as-

> "Daffodils, that come before the swallow dares, And take the winds of March with beauty."-Shakspeare.

The yellow catkins of the sallow, too, are already swarmed around by bees, the latter being our northern representative of the palm which heralded "peace to earth and goodwill to man." The bees thus announce that the business of the year has begun, and that the lethargy of winter is superseded by energetic activity.

The instinctive impulse of the cares of maternity prompt the wild bees to their early assiduity, urging them to their eager quest of these foremost indicators of the renewed year. The firstling bees are forthwith at their earnest work of collecting honey and pollen, which, kneaded into a paste, are to become both the cradle and the sustenance of their future progeny.

Wherever we investigate wonderful Nature, we observe the most beautiful adaptations and arrangements,everywhere the corrclations of structure with function;
in confirmation of which I may herc briefly notice in anticipation, that the bees are divided into two large groups,-the short-tongued and the long-tongued,and it is the short-tongued,-some of the Andrenide, which are the first abroad; the corollæ of the first flowers being shallow and the nectar depositories obvious, an arrangement which facilitates their obtaining with facility the honey already at hand. These bees are also amply furuished, -as will be afterwards explained,--in the clothing of their posterior legs, or otherwise, with the means to convey home the pollen which they vigorously collect, finding it already in superfluous abundance, and which, being borne from flower to flower, impregnates and makes fruitful those plants which require external agents to accomplish their fertility. Thus nature duly provides, by an interchangc of offices, for the general good, and by simple, although sometimes obscure means, gives motion and persistency to the wheel within wheel which so exquisitely fulfil her designs, and roll forward, unremittingly, her stupendous fabric.

The way in which the bees execute this object and design of naturc, and to which they, more evidently than any other inscets, are called to the performance, is shown in the implanted instinct which prompts them to seek flowers, knowing, by means of that instinct, that flowers will furnish them with what is ncedful both for their own sustenance, and for that of their descendants. Flowers, to this end, are furnished with the requisite attractive qualifications to allure the bces. Whether thcir odour or their colour be the tempting vehicle, or both conjunctively, it is scarcely possible to say, but that they should hold out special invitation is requisite to the maintenance of their own perpetuity. This, it is
supposed, the colour of flowers chiefly effects by being visible from a distance. Flowers, within themselves, indicate to the bees visiting them the presence of nectaria by spots coloured differently from their petals. This nectar, converted by bees into honey, is secreted by glands or glandulous surfaces, seated upon the organs of fructification; and nature has also furnished means to protect these depositories of honey for the bees, from the intrusive action of the rain, which might wash the sweet secretion away. To this end it has clothed the corollæ with a surface of minute hairs, which effectually secures them from its obtrusive action, and thus displays the importance it attaches to the co-operation of the bees. That bees should vary considerably in size, is a further accommodation of nature to promote the fertilization of flowers, which, in some cases, small insects could not accomplish. Many plants could not be perpetuated, but for the agency of insects, and especially of bees ; and it is remarkable that it is chiefly those which require the aid of this intervention that have a nectarium, and secrete honey. By thus seeking the honey, and obtaining it in a variety of ways, bees accomplish this great object of nature. It often, also, happens that flowers which even contain within themselves the means of ready fructification cannot derive it from the pollen of their own anthers, but require that the pollen should be conveyed to them from the anthers of younger flowers; in some cases the reverse takes place, as for instance, in the Euphorbia Cyparissias, wherein it is the pollen of the older flower which, through the same agency, fertilizes the younger. Although many flowers are night-flowers, yet the very large majority expand during the day; but to meet the requirements of those
which bloom merely at night, nature has provided means by the many moths which fly only at that time, and thus accomplish what the bees perform under the cye of the sun. Here insects are again subservient to the accomplishment of this great act; for the petals of even the flowers which open in the night only are usually highly coloured, or where this not the case, they then emit a powerful odour, both being means to attract the required co-operation. But of course our clients have nothing to do with these night-blooming flowers, as I am not aware of a single instance of a night-flying bee; nor are they on the wing very late in the evening, being before sunset, already in their nidus. In those occasional cases where the nectarium of the flower is not perceptible, if the spur of such a flower which usually becomes the depository of the nectar that has oozed from the capsules secreting it, be too narrow for the entrance of the bee, and even beyond the reach of its long tongue, it contrives to attain its object by biting a hole on the outside, through which it taps the store. The skill of bees in finding the honey, even when it is much withdrawn from notice, is a manifest indication of the prompting instinct which tells them where to seek it, and is a matter of extreme interest to the observer, for the honey-marks-the maculd indicantes - surely guide them ; and where these, as in some flowers, are placed in a circle upon its bosom, as the mark upon that of Imogen, who had-

> "On her left breast
> A mole cinque-spotted, like the crimson drops I' the bottom of a cowslip."-Shakspeare.
they work their way around, lapping the nectar as
they go. To facilitate this fecundation of plants, which is Nature's prime object, bees are usually more or less hairy ; so that if even they limit themselves to imbibing nectar, they involuntarily fulfil the greater design by conveying the pollen from fiower to flower. To many insects, especially flies, some flowers are a fatal attraction, for their viscous secretions often make these insects prisoners, and thus destroy them. To the bees this rarely or never happens, either by reason of their superior strength, or possibly from the instinct which repels them from visiting fowers which exude so clammy a substance. It is probably only to the end of promoting fertilization by the attraction of insects that the structure of those flowers which secrete nectar is exclusively conducive, and which fully and satisfactorily explains the final cause of this organization.

To detect these things, it is requisite to observe nature out of doors,-an occupation which has its own rich reward in the health and cheerfulness its promotes,and there to watch patiently and attentively. It is only by unremitting perseverance, diligence, and assiduity that we can hope to explore the interesting habits and peculiar industries of these, although small, yet very attractive insects.

Amongst the early blossoming flowers most in request with the bees, and which therefore seem to be great farourites, we find the chickweed (Alsine media), the primrose, and the catkins of the sallow; and these in succession are followed by all the flowers of the spring, summer, and autumn. Their greatest farourites would appear to be the Amentucece, or catkin-bearing shrubs and trees, the willow, hazel, osier, etc., from the male flowers of which they obtain the pollen, and from the female
the honey; all the Rosacea, especially the dog-rose, and Primulacee, the Orchidece, Caryophyllacea, Polygonea, and the balsamie lilies; clover is very attractive to them, as are also tares; and the spots on those leaves of the bean which appear before the flower, and exude a sweet seeretion; also the flowers of all the cabbage tribe. Beneath the shade of the lime, when in flower, may be heard above one intense hum of thrifty industry. The blossoms of all the fruit-trees and shrubs, standard or wall, and all aromatic plants are highly agreeable to them, sueh as lavender, lemon-thyme, mignonette, indeed all the resedas ; also sage, borage, etc. etc.; but the espeeial favourites of particular genera and species I shall have oceasion subsequently to notice in their series; but to mention separately all the flowers they frequent would be to compile almost a complete flora. Bees are also endowed with an instinct that teaches them to avoid certain plants that might be dangerous to them. Thus, they neither frequent the oleander (Nerium Oleander) nor the crown imperial (Fritillaria imperialis), and they also avoid the Ranunculacere, on aeeount of some poisonous property ; and although the Melianthus major drops with honey, it is not sought. It is a native of the Cape of Good Hope, and may be attractive only to the bees indigenous to the country, which is also the ease with other greenhouse plants equally rieh in honey, but which not being natives, possibly from that cause the instinets of native inseets have no affinity with them.

Bees may be further consorted with flowers by the analogy and parallelism of their stages of existence. Thus, the egg is the equivalent to the seed ; the larva to the germination and growth; the pupa to the bud; and the imago to the flower. The flower dies as soon
as the seed is fully formed, which is then disseminated by many wonderful contrivances to a propitious soil ; and the wild bees die as soon as the store of eggs is as wonderfully deposited, according to their several instincts, in fitting receptacles, and provision furnished to sustain the development of the progeny. Thus, each secures perpetuity to its species, but individually ceases; whereas the unfecundated plant and the celibate insect may, severally, prolong for a short but indefinite period, a brief existence, to terminate in total extinction. Nature thus vindicates her rights, for nothing remains sterile with impunity.

CHAPTER II.

GENERAL HISTORY OF BEES.

```
THE EGG.-THE LARVA.-THE PUPA.-THE IMAGO.
```

Although the preceding pages have been written upon the assumption that the reader knows what a bee is, now that we are gradually approaching the more special and technical portion of the subject it will be desirable to conform a little to the ordinary usages of scientific treatment.

The bees constitute a family of the order Hymenoptera, viz. insects ordinarily, but in the case of bees always, with four transparent wings, which are variously but partially traversed longitudinally and transversely with threads, called nervures, supposed to be tubular, the relative position of which, together with the areas they enclose, called cells, help to give characters to the genera.

Most of the Hymenoptera further possess some kind of an ovipositor, -of course restricted to the females, varying considerably in the different families. This is sometimes external, but is often seated within the apex of the abdomen, whence it can be protruded for the purpose of depositing the egg in its right nidus. In our insect this organ is converted into a weapon of de-
fence and offence, and forms a sting, supplied by glands with a very virulent poison, which the bee can inject into the wound it inflicts. It is not certain that this organ is used by the bee as an ovipositor, although it is evident it is its analogue. This brief description of the essential peculiarities of the family will, for the present, suffice. In the notice of the imago, I shall enlarge upon the general structure, and then particularize those portions of it which may facilitate further progress.

The Egg.-Although the egg of the parent is the source of the origin of the bee, we cannot abruptly commence from this point, for the preliminary labours of the mother are indispensable to the evolution of its offspring. This egg has to be placed in a suitable depository, together with the requisite food for the sustenance of the vermicule that will be disclosed from it.

Instinct instructs the parent where and how to form the nidus for its egg. These depositories differ considerably in the several genera, but, as a general rule, they are tubes burrowed by the mother either in earth, sand, decaying or soft wood, branches of plants having a pith, the halm of grain, cavities already existing in many substances, and even within the shells of dead suails. These perforations are sometimes simple, and sometimes they have divergent and ramifying channels, Sometimes they are carefully lined with a silky membrane secreted by the insect, and sometimes they are hung with a tapestry of pieces of leaves, cut methodically from plants, but some leave their walls entirely bare. All these particulars I shall have ample opportunity to note in the special descriptions of the genera. I merely indicate them to show how various are the receptacles for the offspring of our bees.

Before the egg is placed within its nidus, this is supplied with the requisite quantity of food needful for the support of the young to the full period of its maturity. The receptacle is then closed, and the same process is repeated again and again until the parent has laid her whole store of eggs. In other cases one tube, or its ramification, contains but one egg. These eggs are usually oblong, slightly curved, and tapering at one extremity; they vary in size ac-

Fig. 1. cording to the species, but are never, however, The Egr. above a line in length, and sometimes they are very minute. When the stock of the mother bee is exhausted she leaves them to the careful nursing of nature, and the young is speedily evolved. She then wanders forth; time has brought senility; her occupation has gone; and she passes away; but her progeny survive to perpetuate the continual chain of existence.

The Larva.-The temperature of the perforated tube wherein the egg is deposited must necessarily be higher and more equal than that of the external atmosphere, being secluded from its vicissitudes. The egg is soon hatched, and the larva emerges from its shell to feed ravenously upon the sustenance stored up for its supply. This consists of an admixture of pollen and honey formed into a paste, the quantities varying according to the size of the species. By some species it is formed into little balls; by others, it is heaped irregularly at the bottom of the cell. In the case of Andrena the quantity stored is of about the size of a pea. That it must be exceeding nutritious may be inferred from its very nature, consisting, as it does, of the virile, energetic, and fertilizing powder of plants, -the concentration of their living principle. It is strictly analogous to the
fecundating property of the semen in animals, and, like them, produces spermatozoa, a fact corroborated by the researches of Robert Brown, Mirbel, and other distinguished vegetable physiologists.*

We are told that the cells of Hylaus, or Prosopis, and of Ceratina are supplied with a semifluid honey. It is very doubtful if Hylæus collects its own store, but that Ceratina does I have the authority of an exact observer (Mr. Thwaites) to verify it, for he has caught this insect with pollen on its posterior legs, which the long hair covering the tibia is intended for. What may be the nature of this semifluid honey? It is questionable if the larva could be nurtured upon honey alone without the admixture of pollen, thus contradicting analogies presumable from ample verification in nature's processes. How, too, does it become semifluid? It is the property of honey, at a certain temperature, to be very fluid, and this is doubtless the temperature that prevails within the receptacle of the larva during the time of the operations of the bees.

Its semifluid consistency could then apparently be produced only by some more solid admixture, which, if not of pollen, of what can it be? This, even in small quantities, might, upon the bursting of its vesicles, have the power of thickening the fluent honey to the necessary consistency.

But a bee without polliniferous organs cannot collect pollen, and the instance of the hive bee, which collects honey in superabundance, feeding its larva with the bee-

[^0]bread, must inevitably lead to the conclusion that the larvæ of bees require more than honey for their sustenance. Nature is not usually wantonly wasteful of its resources, and if honey sufficed for the nurture of the grub, so much pollen would not be abstracted from its legitimate purpose, nor would bees have this double trouble given to them. By the admixture of pollen the honey has energetic power infused into it by the spermatozoa which that contains. But it must nccessarily be collected, for I never observed, nor have I seen recorded, any instance of the pollen being eaten on the flower and regurgitated into the cell in combination with the imbibed honey.

Pollen is eaten by the domestic bee and humble-bee to form wax for the structure of their cells, but the solitary bees do not themselves consume it.

The larva, when excluded from the egg, is a fleshy

Fig. 2.- a, the Larva, when growing ; b, when preparing to change; c, the head, viewed in front.
grub, slightly curved, and a little pointed at each cxtremity. Its body is transversely constricted, the constrictions corresponding with its fifteen segments, each of which, excepting the head and four terminal ones, is supplicd with a spiracle placed at the sides, whereby it breathes; and it has no fect. These segments have on each side a series of small tubercles, which facilitate the restricted motions of the grub, confined to the bounda-
ries of its cell. Its small head, which is smooth above, has a little projecting horn on each side representing the future antennæ. The small lateral jaws articulate beneath a narrow labrum or lip, which folds down over them. To prove that the food provided requires still further comminution, these jaws are incessantly masticating it. The form of these jaws approximates to that of the insect which it will produce, being toothed and broad at the apex in the artisan and wood-boring bees, and simple in those which burrow in softer substances. On each side beneath these jaws there is an appendage, rather plump, having a setiform process at its extremity, and beneath these, in the centre, we observe a fleshy protuberance which, at its tip, has a smaller perforated process that emits the viscid liquid with which the grub spins its cocoon, and which immediately hardens to the consistency of silk.

Having constructed its cocoon, where the species does so,-for it is not incidental to all the genera,-and shrunk to its most compact dimensions, the larva becomes transformed into

The Pupa.-This is semi-transparent at first, and

Fig. 3.- α, the pupa, seen beneath; b, seen above ; c,seén laterally. there may be seen through the thin pellicle, which invariably clothes every portion separately, of the body the ripening bee, which lies, like a mummy, with its wings and legs folded lengthwise along its breast. The parts gradually assume consistency, and the natural colours and
clothing of the perfect insect display themselves through its pellucid envelope. When arrived at perfect maturity, and ready to commence the part it has to perform in the economy of nature, it bursts its cerements, making its way through the dorsal covering of its silken skin, and, leaving the exuviæ behind, it crawls forth from its dormitory, when, becoming invigoratcd by the bracing air and the genial sunshine, it stretches its legs and expands its wings, and flies forth jubilant, rejoicing in its awakened faculties.

The Imago.-The bee having attaincd its majority, loses no time in quitting the confined abode wherein it has bcen hitherto secluded. It comes forth prepared to undertake the cares, and meet the vicissitudes of existencc. The new life that now opens to it is one apparently tecming exuberantly with every delight. It dwclls in sunshine and amidst flowers; it revels in their sweets, attracted by their beautiful colours and their delightful odours ; and the consummation of its bliss is to find a congenial partner. With him it enjoys a brief connubial transport, but which is speedily succeeded by life-long labour, for the cares of maternity immediately supervene.

I believe the wild bees are not polyandrous, and therefore many males, if there be any preponderating discrepancy in favour of that sex, must die celibate. But the fact of finding the males associated together in great numbers upon the same flowers or hedges, is certainly not conclusive of this being the case. To provide a fitting receptacle, furnished with suitable provision, for its future progeny, occupies all the subsequent solicitude of the female.

As frcquent reference will hereafter be madc to
peculiarities of structure, it will be desirable to take a rapid survey of the external anatomy of the bee, for it will enable me to introduce in due order the requisite technicalities with their local explanations. This course will be found most subservient to preciseness and accuracy, and when mastered, which will be found to be a very simple affair, it will greatly facilitate exact comprehension. No circumlocution can convey what a few technicalities, thoroughly understood, will immediately explain, and no special scientific work can be read with any profit until they are acquired.

Diagrams are introduced to aid the imagination in its conception of what is meant to be conveyed.

This necessary detail I shall endeavour to make as entertaining as I possibly can, by introducing, with the description of the organ, the uses it serves in the economy of the insect. I hope thus to add an interest to it which a merely dry technical and scientific definition would not possess.

Structure is always expressive of the habits of the bees, and is as sure a line of scparation, or means of combination, as instinct could be were it tangible. Hence the conclusion always follows with a certainty that such-and-such a form is identical with such-andsuch habits, and that, in the broad and most distinguishing features of its economy, the genus is essentially the same in every climate. Climate does not act upon these lower forms of animal life, with the modifying influences it exercises upon the mammalia and man. A Megachile is as essentially a Megachile in all its characteristics in Arctic Amcrica, the Brazils, tropical Africa, Northern China, and Van Diemen's Land, as in thesc islands, and Apis is, wherever it occurs, as truly an Apis. Thercfore
the habits, in whatever country the genus may be found, can thus be as surely affirmed of all its species, from the knowledge we have of those at home, as if observation had industriously tracked them. Therefore, the technicalities of structure once learnt, they become permanently and widely useful.

The body of the bce consists of a head, thorax, and abdomen, which, although to the casual observer, scemingly not separated from each other, are, upon closer inspection, more or less distinctly disconnected. The three parts are merely united by a very short and slight tubular cylinder. This is sometimes so much reduced as to be only a perforation of the parts combined by a ligament, and through which aperture a requisite channel is formed for the passage of the ganglion or nervous chord, which extends from one portion of

Fig. 4.-Body of the bee. a, head and antenna; b, vertex and ocelli ; c, genæ, or cheeks; d, prothorax; e, mesothorax ; f, squamule ; g, insertion of the wings; h, scutellum; i, postscutellum ; k, metathorax ; l, abdomen. the body to the other, giving off laterally, in its progress from the sensorium in the head onwards, the filaments requircd by the organs of sensation and motion, as well as all which control the other functions of the body of the insect.

These apertures form also the necessary medium of connection between the several visccra, whercby the food and other sustaining juices are conveyed from the mouth through the œsophagus to the various parts of the body.

As this work will impinge but very incidentally upon the internal organization of the bce, it is unnecessary to be more explanatory. All that I shall have to notice
here are those portions of the external structure which have any special bearing upon the eeonomy and habits, or upon the generic and speeific determination of the inseets, and to whieh therefore I shall specially limit myself.

The head is the most important segment of the insect's body, if we may elevate to sueh distinction any

Fig. 5.-Front of the head of the bee. a, vertex ; b, face; c, ocelli or stemmata ; d, compound eyes; e, clypcus; f, mandibles; g, labrum ; h, lingual apparatus folding for repose. portion, when all eonduce to the same end, and either would be imperfeet without the other, yet we may perhaps thus distinguish it from the rest as it exelusively contains that higher elass of organs, those of sense, whieh are most essential to the functions of the creature. The head consists of the vertex, or erown ; the gene, or eheeks; the face; the clypeus, or nose; the eompound eyes; the stemmata, or simple eyes; the antennc, or feelers, and the trophi, or organs of the mouth eollectively.

The thorax, the second segment, earries all the organs of loeomotion. It consists of the prothorax or eollar, which earries beneath the anterior pair of legs ; the mesothorax, or eentral division, with which artieulate laterally above the four wings, the anterior of which have their base protected by the squamule, or epaulettes, or wing seales, and beneath it earries the intermediate pair of legs; the metathorax, or hinder portion, which has in the eentre above, behind the scutellum, the post-scutellum, and at the extremity of this division just above the artieulation of the posterior legs is attaehed the last segment of the insect,-the Abdomen.

The vertex, or crown of the hcad, is that portion
which lies between the upper extremities of the compound eyes. Upon the vertex arc placed the stemmata, or ocelli (the simple eycs), in a curve or triangle; they are three in number, and are small, hyaline, circular protuberances, each containing within it a lens; sometimes they occur very far forward upon the face, especially when the compound latcral eyes meet above, as in the male domestic bec or drone. The uses of these simple eyes, from the expcriments which have been made, seem to be for long and distant vision. To test their function, Réaumur covered them with a very adhesive varnish, which the bec could not remove, and he then let it escape. He found upon several repcated trials, that the insect always flew perpendicularly upwards, and was lost. Although this was anything but conclusive as to the uses of thesc eyes, it would seem that by losing the vision of this organ, the insect lost with it all sense of distance.
The compound eyes, seated on each side of the head, extend from the vertex gencrally to the articulation of the mandibles or jaws, their longitudinal axis being perpendicular to the station of the insect. They vary in extcrnal shape and convexity in the several species and gencra, although not greatly, and consist of a congeries of minute, hcxagonal, crystalline faccts, each slightly convex externally, and their intcrstices are sometimes clothed with a short and delicate pubescence. Each separate hexagon has its own apparatus of lens and filament of optic nerve, each having its own distinct vision, but all converge to convey onc object to the sensorium. The function of the compound eyes is concluded to be the microscopic sight of near objects.

The face, which sometimes has a longitudinal carina,
or prominent ridge, down its centre, lies between these eyes, descending from the vertex to the base of the clypeus, or nose, but which is without the function of that organ. This clypeus is sometimes protuberant, and from shape or armature, characteristic. This part, however, is not always distinctly apparent, although a line or suture usually separates it above, from the face. At its lower extremity the labrum, or upper lip, articulates, over which it is sometimes produced; and it extends at each lateral apex to the base of the insertion of the mandibles. The gene, or cheeks, descend from the vertex laterally, behind the compound eyes, to the cavity of the head which contains the lingual apparatus, when folded in repose. These cheeks, at their lower extremity, sometimes embrace the articulation of the mandibles.

The antenne, or feelers, are two filamentary organs articulating on each side of the face and above the clypeus. They comprise the scape (a), or basal joint, and (b) the flagellum or terminal apparatus; the latter consists of closely attached conterminal joints, and usually forms an elbow with the scape ; collectively these joints number twelve in the female and thirteen in the male. They are all of various relative lengths, which sometimes aid specific determination. The scape, however, is usually much longer than any of the rest, and in some males has a very robust and even angulated shape. A description of the antennæ always enters into the generic character; they usually differ very materially both in length and form in the sexes. They are often filiform (2), but more generally subclavate (1), and sometimes distinctly so, and where they have the latter structure it is found in both
sexes. They constantly differ in the speeies of a long genus (Andrena, Normada, Halictus). In the male of the genus Eucera, they have a remarkable extension, being as long as the body, whereas folded baek they are rarely so long, or not longer than the thorax in other males, speaking in reference only to our native kinds. In the females they are not often longer than the head. It is in the males of the genus Halictus that they take the greatest extension. In the male of the genus Eucera, we also find the remarkable peeuliarity of the integument of some of the joints being distinetly of an hexagonal structure, - a peeuliarity often observable in natural struetures. In this case it may refer to the sensiferous function of the organ, and to whieh I shall have oceasion to revert when I speak of the senses of our inseets. We sometimes find the joints of the antennæ moniliform, something like a string of beads, or with eaeh separate joint forming a curve, or with their terminal one, as in Megachile, greatly eompressed.

The relative lengths of the joints often yield conelusive separative speeific characters, and which may be very advantageously made available, especially where other distinetive differences are obscure, and in eases where the praetised eye observes a distinetion of habit, evidently speeifie, although it is diffieult to seize tangible charaeteristies.

The trophi are the organs of the mouth of the bee eollectively. When eomplete in all the parts, as exemplified in the genus Anthoptera, they eonsist of the labrum, or upper lip; the epipharynx, or valve, falling over and elosing the aperture of the gullet; the pharynx, or gullet, which forms the true mouth and entranee to the œsophagus; the hypopharynx whieh lies immediately below
the gullet and assists dcglutition ; the labium, or lower lip, and the true tonguc. These parts are all single; the parts in pairs are the mandibles, the maxilla, the marillary palpi, the labial palpi, and the paraglosse.

The labrum, or upper lip, is attached by joint to the

Fig. 7.-Trophi and their unfolding. a, labrum ; b, epipharynx; c, pharynx; d, hypopharynx ; e, mandible; f, maxillæ; g, maxillary palpi; h, mandible; i, cardium ; k, labium ; l, labial palpi; m, paraglossæ; n, tongue. apex of the clypeus; it has a vertical motion, and falls over the organs beneath it, in repose, when it is itself covered by the mandibles. It isusually transverse in form, but is sometimes perpendicular, especially in the artisan bees. It takes many forms, somctimes semilunar or linear, emarginate or entirc, convex, concave, or flat, and is occasionally armed with one or two processes, like minute teeth projecting from its surface, but of what use these may be we do not know. In the female of Hulictus, it has a slightly longitudinal appendage in the centre. It is usually horny, but is sometimes coriaceous or leathcry. This labrum often yiclds good specific characters.

The pharynx, or gullet, is a cavity immediately beneath the epipharynx, which articulates directly under the base of the labrum, and which closes the pharynx from above, and immediately beneath this cavity is another small appendage, almost triangular, which receives the food or honey from the canal conveying it
from the tongue, or dircctly from the mandibles, when it is masticated, and helps it forward to the pharynx to be swallowed. The epipharynx closes this orifice from above, the labrum then laps over it and the articulation of the lingual apparatus, both which are further protected in repose by the mandibles closing over the labrum. This triple protection shows the importance nature attaches to these organs. The more direct portious of the lingual apparatus are the labium, or lower lip, which forms the main stem of the rest, and articulates beneath the hypopharynx, and is beneath of a horny texture; it forms a knee or articulating bend at about half its length, and has a second flexure at its apex, where the true tonguc is inserted. This labium is extensible and retractile at the will of the inscct, and lies inserted within the under cavity of the head when in complete repose, and the insect can withdraw or extend a portion or the whole at its pleasure. Attached on each side, at its first bend or elbow, lie the maxille, which, for want of a better term, are callcd the lower jaws, and perhaps properly so from the function they perform; for at the point of thcir downward flexure, which occurs at the apex of the labium, and where the true tongue commences, they each extend forward in a broad, longitudinal membrane, partly coriaceous throughout its whole length, and these, folded together and beneath, form the under sheath of the whole of the rest of the lingual apparatus in rcposc, and often lap over its immediate base when even it is extended. Externally continuous, the line of thise maxille is broken at the point of flcxure at the apex of the labium, by a deep sinus or curve, and within this is inserted the first joint of the maxillary palpi. The portion of the maxillæ
extending forwards, hence takes several forms, usually tapering to an acute point, but sometimes rounded or hastate, according to the structure of the tongue, to which they form a protection.

The maxillary palpi are small, longitudinal joints, never exceeding six in number, and generally in the normal or true bees not so numerous. They vary in relative length to the organ to which they are attached, and usually progressively decrease in length and size from the basal ones to the apical, but each joint, excepting the terminal one, is generally more robust at its apex than at its own special base. The function of these maxillary palpi is unknown. They are always present in full number in the Andrenide, and in some few genera of the true bees, but they vary from their normal number of six to five, four, three, two, and one in the latter ; and it is curious that they are most deficient in those bees having the most complicated economy, as in the artisan bees and the cenobite bees; they thus evidently show that it is not a very paramount function that they perform. On each side, at the apical summit of the labium, are inserted the labial palpi. These are invariably four in number, but vary considerably in length and substance. In the Andrenide they have always the form of subclavate, robust joints, and are usually as long as the tongue, but not always; they are only half the length of that organ in the subsection of the acute-tongued Andrenide. In the normal bees, even in the genus Panurgus, which is the most clesely allied to the Andrenide, the labial palpi immediately take excessive development, especially in their two basal joints, and the structure of these two joints, excepting in this genus and in Nomada, partakes of a flattened form
and membranous substance. All these four joints are either conterminal, or the two apical ones, or one of them is articulated laterally, towards the apex of the preceding joint. These two are always very short joints, and are comparatively robust.

The labial palpi are, in the majority of cases, about half or two-thirds the length of the tongue, but in Apathus and Apis they are of its full length. At the immediate base of the tongue, and attached to it laterally, rather than to the apex of the labium, are the paraglosse, or lingual appendages, which are membranous and acute, except in the Andrenide, where, in some, their apex is lacerated and fringed with short hairs. These organs are always present in the Andrenide and generally in the Apide, where they usually obtain extensive relative development; but in the artisan bees they are all but obsolete, and in Ceratina, Celioxys, Apathus, and Apis, they are not even apparent. Their use also has hitherto eluded discovery, but that they are not essential to the honey-gathering instinct of the bee is especially proved by the latter instance.

The true tongue is attached to the centre of the apex of the labium, having the paraglossæ, when extant, and the labial palpi at its sides. In the Andrenide it is a flat short organ of varying form, either lobated, emarginate, acute, or lanceolate; but in the Apide, with Panurgus it immediately becomes very much elongated, and with this genus the apparatus whereby the tongue folds beneath obtains its immediate development; but this development exhibits itself most fully in the genus $A n-$ thophora. The tongue is usually linear, tapering slightly to its extremity, and terminating in some genera with a small knob. It is clothed throughout with a very delicate
pubescence, which enables the bee to gather up the nectar it laps. That it should be called the lip seems an absurdity, for it exercises all the functions of a tongue, and

Fig. 8.-Extremes of structure of tongues: 1, in subnormal bees (Colletes) ; 2, in normal bees (Anthophora). a, tongue; b, paraglossæ ; c, labial palpi; d, maxillæ; e, maxillary palpi ; f, labium.
it would seem almost that the fine hairs, with which it is covered, are the papillæ of taste. Its structure in some genera seems to be a spiral thread twining closely round and round, but in others it appears throughout identical.

This tongue was formerly thought to be tubular, and that the bee sucked the honey through an aperture at its apex. The knowledge of the flat form of the tongues of other bees should have dissipated the illusion, for we could have been perfectly sure of the analogical structure and function of an organ in creatures so nearly alike. Réaumur's patient observations have totally dissipated the mistake, and through him we exactly know how the bee conveys the honey into its stomach

As it exhibits an agreeable instance of the persevering industry and unblenching patience with which he made his researches, I will give a summary of what he says, for his bulky volumes, although teeming with delightful instruction, pleasantly narrated, will necessarily not be in every entomologist's hand, and where not, not even always readily accessible. His observations were made upon the honey-bee, but we may attribute the same mode of collecting to all the rest. He says:-When this tongue is not lapping the nectar of flowers but in a state of perfect repose it is flattened. It is then at least three times broader than thick, but its edges are rounded. It gradually narrows from its base to its extremity. It terminates in a slight inflation, almost cylindrical, at the end of which there is a little knob, which appears perforated in the centre. From the circumference of this knob tolerably long hairs radiate, and the upper side of the tongue is also entirely covered with hairs. The basal and widest portion above seems striated transversely with minute lines closely approaching each other.

The upper side of the anterior portion of the tongue seems of a cartilaginous substance, but the under side of the same part appears cartilaginous only over a portion of its width. The centre is throughout its whole course more transparent than the rest, and seems membranous and folded. It is only necessary to press the posterior portion of this trunk, whilst holding its anterior part closely to a light, towards which its upper surface must be turned, and then upon examining its inner surface with a lens of high power, a drop of liquid may be soon observed at its foremost portion. By continuing to press it this drop is urged forward, and as it passes every
portion swells considerably, and the two edges separate more widely from each other. The under side of the tongue, which was before flat, rises and swells considerably, and all that thus rises up is evidently membranous. It looks like a long vessel of the most transparent material. But whilst this great increase of bulk is made upon the lower surface, the upper surface swells only a little, which seems to prove that its inmediate envelope is not capable of much distension.

If a bee be observed whilst sipping any sweet liquor, the anterior portion of its trunk will be sometimes seen more swollen than when in action, and alternations will be observed in it of varying expansion.

The posterior portion of the trunk is a great deal larger than the anterior, and it is only in repose that the former nearly equals the latter in length. This posterior portion (this is the portion treated above as the labium, or under lip) is joined to the anterior by a very short ligature, wholly fleshy, and very flexible, which permits the folding of the trunk, and then its under side is quite scaly, very shiny, and rounded (the maxillæ). This portion is apparently more substantial than the rest. Its diameter gradually increases as it recedes from about the middle to about two-thirds of its length; there it is a little constricted, and the first of the two pieces of which it is composed there terminates. The first piece is rounded, for the purpose, it would appear, of fitting itself upon another, which serves as its base and pivot. This base is conical and of a scaly texture, and terminates in rather an acute point. It is this point which is articulated at the junction of the two small elongate portions of which we spoke at the commencement, and which carry the trunk forward.

In repose, the posterior part of the trunk lies along the lower part of the mouth, and the anterior part is folded baek upon it, when it is eovered by the maxillæ, whieh then seem to form a portion of it. It has further another interior envelope; these are the two first joints of the labial palpi (in the Apide), which are entirely membranous, and these in repose eling elosely to the tongue laterally.
The bee would eertainly not eolleet its honey differently from a flower than it would from a glass wherein it might be plaeed to observe the proeess; and here it never appeared to obtain the honey by suetion. The bee was never observed to place the end of its tongue in the drop of syrup, as it would necessarily do if it were requisite to imbibe it through what seems the small aperture at the extremity of the knob, at the end of the tongue, previously deseribed. As soon as the bee finds itself near the spot spread with honey or syrup, it extends its tongue a line or so beyond the end of the palpi, whieh eontinue to envelope it throughout the rest of its length. If the honey be spread over the glass, the anterior portion of the tongue, whieh is exposed, is turned round that its superior surfaee may be applied to the glass. There this portion does precisely what the tongue of any animal would do in lapping a liquid. This tongue repeatedly rubs the glass, and, moving about with astonishing rapidity, it makes hundreds of different inflexions.

If the drop of syrup presented to the bee be thicker, or if it meet with a drop of honey, it then thrusts the anterior portion of its tongue into the liquid, but apparently only to use it as a dog might do its tongue in lapping milk or water. Even in the drop of honey the bee bends the
end of its tongue about, and lengthens and shortens it successively, and, indeed, withdraws it from moment to moment. We then observe it not merely lengthen and shorten this end, but it is also seen to curve it about, causing from time to time the superior surface to beeome eoncave,--to give, as it were, to the liquid with which it is loaded a downward inclination towards the head. In faet, this portion of the trunk appears to act as a tongue, and not as a pump. Indeed its extremity, where the aperture for receiving the liquid is assumed to be, is repeatedly above the surface of the liquid which the insect is lapping.

By these continuous motions this anterior extremity of the tongue charges itself with the nectareous fluid, and eonveys it to the mouth. It is along the upper surface of this pilose tongue that the liquid passes. The bee strives especially to load and cover it with honey. In shortening the tongue to the extent, sometimes, of withdrawing it entirely beneath its sheaths, it eonveys and deposits the liquid with which it is charged within a sort of ehannel, formed by the upper surface of the tongue and the sheaths which fold over it. Thus, these sheaths are, perhaps, less for the purpose of covering the tongue than to form and cover the channel by which the liquid is conveyed to the mouth. I have previously remarked that the trunk can swell and eontract; these swellings and constrictions are observed to sneeeed eaeh other, and may be for the purpose of urging the liquid, ahready in transit beneath the sheaths, forward towards the true mouth. Further, I moved the sheaths aside from their position above the tongue of a bee whieh I held in my fingers, and I succeeded, by means of the point of a pin, in placing an extremely small drop of
honey upon the tongue of this bce at a spot where it could be covered by the extremities of the external sheath. I then let thesc sheaths loose. Sometimes they spontaneously resumed their previous position, and sometimes I assisted them to resume it. The drop of honey which they then covered has in no instance returned to the extremity of the tongue; it has always passed towards the mouth, and doubtless entered that orifice itself. It is therefore very certain that the bee imbibes its honey by lapping, and that it never passes through the aperture which has been supposed to have been seen at the extreme apcx of the tongue. Did this aperture really exist, it would be of extreme minuteness, and it did not appear to me possible that a large drop of honey, which I have seen imbibed in a very few instants, could in so short a time have passed by so minute an opening. A further confirmation of the nonexistence of this orifice has been given me when, by pressing a tongue towards its origin to compel it to swell, I have detected the liquid which Andrenidx. gave it its extension, but all my pressing would never make the liquid pass through the extremity, although the pressure has sometimes made it almost rend the membranes, to give it an opening to escape by. Having thus passed through the œesophagus into the stomach, it is then regurgitated into its requisite repository upon arriving at home.

The entire proboscis, with all its appendages attached, has in the Apidce three distinct hinges or articulations, including that which attaches it by its extreme base to

Apidæ.
Fig. 9.-Mode of folding the tongue in repose. 1. In abnormal bee. 2 . In normal bee. a, point of articulation beneath the hypopharynx: b, apex of the tongue.
the under surface of the mouth and lower portion of the head, the cavity of which, when folded, it fills, and even then the apex of the tongue protrudes in some genera beyond the sheathing maxillæ. In the Andrenidee it has but two articulations, and the maxillæ always cover them entirely in repose. The first articulation, forming the fulcrum of the whole, is always elbowed in the Apide, and consequently not capable, like the rest of the joints, of full linear extension. The attached diagram will give a clearer conception of the mode of folding: a is the labium, and b the tongue.

As we have no complete description of the mode by which the tongue of the bee is worked, and how it gathers up its honey, I thought it desirable to be fuller upon the subject than was originally my intention.

The last portion of the trophi, also double, are the mandibles; they articulate on each side with the cheeks ; they act laterally, and are variously formed, according to the

Fig. 10.-Mandibles: 1, of leaf-cutter bee (Megachile) ; 2, of burrower (Andrena) ; 3, of parasite (Nomada).

toothed in the artisan bees. In Apis and Bombus they are subdentate. In males they are frequently simply acute, but in some species, especially in Andrena, they have a long spine at the base, which points downwards when they are closcd. To this sex they appear to be of no use beyond aiding them to stay the wayward caprice or flight of their mistresses ; and, although they have in analogical structure in the males of those genera wherein they are much dilated and toothed, yet they do
not seem to be at all used by that sex for any purpose but sexual. In the females they are used for the construction of their burrows and nests, and for the purpose of nipping the narrow spurs and tubes of flowers to get at the nectar; and they often nip, whilst seeking pollen, the anthers of the flowers which have not yet burst their receptacles of pollen.

These insects must necessarily nicely appreciate the quantity of pollen requisite to the full development of the young insect, and, although we often observe a remarkable difference of size in the individuals of a species, this may rather arise from some defect in the quality of the nutritive purveyance than in its quantity, for instinct would as efficiently provide for this purpose as it unquestionably guides to the collection and storing of the nutritive supplies.

Having thus completed the description of the head and of all its attachments, I proceed to-

The Thorax, which is divided by sutures into three parts already mentioned above, viz. the prothorax, the mesothorax, and the metathorax.

The collar, or upper part of the prothorax, is often very distinct, and even angulated laterally in front, and frequently presents, both in colouring and form, a specific character. At its under portion on each side the anterior legs are articulated.

All the legs comprise the coxa, or hip-joint; the trochanter, which is a small joint forming the connection between this and the next joint the femur, or thigh ; the tibia, or shank; and the tarsus, or foot. The latter consists of five joints, declining in length from the first, which is generally as long as all the rest united together ; the first, in the anterior pair, being called the palme,
or palms; and in the four posterior plantre, or soles; the other joints are called the digiti, or fingers, or tarsus collectively ; at the extremity of the tcrminal one are the two claws, which are sometimes simple hooks, but usually have a smaller looklet within ; they liave both latcral and perpendicular motion, and between their insertion is affixed the pulvillus, or cushion. The coxce in their occasional processes exhibit very useful specific characters, as do the markings and form of the remaining joints of the leg and foot, which in several genera furnish generic peculiarities. The four anterior tarsi have each a moveable spine, or spur, at their apex within, which can be expanded to the angle at which the insect wishes to place the limb, and to which it forms a collateral support ; the posterior tibiæ have two each of these spurs, excepting in the genus Apis, which has none to this leg. Attached to this spur on the anterior tibiæ of all the bees, there is, within, a small velum, or sail, as it has been

Fig. 11.-Anterior leg. a, coxa; b, trochanter ; c, femur, or thigh; d, tibia, or slank; e, spur and velum; f, planta and strigilis; g, digitus; h, claw; i, pulvillus, or cushion. called; this is a small angular appendage affixed within the spur by its base. At the base of the palmæ of the same legs, and opposite the play of this velum, there is a deep sinus, or curved incision, the strigilis, called thus or the curry-comb, from the pecten, or comb of short stiff lair which fringes its edge. Upon this aperture the velum can act at the will of the insect, and combined they form a circular orifice. The object of this apparatus is to keep the antennæ clcan, for the insect, when it wishes to cleanse one or the other of them, lavs it within this sinus of the palma, and then, pressing the
velum of the spur upon it, removes, by the combined action of the comb and the velum, all excrescences or soilure from it, and this process it repeats until satisfied with the cleanliness of the organ : and this it may be frequently seen doing. This arrangement proves how essential to the well-being of the insect is the condition of its antennæ, the sinus, or strigilis, or curry-comb, as it may be called, being always adapted in size to the thickness of the antennæ, for insects being always both rightand left-handed, they therefore use the limb on each side to brush the antenna of that side. The palmæ and other joints of the tarsus of the fore legs are greatly dilated in many males, or fringed cxternally with stiff setæ, which give it as efficient a dilatation as if it were the expansion of its corneous substance. The anterior tarsi of the fcmales are likewisc fringed with hair, to cnable them to sweep off and collect the pollen, and to assist also in the construction and furnishing of their burrows. The intermediate tarsi are as well often very much extended in the males, being considcrably longer than those of the other legs. The use of the claws at the apcx of the tarsi is evidently to enable the insect to cling to surfaces.

The manner in which the bee conveys either the pollen, or other matcrial it purposes carrying liome, to the posterior legs, or venter, which is to bear it, is very curious. The rapidity of the motions of its legs is then very great; so great, indeed, as to make it very difficult to follow them ; but it scems first to collect its matcrial gradually with its mandibles, from which the anterior tarsi gather it, and that on each side passes successively the grains of which it consists to the intermediate legs by multiplicated scrapings and twistings of the limbs; this then passes it on by similar manourres, and depo-
sits it, according to the nature of the bce, upon the posterior tibice and plante, or upon the venter. The evidence of this process is speedily manifested by the posterior legs gradually exhibiting an increasing pellet of pollen. Thus, for this purpose, all the legs of the bees are more or less covered with hair. It is the mandibles which are ehiefly used in their boring or excavating operations, applying their hands, or anterior tarsi, only to clear their way; but by the constructive or artisan bees they are used both in their building and mining operations, and are worked like trowels to eollect moist clay, and to apply it to the masonry of their habitations.

The mesothorax, or central division of the thorax, has inserted on each side near the eentre the four wings, the anterior pair articulating beneath the squamula, or wing scales, which cover their base like an epaulette, and this wing scale often yields a specific character. In repose the four wings lie, horizontally, along the body, over the abdomen, the superior above, the inferior beneath. The wings themselves are transparent membranes, intersccted by threads darker than their own substance, called their nervures, which are supposed to be tubular. T'hese nervures and the spaces they enclose, called eells, are used in the superior wing only, and only occasionally, as subsidiary generic characters, and their terminology it will be desirable to describe, as use will be made subsequently of it. At the same time, to facilitate the comprehension of the terms, an illustrative diagram is appended; but those parts only will be deseribed which have positive generic application. I may, however, first observe that upon the expansion of the wings in flight, the insect has the voluntary power
of making the inferior eling to the superior wing by a series of hooklets with whieh its anterior edge is furnished at about half the length of that wing, whieh gives to the thus consolidated eombination of the two a greater foree in beating the air to aecelerate its progress. That the inseet has a control over the operation of these hooklets is very evident, for, upon settling, it usually unloeks them, and the anterior are often seen separated and raised perpendieularly over the inseet; but that this ean be meehanieally effeeted also is shown sometimes in pinning a bee for setting, when by a lueky aeeident the pin eatches the museles whieh aet upon the wings, and they beeome distended, as in flight, closely linked together. Both the diagram and the description of this superior wing I borrow from an elaborate paper of my own in the first volume of the 'Transaetions of the Entomologieal Soeiety of

Fig. 12.-Superior wing. $\quad a$, marginal cell ; b, first cubital or submarginal cell ; c, second ditto; d, third ditto; e and f, first and second recurrent nervures.

London,' wherein I gave a tabulated view, in ehronologieal order, of the nomenelature introduced by sueeessive entomologists in the use they made of the anterior wing of the Hymenoptera for generie subdivision, and whieh I subsequently applied to my own work upon the 'Fossorial Hymenoptera of Great Britain.'

Attaehed to the mesothorax in the eentre, above and behind, are the seutellum and post-seutellum, whieh in eolouring or form often yield subsidiary generie or speeifie charaeters. On eaeh side of the mesothorax in front, above the peetus, or breast, and just below and before the artieulation of the anterior wings, there is a
small tuberele, or boss, separated from the surrounding integument by a suture, the eolouring of whieh frequently yields a specific eharacter, but its uses are not known.

The metathorax earries the posterior legs laterally beneath, and in the eentre, behind, the abdomen. The

Fic.13.-Posterior legs: 1, of abnormal bee ($A n$ Drena) ; 2, scopuliped normal bee (Eucera) ; 3, parasitic bee (Nomada). a, coxa; b, trochanter, with flocculus; c, femur; d, tibia; e, planta; f, spinule; g, tarsus, with its claws. posterior legs are the ehief organs used by the majority of bees for the eonveyance of pollen to store in their eells, or, as in the case of humble-bees or the hive bee, the bee bread for the food for the young, or the requisite materials, in the majority of other bees, for nidification. To this end they are either densely elothed with hair throughout their whole extent, - usually externally only,-or this is limited to the external surfaee of the posterior shank. In the soeial bees this shank is edged externally with stiff bristles. In these, as in most of the bees, this limb greatly and gradually expands towards its articulation with the planta, or first joint of the tarsus; and this surface, whieh is perfeetly smooth, serves to the soeial bee as a sort of basket to hold and eonvey the eolleeted materials. The first joint of the tarsus, or planta, of this leg is also used in the domestie ceonomy of the inseet to assist in the same objeet. In the domestie bee the under side of the posterior plantæ have a very peeuliar strueture, consisting of a series of ten transverse broad parallel lines of minute dense but short brushes, whieh
are used in the manipulations within the hive. Neither the queen bee nor the dronc have this structure, and in the humblc.-bec and scopuliped bees the same joint is uniformly covered with this brush without its being separated into lines.

The Abdomen of bees has many shapes, its form being elliptical, cylindrical, subcylindrical, clavate, conical or subconical, and sometimes scmicircular, or con-cavo-convex. It consists of six imbricated plates, called segments, in the fcmalc, and of seven in the male; in the latter sex, in several genera, it takes bencath at its base and at its apcx, as well as at the extremity of the lattcr, remarkable forms and armature. It is very variously clothed and colourcd, and sometimes extremely gaily and elegantly so ; these various markings often giving the insects their specific characteristics ; the clothing of the under side of this segment of the body, likewise, furnishes subsidiary generic characters, especially in the artisan bees, in whom it takes the place of the posterior lcgs as a polliniferous organ. This is possibly because were the supply convcyed upon their posterior legs it would be rubbed away as they entered the narrow apertures of their nests. Nature does nothing in vain, and there is evidently a purpose in this arrangement.

If we can tracc peculiaritics of structure to efficient reasons, differences of form may be rationally concluded as having their cause too, even if it elude our explanatory research. Although the reason of peculiar structure is not always obvious, it must exist, though undetceted; as, for instance, why in some bees, as in Megachile, Osmia, Chelostoma, Anthidium, etc., the under sidc of the abdomen should be furnished densely with hairs to carry their provision of pollen home to their nest, when in other
bees, as in Dasypoda, Panurgus, Eucera, Anthophora, ctc. etc., it is conveyed upon the posterior legs, we do not know; we can only surmise that it is cither to save the insect, in the former case, the labour of constructing a larger cylinder for nidification, so to prevent the possibility of its being rubbed off from the external surface of the lcgs, did these carry it, in entering the burrow, it bcing protected from this abrasion by being placed beneath the ventcr. In such insects the abdomen is usually truncated at its origin, or even hollowed within its base, thus to mcet the projection of the metathorax, enabling it to draw itself closely up together, making the abdomen and metathorax, as it were, cohere. A different form of abdomen occurs in those bees which carry the pollen on their posterior legs. It is then more or less elliptical or lanceolate, which form permits the legs to be drawn up towards the metathorax within the space that kind of form furnishes, which, by this different but equivalent arrangement, meets the same object. The similarity of the adjustment of the abdomen to the mctathorax to that of Megachile, etc. in Apis and Bombus, by which insects the provision is also carried on the posterior legs, results from the totally different economy and habitation of the social bees, to which this structure is necessary for many purposes.

If we observe this same peculiarity of structure in the cuckoo, or parasitical bees, it is because we find resemblances where there are alliances. Thus, the male artisan bces, although not assisting in the labour of constructing the apartments, have similarly dilated mandibles to those of their femalcs. So also, in the form of the abdomen, the Nomade are like the Andrence and Halicti, upon which they are chiefly parasitical.

Melecta resembles Anthophora; Calioxys has the form of Megachile, both in the hollowed base of the abdomen and the peculiar manner the latter has of raising its extremity,-something like a Staphylinus. Many other peculiarities of resemblancce might be enumerated.

Having thus completed the description of the external anatomy of the bee desirable to be known for facilitating the comprehension of what I may have subsequently to say. I shall now refer to a few peculiarities of their manuers, which could not be conveniently introduced elsewhere.

In their modes of flight bees vary considerably ; some dart along in a direct line, with almost the velocity of lightning, visit a flower for an instant, and then dart off again with the same fleetness and vivacity, like Saropoda and Anthophora; others leisurely visit every blossom, even upon a crowded plant, with patient assiduity, like Bombus; and some, either from fatigue, or heat, or intoxication, repose, like luxurious Sybarites, within the corolla of the flower. The males seem to flutter about in idle vagrancy, and may be ofteu observed enjoying themselves upon some fragrant hedge-row. But the domestic bee and the humble-bee are the most sedulous in their avocation, and both cheering their labour with their seemingly self-satisfied and monotonous hum.

Bees, too, have a voice; but this voice does not proceed from their mouth, nor is it the result of air passed from the lungs through the larynx, and modulated by the tongue, teeth, and lips; for bees breathe through spiracles placed laterally along the several segments of the body, and their interior is aerified by tracheæ, which ramify variously through it ; but their voice is produced by the vibration of the wings beating the air during
flight. Even as Linnæus constructed a floral clock to indicate the succession of hours by the expansion of the blossoms of flowers, so might a Beethoven or a Men-delssohn-the latter in the spirit of his philosophical ancestor-note down the several sounds of the hum of the many kinds of bees to the construction of a scale of harmonic proportions, whose Æolian tones, heard in the fitfulness of accidental reverberation amidst the solitudes of nature, repeatedly awaken in the mind of the entomologist the soothing sensation of a soft, voluptuous, but melancholy languor, or exhilarate him with the pleasing feeling of brisk liveliness and impatient energy.

It is rarely that a bee is seen to walk, although a humble-bee or hive bee may be seen crawling sometimes from flower to flower on the same footstalk, but they are never good pedestrians. They convey themselves upon the wing from blossom to blossom, and even on proceeding home they alight close to the aperture of their excavated nidus, to which an unerring instinct seems to guide them. There occasionally they will meet with the intrusive parasite, to whom some genera (Anchophora, Colletes) give immediate battle, and usually succeed in repulsing the interloper, who patiently awaits a more favourable opportunity to effect her object.

Bees are exceedingly susceptible of atmospheric changes; even the passage of a heavy cloud over the sun will drive them home; and if an easterly wind prevail, however fine the weather may otherwise be, they have a sort of rheumatic abhorrence of its influences, and abide at home, of which I have had sometimes woful experience in long unfruitful journeys.

The cause would seem to be the deficiency of electricity in the air, for if the air be charged, and a westerly
wind blow, or there be a still sultriness with even an occasionally overcast sky, they are actively on the alert, and extremely vivacious. They are made so possibly by the operation of the influence upon their own system conjunctively with the intensity of its action upon the vegetable kingdom, and the secretions of the flowers both odorous and nectarian.

Bees do not seem to be very early risers, the influence of the sun being their great prompter, and until that grows with the progress of the morning they are not numerously abroad. Early sometimes in the afternoon some species wend homewards, but during the greatest heat of the day they are most actively on the alert. The numbers of individuals that are on the wing at the same time must be astounding, for the inhabitants of a single colony, where they may, perhaps, be called semi-gregarious, from nidificating collectively within a circumscribed space, can be computed by myriads. And then the multitude of such colonies within even a limited area! When we add to this the many species with the same productiveness! Yet who, in walking abroad, sees them but the experienced entomologist? When we consider the important function they exercise in the economy of nature, and that but for them, in the majority of instances, flowers would expand their beautiful blossoms in abortive sterility, we can but wonder at the wise and exuberant provision which forecasts the necessity and provides accordingly. But that even these should not superabound, there is a counterbalance in the numerous Enemies to which they are exposed. The insectivorous animals, birds, among which there is one especially their arch-enemy-the bee-eater; those reptiles which can reach them; many insects in a variety
of ways, as the cuckoo-bees, whose foster-young starve the legitimate offspring by consuming its sustenance; and personal parasites, whose abnormal and eccentric structure required an Order to be establishcd for their admission. Strange creatures! more like microscopic repetitions of antediluvian enormities than anything within the visible creation, and to whose remarkable peculiarities I shall have occasion to return. Amongst the Diptera and Lepidoptera also they have their enemies.

Bees are sometimes exceedingly pleasant to capture, for many of them emit the most agreeable scents; some a pungent and refreshing fragrance of lemons; others the rich odour of the sweetest-scented rose; and some a powerful perfume of balsamic fragrance and vigorous intensity. These have their set.-off in others which yield a most offensive smell, to which that of garlic is pleasant, and assafoetida a nosegay. These odours must have some purpose in their economy, but what it may be has not been ascertained.

They present very frequently remarkable disparities of structure and appearance in the sexes, so much so that its infrequency is rather the exception than the rule, and nothing in many cases but practical experience can associate together the legitimate sexes. Diffcrences of size are the simplest conditions of these distinctions, for they occur also in individuals of the same scx. Differences of colour, consisting in increased intensity in the males, are also usually easily recognized; but the relative length and structure of the anternæ is a more marked disparity, and the development is always in favour of the male. The differences in the compound eyes are conspicuous in our native genera only in the
drone, where they converge on the vertcx, and throw the stcmmata down upon the face. I have before alluded to special peculiarities in the legs when treating of those limbs. In the wings there are occasional diffcrences, but so slight as not to require, in a general survey, special notice ; but wherever they occur it is always in the male that the greatest extension of those limbs is found. The differenecs in the termination of the abdomen I have noticed above, and these sexual peculiarities in some genera are very marked. The spines which arm it in Anthidium and Osmia, and its peculiar structure in Chelostoma we can account for; but we have not the samc clue to their uses in Colioxys, in which the action of the abdomen is upward, and not downward, as in the others.

The assoeiation of the legitimate partners of our native species has been to a great extent alrcady accomplished and recorded; therefore, in this case, with the requisite guides to further instruction at hand, the commencing entomologist will find no obstruction, but may register the observations of his own experience to verify the discoveries of his predecessors.

It would seem from the facts that have been reeorded, and the close investigations madc, that in some instances the next year's bee is already disclosed and in the imago state, in the autumn of the existing year, so that it is ready, upon the first genial weather in the spring, to work its way out of its nidus, and take its part in the duties it has to perform. Whether this be for the economy of the food to the larva, or the saving of labour to the parent in gathering it, or that it would be prejudieial for it to lie dormant in the pupa state during the winter is not known, but thus in many instances it is.

Sometimes a late autumnal impregnation takes place, for the males of some Andrene, Halicti, and Bombi are found abroad only late in the autumn, and then in fine and reeently diselosed condition.

It is a singular cireumstance in the history of some speeies, that where they abound one season, nidifieating on a eertain spot in profusion, the following year, perhaps, and the year sueeceding that, they will not be seen at all, but yet again a further year, and there they are as innumerable as ever.

What may control this intermittent appearance it is impossible to eoneeive, all the conditions of the spot and its surroundings being the same. This I have found to be a peculiarity ineidental to many of the aculeate $H y$ menoptera. It oecurs also in the flowering of many plants which blossom irregularly from season to season. It is a faet searcely coneordant with the observed rapidity of the diselosure of the larva from the egg, and the speedy growth, development, and transformation of the latter into the pupa and imago.

The wild bees appear to be of annual, or of even more restrieted duration merely. Of this, however, we have no ecrtainty. The conclusion is derived chiefly from the eireumstance that, as they progressively come forth with the growth of the year, they, when first appearing, are in fine and unsoiled condition. There are evidently in some speeies two broods in the year; the one in the spring and the other autumnal. In bees without pubescence we have not the same guide. But humble-bees are reputed to have a longer life than of one year, and hive bees are said to survive several years, a duration of existenee inconsistent with analogy, and which has been repeatedly and strongly denied.

In speaking of the antenne and palpi, I have ealled them sensiferous organs. The organ neeessarily implies the perception, or whatever it may be, conveyed to the sensorium through its means, this being the reeeptaele of the sensation or idea, the external organ eommunieates. It is thus that aetivity is given to a power of discrimination, and eonsequently of election or rejection by the ereature. This sensorium, in the higher animals, is the brain; and in the lower, where the nervous system is very differently eonstituted, a ganglion, or knot of nervous substance. That this brain, or ganglion, is the power exereising the control, may not be admitted, although it is there that our research eompulsively terminates. The power itself is essentially spiritual, aeting through a material agent, and may be an efflux of this nervous mass. Whether it eease with the death of the organ, we have no means of knowing. That it may be in some way analogous in nature to the human mind, but to a limited extent, there is reason to surmise. This power, in its eolleetive eapaeity, is ealled Instinct. This instinet is a faculty whose elear eomprehension and lueid definition seem impossible to our understanding. Its attributes are very various, and its operations are always all but perfeet. It is an almost unerring guide to the creature exereising it, and is as fully developed on its awakening as is, and with it, the imago upon its transformation.

Although observation has thought to have deteeted that experienee sometimes uses a selection of means, and thus oeeasionally modifies the rigid exereise of the faeulty, by adapting itself to the foree of eircumstances, it, when so, evidently assumes a higher eharaeter than has been willingly aecorded to it. This instinet teaehes the just
disclosed bee, without other teaching than that of the intuitive faculty, where to find its food, and how to build its abode. It directs it to the satisfying its material needs, and instructs it to provide for its offspring, and to protect them whilst in their nidus; the impulse to which follows immediately upon the satisfaction of the sexual desire, to which it is the seal.

If it be memory that guides the bee from its wide wanderings back to its home, this then becomes an attribute to the faculty. Instinct indicates to them their enemies, and the wrongs these may intend, and shows them how they may be repulsed or evaded. In some of its operations it seems to be of a more perfect capacity than the operative faculty of human intelligence.

The senses evidently possessed by our insects are sight, feeling, taste, and smell, but whether they hear we cannot know, although the antennæ have been supposed to be its organ, for the apparent responsiveness of these to loud and sudden sounds, may equally result from the agitations of the air these produce. Their possession of touch, taste, and smell, are implied from what has been observed.

They certainly exercise a will, evinced by their power of discrimination, which decides what is salutary and what is noxious; and the passions are exemplified in their revenge, their sexual love, and their affection for their offspring, the latter being exhibited in their unremitting labour and careful provision for them, although they are never to see them. If there be any precedence in the order of the relative quality and distinction of the bees, it will be shown in the degree of superiority with which this function is accomplished. The perfection of this function we see progressively maturing as it passes
onwards from the merely burrowing-bee to the more complicated processes of the masons, carpenters, and upholsterers, -all solitary insects, and working each individually and separately to the accomplishment of its object. But we may certainly inquire where we shall intercalate the sagacity of the cuckoo-bees. A vast bound is immediately made from the artisan bees to the social bees with three sexes, which, as first shown in the humble-bee, works in small and rude communities, with dwellings of irregular construction. The next and most perfect grade is the metropolitan polity, accomplished architecture, laborious parsimony, indomitable perseverance, and well-organized subordination of the involuntary friend of man, the domestic bee. This insect has furnished Scriptural figures of exquisite sweetness, poetry with pleasing metaphors, morality with aphorisms, and the most elegant of the Latin poets with the subject of the supremest of his perfect Georgics.

That bees feel pain may be assumed from the evidence we have of their feeling pleasure, although instances are on record of insects surviving for months impaled ; and they lose a limb, or even an antenna, without evincing much suffering, and I have seen a humble-bee crawling along on the ground with its abdomen entirely torn away.

In speaking of the antennæ above, as possibly the organs of hearing, I would wish to add, that they evidently possess some complex function, of which, not possessing any analogy, we cannot certainly conceive any notion. They are observed to be used as instruments of touch, and that too of the nicest discrimination. They seem to be extremely sensitive to the vibrations of sound and the undulations of air, and keenly appreciative of
atmospheric influcnces, of heat, of cold, and of electrical agitations. That they are important media in sexual communieation must be assumed from their great differences of structure and size in the scxes, probably both as organs of scent and stimulation. I have often obscrved bees thrust their antennæ into flowers, one at the time, before they have entered the flower themsclves, and in some insects, as in the Ichncumons, they are constantly in a state of vibration,-a tribe which, although of the same ordcr, are remote in position from the bees, yet they may be instructively referred to by way of analogy in the discussion of the uses of an organ, whose functions so clearly follow its structure and position in the organization of the entire elass of insects, that the analogy might be safcly assumed in application to every family of the elass, if observation could only correctly ascertain its uses in any one of them.

That it is of primary signification to the bees, is sufficiently shown by nature having furnished these insects with an apparatus dcsigned solely to kcep the antennæ clean, and which I have described above, when speaking of the structure of the anterior leg.

In the social tribcs the antennæ are used as means of communication. The soeial ants, bees, and wasps may be often seen striking each other's antennæ, and then they will each be obscrved to go off in directions different from that whieh they were pursuing. An extraordinary instance of this mode of communication once camc under my own notice, having been called to obscrve it. There was a dead cricket in my kitchen, another issued from its hole, and in its ramblings came across this dead onc ; after walking round, and cxamining it with its antennæ and fore legs a short time, it started off. Shortly,
either attracted by sound, or meeting it by accident, it came across a fellow; they plied their antennæ together, and the result was that both returned to their dead companion, and dragged him away to their burrowing-place, -an extraordinary instance of intercommunication which I can vouch for.

It would be curious to know if the means of communication thus evidently possessed by animals, extends beyond the social and gregarious tribes, and whether the faculty undergoes any change through differences of climate and locality, as man has done in the lapse of time. For man, notwithstanding the vastly divergent differences of race, may be obscurely tracked through the dim trail of the affiliation of languages to one common origin. But the complete identity of habit throughout the world of those genera which are native with us, would seem to affirm that they are as closely allied in every other particular, were we in a condition to make the investigation, and whence we may conclusively assume that they all had one central commencement.

That this mode of communication, and this exercise of the organ in the solitary tribes is limited to the season of their amours is very probable, and I apprehend that it is not exercised between individuals of distinct spccies. But that, at that period, their action is intensified may be presumed from the then greater activity of the males, who seem to have been called into existence only to fuilil that great object of nature, and which she associates invariably with gratification and pleasure. Even in plants it may be observed to be attended with something very analogous to animal enjoyment in the peculiar development at that period of an excessively energetic propulsion, which is the nearest
approach the vegetable kingdom makes to the higher phase of sensiferous life.

The clothing and colouring of bees are very various, but the gayest are the parasites, red and yellow, with their various tints, and white and cream-colour decorate them. The ordinary colour is deep brown, or chestnut, or black. Where the pubescence is not dense, they are often deeply punctured, and exhibit many metallic tinges. Many are thickly clothed with long hair, and this, especially in the Bombi and Apathi, is sometimes of bright gay colour, yellow, red, white, of a rich brown, or an intense black, sometimes in bands of different tints upon the same insect, and sometimes of one uniform hue.

CHAPTER III.

SKETCH OF THE GEOGRAPHY OF THE GENERA OF BRITISH BEES.

In giving a broad sketch of the geography of the genera of bees whieh are native to our islands, but whose local distribution I shall reserve for notice in the account of the genera themselves, I must regret at the outset the lack of materials for its satisfaetory treatment.

