至

State of Sonnecticut
 PUBLIC DOCUMEN'T No. 47

State Geological and Natural History Survey

COMMISSIONERS

Rollin S. Woodruff, Governor of Connecticut (Chairman) Arthur Twining Hadley, President of Yale University Bradford Paul Raymond, President of Wesleyan University Flavel Sweeten Luther, President of Trinity College (Secretary) Rufus Whittaker Stimson, President of Connecticut Agricultural College

SUPERINTENDENT
William NORTH RICE

Bulletin No. 11

Hartford
Printed for the State Geological and Natural History Survey I 90 S

T H E

BRYOPHYTES OF CONNECTICUT

By
ALEXANDER WILLIAM EVANS, Ph.D.,
Professor of Botany, Yale University
AND
GEORGE ELWOOD NICHOLS, B.A.,
Assistant in Botany, Yale University

11

HARTFORD

Printed for the State Geological and IValural History Survey

PREFACE

The plants treated in the present report are largely neglected by collectors, partly on account of their small size and the difficulties encountered in their identification, partly on account of their slight value from an economic standpoint. To the student of botany, however, and especially to the morphologist and taxonomist, they are of exceptional interest. The morphologist finds among them all gradations between simple and more complex types of structure, and is thus enabled to gain some idea of the way in which the higher plants may have been derived from the lower; while the taxonomist obtains from them a series of distinct and attractive genera and species, which offer for his solution many complicated problems in variation and geographical distribution. In presenting to the botanists of Connecticut some account of the work which has been done on the Bryophytes within the state, it is hoped that more interest in this neglected group of plants may be aroused.

The report includes a general description of the Bryophytes as a whole and of the six subdivisions or orders into which it seems advisable to divide them. It also contains keys, more or less artificial, to aid in the identification of those species which have been detected in Connecticut. But it makes no attempt to describe or illustrate the genera and species represented, and is not intended as a substitute for the works in which such descriptions and illustrations are to be found. The student who makes a careful study of our Mosses and Hepatics will still find it necessary to use books of this character in order to confirm the determinations made by the keys, but the report should make the work of determination more decisive by indicating which species are to be expected in our region. The various books, articles, and scattered notes, which relate directly to Connecticut Bryophytes, are listed in
the bibliography at the close of the report. The following recent works (not included in the bibliography) may also be recommended:-
I. Braithwaite, R. The British Moss-Flora. Vol. I, pp. x + 315. 45 plates. Vol. II, pp. 268. Plates $46-84$. Vol. III, pp. 274. Plates 85-128. Large 8vo. London, 1887-i905.
2. Howe, M. A. The Hepaticæ and Anthocerotes of California. Mem. Torrey Club, 7: 1-208. Pl. 88-122. 1899.
3. Warnstorf, C. Kryptogamenflora der Mark Brandenburg. Band I. Leber- und Torfmoose. pp. xvi +48 r . Band II. Laubmoose. pp. xii + irbo. Fully illustrated by text-figures. Leipzig, 1902-1906.
4. Dixon, H. N., and Jameson, H. G. The Student's Handbook of British Mosses. Second Edition, pp. xlix +586.65 plates. 8 vo. Eastbourne and London, 1904.
5. Roth, G. Die europäischen Laubmoose. Band I. pp. xiii +598.52 plates. Band II. pp. xvi +733 . 62 plates. Large $8 v o$. Leipzig, 1904-1905.
6. Roth, G. Die europäischen Torfmoose. pp. viii +80 . II plates. Large 8 vo . Leipzig, 1906.
7. Müller, C. Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz. 2. Auflage. Band VI. Die Lebermoose. Incomplete. Six fascicles, comprising 384 pp . and 225 text-figures, have already been published. Leipzig, 1906-1908.

In the study of certain critical families and genera the writers have received much assistance from Mrs. Elizabeth G. Britton, of the New York Botanical Garden, Mr. C. Warnstorf, of Berlin, Germany, and Mr. J. Cardot, of Charleville, France. Other correspondents, who will be mentioned particularly in the catalogue of species, have kindly furnished material of Connecticut Bryophytes for examination, and have thereby made the report much more complete than it would otherwise have been. To all of these the writers would express their sincere thanks.
botanical Laboratory, Sineffield Scientific School.

CONTENTS

Page
General Characteristics of the Bryophytes, 9
History of Bryology in Connecticut, 25
Distribution of the Bryophytes in Connecticut according to Environment, 30
Economic Value of the Bryophytes, 35
Catalogue of Connecticut Bryophytes:
Marchantiales, 38
Jungermanniales, 43
Anthocerotales, 75
Sphagnales, 76
Andreæales, 86
Bryales, 87
Summary, 177
Bibliography of Connecticut Bryology, 179
Index, 185

THE BRYOPHYTES OF CONNECTICUT

GENERAL CHARACTERISTICS OF THE BRYO PHYTES

The Bryophytes represent a very clearly defined Class in the Vegetable Kingdom, occupying a position just below the Pteridophytes, which include the Ferns and their allies. They comprise the plants which are properly known as Mosses and Liverworts. They must not be confused, however, with Algæ and Lichens, both of which are sometimes called mosses, although simpler and less definite in organization, nor yet with the more highly developed Club Mosses, which belong to the Pteridophytes. The group is characterized by a clearly defined alternation of generations and by complex sexual organs, both antheridia and archegonia being multicellular, and showing a differentiation into sterile and fertile cells.

The gametophyte, or sexual individual, is a green plant, capable of absorption from the outside and therefore able to lead an independent life. It constitutes the plant-body of the Moss or Liverwort as ordinarily understood, and is usually much larger and more conspicuous than the sporophyte, or asexual individual. It consists of a dorsi-ventral thallus, usually closely appressed to the substratum, or else of a leafy shoot, the leaves being always destitute of stalks, and usually but a single cell thick throughout the greater part of their extent. Whatever its form the gametophyte exhibits an apical growth, frequently dying at one end while it advances at the other. It develops no true root, as do the higher plants, but clings to the substratum by means of filamentous organs called rhizoids, which often play no part in the process of absorption. The antheridia and archegonia are borne on the gametophyte; in monoicous species they arise on the same plant; in dioicous species, on different plants. The antheridium consists of a spheroidal or ovoid sac, sometimes stalkless and sometimes
borne on a short stalk. The sac is bounded on the outside by a wall composed of a single layer of sterile cells, and the whole interior is occupied by a compact mass of fertile cells, each one of which gives rise to a single male cell, or sperm. When the antheridium is mature, it absorbs water and bursts its wall, allowing the sperms to escape and swim away. Each sperm consists of a slender body, and swims by means of two long and delicatc cilia attached at one end.

The archegonium may also be stalkless or borne on a short stalk, but is more slender than the antheridium. The single female cell, or egg, is developed in the swollen basal portion which is called the venter, and this is tipped with a somewhat longer cylindrical portion called the neck. Both venter and neck are bounded on the outside by a wall composed of sterile cells. The egg represents the lowest of a row of cells enclosed by this wall, the remaining cells, which fill the neck and a portion of the venter as well, being known as canal cells. When the mature archegonium absorbs water, the neck opens at the tip, and the canal cells break down into a mass of slime, some of which escapes through the opening. In this way a free canal is formed which leads from the outside into the venter, and at the base of this canal the egg becomes rounded off. The sperms, attracted by the protoplasmic slime exuding from the archegonium, swim toward it, and one of them makes its way down the canal, uniting with the egg and thus completing the process of fertilization.

As soon as this has been accomplished, the fertilized egg, without escaping from the archegonium, begins at once to develop into the sporophyte, which remains in contact with the gametophyte during its entire life, without being organically connected with it. The chief function of the sporophyte is to develop ascxual spores, but some of its cells invariably remain sterile and perform functions not connected with reproduction. In the more primitive Bryophytes it is practically destitute of chlorophyll, and is therefore wholly dependent upon the gametophyte for food, living as a parasite upon it. In the higher forms it develops green cells, capable of performing photosynthesis, and probably derives nothing from the ganctophyte except solutions of inorganic substances. In such cases the parasitism is only partial. The portion of the
sporophyte which remains in close contact with the gametophyte usually forms a special absorbing organ, or foot. This organ, however, never acquires the power of absorbing from the outside, so that the sporophyte is never able to exist as an entirely independent plant.

The spores are borne within a closed case, or capsule, which constitutes the so-called fruit in the Bryophytes. The capsule is bounded on the outside by a sterile wall, and the space in which the spores are developed is known as the spore cavity. When the spores are mature, they lie loose within the cavity, and are set free by the rupturing of the wall. In the majority of cases the capsule is borne on a slender cylindrical stalk, which connects it with the foot and at the same time lifts it above the gametophyte.

When the fertilized egg begins to divide, the sterile cells which form the wall of the venter also undergo divisions and develop into a protective covering for the young sporophyte. This covering is called the calyptra, and for a considerable period its growth keeps pace with that of the sporophyte. Sooner or later, however, it ceases to enlarge and is eventually ruptured by the swelling capsule. The neck of the fertilized archegonium plays no part in the development of the calyptra, but can frequently be detected at its apex in a shriveled condition. In a few specialized genera a true calyptra is not formed.

Upon germination a spore at first gives rise to an embryonic structure, or protonema, upon which the characteristic gametophyte afterwards develops. The protonema is sometimes very short-lived, but in many species persists for a considerable period. It usually consists of a copiously branched filamentous structure, but it may be composed of a flat layer of cells or of a small solid cell mass. In some cases the protonema is represented by a very few cells arranged in a simple cell row and is then scarcely distinguishable.

Although very few Bryophytes are truly aquatic. it has been shown that the presence of water is necessary for the process of fertilization. It not only enables the antheridia and archegonia to open, but it also affords a medium in which the motile sperms can swim. The water is usually supplied by rain, but, if no rain falls at the proper time, the antheridia and archegonia gradually shrivel away and sporophytes fail to
be developed. Any failure to effect fertilization is of course a menace to the further existence of a species, and the probability of failure is especially great in the case of dioicous species, where the male and female plants are often far apart, necessitating a long journey for the sperms. To a certain extent the danger is overcome by the development of organs of vegetative reproduction, known as gemme or propagula. The simplest of these consist of single cells or of small groups of cells without definite form. They easily become separated from the parent plant and develop into new individuals if supplied with the proper conditions. In many cases the reproductive bodies are more complex and already show, even before they fall away, some indication of the thallus or leafy shoot into which they will develop. Certain species reproduce largely if not entirely by means of these vegetative bodies.

It is customary to divide the Bryophytes into two subclasses, known respectively as the Hepaticæ, or Liverworts, and the Musci, or Mosses. This classification, however, as Underwood and others have pointed out, does not altogether represcit the facts, and it is more convenient, if not more natural, to divide the group into the following six orders, which may be considered as approximately equal in rank: I. Marchantlales; II. Jungermanniales; III. Anthocerotales; IV. Sphiagnales; V. Andretalees; Vi. Bryales. By adopting this course it becomes much more practicable to assign definite characters to the various subdivisions. Of these six orders the first three comprise the Hepaticer and the last three the Musci, as limited by the majority of botanical works; and it is still often convenient to employ the terms in this general sense.

THE MARCHANTIALES

> The present order includes about half of the thalloid Bryopliytes known from Connecticut, and most of the species are large and conspicuous. Two are normally aquatic, floating in ponds or slow streams; the others are all terrestrial, and even the apuatic species tend to become terrestrial through the drying up of the water in which they live. Except in the aquatic forms the thallus clings closely to the substratum,
sometimes so closely that it cannot be separated without injury. It develops two types of rhizoids, both of which represent simple outgrowths from cells. In one type the walls are thin throughout; in the other they bear scattered local thickenings in the form of short rods which project into the lumen. The rhizoids are all short-lived, and those of the first type simply anchor the plant to the substratum; those of the second type, however, by means of capillarity, play a certain part in the process of absorption. In addition to the rhizoids, the thallus often bears longitudinal rows of delicate scales on the lower surface. These are developed very early and arch up over the growing point, thus protecting it from injury.

The thallus is more or less differentiated, and always shows, at least in certain stages of development, a distinct epidermis, beneath which the photosynthetic tissue is situated. The latter consists of green cells loosely arranged with intercellular spaces containing air among them. In the higher forms these cells are in distinct air-chambers, which communicate with the outside air by means of pores in the epidermis. In the lower forms they simply line the intercellular spaces, and the communication with the outside air is often less definite. The Marchantiales are divided into two families, the Ricciaceer and the Marchantiaceæ, which differ from each other most markedly in the structure of the sporophyte.

The Ricciaceæ include both aquatic and terrestrial species, and are usually smaller than the Marchantiacee. The terrestrial forms grow in old fields, along damp roadsides, and on the muddy borders of ponds. The thallus, which rarely attains a length of fifteen millimeters, forks repeatedly in one plane, thus giving rise to a characteristic rosette. All the New England species are annual, developing their sporophytes in the autumn. The aquatic Ricciaceæ are larger than the others, and rarely produce sporophytes, the tips of the thallus being able to survive the winter. When they become terrestrial, they sometimes assume an appearance very different from their normal aquatic state.

The archegonia in the Ricciacce are so deeply immersed in the thallus that only their necks protrude above the surface. In consequence of this fact the sporophytes begin their development beneath the surface, and they retain this position
until they are mature. The sporophyte is much simpler than in any of the other Bryophytes and consists of a spherical capsule only, which absorbs through its entire surface. The capsule contains nothing but spores, and these are at first enclosed by the capsule wall, consisting of a single layer of cells. As development advances, this wall gradually disappears, and the mature spores lie free within the calyptra. They are set free by the decay of the surrounding tissues of the gametophyte, and are dispersed largely through the agency of water.

The Marchantiaceæ are all terrestrial, some of them growing on shaded rocks or in their crevices and others on damp or wet earth. The thallus is more highly differentiated than in the Ricciaceæ, and in the larger species sometimes reaches a length of twenty centimeters or more and a width of ten millimeters. The branching is normally but not invariably by forking. The New England species are more or less perennial but some of them develop sporophytes during the first year.

Except in a few genera which do not occur in the eastern United States, the archegonia are borne on modified branches or outgrowths of the thallus known as carpocephala. These consist of two parts, an apical discoid or conical expansion and a basal cylindrical stalk. Sooner or later the stalk elongates and carrics the expansion, to which it is attached in a peltate manner, high up above the surface of the thallus. As the sporophytes mature, they extend horizontally from the margin of the expanded portion or else hang downward from its lower surface. They are more complex than in the Ricciacere and not only develop a capsule with a persistent wall but also a foot and a short stalk, although the line of demarcation between the two latter organs is not always clearly defined. The spore cavity contains not only the spores but also a large number of peculiar bodies known as elaters, each of which consists of a long and slender cell with a thin cell wall, strengthened on the inside by one or more spiral bands of thickening. When the spores become mature, the stalk elongates slightly, the calyptra is ruptured, and the wall bursts, either by means of irregular valves extending backward from the apex, or else by a circular line, which leaves the basal
portion of the capsule wall in the form of a cup. As the spores and elaters become dry, the latter through their elasticity stretch out and separate the spores. In this way the contents of the capsule form a loose cottony mass, which can be easily carried away by the wind. In certain genera the gametophyte develops a special protective organ for the sporophyte outside the calyptra. This is usually in the form of a hollow tube or sheath open at the tip, and may be called a pseudoperianth, to distinguish it from a very similar organ found in many of the leafy Jungermanniales.

THE JUNGERMANNIALES

Both thalloid and leafy forms are here represented. All are characterized by a slight degree of cell differentiation and by a lack of intercellular spaces, even among the green cells. The rhizoids are all essentially alike and agree with the first type described for the Marchantiales. Their only function is that of anchorage, and to perform this more efficiently they frequently become lobed or branched at the extremity. In many of the genera absorption seems to be carried on by all the surface cells.

With the exception of a very few primitive types which are not known from New England, the sporophyte is practically uniform throughout the entire order. It consists of a distinct foot, a stalk, and a capsule, and it remains enclosed within the calyptra until the spores are mature. The stalk consists of strongly flattened cells arranged in longitudinal rows, and the capsule, as in the Marchantiacer, contains both spores and elaters. When the spores are ready to be disseminated, the stalk elongates rapidly through the lengthening of its individual cells and thus forces the capsule through the calyptra. The latter is thus irregularly ruptured but continues to enclose the base of the stalk. The capsule now raised on its stalk soon splits its wall, usually into four valves, the lines of dehiscence extending from the apex to or toward the base. The spores are scattered in much the same way as in the Marchantiacere, although the elaters sometimes play a more active part in their dispersal. The Jungermanniales are also divided into two families, the Metzgeriaceæ and the Jungermanniaceæ, the most
important differences in this case being in the gametophytes.
In most of the Metzgeriaceæ the gametophyte is a thallus, but a few of the genera show a more or less complete differentiation into stem and leaves. The plants are usually composed of parenchyma throughout, but a few thalloid species develop a very primitive conducting tissue composed of elongated cells with lignified walls. The archegonia are borne on the upper surface of the gametophyte or of a special branch, and do not directly terminate its growth. In many cases a protective structure is developed outside the calyptra, and this sometimes assumes the form of a pseudoperianth as in the Marchantiaceæ.

The Jungermanniaceæ are sometimes called Scale Mosses, the gametophyte being invariably a leafy stem. Most of the species are prostrate, and the plants show a distinct dorsiventrality, even when ascending or erect. The leaves are normally alternate and arranged in three ranks, two of which are turned toward the light and the third toward the substratum. The leaves of this third rank are called underleaves, and are usually much smaller than the others and different from them in form. Sometimes they are so much reduced in size that they can scarcely be demonstrated, and in a few genera they are absent altogether. The two ranks of large leaves usually spread out in such a way that the whole shoot acquires a strongly flattened appearance, very characteristic of the family as a whole.

The leaves as a rule exhibit no cell differentiation whatever, and are invariably destitute of midribs. They show, however, a great deal of variation in form and in the way in which they are attached to the stem. They are sometimes undivided, sometimes variously toothed, lobed, or deeply cleft; they are sometimes developed in one plane, sometimes variously folded; they are sometimes attached by a continuous line, sometimes by two lines which meet at an angle. In a few genera the leaves develop peculiar organs, known as zoater sacs, in which water may be temporarily retained. The branches sometimes show a differentiation into those which bear normal leaves and thone which assume a flagelliform appearance, the leaves in the latter case being strongly reduced or even absent atogether. 'The flagelliform branches frequently perform the
function of holding the plant more firmly in place, and are confined to certain species and genera.

The archegonia are borne at the apices of stems or of special branches and stop their further elongation. The leaves and underleaves which develop in the immediate vicinity of the archegonia are more or less modified, and are designated bracts and bracteoles respectively. Taken together they constitute the involucre. This often surrounds the developing sporophyte and helps protect it. In the majority of the genera, however, the gametophyte develops a special protecting organ. This usually consists of a hollow tube, open at the top and enclosed by the involucre ; and, since this tube is theoretically formed by the coalescence of modified leaves, it is called a perianth, although it is not homologous with the perianth in flowering plants. In a few cases the fertile branch takes on a peculiar growth as the result of fertilization, and forms a hollow cup around the sporophyte. This is known as a perigynium, and may be either pendent or erect. In the latter case the uppermost bracts and bracteoles are often carried up on the outside. In very rare instances the young sporophyte penetrates the tip of the fertile branch, which serves directly as a protecting organ without undergoing marked modifications. Under these circumstances the calyptra itself often fails to develop.

The Jungermanniales are about nine times as numerous in Connecticut as the Marchantiales. Less than one seventh of the recorded species are Metzgeriaceæ, the others being all Jungermanniaceæ. A few are more or less aquatic, either floating on the surface of the water or attached to submerged rocks or stones. A few others are to be found in bogs or swamps. The remainder grow on rocks, on banks, on earth, or on the trunks of trees, usually in damp and shaded localities. They vary greatly in size, a few being hardly perceptible to the naked eye, while others attain a length of ten centimeters or more. The sporophytes, with few exceptions, reach maturity in the spring.

THE ANTHOCEROTALES

The Anthocerotales are sometimes called Hornworts or Horned Liverworts, and embrace the single family Anthocerotacee. This includes only three recognized genera, two of which are represented in Connecticut. In spite of its small size, the order is of especial interest to the student of plant morphology and evolution, because it probably represents, more closely than any of the other existing Bryophytes, the ancestors of the Pteridophytes. The northern species are all annuals, and make their appearance in May or June in wet pastures, along roadsides, or on wet rocks. Each gametophyte has several sporophytes growing from it : they begin to develop late in the summer, and continue in many cases until the plants are killed by the frost.

The gametophyte is a thallus, sometimes bearing irregular and crispate outgrowths on the upper surface or along the margin, but never definitely divided into stem and leaves. The thallus branches by forking, but the forks are so close together that it soon assumes the form of a fleshy circular disc with many growing points scattered along the margin. It apparently alsorbs throughout its entire surface, and is attached to the soil by means of thin-walled rhizoids, similar to those of the first type in the Marchantiales. The thallus shows but a slight degree of cell differentiation, but some of the species develop minute intercellular spaces, which, however, may contain slime as well as air. The green cells are characterized by the presence of a single large chloroplast in each. This is in the form of a plate with thin and irregular margins, lying close th the cell wall. Cells of this type are found nowhere else amons the Bryophytes, and probably represent a primitive characteristic, indicative perhaps of a distant relationship with the green Algre. In all the other orders each green cell contains a mumber of small, disc-like chloroplasts, and agrees in structure with the green cells of the higher plants. Taking it as a whole, the gametophyte in the Anthocerotales is even more primitive than in either the Ricciacee or Metzgeriacea. Even the archegonia, although showing essentially the same structure as in the other Bryophytes, are imbedded in the
thallus so that only the tip of the neck protrudes. For this reason no true calyptra is developed, the function of this organ being assumed by a tubular outgrowth of the gametophyte, which encloses the base of the sporophyte.

Although the gametophyte in the present order is so simple, the sporophyte shows a high degree of complexity when compared with the preceding groups. It consists of two principal parts, a spherical or flattened foot, and a long and slender capsule, tapering somewhat toward the apex. No true stalk is formed, the base of the capsule passing imperceptibly into an undifferentiated region composed of embryonic cells. These continue to give rise to new cells, which gradually become differentiated into the permanent tissues of the capsule. The presence of these embryonic cells enables the sporophyte to grow indefinitely, a power which no other sporophytes possess until the Pteridophytes are reached. On account of the basal position of the growing region, the apex of the capsule is the first part to mature, and all stages of development are to be observed in passing from the apex toward the base. The cross section is approximately circular, but sometimes two longitudinal grooves are formed, showing where the wall will eventually split. The latter is relatively much thicker than in the preceding orders, the spore cavity being distinctly smaller. In the higher forms the wall is bounded on the outside by a distinct epidermis, with stomata, and this encloses several layers of green cells separated by minute air spaces. The wall therefore represents a photosynthetic tissue, comparable to the mesophyll in the higher plants. In the lower forms the wall is less highly differentiated and no stomata are developed. The center of the capsule is occupied by a slender but more or less clearly defined columella composed of sterile cells, and the spore cavity is in the form of a hollow cylinder between the columella and the capsule wall. The cavity is continuous over the tip of the columella at the apex of the capsule. It contains both spores and elaters; but the latter are irregularly and poorly developed in northern species, and do not develop local thickenings in their walls. When the apex of the capsule is mature, the wall splits into two valves, the splits gradually extending downward as the development
proceeds. The valves, as they separate, soon become dry and black, and the columella appears like a fine hair projecting from the open capsule. The gametophyte covered over with sporophytes often presents the appearance of a tuft of fine grass.

The structure of the sporophyte in the Anthocerotales is so peculiar that Howe separated the order from the Hepaticæ and made of it a distinct subclass, to which he gave the name Anthocerotes. He therefore divided the Bryophytes into three subclasses: Hepaticæ, Anthocerotes, and Musci. In this procedure he is followed, provisionally at least, by Campbell, but European writers continue to use the term Hepaticæ in the old sense.

THE SPHAGNALES

The Sphagnales or Peat Mosses comprise the single genus Sphagnum. They are well represented in Connecticut, and include some of our largest and most conspicuous Bryophytes. The peat mosses are occasionally found on wet rocks or banks, but are most at home in bogs, where they sometimes grow submerged but more frequently rise above the surface of the water. In favorable localities they form dense and extensive colonics. Under these circumstances the stems are upright and afford one another mutual support. No rhizoids are developed except when the plants are very young. The branching is always monopodial, the branches arising in fascicles of from three to eight. The fascicles are numerous, and the branches appear densely crowded at the tips of the plants because the elongation of the stem is at first very slow. In older parts the fascicles become more scparated. The branches are of three types:-spreading brauches, which remain simple and are limited in growth; pendent branches, which also remain simple and limited in growth, but which grow downward close to the stem and form a sort of loose covering around it ; erect branches, which are unlimited in growth and give rise to spreading and pendent branches of their own. These erect branches are only occasionally produced, and, since they repeat the stem in all respects, apparently arise by forking.

The leaves are arranged in five longitudinal rows, although
this fact is sometimes difficult to demonstrate. They are destitute of midribs, but show a remarkable differentiation into two kinds of cells: - green cells, which remain alive for a long time ; and colorless cells, which soon lose their living contents and become empty. In the leaves of the spreading branches the green cells are united in such a way that they form a loose network, each mesh of which is filled with a single large colorless cell. The latter is characterized by a thin wall, usually with band-like thickenings on the inside which keep it from collapsing, and by holes or pores which place its cavity in direct communication with the outside. The stems and branches are usually covered over on the outside by a cortex composed of similar colorless cells; within this is a distinct zone of sclerenchyma enclosing a central pith. The tufted habit of the peat mosses, their upright stems covered with pendent branches, and their porous hyaline cells, account for the ease with which they suck up and retain water. The process is largely due to capillarity.

The archegonia are borne at the tips of branches, and limit their growth just as in the Jungermanniacer. The sporophyte consists of a spherical capsule and a broad foot with a deep constriction between them. No true stalk is developed. The calyptra persists until the spores are mature, and is then irregularly ruptured by the dehiscence of the capsule. The latter while still immature contains a large columella in the form of a hemisphere. This is covered over at the apex by the small spore cavity in much the same way as in the Anthocerotales, but the cavity contains spores only. The wall of the capsule is several cells thick, the outer layer forming a distinct epidermis. Some of the inner cells contain chloroplasts, but there are no intercellular spaces among them, and the epidermis develops no effective stomata, so that the wall can hardly serve as a very useful photosynthetic tissue. When the spores are mature, the upper part of the archegonial branch elongates rapidly, thus simulating a stalk, and the capsule opens by means of a circular split in the wall, which cuts off a cap-like lid. As the drying of the capsule proceeds, the pressure in the interior increases, until a sudden liberation takes place which shoots out the spores together with the
lid to a distance of ten centimeters or more. The ripening and scattering of the spores occurs in the summer months.

THE ANDREÆALES

The present order contains the single genus Andreæa, separated from the Bryales on account of the peculiar structure of the capsule. The species are all small, and grow in tufts on siliceous rocks, usually in mountainous regions. The gametophyte consists of an upright and sparingly branched stem bearing crowded leaves in the three-eighths arrangement. Except for the midrib, which occurs in certain species only, the leaves show no cell differentiation.

The sporophyte bears a certain resemblance to that of Sphagnum. It consists of an oval capsule and a well-developed foot, but no true stalk is formed. The calyptra is very delicate and is ruptured long before the spores are mature; sometimes it is carried up on the tip of the capsule, sometimes it remains at the base and the capsule protrudes through it, very much as in the Jungermanniacer. The capsule contains a definite columella, arched over by the spore cavity in the form of a hollow cylinder, and is bounded on the outside by a wall several cells thick. The wall has a distinct epidermis without stomata, and is probably not very efficient as a photosynthetic tissue, although some of its cells contain chloroplasts. When the spores are mature, the tip of the archegonial branch elongates rapidly, assuming the function of a stalk, and the wall of the capsule splits along four longitudinal lines. These do not extend, however, to the apex, but they are sufficient to expose the spores and to allow them to be scattered by the wind. The capsule usually reaches maturity in the spring or early summer.

THE BRYALES

The Bryales, or True Mosses, constitute the largest order of the liryophytes, and include about two thirds of the Connecticut species. The ganetophyte varies greatly in size, being sonctimes only one millimeter loing and sometimes attaining a length of ten centimeters or more. It always consists of a leafy shout, the leaves being usually arranged in more than
three longitudinal rows. The leaves vary in form from linear to orbicular, and, although they are sometimes toothed or even ciliate on the margins, they are never deeply lobed or divided as in some of the Jungermanniacere. Except for the midrib, which may or may not be present, the leaves very rarely.show any differentiation in their cells. In prostrate species the plants sometimes acquire a dorsi-ventral appearance, and a slight differentiation in the leaves is occasionally to be observed. These peculiarities, however, are never so clearly marked as in the Jungermanniaceæ, and there is little danger of confusing the True Mosses with the Scale Mosses. The branching in the Bryales is always of the monopodial type, and is often distinctly pinnate. In the lower forms the stem presents a simple and uniform structure, but in some of the higher genera it shows a distinct cell differentiation into storage, strengthening, and conducting tissues, and the same is sometimes true of the midribs of the leaves.

In the majority of cases the sporophyte shows a distinct foot, a firm stalk, which early becomes elongated, and a highly complex capsule. The calyptra at first keeps pace with the lengthening sporophyte but soon stops growing and becomes ruptured. In nearly every case the line of rupture is near the base, and the calyptra is carried up on the tip of the sporophyte. As the capsule gradually enlarges, the calyptra, which is now cut off from its source of food-supply, dries up and splits in one or more places, so that it frequently falls away long before the spores are mature. The spore cavity occupies a relatively small space in an immature capsule, and is in the form of a hollow cylinder open at both ends, differing in this respect from all the preceding Bryophytes. It encloses a massive columella, and is bounded by a thick wall, which, in most species, represents an efficient photosynthetic tissue. The outer cell layer of the wall forms an epidermis with stomata, the latter being usually restricted to the base of the capsule. The green cells are usually arranged in two more or less definite layers, one surrounding the spore cavity and the other lining the epidermis. These two layers are separated by a large air space in the form of a hollow cylinder. Stretching across the air space from one green layer to the other are
rows of green cells, which play a part in holding the central portion of the capsule in place. Of course the stomata afford a communication between the air space and the outside air.

As the spores mature, the photosynthetic tissue breaks down, the columella shrivels, and the spores eventually lie loose in an enlarged cavity, bounded by little more than the epidermal layer of the capsule wall. In a few of the simpler genera the capsule bursts irregularly at maturity. In the majority of cases, however, it splits by a circular line in the upper part, which cuts off an apical portion, or lid, from the capsule proper. Sometimes the region of splitting is marked by a row of modified epidermal cells, called an annulus, but this is not always developed. The walls of the annular cells have the power of absorbing water readily and swelling, thus forcing the lid to separate. After the lid has fallen away, the mouth of the capsule usually appears fringed with a circle of pointed tecth called a peristome, and in many genera two peristomes are developed, an inner and an outer. The inner peristome is always more delicate than the outer, and its divisions, when present, are called segments, instead of teeth. The segments are sometimes separated from one another by one or more delicate hair-like structures known as cilia. The peristome plays a peculiar part in the scattering of the spores; in moist weather the tecth come together and close the month of the capsule : in dry weather they separate and allow the wind to scatter the spores. Although the description just given will apply to the majority of cases, the structure of the capsule may be much simpler or even more complex than indicated. Taking the Bryales as a whole, the sporophyte shows the highest type of development to be found in the Sryophytes. It does not, however, show mnlimited growth, the entire capsule maturing at the same time, and in this respect it is surpassed by the Anthocerotales.

The Bryales are divided by Brotherus into more than forty families, abont half of which are represented in Connecticut. These are based on the general habit and structure of the gametuphyte and on the peculiarities of the capsule, many of the most important characters being derived from the peristome. The species flourish hest in moist and shaded
localities, and are often found in company with the Jungermanniales. Quite a mumber of them, however, are able to live in much drier localities, such as exposed rocks and sandy fields. Of the Connecticut species a few are annual but the majority are perennial. Most of them mature their spores in the fall or early winter, and the others in the spring or early summer. During the hot days of July, August, and September, many of the mosses become completely dried up, and their vegetative activities are interrupted. Even under favorable conditions for growth it is very unusual to find perfect capsules at this season of the year.

HISTORY OF BRYOLOGY IN CONNECTICUT

The first systematic collections of Bryophytes in Connecticut were made by Daniel C. Eaton, Professor of Botany in Yale University from 1864 until 1895, the year of his death. Professor Eaton was a member of the class of 1857, Yale College, and began his bryological studies while still an undergraduate. From the very outset he enjoyed the privilege of corresponding with W. S. Sullivant, of Columbus, Ohio, at that time the leading authority on North American Mosses and Hepatics, and this correspondence was continued mutil Sullivant's death in I864. During this period many doubtful Connecticut specimens were sent for comment or determination, among them being a sterile Fontinalis collected near New Haven. This specimen is apparently the first Connecticut Bryophyte which is definitely mentioned in the literature. It was first referred to F. biformis Sulliv., and is listed under this name in the "Musci and Hepatice of the United States," originally written by Sullivant for the second edition of Gray's "Manual of Botany," published in 1856, but reprinted the same year as a separate work under the above title. F. biformis was based on Ohio specimens, and according to our present knowledge is restricted to the region of the Great Lakes. It was soon discovered therefore that the Connecticut material had been incorrectly determined. Sullivant hastened to call attention to this fact in the "Additions and Corrections" to his "Musci and Hepaticæ," which appear in the separate
edition, but are not included in the " Manual." The Connecticut Fontinalis is here transferred to F. Nova Anglia Sulliv., a species proposed as new and based on material from several stations in southern New England. Eight years afterward, in his "Icones Muscorum," Sullivant accredited to Connecticut a second species of Moss, Grimmia Olneyi Sulliv., originally described from Rhode Island material.

About the time of Sullivant's death, Professor Eaton began a correspondence with the late C. F. Austin, of Closter, New Jersey, who published many short papers on Bryophytes between 1863 and 1880 . Austin was even more interested in the Hepaticæ than in the Mosses, and much of our present knowledge of this group of plants is based on his studies. In 1873 he issued his " Hepaticæ Boreali-Americanæ," the first set of exsiccate devoted exclusively to North American Hepatics. For this publication Professor Eaton supplied a portion of the material distributed under No. 115, as Aneura pinnatifida Nees, now known as Riccardia sinuata (Dicks.) Trevis., and this is apparently the first published reference to a Comecticut Hepatic, the specimens being recorded from near New Haven.

With the exception of these scattered notes nothing of importance seems to have been published on Connecticut Bryophytes mintil 1878, although a large collection was gradually being accumulated. In this year the Berzelius Society of the Sheffield Scientific School printed " A Catalogue of the Flowering Plants and Higher Cryptogams growing without cultivation within thirty miles of Yale College." This catalogue includes not only the Acrogens, or Pteridophytes, but also the Anogens, or Bryophytes, differing in this respect from the majority of local lists. The account of the Anogens, in which 17, Mosses and $5+1$ lepatics are enumerated, was prepared by I'rofessor Eaton, and forms onc of his most important contrilantions to the literature of bryology. The common and widely diniributed species are listed by name only, but definite stations are given for the rarer species, and frequently the rames of the collectors also are mentioned. Although Professor Eaton's own name appears but rarely, it is evident from his herbarium that he had found most of the species listed. Mr. J. A. Allen
is quoted for a number of the most interesting species, and Professor O. D. Allen, Mr. A. Barron, Mr. E. E. Brewster, Mr. W. T. Browne, Mr. N. Coleman, Dr. F. W. Hall, Dr. G. R. Kleeberger, Mr. F. N. Pease, Mr. R. Veitch, and Mr. A. H. Young are also mentioned as collectors. The Berzelius List has of course served as a basis for subsequent work on Connecticut Bryophytes, but no publication on the entire group, dealing with either the whole or a part of the state, has since appeared.

During the last thirty years, however, the Mosses and Hepatics have by no means been neglected, and many additional species have been detected within the state. Several of these were found by Professor Eaton himself, who continued his active interest in bryology throughout his life. Others were collected by Mr. J. A. Allen, including a number of rare and minute species which have not been rediscovered by later observers. Still others were found by more recent students of Professor Eaton, Mr. E. B. Harger, Professor W. A. Setchell, and Dr. C. B. Graves being among the number. During the last decade some of the most interesting additions have been made by Mrs. Josephine D. Lowe and Miss Annie Lorenz, and the authors of the present catalogue have also had a share in swelling the list of Connecticut Bryophytes.

In spite of this active collecting very little has been published on the true Mosses (Bryales) of Connecticut since the Berzelius List. A search through the scattered literature has brought to light less than a dozen species which are actually additions. Among the more important of these are the following: - Thuidium Alleni Aust., described from sterile specimens collected by Mr. J. A. Allen in Beaver Meadows, near New Haven; the rare Claopodiun pellucinerve (Mitt.) Best, collected by Mrs. Lowe at Noroton in the town of Darien, and reported upon by Miss Harriet Wheeler; and Anacamptodon splachnoides Brid., first recorded by Mrs. Lowe from Burnside, in the town of East Hartford. As the present report shows, the number of known species is now 245. This does not include the two species of Andreæa discovered by Mr. J. A. Allen, which of course belong to a different natural order (Andreæales). For the "Musci Americæ Septentrionalis

Exsiccati," issued by Renauld and Cardot during the last fifteen years, Professor Eaton supplied a number of species from Connecticut, and these will be especially indicated in the list which follows.

The Peat Mosses (Sphagnales) and the Hepaticæ have received rather more attention than the True Mosses, and the majority of the additions which have been made in these two groups have already been recorded. In the Berzelius List only three species of Sphagnum are included. About i890, however, Professor Eaton and the senior writer began to collect these interesting plants systematically, and to submit specimens to Dr. C. Warnstorf, then of Neuruppin, Germany, for determination. In this way the number of known species was markedly increased. In i892 Warnstorf described as new, under the name S. dasyphyllum, a species from East Haven, which is still known from this locality only. In I893 Professor Eaton published his "Check-List of North American Sphagna," indlicating the geographical distribution of each species, so far as known at that time. Although Comnecticut is included in several of the wider ranges, only five species are definitely recorded from the state, all of these being additions to the Berzelius Catalogue. The check-list was prepared for the convenience and guidance of Professor Eaton and Mr. Edwin Faxon, of Malden, Massachusetts, who were collecting sets of North American species for distribution. These sets were issued in a 896 by Dr. George F. Eaton, under the title "Sphagna Boreali-Americana Exsiccata," and constitute the only published exsiccate devoted exclusively to North American Peat Mosses. They include twenty-nine numbers from Connecticut, representing fourteen species. Three species from the state had already been distributed by Warnstorf, in the fourth series of his " Europacische Torfmoose." In fox \quad Andrews listed nineteen species of Sphagnum from Connecticut, and twelve additional species have been recently determined by Warnstorf from Comnecticut specimens, so that thirty-onte species in all are now known.

Since the publication of the lierzelins List the number of known species of llepatice within the state has been almost donbled. The ecven following species, occurring in Con-
necticut, have been described as new: Calypogcia tenuis (Aust.) Evans, Diplophylleia apiculata Evans, Frullania Brittonia Evans. Jungermannia Notr-Casarea Evans, Lepidozia sphagnicola Evans, L. syliatica Evans, and Plagiochila Sulliz'antii Gottsche. Unfortunately two of these have since been reduced to synonymy, Jungermannia Noùce-Casarea being now considered a form of Lophosia marchica (Nees) Steph., and Lepidozia sphagnicola being included under L. setacea (Web.) Mitt. Many other additions to the hepatic flora of the state have been recorded in a series of "Notes on New England Hepaticæ," and in a "Preliminary List," both published by the senior writer in Rhodora. It should be noted, however, that the earliest references to Riccia arvensis Aust. and Mylia anomala (Hook.) S. F. Gray are to be found in the writings of Professor L. M. Underwood, and that Dr. M. A. Howe was the first to report Porella rivularis (Nees) Trevis. and Anthoceros punctatus L. Fifteen species of Connecticut Hepaticæ and Anthocerotes have been distributed in Underwood and Cook's " Hepaticæ Americanæ," all of which are indicated below. Several other species are included in the first two decades of the "American Hepaticæ," recently issued by Miss Caroline C. Haynes.

The bryophytic flora of Connecticut is perhaps as well known as that of any equal area in North America, but the region has not yet been so intensively studied as certain parts of Europe. This is due partly to the fact that here, as in other groups, common species have been largely neg'ected by collectors, and are therefore less fully represented in our herbaria than some of the rarer and more local species. The attempt has been made of late to collect even the commonest species more systematically, but much still remains to be done, and many parts of the state still remain to be explored before our knowledge can be considered at all complete. This is especially true of the towns in the eastern and northeastern counties.

DISTRIBUTION OF THE BRYOPHYTES IN CONNECTICUT ACCORDING TO ENVIRONMENT

Even to the casual observer it is evident that the character of the vegetation which clothes the surface of the earth varies greatly under different conditions. There is a marked contrast, for example, between the impenetrable tangle of a tropical jungle with its wide diversity of species, and the northern spruce forests which are relatively open and are made up of comparatively few species. The vegetation at the summit of Mount Washington is scant and limited to shrubby and herbaceous plants, while the valleys but a few thousand feet below are heavily wooded. Ordinary land plants differ strikingly in appearance from seaweeds and other submerged aquatics.

These are perhaps extreme illustrations, but innumerable examples of this adaptation to environments which are less diverse may be seen everywhere. The vegetation in an open field presents a decided contrast to that of a pine grove but a few hundred yards distant, while the flora in a bog is totally different from that in a meadow.

It may be stated as a general rule that every plant is best adapted to a peculiar enviromment, and that for every species there are certain more or less well defined limits outside of which it cannot exist. What is true of the higher plants applies even more forcibly to the Mosses and Hepatics, for, as Lesquercux remarks, " these humble and apparently useless beings have their geological and lithological preferences far better marked than any other kind of vegetable."*

The factors which produce this enviromment and determine these limits are numerous, but the following are the most important:
I. Latitude.
II. Altitude.
III. Character of the substratum.
IV. Intensity of the light.
V. Water supply.

[^0]In treating an area such as the continent of North America, where all gradations from an arctic to a tropical climate are encountered, the first of these factors bears an important relationship to the character of the vegetation. Many Bryophytes are exclusively northern in their range, while others are restricted to tropical regions. A comparatively small number are found from the arctic regions to the equator. In considering the Mosses and Hepatics of Connecticut, however, latitude is of relatively little importance.

In the same way the second factor may be disregarded, since nowhere in the state are the differences in altitude sufficient to produce any appreciable climatic effect.

To a certain extent the nature of the substratum determines the character of the bryophytic flora, and various societies might be defined from this point of view, as, for example, the following:- species growing on rocks; species growing on soil : species growing on living trees; species growing on dead trees, rotten wood, etc. Yet the boundaries between such societies are often vague, since many species flourish equally well on a variety of substrata.

Except in the northwestern part of Connecticut, it is probable that the actual chemical composition of the rocks and soil has very little direct effect upon the character of the vegetation. Indirectly, however, the structure of the underlying rocks is an important factor, as may be seen by considering the geography of the state.
" The state of Connecticut is naturally divided into three areas, the Eastern Highland, the Western Highland, and the Central Lowland. The Central Lowland may be further divided into a central range of hills and an eastern and a western valley."* The sedimentaries in the valleys with the overlying drift tend to produce a more or less level surface, which is interrupted only by a few ravines and by occasional bogs. For the most part this area is under cultivation, but, although favorable for agriculture, it does not present conditions conducive to an extensive bryophytic flora. In marked contrast to this uniform area are the trap ridges which rise

[^1]abruptly to a height of several hundred feet above the surrounding plain. Geologically, these ridges are a part of the Central Lowland. From an ecological standpoint, however, they conform with the Highlands. The Eastern and Western Highlands are made up for the most part of a complex series of crystalline rocks - gneisses, schists, and granites. The forces of erosion, acting on these, have produced an uneven and rugged topography. Like the trap ridges, this region is well wooded, and, while on the whole unsuitable for agriculture, it exhibits a diversity of conditions, and is characterized by a rich bryophytic flora.

From a bryological standpoint, the most interesting isolated formation in the state is the Stockbridge limestone, which covers the greater part of the towns of Salisbury and Canaan, extending southward through the Housatonic Valley more or less continuously to Ridgefield. A few species grow in this region which have been collected nowhere else in the state, viz.

Lophosia Muclleri	Amblystegiella confervoides
Barbula falla..	Amblystegium noterophilum
Thuidium abictinum	Cratoneuron filicinum

Other species occur here which, although characteristic of limestone regions, are found in other localities growing on serpentine or other rocks, e. g.:

Proissia quadrata	Salania glaucescons
Frullania riparia	Hymenostylium curvirostre
Fissidens cristatus Myurclla gracilis	
Chrysohypnum stellatum	

The distribution of the Bryophytes is somewhat restricted and frequently the habit of the individual plant greatly modified by differences of light and shade. In a general way two rather broadly defined classes may be recognized: light-loving, and shade-loving Bryophytes. In the first of these classes may be placed such species as -

Riccia arvensis	Tortula papillosa
Frullania cboracensis	Bryum argenteum
Anthoceros lecis	Thelia Lescurii

In the latter and by far the larger group should be placed such species as -

Mctagcria conjugata icucobryum glaucum
Plagiochila asplenioides Stercodon curvifolius
Bazzania trilobata
Thamnium alleghanicnse

Yet, however much the preceding factors affect the distribution of the Mosses and Hepatics, the problem is eventually reduced to another factor, viz., the amount, nature and continuity of the water supply. Many species grow only on dry, exposed rocks, while to others the presence of free surfacewater is essential. Some of the latter grow only in standing or slowly moving water, others are always found in rapidly flowing streams. But the majority of the Bryophytes thrive in an environment where they are not subjected to prolonged periods of drought or inundation.

Taking the requirements with regard to water as a basis, Warming* recognizes four groups of plants:
I. Xerophytes: plants which grow on rocks, or on soil which contains, at least during the greater part of the year, a very small amount of water.
II. Mesophytes: plants adapted to soil containing a moderate amount of water.
III. Hydrophytes: plants which are completely or partly. submerged, or which grow in very wet soil.
IV. Halophytes: plants which are adapted to a saline soil.

Considerable attention has been given to the ecological relationships of the higher plants, and several authors have attempted to classify the Bryophytes with respect to their habitats. Warnstorf \dagger, however, was the first to adapt Warming's classification to the group.

Among the Bryophytes there are no true halophytes. Following Warming's classification the other three groups are

[^2]well defined, and of these groups the species given below may be considered typical members:-

Xerophytes.
I. Plants growing on exposed rocks with little or no earth covering - trap ledges, stone walls, bowlders, etc.

Frullania Asagrayana	Grimmia Olneyi
Andreca Rothii	Ulota Hutchinsice

2 Plants growing on living trees in the open or in the woods.

Frullania eboracensis
Orthotrichum ohioense
Drummondia clavellata
Thelia hirtella

3. Plants growing on earth, or on rocks with a thin earth covering in fields and along roadsides or in dry woods.

Nardia crenulata Pogonatum tenue
Diplophylleia apiculata Thelia Lescurii
Physcomitrium turbinatum Rhynchostcgium serrulatum
Mesophytes - for the most part shade-loving plants, but frequently found in the open on the borders of brooks, in meadows, etc.
J. Plants growing on the surface or in the crevices of cliffs and steep rocks.
$\begin{array}{cc}\text { Reboulia hemispharica } & \text { Rhabdowe isia denticulata } \\ \text { Iencolcjeunca clypeata } & \text { Didymodon rubellus } \\ \text { Hymenostylum curcirostro }\end{array}$
2. Plants growing on soil or humus, on flat earth-covered rocks, on the roots and at the base of trees, "or on decaying logs and stumps in wet woods.

Lophocolea hcterophylla	Polytrichum ohiocnse
Ptilidum pulcherrimum	Ptilium Crista-Castrcnsis
Timmia cucullata	Climacium americanum

Hydrophytes.
I. Plants growing in more or less wooded swamps.
a. On the ground.
Trichocolea tomentella Brachythecium Nove-Anglice
Elodium paludosum Calliergon cordifolium
b. On sticks and bushes.

Dichelyma capillaceum
2. Plants growing on wet or dripping rocks in streams and ravines.

$$
\begin{array}{ll}
\text { Riccardia sinuata } & \text { Eurynchium rusciforme } \\
\text { Jubula pennsylanica } & \text { Amblystegium Lescurii }
\end{array}
$$

Thannium alleghaniense
3. Plants growing in open bogs, especially peat bogs, and usually forming compact masses of vegetation.

Lepidozia setacca	Sphagnum (most species)
Scapania irrigua	Acrocladium cuspidatum
Drepanocladus	aducus

4. Plants submerged or floating in the water.

Ricciella fluitans Sphagnum obesum
Ricciocarpus natans Octodiceras Julianum
Porella pinnata
Fontinalis Lescurii

ECONOMIC VALUE OF THE BRYOPHYTES

Although the majority of the Bryophytes are of small size when compared with the seed-bearing plants, they often form dense and extensive colonies and thus constitute a conspicuous feature of the landscape. This is especially true in mountainous and northern regions, where woody plants are stunted in growth and occur more sparingly than under more favorable climatic conditions. Even in Connecticut, however, where the higher plants exhibit a vigorous development, the Sphagnales and certain of the other Bryophytes are often abundant enough to attract the attention of the ordinary observer.

On account of the tufted habit of so many species and the power which they possess of absorbing and retaining water,
they exercise a marked influence on both agriculture and forestry. Their importance from this point of view, which is only begiming to be appreciated, has been clearly demonstrated by Georg Roth.* According to this author, the mosses tend to diminish floods and to reduce the gullying of the soil, at the same time preserving its porosity. They are also of value in adding to the richness of the soil through their decay and in assisting in the disintegration of rocks. The Sphagnales, through their peculiar place and habit of growth, are active in converting lakes and ponds into bogs, which afford a foothold for higher plants and eventually yield a serviceable soil.

From a commercial standpoint the Sphagnales are by far the most important of the Bryophytes. In countries where they are abundant they yield the best quality of peat. This is produced by the death of the older portions of the Peat Mosses, the living stems continuing their upward growth indefinitely. As the dead layer becomes thicker, it becomes more and.more compressed, and finally forms a firm and compact mass at the bottom of the bog. This mass is cut into bricks, which are dried and constitute the peat of commerce. Of course the chief use of peat as a fuel is for domestic purposes. In certain localities, however, it is charred and then used in steel and copper mills, where its purity from foreign substances and its power to produce an intense heat make it especially effective.

The Peat Mosses are also useful as a packing substance. In a dry form they are sometimes employed as a filling for pillows and mattresses, especially those used by invalids. They may also be wrapped around steam pipes or pacleed in the walls of houses, where they act as a non-conducting substance. In a moist form they are being more and more used by gardeners and florists as a packing material for vegetables and other cultivated plants. Owing to their great power of absorption, Peat Mosses are sometimes substituted for straw in stables, and they have also been employed to a limited extent in surgical dressings. The same peculiarity makes it possible to use them for lamp-wicks in the far north.

[^3]A few of the Bryales constitute a secondary source of peat, and others are used as a packing material but to much less extent than the Peat Mosses. Some of the large species, when dried withont pressure and dyed, form a component part of decorative wreaths and cords, which are made use of more especially by milliners. The stiff and wiry stems of Polytrichum commune have also been employed instead of bristles in the manufacture of brushes. Among the Marchantiales the only species which have ever been used for practical purposes are Marchantia polymorpha and Conoccphalum conicum. These were formerly prescribed in affections of the liver, but it is doubtful if they possess any true therapeutic properties. Except for the fact that a few of the Jungermanniales have been nsed in the tropics as a packing material for living plants, the remaining orders of the Bryophytes have been put to no practical uses whatever.

CATALOGUE OF CONNECTICUT BRYOPHYTES

The following catalogut records the distribution of the Bryophytes of Comnecticut, so far as known to the writers. Under each species the characteristic environment and often the time of fruiting are given, together with the known localities for the state. These are arranged alphabetically by towns under the counties, the latter being given in the following order: Litchfield, Hartford, Tolland, Windham, Fairfield, New Haven, Middlesex, New London. The names of the collectors are also noted, but the only date mentioned is that of the carliest known collection. In case two or more persons have found the same species in the same township, the one who collected it first is the only one alluded to. The local distribution is followed by brief notes regarding the known distribution in North America and in other parts of the world. For the sake of completeness attention is also called to Connecticut specimens which have been distributed in exsiccatæ and to references in the scattered literature of bryology which relate directly to Comnecticut plants. The numbers following the authors' names in these references correspond with the list and page numbers in the bibliography.

The genera, where represented by more than a single species, are supplied with artificial keys to the species, and the orders or families are supplied with similar keys to the genera. The arrangement followed is in most respects like that given in Engler \& Prantl's "Die natuirlichen Pflanzenfamilien." Since, however, the treatment of the Bryales in this work is still incomplete, the hypnoid Mosses are largely arranged according to Warnstorf in the second volume of the "Kryptogamenflora der Mark Brandenburg." Warnstorf is also followed in the position of the Polytrichacee and allied families. These apparently represent the most highly developed members of the Bryophytes, and it is therefore most logical to place them at the conclusion of the series.

[Subclass Hepatic]

ORDER MARCHANTIALES

FAMILY RICCIACEE
I. Terrestrial; green cells in rows at right angles to the upper surface of the thallus, enclosing air spaces in the form of narrow canals; epidermis without pores....Riccia Terrestrial or aquatic; green cells in layers one cell thick. separating the irregular air spaces from one another.. $=$
2. Epidermis without pores, sometimes becoming irregularly ruptured with age
.Ricciella Epidermis with distinct pores, not becoming ruptured with

lifurea Hafticcia (Arch.) I.

Riccia @arvensis Aust Sfro.75-75m(Lunde. 4.c)
Cultivated fields and margins of ponds. Autumn. Hartforty: Ilartford, Larger. New Haven: ()range (one). Ezulls. Midmesex: Middlefield, Ez'alls.
(ontario to Maryland.
Exeter. Miss Haynes, Amer. Hep. No. 2.
Ref. Evalus, 28, iso. Luderwod, 74, 2-8: 76, 4.
Ricciella A. Br. (v sect in Cl. tr.)

1. Cantles rupturing on the upper surface of the thallus: epidermis som breaking down and leaving the sponge-
 Capable rupturing on the lower surface of the thallus 2
2. Aquatic, or rooting on wet mud; cpider"is persistent

Spoore 75-90 (lucuer. j.29) R. fluitans
Terrestrial; epidermis eventually breaking down R. Sullivantii
Spors sham 60 (und. l.c.)
Ricciella crystallina (L.) Warnst. Riccia crystallina L.
On mud, often growing on margins of ponds. Autumn. Neiv Haven: Oxford (i898), Harger.

Connecticut west to Oregon and south to the West Indies and California; Europe: Asia.

Ref. Evans, 26, 207; 28, 1 70.
Ricciella fluitans (L.) A. Br. Riccia fluitans L.
Floating in ponds or slow streams or rooting in mud. Autumn. Litchfield: Goshen, Underwood. Hartford: Berlin, Coleman; Southington, Andrezes. Windham: Plainfield, Sheldon. Fairfield: Bethel, Underwood; Danbury, Nichols. New. Haven: Branford, Evans; Hamden, O. D. Allen; New Haven (I868), Eaton; North Branford, Evans; Southbury, Harger.

New England and Ontario, west to British Columbia and south into tropical America: Europe: Asia; Africa; New Zealand.

Exsic. Underwood \& Cook, Hep. Amer. No. il (as Riccia fl:itans).

Ref. Eaton, 15, 68. Evans, 28, ijo.
Ricciella Sullivantii (Aust.) Evans. Riccia Sullivantii Aust. (R. Huefrerraua Lundw. B.G. 19: 276, hon hindsub.)

Cultivated fields and margins of ponds. Autumn. Hartford: East Hartford, Weatherby'; Hartford, Harger. Fairfield: Danbury, Nichols. New H.iven : East Haven, Erans; Milford, Miss Lorenz; New Haven, O. D. Allon; Orange (1876), Eaton; Oxford, Harger. Midddesex: Middlefield, Evans. Rel. tarc. 491

New England to Virginia and west to Ohio.
Ref. Eaton, 15, 68. Evans, 28, ifo; 33, 56.

Ricciocarpus Corda

Ricciocarpus natans (L.) Corda. Ricciu natans L.
Floating in ponds or growing on mud. Nay and June.

Litchfield: Salisbury, Mrs. Phelps. Hartford: New Britain, Shepard. Fairfield: Fairfield and Stratford, Eames. New Haven : East Haven, J. A. Allen; Milford, Eames; New Haven (1875), Eaton; Oxford, Harger. Middlesex: Clinton, Miss Marion Clark. Kel. Farl. $49<a+b$.
New England west to British Columbia and south to Mexico ; Brazil ; Europe; Asia; Australia.
Ref. Eaton 15, 68. Evans, 28, ifo.

FAMILY MarCHANTIACEE

I Air chambers in several layers, separated from one another
by plates of green cells....................................... 2
Air chambers in a single layer, the green cells arranged in
simple or branched rows arising from the floors of the chambers 4
2. Sporophytes destitute of distinct pseudoperianths........ 3

3. Ventral scales of thallus purple, scarcely projecting beyond the margin; capsule only partially filling the

Ventral scales of thallus soon becoming bleached, extending far beyond the margin, and usually forming a dense tuft at the apex; capsuie completely filling the involucral cavity
4. Pores in epidermis of thallus simple, each surrounded by a single layer of cells
Pores in epidermis compound or barrel-shaped, each sur-
romnded by cells arranged in several tiers............ 6
5. Outlines of air chambers distinct to the naked cye; gemmæ none; plant native

Conocephalum
Ontlines of air chambers indistinct to the naked eye; gemmat abundant, produced in crescentic receptacles; plant introduced into greenhouses............... Lunularia
6. Gemmic none; carpocephala with indistinct flat rays Preissia Gemmac usually abundant, produced in cup-shaped recoptacles; carpocephala with distinct terete rays Marchantia

Reboulia Raddi
Reboulia hemisphærica (L.) Raddi. Asterclla homispharica Leauv.

On shaderl banks and in crevices of rocks. May and June.

4RTFORD: Windsor, s; Sherman, Evans. den and New Haven
aven, Eians; Orange, ع.r.ita
, Alaska and south to thern Asia.
Amer. No. I2I.
o. Underwood, 71, 35 ;
v.

Fimbriaria tenella Nees. rocks. May and June.

Tolland: Andover, ham: Canterbury, Mrs. vans; East Haven, J. A.)xford, Harger; Woodwn, Evans. and south to Georgia. I7O.

Wigg.
Dumort.
cially along streams. April
Underwood; New Milford
$\pm 4793,5 / 27 / 51$

Litchfield: Salisbury, Britain, Shepard. Fairfi New Haven : East Haver
into eight segments
3. Ventral scales of t. beyond the margin involucral cavity
Ventral scales of thall ing far beyond the i tuft at the apex; cap cavity
4. Pores in epidermis of a single layer of c
Pores in epidermis cc rounded by cells a
5. Outlines of air chamb none; plant native
Outlines of air chan gemmac abundant, plant introduced i
6. Gemmie none; carpor Gemmac usually abu ceptacles; carpocep

K
Reboulia hemisphæ:
rica Leauv.
On sliaded banks anı

Litchfield: New Milford, Ezans. Hartford: Windsor, Ezans. Fairfield: Redding, Miss Haynes; Sherman, Ezans. New Haven : Branford, Livingston; Hamden and New Haven (1873). Eaton; Oxford, Harger; Woodbridge, J. A. Allen. Middlesex: Middletown, Ezans. New London: Montville, Lumsden.

New England west to British Columbia and south to Mexico; Europe; Asia; Africa; South America; Australia.

Ref. Eaton, 15, 68 . Evans, 28, ifo.

Grimaldia Raddi

Grimaldia fragrans (Balb.) Corda. Grimaldia barbifrons Bisch.

Thin soil on rocks, often in exposed localities. May and June. Litchfield: Salisbury, Ei'ans. Hartford: Farmington, Miss Lorcnz; Hartford, H. S. Clark; Simsbury, Miss Lorenz. Fairfield: Monroe, Miss Lorenz. New Haven: New Haven (1856), Eaton; North Haven, Evans; Orange, Harger; Woodbridge, Evans.

Quebec and New England west to Alaska and south to New Mexico and Texas; Europe; northern Asia.

Exsic. Underwood \& Cook, Hep. Amer. No. 121.
Ref. Eaton, 15, 68. Evans, 28, 170. Underwood. 71, 35; 75, 68.

Asterella Beauv.

Asterella tenella (L.) Beauv. Fimbriaria tenella Nees. Shaded banks and thin soil on rocks. May and June. Litchfield: New Milford, Evans. Tolland: Andover, Weatherby; Bolton, Nichols. Windham: Canterbury, Mrs. Hadley. New Haven: Cheshire, Eians; East Haven, J. A. Allen; Hamden (186S), Eaton; Oxford, Harger; Woodbridge, Hall. Middeesex : Middletown, Ezans.

New England west to Missouri and south to Georgia.
Ref. Eaton, 15, 68. Evans, 28, ifo.
Conocephalum IVigg.
Conocephalum conicum (L.) Dumort.
On shaded banks and rocks, especially along streams. April and May. Litchfield: Goshen, Underwood; New Milford
and Salisbury, Evans. Hirtford: Southington, Chamberlain; Windsor. W. E. Britton. Tolland: Bolton and Stafford, Nichols. Windilam: Canterbury, Mrs. Hadley; Plainfield, Sheldon; Windham, Nichols. Fairfield: Danbury, Nichols; Greenwich, Miss Haynes; Huntington, Evans; Redding, Uudervood: Sherman, Evans. New Haven: Cheshire, Harger: Hamden and New Haven (1856), Eaton; North Haven and Woodbridge, Evans. Middeesex : Chester, Nichols. New London: Ledyard, Nichols.

Newfoundland west to Alaska and south to Florida and Nebraska; Europe ; Asia.

Ref. Eaton, 15, 69. Evans, 28, i70. Underwood, 75, 67.

Preissia Corda

Preissia quadrata (Scop.) Nees.
On rocks and banks, more abundant in limestone districts. May and June. Litchfield: New Milford and Salisbury (i89z), Eriols. Hartford: Windsor, Ezalls. Tollind: Bolton, Nichols. Fairfield: Sherman, Evans. New Haven : North Haven, Nichols: Orange, Ezans.

Greenland to Alaska and south to Mexico: Europe: Asia. Ref. Evans, 28, īo.

Lunularia (Mich.) Adans.
Lunularia cruciata (L.) Dumort. L. zullgaris Raddi.
Introduced into greenhouses, and reproducing (in the eastern United States) solely by means of gemmic. New Haten: New IIaven (1868), Eaton. Doubtless widely distributed throughout the state.

New Fngland west to Califormia and south to the West Indics: native in the Mcditerranean regions of Europe. Asia, and Ifrica: Chile: Australia.

Rem. Eaton, 15, 60. Erans, 28, izo.
Marchantia (March. f.) L.
Marchantia polymorpha L.
()n banks and rocks, in swamps, gardens, and cultivated fields. Junc-August. Litcheleld: Goshen, Underzood;

New Milford, Evans. Hartford: Windsor, Evans. Tolland: Bolton, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Sherman, Evans. New Haven: Branford, Hall; East Haven, Harger; New Haven (1856), Eaton; Orange, Evans; Oxford, Harger; Woodbridge, O. D. Allen.

Greenland to Alaska, south to Florida and the West Indies; Europe : Asia.

Ref. Eaton, 15, 69. Evans, 28, 170. Underwood, 75, 69.

ORDER JUNGERMANNIALES

FAMILY METZGERIACEE

1. Gametophyte a thallus with no indication of leaves;
capsule splitting longitudinaliy at maturity into four
valves 2
Gametophyte more or less clearly differentiated into stem and leaves 5
2. Thallus composed of parenchyma throughout. 3
Thallus with a median strand of narrow elongated cells 4
3., Branches lateral: capsule oval Riccardia Branching produced by forking; capsule spherical....Pellia
3. Thallus repeatedly forking, bearing cilia on the margin; antheridia and archegonia borne on short ventral branches Metzgeria

* Thallus simple or with scattered ventral branches, margin entire; antheridia and archegonia borne on dorsal surface Pallavicinia

5. Leaves in the form of marginal crenulate scallops; rhizoids colorless; capsule splitting longitudinally at maturity into four valves Blasia
Leaves distinct; rhizoids purple; capsule splitting ir- regularly at maturity Fossombronia
Riccardia S. F. Gray
I. Thallus mostly 4 - 10 mm . broad, sparingly branched R. pinguis Thallus mostly $\mathrm{I}-2 \mathrm{~mm}$. broad, copiously branched. 2
6. Thallus pinnate or bipinnate 3
Thallus palmate or irregularly branched $+$
7. Ultimate branches distinctly bordered by 2 or 3 rows of cells R. multifida Ultimate branches indistinctly bordered by one row of cells R. sinuata
8. Cortical cells averaging $0.07 \times 0.04 \mathrm{~mm}$; gemmæ rare
R. latifrons

Cortical cells averaging $0.04 \times 0.025 \mathrm{~mm}$; gemmæ two-
celled, often abundant
R. palmata

Riccardia pinguis (L.) S. F. Gray. Ancura sessilis Spreng.
In swamps. April-June. Litchfield: New Milford and Salisbury, Nichols. Hartrord: Hartford, A. H. Grates. New Haven: East Haven (1874), Hall; Orange, Eituls. Middlesex : Cromwell, Evans.

Greenland to Alaska, and south to the West Indies, Mexico, and Brazil ; Europe; Asia; Africa; Australia.

Ref. Eaton, 15, 69. Evans, 28, 170.
Riccardia multifida (L.) S. F. Gray. Aneura multifda Dumort.

In swamps and on wet rocks. May and June. Litchfield: Salisbury, Ezans. Fairfield: Redding, Evans. Neiv Haven: Orange (1876) and Woodbridge, J. A. Allen.

Newfoundland and Nova Scotia, south to Virginia; British Columbia to California: Europe; Asia. kel fal . 527

Ref. Eaton, 15, 69. Evans, 28, 170.
Riccardia sinuata (Dicks.) Trevis. Ancura pinnaififa Nees, in part.

On dripping rocks. April and May. New Haven: Handen (1855), Eaton; Woodbridge, J. A. Allen.

New England south to New Jersey; also in British Columbia; Europe: Asia. A rare species, the range of which is very incompletely known.

Exsic. Austin, Hep. Bor.-Amer. No. 115 , in part (as Aucura pinnatifida). Niss I laynes, Amer. Hep. No. 36.

Ref. Eaton, 15, 69. Evans, 28, 1\%o. Underwood, 71, 55 ; 72, 726.

Riccardia latifrons Lindb.
On rotten logs. May-August. Litciffeld: Salisbury, Erans. Tollind: Polton and Stafforl, Nichols. New Hater: Cheshire, IErans: Weodbridge (1879), J. A. Allen.

Newfoundland west to Alaska and south to New England and New York: Europe; Asia. Rel. teri. 52 t

Ref. Evans, 28, 170.
Riccardia palmata (Hedw.) Carruth.
On rotten logs. May and June. New Haven: Cheshire (1887), Setchell.

Nova Scotia west to Alaska and south to New England, New York, and California; Europe; Asia.

Ref. Evans, 28, ipo.

> Metzgeria Raddi

Metzgeria conjugate Lindy. M. furcate of some authors.

On shaded rocks and trunks of trees. May and June. Litchfield: New Milford, Evans. Windham: Canterbury, Mrs. Hadley; Killingly, Rounds. Fairfield: Danbury, Eaton; Redding, Miss Haynes. New Haven: East Haven, Eaton; Hamden, J. A. Allen; Meriden, Evans; New Haven (1856) and Orange, Eaton; Seymour, Evans. Middlesex: Killingworth, Evans. New London: Norwich, Setchell.

New England west to Alaska and south to Argentina and Chile: Europe: Asia; Africa. Bel.fut. 518

Ref. Eaton, 15, 69. Evans, 28, 170.
Pallavicinia S. F. Gray
Pallavicinia Lyellii (Hook.) S. F. Gray. Stectzia Lyellii Lehr.

In swamps and bogs, sometimes aquatic. April-June. Litchfield: Norfolk, Miss Lorenz. Hartford: East Hartford, Miss Lorenz; Windsor, Evans. Toltand: Stafford and Vernon, Nichols. Vindham: Canterbury, Mrs. Hadley. New Haven: Bethany and East Haven, Evans; Hampden, J. A. Allen; Madison and Middlebury, Evans; New Haven (1877), J. A. Allen; North Haven, Evans; Oxford, Harger. Middlesex: Chester, Nichols. New London: Groton, Preston, and Waterford, C. B. Grazes.

Newfoundland west to Ontario and south into tropical America; Europe; Asia; Africa; New Zealand. Rel Fail 523

Ref. Eaton, 15, 69. Evans, 28, ipo.

Pellia Raddi

Pellia epiphylla (L.) Corda.
On shaded banks and damp rocks. April and May. Litchfield: Goshen, Underivood; Salisbury, Mrs. Phelps. Hartford: Windsor, $W^{\text {r }}$. E. Britton. Windham: Canterbury, Mrs. Hadley. Farrfield: Huntington, Evans; Redding, Miss Haynes. New Haven: Bethany, Evans; Hamden, J. A. Allen; Madison, Nichols; New Haven, Evans; Orange (1873), Hall; Woodbridge, Eaton. Middlesex: Chester, Nichols.

Labrador to Alaska and south to New England, New York, and Indiana; Europe; Asia.

Exsic. Miss Haynes, Amer. Hep. No. 35.
Ref. Eaton, 15, 69. Evans, 28, 170.
Blasia L.

Blasia pusilla L.

On damp banks and rocks. April and May. Litchfield: Cornwall, Underwood; Salisbury, Nichols. Windham: Canterbury, Mrs. Hadley'. Farfield: Huntington, Evans. New Haven: Derby, J. A. Allen; Hamden (1875), Hall.

Nova Scotia west to Alaska and south to Virginia, New Mexico, and California; Europe; Asia.

Exsic. Underwood \& Cook, Hep. Amer. No. 5. kit fral. 494
Ref. Eatom, 15, 69. Evans, 28, 170.

Fossombronia Raddi

1. Annual; capsules mature in autumn......................... 2

Perennial; capsules mature in May and June.........F. salina
2. Spores with subparallel and rarely anastomosing ridges
F. Wońdraczekii

Spores with anastomosing ridges forming a network F. foveolata

Fossombronia salina Lindb.
On earth in wet pastures and swamps. May and June. New Haven: East Haven, Evans; Hamden (1879) and Orange, J. A. Allen.

Connecticut south to Florida and the West Indies and west to Temnessce and Arkansas.

Ree. Evans, 24, 10: 28, 1 17o.

Fossombronia Wondraczekii (Corda) Dumort.
In damp fields and along roadsides. Sept.-Nov. New Haven: Oxford (1894), Harger. Middlesex: Portland, Johnson.

New England west to Indiana and south to Maryland; Europe; Asia.

Ref. Evans, 24, 10; 28, 170.
Fossombronia foveolata Lindb.
In damp fields and along roadsides. Sept.-Nov. New Haven: Branford, Cheshire, and Hamden, Ezans; Milford, Miss Lorcnz; New Haven, Evans; Orange (i879), J. A. Allen. Middlesex: Portland, Evans.

Quebec and Ontario west to British Columbia and south to New Jersey and Delaware; Europe. Rel fael. 504 Ref. Evans, 28, ifo.

FAMILIY JUNGERMANNIACE.E

I. Leaves undivided and with entire margins............... 2

Leaves variously toothed, lobed, cleft, or divided........ 9
2. Archegonia borne on the stem or a leading branch...... 3

Archegonia borne on a short branch, usually arising
ventrally $\ldots . ~$
3. Bracts undivided, similar to the leaves..................... 4

Bracts variously incised or cleft...........Jamesoniella, p. 52
4. Uppermost bracts apparently adnate with the base of the
perianth .. 50

Uppermost bracts entirely free from the perianth........ 5
5. Perianth terete and more or less contracted at the mouth
Jungermannia, p. 51

Perianth laterally compressed and truncate at the mouth 6
6. Growing in damp or wet woods on various substrata; stems with few or no rhizoids; leaves never gemmiparous

Plagiochila, p. 56
Growing in open bogs; stems with numerous rhizoids;
leaves often gemmiparous........................Mylia, p. 56
7. Leaves succubous; sporophyte enclosed within a perianth 8

Leaves incubous; sporophyte developed within a pendent
perigyniumCalypogeia, p. 62
8. Leaf cells without trigones Chiloscyphus, p. 58

Leaf cells with distinct trigones........ Odontoschisma, p. 02
9. Leaves not complicate, usually expanded in one plane Io
Leaves distinctly complicate, the two portions meeting at a more or less distinct keel 22
10. Leaves succubous II
Leaves incubous 19
ir. Leaves bidentate or bilobed 12
Leaves with more than two teeth or lobes 18
12. Underleaves distinct I3
Underleaves mone or very minute 16
13. Underleaves distinctly bifid. I4
Underleaves undivided or with a few marginal teeth or cilia 15
14. Sporophyte enclosed within a perianth....Lophocolea, p. 57
Sporophyte developed within a pendent perigynium Geocalyx, p. 59
15. Growing on rotten logs, often gemmiparous
Harpanthus, p. 59
Growing on calcareous rocks, never gemmiparous
Lophozia Muelleri, p. 53
16. Perianth terete, more or less plicate at the mouth
Lophozia, p. 52
Perianth trigonous 17
17. Leaf cells $0.025-0.05 \mathrm{~mm}$. in diameter . Cephalozia, p. 59
Leaf cells $0.01-0.02 \mathrm{~mm}$. in diameter. Cephaloziella, p. 61
18. Leaves undivided, margin sharply toothed..Plagiochila, p. 56
Leaves with three or four broad teeth. Lophozia, p. 52
19. Leaves bidentate at the apex; ventral flagelliform branches none Calypogeia, p. 62
L.eaves mostly with three or four teeth. lobes, or divisions 20
20. Stems apparently dichotomons; ventral flagelliform branches numerous Bazzania, p 6
Stems pinnately branched; ventral flagelliform branches none 2 I
2I. Divisions or lobes of leaves two or more cells wide, at least at the base; archegonia borne on short ventral branches Lepidozia, p. 65
)ivisions of leaves only one cell wide throughout; arche- gomia borne on the main stem or on leading lateral branches Blepharostoma, p. 66
22. Ventral Inbe of leaf equaling or surpassing the dorsal in size 23
Ventral lobe smaller than the dorsal 26
No. II.] THE BRYOPHYTES OF CONNECTICUT. 49
23. Bracts apparently adnate to the base of the perianth. Marsupella, p. 50
Bracts entirely free from the perianth 24
24. Perianth strongly dorsi-ventrally compressed, not plicate in upper part..................................... Scapania, p. 68
Perianth terete or slightly compressed, more or less plicate in upper part 25
25. Keels of leaves sharp Diplophylleia, p. 67
Keels of leaves blunt Sphenolobus, p. 55
26. Leaves and underleaves with fringed margins 27
Leaves and underleaves (when present) with entire or denticulate margins 28
27. Plants green, often tinged with brown or red, growing in rather dry localities; leaf cells with trigones and a smooth cuticle Ptilidium, p. 66
Plants pale green or yellowish, growing on the ground in swamps; leaf cells thin-walled, with a minutely striolate cuticle Trichocolea, p. 67
28. Underleaves present 29
Underleaves none 33
29. Underleaves individed 30
Underleaves bifid 31
30. Ventral lobe of leaf not inflated, attached to the stem by a narrow base Porella, p. -Ventral lobe of leaf inflated and forming a small water-sac, attached to the stem by a broad base
Leucolejeunea, p. 72
31. Ventral lobe of leaf attached to the stem by a broad base, forming an inflated water-sac.................Lejeunea, p. 72
Ventral lobe of leaf usually forming an inflated water-sac, entirely free from the stem 3232. Archegonial branch with one or two subfloral innovations
Jubula, p. 72
Archegonial branch without subfloral innovations
Frullania, p. 7333. Dorsal lobes of leaves smooth and entire; perianth dorsi-ventrally compressed, truncate at the mouth.Dorsal lobes of leaves denticulate and minutely roughenedon outer surface by projecting cells; periantli inflated,five-keeled, and contracted at the mouth into a tubularbeakCololejeunea, p.71
innelver momedicilely tallerorin sfeceitie
 members receded $y M=$ si f. in luacV. If ope elf. 50 (ONNECTICTT GEOL. AND NAT. HIST. SURVEY. [Bull. Mo mems notion lucavV * nuemo under another nome Marsupella Dumort.
Plants varying from green to reddish; leaves with a broad sinus and bluntly pointed lobes
M. emarginata

Plants varying from green to deep purplish black; leaves with a narrow sinus and rounded lobes
M. Sullivantii

Marsupella emarginata (Ehrh.) Dumort. 229

On damp shaded rocks. May and June. Litchfield: Salisbury, Nichols. New Haven: Brantford, Evans; Middlebury, Hoarser; Naugatuck, Evans; Oxford, Harger: Woodbridge (1879), J. A. Allen. Rel

Labrador west to Alaska and south to Virginia, Minnesota, and California; Europe; Asia. Rel Ton 515°

Ref. Evans, 28, ${ }^{172 .}$ la ta (Gierelee) Dun. car.
Marsupella LSullivantii (DeNot.) Evans. 7 Marsinpclla sphacelata of some authors, not (Gieseke) Dumort. - M. media (Gottsche) Schiffn. © ezytrorki ga (Rimini.) Schitfu. 225

On shaded rocks. May and June. Hartford: Southington, Miss Lorcuz. New Haven: Hampden and Naugatuck (i890), Evans.

Nova Scotia south to Georgia; Washington; Europe.
Ref. Evans, 28, $172 ; 30,167 ; 33,57$. Rel Font. 516 $a, 1$. Phectocolea mitt. 318
[Nardia S. F. Gray]

1. Growing on sandy soil; rhizoids colorless; leaves (or at least the bracts) bordered by a row of thick-walled cells; leaf cells otherwise thin-walled throughout'or with minute trigons
N. crenulata

Growing on damp rocks or banks; rhizoids more or less tinged with purple; leaf cells with distinct trigons....
2. Leaves bordered by a row of thick-walled cells.
N. crenuliformis

Leaves not bordered, their cell structure uniform throughout
N. hyaline

Nadia crenulata (Sm.) Lind. Jungcrmannia cronulata Sm. 326 P. cremulata (Sm.) Burch, sErrano, -rberdoorn (11 sandy sui, especially along roadsides and shaded paths. April-Jme. Lathered: Cornwall and Litchficld, Underabroad. Than sin: Balkan, Nichols. Fairfield: Huntington
and Redding, Evans. New Haven: Hamden, Eaton: Keriden. Evans; New Haven (1866), Eaton: Orange, Evans; Oxford, Harger: Woodbridge, J. A. Allen. Midilesex: Middlefield, Evans.

Greenland west to British Columbia and south to Alabama and California; Europe; Asia.

Exsic. Underwood \& Cook, Hep. Amer. No. 57.
Ref. Eaton, 15, 7I. Evans, 28, 172.
[Nadia crenuliformis (Aust.) Lind] 331
On rocks along streams. May and June. New Haven: Beacon Falls (1907), Evans. P. Crew. (Oust.) Whit.

Comecticut to Ohio and south to New Jersey and West Virginia.

Nardia hyalina (Lyell) Carr. 333 P. hey. (Lyell) Mitt.
On damp shaded rocks and banks. May and June. Windham: Canterbury, Mrs. Hadley. New Haven: Ansonia (i88o), J. A. Allen; Beacon Falls, Evans; Hampden, J. A. Allen; Naugatuck, Era ins. Middeesex: Middletown, Evans.

New England to Minnesota and south to Maryland; Europe: Peru.

Ref. Evans, 26, 209; 28, 172.

Jungermannia (Rupp.) L.

r. Leaf cells with trigones; monoicous: perianth abruptly contracted at the apex into a short depressed beak.
J. lanceolata

Leaf cells without trigons; perianth gradually contracted at the apex

2
2. Small species, stems 5 -10 mm. long; monoicous......J. pumila Large species, stems mostly $2-8 \mathrm{~cm}$. long; dioicous
J. cordifolia

Jungermannia lanceolata L. Liochlcna lanceolata Nees. 278
On shaded banks. May and June. New Haven: Hamden (1877) and New Haven, J. A. Allen; Oxford, Harger.

Labrador west to British Columbia and south to New Jersey, Indiana, and Washington : Europe: Asia; Madeira Islands.

Ref. Eaton, 15, 71. Evans, 28, 171. Rel. He, $5<0$

Jungermannia pumila With. 286

On wet rocks, often in brooks. May and June. New
 Haven: Hampden (1877), J. A. Allen; North liranford. Evans.

Greenland south to Maryland; Europe.
Ref. Evans, 28, 17 I.

Jungermannia cordifolia Hook. 284

On wet rocks along streams. Hartford: Windsor (1903). Miss Lorenz.

Greenland west to Alaska and south to New England and Colorado; Europe : Asia; South America.

Ref. Evans, 30, 170.
Jamesoniella (Spruce) Steph.
Jamesoniella autumnalis (DC.) Step. Jungermannia Schraderi Mart. 272

On banks, rocks, and rotten logs. Sept.-Nov. Litciffield: New Milford, Evans; Salisbury, Adams. Hartford: Simsbury, Miss Lorenz. Tolland: Vernon, Nichols. New Haver: Bethany, Evans; Hampden (18-8), Eaton; Naugatuck, Evans; New Haven, O. D. Allen; Orange, Evans; Oxford, Larger: Woodbridge, Nichols. Mindesex: Cromwell. Evans.

Greenland to British Columbia and south to Virginia ant Missouri: Europe; Asia.

Rev. Eaton, 15, 71. Evans, 28, 171.

Lophozia Dumbort.

I. Leaves bidentate or bilobed throughout.................... 2
Leaves fri- or quadridentate, at least on fertile stems, sometimes bidentate on poorly developed stems........ i
2. Teeth or lobes acute 3
Teeth or lobes rounded L. inflata
3. Underleaves none; perianth plicate in upper part, and not strongly contracted at the mouth 4
Underleaves present; perianth scarcely plicate in upper part. and contracted at the mouth into a short beak.. L. Mueller
4. Dioicous 5
Monoicous (paroicous) 6
5. Growing on rocks; leaf cells with small trigones.. L. ventricosa
Growing on rotten logs; leaf cells with large trigones..
L. porphyroleuca
6. Plants with a distinct aromatic odor; leaf cells with strongly thickened walls L. bicrenata Plants odorless; leaf cells thin-walled, but with small trigones
L. excisa
7. Plants firm, dark green; leaves but little altered when dry 8 Plants delicate, pale or bright green; leaves strongly crispate when dry

10
8. Tecth of leaves subequal, the lateral margins nearly straight and of about the same length
Apical (or ventral) tooth larger than the others, the enrresponding lateral margin long and strongly curved..

L. Lyoni

9. Gemmæ usually abundant, borne on upright flagelliform shoots with closely appressed leaves...........L. attenuata Gemmæ rare, not borne on flagelliform shoots...... L. barbata
10. Lobes of leaves more or less toothed L. incisa

Lobes of leaves entire.................................... L. marchica
Gunumocolea inflata (Huds.) Dum.
Lophozia inflata (Huds.) M. A. Howe. 368
On damp shaded rocks. Tolland: Bolton, Nichols. New
Haven: Branford (i892) and Naugatuck, Evans.
Greenland to Alaska and south to New Jersey and California; Europe; Asia. Ret.far. 514

Ref. Evans, 28, 172.
reiocolea m. (Messintinctuab.) foerg. M169
Lophozia Muelleri (Nees) Dumort. 385
In crevices of calcarcous rocks. May and June. LitchField: Salisbury (i897), Evans.

Quebec to Connecticut ; Europe; Asia.
Ref. Evans, 32, 35.
Isopaches bicrenatus (Setueid.) Buch
Lophozia bicrenata (Schmid.) Dumort. Jungermannia c.rcisa of some authors. 348373

On rocks, shaded earth, and banks. May and June. Litdifield: Goshen, Underwood. Tolland: Bolton and Vernon, Nichols. Farrield: Huntington, Eqauns. New Haven: Beacon Falls, Nichols; Hamden (1878), J. A. Allen; Meriden, Evans; Orange, J. A. Allen; Seymour, Harger.

Quebec and Ontario south to Pennsylvania and New Jersay: Europe; Asia. Rel. Fan. $\sqrt{12} a, b$.

Ref. Eaton, 15, 71. Evans, 26, 209; 28, 172.

Lophozia excise (Dicks.) Dunlort. 346

On rocks. New Haven: North Haven (agog), Evans.
Labrador to New England and west to British Columbia; Europe; Asia. The species has been confused in North America with L. bicrenata, and its range is therefore not very definitely known.

Ref. Evans, 33, 73. Miss Haynes, 44, 99. pl. 9, f. IO-I. 3 .
Lophozia ventricosa (Dicks.) Dumort. 349
On rocks. Litchfield: Salisbury (igo8), Miss Lorenz.
Greenland to Alaska, south to New England. Minnesota, and California : Europe; Asia.

Lophozia porphyroleuca (Xes) Schiffi1. 362
On rotten logs. Poland: Stafford (ingot), Nichols.
Circenland to British Columbia, south to New England and Washington: Europe ; Asia.

Rear. Evans, 33, 73.
Lophozia marchica (Mes) Steph. Jungermania NoraCascara Evans. L. Nozic-Casarer Staph. 355

In bogs and on wet sandy soil. May and June. FairField: Ifuntington, Evans. New Haven: East Haven (1892) and Orange, Evans.

New England south to Delaware and West Virginia; Erase

Ref. Evans, 20, 30y:26, 212; 28, 172. Stephanie, 67<super>2, 153.
Lophozia incisa (Schrad.) Dumort. 365
(1) shaded banks and rotten logs. May and June. Literfiel.川: Winchester, Miss Lorenz. Tollanid: Stafford, Michobs. New HInes: Hayden (i877), O. D. Allen; Woodbridge, Exons.
(irmenland to Alaska, and south to Nell England, Mimesta, and (:alifornia: Europe: Asia. Ka.: , 5 13.

Ref. Evans, 28, ipa.

Lophozia barbata (Schreb.) Dumort. Jingermannia barbata Schreb. 426

On rocks. May and June. Litcifield: Goshen, Underwood. Hartaord: Farmington, Miss Loreniz. New Haven: M 201 East Haven, Evans; Hamden, J. A. Allen; Meriden, Eions: New Haven (i877), J. A. Allen; Southbury, Harser. Mindesese: Durham, Evans.

Greenland to Yukon, and south to New York and New Jersey: Europe: Asia. Ne.fal. S11

Ref. Eaton, $15,7 \mathrm{I}$. Evans, 28, 172.
Ortherantis racele (Scheleach.) Iuch
Lophozia attenuata (Mart.) Dumort. L. gracilis (Schleich.) Steph. 409

On shaded rocks and logs. Litchfield: Salisbury (i892), Erans.

Greenland to Alaska, south to New England and New York: Europe: Asia. RिC foel. JIc a, l-

Ref. Evans, 3I, 58.
Tritormarice quem quectactata (Hud.) Buch Lophozia Lyoni (Tayl.) Steph. 421
On sliaded rocks. New Haven: Meriden (i890), Evans.
Greenland to Alaska, and south to New England and
Mimesota; Europe; Asia.
Ref. Evans, 26, 210 ; 28, 172.
Sphenclobus (Lindb.) Steph.
Dorsal lobe much smaller than the ventral, of ten tooth-like
S. exsectus

Lobes subequal
S. Michauxii

Tritomaina exsceta (Sclumid.)Seliitth, 55012 Sage'
Sphenolobus exsectus (Schmid.) Steph. 417 Tanu, Salist. $\$$. On shaded rocks. Litchfield: New Milford, Evans. $1 / 216$ New Haven: Branford (Igoz) and Naugatuck, Eidans.

Quebec to British Columbia, south to West Xirginia and
Colorado; Europe; Asia. $\$ 35$ a, b.
Ref. Evans, 28, 173:30, I7I.
An astropheilllumi ke. (Weler) Buch.
Sphenolobus Mịchauxii (Web. f.) Steph. 393 Mo
On shaded rocks. Litchfield: Salisbury (iS92), Ezans.

Labrador to British Columbia, south to Virginia and Minnesota: Europe; Asia. Rel. Fol. 537

Ref. Evans, 3i, 58.
Plagiochila Dumort.
Leaves broadly ovate, entire or denticulate, the teeth more

Leaves narrowly ovate, sharply dentate, the teeth less than ten
P. Sullivantii

Plagiochila asplenioides (L.) Dumort. Including P. porchlodes Xes. 451

On rocks and banks, often in wet localities. May and June. Litchfield: New Milford and Salisbury, Evans. Hartford: Burlington, Nichols. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadlcy. Fairfield: Huntington, Evans; Redding, Miss Haynes; Sherman, Evans. New Haven: Beacon Falls, Evans; Bethany, Hall; Hamden (1855), New Haven, and Orange, Eaton; Oxford, Harger; Woodbridge, Evans. Middeesex: Cromwell, Evans; Gillingworth, Hall; Middlefield and Middletown, Evans. New London: Ledyard, Nichols.

Newfoundland to Alaska, and south to Virginia, Minesola, and California; Europe; Asia.

Ref. Eaton, 15, 71. Evans, 28, 172.
Plagiochila Sullivantii Gottsche. P. spinulosa of some authors. 439
()n shaded rocks. Fairfield: Redding, Evans. New Haven: Branford and Nangatuck (i890), Evans.

New Hampshire to North Carolina.
Exes. Underwood \& Cook, Hep. Amer. No. in (as P. spinulosa), collected at Naugatuck, Evans, but incorrectly labeled " Beacon Falls."

Ref. Evans. 21, 191, pl. 15,f. 18, 21, pl. 16, f. I-3; 28, 172. Stephani, $67^{2}, 3$ Lg.

Mysia S. F. Gray
Mysia anomaly (look.) S. F. Gray. 302
Among Sphagna in bogs. Litchfield: Woodbury, Evans. New Haven: licthany (1892) and New Haven, Ez ohs.

New Brunswick to Yukon, and south to New Jersey and Washington ; Europe; Asia.

Exsic. Underwood \& Cook, Hep. Amer. No. 151. Rel tal. 519
Ref. Evans, 28, 172. Underwood, 73, 300.

Lophocolea Dumort.
I. Plants growing on wet rocks; leaves gradually narrowed toward the apex and divided into two sharp teeth; dioicous .. L. bidentata
Plants growing on banks, rotten logs, or damp rocks; leaves scarcely narrowed toward the apex................ 2
2. Leaves varying from bifid to truncate and undivided; monoicous (paroicous); gemmæ none.......L. heterophylla Leaves bidentate; dioicous; gemmæ abundant, borne on rudimentary leaves
L. minor

Lophocolea bidentata (L.) Dtmort. 254
On rocks near or in streams. May and June. Hartford: Windsor, Eeians. New Haven: Hamden (1877), m 240 J. A. Allen; Orange, Evans. Middeesex: Cromwell, Evans.

Ontario south to Connecticut and Virginia; Europe ; tropical and antarctic America.