There are but very few exceptions to the dearth of assiduity in this direetion; a very favourable one is that of the son of the late venerable hymenoptcrologist, the Count le Pelletier de St. Fargeau, who, at his military post as an officer of the Freneh army in Algeria, stationed at Oran, colleeted energetically for his father in that distriet, and where, in one of his colleeting excursions, he was severely wounded by a musket-ball. Another equally favourable exeeption is that of Sydney Smith Saunders, Esq., residing at Prevesa, in Albania, who has strenuously and perseveringly collected in that country. Here and there we ean point to something having been done in Upper India, in the vieinity of Poonah, at Pondieherry, in Java, in some limited loealities of China, and to some extent in Australia, Tasmania, and New Zealand,
but nothing of any magnitude. There is much hope that a great deal has been done in Ceylon by Mr. Thwaites, who, when resident at Bristol, was a most ardent and successful hymenopterologist.

The Egyptian Hymenoptera have been extensively and admirably figured by Savigny, in the Imperial superb work published under the auspices of Napoleon I., but to these, unfortunately, no descriptive text was published, and they are therefore as useless to science as if they had not been figured. But those collected by Ehrenberg, and figured by Klug, in the 'Symbolæ Physicæ,' exhibit how rich in variety is that remarkable region. These figures may be called the ne plus ultra of entomological artistic skill.

Unfortunately, this Order has been sadly neglected for the sake of the less troublesome Coleoptera, and the more conspicuous Lepidoptera. This is plainly perceptible from the paucity of species recorded as having been once in the Count Dejean's collection, where we might have expected to have obtained a rich view of the Hymenoptera of Spain; as also in those of other French collectors, who have had rare but neglected opportunities for the purpose. It is true M. Brullé has done a good deal in Grecce. We are, as yet, in comparative ignorance, from the same cause of neglect, of the Hymenoptera of Italy, excepting something that has been done by the Marquis Spinola, in Liguria, and by Rossi, in Tuscany. A little has been contributed towards that of Carniola, but we are almost ignorant of the Hymenoptera of Sicily, which, from various causes, are likely to be very peculiar. Mr. Swainson's collection of them, although not numerous, were neglected until they became unintelligible. The only European countries that have been tolerably gleaned
are Germany, Sweden, a part of Russia, and even Finland. It is impossible for any entomologist to examine every locality for himself, he must, in great measure, depend on the labours of others; and, of course, I can only speak of the collections which are accessible to me, or which are described in monographs, or have been named in lists that have been published. Doubtless the Múseum of Berlin, so long under the administration of a lover of the Order, Dr. Klug, would present a large contribution to our knowledge of the distribution of the forms, did a list of its riches exist. Such a list of the menoptera of Portugal, contained in Count Hoffmansegg's collection, was published many years ago in Illiger's ‘Magazin der Insectenkunde..'

It has been a fatality incidental to this entomological branch of the study of natural history that some of its most energetic cultivators have been taken early away. There was formerly Illiger, then our own Leach, and then Erichsen. Leach, but for his afflicting malady, would have done much for the science; still, let us hope that the Hymenoptera, and especially the bees, are gaining ground in the estimation of entomologists generally, and that not many years will pass before collectors will possess them in abundance. For the present, I can but give a slight summary of the knowledge we possess on this subject.

Thus science has sustained great loss by reason of the unfortunate neglect which the family of bees, and, indeed, the Order of Hymenoptera generally, has met with from collectors in distant localities whose tastes have led so directly to the collection of other more favoured Orders, and the opportunities for repairing the consequences of such neglect being in some cases extremely
rare. The present slight attempt to trace the geography and cosmopolitan range of our native genera of bees will necessarily be affected to some considerable extent by this neglect.

Although the materials in our possession will yield some fruit, yet their collection will be but the gleaner's handful, instead of a loaded wain from a rich and abundant harvest. As what I have gathered may still háve an interest for some of my readers, I will lay it before them, and in doing so I shall take the genera in their methodical series.

The genus Colletes comes first, a position the more remarkable from the peculiarities of its economy and form, which bring it closely to the true bees, as do also its aptitude, by reason of its structure, for collecting pollen, and its energy in gathering it. The divergence in the form of the tongue brings it, however, to the extreme commencement of the series, it being the closest structural link we find for connecting the bees with the preceding family of wasps. This genus, in our own species, ranges through northern Europe to the high latitude of Finland, passing through Sweden ; and it occurs also in Russia and in the Polish Ukraine. In other species than ours, and differing among themselves, it occurs at both extremities of Africa, in Egypt, and Algeria, and at the Cape of Good Hope; but whether throughout the wide interval collections do not inform us. It has been sent from Turkey, but whence?-for this is as vague a designation as Russia, both being empires which spread over vast areas,-and, if found in their Asiatic divisions, are the only instances we know of its Asiatic occurrence. It is so easy for collectors to add to their specimens a defined and precise locality,
that its omission in any instance is to be regretted, as in many ways, and in all kinds of collections, it might be very serviceable to science. To our present purpose it has but a collatcral interest as an object of curiosity, yet curiosity lias led to many discoveries which have proved valuable to mankind. All the divisions of natural science have a mutual and convertible bearing, and closely interlink in their relations. Thus, insects denote the botany, which further indicates the climate or elevation and soil; and the superficial soil will point geological conclusions to subsoil and substructure. One natural science well mastered gives a key to the great storehouse of nature's riches, and yields a harvest of many different crops. This episode may be excused for the hint it is intended to give of the paramount importance of the correct registration of special localities.

The genus Colletes also occurs in the Canary Islands, which shows a trending tendency to its southern habitat at the Cape of Good Hope. It occurs on the western edge of South America, in Chili; it is found on its northern boundary in Columbia, and has been discovered in the southern States of North America, in Florida and Georgia; but there is no record of its further northern occurrence upon that continent. About thirty species are known.

The genus Prosopis, or as it is more familiarly known by the name of Hyleus, is found in some of our native species throughout France and Germany, and, like the preceding, as high up as Finland, through Dermark and Sweden, to the adjacent parts of Russia. It is remarkable that it is caught in Algeria, although not recorded as occurring in several of the southern European States. But the apparent restriction of some of our species
to our own islands possibly arises from the fact of special attention having been paid to them in this country only.
The genus itself, in other and more yariegated forms than ours, presents itself in some portions of southern and south-western Europe, where the highly ornamented species would point almost to the certainty of its being a parasitical genus, great decoration being in our native genera of bees the badge of parasitism, and may be indicative of those habits, combined as they are conjunctively with their destitution of polliniferous organs. Some of our native entomologists have, however, assumed, upon what appears to me very inconclusive grounds, that the genus is not parasitical. The observations, however, of the most distinguished French hymenopterologists confirm the notion of their being parasites, which appears strengthened by the argument above suggested with regard to colour.

This genus is apparently fond of hot climates. In eastern Europe, it occurs in Albania and the Morea, its extreme western domicile is Portugal, and its southern European habitat is Sicily. It is found in Algeria and Egypt, and at the Cape of Good Hope. We discover it in India, in the southern tropics at the Brazils, and in the northern tropics at the Sandwich Islands; and it ranges along the southern cdge of Australia, from Swan River through Adelaide and Port Phillip to Tasmania. The United States of North America furnish it, and on that continent it seems to contradict its ordinary tropical inclination by being exceptionally found upon the confincs of the arctic circle at Hudson's Bay. Nearly sixty well-distinguished species are recorded.

The genus Sphecodes has also a wide distribution.

Our native species are found throughout France and Germany, Greece and Spain, still one or two seem limited to our islands. The genus is recorded as in Albania, Algeria, and Egypt; it is found on the wcstern edge of Africa at the Canaries; it occurs also in northern India, in the United States, on the western side of South America at Chili, and then we have a wide gap, for its next appcarance is at Sydney, New South Wales. About twenty species arc known.

The genus Andrena, although infinitely more numerous in species than the genus Halictus, which is also aburidant, docs not appear to have so wide a distribution as the latter. Peculiarities of habits possibly limit its diffusion, although nothing has occurred to naturalists to explain the circumstance, unless it be the adventitious fact of no specimens having fallen into the hands of the collector. Our own species, represented by onc or several members, are found (although some seem rcstricted to England) throughout Europe, north and south, east and west, as also in its islands. In Africa it is seen in Algeria and Egypt, and it occurs in theCanarics; and in Asia it is found in Siberia, and in northern India ; but we have no connecting chain to link those Asiatic and African localities,-although we may well suppose that it might be discovered amongst the steppes of Thibet and Tartary, revelling amidst the flowers of their luxuriant pastures, and even amongst the Persian sands. It passes through the United States from Florida up and to our own colony of Nova Scotia, and extends its range to Hudson's Bay. We do not trace it further. Nearly two hundred species occur.

The genus Cilissa, too, has a limited distribution, and occurs in the same countries, but ranges as high
as Lapland ; it also crosses the Atlantic, being found in the United States. About six are known.

Our solitary species of the gemus Macropis, which is isolated possibly only from having bcen overlooked, appears to have but a European existence, and is found in France, Germany, Dcumark, Sweden, and Finland.

The genus Halictus is very cosmopolitan. Some of our own spccies occur throughout Europe, excepting only Italy and Sicily, although they are to be found in Portugal and Dalmatia, thus traversing its entire breadth; but from the latter country they do not seem to rangc down to Albania and Greece, yet are they discovered in Malta, and even in southern Africa, but they have not been recordcd as extant in northern portions of that continent. Other species have been sent from the western coast of Africa and the adjacent Canaries, with their adjunct, Madeira, and the genus ranges from Barbary through Scncgal and Sierra Leonc; some species also are found at the Cape of Good Hope.

On the other side of Africa the genus has been discovercd at the Isle of Bourbon; it then takes a wide sweep, occurring first in northern India; it then springs up at Foo-chow-foo, and it is found in northern China. In western Asia it occurs in Syria. Across the Pacific it is found in Chili. Its next appcarance on the rich and diversified continent of America is across its southern bulk, presenting itself in the Brazils, and on its northern boundary at Cayenne, and in Columbia; and it then appears again in Jamaica. In North America it occurs throughout the United States from Florida upwards, where the genus in its species has a very English aspect, and if they be dissimilar, as may be
fairly surmised, they are so very like our own that one is said to be absolutely identical throughout Europe and in Ohio. It passes still formard and occurs in Nova Scotia, Hudson's Bay, and elsewhere in arctic Anmerica, where the botanist might almost herbalize through the agency of our insects, for the pollen they carry and still retain in cabinets would often indicate the plants which they there frequent. Thus those stern regions are not barren in fragrant and attractive beauties. We find it, too, in common with Sphecodes at Sydney, New South Wales, whence, doubtless, it passed to New Zealand, where it has been collected. About one hundred and fifty are registered.

With the next genus, Dasypona, I terminate the geography of the Andrenidde. Our own single species of these very elegant bees occurs throughout France and Germany, and abounds in Sweden. Other species, all elegant, occur in the Isles of Greece, in Albania, and the Morea ; profusely at Malaga in Spain, and at the further extremity of northern Africa in Tunis, and in Egypt. Twenty are known.

The genus Panurgus is the advanced guard of the true bees, for, although it still retains much of the appearance and structure of the terminal genus of the preceding sub-family of Andrenide, it is strictly distinct, and well links the two sub-families together. This very peculiar form is limited in number of species and in distribution, for five only have been recorded.

Our own species occur throughout France, Italy, Germany, Switzerland, Denmark, Sweden, and Finland, and one of them has also been sent from Oran. The genus is small, and may have been overlooked in other countries, although its appearance is sufficiently distinct
and marked to have caught the eye. It is as lithe and active as a Malay, as black as a negro, and as hairy as a gorilla, looking like a little ursine swecp.

The genus Eucera, of which we have but one representative, although considerably more than fifty species arc known, has not so wide a range as might be expected from their numbers. Our own is found throughout Europe and in Algeria. Other species occur in Russia, the Morea, Albania, Dalmatia, and Egypt. In Asia some are found in Syria, and at Bagdad; and from the New World they have been sent from Cayennc and the United States.

The genus Anthophora, to which the genus Saropoda is very closely allied,-so closely, indeed, that by the cclcbrated hymenopterologist Le Pelletier de St. Fargeau the species of both are incorporated together,has, even as now restricted, a world-wide dissemination, and numbers nearly a hundred and fifty species. Several of our own occur throughout France and Italy and the whole of northern Europe, and even among the Esquimaux in the arctic regions, showing that a bridal bouquct may be gathered even there; for where bees are flowers must abound.

The genus in other species shows itself in the south of Europe, viz. in Spain, Sicily, the Morea, and Dalmatia; by way of Syria and Arabia Fclix it passes down to Egypt and occurs in Nubia and also in Algeria. It dots the western coast of Africa at Senegal and Guinea, and has bcen discovered in the Canaries, and again makes its appearance at the Cape of Good Hope, rounding it to Natal. It travels round the peninsula of India, bcing found at Bombay, in Bengal, and in the island of Ceylon, and passes onward by way of Hong-
kong to northern China, where, dipping to the Philippines, it next occurs in Australia. In the New World it is found on its western side at Chili, and traverses that continent to Paraguay and Pará, and has been sent from the West India Islands of Cuba, St. Domingo, and Guadaloupe. From Mexico, where we next find it, it passes to Indiana, and occurs throughout the United States, and thus completes its progress round the world. About one hundred and thirty are known.

The genus Saropoda is closely allied to Anthophora, as closely as Heriades is to Chelostoma, and is very limited in numbers, ten only being known, and but one of which is native with us. The genus occurs throughout France and Germany, and has been sent from Russia, Egypt, South Africa, and Australia, thus having a very wide range notwithstanding the paucity of its species.

The very pretty genus Ceratina, although numbering but few species,-fewer than thirty,-and although not found in Australasia, is widely scattered throughout the Old and the New Worlds. Our own species inhabits as far north as Russia. Other species occur throughout France, and in the south of Europe, and show themselves in the Morea, and in Albania. North, South, and Western Africa possess the genus, it being found in Algeria and at the Cape of Good Hope, and in the intervening district of Senegal. It has been brought from Ceylon and Bengal, and also from the north of India. It reaches China by way of Java and Hongkong: and in the New World has been found in the Brazils and Cayenne, in the Southern, and throughout the United States in the Northern continent.

The genus Nomada is the first of the genuine parasitical bees, and about the habits of which no doubt can be entertained; certainly not the same as attaches both to Hylaus and Sphecodes, among the Andrenida. The parasitical habits of Nomada are evident and unmistakable. This is the handsomest genus, in variety of colour and elegance of form, of all our native bees, but the species are never conspicuous for size. They have much of the appearance of wasps, and are often mistaken for them even by entomologists, who have not paid attention to bees. Many of our native species seem limited to our own islands: others of our species occur in France and Germany, and through Denmark in direct line to Lapland, turning down into Russia, and have been caught as far south as Albania. One of our species, or so like as to want distinguishing characteristics, is found in Canada. Did ours migrate there? and how? The genus is of wide distribution, but occurs only north of the Equator, where it spreads from Portugal to the Philippine Islands. It is found in Siberia and Northern China, whence through the Philippines it passes to Tranquebar, then up to Northern India, and thence by Bagdad to the Morea and Albania, and dips down to Northern Africa at Tunis, and on to Oran and Tangiers, and completes its circuit in Portugal. It is doubtless parasitical upon many more genera and species than we find it infest in this country, although all that the several species pair off with here are not fully designated, especially among the Andrence, and smaller Halicti. The number of species, British and foreign, known to collectors approximate to a hundred.

The genus Melecta is another handsome parasitical insect. This is always a dark beauty, and is very limited
in specics, for, as far as they may be estimated from the contents of collections, its numbers do not reach twenty. Our own spccics occur throughout the whole of Europe, north and south. Others are found in Sicily, Albania, the Morea, and show themselves at Bagdad. The genus has bcen sent from the Canaries, and crosscs the tropics into Chili, but does not scem to have occurred elsewhere in either North or South America, although one of the gencra (Eucera) on which, with us, it is parasitical, is found in the latter country, and the other genus (Anthophora), which it also infcsts, is found throughout the world, excepting in Australasia. In all those countrics, the closely-allied exotic genus Crocisa, which is very numerous in specics, may supply its place.

The elegant genus Epeolus occurs in our own species throughout northern Europe, as ligh as Lapland, and is found also at the southern extremity of the continent of the Old World, at the Cape of Good Hope. It has becn brought from Sicily, and other species come from Siberia. The genus in America passes down from the United States, by way of Mexico, to the Brazils, where it crosscs the southern continent, having bcen transmitted from Chili. It is very limited in the number of its species, considering its wide diffusion, for not more than twenty are registered. It is almost identical in distribution with the genus Colletes, upon which it is with us parasitical. The species are nover so large as those of the preceding genus, Melecta.

The genus Strlis is limited both in number of species and distribution, although the spots whence it has come are wide apart. Our own species are found throughout France and northern Europe, as far as Finland. Other species occur in North Amcrica, and
the Brazils, but the whole number yet described is under ten.
The remarkablc form in both sexes of the genus Caslioxys occurs in identity with our own spccics throughout France and Austria, and spreads north to Finland and Russia, and through all the intervening countries. It is singular that it should not be recorded from southern or south-western Europe, as it is found in Oran. Other species of the genus have been found in northern Africa, Egypt, and Algeria. On the western coast of Africa it has been caught on the Gambia, at Sierra Leone, and on the coast of Guinca. It doubles the Cape of Good Hope, where it is found extending its range to Port Natal. From Asia we have it from Turkey, and again from India. It has been sent from the hither side of South America, from the Brazils, and separately from Pará, and occurs at Cayenne, and in the West India Islands, Cuba, and St. Thomas's, and extends as high in North America, through the United States, as Canada. It is quite probable that it has as wide a range as the bees upon which it is parasitical (Megachile), although it has not yet come from such extensively-spread localities. More than fifty species are known, but some of our own have not yet been enumerated amongst those found clsewhcre.

The genus Megachile, which embraces the most renowned of the mechanical bces, is extremely cosmopolitan, spreading north and south, east and west; and is also very abundant in the numbers of its species, the census extending to not far short of two hundred. Some one, or several of our species, although other species are limited to our own country,--spread through Italy and France, and all the countries of northern Europe to the
high latitude of Lapland, which is higher than where even one of ours (viz. the M. centuncularis) is again found, which occurs in Canada and at Hudson's Bay. The genus also frequents southern Europe, in Spain, Sicily, and Albania, and in the East, in the Caucasus and Dalmatia. It traverses Turkey by Bagdad to India, having been captured in Nepaul, and it descends southward in the Indian peninsula, where it has been found at Bombay. From India it stretches to the Mauritius, thence across the Indian Ocean to Java, and thence to Hongkong and northern China. It then dips to the Philippines, and doubtless through the islands of the Indian Archipelago to Australasia, from which continent none are registered from its northern and eastern settlements, but species abound along its southern edge from Western Australia, through Adelaide to Tasmania. The genus has been brought from the West India Islands, St. Thomas's, St. Croix, and Cuba: it is found upon the main from Mexico, descending to the Brazils. It skirts all the coasts of Africa, being discovered in Egypt and Aigeria, along the western coast by the Gambia, Senegal and Sierra Leone to Guinea, and the island of Fernando Po, and then again occurs at the Cape of Good Hope. Ascending the eastern coast by Natal, it stretches to Abyssinia. The species are very abundant in India, Africa, and Australasia.
The genus Anthidius, although very numerous in species, and differing more remarkably in form amongst themselves than most other genera, has a far less extensive range, no species having been found in Australasia or India, although it occurs in Arabia, Syria, and Mesopotamia. Our own solitary species occurs in France, Italy, and the whole of northern Europe, extending to

Finland. In southern Europe the genus inhabits Sicily, Spain, the Morea, Albania, and Dalmatia, and is also very abundant in Southern Russia. In Africa it is found in Nubia and Algeria, and on its north-western edge in Barbary, whence it descends by the Gambia and Sierra Leonc to the Cape of Good Hope, and thence reaches to Natal. It is then found in Chili, and crossing the South Amcrican continent occurs in the Brazils, whence it ascends to Cayenne, and, by way of Mexico, to the United Statcs. The number of species recorded exceed a hundred.

The remarkable genus Chelostona is very limited in the numbers of its species, of which less thari a dozen are known; as also in the extent of their distribution. Our own are found throughout northern Europe, as far as Lapland, and in Russia. In southern Europe they occur in the Morea, and the genus has been discovered in Georgia in North America.

The closely-allied genus Heriades secms limited to a European habitation, and occurs only in our own solitary species, but it ranges, like the preceding, to the high latitudes of Lapland.

Anthocopa seems limited to our own country and France, possibly only from its having been associated from similarity of general habit with the genus Osmia. Only one species appears to be known, but this has a world-wide cclebrity, from the interesting account given by Réaumur, of its hanging its abode with symmetrical cuttings from the petals of the poppy.

The genus Osmia, although not including such able artisans as Megachile, still has in its species very constructive propensitics. Indecd, all the becs which convey the pollen on the under side of the abdomen, are
more or less builders or upholsterers. The genus has a wide range, and is tolerably numerous, numbering more than fifty species. Some of our own occur throughout Europe, and, like the two preeeding genera, are found in the highest contineutal latitudes. Some of ours also oecur in Algeria and the Canaries, other species in Albania and Moravia. In Africa they are found in Egypt, Barbary, and Port Natal, and in the New World from Florida, in the United States, through Nova Seotia to Hudson's Bay.

The genus Apathus, whieh is parasitieal upon Bombus, and to the uninitiated has all the appearanee of this genus, seems to be the only instanee of a parasitieal genus of bees so elosely resembling the oitos, (as we may, perhaps, for the sake of avoiding a periphrasis, be allowed to call the bee upon whieh the parasite is found,) as to be so easily liable to be mistaken for it, and whieh was indeed the case by even sueh a sagacious entomologist as the distinguished Latreille; but Kirby had already notieed the difference, suggesting its separation from Bombus, until about the time that St. Fargeau was induced to propose a distribution of the Hymenoptera, based generally upon ceonomy and habits, to whieh he had been led by a refining investigation of strueture, that the distinguishing differenee was appreciated, and used generieally, by Mr. Newman. This difference, like many other simple faets, now that it has been found, is very obvious. It consists in the genus having no neuters, and the female of the species no polliniferous organs, but the determination of the legitimate males, by means other than empirieal, is still difficult. In our own species this genus ranges throughout northern Europe, as high as Lapland ; a cause for which we shall discover
when we trace the geography of the next genus, Bombus. One species different from any of ours occurs in the Brazils, and others are found in the Polish Ukraine, and in the United States of North America. The genus appears extremely limited in numbers, for although nearly a hundred of the genus Bombus are known, Apathus, in collections, secms limited to ten. This may perhaps arise from want of due observation or from the neglect of their carcful separation from that genus, but our own species are far from co-extensive with our native species of Bombus.

The genus Bombus, although with some southern irrcpressible propensities, it being found within the tropics in a few instances, is essentially a northern form, which is strongly indicated in its downy habiliments, for it is clothed in fur like the Czar in his costly bluefox mantle. In the Old World its range extends to Lapland, whither it is followed, as previously noticed, by its parasite Apathus, and in the New World to Grcenland, where one species seems an autoclithon, perhaps originating there when the land was still verdant, and grew grapes, long before the age of Madoc. Other species occur far away to the north of east, booming through the desolate wilds of Kamtchatka, having been found at Sitka; and their cheerful hum is heard within the Arctic circle, as high as Boothia Felix, thus more northerly than the seventieth parallel. They may, perhaps, with their music often convey to the brokenhearted and lonely exile in Siberia, the momentarily chcering reminiscence of joyful youth, and by this bright and brief interruption break the monotonous and painful dullness of his existence, rccalling the happier days of yore: but the flowers of humanity, here typified by
the natural flowers which attract these stray comforters, will one day spring where the salt of tears now desolates, and thus the merry bees have sweetness for even these poor outcasts, and froth their bitter cup with bubbling hope.

In the south of Europe the genus occurs in Austria, the island of Zante, and the Pyrenees. It is found in Syria, the island of Java, in China at Chusan and Silhet, and also in northern India; and, although crossing the tropics to fix itself at Montc Video, at the mouth of Rio de la Plata, in Africa it appears to be found at Oran only; nor does it oceur in Australasia. In South America it is also found at Pará and Cayenne, and on the opposite side at Columbia, Quito, and Chili, and passes up the isthmus to California, and thence to Mexico, whence it extends to the island of Antigua.

The genus Apis, or the Hive Bee, -which perhaps in its past and present utility to man, may successfully compete in the aggregate with the silkworm,-with true regal dignity comes the last of the series of genera. The whole array of her preeursors, who marshal her way, and derive their significance and importance from the more or less direct resemblance in strueture and funetion to her, deduee their common name of "Bces" from this relationship, and eonsequently from her. Long before their existence had been traced by the observer of nature or by the naturalist, the comb of the Bee had dropped in exuberant luxurianee its golden stores for the gratification of mankind. This littlc creature had garnered, from sources inaccessible to man, the luscious nectar concealed within the bosom of the flower, whose exquisitely beautiful varieties, in form, eolour, and
fragrancc, had delighted his sight and his smell long before he had been led by accident to discover that these industrious little workers collected into their treasury, from those same flowers, as exquisite a luxury for his taste, as they themselves had yielded to his other senses. Thus the earliest records speak of honey, and of bees, and of wax; and the land of promise to the restored Israelites, was to be a land flowing with milk and honey.

Réaumur, whose observations upon bees had been pursued with such patient and indefatigable perseverance, combined with such miuute accuracy, and then recorded so agreeably, and who conceived the possibility of establishing a standard of length, for the common use of all nations, to be derived from the length of a certain number of the honey-cells of the comb, to which notion he was doubtless led by their mathematical precision and uniform exactitude, appears to have been unaware of the existence of other species of the genus, and hence he assumed, in his ignorance of this fact, that in all countries they were alike.

Travellers had, even for more than a century bcfore, mentioned different kinds of honey, derived froin different kinds of bees, which, however, Réaumur does not, from this circtmstance, seem to have known. Had he been acquainted with it, his philosophical accuracy of observation and habit of reflection would certainly have assumed the possibility of differences of size in the cells of the different bees, and he would have waited until opportunity lad given him the power of determining whether this mode of admeasurement could be safely adopted as certainly being of universal prevalence. It is to be wondered at also, that he did not weigh the possibility that climatic differences in the distribution of even the Apis
mellifica might have involved discrepancies, by the effects constantly seen to be produced by climate, and which would have shown that the standard which he sought to establish could not be relied on.

Collections exhibit about sixtecn species of the genus Apis, whose natural occurrence is restricted to the Old World, for although the genus, especially in the species A. mellifica, has been naturalized in America, and also in Australasia, and in some of the Islands of the Pacific, thesc were originally conveyed thither by Europeans. Those countries possess representatives of the genus with analogous attributes and functions, in two other gencra, which fulfil the same uses. It is remarkable that the Rcd Indians uscd to note the gradual absorption of thcir territory by the White Man, through the forward advance of his herald Apis mellifica. This species has also been carried to India, to the Isle of Timor, and to northern, western, and southern Africa, in all which countries it is thoroughly naturalized, although they all possess indigenous species, which are quite as, or perhaps more largely, tributary to their inhabitants. Observation has not hitherto confirmed the identity of the manners of these exotic specics with our own, owing to the deficiency of observers with the enthusiasm requisite to follow their peculiarities with the patience of a Réaumur, a Bonnet, or a Huber. That they are quite or all buit similar, exclusively of differences of size, both in their habits and their nests, may be inferred from their identity of structure. We know that they consist of three kinds of individuals-neuters, females, and males,-and that their combs are made in cakcs built vertically, formed of hexagonal contiguous cells, which are placed bottom to bottom, and overlap each other in the same
strengthening position as do ours; and also that the cells wherein the males are developed are oval, larger than the honey-cells, and less uniform. With all these similitudes it is fair to suppose that their economy may be the same; but their honey-cells, from their smaller size, (the bee which produces them being smaller,) have a more elegant appearance; and it.is concluded from the largeness of the nest, taken conjunctively with the smallness of the cells, and of the bees constructing it, that the communities thus associated must in their collective number be considerably larger than those of our hives.

Instinct, as expressed in the habits, is as sure a line of separation, or means of combination, as structure, and is corroborative in tending to preserve generic conjunction in its inviolability. And, conversely, with certainty, is indicated that such-and-such a form, in the broad and most distinguishing features of its economy, is essentially the same in every climate. The habits, therefore, in whatever country the genus may occur, may be as surely affirmed of the species, from the knowledge we have of those at home, as if observation had industriously tracked them. This is especially the case in a genus, the species of which present such a peculiar identity of structure as does Apis, whose specific differences are derived only from colour and size, and this identity is a peculiarity, so far as I have observed, rarely found in other genera, numbering even no more species, but wherein slight differences of structure often yield a subsidiary specific character, complete structural identity being almost solely incidental to the genus Apis.

The importance of honey and wax throughout the world, as well for the ceremonies of religion, as for the service of the arts, and for medical or domestic pur-
poses, is attested by the vigilance, care, and assiduity with which bees are tended in every country. Although sugar, since its introduction to those northern countries which have not been favoured by nature with the cane that yields it, has superseded for ordinary uses the produce of the hive, this still continues serviceable for many purposes to which sugar cannot be applied. It is used in many ways in pharmacy, and still retains in the interior of some continents, owing to the deficiency of sugar, arising from the difficulties and expenses of transit. all its primitive uses. In the East, even in countries producing sugar in abundance, honey is extensively employed for the preservation of fruits, which in their ripe state in those hot climates would rapidly lose their fulness of flavour were they not thus protected, -honey here being esteemed superior to sugar in the circumstance of its not crystallizing by reason of the heat, and also from its applicability to this use in its natural state.

This is especially the case in China, where a conserve of green ginger, and of a fragrant orange (the Cum Quat), are in high repute, and which are peculiarly grateful to Europeans on the spot. These, however, are so delicately susceptible of change of climate, that they lose some of the aroma that constitutes much of their attraction, upon transportation, and, indeed, like many kinds of Southern wines, can be appreciated only within their own country, from their extreme delicacy and tendency to spoil.

Honey is a very favourite food and medicine with the Bedouins in Northern Arabia. Bees make their hives in all the crevices of rocks in Hedscha, finding everywhere aromatic plants and flowers. At Taif, bees yield most excellent honey, and the honey at Mecca is ex-
quisite. At Veit-el-Fakeh, wax from the mountainous country of Yemen is cxchanged for European goods and for spices from the further Indies. In Syria and Palestine we find bees abound. At Ladakiah there are large exports both of honey and wax ; and the honey of Ainnete, on the declivities of the Lebanon, is considered the finest of the whole of that mountain-range. Antonine the Martyr, in the seventh century, speaks of the honcy of Nazareth bcing most excellent, and in the present day bees are extensively cultivated at Bcthlehem, for the sake of the profit derived from the wax tapers supplied to the pilgrims. Some of the members of the German colony at Wadi Urtas speak of the purchase of eleven beehives at this place, and express themselves as very sanguine of an abundant harvest from the luxuriance and profusion of flowers, although they say the bees are smaller than those of Westphalia, and are of a yellowishbrown colour. The eastern side of this peninsula, especially the district of Oman, is wholly destitute of bees, contrasting thus unfavourably with its western fertility.

The enormous quantities of honey produced may be comparatively estimated by the collateral production of beeswax, which it exceeds by at least ten to one. When we reflect upon what masses of the latter are consumed in the rites of the Roman Catholic and Grcek churches throughout the many and large countries where those religions prevail, we shall be able to form a general estimate of the extensiveness and universality of the cultivation of becs. Nor are those the only uses to which wax is applied, and the collective computation of its consumption will show that bees abound in numbers almost transcending belief.

The name of hougie for wax-candle or taper, is used
by all the languages of the south of Europe, and is derived from the name of Bugia, a town of Northern Africa, whence, even as long back as the time of the Roman Empire, wax was obtained to make candles for lighting. The inhabitants of Trebizonde paid their tribute to the Roman Empire in wax. Both honey and wax are largely employed in pharmacy, and were also, in ancient times, both extensively used in embalming. The honey of Mount Hymetta in Attica, and of Hybla in Sicily, were each in as high repute in classical countries as is that of Narbonne in Languedoc, by reason of its choice delicacy, with us, and throughout France. Distributed over the wide pastures of the Ukraine, every peasant has his store of hives, which frequently, in their harvests, realize more largely than their crops of grain, -multitudes of that peasantry computing as important items in the estimate of their wealth the number of their beehives, which often exceed five hundred to the individual possessor. In Spain and Italy bees are largely cultivated; and in the former country many a poor parish priest, the religious monitor of an obscure hamlet, can count his five thousand.

In countries so rich in the productions of Flora, whose scasons there are perennial, and which fluctuate only in special locality, bees are removed to and fro to meet these peculiarities. Thus in the south of France, where large tracts are cultivated with aromatic shrubs and flowers, for the distillation of essential oils and fragrant waters, the hives of bees are moved up and down the adjacent rivers upon rafts, as the flowering of the crops succeed each other. In Italy, Spain, and Southern Russia, the same practices are pursued, although we have no detailed accounts of the precise spots; but we know
from Niebuhr, Savigny, and Sir Gardincr Wilkinson, that upon the Nile it is customary thus to transport the bees from flower-region to flower-region upon rafts containing about four thousand lives, each numbered by the proprietors of the hives for identification, who thus double the seasons by continually shifting their bees from Lower Egypt to the Upper Nile and back again.

In ancient Greece also, they were conveyed for this purpose from Achaia to Attica; in the former of these provinces, owing to its higher temperature, flowers had passed their bloom before spring had opened in the latter. All these circumstances tend to show that the expcrience of bec-masters, both ancient and modern, has ascertained that their insects have not a very extensive range of flight.

Of the fact that the honey of bees is not always salutary to man, there is a remarkable instance recorded in Xenophon, in his narrative of the retreat of "The Ten Thousand," who reports that upon falling in with quantitics of it, in Asia Minor, those who indulged in its enjogment were seized with vertigo, or headache, and violent diarrhœa, attended with sickness, but which had no fatal consequences, although they did not recover from its injurious effects for a couple of days, and were left then in a very prostrated condition. The celebrated physician and botanist Tournefort, when travelling in the East, towards the end of the seventeenth century, found, in the neighbourhood of Trebizonde, an excessive lusuriance of the flowers of the Rhododendron ponticum and of the Azalea pontica, which, although sumptuous in their blossoms, were held in bad repute by the inhabitants, who ascribed to their odour the deleterious effect of causing headache and vertigo. He was thence
induced to surmise that these had possibly been the flowers the bees had extracted the honey from which had been so baneful to the troops of Xenophon.

But it seems that bees themselves cannot collect with impunity the honey of noxious flowers, for they are occasionally subject to a disease resembling vertigo, from which they do not recover, and which is attributed to the poisonous nature of the flowers they have been recently visiting.

Several different kinds of honey and wax have been described, but some degree of uncertainty exists as to whether they are all the produce of genuine species of the genus Apis; for it will be found, in a rapid notice I purpose giving of the more conspicuous genera of foreign bees, that there are two exotic genera of this section of the family, both social in their liabits, and which both produce the same materials ; there is a wasp also that makes honey. But of all the many kinds of honey noticed, the green kind furnished to Western India by the island of Réunion, the produce of an Apis indigenous to Madagascar, but which has been naturalized in the French island, and also in the Mauritins, is perhaps the most remarkable. It is of a thick syrupy consistency, and has a peculiar aroma. It is much esteemed upon the most proximate coasts of the peninsula of India, where it bears a high price. Whether its greenness of colour is derived from the flowers which this species frequents, or whether it be incidental to the nature of the bee, has not been ascertained, but the honey of the South American wasp, the sole species producing the material, has also a green tinge.

Nature has assigned the task of thus catering for man, by collecting and garnering from the recondite crypts within the blossoms of flowers, to about sixteen
species congenerical with our honey-bee, but sufficiently differing. As I have before noticcd, the species of this genus greatly more resemble each other in structure than perhaps do the species collocated within any other genus of insects, and whence may be inferred an exact similitude of habits, although as yet unconfirmed by direct observation.

The second European spccies, the Apis Ligustica, or Ligurian bee, is rather larger, but very like ours, and inhabits the whole of the north of Italy, its occupation of that country extending from Genoa to the vicinity of Trieste ; its progress further north being impeded by the Alps of Switzerland and the Tyrol. It is also found in Naples, and may likewise spread to the Morea, Turkey, and the Archipelago of Greece, and is perhaps the bee noticed by Virgil. Either this species, or possibly one distinct from ours, is that which is so extensively cultivated in Spain, although ours is found in Barbary.

Another smaller kind, the Apis fasciata, has been cultivated in Egypt from time immemorial, and which yielded its abundant harvests for the gratification of the ancient Romans. Only five other distinct species, so far as is yet known to us, appear to occupy the vast continent of Africa,-two on its western coast at Senegal and Congo, the A. Adansonii and the A. Nigritarium ; two in Caffraria, the A. scutellata and the Apis Caffra. That at Madagascar, and doubtless on the adjacent mainland, which has also been naturalized in the Mauritius and at Réunion, is the Apis unicolor, which produces the green honey mentioned above.

India, however, at present appears to be the true metropolis of the genus. Further discoveries in Africa may hereafter give that vastly larger continent the predominancy ;
but there is no doubt that, so far as present information extends, India has the superiority. Thus Apis dorsata, Apis nigripennis, and Apis socialis, are eultivated in Bengal, the latter being also found along the Malabar eoast and at Java. It is singular that the only instanee of the oeeurrenee of the very distinet genera of Apis and Mellipona, both honey-storing genera, yet known to exist indigenously in the same locality, is found in this island. At Pondieherry and its vicinity are found Apis Delessertii and Apis Indica. This latter bee is extensively eultivated, and its hives are perhaps the most largely inhabited of any of the species; the numbers oecupying a single nest being estimated at above eighty thousand.

From India also, but to whieh no special locality is assigned, come Apis Pcrrottetii, Apis lobata, as likewise Apis Peronii, whieh is equally native to the Isle of Timor. The honey produced by this last bee is yellow, more liquid than ours, and of a very agreeable flavour.

Thus seience dissipates the popular supposition, that a multiplicity of the individuals of one species of this inseet produees the tons of wax and the myriads of gallons of honey that are annually eonsumed.

Whieh of these bees first benefited the human raee, in its primitive seat, and before the multiplieation of mankind foreed them to take divergent courses from the eradle of their birthraee, "to people the whole earth," it is impossible to say. And it is equally impossible to conjeeture whether, like man, they by this eourse of migration have assumed the features they now exhibit of distinetly different speeies; yet they do not vary so considerably among themselves as do many other ereatures that have eome under the direct influenee of man,-the ehief
diffcrences consisting in the comparatively slight distinctions of colour and of size, but which are sufficiently marked to constitute them good species.

The earliest manuscript extant, which is the Medical papyrus, now in the Royal Collection at Berlin, and of which Brugsch * has given a facsimile and a translation, dates from the nineteenth or twenticth Egyptian dynasty, accordingly from the rcign of Ramses II., and thus goes back to the fourteenth century before our era. But a portion of this papyrus indicates a much higher antiquity, extending as far back as the period of the sovereigns who built the Pyramids, consequently to the very earlicst period of the history of the world.

It was one of the medical treatiscs containcd within the Temple of Ptah, at Memphis, and which the Egyptian physicians were required to use in the practice of their profession, and if they neglected such use, they became responsible for the death of such patients who succumbed under their trcatment, it being attributed to their contravening the sacred prescriptions. This pharmacopœia enumerates amongst its many ingredients, honcy, wine, and milk; we have thus extremely carly positive evidence of the cultivation of bees. That they had been domesticatcd for use in those remote times, is further shown by the fact mentioned by Sir Gardiner Wilkinson of a hive being represented upon an ancient tomb at Thebes.

It may have becn in consequence of some traditional knowledge of the ancient medical practice of the Egyptians, that Mahomet, in his Koran, prescribes honey as a medicine. One of the Suras, or chapters, of that

[^1]work, is entitled 'The Bee,' and in which Mahomet says:-" "The Lord spake by inspiration unto the Bee, saying, 'Provide thee houses in the mountains and in the trees [clearly signifying the eavities in rocks and hollows of trees, wherein the bees construct their combs], and of those materials wherewith men build hives for thee; then eat of every kind of fruit, and walk in the beaten pathis of thy Lord.' There proceedeth from their bellies a liquor of various colours, wherein is a medicine for men. Verily herein is a sign unto people who consider."

It is remarkable that the bee is the only creature that Mahomet assumes the Almighty to have directly addressed. Al-Beidawi, the Arabic commentator upon the Koran, whose authority ranks very high, in notes upon passages of the precerling extract, says, "The houses alluded to are the combs, whose beautiful workmanship and admirable contrivance no geometrician can excel." The " beaten paths of thy Lord," he says, " are the ways through which, by God's power, the bitter flowers, passing the bee's stomach, become honey; or, the methods of making honey he has taught her by instinct; or else the ready way home from the distant places to which that insect flies." The licuor proceeding from their bellies, Al-Beidawi says, " is the honey, the colour of which is very different, oceasioned by the different plants on which the bees feed; some being white, some yellow, some ren, and some black." He appends a note to where Mahomet says, "therein is a medicine for man," which contains a curious ancedote. The note says, "The same being not only good food, but a useful remedy in several distempers. There is a story that a man once came to Mahomet, and told him his brother
was afflicted with a violent pain in his belly; upon which the Prophet badc him give him some honey. The fellow took his advice; but soon after, coming again, told him that the medicine had done his brother no manner of service. Mahomet answered: 'Go and give him more honey, for God speaks truth, and thy brother's belly lics.' And the dose being repcated, the man, by God's mcrcy, was immediately cured."

That the primitive Egyptians were familiar with the peculiar economy of the bee in its monarchical institution is proved by the figure of the bee being adoptcd as the symbolical character expressive of the idca of a people governed by a sovereign This figure is frequently met with upon Egyptian sculptures and tablets, dating as far back as the twelfth dynasty; but upon these the bee is very rudely rcpresented, being figured with only four legs and two wings; but upon a tablet of the twentieth dynasty the bee is correctly represented with four wings and six legs.

All these facts take us far back in the history of the bee. But the indication of a higher antiquity of its domestication may be traced in the Sanskrit, wherein ma significs honcy, madhupa, honey-drinker, and madhukara, honey-maker, the root of the latter signifying "to build." Madhu has clearly the signification of our mead, thence we may thus trace an affinity, pointing to those carly times, for the origin of a drink still in use amongst us. In Chinesc mih, or mat (in different dialcets) signifies honey, thus clearly showing a second derivation, in this Turonian term, from a more primitive language whence both flowed. In the Shemitic branch nothing analogous is to be traced. But this double convergence to a more distant point veiled in the obscu-
rity of time, necessarily takes the domestication of the bee back also to that anterior period now only dimly traccable.

There can be but little doubt that the majority of the creatures now domesticated by man were in those ancient days subjected to his sway, and to which later times have not added any, or but few fresh ones. A natural instinct possibly prompted him originally in the selection; and if the reindeer of the Laplander seem an aberration, this has happened through the contingency of climate, for in the high latitudes it inhabits, it, in its uses to man, supplies the double function performed in more southern regions by the equine and bovine tribes.

In the Greek and in the Teutonic languages, two branches of the Aryan stem, the names of the bee, melissa and biene, are clearly derived from the constructive faculty of the insect, and to which the root of the Sanskrit word madhukara, above noticed, also points. It would seem, therefore, that an earlier notice of its skill than of its honey, had suggested its name. Thus everything points to a very early acquaintance with the bee, its economy, and its properties, and this familiarity might be easily traced down in regular succession to the present times, were it desirable to recapitulate what has been so often repeated in the history of the "Honey-bee." The facts I have gathered together above, do not seem to have been hitherto strung together, and may be suggestive of reflection, as well as affording some amusement.

The study of the geographical distribution of natural objects has a more universal bcaring, and yields collectively more definite instruction and information than its partial treatment, when restricted to small groups, may at first seem to promise. This, however, is very useful, for it is but by the combination of such special details that the enlarged views are to be obtained, from which theories of the general laws of distribution can be deduced. Of course, small creatures with locomotive capacities will not supply the positive conclusions that may be framed from such objects as are fixed to their abode, and have not the same power of diffusion, although they certainly appear to be generally restrained within particular limits by physical conditions of the earth's surface subservient to the maintenance of special forms of organic life; and these, once determined, would yield and derive reciprocal illustration. They may be merely climatic, but climate thus indicated cannot be estimated by zones, or belts, or regions; for they seem to traverse all these, and follow undulations not specially appreciable except in the results they exhibit.

Unfortunately the bees have been too imperfectly collected, and too irregularly registered, to admit of arriving at any precise conclusions with respect to them. All that can as yet be done will be to combine the scanty notices afforded by the contents of our collections, in the hope that their promulgation may induce collectors, who happen to have the often extremcly rare opportunity of examining distant countries, to avail themselves of
the happy chance, which may never recur, or only at long intervals.

Nor can I too impressively reiterate the importance of noting both special localities, altitude, temperature, season, flora, etc., as being all conducive to the widest instruction upon the subject. Indulging in the hope that travellers will act upon these suggestions, and thus considerably add to the value of what they may industriously collect, we must patiently await until time brings it about.

Encouraging this expectation, I have summarily collected, under their topical arrangement, the notices which precede, but which are there arranged in the generic order of the bees.

From the information we thus possess, we learn that some of our genera have an extremely wide diffusion, and occur in countries where we might have expected that other forms would have superseded them in the offices they are ordained to fulfil. None of the schemes for the geographical distribution of insects yet propounded, seem to curb the eccentricities of their range. The regions proposed by Fabricius in his 'Philosophia Entomologica,' they break through as readily as through the concentric circles of the cobweb when this opposes them : and all I can do is to present them as they offer themselves, with the remark that the occurrence of solitary forms in certain localitics are almost sure indications that allied genera would be found at hand were they heedfully sought. It will also be observed, that in some places a parasitical genus, and its known sitos, only, have been captured there.

The following list will strongly show how totally our genera of bees are unaffected by isothermal, isotheral,
or isocheimal lines drawn over the earth's surface. Nor do botanical conditions secm to influence them beyond the probability of their dissemination being restricted to the special diffusion of the families of such plants whose genera and species they frequent with us.

Thus, inhabiting Northern Europe we find inLaplund. Cilissa; Anthophora; Epeolus; Megachile; Chelostoma; Heriades; Osmia; Apathus; Bombus; Apis.
Finland. Colletes; Prosopis; Cilissa; Anthophora; Nomada; Epeolus; Stelis; Cœlioxys; Megachile ; Anthidium ; Chelostoma; Heriades; Osmia; Apathus; Bombus; Apis.
Sweden. All our genera except Sphecodes; Halictus; Macropis; Anthocopa.
Denmark. All our genera except Macropis and Authocopa.
Russia. All our genera except Macropis and Anthocopa. The other Northern European Countries. All our gencra, with the same exceptions.
Western, Southcrn, and Eastern Europe present us with, in-
France. All our genera.
Portugal. Prosopis; Sphecodes; Andrena; Halictus; Eucera; Nomada; Anthidium ; Apathus; Bombus; Apis.
Spain. Prosopis; Sphecodes; Andrena; Halictus; Dasypoda; Eucera; Anthophora; Nomada; Megachile; Anthidium ; Apathus; Bombus; Apis.
Italy. Andrena; Halictus; Panurgus; Eucera; Anthophora; Nomada; Melceta; Epeolus; Cœlioxys; Megachile; Anthidium; Osmia; Apathus; Bombus; Apis.

Sicily. Prosopis; Spheeodes; Eucera; Anthophora; Meleeta; Epeolus; Megachile; Anthidium ; Osmia ; Apathus; Bombus; Apis.
Malta. Halictus; Apis.
Isles of Greece. Dasypoda; Apis.
The Morea. Prosopis; Spheeodes; Halictus; Dasypoda; Eucera; Anthophora; Ceratina; Nomada; Melecta; Anthidium; Chelostoma; Osmia; Bombus; Apis.
Albania. Prosopis; Sphecodes; Dasypoda; Eucera; Ceratina; Nomada; Meleeta; Megachile; Anthidium; Osmia; Bombus; Apis.
Dalmatia. Halietus; Eucera; Anthophora; Megachile; Anthidium ; Apis.

Asia exhibits to us, in-
Siberia. Andrena; Nomada; Epeolus; Bombus; Apis. Kamchatka. Bombus.
China. Halictus; Nomada; Anthophora; Megaehile; Bombus; Apis.
Northern India. Prosopis; Sphecodes; Andrena; Halictus; Ceratina; Nomada; Coelioxys; Megachile; Bombus; Apis.
Bengal. Anthophora; Ceratina; Apis.
Tranquebar. Nomada; Apis.
Ceylon. Anthophora; Ceratina; Apis.
Bombay. Anthophora; Megachile; Apis.
Arabia Felix. Anthophora; Anthidium; Apis.
Note.-The genus Apis does not occur in Oman.
Mesopotamia. Eucera; Nomada; Melecta; Megachile; Anthidium.
Syria. Halictus; Eucera; Anthophora; Cœlioxys; Anthidium ; Bombus; Apis.

In Africa we find, in-
Egypt. Colletes; Sphecodes; Andrena; Dasypoda; Eueera; Anthophora; Saropoda; Cœlioxys; Anthidium; Osmia; Apis.
Nubia. Anthidium ; Anthophora; Apis.
Abyssinia. Megachile; Apis.
Tunis. Dasypoda; Nomada; Apis.
Algeria. Colletcs; Prosopis; Sphecodes; Andrena; Panurgus; Eucera; Anthophora; Ceratina; Nomada; Coelioxys; Megachile; Anthidium; Osmia; Bombus; Apis.
Barbary. Halietus; Nomada; Anthidium; Osmia; Apis.
Madeira. Halictus; Apis.
「anaries. Colletes; Spheeodes; Andrena; Halictus; Anthophora; Melecta; Osmia; Apis.
Senegal. Halictus; Anthophora; Ceratina; Megachile; Apis.
Gamtia. Cœlioxys; Megachile; Anthidium ; Apis. Sierra Leone. Halictus; Coelioxys; Megachile; Aıthidium ; Apis.
Coust of Guinea. Anthophora; Colioxys; Megachile; Anthidium ; Apis.
Fernando Po. Megaehile.
Western Africa. Halictus; Apis.
Cape of Good Hope. Halietus; Anthophora; Ceratina; Epeolus; Cœlioxys; Megaehile; Anthidium ; Apis. South Africa [no distinct, locality]. Halictus; Saropoda; Apis.
Natal. Anthophora; Coelioxys; Megachile; Anthidium; Osmia; Apis.
Madagascar. Apis.
Réunion. Halictus; Apis.

Mauritius. Megachile; Apis.
In America we find, in-
Arctic America and Hudson's Bay. Prosopis; Andrena; Halictus; Megachile; Osmia; Bombus.
Canada and Nova Scotia. Andrena; Halictus; Nomada ; Cœlioxys; Megachile; Osmia; Bombus.
United States. Colletes; Sphecodes; Andrena; Cilissa; Halictus ; Eucera; Anthophora ; Ceratina ; Epeolus; Stelis; Colioxys; Anthidium; Chelostoma; Heriades; Osmia; Apathus; Bombus.
Mexico. Anthophora; Epeolus; Megachile; Anthidium; Bombus.
California. Bombus.
Columbia. Colletes; Bombus.
Quito. Bombus.
Chili. Sphecodes; Halictus; Anthophora; Melecta; Epeolus; Anthidium ; Bombus.
Jamaica. Halictus.
Cuba. Anthophora; Colioxys; Megachile.
St. Domingo. Anthophora.
Antigua. Bombus.
Guadeloupe. Anthophora.
St. Thomas's. Cœlioxys; Megachile.
St. Croix. Megachile.
Cayenne. Halictus; Eucera; Ceratina; Colioxys; Anthidium ; Bombus.
Pará. Anthophora; Cœlioxys; Bombus.
Brazils. Prosopis; Halictus; Ceratina ; Epeolus; Stelis; Colioxys; Megachile; Anthidium; Apathus; Bombus.
Paraguay. Anthophora.
Monte Video. Bombus.

In Polynesia there occur-
Sandwich Islands. Prosopis.
Philippines. Anthophora; Nomada; Megachile.
In Australia are found-
Swan River. Prosopis; Megachile.
Adelaide. Prosopis; Megachile.
Port Phillip. Prosopis.
Tasmania. Prosopis; Megachile.
Sydney. Sphecodes; Halictus.
New Zealand. Halictus. Australia [but no distinct locality]. Anthophora; Saropoda.

CHAPTER IV.

NOTICE OF THE MORE CONSPICUOUS FOREIGN GENERA OF BEES.

Seetng thus the wide and almost universal distribution of many of our own genera, we might be induced to ask whether this could not suffice, by the impetus which more genial climates give to the multiplication of individuals, to meet all the exigencies of the most favoured regions of the vegetable kingdom. This is not so. There seems scarcely a limit to the exuberance wherein nature revels in the production of variations of form. The splendour, elegance, and infinite variety, which she displays in her floral beauties in the most luxuriant climates, find rivalry as well in the multitude as in the magnificence of the insects which she has allied with them as the indispensable promoters of their perpetuation. How otherwise than through some of the insects we shall mention could tropical Labiate and the tubulated flowers of the Rubiacea, etc. be fertilized? The reader will therefore, I trust, welcome an acquaintance with some of the most conspicuous of the group of bees produced by tropical countries, although the main object of this treatise is to exhibit the attractions of "our native bees."

I will but superficially and rapidly glance at the
more distinguished exotie genera and species, as supplementary to the preceding notice of the geographical range of those which are indigenous with us.

How our own species reached us is a subject which has at present eluded all satisfactory determination. For its solution we must await the further discoveries of geology; at present we can only attribute their advent here to the same causes which are common to the produetion of all our groups of both the animal and the vegetable kingdoms.

Knowing how affluent tropical and subtropical countries are in the variety, size, and number of the forms, as well as in the splendour of their plants and vertebrated animals, we may fairly expect as gorgeous a richness in the insects they produce. Nor shall we be disappointed, for the imperial magnifieence of their Lepidoptera and Coleoptera guarantees an equivalent brillianey in the other orders of insects, and which is fully confirmed by the Larmonious splendour of their bees.

They thus put forward claims to attention and must excite curiosity by their beaputy and size, which the comparative smallness of our own, and the usual dulness of their colours do not possess. The latter only repay notice upon close investigation, but they then as amply reward all labour bestowed upon them by the mental recreation they yield, as their more gaudy exotie rivals. The former present themselves obtrusively and exact notice, whereas ours meekly solicit it by their humble but solid allurements. Here, as well as there, we behold the works of a mighty hand and of an immeasurable intelligence.

The bees throughout the world, as known collectively to the richest eabinets, number about two thousand species. This host, in itself numerieally so large, solicits
attention, for it is opposed to the economy of nature that there should exist any without funetions of essential usefulness, making them important elements in her harmonious order and neeessary to her due course, irrespeetive of the instruetion to be derived from the study of the manifold varieties of strueture, whieh unquestionably point to distinguishing peculiarities of habits.

In the true bees the division of the Dasygasters presents the fewest differing generie forms: the Nudipedes and Scopulipedes exhibit more numerous varieties, the preponderance being in favour of the pollen-eolleeting bees (the latter), although the euckoo bees (the Nudipedes) are very abundant, and taken en musse, are certainly the handsomest. If it be absolutely the case that there are no parasites amongst the Andrenidce, this subfamily will add very largely to the exotie pollinigerous majority, whieh thereby beeomes extensively subservient to the fruition of the vegetable kingdom.

Those bees which are exclusively inter- or sub-tropical, seem furnished with larger eapacities for fulfilling the special mission to which the family is appointed. Their pollinigerous and honey-collecting organs are peeuliarly adapted both to the structure and luxurianee of the superb vegetation of those regions, and to which they seem distinctly limited. But that they are not eonsidered equivalent to the entire demand of the profuse bloom everywhere abounding, may be concluded from the tropical range and distribution of many of our northern forms. Thus, whilst the flora of those elimates is strietly cireumseribed in its diffusion, its fauna, distinctly in the class of insects, and especially in the family of bees, is very eonsiderably less limited in extension.

The exotie genera of bees whieh are peculiarly notice-
able, either from splendour, size, or remarkable eecentrieities of strueture, are numerous. Tropieal and subtropieal regions of eourse abound with them, in individuals, in speeies, and in genera; and when we refleet upon the riehes of the flora of those countries, whieh is perpetuated mainly by the ageney of inseets, amongst which, in fulfilling this indispensable demand, bees, as I have reiterated, are pre-eminently eonspieuous, we shall not even wonder that their number, although exeessive in the extreme, is eonsiderably aided, in many eases, in the performanee of this task, by peeuliarities of strueture. Thus, the splendid Brazilian genus Euglossa, although not eonspieuous for size, is remarkably so for the enormous development of its posterior tibix, whieh form very large triangles, eompared with the size of the inseet, deeply hollowed for the eonveyance of pollen. Its tongue also, from the length of whieh the genus derives its name, is, when extended, more than twiee the length of the body, and with whieh it is enabled to reaeh the neetarium, seated within the depths of the longest tubes of flowers. Other exotie bees, further to aid them in eolleeting pollen, in addition to the dense brushes with whieh their posterior legs are variously eovered, have each individual hair of these thick brushes eonsiderably thiekened by hairs given off laterally, and in some eases these again ramify. Sometimes, in variation, the simple, single hairs have a spiral eurve, whieh almost equally enlarges the activity of their operation. This is also the ease with two very lairy-legged genera of our native bees, proximately allied to eaeh other in the methodieal arrangement, Dasypoda and Panurgus, the hair of whose posterior legs have this spiral twist. The most hairylegged exotie bees are essentially the genera Centris and

Xylocopa. Of the habits of the former we know nothing, but those of the latter we are intimately acquainted with, through the elaborate descriptions given by Réaumur and the Rev. L. Guilding, the latter of whom made his observations upon a species found in the island of St. Vincent's, in the West Indies. This last genus exhibits in some of its species the giants among the bees, and one is especially so, a native of India, the Xylocopa latipes, which is an inch and a quarter long, and more than three inches in the expansion of its black, aeute wings; and it is also noticeable from the anterior tarsus in the male being greatly dilated and white, the bee itself being intensely blaek, and whieh in this same sex has enormous eyes united at the vertex, as in the male $A p i s$, or drone. In this genus, as in many other genera of bees, there is often a great discrepaney in the appearance of the sexes, they being so totally dissimilar that no seientifie skill has hitherto been able to discover a elue for uniting together correctly, by seientific process merely, the sexes of a speeies; thence the numbers of the species in such genera are unduly augmented beyond their natural limits, from the fact of observation having neglected to associate the legitimate partners.

In some of our native genera this same difficulty existed, which, however, is gradually diminishing as the authentic sexes are slowly discovered.

Exotic bees exhibit also a peeuliarity I had occasion to observe before, in reference to our own bees, amounting perhaps to a law, viz the more highly-eoloured eondition of the parasite, for we find all the parasitical bees of those latitudes, usually gorgeously arrayed in metallie splendour, as instanced in Aylä̈, Mesonychia, Mesocheira, ete., and Melissoda (my Ischnocera, in Lardner), is re-
markably conspieuous for its long and delieately slender antennæ in the male, each joint of which is nodose at its extremity.

The widely-distributed Nomia seems to abound chiefly in India. It, although neither gay nor large, has, in its males, a distinguishing form of the posterior tibire, whieh is greatly inerassated or thiekened; a peculiaricy of strueture found also in some other genera of Hymenoptera, and in several genera of the Diptera, giving the inseets whieh have it a remarkable gait.

The singularly anomalous distortion of these posterior legs is conspieuous also in the genus Ancylosceles, which is named in allusion to it.

Another remarkable peeuliarity is to be observed in the above genus, Mesocheira, as likewise in the superb Acanthopus, both of whieh genera have the spur of the intermediate leg palmated at the extremity, and the latter genus is further distir guished by its large size and splendid development, and by having the fifth joint of the tarsus of the posterior legs longer than the three preeeding united, and covered with a pollinigerous brush as dense as that of the elongate first joint of the same limb.

But the foreign genera which will be most interesting to the reader will, I expect, be those of Trigona and Mellipona, whieh, in many peeuliarities, seem abortive Apes. They seem nature's first endeavour to construet Apis, for they have an apparently imperfect neuration of the wing, in which the external submarginal cell is unfinished. Their ouly separating distinetion from each other is the differenee in their mandibles, which in Mellipona are broad and edentate, whercas in Trigona they are also broad but dentieulated. In Apis these organs are merely irregularly eularged at the extremity, and:
hollowed within, rather like a spoon, whieh structure would of course imply a difference of ceonomy.

A further charaeteristic of these genera, and in which they partieipate with Apis, is the deficieney of spurs to the posterior tibie, which separates them from all other genera of bees, as also from Bombus, which has two, yet with which, in point of their ceonomy, they more elosely assimilate than with Apis. They are the South American and Anstralian indigenous representatives of the genus Apis, and are found likewise in Java and Sumatra, and in some of the larger and extreme islands of the Indian Archipelago, thus also similarly in countries where marsupial animals oceur. Like Apis, they are social in their habits; but their neuters only are as yet known, neither males nor females liaving been described. They are reputed to be stingless, and to make honey and wax in enormous quantities. The combs in Mellipona are attaehed either to the branches of trees or are suspended from them, but how they are enveloped for seeurity is not reported, but sometimes, like $A p i s$, they construet them within hollow trees and in the cavities of rocks, as in Trigona, in like manner as Apis does in its natural state. Their eommunities are not so large as those of the hive bee, and the eells of their combs are less perfectly hexagonal, the wax being expended upon them in denser quantities, whereas the hive bee is exceedingly parsimonious in the use of this material, a eireumstance arising possibly from the different and more difficult mode the latter have of obtaining it. In the latter it is a secretion ; but these exotic genera possibly colleet their wax ready-made by the exudation of plants, and, thus, having more readily obtained it, they are more lavish in its use.

Early travellers and historians describe many kinds of honey made by these bees, native to the South American continent, but they report nothing of the peculiarities of the social economy of these insects, nor whether they are as closely allied in this respect to Apis, as they are in the collection of honey and wax.

To enter into further detail relative to them would be beyond the province of this work, and I have only given this extremely superficial and brief notice of foreign genera, to show what multitudes of others of this interesting family await admiration and study, when some proficiency has been acquired in the knowledge of our own.

103

CHAPTER V.

PARASITES OF BEES AND THEIR ENEMIES.

Nature seems to have imposed a restraint upon the undue increase of all its creatures, by creating, to check it, others that prey upon them. It thus enlarges the sphere of its activity by making life accessory to life, and promoting thereby a more extended enjoyment of all its pleasures. Other forms are brought into existence, and other terms given to duration than those which the laws of life attach to specific organization. No abatement is thereby made upon the quantity of contemporaneous vitality, for what subsides in one rises in another, and the undulation of the waves is perpetual.

Does the quantity of life, extant upon the earth, vary? Perhaps mortality ever comes in some shape to "prevent it, when excess threatens to render its energy effete. Yet under every circumstance the wise arrangements of Providence suffice, for everything has its enemies or its parasites, which are also enemies, but frequently in disguise. For defence there is an implanted instinctive fear, or abhorrence; and the creature is then left to its skill, prudence, or strength, either to evade or to mitigate, to the extent of its capability, the danger of the attack.

We find the bees are not at all exempted from this prevailing condition. They have many enemies and parasites of remarkably differing organization. They are attacked by many kinds of birds, among which the Merops Apiaster (or bee-eater) is conspicuous. All the swallow tribe prey upon them, as do the shrikes and some of the soft-billed small birds, and also many small quadrupeds when they can find the opportunity. Wasps also attack them, but they do not often get entangled in spiders' nets, being generally too strong for the retention of its meshes, but I have seen a Bombus enveloped in a tangle of its wonderful filament.

The wild bees' parasites are of two kinds, personal, and such which, like the young of cuckoos, live at the expense of the offspring. The personal parasites are again of two kinds, for bees are infested with several kinds of Acari, and once I found a Bombus upon the ground in Coombe Wood so swarming with the Acarus that it lay hopelessly helpless until I threw it into a pool of water, when its attachés were washed away. But the poor bee seemed so prostrated by their attack, that even when freed from them it had not energy to fly, and having landed it I left it to the kindly nursing of nature.

A little yellow hexapod larva sometimes also infests the wild bees in great numbers, running over and about them with great activity. I have never followed these to their development, but they are said to be the larvæ of Meloe proscarabeus, a conspicuously large coleopterous insect. The assertion has produced much discussion; and I believe the larva has been bred to the imago, and consequently it has been proved that it is the larva of that insect. But that it should be parasitical upon so small a creature, and that numbers should infest it for
their nutriment, is extremely improbable. It is far more likely that instinet has taught them to be eonveyed elsewhere through the medium of the bee, as they might also be by attaehing themselves to any other volatile inseet, and that upon arriving at a suitable locality they deseend from their temporary hippogriff. We see seeds thus conveyed by the agency of animals and birds to suitable places, where they fall and germinate.

Another little hexapod is oeeasionally found upon them: this is intensely blaek, and like the former, very active: these I never eould rear, nor did they ever seem to enlarge, and they speedily died. I have found them in profusion also within the flowers of syngenesious or composite plants, especially of the dandclion in the spring.