Exsic. Underwood \& Cook, Hep. Amer. No. 95.
Ref. Eaton, 15, 7 I ; Evans, 28, 172.
Lophocolea heterophylla (Schrad.) Dumort. Including L. Austini Lindb. 252

On rotten logs, shaded banks, and earth in woods. MayJuly. Litchfield: Goshen, Underwood; New Milford, Evans; Salisbury, Nichols. Tolland: Bolton and Stafford, Nichols. Fairfield: Huntington and Sherman, Evans. New Haven: Beacon Falls and Derby, Evans; East Haven and Hamden, O. D. Allen; Meriden and Middlebury, Evans; New M243 Haven (1866), Eaton; North Branford, North Haven, and Orange, Evans; Oxford, Harger; Seymour, Evans. MiddleSEX: Durham, Evans; Killingworth. Nichols; Middlefield, $5^{0} 0^{9} \mathrm{Cins}^{4}$ Evans. New London: Ledyard, Nichols.

Nova Scotia to British Columbia, and south to North Carolina, Minnesota, and California; Europe; Asia.

Exsic. Underwood \& Cook, Hep. Amer. No. is6, in part (as L. Austini).

Ref. Eaton, 15, 71. Evans, 23, pl. 6; 28, 172.

Lophocolea minor Nees. 256

On shaded banks and rocks, especially in limestone regions. Hartford: Farmington and Hartford, Miss Lorenz. Tolland: Staffotch Nichols. Finrfield: Sherman, Evans. New Haven : East Haverı, Ezans; New Haven (I877), J. A. Allen.

New Bramswic) to British Columbia, south to New York and Mimnesota?: Esrupe.; Asia.

Exsic. Lindervond \& Cook, Hep. Amer. No. 129.
Rer. Evans, 28, I72.

Chiloscyphus Corda

Leaf cells usually less than 0.03 mm . in diameter; lobes of
perianth entire or nearly so............... polyanthus
Leaf cells mostly $0.035-0.0+1 \mathrm{~mm}$. in diameter; lobes of
perianth dentate or lacerate................ pallescens
Chiloscyphus polyanthus (L.) Corda. 241
In swamps and streams, often submerged. Litchfield: Winchester, Eidas. Hartford: Windsor, Ez'ans. Tolland: Bolton and Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. New Ilayen: Bethany (1878), Eaton; Hamden, Hurger: New Haven, Earoms; Oxford, Harger; Woodbridge, J. A. Allon. Mnnlesex: Killingworth, Nichols; Middletown, Erans.
I.abrador to Alaska, and south to New Jersey, Missouri, aurl (alifornia; Europe; Asia.

REF. Eaton, 15, 7o. Evans, 28, i/f.
Chiloscyphus pallescens (Ehrh.) Dumort. C. ascoudens Sullix: 247
() 1 rotten logs and sharled banks. May and June. Litch249 Eefo: Calishury, Earans. New Haven: Bethany (IS75), Euton: Hamden, J. A. Allen; Middlebury, Eéans; New Haven, Harsir: Urange, Eaton: Oxford. Harger; Woodbridge, Ezions.

Ontario to British Columbia, south to New England, New York, and Indiana; Europe; Asia.

Ref. Eaton, 15, 7o. Evans, 28, 171; 3I, 54.

Harpanthus Nees

Harpanthus scutatus (Web. f. \& Mohr) Spruce. 458
On rotten logs. Litchfield: Salisbury, Evals. TolLani: Stafford, Nichols. New Haver 7 jemtord and Cheshire, Eirans; Oxford (1890), Harger. Ty on

Labrador west to British Columbia tad south Virginia; Europe; Asia. Rel Hall. 506.

Ref. Evans, 28, 171.
Geocalyx Nees
Geocalyx graveolens (Schrad.) Nees is 462
On rotten logs, banks, and shaded royks Tay and June. Windham: Canterbury, Mrs. Hadley. Falqield: Redding, Miss Hayncs. New Haven: Beacon Falls, Evans; Hamden, J. A. Allen; New Haven (1867), Veitch; North Branford and North Haven, Ezans; Oxford, Harger; Woodbridge, Eaton.

Nova Scotia to British Columbia, south to Virginia and Washington ; Europe : Asia.

Ref. Eaton, 15, 7o. Evans, 28, 171.

Cephalozia Dumort.

1. Stems bounded by a layer of enlarged cortical cells.
Stems uniform in cell structure; lobes of leaves obtuse or obtusely pointed
C. fluitans
2. Leaves inflated at the base, the segments ending in long
slender points

C. curvifolia
Leaves not inflated at the base, the segments acute or acuminate
3

3. Leaves not decurrent, symmetrical, the segments straight
or scarcely connivent

C. bicuspidata

Leaves more or less decurrent, unsymmetrical, the segments connivent
4. Leaf cells $0.04-0.045 \mathrm{~mm}$. in diameter............. C. connivens
Leaf cells $0.02-0.03 \mathrm{~mm}$. in diameter.5
5. Leaf cells thin-walled; segments of bracts entire or sparingly laciniate C. lunulæfolia Leaf cells with uniformly thickened walls; segments of
 howeckia 505.
Cephalozia curvifolia (Dicks.) Dumort. N.c.(Dicks.) hitt On rotten logs. May and June. Litchfield: Goshen, Underabod; Salisbury, Ezans. Hartford: Windsor, W. E. Britton. Fairfield: Monroe and Newtown, Harger. New Haven: Beacon Falls, Nichols; Branford, Evans; Cheshire, Harger; Hamden (1877) and New Haven, J. A. Allen; North Haven and Woodbridge, Evans.

Newfoundland to Ontario, south to North Carolina and Minnesota; Europe; Asia. Rel. farl 448 a, $1-$.

Ref. Eaton, 15, 71. Evans, 28, 171.
Cephalozia bicuspidata (L.) Dumort. 482
On shaded banks and rocks. May and June. Litchfield: Salisbury, Nichols. Tolland: Stafford, Nichols. Fairfield: Trumbull (i89i), Evans. New Haven: Beacon 259 Falls, Hamden, Naugatuck, and Orange, Evans.

Greenland to Alaska, and south to New England, Minnesota, and California; Asia; northern Africa.

Ref. Eaton, 15, 7 I (quoted from East Haven). Evans, 28, I71.

Cephalozia connivens (Dicks.) Lindb. 486
In swamps and wet pastures. May and June. Litchfield: Salisbury, Evans. Fairfield: Sherman, Evans. New Hiven: East Haven and Hamden, Ezoans. New Haven (1867), Eaton; North Branford, Ez'ans.

Irince Edward Island to Ontario, and south to Florida; Europe: Asia.

Ref. Eaton, 15, 7I. Evans, 28, 171. Howe, 49, 282. Fhecha tindtr.
Cephalozia [lunulæfolia Dumort, howon dulime are luacs) 1493
On shaded banks and rotten logs. May and June. LirchFieln: Salisbury and Woodbury, Evans. Hartford: Windsor, Ezans. Tolland: liolton and Stafford, Nichols. FairFieln: Huntington and Redding, Evans. New Haven: Reacon Falls and Hamden, Eidans; New Haven (i866), Eaton;

North Branford, Evans; North Haven, Nichols. Mimesex: Durham, Evans.

Greenland to Alaska, and south to Florida, Minnesota. and California : Europe: Asia.

Ref. Evans, 28, ry.
 authors. 492

On rotten logs. New Haven: New Haven (is921. M 271^{\star} Evans.

Nova Scotia to British Columbia, south to Florida and Louisiana ; Europe; Asia.

Ref. Evans, 28, 171 ; 30, 173.
Cladoptodicla +hitchers (luce) Coorg.
Cephalozia fluitans (Mes) Spruce. 501
In wet bogs. Litchfield: Salisbury and Woodbury. Evans. New Haven: Bethany (1888), Harger.

Labrador to British Columbia, south to New Jersey, Minnesota, and Washington: Europe: Asia.

Exsic. Underwood \& Cook, Hep. Amer. No. 15t. RC\&. Itu. ${ }^{2}$
Ref. Evans, 28, if.
Cephaloziella (Spruce) Schiffn.
Dioicous
C. divaricata
Monoicous (paroicous)
C. myriantha

Cephaloziella divaricata (Sm.) Schiffn. Cephalozia di-

On damp banks, sandy soil, and rocks. Nay and June. Litcheield: Goshen. Underaiood. Hartford: Hartford and West Hartford, Miss Lorenz. Tollani: Vernon, Nichols. Furfiedd: Huntington and Redding, Evans. New Mo Haven: East Haven, Evans: Hampden (1877) and New Haven, J. A. Allen: North Haven, Evans: Orange, J. A. Allen: Oxford, Harser; Seymour, Evans. Middesex: Middlefield, Evans.

Greenland to Alaska, south to Maryland, Minnesota, and California; Europe: Asia.

Exsic. Underwood \& Cook. Hep. Amer. No. 155.
Ref. Eaton, 15, 7r. Evans. 28, 17.

Cephaloziella myriantha (Lindb.) Schiffn. 535
On sandy soil and rocks. Hartford: East Granby and West Hartford (1907), Miss Lorenz.

New England and New York: range in North America not definitely known : Europe.

Odontoschisma Dumort.

Leaves bordered by one to three rows of rectangular cells;
gemma none
O. prostratum

Leaves uniform in cell structure; gemma usually abundant, borne at the tips of erect shoots with rudimentary leaves
O. denudatum

Odontoschisma prostratum (Sw.) Trevis. O. Sphagni ut some authors. 470
k, Vobivin swamps and bogs. Hartford: West Hartford, Miss bosk ivivorens. Tolland: Columbia, Weatherby. Windham: Can(1866) and New Haven, Eaton; North Branford, Evans; Oxford, Harger. New London: Waterford, Miss Lorena.

Southern New England, south into tropical America.
Ref. Eaton, 15, 71. Evans, 28, 172; 29, 344, pl. I9, f. $42-57, \mathrm{pl} .20, f .55,57,59,60,63,64$.

Odontoschisma denudatum (Mart.) Dumort.
On rotten logs, more rarely on shaded banks. Litchfield: Palishury, Earns. Hartford: Windsor, Ez ans. Tollind: Liolton and Stafford, Nichols. Windham: Canterbury, Mrs. Madly. New Haven: Hayden, O. D. Allen; North Branford (1881), J. A. Allen. 468
(ircemland to Nova Scotia and Ontario, south into tropical America l Europe; Asia. Jell face $5=2$.

Rf. Evans, 28, 172; 29, 3+2, pl. 19, f. 35-38.

Calypogeia Radii

I. Leaves rounded to obtuse at the apex, rarely bifid or
bidentate; leaf cells with a smooth cuticle............. 2
Leaves sharply bidentate; leaf cells with a minutely striate-
verruculose cuticle Sullivantii
2. Leaf cells without trigons ... 3

Leal cells with small but distinct trigons.................. 4
3. Plants robust, growing on banks, earth in woods, or shaded rocks; underleaves bifid about one-third..... C. Trichomanis Plants delicate, growing in bogs, underleaves bifid to the
middle or beyond tenuis
4. Growing in bogs; leaves spreading at an angle of about 30°
C. sphagnicola

Growing on rotten logs; leaves spreading at an angle of about 45°
C. suecica

Calypogeia Trichomanis (L.) Corda. Kantia Trichomanis S. F. Gray. 681

On shaded banks and earth in woods. May and June. Litchfield: Salisbury and Woodbury, Evans. Haktford: Windsor, Evans. Tolland: Bolton, Nichols; Coventry, Mrs. Plelps; Stafford and Vernon, Nichols. Windham: Canterbury, Mrs. Hadlcy: Windham, Nichols. Fairfieln: Huntington, Evans; Redding, Miss Hayncs. New Haven: Beacon Falls, Evans; Hamden (1877), J. A. Allen; Meriden, Naugatuck, New Haven, and Orange, Eians. Middlesex: Killingworth, Nichols. New London: Ledyard, Nichols.

Labrador to Alaska, and south to North Carolina and California: Europe; Asia. Ret. Fenct. 446

Ref. Eaton, 15, 70. Evans, 28, 171 ; 33, 70.
Calypogeia tenuis (Aust.) Evans. Sunk in C. ofacfericola In bogs. Litchfield: Woodbury (1902), Ezans. fic frc. New Hampshire to New Jersey.
Ref. Evans, 33, 69, pl. 73, f. 9-I4.
Calypogeia sphagnicola (Arn. \& Perss.) Warnst. \& Loeske. 680

In bogs. Litchfieli): New Milford (1906), Eicuns. M319
The only known locality outside of Europe.
Ref. Evans, 33, 65.
Calypogeia suecica (Arn. \& Perss.) C. Müll. Frib.
On rotten logs. Tolland: Stafford (1906), Nichols. M321
Maine to Connecticut; Europe; range not yet definitely
known. 684
Ref. Evans, 33, 66.

Calypogeia Suhlivantii Aust. Kantia Sullivantii Underw. On sandy banks. New Hines: East Haven, Evans; Milfort, Weatherby; Woodbridge (i8go), Errands. New Lonmos: Waterford, Miss Lorenz.

Southern New England to North Carolina and Arkansas. Ra. Evans, 26, 212; 28, 171:33, 67.

Bazzania S. F. Gray

Plants large, the leaves often 2.5 mm . long, broadly ovate, truncate and tridentate at the apex
B. trilobata

Plants smaller, the leaves mostly 0.7 to r .2 mm . long, ovate, acute or irregularly bidentate or tridentate at the apex
B. tricrenata

Bazzania trilobata (L.) S. F. Gray. Mastigobryum trio'alum Ness. 667

On earth in woods and swamps, on shaded banks, and on rotten logs. Autumn. Litchfield: Goshen, Underwood; New Milford and Salisbury, Evans. Hartford: Canton, Nichols; Glastonbury, Mrs. Lowe; West Hartford, Miss Lorenz. Tolland: Ellington and Stafford, Nichols. Windins: Canterbury, Mrs. Hadlcy; Windham, Nichols. Fairfeed: Redding. Miss Haynes. New Haven: Beacon Falls and Brantford, livens; Hampden (1855), Eaton; Naugatuck, Cerous: Ninth Haven, Nichols; Orange, Eaton; Oxford, Marger; Seymour, Earls; Woodbridge, Hall. Middeesex: Durham and Kilingworth, Leans. New London: Groton and North Stuningth, C. B. Grazes.

त̌enfumlland th Ontario, and south to Alabama : Europe; lain.

Ref. Eaten, 5 5, \%o. Evans. 28, ign.
Bazzania trierenata, Hat.) Travis. - B. trianyularis (Schleich.) Lindb. 6669673

On shaded rocks. Litchrield: Salisbury (i892), Laius. Fimefeln: Redding. Leans. Neh liven: Beacon lolls Rho. and Naugatuck, Evans. All thess nut Noftoro is. deundation 25:9

Nova Sonia to Alaska, antecoth to North Carolina and Washington: Europe ; Asia.

Res. Evans, 28, if.

B. tricrenata(Woix.) 1 rein wa in

Com. Citatain in 7.F. error to alone.

Lepidozia Dumort.

1. Leaves divided to the middle or a little beyond into three or four triangular lobes reptans Leaves divided almost to the base into three or four setaceous divisions ... 2
2. Underleaves of stem mostly quadrifid with subequal divisions; bracts mostly trifid or quadrifid.........L. setacea Underleaves of stem mostly trifid, one or two of the divisions regularly aborted; bracts mostly bifid....L. sylvatica

Lepidozia reptans (L.) Dumort. 653
On shaded banks and rotten logs. May and June. Litchfield: Goshen, Underwood; Salisbury, Evans. Hartford: Canton, Nichols. Windham: Windham, Nichols. New Haven: Beacon Falls, Eirans; Hamden, Eaton; Naugatuck, Erians; New Haven, J. A. Allen; North Haven, Evans; M331 Orange (1877), J. A. Allen; Oxford, Harger; Woodbridge, J. A. Allen.

Newfoundland to Alaska, and south to Virginia, Minnesota, and California; Europe; Asia. Rel. Farl. 509.

Ref. Eaton, 15, 70. Evans, 28, 172.
Lepidozia setacea (Web.) Mitt. L. sphagnicola Evans. 660 In bogs. May and June. New Haven: Bethany (1892), Evans.

Range in North America not definitely known; Europe; . Ic Asia.

M338
Exsic. Underwood \& Cook, Hep. Amer. No. 168 (as L. sphagnicola).

Lepidozia sylvatica Evans. L. setacea of some authors. 658
On shaded banks and rotten logs. May and June. Hartford: Manchester, Miss Lorenz. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. New M336 Havex: East Haven, Evans; Hamden (i866) Eaton; Naugatuck, Evans; New Haven, Veitch; Orange, Eaton; Oxford, Harger. Middlesex: Killingworth, Hall.

New England to Florida.

Exsic. Underwood \& Cook, Hep. Amer. No. 85 (as L. $\operatorname{setacc} a)$.

Ref. Eaton, 15, 70. Evans, 28, 172; 30, 187, pl. 57.

Blepharostoma Dumort.

Blepharostoma trichophyllum (L.) Dumort. 191
On shaded banks and rocks, also on rotten logs. May and June. Tolland: Stafford, Nichols. Fairfield: Sherman, Evans. New Haven: Beacon Falls, Ez'ans; New Haven, J. A. Allen; Orange, Evans. Middlesex: Killingworth (1875), Hall.

Greenland to Alaska, and south to New Jersey, Colorado, and California; Europe; Asia. Rel. Fact $445 a \cdot b$

Ref. Eaton, in, 70. Evans, 28, ip.

Ptilidium Nee

Stems erect or ascending; stem leaves distant or loosely imbricated .. ciliare Stems prostrate; stem leaves , densely imbricated.

P. pulcherrimum

Ptilidium ciliare (L.) Nees. Blcpharozia ciliaris Dumort. 198
On earth among rocks. May and June. Litchfield: Cornwall and Goshen, Underwood. New Haven: East Lorena Midiesex: Durham Leans. New London: Nor which, C. B. Graves.

Greenland to Alaska, and south to New England and Minnesota; Europe; Asia. ReC Fall 525 a, b

Ref. Eaton, 15, 70. Evans, 28, I72; 32, 44.
Ptilidium pulcherrimum (Web.) Hampe. Included under P. ciliare by many writers. 199

On shaded rocks, trunks of trees, and rotten logs; rarely on banks rich in humus. May and June. Litchfield: Cornwall and Goshen, Underwood; New Milford and Salisbury, Evans. Hartford: Burlington and Canton, Nichols; Tomann: Ellington, Peasc; Stafford, Nichols. Winding: Canterbury, Mrs. Madly. Fairfield: Redding and Sherman, Eídus. New Maven: Beacon Falls, Evans; Bethany, Ham-
den, and Meriden (1856). Eaton; New Haven, North IIaven, and Seymour, Evans; Woodbridge, J. A. Allen. Midolesex: Durham, Er'alis.

Nova Scotia to Alaska, and south to Virginia, Minnesota, and Montana; Europe ; Asia.

Ref. Evans, 32, 43 .

Trichocolea Dumort. Professed for canso.

Trichocolea tomentella (Ehrh.) Dumort. 202
On earth and banks in wooded swamps. Litchrield: Norfolk, Miss Lorenz; Salisbury, Evans. Hartford: Windor, Ezrans. Fairfield: Danbury, Eaton. New Haven: Beacon Falls and Branford, Exons; East Haven, Hampden, M356 and New Haven (1865), Eaton; Orange and Woodbridge, Eras. Middeesex: East Madam, C. B. Graves; Killingworth, Hall. R

Newfoundland to Ontario, and south to North Carolina; Europe; Asia. Ref Feel. 540.

Ref. Eaton, 15, 70. Evans, 28, 173.

Ventral lobe apiculate; monoicous (autoicous).... D. apiculata
Ventral lobe rounded; dioicous.................. D. taxifolia
Diplophylleia apiculata Evans. Scapania albicans var. taxifolia (Wahl.) Aust. Scapania albicans var. taxifolia minor A lust. J̌9

On shaded banks, more rarely on rocks. May and June. Litchfield: New Milford and Salisbury, Evans. Hartford: Burlington and Canton, Nichols; Hartford, Miss Lorenz. Tobland: Bolton and Vernon, Nichols. Fairfield: Huntington, Evans; Redding, Horace. New Haven: Beacon Falls, Evans; Hamden, O. D. Allen; Madison, Meriden, Naugatuck, North Haven, Orange, and Seymour, Evils; Woodbridge, Eaton. Middeesex: Killingworth, Hall (1876).

Southern New England to Georgia.
Exsic. Miss Haynes, Amer. Hep. No. 33.
Ref. Eaton, 15, 71. Evans, 27, 373, pl. 12. 28, 171.

Diplophylleia taxifolia (Wahl.) Trevis. 583
On shaded rocks. Litchfield: Salisbury (i890), Eirans. New Haven: Branford, Ezans.

Newfoundland to Alaska, south to New England, Idaho. and Washington; Europe; Asia. Rel tasl. 503.

Ref. Evans, 28, i71.

Scapania Dumort.

1. Ventral lobe obtuse, acute, or apiculate, mostly entire.... 2

Ventral lobe rounded ...
2. Growing on earth or rocks; stems usually less than 2 cm .
long .. S. curta
Growing in bogs; stems mostly 2 - 10 cm . long......S. irrigua
3. Growing on rocks or banks; leaves mostly toothed or ciliate

4
Growing on wet rocks, usually in streams; leaves mostly entire, the dorsal lobe arching beyond stem; leaf cells thin-walled .. S. undulata
4. Bright green, varying to yellowish or brownish; dorsal lobe arching beyond stem; leaf cells with uniformly thickened walls except near base; leaf margins mostly ciliate
S. nemorosa

More or less tinged with red; dorsal lobe scarcely arching across stem; leaf cells with thin walls but with more or less evident trigones; leaf margins mostly dentate
S. dentata

Scapania curta (Mart.) Dumort. 601
On rocks. New Haven: Meriden (1907), Miss Lorenz. Greenland to Alaska, south to Maryland and California; Europe ; Asia.

Scapania irrigua (Nees) Dumort. 607
In bogs. Litcilfield: Winchester, Evans. New Haven: Bethany (1892), Ezians.

Greenland to Alaska, south to New Jersey and British Columbia ; Europe ; Asia.

Exsic. Underwood \& Cook, Hep. Amer. No. 190 (Bethany, F. Bement, incorrectly labeled, "Lebanon, Ct.").

Ref. Evans, 28, if2. Müller, 6o, 80 .

Scapania nemorosa (L.) Dumort. 641
On rocks and banks. May and June. Litchfield: Goshen, Undera'ood; Salisbury, Evans. Hartford: Hartford, Miss Lorcnz; Southington, Chambcrlain. Tolland: Bolton, Stafford, and Vernon, Nichols. Windham: Plainfield, Sheldon; Windham, Nichols. Fairfield: Bridgeport, Miss Lorcni: Huntington, Eraus; Redding, Miss Haynes. New M 378 Haven: Beacon Falls, Bethany, and Branford, Evanis; Hamden, Eaton; Meriden and Naugatuck, Evans; New Haven (1855), Eaton; Orange, Evans; Oxford, Harger; Seymour, Evans; Woodbridge, Hall. Middlesex: Killingworth and Middletown, Evans. New London: Norwich, C. B. Graves.

Nova Scotia to Alaska, south to Georgia, Louisiana, and California; Europe. 2ex-a 529,530

Ref. Eaton, 15, 71. Evans, 28, 172. Müller, 60, 173.
Scapania dentata Dumort. Sumk in S. unchulata, frc.
On damp rocks. Hartrord: Burlington (igo8), Nichols.
New England, Minnesota, Montana, British Columbia, and M 382 California; Europe; Asia; range in North America not definitely known. Rel. Fant. 528

Scapania undulata (L.) Dumort. 628
On wet rocks, usually in streams. Litchfield: Salisbury, Miss Lorenz. Windham: Canterbury, Mrs. Hadley. Fairfield: Redding, Miss Haynes. New Haven: Beacon Falls, A. H. Graves; Handen, Eaton; North Branford, Erans; M 386 Woodbridge (1878), J. A. Allen. Middlesex: Chester, Nichols. New London: Montville, C. B. Graves.

Greenland to Alaska, south to Florida, Missouri, and California; Europe; Asia. Rel. Ful. $533 a, \mathrm{~L}$.

Ref. Evans, 28, i73. Müller, 6o, 133.

Radula Dumort.

I. Plants pale or bright green; ventral lobes of stem leaves not arching across axis, attached by a long and almost longitudinal line; leaf cells thin-walled throughout or with very indistinct trigones; monoicous (usually paroicous)

Plants often tinged with brown: ventral lobes of stem leaves arching partially or wholly across the axis. and attached by a short oblique line: leaf cells with distinct trigones: dioicous
 R. tenax

2. Subfloral innovations usually none
R. complanata
Subfloral innovations single or double
R. obconica

Radula complanata (L.) Dumort. 702
On rocks and trunks of trees. Nay and June. Litchfield: Goshen, Underzood: New Milford, Etans. Hartford: Windsor, W. E. Britton. Windham: Canterbury, Mrs. Hadley. Farfield: Redding, Miss Haynes; Sherman, Evans. New Haven: Cheshire, Harger; Hamden and New Haven (1866), Eaton; North Haven, Orange, and Seymour, Eirans. Middeesex: Killingworth and Middlefield, Ea'ans.

Ref. Eaton, 15, 7o. Evans, 28, ī2.
Quebec to Alaska, south to Florida, Louisiana, and California; Europe: Asia; northern Africa.

Radula obconica Sull. 700
On shaded rocks in ravines. Fairfield: Redding, Eirans. New Haven: Hamden (1891), Ez'alls; Oxford, Harger. Mimbesex: Killingworth, Nichols.

Commecticut west to Ohio and south to Georgia.
Ref. Evans. 26, 213: 28, 172.
Radula tenax Lindb. 691
On shaded rocks. Litchfield: Salisbury, Miss Lorenz; Farfield: Redding, Miss Haynes. New Hayen: Branford and Naugatuck (i890), Erans.

New England to North Carolina.
Ref. Evans, 28, 172.
Porella (Dill.) L.
I. Ventral lobes lingulate-oblong, closely appressed to the stem or to the dursal lobes......................... P. pinnata
Ventral lobes broadly orate to oblong.
2
2. Ventral lobes slightly or not at all decurrent; underleaves contiguous or slightly imbricated.............. P. platyphylla Ventral lobes fong-decurrent; underleaves distant. . P. rivularis

Porella pinata L. Madotheca Porella Dumort. 715
On stones and trunks of trees, subject to inundation. Litchfield: Goshen, Underwood. Hartford: Grabby, Nichols. Fairfield: Danbury, Nichols; Greenwich, Miss Haynes; Redding, Evans. New Haven: Cheshire, Nichols; M Hl ${ }^{*}$ East Haven (1859), Eaton; Hampden, J. A. Allen; New Haven, Eaton; North Branford and Orange, Eũans. Mindesex: Killingworth, Hall; Middlefield, Ez'ans.

Nova Scotia to Ontario, south to Georgia and Louisiana; Europe.

Exsic. Underwood \& Cook, Hep. Amer. No. 9. Rah fall. set Ref. Eaton, 15, 70. Evans, 28, 172.
11 . Mac er. +255
Porella platyphylla (L.) Lind. Madothcea platyphylla Dumort. 721

On shaded rocks and trunks of trees. May and June. Litchfield: Goshen, Underwood; New Milford and Salis-
bury, Evans. Hartford: Southington, Chamberlain; Windsor, W. E. Britton. Tolland: Bolton, Stafford, and Vernon, Nichols. Windifam: Canterbury, Mrs. Hadley; Killingly, Rounds; Plainfield, Sheldon; Windham, Nichols. Fairfield: Danbury, Eaton; Redding, Miss Haynes; Sherman, Evans. New Haven: Bethany, East Haven, and Hampden (185S), Eaton; Meriden, Evans; New Haven, Eaton; Orange, Evans; Oxford, Harger. Middlesex: Killingworth, Hall. New London: East Lyme, C. B. Graves.

Nova Scotia west to Alaska and south to Georgia and Messori ; Europe ; Asia; northern Africa.

Ref. Eaton, 15, no. Evans, 28, 172. Howe, 47, 522.
JII. Mae V 2453 .
Porella rivularis (Nees) Travis. 731 P.corlasama (Heibu)
On shaded rocks. New Haven: Cheshire (1856), Eaton.
Connecticut and Ohio, south to Texas and New Mexico, west to California, British Columbia, and Alaska; Europe.

Ref. Barbour, 6, 35. Evans, 28, i72. Howe, 47, 520.
III. muser. ± 254

Cololejeunea (Spruce) Schiffn.
Cololejeunea Biddlecomiæ (Aust.) Evans. Lejelnca echinata and L. calcarea of some authors. 87.5 4988

$$
\begin{gathered}
\text { Mo. } \\
\text { rut of. } 421
\end{gathered}
$$

Movers:

On rocks and trees. May and June. Litchfield: Goshen, Undervood; Salisbury, Evans. Hartford: Manchester and West Hartford, Miss Loreni. Fairfield: Sherman, Nichols. New Haven: Bethany, Evans; Hamden (i877) and New Haven, J. A. Allen.

New England to Ontario, south to Florida and Alabama.
Ref. Eaton, 15, 70. Evans, 25, 169; 28, 171.

Lejeunea Libert
Lejeunea cavifolia (Ehrh.) Lindb. L. serpyllifolia Libert.
On shaded rocks and trees. May and June. Litchfield: Salisbury, Nichols. Fairfield: Redding and Trumbull, Evans. New Haven: Branford, Evans; Hamden and New Haven, J. A. Allen; Orange, Evans; Oxford, Harger; Seymour, Evans. Middlesex: Killingworth (1875), Hall; Middletown, Evans.

New England west to Ontario and Minnesota and south to Pennsylvania; Europe; Asia.

Ref. Eaton, 15, 70. Evans, 25, 152 ; 28, 171 .

Leucolejeunea Evans

Leucolejeunea clypeata (Schwein.) Evans. Phragmicoma clypcata Nees. Archilcjcunca clypeata Schiffn. 911

On rocks and trees. May and June. Litchfield: New Milford and Salisbury, Evans. Fairfield: Redding, Evans. New Haven: Cheshire, Harger; Hamden, J. A. Allen; Meriden, Miss Lorcnz; New Hapen and North Haven, Evans; Oxford, Harger; Seymour and Woodbridge, Evans. Middlesex: Killingworth (i875), Hall.

Southern New England and New York, south to Georgia and Lonisiana.

Ref. Barbour, 7, 29. Eaton, 15, 70. Evans, 25, 124, pl. 16, f. I-II; 28, 17 I .

Jubula Dumort.
Jubula pennsylvanica (Steph.) Evans. Frullania and A. Jubula Hutchinsia of some authors. 783 vi,

On damp, often dripping, rocks. Litchfield: Goshen, Underwood; Salisbury, Evans. Hartford: Windsor, Ezans. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley; Windham, Nichols. Fairfield: Redding, Miss Haynes. New Haven: Beacon Falls and Cheshire, Evans; Derby, J. A. Allen; Hamden (i866), Eaton; Naugatuck, Evans; Woodbridge, Hall. Middlesex: Middletown, Evans.

Nova Scotia to Georgia and Tennessee.
Exsic. Underwood \& Cook, Hep. Amer. No. 100 (as J. Hutchinsia var. Sullivantii). Miss Haynes, Amer. Hep. No. 34. Rel Fait. 507

Ref. Eaton, 15, 69. Ev́ans, 28, 171; 3I, 56.

Frullania Raddi

I. Ventral lobes about as broad as long; leaves without ocelli 2 Ventral lobes distinctly longer than broad; leaves with
ocelli ... 6
2. Underleaves cordate at base............................. F. plana

Underleaves not cordate at base 3
3. Leaves strongly squarrose when moist 4
4. Ventral lobes usually explanate F. riparia
Ventral lobes usually inflated 5
5. Underleaves dentate or crenate above the middle. .F. BrittoniæUnderleaves entire or unidentate on the sides..F. eboracensis
6. Dorsal lobes rounded or very obtuse F. AsagrayanaDorsal lobes more or less sharp-pointed..........F. Tamarisci
Frullania riparia Hampe. 774

On shaded rocks, especially limestone. Litchfield: New Milford, Evans; Salisbury, Nichols. Fairfield: Sherman and Trumbull (i89i), Evans. New Haven: Orange, Evans. Mo

New England to Minnesota, south to Tennessee; Europe; Asia.

Ref. Evans, 22, pl. 5,f. I, 4, 5; 28, 171.

Frullania squarrosa (R. Bl. \& N.) Dumort.
On rocks and trees. New Haven: East Haven (i8go), Mu Evans. 776

Connecticut to Ohio, and south into the tropics of South America; Asia; Africa; Australia.

Ref. Barbour, 5, 4. Evans, 22, 15 ; 28, 171.

Frullania Brittoniæ Evans. 773

On rocks and trees. May and June. Litchfield: New Milford, Erans. New Haven: Hamden, J. A. Allen; Meriden, Eirans; New Haven (1866), Eaton.

New England west to Illinois, south to Virginia.
Ref. Barbour, 5, 5. Evans, 22, 16, pl. 7, f. I-I2; 28, ifi.

Frullania eboracensis Gottsche. Including F. virginica Gottsche. 771
comeen On trees and rocks. May and June. Litchfield: Cornwall, Green; Goshen, Underwood; New Milford and Salisbury, Erans. Tolland: Stafford and Vernon, Nichols. Windham: Canterbury, Mrs. Hadley; Plainfield, Sheldon. Farrfiedd: Greenwich, Miss Haynes; Huntington, Nichols; Sherman, Ez'ans. New Haven: Bethany, Evans; East Haven, Eaton; Hamden, Hall; Milford, Harger; New Haven (i866), Eaton; North Haven, J. A. Allen; Orange, Eaton; Oxford. Harger; Woodbridge, Eaton. Mindeesex: Chester and Killingworth, Nichols. New London: Groton, C. B. Grazes; Ledyard, Nichols.

Nova Scotia to Manitoba, soutll to Florida.
Ref. Eaton, 15, 69. Evans, 28, 17I; 32, 44.

Frullania plana Sull. 740

On shaded rocks. New Haven: Woodbridge (i8go), Eéans.

Comnecticut and New York, south to New Jersey and Temnessee.

Rev. Barbour, 4, 5. Evans, 22, 20 ; 28, 17 I.
Frullania Asagrayana Mont. Sometimes called F. Grayana. 751
()n rocks and trees. Lifcilfield: New Milford and Salisbury, Eedus. Tollani: Stafford, Nichols. Windifam: Can-
terbury, Mrs. Haley. Farfieln: Redding and Sherman. Eidos. New llwen: East llaven, Madison, and Meriden, Evans; New llaven (1855), Eaton; Orange and Woodbridge. Harser. Min desex: Killingworth, Hall.

Newfoundland to Ontario, south to Georgia.
Ref. Eaton, 15, 69. Evans, 28, 171.
Frullania Tamarisci (L.) Dumort. 748
On rocks and trees. New Haven: Seymour (1904), Evans.

Newfoundland to Connecticut; Europe; Asia. Range not definitely known in North America.

Ref. Elias, 33, 72.

ORDER ANTHOCEROTALES

FAMILY ANTHOCEROTACE.E

Capsule scarcely projecting beyond the basal sheath; wall without stomata

Notothylas
Capsule projecting far beyond the basal sheath; wall with distinct stomata

Anthoceros
Notothylas Stull.
Notothylas orbicularis (Schwein.) Bul. N. ayala data Sal.
On moist soil. Aug.-Nov. Litchfield: Goshen, Underrood. New Haven: Cheshire and East Haven, Ez'ans; Hamden (1877) and New Haven, O. D. Allen; Orange, Evans. Middlesex: Middlefield, Exons. New London: Norwich, Setchell.

New England to Indiana, south to North Carolina; South America (Galapagos Islands); Europe. 3708. newton, Vt. © $\$.1$

Exsic. Underwood \& Cook, Hep. Amer. No. 65.
Ref. Eaton, 15, 69. Evans, 28, 173. Howe, 48, 22.
Anthoceros (Mich.) L.
Spores yellow .. levis
Spores dark brown or black
A. punctatus

Anthoceros levis L.
On moist ground and damp or wet rocks. Autg.-Nov. Litchfield: Goshen, Underaiood. New Haven: Hampden

(1855), Eaton; New Haven, J. A. Allen; North Branford, Evans; Oxford, Harger: Woodbridge, Eaton. Middlesex: Cromwell, Evans. New London: Lisbon, Mrs. Hadley.

New England and Ontario, south to the Gulf States and Mexico and west to Iowa; Europe; Asia.

Ref. Eaton, 15, 69. Evans, 28, 173.

Anthoceros punctatus L.

On damp ground. Aug.-Nov. Litchfield: Goshen, Underwood. Windham: Plainfield, Sheldon. New Haven: East Haven, North Branford, and Orange, Evans; Oxford, Harger; Woodbridge (i879), J. A. Allen. Middlesex: Middlefield, Evans.

Nova Scotia to Ohio, south to Florida and Louisiana; Europe.

Ref. Evans, 28, i73. Howe, 48, 16.

[Subclass Musci]
 ORDER SPHAGNALES

FAMILY SPHAGNACE
Sphagnum (Dill.) L.
r. Cortical cells of stem and branches without spiral fibrils; branch leaves mostly truncate and toothed or fringed at the apex
Cortical cells of stem and branches with spiral fibrils and pores; branch leaves densely imbricated, cucullate at the apex, not truncate, entire (Cymbifolia, p. 8o).......... 28
2. Branches in fascicles of $3-6 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.......................

Branches in fascicles of $7-14$; chlorophyll cells of branch leaves elliptical in cross section and enclosed toward both surfaces of the leaf by the hyaline cells* (Polyclada, p. 81)
S. Wulfianum
3. Chlorophyll cells mostly triangular to trapezoidal in cross section, either free at both surfaces of the leaf or enclosed toward one leaf surface by the hyaline cells, but always with the base free toward one of the two leaf surfaces

[^4]No. It.]
Chlorophyll cells elliptical, spindle-shaped, or rectangular in cross section, not triangular or trapezoidal (except in S. dasyphyllum) 20
4. Base toward the inner surface of the leaf; hyaline cells strongly convex toward the outer surface: branch leaves erect (Acutifolia, p. 83) 5
Base toward the outer surface of the leaf; hyaline cells usually strongly convex toward the inner surface 13
5. Stem leaves lacerate-fringed at the broadly rounded apex, without fibrils 6
Stem leaves more or less truncate and toothed at the apex, not fringed 7
6. Stem leaves broadened above, spatulate, apex and upper margins fringed; monoicous S. fimbriatum
Stem leaves not broadened above, lingulate, fringed only at the apex; dioicous S. Girgensohnii
7. Stem leaves lingulate, fibrils usually absent, though some- times present in the upper part of the leaf. 8
Stem leaves triangularly lingulate to equilaterally tri- angular, usually with fibrils 10
8. Plants usually red, never brown 9
Plants usually brown, never red; pores as in S. Warnstorfi; stem leaves without fibrils S. fuscum
9. Pores present on outer surface of the branch leaves, small,round, and situated in the cell angles; stem leaves with-out fibrilsS. Warnstorfii
Pores present on outer surface of the lower branch leaves, large, more or less semicircular, and situated along the lateral margins of the cells; stem leaves frequently with fibrils S. rubellum
10. Branch leaves when dry distinctly 5 -ranked; outer wall of cortical cells in stem often with irregular pores in the upper ends of the cells. S. quinquefarium
Branch leaves when dry not arranged in distinct rows II
II. Stem leaves with fibrils and pores; branch leaves not glossy when dry 12
Stem leaves mostly without fibrils or pores; branch leavesglossy when dry; cortical cells of stem seldom withpores; hyaline cells of stem leaves usually $2-6$-septate
S. subnitens
12. Outer wall of cortical cells in stem often with irregular pores in the upper ends of the cells; hyaline cells of stem leaves not divided, or, if so, uniseptate. .S. acutifolium Cortical cells in stem without pores; hyaline cells of stem leaves copiously divided by oblique walls.S. tenerum
13. Chlorophyll cells narrowly trapezoidal or rectangular in cross section, free at both surfaces, but with the surface walls strongly thickened (SQUarrosa, p. SI)14
Chlorophyll cells with the free walls scarcely, if at all, thickened; branch leaves erect-spreading* (Cuspidata, p. 82) 15
14. Plants large, monoicous; branch leaves mostly squarrose from the middle S. squarrosum
Plants medium-sized, dioicous; branch leaves more or less imbricated, not squarrose S. teres
I5. Chlorophyll cells triangular in cross section, often enclosed toward the inner leaf surface by the hyaline cells. 17
Chlorophyll cells trapezoidal in cross section and free on both surfaces 16
16. Pores numerous on outer surface of the branch leaves, frequently large and usually in rows. S. Dusenii
Pores mostly lacking on outer surface of the branchleaves, when present, small and restricted to the anglesof the cellsS. cuspidatum
17. Cortex well differentiated from the central strand 18
Cortex not well differentiated from the central strand. 19
18. Stem leaves lacerate-fringed at the apex. S. Pulchricoma
Stem leaves toothed at the apex. S. Torreyanum
19. Pores on outer surface of the branch leaves in the apical half restricted to the angles of the cells. S. recurvum
Pores on outer surface of the branch leaves in the apical half occurring in the angles and also along the lateral margins of the cells S. parvifolium
20. Chlorophyll cells enclosed toward one or both surfaces of the leaf by the hyaline cells, elliptical or spindle-shaped in eross section; branch leaves squarrose from the middle (Rigida, p. 8i) 2I
Chlorophyll cells free toward both surfaces of the leaf; branch leaves more or less secund or falcate (Sub- secunda, p. 85). 22
2I. Chlorophyll cells elliptical in cross section and enclosed toward both leaf surfaces by the hyaline cells.S. compactumChlorophyll cells spindle-shaped in cross section andenclosed toward the inner surface of the leaf by thehyaline cells; the onter wall free, but very stronglythickenedS. Garberi

[^5]No. it.] BVYTHLE, BRYOHHYTES or CONNECTICUT. 79
22. Chlorophyll cells trapezoidal in cross section; the walls not thickened, and the broad base toward the outer surface of the leaf; lhyaline cells strongly convex toward the inner surface S. dasyphyllum
Chlorophyll cells barrel-shaped to rectangular in cross section, equally free toward both surfaces, and with the free walls usually thickened 23
23. Cortex of stem consisting of 2 -several layers of cells... 24
Cortex of stem consisting of one layer of cells 25
24. Stem leaves small, not more than 1 mm . long, fibrils present only near the apex; branch leaves secund
S. contortum
Stem leaves larger, $1.5-2 \mathrm{~mm}$. long, fibrils usually abundant throughout; branch leaves not secund S. platyphyllum
25. Branch leaves with many pores, at least on the outer surface; pores frequently in bead-like rows 26
Branch leaves with very few or no pores S. obesum
26. Pores few or lacking on the inner surface 27
Pores numerous on both surfaces, especially on the outer; stem leaves'i-2 mm. long S. rufescens
27. Stem leaves less than I mm. long, hyaline cells rarely septate S. subsecundum
Stem leaves I-I. 5 mm . long, hyaline cells often septate
S. inundatum28. Chlorophyll cells of branch leaves usually free towardboth surfaces of the leaf.29Chlorophyll cells of branch leaves enclosed by the hyalinecells, equidistant from both surfaces of the leaf, andelliptical in cross section; hyaline cells smooth orfaintly papillose on the lateral walls.............S. medium
29. Chlorophyll cells triangular or trapezoidal in cross section, the base toward the inner surface of the leaf and not thickened; hyaline cells strongly convex toward the outer surface30Chlorophyll cells more or less elliptical in cross section,cell cavity almost central, and both surface wallsstrongly thickened; hyaline cells more strongly convextoward the outer surface of the leaf than toward theinner surface, and papillose on the lateral walls

S. papillosum

30. Chlorophyll cells broadly triangular to trapezoidal; hyaline cells with irregular bands of thickening on the lateral walls
S. imbricatum

Chlorophyll cells narrowly triangular; hyaline cells smooth on the lateral walls
S. cymbifolium

80 CONNECTICUT GEOL. AND NAT HIST. SURVEY. [Bull. rarest tactical names aces there token up, by I'and E. or. \& Ed: 10:11 3 ft ordeatu-CYMBIFOLIA vidal lien jliytol s7:409 Sphagnum imbricatum Hornsch.
Hartford: Canton, Nichols. Tolland: Stafford, Nichols. Windham: Thompson, Miller. New Haven: East Haven and New Haven (i891), Evans. New London: Voluntown, Miller.

Var. affine (Ran. \& Card.) Warnst.
Litchfield: Salisbury, Nichols. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Haley. New Haven: Beacon Falls, Nichols; East Haven (i875), Eaton; Hamden, New Haven, North Haven, Orange, and Woodbridge, Evans. Middlesex: Killingworth, Nichols. New. London: Ledyard, Nichols.

Var. subleve Warnst.
Litchfield: Salisbury, Nichols. New Haven: New Haven (I891), Evans.

Newfoundland and Labrador to Alaska, south to Louisiana; Europe; Asia.

Exsic. Eaton \& Faxon, Sphag. Bor.-Amer. No. I54 (var. affine).

Ref. Andrews, I, 62.
Sphagnum cymbifolium Ehrh. (= palustre L.)
Litchfield: Salisbury, Nichols. Tolland: Ellington, Pease. Fairfield: Norwalk, Harger. New Haven: Bethany and Brantford, Eaton; East Haven and Hampden, Evans; New Haven (1878), Eaton; Oxford, Harger. New LonDon: Waterford, Miss Lorenz.

Var. squarrosulum Nees \& Hornsch. Sue Dixoup.efordec.
New Haven: Branford, Eaton; East Haven (i89i), Evans; Hamden, Eaton.

Newfoundland and Labrador to Alaska, south to Florida and British Columbia; a cosmopolitan.

Exsic. Eaton \& Fanon, Sphag. Por.-Amer. Nos. I56, I5\% (var. glaucescent), I60, and 16I (var. pallescens).

REF. Andrews, I, 62. Eaton, I5, 68.

[^6]Newfoundland and Labrador to Alaska, south to Alabama and Washington; Europe.