But their most remarkable personal parasites consist of some very extraordinary inseets, so anomalous in their structure as to have required the construction of an order for their reception, - the Order Strepsiptera, or "twisted-winged," thus named from the twist taken by their anterior wings or wing-eases. Their natural history is but imperfeetly known, and I believe the males have not yet been diseovered. Their larva lives within the bee, and feeds on its viseera by absorption, being attached within by a sort of umbilical eord. It presently consumes the viseera, and renders the bee abortive, by destroying its ovaries, for it is usually upon female bees that it is found. When full fed it forms a case within whieh it changes into the pupa and imago, the head of which ease protrudes between the seales of one of the dorsal segments of the abdomen. How it becomes deposited within the bee or the bee's larva remains a mystery, although many hypotheses have been hazarded to aeeount
for it, but all are unsatisfactory. The Order consists of three genera (Stylops, Elenchus, and Halictophagus) found in England, and other parts of Europe ; indeed, the genus Elenchus has been also discovered in the Mauritius. The Continent possesses the genus Xenos, of the same order, and parasitieal upon a wasp, neither of which occur with us.

Mr. Kirby, in studying the bees for his invaluable ' Monographia Apum Angliæ,' first came across this extraordinary crcature. His description of his diseovery is highly interesting. He says, at page 111 of volume ii. of the above work, that having observed a protuberance upon the body of the bee, he was anxious to ascertain whether it might be an Acarus, and goes on: "What was my astonishment when, upon attempting to disengage it with a pin, I drew forth from the body of the bee, a white fleshy larva, a quarter of an ineh long, the head of which I had mistaken for an Acarus. How this animal rcceivcs its nutriment seems a mystery. Upon examining the head under a strong magnifier, I eould not diseover any mouth or proboscis with which it might perforate the corneous eovering of the abdomen, and so support itself by suetion; on the under side of the head, at its junetion with the body there was a coneavity, but I could observe nothing in this but a uniform unbroken surface. As the body of the animal is inserted in the body of the bee, docs that part reeeive its nutriment from it by absorption? After I had examined onc speeimen, I attempted to extraet a second, and the reader may imagine how greatly my astonishment was inereased, when, after I had drawn it out but a little way, I saw its skin burst, and a head as black as ink, with large staring eyes, and antennæ consisting of two
branches, break forth, and move itself briskly from side to side. It looked like a little imp of darkness just emerging from the infernal regions. I was impatient to become better acquainted with so singular a creature. When it was completely disengaged, and I had sccured it from making its escape, I sct myself to examine it as carefully as possible; and I found, after a careful inquiry, that I had not only got a nondescript, but also an insect of a new genus whose very class seemed dubious."

As everything comnected with so strange a creature is very attractive, I will cite what other observers also have seen. Mr. Dale, from whom Curtis received Elenchus to figure in his 'British Entomology,' vol. v. pl. 226, says: "These parasitcs look milk-white on the wing, with a jet-black body, and are totally unlike anything else. It flew with an undulating or vacillating motion amongst the young shoots of a quickset hedge, and I could not catch it until it settled upon one, when it ran up and down, its wings in motion, and making a considerable buzz or hum, as loud as a Sesia; it twisted about its rather long tail, and turncd it up like a Staphylimus. I put it under a glass and placed it in the sun; it became quite furious in its confinement, and never ccased running about for two hours. The elytra or processes were kept in quick vibration, as well as the wings; it buzzed against the sides of the glass with its head touching it, and tumbling about on its back. By putting two bees (Andrena labialis) under a glass in the sun, two Stylops were produced: the bees seemed uneasy, and went up towards them, but evidently with caution, as if to fight; and moving their antennæ towards them, retreated. I once thought the bee attempted to scize it; but the oddest thing was to see the Stylops get on the body of
the bee and ride about, the latter using every effort to throw his rider.
"As the Stylops emerges from the body of the bee, the latter seems to suffer from much irritating excitement."

Mr. Thwaites writes to me, on the 12th May, thus: "I had the good fortune to capture a Stylops flying, and on the Tuesday following saw at least twenty flying about in the garden, but so high from the ground that I could capture only about half-a-dozen; since that time they have become gradually more searee.
"The little animals are exceedingly graceful in their flight, taking long sweeps as if carried along by a gentle breeze, and occasionally hovering at a few inches distance from the ground. Their expanse of wing and mode of flight give them a very different appearance to any other insect on the wing. When eaptured they are exceedingly active, running up and down the sides of the bottle in which they are confined, moving their wings and antemnæ very rapidly. Their term of life seems to be very short, none of those I have captured living beyond five hours, and one I extracted from a bee in the afternoon was dead the next morning.
"All the bees stylopized, both male and female, I have taken, have manifested it by having underneath the fourth (invariably) upper segment of the abdomen a protuberance which is seale-like when the Stylops is in the larva state; but which is much larger and more rounded when the Stylops is rearly to emerge. A bee gives nourishment generally to but one Stylops; but I have occasionally found two, and once three larvæ in one bee."

The strueture of these insects is very remarkable: the typical genus Stylops is named from its compound eyes, which consist of a very few (about fifteen) hexagonal
facets, seated upon a sort of footstalk. The mandibles are lancet-shaped and very acute, and the head, by reason of the protuberant eyes, has very much the shape of a dumb-bell. The antennæ are branched, but in Halictophagus, they are flabellate. The thorax is greatly developed; the superior wing is like a rudimentary wing-case, and is twisted, the inferior wings are very large, and fold along the abdomen in repose like a fan; the legs are slender, and the tarsi with four joints in Stylops, with three in Halictophagus, and with two in Elenchus ; the abdomen is long, very flexible, and consists of eight segments. The insects themselves do not exceed a quarter of an inch in length in the largest, but they are generally very much smaller. The perfect insect is very short-lived, not surviving many hours, as just stated. They are usually found in the months of May and June, and they have been discovered to infest several species of Andrena and Halictus, for instance the A. nigro-enea, upon which Mr. Kirby first found it; A. labialis, which I have frequently caught stylopized; A.rufitarsis, fulvicrus, Mouffetella, tibialis, Collinsonana, varians, picicornis, nana, parvula, xanthura, convexiuscula, Afzeliella, Gwynana, etc., and upon Halictus eraitus, etc.

The other mode of parasitism destructive to the bees is where the parasite deposits its own egg upon the provender stored by the bee for the sustenance of its own young. The young of the parasite, either by being more speedily hatched or more rapacious than the larva of the sitos, starves the latter by consuming its food. This kind of parasites consists of several Diptera, but they are mostly bees which form a distinctive subsection of the family of true bees (Apide), the subsection being called the Nudi-
pedes or naked-legged, from their not having the necessary apparatus of hair upou the posterior thighs or shanks, for the conveyance of pollen wherewith to store their nests. Thus nature, having rendered them unable to perform this duty to their offspring, has imposed upon them the necessity of resorting to strangers to support them, and they are not led to it by idleness or indifference. These insects consist, with us, of six genera, the species of which are individually attached to some particular bee, who thus nurtures their young. They are, as a rule, gayer insects than those which they infest, and the genus most abundant in species is Nomada, which attaches itself chiefly to Andrena, although some of its species, especially the smaller ones, infest the species of Hatictus, and one frequents Eucera. Melecta appears confined to Anthophora; Epeolus to Colletes: Stelis perhaps to Osmia, judging from the great similarity of liabit; and Colioxys to the constructive Megachile. Nonc of these parasites resemble their sitos, but Nomada is exceedingly different, being in its gay array more like a wasp than a bee. The only close approach in the appearance of a parasite to the insect upon which it is parasitical is in the resemblance between Apathus and Bombus, which are so alike that they were long continued to be united in the same genus, until the peculiar characteristic of the parasitical bees was detected, when they were readily separated. Although, cuckoo-bees as they are familiarly called, they could not be associated with the Nudipedes, because their posterior legs, though not pollen-convcying organs, are hairy; but the Cenobites, to which section they belong, have a peculiar and distinguishing structure of that limb. They are further separated from the Nudipedes by several frequenting the same nest, thus habi-
tually associating with their sitos. Some of the Chrysidide are likewise, as I shall have occasion to notice in the description of the habits of the genera, similarly parasitical upon some of the species of the family of bees. The genus Mutilla is also probably entirely parasitical upon bees, for Mutilla Europea is a parasite upon Bombus lapidarius, from whose nests it has been dug in winter, by my friend the late Mr. Pickering, whose activity and accurate observation once promised to be very beneficial to the science, but he, like many others of my entomological friends, is now no more!

118

CHAPTER VI.

GENERAL PRINCIPLES OF SCIENTIFIC ARRANGEMENT.
The following rapid observations are addressed to those whom it is the desire that this series of volumes may induce to take up the study of Nature in a methodical manner. With this view, the merest summary of the principles upon which scientific arrangement is based, is here exhibited. The study requires method as a lodestar to guide through its intricacies, but it is one which, pursued simply as a recreation, yields both much amusement and gratifying instruction. It shows us that when we unclasp the book of nature, and wherever we may turn its leaves, every word, the syllables of which we strive to spell, is pregnant with the fruitfulncss of wonderful wisdom, whose profound expression the human intellect is too limited thoroughly to comprehend.

Is there an arrangement that human skill could mend? Is there an organization that man can fully solve, or a combination that his mind can wholly compass? Do we not behold limitless perfection everywhere, but all so deeply mysterious. So exquisite are the feelings which the contemplation commands, that they imbue us deeply with the sensc of the high privilege conferred upon the intellect by its being permitted to embrace a study, which, even pursued merely as a re-
laxation, inculcates in so screne and pleasing a manner such profound veneration and reverence.

To acquire the prospect of a possibility to unravel the exuberant profusion of the natural objects surrounding us, successive students of nature have endeavoured to systematizc the secming confusion in which her riches are spread about. Like has been brought to like, and gradation made to succeed gradation. Resemblances have been combined and disparities disjoined, until the labour of centurics has constructed of all the natural objects within the ken of man a vast and towering edifice, whose basis is seated at the lowest substructure of the earth which research has yct reached, but whosc head ascends high into the empyrcan.

All things have been collected, and arranged, and classed. Method has cndeavoured to give them succession according to an assumed subordination. The labour of the great minds which framed the large theories of this vast branch of human knowledge, has permitted men of lesser powers of combination to abstract parts for special cxamination and investigation.

The study of natural science has progressively reached an extraordinary development, spreading in every dircetion its innumerable tentacula; to which the perfection of the telescope and of the microscope have still further added by the discovery of new worlds of wonder.

Just as language is systematized and made easier by grammar methodizing its co-ordinates and their relations, so natural scicnce arranges its subjects into subdivisions of which genera and species are the lowest terms. The higher and more complicated are of many denominations, which, notwithstanding, have for their chief purpose the simplification of the survey by assisting
accurately to determine accurately natural objects individually. Once the clue of the labyrinth caught, the seeming intricacy of its involution vanishes; for when a clear conception of the general scheme is obtained, the solution of the parts is comparatively easy. The same principle rules throughont, however variously treated.

The large divisions of nature appear simple and distinct enough in their great frame, but when we approach their confines, close investigation discovers analogies and affinities, which, where the separation seems most apparent, create insuperable difficulties, and render linear succession, or distinct division, nearly an impossibility. Here we find parallelism, and there radiation, and elsewhere a complicated reticulation without subordination ; and this is one of the great problems, which it is the office of the mature naturalist to endeavour to solve. The present work has to do, however, with but one small portion of the whole.

Thus we see that, in order to arrive at a knowledge of natural objects, a method must be pursued to avoid being. overwhelmed by their multiplicity, whercby confusion would be produced in the mind which their methodical investigation tends to dissipate. Their abundance precludes the possibility of their being all equally well known, although it is very desirable to have a general, if even superficial acquaintance with them, that is to say, in the broad and distinguishing features of their large groups, for as to an accurate knowledge of all their species, it would be futile to attempt it. Possessing this general knowledge, the attention may be turned with greater advantage in any special direction, and that pursued to its entire acquisition.

Natural objects have been arranged in Kingdoms,

Orders, Classes, Families, and Genera, all dedueed in their successive and eollateral groups from characters exelusively derived from species; therefore to the accurate knowledge of species all endeavours must be direeted, they comprising within themselves all the rest, although the characters upon whieh they themselves depend for scparation from their congencrs are the most trivial of any. Each combination, in its analytical descent, eontains characters of wider eompass than those which succeed it, and eonscquently cmbraees in that deseent more species than the suceessive divisions ; just as in the ascent, or synthetical method, the eharaeters of every suceessive group gradually expand. Spceies being thus the only real objects in nature from which all knowledge springs, and in whieh exelusively all uses lie, other eombinations being perhaps as merely imaginary as are the many lines which are drawn over the surfaee of the globes, it would imply that subdivisions merely lend aid to acquire more rapidly the details upon whieh they depend. We will, thereforc, first turn our attention to spccics.

Both combination and subdivision are intended to faeilitate identifieation, by aiding us to arrive at this knowledge of species; for each species represents a distinct idea, whose eorrect definition is important to the progress of aecurate scienee. This alone permits observation to be attributed to its right objeet, and when properly recorded, the information is seeured for ever from error or obscurity. It is not, however, the gift of every mind to discern aecurately even speeific differenees, or to form skilfully generie eombinations. The very best favoured by nature,-for it is a natural gift, although under high cultivation, 一have sometimes a bias towards seeing more than actually exists. Hence varieties are
often elevated into species, and species thus overwhelmingly multiplied; and genera are frequently framed upon vague distinctions.

Species are the basis of all natural science.
A species in zoology is a combination of creatures which unites the sexes, and these being two, the assumcd existence of neuters in some instances does not invalidate this, it comprises two individuals having independent cxistence, but whose co-existence is indispensable to perpetuation, but which often, from their great differences, no single set of scientific characters will bind together, yet which must exist in some undiscovered peculiarity, that individuals may be able to distinguish their legitimate partners. The species, therefore, is a complete unit in its entirety, although consisting of two distinct beings, for in the large majority of cases in zoology these sexcs are distinct, although their conjunction is, in the higher forms of life, indispensable for their continuance. In some of the lower forms of animal life they exist in union, and in the vegetable kingdom we perceive every possible combination and modification of this conjunction, and in both of these life may be perpetuated also by simpler processes.

The species may consist of any indefinite number of individuals, and no law has litherto been discovered which regulates the relative proportions of the sexes, although it is very apparent that some recondite influcnce operates to control it. It is also extremely remarkable to observe how eccentric naturc is in some species, and the extent to which she sometimes carries the variation of some particular specific type, and to which some species are singularly prone, and yet how rigidly in other cases she adheres to the particular spe-
cifie form in the suceession of generations, that even the shadow of a deviation from the typical distinetion is scarcely to be discovered : a reason for this it is hard to surmise. We may, nevertheless, conclude it to be certain that true speeies are ever distinet, and can no more coalesee, however elosely they may approach together, than ean asymptotes.

Specific differences result from many eharaeteristies,from colour, elothing, size, and sometimes from peculiarities of structure; but these last are usually of a higher order, tending to indicate an aberration, slight though it be, from the normal generie character whieh holds the group together, thus implying a distinetive economy. This is sometimes ealled a subgeneric attribute, and there might be a reason, eertainly, for not elevating such species to the full rank of genera, were genera equivalents, which they are not, and it merely remains an evasive admission of the doubt that attaches, exeept for the sake of eonvenience, to any subdivision, but the specifie.

The species is thus the very last term of subdivision, the very elemental principle itself, whieh unites together as one, solely for the purposes of perpetuation, the two sexes of similar individuals, and without whose intereourse the kind or speeies would die out.

That some speeies greatly abound in individuals, as before observed, whilst others appear to be extremely limited, is an absolute faet, and not mercly suggested by a defeetive observation of their oceurrence, resulting from their rapid dispersion. It is verified by being noticed to oceur where we know they would resort, as is exemplified in the ease of some of the parasitical speeies of the insects herein treated of, and whieh are sometimes
rare, cven in the vicinity of the metropolis of their sitos, and where this also greatly abounds. In other cases, other species absolutely swarm where the similar attraction lies.

Even supposing species to be the sole natural division, we may accept the supcrior combinations as means to aid us to a gradually extending survey of the whole. Perhaps did we possess all the links of the vast chain of beings we should find genera, and every other superior combination, melt away through the intimate alliance of the succession of specics that would obliterate the lines of separation, by making the sutures imperceptible; but what mind could compass the detail of such a limitless unbroken series? Their subdivision may therefore be acceptcd as a positive necessity, to enable us to compass their investigation. As it at present stands, with our imperfect knowledge of the entire scries of species, these higher groups are indispensably requisite.

The specific diagnosis being the only sure basis upon which all our knowledge can rest, its accuracy is allimportant, and requires a few observations. It comprises two parts-the specific character, and the specific description. The difference between these is, that the first is constructed with the extremest brevity consistent with its utility, is fluctuating and not permanent. The latter permits all the diffuseness needful to embrace a full description of the creature.

The object of the first is to establish the present identity of the species amongst all its known congenersthose associated in the same genus;-and that of the second to secure it in its perpetual identity, and segregate it from all future and contingent discoveries. The specific character admits, consequently, modifications to
suit any extension of the genus, and in faet exacts it at the hands of all who deseribe new speeies. This many naturalists undertake without any apparent eonseiousness of the seientifie responsibilities that attaeh to it, and whence results the eonfusion so mueh to be deplored, of the synonymy that prevails, constituting, as it docs, such a Dædalian labyrinth. The deseriber of a new speeies is bound to cast around, and endeavour to know all that has been previously done upon the subjeet of the genus. He has to revise all the speeifie eharaeters within the genus, and mould them to those he introduees, and he must insert these closest to their evident affinities. Thus, therefore, the describer's labour is not light, if to be of any value. The specifie eharacter, although thus varying, beeomes a permanent utility, and only so fulfils its objeet,-that of rapidly showing, at a glanee, the known speeies of a genus, and thereby permitting the speedy determination of the identity or distinetness of a eompared objeet. If doubt should exist from this brevity, the speeifie deseription is at hand to solve it, by the amplitude and eompleteness of its details. Of eourse this mode of treatment is only suitable to monographs, or portions of the seienee diseussed separately, and not to a general or universal survey.

The amount of toil thus saved to the deseribing naturalist, and to those who wish to name their speeimen, the experienced only ean estimate. This brevity of speeifie eharaeter is one of Linnæus's terse and valuable axioms, who limits its length to twelve words. The best examples, I think, that I ean adduee in entomology, of valuable and exemplary speeifie descriptions, is Gyllenhal's 'Inseeta Sueciea,' whieh eontains exclusively a deseription of Swedish Coleoptera; Gravenhorst's large
monograph of European Ichneumons; Erichson's elaborate work upon the Staphylinidæ; and our own Kirby's 'Monographia Apum Angliæ.' Their perfection consists in fulfilling thoroughly all the above conditions, for if any doubt exist upon comparing your insect with their descriptions, you may be fully assured yours is not identical. The only drawback to the utility of Mr. Kirby's book is that he had to deal with inscets variable in condition from many causes, and the variable state of the insect that may have to be compared; his description has evidently been made sometimes from a worn specimen, one that had been exposed to wind and weather, and sometimes from an insect in fine condition. Thus it is important that compared insects should be in an identical state to substantiate the comparison,-a difficulty which this family has specially to contend with, as these insects are more liable than almost any others to vary, owing to their specific character depending much upon pubescence, which is extremely subjected to many modifying influences, for the tinges and positive colour of the hair will much vary by exposure, as it is not possible always to capture a bright individual.

Taking specific description thus practically in its full and wide sense, it is requisitc, for the purpose of avoiding repetition, that all the characters of the superior combinations should be eliminated, leaving it with those only which have not been thus absorbed, which now constitute its sole remaining distinctive specific peculiarities. Every species necessarily contains within itself, every character of every combination in direct line above it, although these have been gradually abstracted to form those several combinations which are arrived at successively in the synthetical ascent. Analytically,
species are the last but combining element of all, although their most remote members. The whole system is an ingenious contrivance for breaking down a complex multiplicity of characters, to simplify the means of reaching all the collateral or adjacent species, that we may be able to determine identity or difference.

Entomology, and indeed natural history gencrally, uses three words, very much alike, but very different in signification and application. Thesc are, habit, habits, and habitat. The habit is that pcculiar character of identity, that je ne sais quoi, which marks all the species of a genus collectively, and which, in some cases, only the trained eye can detect. It is then scen instantaneously, and forcibly illustrates the extreme precision the study of the natural sciences tends to cultivate. Thecir utility, also, as a discipline to the mind, conjunctively with the kecn accuracy which practice gives the sight, are qualifications not lightly to be csteemed.
It is from such absolute control of detail that the most efficient power of generalizing emanates, which, when it has once become habitual, gives, from its rapidity, an almost instinctive facility, as its incritable concomitant, for both synthetical and analytical survey. The mind thus becomes strengthened by vigorous exercise, and has always, for every purpose, a powcrful instrument at command, often used unconsciously, but always effectively. Thus is habit, once correctly perccived, ever retained.

The habits are the peculiar manners and economy of a specics; and the habitat is the kind of locality the creatures affect, such as hill or plain, wood or mcadow, forcst or fell, hedgebank or decaying timber, sand or chalk or clay, and ground sertical or horizontal ; and the
metropolis of a speeies-another tcrm in use-is the centralization of the gencral habitat where the insect either nidificates colleetively with its fellows, or, where, from any other eause, it may be found in its season, usually in profusion. But good fortune docs not always attend the diseovery of this loeality.

It is by the acquired skill of pereeiving habit, that a large and confused collection may be sorted rapidly, or fresh captures immediately plaeed with their congcners, without the necessity of going tediously through all the descriptive eharacteristies. Ineidental errors are afterwards specdily eorrected. It is then that the specific eharaetcr exhibits its utility by enabling us at once to distinguish the new from the old.

The concentration and summary of the specific charaeter is the name of the speeies, or trivial name as it is sometimes called, whieh is, as it were, the baptismal designation that attaehes to it always afterwards, and is eontemporaneous with the introduetion of the creature into the series of recognized beings.

Upon the revival of the study of natural history, when learning dawned after the night of the Middle Ages, mueh diffieulty attached to the imposition of diseriminative names. The works of the aneicuts were ransacked, and endeavours made to verify and apply the names they had used. Ray published a voeabulary of such names. But the ancients never studied natural history in the systematic way pursued by the moderns; they did not want the skill, but they wanted the faeilities. Anatomy and physiology had not made the progress necessary to aid them in the pursuit, and the assistance all these seiences obtain from optieal instruments was barred from them. The names they gave to natural objects were vernacular
names, which, like our own vernacular names, applied rather to groups than to species, and have in consequence ultimately become the names of genera. But this was the work of time, with which discovery progressed. As these discoveries were made by the new cultivators of natural history, they added them to those which they resembled, by some brief distinctive character adapted to the momentary exigency, such as major, or minor, etc.; and these additions were constantly treated as varieties of the species, whose name headed the list by the designation first adopted. Discoveries still continued, which were compulsively arranged with the predecessors they most nearly resembled, until resemblances vanished, and the boundaries fixed by the assumed correct application of the names thus derived from the ancients were passed, and there was an overflow on all sides.

To meet this difficulty, the new discriminative name had to be moulded into a phrase to correct its exceptive peculiarities, and specific names became descriptive phrases, the bulk of which no memory could retain, and which usually were neither clear nor expressive. Thus genera were continually treated as species, and species as numbered varieties, with long distinguishing descriptive phrases.

So it remained till day dawned, and the great luminary of systematic natural history rose with a bound to irradiate the obscurity of science with his subtile and vivifying beams.

This was Linneus, to whom we owe the binomial system, wherein, by means of two words only (the generic or surname, and the specific or baptismal name), the recognition of a species is perpetuated; for Lin-
næus truly says, "Nomina si nescis, perit et cognitio rerum."

By a law tacitly admitted, but universally recognized, for the sake of securing to a name its intangibility, no two genera in the same kingdom of nature may be named alike. There is, therefore, if this rule be observed, no fear of similar names coming into collision in the same province, and thus producing confusion. A ready means to prevent the possibility of such mischance is the admirable work which has been published by Agassiz, with the assistance of very able coadjutors, in the 'Nomenclator Zoologicus,' which is a list of all the generic names extant in zoology, exhibiting what names are already in use either appropriately or synonymously in this great branch of the natural world, and if this work receive periodically its necessary supplements and additions, no excuse will remain for the repetition of a name already applied. The most defective character in this laborious work, is the frequent incorrectness of its etymology of the names of genera. It would be, perhaps, without such aid, too great a labour to require of the describing naturalist, or it might not be otherwise even practicable for him, to ascertain whether the generic name he purposes to impose be, or not, anticipated. The penalty of its being superseded is understood to attach to the imposition of such a name, for the alteration may be made with impunity, and thereby it becomes degraded to the rank of a mere synonym.

Nomenclature has thus, by the happy invention of Linnæus, been made a matter of the greatest simplicity, conciseness, and lucidity, and to him, therefore, our gratitude is due.

An indispensable branch of nomenclature is Synonymy,
which, briefly, is the chronological list of the several names under which species or genera may have been known. This diversity of names has originated in several ways,-from indolence, or ignorance, or excessivc refinement. The views of systematists will differ in the collocation of creatures; hence, sometimes what had been previously divided will be recombined, or divisions into further groups be madc of what had been before united. Both processes will necessarily producc synonyms; the recombination of what had been separated reduces the names of such groups to the rank of synonyms of the old one from which they have been disjoined. In the latter case the old name will be retained to the typical species merely, and be also made a partial synonym of the names of the new generic groups: or, indeed, it may happen that the samc creature has been described generically, unknowingly, by two different persons, about the same time. By another recognized rulc in nomenclature, the 'law of priority;' the name given by the first describer is accepted, and the other consequently falls to the condition of a synonym.

With respect to specific synonymy, many causes conduce to it; namely, an imperfect description which cannot be clearly recognized, reducing it to that category, with a mark of interrogation appended ; subscquent description when want of tact has not discerned the identity of the old one; indolencc in looking about for works upon the same subject; inability to obtain access to books wherein they may be described, owing either to their costliness or to their obscurity, or by lying buried in some collapsed journal, or the poverty of our public libraries, etc. etc. But however thus lost sight of, or wilfully ignored, the name still retains vital elasticity,
for the describer has not thereby lost his rights, but revives to them with all due justice upon the cessation of this coma. The really culpable among such describers are those who neglect to look around them to ascertain what has been done, and this course is sometimes illicitly adopted to obtain a fleeting and meretricious fame, by the description of ostensibly new species, which critical investigators soon detect to have been long since known and very ably described.

Thus, a complete synonymy, which can almost only come within the province of a monograph, would give, chronologically, the entire history of a species under all the names it has been known by in the several works in which it has been published. Nature is so uniform and stable that Aristotle's descriptions can be clearly recognized, therefore there is no fear that whatever may have been synonymously, but yet correctly recorded of the economy of a species, can possibly be lost when once registered in the archives of science.

The working out of a correct synonymy is an ungrateful task of much labour, for few appreciate it, and not many use it, although when thoroughly elaborated it is so extremely valuable.

A further rule in nomenclature is, that the generic name must always be a substantive; and it is always desirable that the specific name should be an adjective. In the event of the imposition of a proper name, which is sometimes done to record a private friendship, but improperly so, for it is a distinction due only to promoters of the science, the genitive form must be adopted.

The next grade in ascent from the species is invariably the Genus, for subgenera, like varieties in species, are not uniformly present, but are mere contingencies, even if they do properly exist.

Why some gencra abound in species and others are so limited is as difficult to determine as the differing numerical abundance of individuals in species. That long genera (genera numerous in species) may be the result of natural selection, as Mr. Darwin surmises, and the offspring of a common parentage, is contradicted, not merely by pcculiar although sometimes slight dissimilarities of habit, combined with size and colour, but also if any lincs of demarcation are to be admitted, it is possible, werc their gencric similitude to be subjected to severe test, they might present charactcristics normally discrepant and suggestive of further division, although the habit may be very like.
The gencric grouping is effected by structural peculiarities, which are essentially of a higher class than the characters of specific separation, these bcing detcrmined by colour, pubescence, sculpture, etc. etc.; specific characters combining only individuals with such peculiar inferior resemblances. The gencric characters thus establish groups of species allied only by such more general character and similarity, but conjunctively of one permanent habit, although the members of the genus may differ somewhat in habits, and so on of the higher groups into which insects are collected, each group in its ascent upwards presenting characteristics of a wider range than those of the descending scries. And so, by degrees, we rise until we reach the characters which combine the whole order. The process is neccssarily and imperatively synthetical, for the whole foundation is based upon species, and thence emanates the supposition that only species exist.
The type of a genus is that species upon the characters of which the genus was originally framed and named,
and theoretically, however generic groups may be subsequently divided to suit views or to meet systems, the primitive generic type is assumed to retain the primitive generic namc. It is much to be doubted whether, in every case, the type is the true pattern, or leader, or centre of the group called the genus; nor is it likely if genera be natural groups. It has usually been accident which has dropped upon the favoured species, and not a well-calculated and thoroughly digested selection, and which, although accepted, will require emendation or change if the whole collective serics should ever be obtained.

It is the nccessary rcsult of the imperfection of our intellcct, and one of the dominant conditions of overruling time, that one thing must follow the other. It is, therefore, neither an expressed nor even an implied inferiority that puts one species before the other in a generic group; or one genus before the other in their successive order. Affinities may lead both species and genera in varying directions, although treated descriptively as of linear succession, in which order they are usually arranged, but this is unavoidable and therefore not derogatory. It is for the mind to conceive their radiation from a type, or thcir parallelism with other forms, even in the connection of affinity, and not merely of analogy, for the latter can be expressed even in arrangement.

Thus encouragement attends the beginner at the very outset of his study, and the prospect of a wide field for discoveries, in all directions, lies open to him.

The Family, after the Genus, is the next natural group at which we arrive, proceeding synthetically. Its characters, succeeding to those of the Order, group together
collectively the largest numbers of forms that in their several combinations are the most nearly equivalents, and may be almost paralleled in that quality to the alliance of species. Ascending from species, the naturalist scarcely hopes to find in the groups formed above them strict parallelism, although, to be logical, it should be so, and, where the combinations are most natural, it is most nearly so. Thus we do not again distinctly reach equivalents until we arrive at these families, which from linking together associations usually combined by an identity of instinct and functions, attach to themselves greater interest, and form alliances pointed out by the finger of nature itself, which are therefore exempted from the arbitrary caprice of the constructive systematist.

It does not follow that families should be even nearly numerically equivalent, for a family may contain a few or a multitude of genera and species, or a multitude of genera and few species, or also a multitude of species and few genera. Families comprise groups of forms to which nature delegates the execution of certain duties and offices, and whether specifically numerous or few, we may assume they are sufficient for the objest intended. If we can reach the motive that controls the peculiarities of the group, it is a golden key to the explanation of the structure of its constituents, and, perhaps might furnish us, if not with a positive clue, yet with a surmise as to the functions of the collateral groups of which it forms a member, and which diligent observation may accurately determine.

Families, to be natural divisions, should stand in the same relationship to genera as species do, but from the opposite side, whatever the subdivisions are into which
they may be separated, for the sake of convenience, and as descending grades whereby to arrive with greater facility at their genera, just as the species of the latter are also somctimes grouped, that they may be reached with greater ease. These subdivisions of families have no analogy with the varicties which species occasionally throw off, although they may be as irrcgular in their occurrence; that is to say, in the association of a group of families arranged in their series of most proximate affinities, the first may present subdivisions, others, in irregular occurrence, may not require them,- just as in the species of a genus, arranged also in the series of their closest resemblances, one will present a stringent adherence to the spccific type, or all may do so, or all or some may have a tendency to 'vary. Groupings of species are, however, of a less natural character usually than are those of families, and generally are artificial, being capriciously made to break down long genera, that the required species may be more readily arrived at.

The characters which group families differ inter se. Thus in the Order Hymenoptera, the family of the bees is essentially framed upon their most distinguishing peculiarity-the tonguc,-which in other families becomes of secondary importance. In some the neuration of the wings, their mode of folding, the form of the eyes, conjunctivcly with other peculiarities of general structure, etc. etc., which point to the differences in the economy that accompany all these, have successively the same prominent position which the trophi take in the family of the bees.
I have already recently alluded to the relations of affinity and analogy, and it is desirable that some notion of the mcaning and bearing of these terms should be
given, as, in the majority of modern works on natural history, use is frequently made of them.

On carefully surveying any class or order of crcatures, the mind speedily becomes impressed by observing certain similitudes out of the direct line of continuous connection, and therefore remote from the strongest connecting links of positive relationship in the methodical series. Induced thence to inspect them morc closely, we presently ascertain that what we at first conceived might be an error in their collocation, arises from very strong resemblances in certain particular fcatures, but which are less important than those which directly unite them, and may not be permitted to interrupt the order established. It is, howcver, equally evident that they indicate relations which may not be neglectcd.

Thus, although the succession be direct in the evolution of its primary characteristics, the promincnt features which so present themselves establish the conviction of the existence of connections oblique to the straight line, but all embraccd within the normal conditions which bind the group together. These are called relations of affinity. Pursuing them, it is sometimes observed that nature, as it were, returns upon itself, reproducing similar notes in another key.

These indications have led philosophical naturalists to surmise that the true arrangement of natural objects is in groups, and not in a straight and continuous line.

Several schemes have been suggested for the purpose of giving uniformity to these groups, making them equivalents by associating together the same numbers of allied forms, which again return in a circular serics upon themselves, and impinge upon other circles at the parallel points of their circumfcrence by affinitics less
direct than those which unite them within their own circle.

Many novel views and iutercsting combinations have been thus elicited, showing that very strong affinities lie in very divergent dircctions, but no system has bcen hitherto devised which overrules the conflicting difficulties that attend these arrangements. Whatcver number may have been adopted to bring nature within this circular system, it has always been found that some, or several members, both in the circles themselves, or in their serics, is as yet deficient, and awaits either discovery or creation.

The pursuit of such views stimulates profound investigation, and may lead to valuable discoveries that will eventually give a loftier and more philosophical character to the study of natural history than it has hitherto possessed, and make it an attraction to the highest class of mental powcrs. The key to the universe hangs at the girdle of the veiled goddess; and happy the student who shall achieve possession of it, and unlock the mysteries to the reverential gaze of mankind.

The relaition of analogy is different in kind, although the general affinities which bind a class together are necessarily affinities in the widcst construction of the term ; but the class being resolved into its elements, those affinities, thus dissevered, no longer retain the uniting links whercby the mass cohercs. They, more correctly, stream from their origin in parallelisms rather than in a continuous and uninterrupted current; and these parallclisms present resemblances often of a merely superficial charactcr. As strong an instance as I can adduce is possibly the analogical parallclism of the Pentamera and the Heteromera in the Coleoptera, which
are, however, bound by the common affinity of being all beetles.

It is, nevertheless, often diffieult to determine between the relationships of affinity and analogy, for groups even in elose eontiguity may also possess both. Thus, the normal Ichneumones have their analogues in the Ichneumones adsciti, if the eomparison be restrieted to themselves, but these revert into the relationship of affinity when a comparison is instituted between them and the adjacent groups on the one side of the Tenthredines, or on the other of the Aculcata, with whieh, when a relationship presents itself, it is merely one of aulogy. So, also, within the pentamerous Coleoptera we have a relationship of analogy between the Staphylinide and the Histerida, but it beeomes one of affinity when it unites them within this seetion of the elass.

Innumerable other instances might be given readily, but these will suffiee to convey a notion of the relative meanings of the terms, ' relation of affinity' and 'relation of analogy,' whieh is all here aimed at.

The problem naturalists have to solve is, "What is the natural system ?" We ean elearly see that the systems adopted are not Nature's, that they are essentially imperfeet, and that the seience, even with all the foree of the intelligenee that has been applied to it, is far from having attained perfeetion. It still awaits the master mind that shall eope with its diffieulties, determine its intrieaeies, and, threading the labyrinth, guide his enthusiastie diseiples into the adytum of the temple.
The subjeets here brought under view admit of very considerable development, and of strietly didactie and methodieal treatment. It has been my objeet only to gossip upon them, that I might stimulate curiosity to
undertake systematic study, by showing how intercsting it may become if earnestly pursued, being so fraught with instruetion of large eompass.

Works on natural history have divers objeets in view, and may be intended either for popular and general distribution, or for special scientific purposes, and in cach case the mode of treatment will matcrially differ. Many purposes may also be intended to be severally met in the strietly and rigidly scientific treatmerit. They may be either general methodieal arrangements treated superfieially, having no other design than to give a sort of bird'seye view of the subject in its wider distributions and broader landmarks, or they may treat of portions of the large subjcet more specially ; again, they may constitute monographs of varying cxtent from a family to a genus; or they may comprise loose deseriptions of new species of old and well-cstablished gencra; and some such, conjunctively with new species, establish likewise new genera, indieating, at the same time, their proximate position in the general serics. The two latter classes are usually the appendages to voyages and travels in distant unexplored eountries, or are the result of a carcful collection of neglected tribes at home. Eaeh, thus, with its special application has its special construction; but in the case of new specics, I would strenuously counsel a full and complete description, and urge as imperative the construction of a specific character, formally framed to meet the condition of the scienee, based upon the precise antceedents and existing state of the genus to which suelı spccies belong.

Even assuming that the knowledge of speeies is the cssential foundation of the scicncc, the preceding obscrvations show that there is a higher knowledge comnected
with the pursuit than this mere knowledge of species, and yet from which it emanates. There is a higher object to be achieved than the accumulation of a store of them, arranged in seemly order, set .with manifest taste, and named in accordance with the accepted nomenelature. These are extremely pleasing to the eye, but the intelleet languishes over them in unsatisfied desire, craving more solid aliment. There is besides room for observation on every side, either confirmatory or original, and both are much needed, and must be considerably augmented before it is aceumulated in satisfactory abundanee; and until this be procured, existing systems ean be viewed merely as temporarily useful, for until all that nature ean teach shall be exhausted, perfection cannot be attained.

The many kinds of knowledge which the study subserves, and the recreation and pleasure each affords, are a sufficient reply to the sneering Cui bono? of its detractors, who, when they urge that it occupies time which might be more profitably employed, present themselves but as the priests of the Fetish of the age, and may be told that we use it only as a relaxation to necessary worldly toils. When pursued, in eases where it can be so, in unmolested security, is there a more salutary pursuit than that which inculeates the high veneration and love which the study of nature should inspire towards the Great Parent of all? What ean compete with it in other studies? The investigation of the works of the Almighty lead direetly to the steps of the altar of religion, and there we find the study of the Works confirmed by the precepts of the Word, both ineuleating humble reverence and fervent love. Thus pursued, is it not a reply to every cavil?

CHAPTER VII.

brief notice of the scientific cultivation OF BRITISH BEES.

With the great John Ray dawns the scientific cultivation of British bees. Before his time, the only entomological work which had been published in England was Dr. Mouffett's 'Theatrum Insectorum.' In this work there is an ample account of the domesiic bee, with gleanings from many sources of some of its habits and cconomy, but there is no notice of any insects, excepting some species of the genus Bombus, which may be at all consorted with the social bee by affinities of structure or identity of function.

In Ray's corrcspondence with his disciples and friends, we have straggling observations upon the habits of a few wild-bees, especially some jotted down by his diligent pupil, the distinguished Francis Willughby. It is in Ray's posthumous ' Historia Inscctorum,' published in 1710, at the instance of the Royal Society, that we first find collected together all that had becn previously known of 'British Bees.' In that work he describes them systematically. He there arranges the bees into Apis and Bombylius, which may be regarded almost as genera.

He divides Apis into what may be considered as two sections, Apis domestica forming the first, and the second containing his Apes silvestres, or wild bees. Nine of these are described and numbered consecutivcly, which are followed by eleven descriptions unnumbered, some of the latter having been supplied to him by Francis Willughby, whose initials are attached to these, and amongst which we find the description of the willow bee, subsequently, from this cause, named by Kirby, from its original describer, and now universally known as Megachile Willughbiella.

Ray's second genus is Bombylius, identical, as far as it goes, with the modern genus Bombus, excepting that it includes an Anthophora. He here describes nineteen, all numbered. Ray's names are phrases, the mode of describing then prevalent in all the natural sciences, until the happy introduction of the binomial system by the great genius of natural history-Linneus. These phrases are almost tantamount to the modern specific character ; but Ray unfortunately attaches no size, yet size might have lent some aid to their modern determination.

Mr. Kirby was able to identify and introduce into his synonymy only a few of Ray's insects, from the defectiveness of the descriptions ; the following embrace all that could be verified:-

No. 1 of the Apes silvestres is our Anthidium mancatum; No.3, the male of Anthophora retusa, the female of which being No. 4 of his Bombylii; No. 4 of the Apes is Andrena nitida: these comprise all of those numbered which could be recognized. The first of the unnumbered is the male of Eucera longicornis; the fourth is Melecta punctata; the sixth is Colletes fodiens;
the seventh is the male of Osmia bicornis ; and the ninth the celebrated Megachile Willughbiella.

In Bombylius No. 1 is Bombus lapidarius ; No. 2, B. Raiellus, named by Mr. Kirby in honour of its great describer; No. 3 is B.muscorum; No. 4 is the female of Anthophora retusa, as noticed above; No. 5 is Bombus terrestris, as is also No. 6 ; No. 7 is the male of B. lapidarius; No. 8 is B.pratorum; No. 9 is B. sylvarum; No. 10 is B. subinterruptus; No. 11 is B.hortorum; No. 13 is B. Francillonellus, and No. 17 is Apathus Barbutellus. Thus ten of the Apes silvestres, and six of the Bombylii are unidentified, and those recognized may be placed correctly, by the aid I give in attaching Mr. Kirby's synonymy to the list of species added to each genus below.

Nothing of any moment thence intervened, until the Rev. W. Kirby, of Barham, in Suffolk, made a careful and earnest collection of the 'British Bees,' with a view to their scientific description and distribution. Stragglers were to be found in many entomological cabinets, and some of their habits had been observed and recorded by patient and attentive naturalists; but these collections were small, very imperfect, and widely dispersed, until Mr. Kirby's energy and activity nurtured the idea, and carried it into execution, of bringing into one focus the scattered notices and vagrant specimens he had seen about.

The diligence he himself exercised in procuring all the individuals he possibly could, by continued collecting during a succession of years, enabled him, in the course of time, to add considerably to those he was already acquainted with, either in collections, or through dispersed notices. The growing bulk of his store suggested
his looking around for guides to their methodieal arrangement, as a elue to what might have been observed of their habits. Finding no sueh assistanee, and nothing to meet his wants, for Linnæus's notiecs were too few, and Fabrieius's labours too ineonsequential, he determined to aid himself by elaborating their distribution upon the basis of the prineiples established by Fabrieius himself, but whieh this eelebrated entomologist had worked out so ineonelusively as to make lis system an indigested mass heaped together in the greatest disorder.

Mr. Kirby's patienee and diligenee, although working only upon the same prineiple, speedily brought into lucidity and order the obseurity and eonfusion that had prevailed. By one of those strange eoineidenees whieh have been remarkably reeurrent in seientifie invention and discovery, Latreille, in France, was at the same time arranging all the bees known to him, by a proeess preeisely similar to that adopted by Mr. Kirby. He eonsequently arrived at exaetly the same results, with this difference only, that what Mr. Kirby calls genera are to Latreille sub-families, and the sections which Mr. Kirby was indueed to form in his genera, from their struetural differenees, and whieh seetions he ealled families, ineonveniently indieating them merely by letters, asterisks, and numbers, were formed by Latreille into genera, and to whieh the latter either applied or adopted names, or framed new ones, when defieient; these however are essentially genera, with all their diseriminative eharacteristies, for they bring together the very same speeies in both eases. This clearly exhibits the beauty and eertainty of the principle upon whieh eaeh had worked out his distribution, both being based ehiefly upon the strueture of the trophi, or the organs of the
mouth, but which Fabricius, its projector, had, singularly enough, failed to accomplish successfully.

Both works were published in the same year, 1802 (An X. of Latreille's book), unknown to each other, but Mr. Kirby's sprang into life in matured perfection, like the imago of the bee itself, whereas Latreille's labours were progressively nursed to maturity in successive publications, until they received their final elaboration in 1809, in the fourth volume of his 'Genera Crustaceorum et Insectorum,' whose successive stages were, first, the notice appended at the end of his 'Histoire des Fourmis' in Paris in 1801, and then in the thirteenth volume of his 'Histoire Naturelle des Insectes,' in 1805, a supplement to Sonnini's edition of Buffon, and then in the 'Nouveau Dictionnaire d'Histoire Naturelle.' Even thus the subject was not so amply discussed, although applied more extensively, and made to embrace all the bees, exotic as well as European, at that time known, as it had been done in Mr. Kirby's model work, which leaves nothing to be desired but the naming of his anonymous subdivisions, and a little more artistical skill in the execution of his plates. The terminology used by him also differs from that subsequently adopted through foreign influences, but which is readily reduced to his standard.

The merits of the work greatly transcend these trivial deficiencies, for it is a "canon" as invaluable to the entomologist as the celebrated canon of Polycletus was, and the Phidian marbles still are to sculptors. Of course observation has greatly reduced the number of his species by their due association with legitimate partners, which, from their dissimilarity, he was compelled to separate, as only successive observation could prove their identity.

More extensive eolleeting has also shown that some of his species are merely varieties of others, which have thus been brought to their authentie type. This also eould only be proved by experienee, for it is remarkable how very Protean some species are, whilst others are almost rigidly unchangeable. Evidently there does exist a line of demarcation between distinct speeies, which only requires to be diligently sought to be found, obscure as it may appear to be, but whieh the insects themselves obey, for however closely species may sometimes approximate, yet I do not believe, as I have before expressed, that they ever permanently eoalesee, and that they are always as distinetly separate as are asymptotes.

As Mr. Kirby's work is in few hands, or perhaps not readily aeeessible, I will give here a summary outline of it, with the names of the genera with whieh his families eoineide.

In this work he established only two named generaMelitta and Apis.

His genus Melitta, which is equivalent to the subsequent subfamily Andrenida, he divides into two seetions, * and ${ }^{*}$, the first containing two families, a and b, (these we call genera, and they are now named Colletes and Prosopis) ; the second seetion ** contains three families, a, b, c, (a, is Sphecodes, b, Halictus, and c comprises our three genera, Andrena, Cilissa, and Dasypoda.)

His genus Apis he also divides into two sections, * and $* *$; the first is subdivided into two families, a and b (our genera Panurgus and Nomada) ; and the seeond is divided into five subseetions, $a, b, c, d, e ; a$ and b constitute families (our genera Melecta and Epeolus). The subsection c is divided into two parts, 1 and 2, the first containing the two divisions a and β, each

1. 2^{*}
comprising a family (our genera Colioxys and Stelis); and the seeond is divided into the four families, a, β, γ, δ, $(a$ being the modern Megachile; β, Anthidium; γ, Chelostoma and Heriades conjunctively, and δ is our Osmia). The subseetion d has two subdivisions, 1 and 2, the first being a family (our Eucera) ; and the second is divided into the two families α and β (a comprising our Saropoda, Anthophora, and Ceratina), and the family β, eonsisting of the genus Xylocopa, then supposcd to be indigenous, but whose native oecurrenec has not been substantiated.

The fifth subsection, e, is split into two divisions, I and 2 , each containing a family (1 is our $A p i s$, and 2 , our Bombus).

In this last of his families Mr. Kirby had already notieed, with the same sagacity with which he had previously conjectured the euekoo-like habits of some of the solitary bees, the distinetive structure of some of the speeics, whieh incapaeitated them from providing the sustenance of their own young, and whieh thus reduced them to the same eatcgory; but he lcft the idea in its supposititious condition, being too modest to use it as a mark of separation, but which Newman, on our side of the Channel, and St. Fargeau on the other side, subsequently, and both nearly about the same time, but with the advantage in favour of Newman, distinguished, and scparated generically, respeetively by the names of Apathus and Psithyrus; the former, having the priority, is adopted, aecording to the rights of precedenee in nomenclaturc.

The above description of Mr. Kirby's system will perhaps be difficult to understand, unless I append the naked scheme itself, which is as follows:-

Melitta.
$*\left\{\begin{array}{cc}\text { Family } & a . \\ ,, & b .\end{array}\right.$
$*\left\{\begin{array}{cc}, ~ & a . \\ ,, & b . \\ ,, & c .\end{array}\right.$
APIS.

* $\left\{\begin{array}{cc}\text { Family } & a . \\ , & b .\end{array}\right.$

, d. $\left\{\begin{array}{l}1 \text { Family } \\ 2 \begin{cases}" & a . \\ , & \beta .\end{cases} \end{array}\right.$
, e. $\left\{\begin{array}{c}\text { Family } 1 . \\ , \quad 2 .\end{array}\right.$

Mr. Kirby could scarcely have considered that there were more than two series of equivalents in this scheme, the first being the great division into the two genera; and the second, the final division, where his analysis terminated in his families, which, with some further slight subdivision, as shown above, constitute our present genera. The synthetical combinations which the arrangement presents, as we ascend from his families, result from an almost arbitrary selection of characters
and certainly are not equivalents. The whole method is very perplexing ; for, to cite an insect for the purpose of making a communication, it would have to be preceded by its whole array of subdivisions. Thus Megachile Willughbiella, which is now so compendiously noticed by the binomial system, would have to be quoted as Apis ** $c, 2, a$, Willughbiella, and so with the rest.

Although I have strongly applauded the 'Monographia Apum Angliæ,' as an excellent treatise wherever I have had an opporturity, the praise is to be applied to the correct care with which both the family descriptions and the specific descriptions are elaborated; whilst Mr. Kirby's timidity in fearing to depart from the course of his masters, Limmus and Fabricius, by establishing a multitude of genera unrecognized by their authority, although every one of his families is pertinently a wellconstituted genus, is much to be deplored. He has thus lost the fame of naming the offspring, of which, although legitimately the parent, he was not the sponsor. But he has won the higher renown, as I have elsewhere remarked, of his work being a canon of entomological perfection.

Notwithstanding that this very elaborate, and, to some extent, artificial method is based upon a plurality of characters, and apparently upon such as most readily presented themselves to substantiate the feasibility of subdivision indicated by habit, it is very remarkable in having brought the series into more satisfactory sequence than that presented by Latreille and his modifiers. Panurgus here holds its permanent post as the connecting link between the Apidee and Andrenida, pointed out by nature in its close resemblance to Dasypoda. But this genus, however, establishes for itself a stronger
affinity to the Apida, exelusively of that presented by the folding of the tongue in repose, in its presenting immediately the large development of the labial palpi which is peculiarly eharaeteristie of this subfamily.

All the cuekoo bees then follow in order; these are sueeeeded by the truc Dasygasters ; after which eome Latreille's Scopulipedes; and the series is wound up by Apis and Bombus.

Mr. Kirby, I suppose, was indueed to associate in the same seetion Panurgus and Nomada, from their resemblance in general habit, which in both conforms to the type predominant in the Andrenide, although they are thenee disloeated by the differenecs in the important organs of the mouth, whieh verify in this ease the seeming paradox of a part being greater than the whole; for these are eertainly of greater relative importanee to the economy of the creature than mere general habit, and to which all the peeuliarities of strueture finally eonverge, for the purpose of giving it what it thenee acquires, its own proper and distinetive plaee in the series of ereated beings.

The most extensive work sinee published upon bees generally, is that treating of the Hymenoptera universally, written by Le Pelletier de St. Fargcau, and eomprised in four thiek octavo volumes, contained in the 'Suites à Buffon.' In this work both the genera and species of our bees occur, of eourse conjunctively with the rest, but its utility, espeeially to the beginner, is materially diminished by the peculiar systematic views of the author. The distribution of the Order is framed chiefly upon the economy of the insects, which is not so tangible as strueture, and blends very heterogencous forms,-widely separating, in some cases, structural affinities, and sometimes
uniting discordant habits. Wasps and bees we here find intermingled, and to commence study with this work would much perplex the student. It can be used beneficially only when some progress has been made in the pursuit.

The only British entomologists who have treated of the bees since the time of Mr. Kirby, are Stephens, Curtis, Westwood, and Smith,--the first in his elaborate 'Catalogue of British Insects,' published in 1829; and the second in his 'Guide to the Arrangement of British Insects,' published in 1837. The arrangement of the family of bees in both these works is exceedingly arbitrary and without any obvious reason, either as regards the consecutive order of the genera or species. This originated possibly in their personal rivalry, which led them to make their systems as dissimilar as they could, and as unlike the true order as they could well dispose them. Both arrangements are certainly far beneath criticism.

In the Synopsis of Westwood, at the end of his 'Guide to the Classification of Insects,' published in 1840, and in Smith's 'Catalogue of the British Bees, contained in the Collections of the British Museum,' published in 1855, we have Latreille's distribution, with slight modifications, to which I shall not advert at present, but which I shall discuss in my next chapter, where I shall introduce the arrangement I myself propose for the combination of the genera of British bees.

CHAPTER VIII.

A NeW arrangement of britisil bees, With its Rationale, and an introduction to the family, SUBFAMILIES, SECTIONS, AND SUBSEOTIONS.

If perfection of instinct, and an organization exquisitely moulded to a complete adaptation to the many delicate and varied functions of that instinct, as well as to the excreise of every faculty incidental to the class, be certainly a proof of pre-eminence, we may justly claim this position for the Order Hymenoptera. There is no characteristic in which they are deficient, nor any in which some of the members of the Order do not transcend in aptitude the insects of all the others.

If they have not been placed at the head of the class Insecta, it has been because systematic convenience did not permit the transposition, on arcount of the interruption it would have caused to the convenient linking of the rest in a consecutive arrangement. Yet are they the most volatile fliers, the most agile runners, the most skilful burrowcrs, and consummate architects.

The beauty resulting from the combinations of symmetry of form, elegance of motion, brilliancy of colour, and vivacity of cxpression, is to be found exclusively
amongst them. Either in the velocity of their flight, or in its playful evolutions and graccful undulations, they are unsurpassed, and they hover in the execution of their designs with pertinacious perseverance. No insect structure can more thoroughly exemplify the most appropriate adaptation to its uses, and the most admirable elegance in the formation of the means of execution.

I thus claim for them, and which I think I may without infraction of dispute, the distinctive rank amongst insects.

Having fixed the station of the Hymenoptera generally, we have next to scek the relative rank of the natural divisions into which they readily separate.

Taking structure and instinct conjunctively, there can be no doubt that the first position will be conceded to that division of the Order which comprises the aculeated tribes-those armed with stings,-some of whose members, in each of the three large divisions into which they fall, being social, that is, living in communities, organized by a peculiar polity or adminestration.
'These aculeates divide into, first, the fossorial Hymenoptera, or burrowers; and the equivalent brancl the Diploptera, or wasps, distinguished and named from their folding the superior wings longitudinally in repose ; secondly, the helerogeneous Hymenoptera, or ants, named from the dissimilarity either in sizc or structure of their females, a peculiarity incidental to all the social Hymenoptera, but living in community is more peculiarly characteristic of this division, it being in the other divisions restricted to a few genera only, whereas here the solitary habit is the exceptional. In all cases of socialism there are three classes of individuals,-males, females, and abortive females. In the other social kinds of

Hymenoptera, these abortive females, ealled neuters, perform the labours of the community, and they are always winged; whereas amongst the ants they are never winged, and they constitute civil and military departments, the former attending to domestic matters, and the latter making predatory exeursions to enslave the inhabitants of other communities, to aid their civilians in their many duties.

The third and last division of the aculeate Hymenoptera contains the Mellicolligere, the bees, or honeygatherers.

Thus each division of the aculeated Hymenoptera is closely linked to the others by the strong affinity of the soeial habits of some of the genera of their several families.

The food of these three divisions of the aculcated Hymenoptera differs considerably, the Fossores being raptorial flesh-feeders, which hunt down and destroy their prey, and supply it as food to their young; the Heterogynce are omnivorous,-grain, fruits, or carrion being equally wcleome to them; but in these climates I am not aware that they destroy life, although their wide migrations within the tropies are undertaken in the very spirit of the Huns and Vandals, for they dcvastate everything they come across; but the whole family of bees are exclusively honey-feeders without any earnivorous propensities, and use their stings merely as weapons of defence.

Although all the soeial aculeates are edifiers, and although the wasp in its papier mâché domieile may vie with the honey-bee in capacity and skill in the strueture of the hexagons of the habitation it erects or suspends, which are as perfect, and almost as delicate, although
fabricated of a coarscr material than those within the hive, and wherein also the several compartments form a more homogencous unity, and the uniformity of the several layers or floors is more in accordance with architectural symmetry, -yet must the palm of precedence be accorded to the bee, from the more elaborate and perfect development of the social instinctive faculty.

We may be the more excused for this preference when we weigh the interest of the genus Apis to man. The wasp boots us nothing, but is the pilferer of our fruits, and a marauder upon the hive, whose inhabitants it destroys and consumes their produce, it being indifferent to them which they obtain-the bee or the honey,-either furnishing them with sustenance. The ant is obtrusive and incommodious, making incursions upon the pantry, the store-room, the green-house, and the hot-housc; disfiguring our flower-beds, and often disgusting us with our aliment by the impertinent intrusion of its appearance. But the bee stores up for us honey, whose cruses are as inexhaustible as the oil crusc of the good widow of Zarephath, and whose waxen shards furnish us with a beautifully soft light, which in Catholic worship adds solemnity to the rites of religion. In doing this the bee fulfils a sovereign function in the economy of nature, by the fertilization of the flowering plants, with which she reciprocates benefits; the preponderance, however, is importantly in favour of the flower.

If captious objectors should dispute the position we thus claim for the bees, we will willingly lcave them the wasp with its sting, whilst we sedulously cultivate the active and industrious bec, whose associations range through all the fields of poetry, but nowhere more lusci-
ously than in the beautiful compositions of the Sanskrit poets Kalidasa and Yayadeva.

The position of the family, whose English constituents I shall subsequently treat of, being thus fixed, I have next to explain the several subdivisions into which it is divided in the following arrangement.

I am prompted to propose this new distribution of the British bees, by the manifest imperfeetion of the several arrangements of them already extant. The defeets of these systems I shall have oceasion to exhibit in referenee to the eourse I have been indueed to take.

Mr. Kirby's keenness of observation led him to surmise, from the absence of polliniferous brushes upon the posterior legs, or other parts of the body of some, that there might be a elass of bees analogous to the cuekoo, amongst the birds, who did not rear their own young, or undertake any of the eares of maternity ; but that led by a peeuliar instinet they deposited their eggs in the nests of more laborious kinds, for their young to be nurtured upon the provision laid up in store by the latter for the supply of their own progeny. This being merely a supposition, Mr. Kirby made no use of it in the distribution of his families.
Observation has sinee confirmed the eonjeeture, and the faet lends material aid to the combination of the bees into detaehed groups, and whieh has been partially applied sinee by all systematizers.

Conjunetively with the assistance derived from this eireumstance, the various modes whereby pollen is eolleeted and eonveyed, either on the legs or on the belly, further faeilitates the grouping of the family. Other struetural or eeonomieal peeuliarities lend their aid, and although the arrangement primarily cmanates from the
differences in the formation of the tongue, these are corroborated by differences in other organs, and the general distribution, as well as the special combinations, all result from natural characteristics.

The simplicity of the arrangement thus effected is very striking; and we thus find all the bees having similar habits, and with a similar structure united together by it in distinct groups.

I will here insert my scheme, and exhibit why and in what it differs from those of my predecessors; and, where necessary, I shall append such observations upon the several methods extant, as will sufficiently show the necessity, and vindicate the introduction of a new one.

Famiy MELLICOLLIGER® (Honey-collectors).

Subfamily 1. Andrenidis (Subnormal Bees).

Section 1. With lacerate paraglossce.
Subsection a. With Emarginate Tongues.
Genus 1. Colletes. 4
2. Prosopis. δ

Subscction b. Witi Lanceolate Tongues.
Genus 3. Sphecodes. 3
4. Andrena. द幺 4
5. Cilissa. =

Section 2. With entire paraglossce.
Subsection c. With Acute Tongues.
Genus 6. Halictus. 10
7. Macropis.
, • 8. Dasypoida.

Subfamily 2. Apide (Normal Bees).
Section 1. Solitary.
Subsection 1. Scopulipedes (brush-legged).
a. Femorifere (collectors on the entire leg).
\dagger With two submarginal cells.
Genus 9. Panurgus. 2
b. Cruriferce (collectors on the shank only).
\dagger With two submarginal cells.
Genus 10. Eucera.
$\dagger \dagger$ With three submarginal cells.
Genus 11. Anthophora. 4
,, 12. Saropoda.
,, 13. Ceratina. 2
Subsection 2. Nudiprdes (naked-legged).
a. With three submarginal cells.

Genus 14. Nomada. 2o
15. Melecta. 2
"
16. Epeolus.
b. With two submarginal cells.

Genus 17. Stelis.
18. Celioxys. 6

Subsection 3. Dasygasters (hairy-bellied).
All with two submarginal cells.
Genus 19. Megachile.
20. Anthidium.
21. Chelostoma. 2
22. Heriades.
23. Antilocopa.
24. Osmia.

3

Section 2. Cerobites (Dwellers in Community).
 Subsection 1. Spurred.
 \dagger Parasitical.

Genus 25. Apathus. 4
$\dagger \dagger$ Collectors.
Temporarily social.
Genus 26. Bombus. / 8
Subsection 2. Unspurred.
Permanently social.
Genus 27. Apis.
The primary division of the bees into two large branehes, viz. into the Andrenida, or abnormal bees, and the Apidce, or normal bees, is effected by the mode in which they fold the cibarial apparatus in repose. In the deseription of the structure of the imago, I have enlarged upon these organs, and for their explanation I must refer to that ehapter where diagrams exhibit the strueture of the different kinds of trophi of the bees, as well as their mode of folding. Here it is only necessary to notiee that in the Andrenide, the joint at the base draws back the basal portion when protruded, and this basal portion is further jointed at the point of the insertion of the paraglossæ and labial palpi, and parallel with whieh joint the maxillæ are likewise jointed close to the sinus where the maxillary palpi are inserted laterally upon it. The basal portion thus throws the anterior part forward or retracts it, at the will of the insect, and in the latter case, being then in repose, it lies in eontiguous parallelism to the basal half, but beneath it. When thus withdrawn, the short tongue itself, with its paraglosse and labial palpi are sheltered beneath the
coping of the labrum and the lateral protection of the mandibles, whilst the horny sheathing of the maxillæ protect the softer parts folding underneath.

In the Apide, or normal bces, the basal joint has the samc action in withdrawing the entire organ into its place of rest; but the joint which gives it this power is not in an analogous situation to that in the Andrenide, for it is seated short of the joint which lies at the base of the several organs of the cibarial apparatus. By bending these downwards, it carries their apex backwards towards the basal fulcrum through the action of these two joints, and, when there, the more delicate ones are protected from abrasion or injury, by the latcral overlapping of the horny skin of the maxillæ. All being thus withdrawn within this covcring, upon the joint which folds them back, seated at the base of the tongue, the labrum falls, and further to strengthen this protection, the mandibles close over it like forceps.

That this difference in the arrangement of the cibarial apparatus points to any distinctive peculiaritics of economy has not been ascertained, for the habits of the $\mathrm{Sco}-$ pulipedes greatly rescmble those of the Andrenides; although the habits of one of them, Anthophora furcata, are remarkably like those of the foreign genus Xylocopa, in its mode of drilling wood. But the Apide have cross affinities amongst themselves, thus Ceratina rescmbles Heriades, and some of the Osmie, in the way in which it nidificates.

The tongues of the Andrenide are always shorter, broader, and flatter than those of the Apida, in which they arc always long, cylindrical, and tapering. In the first section of the Andrenide, the paraglossæ are obtusely terminated at the apex, thence called lacerated,
and where they are fringed with brief bristles. The peculiar form of the tongue in this section suggests its being separated into two subseetions, that organ being in the first subseetion very broad and bilobated, which gives those insects their position in the series by approximating them to the preceding family of the Diploptera, or wasps, whose tongues have the same bilobate form, but each lobe in them is furnished with a gland. These tongues, in both cases of the wasps and these bees, may conduee to the building or plastering habits of the insects. The form may aid the wasp and the Colletes, the first in the moulding of its hexagonal papier-mâché cells, as it may the seeond in shaping and embroidering the silk-lined abode of its embryonic progeny. Why Prosopis should have this organization is difficult to eonceive, unless it be from an analogy of structure ineidentally previously referred to, beyond whieh any speeial object has hitherto escaped detection.

In the seeond seetion of the Andrenide, which have the paraglossæ entire and terminating in a point, the tongues all also terminate aeutely with a lateral inclination inwards. In the lanceolate-tongued tribe they bulge outwards laterally, although pointed at the apex.

All this subfamily of Andrenida, excepting only the two genera reputed parasites, viz. Prosopis and Sphecodes, are essentially Scopulipedes, densely brush-legged, for the conveyance of pollen which they vigorously collect; but from the brevity of their tongues they are restricted to flowers with shallow petals and apparent nectaria, their favourite plants being the abounding Compositce and Umbellifere, as well as the Rosacece, whence they derive the agreeable odours which many of them emit upon being eaptured.

Their peeuliar mode of eolleeting is a further reason for bringing the brush-logged Apide colleetively to the top of the normal becs, in juxtaposition to the Andrenide, where the transition is made very naturally from Dasypoda to Panuryus.

The whole of the cibarial apparatus, or trophi, is always eomplete in all its constituent parts throughout the Andrenide; and it is only with Ceratina, in the group of scopuliped Apide, that it begins to show the tendeney it has to abnormal deficieneies, by the paraglosse, in that genus, bcing obsolete. This eharacteristic, then, cxhibits itself in the Nudipedes with two submarginal eells who arc parasitieal upon the Dasygasters, in whom also the maxillary palpi partieipate in a deficieney in the authentic number of their joints, whilst in Apis both maxillary palpi and paraglosse are unapparent. This shows that the numerieal eompletion of the organs of the mouth have nothing to do with the qualifications of the ereature, the best endowed in other respects being thus eurtailed, the final cause of whieh is not yet understood.