Sphagnum medium Limpr. (= magallanieumen Drid.
Litcifield: Salisbury, Nichols. Tolland: Stafford, Nichols. Windham: Thompson, Miller. New Haven: 3776 Bethany, Hamden, and New Haven (1890), Evans; Oxford Pduavanst
Harger. New London: Ledyard, C. B. Graves. Harger. New London: Ledyard, C. B. Graves.

Newfoundland and Labrador to Alaska, south to Florida; South America: Europe; Asia.

Exsic. Eaton \& Faxon, Sphag. Bor.-Amer. Nos. 166 (var. roseum), 167 (var. purpurascens), and 168 (var. versicolor).

Ref. Andrews, I , 63.
Rigida
Sphagnum compactum DC.
In wet woods. New Haven: Beacon Falls (1907), Nichols.

Arctic America, Canada, and the northern United States; Europe ; Asia; Madeira Islands.

Sphagnum Garberi Lesq. \& James var. squarrosulum Warnst. $=$ S. wirictum Sull.

New Haven: Naugatuck (1905), Evans.
Newfoundland to Florida; Europe.
Polyclada
Sphagnum Wulfianum Girgens.
In swampy woods. Litchfield: Salisbury (1907), Nichols; Winchester, Miss Lorenz.

Greenland to Connecticut, westward to the Rocky Mountains; Europe; Asia.

Squarlijsa
Sphagnum squarrosum Pers var. spectabiie Russ.
Deep wooded swamps. Litichfield: Salisbury (igō). Nichols.*

[^7]Arctic America, Canada, and the northern United States; Europe; Asia : Azores.

Sphagnum teres (Schimp.) Aongstr.
Roland: Bolton (1906), Nichols. New Haven : Cheshire, Nichols.

Arctic America, Canada, and the northern United States; Europe: Asia.

Cuspidate

Sphagnum Pulchricoma C. Müll.
New London: Ledyard (i884), C. B. Graves; Voluntown, Miller.

Connecticut to Florida and Louisiana: South America: Africa.
${ }^{2}$ - Sphagnum Torreyanum Stull. S. cuspidatum var. Torrey' with .f. 85 anim Braithw. and var. miquelonense Ran. \& Card.

New Haven: Branford (i891), Evans. New London: Voluntown, Miller.

Ref. Andrews, I, 62 . Palibot de Tgounors kalis.)
 Litcheield: Salisbury, Nichols; Woodbury. Harger. in, tom,-7New Haven: East Haven and Hampden (1891), Evans; Oxford, Larger.

Var. amblyphyllum (Russ.) Warnst. S.afuc has cumelyph. Nus
Litchfield: Salisbury, Nichols. New Haven: Bethany, Evans; East Haven, Eaton; Hampden (i880), J. A. Allen.

Newfoundland and Labrador to Alaska, south to the Gulf of Mexico ; a cosmopolitan.

Eric. Eaton \& Fanon, Sphag. Bor.-Amer. Nos. 104 (var. mucronatum) and 107 (var. amblyphyllum). Warnstorf, Eur. 'Torfm. Scric IV, No. 263 (var. mucronatum). Kef. Andrews, i, 63.

Sphagnum parvifolium (Sends.) Warnst. Wot found in \&.op, Litchmeld: Salisbury (1907), Nichols. Irobably has the same range as S. recurvum.

= recurving tome H. Alinggr, see Gonds.

Sphagnum Dusenii C. Jens.
Litchfield: Salisbury (igor), Nichols.
Newfoundland and Quebec to Connecticut and New York; Europe: Asia.

Sphagnum cuspidatum Ehrh.
Frequently submerged. Litchfield: Salisbury, Nichols; Woodbury, Hargcr. New Haven: Bethany, Eaton: East 6 Haven, Evans; Handen (i88o), O. D. Allen; Oxford, Harger.

Var. falcatum Russ. Deer. in Praith. p. 83
New Haven: Bethany and Hampden (i892), Evans. 2
Var. plumosum Ness \& Hornsch. Decca. in tee. W. 84
New Haven: Bethany and Hampden (i89i), Evans. 2
Newfoundland to the Gulf of Mexico; a cosmopolitan.
Exsic. Eaton \& Taxon, Sphag. Bor.-Amer. Nos. 93 (var.
falcatum), 96 (var. submersum), and 97 (var. plumosum).
Ref. Andrews, $\mathrm{I}, 62$.
Acutifolia
Sphagnum fimbriatum Wis.
New Haven: Hampden (i89i), Evans.
Arctic America, Canada, and the northern United States;
South America; Europe; Asia.
Exsic. Eaton \& Faxon, Shag. Bor.-Amer. No. il (var. tenure).

Ref. Andrews, i, 62.

Sphagnum Girgensohnii Russ.

Litchfield: Norfolk (i875), Eaton; Salisbury, Nichols.
New Haven: Hampden, O. D. Allen.
Arctic America, Canada, and the northern United States; Europe ; Asia.

Ref. Andrews, 1,62 . Cardot, 11, 305.
Sphagnum rubellum Wis. S. tenellum (Schimp.) 3 Klinggr.

Litchfield: Salisbury, Nichols. New Haven: Bethany (1892), Evans; Oxford. Harger.

84 Connecticut geol. and nat. hist. survey. [Bull.
Newfoundland and Labrador to Connecticut, westward to Alaska: Europe.

Exsic. Eaton \& Faxon, Sphag. Bor.-Amer. Nos. 29 and 3I (var. versicolor).

Ref. Andrews, i, 63. Cardot, if, 409. Eaton, 18, 3.

Sphagnum Warnstorfii Russ.

Litchfield: Salisbury, Nichols. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. New Haven: Hamden (1891), Evans; Middlebury, Harger.

Newfoundland to Connecticut, westward to the Pacific: Europe.

Ref. Andrews, 1, 63. Cardot, if, 419.
Sphagnum fuscum (Schimp.) Klinggr.
New Haven: New Haven (1893), Eaton.
Canada and the northern United States; Europe.
Exsic: Eaton \& Faxon, Sphag. Bor.-Amer. No. 35.
Ref. Andrews, 1, 62. Eaton, 18, 3.
Sphagnum quinquefarium (Lindb.) Warnst.
New Haven: Hamden and New Haven (1890), Evans.
Newfoundland to Connecticut, and southward along the Alleghany Mountains; Europe.

Ref. Cardot, 11, 366. Eaton, 18, 3.
Sphagnum subnitens Russ. \& Warnst.
New Haven: Hamden (i891), Evans; New Haven, Eaton.

Var. flavicomans (Card.) Warnst. $=\therefore$ flavicomans
New Haven: Bethany, East Haven (IS91), and New Haven, Evans.

Newfoundland to New Jersey; Alaska; Azores; Europe; Asia; the variety found only in North America.

Exsic. Eaton \& Faxon, Sphag. Bor.-Amer. Nos. 5I (var. flavicomans) and 54 (var. obscurum).

Ref. Andrews, $1, G_{3}$ (var. flavicomans). Cardot, ir. 399.

No. II.] THE BRYOPHYTES OF CONNECTICUT.

New Haven: East Haven and Hamden (i891). Evans; 3 New Haven, Eaton.

Newfoundland to New Jersey; Europe.
Exsic. Eaton \& Faxon, Sphag. Bor.-Amer. No. 60. Warnstorf, Eur. Torfm. Serie IV, No. 363.

Ref. Andrews, i, 63. Cardot, if, 410.
Sphagnum acutifolium Ehrh.
Litchfield: Salisbury, Mrs. Phelps. Hartford: Canton, Nichols. Tolland: Stafford, Nichols. New Haven : Bethany, Eaton; Branford, East Haven, and Hamden, Evans; New Haven (1865), Eaton; Oxford, Harger.

Throughout North America: Europe.
Exsic. Eaton \& Faxon, Sphag. Bor.-Amer. Nos. 40 (var. rubrum), 44 (var. versicolor), 48 (var. viride), and 50 (var. roscum).

Ref. Andrews, i, 62.

Subsecunda

Sphagnum dasyphyllum Warnst.
New Haven: New Haven (189i), Evans. This is the only known locality.

Exsic. Warnstorf, Eur. Torfm. Serie IV, No. 338.
Ref. Andrews, 1, 62. Cardot, 11, 287. Eaton, 18, 7. Paris, 61, $1189 ; 62^{4}, 273$. Renauld \& Cardot, 65, 68. Warnstorf, 78, i 76.
 Usually submerged or floating. Litchfield: Woodbury, for pache Harger. New Haven: Branford (1891) and Hamden, Evans; Oxford, Harger; Woodbridge, Evans.

New Hampshire to Virginia; Europe.
Exsic. Eaton \& Faxon, Sphag. Bor.-Amer. No. 127.
Ref. Andrews, $\mathbf{i}, 63$. Cardot, ir, 344. Paris, 624, 289.
Sphagnum contortum Schultz. S. laricinum Spruce.
Litchfield: Woodbury, Harger. New Haven: New Haven (1891), North Branford, and Orange, Evans: Oxford, Harger: Prospect, Eaton; Woodbridge, Evans.

Massachusetts to Pennsylvania and probably southward; Europe.

Exsic. Eaton \& Fanon, Shag. Bor.-Amer. No. 14i.
Ref. Andrews, 1,62 . Cardot, II, 320.
Sphagnum platyphyllum (Lindb.) Warnst.
New Haven: New Haven (1891), Evans.
Massachusetts to Ohio: Europe.
Ref. Andrews, i, 63.
Sphagnum subsecundum Tees.
Tolland: Ellington (i876), Pase. Windham: Thompson, Miller. Fairfield: Danbury, Nichols. New Haven: Branford, Cheshire, East Haven, Hampden, and Orange, Evans: Oxford, Eaton.

Newfoundland to Ohio and Alabama; Europe; Asia.
Exsic. Eaton \& Faxon, Shag. Bor.-Amer. Nos. azo (var. macrophyllum) and 134 (var. mesophyllum).

Ref. Andrews, $1,63$.

Ifrchfield: Salisbury, Nichols. Tolland: Stafford, Nichols. Fairfield: Strafford (igo6), Nichols. Middlesex: Killingworth, Nichols.

Range probably the same as that of S. osubsecundum.

Sphagnum rufescens (Nee \& Hornsch.) \$Varnst.
Frequently submerged. New Haven: Hampden (r89r) and New Haven, Evans; Oxford, Eaton; Woodbridge, Evans.

Newfoundland and Labrador to Alabama; Europe.
Exsic. Eaton \& Faxon, Sphag. Bor.-Amer. Nos. 142 and 14.3.

Ref. Andrews, i, 63. Eaton, 18, 7.
ORDER ANDREAALES
FAMIlY ANDREEACEA
Andreæa Ehrh.

[^8]Andreæa petrophila Ehrh.
On non-calcareous rocks in mountainous or hilly regions. Summer. Hartford: Bloomfield, Miss Lorenz. New Haven: Meriden, Miss Lorenz; Woodbridge (1878), J. A. Allen.

Arctic America, Canada, and the northern United States: South Amcrica: Europe; Asia; Tasmania; New Zealand.

Andreæa Rothii Web. f. \& Mohr.
On non-calcareous rocks in mountainous or hilly regions. Summer. Litchfield: Salisbury, Nichols. New Haven: Beacon Falls, Erans; Branford, Eaton; Oxford, Hargcr; Woodbridge (ISS_{7}), Setchell.

Newfoundland to Alabama and Tennessee; Greenland; Europe.

Exsic. Renauld \& Cardot, Musci Amer. Sept. No. 153.

ORDER BRYALES

Sporophyte borne at the apex of the stem or of a more or less elongated branch.............acrocarpi, p. 87

 Sporophyte borne on a very short branch. .pleurocarpi, p. 9i
[Acrocarpi]

r. Capsule almost never opening by means of a lid........... 2

Capsule opening by means of a clearly defined lid........ 8

2. Green protonema persistent; plants fruiting in autumn

Ephemerum, p. if 6

Green protonema not persistent; plants fruiting in spring 3
3. Spores few ($16-20$) and very large, sometimes 0.2 mm . in diameter

Archidium, p. 95
Spores numerous and small, rarely more than 0.05 mm . in diameter 4
4. Leaf margins plane or involute 5
Leaf margins more or less revolute 7
5. Capsule pyriform Bruchia, p. 95
Capsule ovoid-globose 6
6. Leaves smooth Pleuridium, p. 96
Leaves papillose; a rudimentary lid present but persistent
7. Leaves smooth, eroso-denticulate at the apex........ Acaulon, p. 108
Leaves papillose, entire Phascum, p. 108
8. Peristome, when present, with articulate teeth............ 9

Peristome teeth not articulate................................... 53
9. Peristome present ... 10 .

Peristome none .. 48

11. Plants flaccid, aquatic, floating Octodiceras, p. 105

Plants not flaccid, sometimes submerged, but not floating
Fissidens, p. 103
12. Leaves with a single layer of small chlorophyll cells enclosed by two or more layers of large hyaline cells Leucobryum, p. $\operatorname{so2}$
Leaves mostly with a single layer of uniform cells........ i3
13. Peristome single, consisting of 16 or 32 teeth; teeth usually without a median longitudinal line on the outer surface

Peristome double, the outer more or less thickened and
consisting of 16 teeth, the inner thin and divided into
segments or cilia or both; teeth with a distinct median
longitudinal line on the outer surface. 33
14. Capsule with 8 longitudinal ridges of differentiated cells Rhabdoweisia, p. 99
Capsule smooth or, when plicate, the epidermis of uniform cell structure 15
15. Peristome teeth with very minute longitudinal striations on the outer surface. 16
Peristome teeth without longitudinal striations on the outer surface, smooth or papillose 19
16. Alar cells large, hyaline or brown 17
Alar cells not differentiated 18
17. Leaves tufted; capsule distinctly strumose: monoicous.
Oncophorus, p. 99
Leaves regularly secund; capsule not strumose or ob- scurely so; dioicous Dicranum, p. 100
18. Lamina of leaves strongly papillose..... Dichodontium, p. 99
Lamina of leaves smooth Dicranella, p. 98
19. Peristome distinctly twisted, teeth 32 20
Peristome not twisted, teeth 16 . often deeply cleft 22
20. Midrib with 2 median guides, upper band of stereid cells lacking ... Tortula, p. 100 Midrib with several ($4-8$) median gnides and 2 bands of stereid cells 2 I
2I. Leaf margins revolute, at least below the middle
Barbula, ․ 108
Leaf margins plane, not revolnte Tortella, p. 107
22. Calyptra mitrate 23
Calyptra cucullate 27
23. Calyptra plicate 24
Calyptra not plicate 25
24. Calyptra smooth; teeth distantly articulate
Glyphomitrium, p. ino
Calyptra hairy; tecth closely articulate...Orthotrichum, p. in3
25. Beak long, clavate Encalypta ciliata, p. ifo
Beak apiculate to aciculate 26
26. Teeth narrowly cleft nearly to the base. Racomitrium, p. 112 Teeth subentire, cribrose or irregularly cleft. Grimmia, p. III
27. Teeth of peristome arising from a distinct basal membrane 28
Teeth of peristome not arising from a basal membrane 31
28. Teeth short; leaves papillose on upper surface Didymodon, p. 108
Teeth long; leaves mostly smooth 29
29. Capsule inclined, distinctly plicate when dry; leaf cells roundish quadrate above Ceratodon, p. 97
Capsule erect, smooth or slightly plicate when dry; leaf cells more or less elongated above. 30
30. Leaves glaucous Saelania, p. 97
Leaves bright or dark green, glossy Ditrichum, p. 96
3r. Plants growing on trees Drummondia, p. 113
Plants growing on eartl or rocks 32
32. Leaf margins strongly involute above, entire...Weisia, p. io6 Leaf margins plane, minutely crenulate. .Trichostomum, p. 107
33. Inner peristome without a basal membrane 34
Inner peristome with a distinct carinate basal membrane 37
34. Calyptra cucullate Funaria, p. 117
Calyptra mitrate 35
35. Calyptra not plicate, smooth, entirely enclosing and extending below the basc of the capsule Encalypta contorta, p. 110
Calyptra plicate, usually hairy and partially enclosing the capsule 36
36. Leaves usually crispate when dry, base oval; stomata in neck of capsule, always superficial. Ulota, p. 115
Leaves not crispate when dry, base not oval: stomata in neck and upper part of capsule, mostly immersed
Orthotrichum, p. 113
37. Capsule distinctly ribbed when dry 38
Capsule smooth, not ribbed when dry 4I
38. Capsule ovoid-cylindrical Aulacornnium, p. 125
Capsule subglobose 39
39. Cilia well developed Philonotis, p. 127
Cilia none, or very rudimentary 40
40. Leaf cells smooth Plagiopus, p. 126
Leaf cells papillose Bartramia, p. 127
4I. Leaves papillose on upper surface Timmia, p. 127
Leaves smooth 42
42. Inner peristome $2-3$ times as long as the outer, cilia rudimentary Meesea, p. 126
Inner peristome about as long as the onter, cilia well developed 43
43. Cilia appendiculate 44
Cilia smooth or nodose, not appendiculate 46
44. Leaf cells narrow, linear-rhomboidal above
Leptobryum, p. ilf
Leaf cells rhomboidal-hexagonal, never linear 45
45. Plants stoloniferous; capsules clustered...Rhodobryum, p. 120 Plants not stoloniferous; capsules borne singly. . Bryum, p. ir9
46. Upper leaves ovate; cells broadly polygonal, never linear
Mnium, p. 121
Upper leaves linear-lanceolate; cells narrowly polygonal to linear above 47
47. Leaves slatucons green: ammlus none Mniobryum, р. if8 Leaves green to golrlen yellow, often glossy; annulus present Pohlia, p. if8
48. Plants growing on rocks or in crevices 49
Plants growing on eartl 51
49. leates withont a midrib; stalk less than i mm. long: lid apiculate Hedwigia, p. 128
l.eaves with a midrib; stalk 2 -io mm. long; lid rostrate. 50
50. Usually growing on calcareous rocks; capsule smooth
Hymenostylium, p. 106U'sually growing on non-calcareous rocks; capsule ribbedAncectangium, p. II2
51. Leaf cells isodiametric above the middle; calyptracucullate ... Potia, 1. 109Leaf cells elongated above the middle; calyptra mitrate 52
52. Stalk almost lacking. Aphanorrhegma, p. 117
Stalk long (to 2 cm .) Physcomitrium, p. 117
53. Capsule symmetrical or nearly so 54
Capsule strikingly unsymmetrical 57
54. Teeth of peristome + Georgia, 1. 172
Teeth of peristome 32 or 64 55
55. Calyptra cucullate, nearly smooth Catharinæa, 1. I72
Calyptra mitrate, densely hairy 56
56. Capsule without stomata, cylindrical. Pogonatum, 1. 174Capsule with stomata, prismatic or cylindricalPolytrichum, p. I74
57. Capsule sessile; leaves green and conspicuous. Webera, p. I7ICapsule raised on a thick, red stalk; leaves colorless andvery minute Buxbaumia, p. 172
[PLEUROC.SRPI]

1. Leares distichous Tissidens, p. 103
Leaves in 3 or more ranks 2
2. Segments of inner peristome rudimentary or filiform, not split; cilia none 3
Segments of inner peristome distinctly carinate, often split along the keel IO
3. With a distinct, carinate basal membrane, segments very rudimentary; leaves papillose................... Thelia, 1r. 135
Without a basal membrane; leaves smooth or nearly so. 4
4. Segments connected, at least in the apical region, by transverse bands 5
Segments entirely free, sometimes very rudimentary 6
5. Leaves with an excurrent midrib Dichelyma,.p. I30
Leaves without a midrib Fontinalis, p. 128
6. Leaves complanate, transversely undulate. Neckera, 1. 13I
Leaves spreading, not transversely undulate. 7
7. Plants soft, often forming wide, velvety tufts; capsule strikingly contracted below the mouth when dry.....
Anacamptodon, D. I3f
Plants coarse, growing in las, frequently pendent tufts; capsule not contracted below the mouth when dry 8
8. Leaves with a midrib 9
Leaves without a mirlrib Leucodion, 1. 130
9. Branclies terete: capsule immersed. Cryphæa, p. I 30
Branches flattened; capsule emergent on a short stalk...
Forrstroemia, p. I3I
Io. Leaves mostly rough-papillose II
Leaves smooth, rarely slightly papillose at the cell angles. 21
ir. Capsule symmetrical, erect or nearly so. 12
Capsule unsymmetrical, arcuate 16
10. Leaves with a midrib, margin usually entire 13
Leaves without a midrib I 5
11. Midrib extending nearly to apex of leaf. I4
Midrib vanishing at middle of leaf or below
Haplohymenium, p. 136
12. Primary stem stoloniform; stem leaves minute
Anomodon, p. 137
Stem not stoloniform: stem and branch leaves uniform
Leskea, p. 138
13. Plants glaucous green, inranches julaceous; leaves closely imbricated; cilia two. Myurella, p. I 36
Plants light green, branches slightly flattened; leaves loosely appressed: cilia none... Schwetschkeopsis, p. I32
14. Monoicous. 17
Dioicous 20
15. Stem and branch leaves differing in size and shape; leaf cells with several minute papillæ. I 8
Stem and branch leaves similar in size and shape; leaf cells with one, rarely two papillæ, or smooth. 19
16. Lid short-rostrate; paraphyllia multiform. Rauia, p. 139
Lid long-rostrate: paraphyllia simple19. Leaf cells smooth or lightly papillate: plants of swampywoods or meadows.Elodium, p. 142
Leaf cells strongly papillate on both surfaces; plants of moist woods Haplocladium, p. I 39
17. Stem and branch leaves similar in size and shape; para- phyllia mostly lacking. Claopodium, p. 140
Stem and branch leaves differing in sizc and shape: para-phyllia numerous
Thuidium, p. 140
2I. Stem ercet from a crecping caudex, dendroid; capsules clustered 22
Stem prostrate or ascending; capsules borne singly. 23
18. Cilia lacking Climacium, p. 170
Cilia well developed, appendiculate. Thamnium, p. I7I
No. II.] IHE BRYOPHYTES OF CONNECTICUT. 93
19. Capsule symmetrical, erect or nearly so; inner peristome without cilia 24
Capsule unsymmetrical, more or less inclined and curved; inner peristome arising from a broad basal membrane; cilia well developed 29
20. Branches strongly complanate; leaves cultriform Homalia, p. 132
Branches terete or somewhat flattened; leaves ovate to lanceolate 25
21. Segments either partially or wholly lining the teeth, basal membrane lacking or obscure 26
Segments entirely free from the teeth 27
22. Leaves with a midrib; stalk rough....Homalothecium, p. I 34 Leaves without a midrib; stalk smooth Pylaisia, p. 133
23. Basal membrane broad and distinct
Pylaisia subdenticulata I 34
Basal membrane very narrow, or lacking 28
24. Stem oval in cross-section; capsule 3-4 mm. long
Entodon, p. 132
Stem round in cross-section; capsule $1.5-2.5 \mathrm{~mm}$. long; an- nulus several cells broad Platygyrium, p. 132
25. Midrib single 30
Midrib double or furcate, frequently short or lacking $+2$
26. Lid more or less long-rostrate 3 I
Lid conical to short-rostrate 33
3I. Leaves spreading or imbricated 32
Leaves complanate Rhynchostegium, p. 150
27. Leaves very concave, spoon-shaped, abruptly filiform- acuminateCirriphyllum, p. 147
Leaves plane or slightly concave, acute or gradually acuminate Eurynchium, p. $1+8$
28. Leaves obtuse, apiculate, or acute 34
Leaves acuminate 36
29. Large mosses ($6-20 \mathrm{~cm}$.), growing in swamps; stem leaves $2-3.5 \mathrm{~mm}$. long, spreading or imbricated...Calliergon, p. 166Medium-sized mosses ($3-8 \mathrm{~cm}$.), growing on rocks andearth in or along streams; leaves $0.6-1.6 \mathrm{~mm}$. long,frequently secund35
30. Midrib strong, disappearing abruptly just below apex of leaf Amblystegium fluviatile, p I 57
Midrib faint, vanishing near middle of leaf, frequently forked Hygrohypnum, p. 169
31. Leaves secund 37
Leaves equally spreading 39
32. Leares strongly transversely undulate.....Rhytidium, p. 160
Leaves not transversely undulate 38
33. Paraphyllia numerous. Cratoneuron, p. 159
Paraphyllia lacking Drepanocladus, p. 167
34. Capsule oblong-ovoid: stem leaves much larger than branch leaves Brachythecium, p. I +3
Capsule oblong-cylindrical: leaves mostly uniform in size 40
35. Stem densely tomentose, erect; leaves glossy.
Camptothecium, p. 142
Stem not densely tomentose; leaves rarely glossy. 41
4I. Stem prostrate and irregularly branched; rhizoids mostly 1)wmerolis Amblystegium, p. 155
Stem prostrate or ascending; rhizoids few.
Chrysohypnum, p. 158
36. Leaves complanate 43
Leaves not complanate 44
37. Leaves decurrent; basal areolation lax, alar cells often more or less enlarged..................... Plagiothecium, p. 152
Leaves not at all or very slightly decurrent; basal cellsscarcely differentiated Isopterygium, p. 15I
38. Operculum long-rostrate Sematophyllum, p. 150
Operculum conical to short-rostrate. 45
39. Leaves obtuse or apiculate, rarely acute. 46
Leaves acuminate 48
40. Leaves usually more or less secund, gradually narrowed above to an obtuse or rarely acute apex; mosses growing on dripping or wet rocks. Hygrohypnum, p. 169
Leaves imbricated or spreading, with a broad rounded apex 47
41. Mosses growing in swamps; stem with an outer layer of large hyaline cells Acrocladium, p. 167
Mosses growing in dry woods; stem bright red, corticalcells smallHypnum, p. 166
42. Leaves secund, falcate or circinate 49
Leaves mostly spreading 51
43. A large moss ($8-20 \mathrm{~cm}$.), very regularly pinnate, frondi- form; leaves multiplicate, smooth; paraphyllia numerous
Ptilium, p. 162Medium-sized mosses (r - IO cm .), irregularly pinnate;leaves scarcely or not at all plicate; paraphyllia few ornone50
5o. Leaves sharply serrate, papillose. Ctenidium, p. 16 r
leaves entire or serrulate, smooth.
No．11．｜ THE RKVOHIIV゙リE（H\＆（ONNECTICUT． 95
5i．Alar cells inflated Plagiothecium striatellum，p． 154
Alar cells not inflated，frequently quadrate，rectangular，or oblong 52
52．Annual growth regularly marked off．．．．．．Hylocomium，p． 161
Annual growth not clearly defined 53
53．Leaves erect－spreading 54
Leaves squarrose 55
54．Plants medium－sized，forming loose，spreading tufts；para－ phyllia mumerous and large．．．．．．．．．．．．Heterophyllon，p．I65Plants small，forming thin，depressed mats；paraphyllialacking ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Amblystegiella，p． 154
55．Plants robust；stems $0.5-0.9 \mathrm{~mm}$ ．in diameter；leaves $3-5 \mathrm{~mm}$ ．long；capsules broadly ovoid．．．．．．．．Rhytidiadelphus，p． 160Plants robust or slender；stems $0.1-0.4 \mathrm{~mm}$ ．in diameter；leaves $1-3 \mathrm{~mm}$ ．long；capsules cylindrical．
Chrysohypnum，p． 158
FAMILY ARCHIDIACE天
Archidium Brid．
Archidium ohioense Schimp．
On the ground in meadows and fields．Spring．New
Haven：Orange（i88i），O．D．Allen．
Throughout the eastern United States and westward tothe Rocky Mountains．
FAMILY DICRANACEX
Bruchia Schwaegr．
Capsule ovoid，neck short B．flexuosa
Capsule elongated，neck long B．SullivantiiBruchia flexuosa（Schwaegr．）C．Müll．Clayey ground in fields．Spring．Windham：Canter－bury，Mrs．Hadley＇．New Haven：East Haven，Nichols；New Haven（1878），J．A．Allen；Woodbridge，Eaton．New England to Minnesota，south to the Gulf States．Ref．Eaton，15， 72.
Bruchia Sullivantii Aust．
Clayey or sandy ground in fields．Spring．New Haven：New Haven（i890），Ei＇ans．

New England to Florida，west to Missouri and Louisiana．

Pleuridium Brid.

Leaves spreading, upper leaves long-subulate. .P. alternifolium
Leaves of sterile shoots closely appressed, upper leaves of fertile shoots abruptly short-pointed
P. Sullivantii

Pleuridium alternifolium (Dicks.) Rabenh.
Moist clayey or sandy soil in fields and ditches. Spring. New Haven: East Haven, J. A. Allen; Hampden and New Haven (1874), Eaton.

New England to Wisconsin, south to the mountains of Alabama; Europe; Asia.

Exsic. Holzinger, Musci Acro. Bor.-Amer. No. 227.
Ref. Eaton, 15, 6i.
Pleuridium Sullivantii Aust.
Light, sandy soil in fields. Spring. New Haven: Orange (1880), O. D. Allen.

Connecticut to South Carolina.

Ditrichum Nim

I. Monoicous; stalk yellow; fruiting in June.......... D. pallidum

Dioicous; stalk red; fruiting in autumn.
2. Stem leaves imbricated; perichætial leaves long-sheathing
D. vaginans

Stem leaves spreading; perichretial leaves scarcely sheathing
D. tortile

Ditrichum vaginans (Stull.) Hampe. Lcptotrichum vagimans Schimp.

Moist, sandy or loamy ground in hilly regions. Autumn. Litchfield: Salisbury, Nichols. Windham: Canterbury, Mrs. Hadloy. Fairfield: Danbury, Nichols. New Haven : Hamden, O. D. Allen; New Haven (I855), Eaton.

New Brunswick to North Carolina, west to Missouri; Europe.

Ref. Eaton, 15, 62.
willa... Ditrichum[tortile (Schrad.) Linda. Leptotrichum tortile dui j ε... C. Müll.
frith Clayey soil along roadsides and in fields. Autumn. HartForb: Glastonbury, Miss Lorenz. Tolland: Bolton and

Stafford, Vichols. Winhmam: Canterbury, Mrs. Hadley' Farfield: Darien, Mrs. Lowe; Huntington, Nichols. New Haven: Hamden, Eirans; Meriden, Nichols; New Haven (i855), Eaton; Orange, Nichols. Middlesex: Chester, Nichols. New Lonnon: Waterford, C. B. Grazes.

Newfoundland and Labrador to Minnesota, south to the Gulf States: Europe: Asia; Africa.

Ref. Eaton, 15, 62.
Ditrichum pallidum (Schreb.) Hampe. Leptotrichum pallidum Hampe.

Bare earth in the woods. June. Litchfield: Salisbury, Nichols. Hartford: Southington, Chamberlain. Tolland: Andover, Weatherby'; Bolton, Miss Lorens. Windham: Can- woo $5 / 1 \mathrm{~m}_{j} / 92$ terbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lozic; Sherman and Stratford, Nichols. New Haven: Reacon Falls, Nichols; East Haven, Er'ans: Hamden (i867), New Haven, and North Haven, Eaton: Orange, Nichols; Woodbridge, 'J. A. Allen. New Londox: Ledyard and North Stonington, C. B. Graves.

Ontario to the Gulf of Mexico, west to Kansas ; Europe; Asia; Africa.

Ref. Eaton, 15, 62.
Saelania Lindb.
Saelania glaucescens (Hedw.) Broth. S. casia (Vill.) Lindb.

Earth and crevices of rocks, especially limestone, in mountainous or hilly regions. Summer. Litchfield: Salisbury, Evans. Fairfield: Monroe, Miss Lorenz; Sherman, Nichols. New Haven: New Haven (1878), J. A. Allen; Oxford, Miss Lorenz.

Greenland and Labrador to the Middle Atlantic States, west to British Columbia and Colorado; Europe ; Asia; New Zealand.

Ceratodon Brid.
Ceratodon purpureus (L.) Brid.
Burnt-over woods, roadsides, waste ground, and roofs. May-June. Litciffeld: New Milford, Nichols; Salisbury,

Mrs. Phelps. Hartford: Bloomfield and Hartford, Miss Lorchi. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Farfield: Bridgeport, Eames; Darien, Mrs. Lowe; Fairfield, Eames; Huntington, Nichols. New Haven: Cheshire and Madison, Nichols; New Haven (1855), Eaton; North Haven, J. A. Allen; Orange, Evans; Oxford, Harger. Middlesex: Killingworth, Nichols. New London: Ledyard, Nichols; Waterford, C. B. Graies.

Throughout North America; a cosmopolitan.
Ref. Eaton, 15, 62. Mrs. Lowe, 54 (incorrectly determined as C. minor Aust.).

Dicranella Schimp.

1. Capsule plicate when dry; epidermis composed of narrow cells; stalk yellowish
D. heteromalla

Capsule always smooth; epidermis composed of quadrate cells; stalk reddish
2. Capsule cernuous
D. varia
Capsule erect
D. rufescens

Dicranella heteromalla (L.) Schimp. Dicranum hetcromallum Hedw.

Clayey, non-calcarenns soil in open woods. Autumn. Litchefeli: Salisbury, Gilman. Hartford: Southington, Chamberlain. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley; Windham, Nichols. Fairfield: Darien, Mrs Lowe; Huntington, Nichols. New Haven: East Haven (1877) and Hamden, J. A. Allen; Madison, Nichols; New Haven, O. D. Allen; Orange, J. A. Allen; Woodbridge, Eaton. Mindlesex: Killingworth, Nichols. New Lonion: East Lyme and New London, C. B. Graves.

Newfomdland to Louisiana, westward to the Pacific; Europe; Asia.

Ref. Eaton, 15, 6i.
Dicranella rufescens (Dicks.) Schimp.
Wet clayey soil. Autumn. Hartrord: Wethersfield, Mrs. Loze. Farfield: Darien, Mrs. Loze. New Haven: New Haven (1879), J. A. Allcn; Woodbridge, Eaton.

Nova Scotia to West Virginia, west to Alaska and Washington : Europe : Asia.

Ref. Mrs. Lowe, 57.
Dicranella varia (Hedw.) Schimp. Dicranum zarium Hedw.

Clay banks and moist earth. Autumn. New Haven : East Haven, O. D. Allon; New Haven (i875), J. A. Allen; Orange, Young; Oxford, Harger; Woodbridge, J. A. Allcn.

Nova Scotia to Georgia, westward to the Pacific; Alaska; Europe; Asia; Africa.

Ref. Eaton, 15, 6I.
Rhabdoweisia Br. \& Sch.
Rhabdoweisia denticulata (Brid.) Br. \& Sch.
Moist shaded cliffs, steep rocks and banks, but not on limestone, in mountainous or hilly regions. Summer. Litchfield: New Milford, Nichols; Salisbury, Gilman. Tolland: Stafford and Vernon, Nichols. Fairfield: Redding, Eerans; Sherman, Vichols. New Haven: Beacon Falls, Nichols; Naugatuck, Eíans; New Haven, O. D. Allen; Woodbridge (1878), J. A. Allen.

Newfoundland to Wisconsin and North Carolina ; Europe.

Dichodontium Schimp.

Dichodontium pellucidum (L.) Schimp.
banks of streans and wet rocks in the woods. Autumn. New Hanen: Hamden (i88i), J. A. Allen.

Arctic America, Canada, and the northern United States; Europe; Asia.

Oncophorus Brid.
Oncophorus virens (Sw.) Brid. Cynodontium virens Schimp.

Moist non-calcareous earth and rocks or damp woorl in mountainous or hilly woods. Spring. Tolland: Stafford (1906), Nichols.

Canada and the northern United States; Enrope: Asia.

Dicranum Hedw.

I. Capsule cernuous, arcuate 2

Capsule erect, symmetrical 5
2. Leaves not undulate, midrib percurrent.......... D. scoparium

Leaves transversely undulate, midrib not reaching apex.... 3
3. Upper leaf cells elongated; capsules clustered...D. undulatum

Upper leaf cells isndiametric; capsules borne singly....... 4
4. Upper part of leaves strongly papillose at back....D. spurium

Leaves smooth at back.................................... D. Bergeri
5. Lamina of leaves more or less bistratose in upper part....
D. fulvum

Lamina unistratose throughout 6
6. Midrib without median guides and excurrent; leaves suddenly narrowed into a long setaceous point..D. longifolium Midrib with median guides and vanishing below apex of leaf; leaves lanceolate-subulate

7
7. Cells in upper part of leaves rectangular, papillose at back; plants not producing flagelliform branchlets..D. montanum Cells in upper part of leaf less regular, smooth at back; plants frequently characterized by numerous flagelliform branchlets
D. flagellare

Dicranum spurium Hedw.
Shaded sandy soil and rocks, never on limestone. June. Litciffield: Salisbury, Nichols. New Haven: New Haven (1881), J. A. Allen. New London: Ledyard, Setchell.*

Newfoundland to Wisconsin, sonth to Florida; Europe; Asia.

Exsic. Holzinger, Musci Acro. Bor.-Amer. No. $228^{\text {b }}$.

Dicranum undulatum Ehrh.
Awist wil and carth-covered rocks in hilly woods. Summer. Lhombatn: New Milford, Nichols; Salisbury, Miss Lorens. Haktemb: West Hartford, liss Lorenz. New hayen: Eant haven (1855), Eaton; Meriden, Nichols; Worelloridge. I. .I. Allin. Middeesex: Killingworth, Nichols.
(:amitit and the werthern United States; Europe; Asia.
RBE. Fatum, 15, 6,

[^9]Dicranum Berger land. I). Schraderi Web. f. \& Mohr. Peat bogs and wet woods. Summer. Litchlfelin: New Milford, Earns. Hartford: West Hartford, Miss Lorenz. Tolland: Stafford, IV eatherby: Vernon, Miss Lorenz. New Haven: New Haven, J. A. Allen; Wallingford (i878), Barron. Midolesex: Killingworth, Nichols. New London: Waterford, C. B. Grazes.

Arctic America, Canada, and the northern United States; Europe: Asia.

Ref. Eaton, I5, OI_{I} (misprinted D. Schreberi). Miss Lorenz, 52 (incorrectly determined as D. Mithlenbechii).

Dicranum scoparium (L.) Hedw.
On all sorts of substrata in moist or dry woods. Aug.Sept. Litchfield: Cornwall, Greene; Salisbury, Gilman. Hartford: Plainville, Chamberlain; West Hartford, Miss Lorenz. Tolland: Ellington and Stafford, Nichols. Windham: Canterbury, Mrs. Madly. Fairfield: Danbury, Nichols; Darien, Mrs. Lowe; Fairfield and Trumbull, Lames. New Haven: Beacon Falls, Nichols; East Haven, Evans; Hampden, Eaton; Meriden, Miss Lorenz; New Haven (1855), Eaton; Orange, Evans; Oxford, Harger. Middlesex: Kaillingworth, Nichols; Middlefield, Evans. New Lonion : North Stonington and Waterford, C. B. Grazes.

Throughout Canada and the United States; Europe; Asia.
Ref. Eaton, 15, 6r.

Dicranum futvum Hook. A. intetftotint Brit.
Trees and decayed logs in pine or hemlock woods in momtainous or hilly regions. Summer. NEW HANEN: East Haven, Hatcher: Woodbridge (18j9), O. D. Allen.

Newfoundland to Manitoba, south to West Virginia; Europe; Asia.

Dicranum flagellare Hedw.

On stumps and logs, and at the base of trees, in moist wools. Summer. Litciffield: Norfolk, Miss Lorchá; Sakisbury, Gilman. Hartford: West Hartford, Miss Lorenz. 'TobLand: Ellington, Pcasc; Stafford, Nichols. Windinam: Can-

terbury, Mrs. Hadley. Fairfield: Darien, Mrs. Loave; Stratford, Nichols. New Haven: Hamden, Nichols; New Haven (1856), Eaton; Orange, Pease; Oxford, Harger. Minblesex: Killingworth, Nichols. New London: New London and Waterforl, C. B. Graces.

Nova Scotia to North Carolina, and westward to British Colmmbia; Mexico; Europe; Asia.

Ref. Eaton, 15, 6i.
Dicranum fulvum Hook. D. interruptum liricl.
Non-calcareous rocks in moist hilly woods. Aug.-Oct. Litchfield: Salisbury, Nichols. Hartrord: Burlington, Nichols; Hartford, Miss Lorenz. Toll.ind: Stafford, Nichols. Windiam: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Loade. New Haven: Branford, Chatterton; Hamden, Pease; New Haven (i856), Eaton; Orange, Eians; Woodbridge, Eaton. Middlesex: Killingworth, Nichols. New Lonoon : East Lyme, New London, and Waterford, C. B. Grazes.

Nova Scotia to Wisconsin, south to North Carolina and Missomri ; Europe.

Exsic. Holzinger, Musci Acro. Bor.-Amer. No. io4.
Ref. Eaton, i5, 6i.
Dicranum longifolium Ehrl.
On rocks and tree trumks in mountainous or hilly regions; not on phre limestonc. Late summer. New Haven: Meriden (1856), Eaton; Oxford, Harger.

Nova Scotia to North Carolina, west to British Columbia and Colnrado; Greenland; Europe; Asia.

ReF. Eaton, I5, 6,.*

FANHILY LEUCOBRYACEE
 Leucobryum Hampe

Leucobryum glaucum (L.) Schimp. L. intsare Hampe. () m muist soil or rocks in the wools. Fruit occasional,

[^10]autumn. Litchfield: New Milford, Nichols: Salisbury, Mrs. Phelps. Hartford: West Hartford, Miss Lorenz. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lozue; Trumbull, Eames. New Haven: Beacon Falls, Nichols; East Haven, Hamden (I866), and New Haven, Eaton; North Haven, Harser; Orange, Eaton; Oxford, Harger; Woodbridge, Nichols. Middlesex: Killingworth, Nichols. New London: East Lyme and North Stonington, C. B. Graves.

Newfoundland to the Rocky Mountains, south to Florida and Louisiana: Europe: Asia; Africa.

Ref. Eaton, 15, 61.

FAMILY FISSIDENTACEE

Fissidens Hedw.
I. Fruit borne on the stem or on a leading branch.......... 2

Fruit borne on a short branch.................................. 5
2. Leaves without a border... 3

Leaves bordered by a narrow band of pale, elongated cells 4
3. Leaves obtuse, margin entire....................F. obtusifolius

Leaves apiculate, margin crenulate.............F. osmundoides

5. Leaves without a border....................................... 6

Leaves bordered by several rows of paler, often thickwalled cells

7
6. Midrib percurrentF. taxifolius

Midrib vanishing below the apex.................F. subbasilaris
7. Leaf cells obscure ($0.007-0.009 \times 0.01-0.012 \mathrm{~mm}$.)...... F. cristatus

Leaf cells distinct (o.01-0.014 \times 0.014-0.018 mm.).......
F. adiantoides

Fissidens bryoides (L.) Hedw.
On shaded earth in greenhouses, etc. Autumn. New Haven: Neiv Haven (i876), Veitch.

Throughout temperate North America, and north to Yukon Territory; Europe; Asia; Africa; New Zealand.

Ref. Eaton, 15, 62.*
Fissidens incurvus Schwaegr. Including F. minutulus Sull.

On wet shaded stones, usually in brooks. Autumn. Litchfield: Salisbury, Mrs. Phelps. Tolland: Bolton and Stafford, Nichols. Fairfield: Danbury, Nichols. New Haven: Bethany, Evans; Cheshire, Harger; East Haven (1874), Kleeberger; Hamden, J. A. Allen; Orange, Nichols; Oxford, Harger. Middlesex: Middlefield, Evans.

Canada and the northern United States; Cuba; Europe; Asia; Africa; New Zealand; Tasmania.

Ref. Eaton, 15, 62.
Fissidens obtusifolius Wils.
Wet rocks and stones. Aug.-Sept. Litchfield: Salisbury (1907), Nichols.

New England to Minnesota and Colorado, south to Alabama and Texas.

Fissidens adiantoides (L.) Hedw.
On shaded rocks and earth in wet places. Oct.-Dec. Litchfield: New Milford and Salisbury, Nichols. HartFord: Ilartford, Miss Lorchis. Tolland: Bolton. Vichols. Farfieln: Danbury, Nichols. New Haren: Cheshire, J. A. Allon: East Haven (I856), Eaton: Madison, Adams; Milford, Harger: Orange, Ezans; Woodbridge, Eaton. Minnlesex: Killingworth, Nichols; Middlefield, Eians. New London: Groton, C. B. Graves.

Newfoundland to Alaska, south to Florida and Washington; Europe; Asia; Africa; New Zealand; Tasmania.

Ref. Eaton, 15, 62.
Fissidens cristatus Wils. F. decipiens DeNot.
On moist, preferably calcarcous, rocks in hilly regions.

[^11]Oct--Dec. Litcififeld: Salisbury, Vichols. Hartford: Hartford, Miss Lorenz. Fairifeld: Danbury (1884), Eaton; Sherman. Ezans. New Haven: Orange, Evans.

Nova Scotia to the Rocky Mountains, and south to the Gulf States: Europe: Asia.

Fissidens taxifolius (L.) Hedw.
Moist eartll and clay banks in the woods. Fruit rare, winter. Litchfield: Salisbury, Nichols. Tolland: Ellington, Nichols. Fairfield: Danbury, Nichols. New Haven: East Haven (1874), Kleeberger: Hamden. Eaton; Madison, Nichols; New Haven, Eaton; North Haven, Nichols; Woodbridge, Eaton.

Throughout the eastern United States: Europe; Asia; Africa.

Ref. Eaton, 15, 62 (incorrectly reported as F. osmundoides).

Fissidens osmundoides (Sw.) Hedw.
Swampy woods and borders of streams. Summer. Litchfield: Salisbury, Nichols. Tolland: Stafford, Nichols. New Haven: Branford, J. A. Allen; Orange, Evans; Woodbridge (I866), Eaton.

Arctic America, Canada, and the northern United States; Europe: Asia.

Fissidens subbasilaris Hedw.
On earth and at the base of trees in the woods. Autumn. New Haven: Hamden (i878), Eaton.

Ontario and the eastern United States.

Octodiceras Brid.

Octodiceras Julianum (Savi) Brid. Conomitrium Julianum Mont.