The shape of the tongue itself thus separates the Andrenide into three well-defined divisions readily perecptibie. These, as I have just observed with respeet to the differenees in the mode of elosing the oral apparatus in both eases, yicld no clue to economy and habits, for which observation must supervene to illustrate it. This, patiently carried out, is very desirable, as it is still in discussion whether, notwitlstanding the elueidation strueturc affords, Prosopis and Splecodes are or are not parasitieal. Strueture says they are, for, like the enckoo-bees forming the group Nudipedes in the Apidce, they are destitute of the requisite apparatus for collect-
iug pollen. Mr. Kirby, however, gives direct testimony in favour of Sphecodes being a burrower, in the ease of which bee it ought not to be a matter of mueh diffieulty to determine, for ou sandy plateaus I have oceasionally found it very abundant, espeeially where there was ragwort (Senecio) in flower in the vieinity, to whiel the males resorted; but being at the time more intent on other matters, I negleeted the opportunity. Other observers eoneur with Mr. Kirby as regards Sphecodes, and also say as mueh for Prosopis (better known as Hylceus). I strongly ineline to the opinion enunciated by Latreille and Le Pelletier de St. Fargeau, that they are parasites. My opinion is based upon peeuliarities in them other than, although strengthened by, the negative eharaeteristie of absenee of polliniferous organs. A negative eannot be proved, it is true, yet what has been positively asserted may as eertainly result either from defeetive observation, or from too strong a desire to find no parasites among the Andrenidce. My reasons oceur elsewhere in this work, and I need not repeat them. It is still an open question, and the young entomologist, if enteriug the arena unprepossessed, might win his spurs in determining it. It would be well worth the trouble of attending to for those who have leisure, and if deeided in favour of the independeney of these genera, whieh must be eorroborated by a plurality of observations, and not eonfined to one loeality, they would form strong and remarkable instanees of a defeetive analogy in nature's workmanship, and suggest looking further for the eauses of so extraordinary an anomaly, and urge us to endeavour to traee the equivalent whieh supersedes it.

The main subdivision of the Apida results from the habits of the iusects, whieh divides them into social
and solitary. The only tangible characters the social tribes present to distinguish them from the solitary is the glabrous surface of the posterior tibir, with their lateral edges fringed with bristles slightly curved inwards, and which form, with the slightly indented surface of the limb, a sort of natural basket for the conveyance of pollen or other stores to the nest. This, however, has not been made use of as a main feature for scientific distribution, although they might follow the Dasygasters, as corbiculated bees, or little basket bearers, in which case they would form as pertinent a group as any of the rest, and the whole distribution of the bees, Apide, would then rest upon the absence of, or the mode in which the polliniferous organs were present. But the wonderful attribute of their extraordinary instinct prohibits their being treatcd with the rest in a consecutive line, and renders it rationally imperative that all the Cenobites should group together in a section by themselves, and separate from the rest. Therefore in my arrangement I have not availed myself of this very natural charaeter, and here indicate it, to show that I have not passed it from not noticing it.

Although the division into social and solitary yields in itself no tangible character whereby the insects may be separated, it being wholly empirical, yet is it so natural and necessary that it is impossible to gainsay it. We find the solitary section readily resolve itself into groups or subsections, determined by positive structural characters, indicative of certain habits, and having a conforming economy, besides which they are cquivalents.

Thus the first subsection presents us with the brushlegged Apida (Scopulipedes), which collect pollen upon their posterior legs. These are further subdivided into
those which collect it upon the whole limb, viz. the coxa, the femur, the tibia, and first joint of the tarsus, (the femoriferce), and those which gather it merely upon the shank and basal joint of the foot (the crurifere). These collectively form a well-defined group, and why Panurgus should be separated from the brush-legged bees, when it is a most eonspicuous instance of the faculty, even more so than any other of the Scopulipedes, I have yet to learn. It is true its mode of collecting closely resembles that practised by the Andrenide, as does also the furniture for the purpose of its posterior legs, but being essentially eollocated with the Apidce or normal bees by its tongue, it fittingly links itself to the other brush-legged Apide (whieh have hitherto been placed between the Dasygasters and the Social Bees), by means of the genus Eucera, by reason of its two submarginal cells, the strueture of its maxillary palpi, its mode of burrowing, and by each being infested by a similar parasitea Nornada, which in aceommodation to the size of the sitos is the largest of the genus. Nomada does not occur as a parasite upon any other of the brush-legged bees, or indeed upon any other of the true bees at all, which peeuliarity brings these two genera into close eontiguity to all non-parasitical Andrenide, all of which have their legs furnished with polliniferous brushes, and upon whieh subfamily, exelusively of these two instances of Panurgus and Eucera, Nomada is solely parasitieal.

With respeet to the two submarginal cells to the wings, nature must have some reason for the limitation, for we find it prevalent also throughout the Dasygasters, or hairy-bellied bees.

The next very natural group is consistently central. It comprises the cuckoo-bees, which are naked-legged
(Nudipedes), by reason of their parasitism, they not requiring organs to collect what they have no occasion to use. Thcir parasitism extends both upwards and downwards, those with three submarginal cells being parasitical upon all the brush-legged bees, whether subnormal Andrenide or the Scopulipedes, those with two submarginal cells being restricted in their parasitism to the Dasygasters.

These Dasygasters, or hairy-bellied becs, form the next very natural group. Their gencral peculiarity of structure I have had occasion to advert to, in treating, in a former section of the work, upon the structure of the imago, and to which I now refer to avoid repectition. This group contains the majority of the artisan bees, whosc habits I shall particularize when I speak of the genera specially; but we find carpentcrs amongst the Scopulipedes, and essentially buildcrs amongst the Cenobites, which form a further and the last of our natural groups. A true cuckoo-bce (Apathus) consorts amongst these Cenobites, and properly so, from many causcs. The anomaly would have becn too great to have removed it to a place amongst the Nudipedes, for although in obsoletc paraglossex, and in a deficiency in the normal number of the joints of the maxillary palpi, it resembles some of these, its general habit and general structurc, bating that controlled by its parasitical habits, are so like Bombus, that it cannot well be separated far from the lattcr,--especially as we know too little of its habits to say that it does not regularly dwell in the nest of its sitos, which may well mistake it for one of its own community, it rescmbling the specics it infests so closely; it therefore consistently associates systematically with the temporarily social socicties.

ITaving thus eursorily skimmed the surfaee of the method I suggest, I have next to give my reasons for proposing it in lieu of adopting any yet extant.

My exhibition of Kirby's grouping, in the preeeding seetion, where I treat of the seientifie eultivation of British bees, will fully explain why I eould not adopt that arrangement.

Why I cannot follow Latreille's, is, that in his last claboration, in his 'Familles Naturelles,' published in 1825, whieh must be considered as his final view, he does not satisfaetorily divide the Andrenidce, of the genera of which he has made a complete jumble. With the Apide in his group of Dasygasters, he intermixes Ceratina, separating it from the group of Scopulipedes, where it truly belongs by every eharaeteristie, and he mingles also with them the two cuekoo genera Stelis and Colioxys, whieh are merely parasites upon these Dasygasters, and ean only be assoeiated by the struetural eonformity of the two submarginal eells to the superior wings, and the length of the labrum, the latter being a eharaeter of very sceondary importanee; and further, he dissevers the Scopulipedes in plaeing Panurgus at the eommeneement of the Apide, and the rest proximate to the social bees.

Westwood, in his modifieation of Latreille's system, eertainly divides the Andrenide better than his master had done, but he does not go far enough. Besides, he interposes Hulictus and Lasioglossum, (the latter admitted as a genus merely out of eourtesy to Curtis, who had elevated it to that rank in his 'British Entomology,' although it is nothing more than a male Halictus), between Sphecodes and Andrena with Cilissa, these having laneeolate tongues with lacerate paraglossæ, whereas Halictus has a very acute tongue, and its para-
glossæ are entire, as is also the case with Dasypoda, from whieh Halictus is thus divided. In the Apide, he does not separate the euekoo-bees, but with Latreille intermixes Colioxys and Stelis with the artisan-bees, although without retaining Latreille's convenient and suitable name of Dasygusters, for this group of meehanies. The same objeetion I take to his Scopulipedes as that expressed above, relative to Latreille's.

Precisely the same fault I find with the Andrenide of Smith, as that urged above with respect to Westwood's. He is more careful with his Apide, his Cuculince being all genuine parasites, but he includes Ceratina with the Dasygusters, with which it has no affinity of strueture, and only a slight analogy in the form merely of its abdomen without its hairiness beneath, to that of Osmia, from whose proximity he takes it to place it near Heriades, when it is certainly intimately allied in every respeet with the Scopulipedes, and by reason of its subelavate antennæ might suitably be brought into juxtaposition with Panurgus, did not its obsolete paraglossæ and three submarginal eells interfere with its oceupying this position. To his Scopulipedes the same objection is valid as that taken to Latreille's and Westwood's disposition of them. Amongst the social bees he separates Bombus from Apis, by the intervention of Apathus, whieh is scarcely eonsistent.

It is in no spirit of eaptiousness that these objeetions are made; they are dedueed from collocations whose conspieuous ineoherence is patent to the most superfieial observation. The distribution I have here introduced has been made merely to ameliorate, and make more eogent, what was so palpably defeetive and feeble.

CHAPTER IX.

A TABLE, EXIIBITING A METHOD OF DETERMINING THE GENERA OF BRITISH BEES WITH FACILITY.

The following table is constructed exclusively to facilitate, by the most obvious characters, the recognition of the scveral genera into which the family is divided; it will, however, be incumbent upon the learner to use some diligence in order to acquire an accurate perception of their distinguishing characteristics.

By the present extremely artificial plan the systematic sequence is disturbed ; but the numbers, which will be found appended to the names in the table, will show their orderly succession.

The natural generic character which precedes the account of each genus in the next division of the work will give the reason, by comparison, of the order in which "system" arranges them, and which being based mainly upon the differences of the trophi,-although, conjunctively with other characters, the trophi must necessarily be studied for its explanation,--their description in the description of the part of the imago is conscquently referred to.

Did we know exactly the uscs of the component parts
of the trophi severally, we should be better able to determine the legitimaey of applying them to the purpose of indieating the natural generie eharaeter, but being eompelled, by reason of our ignorance of their several speeial funetions, to avail ourselves of their form, relative proportions, and number only, uneertainty of having eaught the elue of nature's scheme must of neeessity attend this distribution.

But as what we do know of their uses in this family elearly indieates them to be an essential instrument indispensable to the eeonomy of the insect, and whieh gives these organs an almost paramount importance, their comparative eonstruction in the several genera would yield elear notions of the true order of suecession, were we aequainted with the relative signifieaney of the various portions of the entire organ. Thus we see it numerieally most eomplete in what we are pleased to suppose the least genuine bees-the Andrenide.

In my series of the genera proposed in the preeeding section, with the Nudiped true bee Melecta eommences a defieiency of either some of the joints of the maxillary palpi, or of the paraglosse ;-throughout the artisan bees this abridgment is conspieuous both in number and proportion; and it eulminates in what we eonsider the facile princeps, that most wonderfully organized of all inseets-the genus Apis, whieh in its neuters has neither paraglossæ nor maxillary palpi, the latter being equally defieient in the male or drone, and in the queen; and in both the male and the queen the paraglossee are but rudimentary.

Nature appears too mysterious in her operations to permit us to solve these remarkable anomalies, for no combination of the genera founded exclusively upon them
supplies us with Ariadne's thread. Every such combination breaks up more harmonious groups, and we then retrace our steps, satisfied that we are on the wrong road.

In some other orders of insects the cibarial apparatus has but little bearing upon the insect's mode of life, for in many it is not used either for nutrition or in their economy, or so slightly so as to admit of its being considered of very inferior importance, although systema-tists-to enhance the value of their own labours, by the frequent difficulty, from excessive minuteness, of its exa-mination-have usually made it a prominent feature in their arrangements.

That science has not widely strayed away from the true succession and natural affinities by the main selection of the trophi for the arrangement of the bees, seems partially confirmed by the gradations of form or habit that this method of treatment in general exhibits. A higher method doubtless exists, which would give form, number, and proportion very inferior rank in ordering the arrangement, but at present the clue to it has not been discovered.

These questions are indeed beyond the scope of a work of this character, which is merely a ladder to the fruits of learning, and the bearing of them is only hinted at to indicate that there is much exercise for the intelligence in the study of even this small family. The mind that would stop in the study of nature at the knowledge of genera and species, can be very speedily satisfied, and one bright spring day's successful collecting will furnish the materials for much patient and industrious occupation.

In nature we find all things apparently blended in the
grandest confusion ; but they all have mutual and reciprocal bearings which give a definite purpose to the seeming disordcr, and which make each separate unit the centre of all. But we, from our inability to grasp in its fulness the order of this disorder, are obliged to seize fragments and, scparating them into what we conccive to be their cohcrent elements, use them as exponents of the entirety. They could not so exist in nature, but would speedily die out, and it is only by the way in which we find them intermingled, that they can be maintained. Thus, as all conduce to the conscrvation of each, each conduces to the conscrvation of all.

A large collcction of natural history, composed of every available item that can be gathered from cvery kingdom of naturc's vast domain, may perhaps be compared (magnis componere parva) with the constituent parts of a most elaboratcly-constructed and complicated clock, which its skilful artificer has designed and made to rccord and chime the divisions of time, and to register the days, wecks, months, and seasons, and which a virtuoso having taken to pieces, has sorted into its details of wheels and springs, levers and balances, chains, bells, and hands, which told the time when its music would peal; and arranging like to like, thinks he will thus understand more clearly the complexity of the varied movements. But, sadly disappointed, he finds he cannot comprehend the combination of the intricate machinery, although he singly admircs the minute perfection of each delicate and ingenious piece lying before him which composcd the structure, but which has now lost all expression, his curiosity having deprived the organism of its vitality, which is its most wonderful element.

And this is our process, for if we stop here we have
but an assortment of vapid machinery, no click of whose wheels gives note of the vital hilarity of their relative and combined cffects. The final cause of creation escapes us thus frittcring it into details, which if we merely abide by, we but loiter at the foot of Pisgah, instcad of ascending its summits to survey thence the sumny and varied landscape, the glorious sea, and, arching over all, the bluc cope of heaven. The manifold relations of animate and inanimate nature, which, although they must be studied in detail, are to be appreciated in their entircty, should stimulate the efforts of the naturalist to conquer all impending difficulties, and he should not permit himself to be satisfied with this preliminary knowledge.

Although the above be the inevitable effect of distributing nature into its component parts, it is the indispensable precursor to the study, for the scientific treatment is the only mode whereby, through special study, we can arrive at the comprehension of the great generality. We thus strive to trace the mode in which each emanates from each; and even when this is not absolutely tangible we may discover affinitics or analogies by structural resemblances which implicitly lead to physiological infercnces, and thcuce on, higher and higher, all lending us aid to make the larger survey, whercin we behold the concatcnation of the many links which harmonize the spiritual with the matcrial. But the study must be thorough, and its details are not to be spread out before us merely as a beautiful picturcbook. They all have their place in the great ordinance of nature, which it is for us to find. At first we can only spell the syllables, which the study of species puts together for us, but by degrecs we shall trace the words,
and read the scntences: a study more abstruse but far more pregnant than that of the Egyptian hieroglyphics, and whose attainment is rewarded with a supremer knowledge than is accorded by these, which exhibit merely the legends of dcad despots; but here we have a display of the vitality of the wisdom inscribed in gleaming characters upon the leaves of the wonderful book of life, God's glorious works, made manifcst to man.
Thus we should aim at the knowledge of final causes, the apparent wisdom of whose adaptations points clearly to the source of all-the first great Cause. A naturalist with such large views has a wide field before him, which with evcry step expands, and which alone is worthy of engrossing the earnest attention of his intclligence, and is in itsclf sufficient to absorb the profoundest contemplation. His mind becomes thus filled with great objects, which charm it with thcir beauty and feed it with the complexity of their intricate combinations, whose earnest development is an affluent stream of perpetual instructive occupation. With Newton we may say: "We everywhere behold simplicity in the means, but an inex. laustible variety in the effects," resulting all from the luminous wisdom of prearranged design.

The humiliation which attends the sentiment of the utter inability and incompetency of the mind to grasp the intricaey and vastness of naturc, is consoled by the redundant proofs the contemplation yields of a supreme and benevolent Providence presiding over all things, and thence we derive the comfortable and supporting assurance, in the ficklc waywardness and vicissitudes of a harassed and anxious life, that a benevolent cye is ever watchfully awake; for the naturalist cverywhere beholds
that omnipotently wise and loving Providence in active operation throughout nature.

No study like natural history, pursued in a humble and docile spirit, so harmoniously elicits the religion of the soul, or than which so fitly prepares it to enter, by the pathway of the works of God, the august temple of His revealed Word.

But to return: what we call science is the mere accidence of nature, which in fact aggravates our infirmity by permitting our intelligence to attempt to grasp, through the various details, their intricate combinations. But as truth sooner arises out of error if methodically pursued, and its results recorded, than out of confusion and guesswork, theories based upon observation, however inaccurate at first, ultimately lead up to the certain acquisition of the truth itself.

AN EASY DISTRIBUTION OF THE BEES,
the numbers referring to the scientific series.
Andrenide (Subnormal Bees).
tongue shorter than the maxillaf, porrect.
Posterior tilice clothed with hair to convey.pollen.
Two submarginal cells.
Posterior legs very robust, pollini-
ferous hair on tibiæ and plantæ dense but short

Macropis (7).
Posterior legs slender; polliniferous
hair on femora, tibiæ, and plantæ dense and rery long

Dastroda (8).

Three submarginal cells to the wings.
Abdomen truncated at base . . . Colletes (1).
Abdomen ovate.
Abdomen entire at apex; maxillary palpi as long or longer than the maxillæ Andrena (4).
Abdomen entire at apex; maxillary palpi half the length of the maxillæ

Cilissa (5).
Abdomen with a vertical incision
at the apex Halictus (7).
Posterior tibic without hair to convey pollen.
Two submarginal cells to the wings . Prosopis (2).
Three submarginal cells to the wings . Sphecodes (3).

Apide (Normal Bees).
Tongue as long or longer titan the maxillef, inflected beneati, and covered by the maxille in repose.

Without polliniferous organs.
Two submarginal cells to the wings.
Abdomen at apex rounded . . . Stelis (17).
Abdomen at apex conical . . . Cexioxys (18).
Three submarginal cells to the wings.
Abdomen lanceolate Nomada (14),
Abdomen subtruncate at base.
Abdomen obovate, thorax glabrous Epeolus (16).
Abdomen subconical, thorax hirsute Melecta (15).
Entire body denscly hairy . . . Apathus (25).

With polliniferous organs.

Pollen conveyed on the venter.
Two submarginal cells to the wings of all.

Abdomen subclavate.
First three joints of labial palpi continuous, terminal joint inserted before apex of third Chelostoma (21).
First two joints of labial palpi continuous, two last inserted before the apex of the second

Hertades (22).
Abdomen obovate, rounded at apex Osmia (24).
Abdomen truncated at base.
Segments slightly constricted, and not spotted with colour. Megachile (19).
Segments not constricted, spotted with yellow

Anthidium (20).
Pollen conveyed on the posterior legs.
Two submarginal cells to the wings.
Abdomen lanceolate; antennæ
clavate; posterior legs covered
with long hair
Panurgus (9).
Abdomen obovate; antennæ filiform ; posterior legs covered densely with short hair

Eucera (10).
Three submarginal cells to the wings.
Short dense hair on the whole posterior tibiæ externally.
Abdomen obovate; firstjoint of labial palpi twice as long as second

Anthophora (11).
Abdomen subrotund; first joint of labial palpi six times as long as the rest

Saropoda (12),
Long hair, but loose, on the entire posterior tibiæ, externally and internally.
Abdomen subclavate
Ceratina (13).
Curved hair fringing the edge only
of the posterior tibiæ, the centre glabrous.
Body densely hirsute, spurs to all the tibie

Bombus (26).
Body subpubescent, no spurs to the posterior tibiæ . . . Apis (27).

It will be desirable to add a few observations to the preceding table to facilitate its usc, and because, as many of the characters upon which it is framed are exclusively those of the female, it is necessary to point out the differcnces of their males, that the sexes of the genera may be duly recognized and associated.

It may be first noticed generally that the antennæ, in the males, are not usually geniculated at the scape, which is nearly always the case in the opposite sex, and they are also, with rare exceptions, always longer than those of their females. In Colletes, Prosopis, Dasypoda, Panurgus, Ceratina, Nomada, Melecta, Epeolus, Stelis, and Anthidium, the habit or colouring of the males is so similar to that of the females, that their genus may be thus at once determined, and, in fact, the brief characters in the table will embrace them.

The male Eucera can be distinguished from those of Anthophora and Saropoda, both by the differences in the number of the submarginal cells of the wing, and by the extreme length of its antennæ, whence the genus derives its name. In Andrena and Cilissa, the malcs have usually lanccolate bodies. In the latter genus there will be no difficulty in associating the legitimate partners ; but in Andrena, although general habit will usually
bring the male within the boundary of the genus, nothing but experience, or specific description will associate the sexes correctly, there being in many cases an extraordinary discrepancy between them. These two genera themselves also can scarcely be distinguished apart, excepting by means of their trophi ; Cilissa, however, in general habit greatly resembles the genus Colletes, especially the Cilissa tricincta, which might, upon a superficial glance, be almost mistaken for one of them.

The male Halicti have long cylindrical bodies and long antennæ, but from the male Chelostoma, which has a very similarly shaped body also and long antennæ, they may be distinguishod by the differences in the number of the submarginal cells; and from those of Sphecodes, by the antennæ, which, in the latter are not relatively so long, and are usually moniliform. The thorax of these is also less pubescent, and the tinge of the red colour of their abdomen is different from that of the red male Halicti.

The males of Colioxys can be readily distinguished from those of Megachile, by the spinose apex of their abdomen. In Megachile, general habit will bring the males within the precincts of their genus, as well as their largely dilated anterior tarsi in some of the species.

A difficulty similar to what is found in the distinction between Andrena and Cilissa, arises in the separation of Chelosioma from Heriades, and which we shall again meet with in drawing the line between Anthophora and Saronoda. The difference can only be detected by examining the trophi, but a pin and a little patience will elucidate the separation. The males in all but two species of Anthophora may be readily associated with their partners; but in these two the females are entirely
blaek, and so hirsute as to have led Ray (wanting the knowledge of the use of the trophi and posterior shanks) to unite the one he knew with his Bombylii ; their males are fulvous, and the latter have a remarkable elongation of the intermediate tarsi, from one of the joints of which also a tuft of hair or a loose lateral fringe projects, giving them thus a wider expansion, and the use of whieh is prehensile, the same as that for which the anterior tarsi in some of the Megachiles and in our single Anthidium receive their dilatation. This strueture has also the effeet of adding very eonsiderably to the elegance of their appearance when they are in fine condition.

The male Apathi ean only be distinguished from the male Bombi by familiarity with specifie eharaeteristies, or by the examination of the trophi. But the former is the more eertain mode of separation, as the trophi in Bombus vary in some speeies, but not suffieiently to authorize generie subdivison. General appearanee will mark where they approsimately belong. The length of their antennæ suffieiently distinguishes them as males, and they may be taken with impunity in the fingers from flowers for examination, being, like all the male aculeate Hymenoptera, unarned with stings. The female Apathi may be superfieially distinguished from the female Bombi, which they most resemble, exelusively of the generic eharaeters of the eonvex and subpubeseent exterual surface of the posterior tibix and the trophi, also by their abdomen being eonsiderably less hirsute than that of the genuine Bombi, in whieh it is entirely eovered with dense shaggy hair, whereas in Apathus there is a broad disk upon its surface nearly glabrous. If I remember rightly, it is the male Apathi only, and not the male Bombi, whieh emit on eapture a pleasantly fragrant odour of attar of roses.

The table will suffiee for distinguishing the male Apis from all other male Apide, and which has a further peeuliarity exhibited by no other of our native bees, in the eonjunetion upon the vertex of the compound eyes, in front of which, upon the frons, the simple eyes or ocelli are placed in a very slightly curved line.

These indications are enough to enable the beginner to work his way smoothly, and a little practiee will soon render these observations superfluous.

The economy of nature is so perfeet that wherever we ean trace a difference, we may assume that a reason and a purpose exist for the variation. Thus we do not know why some bees have three submarginal cells to their wings, and others only two. Nor do we know what governs their variety of shape. The deficiency we might think implied inferiority; but this eannot be, for those with most frequently the smaller number, viz. the artisan bees, are, in the majority of eases, the most highly endowed, and have the most speeial habits.

In the relative numbers of the maxillary and labial palpi, there are remarkable differences, the reason for which we eannot traee, for, as before observed, we do not know even their function, which would perhaps guide us to other views. Their normal numbers are six maxillary, and four labial palpi. The latter take remarkable relative development and peculiarity of insertion and form, especially in the Apide; but throughout the whole series of our bees, they are never reduced to fewer than their normal number, whereas the maxillary palpi never have similarly large development of strueture, and are variously modified in number and consistency from the typieal or normal condition.

Thus in Eucera and Melecta there are but five joints;
in Osmia and Suropoda, four ; in Chelostoma and Colioxys, three; in Anthidium and Megachile, etc., two; and in Epeolus and Apis but one.

In this collocation no incidental peculiarity beyond diversity is apparent, for in the first instance a parasite and a bee not parasitical are associatcd ; and in the last, a parasite is associated with the bec whieh has the most elaborate eeonomy, and the most largely developed instinet of all known insects. Nor are, in any ease, those parasites associated by these means with their own sitos, or insect upon whieh they are parasitical.

Thus eneouragement attends the beginner at the very outset of his study; and the prospeet of a wide field for discoveries, in many directions, lies open to him, to exeite his curiosity and to stimulate his industry to the pursuit of higher aims than the mere accumulation of species.

CHAPTER X.

ПHE SCIENTIFIC ARRANGEMENT AND DESCRIPTION OF TIEE GENERA, WITH LISTS OF OUR NATIVE SPECIES AND AN ACCOUNT OF THE HABITS AND ECONOMY OF THE INSECTS, WITH INCIDENTAL OBSERVATIONS SUGGESTED BY THE SUBJECT.

I Now proceed to the treatment and description of the genera severally, and the enumeration of the species in due scientific consecutive order.

The generic names adopted are those of the first describers of the genera; but the generic characters given by them could not be employed, they having been usually framed to suit special purposes.

All the generic characters introduced into this work are therefore quite original, and have been made from a very careful autoptical examination of the insects themselves.

The synonymy added to the lists of species is limited to the species described in Mr. Kirby's work, where he is not the first describer, or to those of such other English works wherein the species may have been described in ignorance of its previous registration.

The observations appended, wherein the habits of the insects are described, will be found to embrace discur-
sive subjects suggested by the matter in hand, and here a dry didactic style has been purposely avoided, as in the majority of cases they record the personal experiences or notions of and hints from an old practical entomologist.

Class INSECTA METABOLIA, Leach.

Order HYMENOPTERA, Linnceus.

Division $A C U L E A T A$, Leach.
Antennæ in male with 13 joints, in female with 12. Abdomen in male with 7 segments, in female with 6 .

Family MELLICOLLIGER e (Honey-collectors), Shuck. Subfamily 1. Andrenides (Subnormal Bees), Leach. Syn. Genus Melitta, Kirby.

The maxillary palpi always six-jointed.
Section 1. With lacerate paraglossa.
Subsection a. Linguee enharginate (with emarginate tongues). Syn. Obrusilingues, 'Westw.

Three submarginal cells to the wings.
Genus 1. Colletes, Latreille.
(Plate I. fig. 1 ô ㅇ․)
Melitta * a, Kirby.
Gen. Char.: Head transverse, flattish; ocelli in an open triangle on the vertex ; antenne not geniculated, but slightly curved, filiform, short ; joints, excepting the basal or scape, which is as long as five of the rest and slightly curved, nearly equal ; face beneath and within the insertion of the antennæ, slightly protuberant, laterally flat or concave; clypeus convex, margined antcriorly, entire ; labrum transverse, slightly produced in the centre in
front, and the process rounded; mandibles obtuse, subbidentate; cibarial apparatus short; tongue deeply emarginate and bilobate, the lobes fringed with short setæ; paraglossce half the length of the tongue, abruptly terminating and lacerate, and setose at the apex; labial palpi mueh shorter than the paraglossæ, four-jointed, the joints equal and each subclavate; labium about the same length as the tongue, its inoseulation aeutely angulated; marillce broad, lanceolate, the length of the tongue; maxillary palpi six-jointed, not so long as the maxillæ, the two basal joints the longest, the rest equal, short, and subelavate, the apieal one rounded. Thorax subquadrate, very pubeseent, the prothorax ineonspieuous ; scutellum transversely triangular or semilunate, postscutellum lunulate; metathorax abruptly truneated, and densely pubescent, espeeially laterally, for the conveyance of pollen; wings with three submarginal eells and a fourth slightly eommeneed, the second and third eaeh receiving about their eentre a reeurrent nervure; legs all pubescent, the anterior and intermediate on their external surface chiefly, their plantce also setose ; the posterior coxce, trochanters, femora, and tibia very hirsute, especially beneath, their tarsi entirely setose; claws bifid. Abdomen truneated at the base, subconieal with a downward bias, the segments with bands of elosely decumbent nap, and the surface of all more or less deeply or delicately punctured; the basal segment in the centre, beneath, with a longitudinal tuft of long hair.

The male differs in having the mandibles more distinetly bidentate, and in being less densely pubescent, espeeially upon the legs. In general aspect it is very like its female.

Note. The genus Cilissa has, superfieially observed,
mueh of the habit of Colletes，particularly in the male of Cilissa tricincta．

NATIVE SPECIES

1．succincta，Linnæus，of ㅇ． $3 \frac{1}{2}-5 \frac{1}{2}$ lines． succincta，Kirby． fodiens，Curtis．
2．fodiens，Kirby，of \＆． $3 \frac{1}{2}-4 \frac{1}{2}$ lines． pallicincta，Kirby，+ ．
3．marginata，Linn．，of t．3－4 lines．
4．Daviesiana，Kirby，of 우． $3 \frac{1}{2}-4 \frac{1}{2}$ lines．（Plate I． fig． 1 of + ．）

general observations．

This genus is named from－ко入入йтクs，one that plasters， in allusion to the habits of the inseets，which will be de－ scribcd below．The fcmale insects themselves have，at the first glance，very mueh the appcarance of the work－ ing honey－bee，but they arc eonsiderably smaller，and， upon a very slight inspection，they are found to be ex－ eeedingly distinet．The respeetive malcs of the species are conspicuously smaller than their femalcs，but their specifie eharacteristics are very much alikc，and there is some diffieulty in separating and detcrmining the species． One strong peeuliarity，marking all of them，is that the segments of the abrlomen are banded with decumbent， hoary or whitish down，in both sexes，and the determi－ nation of the species lies chicfly in the variations of these bands，and in the almost entire absenee or eonspicuous presence of minute punctures eovering the segments． The females are very active collcetors of pollen，and re－ turn from their exeursions to obtain it，very heavily laden to their nests．I am not sure that all the speeies are not gregarious，to use this term in an acceptation
somewhat different from its usual applieation, for here, and whenever used in entomology, it is meant to signify that they burrow colleetively in large eommunities, forming what is ealled their metropolis, although each bores its independent and separate tube, wherein to deposit its store of eggs. The males, neither in these inseets nor throughout the whole family of the bees, partieipate at all in the labours required for the preservation and nurture of the progeny, a duty that wholly devolves upon the maternal solieitude of the female,-these males having fulfilled their mission, whieh is not perhaps restricted to their sexual instinet, but may also be eonducive to the grand operation of the family in the eeonomy of nature, viz. the fertilization of the flowering plants, flit from blossom to blossom, and thus convey about the impregnating dust. They may also be often seen basking in the sunshine upon the leaves of shrubs, and thenee they become lost or dispersed or the prey of their many enemies, -birds or inseets, whieh are always on the alert in seareh of ravin.

The aspeet seleeted by the females for their burrows, varies aceording to the speeies. Some ehoose a northern, and others a southern aspeet; thus, the C. succincta seems to prefer the former, and the C. frodiens the latter, as does also the C.Daviesana; and where they burrow they eongregate in enormous multitudes. The mortar interstiees of an old wall, or a vertical sand-roek, which, from exposure, is sufficiently softened for their purpose, are equally agreeable to them; nor have they any objection to elay banks.

In these loealities each individual perforates a eylindrieal eavity, slightly larger than itself, and which it excavates to a depth of from eight to ten inehes, or even
sometimes lcss. Now comes into operation the use of the peculiarly-formed tonguc with which nature has furnished them, and described above in the generic character. Thesc cells are occupied by a succession of six, or eight, or even sometimes no more than two, three, or four cartridgc- or thimble-like cascs, in cach of which is deposited a single egg with a sufficiency, taught the creature by its instinct, of a mingled paste of honcy and pollen, for the full nurture and development of the vermicle that will proceed from the egg upon its being hatched, and whercin this larva, having consumed its provender, becomes transformed into the pupa, and by the continuance of nature's mystcrious operations, it speedily changes into the perfect insect. But the beauty with which thesc little cells are formed transcends conception. Each consists of a succession of laycrs of a membrane more delicatc than the thinnest goldbeater's skin, and more lustrous than the most beautiful satin. In glitter it most resembles the trail left by the snail, and is evidently, from all experiments made, a secretion of the insect elaborated from some special food it consumes, and by means of its bilobated tongue, which it uses as a trowel, it plasters with it the sides and the bottom of the tube it has excavated to the extent necessary for one division. As this secretion dries rapidly to a membrane it is succeeded by others, to the number of three or four, which may be scparated from each other by careful manipulation. It then stores this cell, deposits the egg, and proceeds to close it with a covercle of double the number of membranes with which the sides are furnished, and continues with another in a similar manner, until it has completed sufficient to fill the tubular cavity, which, after closing the last case similarly to the rest, it
stops up the orifiee with grains of sand or earth. The food stored up is subject to fermentation, but this does not appear to be prejudicial to the larva, which first consumes the liquid portion of the store and then drills into the centre of the more solid part, and continues enlarging this little cylinder until increasing in growth by its consumption, it itself fills the cavity, and thus supplics the lateral stay or prop which, by means of the stored provender, was previously prevented from falling in. It has not been aseertained what number of eggs each insect lays, or whether it bores more than one tube, but it is presumable that it may do so, and possibly thus, from the numbers annually produced, for there are two broods in the year, colonies are thrown off which gradually form another metropolis somewhere in the vicinity, although the majority continue to oeeupy the old habitat from year to year. But the number of these insects is kept within due limits by the individual abundanee of the parasites that infest them, and by the unsparing and unflinching attacks of earwigs, which eonsume all before them,--perfect insect, larva, and provender. The two most conspicuous parasites they have, are the bcautiful little bee, Epeolus variegatus, the young of which is sustained, as in all bee parasitism, by eonsuming the food stored for the sustenanee of the young of the Colletes; and the other is the little dipterous Miltogramma punctata, whose larva, evolved from the egg deposited in the cell, feeds upon the larva of the Colletes, or possibly upon that of the Epeolus, whieh otherwise would scem to have no cheek to its fertility, exeepting that it may be subdued by the Forficulce.
Thesc insects are to be found during the spring and summer months, and throughout the southern eounties,
although some species are extremely loeal. Some oecur also in the north of England and in Ireland. I am not prepared to say what flowers they prefer, for I have never captured them on flowers, but they have been found frequenting the Ragwort, and Curtis took a species at Parley Heath, in Hampshire, on the Bluebell (Campanula glomerata). They form a remarkable instanee of an artisan bee, but so only in its habits, amongst the Andrenides.

Two submarginal cells to the wings.

Genus 2. Prosopis, Fabricius.

$$
\text { (Plate I. fig. } 2 \text { of 오.) }
$$ Melitta* b, Kirby.-Hyleus, Latreille.

Gen. Char.: Head transverse, flattish; ocelli in an open triangle on the vertex; antenne geniculated, the basal joint of the flagellum as long as the seeond, and both subelavate, the rest of the joints short and equal ; face flat, slightly protuberant between the insertion of the antennæ, and distinguished from the clypeus by a suture; clypeus transversely quadrate, slightly widening gradually to the apex, marginate; labrum transverse, obovate, fringed with setæ; mandibles broad at apex, tridentate ; cibarial apparatus short ; tongue broad, subemarginate and fringed with short hair ; paraglossee very slightly longer than the tongue, their apex broadly rounded and fringed with hair ; labial palpi as long as the tongue, joints subequal, gradating in substance, subclavate; labium about as long as the tongue, pyramidal at its apieal inosculation; maxille about as long as the tongue, slightly lanceolate, fringed with short hair;
muxillary palpi rather longer than the maxillæ, with six joints, the basal joint robust and slightly constricted in the middle, the third joint linear and the longest, the remainder gradually decreasing in length and substance.

Thorax subquadrate; prothorux transversc, linear, angulatcd at the sides; mesothorax with its bosses protuberant; scutellum and post-scutellum semilunulate; metathorax abruptly truncatc, and longitudinally carinated in the centre ; wings with two submarginal cells, a third slightly indicated, the first rccurrent nervure springing from the extreme apex of the first submarginal cell, closely to the first transverso-cubital nervure, and the second closely before the termination of the second submarginal cell ; stigma of the wing large and distinct; legs wholly destitute of polliniferous hair, the terminal joint of the tarsus as long as the two preceding; claws bifid; Abdomen subtruncate at the basc, subconical with a downward bias.

The male differs in having the mandibles distinctly bidentate, the external tooth acute; the antenne are very slightly longer and more curved, and their colouring is more intense and more widcly distributed. These insccts are glabrous, generally intensely black, dull on the head and thorax, but shining on the abdomen, and are morc or less thickly punctured, and they are usually gaily marked with yellow, citron, or red, especially on the face, thorax, and legs.

NATIVE SPECIES.

1. annulatus, Fab., of \ddagger. $2 \frac{1}{2}-3$ lines. annulatus, Kirby.
2. dilatata, Kirby, $\delta^{\text {t. }} 3$ lines. (Plate I. fig. $20^{\text {on }}$.) Hyleus dilatatus, Curtis.
3. unnularis, Kirby, ot $+2 \frac{1}{2}-3$ lines.
4. hyalinata, Smith, of ㅇ. 2-3 lines.
5. signata, Panzer, of ㅇ. 3-32 lines. (Plate I. fig. 2 早.)
signata, Kirby.
6. cornuta, Kirby, of ㅇ. . 3-3 $\frac{1}{4}$ lines.
7. varipes, Sm., ot 오. $1 \frac{1}{2}$ lines.
8. variegata, Fab., of ㅇ. 2-3 lines.

GENERAL OBSERVATIONS.

This genus is named from $\pi \rho o \sigma \omega \pi i s$, apparently in allusion to its seemingly masked faee, most of the species having yellow markings more or less conspieuous upon the faee.

It is the least pubeseent of any of the bees, even less so than those confirmed parasites, the genera Nomada and Stelis, thus further tending to eorroborate its apparently parasitieal habits, for none of the truly pollinigerous bees are so destitute of hair. The groundeolour of the speeies is intensely black, variously deeorated on the face, thorax, and legs, with markings of different intensities of yellow ; but one of our speeies, the P.variegata, is also gaily marked with red. Indeed exotic speeies, and especially those of warm elimates, are often very gay inseets.

They have usually been eonsidered as parasitieal inseets, from their being unfurnished with the customary apparatus of hair upon the posterior legs, with whieh pollinigerous inseets are generally so amply provided. In eontradietion to their parasitism, it is asserted that they have been repeatedly bred from bramble stieks; this cireumstance is no proof of the fact of their not
being parasitical, for many bees, for instance Ceratina, Heriades, etc., nidificate in bramble sticks, and they may have superscded the nidificating bee by depositing their ova in the nests of the latter ; although it certainly is a remarkable circumstance that some one of these bees has never escaped destruction in the several instances in which thesc have been thus bred. It is also said that their nests contain a scmi-liquid honey. The fact of the larva of a wild bee being nurtured upon any other provender than a mixture of pollen and honey, does not clsewhere occur, and it would seem to contradict the function this family is ordained to exercisc, by conveying pollen from flower to flower, and which besides, in every other case, constitutcs the nutritive aliment of the larva. But then, again, the structure of its tongue, which resembles somewhat that of Colletes in lateral expansion, and with which it would be provided for some analogous purpose, seems to contradict parasitical habits, although St. Fargeau asserts that it is parasitical upon this genus, and if so, although it has not been observed in this country, the analogous structure of the tongue might be perhaps explained.

But notwithstanding this deficiency of positive characters, from the abscnce of pollinigerous organs, nature is not to be controlled by laws framed by us upon the imperfcet induction of incomplete facts, for if it be incontestable that this genus is constructive and not parasitical, the riddle presentcd by this structure of its tongue is at once solved, for without any affinity beyond that single pcculiarity with Colletes, it presents an anomaly of organization whicl cannot be accounted for but by its application to a use similar to what we find it applied in that cxtraordinary genus,-a use that could
not be extant in a parasite. In Colletes it is the eoncomitant of as ample a power of collecting pollen as any that we find exhibited throughout the whole range of our native bees, but in Prosopis it is concurrent with a total deficieney of the ordinary apparatus employed for that purpose.

One of the speeies of this genus has been found near Bristol, with the indication of a Stylops having eseaped from it, which is a further extension of the parasitism of that most extraordinary genus, but the Stylops frequenting it has not yet been diseovered, whieh would doubtless present a new speeies, therefore an interesting addition to the serics already known.

These inseets are not at all uneommon in some of the species during the latter spring and summer months, and they frequent the several Resedas, being very fond of Mignonette. They are also found upon the Dracocephalum Moldavica, and oceur not unfrequently upon the Onion, which in blossom is the resort of many interesting inseets. The majority of them emit when captured, and if held within the fingers, a very pungent eitron odour, exeeedingly refreshing on a hot day, in intense sunshine. Some of the speeies are rare, espeeially those very highly eoloured, as is also the P.dilatata, so named from the peculiar triangular expansion of the basal joint of the antennre, the female of which is not known or possibly has only been overlooked or not identified. The P. varipes and P. variegata, which are the most richly coloured, oceur in the west of England, and in one, the P. cornuta, the elypeus is furnished with a tubercle.

Subsection b. Lingue lanceolate (with lancet-shaped tongues).
Genus 3. Sphecodes, Latreille.

> (Plate I. fig. 3 ठ \circ.)
> Melitta $* * a$ Kirby.

Gen. Char.: Head transverse, linear, fully as wide as the thorax, flat, with a slightly convex tendency; ocelli in a triangle ; antenne short, scarcely geniculated; face beneath the insertion of the antennæ, protuberant; clypeus transverse, margined, convex; labrum transversely ovate, deeply emarginate, in the centre in front; mandibles bidentate, obtuse, the external tooth projecting much further than the second; tongue short, lanceolate, fringed with setæ; paraglosse not so long as the tongue, abruptly terminated, and setose at the extremity; labial palpi not so long as the paraglosse; the joints comparatively elongate and slender, and deereasing towards the apex in length and substance; labium rather longer than the tongue, its inosculation straightly transverse ; maxillde about the length of the tongue, broad and laneeolate; maxillary palpi sixjointed, the first joint shorter and less robust than the second, which is also shorter and less robust than the third, which is the longest and most robust of all, the terminal joints more slender, and declining gradually in length. Thorax ovate; prothorax linear, produced into a sharp tooth on each side ; mesothorax with longitudinal lateral impressed lines; bosses acutely protuberant; scutellum quadrate ; postscutellum inconspieuous; metathorux slightly gibbous; wings with three submarginal cells, and a fourth slightly commienced, the second narrow, forming a truncated triangle, and receiving the
first reeurrent nervure in its eentre, the second recurrent nervure springing from just beyond the eentre of the third submarginal cell ; legs slightly but rigidly spinose and setose ; claws bifid. Abdonen ovate.
The males differ, in having the antenne longer and sometimes moniliform, the lower part of the face and clypeus usually covered with a dense short silvery deeumbent pubeseence, and they have the metathorax truneated at its base ; in other respeets they greatly resemble their females.

The inseets of this genus may be ealled glabrous, their pubeseenee being so slight and scattered, they uswally shine brightly, and are more or less deeply punetured ; and the abdomen is always partially or entirely of a bright ferruginous red, sometimes verging into fuscous or pitehy.

NATIVE SPECIES.

> 1. gibbus, Linnæus, of q. 3-4 $4 \frac{1}{2}$ lines. (Plate I. fig. 3 ठ呆)
> sphecoides, Kirby, ㅇ. monilicornis, Kirby, d. picea, Kirby, ${ }^{\text {to }}$.
> 2. Geoffroyella, Kirby, ơ ㄷ. 1-3 lines. divisa, Kirby, ${ }^{7}$.
> 3. fuscipennis, Germar, ठ7 ㅇ. $4 \frac{1}{2}-6$ lines.

GENERAL OBSERVATIONS.

This genus is named from $\sigma \phi \eta \xi$, a wasp, from its apparent resemblance to some of the sand wasps.

They are not uneommon inseets, and I have found them abundant in sandy spots sporting in the sunshine upon the bare ground, where they run about with great activity, the females chiefly, the males the while dis-
porting themselves upon any flowers that may be adjacent, and they arc especially fond of Ragwort. Their prevalent colours are black and red, the latter occurring only on the abdomen in different degrees of intensity and extension, sometimes occupying the whole of that division of the body, and sometimes limited to a band across it. Much difficulty attaches to the determination of the species from the characters which separate them being extremely obscure, for it is not safe to depend upon the differences of the arrangement of colour upon them, as it varies infinitely ; nor can their relative sizes be depended upon as a clue, for in individuals which must be admitted to be of the same species, size takes a wider extent of difference than in almost any of the genera of bees. St. Fargeau, who maintains the parasitism of the genus, accounts for it by saying that in depositing their eggs in the nests of the Andrence, Halicti, and Dasypoda, the Sphecodes resorts to the burrows of the species of these genera indifferent to their adaptation to its own size, and thus from the abundance or paucity of food so furnished to its larre, does it become a large or a small individual. Westwood says the specics are parasitical upon Halictus. Latreille says they are parasites. They are certainly just as destitute of the pollinigerous apparatus as the preceding genus. Mr. Thwaites once thought he had detected a good specific character in the differing lengths of the joints of the antenne, but I believe he never thoroughly satisfied himself of its being practically available. At all events great difficulty still attaches to their rigid and satisfactory determination. There is an array of entomologists who deny their being parasites. Mr. Kirby says they form their burrows in bare sections
of sandbauks exposed to the sun, and nine or ten inches deep, and which they smooth with their tongues. But then, in impeachment of the aeeuracy of his observation, he further supposes there are three sexes, founding his statement upon what Réaumur remarks of having observed pupæ of three different sizes in the burrows. In the first place, it is not conelusive that these pupæ were those of Sphecodes, and seeondly we know that this condition of three sexes is found only in the social tribes, wherein the peeuliarities of the economy exact a division of offices. Therefore his adoption of this inaecuraey militates against the reception of his other statement. But Smith also states that they are not parasites, and apparently founds his assertion upon direet observation. It still, however, remains a debatable point, from the fact of the destitution of pollinigerous brushes, and thenee the eharacter of the food neeessary to be stored for the larva. It would be very satisfactory if these apparent ineonsisteneies coull be lueidly explained.

If, however, it be ultimately proved that Sphecodes is a construetive bee, as well as Prosopis, we have then this faet exhibited by our native genera, that none of the subfamily of our short-tongued bees, or Andrenidce, are parasitieal. This is a remarkable peculiarity, as it is amongst them that we should almost exelusively expect to find that distinguishing economy, from the seemingly imperfect apparatus furnished in the short strueture of their tongues. It is possible, however, that nature has so moulded them as to fit them chiefly for fulfilling its objects within merely a eertain range of the floral reign, and whieh restriets them to visiting flowers which do not require the protrusion of a long organ to rifle their sweet stores.

Genus 4. Andrena, Fabricius.

(Plates II. and III.)
Melitta ** c, Kirby.
Gen. Char.: Head transverse, as wide as the thorax; ocelli in a triangle on the vertex ; antenne filiform, geniculated, the basal joint of the flagellum the longest; face flat; clypeus convex, transverse, quadrate, slightly rounded in front; labrum transverse, oblong; mandibles bidentate ; tongue moderately long, lanceolate, fringed with fine hair; paraglossa half the length of the tongue, abruptly terminated and setose at the extremity ; labium about half the length of the entire apparatus, its inosculation acute; labial palpi inserted above it, below the origin of the paraglossæ in a sinus upon the sides of the tongue; maxille irregularly lanccolate; maxillary palpi sixjointed, longer than the maxillæ, the basal joint about as long as the fourth, but more robust, the second joint the longest, the rest declining in length and substance. Thorax ovate; prothorax not distinct; mesothorax quadrate; bosses protuberant; scutellum lunate; postscutellum lunulate; metathorax gibbous, and pubescent laterally; wings with three submarginal cells, and a fourth slightly commenced, the second quadrate, and with the third receiving a recurrent nervure about their middle; legs densely pubescent, especially externally, and particularly the posterior pair, which have a long curled lock upon the trochanter beneath, the anterior upper surface of the femora clothed with long loose hair, which equally surrounds the whole of the tibiæ, but which is less long upon their plantr, the claws strongly bifid. Abdomen ovate, a dense fringe edging the fifth segment,
and the terminal segment having a triangular central plate, its sides rigidly setose.

The male differs in having the head rather wider than the thorax, the vertex where the ocelli are placed more protuberant, the mandibles very large and more acutely bidentate, sometimes largely forcipate and with but one acute tooth; the males in most species greatly differ from their females.

None of these insects exhibit any positive colouring of the integument, excepting in some upon the abdomen, which exhibits red bands, and is disposed to vary considerably in intensity and breadth, and in some the clypeus and face are of a crcam-colour, but which occurs chiefly among the males. They are very dissimilar in general appearance, some being densely pubcscent all over, others merely so on the head and thorax; others are banded with white decumbent down, and some are wholly unmarked upon the abdomen. Thesc peculiarities help to group them, and thus facilitatc their recognition.

Native species.

§ Banded with red on the abdomen, the segments of which are more or less fringed.

1. Hattorfiana, Fab., ô 오. 6-7 lines.

Lathamana, Kirby, ㅇ.
hemorrhoidalis, Kirby, ㅇ.
2. zonalis, Kirby, ठ ㅇ. $4 \frac{1}{2}-5$ lines.
3. florea, Fabricius, of ㅇ. 5-6 $\frac{1}{2}$ lines.

Rosa, Kirby, var.
4. Rosa, Panzer, đ 우. 4-6 lines. (Plate III. fig. 1 す \circ.)
Rosc, Kirby, q.
5. decorata, Smith, ơ 오. 5-6 $\frac{1}{2}$ lines.
6. Schrankella, Kirby, of ㅎ. 4-5 lines. affinis, Kirby.
7. cingulata, Fabricius, ơ ㅇ. $3 \frac{1}{2}-4$ lines. (Plate III. fig. 3 of 9.)
cingulata, Kirby.
§§ Abdominal segments edged with decumbent short down, or fringed with long hair.
8. longipes, Shuckard, ơ 우. 4-6 lines. (Plate III. fig. 2δ ㅇ.)
9. chrysosceles, Kirby, đ 우. $3 \frac{1}{2}-4 \frac{1}{2}$ lines.
10. dorsata, Kirby, ot 우 . 4-4 $4 \frac{1}{2}$ lines.
combinata, Kirby.
nudiuscula, Kirby.
11. connectens, Kirby. 5 lines.
12. Wilkella, Kirby, ㅇ. $5 \frac{3}{4}$ lines.
13. Coitana, Kirby, đo 오. 4 lines. Shawella, Kirby.
14. labialis, Kirby, ơ 오. $5 \frac{1}{2}-6$ lines.
15. Lewinella, す. $3 \frac{3}{4}$ lines.
16. xanthura, Kirby, 才 오. $3 \frac{1}{2}-6$ lines. ovatula, Kirby.
17. Collinsonana, Kirby, đ 우. $3 \frac{1}{2}-4 \frac{1}{2}$ lines.
digitalis, Kirby.
proxima, Kirby.
18. albicrus, Kirby, ơ 우. 4-5 $\frac{1}{2}$ lines. barbilabris, Kirby.
19. minutula, Kirby, ơ ㅇ. 221 $-3 \frac{1}{2}$ lines. parvula, Kirby.
20. nana, Kirby, 우. $3 \frac{1}{2}$ lines.
21. convexiuscula, Kirby, of ㅇ. 5 lines.
22. Kirbyi, Curtis, +6 lines.

23．fuscata，Kirby，아． $4 \frac{1}{2}$ lines．
24．Afzeliella，Kirby，of 오．4 $4 \frac{1}{2}-5$ lines．
25．fulvicrus，Kirby，of ㅇ． $3 \frac{1}{2}-5 \frac{1}{4}$ lines． contigua，Kirby．
26．fulvago，Christ．才o ㅇ．4－4 $\frac{1}{2}$ lines． fulvago，Kirby．
27．tibialis，Kirby． $5-7 \frac{1}{4}$ lines． atriceps，Kirby．
23．Mouffetella，Kirby，of 우．5－7 lines．
29．nigro－enea，Kirby，đ ㅇ．5－6⿺𠃊⿳亠口冋 lines．
30．bimaculata，Kirby，${ }^{\text {J }}$ ． $5 \frac{1}{2}$ lines．
31．Trimmerana，Kirby，đ 오．5－6 lines．
32．conjuncta，Smith，아． $5 \frac{1}{2}$ lines．
33．varians，Rossi， 8 ㅇ． $4-5 \frac{1}{2}$ lines．
34．helvola，Linnæus，of 오．5－5 $\frac{1}{2}$ lines．
picipes，Kirby，ô． angulosa，Kirby．
35．Gwynana，Kirby， 8 우．4－5 $\frac{1}{2}$ lines． pilosula，Kirby．
36．anyustior，Kirby，of q．4－5 lines．
37．picicornis，Kirby，đ̊ ํ．5－6 lines．
38．spinigera，Kirby，of 후．5－6 lines．
39．Smithella，Kirby，${ }^{\circ}$ 우．3－6 lines．
40．Lapponica，Zetterstedt，ठ 오．31 $-5 \frac{1}{2}$ lines．
41．tridentata，Kirby，${ }^{\text {T }}$ ． $4 \frac{1}{2}$ lines．
42．denticulata，Kirby，δ° ㅇ． $4-5 \frac{1}{2}$ lines．
Listerella，Kirby．
43．nigriceps，Kirby，q． 5 lines．
44．pubescens，Kirby，đ̊ ํ．4－5 lines．
rufitursis，Kirby．
fuscipes，Kirby．
§§§ Thorax very pubescent, abdomen smooth and shining.
45. albicans, Kirby, ô ㅇ. . 4-5 lines. 46. pilipes, Fabricius, of ㅇ. 5-7 lines. pratensis, Kirby.
47. cineraria, Linnæus, ơ ㅇ. 5-7 lines. (Plate II. fig. 2 of 9 .) cineraria, Kirby.
48. thoracica, Fabricius, of 오. 5-7/2 lines.
thoracica, Kirby.
melanocephala, Kirby.
49. nitida, Fourcroy, ơ ㅇ. 5-61 $\frac{1}{2}$ lines. (Plate II. fig. 3 б $\frac{q}{}$.)
nitida, Kirby.
50. vitrea, Smith, + . $6 \frac{1}{2}$ lines.
§§§§ The entire lody densely pubescent.
51. fulva, Schrank, ठ̊ ㅇ. $4-6 \frac{1}{2}$ lines. (Plate II. fig. 1 of 9.)
fulva, Kirby.
52. Clarkella, Kirby, of 우. 4 $\frac{1}{2}-6 \frac{1}{2}$ lines.

GENERAL OBSERVATIONS.
Fabricias seems to have named this genus from av $\theta \rho \eta \quad \eta$, a wasp, but why, it is impossible to say. Although one name is as good as another, it being indifferent what the name may be, yet where so evident an attempt to give a name pertinence is conspicuous, it is remarkable that it should be so little relevant, for none of the characteristics of a wasp or hornet are exhibited in these insects.

Possibly it was from the genus being the most numerous in species that Dr. Leach was induced to give
this subfamily its collective designation, making the other genera thus converge to it as to a centre. He took its elliptical form as typical. Indecd, it is remarkable how very judiciously this was done, for it is a form not apparent among the normal bees excepting in two exceptional cases, the one upon the frontiers of this subfamily, in almost debatable land, wherc the last of the Andrenide and the first of the Apide seem almost to melt into one another ; and in the other casc, in the parasitical Nomudu, whose parasitism is in every instance, but one only, restricted to the first subfamily. A different type of form prevails amongst the Apide, upon which I shall have subsequently occasion to speak.

These insects are not distinguished for any claborate cconomy. Varying in the species, somc prcfer vertical banks, others sloping undulations, and again others horizontal flat ground or hard down-trodden pathways. Some burrow singly, and others are gregarious, collected in grcat numbers upon one spot. They are, perhaps, the most inartificial burrowers of all the bees. Their tunnels vary from five to nine or ten inches in depth, and in some species they are formed with other small tunnels slanting off from the main cylinder. The sides and bottom are mcrely smoothed, without either drapery or polish. The little cells thus formed arc then supplied with the usual mixture of pollen and honey kneaded together, which in the larger species forms a mass of about the size of a moderate red currant, its instinct teaching it the quantity nccessary for the nurture of the young which shall proceed from the egg that it then deposits upon this collected mass of food. The apcrture of each littlc tunnel is closed with particles of the earth or sand whercin the insect burrows,
and it proceeds to the elaboration of another receptaele for a fresh brood until its stock of eggs beeomes exhausted. Some speeies have two broods latched in the year, espeeially the earlier ones,-for several present themselves with the earliest flowers,-but others are restricted to but one. The quantity of pollen they collect is eonsiderable, and in fact they are supplied with an apparatus additional to what is furnished to any of the other genera in a curled rather long lock of hair that emanates from the posterior trochanters. This, with the fringes that edge the lower portion and sides of the metathorax, as well as the usual apparatus upon the posterior legs, enables the insect to carry in each flight home a eomparatively large quantity of pollen, but perhaps scarcely enough at onee for the nurture of one young one, and it thercfore repeats the same operation until sufficient is accumulated.

The exact period oeeupicd by their transformations is not strietly known ; it will, of course, vary in the species, as also in those in whieh two broods succeed each other in the year, but the larva rapidly consumes its store and then undergoes its transformation. It does not spin a coeoon, but in its pupa state it is covered all over with a thin pelliele, whieh adheres elosely to all the distinet parts of the body. It is not known how this is formed; perhaps it is a membrane which transudes in a seeretion through the skin of the larva, or it may be this itself eonverted to its new use, which seems to be for the protection of all the parts of the now transmuting imago, until these in due course shall have acquired their proper eonsisteney.

These insects in their perfeet state vary very considerably in size, both individually and specifically, the
former depending upon both the quantity and quality of the food stored up, for the pollen of different plants varies possibly in its amount of nutriment, else why should we observe so marked a difference in the sizes of individuals whose parent instinet would prompt to furnish them with an uniform and equal supply. The differences of speeific appearanee is often very eonsiderable in long genera, and perhaps in no genus is it more eonspieuously so than in Andrena, for here we have some wholly eovered with dense hair, and others almost glabrous; others again with the thoras only pubeseent; some are black, some white, some fulvous, or golden tinted, and some red; some we find banded with decumbent down, and others with merely lateral spots of this close hair, but the most prevalent eolour is brown, whieh will sometimes by immaturity take a fulvous or reddish hue. In many males we see excentrieally large transversely square lieads broader than the thorax, which also have widely spreading foreipate mandibles, with often a downward projecting spine at their base beneath; and it is chiefly these extravagantly formed males whieh are most dissimilar to their own partners that the result of observation alone confirms their specific identity. In other cases the males are so like their females that a mere neophyte would unite them. In many males the elypeus and labrum are white, which also oceurs in some females; for instance, in A. labialis, but this peculiarity is found more rarely in this sex. The species are much exposed to the restrieting in.. fluences of several parasites, whose parasitism is of a varying character, but the term should properly be applied only to the bees whieh deposit their eggs in their nests, and whose young, like that of the euckoo among
the birds, thrives at the expensc of the young of the sitos by consuming its food, and thus starving it. These parasites consist of many of the species of Nomada, very pretty and gay insects, but in every casc totally unlike the bee whose nest they usurp. Several of the species of these Nomade are not limited to any particular specics of Andrena, but infest several indifferently, whereas others have no wider range in their spoliation than one single specics, to which they always confine themsclves. In my observations under the genus Nomada I shall notify those which they assail amongst the Andrence, as well as the other gencra which they also infest.

The others which attack them are more properly positive enemies than parasites, for they prey upon the bees themselves, or, as in the case of the remarkable genus Stylops, render the bee abortive by consuming its viscera and ovaries. I have spoken of thesc insects in the chapter upon parasitcs, to which I must refer, but I may here add that the female is apterous, and never quits the body of the bee. Much mystery attaches to their history in which their impregnation is involved, for the male, immediately upon undergoing its change into the imago, escapes through the dorsal plates of the abdomen of the bee wherein it was bred and takes flight. In localitics where they occur they may be usually taken on the wing in the month of May. The fcmale would seem to be viviparous, and produces extraordinary multitudes at one birth, extending to hundreds. Being born as larve within the body of the bee they seek to escape from their confinement, and find the opportunity in the suture which separates the mesothorax from the metathorax. Their extreme minuteness
admits of their passing through the very constricted tube which connects the abdomen with the thorax. Having now escaped into the air they alight upon the flowers which the bee frequents, and thence they affix themselves to other bees which may visit these plants, and thus perpetuate the activity of the function it is their instinct to fulfil. That many may be lost there can be no question; but Nature is vcry prodigal of life, for by life it endows life, and thus its activity is enlarged to a wider circle. Although the matured Stylops has preyed upon all the internal organs of the bee its attack is not immediately fatal, although the life of the creature may be thus considerably abridged, but it seems to live sufficiently long afterwards to disseminate the distribution of the Stylops. A small blackish Pediculus, which Mr. Kirby called Pediculus Melitte, is found also both upon the flowers the bees frequent and also upon the bees themselves, especially the pubcscent ones; but this insect is not limited to the genus Andrena, as I shall have occasion to notice. The flower I have chiefly found them upon is the Dandclion (Leontodon). Their peculiar economy and connection with the bees is unknown; it may be merely an accidental and temporary attachment, but they even accompany them to their burrows.

Another and more curious case of attack upon the young of the Andrena, is instanced in the reputed parasitism of the Coleopterous genus Meloë. The perfcet insect is a large apterous, fleshy, heteromerous beetle, ten times as big as the bee. Its vermicle, having issued from the egg, has the appearance of a very small pediculus, of an orange colour. They are often scen upon flowers, and, like the former pediculus, attach themselves to such suit-
able Andrena as may happen to visit the flowers they are upon; and, it is said, that they are thus conveyed by the bee to its domicile, and there feed to maturity upon the larva of the bee. I have no faith in the correctness of this statement, for it is not credible that so small a creature as the larva of an Andrena could fully feed the larva of so large a bcetle. Observation has not satisfactorily confirmed it, and the connection may be, as in the former case, merely accidental.

Although, perhaps, not a strictly scientific course, it is certainly a matter of convenience in very long genera to break them up into divisions, framed upon external characters, readily perceptible, and, by which means, the species sought for may be more readily found. This I have done in the preceding list of the species, and which are based upon very prominent features. A slight divarication from the typical neuration of the wing is observed in some species, but it is not of a sufficiently marked character to afford a divisional separation, and even much less a subgeneric one. I have therefore passed it unnoticed. The commencing entomologist will often find considerable difficulty at first in determining the species of this genus, for so much depends upon condition; and where the colour of the pubescence is the chief characteristic, a very little exposure to the atmosphere much alters their physiognomy, but time, patience, and perseverance will ripen the novice into an adept. The counection of the males with the females, from their ordinarily great dissimilarity, was only to be accomplished by positive observation, but now that this, in the majority of cases, is effected, good descriptions facilitate their discrimination.
The most conspicuous species are the Hattorfiana and
the Rose for size and colour ; the Schrankella is also a very pretty species; and perhaps the commonest of all the cingulata is the prettiest of all, with its yellow nose and red abdomen; in the next section we may point out the longipes as being a very elegant insect,* as are also the chrysosceles and the helvola. In this section we find those most subject to the attacks of the Stylops, for instance the labialis, converiuscula, picicornis, Afzeliella, nigro-enea, Trimmerana, Gwynana, etc. The whole of the third and fourth sections are splendid insects, especially the fulva in the last. The comparative rarity of some results chiefly from an exceedingly local habitat. Many of the species may be found everywhere where insects can be collected, consequently, all over the United Kingdom. In all the three seasons of the year, which prompt animal life, some of the species may be collected, and the flowers they chiefly prefer are the catkins, especially of the sallow, the early flowering-fruits, the hedgerow blossoms, the heath, the broom, the dandelion, chickweed, and very many others.

Genus 5. Cilissa, Leach.