Attached to stones and wood in springs and brooks. Spring. Fairfield: Danbury, Nichols. New Havex: Hamden (i876). J. A. Allen; Meriden, Eaton; New Haven, Nichols; Woodbridge, Eaton.

Ontario to Montana, south to Mexico ; Cuba ; South America; Europe ; Africa.

Exsic. Renauld \& Cardot, Musci Amer. Sept. No. $\boldsymbol{1}^{6}$ (as Conomitrium Julianum).

Ref. Mrs. E. G. Britton, 9, 83. Eaton, 15, 62; 16, 244.

FAMILY POTTIACEE
 Astomum Hampe

Astomum Sullivantii Schimp. Systegium Sullivantii Schimp.

Moist grassy places. Spring. Nev Haven: East Haven, J. A. Allen; Oxford, Harger; Woodbridge (1878), Eaton.

Probably throughout temperate North America.
Ref. Eaton, 15, 72.
Weisia Hedw.
Weisia viridula (L.) Hedw.
Roadsides, banks, and fields, on bare earth. Spring. Litchfield: New Milford, Nichols. Hartford: Canton, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lowe; Sherman, Nichols; Trumbull, Eames. New Haven: East Haven, Hamden, and Meriden, Nichols; New Haven (1854) and North Haven, Eaton; Orange, J. A. Allen; Woodbridge, Eaton. Middlesex: Killingworth, Nichols. New London: Waterford, C. B. Graves.

Throughout Canada and the United States; Europe; Asia; Africa; New Zealand; Tasmania.

Rew. Eatom, 15, 62.
Hymenostylium Brid.
Hymenostylium curvirostre (Ehrlı.) Lindb. Gymnostomum curairostre Hedw.

Moist rocks, usnally calcareous, in mountainous or hillyregions. Summer. Litciffeld: Salisbury, Ezans. HartForl: Windsor, Miss Lorenz. Tolland: Bolton, Nichols. New haven: Hamden, Hall. Middlisex: Killingworth, (1875) Hall.

Labrador to Maska, south to California and South Carolina: Europe ; Λ sia ; Λ frica.

Rem. Eatom, i5, 6 i.

Trichostomum Hedw.
Trichostomum cylindricum (Bruch) C. Müll. Didymodoal cylindricus Br. \& Sch.

Wet non-calcareons stones in or beside brooks in mountainous or hilly regions. Fruit very rare, atitumn. New Haven: I Iamden (1879), J. A. Allon; Orange, O. D. Allen.

Greenland to North Carolina, west to Manitoba; South America: Europe: Asia.

Tortella (C. Müll.) Limpr.

Monoicous; plants less than I cm. high, loosely cæspitose;
leaves linear, abruptly mucronate.............T. cæspitosa
Dioicous; plants $2-6 \mathrm{~cm}$. high, in pulvinate tufts; leaves
lanceolate, long-acuminate or cuspidate.........T. tortuosa

Tortella tortuosa (L.) Limpr. Barbula tortuosa Web. f. \& Mohr.

Rocks, ustually calcareous, in motntainous or hilly regions. Fruit rare, Jme. Hartford: West Hartford, Miss Lorenz. New Haven: Cheshiire, Harger; Meriden, Price; Orange (1856), Eaton; New Haven, O. D. Allon.

Greenland, Canada, and the northern United States; Enrope; Asia; Africa.

Ref. Eaton, 15, 62.

Tortella cæspitosa (Achwaegr.) Limpr. Barbula caspitosa Schwaegr.

Earth and roots of trees in the woods. June. LitcifFiedo: Salisbury, Gilman. Wishman: Canterbary, Mrs. Hadley. Farfaleld: Darien, Mrs. Loàe. New Ifaven: East Haven, Eians; New Haven (1856), Eaton; Orange, Nichols; Oxford. Harger: Woodbridge, J. A. Allan. New London: North Stonington and Waterford, C. B. Grazes.

Ontario and New Fngland to the Gulf States, west to Iiritish Cohmbia: Mexion: South America; Europe; Asia; Africa.

Didymodon Hedw.

Didymodon rubellus (Hoffm.) Br. \& Sch.

Wet, usually calcareous rocks, in momntainous or hilly regions. Summer. Litchfield: Salisbury, Nichols. Tollani: Boltom, Nichols. New llayen: Woodbridge (i879), J. A. Allen.

Alaska, Canada, and the northern United States; Europe; Asia; Africa; Tasmania.

Barbula Hedw.
Leaves gradually acuminate, midrib percurrent...... B. fallax Leaves obtuse and mucronate, midrib excurrent.. B. unguiculata

Barbula fallax Hedw.

Moist earth, walls, and rocks, in limestone districts. Nov.Jan. Litchfield: Salisbury (1905), Nichols.

Canada and the northern United States, north to the arctic regions: Europe: Asia: Africa.

Barbula unguiculata (Huds.) Tedw.
On all sorts of eartlo formations. Winter. Litcurfeld: New Milford, Nichols. New Hawex: East llaven and New Haven (1855), Eaton; Orange and Oxford, Harger: Wallingford, Eqans: Wuodbridge, J. A. Allem.

I'robahly throughout the northern L'nited States and Canada: Eurnge; \sia: . Ifrica.

Ref. Eatom, 15, 6

Acaulon C. Müll.

Acaulon muticum (Schrel).) C. Mïll. Spharansitm muticum Schimp.

Clay or earth in fields. Spring. New Haven: Hamden (1878), J. A. Allen; New Itaven, Eaton; Orange, J. A. Allen.
l'rolally throughout temperate North America; Europe; Sifica.

Ref. Eaton, i5, 6 r.

Phascum L.

Phascum cuspidatum Schreb.
() 11 earth in fields and grasey places. Spring. New

Hawen: East Haven and New IIaven, Eaton; Woodbridge (1878), J. A. Allen.

Ontario to Sonth Carolina, westward to the Pacific States; South America: Europe: Asia; \backslash frica.

Rée. Eaton, 15, 61.

Pottia Ehrh.

Pottia truncatula (L.) Lindb. P. truncata Fürn.
In moist places.- meadows, banks of streams, ete. Antumn to spring. New llaten: Woodbridge (i878), J. A. Allen.

Quebec and New England to Pennsyvania: Nevada: Europe: Asia: Africa.

Tortula Hedw.

I. Growing on trunks of trees; midrib bearing gemmæ in upper half; not yet found fruiting in this country
T. papillosa

Growing on rocks; midrib not gemmiparous: frequently fruiting

2
2. Dioicous; tufts large, $2-5 \mathrm{~cm}$. high; midrib excurrent into a long smooth hair-point
T. montana

Monoicous; tufts small, $5-15 \mathrm{~mm}$. high; midrib excurrent into a long toothed hair-point.......................T. muralis

Tortula muralis (L.) Hedw. Barbula muralis Timm. Walls and sumny rocks. Spring. New London: New London (i895), C. B. Graves.

Throughout North America: a cosmopolitan.
Tortula papillosa Wils. Barbula papillosa C. Müll.
Trunks of trees, rarely rocks in the open. Litchfield: Salisbury, Nichols. Vindham: Canterbury, Mrs. Hadley. Fairfield: Danbury, Nichols. Neiv Haven: East Haven and Hamden, Nichols; Milford, Harger; New Haven (1855), Eaton; Orange, J. A. Allen.

Throughont the 1 withern . ttantic States: South America: Europe: Australia: New Zealand; Tasmania.

Exsic. Holzinger, Musci Acro. Bor.-- Amer. No. 235 .
Ref. Eatoll, 15, 62.

Tortula montana (Nees) Lindb.
Sunny rocks, usually calcareous, in mountainons or hilly regions. New Havex: East Haven (i88o) and Orange, J. A. Allen.

Northern North America : Europe; Asia; Africa.

Encalypta Schreb.

Gemma wanting; monoicnus; capsule smooth, peristome single . E. . ciliata
Gemme brown, slender, borne in clasters in the axils of the leaves; dioicous; capsule spirally striate, peristome double
E. contorta

Encalypta ciliata (Hedw.) Hoffin.
Shaded earth or rocks in mountainous or hilly regions. Summer. New Maven: Lranford (i8Si), J. A. Allon.

Arctic America, Canada and the northern United States; Europe : Asia; Africa; Australia: Hawaiian Islands.

Encalypta contorta (Wh1f.) Lindb. E. streptocarpa Hedw.

Earth and rocks, often calcareous, in mountainous or hilly regions. Not yet found fruiting in America. Litchfield: New Milford, Nichols; Salisbury, Gilman. Hartrord: West Hartford, Miss Lorens. Tollann: Bolton, Miss Lorenz. New Haven: Branford, J. A. Allon; Orange (1855), Eaton; Woolbridge, J. A. Allen.
()ntario to Virginia, and westward to the Rocky Mountatus: Europe: Asia.

REF. Eaton, I5, 63.

FAMILY. GRIMMIACE.

Glyphomitrium Brid.
Glyphomitrium incurvum (Schwacgr.) Broth. Ptychomitrium incurzum Sull.

Exposed non-calcareons rocks. Spring. Hartford: Granby, Nichols. Windham: Canterbury, Mrs. Hadley. New Haven: Cheshire, Nichols; Hamden and New Haven (1866), Eaton; Oxford, Harger; Woodbridge, Ezans.

Ontario and New England to Georgia, westward to Kansas and Texas.

Ref. Eaton, 15, (iz.
Grimmia Ehrh.
I. Capsule shorter than stalk, emergent or exserted....G. Olneyi Capsule longer than stalk, immersed

Walls of lower leaf cells not sinuate.
3
3. Plants in small dense cushions, soft, lurid green; leaf cells rounded-quadrate, $0.009-0.01 \mathrm{~mm}$. above. G. conferta
Plants in laxer cushions, more robust, coarse, brownish; leaf cells rounded, $0.006-0.007 \mathrm{~mm}$. above. G. apocarpa

Grimmia apocarpa (L.) Hedw.
On rocks and stones of various kinds. Late spring. Litchfield: Salisbury, Gilman; Torrington, Mrs. Lozve. Hartford: Bristol and Canton, Nichols. Tolland: Stafford, Nichols. Windinam: Canterbury, Mrs. Hadley. New Haven: Cheshire, Nichols; Hamden, J. A. Allen; New Haven (1855) and Orange, Eaton; Oxford, Harger; Woodbridge, J. A. Allen. Middlesex: Killingworth, Nichols. New London: New London, C. B. Grazes.

Alaska, Canada, and the northern United States; found in most quarters of the globe.

Ref. Eạton, 15, 62.
Grimmia conferta Funck.
Steep sumny rocks. Spring. Litchfield: Salisbury, Nichols. Tolland: Ellington, Nichols. Fairfield: Sherman, Nichols. New Haven: Hamden (i877), O. D. Allen; Woodbridge, Eaton.

Nova Scotia to the Middle Atlantic States, and westward to the Pacific ; Europe ; Asia; Africa.

Exsic. Renauld \& Cardot, Musci Amer. Sept. No. 168.
Ref. Eaton, 15, 62.
Grimmia pilifera Beauv. G. pennsylzanica Schwaegr.
Moist rocks in hilly woods. May-June. Litchfield: New Milford and Salisbury, Nichols. Hartford: Simsbury,

Miss Lorenz. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Stratford, Eames. New Haven : East Haven, Eíans; Hamden, J. A. Allen; New Haven (1854), Eaton; Oxford and Woodbridge, Harger.

Nova Scotia to Minnesota, south to Georgia; Mexico; Japan.

Ref. Eaton, $15,62$.

Grimmia Olneyi Sull.

Sloping rocks and bowlders, never on limestone. Spring. New Haven: Branford and Madison, Eaton; Meriden, Nichols; New Haven (1855), Eaton; Oxford, Harger. Middlesex: Killingworth, Nichols. New London: Ledyard, Nichols.

Ontario and New England to Georgia.
Exsic. Renauld \& Cardot, Musci Amer. Sept. No. 169.
Ref. Eaton, 15, 62. Sullivant, 70, 67.
Racomitrium Brid.
Racomitrium aciculare (L.) Brid.
Shaded non-calcareous rocks along mountain or hill streams. Fruit rare, spring. Litchfield: Salisbury, Gilman. New Haven: Hamden (1878), Eaton; Oxford, Harger. New London: Montville, C. B. Graves.

Alaska, Canada, and southward to California and Alabama; Europe; Africa.

Ref. Eaton, 15, 62.

FAMILY ORTHOTRICHACE天

Anœctangium Hedw.
Anœctangium Mougeotii (Br. \& Sch.) Lindb. Amphoridium Mougeotii Schimp.

Crevices of damp, shaded rocks in mountainous or hilly regions. Fruit very rare, July-Aug. New Haven: Branford and Hamden, Eaton; Meriden, Pricc; Woodbridge (1878), O. D. Allcn.

Newfoundland to Alabama, westward to Alaska and Oregon; Europe : Asia.

Exsic. Renauld \& Cardot, Musci Amer. Sept. No. 174.

Drummondia Hook.

Drummondia clavellata Hook.
Trunks of trees in the woods. Summer. Litchfield: Salisbury, Nichols. H.irtrord: Bloomfield, Miss Lorenz; Canton, Nichols; Hartford, Miss Lorenz; Southington, Chamberlain. Windham: Canterbury, Mrs. Hadley. Fairfield: Danbury, Nichols. New Haven: Bethany and Hamden, Eaton; Meriden, Nichols; New Haven (1855), Eaton; North Branford, Harger. Middlesex: Killingworth, Nichols. New London: North Stonington and Waterford, C. B. Graves.

Ontario and New England, south to Alabama and Missouri ; Asia.

Ref. Eaton, 15, 62.

Orthotrichum Hedw.

1. Capsule with superficial stomata; plants growing on trees
O. sordidum

Capsule with immersed stomata................................ 2
2. Peristome single, capsule plicate when dry; plants growing on rocks

3
Peristome double; plants growing on trees................. 4
3. Capsule long-exserted O. anomalum

Capsule immersed or emergent........................ O. Lescurii
4. Capsule smooth when dry.............................. . . pusilium

Capsule plicate when dry.. 5
5. Calyptra hairy .. 6

Calyptra smooth ... O. pumilum
6. Capsule strongly plicate, reddish brown, contracted under the mouth when dry; leaves acute
O. Braunii

Capsule not strongly plicate, pale yellowish, very slightly or not at all contracted below the mouth when dry; leaves obtuse
O. ohioense

Orthotrichum sordidum Sull. \& Lesq.
On trees in wet woods. Spring. Hartford: Hartford, Mrs. Lowe. Tolland: Ellington, Pease. Windham: Canterbury, Mrs. Hadley. New Haven: New Haven (1876). Pease.

New Brunswick to Pennsylvania and Lake Superior.
Ref. Eaton, 15, 63.

Orthotrichum anomalum Hedw.
Rocks in the open. Spring. Litchfield: Salisbury, Nichols. New Haven: Branford (1881), J. A. Allen.

Throughout Canada and the northern United States; Alaska; Europe; Asia; Africa.

Orthotrichum Lescurii Aust. O. cupulatum Hoffm. var. minus Sull.

Dry shaded granite or trap rocks. Spring. New Haven : Hamden (1876), Peasc; Woodbridge, Eaton.

Ontario and New England, south to Pennsylvania and Missouri, and in the Rocky Mountain region.

Rer. Austin, 3, 34. Eaton, 15, 63 .
Orthotrichum pusillum Mitt. O. psilocarpum James.
On trunks of trees. Spring. New Haven: New Haven (1877), J. A. Allen; Oxford, Harger.

New England and New York to Georgia, west to Missouri.
Ref. Eaton, 15, 63. Kau \& Hervey, 64, 21.
Orthotrichum Braunii Br. \& Sch. O. strangulatum Sull. not Beauv.

Trumks of trees. Spring. Tolland: Ellington, Pease. Windham: Canterbury, Mrs. Hadley. New Haven: New Haven (1886), Eaton.

Prince Edward Island to Georgia, westward to Iowa; Europe; Asia; Africa.

Ref. Eatoll, $15,63$.
Orthotrichum ohioense Sull. \& Lesq.
Trunks of trees. Spring. Hartrorl: Southington, Chamberlain. Tolland: Ellington, Pcasc. Farfield: Trumbull, Eames. New Haven: Handen (1875), Young; Madison, Nichols; New Haven, Pcase. Middeesex: Chester and Killingworth, Nichols. New London: Groton and North Stonington, C. B. Graves.

Prince Edward Island to Georgia, west to Michigan.
Ref. Eaton, 15, 63.

Orthotrichum pumilum S_{w}.
On trees. Spring. Litchafield: Salishury (1907), Nichols. New England and Ontario to Idaho, sonth in Fhorida and Texas; Europe; Asia; Africa.

Ulota Mohr

I. Leaves rigid when dry; plants growing on rocks. U. Hutchinsiæ Leaves crispate when dry; plants growing on trece....... 2
2. Capsule smooth, slightly plicate only below the narrower month
U. Ludwigii

Capsule longitudinally plicate thronghout, month wide.... 3
3. Capsule constricted below the month, gradnally narm, iferl toward the neck when dry and empty....... U. ulophylla = cxispo
Capsule slighty or not at all contracted below the motith,
abruptly narrowed toward the neck........... U. crisnula
Ulota Hutchinsiæ (sm.) Hammar. U. amsericuna (Beauv.) Limpr.. Not Nitt.
Non-calcareous rocks in monntainous or hilly districts. Spring. Litchfield: Kent, Eamcs: New Milford, Nichols; Salisbury, Gilman. Hhrtrord: Hartford, Mrs. Loze. Toblavi: Ellington, Pease; Stafford, Nichols. Winhitim: Canterbury, Mrs. Hadey. Farfiens: Danbury Vichols: Darien, Mrs Lowe: Sherman, Nichols. New Hinex: Vadison and Neriden. Nichols; New Ilaven (1854), liaton: ()wford, Harser. Middeesex: Killingworth, Nichols. New London: Groton and Waterford, C. B. Graze.e.

New Brumswick to Georgia, westward to the Rocky Mountains ; Europe ; Asia.

Ref. Eaton, 15, 63.

Ulota Ludwigii Brid.

Trunks of trees in mountainons or hilly woods. Summer. Litchfield: Salisbury; Nichols. Windiam: Canterbury, Mrs. Hadley. New Haven: Branford, Eaton; East Haven, J. A. Allen; Hamden and Woodbridge (i866), Eaton. Mimplesex: Chester and Killingworth, Nichols.

Newfoundland to Ontario and North Carolina ; Europe.
Ref. Eaton, 15,63 .

Ulota ulophylla (Ehrh.) Broth. U. crispa (Hedw.) Brid.
Trees in the wonds. Summer. Litchfield: Salisbury, Nichols. Windifam: Canterbury, Mrs. Hadley. New Haven: North Haven, Nichols; Oxford, Harger. Middeesex: Chester and Killingworth, Nichols. New London: East Lyme and North Stonington (1894), C. B. Graves.

Newfoundland in Wisconsin, sonth to Georgia: Alaska; Europe ; Asia : Canary Tslands.

Ref. Eatom, $15,13$.
Ulota crispula Brnch.
Trees in the woods. Smmmer. Hartforin: Hartford, Mrs. Lowe. Windham: Canterbury, Mrs. Hadley. New Haven: Woodbridge (i866), Eaton. Middlesex: Saybrook, Eaton.

Same range as the preceding species.
Ref. Eaton, 15,63 .

FAMILY FUNARIACEE

Ephemerum Hampe

I. Leaves without a midrib

Nidrib present, percurreni or nearly so......E. crassinervium
2. Leaves ulscurely serrulate; stomata present in upper half of capsule .. . megalosporum
Leaves distinctly serrulate; stomata restricted to base of

Ephemerum megalosporum (Aust.) Salm. Micromitrium megalosportm Aust.

Wet or periodically inundated earth. Autumn. New Haven: Orange (1891), Er'ans.

Connecticut to Geargia.
Ephemerum serratum (Schreb.) Hampe.
Wet. clayfy earth. Autumn. New Hiven: East llaven, Tiruns: New Haven, Nichols; Orange, Eaton; Oxford, Harger. New Junde: Xorwich (i888), Setchell.

Irohaty throughout temperate North America: Europe.
Ephemerum crassinervium (schwaegr.) C. Müll.

1) an math in fichls. Autmm. New Haven: East

Xe: Smetan th Mimesota, south to Florida.

Aphanorrhegma Sull.
Aphanorrhegma serratum (llook. \& Wils.) Sull.
Moist, sandy soil in fields. Autumn. Famplatin: ()anbury, Nichols. Mimbesex: Cromwell (1900), Barans.

Temperate North America.
Physcomitrium (Bricl.) Mr. \& Sch.
Physcomitrium turbinatum (Michx.) C. Miill. P. pyriforme of some authors.

On earth in gardens and fields. May-June. Litchfiedd: Salisbury, Nichols. Haktford: Hartford (i855), Eaton. Windham: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lowe; Stratford, Eames. New Haven: New Haven, Eaton; North Branford, Evans: North Haven, Nichols; Oxford, Harger. New Lonnox: New London, C. B. Grazes.

Quebec to Florida, and west to the Rocky Mountains.
Ref. Eaton, 15, 63. Mrs. Hadley, 40.

Funaria Schreb.

Funaria hygrometrica (L.) Schreb.
Earth in fields, along roadsides, in burnt-over woods and waste places. May-June. Litchfield: New Milford and Salisbury, Nichols. Hartford: Hartford, Miss Lorenz; Windsor, W. E. Britton. Windham: Canterbury, Mrs. Madley. Fairfield: Darien, Mrs. Lozue; Stratford, Eames. New Hayen: Beacon Falls, Nichols; New Laven (1856), Eaton; Orange, Ezials.

Throughout North America: a cosmopolitan.
Ref. Eaton, 15, 63.

FAMLIY BRY゙ACEA

Leptobryum (Br. \& Sch.) Wils.
むeptobryum pyriforme (l.) Wils.
On moist shaded soil or old walls and on rotten wod. June-July. Litchifield: Salisbury, Nichols. Haktford: Hartford, Miss Lorchz. Windhan: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lozec. New ifinen: Branford, O. D. Allen; New Haven (1855), Eaton; Orange, Erans.

Throughout North America: South America; Europe: Asia: Tasmania; New Zealand.

Ref. Eaton, $15,53$.
Pohlia Hedw.

1. Plant producing semmat in axils of leaves rarely fruiting P. proligera

Platsts not gemmiparons, richly fruiting 2
2. Pasal membrane of inner peristome one-third to one-half height of segments .. P. nutans Pa-al membrane of inner peristome one-fourtl height of sement. .. . P. cruda

Pohlia cruda (I.) Lindb.
Shaderl earth and fissures of rocks in mountainons or hilly region. Early summer. New Haren: Derby (i88I), J. A. Allen.

Creenland to Pemsylvania, and westward to the Pacific: fouml in most guarters of the globe.

Pohlia nutans (Schrelo.) Lindb. Webera matans Hedw.
suil and decaying wood in fieds or woods. Early summer. Iatchfielin: Salisbury, Gilman. Hartford: Southington, Chamberlain. Tolfanis: Stafford and Vernon, Nichols. Wiximam: Canterbury, Mrs. Hadley. Farfield: Darien, Mre Loave New Ilaven: Beacon Falls and East Haven, Nichols: New Haven (I874), Klecberger; North Haven, Jínhs: ()xford, Harger: Voodbridge, J. A. Allen. Mmblimex: Durham, Eatms. New London: Ledyard, C. B. (iratoos.

Thromehnat most of North America: a cosmopolitan.
REF, Fatom, I5, G, Mr. Marlley. 43.
Pohlia proligera 1 inill.
(min cails. Fruit rare, smmer. New Hawen: icacon
 - Wirlely dismimmed thromshont (anada and the Lnited Statw: Slatkat: Vurnpe.

IVniobryum (Schimp.) Limpr.
Mniobryum albicans (Wahl.) limpr. IV ibera albioans Schinup.

In swamps and on sandy banks of streams. Early summer. Hartford: Bloomfield and Farmington, Mrs. Lozec. Farfield: Darien, Mrs. Lowe. New Haven: Handen (i855). Eaton.

Arctic America, Canada, and the northern United States: south in the east to Florida; found in most quarters of the globe.

Ref. Eatoli, 15, 63.

Bryum (Dill.) L.

2. Midrib vanishing below the apex, leaves not bordered, or very indistinctly so
B. argenteum

Midrib excurrent (or frequently vanishing below the apex in B. capillare)

3
3. Leaves short-cuspidate, distinctly bordered.... B. ventricosum Leaves long-cuspidate 4
4. Leaves bordered, twisted when dry B. capillare Leaves not bordered or only faintly so, scarcely twisted when dry B. cæspiticium

Bryum ventricosum Dicks. B. pscudotriquctrum (Hedw.) Schwaegr.

Wet, swampy places. Early summer. Litchfiedd: Salisbury, Nichols. Windham: Canterbury, Mrs. Madley'. New Haven: New Haven (1859), Eaton. Middlesex: Killingworth, Nichols. New London: Ledyard, Nichols.

Arctic America, Canada, and the northern United States; found all over the world.

Exsic. Hulzinger, Musci Acro. Bor--Amer. No. 2ft (as B. pseudotriquetrum).

Ref. Eaton, 15, 63.

Bryum bimum Schreb.
On wet rocks and on the ground in swampy woods. Early summer. Litchfield: Salisbury, Nichols. Hartford: Farmington, Mrs. Lowe; Plainville, Chamberlain. Tolinnd: Bolton, Nichols; Ellington, Pease. Windham: Canterbury,

Mrs. Hadley. New Haven: New Haven (1856). Eaton. New London: New London, C. B. Graves.

Arctic America, Canada, and southward to Florida and Arizona; a cosmopolitan.

Ref. Eaton, 1 $_{5}, 63$.
Bryum cæspiticium L.
On the ground in old pastures and fields. Early summer. Litchfield: Salisbury, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Loze; Trumbull, Eames. New Haven: New Haven (1855), Eaton: Orange, Nichols. New London: New London, C. B. Graves.

Throughout North America; a cosmopolitan.
Ref. Eaton, 15, 63. Mrs. Lowe, 54.
Bryum argenteum L.
On earth or earth-covered rocks. Autumn. Litchfield: Salisbury, Nichols. Hartford: West Hartford, Miss Lorenz. Tolland: Stafford, Nichols. Fairfield: Darien, Mrs. Loule; Sherman, Nichols. New Haven: Hamden, Evans; Meriden, Miss Lorcnz; New Haven (1854). Eaton. Midmesex: Old Lyme, Nichols.

Therenghout North America; a cosmopolitan.
Ref. Eaton, 15,63 .
Bryum capillare I.
Rich, loany soil, and roots of trees in the woods. Early summer. New Haven: Cheshire, J. A. Allen; East Ilaven, Nichols; Hamden (1879) J. A. Allen.

Throughont temperate North America, and north to the arctic regions; Mexico ; Europe; Asia; Africa.

Rhodobryum (Schimp.) Tlampe
Rhodobryum roseum (Weis) Limpr. Bryum rosetm Schreb.

Rotten logs and humus in moist woods. Fruit occasional, autumn. Litcuffeld: New Milford, Nichols; Salishury, Gilman. Hartrori: Hartford, Mrs. Lozel; Southington, Chamberlain. Tollind: Stafford, Nichols. Windinm: Canterbury, Ifrs I/adley. Farfielo: Danlury. Eaton.

New Haven: Hamden, Eéalls; Meriden, Eaton; Milford, Harger; New Haven (i855) and Orange, Eaton; Oxford, Harger; Woodbridge, Nichols. Middesex: Killingworth, Nichols.
 New Brunswick to Nebraska, south to Georgia ; California ; Europe; Asia; Africa.
 Ref. Eaton, 15, 63.

FAMILY MNIACE.E
 Mnium (Dill.) L.

I. Leaf cells not arranged in oblique rows; border of leaves
several cells thick; marginal teeth in pairs................ 2

Leaf cells tending to be arranged in diverging rows, gradually increasing in size from the border toward the midrib
2. Lid strongly convex, mammiform or apiculate; midrib toothed at back M. hornum
Lid rostrate 3
3. Midrib smooth at back; monoicous (synoicous) 4
Midrib toothed at back; dioicous M. orthorrhynchum
4. Perichætial leaves forming a rosette, not crispate when dry; capsules borne in clusters M. spinulosum
Perichætial leaves not forming a rosette, crispate when dry; capsules borne singly. M. marginatum
5. Leaves serrate, teeth single, border one cell thick 6
Leaves entire II
6. Monoicous (synoicous) 7
Dioicous 9
7. Lid rostrate; stomata scattered over the entire capsule.
M. rostratum
Lid strongly convex, apiculate; stomata present only on neck of capsule 8
8. Capsules borne singly; leares serrate to middle...M. cuspidatum Capsules borne in clusters: leaves serrate to base. . M. medium
9. Margin of leaves obscurely tonthed M. rugicum Marginal teeth of $2-4$ cells 10
10. Marginal teeth robust M. affine
Marginal teeth slender M. ciliare
iI. Border narrow, scarcely thickened, of one layer of cells.
M. cinclidioides
M. punctatumBorder broad, thickened

Mnium hornum L.

Moist banks and wet rocks in the woods. May-June. Litchfield: Salisbury, Gilman. Hartford: East Hartford and Manchester, Miss Lorenz. Tolland: Ellington, Pcase. Windham: Canterlury, Mrs. Hadley'. Fairfield: Monroe, Miss Lorchz. New Haven: Beacon Falls, Nichols; East Haven (1875), Eaton; Hamden, J. A. Allen; New Haven and North Haven, Nichols; Orange, Pcasc; Oxford, Harger. Middlesex: Killingworth, Nichols. New London: Groton and Ledyard, C. B. Graves; Waterford, Miss Lorenz.

Newfoundland to Wyoming, and southward to Georgia; Europe; Asia; Africa.

Ref. \Irs. E. G. Britton, 8, 4. Eaton, 15, 63. Mrs. Hadley, 40.

Mnium orthorrhynchum Br. \& Sch.
Rocks and soil, usually calcareous, in shaded ravines. July-Aug. Litcufield: Salisbury, Nichols. New Haven: Wallingford (1874), Barron.

Arctic America, Canada, and the northern United States; Europe ; Asia.

Ref. Eaton, $15,63$.
Mnium marginatum (Dicks.) Beauv. M. serratum Schrad.

Shaded banks and rocks near streams and in moist woods. May-June. Litchifield: Cornwall, Brewster; Salisbury, Gilman. Fairfield: Darien, Mrs. Lowe. New Haven: Ansonia, J. A. Allen; Cheshire, Evans; Hamden, Eaton; New Haven (i878). J. A. Allen; Orange, Evans. Middlesex: Durham, Ezans. New London: Vaterford, C. B. Graves.

Canada, Alaska, and the northern United States; Europe; Asia.

Mnium spinulosum Br. \& Sch.
On the ground in evergreen mountain or hill woods. MayJune. Letchfieli): Salisbury, Gilman. Farfield: Darien, Mrs. Lozie. New Haven: Handen (i88i), J. A. Allen.

Nova Scotia and the northern Atlantic States, westward to Alaska and Washington; Enrope; Asia.

Mnium rostratum Schrad.
Shaded rocks in wet ravines. May-June. Litciffeld: Salisbury, Nichols. Fampield: Darien, Mrs. Lozic; Sherman, Nichols. New M.nen: Ilamden (i88o), J. A. Allen; Woodbridge. O. D. Alloh. Mimomsex: East Itaddam, C. B. Grates. New Loxme: Waterford, C. B. Grates.

Throughout temperate North America, and in most temperate regions of the globe. - apparaity not common auphener as

Mnium cuspidatum (L.) Lesss. M. syliaticum Lindb.
Earth, stones, or old \log in moist woods. May-June. Litchfield: New Milfurd and Salisbury, Nichols. Hartford: Hartford, Mrs. Lowe: Windsor, W. E. Britton. Tulland: Ellington, Pcase; Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fimrfield: Darien, Mrs. Lozic; Fairfield, Eames; Monroe, Miss Lorchs; Sherman, Nichols: Trumbull, Eames. New Harex: East Haven (1875), Eaton; Madison, Nichols; New Haven, Eaton: North Branford and North Haven, Eidus. Mumolesex: Killingworth, Nichols. New London: Groton and Montville, C. B. Grates; Norwich, Sctchell; Waterford, C. B. Grazies.

Newfoundland to Florida and westward to the 「acific: Europe; Asia.

Ref. Eaton, 15, 63. Mr. Hadley, 4r.
Mnium medium Br. \& Sch.
On earth or rotting stumps in moist, shaded places. May-June. Litchribly: Xor!olk (18/7), Eaton. New Haven: New Haven, Eaton.

Greenland to Penneyvania, westward to Alaska and California: Europe; Asia.

Mnium ciliare (rises. Lindb. M. affine var. ciliure notuan C. Mïll.

Moist sandy soil in wools. May-June. Litchafianir: Salisbury, Gilman. Windinas: Canterbury, Mrs. Hadlev. han \mathcal{F}. New Haven: Beacon Talls and East llaven. Nichols; Hamden (1858), Eaton; Wim,llurisis, (haiterton.

Nova Scotia to Louisiana, westward to British Columbia; Europe; Asia.

- Exsic. Holzinger. Musci Acro. Minr-- Amer. No. 247.

Ref. Mrs. E. G. Britton, 8, 5.

Mnium affine Bland.

Moist earth and rocks in woods and swamps. Nay-June. Litchfield: Salisbury, Gilman. H.artford: Hartford, Mrs. Lozve; Southington, Chamberlain. Tolland: Stafford, Nichols. Windhani: Canterbury, Mrs. Hadley. New Haven : Ansonia, J. A. Allen; Beacon Falls and East Haven, Nichols; Hamden (i865), Eaton: Orange. Evans: Woodbridge, J. A. Allcn. Middeesex: Durham, Erans: Killingworth, Nichols.

Throughout northern North America, south to Floricla and California; Europe; Asia; Africa.

Ref. Eaton, 15, 63.
Mnium rugicum I aur. M. affinc var. rugicum Br. \& Sch.
On the ground in shaded swamps and ravines. May-June. Fairfield: Sherman, Nichols. New Haven: Hamden (1880), Eaton; Woodbridge, Setchell.

Greenland and Labrador to Alaska, south to Louisiana and Colorado ; Europe.

Mnium punctatum (L.) Hedw.
On the ground in swamps or wet woods. Spring. Lirchfield: Salisbury, Gilman. Hartrord: East Hartford, Miss Lorenz; Hartford, Mrs. Loze; Windsor, Miss Lorenz. Windham: Canterbury, Mrs. Hadley; Windham, Nichols. New Haven: Bethany, O. D. Allen; Cheshire, Eaton; Derby, Eumes: Hamden (1855). Euton: Orange. Nichols; Oxford, Harger: Woodbridge, Eaton. רimdesfe: Killingworth, Nichols. Nem London: Goton. C. B. Grates: Ledyard, Nichols; Montville, Stonington, and Wateriord, C. B. Graies.

Var. elatum Schimp.
Litcharime: Norfolk, Eaton; Salisinury, Nichois. Tolland: Stafford, Nachols. Windilal: Canterbury, Mrs. Hadiey; Thompson, Millir. New Thaten: Beacon Falls, Nichols; Itamden (1855) Eaton.

Aretic America，Canala，and the northern United States； Europe：Asia．

Ref．Mrs．E．G．Britton，8，5．Eaton， $15,64$.

Mnium cinclidioides Tiiiben．
Swamps，pools，and wet places in the woods．Fruit rare， June．Litchfield：Litchfield，T．F．Allen．Hartford： Farmington（i859）．Eaton．Nrw Haven：Beacon Falls， Nichols：East Haven，J．A．Allen；Hamden and Orange． Eaton；Oxford，Harger．Middeesex：Killingworth，Nichols； Saybrook，Eaton．New Loxdon：Norwich，Harger．

Northern North America，sonth in the east to Pennsylvania ： Europe：Asia．

Ref．Eaton，15，64．

FAMILY AULACOMNIACE天

Aulacomnium Schwaegr．

Monoicous；leaves coarsely serrate in upper half；plants not gemmiparous ．．．．．．．．．．．．．．．．．．．．．．．．．．．A．heterostichum
Dioicons；leaves serrulate near apex；sterile plants fre－ quently producing gemme at the tips of flagelliform branches

A．palustre
Aulacomnium heterostichum（Hectw．）Br．\＆Sch． Maustidel
Moist banks and yoots oi trees in the woods．May－June． 1353 ，
Litchfield：New Mifford．Nichols；Salisbury，Gilman． 4551.
Hartford：Burlington，Nichols：Farmington．Mrs．Lozie； Hartford．Miss Lorens；Sonthington，Chamberlain；Windsor， Rorer．Tolmav：Atafford，Vichols．Winmham：Canter－ bury．Mrs．Hadlcy．Finrfield：Danbury，Nichols；Darien， Mrs．Lowe．New Hiven：Ansonia，J．A．Allen：Reacon Falls．Xichols：East Haren，Eadns；Hamden（1858），Eaton： Madison and Meriden，Vichols：New Haven，J．I．Allen； Woodbridge，Setchall．Midmesex：Killingworth，Nichols． New London：East Lyme，（．B．Graves；Ledyard，Nichols： North Stonington，C．B．Grates．

Ontario to Wisconsin，south to Florida and Texas；Asia． Ref．Eaton，15， 64.

Aulacomnium palustre (I..) Schwaegr.
In bogs and swampy woods. June. Litchfield: Salishury. Vichols. Hartronn: Canton, Nichols; Farmington. IIrs, Lotid; West Itartford, Miss Lorens. Tolland: Ellington, Pcase: Willington, Vichols. Windima: Canterbury, Wrs. Hedley. Farmelen: Darien, Mrs. Loade: Stratford, Xichols. Xew Hower: Cast Haven, Eaton: Madison, Ifiss Lomen: Neriden, Nichols: New Haven (1855). Eaton: Oxford, Harger. Midolesex: Chester, Nichols; Durham, Ezans; Killingworth, Nichols. New Loxion: North Stonington, Old Lyme, and Waterford, C. B. Gruzes.

Arctic Imerica, southward the the momatans of South Carohm, Thah, and Califnmia: South imerica: Europe: Asia: Anstralia.

FAMILI MEESIACET
 Meesia Hedu.

Meesia triquetra (1.) Jongstr. . If. traticha Br. \& Sch.
In wet meadows and peat bogs. Jme-July. Hartands: Rertin (1875), Coleman. New Hhwrx: New Haven, J. A. . Hen.
\retic America. Canada, and the mothern Cnited States: Europe: Asia.

Ref. Eaton. 5 , 64.

FAMILY BARTRAMIACEA
 Plagiopus Brid.

Plagiopus Oederi (Gumn.) Limpr. Bartramia Oederi Sw.
Moist calcareous rocks or soil in momtanous and hilly woods. Spring. Litchifeld: Salisbury, Gilman. Hartford: West Hartford, Miss Lorche: Farbielo: Monroc, Harger: Sherman, Nichols. New llaven: Cheshire (1856), Eaton; Hamden. J. A. Allen; Meriden. Eaton.
(:manla and the northern Lnited Statec, south in the east to North (arolime: Emmpe: Isia.

Bartramia IIedw.
Bartramia pomiformis (L..) Hedw.
Rocks or soil in moist worls. Spring. Latomban: New
 Mrs. Loae; Southington, Chamberlain; West Hartford, Miss Lorenz; Windsor, IT. E. Britton. Tolland: Stafford, Nichols. Windima: (amterbary, Mrs. Hadley. Faikfield: Huntington and Sherman, Vichols; Trmulull, Eames. New H.aven: Beacon Fatls and East Haven, Nichols; Hamden, Eaton; Madison and Meriden, Nichols; New Itaven (1855). Eaton; North Haven, Nichols; Oxford, Harger. Middesiex: Killingworth, Nichols. New London: Ledyard, Nichols; North Stonington, C. B. Grazes.

Arctic America and Canada, southward to Alabama and Colorado: South America: Europe: Asia: Africa: New Zealand.

Ref. Eaton, $15,64$.
Philonotis Brid.
Philonotis fontana (L..) Brid.
In swamps or wet places and on dripping rock:, rarely on limestone. Fruit occasional. Jme. Litchinili: New Milford. Vichols: Salisbury, Todd. H.rrtforn: Harfford and Windsor, Miss Lorcn:. Tollnvd: Rolton, Nichols; Ellington, Pease; Stafford, Nichols. Windham: Canterburṣ, Mrs. Hadley; Windlam, Nichols. Fairfield : Easton, İames; Huntington, Nichols; Redding, Ez'ans. Nem Haven: Beacon Falls, Nichols; Handen, Eaton; Meriden, Nichols; New Haven (1856) and North Branford, Eaton. Middlesex: Killingworth, Nichols. New Londox: Groton and Ledyard, C. B. Graves.

Arctic and temperate North America, south in the east to Florida; a cosmopolitan.

Ref. Eaton, i5, 6.

Timmia Hedw.
Timmia cucullata Nichs. T. megapolitana of American authors, in part.

On moist shaded banks, especially in limestone regions. Spring. Litchfield: Cornwall, Hall; Salisbury, Gilman. Harterde: Windsor, Miss Lorenz. New Haven: Hamden, Eaton; Woodbridge (I878), Brewster.

Newfoundland to Pennsylvania and westward to the Pacific; Europe.

Exsic. Renauld \& Cardot. Musci Amer. Sept. No. 183 (as T. bavarica var. cucullata).

Ref. Eaton, 15, 72.

FAMILY HEDWIGIACE®
 Hedwigia Elırh.

Hedwigia albicans (Web.) Lind.] H. ciliata Ehrh. -x Hedul.
On rocks and bowlers of various kinds, but never on limestone. Spring. Litchifeld: New Milford and Sakisbury, Nichols. HartforD: Hartford, Mrs. Lowe; Plainville, Chamberlain. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadlcy. Fairfield: Danbury, Nichols; Darien, Mrs. Lowe; Huntington, Nichols; Stratford, Eames. New haven: East Haven, Evans; Hamden, Eaton; Madison and Meriden, Nichols: New Haven and Orange (1873), Eaton. Mmbmex: Killingworth, Nichols. New London: Ledyard, Nichols; Waterford, C. B. Grazes.

Throughout North America, and in most quarters of the globe.

Rem. Eaton, 15, 62.
additional Pop. rictal, Rho. 15:6-11.1913 reused d her Patilly FONTINALACEE Fontinalis (Dill.) L.
I. Stem leaves keeled...................................... antipyretic

Leaves not keeled.
2

2. Leaves $2-3 \mathrm{~mm}$. long, firm, very concave throughout and
incurve at the margins

F. dalecarlica

Leaves $3.5-7 \mathrm{~mm}$. long, slightly concave
3

> 3. branches obliquely spreading: leaves flaccid, plane in the upper half
> F. Lescurii
> Branches widely spreading: leaves firmer. concave throughout

Fontinalis antipyretica L. var. gigantea Sull.
On stones and wood in flowing water. Fruit occasional, summer. Litchfield: Goshen, Underzood; Salisbury, Mrs. Phelps. Hartrord: Burlington and Granby, Nichols; West Hartford, Miss Lorenz. Tolland: Bolton, Nichols; Somers, Pcase: Stafford, Nichols. New Haven: Bethany, Eaton; Cheshire, Nichols; Hamden, J. A. Allen; New Haven (1856), Smith; Orange and Oxford, Harger.

Canada and the northern United States; Europe; Asia; Africa.

Ref. Eaton, 15, 6_{5}.
Fontinalis dalecarlica Schimp.
On stones in rapid mountain or hill streams. Summer. Litchfield: Salisbury, Nichols. Hartford: Burlington, Nichols: West Hartford, Miss Lorenz. Tolland: Vernon, Nichols. New Haven: Beacon Falls, Nichols: Hamden (i866). Eaton. Middlesex: Chester and Killingworth, Nichols. New London: Ledyard, C. B. Graies.

Greenland and Labrador to Kansas, south to Alabama; Europe.

Ref. Eaton, $15,65$.

Fontinalis Novæ-Angliæ Sull.

Pools and rumning water in streams. Summer. Litchfield: Salisbury, Nichols. Hartford: Burlington, Nichols. Tolland: Vernon, Nichols. Vindham: Canterbury, Mrs. Hadley. Mew Havex: Beacon Falls, Nichols; Bethany, Eaton; East Haven, Nichols; Hamden, J. A. Allon; Meriden and New Haven (1855). Eaton; Orange, J. A. Allen. New London: Groton, C. B. Graucs.

Newfoundland to Ontario, and south to North Carolina.
Ref. Eaton, 15, 65. Lesquereux \& James, 50, 27I. Sullivant, 68, 654 (as F. biformis Sull.) : 69, 54 (as F. biformis), 104; 70, 105 .

Fontinalis Lescurii Sull.
On stones in streams. Summer. Litchfield: Salisbury, Nichols. Hartford: Bloomfield, Miss Loreniz; Burlington,

Nichols. Tolland: Stafford, Nichols. New Haven: Beacon Falls, Nichols; Derly, O. D. Allcn; Hamden, J. A. Allcn; New Haven (1855), Eaton; Wallingford, Barron; Woodbridge, Eaton. Middesex: Killingworth, Nichols.

Nova Scotia to Alabama, westivard to the Rocky Mountains.

Ref. Eaton, 15, 65:

Dichelyma Myrin

Dichelyma capillaceum (L.) Schimp.
On bushes and sticks in ponds and water holes. Summer. Tolland: Stafford and Willington, Nichols. Windham: Canterbury, Mrs. Hadlcy. New Haven: Branford and East Haven, Eaton; Hamden, Nichols; New Haven (1855) and Orange, Eaton. Middeesex: Saybrook, Eaton. New London: North Stonington and Waterford, C. B. Graves.

New Brunswick to Ontario and Pennsylvania ; Europe.
Exsic. Renauld \& Cardot, Musci Amer. Sept. No. 187.
Ref. Eaton, 15, 65.

FAMILY CRYPH ÆACE

Cryphæa Mohr
Cryphæa glomerata Br. \& Sch.
Trunks of trees in the woods. Spring. New Haven: Hamden (1875), Young.