 (Plate V. fig. 1 ot $\begin{gathered}\text {.) }\end{gathered}$Melitta ** c, partly, Kirby.-Andrena, Fab. Latreille.
Gen. Char. : Head transverse, scarcely so wide as the thorax, flat; ocelli in an open triangle on the vertex;

* This insect was first captured by me, and with this, my manuscript name, attached to it, it was distributed to entomologists with an unsparing hand. The ordinary courtesy of the science has been, for the describer, when not the capturer, to adopt and circulate the original authority, and not to appropriate it. Similar buccaneering has bcen
face flat; clypeus transverse, margined; labrum transverse, slightly rounded in front; mandibles bidentate; cibarial apparatus moderately long; tongue lanceolate, fringed with delicate hair; paraglossa about one-third the length of the tongue, abruptly terminated, lacerate and setose at the extremity; labial palpi rather longer than the paraglossæ, the basal joint considerably the longest, all the joints subclavate and diminishing both in robustness and length to the apex; labrum half the length of the entire apparatus, its inosculation acutely triangular; maxille subhastate, as long as the tongue; maxillary palpi six-jointed, less than half the length of the maxillæ, the joints short, subclavate and decreasing gradualìy from the base to the apex. Thorax densely pubescent, obscuring its divisions; metathorax truncated; wings with three submarginal cells, and a fourth slightly commenced, the second subquadrate and receiving the first recurrent nervure in its centre, the second recurrent nervure issuing from beyond the centre of the third submarginal cell; legs all pilose, especially the posterior pair, which have hair beneath the coxe and irochcinters, above only on their femoræ, but surrounding the tibie, and as dense externally upon their plante; claws distinctly bifid. Abdomen ovate, truncated at the base, the segments banded at their apex, with decumbent down, which becomes densely and widely setose on the fifth segment, the terminal segment having a central triangular glabrous plate, carinated down the centre, and very rigidly setose laterally.

The male scarcely differs, except in having the antenne

[^2]less distinctly geniculated, the flagellum taking a sweeping curve, the face and clypeus much more pubescent, but the legs sexually less so ; the sexes are much alike.

NATIVE SPECIES.

1. tricincta, Kirby, of 오. 5 lines. (Plate V. fig. 1 of ㅇ..) ? Apis leporina, Panzer.
2. hemorrhoidalis, Fab. of 9 .
hemorrhoidalis chrysura, Kirby.

GENERAL OBSERVATIONS.

This genus has been named without any reference to any peculiarity, Dr. Leach having applied a Proper name to it to designate it.

The Cilissa tricincta is perhaps most like the larger species of the genus Colletes, both in markings and in the form of the body, but in resemblance of form the second species participates. Although robust insects, and as large as the larger Andrence, they are yet unprovided with the same ample means for conveying pollen, being destitute of the lock of hair upon the posterior trochanters and the sides of the metathorax are less densely pubescent. The ground colour is brown. Their economy is assumed to resemble that of Andrena, although it has not been so closely investigated ; for my own part I have never had the opportunity of tracing it to its nidus, having always captured the species upon flowers. They are fond of the trefoil (Trifolium repens), and the C.chrysura frequents the Campanula rotundifolia, as well as the flowers of the throatwort (Trachelium). In their excursions they are usually accompanied by their males. Both species are found in the south and west of England.

Section 2. With entire paraglossa.
Subsection c. Lingut acute (acute tongues).
a. With three submarginal cells to the wings.

Genus 6. Halictus, Latreille.

(Plate IV.)

Melitta*** , Kirby.

Gen. Char.: Head transverse, flattish, scarcely so wide as the thorax; ocelli in an open triangle on the vertex, which is flat; antennce short, filiform, geniculated, scape quite or more than half as long as the flagellum; face flat, excepting in the centre just below the insertion of the antennæ, where it is protuberant ; clypeus transversely lunulate, very convex; labrum subquadrate, very convex, with a central, linear, carinated appendage in front, nearly as long as the basal portion; cibarial apparatus moderate; tongue very acute and delicately fringed with short hair; paraglosse acute, about half the length of the tongue; labial palpi not quite so long as the paraglossæ, the basal joint very long, the rest decreasing gradually in length; labium about as long as the tongue, its inosculation emarginate; maxillce subhastate, rather longer than the tongue; maxillary palpi filiform, the basal joint the shortest, second the longest, the rest decreasing in length. Thorax oval, usually pubescent, sometimes glabrous; prothorax inconspicuous, as are the bosses of the mesothorax ; scutellum and post-scutellnm lunulate, the former convex; metathorax gibbous or truncated, but laterally pubescent even in the glabrous species; wings with three submarginal cells, and a fourth sometimes commenced, the second subquadrate and receiving the first recurrent nervure close to its extremity, the second being received beyond
the centre of the third submarginal cell [a slightly different arrangement takes place in some of the species, which will be noticed subsequently] ; the legs all sctose, but the setæ not very long, and the posterior coxce and trochanters have long hair beneath; the claws bifid. Abdomen ovate, the terminal segment with a longitudinal linear incision in its centre.

The males differ in having the antennæ as long or longer than the thorax; the labrum transverse, lincar, and the abdomen usually elongate and cylindrical, and much longer than the head and thorax.

native species.

1. xanthopus, Kirby, ठ ㅇ. 4-5 $\frac{1}{2}$ lines. (Plate IV. fig. 1 ठ 우.)
Lasioglossum tricingulum, Curtis.
2. quadricinctus, Fabricius, ठo fo 4-4 $\frac{1}{2}$ lines. quadricinctus, Kirby.
3. rubicundus, Christ. ォ 오. 4-5 lines. rubicundus, Kirby.
4. cylindricus, Fabricius, ơ 우. 3-5 lines. malachura, Kirby. fulvo-cincta, Kirby. abdominalis, Kirby.
5. albipes, Fabricius, 3 ㅇ. 3-4 lines. albipes, Kirby. obovata, Kirby.
6. levigatus, Kirby, ठ ㅇ. . 3-4 $\frac{1}{2}$ lines. lugubris, Kirby.
7. leucozonius, Schrank, ठ . 3-4 $\frac{1}{2}$ lines. leucozonius, Kirby.
8. quadrinotatus, Kirby, む̊ ¢ • 2-3 lines.
9. sexnotatus, Kirby, ơ ?
10. lavis, Kirby, \&. 4 lines.
11. fulvicornis, Kirby, đ. 4 lines.
12. minutus, Kirby, ठ오. 21 $\frac{1}{2}-3 \frac{1}{2}$ lines.
13. nitidiusculus, Kirby, ơ ㄱ. 2-3 lines.
14. minutissimus, Kirby, đ̊ 여. $1 \frac{1}{2}-2 \frac{1}{2}$ lines. (Plate IV. fig. 3 ठ q.)
15. flavipes, Kirby, of q. 3-4 lines. (Plate IV. fig. 2 oㅇ.)
seladonia, Kirby.
16. Smeathmanellus, Kirby, of 오 2 $2 \frac{1}{2}-3 \frac{1}{2}$ lines.
17. cratus, Kirby, 才 오. $2 \frac{1}{2}-3$ lines.
18. leucopus, Kirby, 오. $3-3 \frac{1}{2}$ lines.
19. morio, Kirby, ठ 오. 2-2立 lines.

general observations.

This genus was named by Latreille from $\dot{a} \lambda i \zeta \omega$, to crowd, or collect together, from the fact of their nidificating in numbers on the same spot.

The females closely resemble in form those of the genus Andrena, but the malcs are very unlike both those of that genus and their own females, for they all have long cylindrical bodies and very long antennæ, much longer relatively than those of the former genus. Although none of the species approach in size the larger ones of the preceding genus, their extremes of specific size are as distant apart as they are in that genus, the smallest being extremely minute. Some of even the commoner species are very pretty when in fine condition, and several of them have a rich metallic green or blue tint, and in the majority the wings are iridescent with the brightest and gayest colours of the rainbow. The numbers in which they associate together upon the same spot varies considerably, and a very few indeed
burrow solitarily and apart from their congeners. In burrowing they form a tunnel which branches off to several cells, the excavations being as inartificial as are those of Andrena. Walkenaer tells us in his memoir upon the genus Halictus, that they line their cells with a kind of glaze, that ihey burrow in horizontal surfaces to a depth of about five inches, and which they polish very smoothly previous to covering it with their viscous secretion, and that the cells are all oval, the largest end being at the bottom. He says also that they burrow solely during the night, especially when the moon is shining, when it is difficult to walk without treading upon them ; so numerous are they, indeed, that they look like a cloud floating close to the surface of the ground. Although burrowing thus at night, it is only during the day that they supply their nests with their provision of pollen and lay their eggs. Each of their cells is furnished with a small ball of pollen, varying in size with the species, but which never entirely fills the cell, and is affixed intermediately between both extremities, and upon the mass contained in each cell they deposit their small egg, which is placed at the extremity of the lump of pollen most distant from the entrance. The larva is hatched in about ten days, when it changes into the pupa. Some doubt attaches as to the length of time that the pupa remains before its transformation into the imago, and also as to the period at which this takes place. A peculiarity attends the appearance of the larger species. Some are very early spring insects, among which is the Halictus rubicundus; this I have seen in abundance on the first fine spring days collecting its stores on the flowers of the chickweed. It is then in the very finest condition, and it is really a very beautiful
although a very eommon inseet, having a richly golden fulvous pubeseence on the thorax, an intensely black and glabrous abdomen, the apex of whieh is fringed with golden hair. No males are now to be found at all. Yet it is only some speeies, and these the larger ones, whieh are subjeet to this peculiarity, for the smaller ones I have found burrowing during the summer months in vertieal or sloping banks with a sunny aspeet, whilst the males were hovering about both in the vicinity and elose by, sometimes either playing or fighting on the wing with the very small Nomade, whieh infest these speeies parasitieally, whilst their females were sedulously pursuing their voeation. Gradually these joyous spring insects lose their gayness and their brilliancy, as do those which have followed in sueeession of development with the growing year, and they beeome senile and faded and are lost as they have progressively fulfilled their funetion. By this time the ragwort is in bloom, and the thistle displays its pinky blossoms; now the males are to be found numerously exhibiting themselves upon these flowers, and also another equally fresh brood to those of the spring and early summer, of females. My friend the late Mr. Pickering, who was in the early days of the present Entomologieal Soeiety, when it held its meetings in Old Bond Street, its honorary eurator, and who was then and always, even when less leisure was afforded him from professional duties, a most assiduous and diligent observer of the habits of inseets, propounded his theory, both in eonversation and before the meetings of the Soeiety, although he never drew up a paper upon the subject, that these females were then impregnated, upon whieh they retired to a hibernaeulum, and there remained until the breath of a new spring
brought them forth in all the beauty of their gay attire, and that it was from their broods deposited thus in the spring and early summer, that the autumnal insects were developed. This theory is both plausible and possible, and I have no doubt that it is the correct one; and thus is explained the total absence of males at the time of the appearance of the females in the foremost portions of the year ; this habit we shall find also in the Bombi.

The flowers they delight in, besides those previously named, are among others the ribwort plantain, and the bramble, as well as the Umbelliferce and the flowers of the broom. The females possess two remarkable distinctions of structure not found in any of the other bees, which consist in an articulated appendage in the centre of the front margin of the labrum, and a vertical cleft in the terminal segment of the abdomen, both of which will necessarily have their uses in the economy of the insect, although what these may be has not been discovered.

They, like Andrena, are exposed to parasites and enemies. The smaller species of Nomada infest their smaller kinds, and St. Fargeau tells us that the Sphecodes are also parasitical upon them. The smallest of the genus, which is indeed an exceedingly minute insect, is subject to a very minute strepsipterous destroyer; whether this be a genuine Stylops I am not aware, but the supporting insect being so minute, in fact the smallest of our bees, how small must be the enemy bred within it! Another genus of this order has been found by Mr. Dale upon them, and which is figured as the genus Elenchus in Curtis's 'British Entomology.' The smaller species are also attacked, upon their return home laden, by spiders and ants. Chryses and Hedychra are
bred at their expense, and some of the Ichneumons attack them, as well as the fossorial Hymenoptera of the genera Cerceris, Crabro, and Philanthus, and these latter carry them off bodily to furnish their own nests with pabulum. Several of the species exhale a rich balmy odour, and, like all the Andrenida, they are silent on the wing, and their sting is innocuous and not painful. The males are very eager in their amours, and are not easily repulsed.

Some of the species vary slightly in the neuration of the wings, and this being a rather numerous genus, although not nearly approaching the extent of Andrena, it has been proposed to make use of it for its division, but I think this is scarcely required, it not being sufficiently abundant to cause any inconvenience, the species being so distinctly marked in their specific differences by the aid of the metallic brilliancy of several of them. I have therefore arranged the species in the above list in connective order without intermission, and have placed in juxtaposition those species which appear the closest in affinity.
b. With two submarginal cells to the wings.

Genus 7. Macropis, Panzer. (Plate V. fig. 2 ふ ㅇ.)

Gen. Char.: Head transverse, as wide as the thorax, flattish; ocelli placed in a very open curve upon the vertex ; face flat, but convex in the centre beneath the insertion of the antennæ; clypeus very slightly convex ; labrum transverse, narrowly lunulate ; mandibles bidentate; cibarial apparatus moderately long; tongue very
acute and fringed with delicate down ; paraglosse barely half the length of the tongue, and acute, their apex fringed laterally with down; labial palpi inserted in a deep sinus, filiform, the basal joint the longest, the rest diminishing both in length and substance; labium about half the length of the entire organ, its inosculation emarginate; maxille lastate, rather longer than the tongue ; maxillary palpi six-jointed, the basal joint the shortest, the third the longest, the remainder diminishing gradually in length, and all declining in substance from the basal joint. Thorax oval, rather pubescent; prothorax transverse, curving to the mesothorax, whose bosses are inconspicuous; scutellum transverso-quadrate; post-scutellum transverse linear; metathorax truncated. Wings with two submarginal cells, and a third commenced, the second about as long as the first, and receiving both the recurrent nervures, the first near its commencement, and the second nearer its extremity; legs robust, with the posterior tibice and plante densely clothed externally with short hair ; the plante broad; the second joint of the tarsus inserted at the lower angle of the plantæ ; claws bifid. Abdonen subtriangular, truncated at its base, not longer than the thorax.

The male differs in having the antenne as long as the thorax and curved; the posterior coxe very large and robust, the trochanters small and triangular; the femora large and much swollen in the centre, the posterior tibie very large and triangular and convex externally, and the planta longer than the rest of the tarsus, and slightly curved beneath longitudinally.

NATIVE SPECIES.

1. labiata, Panzer, δ of . $4-4 \frac{1}{2}$ lines.
(Plate V. fig. 2 ợ ㅇ..)

GENERAL OBSERVATIONS.

The name of this genus comes from дакрòs, long, and $\grave{\omega} \psi$, face, in allusion to the length of that portion of the head, although this assumed discriminative characteristic is scarcely suitable; this again constitutes another of the many instances wherein it would have been much preferable to have imposed a name without any significancy than one which is not thoroughly applicable. It is, indeed, always dangerous to attach a name to a new genus which has reference to some individual peculiarity, for it may eventually exhibit itself as limited to the one single species or sex to which it was originally applied, as to every other subsequently discovered species in the genus it may be inappropriate.

Nothing, so far as I am aware, is known of the habits of these singular insects, which, I believe, have been caught only three times in this country and then only the male sex.

The first, which is in the collection of the British Museum, was brought by Dr. Leach from Devonshire; the second was caught in the New Forest by the late John Walton, Esq., distinguished for his knowledge of the British Curculionida, and who kindly presented it to me for my collection when I was at the zenith of my enthusiasm for the Hymenoptera, and with that collection it passed to Mr. Thomas Desvignes, in whose possession it remains; and the third was caught by Mr. Stevens, at Weybridge, in Surrey. Why I enter so particularly into these circumstances is, that the genus is extremely peculiar both for scientific position and for structure. In the latter the male is extremely like the male of Saropoda and its female is more like the female Scopulipedes among the Apide than one of the $A n$ -
drenide, especially in the form of the abdomen and of the intermediate and posterior legs, as well as in the length of the claws and the low insertion of the posterior joints of the tarsi upon their plantæ, a peculiarity not occurring in another genus of the Andrenida.

I have no doubt, also, that they are very musical in their flight and are, perhaps, as shrill-winged as is $S a$ ropoda; whereas one of the great characteristic specialities of the Andrenida is their silence. This genus, although restrained within the circuit of the subnormal bees by the structure and folding of its tongue, has so much of the habit of one of the true Apide that it almost prompts the wish to resuscitate the circular systems and place it within its own circle in analogical juxtaposition to Saropoda in the circle of the Apide, where they might impinge one upon the other. It is not often that so rare an insect is at the same time so curious and so suggestive. Having been found, there is no reason why it may not be again found with due and paticnt diligence; my own experience has taught me how easy it is even in well-hunted ground to make rarities common, within almost a stone's throw of the metropolis, at Hampstead, Highgate, and Battersea, from which localities in the course of my entomological career I have introduced to our fauna many novelties, one of which was certainly a remarkable discovery, from the last spot named, which it is worth recording. A quantity of soil had been removed from the City where an artesian well was being bored, and consequently from varying depths, and carted thence and cast upon the edge of the river-bank at Battersea. The following season, from this soil, a thick and prodigious quantity of the common mustard plant shot up, and when in flower

I happened to be collecting near the spot on the day of our gracious Queen's coronation, when I captured multitudes of a splendid large Allantus, entirely new to the British fauna, and a choice addition to collections. This ground had been hunted at all seasons through all botanical and entomological time, and neither had the mustard plant been found there before nor had the insect. Whence did they both come? These observations have certainly nothing to do with the subject in hand, beyond suggesting that with untiring energy in the vicinities indicated where Macropis has been already found it may possibly turn up in abundance.

Genus 8. Dasypona, Latreille.

$$
\begin{aligned}
& \text { Melitta } * * c \text {, partly, Kirby. } \\
& \text { (Plate V. fig. } 3 \text { of } \circ . \text {.) }
\end{aligned}
$$

Gen. Char.: Head transverse; vertex glabrous; ocelli placed in a curved line; antenna short, filiform, geniculated, the scape thickly bearded with long hair and scarcely half the length of the flagellum ; face and clypeus densely pubescent, the latter slightly convex; labrum transverse, linear, slightly rounded in front; mandibles arcuate, bidentate, the teeth acute and robust; cibarial apparatus moderately long; tongue long, very acute, and fringed with delicate hair; paraglosse about one-third the length of the tongue, very slender, and acute ; the labial palpi inserted upon the junction of the labium, very slender, filiform, of uniform thickness, the joints subclavate, the basal joint considerably the longest, the second joint also long, the two terminal joints much shorter and decreasing in length; labium about the
length of the tongue, its inoseulation aeutely triangular; maxillee hastate, as long as the tongue; maxillary palpi six-jointed, rather more than half the length of the maxillæ, slender, the basal joint the most robust, the sceond the longest, the rest deelining both in thekness and length. Thorax oval, densely pubeseent, the divisions indistinet from its density; scutellum lunulate; metathorax subtruneate; wings with two submarginal eells and a third eommeneed, the seeond reeeiving both the reeurrent nervures, the first elose to its eommencement and the second just beyond its eentre ; legs slender, pubeseent, especially the tibice and plante, the hair upon the posterior pair being extremely dense and long, and eaeh hair twisted minutely spirally; their coxc, trochanters, and femora also covered with long hair; claws bifid, the inner tooth very short. Abdomen oval, the basal and fifth segments densely hairy, the superior surfaee glabrous and shining, exenpting where the white deeumbent bands broadly edge the three intermediate segments.

The male differs in being more densely pubeseent, espeeially upon the abdomen, whiel is not glabrous, and in not having the antennce genieulated; the bands of the abdomen are fulvous, and its legs are longer and more slender, and it is sexually less hairy, although still eonsiderably so.

NATIVE SPECIES.

1. hirtipes, Fab., of ㄷ. 6-7 lines. (PlateV. fig. 3 § q q.) Swammerdamella, Kirby.

GENERAL OBSERVATIONS.

This genus is named from the extreme hairiness of its posterior legs, $\delta a \sigma u ̀ s, ~ h a i r y, ~ \pi o u ̂ s, ~ \pi o \delta o ̀ s, ~ f o o t ~ o r ~ l e g . ~$

It is one of the most elegant of our native bees, both in form and the extreme eongruity of its habiliment. This is unfortunately but a bridal raiment, for almost as soon as the arduous duties of maternity supervene these bright garments fade, and the workday suit immediately shows the wear and tear produeed by the labours of life. The male flaunts about longer in the freshness of his attire, but he is usually the assiduous eompanion of his spouse, although he does not partieipate in her toils. They are late summer inseets, and form their burrows upon banks having a southern aspeet; these they exeavate deeper than does Andrena, and smooth and polish them internally. They generally prefer spots intertangled with shrubs, and at the mouth of the eylinder they tunnel they heap up the extraeted soil, to use a portion for elosing it when their task is aeeomplished. In the eourse of this proeess, espeeially if a eloud pass over the sun, they will eome forward to the aperture. They eollect large quantities of pollen, for whieh the hair upon their posterior tibire and plantre is exeellently well adapted both by its length and the additional storing power it possesses in eaeh individual hair being spirally twisted, although they are unprovided with the furniture of hair upon the femora and coxæ found in the genus Andrence. Thus nature likes to vary its mode of aecomplishing the same objeet. The details of their nursery proeesses are not known. For their protection their sting is very virulent, and also aetively employed, as they have many enemies, especially amongst the fossorial Hymenoptera, whom they stoutly resist to the extent of their strength. We are not aware of any speeial parasites that infest them. They are semigregarious in their habits, fur
where they occur any quantity of them may be taken. They are found in their season in the southern counties, the Isle of Wight, and in several parts of Kent and its eastern coast, and even as near London as Charlton. They seem to prefer the composite, fiowers, having a great liking for the bastard Hawkweed and the Dandelion. A fine series of them forms a great ornament to a collection.

Subfamily 2. Apide (Normal Bees), Latreille. Syn. Apis, Kirby.
Tongue alvays folded bauk in repose.
Maxillary palpi varying in the number of the joints. Section 1. Solitary. Subsection 1. Scopulipedes (brush-legeed). a. Femoriferce (collectors on entire leg).
\dagger With two submarginal cells to the wings.
Genus 9. Panurgus, Panzer.
(Plate VI. fig. 1 ठ 우.)

$$
\text { ApIS } * a \text {, Firby. }
$$

Gen. Char.: Head transversely subquadrate; ocelli in a triangle on the vertex, which, as well as the face, is convex, the latter between the antennæ carinated as far as the clypeus; antennce short, subclavate, the second joint of the flagellum considerably the longest, the remainder equal; clupeus slightly convex ; lubrum transversely quadrate, convex; mandibles acutely unidentate; cibarial apparatus long; tongue half its entire length, gradually acute, and fringed laterally with delicate hair; paraglossa slender, acute, membranous, not quite half the length of the tongue; labial palpi more than half
the length of the tongue, the basal joint longer than the two following, the remainder gradually decreasing in length, all conterminous; labium half the length of the cibarial apparatus, broad; maxilla slender, subhastate, as long as the tongue; maxillary palpi sixjointed, the basal joint robust, subclavate, as is the second joint, but more slender, the remainder filiform, gradually deelining in length. Thorax oval; prothorax inconspieuous; mesothorax with a deep eentral groove; bosses protuberant; scutellum and post-scutellum lunulate; metuthorax gibbous; wings with the marginal eell slightly appendieulated, two submarginal cells and a third eommenced, the seeond receiving both the recur. rent nervures, the first close to its commeneement and the second beyond its eentre; the legs densely pilose, the posterior pair having their coxe and trochanters beneath, their femora in front, above, the tibice and plantex all round, covered with long hair; claws bifid. Abdomen ovate, the base subtruneate, the basal segment having a deep eentral impression at its base, the fifth segment fringed with short dense hair, the terminal segment with a triangular plate carinated in the centre, and fimbriated laterally, and all very slightly constrieted.

The male scarcely differs, except in having the head rather more globose and more pubescent ; and the legs, although still hairy, much less so than in the female.

NATIVE SPECIES.

1. Banksiana, Kirby, 才亍 오. 4-5 $\frac{1}{4}$ lines. ursinus, Curtis, iii. 101. (Plate VI. fig. 1 of ㅇ.)
2. calcaratus, Seopoli, of ㅇ. 3-4 lines. ursinus, Kirby.

חavoûpros signifies one excessively industrious, at least as it is applied here, although it has other less meritorious meanings, but these inseets ean scareely be considered more energetic than any of their associates; perhaps the contrast made between the bright yellow pollen and their lugubrious vestment might give the idea of very active collecting, they being usually, upon returning from their foray, almost entirely disguised in the produce of their excursion. They are rather remarkable inseets from their intensely black colour and their compact aetive forms ; their square head and short clavate antennæ give them a sturdy business-like appearance. They also are silent on the wing, but being at the very van of the present subfamily, forming as it were the advanced pieket of the Apide, it may be eonsidered suitable that they should retain, by way of partial disguise, some of the characteristies of the preceding subfamily. In many respeets, therefore, they elosely approach Dasypoda: thus their legs are similarly furnished with hair, relatively as long and having the same spiral twist, and their whole habit is that of one of the Audrenida, excepting that their elavate antennre, and the folding of their tongue in repose, separate them from that subfamily. They are loeal inseets, but extremely abundant when fallen upon. I used to find the first speeies upon an elevated plateau, on the south side overhanging the Vale of Health and its large pond at Hampstead. Every Dandelion, for a wide eireuit in the vieinity, was erowded with individuals-assiduously colleeting, in the ease of females, but basking in sunny indolence, and revelling in the attractions of the flower, in the case
of males, and, at the same time, their burrowing spot, which was not larger than half-a-dozen square yards, was swarming with them, coming and going, burrowing and provisioning. Very numerous, but not so numerous as themselves, were their pretty parasite, the Nomada Fabriciana, fine specimens of both sexes of which I have constantly captured; and a remarkable singularity pertaining to the latter is, that some seasons it would totally fail, and another season present itself sparsely, wheii, after these lapses, it would recur in all its primitive profusion, although the Panurgus was every season equally present. Both these insects are found during the months of June and July, especially about the middle of the former. In their burrows, which they perforate vertically, they usually enclose about six cells, each being duly provisioned and the egg deposited, when each is separately closed and the orifice of the cylinder filled up. This species is also found in Kent and Surrey, and I have no doubt they might be discovered in most of the southern counties. The smaller species, which is a good deal like a little Tiphia, is remarkable for the peculiarity of the male having a projecting process upon its posterior femora, whence it derives its specific name, calcaratus, which is hardly consistent, as it is not quite the right place for a spur. This smaller species is also found in Kent, Hampshire, and at Weybridge, in Surrey, and in the Isle of Wight. As well as in the Leontodon, it likes to repose in the flowers of the Mouse-car Hawkweed (Hieracium).
b. Cruriferce (collectors on the shanks and tarsi).
\dagger With two submarginal cell.s to the wings.
Genus 10. Eucera, Scopoli.

> (Plate VI. fig. 2 of \circ.)
> Apis ** $d 1$, Kirby.

Gen. Char.: Head transverse; vertex eoncave; ocelli in a curve, and very high up; face flattish; clypeus very convex, hirsute, and fimbriated ; labrum trausverse-ovate, and emarginate in front; mandibles very obtusely and ineonspicuously bidentate ; tongue very long and slender, and gradually acuminating, transversely striated; paraglosse slendcr, membranous, very aeute, and about two-thirds the length of the tongue; labial palpi membranous, and about the length of the paraglosser, the basal joint linear, broad, longer than the rest united, the second about half its length and acuminate, the two terminal ones are rery short and equal, and artieulatc within the apex of the second joint; labium less than half the length of the tonguc, its inosculation coneave; maxilla two-thirds the length of the tonguc, subhastate; maxillary palpi six-jointed, short, less than one-third the length of the maxillæ, the basal joint robust, the rest filiform, and gradually decreasing in length and substanee. Thorax very pubescent, which conceais its divisions; metathorax truneated; wings with two submarginal cells, the second reeciving both the recurrent nervures, one near eaeh of its extremities; legs setosc, especially the tibiæ and plantre, whieh, in the posterior pair is very dense on the exterior of the tibire, and both extcrnally and internally upon the plantre, the following joints of the posterior tarsi inserted beneath, and within
the extremity of their plantæ ; the claw-joint being longer than the two prcceding, and the claws acutely bifid. Abdomen oval, convex above, subtruncate at the base, where it is thickly pubescent, the other segments glabrous on the disk; the fifth segment fimbriated with decumbent short hair, and the terminal segment having a central triangular plate at the sides of which it is rigidly setose.

The male differs in having the antenne longer than the thorax, filiform, but with their several joints curved, the curvature increasing towards the terminal joints, the integument of the whole of the flagellum consisting of a congeries of minute hexagons, the edges of which are all raised, and the whole resembling shagreen ; the lcgs have the usual sexual slighter and extended development, and are necessarily less setose; it is also deficient in the transverse whitish bands of decumbent hair upon the abdomen, which is more densely pubescent on the first and second segments; and the four terminal joints of the posterior tarsi are conterminous with their plantr.

NATIVE SPECIES.

1. longicornis, Linnæus. 6-7 lines. (PlateVI. fig. 2 す ot.) $^{\text {. }}$ longicornis, Kirby.

GENERAL OBSERVATIONS.

This genus derives its name from the great length of the antennæ in the male,一є $\hat{\hat{v}}$, good or great, céfas, horn. The name of the genus is usually given from some femalc characteristic, or from a peculiarity common to both scxes, or irrespective of any direct application, but here we find it deduced from a fcaturc exclusively masculine. Instances of the first class we see in Colletes,

Halictus, Andrena, Dasypoda, Panurgus, Saropoda, Ceratina, Celioxys, Chelostoma, Heriades, Anthocopa, and Apathus; of the second class we have Prosopis, Sphecodes, Macropis, Anthophora, Nomada, Melecta, perhaps Epeolus, according to Latreillc's idea, Stelis, Anthidium, Osmia, and Bombus; the third class comprises in our series merely Cilissa, and in this scries the male characteristics that have suggested the name are just as few, being limited to the present genus. But the males among the bees exhibit in many cases strong and striking peculiarities which distinguish them from their partners. Exclusively of the general distinction expressed in their organic difference by the possession of one additional joint to the antennre aud one more segment to the abdomen than is exhibited in the females, we find in many cases in these two parts of their structure very marked singularities. Great sexual differences in the length of the antennæ are not restricted to the present genus; in fact, in most of the genera, this is the first striking feature, but which becomes conspicuously so in some species of Sphecodes, in most of the Halicti, in some Nomade, in Chelostoma, Osmia, Apathus, and Bombus. In Eucera and Sphecodes, each joint of the flagellum is slightly curved, and in the former the surface of those joints appcars compounded of hexagons. In Chelostoma the antennæ, besides being longer than in the female, are also very much slighter and slightly compressed, and have a structure capable of curling upon itself; in the female of this genus the organ is clavate; and in Osmia, besides their length, in one species the male has a fringe of hair attached to one side along the whole of the organ. In other cases, where the antennæ are not remarkably longer in the
'male they have extra development by beeoming thieker, as in Melecta; and in Megachile the terminal joint of their antennæ is laterally dilated and compressed. In seareely any ease arc they geniculated at the seape in the male, as they are in the female. The other genera with clavate antennæ have the same strueture in both sexes, as in Panurgus and Ceratina. Remarkable peculiarities in the terminal ventral segment or segments of the malc may be found most conspicuously developed in Halictus, Coeliorys, Anthidium, Chelostoma, Heriades, Osmia, Apathus, Bombus, and Apis. In Ccelioxys and Anthidium, and some of the Osmia, this sex is further furnished with a series of projecting spines, processes, or scrrations at the apex of the terminal dorsal segment. In Chelostoma, the ventral structure of the male is very singular, the apex being adapted to a mucro at the base whieh permits the insect to curl up this portion of the body similarly to its antennæ, the furcated extremity of the abdomen fitting, when thus folded, upon the mucro. It is as well to draw observation to these peeuliarities, which give additional interest to the study of the group.

The genus Eucera appears in May and June. In some parts they are found in large eolonies; although I have seen them abundant I never found them in this gregarious condition, and I have usually discovered them frequenting loamy and sandy soils; they burrow a cell six or eight inches deep, form an oval ehamber at its extremity, which as well as the sides of the eylinder leading to it they make extremely smooth, and by some process prevent its absorbing the mixture of honey and pollen which they store for the supply of the larva, and each contains but one young one. These, having full fed, lie in a dormant state throughout the winter and
do not change into pupæ until mid-spring, and speedily transform into the imago, which, until fully matured, is closely in every part and limb covered with a thin silky pellicle, wherein it lies as in a shroud, but at its appointed time, regulated by some influence of which we have no cognizance, active life becomes developed, it then casts off its envelope and comes forth to revel in the sunshine, in close companionship with a partner which its instinct promptly teaches it to find. The largest of our native Nomadee is its parasite the N. sexcincta, and which seems wholly restricted to it, but which is often even rare in places where the Eucera abounds. The female, like those of the rest of the bees, is no timewaster, but flies steadily to and fro in her occupation of provisioning her nest, and the male often accompanies her in these expeditions, gallantly winging about with extreme velocity as if to divert his sedulous companion in the fatigue of her toil, by his evolutions and his music, which is very sonorous. And on a finc May day it is extromely pleasant in a picturesque situation to sit and watch the operations of these very active insects. In their recent state, when just evolved from the nidus, they are very clcgant, being covered with a close silky down, which labour and exposure soon abrades. It is said that this bee deserts her nest when she finds the stranger's egg deposited on the provender laid up in store, or when she meets with the Nomada within, which sometimes lays two eggs in one cell. To this she does not deliver battle, as docs the Anthophora to Melecta, but patiently vacates the nest, leaving it to the service of the parasite, which is also supposed to close it herself, having been caught with clay encrusted upon her posterior legs. For the accuracy of this supposition I
cannot vouch, never having observed the circumstance, nor have I seen reason to abandon the idea that the parasitc has no instinct for labour of any kind,- the presence of the clay being, I expect, merely accidental, for it is notorious that these insects have an overruling predilcetion for keeping themselves cxtremely clean.
$\dagger \uparrow$ With three submarginal cells to the wings.
Genus 2. Anthophora, Latreille. (Plate VI. fig. 3, and Plate VII. fig. 1.) APis ** $d, 2 a$, Kirby.

Gen. Char.: Mead transverse, nearly as wide as the thorax: vertex depressed; ocelli placed in a curved line upon its posterior margin; antenne short, subelavate, basal joint of flagellum globose, its seeond joint longer than the scape, very slender, the rest of the joints subcqual; face flattish; clypeus protuberant; labrum quadrate, convex; mandibles distinctly bidentate and obtuse; cibarial apparatus very long; tongue very long, transversely striated, and with a small knob at the extremity; paraglossa about one-third the length of the tonguc, aeuminate ; latial palpi slender, more than half the length of the tongue, membranous, the basal joint as long again as the remainder, the second joint very slender and very acutc; the two terminal joints very short and subelavatc, inserted before the extremity of the sceond joint; labium short, onc-fourth the length of the tongue, its inosculation concave; maxilla hastate, not so long as the tongue; maxillary palpi one-third the length of the maxillæ, six-jointed, the basal joint very robust, the rest filiform, the sceond the longest,
and all the rest deereasing in length and substance. Thorax oval, densely pubeseent, whieh eonceals its divisions; metathorax truneated; wings with three submarginal cells, elosed, the second reeeives the first recurrent nervure in its centre, and the third, which bulges externally, receives the second at its extremity; legs setose, the exterior of the posterior tibice and plante moderately so, and the interior of the latter also densely setose; the seeond joint of the posterior tarsi inserted beneath and within the termination of their plantæ; the elaw joint longer than the two preeeding; claws bifid, the inner tooth distant from the external. Abdomen ovate, subpubescent, the fifth segment densely fimbriated and the terminal segment with an emarginate appendage.

In the males the anteunæ are very similar, but the mandibles are more acutely bidentate, and with the exeeption of the form of the legs, the general aspeet is like the female; the legs, although setose, are less eonspieuously so, the intermediate tarsi in the first seetion of the genus being longer than the rest of the entire leg, and are fringed externally with very long hair, or it is restricted to the plante of that leg and then it is short and very rigid ; the entire limb stretched out extends beyond the widest expansion of the superior wings. The abdomen is also less retuse than in the female, at its basal segment.

In the seeond division of this genus, of whieh Anthophora furcata may be considered to be the type, the general habit is preeisely the same, but the inseets are not so pubeseent, and there is a greater similarity between the sexes. The intermediate legs also, although long in the male, are not so extremely long as they are in the first section.

NATIVE SPECIES.
§ Males with elongate tufted intermediate tarsi, and differing from female in colour.

1. retusa, Linnæus, of q. 6 lines. (Plate VI. fig. 3 ठ ㅇ․)
Haworthana, Kirby.
Haworthana, Curtis, viii. 357.
2. acervorum, Fabricius, ठ \% . 6-8 lines. relusa, Kirby.
§§ Males without elongate tufted intermediate tarsi, concolorous with their females.
3. furcata, Panzer, of ㅇ. 5-6 lines. (Plate VII. fig. 1 o 우.) furcata, Kirby.
4. quadrimaculata, Panzer, ठ̊ ㅇ. 4-5̆ lines.
vulpina, Kirby. subglobosa, Kirby.

general observations.

The name ${ }^{\prime} \nu \quad \theta o s, \phi \dot{\omega} \rho \phi \omega o ̀ s, ~ f l o w e r-r i f t e r, ~ w o u l d ~$ be as suitable for any other genus of bees, and therefore may be classed with those names which have no explicit signification.

The two divisions which our native species of this genus form, might very consistently constitute two genera, differing so much as they do both in habit and habits. In the first section the males totally differ from their females, the latter being black and the pubescence of their partners fulvous, and whose intermediate legs are so much longer, and are decorated besides with tufts of hair upon their plantr, neither peculiarity being found in those of the second section, which conform
more regularly to the ordinary type of structure. The first section also nidificate gregariously, forming euormous colonies which consist of many hundreds; whercas the second are solitary nidifieators, and at most half-adozen may be found within as many square yards of territory, and one species, the A. furcata, diverges considerably from the ordinary habits of the genus, and closely approaehes those of the foreign genus Xylocopa, but its structure nccessarily retains it within the boundaries of the genus. All these inseets exhibit the peculiar eharacteristie of the Scopulipedes, in the insertion of the second joint of the posterior tarsi at the very bottom of their plantre, conjunctively with the polliniferous seopa, plaeed externally upon their tibire and plantæ, in whieh eharaeteristics the Andrenoid Macropis remarkably resembles them, and whieh I have noticed in my remarks upon that genus.

The first section burrows in banks, where their colonies are extremely numerous. In the tunnels whieh they form they eonstruct scveral elliptieal eells which they line with a delicate membrane of a white colour, formed by a sceretion or saliva derived from the digestion of either the pollen or the honey whieh they consume. Each cell when formed is stored as usual, and the egg deposited, and then it is elosed. There is but little variation in these proeesses among all the solitary bees, exeepting in the ease of the artisan bees and the more elaborate processes of Colletes, in whieh, however, the easing is merely thicker, arising from several layers of the eoating membrane. The pcrfcet inseets make their appearanee during the spring and summer months, their sueeessive maturity being the result of the previous summer and autumn deposit of
eggs. They pass the winter and spring in the larva state, and undergo their transformations into pupa and imago with but slight interval, and only shortly before the appcarance of the perfect insect. When first prescnting themsclves they are eertainly very handsome inseets, and if earefully killed preserve their beauty for many years in the eabinet. I have found the retusa, Linn., (Kirby's Haworthana,) in enormous profusion at Hampstead Heath, indecd, so numerous were they, that latc in the afternoon, upon approaching the colony, they, in returning home, would strike as forcibly against me as is often done by Melolontha vulgaris or Geotrupes stercorarius. In equal abundanee I have found the A. acervorum at Charlton, where I have experienced a similar battery. This is the insect which Gilbert White, in his letters from Sclbornc, deseribes as having found in numbers at Mount Caburn, near Lewes, a spot I have often visited in my schoolboy days. This seetion is subject to the parasitism of the genus Melecta, whose incursions are very repugnant to them, and which they exhibit in very fierce pugnacity, for if they catch the intruder in her invasion they will draw her forth and deliver battle with great fury. I have seen both the combatants rolling in the dust, the eombat and eseape made perhaps easier to the Melecta by the load the Anthophora was bearing homc. Upon the larva also of this bee it is said that the larva of the Hetcromerous genus Meloë is nurtured ; this I have never been able to verify, but I believe the faet is fully eonfirmed. This bectle is closely allied to the Cantharides, or blisterbeetles, and it itsclf cxudes a very acrimonious yellow liquid when touched or irritated. Two of the Chalcididee also infest their larvæ, which they destroy ; one is
the Melittolia, named thus from its preying upon bees; it, like the majority of its tribe, is exceedingly minute, and of a shining dark grecn metallic colour. It is peculiar from having its lateral eyes simple, and in possessing besides three ocelli. The other genus is Monodontomeris, an equally small inscct, which, although living upon the larva of Anthophora, is equally preyed upon by that of the Melittobia. The universal scourge, Forficula, is a great devastator of these colonies, where, of course, it revels in its destructive propensities.

The insects of the second division I have never been able to track to their burrows, but have always caught them either on the wing or on flowers, especially upon those of the common Nallow, and I have found both species all round London. They are said also to frequent the Dead Nettle (Lamium purpureum). The A.quadrimaculata burrows in banks, and its processes are scarcely different from those of the preceding species, only its habits are solitary. In flight it is exceedingly rapid, and thus much resembles Saropoda. But the A. furcata bores into putrescent wood, in which it forms a longitudinal pipe subdivided into nine or ten oval divisions, separated from each other by agglutinated scrapings of the same material, very much masticated, the closing of each forming a sharp sort of cornice ; each of these cells is about half an inch in length, and three-tenths of an inch in diameter, the separations between them being about a line thick. These pipes or cylindcrs run parallel to the sides of the wood thus bored, an angle being made both at its commencement and its termination, and thus the latter permits the ready escape of the developed imago nearest that extremity, which being the first deposited, that cell being the first constructed, it
necessarily beeomes the first transmuted, and thus has not to wait for the egress of all above it.

All these insects are usually aecompanied by their partners in their flight, and their amorous intercourse takes place upon the wing.

Genus 12. Saropoda, Latreille.
(Plate VII. fig. 2 す 9. .)

$$
\text { Apis }{ }^{* *} d, 2, a, \text { Kirby }
$$

Gen. Char.: Head transverse, as wide as the thorax, very pubescent; ocelli placed in a triangle, the anterior one low towards the face; vertex slightly coneave; antenne short, filiform, basal joint of flagellum globose, the seeond joint subelavate and the longest, the rest short and equal ; face flattish, short; clypeus forming an obtuse triangle, slightly convex; labrum quadrate, with the angles rounded; mandibles obtusely bidentate; cibarial apparatus long; tongue very long and slender, but gradually expanding towards half its length and then as gradually tapering to the extremity and terminating in a small knob, its sides throughout being fimbriated with short delieate down; paraglossa one-third its length, membranous, very delieate, and tapering to a point ; labial palpi slender, membranous, the joints eonterminons, the basal joint more than half the length of the tongue, the remainder short, the second the longest of these three, and all tapering to the pointed apical one; labium scarcely one-third as long as the tongue, rather broad, bifid at its inosculation ; maxillae nearly as long as the tongue, gradually diminishing from its basal sinus to a point at its extremity ; maxillary palpi four-
jointed, about one-third the length of the maxillæ, the basal joint short, robust, the second tapering from its base to the third joint, whieh is rather shorter and subclavate, the terminal joint slender. Thorax very pubeseent, rendering its divisions ineonspieuous; scutellum and post-scutellum lunulate and convex; metathorax truneated ; wings as in Anthophora, with three marginal eells elosed, the sceond forming a truncated triangle, and receiving the first recurrent nervure near its eentre, the third bulging outwardly and receiving the second recurrent nervure at its extremity; legs very setose, especially the posterior tibiæ externally, and their plantre both externally and internally, but the setæ are longer on the exterior of the joint, the second joint of these tarsi inserted beneath, and before the termination of their plantre, the terminal joint longer than the two preeeding; claws bifid, the inner tooth distant from the apex. Abdomen subovate, very eonvex, truncated at its base, where it is densely pubeseent, the fifth segment fimbriated with stiff setæ, and the terminal segment having a eentral triangular plate with rigid setæ at its sides.

The male seareely differs, exeepting in the eharaeteristie sexual disparities of slightly longer antenme, and eonsiderably longer intermediate tarsi, whose apieal joint is very elavate.

NATIVE SPECIES.

1. bimaculata, Panzer. ठ̊ ㅇ. 4-5 lines. (Plate VII. fig. 2 б 9 .)
bimaculata, Kirby. rotundata, Kirby.

GENERAL OBSERVATIONS.

The name of this genus is as applieable to the sub-
 a foot, in allusion to their polliniferous posterior legs.

We have but one species, but it is very characteristic; for, although retaining several of the features of the second division of Anthophora (in the colouring of the face it participates with the males of both divisions), yet has it still a marked physiognomy of its own; it retains the normal colouring of bees generally, but its strongest distinction from that division of Anthophora is the shortness of the antennæ in the female, as in the length of the intermediate legs of the male it would seem to form a link between the two divisions, could a distinct genus stand in such a position, and would almost import the necessity of elevating that division to generic rank, as hinted at in the observations under Anthophora. In the large development of its claws it seems to point to an economy somewhat differing from that second division, but nobody appears to have traced it to its nidus. I have often captured it at Battersea upon the Mallow, together with A. quadrimaculata, but the singular velocity of its flight might indicate a very distant domicile,-in a few minutes it could traverse miles. The electrical vivacity and rich opaline tint of its eyes has been often observed, but this, unfortunately, fades with death; yet so marked is it that it has called forth the distinct observation of a Panzer and a Kirby. Besides the Mallow it has been observed to frequent the Heaths, and were its habits better known would be found, I have no doubt, to visit many other flowers, for Curtis took it in the Isle of Wight sleeping in the great Knapweed, Centaurea scabiosa. I have never caught it laden.

I have liazarded the conjecture in a different part of this work that the music of the bees might be attuned
to a musical scale by associating the different species in the due gradation of their varying tones. Here we have one of the most musical of the tribe, -not a monotonous dull sleepy hum, but a fine contralto, the very Patti amongst the bees. But it is rapidity of motion which in them intensifies the note they chant, and the velocity of the flight of this insect is something remarkable. They dart about with almost the rapidity of a flash of lightning, and this swiftness of approach and retreat modulates their accents.

Under the head "Macropis" I have pointed to some strong resemblances between this genus and that.

$$
\begin{gathered}
\text { Genus 13. Ceratina, Latreille. } \\
\text { (Plate VII. fig. } 3 \delta \text { of.) } \\
\text { Apis ** } d \text { 2, } a, \text { Kirby. }
\end{gathered}
$$

Gen. Char.: Head transverse, convex, glabrous; ocelli placed in a triangle on the vertex, which is, as well as the face, convex; antenne short, subclavate, each inserted in a separate deep cavity in the centre of the face, the first joint of the flagellum globose, the second the longest of all and slender at its base, but all gradually enlarging to the extremity; clypeus very gibbous; labrum quadrate, convex ; cibarial apparatus long; tongue long and tapering, and with a minute knob at its extremity ; paraglosse obsolete; labial palpi three-fourths as long as the tongue, the two first joints membranous and diminishing in width, the second joint rather shorter than the basal one and acute at its extremity, and externally before its termination the two very short terminal ones are inserted; labium half the length of the tongue,
with a lozenge-shaped inosculation; maxille as long as the tongue, broad at the base, whencc it abruptly acuminates to the slender apex ; maxillary palpi six-jointcd, filiform, the three first joints subequal, the three terminal gradually decreasing in length. Thorax oval, glabrous; prothorax inconspicuous; mesothorax with a central basal groove, the bosses conspicuous and shining; scutellum and post-scutellum lunulate; metathorax subtruncate; wings with three submarginal cells and a fourth slightly commenced, the second in the form of a truncated triangle, the third considcrably larger than the sccond, and each rccciving a recurrent nervure just beyond the centre; legs plumose but not denscly so, the hair very long within the posterior tibir, but denser and shorter on its exterior; the posterior plante also plumose, and all the joints of the posterior tarsi conterminous; claws bifid. Abdomen glabrous, subclavate, very convex above and flat beneath, subtruncate at the base, and the basal segments slightly constricted.

The male scarcely differs, excepting in the clypeus being less gibbous, the legs not plumose, and the sixth segment of the abdomen carinated in the centre towards its extremity, and impending over the seventh, which is transversely gibbous, then depressed, and with an obtuse proccss at its extremity.

NATIVE SPECIES.

1. carulea, Villers, ơ ํ. 2-3 lines. (Plate VII. fig. 3 of q. .)
cyanea, Kirby.
2. albilabris, Fabricius, of ㅇ. $2 \frac{1}{2}$ lines.

GENERAL OBSERVATIONS.

This genus is named from the presence of a little
horn between its antennæ, кєpaiivn, a horn. Some foreign entomologists, espeeially Latreille and Le Pelletier de St. Fargeau, have eonsidered it to be parasitieal, but that it is not so we have the authority of the Marquis Spinola, of Genoa, confirmed by the testimony of Mr. Thwaites, a very aeeurate observer, in the vieinity of Bristol, where the insect is not at all uneommon, although extremely rare in most other parts, and eonsequently usually a desideratum to eabinets, from its great beauty both of form and eolour, notwithstanding that it is so very small in size. It has also been found in other localities, as at Bireh wood, where the late Mr. Bambridge used to take it, and as near London as Charlton, at both which plaees I have no doubt it might frequently be found were it earefully looked for, but the practised entomologieal eve is often wanting to deteet an insect unless it be conspicuously present. Its usual nidus is a bramble or briar stick, from which it excavates the pith, and this it has been frequently observed doing, and both sexes have been repeatedly bred from sueh stieks. We have no notice of any peculiarity in its mode of forming its eells, whieh may resemble that of sueh woodboring genera as Chelostoma and Heriades, although its structure would intimate a eloser affinity to the habits of the exotic genus Xylocopa; nor is there extant any account of the process or time occupied in the development of its young. Spinola's notion, from not seeing the sufficieney of the hair upon the posterior tibie for the purpose, assumed that the pollen was conveyed home on the forehead and between the antennæ, he haviug eaught an insect with some pollen accidentally incrusted there in the inseet's honey-seeking exeursion. The hair upon these legs is very sparse, it is true, but then it
is very long, and the quantity of pollen required for the nurture of the larva is cvidently small, from its having been observed that the store upon which the egg is deposited is semiliquid, thus preponderating in the admixture of honey.

That it has not bcen caught laden with pollen upon its legs has no weight against the fact of its non-parasitism, for it is not always that the excursions of bees are made for the purpose of collecting pollen. Honey is as necessary to their economy-and in this case perhaps more so-as pollen, and the only way to detcrmine the fact of its carrying pollen, corroboratively, would be when knowing that one of these bees has visited a bramble stick-its presumptive nidus,-to watch the stick very patiently for the insect's return from every journey until it camc back laden; the presence of pollen upon its legs would surely be indicated by the difference of its colour from the ordinary dark hue of the little labourer.

We have already noticed bees with metallic hues among the Halicti, and there are slight indications of it in some of the Andrence, for instance, in the A. cinerea and the A. nigro-enea, etc., but in none hitherto so absolutely is it exhibited as in this genus. The prevalent colour of the bees, that is to say, the ground colour of the integument, and not the fleeting one of the pubescence, is black or brown, but here we have a positive metallic tinge, which we shall again come across in many shades and hues in the genus Osmia.

A second species of the genus was brought from Devonshire by Dr. Leach, and is in the collection of the British Muscum, but no other specimens of the same species have since becn found.

The only flower which it has been noticed that they frequent is the Viper's Bugloss (Echium vulgare).

> Subsection 2. Nudipedes (naked-legged Cuckoo Bees).
> a. With three submarginal cells to the wings.

Genus 14. Nomada, Fabricius.

> (Plates VIII., IX., X.)

Gen. Char.: Head transverse; ocelli in a triangle on the vertex; antennce filiform, scarcely geniculated, the scape short, the basal joint of the flagellum subglobosc, the second joint clavate, the remainder subequal ; face flat, or slightly concave, carinated longitudinally in the centre between the insertion of the antennæ; clypeus subtriangular, convex, deflected at the lateral angles; labrum subcircular, very gibbous and protuberant; mandibles acute or subbidentate; tongue long, acute; paraglossa about one-fourth its length, acute; labial palpi two-thirds the length of the tonguc, the two basal joints membranous, the basal one as long as the rest united, and tapering to its extremity, the second joint less than half the length of the first, and not wider at its base than the apex of the first joint, and tapering like that to its end, where it is acute, the third joint short, subclavatc, and the terminal one half the length of the preccding, very slender and linear; labium about one-half the length of the tonguc, and at its inosculation produced obtuscly in the centre; maxilla subhastate, about the length of the tongue; maxillary palpi sixjointed, the basal joint short, robust, subclavate, the second the longest, and with the rest tapering in substance and diminishing in length to the extremity, the
terminal joint being very little shorter than the preceding. Thorax ovate; prothorax inconspicuous, or distinct and angulated laterally; mesothorax glabrous, deeply punctulated; its losses conspicuous and prominent; scutellum divided into two very prominent tubercles; post-scuiellum linear, convex ; metathorax with a triangular spacc at its base, and declining to the inscrtion of the abdomen; wings with three submarginal cells, and a fourth very slightly commenced, the first as long as the two following, and each of which receives a recurrent nervure about its centre; legs subspinose externally on the tibir, and not pollinifcrous; claws of tarsi small and not bifid. Abdomen oval, glabrous, shining; terminal segment triangular, with its sides ridged.

The male scarcely differs, excepting in sometimes being more profusely adorncd with colour, but this is not always the case, the female being often the most ornate. There are very slight differences in the antennæ in the sexes, which may be readily associated together.

NATIVE SPECIES.

§ With filiform antennce.

1. sex-fasciata, Panzer, ô ㄱ. 5-6 lines. (Plate VIII. fig. 3 б字.)

Schafferella, Kirby.
connexa, Kirby.
2. Goodemana, Kirby, ơ 우 . 4-5 lincs. (Plate VIII. fig. 1 б才 $\frac{q}{}$.)
? succincta, Panzer.
3. alternata, Kirby, o̊ 오. 4-5 lines.

Marshamella, Kirby.
4. Lathburiana, Kirby, ơ q. 4-5 $\frac{1}{2}$ lines. (Plate VIII. fig. 2 o̊우.)
5. varia, Panzer, ơ ¢. 4-4 $\frac{1}{2}$ lines.
varia, Kirby.
fucata, Kirby.
6. ruficornis, Linnæus, ot 아. ruficornis, Kirby. leucophthalma, Kirby. flava, Kirby.
7. lateralis, Panzer, đ̊ ㅇ. 4-4 $\frac{1}{2}$ lines. (Plate X. fig. 3 o ㅇ. .)
8. ochrostoma, Kirby, ठ ㅇ. . 4-412 lines.

Hillana, Kirby.
9. signata, Jurine, ठ̊ ㅇ. $4-5$ lines. (Plate IX. fig. 1 of \uparrow.)
10. borealis, Zetterstedt, ơ ㅇ. $3 \frac{1}{2}-5$ lines.
11. lineola, Panzer, ठ 오. 4-6 lines.
cornigera, Kirby.
subcornuta, Kirby.
Capree, Kirby.
sex-cincta, Kirby.
12. xanthosticta, Kirby, of q. 2-2 $\frac{3}{4}$ lines.
13. flavo-guttata, Kirby, ð̊ \&. 2-3 lines. (Plate IX. fig. 3 of 우.)
14. furva, Panzer, ơ ㅇ. 2-2 $\frac{1}{2}$ lines.
rufocincta, Kirby.
Sheppardana, Kirby.
Dalii, Curtis.
15. Germanica, Panzer, of 4 lines.
ferruginata, Kirby.
16. Fabriciana, Linnæus, ठ ㅇ. $3 \frac{1}{2}-5$ lines. (Plate IX. fig. 2 o of.) $^{\text {. }}$

Fabriciella, Kirby. quadrinotata, Kirby.
17. armata, Schaeffer, ठ̊ ํ. 5-5 $\frac{1}{2}$ lines.

Kirbii, Stephens.
§§ With subclavate antennce.
18. Jacobere, Panzer, ठ f. 4-4 $4 \frac{1}{2}$ lines. (Plate X. fig. 1 of ㅇ..)
Jacobere, Kirby.
flavopicta, Kirby.
19. Solidaginis, Panzer, of ㅇ. $3 \frac{1}{2}-4$ lines. (Plate X. fig. 2 of 9.)
picta, Kirby.
rufopicta, Kirby.
20. Roberjeotiana, Panzer, of 두. 3 lines.

GENERAL OBSERVATIONS.
This genus was named by Fabricius from the Nomades, a pastoral Scythian tribe, in allusion to the assumed wandering habits of the insects, and it is the fact indeed that they are usually found leisurely hovering about hedgerows, or the banks enclosing fields, or about the metropolis or nidus of any bee upon which they are parasitical. They are the gayest of all our bees, their colours being red or yellow intermixed with black, in bands or spots; they are also very elegant in form, which is after the type of that of the most normal $A n$ drenidce, and to which they have a further affinity by the silence of their fight, and by their parasitism upon many of the species of that subfamily. From their very general resemblance to wasps in colour they are often mistaken for wasps, and are popularly called waspbees, although they have none of the virulence of that vindictive tribe, for although all the females are armed with stings, they are not prompt in their use, or if roused to defence the puncture is but slight. In addi-
tion to their prettiness of colour and elegance of form, they have a further attraction in the agreeable odours they emit, sometimes of a balmy or balsamical, and sometimes of a mixed character, and often as sweet as the pot-pourri, and occasionally pleasantly pungent. A fine string of specimens of the several species is a great ornament to a collection, but to secure this in its perfection some care is required in the mode of killing them. Their colours are best permanently retained by suffocating them with sulphur, which fixes the reds and yellows in all their natural and living purity. My method was in my collecting excursions to convey with me a large store of pill-boxes of various sizes, and as I captured insects in my green gauze bag-net, I transferred them separately to these boxes. When home again I lifted the lids slightly on one side and placed as many as would readily go beneath a tumbler, and then fumigated them with the sulphur. This is a better plan than killing them with crushed laurel-leaves, for it leaves the limbs much longer flexible for the purposes of setting, whereas the laurel has a tendency to make them rigid, and this rigidity is extremely difficult to relax, whereas the setting of those killed with sulphur, if they are kept in a cool place, may be deferred for a few days, until leisure intervene to permit it, and even then if they become stiffened they are readily relaxed for the purpose.

A division might very consistently be established in the genus by the separation of those which have subclavate antennæ, and the segments of whose abdomen are slightly constricted; these also are more essentially midsummer insects, and usually frequent the Ragwort. This is the only genus of parasites amongst the true
bees whose parasitism is directed exclusively upwards in the scientific arrangement; the parasitism of all the rest of the genera of Nudipedes bears upon the genera below them in the series. Some of the species of the Nomade attack more than one species or one genus, but the majority are strictly limited to but one genus and one species. The genera obnoxious to this annoyance are Andrena, Halictus, Panurgus, and Eucera; the latter two have but one of these enemies each, the Nomada Fabriciana infesting the Panurgus Banksianus, and the N. sexfasciata frequenting the Eucera longicornis. Under Panurgus I have alluded to the relative abundance of the parasite at the metropolis of its sitos. As far as known, the other species are thus distributed. Those frequenting several indifferently are the Nomada alternata, Lathburiana, succincta, and ruficornis, which are found to infest Andrena Irimmerana, tibialis, Afzeliella, and fulva, without displaying any choice; whereas others confine themselves to one sitos exclusively: thus Nomada ochrostoma limits itself to Andrena labialis; N. Germanica to A.fulvescens; N. lateralis to A. longipes; N.baccata to A. argentata; N. borealis to A. Clarkella; N. Fabriciana to Panurgus Banksianus; and N. sexfasciata to Eucera longicornis. Observation has not yet fully determined whither each species of Nomada conveys its parasitism ; several infest the Halicti, especially the smaller species; the association of these it is difficult to determine; I have usually found several of the small Halicti burrowing together in the vertical surface of an enclosure bank, and several of the small Nomada hovering cautiously opposite, now alighting and entering a burrow, then retreating backwards and winging off. I lost patience in endeavouring to combine the
species by the aid of blades of grass or slight straws thrust into the aperture, but the crumbling nature of the soil frustrated my wishes, and I abandoned the attempt. This field of observation is widely open to the exertions of observing naturalists, and the novelty of their discoveries would well reward the toil of the undertaking, for it would not be long before they gathered fruit.

Genus 15. Melecta, Latreille.

(Plate XI. fig. 1 ơ q.)

Apis *** a, Kirby.

- Gen. Char.: Head transverse, scarcely so wide as the thorax ; ocelli in a triangle on the vertex ; antennce filiform, rather robust, and but slightly geniculated, the scape not longer than the two following joints, the second joint of the flagellum the longest and clavate, the rest slort, nearly equal, and the terminal onc laterally compressed at its extremity ; face flat, very pubescent; clypeus short transversc, lunulatc, convex ; labrum irregularly gibbous, obovate ; mandibles strongly bidentate ; tongue long, slightly cxpanding towards the middle and thence tapering to the extremity, and with a central line ; paraglosse scarcely half the length of the tongue, almost setiform, but robust at the base; labial palpi more than half the length of the tongue, the two first joints membranous and very slender, the first longer than the rest united, the second about half the length of the first, and terminating acutcly, the third not more than one-fourth the lengtl of the second, and inserted laterally before its termination, the fourth about as long
as the third, and, like it, subclavate, both being more robust than the second; labium not half the length of the tongue, and acutely triangular at its inosculation; maxille subhastate, not quite so long as the tongue; maxillary palpi five-jointed, about one-third the length of the maxillæ, the basal joint clavate, short, and robust ; the sccond elongate, subclavate, the remainder gradually but slightly diminishing in substance and length, the terminal not so long as the basal joint. Thorax very retuse, and its divisions scarcely distinguishable ; scutellum bidentate; metuthorax abruptly truncated; wings with thrce closed submarginal cells, the second the smallcst, irregularly triangular, and receiving the first recurrent nervure just beyond its centre, the third submarginal considerably larger than the second, sublunulate, but angulated externally and receiving the second recurrent nervure about its centre; the legs robust and spinulose, especially the tibiæ externally (where they are very convex) and the femora beneath; the claws short, strong and bifid. The abdomen conical, truncated, and retuse at its base, the apical segment with a central triangular plate ridged laterally, and fimbriated at its sides with strong setæ.

The male scarcely differs in personal appearance, excepting that its antennæ are more robust and its ornamental pubescence is more profuse, its posterior tibiæ very robust and almost triangular, and the terminal segment of its abdomen slightly emarginate and concave at its extremity.

1. punctata, Fabricius, of ํ. 6 lines. (Plate XI. fig. 1 す 우.)
? Atropos, Newman.
? Lachesis, Newman.
2. armata, Panzer, ठ ¢ . 6-7 lines.
punctata, Kirby.
? Tisiphone, Newman.
? Alecto, Newman.
? Clotho, Newman.
? Megara, Newman.

GENERAL OBSERVATIONS.

Named from μ é $\lambda \iota$, honey, λ é $\gamma \omega, I$ collect; which is scarcely the case, for the parasites, although they may indulge in the luxury of honey as epicures, or resort to it as a repast, cannot be said to collect it, for it is only the labouring becs that truly collect it for the purpose of storing.

These insects are extremely handsome, their groundcolour being intensely black, brightly shining on the abdomen, upon the segments of which it is laterally ornamented with silvery pubescent tufts and spots; the black legs are also variously ringed with similar silver down. The great variation these spots and markings undergo-from what cause we know not-lias induced several entomologists to consider them as distinct species. But the strongest varieties so rarely recur with identical ornaments, and as almost all can be closely connected together in a regular series by interlacing differences impossible to divide, it would be certainly incorrect, without stronger characteristics, to raise such fugitive variations to specific rank. Whether the curious spines of the scutcllum which they possess furnish a more certain character is doubtful, for we find all such processes equally liable to variation in size and
form. What can be the uses of these spines? They can hardly be for defenee, although an entomologist has said that a male whieh he held endeavoured to pinch by that means. We find similar proeesses in the same situation in Coelioxys, equally a parasitieal genus; but the former genus infests the Scopulipedes and the latter the Dasygusters, whose eeonomies are so very different, and thus it ean hardly be supposed to have reference to habits. In Epeolus and Stelis the same part is mueronated, a tendeney to whieh we see in the Nomadre with subclavate antennæ. Under Anthophora I have given an aceount of the pugnacious spirit of these insects in their contests with the sitos, and it is neeessary to be cautious in handling them, as they sting very severely. Our two native species are parasitical upon the two species of the first division of Anthophora, -those which are gregarious. The eircumstanee of $M c$ lecta being often eaught with many of the extremely young larvæ of Meloë upon it seems to confirm the faet of this eoleopterous inseet preying upon Anthophora, as it may be thus assumed to prey simultaneously upon the larva of Melecta. I have never captured these insects upon flowers, nor ean I traee what flowers they frequent, although Latreille tells us, in the name he has imposed, that they are honey eolleetors; but Curtis reports that he has found the genus upon the common furze or whin (Ulex Europeus).

Genus 16. Epeolus, Latreille. (Plate XI. fig. $2 \delta^{\circ}$ 子.)

Apis *** ${ }^{\text {相, Kirby. }}$
Gen. Char. : Body glabrous. Head transverse, ver-
tex convex ; ocelli placed in a triangle on its summit; antenne short, linear, the joints of the flagellum subequal; face flat, carinated longitudinally in its centre between the insertion of the antennæ; clypeus transverse, lunulate, convex, margined anteriorly ; labrum transversely ovate, with a small process in the centrc in front; mandibles bidentate, the internal tooth minute, the external robust and broad ; tongue rather long, more than twice the length of the labium, tapering to its extremity ; paraglossce short, about one-fourth the length of the tongue, broad at the base, and acuminate towards the apex; labial palpi more than half the length of the tongue, the basal joint longer than the three following, membranous, and gradually decreasing to the second, which is one-third the length of the first, and acute at its apex, where the third subclavate joint is articulated, the terminal joint considerably shorter than the third; labium not more than one-third the length of the tongue, and trifid at its inosculation, the central division being hastate; maxillce subhastate, more than one-half the length of the tongue; maxillary palpi consisting of one robust short conical joint inserted in a deep circular receptacle. Thorax subglobose; prothorax conspicuous, with its lateral angles slightly prominent; mesothorac with its bosses prominent; wing scales large; scutellum transverse, gibbous, margined posteriorly, slightly mucronated laterally, slightly depressed in the centre, and impending over the post-scutellum, which is inapparent; metathorax abruptly truncated; wings with three submarginal cells, and a fourth feebly commenced, the first as long as the two following, the second subtri. angular, and receiving the first recurrent nervure about its centre, and the third lunulate, and receiving the
seeond recurrent nervure also about the centre; legs short, stout, the tibice slightly spinulose externally ; claws very small, short, robust and simple. Abdomen obtusely conieal, truneated at the base, its terminal segment triangular, and the lateral margins slightly reflected.

The male seareely differs, excepting in the usual male eharacteristies, and that the apical segment of the abdomen is rounded and margined.

native species.

1. variegatus, Linnæus, $\delta^{\text {ㅇ }}$ ․ 3-4 lines. (Plate XI. fig. 2 ot 9. .) variegatus, Kirby.

> GENERAL OBSERVATIONS.

It is diffieult to assign a reason for the name of this genus, or to traee an applieable derivation from $\grave{\epsilon} \pi i ́ a \lambda o s$, for the insect in no way suits, either direetly or by antiphrase, any of the signifieations of this word. It is one of the prettiest of our little bees, and is parasitieal upon the Colletes Daviesiana, and it may be found in abundance wherever the metropolis of this speeies oeeurs. There is one speeial loeality near Bexley, in Kent, a vertical sandbank within a few hundred yards of the village, where I have always found it in the spring months, and have there taken it as numerously as I wished. I have already alluded, in another part of this work, to the uniformly greater beauty of the parasitieal bees, to those whieh they infest, and their execedingly different appearanee in every ease exeepting in that of the genus Apathus. We might have expeeted that they would have been disguised like these, the better to earry on their nefarious praetiees, but what ean well be more dissimilar than Epeolus and Colletes, or than Nomada and all its
supporters, and the same of Melecta, Ceelioxys, and Stelis. These facts puzzle investigation for a reason ; nor will the perplexity be speedily solved. All that we ean surmise is that there must be a motive for it, for wherever we suecessfully elicit her secret from the veiled goddess, we invariably find the reason founded in profound wisdom. In some eases the mystery seems devised to test our sagaeity, but it eannot be so here, for the most palpable and plausible eause that would suggest itself in the supposition of its being for the guardianship and apprisal of the sitos is often contravened, as in this instance, by it and its parasite living in great harmony together, again by the desertion of its nidus by Eucera in favour of the parasite, although itself is a very much more powerful insect; but in the cases of Panurgus, Halictus, and Andrena, they all live well reconciled to the intrusion of the stranger's young, and this, without their enumeration, may be adopted as nearly the universal case. The hostility of Anthophora, previously noticed, is an almost insulated ease of the contrary. The form of these insects does not promise much aetivity, and we accordingly find that they are slow, heavy, and indolent ; yet they must be eautiously handled, for they sting aentely; but indeed it is not well ever to handle inseets whose markings, as we find them in these, eousist of a close nap, as evanescent as the down upon a plum, and of course the fingers earry it readily off, and disfigure the beauty of the little speeimen. When their special habitat is not known they may often be found upon the blossoming Ragwort in the vieinity, or upon the Mouse-ear Harkweed (Hieracium murorum) within whose flowers they are frequently observed enjoying their siesta.

b. With two submarginal cells.

Genus 17. Stelis, Panzer.

$$
\begin{gathered}
\text { (Plate XI. fig. } 3 \text { of ㅇ.) } \\
\text { Apts 糉 } c, 1 \beta, \text { Kirby. }
\end{gathered}
$$

Gen. Char.: Body glabrous, much punctured. Head transverse, curving posteriorly to the thorax, where it is angulated laterally; ocelli in a triangle at the summit of the vertex ; antenne short, slender, filiform, scarcely geniculated, the scape about as long as the three first joints of the flagellum, all the joints of which are subequal but slightly increasing in length towards the apical one, which is a little eompressed laterally ; face entirely flat; clypeus transverse, rather convex ; labrum elongate, convex ; mandibles robust, tridentate, the external tooth considerably the stoutest; cibarial apparatus long, tongue three times as long as the labium, slightly inflated in the centre, and terminating in a small knob; paraglossa rery short, not more than one-sixth the length of the tongue and aeuminate; labial palpi about two-thirds the length of the tongue, the two first joints membranous, the basal one the most robust, and both tapering to an acute apex, shortly before which the two very short subclavate terminal joints articulate; labium about one.. third the length of the tongue, its inosculation trifid, the central division eonsiderably the longest and truncated at its extremity; maxillce subhastate, nearly as long as the tongue, acutely acuminated towards their apex; maxiliary palpi very short, two-jointed, the basal joint subclavate and slightly the longest, and inserted in a eircular cavity, the terminal joint short ovate. Thorax subglobose ; prothorax inconspicuous; mesothorax very convex ; scutellum lunulate, very gibbous, and impending
over the post-scutcllum and metathorax, mucronatcd laterally; metathorax abruptly truncated; wings with two submarginal cells, and a third very slightly commenced, the two subequal, the sccond being the largest and receiving the first submarginal cell ncar its commencement and the second at the inosculation of the terminal transverso-cubital ncrvure; legs short, moderately stout, the tibice very slightly setose externally; claws short, bifid, the internal tooth near the external. Abdomen oblong, truncated at its base, very convex above and flat beneath, deflexed towards its extremity, and the terminal segment almost rounded, being very slightly produced in the centre and margined.

The male scarccly differs, cxcepting in the usual male characteristics, and by the apical segment bcing obsoletcly tridentate.

NATIVE SPECIES.

1. atcrrima, Panzer, δ 우. $4-4 \frac{1}{2}$ lincs.
punctulatissima, Kirby,
2. pheoptera, Kirby, δ ㅇ. 4-4 $\frac{1}{2}$ lincs. (Plate XI. fig. 3 ठ 우.)
3. octomaculata, Smith, of q. 3 lines.

GENERAL OBSERVATIONS.

The name of this genus may be derived from $\sigma \tau \epsilon \lambda i s$, a sort of parasitical plant, perhaps mistletoe, if we could be sure that Panzer imposed it after being aware of the parasitical nature of these bees. It is true his book (the ' Revision') was published in 1805, and Kirby, who first intimated a suspicion of such cuckoo-like habits in some of the bees, published his in 1802; therefore it might have been given in allusion to that peculiarity of
their cconomy, but it may also be from $\sigma \tau \eta \lambda i s$, a little column, in application to their cylindrical form. In but few of the parasitical bees do we know the precise nature of their transformations, I have therefore been obliged to be silent upon this point of their natural history, and I have nothing to state of its nature in these, although I expect there is much uniformity with but slight modifications in all. The species of this genus arc parasitical upon the Osmice; thus the S. pheoptera is found to infest the O.fulviventris, and the S. octomaculata intrudes itself into the nests of O. leacomelana, both of which occur tolcrably abundantly near Bristol. I have no doubt that the south-west and west of England, if well scarched, would yield many choice insects.

It is singular that bee parasitism does not prevail throughout all the genera of bees, some being subject to it and others not. Thus the genera Colletes, Andrena, Halictus, Panuryus, Eucera, Anthophora, Saropoda, Megachile, Osmia, and Bombus have all parasites, whereas the genera Cilissa, Macropis, Dasypoda, Ceratina, Anthidium, Chelostoma, Heriades, Anthocopa, and Apis have none, as far as we yet know; and some of the genera of parasites frequent two or more genera indifferently, whilst others are rcstricted to a single one; also some of the species of the parasitical genera infest indifferently several of the species of the genus to which their parasitism is mainly limited; other species have a morc circumscribed range and do not visit the nests of more than a single species. What law may control all these secming anomalies we cannot discover,-it may possibly be scent that guides them, and this may control their parasitism by indicating the species they are taught by their instinct to be most suitable from the
quality of the pollen with which it supplies its own nest, to be that which is best adapted for the nurture of their young. It is not likely that we shall very speedily lift the veil from these mysterics, but they are suggestive of observation which in sceking onc thing may fall upon another equally interesting.

I have usually caught these insects settled upon the leaves of shrubs, especially of fruit bushes, particularly that of the black currant, upon which, in a favourable locality, many bees, as well as numerous small fossorial Hymenopterca may be found in genial weather. I have never caught them upon flowers, nor do I know what flowers they frequent. The end of May, if warm, and throughout Junc, they are usually found most abundantly.

> Genus 18. Celtoxys, Latreille.
> (Plate XII. fig. 1 ठ 우.)
> Apis ** c 1 a, Kirby.

Gen. Char.: Body subglabrous. Head transrerse, concave posteriorly to fit the anterior portion of the thorax ; ocelli in a triangle on the vertex ; antennce filiform, short, subgeniculated, the basal joint of the flagellum globose, the sccond subclavate, and all from the second subequal, the terminal joint compressed laterally; face flat, very pubescent; clypeus ovate, concavcly truncated in front, its surface convex ; labrum oblong, with its sides parallcl, but with lateral processes at its articulation; mandibles broad, quadridentate; cibarial apparatus long, the tongue very long, nearly threc times the length of the labium, lincar but slightly inflated in the centre, and thence tapcring to its extremity, and
slightly covered with a very short down; paraglosse wholly wanting ; labial palpi membranous, the two first joints long, the second slightly the longest, and both tapering to the extremity of the seeond, which is aeute, and has the third joint, whieh is very short and subelavate, artieulated before the extremity, with the terminal one of equal length, and rounded at the apex, appended to it; labium about one-third the length of the tongue, its inosculation trifid and equal, and the eentral division aeute; maxillce subhastate and aeuminate, not quite so long as the tongue; maxillary palpi very short, three-jointed, the basal joint the smallest, the seeond the most robust, and the terminal one ovate. Thorax subglobose; prothoraz inconspieuous; mesothorat eonvex; wing-scales large ; scutellum produced horizontally, and impending over the post-scutellum and metathorax, and having at eaeh lateral extremity an acute, slightly-eurved tooth projecting baekwards; metathorar abruptly truncated; wings with two submarginal cells and a third eommeneed, the first slightly the longest, the second receiving both the reeurrent nervures, the first near its eommencement, and the seeond close to its termination; legs slender, spinulose externally on the tibiæ ; claws rather long, slender, and simple. Abdomen very conical, truncated at the base, its segments slightly eonstricted, the apical one long, superfieially earinated longitudinally in the centre, and mueh deflexed.

The male searcely differs, excepting that the whole of the front of the head is more densely pubeseent ; the mandibles are deeply, aeutely, and nearly equally tridentate, the terminal segment of the abdomen is variously mucronated or toothed at its apex, these processes pointing backwards, and the penultimate segment is more or less produced laterally.

NATIVE SPECIES．

1．conica，Linnæus，of 오．4－5 lines．
quadridentata，Linnæus，${ }^{\star}$ ． quadridentata，Kirby，刃｀．
2．simplex，Nyland，ơ 오． 5 lines． conica，Kirby． conica，Curtis，viii． 349.
Sponsa，Smith，ठ．
3．umbrina，Smith，δ 오．
4．rufescens，St．Fargeau，r．4－6 lines．
๖̄．vectis，Curtis，ð ํ．5－6 lines．（Plate XII．fig． 1 б早．）
6．inermis，Kirby．

GENERAL OBSERVATIONS．

This genus is named from кoぃ入ía，belly，ó i_{s} ，acute， in applieation to the conical abdomen of the female． The inseets of this genus are parasitical upon the genera Megachile and Saropoda．Thus，C．simplex infests M． circumcincta；C．rufescens，M．Willuglibiella；C．vectis， M．maritima；and C．umbrina is parasitical on Saropoda bimaculata．Linnæus，from the different appearanee of the two sexes made two speeies of them，and from the cir－ eumstance of his having deseribed first the male as Apis quadridentata，this，by the law of priority，supersedes the name of C．conica as the name of the species，which is its female，and which he next deseribed，and thus that sex， whose form Latreille adopted as typieal of the genus，is in the series of speeies totally superseded and reduced to a synonym．The speeies of this genus are extremely dif－ fieult to separate from each other，no tangible charaeter presenting itself eonspicuously，although the Swedish
entomologist Nylander supposes he has found one in the plates of the apieal segment of the abdomen, espeeially those of the venter, in whieh he deteets both a difference of form and a difference of relative length to that of the superior plates, and in the males he assumes that the teeth of the apical segment are eonstant eharacters. Not having had sufficient opportunity sinee this supposed diseovery was made, for the examination of a great multitude of speeimens, for it is only upon such an investigation that it ean be firmly based, I eannot speak eorroboratively upon the point, but it is very possibly a correct solution of the diffieulty.

The peeuliarity of these spines at the apieal segments of the abdomen of the males is remarkable, they being straight projecting proeesses, or they have even a slight upward bearing. In the males of Anthidium and Osmia we observe spines also arming the apex of the last segment, but in these we can trace an evident use, both from the downward eurvature of the abdomen itself, and that same tendeney also in the spines. But in the inseets of this genus they have not the same conspicuously apparent object, the abdomen itself even having an upward curvature, or rather a greater faeility for turning upwards than downwards. These insects appear to be most abundant in the midland and southern eounties, and, according to Curtis, they are numerously found at the back of the Isle of Wight. I have usually taken them on the wing and never on a flower, and I do not know the plants whieh they may prefer.

Subsection 3. Dastgasters (convey pollen on the belly).
All with two submarginal cells to the wings.
Genus 19. Megachile, Latreille. (Leaf-cutters.)
Apis *** ${ }^{2}$ a, Kirby.

Gen. Char:: Head as wide as the thorax, flat and broad on the vertex, where, on the anterior edge, the ocelli are disposed in a triangle; antenne shortish, filiform, genieulated; scape about as long as two first joints of flageilum, whieh increases both in length of joints and their substance from base to apex, the terminal one being the longest, and longitudinally eompressed ; face and elypeus very pubeseent, concealing their divisions; clypeus transversely lunulate, scarcely eonvex; labrum longitudinally slightly eonvex and oblong, with the sides parallel ; mandibles broad, widening outwardly, irregularly quadridental, the two inner teeth obtuse; cibarial apparatus moderately long; tongue more than twiee the length of the labium, tapering from the base to the apex, where it terminates in a minute knob ; paraglosse very short, seareely one-sixth the length of the tongue, eoadunate at the base and aeuminate at the apex, where, in repose, they lap round the base of the tongue; labial palpi three-fourths the length of the tongue, the two basal joints long, subequal, membranous, linear, slightly tapering to the acute apex of the second, where the third subelavate joint artieulates just before its termination, and conterminous with which is the fourth, shorter than the third, but also subelavate ; labium not quite half the length of the tongue, with a long subobtuse proeess in the centre of its inosculation; maxilla subhastate, and
very acuminate, nearly as long as the tongue ; maxillary palpi very short, two-jointed, the basal joint the shortest, and the terminal one obtuse at its apex, where it is furnished with brief setæ. Thorax subglobose, pubeseent, the pubeseence almost concealing its divisions; prothorar ineonspieuous; mesothorax convex, subglabrous on the disk; scutellum lunulate, eonvex; metathorax truneated; wings with two submarginal cells, the eommeneement of a third slightly indicated, the two complete ones nearly equal, the seeond of which reeeives both the reeurrent nervures, one towards eaeh extremity ; legs robust, very setose; the posterior tibice slightly curved longitudinally, coneavo-convex, broad at the extremity; all the plantee as long as their tibiæ and as broad at the base but deereasing at the apex to the width of the following tarsal joints, the anterior pair fimbriated externally, and the posterior pair elothed, on the inner surface, with a dense, short brush, the three following joints short, subequal, the elaw-joint as long as the three, and the claws with a broad basal inner tooth. Abdomen ovate, with parallel sides, convex above, truncated and coneave at its base to fit the metathorax, distended horizontally in length, or with an upward eurve, the four first segments slightly eonstrieted, and their edges usually clothed with decumbent down; the terminal segment obtusely pointed and slightly depressed transversely towards its extremity ; the ventral segments commencing with the seeond, clothed with parallel layers of moderately long, straight setæ, which in eaeh parallel are of equal length, but those on the fifth segment are the shortest, upon all of which the insect eonveys the pollen it colleets.

The females of the second division of the genus scareely differ.

The males of the first division differ in having the head slightly larger and squarer above; the antennce very slightly longer; the mandibles more acutely tridentate, with a distinct powerful basal tooth beneath, terminating the concavity of the organ; the anterior femora, tibie, and joints of their tarsi, excepting the terminal one, concavo-convex, the four first joints of the latter distended laterally, and edged with a dense fringe of setæ, the distension of these joints is widest at their articulation with the tibix and they decline in length to the claw joint which is long; the claws bifid; the interior claw acute, but remote from the apical one; the posterior femora are very robust, their tibice much curved, robust, almost triangular, and externally very convex; their plunta almost glabrous, not so long as the three following joints, externally rather twisted, and beneath furnished with a dense brush of long stiff hair.

In the second division of the genus the males are destitute of the distension of the anterior tarsi, these being instead densely fimbriated externally; the legs in them are much less robust, and more closely resemble those of their females.

NATIVE SPECIES.

§ Anterior tarsi of males much dilated.

1. Willuyhbiella, Kirby, of it. 5-7 lines.
2. maritima, Kirby, of q. 6-7 lines. (Plate XII. fig. 2 ot $_{\text {of.) }}$
3. circumcincta, Kirby, $\begin{gathered}3 \\ \text { ㄱ. }\end{gathered} 4 \frac{1}{2}-5 \frac{1}{2}$ lines.
§§ Anterior tarsi of males not dilated.
4. ligniseca, Kirby, ठ̊ ㅇ. 5-7 lines.
-2. centuncularis, Linnæus, of \&. 4-6 lines. centuncularis, Kirby.
5. argentata, Fabricius, ot $\frac{+}{}$. $3-4 \frac{1}{2}$ lines. (Plate Leachella, Kirby. [XII. fig. 3 ơ ㅇ.) Leachella, Curtis.
6. odontura, Smith, O6. $4 \frac{1}{2}$ lines.

general observations.

Namcd from the great development of the labrum, μ éra large, χ єìos lip, which is characteristic of all the Dasygasters, and also of some of the proximate Nudipedes, those parasitical upon them, Stelis and Colioxys, and which, too, resemble the sitos in the cxpansion and dentated formation of their mandibles, although they do not use them for the samc purposes; this again exhibits an analogy of structurc, that appears in the parasite to be merely corroborative of identity of existence.

These are more essentially summer insects than the majority of the preceding gencra, although some of them prescnt themsclves with genial spring weather. The genus may be separated into two distinct divisions by the peculiar dilatation of the tarsi of the males of some of the species, but such division is not indicative of a differcucc of habits, as is distinctly the case in the genus $A n$ thophora, and in which these combined circumstances Mr. Kirby suggested as acceptable for gencric division, or, as he called it, the institution of another family. But in these we find in both divisions both wood-borers and carth-tunnelers, and some species arc indifferently either as suits their accidental convenience. The gencral appearance of the insects is more that of ordinary bees, and the sexcs are more approximate in their habit than is usually the casc.

With this genus commences essentially those designated as artisan bees, although Colletes might very
suitably come under that denomination. The species themselves of the genus are called leaf-cutters, from the habit they have of cutting pieces from the leaves of various shrubs and trees, for the purpose of lining their nests. The description of the operations of one species will apply precisely to that carried on by all, the occasional difference between them being the selection of the leaves of distinct plants ; and it will exhibit the patient industry and perseverance with which these little upholsterers carry on their labours.

Thus M. centuncularis, the type of the genus, burrows in decaying wood or in brick walls, and sometimes also in the ground, and makes use of the cuttings of rose leaves, - not the petals, -and the leaves of the annual and perennial Mercury (Mercurialis annua and M. perennis). The M. ligniseca bores into sound Oak and the Mountain Ash, as well as into putrescent Elm, and uses Elm leaves to line its nests, sometimes called centunculi from their being as it were patched together. This is the largest of all our species, and is found very abundantly everywhere around London frequenting the flowers of the Thistle. The M.argentata, Fab., or Leachella of Kirby, is perhaps the prettiest of all the species, and forms its tunnels in sandbanks. I do not know what leaves this species selects, which used to be extremely rare, indeed for a long time only known by the specimen in the British Museum, until that ardent entomologist the Rev. F. W. Hope, to whom the University of Oxford owes its superb entomological collection, brought it in abundance from Southend, where, during his brief annual stay at his residence there, he used to find it in the grove which runs under the cliff edging the terrace of the village; it is extremely local, as that and Weybridge, in Surrey,
are the only two spots where I have known it to be found. It is one of the most vivid fliers among the bees, and darts about, especially during brilliant sunshine in June, with the velocity of a sand-martin, and its note is slirill, but harmonious; it is not often caught upon flowers, being so extremely alert; but has been seen to visit the common Viper's Bugloss (Echium vulgare). The M.odontura, the last of the second division, which is known only in a single male specimen in the cabinets of the British Muscum, is one of Dr. Leach's west country captures, of which nothing precise is known, and it is only noticed here on account of the singular peculiarity of the armature of the apex of its abdomen, whieh brings it closer to the genus Osmia in that particular, although the majority of the males of the genus have the terminal segment slightly furcated.

In these observations I have commenced with the division which contains the type, and to which the present name of the genus would attach from that circumstance, were it ever thought desirable to separate those species, which have dilated anterior tarsi in the males, into a distinct genus, but which I could scarcely recommend. In the arrangement of the species in the preceding list, I have placed these latter first, from their more symmetrical appearance in the cabinet, by leading down to the terminal smaller species in due order, from these larger and more conspicuous ones.

The M. Willughbiella and maritima prefer decaying wood, and they have been found upon decaying Willows in the Midland Counties in extreme abundance; they might be called gregarious were the material within which they burrow connected in a continuous plane. The M. Willughbiella makes use of the leaves of the

Rose and of the Laburnum, but the M. maritima seems to prefer the leaves of the Saliow. The M. circumcincta invariably burrows in banks, confirming the semi-gregarious habits of the genus, where it forms large colonies, and it is only by accident that it constructs secluded and solitary nests; it also makes use of rose leaves for lining its apartments. The insects are subject to the molestation of bee-parasites of the genus Ccelioxys, the C. quadridentata having been bred from the cells of this latter species, -that parasite also frequenting the M. Willughbiella, and the C. vectis is well known to infest the M. maritima. Thus, it appears to be only the species of this division with the dilated tarsi that are exposed to such incursions, there being no record of parasitcs frequenting the division in which the males have simple anterior tarsi. Besides this bee-parasite, they are also subject to the attacks of some dipterous insect, whose larvæ destroy the larvæ of the Megachile. Much difficulty exists in scparating the females of some of the specics from each other ; in others the specific character is sufficiently noticeable. It is a singular concomitant that those males with the dilated anterior tarsi have the apical joint of the flagellum of the antennæ considerably compressed and also dilated laterally.

The proceedings of these bees are very curious. Although the tubes they usually form are long, they are so constructed as not to branch far away from the extcrior of the material into which they bore,-sound or putrescent wood or earth, or old mortar joining the bricks of walls, if in the sccond material, they usually follow the putrescent vein, and their tunnel in every case is rarely further than an inch or an inch and a half from the external surface. Both the sides of the tubc, and the cells
they form within them, will necessarily vary in diameter and length with the size of the species, but in the larger species they are about an inch and a quarter long and half an inch in diameter. Some entomologists have surmised that different species use the leaves of diffcrent plants for lining their cells ; this, however, is not strictly the case, as shown in the preceding remarks; but, although not so, the series of nests in the same tube are always lined with cuttings from the same plant; perhaps a varying caprice operates upon each day's labours and changes the plant, influenced by the drift of the wind or some casual freak.

The cylindrical tube being prepared, which is done very similarly to the way in which it is practised by all the labouring genera, by the gradual removal of the particles of the wood, or sand, or earth of which it consists, the insect's instinct prompts it to fly forth to obtain the requisite lining, that the lateral earth may not fall in, or the wood taint the store to be accumulated for the young, for it is before this is done that the upholstery is commenced. Having fixed upon the preferred plant, Rose-busll or Laburnum or Sallow, or whatever it may be, it alights upon the leaf, and fixing itself upon the edge, it holds it with three legs on each side, then using its mandibles as the cutter of silhouettes would his scissors, and, just as rapidly as he cuts out a profile, does this ingenious little creature ply the tools it is furnished with by nature. The oval or semicircular cutting being thus speedily dispatched, with the legs still clinging to the surfaces, the insect biting its way backwards, the piece cut off necessarily remains within the clutch of the legs, and, when about falling, the rejoicing labourer expands her wings and flies off with it with a hum of delightful triumph, the cutting being carried
perpendicularly to her body. In a direct line she wings her way to the receptacle, and arrived at the mouth of the aperture within which she has to convey it, she rolls it to its requisite tubular form and thrusts it forward to the bottom of the cavity. The first piece for the lining of each cell is always oval and larger in proportion than the succeeding ones, which, to the number of three or four, are semicircular, the first piece having an extra use to serve in forming a concave bottom to the cavity. Having completed the requisite manipulation, for adjusting it to shape the external lining of the bottom and sides of the first cell, she withdraws backwards, again flies off, and, as if she had traced a trail in the air, or had marked its limpidity with a frothy surge, like that left in the wake of a ship, to note the road for her return, back she wends to the same plant, and proximately to the spot of her recent triumphant exploit renews the operation, but the result of which, this time, is to be semicircular. Home she flies again, and the arrangement within of this piece is different to that of the first, for this is simply tubular, and so placed that it imbricates with its cut margin within the serrated edge of the first and the third, and in case of a fourth the fourth also is similarly placed, so that one laps within the other, the edges of two of these cuttings never being conterminous. The number of the coatings is apparently regulated by the drier or moister condition of the substance in which the tunnel is drilled. Another duty has now to be performed, indeed, that for which all the preceding labours were undertaken,--the provision for its young, wherein it perpetuates its kind,-and thus on and on flows the wonderful stream of life, whose origin who shall estimate through the millennia it has hitherto
so plaeidly and uniformly traversed, and whose termination who shall prediet? Having eompleted the requisite store of honey mixed with pollen, this is earried to the brush with which the under side of the abdomen is furnished, by means of the posterior legs. The honey and pollen are gathered from different kinds of thistles, whenee it aequires a reddish hue and looks almost like conserve of roses, and the nest is filled with it to within a line of its top; the egg is then deposited, but the eoating of leaves, whieh enelose the eell eompletely, seeures the store from lateral absorption, although the mixture is rather more fluid, eonsisting of a relatively greater quantity of loney than is usual, exeepting perhaps in the ease of Ceratina, and although no viseous secretion is used to bind the leaves together, which retain their position from merely lateral pressure. The eell has now to be elosed, and the artifieer knowing that the transverse seetion of the eylinder is eireular, again flies forth, and without compass, but with all the aeeuraey with which Leonardo da Vinei struek a eirele with his peneil, to testify his mastery, euts the leaf again in that form, and as surely : and, three or four, or five or six times, repeats this operation, returning eaeh time with eaeh pieee, so many having been variously observed. The separation between the eells being thus eonsolidated, it is further thickened by the lateral, spare, protruding edge of the leaf first introdueed lapping over it. The whole process is again renewed in the same manner as at first, the bottom edge of the eutting of the external leaf is again eurved to form a eoneave bottom to the next eell, and the sides are similarly formed, and eaeh eell fits the preeeding like the top of one thimble plaeed in the mouth of another. The repetition of all this is
continued until the completion of the five or six cells necessary to fill the tube, when another is formed with the same routine, if her store of eggs is not exhausted; and the orifice of the tube, upon the completion of the last cell, which is closed in the usual way, is filled up with earth. Should any casualty interfere with her labours or temporarily derange their utility, without the obstruction being one that would permanently affect it, the remarkable patience and rapidity with which the repairs are effected, or the obstructions removed, is worthy of all admiration,-the $\sigma \tau o \rho \gamma \dot{\eta}$, or love of offspring, being the predominant passion which overthrows and controls every difficulty.

When full fed, the larva spins a thick cocoon of silk, which is attached to the sides of the cell; the outer coating of this cocoon is of a coarser and browner silk than the interior, which is formed of very delicate threads of a slaty-whitish colour and of a close texture, and which is as lustrous as satin. The exact period of their evolution from this state is not recorded, but it is probable that they pass the winter enveloped in their cocoon as pupæ, and in their season come forth the following year.

Genus 20. Anthidium, Fabricius.
(Plate XIII. fig. 1 of 우.)
APIS *** 2β, Kirby.
Gen. Char.: Body subglabrous. Head transverse, as wide as the thorax; ocelli in a triangle on the vertex, which is flat; antenne shortish, slender, filiform, subgeniculated; the scape stouter than the flagellum, sub-
clavate, first joint of flagellum globose, the remainder subequal ; fuce flat; clypeus triangular, truncated at its base, slightly rounded in front and convex; labrum longitudinally oblong, the sides parallel and concavo-convex ; mandibles dilated at the apex, where they are quinquedentate; the allernate teelle smallest ; cibarial apparatus long; tonyue very long, tapering to its extremity ; paraglossa very short, one-sixth the length of the tongue, coadunate at the base and subhastate; labial palpi more than half the length of the tongue, the two first joints very long, the second the longest, and both tapering to the acute extremity of this, where, just before its apex, the third very short subclavate joint articulates with the still shorter terminal joint conterminous with it; labium onc-third the length of the tongue, its inosculation with an acute projection in the centre; maxille as long as the tongue, subhastate and acuminate; maxillary pulpi springing from a deep sinus at its base, very short, two-jointed, the basal joint the shortest, and the second obtuse one terminating with a few rigid sete. 'Thomax subglobose; prolhorax inconspicuous; mesathorux slightly convex, wing-seales large ; scutcllum lunulate, projecting and impending over the metathorax, which is truncated; wings with two submarginal cells, and a third indistinetly commenced, the second slightly the longest, and receiving the two recurrent nervures one at each extremity; legs moderate, subsctose, the tibix fimbriated along the edges, the anterior spurs slightly palmated; the planle of the four anterior pairs longer than their tibise, but those of the posterior not quite so long, and all densely clothed all round with a brush of short elose hair; the claws distinctly bifid. Abdomen semicircular, very convex; the base truncated and hol-
lowed to fit the metathorax ; the seyments slightly constricted, the terminal seyment transverscly coneave, and its apec terminating in thrce slight angles; the venter, which is flat, is denscly clothed from the second segment with parallcl layers of equal, moderately long, shining hair, the scgment being distinctly indicated by these laycrs.

The male differs in being considerably larger; the mandibles merely tridentate; the legs longer and more robust; the tibice and tarsi more densely fimbriated externally, and the tarsi relatively mueh longer; the abdomen densely edged laterally with short eurled hair, the tcrminal segment with threc processcs, the lateral ones strong and eurved internally, the central one shorter and straight, and the penultimate segment transverscly concave, with a strong tooth on each side curved externally, and the venter glabrous bencath.

NATIVE SPECIES.

1. manicatum, Linnæus. 5-8 lines. (Plate XIII. fig. 1 す品.)
manicatum, Kirby.

GENERAL OBSERVATIONS.

The gencric name in this instance seems to be manufactured from the root ${ }^{\alpha} \nu \theta$ os, a flower. I eannot trace any other derivation as it may not be attributed merely to the habits of the speeies in frequcnting flowers, for is not this the prime function of all the bees, wherein they fulfil a most important officc in the cconomy of nature? How easy might it have been to regulate that flowers should fertilize themselves, as many do without any extraneous intervention, but by this wise and benevolent ordination a tribe of sensitive creatures is introduced to
be perpetuated by the perpetuation they supply to that which supports them, and in this circle of reeiprocal good offiees lend an additional eharm to the genial seasons, by the animation which they give to the face of nature, in embellishing the plants they visit with their vivacity and musie.

These bees are gay inseets, for both sexes are riehly spotted with yellow, and they present the single instance whieh oceurs amongst our bees of the male being considerably the largest, and so boisterous is he in his amours that he forcibly eonveys his partner to the upper regions of the air, where she is compelled to yield to his solicitations. His whole strueture is fully adapted to carry out this violent abduction, as well in the length and power of his limbs as in the prehensile teeth with which the apex of his abdomen is armed.

We have but one speeics of the genus, although the southcrn parts of the Continent abound in them. The habits of ours differ very eonsiderably from those of the preceding genus. First, in the peeuliarity just deseribed, and then in the formation of their nests. They do not, like the majority of the wild bees, excavate or bore a cavity for themselves, but take one already formed by the xylophagous larva of some considerable inseet, such as Cerambyx moschatus, or Cossus ligniperda. This they line, to the depth suitable to them, with eottony down which they scrape from the leaves or stalk of the Woolly Hedge-nettle (Stachys Germanica), the Wild Lyehnis (Ayrostemma), and other woollyleaved plants. In eollceting this wool the insect is very active, seraping it off rapidly with its broad mandibles, and as this is doing she gradually rolls it up into a little ball, making with the vibration of her wings
a considerable hum all the time she is gathering it, and when the ball is sufficiently large she flies off with it to her nidus; this operation she continues until sufficient is accumulated for her purpose, which consists in lining the cavity with the material ; she then forms cells within it in succession, gluing the same material together to resist the escape of the mixed store of pollen and honey she intends to fill it with, having in the operation smoothed the sides of the cell which is closed after the deposit of the egg, and another similar cell is then proceeded with, and this is repeated until the selected cavity is filled, or that she has exhausted her store. Having completed her labours, she wanders away. Sometimes the cavity is large and admits of the conjunction of many of these cells together; in that case they are all collectively covered with the same envelope of downy substance. The larva, having consumed its entire store of food, spins a cocoon of brown silk wherein it remains throughout the winter, and with the evolution of spring, feeling its propulsive energy, it changes into the pupa. In June and July, but earlier if the weather be continuously warm, the imago comes forth in its maturity, to live its little life of labour intermingled with pleasure, and in its pleasing hum to give chcerful notification of its perfect satisfaction.

Genus 21. Chelostoma, Latreille.
(Plate XIII. fig. 2, ふ̊ ํ.)
Apis ** c 2γ partly, Kirby.
Gen. Char.: Body nearly glabrous and coarsely punctured. Head subglobose, rather wider than the thorax ;
ocelli in a triangle in the centre of the vertex, which is broad and slightly convex; antenne short, subclavate, geniculated, the scape nearly one-half the length of the flagellum and more robust; the first and second joint of the flagellum subclavate, the basal one the longest and most robust, the remainder short, subequal, and gradually enlarging to the apical one, which is obtuse and as long as the basal joint; face flat, slightly convex between the insertion of the antennæ; cheeks large and protuberant; clypezs concave, projecting, lobated in front, where it is slightly emarginate in the centre; labrum elongate at its articulation, broader than beyond, and from this expansion immediately and abruptly contracting, from the inner angles of the contraction waving to about three-fourths its length, whence it is produced into an equal truncated oblong; mandibles bidentate, external tooth acute, inner one obtuse ; cibarial apparatus long; the tongue twice the length of the labium, narrowest at its base and obtuse at the extremity, and clothed with short setæ; paraglosse very short, coadunate at the base and acuminate; labial palpi two-thirds the length of the tongue, with the three first joints membranous and flat, conterminous and tapering to their extremity, the first joint about one-half the length of the second, the third twice the length of the fourth, which is clavate and articulated within the apex of the third; maxille subhastate and acuminate, as long as the tongue; maxillary palpi very short, rather stout, the joints subequal and the terminal one acute. Thorax oval, convex; prothorax inconspicuous; wing-scales rather large; scutellum transversely quadrate, convex; post-scutellum transverse, linear; metathorax gradually declining, with a glabrous triangular space at its base;
wings with two submarginal cells nearly equal and a third commenced; the second receives both the recurrent nervures, the first beyond its commencement and the second before its termination; legs shortish, subsetose, the auterior spurs short, broad, and emarginate at the apex; the posterior plante with a compact dense brush within; claw-joint long; claws simple. Аbdomen longer than head and thorax, subclavate, convex above, retuse at the base, and the apical segment obtuse at its extremity, the venter flat, its segments clothed from the second with dense parallel brushes of longish hair for the conveyance of pollen.
The male differs in having the headless conspicuously globose; the cheeks less protuberant ; the whole body more pilose, the anterior spurs robust, short, and abruptly obliquely truncated ; the antennce slender, filiform, much longer than in the female, but not much longer than the head, and from the fourth to the ninth joints serratulate within, adapting it to a sharp curve ; the abdomen being equal, cylindrical, retuse at its base, convex above, and flat on the venter, where it has a longitudinal deeply concave mucro in the centre of the second segment, which concavity runs along all the subsequent segments, and it is densely pilose on the fourth; the terminal dorsal segment being dceply emarginate in the centre and produced on each side into a broad obtuse process; the claws are more robust than in the female and bidentate; the posterior pair being subclavate, and their single tooth abruptly reflected.

NATIVE SPECIES.

1. florisomne, Limmæus, of 우. 3-5 lines. (Plate
XIII. fig. 2 of 9. .)
maxillosa, Limnæus. maxillosa, Kirby.
2. campanularum, Kirby, §오. 2-21 $\frac{1}{2}$ lines.

general observations.

These insects are named from $\chi \eta \lambda \dot{\eta}$, a forceps, and $\sigma \tau o ́ \mu a$, a mouth, -in allusion to the forcipate form of the mandibles, which are strong, and cross each other in inaction.

They and the next genus are styled carpenter bees, but they are not more consistently thus called than might be Anthophora furcata and the genus Ceratina; they, in fact, like the latter, just as often avail themsclves of an empty straw to form their cells in, or the cylinder that has been drilled by some xylophagous beetle of their own size, as they themselves drill into palings and solid wood for the purpose, but when they do this, it is facilitated to them by their powerful mandibles and their square and strong head. They are certainly very compactly formed, their structure being indicative of great power, of course relatively to their size. When they drill their cylinders themselves they are extremely persevering in its execution, and in the process, the material they extract, which is like fine sawdust, they withdraw from the depth of the cavity by passing it beneath them, and pushing it out at the orifice by means of their posterior legs and the apex of the abdomen, for they are too long to be able to turn within the cavity they have formed, its capacity not being sufficient to permit this, as it is very little larger in diameter than themselves. I have repeatedly watched them in these operations.

Having found or drilled a suitable cylindrical tube, they
do nothing further to it but colleet a sufficient store of provender for the nutriment of the young one, upon whieh they deposit the egg whieh is to produee it. The inseet then flies away to colleet a small quantity of elay intermingled with sand, and this they knead together by means of a viseous seeretion whieh they disgorge, and this forms a eonerete that hardens firmly and rapidly; to antieipate its rapid drying they speedily fly back, earrying this small ball within their mandibles, and with it they cover over the provision they have collected, and whieh, adhering to the sides of the cavity, forms a firm and hard division, effeetually separating it from the next store of provision that is to be aeeumulated for the supply of the larva that will be hatehed from the egg that is to be deposited, and the same proeess is repeated again and again until all the eggs are laid. In their development, which takes place near midsummer, the males precede the females by about ten days. They assoeiate sometimes in colonies, often using the tubes of the straw thatch whieh covers eottages for their nidus.

These bees are subject to the parasitical intrusion of Frenus jaculator and assectator, whieh I have repeatedly eaught at Battersea, hovering opposite the cells of these inseets bored in the shingles forming the enelosure of an old garden outhouse. These parasites are themselves peeuliar creatures, forming a type distinet from the Iehneumons, and belonging to the group Aulacus, upon which see my paper in the 'Entomologist,' June, 1841. In these inseets, the abdomen springs from immediately beneath the seutellum. Chrysis cyanea and ignita are also bred at the expense of these bees, neither of the species of whieh are uneommon ; the smaller one, the C. campanularum, which is the smallest of our true bees, excepting
perhaps one or two of the Nomada, I used to find in abundance upon the railings of the fields that skirt Hampstead Heath, on the right-hand going from London, parallel with the Vale of Hcalth, and thence rising to the Holly enclosure of the Earl of Mansfield's mansion. This spot has been productive to me of many very choice aculeate Hymenoptera, and supplied me with them in abundance at a time when even the chief metropolitan collections were bare of them. It has also furnished me with sevcral very desirable Diptera of cxtremely rare genera. The male of the larger species of this genus Linnæus called florisomne, from its habit of curling up its abdomen and antennæ, and passing the night in flowers. Those which they chiefly frequent are the species of Wallfower, and the Campanula, especially the round-leaved Throatwort.

Genus 22. Heriades, Spinola.
(Plate XIII. fig. 3 of ㅇ.) Apis ** c 2γ partly, Kirby.
Gen. Char.: Bony glabrous and much punctured. Head globose and curving to the thorax posteriorly; ocelli in a triangle far forward on the vertex ; antennce slightly subclavate, the scape not half so long as the flagellum, the first joint of which is robust, subclavate, and twice the length of the second, which, with the rest, arc subequal, very slightly lengthening to the terminal one, which is as long as the basal one and laterally compressed ; face slightly convex, cheeks large and convex; clypeus lunulatc, convex, and with two minute central teeth on its front margin ; labrum longitudinally oblong,
rather broadest at the base and slightly waved laterally, concavo-convex and subemarginate at the apex; mandibles subequal, tridentate at the apex, and the central tooth obtuse ; cibarial apparatus moderately long, tongue twice the length of the labium, with a small knob at its apex ; paraglosse very short, almost obsolete, coadunate at the base; labial palpi two-thirds the length of the tongue, the two first joints membranous and long, the first one-third the length of the second, which tapers to its acute extremity, before the end of which the two terminal, subclavate, very short, subequal joints are inserted; labium half the length of the tongue, slightly produced in the centre of its inosculation; maxille subhastate, two-thirds the length of the tongue; maxillary palpi three-jointed, short, robust, equal, and collectively subfusiform, the terminal one rather acute. Thorax globose; prothorax inconspicuous; scutellum lunulate ; post-scutellum linear, transverse ; metathorax declining; wings with two submarginal cells, and the commencement of a third indicated, the second larger than the first, subtriangular, and receiving both the recurrent nervures, one at each of its extremities; legs short, rather robust, subsetose and spinulose ; posterior tibie convex externally and with their plantre rugose, the latter covered beneath with a dense brush of short hair; claws simple. Abdonen cylindrical, convex above, retuse at the base, and the first and second segments slightly constricted at their extremity, obtuse, and from the end of the third segment sensibly declining to the apex; plane on the venter, where, from the second segment, the plate of each, excepting the glabrous terminal one, is covered with a dense brush of short hair for the conveyance of pollen.

The male differs in the antenne being rather longer, more distinctly filiform, the seventh segment of the abdomen concealed under the extremity of the sixth, and the venter from the third segment longitudinally deeply concave, the plate of the third itself covered with hair ; the claws more robust and each equally bifid, not bidentate.

native species.

1. truncorum, Linnæus, ơ ㅇ. 3-3 $\frac{1}{2}$ lines. (Plate XIII. fig. 3 ठ $\frac{\text { ¢ .) }}{}$
truncorum, Kirby.

GENERAL OBSERVATIONS.

The names of insects are not always very aptly given, for the only available derivation of this appears to be from éprov, wool; in allusion to the clothing of its venter; but, if so, it should be spelt without the H, for the first letter is without an aspiration. The habits of these closely resemble those of the preceding genus, to which they have a great personal likeness, and therefore their natural history would be but its reiteration. Our solitary species is a rare insect, but I expect western England would produce it. It is like those of the preceding genus, of a uniform black colour, punctured, but it approximates more closely than they do to the type of form exhibited in the genus Osmia. They visit the same flowers as the preceding genus.

> Genus 23. Anthocopa, St. Fargeau. (Plate XIV. fig. 2 ơ.)

Gen. Char.: Body glabrous, subpubescent, shining. Head subglobose, as wide as the thorax; ocelli placed in a slight curve on the summit of the vertex ; antenne
short, genieulated, the flagellum subclavate seen in front, but seen from above, owing to the compression of the terminal joint, subfusiform, the first joint of the flagellum globose, rather robust, the seeond short, subclavate and subequal with the rest, which increase gradually in length and substance to the terminal one, which is the longest, and laterally compressed ; face fiattish; clypeus subquadrate, very eonvex and very pubeseent; "labrum oblong, quadrate; mundibles strong, tridentate ; labium (tongue) long, filiform ; lalial palpi having the third joint artieulated externally on the outer side of the second; maxillary palpi four-jointed." Thorax globose; scutellum lunate; post-scutellum transverse, linear; metathorax rounded; winys with two submarginal cells and the commeneement of a third just indieated, the second very slightly larger than the first, and receiving both the recurrent nervures, the first just beyond its commencement and the second close to its termination; legs short, rather robust, subsetose ; the posterior tibice externally convex and the posterior plentee with a dense, short brush beneath; the claws simple. Abdomen eylindrical, retuse at the base, convex above, declining from the base of the fourth segment to the extremity, the first and second segments very slightly constricted, the margin of the posterior one, at the apex, slightly crenulated, the ventral segments plane and from the seeond covered with a dense brush of parallel hair, excepting the sixth, whieh is reflected laterally and longitudinally, couvex down the centre.

The male differs in having " the sixth segment of the abdomen emarginate, and with a strong tooth on each side; the terminal segment emarginate, thus producing two strong, lateral, obtuse teeth, the ventral plates of
these same segments emarginate at the extremity, and the emargination fringed with hair ; the claws bifid."

NATIVE SPECIES.

1. papaveris, Latreille. (Plate XIV. fig. 2 of ${ }^{\circ}$.)

GENERAL OBSERVATIONS.

Named by St. Fargeau from aै ${ }^{\circ} \theta_{o s, ~ a ~ f l o w e r, ~ a n d ~}^{\text {, }}$ $\kappa о \pi \grave{\eta}$, a cutting or incision, from its habit of cutting sections out of the petals of the common scarlet poppy with which to line the cells it forms within the cylinder it excavates, just as Megachile does with the leaves of various plants. It is noticed as British upon the faith of the specimens introduced by Leach into the cabinets of the British Museum and presumptively caught in the west or south-west of England, a region rich in rarities. Rennie in fact tells us that he has found it at Largs, in Scotland. One of Leach's specimens I received in exchange from that establishment in 1842, and which is now in the possession of Mr. Desvignes, to whom my collections passed in the following year. This genus forms a sort of combination between the genera Megachile and Osmia, it having the upholstering habits of the former in the mode with which it lines its nest, and the general habit of the latter. At a first glance, before its habits were known or its structure examined, even an experienced entomologist might have placed it under $O s$ mia, as an unrecognised species, for it very strongly resembles the Osmia leucomelana. This proves how very inconclusive habit is as an index to habits, the latter of these insects drilling into the pith of brambles, and the Anthocopa tunnelling cylinders into the hardest trodden roads or pathways and lining them with its crimson hangings.

From the extreme rarity of the inseet, I have been unable to examine the eibarial apparatus, and thence to aseertain upon what substantial grounds the generie distinetions are based, which separate it from Osmia. Whether it was these mere habits of the inseet which induced Le Pelleticr de St. Fargeau to establish the genus I do not know, but he is always extremely slovenly, and therefore very unsatisfaetory in his charaeteristics, whieh are never framed in a strietly explicit manner. In eonsequence of all these diffieulties, I have merely been able under the generie charaeter to introduce sueh as he has given, whieh I could not derive from the personal external inspeetion of Mr. Desvignes' femalc (my own seleetion of whose bees for the purposes of this work he has been so kind as to lend mc, and whom I thus publicly present with my best thanks). I have therefore eompounded a eharaeter as well as I eould from St. Fargeau's deseriptions, inserted in the tenth volume of the 'Encyclopédie Méthodique,' and from his work on the Hymenoptera, forming one of the 'Suites à Buffon.'

The habits of these bees, as said abovc, are to exeavate vertical eylinders in hard down-trodden pathways and roads, by the sides of fields where corn is grown, and where consequently the common red poppy is abundant. From the petals of the flowers of this plant they eut out semicircular pieees, preeisely as is done by Meyachile with the more rigid lcaves of shrubs and trees, and convey them home and line their nests with them, just as is practised by that genus with those leaves.-with this difference morcly, that a sufficient portion of the upper edge of the pieees of the petals used is left projecting, for the purpose of forming a coverele to the nidus, and whieh, when filled with provender and the
egg deposited, is refolded over it and covered in, and it is closed up with earth. They then proceed to make another excavation, which is treated in the same manner, for they deposit ouly one larva in a tube. If disturbed in their retreat, they will show themselves at its mouth, like Dasypoda, to see what is the mattcr.

I would urge our collecting cntomologists, especially those who have the opportunity of hunting up the west of England, to use due diligence and strive to confirm the native existence of this bee and add specimens to the cabinets of their fcllow-entomologists.

> Genus 24. Osmit, Latreille. (Plate XIV. figs. 1 and 3 of \circ. .
> Aprs 米 c 2δ, Kirby.

Gen. Char.: Head subglohose, concavc, posteriorly fitting the prothorax and about as wide as the thorax; ocelli placed far forward on the vertex, which is wide and convex, in a curved line; antennce filiform, sometimes subclavatc, short, and geniculated, the scape robust, as long as the four following joints, the basal joint of the flagellum globose, its second joint clavate and as long as the terminal one, the remainder short, subcqual, and gradually but slightly increasing in length; the face flattish; the clypeus a truncated triangle, convex; labrum longitudinally oblong, a little laterally distended at the articulation, from whence the sides are parallel; mandibles broad at the apce, obscurely tridentate, the internal teeth obtuse and short; cibarial apparatus long; the tongue three times the length of the labium, clothed with short hair and tapering from the
base to the acute apex; paraglosse very short, coadunate at the base and acuminate at the apcx ; labial palpi more than half the length of the tongue, the two first joints membranous and long, the basal one the broadest, seated on a petiole and not so long as the second, which tapers to an acutc point, before the apex of which the remaining two short subclavate conterminous joints articulate; labizm about onc-third the length of the tonguc, acutely produced in the centre of its inosculation; maxille as long as the tongue, subhastate and acuminate; maxitlary palpi four-jointed, rather short, the joints subequal and subclavate, but the sccond is both the most robust and slightly the longest. Thorax oval or globose ; prothorax inconspicuous; scutellum lunulate and convex; post-scutelhom transverse and linear; the metathorax abruptly truncated; wings with two submarginal cells, and a third distinctly commenced, the second the longest, and receiving both the recurrent nervures, the first towards its centre and the second near its termination; legs moderate, setosc, the plantre of all with a densc brush beneath; claw-joint longer than the threc preceding; claws simple. Abdomen short, cylindrical, convex, the terminal segment slightly pointed, the ventral segments densely pilose in parallel lines from the second.

The male differs in having the antenne longer and always filiform, the ventral segments very concare, and the terminal dorsal segment variously mucronated, tuberculated, spinose or serrated, and the claws bifid.

NATIVE SPECIES.

> 1. leucomelana, Kirby, ठi q. 3-1䨐 lines. (Plate XIV. fig. 3 of 아.)
> 2. spinulosa, Kirby, of ㅇ․ 3-4 lines.

GENERAL OBSERVATIONS.

Named from $\dot{\sigma} \mu \mu$, sweet-scent, from some fancied idea of their possessing the property of emitting a sweet odour; but this, although it is the case with many of the bees,-for instance, with the genera Prosopis, Halictus, Nomada, some of the Anthophore, Saropoda, and the male Bombi and Apathi, -I have not noticed in any of this subsection, the Dasygasters, and therefore not in any of the present genus. It is possible that when richly laden with pollen, this may emit some smell, but I am not aware that any of the scent of flowers lies in the anthers or their pollen, although this in some cases has a spermatic odour pointing to its express function; but be this as it may, such is their name. These as a group are what are called the 'Mason Bees,' from the habit they have of agglutinating particles of
sand or earth mixed with minute pebbles, scarcely larger than grains of sand, or raspings of wood combined in the same manner, with a seeretion which they emit, and of whieh they form their eells. The instinet of the ereature prompts it to be speedy in the operation, as the material, like plaster of Paris, dries very rapidly to a hard substance. Whether they have the power of softening the edges as the manufaeture of the cell proeeeds is not known, nor whether, as they add the material, it instantaneously consolidates itself, but the eolour of the struetures themselves would indicate a simultaneous mixture. This could not be the ease, if the mortar or mixture were formed away from the domieile and brought home in little pellets, each being added upon the inseets' arrival, although they obtain it all from the same spot, whence arises its uniformity in colour, and they are speedy in the formation of their nests. These eells are rather rough externally, aecording to the nature of the matcrial of whieh they are eomposed, but they are very smooth within. The nature of the eells varies with the places of their deposit, which is dependent upon the idiosynerasy of the speeies. Thus, those which construet their eells in wood, form them of moistened particles of wood, and those which make them in eavities of any kind, in the earth, beneath stones, or within empty snail-shells, make a mortar of eartl and sand and small pebbles. Some are strietly uniform in the seleetion of the material wherein they build, but others are perfeetly indifferent to its locality, and adopt either earth or wood, and sometimes the mortar of walls, sandbanks or ehalk cliffs. Aecording to the nature or the size of the reeeptaele which they seleet, is the adjustment of these cells. Where the cavity is restricted they
place them end to end, but where it is more roomy they affix them side to side, eompletely adapting themsclves to the eireurnstances of the loeality as I shall instance below, in the deseription of the speeial habits of the more eonspieuous species. I have elsewhere referred to the metallic eolouring of many of the species of this genus, and amongst them is found the greatest sexual disparity of personal appcaranee, the O. leucomelana, and one or two of the neighbouring speeies being, perhaps, the only ones wherein uniformity of appearanee would unite the partners together. The majority are very pubescent inseets, and the fcmales of the termiual species in the foregoing list are remarkable for a couple of inwardly eurved horns, springing from the base of the clypeus just below the insertion of the antennæ, an appendage usually a male attribute.

There is very great dissimilarity in the habits of the various speeies, whenee no single eharacteristic will embrace them, nor is there any distinctive feature whereby the genus might bear subdivision, either from habits or labit, as will be eollected from the following eursory survey of their special natural history.

Thus the first species, the O. leucomelana, named so from the white decumbent down whieh edges the black segments of the abdomen, extraets the pith from bram-ble-sticks, and its cells are formed and elosed with a eomposition made of triturated wood or leavcs. The cylindcrs it forms are usually about five inches deep, and within this it eonstructs about the same number of cells proportionate to the small size of the inseet. Thesc are midsummer insects, coming forth in June and July; they arc very loeal, but secm to abound in the vieinity

Bristol, whenee Mr. Thwaites formerly sent me speei-
mens. A very few days serve for the hatching of the larva, which spins a slight silken cocoon, and in this dormitory it reposes until its season again comes round. Under the influence of the following first genial spring weather, the larva is transmuted into the pupa, and the active little imago comes forth upon the settlement of our variable spring, in the merry days of June, and thus is perpetuatcd the circle of its existence, but which is sometimes abridged by its special parasite, the pretty little Stelis octomaculata. Many of the species in the males are distinguished by a peculiar armature of the apex of the abdomen; the second being named by Kirby from the circumstance. A very remarkable singularity distinguishes the males of the third species, in the fringe of short hair that runs along the flagellum of its antennæ. This, I believe, was first noticed by the late Mr. Bainbridge, a very active practical entomologist, who took the insect at Darenth or Birchwood, and distributed specimens with this manuscript name attached, which has since been appropriated by another entomologist to whom the science was wholly unknown at that time, but as it is scarcely consistent with scientific courtesy to adopt such a course, and as the MS. names of Linnæus and Kirby have been retained, where it was authorized by their being attached to undéscribed species, I have restored to Mr. Bainbridge his just rights, and have claimed the same for myself, in the case of Andrena longipes, and which many cabinets must still possess with my name attached, in my own writing, unless their possessors have chosen to adopt the illegitimate parentage ; for the entomologists of my own standing well know that I always freely distributed specimens to all who desired them of the many very desirable
insects which I have captured in the course of my entomological career. The fourth and the ninth species, the O. bicolor and O. aurulenta, have very much the same habits, both usually burrowing in sandbanks, sometimes however in wood, in which case the perforation, contrary to the mode of wood-drilling bees, is made upwardis, a sagacity or instinct which saves it much trouble, for the particles as they are removed by the mandibles are passed beneath the insect, and their own gravity carries them downwards, and thus the insect saves itself the labour of conveying them out as they accumulate in inconvenient quantities. The cells in this case are placed end to end. When they burrow in the earth, the latter species often associate gregariously in large numbers, and if they select a cavity, instead of tunnelling it themselves, and it be too large to take one cell upon the others, they form them side by side, and thus fill the space. This is the case when they adopt snail-shells as the receptacle for their incunabula, and this is done by both these species, and the shells they select are the empty ones of Helix nemoralis, hortensis, and adspersa. The capacity of the latter shell being much greater than that of the others, and too wide for a single succession, she fills the interval by placing them side by side, and with the increase of the whorl of the shell towards its orifice she places them across the space, and thus completes her task. In the former shells, the cavity at first admits of the succession of but one upon the other, but with its enlargement she places them side by side, and this repeated fills the hollow. Its aperture is then closed with earth and pebbles or sticks agglutinated together, as described at the commencement. The O. fulviventris burrows in wood, and upon this spccies the Stelis pheoptera is parasitical; and that
very pretty but extremely common species the O. anea, in which the malc is of a rich bronzy tint, and the female of a beautiful blue, verging sometimes to nearly black, burrows also in wood, although sometimes it capriciously selects old walls or chalk-cliffs, and is subject to the incursions of the same parasite. Perhaps the most extraordinary species is the O. parietina, figured and named by Curtis, and whieh he first found at Ambleside; it has since been found in the Grampians very considerably above the level of the sea, and it is thus essentially a northern species both from altitude and locality. It would appear that this species selects some flat stone of about a foot in surfaee, lying upon the ground over a hollow spot. Sueh a speeimen, sent to the British Museum, had attached to its under side two hundred and thirty cocoons, indicative of a considerable colony, or perhaps the aceumulation of successive years, as oncthird of these eoeoons were cmpty of tenants. These, in their new depository, continued developing themselves in the perfeet state between March and June, males appcaring first. When the transformations of the season ceased, fivc-and-thirty were still left to present themselves another ycar, and the following spring these were developed; thus, including those which had already eseaped when the stone and its treasure was sccured, three successive seasons were occupied in their transmutations. It may be a species that requires three years for its metamorphosis, and the whole deposit of cocoons may have been the result of three years' aecumulative strueture, the vital activity of their northern life being perhaps more sluggish than in species frequenting the south. The last speeies the O. rufa, that in whieh the fcmale is remarkable for its inverted horns, which
must be for some use in its economy, is perhaps the most common of all. I have found it in abundance upon old walls with a sunny aspect at Erith, and throughout the pleasant Crays of Kent. It is indifferent as to the choice of its domicile, selecting either walls, where I have chiefly found them, sandbanks, or the decaying stumps of pol-lard-willows. Its processes are similar to those of some of the earlier described, but its larva is longer in full feeding, which, when it has consumed all its provender spins a tough cocoon of brown silk, wherein it undergoes its changes; some, depending much upon locality, pass into pupæ in the autumn, others hibernate as larvæ which are subject to destruction from the attacks of the Chalcideous insect, Monodontomerus dentipes, previously noticed under Anthophora. Some of the Chrysidide also infest several of the species of this genus, and I have no doubt that Stelis aterrima is parasitical upon one of them, although it has not been recorded. The various species frequent many flowers, especially those abundant in the locality they inhabit, but the O. pilicornis chiefly affects the common Bugle (Ajuga reptans), and they much frequent composite flowers, especially the species of the genus Hieracium.

Section 2. Cenobites (dwellers in community).
Subsection 1. Spurred.
\dagger Parasitical.
Genus 25. Apathus, Newman.
(Plate XV. figs. 1 and 2.)
Apis ** e 2 partly, Kirby.-Psithyrus, St. Fargeau.
Gen. Char.: Body subhirsute. Head subglobose;
vertex broad, glabrous, with a deeply impressed eross upon its summit, in the eentre of whieh the ocelli are plaeed in an almost straight line and eontiguously ; cuntenne short, filiform, geniculated, the scape slightly eurved, the basal joint of the flayellum subglobose, its seeond joint as long as the terminal one and subclavate, the rest short, subequal, but gradually inereasing in length to the terminal one, which is laterally compressed; the face flat; clypeus transversely lunate but straight in front; labrum lunulate, tubereulated laterally; mandibles broad and obseurely bidentate ; cibarial apparatus moderate ; tongue twiee the length of the labium, tapering from base to apex, where it terminates in a small knob, and is elothed with short hair; paraglosse obsolete; labial palpi as long as the tongue, the two first joints long and membranous and tapering to the apex of the seeond, whieh is acute, and about one-fourth the length of the first, it has the two very short, subelavate, terminal joints, whieh are eonterminous, and artieulated just before its acute apex ; maxille subhastate and acuminate ; maxillary palpi very short, linear, and equal. Thorax globose, pubeseent, eoncealing its divisions; metathorax truneated; wings with three submarginal eells nearly equal, or the third the largest, the seeond reeeiving the first recurrent nervure at about one-third its length, and the seeond is reeeived by the third submarginal eell near its extremity; legs setose ; the posterior tibice eonvex, very slightly enlarging from base to apex, rounded at the extremity externally, and unfurnished with means to convey pollen ; posterior plante oblong, narrowly equal, and not aurieulated ; claws bifid. Abdomen ovate, convex above, deflecting toward its extremity, and subglabrous on the disk, the terminal
dorsal segment triangular, and its ventral plate straight at its apex with the lateral angles reflected, making it concave beneath and subcarinated longitudinally in the centre, or also triangular and the sides of the prominent angle deflected.

The male differs in having the antennæ slightly longer, in being rather more pubescent, more highly and rather differently coloured, and its terminal segment merely rounded.

NATIVE SPECIES.

3. campestris, Panzer, đ ㅇ. 6-9 lines. (Plate XV. fig. 2. The fig. marked of by mistake for 아.)
campestris, Kirby, ㅇ.
Rossiella, Kirby, む。
Leeana, Kirby.
Franciscana, Kirby.
subterranea, Kirby.
4. Barbutellus, Kirby, ơ 오. 6-9 lines.
5. vestalis, Fourcroy, ơ 우. 6-10 lines. (Plate XV. fig. 2 ㅇ.)
vestalis, Kirby, ㅇ.
6. rupestris, Fabricius, đ ㅇ. 6-10 lines. (Plate XV. fig. 1 of ㅇ.)
albinella, Kirby, ${ }^{\text {® }}$.

GENERAL OBSERVATIONS.
Named from a, privative, $\pi a \dot{a} \theta o s$, affection; that is to say, without affection, from their habit of leaving their young to be nurtured by others, in allusion to their parasitical instincts, for the young of these bees are brought up in the nests of the Bombi. They form the only instance in bee-parasitism of the parasite
closely, or nearly so, resembling its sitos, if not always in eolour, certainly in habit. Having no labours to undergo they eonsist of merely males and females, but the latter, although very like the large female Bombi, are mueh less pubeseent than these, for they have a broad disk, upon the upper surfaee of the abdomen, always smooth and shining. Both sexes appear to have free in- and egress to the nests of those Bombi whieh they infest, without any let or hindrance on the part of the latter, with whom they seem to dwell in perfeet amity. In the times of their appearanee they elosely resemble the Halicti and the ncighbouring Bombi. Thus the females, after impregnation in the autumn, having hibernated during the winter in seleeted reeeptaeles, eome out with the first gleams of spring eonjunctively with the large materual Bombi, in whose nests they have taken their long repose in perfect torpidity; and as soon as these begin to aeeumulate the masses of eonglomerated honey and pollen whereon to deposit their eggs, the parasite takes advantage of it, lays her eggs too, and thus seeures food for her offspring. There being two broods of them in the year, many are gradually developed with the advance of summer, but the great hatehing takes place in the autumn, when the thistles are in blossom. Then both inales and females eome forth in abundanee, the latter are made fertile, and their partners enjoy the brief interval of the still blossoming flowers until the usual period is put to their existence by natural deeay, the first frosts, or the rapacity of inseetivorous birds. Conneeted with this last eireumstanee I have a personal experience to record, and which its repetition would indieate as being one of Nature's prompting aets. A lofty sandy level, very near the high-road whieh leads
at the upper part of Hampstead Heath, to Highgate, from which road it was separated by merely a band of whins and coarse grass, used to be a very favourite collecting place of mine, for there, and in its immediate vicinity, I have often eaught, within a very brief period, more than half the genera, and a very large number of the speeies of the fossorial Hymenoptera. One particular little spot was inhabited by Psen equestris, rare evcrywhere else, and our largest Cerceris, who earried on their instinctive pursuits during all the summer months, but at a particular time in the autumn, varying slightly with the nature of the season, a flock of wagtails (Motacilla) would alight and make brief work of those fossores whieh were still aflight; and this was repeated season after season, as if the wagtails thought it was time that their own rapacity should stop the eourse of these predacious insects. But to return, the femãle Apathi then resort to the nests of the Bombi whence they lave issued, and lay themselves up in their winter dormitory. That this must take plaee speedily after impregnation is rendered almost eonelusive by the fine state in which their pubeseence appears in the spring, whieh would be tarnished did they loiter about visiting flowers previous to their return home. But the labours of the female and neuter Bombi themselves are now over, and they would therefore find no store whereon to deposit their eggs. The parasitical allocation of these inseets is as follows. Apathus rupestris infests Bombus lapidarius; A. vestalis the B. terrestris, and this forms an instance in whieh the parasite is not clothed in the eolours of its sitos. But A. Barbutellus has a wide range, for it frequents the nests of B. pratorum, B. Derhamellus, and B. Skrimshiranus.