Comnecticut to Olio, south to the Gulf of Mexico.
Ref. Eaton, 15, 64. Rau, 63, 152. Rau \& Hervey, 64, 52.

FAMilly leucodontacee

Leucodon Schwacgr.
Capsule exserted beyond the perichretial leaves....L. julaceus Capsule exserted but surpassed by the perichretial leaves..

L. brachypus

Leucodon julaceus (L.) Sull.
Trunks of trees in the woods. Autumn. Windham: Canterbury, Mrs. Hadley'. New Haven: New Haven (i855), Eaton; North Branford, Harger; Orange, Eaton; Oxford, Hargcr. New London: North Stonington, C. B. Graves.

New England to Michigan, sonth to Floridia and Texas. Ref. Eaton, 15, 65.

Leucodon brachypus Brid.

Trees and rocks in mountainous or lilly woods. Fritit rare, autumn. Litchfield: Salisbury, Nichols. Haktrond: (anton, Nichols; Hartford, Miss Lorens. Winmmin: (anterbury, Mrs. Hadley. New Haven: Guilford and New llaven (i856), Eaton. Middeesex: Killingworth, Nichols.

Nova Scotia to Kansas, south to the Gulf States.
Rff. Eatoll, 15, 65.

Forsstroemia Lindl.
Forsstroemia trichomitria (Hedw.) Lindl. L.cptodon trichomitrion Mohr.

On trees in the woods, rarely on rocks. Sutumn. Hakrford: Hartford, Mrs. Lowe; West Hartford, Miss Lorenz. New Haven: Cheshire, Eaton; Hamden, J. A. Allen: New Haven. Erans; North Haven, Eaton; Orange, J. A. Allcu; Waterbury (1855), Blackman; Woodbridge, Evans. Minmesex: Saybrook, Eaton.

Stario and New England, south to the Guli States: Ssia. SGe. Faton, 15, 65.

FAMILY NECKERACE.E

Neckera Hedw.

Neckera pennata (L.) Hedw.
On trees and moist rocks in mountainous or hilly woork. Autumn. Litchfield: Salisbury, gilman. Hartford: Hartford. Miss Lorenz. Windham: Canterbury, Mrs. Hadley. New Haven: Branford, East Haven, and New Haven (1855), Eaton; Southbury, Harger; Woodbridge, Evans. Mibmesex: Chester, Nichols; Saybrook, Eaton.

Nova Seotia to Manitoba and Yukon Territory, sruth to North Carolina; found in most temperate regions of the world.

Exsic. Renauld \& Cardot, Musci Amer. Sept. No. i88.
Ref. Eaton, $15,65$.

Homalia Jamesii Schimp.
"Rocks and crevices in mountainous or hilly districts. Autumn. Litchfieln: Salishury, Miss Lorenz. Neif Haven : Famden (i88i), J. A. Allen.

Newfoundland and Nova Scotia to Pennsylvania; Washington.

FAMILY ENTODONTACEA

Schwetschkeopsis Broth.

Schwetschkeopsis denticulata (Sull.) Broth. Leskea denticulata Sull.

At the base of trees or on rocks. Fruit rare. New Haven : Orange (1880): O. D. Allen.

Connecticut and Xew York to Fhorida, west to the Mississippi River: Acia.

Platygyrium Br. \& Sch.
Platygyrium repens (Brid.) Pr. \& Sch.
On roots and tranks of trees, especially chestnut and beech, on old loss, stumps, and stones. Autumn. Litchfiedo: Salisbury, Nichols. Tolland: Stafford, Nichols. Winnham: Canterbury, W/rs. Hadley. Farfielo: Sherman, Nichols. New Havex: East Haven, O. D. Allen; Hamden, İerans; New I Iaven (1855), Eaton; North Haven, Ezans; Oxford, Marser. Mimmesex: Middlefield, Ezams. New London:

Surth Smerica, west to the Rocky Mountains: Europe; Asia: Africa

R⿴囗 Eaton, 5 , 66.

> Entodon C. Nïll.
> Branches ustally complanate; annulus clearly differenliated: tecth fe-t8-articulate E. cladorrhizans
> branches usually tercte: annulus mot clearly defined; teeth 7-10-articulate
> E. seductrix

Entodon cladorrhizans (Hedw.) C. Mïll. Cylindrothecinm cladorthirans. Schimp.

On decaying logs, on stones, and at the base of tree in moist woods. Autumn. Litchriens: Salishury, \ichols. Hartford: Southington, Chamberlain. Tonlanin: Ellington, Pease. Windham: Canterbury, Mrs Madley Fambleld: Danbury, Nichols. New Hiven: Hamden, J. A. Allen; Madison, Nichols; Orange, Eaton; Oxford. Harger: Wooribridge (1866), Eaton.

New Prmansick to Mimesota, and sonth to the ranf States; Europe.

Ref. Eaton, i5, fri.
Entodon seductrix (lIedw.) C. Mïll. Cylindrolhceilun seductri.r Sull.

On decaying wood, earth, rocks and ronts of tree in moist woods. Autumn. Hartford: I Iartford, Miss Lorenz: Tolland: Bolton and Stafford, Nichols. Winminm: Canterbury, Mrs. Hadley. Fhrfieln: Danbury, Eaton; Daricn, Mrs. Lowe; Sherman, Nichols. New Havex: East Haven, Hamden, and Madison. Nichols: New Haven and Orange (1855), Eaton; Oxford. Harger: Woodhridge. J. A. Allen. Mmbeesex: Killingworth, Nichols.

New England to Minnesota, south to Florida and Texas.
Exsic. Grout, N. Amer. Masci Pleuro. No~ 51.573. Rer. Eaton, i5, 66.

Pylaisia 1r. \& Sch.
I. Segments of inner peristome entirely fire from twith. basal membrane distinct: apres oookontz mmo in diameter .. P. subdenticulata Segments of inner peristome partially or whily atheront to teeth, basal membrane obecure or lacking.............. 2

P. Schirrperi

Wholly adherent; spores $0.025-0.0 .32 \mathrm{~mm}$. in dimater. P. intricata

Pylaisia Schimperi Card. P. intrictlo of some anthor: Bark of trees or decaying wood in the woods or in the "pen. Autumn. Litcurnelo: New Milford and Salinbury, Nichols. Hartrone: Canton, Nichols; Martiord, Vis: Lo-
renz; Southington, Nichols. Tolland: Stafford. Nichós. Win!hasi Canterbury, Mrs. Madley. Fairfield: Darie!. Mrs. Lou'e New llaven: Branford (1874), Kleeberger: East Hatven. Eians; Hamelen, Eaton; New Haven, J. A. Allon: Orange and Woodbridge, Feitch. Middlesex: Chester, Nichols. New Losdon: New London, C. B. Grares.

New Brunswick to the Gulf States, westward to the Rocky Momentans: Etirope; Asia.

Ref. Eaton, 5 5, 66.
Pylaisia subdenticulata Schimp.
()n rocks and at the base of trees in the woods. Autumn. Tollanu: Ellington (1876), Pease. Windham: Canterhury, Mrs. Hadley. New Haven: New Haven, J. A. Allen.

New England to Illinois, southward to Florida and New Mexico.

Pylaisia intricata (Hedw.) Br. \& Sch. P. aelutina Schimp.
(On stmmps and trees in mountainous or hilly woods. Autumin. Litchfield: Salisbury, Nichols. New Haven: East llaven, O. D. Allen; ILamden, Young; Milford, Harger: New Haven (1855), Eaton.

Newfoundland to Ontario, south to North Carolina.
Ref. Eaton, 15, 66.
Homalothecium Br. \& Sch.
Efomalothecium subcapillatum (Hedw.) Sull.
Trunks of trees in the woods. Autumn. Fatrfielli: 1)arien, Mrs. Lozuc. New Haven: Cheshire (1855), Blackmen; East llaven and New I laven, Eaton; Woodbridge, Pease.

New England to Nortl Carolina.
Exsic: (irgut, N. Amer. Musci Pleuro. No. 108.
Ref, Eaton, 15, 66.

Fallify fabroniaceat Anacamptodon Brid.

Anacamptodon splachnoides (Fröl.) Brid.
(H trombs and decaying shelves of trees, in forks, arommi knot lones full if water, on old stumps and logs, from sea lewel
to high altitudes. Local. Spring. Hartrord: East Hartford, Mrs. Lowe. New Haven: Cheshire, Hamden, and New Haven, Nichols; Wallingford (i88o), O. D. Allcn.

New England to Alabama, west to Illinois and Texas; Europe ; Asia.

Ref. Mrs. Lowe, 56.

FAMILY LESKEACER

Thelia Sull.
I. Papillæ of leaves simple.................................. T. hirtella

Papillæ of leaves variously divided at the tip
2
2. Leaves ciliate; plants growing on trees............T. T. asprella Leaves not ciliate; plants growing on rocks and earth....
T. Lescurii

Thelia hirtella (Hedw.) Sull.
Stumps, roots, and trunks of trees in the woods. Autumn. Hartford: Southington, Nichols. Tolland: Ellington, Pease; Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fhirfield: Darien, Mrs. Lowe; Sherman, Nichols. New Haven: East Haven (1855), Eaton; Madison, Basye; New Haven, J. A. Allcn; Oxford, Harger; Woodbridge, Nichols. Middeesex: Killingworth, Nichols. New London: Waterford, C. B. Graves.

Ontario and New England to Kansas, south to the Gulf States.

Ref. Eaton, 15, 65. Mrs. Hadley, 4I.
Thelia asprella (Schimp.) Sull.
Stumps, roots, and trunks of trees in the woods. Autumn. Litchfield: Salisbury, Nichols. Hartford: Hartford, Miss Lorenz. Tolland: Ellington, Pease; Stafford, Nichols. Windham: Canterbury, Mirs. Hadley. Fairfield: Darien, Mrs. Lozve. New Haven: East Haven, O. D. Allcu; Hamden, Eaton; Meriden, Nichols; New Haven (1855), Eaton. Middeesex: Killingworth, Nichols. New London: Norwich, Setchell.

Ontario and New England to Florida, west to Minnesota and Texas.

Ref. Eaton, 15, 65.

Thelia Lescurii Sull.
On trap ledges, flat rocks, and dry, sandy soil. Fruit rare, autumn. Litchfield: New Milford, Nichols. Hartford: Farmington, Miss Lorcniz. Fairfield: Darien, Mrs. Lozve. New Haven: East Haven, J. A. Allen; New Haven (1877), Eaton; Oxford, Harger. New London: Waterford, C. B. Grazes.

Massachusetts to Missouri, south to the Gulf States.
Ref. Eaton, 15, 65. Grout, 38. Rau \& Hervey, 64, 52.
Myurella Br. \& Sch.
Leaves serrulate, obtuse, rarely short-apiculate..... M. julacea
Leaves spinulose-dentate, abruptly long-acuminate. . M. gracilis
Myurella julacea (Vill.) Br. \& Sch.
On rocky banks and in shady fissures of rocks, especially limestone, in mountainous or hilly districts. Fruit rare, JulyAug. New Haren: Branford and Woodbridge (i880), J. A. Allen.

Arctic America, Canada, and the northern United States; Europe: Asia.

Myurella gracilis (Weimm.) Lindb. I. Carcyana. Sull.
Crevices of moist rocks, usually limestone, in monntainous or hilly regions. Fruit rare, spring. Litchafeld: Norfolk (1903), Miss Lorcnz; Salishmry, Eeons. Hartford: Windsor, Miss Lorenz. Fairfield: Sherman, Nichols.

Nova Scotia to Ninnesota, south to North Carolina: Europe: Asia.

Haplohymenium Doz. \& Molk.
Haplohymenium triste (Cesati) Kindb. Leskod tristis Cesati. Anomodon tristis Sull.
()n steep sumy rocks and at the base of trees. Not yet found fruiting in North America. Litchfiell): New Milford, Nichols. Nen llavex: East Haven (i856), Handen, and New Ilaven, Eaton; North Branford, Earans; Woodbridge, Eaton.

Eastern United States; Europe: Asia.
Ref. Eaton, 15, 65.

Anomodon Hook. \& Tayl.

r. Upper half of leaves lingulate, obtuse or short-apiculate. leaves spreading when moist................................... 2
Upper half of leaves more or less tapering.................. 3
2. Leaves apiculate and with large auricles at the base....
A. apiculatus

Leaves rounded at apex, base not auriculate........A. minor
3. Leaves blunt, apiculate, subsecund; branches tapering....
A. attenuatus

Leaves narrowly acuminate, spreading when moist:
branches blunt
A. rostratus

Anomodon apiculatus Br. \& Sch.
On shaded rocks and at the base of trees. Autumin. Lifolifield: Salisbury (igoo), Gilman.

Ontario and New England, south to Georgia; Europe: Asia.

Anomodon minor (Beaur.) Fürn. A. obtusifolius 1ir. $\&$ Sch.

On trees and rocks in the woods. Fruit rare, autumn. Litchfield: Salisbury, Vichols. Finhfield: Darien, Mrs. Loue ; Sherman, Nichols. New Haren: Cheshire. Eidus: Orange (1875), Eaton: Oxford, Harger.

New Brunswick to South Dakota, south to \irginia: Asia.
Ref. Chamherlain, 12, 78 . Eaton, 15, 65.

Anomodon attenuatus (Schreb.) Hüben.
Rocks. stumps, and trees in the woods. Autumm. Litcilfield: New Milford, Nichols; Salisbury, Gilman. Haktrorn: West Hartford, Miss Loronz. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hudlcy. Fimpfelı: Danbury, Nichols; Darien, Mrs. Lour. New Hanex: Reacon Fall: and Cheshire, Nichols: Hamden, Eaion: Meriden, Xichols; New Haven (1856), Eaton; Oxford, Harger. Mimmesex: Killingworth, Nichols. New London: Ledyard, Nichols.

Newfoundland to Florida, west to British Columlia and Kansas: Cuba: Europe; Asia.

Ref. Eaton, 15, 65.

Anomodon rostratus (Hedw.) Schimp.
At the base of trees and on rocks in the woods. Autumn. Litchfield: Cornwall, Brewster; New Milford, Nichols; Salisbury, Gilman. Hartrord: Farmington, Mrs. Loze; Hartford, Miss Lorchi. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadlcy. Fairfield: Danbury, Nichols; Darien, Mrs. Lowe; Sherman, Nichols. New Haven: Beacon Falls, Nichols; Hamden, J. A. Allen; Meriden, Nichols; New Haven (1855), Eaton; Woodbridge, Nichols. Mindlesex: Killingworth, Nichols. New London: North Stonington, C. B. Graves.

Canada to the Gulf of Mexico ; Europe ; Asia.
Ref. Eaton, 15, 65. Mrs. Hadley, 42.

Leskea Hedw.
Leaves ovate-oblong, obtuse, not plicate
.. obscura Leaves ovate-lanceolate, acute to acuminate, biplicate....

L. polycarpa

Leskea polycarpa Elirh.

On roots and stones, trunks of trees, and decaying wood in wet places. May-June. Tolland: Ellington, Pease. Fairfield: Darien, Mrs. Lowe. New Haven: New Haven, Eaton: Oxford, Harger; Wallingford (1878), Barron. New London: New London, Spanlding.

Newfoundland to British Columbia, and southward; Europe: Asia.

Exsic. Renauld \& Cardot, Musci Amer. Sept. No. 192․ Ref. Eaton, 15,65 .

Leskea obscura Hedw.
Roots of trees, stones, and $\log s$ subject to inundation. MayJune. Litcifield: Salishury, Nichols; Woodbury, Eaton. Hakteord: Farmington, Mrs. Lowe; Hartford. Miss Lorenz. Tomand: Vermon, Nichols. Windimm: Canterbury, Mrs. Hadley. New Haven: East Haven, Nichols; Hamden, O. D. Allcn; New Haven (i8j+), Eaton: North Haven, Nichols; Wallingford, Barron. Mimbesex: Killingworth and Portland, N'ichols. New fonion: New London, C. B. Graves.

New Prmaswick. Ontario, and the United States cast of the Rocky Mommians: Japan.

Ref. Eaton, $\mathrm{I}_{5}, 65$.
Rauia Aust.
Rauia scita (Biatur.) Nust. Hypmum scitum Beauv. Thuidium scitum Aust.

At the base of trees and on stones in the woods. Autumn. Tollavd: Ellington, I'case; Stafford, Nichols. Windiinm: Canterbury, Mrs. Hadley. New Haven: Hamden and New Haven, I. A. Allcn; Orange, Eaton; Wallingford, Barron; Woodbridge (i866), Eaton.

Ontario and New England, south to North Carolina and Missonri.

Ref. Eaton, 15, 65.
Haplocladium C. Mïll.
Stem leaves roundish-ovate, abruptly short-acuminate.
H. virginianum

Stem leaves ovate, gradually acuminate......H. microphyllum
Haplocladium virginianum (Brid.) Broth. Hypmum gracilo var. lancastricnse Sull. \& Lesq. Thuidiun virginianum Lindb.

On the ground in open woods. May-June. Litchriels: Salisbury, Nichols. Hartford: Canton, Nichols. Tolland: Stafford. Vichols. Windhan: Canterbury; Mrs. Hadley. Farrfield: Danbury, Nichols; Darien, Mrs. Lozve. New Haven: Beacon Falls and Meriden, Nichols; New Haven (1876), Pease; Orange, Nichols; Oxford, Harger. Mimdesex: Killingworth, Nichols. New London: Montville, C. B. (irates.

Tarsachusetts to Wiscomsin, south to Mexico: Europe.
Exsic. Grout, N. Amer. Musci Pleuro. No. 172 (as Thuidinm cirginianum).

Rem. Virs Lowe, 55; 58.
Haplocladium microphyllum (Sw_{w}) Broth. Hypnum gracile Br. \& Sch. Thuidium gracile Br. \& Sch. T. microphyllum Best.

On rotten wood, bases of trees, stones, and the ground. Summer. New Havex: Woodbridge (i879), J. A. Allen.

New Brunswick to British Columbia, and southward to the Gulf of Mexico: Cuba: Jamaica: Europe: Asia.

Ref. Limpricht. $5 \mathrm{I}^{2}, 828$.
Claopodium (Lesq. \& James) Ren. \& Card.
Claopodium pellucinerve (Mitt.) Best.
"On an old \log in a swamp." Farfield: Darien (igo3), Mrs. Low'c.

Known from but two other localities - North India and Sukon Territory.

Ref. Niss Wheeler, 80.
Thuidium Pr. \& Sch.

1. Monoicous; plants small 2

Dioicous; plants large, stems 6 -1o cm. long................ 3
2. Stem $\mathrm{I}-2 \mathrm{~cm}$. inng: branches papillose..........T. pygmæum

Stem $2-4 \mathrm{~cm}$. long: branches smooth...........T. minutulum
3. Stem pinnately branched; plants ascending......T. abietinum

Stems mostly lipimately branched: plants prostrate..... +
4. Stem leaves abruptiy acuminate, margin plane, midrib percurrent: perichactial leaves not ciliate....T. recognitum
Margin of stem leave revolute. midul vani-hing below the apex

5
5. Branches densely paraphyllose: stem leaves gradually acuminate, corely papillose: perichretial leaves ciliate
T. delicatulum

Branches with few or mo praphylia: stem leaves minutely papillose; perichotial leaves mot ciliate............T. Alleni

Thuidium pygmæum Br. \& Sch. Hypunm pysmenm Sull.

Rocks or earth in the wook. Summer. New Ilaven: (heshire (1879), J. A. Allion.

New England to (Ohio: Canala: S-ia.
Thuidium minutulum (lledw.) Br. is Sch. Hypmm mimutulnm Hedw.

At the hase of trees and on rotten logs in the woods. Autumn. Nbw Hawex: New Haven (1855) and Orange, Eatom: ()xhed, Harger: Voodhrilge, Ezans.

New Brunswick to Minnesota, south to Florida and Mexico; Europe.

Ref. Eaton, $15,65$.
Thuidium recognitum (IIedw.) Linda. Hyp hum recognitum Hedw.

On the ground, rotten wood, and rocks in moist woods. Nov.-Dec. Litchifielid: Salisbury, Gilman. hartford: Hartford, Mrs. Lotic. Tombinid: Stafford, Nichols. Windhum: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lowe. New Haven: East Haven (1855), Eaton; Handen, J. . I. Allen. Middesex: Killingworth, Nichols.

Labrador to Yukon Territory, south in the east to Florida ; Europe: Asia; Africa.

Thuidium delicatulum (L.) Br. \& Sch. Itypnum delicatulum L .

On the ground, rocks, and rotten wood in moist woods. Nov.-Dec. Litchfield: New Milford, Nichols; Norfolk, Eaton: Salisbury, Gilman. Hartford: Burlington, Nichols; -West Hartford, Miss Lorenz. Toll.and: Ellington, Pease; Stafford, Nichols. Winmima: Canterbury, Mrs. Haley. Fairfield: Danbury, Nichols; Darien, Mrs. Load. New Hawed: East Haven and Hamden, Eaton; Madison, Nichols; New Haven, J. A. Allen: Orange, Evans; Oxford, Harger; Woodbridge (i875), Eaton. Midmlesex: Chester and Kinlingworth. Nichols. New London: North Stonington and Waterford, C. B. Graves.

Labrador to the Rocky Momitains, south to the Gulf States and Mexico: West Indies: Central and South America; Europe: Asia.

Ref. Eaton, 15, 65. Mrs. Lowe, 59.
\#2. Thuidium Allen Aust. / ypuии, Allen Lesq. \& James.
Peat bogs. Mature sporophyte unknown. New Haven: New Haven (1880), J. A. Allen.

Connecticut to Louisiana.
Ref. Austin, 4, 15, 16. (Grout. 37, 2\&o. Lesquereux \&

James, 50, 327. Paris, 61, 275; 625, 3. Ran \& Hervey, 64, 52. Renauld \& Cardot, 65, 16.

Thuidium abietinum (L.) Br. \& Sch. Hypnum abictinmm L.

On rocks and the ground in dry, open woods, especially in calcarenus districts. Spring: not yet found fruiting in the eastern United States. Litchfiend: Salisbury (1907), Nichols.

Greenland to Virginia, westward to Alaska and the Rocky Mountainc: Europe: Asia.

> Elodium (Sull.) Warnst.

Elodium paludosum (Sull.) Loeske. Hypumn faludosum Sull. Thuidium paludosum Jaeg. \& Sauerb.

On the grombl in swamps and bogs. June. Hartford: Canton, Nichols. Winduam: Canterbury, Mrs. Hadley. Fairfieln: Darien, Mrs. Loac; Stratford, Nichols. New Haven: East Haven, O. D. Allen: Hamden and New Haven (1856). Eaton; Orange, Ezans; Woolbridge, Eaton. Middle\therefore Ex: Chester, J. A. Allen; Middlefield, Evans; Saybrook, Eaton.

Ontario and New England, sonth to Delaware and Inlinois: Asia.

ト̌isc. Ciront, N. Amer. Musci Pleuro. No. i56 (as Thuidium paludosum).

Ref. Eaton, 15, 66. Mrs. Hadley, 40. Mrs. Lowe, 58. Rait, 63 , 52.

FAMILI HYPNACEX

Camptothecium Br. \& Sch.
Camptothecium nitens (Schreb.) Schimp. Hypum nitens Sehreh.

Swamps, logs, and wet meadows. May-June. Hartrord: Berlin (1875), Coleman.

Arctic America, Canada, and the northern United States; Europe; Asia.

Ref. Eaton, 15, 66.

Brachythecium Br. \& Sch.

I. Stalk smooth throughout ${ }^{\text {a }}$. ... 2

Stalk more or less ronghened..................................... 5
2. Dioicous ... 3

Monoicous ... 4
3. Capsules erect and symmetrical................... B. acuminatum

Capsules unsymmetrical, more or less inclined..B. oxycladon

5. Stalk rough above, nearly smooth below; monoicous...... 6

Stalk rough throughout with large, crowded papillæ...... 8
6. Midrib extending nearly to apex of leaf........... B. populeum

Midrib extending to middle of leaf or a little beyond.... 7

Cilia not appendiculate B. campestre
8. Dioicous .. 9

Monoicous
9. Cells of branch leaves about 5 times as long as broad, unipapillate B. Novæ-Angliæ
Cells of branch leaves at least 8 times as long as broad, smooth
B. rivulare

Io. Stem leaves lanceolate; cilia not appendiculate.. B. velutinum
Stem leaves ovate to triangular-ovate......................... II
II. Cilia not appendiculate B. Rutabulum

Cilia appendiculate ... B. Starkei
Brachythecium salebrosum (Hoffm.) Br. \& Sch. Hypnum salebrosum Hoffm.

On rocks and earth, trunks and roots of trees, and decaying wood, in moist shaded places, especially in pine or hemlock woods. Autumn. Hartford: Farmington, Mrs. Lozue. Tolland: Stafford, Nichols. Vindham: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lozue. New Haven: Cheshire and East Haren, Nichols; Guilford, Handen, and New Haven (1856), Eaton; North Haven, Harger; Orange, Nichols; Woodbridge, Evans. New London: North Stonington, C. B. Graies.

Arctic America, Canada, and southward to South Carolina and Missouri ; Europe ; Asia; Africa.

Ref. Eaton, 15, 6 万.

Brachythecium campestre (C. Müll.) Br. \& Sch. Hypnum calnpestre Bruch.

Wet non-calcareous rocks, moist banks, or decaying logs. Winter. Litchfiedd: Salisbury, Nichols. New Haven: Hamden (1876), Pease; New Haven, Eaton; North Branford, J. A. Allen. New London: New London, C. B. Graves.

Canada and the northern United States, south to the mountains of Alabama and Colorado; Europe: Asia: Africa.

Ref. Eaton, 15, 66.
Brachythecium acutum (Mitt.) Sull. Hypumm acutum Nitt.

On rotten logs and earth in moist places. Autumn. New Haven: New Haven (1875), Peasc.

Canala and the northern United States, south to Arkansas.

Brachythecium oxycladon (Brid.) Jaeg. \& Sauerb. Hypmum latum Brid. Brachythecium latum Br. \& Sch.

Earth, rocks, and roots of trees in open woods. Autumn. Litcheield: New Milford, Nichols; Salisbury, Evans. Toiland: Somers, Pcase; Stafford, Nichols. Windhan: Canterbury. Mrs. Hadley. Fairfield: Darien. Mrs. Lozie; Huntingten. Sherman, and Stratford. Nichols. New llaven: Cheshire (1856), Eaton; Hamden, J. A. Allen; New Haven and Orange, Eaton; Woodbridge, Nichols. Middesex: Killingworth, Nichols; Saybrook, Eaton. New London: Waterford. (: B. Grazes.

Newfoundland to Florida, westward to the Rocky Mountains ; Europe.

Rbe. Eaton, 15, 6f.

Brachythecium Rutabulum (L.) Br. \& Sch. Hypmum Kutabulum L .

Earth, stones, trecs, and rotting wood in shaded places. Winter. Litchfield: Salisbury, Nichols. Windiam: Canterbury, Mrs. Hadley. Farrfeld: Darien, Mrs. Lozve; Sherman, Nichols. Nen Hivex: Cheshire, Nichols; Hamden, I. A. Allen; New Haven (I855), Eaton; Oxford, Harger.

Mambesex: Saybrook, Eaton. New I.onbox: New Lomdon, C. B. Grazes.

Newfoundland to Michigan, sonth to Maryland and Missouri, and on the Pacific slope: Greenland: Europe: Asia; Africa.

Exsic. Grout. N. Amer. Musci Pleuro. No. 66. Renanld \& Cardot, Musci Amer. Sept. No. 243.

Ref. Eaton, 15, 66.
Brachythecium rivulare $\mathrm{Br} . \&$ Sch. Hypunm rizulare Bruch.

Wet rocks in brooks, swamps, and ravines. Winter. Litchfield: Salisbury, Nichols. Hartford: Burlington, Nichols: Hartford, Mrs. Loüc. Tolland: Bolton, Nichols. Windham: Windham, Nichols. New Hiven: Beacon Falls, Nichols; Bethany ($18-6$), Eaton: Cheshire, Nichols: Hamden, J. A. Allen; Woodbridge, Breaster.

Northern North America, south to North Carolina and Missouri : Europe ; Asia.

Exsic. Renauld \& Cardot, Musci Amer. Sept. No. 244.
Ref. Eaton, 15, 66.

Brachythecium acuminatum (Hedw.) Kindb. Hypuum acuminatum Beauv.

On roots of trees, decaying logs, and rocks in moist woods. Autumon. Litchfield: Salisbury. Gilman. New Hiven: Orange (I889), Eaton.

Nova Scotia to Minnesota and Colorado, south to the Gulf States.

Brachythecium plumosum (Sw.) Br. \& Sch. Hyputm plumosum Sw.

Wet non-calcareous rocks in brooks. Autumn. Litchfield: Salisbury, Gilman. Tobland: Stafford and Vernon, Nichols. Windhane: Canterbury, Mrs. Hadlel: Windham, Nichols. Fairfield: Darien and Norwalk, Mrs. Loutc. New Haven: Beacon Falls, Nichols: Cheshire, Eaton; Derby and Handen. O. D. Allen; New llaven (1855). Eaton; Orange, Evans; Oxford, Harger: Woodbridge, Eaton. Mimolesex:

Killingworth, Nichols. New London: Waterford, C. B. Graves.

Newfoundland to British Columbia, south in the east to Alabama; Europe; Asia; Hawaiian Islands.

Ref. Eaton, 15, 66. Mrs. Lowe, 57.

Brachythecium populeum (Hedw.) Br. \& Sch. Hypnum populeum Hedw.

Stones, roots, and trunks of trees, in shaded places, especially in pine woods. Winter. Windham: Canterbury, Mrs. Hadley. New Haven: East Haven (1874), Young; Hamden, O. D. Allcu; Madison, Nichols; New Haven, Eaton.

Var. rufescens Br. \& Sch. Hypuum petrophilum Funck.
On trap rock. New Haven: New Haven (1876), Pease. The only American locality for the variety.

Nova Scotia to Ontario, south to North Carolina ; British Columbia; Europe; Africa.

Ref. Eaton 15, 66. Grout, 34, igo (var. rufcscens).

Brachythecium Starkei (Brid.) Br. \& Sch. Hypmum Starkei Hedw.

At the base of trees, on rotting stumps and earth, in moist mountainous or hilly woods. Vinter. Fairfield: Darien, Mrs. Lozve. New Haven: Woodbridge (1877), O. D. Allen.

Arctic America, Canada, and the northern United States; Europe.

Brachythecium Novæ-Angliæ (Sull. \& Lesq.) Jaeg. \& Sauerb. Hypmim Nourcr-Inslia Sull. \& Lesq.

On the ground in swamps and wet woods. Winter. Litcinfield: Salisbury, Nichols. Tolland: Bolton and Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Danbury, Nichols; Darien and Norwalk, Mrs. Lozue; Redding, Evalns. New Haven: Beacon Falls, Nichols; East Haven, Lians; Ilanden, Pcase; Madisun, Nichols; New Haven (1855), Eaton; North Haven, Nichols; Orange, Evans. Middlesex: Saybrook, Eaton. New London: Ledyard, Nichols.

Canada sonthward to North Carolina and Minornuri; Europe; Asia.

Ref. Eaton, 5 5, 66.

Brachythecium velutinum (I..) Pr. \& Sch. Mypmm velutinum L.

On earth and rocks, at the base of trees, and on rotting wood. Winter. New Haven: East Haven, Er'(lis: I lamrlen (1875), Young: New Haven, Eaton.

Canada and the northern United States; Europe ; Asia.
Ref. Eaton, $\mathbf{I}_{5}, 66$.
Cirriphyllum Grout

Stalk smooth	C. Boscii
Stalk rough	piliferum

Cirriphyllum piliferum (Schreb.) Grout. Mypuum piliferum Schreb. Eurynchium piliferum Br. \& Sch.

On the ground and at the base of trees in wet woods and meadows. Fruit rare, autumm. Litchfield: Salisbury, Nichols. Hartford: Farmington, Mrs. Lozue. New H.atex: Woodbridge (1876), O. D. Allcn.

Newfoundland to Maryłand and Ohio: Montana to Califormia: Greenland; Europe ; Asia.

Ref. Eaton, 15, 66.
Cirriphyllum Boscii (Schwaegr.) Grout. IIypmmm Roscii Schwaegr. Eurynchium Boscii Jaeg. \& Sanerb.

On rocks or on the ground in moist open woods. Fruit rare, autumn. Litchfield: Salisbury, Nichols. Winhinin: Canterbury, Mrs. Hadley. Fairfield: Huntington, Nichols; Redding, Evans; Sherman, Nichols. New Haven: Derby, O. D. Allen; East Haven, Handen, and Madison, Nichols; Meriden, Miss Lorenz; New Haven (1855), Eaton; Orange, Evans; Oxford, Harger. Middlesex: Killingworth, Nichols; Saybrook, Eaton. New London: Ledyard, Nichols; New London, C. B. Graves; Norwich, Setchell; Old Lyme, Eaton. Vermont to Florida, westward to Colorado and Arkansas. Ref. Eaton, 15, 66. Mrs. Hadley, 4I.
I4 CONNECTICUT GEOL. AND N.IT. HIST. SURLEY. [Sill. Eurynchium Br. \& Sch.
I. Stalk smooth 2
Stalk rough 4
2. Mosses growing on earth, rocks, or logs in moist wood, 3 Mosses growing on wet rocks in brooks or springs.E. rusciforme
3. Leaves spreading: branches attenuate E. strigosum Leaves appressed-imbricated; branches short, julaceous..6 -Io times as long as broad

Eurynchium strigosum (Hofin.) Br. \& Sch. Hypumm strigosum Hoffm.

Gravelly soil or rocks, roots and old logs, in open woods. Autumn. Tollavi: Ellington, Pcase. Windmam: Canterbury, Mrs. Hadley. New Haven : East Haven, Eaton: Hamden, Pease: New Haven (1855), Eaton: Orange, Nichols; Oxforl, Harger: Woodbridge, Eaton. Middesex: Killingworth, Nichols.

Irctic America, Canada, and the northern Cruited States: Europe: Asia; Ifrica.

Ref. Eaton, 15, 66.

Eurynchiurn diversifolium Br. \& Sch. Hypmom diácrsifolimm Schimp.

Soil and rocks in mountainous woods. Late antumm. Farfolen: Huntington, Nichols. New Havex: East laven, Cramor: llammen and New Haven (i866), Eaton. New Lonmo: Waterforl, C. B. Grazes.
()ntaris and New England to Pritish Columbia, south to Somisiana: Creemland: Europe: Asia.

Rer. Patom, 15 , ofo.

Eurynchium graminicolor (Rrid.) Ren. \& Card. Hypmum Sulīantii Spuce. Eurgnchium Sullizantii Jaeg. \& Sancrl. Jrvhmia sraminicolor Crout.
 shaded places. Antumm. Litcirfolin: Canaan and Salishury, Vichols. Tolmano: Stafforl, Nichols. New llavin: Branford and Cheshire (185^{S}). Eaton; Derby, O. I). Allen; Ilamden, Eaton; Oxforl, Harger: Woodbridge, J. A. Allen.

New Brunswick to Mimnesota, south to (ieorgia.
Exsic. Renanld \& Cardot, Masci Amer. Sept. No. igf (as E. Sullizantii).

Ref. Eaton, I5, 66. Grout, 35, 233.

Eurynchium hians (Hedw.) Jaeg. \& Sanerb. //ypumm lians Hedw.

Moist earth in open wools. Late antumn. Litcurnito: Salisbury, Nichols. H.netrorn: Burlington and Canton, Nichols; Manchester. Cheney. Tolland: Bolton and Stafford, Nichols. Windhan: Windlam, Noichols. New Haven: Cheshire (IS55), Blackman; East Haven, Eaton; Hamden, J. A. Allen; Meriden, Miss Lorenz; New Haven, Eaton; Woodbridge, Evans. Middlesex: Killingworth, Nichols.

Nova Scotia to British Colmmbia, south in the east to Alabana: Europe.

Ref. Eaton, $15,66$.

Eurynchium rusciforme (Neck.) Milde. Hypumm rusciforme Neck. Rhyuchostcgium rusciforme Br. \& Sch.

Dripping rocks and wet stones in brooks. Antumn. Litchfield: Salisbury, Gilman. Hartford: Burlington and Granby, Nichols. Tollanio: Stafforl and Vermon, Vichols. Fanffeld: Monroe, Miss Lorens: Redding, Ezans. Nisw Haven: Beacon Falls, Nichols: Hammen and New liaven (1856), Eaton: Orange, Eeroms; ()xford, Marser: Woorl-
 Killingworth, Nichols. New LoNoon: Ledyad, Nichols.

Newfonndland to Ontario, south to (ieorgia, and on the Pacific slope; Europe: Asia; Africa.

Exsic. Renanld \& Carlot, Musci Amer. Sept. No. 197 (as Khynchostegium rusciforme).

Ref. Eaton, 15, 67.

Rhynchostegium Br. \& Sch.
Rhynchostegium serrulatum (Hedw.) Jaeg. \& Sauerb). Hypnum serrulatum Hedw.

On earth, roots of trees, and logs in the woods. Autumn. Litchfield: New Milford and Salisbury, Nichols. Hartford: Famington, Mrs, Loue. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Darien. Mrs. Lowe; Huntington, Nichols; Norwalk, Mrs. Lozore. New Haven: East Haven, Guilford, and Meriden, Eatoll Madison, Nichols; New Haven (i855), Eaton; Orange, Erams; Oxford, Harger. Middeesex: Chester and Killingworth, Nichols. New London: Waterford, C. B. Grazes.

Newfoundland to Wisconsin, south to the Gulf of Mexico: Alaska; British Columbia.

Ref. Eaton, 15, 67.

Sematophyllum Mitt.

1. Plants growing on wet rocks; monoicous; leaves entire; cilia one or two, short and imperfect........S. carolinianum Plants growing on trees, decayed logs, or shaded banks; dioicous

2
2. Cilia two, well developed; leaves serrulate at apes
S. recurvans

Cilia none or rudimentary; leaves sharply serrate at apex
S. tenuirostre

Sematophyllum recurvans (Michx.) E. G. Pritton. /Iypum recurvans Beauv. Rhynchostegium recuratans Aust.

At the lase of trees, on rotten logs, and on the ground, in moist woods, especially in mountainous or hilly regions. Autumn. Litcurisin: Salisbury, Gilman. Hartford: Hartforld. IIrs. Luzer. Tomand: Stafford, Nichols. Windham: Cantertury, Mrs. /Iadley. Farrfield: Danbury. Vichols. New Haven: beacon Falls, Nichols; Handen (i855), Ealon: 1sfort, Harger; Woodbridge, Eaton. Midmesex: Killinguorth, Nichols.

Var. squarrosa (Michx.) E. G. Britton. Leskea squarrosu Micha.

Now HWm: New Ilaven (iggo), Chatterton.

Newfoundland to Manitoba, south to North Carolina and Missouri ; Mexico.

Ref. Mrs. E. G. Britton, io, 6i (var. squarrosu). Eaton, 15, 67.

Sematophyllum tenuirostre (Br. \& Sch.) E. (i. Britton. Hypnum cylindrocarpum C. Müll. Rhynchostegitum cylindrocarpum Aust.

On rocks and decaying logs in the woods. Autumn. New Haven: Hamden (1878), J. A. Allon.

Labrador and Newfoundland, south to Georgia.
Ref. Eaton, $15,67$.
Sematophyllum carolinianum (C. Mliull.) E. G. Britton. Hypnum denissum Wils. var. carolinianum Sull. \& Lesq.

Wet, non-calcareous rocks in mountain or hill ravines. Autumn. Litchfield: Salisbury, Nichols. Hartford: Hartford, Mrs. Lozve. Fairfield: Darien, Mrs. Loze. New Haven: Orange (i875), Young; Woodbridge, J. A. Allon. Middeesex: Killingworth, Nichols.

Newfoundland to the Gulf States; Asia.
Exsic. Grout, N. Amer. Musci Pleuro. No. 307 (as Raphidostegium carolinianum).

Isopterygium Mitt.

r. Leaves distinctly serrulate, at least in the apical half...... 2

Leaves entire, or nearly so.................................... 3
2. Plants monoicous: leaves serrulate to the middle
I. turfaceum

Plants dioicous; leaves scrrulate to the base..I. deplanatum
3. Leaves perfectly entire, without axillary propagula; branclilets tending to become flagelliform at the tips

I. Muellerianum

Leaves slíghtly serrulate at apex, and frequently producing numerous leafy propagula in the axils; branchlets never flagelliforn \ldots....................................I. elegans

Isopterygium deplanatum (Schimp.) Jaeg. \& Sauerb. Hypnum deplanatum Schimp. Rhynchostcgium deplanatum Sull.

On earth, flat stones, or rotten wood in minist woods.

Fruit rare, autumn. Tolland: Stafford, Nichols. New Haven: Cheshire, Evans; Hamden (1876), Pease.

Nova Scotia to Manitoba, south to Maryland and Missouri. Ref. Eaton, 15, 67.

Isopterygium turfaceum Lindb. Hypnum turfaceum Lindb.

In peat bogs or on moist rich soil in the woods. Early summer. Litchfield: Salisbury, Nichols. New Haven: East Haven, Nichols; Woodbridge (i880), J. A. Allen.

Canada south to Georgia and Texas: Europe.
Isopterygium Muellerianum (Schimp.) Lindl). Hypnum Muellerianum Hook. f.

Moist rocks and earth in mountainous or hilly ravines. Fruit rare, late summer. Litchfield: Salisbury, Miss Lorenz. Hartford: Manchester, Miss Lorenz. New Haven : Beacon Falls, Nichols; Hamden (i88o), J. A. Allen. Middeesex: Killingworth, Nichols.

New England to North Carolina and Ohio ; Europe ; Asia.
Isopterygium elegans (Hook.) Lindb. Hypnum elcgans Hook.

On the ground and rocks in mountainons or hilly woods. Summer. New Haven: Beacon Falls, Nichols; Woodbridge (1879), J. A. Allen.

Throughout northern North America, and south along the mountains to Alabama; Europe: Asia.

Plagiothecium Br. \& Sch.

Leaves more or less complanate............................ 2
2. Teeth of peristome not confluent at hase and withont cross striations on nuter surface; cilia lacking...... P. latebricola
Teeth of peristome confluent at base and distinctly transversely striate on onter surface; cilia present

[^12]4. Stems depressed: leases distinctly complanate, acute in acmminate, dark green, scarcely glossy........ P. sylvaticum Stems ascending: leaves obscurely complanate or spreading, distinctly acuminate, pate green, glossy...P. Roeseanum

Plagiothecium latebricola (Wiils.) Br. \& Sch. IIypnum latebricola Lindl).

Roots, stumps, and hummocks in swamps. Late summer. New Hayen: East Haven (1879), J. A. Allen.

Nova Scotia to Ontario, south to Alabama: Europe.
Plagiothecium sylvaticum (Huds.) Br. \& Sch. Hypnum sylaticum Huds.

On soil, rocks, and decaying logs in the woods. Simmer. Litchfield: New Milford, Nichols: Salisbury, Gilman. Hartford: Hartford, Miss Lorenz. Tolland: Stafford, Nichols. Windhum: Windham, Vichols. New Haven: Beacon Falls, Nichols; Meriden (IS56), Eaton; North Haven, Nichols: Oxford, Harger: Woodbridge, Eaton. Middlesex: Durham, Eians.

Nova Scotia to Mimmesota, south to Alabama: Alaska to Oregon; Europe; Asia: Africa.

Ref. Eaton, 15, 67.
Plagiothecium Roeseanum Br. \& Sch. Hypmum Sullivantia Schimp.

On earth and stones in swampy woods. Summer. Windham: Canterbury, Mrs. Halley' New Haven: East Haven, J. A. Allen; New Haven ($18-6$), Pcuse.

Nova Scotia to Alaska and British Columbia, south in the east to Florida; Europe; Asia.

Plagiothecium denticulatum (I.) Br. \& Sch. Hypnum denticulatum L .

Decayed logs, stones, and humbs in moist woods. Summer. Litchfield: Salisbury, Nichols. Hartande: Farmington, Mrs. Lozec; Southington. Chamberlain. Toll..Nn: Ellington, Pcase; Stafford, Nichols. Windinin: Canterbury, Wes. Hadlcy; Windhan, Nichols. Furfeld: Darien, Mrs. Lone. New Haven: Beacon Falls, Nichols; Bethany, Merriam;

East Haven, Eaton; Hamden, Pease; New Haven, J. A. Allen; North Haven, Nichols; Orange (1874), Young. Middelesex: Killingworth, Nichols.

Var. lætum (Br. \& Sch.) Lindb.
Tolland: Ellington, Pease. New Haven: New Haven (1876) and Woodbridge, Eaton.

Arctic America, Canada, and the northern United States, southward along the mountains; South America; Europe; Asia : Africa; New Zealand; Tasmania.

Ref. Eaton, 5 5, 67.
Plagiothecium striatellum (Brid.) Lindb. Hypnum Muhlenbeckii Spruce. P. Muthlenbeckii Br. \& Sch.

On earth, non-calcareous rocks, and rotten logs in the woods. Summer. Litchfield: Salisbury, Gilman. Hartford: East Hartford, Mrs. Lowe. Tolland: Ellington, Pease; Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lozve; Easton, Eames; Norwalk, Mrs. Lozue; Redding, Evans; Stratford, Eames. New Haven: Beacon Falls, Nichols; East Haven, J. A. Allen; Hamden and New Haven (iS66), Eaton. Middeesex: Durham, Evans; Killingworth, Nichols; Saybrook, Eaton. New London: East Lyme, C. B. Graves; Ledyard, Nichols; Old Lyme and Waterford, C. B. Graves.

Greenland and Newfoundland to Minnesota, south to North Carolina; Alaska; Europe.

Ref. Eaton, 15, 67. Mrs. Lowe, 56.

Amblystegiella Locske

Plants minute ($0.5-\mathrm{I} \mathrm{cm}$. long) ; leaves $0.2-0.4 \mathrm{~mm}$. long
A. confervoides

Plants larger ($2-+\mathrm{cm}$. long); leaves o.S-r. 2 min. long..
A. adnata

Amblystegiella confervoides (Brid.) Loeske. Hypunm confervoides Brid.

Shaded limestone ledges. Summer. Litchfield: Salisbury, Nichols. Farkfeld: Sherman (1906), Evans.

New Brunswick to Comnecticut and Ohio, westward to the Rocky Mountains; Europe; Asia.

Exsic. Grout, N. Amer. Musci Pleuro. No. 3I7 (as Amblystegium confervoides).

Amblystegiella adnata (Hedw.) Nichols. Hypnum adnatum Hedw. Amblystcgium adnatum Aust.

On rocks and at the base of trees in the woods. Autumn. Litchfield: Salisbury, Nichols. Fairfield: Danbury, Nichols; Darien, Mrs. Loũc. New Haven: East Haven. Eaton; Meriden, Nichols; New Haven (i875), Eaton; Woorlbridge, J. A. Allcn. New London: New London, C. B. Graves.

New Brunswick to British Columbia, sonth to North Carolina and Texas; Asia.

Ref. Eaton, 15, 67.
Amblystegium Br. \& Sch.

Leaves not bordered
2
2. Midrib extending nearly or quite to apex.................... 3

Midrib disappearing at the middle or above................ 6
3. Leaves not acuminate, apex blunt................... A. fluviatile

Leaves acuminate, apex acute................................. +
4. Basal cells abruptly enlarged............................. A. irriguum

Basal cells not enlarged.. s
5. IIidrib ceasing below aper, $0.02+-0.035 \mathrm{~mm}$. wide at base.
A. varium

Midrib commonly strong, excurrent, $0.065-0.225 \mathrm{~mm}$. wide at base .. A. noterophilum
6. Cells near middle of leaf ro-is times as long as broad.
A. riparium

Cells near middle of leaf 8 times as long as broad, or less.. ;
7. Alar cells quadrate or transversely elongated.......A. serpens

Alar cells oblong
8
8. Stem leaves 0.9-1.2 mm. long..................... A. Juratzkanum

Stem leaves i.2-1. 6 mm. long.............................. A. Kochii
Amblystegium serpens (L.) Br. \& Sch. Hypnum serpons L.
()n the roots and at the have of trees, on docaying logs,

Salisbury, Nichols. Hartford: Hartford, Wrs. Lozic. TolLand: Ellington, Pcase. New Haren: Branford and Hamden, O. D. Allcn; New Haven (iS55), Eaton; New London: Waterford, C. B. Grazes.

Arctic America to the Gulf of Texico: found in most parts of the world.

Ref. Eatom, 15, 17.

Amblystegium Juratzkanum Schimp.

Moist stones or earth. Early summer. Litchfield: Salisbury (igo5), Nichols. Winnifam: Canterbury, Mrs. Hadley. New Hiren : North Pranford, Eíans.

Temperate North America; Europe: Asia.
Amblystegium varium (Herlw.) Lindb. ITypulm orthocladon Bricl. Amblystegimm radicale Br. \& Sch. Hypumm radicale Wils. Amblystegium orthocladon Mac. \& Kinclb.

On stones, earth, or rotten wood, and at the base of trees in moist woods. Late spring. Litchfieln: Salisbury, Gilman. Hartford: Canton, Nichols; Windsor, II. İ. Britton. Tollind: Ellington, Pease; Stafford, Sichols. Winnilin: Canterbury, Mrs. /hadley. Farfalen: Darien, Mrs. Loa'e; Redding, Eerons. New Ilaven: Cheshire, Nobhols: East Haven, Hamden, and New Haven, O. D. Hllon: North Branford, Eians; (Mrange (1874), Kleoberger. Midmesex: Chester, Nichols. NEW London: Groton, C. B. Grazes.

Southern Camala to the (inlf of Mexico: Enrope.
Ref. Eaton, 15, 67.
Amblystegium irriguum (l\ils.) Fir. \& Sch. //ypumm irrigumm Wils.

On earth or stones, not on limestone, in wet places, fre'flently in the water. Late spring. Hartmond: Ilartford and Windsor, M/rs. Loãc.
()ntario sonthward to North Carolinat and Missouri; Entope ; Asia; Africa.

REE. Mrs. Lowe, 58.
Amblystegium noterophilum (sull.) ! ! Azing. //ypmm itrigumm var. spinifolium Lesp. \& James.

In or at the margins of springs and streans in calcateons regions．Narely fruiting：summer．Litchemeld：Salisbury： （1907），Nichols．

New England to Pennslvania，westward to Montana and Oregon．

Amblystegium fluviatile（Sw．）Br．\＆Sch．IIypumm Aluriatile Sw．

Rocks or earth in and along streams in non－calcareons districts．Early ammer．Litcufield：Salisbury，Nichols． H．artford：Berlin，Coleman：Plainville and Southington． Chamberlain．Tolf．ino：Ellington，Pcase；Stafford，Nichols． Windmam：Canterbury，Mrs Hadley．New Harex： Cheshire．Eaton；East Haven，O．D．Allen；Hamden，Nichols： Meriden（i856），Eaton；North Branford，Ezans．Minnle－ sEX：Killingworth．Nichols．

Newfoundland to Wisconsin，south to New Jersey and Missouri ：Europe．

Exsic：Renatid \＆Cardot．Musci Amer．Sept．No．2＋5 （as 1．orthocladon）．

Ref．Eaton．15， 67.
Amblystegium Lescurii（心ull．）Anst．Hypmum Lescurii Sull．

Wet rocks in mountain or hill streams．Late spring． Tolland：Ellington．Peasa；Stafford，Nichols．New Haven： Ansonia，O．D．Allell：Beacon Falls，Nichols；Hamden，J．． Allen；Orange（Iタフィ），Klecberger．New Loxion：Groton， C．B．Graies；Ledyard，Nichols．

Ontario and New England，south to Georgia．
Amblystegium riparium（L．）Br．\＆Sch．IIpmum ripa－ rium L ．

On earth，stones，and roots of trees，in swamps，springs， or rumning water．Late spring．Litchfield：Litchfield． Mrs．E．G．Britton：Salisbury，Vichols．Itartaorn：Itart－ ford，Mis．Loatc：Southington，Nichols．Tons．aNo：Bolton， Nichols；Ellington．Pasc．NEW flaven：East Hasen，Ham－ den，and New Haven（ ford，C ．B ．Graics．

Var. longifolium (Schultz) Br. \& Sch.
Fairfield: Darien (igo3), Mrs. Louec.
Throughout North America, and in most parts of the world.

Ref. Eaton, $15,67$.
Amblystegium Kochii Br. \& Sch.
On earth in moist woods. Early summer. New Haven: New Haven (1906), Nichols.

Probahly throughout temperate North America: Europe : Asia.

Chrysohypnum (Hampe) G. Roth
I. Midrib wanting, or very short and double................ 2

Midrib distinct, single.. 4
2. Monncous; plants small ($\mathrm{I}-4 \mathrm{~cm}$. long) ; leares finely serrulate all around..................................... C. hispidulum Dinicous; plants larger ($5-10 \mathrm{~cm}$. long) ; leaves entire.... 3
3. Stems crect or ascending; leaves gradually acuminate.
C. stellatum

Stems procumbent; leaves suddenly ending in a long piliform acumen
C. protensum
4. Leaves squarrose, alar cells scarcely enlarged
C. chrysophyllum

Leaves erect, spreading: alar colls enlarged...C. polygamum
Chryschypnum hispidulum (Brid.) (i. Roth. Hypmum hispidulum Brid.

Roots of trees, decayed wood, and humus, in wet, swampy wouls. Summer. Litchfield: Salisbury, Nichols. HartForb: Farmington, Mrs. Loäc. Tolland: Ellington, Pease. Windilam: Canterbury, Mrs. Hadley. New Haven: Cheshire and East Haven, Eaton; Hamden, J. A. Allen; Madison, Nichols; New Haven (1856), Eaton; Orange and Oxford, Harger. New London: New London and Waterford, C. B. Grazes.

Canada southward to North Carolina and Missouri; Europe; Asia.

Ref. Eaton, 15, 67.
Chrysohypnum chrysophyllum (Brid.) Locske. Hypmum chrysophyllum Drid.

Rocks, earth, roots, and stumps, in moist places. Summer.

Litchfield: Salisbury, Gilman. Hartford: Farmington, Mrs. Loze ; West Hartford, Miss Lorenz. Tollanb: Ellington (1876), Pease; Stafford, Nichols. Windmam: Canterbury, Mrs. Hadley. New Haven : East Haven, Eaton: Hamden, O. D. Allen; New Haven, Pease; Orange, O. D. Allen. Middesex: Killingworth, Nichols.

Var. tenellum Schimp. Itypmum bergenonse Aust.
New Haven: Ansonia, O. D. Allen; New Haven (i88ı), J. A. Allen.

Canada and the northern ['nited States, south to Louisiana; Europe ; Asia.

Ref. Eaton, 15, 67.
Chrysohypnum protensum (Brid.) Loeske. Hypnum stellatuin var. protensum Röh1.

On hummocks in swamps, and on the ground in wet places. Fruit rare, summer. Neiv Haven: Branford, O. D. Allen; Cheshire, Nichols; New Haven (i88o), J. A. Allch. New London: Norwich, Hatcher.

Canada and the northern United States: Europe: Asia.
Chrysohypnum stellatum (Schreb.) Loeske. Hypnum stellatum Schreb.

Wet banks and swamps. Summer. Litchfield: Salisbury, Nichols. Hartford: Farmington (1903), Mrs. Lowe; West Hartford, Miss Lorenz. Fairfield: Danbury, Nichols. New Haven: Meriden, Miss Lorenz.

Arctic America, south to Virginia ; Europe ; Asia.
Chrysohypnum polygamum (Br. \& Sch.) Locske. Hypnum polygamum Wils.

Moist sandy places in meadows and swamps. Early summer. Windham: Canterbury, Mrs. Hadley. Fairfield: Stratford, Eames. New Haven: Oxford (i89o), Harger.

Arctic America, Canada, and the northern United States: Europe; Asia.

Cratoneuron (Sull.) G. Roth
Cratoneuron filicinum (L.) G. Roth. Hypuum filicinum L. On wet limestone rocks, frequently in springs or swamps.

Fruit rare, spring. Litciffield: Salisbury (i905), Nichols. Fairfield: Sherman, Nichols.

Arctic America, Canada, and the northern United States, south to the mountains of Utah: Enrope ; Asia; Africa.

Rhytidiadelphus (Lindb.) Warnst.

Rhytidiadelphus triquetrus (L.) Warnst. Hypumm triquetrum L. Hylocomium triquetrum Br. \& Sch.
()n the gromd in swampe or dry woods. Fruit occasional, carly spring. Tifcmeneli: Comwall, Brewster: Salisbury, Wichols. Hartford: Plainville, Chamberlain; West Hartford, Miss Lorenz. Tollinn: Stafford, Nichols. Windiham: Canterbury, Mrs. Hadley. Fairfield: Sherman, Nichols. New Haven: East Haven (1855), Eaton; Hamden, J. A. Allon; New Haven, Eaton: North Branford, Eeans; Voodbridge, Eaton. New London: Griswold, C. B. Grazes.

Arctic America. Canada, and the northern Cnited States: south in the cast to North Carolina; Europe : Asia; Africa.

Rer. Eatom, 15,68 .
Rhytidiadelphus squarrosus (L.) Warnst. Hypnum squarrosum L.

Meadows and wet grassy places. Fruit rare, spring. New HIVEN: Handen (18eo), I. . . Allen.

Aretic America, Canada. and the northern Enited States; Europe: Asia: Azores.

Rhytidium (Sull.) Kindb.
Rhytidium rugosum (Ehrh.) Kindb. Hypnum rugosum Ehrh.

In dry grasse places and on sumy rucks, msmally calcarenns, in monntainous or hilly regions. Fruit very rare, sum-
 man, Vichols Xell MINEX: Meriden (1873), Eaton.

Srotic Amorica, Camada, and the morthern ('nited States; bimope: \sia.

Ressc. Renauld \& Cardot, Musci Amer. Sept. No. 200. Ref. Eaton. 15, 6 ,

Hylocomium Br. \& Sch.
Stem regularly bi-tripimate: stem leaves gradually acuminate, not auricled
H. splendens

Stem irregularly pimate: stem leave abruptly acuminate, auricled at the base............................... brevirostre

Hylocomium splendens (Hedw.) Br. \& Sch. Hypnum splendens Hedw.

Moist mountain or hill woods. Fruit occasional, spring. Litchereld: Norfolk, Eaton; Salisbury, Gilman. Tollind: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Firrfield: Newtown. Hargor; Redding, Eeams. New Haven: New Haven (I855), Eaton; North Branford, Miss Bradley; Woodbridge, Ez'ans. New London: L.edyard, C. B. Grazes.

Arctic America. Camada, and the northern United States: Europe: Asia : Africa.

Ref. Eaton, 15, 68.
Hylocomium brevirostre (Ehrh.) Br. \& Sch. Hypuum brecirostre Ehrh.

On rocks and at the base of trees in wet ravines. Spring.
Litchfield: Salisbury, Gilman. Fairfield: Monroe, Miss Lorenz; Redding, Eians. New Haven: Beacon Falls, Nichols; Cheshire and Handen (1866), Eaton; ()xford, Harger; Woodbridge. Euton.

Nova Scotia to Ontario, south to North Carolina ; Europe; Asia; Africa.

Ref. Eaton, I5, 68.
Ctenidium (Schimp.) Mitt.
Ctenidium molluscum (Hedw.) XAt. Hypmum mollusclim Hedw.

Doist rocks and earth in muntainous or hilly woods. Fruit occasional, summer. Litcirfield: Salisbury, Nichols. Windham: Canterbury, itrs. Hadley. New lhaen: East

Haven, Eidells; Hamden (1855), Eaton. Middlesex: Killingworth. Nichols.

Newfoundland to Georgia, west to the Rocky Mountains; Europe; Asia; Africa.

Ref. Eaton, 15, 67.

Ptilium (Sull.) DeNot.
Ptilium Crista-castrensis (L.) DeNot. Hypnum Cristacastrcusis L.

On moist earth and rotten logs in mountainous or hilly woods. Fruit occasional, autumn. Litchfield: Cornwall, Brewster: Norfolk, Eaton; Salisbury, Nichols. Hartford: Hartford, Mrs. Lozie. Windham: Canterbury, Mrs. Hadley. New Haven: East Haven and Hamden, Eaton; Oxford, Harscr: Woudbridge (1875), Eaton. New London: Groton and Montville, C. B. Graves; Norwich, Setchell; Preston, C. B. Grazes.

Arctic Smerica, Canada, and the northern United States, south in the east to North Carolina; Europe ; Asia.

Ref. Eaton, i5, 68.

Stereodon (Brid.) Mitt.

Alar cells quadrate, not enlarged.................................. 6
2. Capsule plicate when dry; leaves serrulate above........... 3

Capsule not plicate when dry................................... 4
3. Alar cells scarcely inflated, yellow, thick-walled..S. curvifolius

Alar cells inflated, lyyaline, thin-walled..........S. Lindbergii
4. Capsule suberect; leaves serrulate all aromd, alar cells orange; paraphyllia numerousS. imponens
Capsule cernuous; leaves serrulate only above, alar cells green, hyaline, or yellow-brown; paraphyllia few

5
5. Mosses growing on obark or logs in the woods.......S. fertilis

Mosses growing on the ground in swamps.........S. pratensis
6. Quadrate cells numerous; midrib absent or very short....
S. cupressiformis

Quadrate cells few; midrib usually reaching to middle of leaif
7. Branch leaves long-acuminate, serrulate to near the base

S. pallescens

Branch leaves subulate to short-acmminate, servulate only
above the middle S. reptilis
Stereodon fertilis (Senclt.) Lindi). Iypnum fortile Sendt.
Rotten ligs and stmmps in mountainous or hilly woods. Summer. Whidiam: Canterbury, Mrs. Hadley. New HIMEN: ()xford (i88S), Harger.

Canata and the northern United States, south in the east to Georgia ; Europe : Asia.

Stereodon pallescens (Hedw.) Lindb. Hypuum pallescens Br. \& Sch. Hi. Jamesii Lesq. \& James.

On rocks and stumps and at the base of trees in hilly woods. Summer. Litchfield: Salisbury, Nichols. Windidam: Canterbury, Mrs. Halley. New Haven: East Haven and Woodbridge (1866), Eaton. New London: East Lyme, New London, and Waterford, C. B. Grazes.

Canada and the northern United States, south in the east to North Carolina; Europe; Asia.

Ref. Eaton, 15, 67.
Stereodon reptilis (Michx.) Mitt. Hypuum reptile Michx.

On roots, logs, and at the base of trees, especially spruce, in mountainous or hilly woods. Autumn. Litchfield: Salisbury, Gilman. Hartford: Hartford, Mrs. Loze. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Danbury, Nichols; Darien, Mrs. Lozee. New Haven : New Haven (1876), J. A. Allen; Orange, O. D. Allcn. Middlesex: Killingworth, Nichols.

Canada sonth to North Carolina and Utah; Europe: Asia. Ref. Eaton, 15, 67. Mrs. Lowe, 58.

Stereodon imponens (Hedw.) Lincll). Hypumm impuncois Hedw.

On stones, earth, roots, and stimps in moist woml. Late autumn. Litchrield: Salisbury, Gilman. Haktroki: Canton, Nichols; West Hartford, Miss Lorcni; Windsor, WV. E.

I64 Connecticut geol. and nat. hist. survey. [Bull.
Rritiou. Tolland: Stafford, Nichols. Windham: Canterbury. Mrs. Hadley. New Haven: Beacon Falls, Nichols; Hamden. J. A. Allen; New Haven (1855), Eaton; Woodbridge. O. D. Allen.

Canada south to Georgia and California; Europe; Asia.
Ref. Eaton, 15, 67.
Stereodon cupressiformis (L.) Lindb. Hypnum cupressiforme L .

Rocks, roots, and trunks of trees, in moist woods or wet ravines. Late autumn. Litchrield: Salisbury, Nichols. Hartford: Canton, Nichols; Hartford, Mrs. Lowe. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley; Windham, Nichols. Fairfield: Danbury, Nichols; Redding. Ei'ans; Sherman and Stratford, Nichols. New Haven : Derby, O. D. Allen; East Haven, Hamden, and New Haven, Eaton; Oxford, Harger. Middlesex: Chester and Killingworth, Nichols. New London: New London, C. B. Graves.

Arctic America, Canada, and south to the Gulf States; a cosmopolitan.

Ref. Eaton, 15, 67.
Stereodon Lindbergii (Mitt.) Warnst. Hypuum Patientia Lindb.

Moist woods, meadows, and swamps. Summer. Litchfield: Salisbury, Nichols. Hartford: Canton, Nichols. Windifam: Canterbury, Mrs. Hadley. Fairfield: Darien (igo3), Mrs. Lowe. New Haven: New Haven, Nichols. Mimblesex: Killingworth, Nichols.

Arctic America, Canada, and the northern United States, south in the east to Florida; Europe ; Asia.

Exsic. Grout, N. Amer. Musci Pleuro. No. 14I (as H. Paticntic).

Stereodon curvifolius (Hedw.) E. G. Britton. Hypnum curvifolium Hedw.

On decaying logs, rarely on rocks, in moist woods. Early summer. Limchemeld: Salishury, Nichols. Tolland: Elling-
ton. Pease. Winnuma: Canterbury, Mrs. / adley. New Haten: Beacon Falls, Nichols; Cheshire (1856), Eaton; Hamden and New Haven, J. A. Allen; North Branford, Eaton; Prospect, Mcrriam. Mmbesex: Killingworth, Nichols. New London: Ledyard, Č. B. Graves.

Arctic America and Canada, southward to Florida and Colorado; Asia.

Ref. Eaton, 15, 67.

Stereodon pratensis (Koch) E. G. Britton. IIypuum pratente Koch.

Swampy meadows. Fruit rare, spring. Ilaktrord: Windsor, Miss Lorenz. Mindiam: Canterbury, Mrs. Hadley'. Fairfield: Bridgeport. Eames. New Haven: Hamden (1875), Young; New Haven, O. D. Allen; Orange, Evans.

Arctic America, Canada, and the northern United States, south in the east to Florida; Europe; Asia.

Heterophyllon Kindb.
Heterophyllon Haldanianum (Grev.) Kindb. Hypnum Haldanianum Grev.

Rocks, eartl, and rotten logs in the woods. Autumn. Litchfield: Salisbury, Nichols. Hartford: Burlington and Canton, Nichols; Hartford, Miss Lorenz. Tolland: Bolton, Nichols; Ellington, Pcase. Windham: Canterbury, Mrs. Hadlcy. Fairfield: Danbury, Nichols; Darien and Norwalk, Mrs. Lowe. New Haven: Bethany, Eaton; East Haven, Nichols; Hamden, Eaton; Madison, Nichols; New Haven (1866), Williams; North Haven, Nichols; Orange, Chatterton; Oxford, Harger; Woodbridge, Eaton. New London : New London, C. B. Grazes.

Nova Scotia to Montana, and sonth to Alabana and Missouri ; Europe ; Asia.

Exsic. Grout, N. Amer. Musci Pleuro. No. $47^{\text {a }}$ (as $/ / y p-$ num Haldanianum). Renauld \& Cardot, Musci Amer. Sept. No. 199 (as H. Haldanianum).

Ref. Eaton, 15, 68.

Hypnum (Dill.) L.
Hypnum Schreberi Willd.
Dry, open woods, banks, bogs, etc. Fruit occasional, spring. Iatchfielin: New Milford and Salisbury, Nichols. Hartford: Canton, Nichols; Hartford, Mrs. Loze. Tolland: Stafford. Nichols. Windham: Canterbury, Mrs. Hadley. FAirfieli: Redding, Evans. New Haven: East Haven, Erans; Hamden, Eaton; Meriden, Nichols; New Haven (1865) and Woodbridge, Eaton. Middlesex: Killingworth, Nichols. New London: Groton, C. B. Graves.

Arctic America, Canada, and the northern United States; Europe; Asia.

Ref. Eaton, 15, 68.
Calliergon (Sull.) Kindi).
Plants monoicus (autoicous), sparingly branched: alar cells enlarged, but passing gradually into the normal cells of the leaf...................................... cordifolium
Plants dioicous, profusely branched: alar cells inflated, forming a sharply defined group............... C. giganteum
Calliergon giganteum (Schimp.) Kindb. Hypnum gigantorm Schimp.

Pons, swamps, and wet places, especially in calcareous districte. Fruit rare, May-June. Litchfield: Salisbury, Mrs. Phelfs. Earfield: Danbury (igo7), Nichols.

Fircenland to Pennsylvania and westward to the Pacific coast: Entrope: Asia.

Calliergon cordifolium (Hedw.) Kindb. Hypunm cordifolimm Hedw.

Sivampor marshes, and margins of pools. Fruit rare, summer. Lifulfatis: Salisbury, Phelps. Tolland: Stafford, Vichols. Wambase: Windham. Nichols. New Haven: Mamben, Eaton; New Haven, Nichels: North Branford, J. A. . Illon; ()range (1855) , Iaton: Woodbridge, Eéans. MibdleSEX: Saybrook, Eat n.

Aretic hmerica, Canala, aml the northern United States; Europe: Isia.

Rem, Laton, 15,68 .

Acrocladium Mitt.
Acrocladium cuspidatum (L.) Lindb. Hypnum cuspidatum L .

Swamps, bogs, and wet meadows. Fruit rare, summer. Litchfield: Salisbury, Gilman. Hartford: Berlin, Coleman. New Haven: East Haven, Eaton; Meriden, Miss Lorenz; New Haven and Orange (1855), Eaton.

Canada and the northern United States; Europe; Asia; Africa.

Ref. Eaton, 15, 68.

Drepanocladus (C. Müll.) G. Roth

I. Stem with a cortical layer of large, hyaline cells............ 2

Stem lacking a distinct cortical layer.......................... 3
2. Leaves distinctly plicate when moist, and usually minutely serrulate; plants monoicous (autoicous)..........D. aduncus
Leaves not plicate when moist, entire; plants dioicous..
D. intermedius
3. Leaves serrulate, at least near the apex; annulus lacking; plants monoicous (autoicous)
D. fluitans

Leaves entire; annulus distinct; plants dioicous.
4
4. Alar cells enlarged and forming a well-defined group which extends from the margin of the leaf to the midrib.
D. Kneiffii

Alar cells enlarged, but not extending more than half-way
from the margin to the midrib.............................. 5
5. Alar cells hyaline, becoming brown with age, and forming a clearly defined group; midrib $0.05-0.06 \mathrm{~mm}$. wide at base ... D. subaduncus
Alar cells yellowish brown, enlarged, but showing a gradual transition into the normal cells of the leaf; midrib $0.07-0.11 \mathrm{~mm}$. wide at base.
D. Sendtneri

Drepanocladus Kneiffii (Schimp.) Warnst. Hypmum aduncum var. Kneiffi Schimp.

Bogs and swamps, often in the water. Fruit rare, MayJune. Litchfield: Salisbury (1907). Nichols. Fimpfield: Danbury, Nichols.

Arctic America, Canada, and the northern United States; Europe; Africa.

Drepanocladus subaduncus Warnst．Hypnum aduncum var．gracilescens Br．\＆Sch．

Swamps and wet places，especially in limestone regions． Rarely fruiting，May－June．Litchfield：Salisbury（i907）， Nichols．Fairfield：Danbury，Nichols．

Northern North America；Europe．

Drepanocladus Sendtneri（Schimp．）Warnst．var．gigan－ teus（Schimp．）Warnst．Hypnum Sendtneri Schimp．H ． hamifolium Schimp．

Swamps and bogs，in the water．May－June；fruit of the variety unknown．Hartford：Southington，Miss Lorenz． New Haven：Ňew Haven（1877），O．D．Allen．

Arctic America，Canada，and the northern United States， south in the west to Utah；Europe；Asia．

Ref．Eaton，15，67．Rau \＆Hervey，64， 45.

Drepanocladus intermedius（Lindb．）Warnst．Hypиит revolvens Sw ．var．intermedium Ren．

Deep swamps．Rarely fruiting，May－June．Litchfield： Salisbury（1907），Nichols．

Northern North America；Europe．
Drepanocladus aduncus（L．）Warnst．Hypnum aduncum L．H．uncinatum Hedw．

Bogs，meadows，and swampy woods．Fruit rare，summer． Fairfield：Stratford，Nichols．New Haven：Bethany， Eaton；Branford，O．D．Allen；Cheshire，Harger；East Haven， New Haven（1855），and Orange，Eaton；Oxford，Harger； Woodbridge，J．A．Allcn．Middlesex：Durham，Evans．

Arctic America，Canada，and the United States，south to North Carolina and Nevada；Europe：Asia．

Kef．Eaton， $15,67$.
Drepanocladus fluitans（L．）Warnst．Hypnum fluitans L． Open swamps and bogs，in the water．Summer．Litch－ fielı：Salisbury，Nichols．New Haven：Hamden，Evans； New Haven（i893），Eaton；Oxford，Harger．

Arctic America，Canada，and the northern United States，

No. il.] the bryophytes of connecticur.
south in the west to Citah: Europe: Asia; Africa; New Zealand.

Hygrohypnum (Lindl).) Loeske
I. Leaves suborbicular; alar cells yellow: midrib faint, short, furcate
H. dilatatum

Leaves ovate or ovate-lanceolate........................... 2
2. Dioicous; alar cells hyaline or yellowish: midrib reaching middle of leaf or beyond, simple or furcate; perichetial leaves not plicate ochraceum
Monoicous; alar cells golden yellow to yellow-brown, rarely hyaline; perichætial leaves plicate.................. 3
3. Midrib absent, or short and furcate......................... 4

Midrib single, reaching above middle of leaf...... H. palustre
4. Leaves broad (2:I), minutely serrulate to the base........
H. Mackayi

Leaves narrower (3:1), serrulate only at the apex.
H. eugyrium

Hygrohypnum palustre (Huds.) Loeske. Hypnum palustre Huds.

Wet and periodically overflowed stones and rocks, usually calcareous. Summer. New London: Montville (i894), C. B. Graves.

Canada and the northern United States; Europe; Asia.
Hygrohypnum dilatatum (Wils.) Loeske. Hypuиm molle of some authors.

On non-calcareous rocks and stones in rapid motutain or hill brooks. Summer. Litchfield: Salisbury, Nichols. Fairfield: Darien, Mrs. Loze. New Haven: Ansonia (1880) and Woodbridge, O. D. Allen.

Arctic America and Canada, south to North Carolina and Colorado : Europe : Asia.

Hygrohypnum eugyrium (Br. \& Sch.) Loeske. Hypnum eugyrium Schimp.

On wet non-calcareous rocks in or near mountain or hill brooks. Summer. Litchfield: Salisbury, Gilman. New Haven: Beacon Falls, Nichols; Hamden (1878) and Woodbridge, J. A. Allen.

Newforndland to Alaska, south to Georgia and Colorado; Europe.

Hygrohypnum Mackayi (Schimp.) Loeske.
Shaded stones in hill streams. Summer. New Haven: Beacon Falls (1907), Nichols.

Probably has same range as H. eugyrium.
Hygrohypnum ochraceum (Turn.) Loeske. Hypnum ochraceum Turn.

On overflowed and wet rocks in rapid mountain or hill streams. Fruit rare, summer. Litchfield: Salisbury, Evans. New Haven: Ansonia, O. D. Allen; Beacon Falls, Nichols; Hamden (1878), J. A. Allen.

Arctic America, Canada, and the northern United States; Europe: Asia.

FAMILY DENDROIDACEÆ

Climacium Web. f. \& Mohr
Climacium americanum Brid.
Swamps and wet woods. Autumn. Litchfield: Salisbury. Nichols. Hartrord: Hartford, Miss Lorcuz. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fiarfield: Danbury, Nichols; Darien, Mrs. Lowe; Fairfield, Eames. New Haven: Bethany, Eaton; East Haven, Nichols; Handen, Eaton: Madison, Nichols; Milford and New Haven (1855), Eaton; Orange, Evans; Woodbridge, Eaton. Middlesex: Killingworth, Nichols; Middlefield, Evans. Nev Lonnon: New London, C. B. Graves.

Var. ${ }_{2}$ indbergii Ren. \& Card. Climacium Kindbergii Grout.

In wetter places than the typical form, frequently in the water. Tolland: Willington, Nichols. Windham: Canterbury, Mrs. IJadley. Farfield: Darien, Mrs. Loze ; Stratford, Nichols. New Haven: East Haven, Nichols; Woodbridge, Eaton. Mimblesex: Killingworth and Old Lyme, Nichols. New London: Groton, Montville, and Waterford (1884), C. B. Graves.

New Brunswick to Alabma, west to the Rocky Momtains.

Exsic. Renauld \& Cardot, Musei Amer. Sept. No. 238 (var. Kindbergii).

Ref. Eaton, 15, 66. Grout, 34, 161 (var. Kindbergii). Young, 81, 62.

Thamnium Br. \& Sch.
Thamnium alleghaniense (C. Müll.) Br. \& Sch. Hyputm alleghaniense C. Müll.

Dripping overhanging rocks along mountain and hill streams. Autumn. Litchifeld: Salisbury, Nichols. H.artford: West Hartford, Miss Lorenz. New Haven: Cheshire (1856). Eaton: Derby, O. D. Allen; Hamden, Eaton; New Haven, J. A. Allen; Oxford, Harger; Woodbridge. Eaton. New London: Montville and Waterford, C. B. Graves.

Nova Scotia to Minnesota, south to the Gulf States.
Ref. Eaton, 15, 67.

FAMHM WEBERACEI:

Webera Ehrl.

[Webera sessilis (Schmict.) Lindh ${ }^{1843}$. Diphyscium foliosum Mohr. 1803

Moist. shaded earth and banks. Summer. Titcufield: New Milford, Nichels: Salishury, Gilman. Hurtrord: Hartford, Mrs. Lozu': Southington, Chamberlain; West Hartford, Miss Lorenz. Tolusm: Bolton, Nichols. Windinm: Canterbury, IIrs. Hadley; Windham, Nichols. Fimefeld: Danbury and Huntington, Vichols: Redding, Evians. New Haven: Ans nia. O. D) Alon; Beaon Falls, Nichols: Meriden, Nichols: New Haven (1955). Orange, and Woodbridge Eaton. Mrodesex: Fillingwoth, Vichls. New Loxdon: Montville, C. B. Graucs.

Now Sentia to Ontarin, south to Alabama: Europe: Isia; Madeira Islands.

Exsic. Holzinger, Musci Acro. Bor.--Amer. No. $12 \mathrm{I}^{\text {a }}$ (as Diphyscium foliosum).

Ref. Collins, 14, 131. Eaton, 15, 64.

FAMILY BUXBAUMIACE \neq

Buxbaumia Haller

Buxbaumia aphylla L.

Clayey banks and turfy soil in open woods. Spring. Litchfield: Salisbury, Ez'ans. Hartford: Canton, Nichols; Manchester, Miss Lorenz. Fairfield: Darien, Mrs. Lozve. New Haven: Beacon Falls, Nichols; Hamden (i866), Williams; New Haven, I. A. Allen; Oxford, Harger; Woodbridge, Nichols.

Nova Scotia to Ontario and West Virginia; Yukon Territory to Washington : Europe; Asia.

Exsic. Holzinger, Musci Acro. Bor.-Amer. No. 250.
Ref. Collins. I4, I31. Eaton, 15, 64: 17, 126.

FAMILY GEORGIACE \not

Georgia Ehrlı.
Georgia pellucida (L.) Rabenh. Tetraphis pellucida Hedw.

Rotten stumps, roots, and banks in the woods. Spring. Litchfield: Litchfield, Harris; Salisbury, Gilman. HartFORD: Hartford and Manchester, Miss Lorens; Windsor, W. E. Britton. Tolland: Bolton and Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Lowe; Redding, Evans. New Haven: Beacon Falls, Nichols; Hamden, Evans; New Haven (1866), Eaton; North Branford, Evans; North Haven, Nichols; Orange and Woodbridge, Eaton. New London: East Lyme and Groton, C. B. Graves.

Canada and the northern United States; Europe; Asia.
Ref. Collins, 14, I3I. Eaton, 15, 63.

FAMILY POLYTRICHACE.玉
 Catharinæa Ehrh.

I. Leaf cells distinctly papillose C. MacmillaniLeaf cells smooth, not papillose.2
2. Leaves strongly undulate, serrate nearly to base; capsules borne singly or in small clusters C. undulata
Leaves scarcely, if at all, undulate, serrate only above middle; capsules borne singly. 3
3. Plants rarely 5 cm . high: midrib and lamina sharply toothed at back, lamellic $+-8$. . C. angustata
Sterile plants 5-10 cm. high: midrib and lamina smooth at back; lamellar.I-t .. C. crispa

Catharinæa undulata (L.) Wel. f. \& Mohr. Atrichuniz undulatum Beanv.

Moist, sandy soil in open woods. Autumn. Litciffiein: Salisbury, Nichols. Ifartaond: Burlington, Nichols: West Hartford, Miss Lorenz. Tolland: Stafford, Nichols. IVindham: Canterbury. Mrs. Loze: Windham, Nichols. Farfield: Darien, Mrs. Lou'c. New Haven: Reacon Falls, Nichols; Hamden, Eaton: Madison, Nichols; New Haven (1855), Eaton: North Haven, Nichols: Orange, Erans; Woodbridge, O. D. Allen. Middeesex: Killingworth, Nichols. New London: Ledyard, Nichols: Montville and Waterford, C. B. Grazics.

Throughout temperate North America: Europe: Asia; Africa.

Ref. Collins, 14, 131. Eaton, 15, 64. Miss Lorenz, 53, 46, 47.

Catharinæa Macmillani Holzing.
In dry, exposed situations. Autumn. Hartford: Burlington, Nichols. Windham: Canterbury, Mrs. Hadley. New Haven: New Haven, North Haven (1907), and Orange, Nichols. New London: Ledyard, Nichols.

New England to Minnesota and Missouri : range not definitely known.

Ref. Chamberlain, 13, ioo.
Catharinæa crispa James. Atrichum crispum James.
Grassy banks of streams, and in wet sandy soil. Autumm. Hartaord: East Hariford, W catherby'.

Probably throughout Canada and the northern Linited States: Europe.

Ref. Miss Lorenz, 53, 46 , 47 .
Catharinæa angustata Brid. Atrichum angustaium 1r. \& Sch.

Clayey banks and sandy soil in open woods. Autumn.

Litchfield: Salisbury, Nichols. Hartford: Canton, Nichols; Southington, Chamberlain; West Hartford, Miss Lorens. Tolland: Bolton and Stafford, Nichols. Windilam: Canterbury, Mrs. Hadley. Fairfield: Danbury, Nichols; Darien, Mrs. Lozve; Huntington and Sherman, Nichols. New Haven : East Haven (I855), Eaton; Hamden, Harger; Madison, Nichols; New Haven, Eaton; Orange, Evans; Woodbridge, Eaton. New London: North Stonington and Waterford, C. B. Graves.

Throughout temperate North America; Europe; Asia.
Ref. Collins, 14, 131. Eaton, 15, 64. Miss Lorenz, 53, 46,47 .

Pogonatum Beauv.
Pogonatum tenue (Menz.) E. G. Britton. P. brevicaule (Brid.) Beauv. P. pennsylvanicum (Hedw.) Par.

Clay banks and roadsides in open woods. Autumn. Litchfield: Salisbury, Mrs. Phelps. Hartrord: Canton, Nichols; Hartford, Mrs. Lowe; West Hartford, Miss Lorenz. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadlcy. Fairfield: Danbury, Nichols; Darien, Mrs. Lowe. New Haven: Beacon Falls and Cheshire, Nichols; Hamden, J. A. Allen; New Haven (1866), and Orange, Eaton; Oxford, Harger; Woodbridge, Eaton. Middlesex: Killingworth, Nichols. New London: Ledyard, Nichols; Waterford, C. B. Graves.

Nova Scotia to Alabama, and west to Missouri.
Exsic. Holzinger, Musci Acro. Bor.-Amer. No. 123 (as P. penusylvanicum).

Ref. Collins, 14, I3I. Eaton, 15, 64. Mrs. Lowe, 59.

Polytrichum (Dill.) L.

[^13]2. Capsule cylindrical Capsule prismatic P. ohioense
3. Leaves awned, margins entire, inflexed..................... 4

Leaves pointed, margins sharply serrate, not inflexed

P. commune

4. Awn long and hyaline.. 5 . 5 .
5. Stem densely tomentose, leaves erect.................. P. strictum

Stem not tomentose, leaves spreading........... P. juniperinum
Polytrichum alpinum I. var. arcticum (Sw.) Wahl. Pogonatum alpinum Röhl. var. arcticum Brid.

Stony and grassy mountain slopes. Summer. LitchFIELD: Salishury (igo6), Collins.

Throughont northern North America; Europe.
Polytrichum ohioense Ren. \& Card. P. formosum of some anthors.

On the ground and on earth-covered rocks in moist woods. Summer. Sitciffeld: Salishury, Gilman. Hartford: Hartford, Miss Lorcnz: Plainville, Chamberlain; Windsor, Rorer. Windham: Canterbury, Mrs. Hadley. Fairfield: Danbury, Eaton; Darien, Mrs. Lorec. New Haven: East Haven (I856), Eaton; Madison, Nichols; New Haven, J. A. Allen; North Haven and Orange, Nichols. Mindirsex: Chester, Nichols; Durham, Evans; Killingworth, Nichols. New London: Griswold, Harger; Montville and New London, C. B. Graves; Waterford, Miss Lorenz.

Newfoundland to Alaska, south to Alabama, Missouri, and Oregon; Europe.

Exsic. Holzinger, Musci Acro. Bor.-Amer. No. 124.
Ref. Collins, 14, I3I. Eaton, 15, 64.
Polytrichum piliferum Schreh.
Rocky ridges and gravelly lanks in hilly regions. Summer. Litchfield: New Milford and Salisbury, Nichols. HartFORD: Hartford, Miss Lorcni; Plainville, Chamberlain. Tolland: Stafford, Nichols. Windham: Canterbury, Mrs. Hadley. Fairfield: Darien, Mrs. Louc; IIuntington, Nichols. New Haven : Beacon Falls, Madison, and Meriden, Nichols; New Haven (1854), Eaton; Woodbridge, Harger. Middlesex: Killingworth, Nichols. New London: Ledyard, Nichols; Lyme, Eaton; Old Lyme, C. B. Graies.

Northern North America and southward to Alabama and California: found in most quarters of the globe.

Ref. Collins, 14, I3I. Eaton, 15, 64.

Polytrichum juniperinum Willd.

In dry pastures or open woods in mountainous or hilly regions. Summer. Litchfield: Salisbury, Gilman. HartfORD: Hartford, Hiss Lorchz: Southington. Chamberlain. Tolland: Bolton and Ellington, Nichols. Windham: Canterbury, Mrs. Hadley. Finrfield: Danbury, Nichols; Darien, Mrs. Loure: Huntington, Nichols. New Haven: Branford, Ward: Hamden, J. A. Allen; New Haven (i865), Eaton. Middesex: Killingworth, Nichols.

Arctic and temperate North America; a cosmopolitan.
Ref. Collins, 14, I3I. Eaton, 15, 64.
Polytrichum strictum Banks. $=$ P. jump. van whemetre BSG
In peat bogs and wet woods. Summer. NEw HAvEN? Orange (I874), Young.

Arctic America, Canada, and the northern United States; South America; Europe; Asia.

Ref. Collins, 14, i3i. Eaton, 15, 64.

Polytrichum commune L.

In pastures and clearings and along the borders of woods anci roadsides. Summer. Litchfield: New Milford and Salisbury, Nichols. Hartrord: Hartford, Miss Lorenz; Windsor, Rorer. Tolland: Bolton and Stafford, Nichols. Windifam: Canterbury, Mrs. Hadley; Windham, Nichols. Farreield: Darien, Mrs Loare; Huntington, Sherman, and Stratford, Nichols. New Hayen: Beacon Falls, Nichols; Hamden, Eaton; Meriden, Nichols; New Haven (I856) and Orange, Eaton; Onford, Harger. Middeesex: Killingworth, Nichols. New London: Ledyard, Nichols; New London and Waterford, C. B. Grazes.

Throughont North America; a cosmopolitan.
Exsic. Renauld \& Cardot, Musci Amer. Sept. No. 227.
Ref. Collins, 14, I3I. Eaton, 15, 64.

SUMMARY

An analysis of the bryophytic flora of Connecticut brings out the interesting fact that only about 18 per cent. of the species are peculiar to America. Over 62 per cent., on the other hand, are common to Europe and Asia, a proportion which is sure to be increased when the Asiatic flora has been more thoroughly explored. Of the remaining specics 16 per cent. have been found in Europe but not in Asia, while 4 per cent. have been found in Asia but not in Europe. These relationships may be clearly shown by the following table, in which the species are arranged by orders. One species of Sphagnum which is common to Africa (but not to cither Europe or Asia), is included in the first column.

	Peculiar to America.	Common to Europe and Asia.	$\left\lvert\, \begin{gathered} \text { Common } \\ \text { to Europe } \\ \text { (but not to } \\ \text { Asia). } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Common } \\ \text { to Asia } \\ \text { (but not to } \\ \text { Europe). } \end{array}\right\|$	Total.
Marchantiales .	3	9	0	\bigcirc	12
Jungermanniales	17	62	12	1	92
Anthocerotales	-	1	2	\bigcirc	3
Sphagnales	2	17	12	o	31
Andreæales	\bigcirc	1	1	-	2
Bryales	46	154	34	13	247
Total .	68	24	61	I 4	397

The table shows also that about 3 per cent. of our species are Marchantiales, about 23 per cent. Jungermanniales, less than i per cent. Anthocerotales, about 8 per cent. Sphagnales, less than I per cent. Andrereales, and about $6+$ per cent. Bryales.

The following table, based on the specimens at hand, gives some idea of the extent to which Connecticut has been explored for Bryophytes. Such a table is merely of historical interest. The discrepancies which apparently exist between the moss floras of the different comities are largely of a temporary nature, and will become less as the exploration of
i78 connecticut geol. and nat. hist. survey. [Bull.
the state proceeds. There is little probability, for example, that New Haven County is richer in Bryophytes than New London County. It simply represents the part of the state where bryologists have been most numerous and active.

| | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

The last column shows the comparatively small number of species known from each county of the state. All of these species are exceedingly common, and the present figures will probably be soon increased by the addition of other species which must be equally common. Even the majority of the species which are known at present from only one or two localities in the state are undoubtedly much more widely distributed than these scanty records would seem to indicate.

BIBLIOGRAPHY OF CONNECTICUT BRYOLOGY

The books and papers included in the following bibliography all contain direct references to Connecticut Bryophytes. Although it has been attempted to make the list as complete as possible, some references have doubtless been overlooked. Papers published since December, 1907, are not included:
I. Andrews, A. LeR. Preliminary Lists of New England Plants, - XVIII, Sphagnaceæ. Rhodora, 8: 62-65. 1906.
2. Austin, C. F. Hepaticæ Boreali-Americanæ exsiccatæ. Nos. I-I50. 1872.
3. - Bryological Notes. Bull. Torrey Club, 6: 341-344. 1879.
4. - Bryological Notes. Bull. Torrey Club, 7: 15, 16. 1880.
5. Barbour, W. C. Frullania. Bryologist, 5: 3-5. f. I-5. 1902.
6. - Porella L. Sp. Pl. 2: ifg6. 1753. Bryologist, 5: 32-36. f. I-8. 1902.
7. - Hepatics, - Lejeunea. Bryologist, 6: 27-32. f. I-6. 1903.
8. Britton, E. G. Distribution of the eastern species of Mnium. -Bryologist, 3: 4-6. 1900.
9. -Octodiceras Julianum, its Propagation, Distribution and History. Bryologist, 5: 83, 84. I f. 1902.
10. - Further Notes on Sematophyllum. Bryologist, 7: 59-61. 1904.
II. Cardot, J. Répertoire Sphagnologique. Catalogue alphabétique de toutes les espèces et variétés du genre Sphagnum, avec la synonymie, la bibliographie et la distribution géographique d'après les travaux les plus récents. Bull. Soc. d'hist. nat. d'Autun, 10: 235-433. 1897 .