$\dagger \dagger$ Not parasitical. Collectors of pollen.

* Temporarily social.

Genus 26. Bonbus, Latreille.
(Plate XV. figs. 3 and 4, and Plate XVI. figs. 1, 2, 3.)
Aprs **e 2, Kirby.

Gen. Char. : Body densely hirsute. Head small, subglobose, not so wide as the thorax ; the vertex glabrous, with a longitudinal, short, deep channel, crossed in its centre by a deeper transverse one, wherein the ocelli are disposed in a very slightly curved line; antennce short, geniculated, and filiform ; the scape half as long as the flagellum, the first joint of which is globose, the second subclavate, the rest short and subequal, and the terminal one compressed laterally; face flat, densely pubescent; clypeus subtriangular, gibbous, its base truncated, and apex convexly lobated, or straight and margined; labrum lunulate; mandibles broad at the base, and obscurely tridentate ; cibarial apparatus moderate; tongue twice the length of the labium, clothed with pubescence to within a brief distance of its apex, and terminating in a small knob; paraglossa about one-fourth the length of the tongue, coadunate at the base, and acuminate; labial palpi three-fourths the length of the tongue, broad at the base, and tapering to the extremity of the acute apex of the sccond joint, which is about one-fifth the length of the first, the two terminal joints very short and articulated laterally just before the end of the second; labium one-half the length of the tongue, broadest at its base, and acutely produced in the centre of its inosculation; maxillce as long as the tongue, subhastate and acuminate; maxillary palpi two-jointed, short, sometimes equal, and slightly robust, or with the
basal joint very robust, and its terminal joint twice as long and linear. Thorax globose, very hirsute, whenee its divisions are inconspieuous; scutellum lunate ; metathorax truneated; wings with three submarginal cells subequal, or the third the longest, and a fourth slightly eommeneed, the seeond receiving the first reeurrent nervure near its eentre, and the third receiving the second recurrent nervure elose to its extremity; legs robust, pilose, the four anterior plantre with a dense, short, setose brush beneath; the posterior tibice triangular, very smooth, and irregularly eoncave on their external surface, fringed with long pile along its two external edges, and its extremity tipped with a short pecten of stiff setæ; the plante elongate and broad, nearly equal, externally shagreened and spinulose, with a longish aurieulated process at the external angle of the superior edge, a dense brush of short, stiff hair beneath, and a short peeten of stiff setæ edging its subemarginate extremity; the claw-joint the longest of the four short subsequent joints, and the claws bifid. Abdomen ovate or globose, defleeted towards its extremity, its base retuse, the last segment triangular, and terminating obtusely.

The male differs in always being more intensely coloured; in having the antenne distinetly longer, less distinctly genieulated, the scape shorter, the third joint of the flagellum almost as short as its basal joint, and the fourth as long as the terminal one, which latter two are the longest of all, and the joints from the fourth to the eleventh severally more or less slightly eurved.

NATIVE SPECIES.

1. lapidarius, Linnæus, ơ 우 ¡. 6-10 lines. lapidarius, Kirby.

2．Harrisellus，Kirby，of i i ：6－10 lines．（Plate XVI．fig． 1 ㅇ．）
3．subterraneus，Linnæus．of i i．5－10 lines． Soroensis，Kirby？
4．Latreillellus，Kirby，of ¢ i ．5－8 lines． Tunstallana，Kirby．
5．hortorum，Linnæus，đ it i．5－10 lines． hortorum，Kirby．
6．Soroensis，Fabricius，ơ ㅇ ㅇ．5－8 lines．Plate XV．fig．4 ठ．）
Cullumana，Kirby，む．
7．lucorum，Linnæus，of ¢ ㅇ．5－9 lines．
lucorum，Kirby．
virginalis，Kirby．
8．terrestris，Linnæus，才우．7－11 lines． terrestris，Kirby．
9．Skrimshiranus，Kirby，of ㅇ ㅇ．5－8 lines．
Jonella，Kirby．
10．nivalis，Dahlbom，of ㅎ．6－8 lines．
11．pratorum，Linnæus，of 우 \bigcirc ．4－8 lines．
pratorum，Kirby．
subinterrupta，Kirby．
Donovanella，Kirby． Burrellana，Kirby．
12．Derhamellus，Kirby，of i ㅇ．4－8 lines． Raiella，Kirby，${ }^{+}$.
13．Lapponicus，Fabricius，of \ddagger 〇．5－9 lines． regelationis，Newman．
14．fragrans，Pallas，ơ ㅇ i．5－10 lines．（Plate XV。 fig． 3 ㅇ．．）
fragrans，Kirby．
15．sylvarum，Linnæus，ơ if i．6－8 lines．（Plate XVI．fig． 3 ㅇ．）
syluarum, Kirby.
16. Smithianus, Whitc, of of i . 4-10 lines.
17. senilis, Fabrieius, of \& i. 6-9 lines.
muscorum, Kirby.
18. muscorum, Linnæus, of i i i. 4-9 lines.

Francillonana, Kirby.
floralis, Kirby.
Sowerbiana, Kirby.
Beckwithella, Kirby.
Curtisella, Kirby.
Forsterella, Kirby.

GENERAL OBSERVATIONS.

These, perhaps the most eonspieuous of our native bees, certainly the largest, and probably the most generally known after the domestic bec, have their seientific generie name from $\beta o ́ \mu \beta o s$, an imitative word, made to indicate the sound of the hum of the inseets themselves. They have many popular names such as bumble bees, dumbledors, humble bees, and in Seotland they are ealled foggie becs. They cousist of thrce sexes, males, females, and ncuters, which differ considerably in size, the females being very much the largest, and the neuters the smallcst. Of course, individually, like all other inseets, there is mueh variation among them in the intensity or diversity of the colouring of their pubeseence, from whieh it is chicfly that they derive their specifie distinetions; in the relative sizes of individuals also there are great differences. It is the males, as is usual among the becs, which are the gayest in their attire, and take the widest range of variation, and sometimes so mueh exeeed the typical speeifie eharacter in their markings as to require experience to identify them, and to place them correctly
with their true species, which can only be ascertained with certainty by the examination of the male organs of generation, which differ in the various species, but are undeviating in their specific uniformity. Of this character, which I was the first to discover as being of specific value for critical determination in the scparation of the species of very difficult insects, I was enabled to make important use in the genus Dorylus, in a monograph on the Dorylidee, an exotic family proximate to the ants, and which was published in Taylor's 'Annals of Natural History' for May, June, and July, 1840. The females and nenters of Bombus are less subject to such extensive dissimilarity, and may be usually associated, by their pubescence, in their legitimate groups. Form also frequently lends its aid as subsidiary to their specific identification.

These and Apis mellifica are our only soeial bees, which live in numerous communitics under a kind of municipal government which is considcrably less perfectly organized in the present genus than in the domestic bec, and thence they are called "villagers," in contradistinction to the citizenslip of the hive bee, earned by its comparatively metropolitan institutions, and the centralization of its government, which wholly emanates from the pervading influence of the queen upon the labours, and, indecd, upon the existence of her subjects. But the Bombi are under much less social restraint, and admit of scveral co-regents in the same community, without its being productive of any disturbance of social harmony. In the account of the genus Apathus, the last described, we have secur that the Bombi are subject to bee-parasites, whieh in some closely rescmble the specics they infest, and we have also shown there how these are distributed. The hive bee is not exposed to
such intrusion, although, like these, they have many enemies. In the very earliest spring months these Bombi are abroad; for as soon as the catkins of the sallow are ripe for impregnation, they are on the wing. But it is now that the large females only arc at work, for they have to create their companions before they can be surrounded by them. Their fruition is the result of the previous autumn's amours, at a period too late to form sufficient stores for the numerous brood they will producc, and accordingly, after revelling in a brief honeymoon, they resort, like staid matrons, to a temporary domicilc, some cavity just large enough for themselves. In this retirement they pass the checrless wintry months, requiring perhaps the incubation of time thoroughly to mature their fruit. Whether this be the case or not, as soon as the earth begins to feel the warmth of the sun upon its return from its far southern journey, and to respond to the rencwed vitality it gives to vegctation, these bees feel its active influence and come forth. With the progress of the spring and summer most flowers are exposed to their rifling, but they revel upon the elegant flowers of the Horse-chestnut, and their hum is the music of the lime when it is in blossom. According to the species, they select a cavity for their nest, or construct it upon the surface of the ground, this being the case with the carder-bees, which gather moss to construct their residence. In those which inhabit beneath the surface, the selection of an alrcady formed cavity greatly abridges their labour, and their instinct prompts them to choose one sufficiently large for the prospective community, but the nest itself is gradually extended in sizc suitable to their progressive increase in numbers. All that the parent female does at first is to form a
receptacle sufficiently large for her first gatherings of pollen and honey, whereon to deposit her first eggs, and to form a waxen cruse or two to contain the honey requisite for the nest operatious of keeping these masses moist enough for the nurture of the larve. The material of these pots although called wax is not properly so, but is an agglutination of colleeted vegetable matter, for it is not plastic to the fingers like wax, and it burns, leaving a earbonaceous residuum very attractive to moisture. The larvæ hatched from the eggs now deposited produce the first neuters, which spin a cocoon wherein they rapidly undergo their transformations. They are, in the first instance, aided to emerge from their silken cot by the parent gnawing off its top, but subsequently this duty is performed, as the family inereases, by the neuters then developed. The young bee, on emerging from its cocoon, is not thoroughly hardened in its integument, and its pubescence also acquires by degrees only its proper colouring; all this is not long in being effected, but, until they are thoroughly able to fly forth, they eontinue to be fed by their clder sisterhood, for the neuters are properly abortive females. Males, and further productive females are produced later in the spring, and are smaller than the normal sizes of those sexes ; the autumnal brood, consisting also of males and females, again resume the full size of the complete inseet, and it is these females whieh, after impregnation, hibernate and reappear in the following early spring to be each the parent of a new progeny. The population of these nests varies considerably in the several species: in some, as in that of Bombus terrestris, there are more than two hundred, and in that of B. senilis there are about a hundred
and forty; but it is in those that construct their nests above the ground that the fewest are found. As with the general population, so with the relative proportions of the sexes, the several specics vary. Of course all these mumbers are approximative only, as under certain conditions they will necessarily differ, nor are the general or relative numbers identical, even in the same species, in the same scason, and in the same locality. The proportions are usually somewhat like this, about double the number of neuters to females, and nearly the same number of males as of females. In some of the communities there are even as few as twenty neuters, and these, of course, comprise those species which are most rarely found by collcetors. The most pugnacious of oll, and the fiercest in their attacks and most painful in their stings, are those which live underground or in cavities formed of accumulations of stones, and it is these which are the least constructive in their habitations, as if their truculent nature rejected the concomitants of incipient civilization; for it is those which build mossnests, requiring a certain amount of skill, that are the most gentle io their habits. With the increase of numbers in the habitation, the rapidity of the labours progresses, and the accumulations quickly increase ; but there is always opportunity for the entire community to find employment, either in enlarging their nests, when they build them, or in securing them from the intrusion of water, or repelling enemies, or fceding the young, and accumulating stores. In collecting pollen they are often covered as if they had rolled themsclves in it, and this they brush from their hairy bodics chicfly with their posterior legs; sometimes they return in this disguised condition, and free themselves from it only at home ; in
other cases they bring it home collected in little masses upon the corbiculum, or basket, of the posterior shanks. They may be often caught thus laden, and I once captured a large female of B.terrestris, with the shanks and plantæ of both intermediate and posterior legs corered with masses of thick clay, required doubtless at home for some domestic repairs. The instinct of these bees teaches them that where the tube of the flower is too narrow for the introduction of their body, and too long for even their long proboscis to reach the nectarium at the bottom, they may get at the honey by piercing a hole near that organ, which they know where to find, and thus they readily get at the treasure that they seek, lapping it through the aperture and carrying it off. If, in their collecting-excursions, they are intercepted by heavy rains, or loiter far away too long until the twilight closes, they will pass the night away from home, and return laden with their gatherings as soon as the warmth of the sun reanimates them to activity; thus they will often sleep in flowers, and a nest therefore taken at night is not always a sure indication in those found within it, of its complete population. In their amours, the autumnal females evince considerable coquetry to attract their partners: they place themselves upon some branch in the most fervid sunshine, and here they practise their cajoleries in the vibrations of their wings, and allure them by their attractive postures, The males are simultaneously abroad, and soon perceive them. The seduction is complete, and they pounce down upon them with impetuosity, but their brief indulgence terminates in death, for with his abating vigour the female repulses him, and he falls to the ground never to take wing again. Amongst their insect enemies
the Dipterous genera, Volucella and Conops, are very destruetive to their larvæ,--the first of these genera in its colouring greatly resembling the speeies upon which it preys. Foxes, weasels, field-miee, all prey upon them, and, like schoolboys, often destroy the bee for the sake of its honey-bag, an instance of which I have before reeorded as illustrative of their enduranee of the loss of a considerable portion of the body without its being fatal.

The most interesting part of their history is perhaps that upon whieh I have not yet enlarged, namely, the strueture of their nests. This is partieularly the ease with the carder-bees, whieh felt and plait the filaments of moss to form its whole enelosure. Sueh species seleet a spot elose to an abundant supply of the material; this they bite off and form pellets of. To these nests a moderately long arehed passage is formed of the same material, of suffieient size to permit the free passage of the bees to and fro. This neeessarily is shorter at first and leads to a smaller reeeptaele when the parent bee works alone. But as her offspring of workers inereases, the passage is lengthened and the nest enlarged. To eonstruct it, when in full aetivity, the bees form a chain, one behind the other, extending from the growing material to the entranee of their passage to the nest, all their heads being turned towards the moss and their baeks to the nest. The first bites off the raw material, rolls it and twists it, and passes it to the second, by whom and the suceeeding ones it undergoes further manipulation, and where the ehain terminates at the commeneement of the passage another bee receives it and conveys it along this into the interior, and then applies it itself or passes it to others thus employed where it is re-
quired. A vaulted covering and sides is thus formed or extended within the cavity by the plaiting or wreathing together of thicse sprigs of moss, and the inside of which is further strengthened by being plastered with a coating of the pseudo-wax, which, however, smells much like true wax, and with which the lower loose filaments of the moss are intermingled, that one cannot be separated from the other without tearing the whole to pieces. Thus ingeniously do these insects enclose their home. These nests are not always on the surface, but often cavities of the necessary size are thus lined, and then they are doubly secure. Within these nests, with the increase of the population the number of the cocoons of course increases, as they are never used twice over, excepting that when they are conveniently situated for the purpose they are converted into honcy pots. Thus sometimes several layers are formed of these irregularlyplaced cocoons, of which the longest diameter is, however, always perpendicular to the horizon. In this way B. muscorum, senilis, fragrans, and others build. Some use a naked cavity, and merely secure it in its crevices from the filtering intrusion of rain or other water, the closing patches being formed of the usual waxy material. This is the practice of B. terrestris, which associates the largest communities of all; and B. lapidarius seeks cavities among stones or in the earth, and forms a nest of a regular oval, but merely elothes the sides, which is done by bits of moss and grass earried carefully home. The domestic arrangements within are much the same in all, the prolific females and the neuters being the labourers, which perform all the duties of building, the collecting and caring for the young, the function of the males being limited to the perpetuation of the species.

Subsection 2. Without Spurs to the posterior Tibie.
括 Permanently social.
Genus 27. ApIS, Linnaus. (Plate XVI. fig. 4 ð ㅇ ○ .) Apis ** e 1, Kirby.
Gen. Char.:-The neuter.-Body nearly cylindrical and subpubescent. Head transverse, about as wide as the thorax ; vertex and face deeply longitudinally channelled in the centre, the latter to the apex of a small triangular elevated space between the insertion of the antennæ, and extending to the base of the clypeus, the sides of the face flat; the ocelli rather large, seated far back upon the vertex in a triangle, the anterior one in the depth of the longitudinal channel, the two lateral ones placed further back towards the occiput in a transverse indentation crossing the longitudinal one; compound eyes very pubescent; the hexagonal facets very minute; antennce short, filiform, geniculated; the scape nearly half the length of the flagellum and subfusiform, the basal joint of the flagellum globose, the second subclavate and subequal with the remainder, very slightly lengthening to the apical joint, which is compressed and as short as the second; clypeus quadrate, convex; labrum transverse, linear, slightly waved in front; mandibles broad at the apex, edentate, obliquely truncated and concavo-convex ; cibarial apparatus shortish; tongue nearly twice the length of the labium, linear, pubescent, and terminating in a small knob; paraglossá obsolete, coadunate with the base of the tongue; labial palpi not quite so long as the tongue, the first joint four times as long as the remainder, and tapering from the base to the apex of the second joint, which is about one-fourth the length of the preceding, and has the two very short terminal
joints articulated just before its acute apex ; maxille broad, hastate ; labium half the length of the tongue, its inosculation straightly transverse, not so long as the tongue and acuminate; the maxillary palpi extremely short, the basal one the shortest. Thorax subglobose; prothorax inconspicuous; scutellum lunulate and impending over the post-scutellum, which is transverse and linear; metathorax truncated; wings with a long marginal cell extending nearly to the end of the wing, and obtuse at its extremity, three submarginal cells which terminate at less than half the length of the marginal, the second the largest and receiving the first recurrent nervure towards its commencement, the third oblique and narrow and receiving the second recurrent nervure just beyond its centre; legs slender, subpilose; the anterior and intermediate tibice with a spur, their plante with a dense short close brush all round, the posterior tibie triangular, glabrous within, externally smooth, shining, and irregularly concave, the edges fringed longitudinally with long hair curving inwards, and forming the sides of the corbiculum, or basket, which conveys the matériel of the nest, the apex transverse and pectinated with short rigid setæ, but wholly without spurs; the plante oblong, not quite so long as the tibir, the sides nearly parallel, the upper edge fringed with long loose hair, subglabrous externally, but furnished internally with ten transverse, parallel rows of short stiff golden hair, with an auricle at the outer angle, forming collectively a dense brush, and its oblique apex pectinated with short stiff setæ, the remainder of the tarsal joints short, the fourth the shortest, and the claw joint the longest; the claws short, robust, and bifid. Abdomen retuse at the base, subcylindrical, convex above, and ter-
minating conically, the first segment very short, the second the longest, the ventral segments ridged longitudinally in the centre.

The female, or queen differs in the head not being quite so wide as the thorax, in having the cibarial apparatus very much shorter; the mandibles distinctly bidentate, the inner edge of the inner tooth stretching obliquely to the acute inner cxtremity of the broad apex of the organ; the labial palpi as long as the tongue, with all the joints conterminous, the basal one slightly acuminate, the second linear, the two terminal ones more slender and shorter, the pubescence of the eyes very much longer than in the neuter; the legs more robust and less pilose; the posterior tibia convex externally, without the lateral fringes of hair, and their planta merely oblong, without the external basal auriclc. The abdomen is also considerably rclatively longer; and has not the central ventral ridge.

The male or drone differs from both in being considerably more robust and more completely cylindrical, and very much more densely pubescent; the compound cyes contiguous at the summit; occupying the whole of the vertex, and nearly all the lateral portions of the face, extending below to the articulation of the mandibles, their pubescence much shorter but denser than in the other sex ; the ocelli large, and seated at the top of the central portion of the face in a close triangle, a little above the insertion of the antennæ, and in front of the conjunction of the compound eyes, the lateral ones of the triaugle being closely contiguous to the upper inner edge of those eyes; the antenne are more robust and rather longer; the cibarial apparatus very short; the labial palpi about three-fourths the length of the tongue,
and the joints conterminous, the tongue robust; the thorax is nearly quadrate; the leys are nearly naked, the four anterior very slender; the posterior tibice slightly curved, convex externally; the posterior plante more robust, and more convex externally than their tibie, they are regularly oblong, and without the basal auricle, the rest of the joints of the tarsi are very short. The abdonen robust, and obtuse at its extremity, but its seventh segment is concealed beneath; the ventral seymerts concave longitudinally.

NATIVE SPECIES.

> 1. mellifica, Linnæus. (Plate XVI. fig. 4 ot of i.) mellifica, Kirby.

GENERAL OBSERVATIONS.

The name of this genus, Apis, adopted by Linnæus as the classical generic name of the bee, although with him it comprised the whole modern family of these insects, but which, as now restricted, in accordance with its limitation exclusively to the congeners of his adopted type, is the ancient Latin vernacular name of the honey bee, and to which it has been ever since uniformly attached. This name, as shown by its derivative meaning, was originally imposed with direct reference to the insect's constructive habits, as was the case with the names given to it in the more primitive languages before referred to, and which is also the origin of its Teutonic and Scandinavian appellations-Biene, Bie, and Bi, whence our own common name for it is obtained through the Saxon Beo, and we have beside Bye or bee, signifying a dwelling. From this circumstance it would seem that a very early and universal discernment existed
of its ingenuity and skili, its significant name being everywhere analogous.

The habits and cconomy of these industrious little creatures have been a source of greater wonder and admiration the more closcly and accurately they have been observed. They have attracted the thoughtful speculation of minds of the largest compass throughout all ages, which, reasoning upon the modus operandi of these insects, have endeavourcd to dcfinc, and determinc the differences between instinct and reason, with their precise limitations. But baffled in their attempt to scttle whether these be affinities or analogics, it should rather have persuaded them to adopt the motto of Montaigne, and cxclaim, Que sais-je? Into these metaplyysical discussions it is not necessary to enter, and I confinc myself to the natural history of the inscet.

Although the description of the three sexes which comprise the population of the hive are tcchnically given above with scientific prccision, it will be as well, perhaps, to recapitulate them briefly, with their distinctive attributcs, in a more popular form.

They consist of a queen, or productive female, whose function is thought to be exclusively to lay cggs, but who may perhaps have some hitherto undiscovercd control over the executive of the hive, to be implicd by the confusion invariably following her death or her removal from the community, and which becomes totally destructive to its organic constituency unless stayed by another monarch being improvised, or by one extrancously supplied; one monarch alone rules without a coadjutor, and without any equal being toleratcd, for the presence of a second queen, or the immature larva of one, even of her own progeny, maddens her to murderous aggression,
or to the impulse of emigration aeeompanied with a host of adherents. She never leaves the hive when onee her duties have fully eommeneed, for by distinetion of strueture she is rendered ineompetent to exeeute any of the labours that devolve upon the workers; her tongue is formed only to lap nutriment; she has no cysts for the seeretion of wax, she is without the honeybag for eonveying that liquid home, and her posterior shanks are eonvex externally, and thas defieient in the coneave basket for carrying home the stores of pollen or propolis, whilst their plantre are without the little earlet at the top externally, or the elose dense brush arranged in rows within, whieh aid these workers in their many manipulations. Her wings are too short to eonvey her ponderous body through the air, and her sting becomes stronger by being eurved. Thus she is exonerated from labour by the incapaeity of her strueture to exeente it, although her duties are quite as ineessant and as arduous, being indispensable to the perpetuation of the species.

Her eonsort, the drone, is the male of the hive, and although the queen is monandrous or single-spoused, and although the hive during the season ravely throws off more than three swarms, usually restricted to the aecompaniment of a single queen, and thus but three males are absolutely required, nature is so provident of the great design of perpetuation, that to provide against the possibility of its frustration, the hive usually produees about a thousand droues. A peeuliarity in the strueture of the drone whieh faeilitates his diseovery of the virgin queen when she issues from the hive on the bridal excursion, whieh she makes preliminary to her heading a swarm of emigrants, or assuming monarchy
at home, consists in the vertical cnlargement of his compound eyes, which mect over the brow, and in the posterior expansion of the inferior wings, which take a broad baekward sweep, giving the insect larger powers of flight, but perhaps required as much by its own bulkiness and weight as for the purpose of ascending above his bride in the upper regions of the air ; but that its weight cannot be the sole reason is testified by the analogons structure in the male of the genus Astata, one of the fossorial Hymenoptera, where a similar expansion of the inferior wing is concomitant with a similar development of the compound eyes, yet in which the abdomen is very small, and this power is therefore evidently given to these mercly to inerease the velocity or the duration of their flight. The rest of the structure of these drones disables them, like all other male bees, for any labour; and as they must be sustained as long as they may be of service, the possibility of which terminates with the last issue of a swarm from the live, a period appreciated by the instinct of the workers, they are then driven forth, but it is in dispute whether the workers destroy them, or whether their destruction is effected by exposure and hunger, or by the natural limitation of their lives, for although their tongues are formed upon the same type as that of the worker, it is considerably less developed, and appears to be adapted only to obtain nutriment from the honey already collected in the cells, as they seem even defieient in the instinet to gather it for themselves from flowers, never being observed to visit them.

The last imhabitant of the hive is the worker, or abortive female, whose labour has several phases. A difference of size amongst them has been supposed to
lave been noticed by observers as varying with their occupation and duties, but as they are all constructed in the same manner, with preciscly the same organs, which are of the same form and in the same situation, this must be a mere imaginative surmise. Their similarity of structure permits them, eollcetively, to apply themselves to the same occupations which the needs of the community may at any moment demand. Taking them separately with their distinctive occupations at any given time, without implying by it a permanent separation of classes, we find them to consist of wax secreters, builders or cell-seulpturers, honey colleetors, pollen collectors, propolis collectors, nurses of the young, ventilators, undertakers to carry off the dead, who are perhaps also the scavengers which cleanse away any occasional dirt, sentincls to guard the hive ontside and inside, and attendants upon the queen, or as the "'Times' Bee Master" very aptly designates them "]adies in waiting," and at all times many slumbercrs are reposing from their toils. That all these duties are transferable, and eonsequently are transferred indifferently from one to the other, is implied by their gencral capacity for fulfilling them resulting from this identity of structure, which will be understood as not at all infringed by the separate capacities I unfold as devolving from their temporarily limited functions, all being simultancously in action, but distributed amongst the several individuals.

The first important occupation of the worker is the secretion of wax for the structure of the eells, and, to effect this, honey must be collected, for it is solely from the digestion of honey that the wax is produced. This in due course passes from the first stomach or honey-
ponch wherein it is eolleeted, thence to the second stomach, and then on to the eysts or little bags which run along on each side from the second to the fifth ventral segments, and correspond and communieate with eight trapezoidal depressions plaeed externally upon the plates of the ventral segments-four on each side, through the eoncavity of whieh the seereted wax exudes in a liquid, transparent, hot state, forming a thin seale within each, which the air hardens into a white substance, as the pulp of paper is hardened upon the form into which it is introduced, or like salt erystallizing into flakes from sea-water in shallow salines. This, however, is not yet wax, althongh its essential constituent, but to beeome so these seales are removed by the scopule of the posterior plantre and their auriele, to the intermediate feet and by these transferred to the anterior pair, which pass them to the mandibles, where they are masticated and mixed with a saliva issuing from the month, and thus intermingled they consolidate into a white opaque mass, which issues from the mouth like a thin strip of riband, and constitutes true wax, plastic to their manipulation. To form this seeretion, the bees laving eollected the honey themsclves in the first instance, or having eonsumed suffieient before leaving the hive with the swarm, but which they subsequently obtain from the supplies stored in the present hive, hang themselves in festoons in all direetions about its eavity, each festoon being formed by two parallel chains of bees elinging together; the top bee on each side hangs by its anterior claws to the top of the hive, and the next in succession grasps with its fore claws the hind claws of that and so on, until the depth of the festoon they find to be sufficient, when the bottom bees of each chain swing
themselves together, and cling to each other in the same manner by their hind claws only. These festoons are speedily suspended, and with a fresh swarm are in immediate aetive operation. The secretion requires about twenty-four hours to complete, and as this is accomplished the festoons break up, and these secreters convey it to where the sculpturer bees or builders are moulding the eells, to whom it is successively supplied by the secreters themsclves as wanted, for none is stored, although the wax of old or dilapidated parts of the hive, or of the vacated cells of the new-born queens are reconverted to use. These builders are very rapid in their construetion of the hexagonal cells, which, as they are progressively completed, are stored with honey, this being during the time assiduously gathered by the honey collectors, and these eells are interspersed occasionally with those whercin pollen or propolis is stored, each of whieh, as the bees collecting them successivcly return, is cast into the scleeted eell by the bee collceting it, who returns at onee to the same employment, whilst the store thus deposited is immediately eompactly pressed in and warehoused by other bees who fulfil that duty, or who cover it in when the eells are filled, with a waxen eorerele formed of eoneentrie eirelcs ; or, in the case of the honey-cells, to keep the thiekened operculum deposited upon it in due position and repair, after the retiring of the bee whieh brought home the fresh store of honey, and which had displaced it to regurgitate her addition into the eell. This operculum or eover is of a thieker eonsistcncy than the honey itsclf, and prevents its oozing from the cells, whieh would often take place from their uniformly horizontal position, were it not for the sagacity which prompts them to introduce this pre-
ventive, and which is not removed until the cell is filled ; it is then covcred hermetically with its waxen top.

A sufficient number of cells being ready, and sufficient stores of honcy, pollen, and propolis for the progressive labours of the hive, and a great number of empty cells all finished for the use of the queen, she begins to lay her cggs. As these are hatched the duty of the nursingbces commences, which is to feed the young, who crave for food like young birds, and are as diligently supplied by these nurses with a material called bee-bread, which consists of masticated pollen, the polien being exclusively stored and used for the purpose. This is mixed with some secretion from the mouth, which converts it into a sort of frothy jelly. These bces are ncver ncgligent of their duties, and with thicir feeding the larva rapidly grow.

To keep up a necessary supply of air in the hive, and to prevent suffocation from heat, a certain number of the community are employed in fanning the passages between the cakes of comb and the whole interior of the hive, by the vibration of their wings, which thoroughly ventilates it, and the accumulation of deleterious air is prevented; somc, for this purpose, being posted at the aperture to the hive, where, this vibration causing a temporary vacuum, the external air rushes in, and the chain of succession of bees within becoming thus vibrating airvalves completes the ventilating arrangement. While all these operations are progressing, a certain number are acting as a militia of citizens, who have substitutes only in the succession and change of duties. These act as sentinels, who guard the entrance and patrol the interior and courageously intercept all inimical intrusion, for the bees have many enemics, but who are merely so to benefit themselves, and are not parasites of the nature
of the bee parasites of the solitary kinds; and where they eannot individually avert it, they obtain eollateral aid from others of their staff. The next elass is the attendants upon the queen : these vary in number from twelve to twenty; they invariably aeeompany her wherever she proeeeds throughout the hive, for the purpose of laying her eggs; and whether their eustom gave rise to the etiquette whieh attends human royalty, that a subjeet may never turn the baek upon the sovereign, these attendant bees surround her with the head always turned towards her, and seem to earess her with their antennæ and pay her every kind of deferential homage, those in front moving baekwards as she advances, and those on eaeh side, laterally, so that they ever faee her; and as they tire others sueeeed them in their duties. Another set fulfil the offiee of keeping the hive thoroughly elean, for the transit of sueh large numbers will inevitably eolleet oceasional dirt, as will the drift of the wind at the entranee of the hive and the aetion of the ventilators themselves. Their duty it is also to remove any extraneous organie body that has foreibly entered and whieh may have sueeumbed to the vindietiveness of the bees. Where they are not strong enough, even eolleetively, to effeet the removal, as in the ease of a mouse or anything else as large or larger, they then eall to their aid the wax workers and the repairers; these eneiose the obnoxious body, which they have the judgment to know will beeome dangerous from putrefaetion, to aid in its prevention, by a eerement of wax or propolis, whieh prevents any offensive exhalation, and thus seeures the wholesomeness of the hive.

Here is eompleted, with the enumeration of those whieh successively repose from their toil, the several labours of the community whieh inhabits the hive.

The structure of the workers, which enables them to carry on all these operations with the requisite facility, is very different from that of the two scxes we have just described. As before said, they are abortive females, but, as I shall lave occasion to explain lower down, capable of having this special incapacity removed, if the necessary process requisite to be adopted for the purpose be applied within three days of their being hatched into the larva state. The acquisition of the faculty of fertility entails, however, the loss of all power of pursuing any of the other occupations of the hive practised exclusively by the workers in general. The nurture that gives it them converts them into queens, and moulds them to the structure of this sex described above. As a remarkable and rare exception, some one or other of these workers will occasionally have power of laying a few cggs, but which are always those of drones. The other peculiarities of their structure arc its adaptation to the secretion of wax above described; and thcir power of throwing up the honcy they have collected in the first stomach or honey-bag, before it passes on by digestion, somewhat in the way the rumimant quadrupeds bring up the cud, of course by muscular action, without the convulsion of vomiting. Their next distinction is that their mandibles are edentate and more like spoons, and are often so used, or as the plastering... trowel of masons is for smoothing surfaces. Their legs remarkably differ from those of the other sexes, all of their limbs being somewhat adapted to the collection and conveyance of pollen and its manipulation, as well as that of propolis; but it is the postcrior shanks which are specially constructed for the conveyance of these materials, by being framed externally like a little basket; being
hollowed longitudinally and their lateral edges fringed with recurved hair, which retains whatever may be placed within the smooth and hollow surface, and the apical extreme edge has a pceten or comb of short stiff bristles. The first joint of the posterior feet have also thicir distinctive form, adapted to special branches of their economy. These are oblong, wider than the shank, and about two-thirds its length, and consequently powerful limbs; at the outer angle of the cdge, nearest the shank, is a little projection called the auricle or earlet, the inner surface is clothed with ten parallel transverse rows of close dense hair; and its apical edge has along its whole width a pecten similar to that of the apex of the shank. This shank being without spurs, which only the domestic bee is deficient in, gives the pecten a frcedom of action it would not otherwisc have, and enables it to be used together with the earlet opposite to it on the foot, as an instrument for laying hold of the thin flakes of wax upon the venter, and to bring them forward to the intermediate legs to be passed on to the mouth, and there to be converted into was. The pecten of the foot and also its brush aid in thcir removal in case of need, and help as well both in the manipulation and the storing the materials collected. Thus, this whole structure, exclusively possessed by the worker, is pre-cminently designed for the manifold operations of the hive; and the bee itself and its works are but one closely linked chain of wonderful contrivances.

The cutire economy of the hive seems to emanate exclusively from the two most prominent attributcs of instinct, that of self-preservation, and that other more important axis of the vast wheel of creation, the secured perpetuation of the kind by the conservative $\sigma \tau \circ \rho \gamma \eta$, or
absorbing love of the offspring. The latter is more eminently developed in the soeial bees than in any other group of the family of these insects. In the solitary bees it presents itself as a blind impulse, uneonscious of its objeet; for did we admit the eonseiousness of the purpose of their labours, we should evidently endow them with reason. How could they know, without reflection, that the food they store in the reeeptaele they form for the egg they will dcposit, and which receptaele is exaetly adapted to the size that the larva whieh will be hatched from it wili take, is to nurture a creature they will never see, and whose wonderful transformations they will not therefore witness? In the hive bee the maternal instinet exhibits itself as an energy diffused though a multitude of individuals, but these witness the results of their solicitude, and exclusively promote its suceessful issue ; and in these also the instinet of self-preservation is a diffused impulse, whieh likewise ineludes the preservation of the society.

As male and female eonjunctively make up the species, thus do the queen-bee and the neuters eollectively make up one sex,- the mother, -for the functions performed by the female alone in the case of the solitary kinds of bees are, in the genus Apis, separately executed. The cares and labours of maternity devolve upon these neuters, while the queen-bee's maternal function is limited to merely laying the eggs with whieh she is replete, with the instinctive power of seleeting for them their proper depository, - eaeh of which is adapted in size to that of the sex whieh will be produeed. Her maternal instinet stops abruptly here, without the development of an afterthought or eare for their future thriving. The instinet of the neuters, like the anticipative promptings of the
human mother, to prepare the elothing and other neeessaries for her expeeted infant, has forccast the queen's needs in its intermittent urgeney, by progressively constructing cells fitted severally in size for the growth and nurture of neuters, the first developed ; of drones, the next produeed ; and lastly, of queens, whieh soon afterwards appear ; sle instinctively knowing the proper time and the suitable use of them, having the faeulty of distinguishing them with a view to the deposit of the partieular kind of eggs of whieh she is for the moment parturient.

The drones, or male bees, appear to receive life for one substantial purpose ouly, whieh is suon aceomplished, but during the short space of time its successive performanee requires, it is incidentally aceompanied with assistanee to the general eommunity whilst they remain permitted occupants of the hive, by aiding in heating and ventilating it,-a labour repaid by the food, whieh they obtain from the stores kept open for daily consumption. Although uncontributive to the aequisition of the riches of the hive, yet are they indispensable to the perpetuation of the speeies, and thcir murder as supposed by some apiarians, or their cxpulsion as thought by others, in either ease equally tcrminating in their destruction, seems an unworthy return for the important serviee performed, although this is restricted to the number of individuals required by the equal number of queens that may be produeed. To this number their produetion might be limited, but for the chanee of either or all of thesc queens failing by some casualty to obtain a prince eonsort. To baffic the possibility of this mischance, a very superfluous number of these drones is hatched, as above stated, which are on the alert, when
each queen suceessively issues forth upon her bridal morn, to eatel her favouring glanees, and be the aeeepted groom. That they are not further eondueive to the well-being of the hive is the fault of their structure and of their instinet, whieh are correlative, they being as little fitted either in their tongue or their legs for the uses of the hive as the queen herself. The plysiology of their intercourse is a mystery of mysteries, and would seem to partake of the prineiple, modified, of that developed in the aphides, where the vital power passes on through suecessive generations by the efficieney of the energy of one aneestral intereourse. In the hive-bee this is not the ease, but in these the one espousal fertilizes eggs to the number of often a hundred thousand, yet undeveloped and even indiseernible by the aid of the mieroseope in the ovaries of the queen, and whieh beeome bees progressively in the eourse of a eouple of years, the supposed duration of her existenee, during the whole of whieh time she is laying. The aeeepted male is destroyed by the effeets of the amour, and when all the queens whieh are to be the heads of independent communities are sueeessively fertilized, and have led forth their colonies, the remaining drones issue eompulsively from the hive and are lost in the wideness of nature, and die by the natural limitation of their existence, or beeome the prey of their numerous enemies.
The neuters or workers are, as it were, emanations of the queen, or the organs whereby her several funetions as a mother are performed, eonsidering the speeies as restrieted to two sexes, and thus they eomprise with her, eolleetively, one organie whole. That this is a eonsistent view of their eondition is further proved by the eireumstauce that from their larvæ, upon the failure of a queen,
a new queen is produced upon one being supplied with a certain nutriment that developes the eapaeity that would remain inert and abortive, were it not thus promoted from its primary state. It may be questioned whether the eggs deposited by the queen in the royal eells are other than neuter eggs, their subsequent nature being changed by the different quality of the sustenance they are fod with when hatehed, as is the case in the above notieed defeetion of a queen. This then would limit the queen's eggs to the eggs of neuters and of drones, thus further eorroborating the idca of the existence of but two sexes.

I have stated above the supposition that the queen's officc may be restrieted to the laying of eggs, but it must be inferred that it has a wider eompass, and possibly comprises some administrative funetion in the regulation of the hive, from the eireumstance that with her loss the entire eommunity loses its self-possession and self-eontrol. Labour then eeases and the hive beeomes the scene of turmoil and confusion, and unless the loss be repaired in the way named above, whieh their instinet teaches them to adopt, if any eggs have been already deposited, or if supplied by the surrcptitious introduetion of another queen which they immediately raise to their superintendeney, paying her the same deferenee they had done to their lost monarch, or would do to a lcgitimately native birth, it disperses and destroys the eommunity. Sueh a loss in its natural course must necessarily, to be effeetively repaired, take plaee in the interval after the laying of the drones' eggs, and before those of the queens are deposited, for otherwise she would remain unimpregnatcd. Having thus shown reasons for supposing that the hive actually contains but two sexes, and having also
shown that the first phase exhibited of this distributed maternal instinct by which the neuters form conjunctively with the queen a many-headed and many-hearted mother, is their preparation of the cells for all the purposes required,-the next and most important, and the one perhaps which elevates them vastly ligher in the scale of social intelligence and affection, is the absolute development in them only of maternal solicitude for the well-being of the offspring. This certainly proves the existence of the diffused maternity urged, for they feed the hatched young as the bird does its callow, from hour to hour, and which, when full grown, they enclose in its formative cell, to undergo its changes and become one amongst theinselves. It is not absolutely determined whether the functions performed within the hive are restricted to distinct sets of the workers, but it may be presumed that the duties are transferable, for the most plausible supposition is, that all the offices are interchangeably performed by the entire population, possibly merely limited to daily alternation of individuals taled off each morning for the day's duties. That an administrative regulation must exist under some executive authority, emanating doubtless from the centralization of all in the queen, and communicated to the rest by her relays of attendants, may be conclusively inferred, otherwise all might similarly employ themselves from day to day, and thus overwhelm with one work the multiplicity of labours required for the well-being of the hive. For whilst some are secreting the wax from the honey they have consumed, others are moulding it into shape, others are harvesting the bee-bread to feed the voracious larvæ, others are gleaning the propolis for the security of the
domicile, others are collecting honey to store as necdful supplics, others are either ventilating or heating the intcrior, others act as sentinels and guard the approaches or patrol the passages within, and will dic in that defence like genuine patriots, and others are in attendance upon the queen in her progresses through her dominions, and who may individually act as aides-de-camp to convey her commands to the rest. All these are not fanciful cmbellishments of the narrative, but substantial and wellauthenticated facts, supported by the repetition on many sides of careful observations, but perplexing to human intelligence, for not the least wonder of this conventicle of wonders-the hive-is that it confounds the astute reason of man to comprehend it in all its significancies.

The first necessity of a new colony is the selection of a locality for habitation, which is usually effected by preliminary trustworthy intelligencers detcrmining upon a sitc suitable from its concurrent conveniences. A sufficient supply of sustenance must be conveyed by the emigrants to accompany the preparatory construction of the settlcment, until land can be cleared, grain grown, etc., and a year at least will pass, even under the most favourable circumstances of the cxcrtion of the greatest industry, concurrently with the most propitious succession of the seasons, bcfore it can become self-sustaining. But when once the wheel is fairly on the move, round it spins without interruption or relaxation. The colony thrives, increasing rapidly in its population; and where all have put the shoulder to the wheel it climbs the stcep and rugged hill of prosperity, whilst those who are carried onward by its evolutions, from each of the many successive terraces of this noble hcight, survey a broad, chcerful, and fertile landscape, extending itself with their
elevation, spread out to a distant horizon, which many of the more venturous spirits amongst them, urged by the teeming increase of their compatriots, have already traversed, and who themselves are now rejoicing in the establishment of offshoots, which speedily rival, in successful fruitfulncss, the wide-branched productivencss of the parent stock.

This is strictly ihe history of the hive, and the parallelism is complete, even to the conveyance with them of the preliminary needful stores. Before a swarm issues from the hive, some fly forth to select a dwelling-place, and return, it is presumed, to make their report.

The population of the hive becoming so dense that there is no longer room for the free and unrestraincd circulation of the ordinary processes of the community, and so hot from the inconvenient accumulation of such numbers,-for they extend sometimes to as many as fifty thousand,-instinct prompts a portion of the community to migrate. This disposition is further promoted by the progressive, or completed development of some of the young queens. The inveterate and internecine animosity of these-anticipated rivalry, suggesting, it is surmised, the murderous desirc, but being prevented from its indulgence by the defensive guardianship of sevcral of the workcrs-urges the old queen to abandon at this conjuncture her royal metropolis. The inclination to do so, it would appear, is already foreseen by a very large body of her subjects, for if her departure be delayed by her successor's protracted incapacity for undertaking the sovereign rule, the intending emigrants, having already abandoned all the labours of their old domicile prcparatory to their issuing forth, will cluster in groups about the bee board until she is ready to emerge.

This condition will sometimes last a day or two, and thenee of course all is confusion both within and without the hive, for her subjeets have suspended their labours and she has suspended her egg-laying, and roams wildly about within, striving, whenever she approaches a royal eell, or a fully developed young queen, to attaek the latter, and destroy her by stinging her to death, or, to tear the former to pieees to get at the imago within, which indieates its apprehension by a shrill piping sound. But she is foreibly dragged back from this apieidal purpose by the working bees which surround each, and who now intermit their usual deference to prevent this destruetion, and bite her and drag her back. The future queen of the abdieated throne having, during this turmoil, returned from her wedding tour, and being still proteeted from slaughterous aggression, the old queen indignantly issues forth. This exodus takes place usually on a brilliant and warm day, between twelve and three,-aecordingly during the hottest hours. This is the first swarm of the year, and if the season be very genial it will take place in May. In this migration she is accompanied by all her most faithful lieges, whieh eomprise, to the honour of beehood, by very much the largest majority of the inhabitants, to the number usually, in a well-stoeked hive, of several thousands, - say from ten to twenty, depending on the population of the hive.

Having thus issued forth in a body, they shortly alight upon and about the braneh of some adjaeent tree, clustering, in as elose proximity as they can, to their royal leader. In a natural state, when duly organized to proceed, they would thence start for the domieile that had previously been seleeted by the emissarics abore noted;
but, as their natural liabits are not at all perverted by their subjugation to man, we will pursue their history under his dominion. This will be the more convenient, for in the comfortable hive to whieh they have been transferred by his ageney, we shall have every opportunity of exaetly watehing their manœuvres by the faeilities yielded in its being glazed for the purpose. We shall thus be enabled to see and follow the wonderful ceonomy of the hive and its many mysteries, which it would not have been possible to aeeomplish in an abode of their own choiee,--some eavity presented by Nature herself, the hollow of a tree, or an exeavated rock. They are, therefore, now housed, and after the survey of the eapacity of their abode, which is a short affair, with all the prompt energy peeuliar to them they at once eommence their labours. The queen is already matured, and ready to lay eggs. In a natural abode the gathering of propolis would perhaps be a first necessity to make their home water-and-wind-tight, for they abhor the ineonvenienees of the intrusion of wet or cold. It is with this material that they make repairs, fill ereviees, and strengthen the suspension of their combs, which are hung vertically ; and they apply it also to other purposes, which we shall see hereafter. This material is of a resinous nature, it has a balsamie odour, and is of a reddish-brown or darker colour, and is supposed to be eolleeted from fir or pine trees, or from the envelopes of the buds of many plants, or their resinous exudations, espeeially that of the blossoms of the hollyhoek. It is execedingly elammy, and they have been observed ten minutes moulding it into the lentieular pellets in which they earry it home in the eorbieula, or little basket, of the posterior tibiæ. They gather it like
pollen with the fore feet, and pass it to the intermediate ones, whence it is taken by the posterior plantre, kneaded into shape, and deposited upon the hind shauks. It dries so rapidly that often, upon arriving home, the bees which store it have much difficulty in tearing it from the legs of these collectors. The hottest days only are propitious to its gathering, for all moisture is injurious to it, and the hottest period of the day, also, is alone occupied in its collection. It is said that they have been known to fly as many as from three to five miles for it, from the circumstance that suitable plants were not to be found within a lesser radius; but this may be a mistake, for their ordinary excursions are not supposed to range wider than a single mile or something more, and bees may be able to find it where we may suppose it not to occur. In the abode with which we have provided them it is not so urgent a necessity, this being already wind-and-water-tight, although in the progress of their labours they find it indispensable, and use it to fasten the ercvices that intervene between the bottom of the hive and the bee board, and, as before noticed, to strengthen the support of the cakes of comb which hang from the roof. The name it still retains is that which was applied to it by the ancients, and signifies before the city, as indicative of its use in strengthening the outworks.

Conjoined herewith is the imperative need for the construction of cells for every purpose of the hive, namely, for the storing of the propolis, and that of the pollen, as also the collected honey, as well as for the reception of the young brood, for the mature queen is waiting impatiently to deposit her eggs. Simultancously, therefore, is the wax being secreted and elaborated by
the processes previously noticed. The community is already large, and all are at once in active operation, but four-and-twenty hours must elapse before the cells can be commenced, for it takes that time to secrete the first batch of wax. Festoons, as before described, of these wax secreters are hanging in every direction within the cavity of the hive, and as soon as the process is completed by the first festoon, this dissolves itself by the sereral bees unlinking their feet, and a leading bee proceeds to the top of the centre of the hive, where she makes herself room from the lateral pressure of other bees, by turning herself sharply about and agitating her wings, and there she collects the scales from the surface of her ventral segments, manipulates them as before noticed, and thus converts them into wax. The rest follow her, and she collests it from them into a little oblong mass of about half an inch; whilst other bees from other festoons are continually arriving to deposit their produce; and as soon as the mass is sufficiently large, which is speedily the case, a sculpturer bee succeeds, and the first cell is laterally commenced. On the opposite side to where this is being framed, two other bees are at work, moulding the bottoms of two cells in apposition to the basis of the first one. The wax keeps constantly increasing by fresh deposits, and the rudiments of more cells are as rapidly formed. These all emanate laterally, in a horizontal direction or with a very slight incline towards their base. They gradually form the vertical cake of comb, for the bottom of one entire range of cells suffices for both sides and inevitably they are so adjusted that the bottoms of those on either side are each covered by onethird of the bottoms of each cell on the opposite side, and so converscly, receiving and communicating strength
by three thus supporting one. Here comes the great wonder of the hive ; here in this fragile strueture abides a mystery that has perplexed man's keenest sagaeity. Is it aeeident or is it intelligence that instruets the bee, or is it the impulse of the instinet implanted by that Supreme Intelligence which gives man his reason and moulds all things to their most fitting use?

Ray's view is preeisely this; he says:-" The bee, a ereature of the lowest forms of animals, so that no man can suspeet it to have any eonsiderable measure of understanding, or to have knowledge of, mueh less to aim at, any end, yet makes her eombs and cells with that geometrieal aeeuraey, that she must needs be aeted by an instinet implanted in her by the wise Author of Nature." To support this idea of the geometrieal skill of the bee, he eites "the famous mathematieian Pappus," the Alexandrian, of the time of Theodosius the Great, who "demonstrates it in the prefaee to his third book of Mathematical Collections." "First of all (saith he, speaking of the eells), it is convenient that they be of sueh figures as may eohere one to another, and have common sides, else there would be empty spaees left between them to no use but to the weakening and spoiling of the work, if anything should get in there, and therefore thongh a round figure be most eapacious for the honey, and most convenient for the bee to ereep into, yet did she not make ehoiee of that, because then there must have been triangular spaees left void. Now, there are only three reetilineous and ordinate figures, which can serve to this purpose, and inordinate, or unlike ones, must have been, not only less elegant and beautiful, but unequal. [Ordinate figures are sueh as have all their ides and all their angles equal.] The three ordinate
figures are triangles, squares, and hexagons; for the space about any point may be filled up either by six equilateral triangles, or four squares, or three hexagons; whereas three pentagons are too little, and three hcptagons too much. Of these three, the bee makes use of the hexagon, both because it is more capacious than either of the others provided they be of equal compasis, and so equal matter spent in the construction of each. And, secondly, because it is most commodious for the bee to creep into. And, lastly, because in the other figures more angles and sides must have met together at the same point, and so the work could not have been so firm and strong. Moreover, the combs being double, the cells on each side the partition are so ordered that the angles on one side insist upon the centres of the bottoms of the cells on the other side, and not angle upon or against angle; which also must needs contribute to the strength and firmness of the work."

Each cell there'ore is in shape a hexagon, that is to say, a figure with six equal sides, to each of which six other hexagons attach, for each wall forms also one wall of another hexagon. The basis of each hexagonal cavity is of an obtuse three-sided pyramidal shape inverted, and consisting of three rhomboidal plates, each forming onethird of the basis of the three opposite cells; thus the edges of these three basal plates of one side support three lateral walls of three hexagons on the other side. The inverted triangular pyramid thus made by these three equal rhomboidal plates, form, at one extremity and at each pair of their posterior edges a re-entering angle, and at the other extremity a salient angle. From these edges spring the lateral walls of the hexagonal cell, this shape being superinduced by the form of the edges of
the basal eavity. That the bees should have been thus guided to eleet a form which combines eonjunetively the advantages of strength and eapacity evidently proves that it is their instinet whieh guides them, whieh, being an afflation from the highest source, ensures the most complete perfection in its result. That it cannot be the effeet of simultaneous lateral pressure is proved ineontestably by the whole superstructure resulting from the design of the base; and this is further eorroborated by the base of one eell on one side forming invariably equal portions of the base of three eells on the opposite side, -all elearly the result of preeonceived design impressed upon their sensorium. From this combination of forms results the security proeured to the fragile tenement, whieh consists of the very smallest quantity of material that will cohere substantially, for the bees are exceedingly parsimonious of their wax, as if the produetion of it were attended with pain or ineonvenienee, and it is only upon the construction of the royal eells that a profusion of this ehoiee material is squandered. As soon as these cohorts of bees are in aetive operation, it is astonishing with what pertinaeity and rapidity they labour, for within the space of four-and-twenty hours they will eonstruct a eake a foot deep and six inches wide, containing within its double area some four thousand eells. Other cakes parallel to eaeh side of the original are being at the same time earried forward with an interval between each suffieient for two bees to pass cach other dos à dos, and further to promote the convenience of traffic within the hive, and ready communieation to its several parts, passages are left through these eakes from one to the other, so that the means of transit are opened, which of course saves much time. The queen
is already making her progresses from one side of each comb to the other, and depositing her eggs as rapidly as she can, and is constantly attended by her aides-de-camp, as I have suggested, which act, as they evidently sometimes are, as the emissaries of her commands. They consist of ten or twelve or sometimes more, and have been previously described. They are replaced by others as they quit to obey orders, or as they retire fatigued, so that she is always surrounded. The number of eggs she will lay in a day is about two hundred. In doing this she first thrusts her head into a cell to ascertain its fitness, which having done, she withdraws it, and then curving her body she thrusts the apex of her abdomen, which tapers to the extremity for the purpose, into the cell, wherein by means of the sheaths of her curved sting, which act as an ovipositor, she places the egg at the bottom of the cell. It is possibly from some taction of this instrument that she discerns the sizes of the eggs, and thence their respective sex. This process she continues repeating, passing from one sidc of the comb to the other by means of the passages perforated through it, making the numbers as nearly as possible tally on each side and as opposite to each other as may be, and she will then go forward to further cakes of comb. In this way she lays about ten or twelve thousand in six weeks, depending much upon the propitiousness of the season, but the rapidity of this laying intermits according to the months; the above estimate is based upon what April and May produce, as it slackens during the summer heats and again revives in the autumn, but totally terminates with the first cold weather. She thus will lay from thirty to forty thousand or more in a year.

Apiarians do not state whether the san.e queen heads
another swarm on the following year, whieh perhaps she does in those cases of exeessive fertility where her abundance is estimated at one hundred thousand, when by her sole individual eapacity she populates three hives. In the more usual and ordinary ease of her teeming with about seventy thousand, or fewer, she evidently heads but one swarm. With the deseribed rapidity of the production of the eells, although the majority are store eells and not brood eells, conjunctively with her prolifie laying, the population of the hive rapidly increases, which, added to the large original eolony, will enable it in a propitious year to throw off a swarm of its own; but ordinarily she does not again lay drone eggs and royal eggs until the following season. The period at whieh to do this is taught her by the eondition of the hive, as urgent for relief to its oppressive population by an exodus. The drone eggs are then laid, and are speedily suceeeded by the laying of the royal eggs, so that the males of the scason and the new queens may be hatched almost simultaneously, the drones slightly preeeding the development of the queens. As soon as the egg of a worker is hatched, which, by means of the high temperature, is effeeted in four days after the laying, it, from its birth, is sedulously attended by the bees called nurse-bees. The little vermicle is very voracious and is heedfully supplied by these eareful attendants, when it has eonsumed the quantity of bee bread already deposited in the eell by some of these nurses as soon as the egg was laid. This bee bread consists of pollen, taken from the eells by the nurses, where it is garnered for the purpose, being therein mixed with a slight quantity of honey. This, in mastieating, the nurses intermingle with some seeretion of their own, which gives it a sort
of gelatinous frothy appearance, and upon this the young thrives so rapidly, greedily opening its jaws to receive it, that in four more days it is full grown, and fills the whole cell. The nursing-bees then cover this in with a light brown top, convex externally, and within it the larva spins for itself a cocoon to undergo its subbsequent transformations. This cocoon is spun of a fine silk, which issues from the organ of the larva called the spinner, in two delicate thrcads, which, as they pass out, cohere together. It works at this labour for thirty-six hours, and then changes into the pupa or grub; thus it lies quiescent for three days, when it gradually undergoes its transformation into the imago, and it issues as a perfect insect about the twenty-first day after being deposited as an egg. The cocoon it has formed exactly fills the cell it has left, which still continues to serve as a brood cell until the succession of cocoons with which it is thus lined renders it too small for the purpose, it is then cleancd out by the scavengers of the hive and changed into a honey depository, but the honey stored in such a cell is never so pure as that which comes from the exclusively waxen cell. Thus is effected the transformation of the working bee, which, upon the very day of its emancipation from its nursery, commences its duties as an active member of the community, in the successive and several labours undertaken for the benefit of the commonwealth, and these it assiduously follows for the period of its natural life, which extends to about six or eight months.

The hive is now in the liveliest activity. The swarm which entered with the queen, and the large addition to the population which has already been produced from her incessant laying, are all at their several aro-
cations. The wholc hive, its entrance and the immerliate vicinity, and far around is jocund with the bustle and the buzz of the busy little creatures going and coming; thosc returning are all laden, although some do not appear so, but these are conveying riches home within them, as they are returning from their excursions with their honcybag well filled. There is welcoming recognition at the entrance to the hive, wherc, on its broad platform, they all alight, and there many are to be seen touching each other with their antennæ, or refrcshing themselves by the vibrations of their wings, and in doing this they often raise themselves on the hind legs, or they are resting for a few seconds before they entcr. Others are to be seen arriving unrecognizable from a coloured envclope of pollen which mantles them. The incessant hum that accompanies these proceedings is like the mildest tones of the surge of the distant sea, or the inarticulate buzz of the voice of large crowds. In this seeming confusion all obey the strictest ordcr, for each attends to his own business only ; there is no collision or loss of time or labour, each one fulfilling prccisely its own mission. At this period the hive is a perfect model of order, neatness, and beauty. The combs we have seen so rapidly growing are to be filled, and fresh cells are being constantly constructed. The honey there stored from the gradual gatherings of these active harvesters is partly to be reserved for the winter's needs, and is carefully husbanded, for each of these cells is, when filled, closed by a covercle of wax moulded as it is supplicd to the operator in concentric circles, commencing at the edge, and cach circlc being completed before another is begun, and not in a spiral twist towards the
centre. To prevent the trampling of the discharging bees from injuring the delicate structure of the walls of the ccll, cach edge is furnished with a strengthening rim of wax. The bulk of thesc stores is never broken, except in bad wet scasons, in times of, great dearth, or upon any suspension of torpidity during their hibernation. For the ordinary and daily consumption of those of the community whose labours confine them to the hive, open stores are left. As of course it occupics the excursions of several bces for some time to fill one of these vases, and to prevent the liquid flowing out, as it might do from its exceeding tenuity through the influence of the summer heat, and the then increased temperature of the hive, as well as from its inclined horizontal position,--this is guarded against by the precautional sagacity of the little creatures placing upon it from the deposit of the very first supply a sort of opcrculum, as before described, of a thicker consistency, which lies upon the top of its progressive increase, and thus prevents its oozing. It lies upon the honey across the transverse diametcr of the cell, and consequently in a vertical position. Its purpose, like that of the flat picces of wood which are placed upon the water of full pails when carried by the yoke, is to prevent its spilling or overflowing. This small cover has to be partially removed upon the arrival of a bec with fresh store, which she hersclf does by tearing aside a portion of it to enable her to regurgitate into the cavity the portion she has brought home; upon freeing herself from this she does not wait to restore the dilapidation she has caused, but procceds on a fresh harvesting. Another bce, whose duty it is, then readapts this cover to its purpose, and repairs it. Their excursions to collect are
variously estimated at from one to three miles, and they make about ten a day. The bees, in their temporary distribution of labour, are something like the Indians which have caste, among whom each service has its spccial servitor, who never undertakes or interferes with the duties of another. The collection of pollen is almost as ncedful to the well-being of a hive as honey, this being used exclusively as the basis of the sustenance of the new brood in their larva state, in all their conditions of worker, drone, and queen, the perfect bee itsclf never partaking of it. It is variously commingled upon its application to use with secretions of their own, which convert it into bee bread or royal jelly, as the case may be, to fit it for its special employment, which is done by the nurse-bees, who diligently attend to the nurture of all the young. The cells for storing this material are not so numerous as the honey cells, and they are jotted about without any distinct ordcr, amongst them. When a bee arrives with her store of pollen on the edge of one of these cells, she turns round with her back to it and thrusts it in as fast as she can free it from her legs, both by their aid and the twisting about of her abdomen, and then, like the honey-gatherer, commences another journey. As soon as she is gone, another bee manipulates it with a small stock of honey, and packs it closcly in. Whilst all this is doing, the set which watch the condition of the hive, like surveyors, to apply repairs where necessary, or to add strength and further support to the suspended cakes of comb, impatiently await the return of the collectors of propolis; this they tear from their shanks as fast as they arrive and as quickly as they can, for it rapidly hardens, especially in fine hot weather, and they convey it away for their requirements, whilst
those which collected it fly off for fresh supplies, should more be necded. Concurrently with the execution of all these things, wax is still being secreted by festoons of bees suspended wherever there is space, the sculpturer bees are still moulding cells, the queen is still laying eggs, deferentially attended, as usual, by her maids of honour; the young brood is still being fed; other bees are ventilating the hive at its entrance and within its streets and lanes by the rapid vibration of their wings; the sentinels are diligently keeping guard to repel the inimical intrusion of wasps or snails or woodlice, or the moth which is so destructive to the interior in her larva state, from the covered moveable silken retreat which she constructs impervious to the sting, and thence with impunity gets at the silk of the cocoons and consumes the was, making, when once fairly domiciled, such fearful havoc in the hive that the bees are fain to desert it,-and the many other numerous enemies which lust for the luscious honcy, or whose voracity is attracted by the poor little diligent bees themselves, but who in such contingencies exhibit invincible courage, which, if not always successful in its efforts, is always meritorinus. Where self-preservation is not the prompter, or the rivalry of love the instigator, but the duration of which is limited to a season, the feuds of the animal world all seem to proceed from the urgency of their gastronomic suggestions, the acrimony of which urges craft and strength to their most powerful exhibition. To allay hunger, destruction is perpetrated and order despoiled, and thus our bees become the victims of the imperativeness of this universal law. But sometimes they are triumphant over a very large enemy; for instance, an intrusive mouse, or a slug that has slimed its
way through the arched portal. They have been known to kill these enemies within the hive as they could not make them withdraw, but perplexity results from their success; they are, however, gifted with the sagacity to know that the putridity of these masses will poison with its effluvia the atmosphere of their eity which no ventilation can purify, and they couvert that part of their metropolis into a mausoleum, eovering the carcases with a eoating of propolis, alone or mixed with wax, as before noticed. Those which execute this' summary martial law are the sentinels-the armed police of the hive-which guard its entranee and avenues, and patrol its streets and lanes and passages. Concurrently with all these doings, seavengers are heedfully eonveying away any particles of dirt or other undesirable superfluity which may have accidentally found its way in. That all these labours produce fatigue and exact rest is proved by the circumstanee that many bees are always observed in a state of repose,-perhaps only forty winks during the day just to restore exhausted energy,-for they are soon seen again to resume their toil, this inactivity never being idleness. Whether they proceed with the same kind of employment upon the renewal of their work is not known, nor how long lasts a particular kind of labour, but the change of occupation may be one of frequent occurrence, and it may be presumed that each bee severally and successively undertakes each task, that the faculty for exercising it may not be extinguished. It is very possibly a daily ehange, which eirculates through the entire civic population of workers.

Although the labours of the bees are divided, we do not find that even the most successful observers, who have had every opportunity, by the nature of the hives
they possessed, and the sagacity they applied to the detection of the most minute particulars, have been enabled to diseover that these workers were permanently separated into distinct classes,-indeed, although surmising from this distribution of labour that such might be the case, and thus made alert to the discovery of its positive confirmation by direet observation, they have never been able to do so; and they strongly deny it, maintaining that these duties are individually transferable, and that they are not restricted to certain classes, already sufficiently implied by the organization of the workers. Huber, it is true, states that the wax-sculpturers-those which finish the eells to their nicety of perfection-are smaller than any of the rest of the community, to facilitate their operations within the cells, which may perhaps be a foregone conclusion.