- See also Renauld, F.

12. Chamberlain, E. B. Notes upon two Maryland Bryophytes and on two Mosses from Virginia. Bryologist, 8: 77-78. 1905.
13. - Catharinea Macmillani. Rhodora, 9: 98-100. pl. 74. 1907.
14. Collins, J. F. Preliminary Lists of New England Plants, XIX. Rhodora, 8: i3I-I35. 1906.

Cook, O. F. See Underwood, L. M.
15. Eaton, D. C. Anogens. In "A Catalogue of the Flowering Plants and Higher Cryptogams growing without cultivation within thirty miles of Yale College." Published by the Berzelius Society. Pp. 6i-72. New Haven, 1878.
16. - Conomitrium Julianum. Bull. Torrey Club, 6: 24. 1878.
17. - On Buxbaumia indusiata Bridel. Bull. Torrey Club, 17: 126, 127. I 1890.
18. - A Check-List of North American Sphagna, arranged mostly in accordance with the writings of Dr. Carl Warnstorf. Svo. 8 pp. New Haven, I893.
19. Eaton, D. C., and Faxon, E. Sphagna Boreali-Americana Exsiccata, curaverunt D. C. Eaton et E. Faxon, distribuit G. F. Eaton. Nos. f-172. New Haven, 1896.
20. Evans, A. W. Two new American Hepatica. Bull. Torrey Club, 20: 307-309. pl. 162, 163. 1893.
21. - Notes on the North American species of Plagiochila. Bot. Gazette 21: 185-194. pl. 15. 16. 1896.
22. - A Revision of the North American Species of Frullania, a Genus of Hepatice. Trans. Comn. Acad., ro: 1-39. pl. I-I5. 1897.
23. - Studies among our common Hepaticre. 1[. Lophocolea heterophylla. Plant World, i: i3ł-137. pl. 6. 1898.
24. - Fossombronia salina in Connecticut. Rhodora, 3: 7-10. I f. I90I.
25. - The Lejeunce of the United States and Canada. Mem. Torrey Club, 8: 113 -183. pl. 16-2?. 1902.
26. - Notes on New England Hepatice. Rhodora, 4: 207-213. 1902.
27. - A New Hepatic from the Eastern United States. Bot. Gazette, 34: 372-375. pl. I2. 1902.
28. - Preliminary Lists of New England Plants, - XI, Hepaticre. Rhodora, 5: 170-173. 1903.
29. - Odontuschisma Macounii and its North American Allies. Bot. Gazette, 36: 321-348. pl. 18-20. 1903.
30. - Notes on New England llepatice, - II. Rhodora, 6: 165174: 185-191. pl. 57. 1904.
31. - Notes on New England Hepatice, - III. Rhodora, 7: 525\%. 1905.
32. - Notes on New England llepatica, - IV. Rhodora, 8: 3t+5. 1906.
33. -- Notes on New England llepatice, - V. Rhodora, 9: 56(00; 05-7.3. pl. 73. 1907.
Faxon, E. See Eaton, D. C.
34. Grout, A. J. A Revision of the North American Isotheciaceac. Mem. Torrey Clul, 6: 131-210. 1897.
35. - A Revision of the North American Eurynchia. Bull. Torrey Club, 25: 221-256. IS98.
36. - North American Musci Pleurocarpi. Nos. I-300 (exsiccati). 1900-1907. To be continued.
37. - Mosses with a Hand-Lens and Microscope: a non-technical handbook of the more common Mosses of the northeastern United States. Large 8 vo. Part I, 86 pp., io pl., 35 f . in text. 1903. Part II, pp. 87-166, pl. if-35, f. in text 36-76. 1904. Part III, pp. 167-2 46 , pl. $36-55$, f. in text 77-I 33.1906. New York. To be completed in five parts.
38. - Mosses with a Hand-Lens: a non-technical handbook of the more common and more casily recognized Mosses of the northeastern United States. Second Edition. Reviscd, enlarged, and including the Hepatics. Svo. pp. xvi + 208. 39 pl. 151 f. in text. New York, 1905.
39. -"When Doctors Disagree." Bryologist, 9: 42. 1906.
40. Hadley, S. B. [Offerings to Chapter Members.] Bryologist, 6: 70. 1903.
41. - [Offerings.] Bryologist, 6: 106. 1903.
42. - [Offerings.] Bryologist, 7: 52. 1904.
43. - [Offerings.] Bryologist, 8: 92. 1905.
44. Haynes, C. C. Ten Lophozias. Bryologist, 9: 99, 100. pl. 9. 1906; 10: 9-12. pl. 2, 3. 1907.
45. - American Hepaticre. Nos. I-40 (exsiccatæ). New York, 1907-1908. To be continued.
Hervey, A. B. See Rau, E. A.
46. Holzinger, J. M. Musci Acrocarpi Boreali-Americani. Nos. 1-250 (exsiccati). 1904-1907. To be continued.
47. Howe, M. A. The North American Species of Porella. Bull. Torrey Club, 24: 512-527. 1897.
48. - The Anthocerotacce of North America. Bull. Torrey Club, 25: 1-24. pl. 32T-326. 1898.
49. - Notes on American Hepaticie. Bull. Torrey Club, 29: 281289. 1902.
50. Lesquereux, L., and James, T. P. Manual of the Mosses of North America. Svo. pp. v + 447. 6 pl. Boston, i88.
51. Limpricht, K. G. Die Lambmonse Dcutschlands, Oesterrcichs und der Sehweiz. 8vo. Band I, x +836 pp., 211 f. in text. 1890. Band II, 853 pp., f. in text 212-352. 1895. Band III, $864+79$ pp., f. in text 353-440. 1904. Leipzig. The work
represents Band IV of Rabenhorst's Kryptogamen-Flora, second edition.
52. Lorenz, A. [Offerings.] Bryologist, 9: 53. 1906.
53. - Catharinea in Hartford County. Bryologist, 10: 45-47. 1907.
54. Lowe, J. D. [Offerings to Chapter Members.] Bryologist, 6: 70. 1903.
55. - [Offerings.] Bryologist, 6: 90. 1903.
56. - Anacamptodon splachnoides. Bryologist, 7: 77. 1904.
57. - [Offerings.] Bryologist, 7: 82. 1904.
58. - [Offerings.] Bryologist, 7: ioo. I904.
59. - [Offerings.] Bryologist, 8: 35. I905.

6o. Muller, C. Monographie der Lebermoosgattung Scapania Dum. Nova Acta Acad. Caes. Leop.-Carol., 83: 1-3I2. pl. I-52. 1905.
6r. Paris, E. G. Index Bryologicus sive Enumeratio Muscorum hucusque cognitorum adjunctis Synonymia Distributioneque geographica locupletissimis. Act. Soc. Linn. Burdigalensis. Pars I, pp. vi + 964. 1894-1896. Pars II, pp. 965-1380. IS98.
62. - Index Bryologicus sive Enumeratio Muscorum ad diem ultimam anni 1900 hucusque cognitorum adjunctis Synonymia Distributioneque geographica locupletissimis. Editio secunda. 8vo. Paris. Pars I, $3 S_{4}$ pp. 1903-190.4. Pars II, 375 pp . 1904. Pars III, $400 \mathrm{pp}$. 1904-1905. Pars IV, 368 pp. 1905. Pars V, 160 pp. 1906.
63. Rau, E. A. Review of Lesquereux and James: Manual of the Mosses of North America. Bot. Gazette, 9: 151, 152. 1884.
64. Rau, E. A., and Hervey, A. B. Catalogue of North American Musci. Svo. 52 pp . Taunton, 1880.
65. Renauld, F., and Cardot, J. Musci Americæ Septentrionalis, ex operibus novissimis recensiti et methodice dispositi. Rev. Bryol., 19: 65-96. 1892; 20: 1-32. 1893.
66. - Musci Americre Septentrionalis Exsiccati. Nos. i-400. 18921908.
67. Stephani, F. Species Hepaticarum. Vol. I. Anacrogynæ. 413 pp. i898-igoo. Vol. II. Acrogynæ. 615 pp . 190 I -igo6. Vol. III in course of publication. Reprinted from the Bulletin and Memoirs of the Herbier Boissier.
68. Sullivant, W. S. Anophytes. In A. Gray: Manual of the Botany of the Northern United States, 607-702; 733-737. pl. I-S. I856. Ed. II.

No. II.] TIIE BRYOPHYTES OF CONNECTICUT. 183
69. - The Musci and Hepaticre of the United States East of the Mississippi River. Svo. 113 pp. 8 pl . New York, 1856. Reprint of the above.
70. - Icones Muscorum, or Figures and Descriptions of most of those Mosses peculiar to eastern North America which have not been heretofore figured. 8vo. 216 pp .128 pl . Cambridge and London, 1864.
71. Underwood, L. M. Descriptive Catalogue of the North American Hepaticæ, North of Mexico. Bull. Illinois State Lab. Nat. Hist., 2: 1 -133. 1884.
72. - Hepaticr. In A. Gray: Manual of the Botany of the Northern United States, $702-732$. pl. 22-25. 1890. Ed. VI.
73. - A Few Additions to the Hepatic Flora of the Manual Region. Bull. Torrey Club, 9: 299-301. 1892.
74. - Notes on our Hepaticæ. II. The Genus Riccia. Bot. Gazette, 19: 273-278. 1894.
75. - Notes on our Hepaticæ. III. The Distribution of the North American Marchantiacer. Bot. Gazette, 20: 59-71. 1895.
76. - Hepaticæ. Systematic Botany of North America, 9^{8} : 1-7. 1895.
77. Underwood, L. M., and Cook, O. F. Hepaticæ Americanæ. Nos. 1-200 (exsiccatæ). 1887-1899.
78. Warnstorf, C. Einige neue exotische Sphagna. Hedwigia, 3 I : 174-182. pl. 26, 27. 1892.
79. - Europaeische Torfmoose. Serie IV. Nos. 301-400 (exsiccata). 1894.
80. Wheeler, H. Note on Claopodium pellucinerve (Mitt.) Best. Bryologist, 6: 39. 1903.
81. Young, A. H. Bryological Notes. Bot. Gazette, 2: 6i, 62. 1876.

INDEX TO CATALOGUE

A
Acaulon C. Mïll.
page 88, 108
muticum (Schıreb.) C. Müll. IoS
Acrocarpi 87
Acrocladium Mitt. 94, 167
cuspidatum (L.) Lindb. 167
Amblystegiella Loeske 95, 154
adnata (Hedw.) Niclools 154. 155
confervoides (Brid.) Locske 15.
Amblystegium Br. \& Sch. 94. 155
adnatum Aust. 155
fluviatile (Sw.) Br. \& Sch. 93, 155,157
irrigumm (Wils.) Br. \& Sch. 155, 156
Juratzkanum Schimp. 155,156
Kochii Br. \& Sch 155, 158
Lescurii (Sull.) Aust. 155. 157
noterophilum (Sull.) Holzing. 155, 156
orthocladon Mac. \& Kindb. 156
radicale $\mathrm{Br} . \& \mathrm{Sch}$. 156
riparium (L.) Br. \& Sch. 155, 157
serpens (L.) Br. \& Sch. 155
varium (Hedw.) Lindb. 155. 156
Amphoridium Mougcotii Schimp. 112
Anacamptodon Brid. 91, 13t
splachnoides (Fröl.) Brid. $13+$
Andreæa Ehrh. 80
petrophila Ehrl. 86, 87
Rothii Web. f. \& Mohr 86, 87
Andreface.e 86
Andrefe.lles 86
Aneura multifida Dumort. $4+$
pinnatifda Nees 4
sessilis Spreng. 14
Anœctangium Hedw. 90, 112
Mongeotii (Br. \& Sch.) Lindb. 112
Anomodon Hook. \& Tayl. 92, 137
apiculatus Br. \& Sch. 1.37
attenuatus (Schreb.) Hüben. 137
PAGE
Anomodon minor (Beauv.) Fürn. 137
obtusifolius Br. \& Sch. 137
rostratus (Hedw.) Schimp. 137, I38
tristis Sull. 136
Anthoceros (Mich.) L. 75
levis L. 75
punctatus L. 75, 76
Anthocerotacefe 75
Anthocerotales 75
Aphanorrhegma Sull. 91, 117
serratum (Hook. \& Wils.) Sull. 117
Archidiacee 95
Archidium Brid. 87, 95
ohioense Schimp. 95
Archilejcunea clypcata Schiffn. 72
Asterella Beauv. 40, 41
hemispharica Beauv. 40
tenella (L.) Beauv. 41
Astomum Hampe 87, Іо6
Sullivantii Schimp. 106
Atrichum angustatum Br. \& Sch. 173
crispum James 173
undulatum Beauv. 173
Aulacomniacea 125
Aulacomnium Schwaegr. 90, 125
heterostichum (Hedw.) Br. \& Sch. 125
palustre (L.) Schwaegr. 125, 126
B
Barbula Hedw. 89, io8
caspitosa Schwaegr. 107
fallax Hedw. 108
muralis Timm. 109
papillosa C. Minll. 109
tortuosa Web. f. \& Mohr 107
unguiculata (Huds.) Hedw. io8
Bartramia Hedw. 90, 127
Ocderi Sw. 126
pomiformis (L.) Hedw. 127
Bartramiacee 126
Bazzania S. F. Gray 48, 64
triangularis (Schleich.) Lindb. 64
tricrenata (Wahl.) Trevis. 64
trilobata (L.) S. F. Gray 64
Blasia L. 43, 46
pusilla L. 46
No. II.] INDEX TO CATALOGUE. 187
Blepharostoma Dumort.
page 48, 66trichophyllum (L.) Dumort.66
Blepharozia ciliaris Dumort. 66
Brachythecium Br. \& Sch. 94, 143
acuminatum (Hedw.) Kindb. 143, 145
acutum (Mitt.) Sull. 143, 144
campestre (C. Müll.) Br. \& Sch 143, 144
latum Br. \& Sch. 144
Novæ-Angliæ (Sull. \& Lesq.) Jaeg. \& Saucrb. 143, 146
oxycladon (Brid.) Jaeg. \& Sauerb. 143, 144
plumosum (Sw.) Br. \& Sch. 143, 145
populeum (Hedw.) Br. \& Sch. 143, 146
rivulare Br. \& Sch. 143, 145
Rutabulum (L.) Br. \& Sch 143, 144
salebrosum (Hoffm.) Br. \& Sch. 143
Starkei (Brid.) Br. \& Sch. 143, 146
velutinum (L.) Br. \& Sch. 143, 147
Bryace.f 117
Bryales 87
Bryhnia graminicolor Grout 148
Bryum (Dill.) L. 90, 119
argenteum L. 119, 120
bimum Schreb. I 19
cæspiticium L. 119, 120
capillare L. 119, 120
pseudotriquetrum (Hedw.) Schwaegr. 119
roseum Schreb. 120
ventricosum Dicks. II9
Bruchia Schwaegr. 87, 95
flexuosa (Schwaegr.) C. Müll. 95
Sullivantii Aust. 95
Buxbaumia Haller 91, 172
aphylla L. 172
Buxbaumiaces 172
C
Calliergon (Sull.) Kindb. 93, 166
cordifolium (Hedw.) Kindb. I66 I66
giganteum Schimp. 166
Calypogeia Raddi 47, 4S, 62
sphagnicola (Arn. \& Perss.) Warnst. \& Locske 63
suecica (Arn. \& Perss.) C. Müll. Frib. 63
Sullivantii Aust. 62, 64
tenuis (Aust.) Evans 63
Trichomanis (L.) Corda 63
PAGE
Camptothecium Br. \& Sch. 94. I42
nitens (Schreb.) Schimp. I. 42
Campylopus ziridis Sull. \& Lesq. 102
Catharinea Ehrl. 91, 172
angustata Brid. 173
crispa James 173
Nacmillani Holzing. I72, 173
undulata (L.) Web. f. \& Mohr I72, I73
Cephalozia Dumort. 48, 59
bicuspidata (L.) Dumort. 59, 60
catcnulata auct. 61
comnivens (Dicks.) Lindb 59, 60
curvifolia (Dicks.) Dumort. 59, 60
dizaricata Dumort. 61
fluitans (Nees) Spruce 59, 6 I
Iunulefolia Dumort. 60
serriflora Lindb. 60, 6I
Cephaloziella (Spruce) Schiffn. 48, 61
divaricata (Sm.) Schiffn. 61
myriantha (Lindb.) Schiffn. 61, 62
Ceratodon Brid. 89, 97
purpureus (L.) Brid. 97
Chiloscyphus Corda 47, 58
ascondcus Sulliv. 58
pallescens (Ehrh.) Dumort. 58
polyanthus (L.) Corda. 58
Chrysohypnum (Hampe) G. Roth 94. 95. 158
chrysophyllum (Brid.) Loeske 158
hispidulum (Brid.) G. Roth 158
polygamum (Br. \& Sch.) Loeske I5S, I59
protensum (Prid.) Locske I 58, I 59
stellatum (Sclireb.) Loeske I5S, I 59
Cirriphyllum Grout 93, 147
lioscii (Schwaegr.) Grout I47
piliferum (Schreb.) Grout 147
Claopodium (Lesq. \& James) Ren. \& Card. 92. 140
pellucinerve (Mitt.) Best 140
Climacium Wel). f. \& Mohr 92, 170
americannm Brid. 170
Kindbergii Grout 170
Cololejeunea (Spruce) Schiffn. 49, 7 I
Siddlecomix (Aust.) Evans 7 I
Conocephalum Wigg. 40, 41
conicum (I..) Dumort. 41
Conomitrium Julianum Mont. 105
Cratoneuron (Sull.) G. Roth
1'AGF,
filicinunn (1..) G. Roth 94. 159 159
Cryphæa Mohr 92, 1.30
glomerata Br. \& Sch. 1.30
Cryphemce.e 1,30
Ctenidium (Schimp.) Mitt. 1)4, 161
molluscum (lfedw.) Mitt. I)
Cylindrothecium cladorrhizans Schimp. 1,32
soductrir Sull. 1.33
Cynodontitm aircns Schimp. 99
D
Dendroidace.e 176
Dichelyma Miyrin 91, 1.30
capillaceum (L.) Schimp. 1,30
Dichodontium Schimp. 88, 99
pellucidum (L.) Schimp. 99
Dicranace.e 95
Dicranella Schimp. 88, 98
heteromalla (L.) Schimp. 98
rufescens (Dicks.) Schimp. 98
varia (Hedw.) Schimp. $9^{8}, 99$
Dicranum Hedw. 88, 100
Bergeri Bland. IOO, 101
flagellare Hedw. IOO, JOI
fulvum llook. 100,102
fuscescens Turn. 102
hetcromallam Hedw. 98
interruptum Brid. 102
longifolium Ehrh. 100, 102
montanum Hedw. 100, 101
Schraderi W'eb. f. \& Mohr 101
scoparium (L.) Hedw. IOO, JOI
spurium Hedw. 100
undulatum Ehrla. 100
varium Hedw. 99
viride (Sull. \& Lesq.) Lindb. 102
Didymodon lledw. 80, 10 S
cylindricus Br. \& Sch. 107
rubelius (lloffm.) Br. \& Seh. Io.
Diphyscium foliosum Mohr 171
Diplophylleia Trevis. 49. 67
apiculata Evans 07
taxifolia (Wahl.) Trevis. 67. (心
Ditrichum Timm So, r, 0
pallidum (Schreb.) Hampe 90, 97
PAGE
Ditrichum tortile (Schrad.) Lindb. 96
vaginans (Sull.) Hampe 96
Drepanocladus (C. Mïll.) G. Roth 94, 167
aduncus (L.) Warnst. 167, 168
fluitans (L.) Warnst. 167, 168
intermedius (Lindb.) Warnst. 167, 168
Kneiffii (Schimp.) Warnst. 167
Sendtneri (Schimp.) Warnst. 167, 168
subaduncus Warnst. 167, 168
Drummondia Hook. 89, 113
clavellata Hook. II3
E
Elodium (Sull.) Warnst. 92, 142
paludosum (Sull.) Loeske 142
Encalypta Schreb. I 10
ciliata (Hedw.) Hoffm. 89, i io
contorta (Wulf.) Lindb. S9, ilo
streptocarpa Hedw. 110
Entodon C. Müll. 92, 132
cladorrhizans (Hedw.) C. Müll. 132
scductrix (Hedw.) C. Müll. 132, 133
Entodontacere 132
Ephemerum Hampe 87,116
crassinervium (Schwaegr.) C. Müll. I 16
megalosporum (Aust.) Salm. 116
serratum (Schreb.) Hampe 116
Eurynchium Br. \& Sch. 92, 148
Boscii Jaeg. \& Sauerb 1.47
diversifolium Br. \& Sch. 148
graminicolor (Brid.) Ren. \& Card. 1.48
hians (Hedw.) Jaeg. \& Sauerb. 148, 149
piliferum Br. \& Sch. 147
rusciforme (Neck.) Milde 148, 149
strigosum (Hoffm.) Br. \& Sch. 148
Sullivantii Jaeg. \& Sauerb. 148
F
Fabroniacees 134
Fimbriaria tenella Nees 41
Fissidens Hedw. 88, 91, 103
adiantoides (L.) Hedw. 103, 104
bryoides (L.) Hedw. IO3
cristatus Wils. 103, 104
decipiens DeNot. 104
incurvus Schwaegr. 103, 104
page
Fissidens minutulus Sull. 104
obtusifolius Wils. 103, 10.4
osmundoides (Sw.) Hedw. 103, 105
subbasilaris Hedw. 103, 105
taxifolius (L.) Hedw. 103, 105
Fissidentace.e 103
Fontinalacee 128
Fontinalis (Dill.) L. 91, 128
antipyretica L. 12S, 129
dalecarlica Schimp. 128, 129
Lescurii Sull. 128, 129
Nove-Anglix Sull. 128, 129
Forsstroemia Lindb. 92, 131
trichomitria (Hedw.) Lindb. 13 I
Fossombronia Raddi 43, 46
foveolata Lindb. 46, 47
salina Lindb. 46
Wondraczekii (Corda) Dumort. 46, 47
Frullania Raddi 49, 73
Asagrayana Mont. 73
Brittonix Evans 73, 74
eboracensis Gottsche 73, 74
Grayana auct. 74
Hutchinsia auct. 72
plana Sull. 73, 74
riparia Hampe 73
squarrosa (R. Bl. \& N.) Dumort. 73
Tamarisci (L.) Dumort. 73, 75
virginica Gottsche 74
Funaria Schreb. 89, 117
hygrometrica (L.) Schreb. 117
Funariacere 116
G
Geocalyx Nees 48, 59
graveolens (Schrad.) Nees 59
Georgia Ehrh. 172
pellucida (L.) Rabenh. 91, 172
Georgiacees 172
Glyphomitrium Brid. 89, 110
incurvum (Schwaegr.) Broth. 110
Grimaldia Raddi 40, 41
barbifrons Bisch. 41
fragrans (Balb.) Corda 41
Grimmia Ehrl.89, 11I
apocarpa (L.) Hedw. III
PAGE
Grimmia conferta Funck III
Olneyi Sull. III, II2
pomsylatanica Schwaegr. III
pilifera Beauv. I I I
Grimimacee IIO
Gymnostomum curvirostrc Hedw. 106
H
Haplocladium C. Mïll. 92, I 39
microphyllum (Sw.) Broth. I 39
virginianum (Brid.) Broth. I 39
Haplohymenium Doz. \& Molk. 92, I36
triste (Cesati) Kindb. ${ }_{13} 6$
Harpanthus Nees 48, 59
scutatus (Web. f. \& Mohr) Spruce 59
Hedwigia Ehrh. 90, 128
albicans (Web.) Lindb. 128
ciliata Ehrh. 128
Hedmigiacere 128
Hepatice 38
Heterophyllon Kindb. 95, 165
Ilaldanianum (Grev.) Kindb. 165
Homalia (Brid.) Br. \& Sch. 93, 132
Jamesii Sehimp. 132
Homalothecium Br. \& Sch. 93. 134
subcapillatum (Hedw.) Sull. I $3+$
Hygrohypnum (Lindb.) Loeske 93, 94,169
dilatatum (Wils.) Loeske 169
engyrium (Br. \& Sch.) Loeske 169
Mackayi (Schimp.) Loeske 169, 170
ochracemm (Turn.) Loeske 169. I70
palustre (Huds.) Loeske 169
Hylocomium Br. \& Sclı. 95, 16I
brevirostre (Ehrh.) Br. \& Sch. 161
splendens (Hedw.) Br. \& Sch. 16I
triquetrinn Br. \& Sch. 160
Hymenostylium lirid. 90, 106
curvirostre (Ehrh.) Lindb. 106
HypNaten: 142
Hypnum (I)ill.) L. 94, 166
ahictinum L 142
acuminatum Beauv. 145
achtum Mitt. I +
adnatum 1ledw. 155
adunctum 1. 167, 168
alleghanicnse C. Mill. 171
Hypnum Alloni Iesq. \& James I ! 1A!
brownolise Just.
Bescii Sehwater. $1!$
braduostra Ehrh. I(1)
campestro liruch 1.14
chowsophyllmm brid.
conferovides brid. 1.54
condibliam Hedw. 10ts
Crisfa-Coastronsis L. 112
cupressiforma 1. 161t
cumrifolimm Hedw. I64
cuspidatum L. 16
cylindrocarfum C. Niuli. I5I
dclicatulunt L $1+1$
domissum Wils. 151
donticulatum I 153
deplamatum Schimp. 151
dizersifolium Schimp. 14 S
clegans Hook. I52
cugyrium Schimp. I (x)
fortile Sendt. 163
filicinum L. 159
fluitans L. 168
fluaiatile Sw. 157
gigantenm Sclimp. I 06
gracile Br. \& Sch. 139
Haldanianum Grev. 105
hamifolium Schimp. 168
hians Hedw. 149
hispidulum Brid. 158
imponens Hedw. 163
irrigmum WVils. 156
latum Drid. 1 4.
latcbricola Lindb. 153
I.escurii Suil. 157
mimutulum Hedw. I 40
molle auct. I 69
molluscum Hedw. 161
Muclleriamam Hook. f. 152
Muhlonbcchii Spruce 154
mitcns Schreb. $1+2$
Noz'e-Alnglic Sull. \& Lesq. 1.40
ochracemm Turn. 170
orthocladon Brid. I56
pallescens Br. \& Sch. 163
puludosum Sull. $1+2$
194 CONNECTICUT GEOL. AND NAT. HIST. SURVEY. [Bull.
Hypnum folustre Huds. page
Pationtia Lindb. 164
petrophilum Funck 146
piliferum Schreb. 147
plumosum Sw. I. 45
polygamum Wils. I59
populcum Hedw: I.46
pratense Kocl. 165
pygmaum Sull. I. 40
radicale Wils. 156
recognitum Hedw. I. 1 I
recurazas Beathv. 150
reptile Michx. 163
reaolachs Sw. 168
riparium L 157
rivulare Bruch 145
mugosum Ehrh. 160
rusiforme Neck. I 49
Rutabulum L. I4.
salebrosum Hoffm. I 43
Schreberi Willd. 160
scitum Beaus. I. 39
Scudmeri Schimp. 168
scrperts L I 55
simulaitm Hedw. I 50
splendens Hedw I6I
squarrosum 1. 160
Starkei Hedw. I. 46
stellatum Schreb. I 59
strigosum Hoffm. I48
Sullivantia Schimp 15.3
Sullizantii Spruce 148
sylaticum Hud. I 53
triquctrum 1. 160
turfactum Linds. 152
uncinatum ledw. I68
velutinum L 147
I
Isopterygium Mitt. 94, 15 I
deplanatum (Schimp.) Jaeg. \& Sanerb. I5I
elegans (Ilook.) Lindb. I5I
Muellerianum (Schimp.) Liadb. I5I, I52
turfacemm Iindb. I5I, I52
No. II. INDEN TO CATALOGUL. 195
J
restr
Jamesoniella (Spruce) Steph. 1\%.52
antumnalis (l)C.) Steph. 5.
Jubula Dumort. 49. 72
Hutchinsia attet. 72
pennsylvanica (Steph.) Evans 72
Jungermannia (Rupp.) ! 47. ミ1
barbata Schreb, 5.
cordifolia Hook. 51.52
crenulata Sm 50
cxcisa atuct. 53
lanceolata L. 5^{1}
Noz'r-Casarea Evan- 54
pumila With. 51, 52
Schraderi Mart 52
Jungermanniaceet 47
Jungermanniales 43
K
Kantia Trichomanis S. F. Gray 03
Sullizantii Underw. 6.4
L
Lejeunea Libert 49.72
calcarea atict. 71
cavifolia (Ehrh.) Lindb. 72
echinata auct 71
serpyllifolia Libert 72
Lepidozia Dumort. 48, 65
reptans (L.) Dumort. 65
setacea auct 65
setacea (Web.) Mitt. 65
sphagnicola Evans 65
sylvatica Evans 65
Leptobryum (Br. \& Sch.) Wils. 1)0, 117
pyriforme (L.) Wils. 117
Leptodon trichomitrion Mohr 131
Leptotrichum pallidum Hampe 97
tortile C. Müll. of
z'aginans Schimp. 00
Leskea Hedw. 92. 138
denticulata Sull I33
obscura Hedw. 13 S
polycarpa Ehrh. 1.38
tristis Cesati 1.36
Leskeace.ie 135
Leucobryace.玉 102

I96 CONNECTICUT GEOL. AND NAt. Hist. survey. [Bull.
PAGE
Leucobryurn Hampe 88, IO2
glancum (L.) Schimp. IO2
culgare Hampe 102
Leucodon Schwaegr. 91, 130
brachypus Brid. I30, I3I
julaceus (L.) Sull. 130
Leucodontacert I30
Leucolejeunea Evans 49, 72
clypeata (Schwein.) Evans 72
Liochlana lanceolata Nees 5 I
Lophocolea Dumort. 48, 57
Austini Lindb. 57
bidentata (L.) Dumort. 57
heterophylla (Schrad.) Dumort. 57
minor Nees 57. 58
Lophozia Dumort. $4^{8,} 52$
attenuata (Mart.) Dumort. 53, 55
barbata (Scloeb.) Dumort. 53, 55
bicrenata (: hmid.) Dumort. 53
excisa (Dicks.) Dumort. 53, 54
gracilis (Schleich.) Steph. 55
incisa (Schrad.) Dumort. 53. 54
inflata (Huds.) M. A. Howe 52, 53
Lyoni (Tayl.) Steph. 53, 55
marchica (Nees) Steph. 53. $5+$
Muelleri (Nees) Dumort. $48,52,53$
Noz'r-Casarea Steph. 54
porphyroleuca (Nees) Steph. 53. 5!
ventricosa (Dicks.) Dumort. 53. 54
Lunularia (Mich.) Adans. 40, 42
cruciata (L.) Dumort. 12
zulgaris Raddi 12
M
Madotheca platyphylla Dumort. 71
Porclla Dumort. 71
Marchantia (Xarch. f.) L. 40,42
polymorpha L. $+2$
Marciantiacere 40
Marchantiales 38
Marsupella Dumort. 49, 50
emarginata (Ehrh.) Dumort. 50
media (Gottsche) Schiffn. 50
sphacelata auct. 50
Sullivantii (De Not.) Evans 50
Mastigobryum trilobatum Nees $6+$
No. II.] INDEX TO CATM.OGUE. 197
Meesia Itedw. (1). 126
triquetra (1.) Aongstr. 126
tristicha Br. \& Sch. 126
Meeshace e 126
Metzgeria Raddi 4.3. 45
conjugata Lindb. 15
furcuta anct. 15
Metzgeriace.e: 43
Micromitrium megalosform Aust. 116
Minicere I21
Mniobryum (Schimp.) Limpr. 90. 118
albicans (Wahl.) Limpr. if
Mnium (Dill.) L. 90, 121
affine Bland. 121, 123, 12.4
ciliare (Grev.) Lindb. 121, 12.3
cinclidioides Hüben. 121, 125
cuspidatum (L.) Leyss 121, 12.3
hornum L. 121, 122
marginatum (Dicks.) Beauv. 121, 122
medium Br. \& Sch. 121, 123
orthorrhynchum Br. \& Sch. 121, 122
punctatum (L.) Hedw. 121, 12.4
rostratum Schrad. 121, 123
rugicum Laur. 121, 123
serratum Schrad. 122
spinulosum Br. \& Sch. 121, 122
sylvaticum Lindb. 123
Musci 76
Mylia S. F. Gray 47, 56
anomala (Hook.) S. F. Gray 56
Myurella Br. \& Sch. 92, I. 30
Carcyana Sull. 136
gracilis (Weinm.) Lindb. 1.36
julacea (Vill.) Br. \& Sch. 136

N

Nardia S. F. Gray 47, 50
crenulata (Sm.) Lindb. 50
crenuliformis (Aust.) Lindb. 50, 51
hyalina (Lyell) Carr. 50, 3 I
Neckera Hedw. 9I, I3I
pennata (L.) Hedw. I3I
Neckerace.e I 3 I
Notothylas Sull. 75
orbicularis (Schwein.) Sull. 75
valvata Sull 75
O
Octodiceras Britl. 88, 105
Julianum (Savi) Brid. 105
Odontoschisma Dumort. 47, 62
denudatum (Mart.) Dumort. 62
prostratum (Sw.) Trevis. 62
Sphagni auct. 62
Oncophorus Brid. 88, 99
virens (Sw.) Brid. 99
Orthotrichacel: 112
Orthotrichum Hedw. 89, 90, 113
anomalum Hedw. II3, IIt
Bramini Br. \& Sch. 113. II4
cupulatum Hoffm. II4
Lescurii Aust. 113, 114
ohioense Sull. \& Lesq. II3. 114
psilocarpum James 114
pumilum S_{w}. 113, 115
pusillum Mitt. II3, 114
sordidum Sull. \& Lesq. II3
strangulatum Sull. II
P
Pallavicinia S. F. Gray 43. 45
Lyellii (Hook.) S. F. Gray 45
Pellia Raddi 43, 46
epiphylla (L.) Corda 46
Phascum L. 88, 108
cuspidatum Schreb. 108
Philonotis Brid. 90, 127
fontana (L.) Brid. 127
Phragnicoma clypeata Nees 72
Physcomitrium (Brid.) Br. \& Sch. 91, 117
pyriforme auct. 117
turlinatum (Michx.) C. Mïll. 117
Plagiochila Dumort. 47, 56
asplenioides (L.) Dumort. 56
porelloides Nees 56
spinulosa auct. 56
Sullivantii Gottsche 56
Plagiopus Brid. 90, 126
Oederi (Gunnı.) Limpr. 126
Plagiothecium Br. \& Sch. 94, 152
denticulatum (L.) Br. \& Sch. 152, 153
latebricola (Wils.) Br. \& Sch. 152, 153
Muhlcnbeckii Br. \& Sch. 154
1.16.E
Plagiothecium Roeseantim Br. \& Sch. 152. 15.3
striatellum (Brid.) Lindb. $152,15+$sylvaticum (Huds.) Br. \& Sch.152,153
Platygyrium Br. \& Sch. (1)3, 13.32
repens (Brid.) Br. \& Sch. 132
Pleuridium Brid. 87.10
alternifolitm (Dicks.) Rabenh. (),
Sullivantii Aust. (f)
Pleurocarpi -7, 91
Pogonatum Beauv. 91. 17!
alpinum Röhl. 175
brevicaule (Brid.) Beativ. 174
pennsylvanicum (Hedw.) Par. 17
tenue (Menz.) E. G. Britton 174
Pohlia Hedw. 00.118
cruda (L.) Lindb. 118
nutans (Schreb.) Lindb. 118
proligera Lindb. 118
Polytrichaceie 172
Polytrichum (Dill.) L. 91. 171
alpinum L. 174. 175
commune L 175.176
formosum auct. 175
juniperinum Willd. 175. 176
ohioense Ren. \& Card. 174. 175
piliferum Schreb. 175
strictum Banks. 175, 176
Porella (Dill.) L. 49. 70
pinnata L. 70.71
platyphylla (L.) Lindb. 70. 71
rivularis (Nees) Trevis. 70. 71
Pottia Ehrh. 91, 109
truncata Fürn. 109
truncatula (L.) Lindb. 109
Pottiacee 106
Preissia Corda 40. 42
quadrata (Scop.) Nees 12
Ptilidium Nees 49. 66
ciliare auct. 66
ciliare (L.) Nees 60
pulcherrimum (Web.) Hampe (0)
Ptilium (Sull.) De Not. 94, 162
Crista-Castrensis (L.) De Not. 162
Ptychomitrium incurvum Sull. 110
Pylaisia Br. \& Sch. 93. 133
intricata auct. 133
PAGE
Pylaisia intricata (Hedw.) Br. \& Sch. 133, I34
Schimperi Card. 133
subdenticulata Schimp. 93, 133, $13+$
relutina Schimp. 134
R
Racomitrium Brid. 89, II2
aciculare (L.) Brid. II 2
Radula Dumort. 49, 69
complanata (L.) Dumort. 70
obeonica Sull. 70
tenax Lindb. 70
Rauia Aust. 92, I 39
scita (Beauv.) Aust. I39
Reboulia Radrli 40
hemisphærica (L.) Raddi 40
Rhabdoweisia Br. \& Sch. 88, 99
denticulata (Brid.) Br. \& Sch. 99
Rhodobryum (Schimp.) Hampe 90, 120
rosemm (Weis) Limpr. 120
Rhynchostegium Br. \& Sch. 93, 150
cylindrocarpum Aust. I5I
deplenatum Sull 151
recureans Aust. 150
musciforme Br. \& Sch. 149
serrulatum (Hedw.) Jaeg. \& Sauerb. I50
Rhytidiadelphus (Lindb.) Warnst. 95, 160
squarrosus (L.) Warnst. 160
triquetrus (L.) Warnst. 160
Rhytidium (Sull.) Kindb. 94, 160
rugosum (Ehrh.) Kindb. 160
Riccardia S. F. Gray 43
latifrons Lindb. 44
multifida (L.) S. F. Gray 43, $4+$
palmata (Hedw.) Carruth. 44, 45
pinguis (L.) S. F. Gray 43, 44
sinnata (Dicks.) Trevis. 43, 44
Riccia (Mich.) L. 38
arvensis Aust. 38
crystallina L. 39
fluitans L 39
natans L. 39
Sullivantii Aust. 39
Ricciaceje 38
Ricciella A. Br. 38
crystallina (L.) Warnst. 38, 39
Ricciella fluitans (L.) A. Br. 39
Sullivantii (Aust.) Evans 39
Ricciocarpus Corda 35. 30
natans (L.) Corda 39

S

Saelania Lindb. 89, 97
casia (Vill.) Lindb. 97
glaucescens (Hedw.) Broth. 97
Scapania Dumort. 49. 68
albicans Aust. 67
curta (Mart.) Dumort. 68
dentata Dumort. 68, 69
irrigua (Nees) Dumort. 68
nemorosa (L.) Dumort. 6s. 69
undulata (L.) Dumort. 68, 69
Schwetschkeopsis Broth. 92, 132
denticulata (Sull.) Broth. 132
Sematophyllum Mitt. 94, 150
carolinianum (C. Müll.) E. G. Britton 150. 151
recurvans (Michx.) E. G. Britton I50
tenuirostre (Br. \& Sch.) E. G. Britton 150, 151
Spharangium muticum Schimp. 108
Sphagnicee e 76
Sphagniles 76
Sphagnum (Dill.) L. 76
Acutifolia 77. 83
acutifolium Ehrh. 77, 85
compactum DC. 78, 8i
contortum Schultz 79, 85
Cuspidata 78, 82
cuspidatum Ehrh. 78.83
Cymbifolia 76. 8o
cymbifoliun Ehrl. 79. 80
dasyphyllum Warnst. 77, 78,Dusenii C. Jens.78, 83
fimbriatum Wils. 77, 8_{3}
fuscum (Schimp.) Klinggr. 77. S_{4}
Garberi Lesq. \& James 78, 81
Girgensohnii Russ. 77, 83
imbricatum Horsch. 79, 8o
inundatum Russ. 79, 86
laricinum Spruce 85
medium Limpr. 79, 81
obesum (Wils.) Warnst. 79, 85
papillosum Lindb. 79, 80
PAGE78, 8279, 86

$$
76,8_{1}
$$

$$
78,8_{2}
$$

$$
77,8_{4}
$$

$$
78,82
$$

$$
78,8 \mathrm{I}
$$

$$
77,83
$$

rufescens (Warnst.) Nees \& Hornsch 79. 86Squarrosa
78, 8i
squarrosum Pers.
subnitens Russ. \& Warnst.78, 8i
77, 84Suhsecunda
subsecundum Nees 79, 8678, 85
tenellum (Schimp.) Klinggr. 83
tenerum (Aust.) Warnst.
teres (Schimp.) Aongstr. 77, 85 78,82
Torreyantm Sull. 78, 82
Warnstorfii Russ. 77,84
Wulfianum Girgens. 76, 81
'phenolobus (Lindb.) Steph. 49. 55
exsectus (Schmid.) Steph. 55
Michanxii (Web. f. \& Mohr) Steph. 55
itectia Lyellii Lehm. 45
;tereodon (Brid.) Mitt. 9.4. 162
curvifolius (Hedw.) E. G. Britton 162, 164
cupressiformis (L.) Lindb. 162, 164
fertilis (Sendt.) Lindb. 162, 163
imponens (Hedw.) Lindb. 162, 163
Lindbergii (Mitt.) Warnst. 162,164
pallescens (Hedw.) Lindb. 163
pratensis (Koch) E. G. Britton 162, 165
reptilis (Michx.) Mitt. 163
Systrgium Sullivantii Schimp. 106
T
Tetraphis pellucida Hedw. 172
Thamnium Br. \& Sch. 92, 171
alleghaniense (C. Mïll.) Br. \& Sch. 171
Thelia Sull. 91. 135
asprella (Schimp.) Sull. I35
hirtella (Hedw.) Sull. I35
' escurii Sull. 135, 136
Thuidium Br. \& Scli. 92, 141
abictinum (L.) Br. \& Sch. I.40, 142Alleni Aust.I.40, 141
No. II.] 1.NDEX TO C.XT.M.OGUE:. 2).i
Thuidium delicatalum (L.) Br \& Sch
ladir
gracilc Br. \& Sch. I $10,1.4$ I $10,1.4$ I. 3')
microphyllum Best 13!
muntulum (Hedw.) Br. \& Sch 134
paludosum Jaeg. \& Sauerb. 1.2
pygmrum Br. \& Sch. If"
recognitum (Hedw.) Lindb. $140,1.41$
scitum Aust. 1.39
virginianum Lindb. 1,3)
Timmia Hedw. 90, 127
cucullata Michx. 127
mesapolitana auct. 127
Timmacere 127
Tortella (C. Miull.) Limpr SO, 107
caspitosa (Schwaegr.) Limp: 107
tortuosa (L.) Limpr. 107
Tortula Hedw. So, [m]
montana (Nees) Lind. $1(00,111)$
muralis (L.) Hedw. (0)
papillosa Wils. (0)
Trichocolea Dumort. $+9,67$
tomentella (Ehrh.) Dumurt $6-$
Trichostomum Hedw. (4). 107
cylindricum (Brach) C. Müli 107
U
Ulota Mohr 0) $1:=$
americana (Beaus.) Limpr. I:
crispa (Hedw.) Brid. 110
crispula Bruch 115.116
Hutchinsiæ (Sm.) Hamm": 115
Ludwigii Brid. 115
ulophylla (Ehrh.) Broth. 115,116
W
Webera Ehrh. 111, 171
albicans Schimp. 118
nutans Hedw. IIS
sessilis (Schmid.) Lindb. 171
Weberacese 171
Weisia Hedw. (3). 100
viridula (L.) Hedw. 100

[^0]: - Yuoted by Mohr: Plant Life of Alabama. Contr. U. S. Nat. Herb., 6: 292. 1gor.

[^1]: *Rice and Gregory: Manual of the Geology of Connecticut. Conn. Geol. \& Nat. Hist. Surv., Bull. 6, p. 17.1906.

[^2]: * Warming: Lehrbuch der ̈̈hologischen Pflaczengeographie. Second German edition, 1902, pp. 121, 122.
 + Warnstorf: Kryptogamenflora der Marik Brandenburg. 1: 20-25, 1003.

[^3]: * Dic euronnischen Laubmoose. 1: 62-77. Leipzig, rgo5.

[^4]: *What is said here regarding the form and position of the chlorophyll cells refers aluays to median cross sections of leaves taken from the middle of one of the sprcading branches.

[^5]: - S. dasyfhylhum may be looked for here.

[^6]:
 f. 1.

 Tolland: Stafford, Nichols. New Haven: East Haven (1891), Evans.

[^7]: * S. squarrosum was reported from Iiamden by Hall in the Berzelius List (Eaton, 15, 68), but the specimens have been lost sight of.

[^8]: Midrib present
 A. Rothii

 Midrib wanting
 A. petrophila

[^9]: "Kepnitd 'y liarman from " near the sound" (Eaton, 15, 6r).

[^10]: - Two sther species of Dicranum, D.fuscescens Turn. and D. viride (Sull. \& Lesq.) Lindb. (as (impylopus airidis Suli, \& Lésq.ı, are reported by baton (15, 61) on the authority of liarton, but no Connecticut specimens examined by he writers have been referable to either of these specios.

[^11]: *"In a greenhouse, K. Vitch; also on the sides of a well on Church Street, New Haven, W. T. Broinc." Both of these stations have since probably been destroyed.

[^12]: 3. Nonoicous; stems depressed; leaves distinctly complanate. pate green, very glossy.
 P. denticulatum

 Dioicous

[^13]: i. Epidermis of capsule with a large pit in the outer wall of each cell, neck distinctly marked off by a constriction; capsule little longer than broad.3
 lipidermis of capsule not pitted, neck indistinctly defined; capsule much longer than broad 2