The idea of administrative vigilance in the distribution of the labour of the community is strongly eorroborated by the fact that all the labours proeeed pari passu and in equable order, no excessive preponderance of any particular work having been observed, which would certainly sometimes be the case were there no limiting control over their individual action, and thus the harmonious concurrence of all to one effeet seriously disturbed. The supposition is also strengthened by the unfailing attendance of the queen's numerous and deferential retinue, some one or other of whom, every now and then, quits that service-perhaps as an envoy on business of govern-ment-and is replaced by another. All these many circumstances lead to the presumption that the queen is the heart of the whole body, the organ which forces forward the circulation through its diverse channels, giving to all the temperate pulsation of vigorous health.

The hive is, of course, quite dark within, and to carry on the numerous operations which we have noticed are done there, either sight of a peculiar nature must lend its aid, or some faculty residing in a sensation analogous to touch, but which it may be cannot be known, nor where it may lie, but if it exist its organ is most probably the antennæ. We can, it is true, compute their eyes, which comprise more than sixteen thousand, namely, about eight thousand in each of the compound organs placed laterally upon the head, each separate eye being an hexagonal facet furnished with its separate lens and capillary branch of the optic nerve, and also edged with short hair ; in this hair, therefore, may lie the particular sensation which guides them, for we cannot be sure that this large congeries of hexagonal facets facilitate sight in the dark, as in number and position they do not exceed or differ from the analogous structure and number of the same organs in many other insects which we know to be only seers by day, and which repose at night; but the hairy addition to the eyes of these bees is a structure not observed in them.

This constitution of the hive and its various operations continues during the remainder of the season until the approach of winter cautions them from venturing abroad, when, if the temperature of the hive is much lowered, they hibernate and remain in a torpid condition until the sunshine of the following spring, and with it the flowering of plants, rouses them again to resume their suspended labours. The population of the hive having continued to increase, although not so vigorously as at first, up to the very intrusion of winter, and the renewed year giving renewed energy to the queen, the population thence rapidly further increasing,
it beeomes ineonveniently thronged, especially as spring advances and hot weather sets in. These promptings then urge her to lay dronc eggs, for which preparations have already been made by the workers, who have already framed for their reception-they being much larger insects-larger cells moulded precisely in the same manner, and which arc also used occasionally as reeeptacles for honey, and always skirt the bottom of the several combs. This task she has completed in about five days, and it is carried on precisely in the same way as is practised in the case of the neuters; and they are nurtured by nursing-workers just like them. Of these eggs she lays, as before said, about a thousand, and the workers by some instinetive faeulty have framed about such a number of the needful cells. The transformations of the drone occupy about twenty-four or twentyfive days, of which three are passed in the maturing of the egg which then hatches into the larva. This oceupies nearly seven days in attaining its full growth, and the remaining portion of the time is spent in its spimning its cocoon, in the same way as the larva of the worker does, and it changes into the imago. To effect all these changes in the transformations of all the sexes, a heat of about seventy degrecs is indispensable, but that of the hive in summer is considerably higher. They as well as the workers are assisted to emerge from the cocoon by some of the older workers, who use their mandibles to bite through the enclosure, and who also help to cleanse them from their exuvir.

Concurrently with the formation of the brood cells of the drones, some of the workers are constructing cells to receive the royal eggs. These cells are totally unlikc the other cells of the hive, and are of a sort of pear-
shape five times as large as the drone cells, and are attached laterally to the edges of the comb in a vertieal position, with the narrowest part, which is the orifiee, hanging downwards. In the forming of these cells the workers are very lavish of their wax, making the coats of them thiek and opaque, and they are irregularly rough outside, but within very smoothly polished. Just as the eonstruetion of these eells intervenes irregularly with the formation of the cells of the drones, so does the queen intermit at intervals the laying of the drone eggs to deposit oceasionally an egg in one of the royal eells, whieh are not usually eompleted at the time she commences laying them, but are finished afterwards, even during the time the larva is growing. This provision seems to be made for the earliest development of the young queens after the drones come forth, with the possible prevision that the sooner all of these young queens are fertilized that are needful for the requirements of the swarms that the hive may throw off, the sooner will the hive be rid of the ineumbrance and the eonsumption of stores eaused by the drones. The transformations of the queens take place more rapidly than the others, for in sixteen days they are completed, of whieh three are oceupied in hatching the egg, and for five they are feeding. as larvæ, and in that time attain their full growth; the eell is then elosed in with a waxen eover by the workers, and the full-fed larva within is oecupied in spinning its coeoon, whieh it takes twenty-four hours to accomplish. This cocoon is unlike that of the drones and workers, both of whieh eompletely enelose the pupa, but the royal larva only forms so much of a cocoon as will cover the head and thorax, and by which imperfeetion she uneonsciously facilitates her destruetion by her rivals in
case they are permitted to attempt it before she emerges, -this being supposed to be the object of it, as the close texture of the silk of the cocoon would intercept the action of the rival queen's sting. In this state she remains in complete repose up to a part of the twelfth day, and it takes about four days more to change into the imago, which is ready to emerge on the sixteenth. In her larva state she has been very carefully and profusely supplied by her nurses with the royal jelly, made in the manner before described. This royal jelly is very stimulating, it is pungent, rather acescent, and is very different from the food supplied to the drone- and workerlarve. A great many of the drones being now perfect insects, some young queen, that is ready to go forth, is at length permitted to do so by her guardian protectors, for the old queen is already aware of her existence, and has more than once attempted her destruction, but from which she has been prevented. At a suitable opportunity this young queen issues, attended by a bevy of drones; she immediately ascends in a spiral direction high into the air, far out of sight, and is followed by her suitors. Their larger capacity of flight speedily permits them to overtake her, and they ascend above her; one being favoured, the rest descend again, and either at once return to the hive or frolic about in its vicinity. It is not long before this young queen returns, matured into an incipient mother. Now comes renewed hostility from her own parent, who is still prevented from the murderous assault, but who succeeds in ejecting her young rival. During this contest the hive has become a scene of confusion, and the preliminaries and accompaniments of fresh swarming take place, and in going forth she is accompanied by a large body of the present population, and thus
the first swarm of the fresh season is thrown off. Other queens become gradually developed, and other swarms similarly accompany them, but each swarm successively diminishes in the number of its participating emigrants, the last consisting perhaps of not more than two thousand. The order of the hive is speedily restored after each swarming convulsion has subsided, until the population being sufficiently reduced, the motive to leave is destroyed, and the queen is then permitted to execute her murderous onslaught on the hapless young queens, which are either still embryonic, or, if developed, have not been allowed to leave their cells ; but, where they have done so, and are still within the hive, her attendants and the old queen's attendants open their ranks, and the furious rivals attack each other. The contest is sharp but short, the young queen is stung to death, the body is conveyed away, and the old queen reigns paramount. Her next effort is to destroy the royal brood in their cells; the cells she tears to pieces, the young ones within, where developed, may be heard uttering a plaintive cry, whilst she sounds a triumphant note as loud as the highest note of a flute. Her throne is now free from pretenders, and after the expulsion of the drones, which then takes place, the entire harmony of the hive is restored for another season. The queen meanwhile is growing old, a new spring has set in, her stock of eggs is being exhausted, and mortality, which afflicts even royalty itself, lays her low. Now comes into operation that extraordinary faculty possessed by these insects. Her death has taken place after she had laid new spring eggs, which are to produce a further addition of neuters and a supply of drones. The loss of their queen is soon communicated to the inhabitants of the hive, confusion ensues, and
labour is suspended. They group about in clusters of a dozen or more, and after about a day's intermission of the ordinary routine of labour they appear to have come to a resolution. Bustle is again renewed, and several, as the delegates of the general body, pass into the midst of the neuter brood eells, tear down the separating walls of three, kill two of the very young larvæ, eonvert these three cells into one by fitting alterations, and transfer the care of this vermicle to the nursing bees. Under their eare, they heedfully feeding her with the royal jelly, her transformations speedily are completed, and whilst this is being done, drones are eoming forth. As soon as she is ready she is aided to quit her cell. She now leaves the hive, and the drones which are already perfected aeeompany her; she makes her wedding tour in the air, and quickly returns as the queen-regnant of the rejoicing monarchy, whose vaeant throne is again royally oecupied, and the entire harmony of the hive renewed.

The quantity of pollen that is colleeted in the eourse of a season, by the diligenee of the bees, has been estimated at from sixty to seventy pounds; and the weight of the honey, so affluent a hive will produee by abstraction from the bees, is calculated at as much as sometimes fifty pounds. This, however, must be vastly execeded by the quantity eolleeted, as it is being eonstantly consumed for sustenanee, and for the secretion of the raw material of wax, as well as for the produetion of the liquid which eonverts this into its mouldable consistency. It is possible to estimate pretty nearly the quantity of honey required for each seeretion of the raw material, by finding what the honey-bag will eontain when gorged, as it is this quantity which seems to make
the cight scales of it upon the ventral platcs, for they cannot convey more up when they hang themselves in the festoons to seccrn it. But it is impossible to know what addition this liquid from thicir mouths makes to it when they manipulate it into its plastic state, other bees often undertaking this task, which may apply themselves to it with a larger stock than the wax-secretcrs possess, they being perhaps already cxhausted by their labours. It is a singular fact that wax is more rapidly and largely made by feeding the becs with dissolved sugar than from the honey they collect themsclves, the sugar thus evidently containing more of its productive clements.

Some of the labours within the hive are apparently continucd at night, or the becs may be then revelling, after the day's toils, in social enjoyment, or otherwise more worthily employed; for, to use the words of the benevolent apiarian, the Rev. Wm. Chas. Cotton, "If you listen by a hive about nine o'clock, you will hear an oratorio sweeter than any at Exeter Hall. Treble, tenor, and bass are blended in the richest harmony. Sometimes the sound is like the distant hum of a great city, and sometimes it is like a peal of hallelujahs."

This is the history of the hive and its inhabitants. Modifications may occasionally occur, but nothing of sufficient consequence seriously to affect or ncutralize this ordinary routine. It would occupy space already too largely encroached upon to go into thesc minutc particulars, which, although parts of thcir general history, where treated of in special detail, are not necessarily the province of a work which speaks of them as but one member of the family of which it collectively discourses. As the spacc occupicd by what was really essential to be known about them, has exceeded the due dimensions of
their share to it, although of paramount interest, infinitely greater than that which attaches to the economy of the whole of the rest of the group combined, it will not, I trust, be considered that I terminate abruptly, in drawing here to a close.

The close of the work concurs with the termination of the history of its crowning marvel ; and I take leave of my readers, with a reiteration of the hope that it may stimulate them to undertake a study, wherein, each step of their progress, expands the delightful contemplation of the manifestations of the predominance of a vast design, emanating from the paternal benevolence of an august, supreme, and wisely superintending Providence.
"To-morrow to fresh woods and pastures new."-Milton.

GENERAL AND GLOSSARIAL INDEX.

Abdomen, 25.

- and its differences of form, 47 . - causes of differences of clothing and form lie in its use, 48. - colour and marking and clothing of, characteristic, 47 .
- elliptical, or lanceolate and truncated, 48.
Acari infest bees, 110.
Activity of a hive at work, 348.
Acuminate, terminating gradually in a sharp point.
Affinity, doctrine of, 136 .
Agassiz' 'NomenclatorZoologicus,' 130.

Analogies between the stages of bees and flowers, 15.
Analogy, doctrine of, 138.
Andrena, gencral observations upon, 264.

- geography of, 67 .
- infested by Stylops and Nomada, 208.
—— list of native species, 201.
- natural history of, 205.
- scientific description of, 200.

Andrenidæ, abnormal bees, 160 .

- diagram of mode of folding the tongue in repose, 39 .
Animals, domestication of, 5.
Antenne, 26, 28.
- apparatus for cleaning, 42.
-- form and structure in Euccra, 29.
possible complex function of,

Antennæ, sexual differences in length, 233.
—— their probable usc, 55,57 .

- used as means of communication, 58.
Anthidium, general observations on, 281.
- geography of, 75 .
- native specics, 279 .
- natural history of, 282.
- scicntific description of, 279.

Anthocopa, general observations on, 292.

- geography of, 76 .
- native species of, 292.
- natural history of, 293.
- scientific description of, 290.

Anthophora, general observations on, 238.

- geography of, 70.
- infested by Melecta, 240.
- list of native species, 238. natural history of, 238.
- scientific description of, 236.
- trophi of, 29.

Apathus, gencral observations on, 304.

- geography of, 77.
- list of native species, 304.
- scientific description of, 302.
- the Bombi they infest, 306.

Apidx, diagram of the mode of
folding the tongue in repose, 39.

- = normal bees, 160, 227.

Apis, general observations on, 321 .

- geography of, 79 .

Apis, 11 ative species, 321.

- natural history of, 322.
- origin of names, 321.
- scientifie deseription of, 318 .
_ see "Bee" and "Bees."
Appearance of bees intermittent, 54.

Appendieulated, when there is a small appendage, as in the lip of Halictus, and at the end of the marginal cell of the wings, ete.
Arrangement and deseription of British bees, 184.
Artesian well, peeuliar results from its soil, 223.
Articulate, where jointed, or the point of attaehment.
Artisan bees = Dasygasters, 272.
Aryans, one of the primitive divisions of the human raee, 4 .
Atmosphere, its eonditions affeet bees, 50 .
Aulaeus, 287.
Aurieulated, with a small ear-like appendage.

Bee, eonstructive habits of the, early notieed, 93.

- general history of the, 17 .
- parasites, 115.
— parasitism limited, 264.
probably earlier known to man than the silkworm, 6 .
-- Queen, deseription of, 322.
__ see " Apis."
_- several species of, 87 .
- srmbol of royalty with the Egyptians, 5.
-The, one of the Suras of the Koran, 90.
-_- why attraetive, 1.
Bee-bread, 347.
Bees, amount of their suseepti. bility of pain, 57 .
- construction of eells, 327.
-duties performed in the hive, 325.
- duties transferable, 336 .
- early cultivated, 3, 90, 91.
- ceonomy, early known, 92.
- emit an odour, 52.

Bees enemies, 51.
——extent of flight, 340 .

- flight, modes of, varies, 49.
- found in the Orkneys, 7 .
- genera of, determined by an artricial morle, 170.
- habits of, in Ameriea, 7.
_- hairiness of, reason of, 14 .
- intimately eonnected witl flowers, 3 .
- largely contribute to the impregnation of plants, 11.
- make about ten journeys a day, 351.
-_ many diselosed in autumn for the following year's spring flight, 53.
- not early risers, 51 .
- number of eyes, 355.
- other than soeial, also known, 8.
—_rarely walk, 50 .
sagaeity in finding the honey of flowers, 13.
seientifie arrangement and deseription of the genera of, 184.
- seeretion of wax, 325.
_- stages of life of,-egg, 18.
—— - larra, 19.
- - pupa, 22.
- - imago, 23.
——swarming, 337.
—— their relative perfection, 56 .
- voiee, a seale of musie, 49.

Beehive represented on a tomb at Thebes, 6.
Beehires moved on rafts, 84.
Bifid, divided into two parts.
Binomial system invented by Linnæus, 129.
Body of the bee, its strueture, 25.
Bombus, diffieulty in determining the speeies of the males, 311 .

- general observations on, 310 .
- geography of, 78.
- infested by Apathus, 311.
_- list of native speeies, 308.
- natural history of, 312.
- peeuliarities in times of appearance, 312.
—_seientifie description of, 307 .

Boss of mesothorax, 45.
Bougie, derivation of, 84 .
British bees, new arringement of, $153,158$.

Carder becs, 316 .
Carelessness of deseribers of now species, 125.
Carinated, haring a longitudinal elevated line.
Carpenter bees, 286.
Cells of hive, geometrical form of, 343.
results from instinct, 343.

- how constructed, 342.
——of wings characteristic, 44.
Cenobites $=$ social bees, 167,302 .
Ceratina, disputed parasitism of, 247.
- general observations on, 246.
- geography of, 71.
- list of native speeies, 246.
—— natural history of, 247.
- scientific description of, 245.

Cereal plants early cultivated, 4 .
Chelostoma, general observations on, 286.

- geography of, 76.
- infested by Fconus, 287.
- native speeies of, 285.
- natural history of, 286.
- scientific description of, 283.

Chrysis infests Chelostoma, 287.
_- infests Halictus, 219.
_ inicsts Osmia, 302.
Cibarial apparatus $=$ trophi $=$ col -
lective organs of the mouth, 163.
Cilissa, general observations on, 213.

- geography of, 67.
- list of native species, 213.
- scientifie description of, 211.

Clavate, club-shapcd.

- - antennæ, 28.

Claws, 42.
-_reflected, 285.
Climate inoperative on low forms of life, 24.
Clothing of bees, 60 .
Clypeus, 26,28 .

Condunate, closely united withou pereeptible articulation.
Colioxys, difficulty of their specific separation, 267.

- gencral observations on, 267.
- geography of, 74.
-_ list of native species, 267. parasitical on Megachile and Saropoda, 267.
- seientific description of, 265.

Collar, 41.
Colletes, general obserrations on, 187.

- geography of, 64.
-- list of native specics, 187.
- natural history of, 187.
- parasites upon,]90.
- scientifie deseription of, 185.

Colour of bees, 60 .

- more intense in males than females, 52.
- most conspienous in parasites, 66, 105.
Combs, structure of, 345 .
Corbieulum, 319.
Correlative relations of structure and function, 10.
Cotton, Rev. Chas. Wm., a distinguished apiarian, 361.
Coxa, or hip, 41.
-useful as a specifie character, 42.

Compound ejes, 26, 27.
Compressed, when the transverse section is shorter than the rertical.
Constricted, with tightened edges.
Conterminous, where the joints follow each other in a straight line of suceession.
Crenulated, cut into segments of very small cireles.
Cubital cells of wings, 45.
Cuckoo bees, $=$ Nudipedes, 249.
‘Cui bono ?' answer to, 141.
Curtis, inferior merit of his system, 152.

Dastgasters, urtisan bees, $167,269$.
Dasy poda, general obseryationson, 225.

Dasypoda, geography of, 69.

- native speeies, 22 .
- natural listory of, 226.
_- seientifie deseription of, 224.
Defleeted, when bent downwards.
Dentate, toothed.
Depressed, when the vertieal seetion is shorter than the transverse.
Deseribers, duties of, 125.
Deseribing, modes of, before Linnæus, 129 .
Differences of appearance between the parasite and the sitos, 260 .
Digiti, anterior tarsi, 42.
Dissimilarity frequent between the sexes, 52.
Domestieation of animals, 5 .
Dorylus, 311.
Drone $=$ mule bee, description of, 323.

Edentate, withont teeth.
Egg of bees, 18.
Egyptian hieroglyphies and seulptures represent the bee, 6 .
Elenehus, habits of, deseribed by Dale, 113.

- infests Halietus, 113, 219.

Elliptieal, oval but with the longitudinal diameter more than twiee the length of the transrerse.
Enemies of bees, 51.
Epeolus, general observations on, 260.

- geography of, 73 .
- native speeies, 260.
_- parasitieal on Colletes, 190260.
_- seientifie deseription of, 258.
Epipharynx, 29, 30.
Eueera, general obserrations on, 232.
geography of, 70.
___ infested by Nomada sexeineta, 235.
- native speeies, 232.
- natural history of, 234.
-- seientific deseription of, 231.

Faee of bees, 26, 27.
Families, eharaeteristics of, differ, 136.

Family, 134.
Feeling of bees, 56.
Femur, or thigh, 41.
Fertilization of flowers produced by bees, 11, 51 .
Feuds of animals, the occasion of, 352.

Filiform, thread-like, of uniform thickness.

- antennæ, 28.

Fimbriated, =fringed.
Flagellum of antennæ, 18.
Flight of bees, variation of their modes, 49.
Floral eloek of Linnæus, 50.
Flowers, the, ehiefly agreeable to bees, 15.
——earliest, sought by the bees,14.

- fertilized by bees, 11, 51 .

Fœnus infests Chelostoma, 287.
Forcipate, when erossing eaeh other.
Foreign bees, conspieuous genera of, 101.
Form of parasitieal bees often adapted to that of their sitos, 48 .

- determined by funetion, 48.

Fossorial Hymenoptera, 45.
Fruit preserved in honey, 83.
Fusiform, = spindle-shaped.
Genæ, 26, 28.
Genera of bees determined artifieially, 176.

- that emit seents, 296.
with and without parasites, 264.

Genieulated, bent like a knee or angle.
Geq̧us, 132.

- type of, 133.

Geography of the British genera of bees, 61 .
Gibbous, = irregularly swollen.
Glabrous, without hair or pubeseence.
Gregarious, its applieation to bees, 57.

Habit, 127.
Habitat, 127.
Habits, 127.

- and structure corrclative, 24.

Halictophagus, 115.
Halietus, general observations on, 216.

- geography of, 68.
- its enemies, 220.
_- list of native species, 215.
- natural history of, 217.
—— parasites that infest it, 219. peculiar autumnal appearance, 218.
- scientific description of, 214.
- structure of labrum, 30.

Hastate, halberd shaped.
Head of bees, 26 .
Hedyehrum infests Halietus, 219.
Heriades, general observations on, 288.

- geography of, 76.
- native species of, 288.
- scientifie description of, 288.

Hindoo Koosh, supposed cradle of the human race, 3.
Hirsute, covered with long stiffish hairs, thickly set.
Hives, darkness of, 355.
-- moved on rafts, 85.
Homer mentions bees, 6 .
Honey, different kinds of, 87 .

- gireen, 87.
—— its use in the East, 83.
__mode of lapping, described by Réaumur, 35.
_- mode of storing, 350.
——preseribed by Mahomet, 91. quantity in a well-filled live, 360.
- sometimes poisonous, 86 .
used in medicine by the Egyptians, 90.
Honey-bee, see "Apis," "Bec," "Bees."
__—mode of sccreting wax, 330.

Hypopharynx, 29.
Inago of bees, 23.

Inosculation, point of close contact or attachment.
Insect-feeding reptiles before glacial period, 5.
Inscrted, where joincd.
Instinet, its applications, 56.

- occasional divergence of, 55.
- of becs, 55 .

Job mentions bees, 6 .
Kirby's merits, 144.
-_system of bees, 147 .
Labial palpi, 30, 32.
-_ number of joints inrariable, 32.
structure in Andrenidæ, 32.
—_structure in Apidæ, 32.
Labium = lower lip, 30, 31.
Labrum = upper lip, 28, 30.
Lacerate, with a roughened irregular edge.
Lanceolatc, oblong but gradually tapering.
Latreille's classification not adopted, 168.
Leg, diagram of, 42.
Legs, general description of, 41.
Length of an insect is taken from the front of the head to the aper of the abdomen; the breadth, or the expansion of the wings, it is not usual to give, excepting under sueh cireumstanees as would be partieularly mentioned, viz. in eases of an excessive enlargement or diminishment of the typieal size.
Life, duration of, of bees, 54 .
Line, the twelfth part of an inch ; the ordmary measure used in entomology for the fractions of an ineh, unless the insect is much more than an inch long.
Linnæus, author of the binomial system, 129.

- great merits of, 129.

Lobated, divided into equal rounded parts.

Low forms of life unaffected by climate, 24.
Lunatc, semicircular.
Limulate, crescent-shaped.
Macropis, general obscrvations on, 2ロー.
geograplyy of, 68.
——mative species, 221.

- scientific description of, 220 .
-_strong malogy to the Scopulipedes, 222.
Maculæ indicantes, 13.
Mahomet prescribes honer, 91.
Males, how to be united to their partners, 179.
Mandibles, 30, 40.
——used for boring, 44.
Marginal cells of wings, 4.5 .
liargmate, edged with a ridge.
Mason bees, 296 .
Maxillæ, 30, 31.
Naxilhary palpi, 30, 32.
- number of joints invariable in Andrenidæ, 32.
-_ number of joints rariable in the Apidæ, 32.
Megachile, gencral observations on, 272 .
- geography of, 74 .
_- infested by Colioxys, 275.
_- list of native species, 271 .
- natural history of, 273.
- scientific description of, 269.

Melecta, gencral observations on, 255.

- geography of, 72.
_- list of native specics, 255 .
- parasitical on Anthophora, 240.
- scicutific description of 255 .
- rery pugnacious, 258.

Melittobia, a parasite upon Anthophora, 241 .
Meloe proscarabæus, parasitical on bees, 110 .

- said to infest Audrena, 209.

Mesothorax, 26, 44. .
Metallic colouring of bees, 24.8.
Mctathorax, 26 .
Metropolis, 128.

Miltogramma, parasitical upon Colletes, 130.
Mode of killing coloured insects, 253.

Moniliform, bead-like.

- antennæ, 129.

Monodontomerus, parasitical on Anthophora and Osmia, 302.
Moths help to fertilize flowers, 13.
Motives for new arrangement, 163.
Mouth, organs of $=$ trophi $=$ cibarial apparatus, 163.
Mucronated, having one or more short stout processes.
Mutilla, parasitical on becs, 117.
Names usually given from a sexual peculiarity, 232.
Natural history, attractions of, 141.

- modes of treating, 140.

Natural system, 139.
Nature, its large operations, 8.
Nectaria of plants indicated to bees by a difference of colour, 12.
Nervures of wings, 44.
Nomada, gencral observations on, 252.
-- geography of, 72.

- intermittent appearance of N. Fabriciana, 230.
- list of native species, 250.
- scientific description of, 249.
- sexcincta infests Eucera, 235.
- the bees infested by them, 253.

Nomenelature simplified by Linnæus, 130.
Nudipedes, $=$ cuckoo-bces or parasites, 116, 167, 249.
Nylander's mode of determining the species of Cœlioxys, 268 .

Obsoletc, more or less inapparent.
Ocelli = simple eyes = stemmata, 26, 27.
Oman, no becs in the province of, St.
Osmia, gencral observations on, 296.
-- geography of, 76.

- list of native species, 295.

Osmia, natural history of, 296.
_ parasites of, 302.

- seientifie deseription of, 294.

Orate, oval, but with the ends eireumscribed by uncqual segments of eireles.
Ovipositor = egg-depositor, 17.
Pain, doubtful susccptibility of, 57.
Palmæ, 41.
Palmated, spread like a hand.
Palpi, their probable use, 55.
Panurgus, general observations on, 229.
—— geograply of, 69.
_ infested by Nomada Fabrieiana, 230.

- list of native species, 228.
- natural history of, 229.
-_ seientifie deseription of, 227.
Paraglossæ, 33.
_obsolete in the artisan bees, 33.
where attached, 33 .
Parasites, different kinds of, 110.
—— of bees, 109.
Parasitieal bees always the most highly coloured, 66, 105.
_- unlike the sitos, 116.
Cenobites, 302.
Passions of bees, 56.
Peeten or comb, a fringe of very short stiff hair attaehed to an organ, for various purposes.
Peetinated, having an edge like a eomb.
Pedieulus Melittæ, 209.
Petiole, a foot-stalk.
Pharynx, 29, 30.
Pile, long loose hair.
Pilose, with long, distinet, flexible hair.
Plantr, 42, 46.
\longrightarrow strueture of, in hive-bee, 46 .
Plants agreeable to bees, 15 .
-_ impregnated by bees, 1.1.
Pleasures attending the pursuit of natural history, 14.
Plumose, with long hair, but not thiek.
Pollen, collection of, 351.

Pollcn, mode of collecting and transferring from limb to limb, 43.
_ probable reasons for the ways of earrying, 47.

- quantity usually eolleeted, 360.

Polliniferous, $=$ pollen-colleeting.
Posterior legs, their strueture for the eonveyance of pollen, 46.

- - where attaehed, 46.

Post-seutellum, 26, 45.
Priority, law of, the basis of synonymy, 131.
Proboseis, 39.
Process, a protuberance.
Processes in bees, peeuliarities of, 258.

Propolis, nature of, 340 .
Prosopis emits an agrecable odour, 195.
-_general obscrvations upon, 193.

- geograplıy of, 65 .
- list of native speeies, 192.
_- presumed parasitism of, 193.
- seientifie deseription of, 191.
supposed liable to Stylops, 195.

Prothorax, 26, 41.
Pubescent, covered with slort fine hair.
Pubescent, hirsute, setose, pilose, plumose, various relative eonditions of hairiness.
Pulvillus, 42.
Punetate, impressed with many points.
Punetulate, with fine impressed points.
Punctured, with eoarsely im• pressed points.
Pupa of becs, 22.
Queen-bee, administrative funetion of, 336.
——and worker constitute a unity, 331.
deseription of, 322.

- etiquette of attendants, - 329.

Queen-bcc, great fertility of, 334.

- loss of, disorganizcs the hive, 335 .
- number of eggs laid by, 346.

Ray's merits, 142.
Réarmur'sdescription of the mode of lapping honey, 35 .

- description of the structure of the tongue, 35 .
Recurrent nervures of wings, 45.
Retuse, with an obtuse eavity.
Ridged, with a slight projecting margin.
Rugose, rouglı or irregularly wrinkled.

St. Fargeau's merits, 151.
Sanskrit notice of bees and honey, 92.

Saropoda, general observations, 243.

- geograply of, 71.

- native species of, 243 .
- rapidity of fliglt, 245.
- scientific description of, 242.
- viracity of its eyes, 244.

Seape of antennæ, 28.
Scent emitted by bees, 52 .
Seientific arrangement and description of the genera, 184.
-_ principles of, 118.
-cultivation of British bees, 142.

Seopulipedes $=$ brusl1-legged bees, 163, 227.
Sculpture, 60.
Scutellum, 26, 45.
Senses of bees, 56 .
Sensorium of bees, 55 .
Serrate, edged like a saw.
Serratulate, edged like a fine saw.
Setæ, slightish bristles.
Setiform, like bristles.
Setose, bristled.
Shakespeare on the polity of the bee, 1.
Shemitic branch of the human race, 4.
Sight of bees, 56 .

Simple eyes $=$ ocelli $=$ stemmata, 26, 27.
Sinus, a cavity.
Sitos, the supporter of a parasitical bee.
Sizes, differences of, what cansed by, 41.
Smell of bees, 56 .
Social bees,=Cenobites, 302 .
Species, 122.

- name of, 128.
- the basis of natural seicnce, 121.
- vary in number of individuals, 123.
Specific charaeter, 124.
- descriptions, 125.
- differences, 123.

Sphecodes, difficulty of specific distinetion in, 198.

- doubts as to its parasitism, 199.
-general observations on, 197.
- geography of, 66.
- list of native speeies, 197.
- seientific description of, 196.

Spines at apex of abdomen of bees, 268.

Spinose, with minute spiny processes.
Spinulose, with fine spiny processes.
Spiral hair of the scopa, 226, 229.
Spurs, 42.
Squamule $=$ epaulettes $=$ wing. scales, 26, 44.
State of Great Britain before the glacial period, 5.
Stelis, general obscrvations on, 263.

- geography of, 73.
- infests Osmia, 302.
- list of native spceies, 263.
- seientifie description of, 262.

Stemmata $=$ simple eyes $=$ ocelli, 26, 27.
Stephens, inferior merit of his system, 152.
Strepsiptera parasitical on becs, 111.

Strigilis, 42.

Structure and habits correlative, 24.

- of the body of the bee, 25 .
- similarity of, caused by direct and proximate affinities, 48.
Stylops infests Andrena, 208.
- infests Halictus, 219.
_ Kirby's deseription of, 112. manners of, described by Thwaites, 114.
- some particulars of its history, 208.
Sub, a prefix indicating the diminution of a condition, as subhastate, subovate, subtruncate, etc. etc.
Submarginal cells of wings, 4.5.
Swarming, 358.
Synonymy, 130.
System, value of, 119.
Tarsus of fore legs in some males greatly dilated, 43.
——or foot, 41.
Taste of bees, 56 .
Thorax, 26, 41.
Tibia, or shank, 41.
Tomb at Thebes with representation of a beehive, 6 .
Tongue improperly called labium, 34.
_- of Andrenidæ folded in repose, 39 .
- of Apidr folded in repose, 39.
once thought tubular, 34.
where situated, description of it, 33 .
Topical geograpliy of British becs, 96.

Tooth, a long sharp process.
Toothed, spinose, spinulose, tuberculated, mucronated, dentate, the various conditions of extraneous prominences or processes.
Transformations of worker bee, 347. of the drone, 356. of the Queen, 357.
Transverso-cubital nervures of wings, 45.

Travellers, suggestions to, 64, 95.
Trifid, divided into three parts.
Trivial name, 128.
Trochanter, 41.
Trophi $=$ organs of the mouth, 26 , 29.

- diagram of, 30 .

Truncated, abruptly termiriated.
Tubereulated, with small processes.
Turonian brancle of the human race, 4.

Uses of bees in the impregnation of plants, 11 .

Vedas mention bees, 6 .
Velum, 42.
Ventilation of the hives, 328.
Ventral segments, peculiarities of strueture of, 234.
Vernacular names of insects, 9 .
Vertex, 26.
Vertigo of bees, 87 .
Voice of becs, 49.
Wagtails clestroy fossorial Hymenoptcra, 306.
Wax, secretion of, 325.
Wax used by the Romans, 85.
Westwood's elassification not adopted, 168.
Wild bces, 8.
-- come fortli early in the spring, 10.

Will of bees, 56 .
Willughby's merits, 143.
Wing, treatise on the, 45.
Wing-hooklets for uniting the upper and lower wings, 45.
Wing-scales $=$ squamulæ, 26.
Wings, 44.
-_ diagram of, 45 .
Worker-bee, description of, 324 .
-_duties performed by, 325 .
-_ peculiarities of structure, 330.
-_- secretion of wax, 325.
Xenophon's description of poisonous honey, 86.

PLATE I.

$1 \delta^{7}$. Colletes Daviesiana, male.
1 ㅇ. ", \quad female.
2 8. Prosopis dilatata, male.
2 ㅇ. Prosopis signata, female.
$3 \delta^{\circ}$. Sphecodes gibbus, mate.
3 ?.
99
" female.

PLATE II.

1 万. Andrena fulva, male.
1 ¢. „ , female.
20°. Andrena cineraria, male.
2 ㅇ. , " female.
3 J. $^{\text {. }}$ Andrena nitida, male.
3 ㅇ. „ ", female.

PLATE III.

1 万. Andrena Rosæ, male.
1 \&. ,, " female.
$2 \delta^{\circ}$. Andrena longipes, male.
2q. " ", female.
$3 \delta^{\circ}$. Andrena cingulata, male.
3 아앙․
3
,, female.

PLA'TE IV.

$1 \delta^{7}$. Halictus xanthopus, male.
1 ㅇ. ", \quad female.
$2 \delta^{7}$. Halictus flavipes, male.
2 年. ", female.
$3 \delta^{7}$. Halictus minutissimus, male.
3 ㅇ.
,
,, female.

PLATE V.

1 万. Cilissa tricincta, male
1 ㅇ. ", „female.
2 δ^{7}. Macropis lahiata, male.
2 ㅇ. , , female.
$3 \delta^{\circ}$. Dasypoda hirtipes, male.
3 ¢. " ", femule.

PLATE VI.

1. \%. Panurgus Banksianus, mule.
2.

,,
,, female.
20^{7}. Eucera longicornis, male.
2ㅜ. " " female.
$3 \delta^{7}$. Anthophora retusa, male.
3 \&. " , female.

PLATE VII．

1 d．Anthophora furcata，male．
1卉．，，female．
2 or $^{\circ}$ ．Saropoda bimaculata，male．
2ㅇ．＂＂，female．
3 万．Ceratina cærulea，mule．
3早．＂＂female．

E.W Robmson Deit er S', 1866

PLATE VIII.

$1 \delta^{7}$. Nomada Goodeniana, male.
1 ㅇ. , , female.
$2 \delta^{7}$. Nomada Lathburiana, mule.
2 앙
"
„ female.
$3 \delta^{7}$. Nomada sextasciata, mule.
3 ¢. " ., female.

PLATE IX.

$1 \delta^{7}$. Nomada signata, male.
1 申. ", female.
$2 \delta^{7}$. Nomada Fabriciana, male.
2 ㅇ. " ", female.
3 万. Nomada flavoguttata, male.
3 ㅇ. , , female.

PLATE X:

$10^{\text {® }}$. Nomada Jacobææ, male.
lif. ," female.
2δ. Nomada Solidaginis, mule.
$2 \sigma^{* *}$ (should be \ddagger).,, female.
$3 \delta^{\circ}$. Nomada lateralis, male.
3 \&. „ " female.

PLATE XI.

1 万. Melecta punctata, male.
1\%. , , female.
2 б. Epeolus variegatus, male.
2ㅇ. , ", female.
$3 \delta^{\circ}$. Stelis phæoptera, male.
3q. , , female.

PLATE XII.

18 . Coelioxys Vectis, male.
1 ㅇ. ", , female.
2 ठ. Megachile maritima, male.
2 ㅇ. ", female.
3 ठ
3q. ", " female.

. EW, Robinson . Deltet Sip 1806.

PLATE XIII.

10°. Anthidium manicatum, male.
1 f. " " female.
2δ. Chelostoma florisomne, male,
2 早. ", female.
3δ. Heriades truncorum, male.
3 ㅇ. ",\quad female.

PLATE XIV.

10^{7}. Osmia bicolor, male.
1 \&. ", female.
2 ठ'. Anthocopa Papaveris, male.
2 ㅇ.
39
," female.
$3 \delta^{7}$. Osmia leucomelana, male.
3 ㅇ. "
,
female.

PLATE XV.

1δ. Apathus rupestris, male.
1 \&. ", female.
2δ (should be \circ). Apathus campestris, female.
2 ㅇ. Apathus vestalis, female.
3 ㅇ. Bombus fragrans, female.
40 . , \quad Soroensis (var. Burrellanus), male.

E W.Rchlisor Ind el, Ery

PLATE XVI.

1 ㅇ․ Bombus Harrisellus, female.
2申. " Lapponicus, female.
3 \&. ," sylvarum, female.
$4 \delta^{7}$. Apis mellifica, male.
4. ㅇ., , female.
$49 .,, \quad$ neuter.

LIST OF WORKS

ON

NATURAL HISTORY, IOPOGRAPHY,

ANTIQUITY, AND SCIENCE.

CONTENTS.

PUBLISIEE BY

L. REEVE AND CO.,

5, HENRIETTA STREET, COVENT GARDEN, W.C.

L. Reeve \& Co.'s Crown Series of Natural Fistory.

For descriptive details, see Catalogue.

British Zoophytes. By Artior S. Pennivgton, F.L.S. 24 Plates, 10 s .6 d .

British Insects. By E. F. Staveley. 16 Coloured Plates, and Woodcuts, 14 s .
British Butterflies and Moths. By H. T. Stanton. 16 Coloured Plates, and Woodeuts, $10 s$ s $6 d$.
British Beetles. By E. C. Rye. 16 Coloured Plates, and Woodeuts, 10s. 6d.
British Bees. By W. E. Shuckard. 16 Coloured Plates, and Woodeuts, 10s. 6 d .
British Spiders. By E. F. Staveley. 16 Coloured Plates, and Woodcuts, 10s. 6d.
The Birds of Sherwood Forest; with Observations on their Nesting, Habits, and Migrations. By W. J. Strrland. 4 Plates. 7s. 6d., coloured.
The Edible Mollusca of Great Britain and Ireland, with Recipes for Cooking them. By M. S. Lovell. Second Edition. 12 Coloured Plates, 10s. $6 d$.
Synopsis of British Mosses. By C. P. Hobkire, F.L.S. Revised Edition, 7s. $6 d$.

British Grasses. By M. Plues. 16 Coloured Plates, and Woodeuts, 10s. 6d.
British Ferns. By M. Plues. 16 Coloured Plates, and Woodcuts, 10 s .6 d .

British Seaweed̃s. By S. O. Gray. 16 Coloured Plates, $10 s .6 d$.

Handbook of the British Flora. By G. Bexthan, F.R.S. 5th Edition, Revised by Sir J. D. Hoorer, C.B., K.C.S.I., F.R.S., \&c., 10 s .6 d .

Illustrations of the British Flora. Drawn by W. H. Fitch, F.L.S., and W. G. Saittr, F.L.S. 1311 Wood Engravings. 2nd Edition, rerised and enlarged, 10\&. 6d.

BOTANY.

The Species of Ficus of the Indo-Malayan and Chinese Comutries. By George King, M.B., LLL.D., F.L.S. Part I. Paleomorphe and Urostigma. Small folio, 91 Piates in Portfolio, 25s.

The Natural History of Plants. By H. Baillon, President of the Linnean Society of Paris, Professor of Medical Natural History and Director of the Botanical Garden of the Faculty of Medicine of Paris. Super-royal 8vo. Vols. I. to VII., with 3200 Wood Engravings, 25s. each. (Vol. VIII. in the press.)
Handbook of the British Flora; a Description of the Flowering Plants and Ferns indigenous to, or naturalized in the British Isles. For the use of Beginners and Amateurs. By George Bentham, F.R.S. 5th Edition, revised by Sir J D. Hoomer, C.B., K.C.S.I., F.R.S , \&c. Crown 8vo, 10s. 6d.

Illustrations of the British Flora; a Series of Wood Engravings, with Dissections, of British Plants, from Drawings by W. H. Fitch, F.L.S., and W. G. Suith, F.T.S., forming an Illustrated Companion to Bentham's " Handbook;," and other British Floras. New Edition, revised and enlarged. 1311 Wood Engravings, 10s. 6d.

British Wild Flowers, Familiarly Described in the Four Seasons. By Thomas Moore, F.L.S. 24 Coloured Piates, $16 s$.

The Narcissus, its History and Culture, with Coloured Figures of all known Species and Principal Varieties. By F. W. Burbidge, and a Review of the Classification by J. G. Baiker, F.L.S. Super-royal 8vo, 48 Coloured Plates, 32 s.

The Botanical Magazine ; Figures and Descriptions of New and Rare Plants suitable for the Garden, Stove, or Greenhouse. By Sir J. D. Hoorer, K.C.S.I., C.B., F.R.S., late Director of the Royal Gardens, Kew. Royal 8vo. Third Series, Vols. I. to XLII., each 42s. Published Monthly, with 6 Plates, 3s. 6d., coloured. Annual Subscription, $42 s$.
Re-Issue of the Third Series in Monthly Vols., 42s. each; to Subscribers for the entire Series, $36 s$ s each.
The Floral Magazine; New Series, Enlarged to Royal 4to. Figures and Descriptions of the choicest New Flowers for the Garden, Stove, or Conservatory. Complete in Ten Vols,, in handsome cloth, gilt edges, 42 s . eacl.
First Series complete in Ten Vols., with 560 beautifully-coloured Plates, £18 7s. 6d.
Wild Flowers of the Undercliff, Isle of Wight. By Charlotte O'Brien and C. Pariinson. Crown 8vo, 8 Coloured Plates, $7 s .6 d$.
The Young Collector's Handybook of Botany. By the Rev. H. P. Dunster, M.A. 66 Wood Engravings, 3s. 6 d .
Laws of Botanical Nomenclature adopted by the International Botanieal Congress, with an Historical Introduction and a Commentary. By Alphonse de Candolle. 2s. $6 d$.
Report on the Forest Resources of Western Australia. By Baron Ferd. Mueller, C.M.G., M.D., Pl.D., F.R.S., Government Botanist of Victoria. Royal 4to, 20 Plates of the Eucalyptus, 12s.
Flora Vitiensis; a Description of the Plants of the Viti or Fiji Islands, with an Account of their History, Uses, and Properties. By Dr. Bebthold Seemank, F.L.S. Royal 4to, Coloured Plates. Part X., 25 s.

Flora of Mauritius and the Seychelles; a Description of the Flowering Plants and Fenns of those Islands. By J. G. Baker, F.L.S. 24s. Published under the authority of the Colonial Govermment of Mauritius.

Flora of British India. By Sir J. D. Hooker, K.C.S.I., C.B., F.R.S., \&c. ; assisted by varions Botanists. Parts I. to XIII., $10 s .6 d$. each. Vols. I. to IV., cloth, $32 s$. each. Published under the authority of the Secretary of State for India in Council.

Flora of Tropical Africa. By Danifl Oliver, F.R.S., F.L.S. Vols. I. to III., 20s. each. Published under the authority of the First Commissioner of Her Majesty's Worlss.

Handbook of the New Zealand Flora; a Systematic Description of the Native Plants of New Zealand, and the Chatham, Kermadec's, Lord Auckland's, Campbell's, and Mac. quarrie's Islands. By Sir J. D. Hooker, K.C.S.I., F.R.S. 4.2s. Published under the auspices of the Govermment of that, Colony.

Flora Australiensis; a Description of the Plants of the Australian Territory. By George Bentham, F.R.S., assisted by Ferdinand Mueller, F.R.S., Government Botanist, Melbourne, Victoria. Complete in Seven Vols., £7 4s. Vols. I. to VI., 20s. each; Vol. VII., 24s. Published under the auspices of the several Governments of Australia.

Flora of the British West Indian Islands. By Dr. Grisebach, F.L.S. 42s. Published uider the auspices of the Secretary of State for the Colonies.
Flora Hongkongensis; a Description of the Flowering Plants and Ferns of the Island of Hongkong. By Georae Bentiamr, F.R.S. With a Map of the Island, and a Supplement by Dr. Hance. 18s. Published under the authority of Her Majesty's Secretary of State for the Colonies The Sup. plement separately, $2 s .6 d$.

Flora Capensis; a Systematic Description of the Plants of the Cape Colony, Caffruria, and Port Natal. By William II. Harvey, MI.D., F.R.S., Professor of Botany in the University of Dubli:1, and Otto Wilhem Sonder, Ph.D. Vols. I. and II., $12 s$ s each, Vol. III., $18 s$.

Flora of West Yorkshire ; with an Account of the Climatology and Iithology in comnection therewith. By Frederic Arnold Lere, M.R.C.S. Eng., L.R.C.P. Lond., Recorder for the Botanical Record Club, and President of the Botanical Section of the Yorkshire Naturalists' Union. Svo, with Coloured Map, 21 s.

Flora of Hampshire, including the Isle of Wight, with lecalities of the less common species. By F. Towasend, M.A., F.L.S. With Coloured Map and tivo Plates, $16 s$.

Contributions to the Flora of Mentone, and to a Winter Flora of the Riviera, including the Coast from Marseilles to Genoa. By J. Traherne Moggridge, F.L.S. Royal 8vo. Complete in One Vol., with 99 Coloured Plates, $63 s$.

Flora Novæ Zealandre. Part II., Cryptogamia. By Sir J. D. Hooker, K.C.S.I., C.B., F.R.S. Royal 4to, 60 Coloured Plates, £7 10s.

On the Flora of Australia: its Origin, Affinities, and Distribution; being an Introductory Essay to the "Flora of Tasmania." By Sir J. D. Hoofer, F.R.S. 10 s.

Illustrations of the Nueva Quinologia of Pavon, with Observations on the Barks described. By J. E. Howard, F.L.S. With 27 Coloured Plates. Imperial folio, half-morocco, gilt edges, $£ 66 s$.

The Quinology of the East Indian Plantations. By J. E. Howard, F.L.S. Complete in One Vol., folio. With 13 Coloured and 2 Plain Plates, and 2 Photo.prints, 84 s. Parts II, and III. clotb,

Genera Plantarum, ad Exemplaria imprimis in Herbariis Kewensibus servata definita. By George Bentham, F.R.S., F.L.S., and Sir J. D. Hooker, F.R.S., late Director of the Royal Gardens, Kew. Complete in 7 Parts, forming 3 Vols., $£ 82 s$.

Revision of the Natural Order Hederaceæ; being a reprint, with numerous additions and corrections, of a series of papers published in the "Journal of Botany, British and Foreign." By Berthold Semiann, Ph.D., F.L.S. 7 Plates, 10s. $6 d$.

Icones Plantarum. Figures, with Brief Descriptive Characters and Remarks, of New and Rare Plants, selected from the Author's Herbarium. By Sir W. J. Hooker, F.R.S. New Series, Vol. V. 100 Plates, 31 se . 6 d .

Orchids ; and How to Grow them in India and other Tropical Climates. By Samuel Jenninges, F.L.S., F.R.H.S., late Vice-President of the Agri-Horticultural Society of India. Royal 4to. Ccmplete in One Vol., cloth, gilt edges, 63 s .

A Second Century of Orchidaceous Plants, selected from the Subjects published in Curtis's "Botanical Magazine" since the issue of the "First Century." Edited by James Bateman, Esq., F.R.S. Complete in One Vol., Royal 4to, 100 Coloured Plates, $£ 55$ s.

Dedicated by Special Permission to II.R.IH. the Princess of Wales.
Monograph of Odontoglossum, a Genus of the Vandeous Section of Orchidaceous Plants. By James Bateman, Esq., F.R.S. Imperial folio, in One Vol., with 30 Coloured Plates, and Wool Engravings, cloth, £6 less. 6cl.

The Rhododendrons of Sikkim-Himalaya; being an Account, Botanical and Geographical, of the Rhododendrons recentiy discovered in the Mountains of Eastern Himalaya, by Sir J. D. Hooker, F.R.S. By Sir W. J. Hoofer, F.R.S. Folio, 20 Coloured Plates, £4. 14s. 6d.

Outlines of Elementary Botany, as Introductory to Local Floras. By George Bentham, F.R.S., F.L.S. New Edition, 1 s.
British Grasses; an Introduction to the Study of the Graminere of Great Britain and Ireland. By M. Plues. Crown 8vo, with 16 Coloured Plates and 100 Wood Engravings, 10s. $6 d$.
Botanical Names for English Readers. By Randal H. Alcock. 8vo, 6s.

Elementary Lessons in Botanical Geography. By J. G. Baker, F.L.S. $3 s$.

FERNS.

British Ferns; an Introduction to the Study of the Ferns, Lycopods, and Equiseta indigenous to the British Isles. With Chapters on the Structure, Propagation, Cultivation, Diseases, Uses, Preservation, and Distribution of Ferns. By M. Plues. Crown 8vo, with 18 Coloured Plates, and 55 Wood Engravings, 10s. 6cl.
The British Ferns ; Coloured Figures and Descrip. tions, with Aualysis of the Fructification and Venation of the Ferns of Great Britain and Ireland. By Sir W. J. Hoorer, F.R.S. Royal 8vo, 66 Coloured Plates, £2 2s.

Garden Ferns; Coloured Figures and Descriptions with Analysis of the Fructification and Venation of a Selection of Exotic Ferns, adapted for Cultivation in the Garden, Hothouse, and Conservatory. By Sir W. J. Ноoker, F.R.S. Royal 8vo, 64 Coloured Plates, $£ 22 s$
Filices Exoticæ ; Coloured Figures and Description of Exotic Ferns. By Sir W. J. Hooker, F.R.S. Royal 4to 100 Coloured Plates, $£ 6$ 11s.
Ferny Combes; a Ramble after Ferns in the Glens and Valleys of Devonshire. By Charlotte Chanter. Third Edition. Fcap. 8vo, 8 Coloured Plates and a Map of the County, 5 s.

MOSSES.

Handbook of British Mosses containing all that are known to be natives of the British Isles. By the Rev. M. J. Berfeley, M.A., F.L.S. 24 Coloured Plates, 21 s.
Synopsis of British Mosses, containing Descriptions of all the Genera and Species (with localities of the raver ones) found in Great Britain and Ireland. By Charles P. Hobkiri, F.L.S., \&c., \&c. New Edition, entirely revised. Crown 8vo, 7s. Gd.
The British Moss-Flora. By R. Bratthtalitr, M.D., F.L.S. Vol. 1, Imperial 8 vo , with 45 finely executed Plates, 50 s .

FUNGI.

Outlines of British Fungology, containing Characters of above a Thousand Species of Fungi, and a Complete List of all that have been described as Natives of the British Isles. By the Rev. M. J. Berikelex, M.A., F.L.S. 24 Coloured Plates, $30 s$.
The Esculent Funguses of England. Containing an Account of their Classical History, Uses, Characters, Development, Structure, Nutritious Properties, Modes of Cooking and Preserving, \&c. By C. D. Badhant, M.D. Second Edition. Edited by F. Cerrey, F.R.S. 12 Coloured Plates, 12 s .

Clavis Agaricinorum ; an Analytical Key to the British Agaricini, with Characters of the Genera and Sub-genera. By Worthington G. Smith, F.L.S. 6 Plates, $2 s .6 d$.

SEAWEEDS.

British Seaweeds ; an Introduction to the Study of the Marine Alge of Great Britain, Ireland, and the Chamel Islands. By S. O. Gray. Crown 8vo, with 16 Coloured Plates 10s. $6 d$.

Phycologia Britannica; or, History of British Seaweeds. Containing Coloured Figures, Generic and Specific Characters, Synonyms and Descriptions of all the Species of Algre inhabiting the Shores of the British Islands. By Dr. W. H. Harvey, F.R.S. New Edition. Royal 8vo, 4 vols. 360 Coloured Plates, $£ 710$ s.
Phycologia Australica; a History of Australian Seaweeds, comprising Coloured Figures and Descriptions of the more characteristic Marine Algre of New South Wales, Victoria, Tasmania, South Australia, and Western Australia, and a Synopsis of all known Australian Alga. By Dr. W. H. Harver, F.R.S. Royal 8vo, Five Vols., 300 Coloured Plates, £ $£ 13 s$.

SHELLS AND MOLLUSKS.

Elements of Conchology; an Introduction to the Natural History of Shells, and of the Animals which form them. By Lovell Reeve, F.L.S. Royal 8vo, Two Vols., 62 Coloured Plates, £2 $16 s$.
Conchologia Iconica ; or, Figures and Descriptions of the Shells of Mollusks, with remarks on their Affinities, Synonymy, and Geographical Distribution. By Lovell Reeve, F.L.S., and G. B. Sowerby, F.L.S., complete in Twenty Vols., 4to, with 2727 Coloured Plates, half-calf, £178.
A detailed list of Monographs and Volumes may be had.
Conchologia Indica; Illustrations of the Land and Freshwater Shells of British India. Edited by Sylvanus Hanley, F.L.S., and William Theobald, of the Geological Survey of India. Complete in One Vol., 4to, with 160 Coloured Plates, £85s.
The Edible Mollusca of Great Britain and Ireland, including the Oyster, Mussel, Cockle, Scallop, Limpet, Whelk, Periwinkle, and many others less generally known, with mach curious and interesting information respecting them; with the Modes of Cooking them. By M. S. Lovell. Crown Svo; with 12 Coloured Plates. New Edition, rewritten and much erlarged, $10 s .6 d$.

Testacea Atlantica; or', the Land and Freshwater Shells of the Azores, Madeiras, Salvages, Canaries, Cape Verdes, and Saint Helena. By T. Vernon Wollaston, M.A., F.I.S. Demy 8vo, 25 s.

ENTOMOLOGY.

The Coleoptera of the British Islands. A Descriptive Account of the Families, Genera, and Species indigenous to Great Britain and Ireland, with Notes as to Localities, Habitats, \&c. By the Rev. W. W. Fowler, M.A., F.L.S. Vol. I., with two Structural Plates and Wood Engravings, 14s.; Large Paper Illustrated Edition, with 36 Coloured Plates, 48 s.
The Butterflies of Europe; Illustrated and Described. By Henry Charles Lang, M.D., F.L.S. Complete in Two Vols., super-royal 8vo, with 82 Coloured Plates, containing upwards of 900 Figures, cloth, $£ 318$.

[^3]The Lepidoptera of Ceylon. By F. Moore, F.L.S. Three Vols., Medium 4to, 215 Coloured Plates, cloth, gilt tops, $£ 21$ 12s. Published under the auspices of the Government of Ceylon.
The Larvæ of the British Lepidoptera, and their Food Plants. By Owen S. Wilson. With Life-size Figures, drawn and coloured from Nature by Eleanora Wilson. Superroyal 8vo. With 40 elaborately-coloured Plates, containing upwards of 600 figures of Larve, 63 s .

British Insects. A Familiar Description of the Form, Structure, Habits, and Transfurmations of Insects. By E. F. Stavelex, Author of " British Spiderss" Crown 8vo, with 16 Coloured Plates and numerous Wood Engravings, 14s.

British Beetles; an Introduction to the Study of our indigenous Colrooptera. By E. C. Ree. Crown 8vo, 16 Coloured Stecl Plate ; and 11 Wood Engravings, 10s. 6 d .

British Bees; an Introduction to the Study of the Natural History and Economy of the Bees indigenous to the British Isles. By W. E. Shucikard. Crown 8vo, 16 Coloured Plates, and Woodcuts of Dissections, 10s. 6d.
British Butterflies and Moths; an Introduction to the Study of our Native Lepidoptera. By H. 'T. Stainton. Crown 8vo, 16 Coloured Plates, and Wood Engravings, 10s. 6d.
British Spiders ; an Introduction to the Study of the Araneide found in Great Britain and Ireland. By E. F. Staveley. Crown 8vo, 16 Coloured Plates. and 44 Wood Engravings, 10s. 6 d .
Harvesting Ants and Trap-door Spiders; Notes and Observations on their Habits and Dwellings. By J. T. Moggridge, F.L.S. With Supplement, 17s. The Supplement separately, cloth, $7 s .6 d$.
Curtis's British Entomology. Illustrations and Descriptions of the Genera of Insects found in Great Britain and Treland, containing Coloured Figures, from Nature, of the most rare and beautiful Species, and in many instances, upon the plants on which they are found. Eight Vols., Royal 8vo, 770 Coloured Plates, £28.

Or in Separate Monographs.

"Curtis's Entomology," which Cuvier pronounced to have "reached the ultimatum of perfection," is still the standard work on the Genera of British Insects. The Figures executed by the author himself, with wonderful minuteness and accuracy, have hever been surpassed, even if equalled. The price at which the work was originally published was £43 16s.
Insecta Britannica; Diptera. Vol. ILI. By Francis Walker, F.L.S. 8vo. with 10 Plates 25 s.

The Structure and Life History of the Cockroach (Periplaneta Orientalis). An Introduction to the Study of Insects. By L. C. Miald, Professor of Biology in the Yorkshire College, Leeds, and Alfred Denny, Lecturer on Biology in the Firth College, Sheffield. Demy 8vo, 125 Woodcuts, $7 s .6 d$.

ZOOLOGY.

British Zoophytes; an Introduction to the Hydroida, Actinozoa, and Polyzoa found in Great Britain, Ireland, and the Channel Islands. By Arthur S. Pennington, F.L.S. Crown 8vo, 24 Plates, 10s. 6 d .
The Birds of Sherwood Forest; with Observations on their Nesting, Habits, and Migrations. By W. J. Sterland. Crown 8vo, 4 plates. 7s. 6d., coloured.
Handbook of the Vertebrate Fauna of Yorkshire ; being a Catalogue of British Mammals, Birds, Reptiles, Amphibians, and Fishes, which are or have been found in the County. By Williai Eagle and William Denison Roebuck. Svo, 8s. $6 d$.
Handbook of the Freshwater Fishes of India; giving the Characteristic Peculiarities of all the Species at present known, and intended as a guide to Students and District Officers. By Capt. R. Beavan, F.R.G.S. Demy 8vo, 12 Plates, 10s. $6 d$.
The Zoology of the Voyage of H.M.S. Samarang, under the command of Captain Sir Edward Belcher, C.B., during the Years 1843-46. By Professor Owen, Dr. J. E. Grat, Sir J. Richardson, A. Adams, L. Reeve, and A. White. Edited by Arthur Adams, F.L.S. Royal 4to, 55 Plates, mostly coloured, £3 10s.

ANTIQUARIAN.

Sacred Archæology; a Popular Dictionary of Ecclesiastical Art and Institutions from Primitive to Modern Times. By Mackenzie E. C. Walcott, B.D. Oxon., F.S.A., Precentor and Prebendary of Chichester Cathedral. 8ro, 18 s.

A Manual of British Archæology. By Citarfes Boutell, M.A. 20 Coloured Plates, 10 s .6 d .

The Antiquity of Man; an Examination of Sir Charles Lyell's recent Worl. By S. R. Pattison, F.G.S. Second Edition. 8vo. 1s.

MISCELLANEOUS.

Collections and Recollections of Natural History and Sport in the Life of a Country Vicar. By the Rev. G. C. Green. Illustrated with Woodcuts from Sketches by the Author. Crown 8vo, 7s. $6 d$.

West Yorkshire; an Account of its Geology, Physical Geography, Climatology, and Botany. By J. W. Davis, F.L.S., and F. Arnold Lees, F.L.S. Second Edition, 8vo, 21 Plates, many Coloured, and 2 large Maps, 21 s .

Natal ; a History and Description of the Colony, including its Natural Features, Productions, Industrial Condition and Prospects. By Henry Brooks, for many years a resident, Edited by Dr. R. J. Mann, F.R.A.S., F.R.G.S., late Superintendent of Education in the Colony. Demy 8vo, with Maps, Coloured Plates, and Photographic Views, $21 s$.

St. Helena. A Physical, Historical, and Topographical Description of the Island, including its Geology, Fauna, Flora, and Meteorology. By J. C. Melliss, A.I.C.E., F.G.S., F.L.S. In one large Vol., Super-royal 8vo, with 56 Plates and Maps, mostly coloured, 42s.

Lahore to Yarkand. Incidents of the Route and Natural IIstory of the Countries traversed by the Expedition of 1870, under T. D. Forsyti, Esq., C.B. By George Henderson. M.D., F.L.S., F.R.G.S., and Allan O. Hume, Esq., C.B., F.Z.S. With 32 Coloured Plates of Birds, 6 of Plants, 26 Photographic Views, Map, and Geological Sections, $42 s$.

The Young Collector's Handy Book of Recreative Science. By the Rev. H. P. Dunster, M.A. Cuts, $3 s$ s. 6 c .
The Geologist. A Magazine of Geology, Palæontology, and Mineralogy. Edited by S.J. Mackir, F.G.S., F,S.A. Vols. V. and VI., each with numerous Wood Engravings, 18s. Vol. VII., $9 s$.
Everybody's Weather-Guide. The use of Meteorological Instruments clearly explained, with directions for seguring at any time a probable Prognostic of the Weather. By A. Strinmetz, Esq., Author of "Sunshine and Showers," \&c. 1s.
The Artificial Production of Fish. By Piscarios. Third Edition. $1 s$.
The Gladiolus : its History, Cultivation, and Exhibition. By the Rev. H. Honywood Domibrans, B.A. Is.
Meteors, Aerolites, and Falling Stars. By Dr. T. L. Phipson, F.C.S. Crown 8vo, 2 万 Woodents and Lithographic Frontispiece, $6 s$.
Papers for the People. By One of Them. No. 1, OUR LAND. 8vo, 6d. (By Post, 7d. in stamps.)
The Royal Academy Album ; a Series of Photographs from Works of Art in the Exhibition of the Royal Academy of Arts, 1875. Atlas 4to, with 32 fine Photographs, cloth, gilt edges, £6 6s.; half-morocco, £ $£ 7 \mathrm{~s}$.
The same for 1876, with 48 beautiful Photo-prints, cloth, $£ 6$ 6s.; half-morocco, £ $\ddagger 7 s$. Small Edition, Royal 4to, cloth, gilt edges, 63s.
On Intelligence. By H. Taine, D.C.T. Oxon. Translated from the French by T. D. Haye, and revised, with additions, by the Author. Complete in One Vol., 18s.
Manual of Chemical Analysis, Qualitative and Quantitative; for the use of Students. By Dr. Henry Mr. Noad, F.R.S. New Edition. Crown 8vo, 109 Wood Engravings, $16 s$. Or, separately, Part I., "QUALITATIVE," New Edition, new Notation, 6s, ; Part II. "QUANTITATIVE," 10s. 6d.

PLATES.

Floral Plates, from the Floral Magazine. Beautifully Coloured, for Screens, Scrap-books, Studies in Flower-painting, $\& c .6 d$ and $1 s$. each. Lists of over 1000 varieties, One Stamp. Botanical Plates, from the Botanical Magazine. Beautifully-coloured Figures of new and rare Plants. 6d. and $1 s$. each. Lists of nearly 3000, Three Stamps.

SERIALS.

The Botanical Magazine. Figures and Descriptions of New and Rare Plants. By Sir J. D. Нooker, C.B., F.R.S. Monthly, with 6 Coloured Plates, 3s. 6d. Annual subscription, post free, 42 s .
Re-issue of the Third Series, in Monthly Vols., 42 s . each ; to Subscribers for the entire Series, $36 s$. each.
The Naturalist. Monthly, 6d.; per annum, postfree, $5 s$., in advance.
The Coleoptera of the British Islands. By the Rev. W. W. Fowler. Illustrated Edition. Monthly, 5s,

FORTHCOMING WORKS.

The Coleoptera of the British Islands. By the Rev. W. W. Fowler.
Flora of India. By Sir J. D. Hooker and others. Part XIV.
Natural History of Plants. By Prof. Baillon. Flora of Tropical Africa. By Prof. Oliver. Flora Capensis. By Prof. Dyer.

zomion:

L. REEVE \& CO., 5, HENRIETTA STREET, COVENT GARDEN.

DK
$6 \mid 61$

[^0]: * Might not, by parity of inference, the milt of fishes, such as the herring, mackerel, etc., be a useful food in cases of consumption, both from the iodine necessarily existing in it, and also from its doubtless nutritive nature?

[^1]: * 'Recueil de Monuments Egyptiens dessinés sur les lieux.' In Three Parts. 4to. Leipzig, 1862.

[^2]: practised with poor Bainbridge's Osmia pilicornis, to which he had attached this manuscript name, he being the first to introduce it, having caught it at Birchwood.

[^3]: ** Ter Sistematic List of European Butterfles from the above work separately, price $8 d$; or printed on one side of the paper only for Labels, Is.

